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Cognitive radio has been proposed as a promising technology to resolve the

spectrum scarcity problem by dynamically exploiting underutilized spectrum

bands. Cognitive radio technology allows unlicensed users, also called cog-

nitive users (CUs), to exploit the spectrum vacancies at any time with no or

limited extra interference at the licensed users. Usually, cognitive radios create

networks in order to better identify spectrum vacancies, avoid resultant inter-

ference, and consequently, magnify their revenues. One of the main challenges

in cognitive radio networks is the high energy consumption, which may limit

their implementation especially in battery-powered terminals.

The initial step in cognitive transmission is called spectrum sensing. In spec-

trum sensing, a CU senses the spectrum in order to detect the activity of the li-

censed users. Spectrum sensing is usually accomplished cooperatively in order

to improve the reliability of its results. In cooperative spectrum sensing (CSS),

individual sensing results should be exchanged in order to make a global deci-

sion regarding spectrum occupancy. Thus, CSS consumes a significant a mount

of energy, representing a challenge for CUs. Moreover, the periodicity of CSS

and increasing the number of channels to be sensed complicates the problem.

To this end, energy efficiency in CSS has gained an increasing attention recently.

In this dissertation, a number of energy-efficient algorithms/schemes for

CSS is proposed. The proposed works include energy efficient solutions for low



energy consumption in local sensing stage, results’ reporting stage and decision-

making stage. The proposed works are evaluated in terms of the achievable en-

ergy efficiency and detection accuracy, where they show a significant improve-

ment compared to the state-of-the-art proposals. Moreover, a comprehensive

energy-efficient approaches are proposed by combining different algorithms

presented in this dissertation. These comprehensive approaches aim at prov-

ing the consistency of the proposed algorithms to each other and maximizing

the achievable energy efficiency in the whole CSS process.

Moreover, high energy consumption is not the only challenge of CSS. An-

other important problem in CSS is the vulnerability of the security risks which

can effectively degrade the energy efficiency of cognitive radio networks. In

this dissertation, we propose three different strategies against security attack-

ers. Specifically, authentication protocol for outsider attackers, elimination al-

gorithm for insider attackers, and a punishment policy are presented in this dis-

sertation. While designing these strategies, an eye is kept on energy efficiency

such that increasing immunity against attacker does not affect energy efficiency.

Therefore, the tradeoff between energy efficiency and security in CSS has been

achieved.
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CHAPTER 1

INTRODUCTION

1.1 Cognitive Radio and Cognitive Radio Networks

The frequency spectrum is organized by a regulatory body in each country. This

regulatory body divides the spectrum into bands, and defines the spectrum us-

age, the licensed users, the allowed application, and the operating policies in

each band. Some examples of these bands are TV bands, cellular bands, mili-

tary bands and paging bands. An observation has been reported by FCC, the

regulatory body in United States, that some bands are overloaded while others

are underutilized [1]. Most of the other regulatory bodies over the all world

have confirmed this observation. Based on spectrum assignment agreements,

the users of the overloaded bands cannot use the spectrum allocated for the un-

derutilized bands. On the other hand, the users of the overloaded bands still

ask for more spectrum resources to satisfy their growing demands. To this end,

innovative solutions for spectrum scarcity are highly needed.

Cognitive radio (CR) has been proposed as a promising technique that of-

fers a solution of the spectrum scarcity problem by dynamically exploiting the

underutilization of the spectrum among the bands [2]. A cognitive radio was

defined as a radio or system that senses, and is aware of its operational en-

vironment and can dynamically and autonomously adjust its radio operating

parameters accordingly [3]. This definition was generalized by the FCC to be

a radio or system that senses its electromagnetic environment and can dynam-

ically and autonomously adjust its radio operating parameters to modify sys-

tem operation, such as maximize throughput, mitigate interference, facilitate
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interoperability, access secondary markets [4]. Following these definitions, CR

technology has been developed to a spectrum sharing process between licensed

and unlicensed users. CR technology implies that the unlicensed users for a

band, also called cognitive users (CUs) can exploit the spectrum vacancies in

that band at any time without providing extra interference to the licensed users

[5]. Doing so, both spectrum scarcity an spectrum underutilization problems

can be solved.

Recently, CR technology has received a huge amount of research from sev-

eral sides. Also, Several standardization organizations have developed CR stan-

dards or modified their standards with the objective of including this novel tech-

nology [6, 7, 8, 9, 10, 11]. The increasing attention paid to CR is due to the high

demand in spectrum resources representing by increasing the number of high

data rate devices over the whole world. In this chapter, a general introduction

about CR technology is presented, including the most important related issues.

1.1.1 Access Techniques of Cognitive Radio

As CR is a sharing process between the CUs and the licensed users, there are

three different access techniques that determine the sharing process. The three

techniques are Underlay, Overlay and Interweave.

Underlay CR approach

Underlay approach allows CUs to access the licensed spectrum concurrently

with the licensed users. However, the generated interference to the licensed

3



users must be kept within an acceptable range. The induced interference can

be managed by controlling the transmit power of CUs. This requires that and

licensed users are perfectly known at the CUs side. However, other techniques,

rather than adapting the transmit power, can be used to avoid high level of in-

terference, such using multiple antennas or spreading the transmitted signals

over a wide bandwidth [12]. Due to the interference constraints, underlay ap-

proach has been restricted to short range communications [13].

Overlay CR approach

Similar to the underlay approach, overlay approach allows CUs to use the li-

censed spectrum simultaneously with the licensed users. Hence, a concurrent

transmission will occur from the two user sets, indicating interference to the li-

censed users. As a compensation , CUs should act as relays for the transmitted

signals of the licensed users. Particularly, CUs will use a part of its transmit

power for their own communications, while the remainder is used to relay the

transmitted signals from the licensed users [14]. By a proper power allocation

at the CU side, the increase in the signal-to-noise ratio of the licensed users can

be exactly offset the induced interference. However, overlay approach requires

a full knowledge of the channel gains and the licensed signal as well at the CU

side.

Interweave approach

The third CR access technique follows an interweave approach [15]. Unlike the

previous two approaches, interweave approach bans concurrent transmission.
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Thus, CUs can only use the spectrum if it is unoccupied by licensed users. In-

terweave approach is based on the opportunistic communications, where spec-

trum is periodically monitored and detected vacancies are opportunistically

used.

1.1.2 Cognitive Radio Networks

A key function of a cognitive transmission consists in the capability of acquiring

the knowledge of the instantaneous spectrum status. Three main methods have

been defined to gain such capability: (i) By using geo-location techniques, (ii)

By receiving control and management information or (iii) By performing spec-

trum sensing [10, 16, 17]. Geo-location methods require a central database, self-

locating capability and frequently updates of the database by license-holders.

Likewise, control and management information techniques require both infras-

tructure elements and a database. On the other hand, spectrum sensing is con-

sidered the most promising solution for spectrum awareness [11].

The reliability of obtained results from the spectrum sensing process is an

important factor in the success of the cognitive transmission [18]. Low reliable

sensing results affect the performance of both CUs and licensed users. False

sensing results, which indicate that the spectrum is occupied, lead to inefficient

spectrum utilization, and hence reduced throughput for the CUs. On the other

hand, false sensing results, which indicate that the spectrum is free, cause col-

lision between cognitive and licensed users, wasting their energy-spectrum re-

sources. Thus, it is of a paramount importance to ensure reliability in spectrum

sensing. However, due to multi-path fading and shadowing that may face indi-
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viduals, individual spectrum sensing can not guarantee the desired reliability.

Especially, strict constraints on detection time and accuracy have been defined

in order to avoid interference to the licensed users [19]. As a solution seeking

accurate sensing results, cooperative spectrum sensing (CSS) has been proposed

[20, 21, 22, 23]. CSS implies that individual cognitive radios should cooperate

to create a cognitive radio network (CRN). The ultimate goal of a CRN is to

share local sensing results among CUs in order to improve their reliability. The

several types of CRNs, the stages of CSS, and the associated difficulties and the

induced challenges of CSS will be discussed in the following.

1.1.3 Types of Cognitive Radio Networks

The CRNs are classified based on the architecture used to build the network.

The architecture of the network affects the information exchange among the

members of the CRN during the CSS and the way they make the global decision

regarding the spectrum availability. Basically, there are three different popular

architectures in the literature, namely, Infrastructure-based CRN, Ad-Hoc CRN

and Mesh CRN.

Infrastructure-based CRN

This type of architectures includes a central entity that is in charge of control-

ling all the information exchange among CUs, and coordinating the transmis-

sion activities [24, 25]. Usually, the central entity is a base station (BS) which

is responsible for collecting local sensing results form individuals, making a

unique global decision regarding the spectrum occupancy, and coordinating
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the cognitive transmission. In addition, the BS is in charge of the regular tasks

such as user scheduling, synchronization...etc. Fig. 1.1 shows the architecture of

infrastructure-based CRN. Notice that in such type of CRNs, the cooperation is

achieved only through the BS, where CU can not communicate each other.

Figure 1.1: An example of infrastructure-based CRN.

Ad-Hoc CRN

As in the typical Ad-Hoc networks, the communication among CUs in Ad-Hoc

CRNs is performed directly without a need for a BS [26, 27]. In this type of

CRNs, each pair of CUs can initiate a communication link using different com-

munications protocols, where they can exchange their local sensing results [28].

Notice that due to the absence of a central entity, each CU makes its own spec-

trum decision and it could be different from the others. Moreover, data trans-
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mission is not globally coordinated. Although Ad-Hoc CRN gives CUs more

freedom to make the decision to target the spectrum, it cost individual resource

consumption for information exchange and probable transmission collisions.

Fig. 1.2 depicts an example of Ad-Hoc CRNs.

Figure 1.2: An example of Ad-hoc CRN.

Mesh Architecture

Another available architecture that is considered as a combination between

Infrastructure-based and Ad-Hoc architectures is Mesh architecture [29, 30].

CUs in Mesh CRNs act as relay-nodes between their neighbors and the BS. Such

an inter-cooperation avoid large energy consumption during communication

with the base station. Notice that the decision regarding the spectrum occu-

pancy is still globally made. Fig. 1.3 shows an example of Mesh CRNs.
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Figure 1.3: An example of Mesh CRN.

1.2 Cooperative Spectrum Sensing

In this dissertation, we concentrate on the centralized CSS, where the consid-

ered CRN is infrastructure-based CRN. A typical frame structure of a cognitive

transmission is shown in Fig. 1.5. CSS starts by a local sensing performed by

each CU individually. Different methods to sense the spectrum are available in

the literature, such as energy detection [31], matched filters based sensing [32],

cyclostationarity-based sensing [33] and waveform-based sensing [34]. Energy

detection is the most popular method due to its low computational and imple-

mentation complexity. Besides, it does not require any prior knowledge about
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the signal to be detected, while the others depend mainly on the prior knowl-

edge of the signals to be identified. However, energy detection achieves the

worst detection accuracy compared to the other available techniques [35, 36].

Figure 1.4: Cooperative Spectrum Sensing Process

Figure 1.5: The frame structure of the cognitive transmission.

1.2.1 Local Sensing Stage

Considering the energy detection method, each CU collects a number of sam-

ples from the target spectrum. Each sample actually represents a measurement

10



of the contained energy in the spectrum. The number of collected samples de-

pends on the time dedicated for local sensing, called sensing time. The received

signal for any sample by the ith CU (ri(t)) is represented as follows

ri(t) =

 h(t)x(t) + n(t) H1

n(t) H0

(1.1)

whereH0 andH1 represent the two possible spectrum statuses: used or unused,

respectively. x(t) is the transmitted signal of the licensed user, h(t) is the channel

effect, and n(t) is the complex additive white Gaussian noise with zero mean.

Let us denote the average of the collected samples by Y which is expressed as

follows

Yi =
S∑
s=1

| ri,s |2 (1.2)

where S is the total number of samples.

There are mainly two metrics to assess the local sensing process, namely,

local detection probability and local false-alarm probability. Both probabilities

evaluate a local decision issued by the CU itself. The local decision is “used”

if the average of the collected samples is larger than a predefined threshold,

called local detection threshold and denoted by λ. Otherwise, the local decision

is “unused”. Mathematically, the local decision of the ith CU, denoted as ui, is

obtained according to the following formula [69]:

ui =

 unused if Yi < λ

used if Yi ≥ λ
(1.3)

The local detection probability (Pdi) is the probability of identifying the spec-

trum as used given that it is actually used, while the local false-alarm probability

(Pfi) is the probability of identifying the spectrum as used given that it is unused.
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The mathematical closed form expressions of both probabilities follow the chan-

nel fading distribution (h). Considering an additive white Gaussian noise chan-

nel, the local detection probability and the local false-alarm probability are both

respectively given as follows

Pd = Q(
√

2Sγ,
√
λ) (1.4)

Pf =
Γ(S, λ/2)

Γ(S)
≡ ΦS(λ/2) (1.5)

where S is the number of samples, and γ is the signal to noise ratio defined as

γ = σ2
x

σ2
n

, where σ2
x is the variance of x(t), and σ2

n is the variance of n(t). Both

signals (x(t) and n(t)) are assumed to be complex Gaussian distributed with

zero mean. Q(a, b) is the generalized Marcum Q-function [38], and Γ(.) is the

gamma function [39]. However, mathematical expressions of Pdi and Pfi based

on other assumptions and different fading channels can be found in [31] [40].

1.2.2 Reporting Stage

The next stage is to report the local sensing results to a common receiver, called

fusion center (FC), that is responsible for processing them and for making a

global decision of the spectrum occupancy. The reporting of the results is usu-

ally accomplished through a common control channel based on either a central-

ized time-division multiple access (TDMA) [41] or a random access [42]. In a

centralized TDM access, each CU has its own time slot for reporting its local re-

sult, while in a random access reporting scheme the CUs transmit their reports

without any coordination.
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Upon having the obtaining the local sensing results, each CU, before sharing

the local results with other CUs, has to find a way to represent its local result.

There are two popular schemes to this end: hard-based scheme [40] ND soft-

based scheme [43].

Hard-based Scheme

According to the hard-based scheme, each CU compares its sensing result to

a predefined threshold (λ), and makes a local binary decision about spectrum

availability (ui ∈ {1 ≡ used, 0 ≡ unused}). In reporting stage, all CUs convey

their local decisions, a single bit per CU, towards the FC consecutively. As will

described later, counting rules are used to make the global decision at the FC

when hard-based scheme is employed. The hard-based scheme has been proven

to be an resource-efficient in terms of time and energy as the reported result is

only a single bit. However, reporting only a single bit degrades the overall

detection accuracy of the CSS.

Soft-based scheme

Unlike the hard scheme, the local sensing result is reported as it is in soft scheme

without any processing at the local level. The sensing result is usually quantized

by a large number of bits that is enough to ignore the resulting quantization

distortion. Received sensing results are usually summed up at the FC (weighted

or unweighted) to make the global decision.

Soft-based scheme provides more accurate sensing results to the FC, which

improves the overall detection accuracy. However, this causes a high cost of
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network resources including time and energy.

1.2.3 Decision-Making Stage

The decision-making stage has an important role in the whole cognitive trans-

mission as it decides whether to use the spectrum or not. At the FC, which is

located at the base station, the results received from different CUs are processed

by employing a specific fusion rule (FR) in order to make the global decision.

The employed FR follows the reporting scheme, hard or soft, due to the dif-

ference in the reporting data type. In general, the results received in soft-based

CSS scheme are weighted and averaged, and then, the outcome is compared to a

threshold to make a global decision. FRs for soft-based scheme can be classified

according the weights used, such as equal-gain combining rule (EGC), where

the weights of the all CUs are identical, maximal ratio combining (MRC) [43],

where each CU is weighted by its signal-to-noise-ratio (SNR) and likelihood-

ratio (LR) [44], where the likelihood ratio statistical test is used to obtain the

most likely decision of the spectrum availability. It is worth mentioning that

some FRs require additional information to be reported from the CUs together

with the sensing results.

As for hard-based CSS scheme, the general rule is called K-out-of-N rule [45],

where the number of CUs that detect a signal is compared to a threshold (K),

where N is the total number of CUs. Depending on K, several rules can be

derived for the K-out-of-N rule, such as the OR rule (K = 1) [46], the AND rule

(K = N ) [47] and majority-logic rule (K = N/2), also called voting rule [48].
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A general formula that is used to make the global decision (U ) for any FR

can be given as follows:

U =

 unused if δ′ < δ

used if δ′ ≥ δ
(1.6)

where δ′ is the rule metric and δ is the global detection threshold. For example,

in K-out-of-N rule, δ′ is the number of CUs that detect a licensed signal, and δ is

K.

According to the interweave CR approach, which is adopted in this disser-

tation, the spectrum is used and data transmission is commenced only if the FC

has decided that the spectrum is unused. Otherwise, all CUs should wait the

next sensing round.

The global decision is usually evaluated by two quantities: global detection

probability (PD) and global false-alarm probability (PF ), which are expressed

for any FR as follows

PD = Prob.{U = 1/H1} (1.7)

PF = Prob.{U = 1/H0} (1.8)

where U is the global decision issued at the FC.

Another widely used probability is the global missed-detection probability

(PMD) which is the complementary probability of global detection probability,

defined as follows

PMD = 1− PD = Prob.{U = 0/H1} (1.9)
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From their definitions, high values of PD and low values of PF are desired

in order to ensure the efficient exploitation of spectrum vacancies and protect

licensed users from unacceptable interference. However, an increase in PD is

accompanied by an increase in PF , which represents a challenge for network

performance. Thus, such a trade-off should be carefully addressed in order to

avoid any degradation in the performance of either licensed users or CUs.

1.2.4 Performance Metrics of Cooperative Spectrum Sensing

In the literature, the overall performance of CSS has been evaluated by the de-

tection accuracy of the global decision. As the detection accuracy is a combi-

nation of the detection and false-alarm probabilities, a comprehensive metric

should include both of them. The false-decision probability (ε) is widely used

for such a purpose, which is expressed as follows

ε = P0PF + P1(1− PD) = P0PF + P1PMD (1.10)

Sometimes, ε is called error probability or erroneous-decision probability in

some references. Low values of ε indicates that high accuracy of the global deci-

sion, which positively influences the other aspects of the network performance.

As any another communication network, the achievable throughput and to-

tal energy consumption represent important evaluation metrics of the whole

CRN performance. The average achievable throughput (D) is defined as the

average successfully transmitted data by the scheduled CUs, while the energy

consumption (E) is defined as the average energy consumed during local sens-

ing, results’ reporting and data transmission by all CUs. Usually, the achievable
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throughput is measured by bits, whereas energy consumption is measured by

Joule. Notice that both metrics, throughput and energy, are directly affected

by the detection accuracy. However, since high achievable throughput may

cause large energy consumption and vice versa, there is a trade-off between

the two metrics. Thus, a general metric that combines both of them is recently

used, called energy efficiency. Energy efficiency is defined as the ratio between

the achievable throughput to the total energy consumption, and measured in

bits/Joule [49]. Mathematically, energy efficiency (µ) is expressed as follows

µ =
D

E
(1.11)

It is worth noting that energy efficiency metric is a comprehensive met-

ric that involves all the other metrics including detection accuracy, achievable

throughput and energy consumption. Apparently, energy efficiency represents

a fair indicator of the whole CRN performance from its all aspects. Thus, it

has been widely accepted as a metric that can achieve the balance between the

different aspects of CRN performance.

1.2.5 Induced Challenges of Cooperative Spectrum Sensing

As described earlier, spectrum sensing is a necessary process prior to the cog-

nitive transmission in order to identify temporally unused portions of the spec-

trum. This process brings some challenges to the network designers, especially

if spectrum sensing is performed cooperatively. The associated challenges of

CSS includes extra resource expenditure [50] and additional security threats

[51].
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Resource Expenditure in Cooperative Spectrum Sensing

Apart of the regular resource consumption in typical wireless networks, addi-

tional consumption in terms of energy and time (or bandwidth) is caused by

CSS. Performing the CSS in its all stages delays the data transmission, affecting

the overall revenue gained by the cognitive transmission. Similarly, sensing the

spectrum and reporting the results to the FC consume a significant amount of

energy resources, which represents a serious challenges especially for battery-

powered users. Moreover, in case of a large number of CUs/channels, these

challenge become complicated and highly influence the overall performance of

the CRN.

Security Threats in Cooperative Spectrum Sensing

As any other wireless network, CRNs is threatened by typical security attacks.

However, other special attack types have been widely discussed as potential

attackers for CRNs. There are two popular types of attacks in CRNs, namely,

primary user emulation (PUM) and spectrum sensing data falsification (SSDF).

PUM attack refers to some malicious users that intentionally act as licensed

users (aka primary users) by generating its transmitted signal during the local

sensing stage. In presence of PUM attack, CUs will detect the fake signal and

will not use the spectrum as it is occupied. Such type of attack definitely de-

grades the overall performance since the CUs will lose their resources without

revenue from the spectrum vacancies.

SSDF attack is represented by malicious users that report false sensing re-

sults about spectrum availability, aiming to mislead the global decision of the
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CRN. Similar to PUM attack, SSDF attack wastes both energy and throughput

resources of the CUs. Moreover, SSDF attack may introduce unacceptable in-

terference to the licensed users, which heightens the negative influence of SSDF

attacks.

In this dissertation, high attention is paid in order to address the first chal-

lenge, where a set of algorithms/techniques/schemes are proposed to improve

the energy efficiency of CSS. The proposed energy-efficient CSS schemes include

different solutions for each stage of CSS. Besides, the security threats have been

addressed in this dissertation as well. Several secure algorithms and protocols

are presented in order to alleviate the affects of attackers and protect the CRNs

against them. Moreover, the trade-off between energy efficiency and security

has been taken into consideration, where the proposed secure CSS schemes are

kept energy-efficient as well.
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CHAPTER 2

OUTLINE AND SCIENTIFIC PRODUCT

As we have introduced cognitive radio networks and cooperative spectrum

sensing, in this chapter we present the outline of this dissertation and its sci-

entific products in terms of publications.

2.1 Dissertation Outline

This dissertation is divided into seven parts as follows:

Part I: Introduction, Outline and Literature Review.

Part II: Improving Energy Efficiency in Local Sensing Stage.

Part III: Improving Energy Efficiency in Results’ Reporting Stage.

Part IV: Improving Energy Efficiency in Decision-Making Stage.

Part V: The Trade-off between Security and Energy Efficiency.

Part VI: Towards Energy Efficient Cooperative Spectrum Sensing: Comprehen-

sive Frameworks.

Part VII: Conclusions.

Part I includes three chapters. Chapter 1 presents an introduction to CR and

CSS, followed by the outline of the dissertation and its scientific products in

Chapter 2. In Chapter 3, an in-deep literature review for the energy-efficient

cooperative spectrum sensing approaches is provided.
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The parts II, III and IV describe the proposed energy-efficient CSS ap-

proaches in this dissertation. The proposed approaches are divided based on

the target stage. Part II proposes three different algorithms in three separated

chapters (Chapter 4-6) aiming at improving energy efficiency in the local sens-

ing stage. In Chapter 4, a centralized algorithm to limit the number of sensing

users to the number that satisfies predefined threshold on detection accuracy is

presented , while Chapter 5 presents an energy-efficient CSS algorithm where

the participation decision is taken distributively by each CU. An optimization

problem of the number of sensing users for energy efficiency maximization is

proposed in Chapter 6.

Part III discusses four energy-efficient approaches for the reporting stage in

Chapter 7-10. An energy efficiency performance of hard and soft CSS schemes

is analyzed in Chapter 7, while Chapter 8 proposes a novel energy-efficient re-

porting scheme by reducing the number of reporting CUs. An objection-based

reporting scheme is presented in Chapter 9 in order to reduce the number of re-

porting CUs. A novel report form that exploits the time dimension is proposed

in Chapter 10.

The proposed approaches for improving energy efficiency in the decision-

making stage are discussed in Part IV. Particularly, in Chapter 11, an energy effi-

ciency comparison between several fusion rules is performed, while the thresh-

olds of the K-out-of-N rule are optimized for energy efficiency maximization in

Chapter 12.

The trade-off between security and energy efficiency is addressed in Part V,

where three different secure and energy-efficient CSS algorithms are presented

in Chapter 13-15. A weighted CSS that is able to eliminate the effects of mali-
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cious attackers is presented in Chapter 13. In Chapter 14, a punishment policy

for malicious attacker is proposed, aiming to degrade their individual energy

efficiency while improving the energy efficiency of honest CUs. Finally, a novel

secure CSS protocol is discussed in Chapter 15, where it employs an authenti-

cation process to protect the CRN against outsider attackers.

Part VI is dedicated for more comprehensive energy efficient solutions that

combines some of the proposed algorithms earlier. The conclusions are drawn

in Part VII.

2.2 Scientific Product

During three years of research (2011-2014), the research of this dissertation has

yielded in many scientific papers in international journals, conferences, sympo-

siums, workshops and books. First, we list the works that are already published

, and then we list the works under evaluation.

Book-Chapters

1. Althunibat, S.; Narayanan, S.; Di Renzo M.; Granelli, F., “Energy-Efficient

Cooperative Spectrum Sensing for Cognitive Radio Networks”, a book

chapter in ”Software-Defined and Cognitive Radio Technologies for Dy-

namic Spectrum Access and Management”, 2014, IGI Global.
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Journals

1. Althunibat, S.; Di Renzo, M.; Granelli, F., “Towards Energy-Efficient Coop-

erative Spectrum Sensing for Cognitive Radio Networks - An Overview”,

Telecommunication Systems, Springer, Accepted for publication.

2. Althunibat, S.; Granelli, F., “An Objection-based Collaborative Spectrum

Sensing in Cognitive Radio Networks,” Communications Letters, IEEE,

vol.18, no.8, August 2014.

3. Althunibat, S., M. Di Renzo, and F. Granelli. ”Cooperative spec-

trum sensing for cognitive radio networks under limited time con-

straints.”Computer Communications 43 (2014): 55-63.

4. Althunibat, S.; Sucasas, V.; Marques, H.; Rodriguez, J.; Tafazolli, R.;

Granelli, F., “On the Trade-Off Between Security and Energy Efficiency

in Cooperative Spectrum Sensing for Cognitive Radio,” Communications

Letters, IEEE , vol.17, no.8, pp.1564,1567, August 2013

5. Althunibat, S.; Palacios, R.; Granelli, F., “Performance Optimisation of Soft

and Hard Spectrum Sensing Schemes in Cognitive Radio,” Communica-

tions Letters, IEEE , vol.16, no.7, pp.998,1001, July 2012.

Conferences

1. Althunibat, S.; Vuong, T.M.; Granelli, F.,“Multi-Channel Collaborative

Spectrum Sensing in Cognitive Radio Networks”,Computer Aided Mod-

eling and Design of Communication Links and Networks (CAMAD), 2014

IEEE 19th International Workshop on, December 2014, Athens-Greece, Ac-

cepted for publication.
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2. Althunibat, S; Denise, B.; Granelli, F., “Secure Cluster-based Cooperative

Spectrum Sensing Against Malicious Attackers”, Second workshop on

trusted communications with Physical Layer Security (TCPLS2014), De-

cember 2014, Austin-USA, Accepted for publication.

3. Althunibat, S; Denise, B.; Granelli, F., “A Punishment Policy for Spec-

trum Sensing Data Falsification Attackers in Cognitive Radio Networks,”

In Proceedings of the 2014 IEEE Vehicular Technology Conference-Fall,

September 2014, Vancouver-Canada

4. Althunibat, S; Di Renzo M.; Granelli, F., “Robust Algorithm Against Spec-

trum Sensing Data Falsification Attack in Cognitive Radio Networks,” In

Proceedings of the 2014 IEEE Vehicular Technology Conference-Spring,

May 2014, Seoul-Korea.

5. Althunibat, S; Granelli, F., “Energy Efficiency Analysis of Soft and Hard

Cooperative Spectrum Sensing Schemes in Cognitive Radio Networks ,”

the 2014 IEEE 79th Vehicular Technology Conference, May 2014, Seoul-

Korea.

6. Althunibat, S.; Di Renzo, M.; Granelli, F., “Optimizing of the K-out-of-

N rule for cooperative spectrum sensing in cognitive radio networks,”

Global Communications Conference (GLOBECOM), 2013 IEEE , 9-13 Dec.

2013, Atlanta-USA.

7. Althunibat, S.; Granelli, F., “Energy-Efficient Reporting Scheme for Co-

operative Spectrum Sensing,” Computer Aided Modeling and Design of

Communication Links and Networks (CAMAD), 2013 IEEE 18th Interna-

tional Workshop on , 25-27 Sept. 2013, Berlin-Germany.

8. Althunibat, S.; Granelli, F., “Novel energy-efficient reporting scheme

for spectrum sensing results in cognitive radio,” Communications (ICC),
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2013 IEEE International Conference on , pp.2438,2442, 9-13 June 2013,

Budapest-Hungary.

9. Althunibat, S.; Narayanan, S.; Di Renzo M.; Granelli, F., ”Energy-Efficient

Partial-Cooperative Spectrum Sensing in Cognitive Radio over Fading

Channels,” In Proceedings of the 2013 IEEE 77th Vehicular Technology

Conference-Spring, 2-5 June 2013, Dresden-Germany.

10. Althunibat, S.; Granelli, F., “On the reduction of power loss caused

by imperfect spectrum sensing in OFDMA-based Cognitive Radio ac-

cess,” Global Communications Conference (GLOBECOM), 2012 IEEE ,

pp.3383,3387, 3-7 Dec. 2012, California-USA.

11. Althunibat, S.; Narayanan, S.; Di Renzo, M.; Granelli, F., “On the En-

ergy Consumption of the Decision-Fusion Rules in Cognitive Radio Net-

works,” Computer Aided Modeling and Design of Communication Links

and Networks (CAMAD), 2012 IEEE 17th International Workshop on,

pp.125,129, 17-19 Sept. 2012, Barcelona-Spain. BEST PAPER-AWARD.

12. Althunibat, S.; Palacios, R.; Granelli, F., “Energy-efficient spectrum sens-

ing in Cognitive Radio Networks by coordinated reduction of the sens-

ing users,” Communications (ICC), 2012 IEEE International Conference

on, pp.1399,1404, 10-15 June 2012, Ottawa-Canada.

Papers under Evaluation

1. Althunibat, S; Denise, B.; Granelli, F., “Identification and Punishment Poli-

cies for Spectrum Sensing Data Falsification Attackers Using Delivery-

based Assessment”, IEEE Transaction on Vehicular Technology.
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2. Althunibat, S; Granelli, F., “On Results’ Reporting of Cooperative Spec-

trum Sensing in Cognitive Radio Networks”, Telecommunication Sys-

tems, Springer.

3. Sucasas, V.; Althunibat, S.; Radwan, A.; Marques, H.; Rodriguez, J.; Vahid,

S.;Tafazolli, R.; Granelli, F., “Lightweight Security Against IE and SSDF

Attacks in Cooperative Spectrum Sensing”, Wireless Communication and

Mobile Computing Journal, Wiley.

4. Althunibat, S.; Vuong, T.M.; Granelli, F.,“Optimizing the Number of Sam-

ples for Multi-Channel Spectrum Sensing”, IEEE International Conference

in Communications 2015.
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CHAPTER 3

LITERATURE REVIEW

Energy efficiency (EE) has gained an increasing importance and has received

a lot of interest. This attention is due to the limited energy resources at the

CRs, which is often accompanied with a big demand for data rates. The EE is

considered to be a comprehensive metric that is able to represent the overall

performance of a CR system because it is capable of jointly taking into account

the achievable throughput, the overall energy consumption and the detection

accuracy. The combination of these indicators in a single metric has made the

EE metric a relevant indicator of the quality of cognitive transmission. This

chapter provides an overview of available research activities that are aimed at

reducing energy consumption of CSS applied to CR networks.

3.1 Energy-Efficient CSS Approaches

The energy consumption of CR system is related to: (i) the periodic nature of

the process, (ii) its increase with the number of CUs, and (iii) the increase of the

number of channels. Moreover, the energy loss in the case of missed-detection

magnifies the problem. Thus, energy-efficient approaches for CSS are manda-

tory.

Many approaches aiming at improving the energy efficiency of CSS have

been presented in the literature. In this section, we review these approaches.

The presented approaches are classified, as shown in Fig. 3.1, according to the

CSS stage that they are aimed at optimizing. As such, they can be split in three

categories: (i) EE approaches for the local sensing stage, (ii) EE approaches for
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Figure 3.1: The classification of the several energy-efficient CSS approaches found in the literature.

the reporting stage and (iii) EE approaches for the decision-making stage.

3.1.1 Energy-Efficient Approaches for The Local Sensing Stage

The energy consumed for local sensing is equal to the product of the number of

sensing users, the sensing time and the sensing power. Thus, reducing energy

consumption in the sensing stage can be accomplished in two different ways,

either reducing the number of sensing users or by reducing the sensing time.

Optimizing the number of sensing users

The number of sensing users plays a significant role in the energy consumed

in CSS. This is related to the fact that any reduction in the number of sensing

users leads to a reduction in all the preceding stages. In [52, 53], the energy

consumption is reduced based on different scenarios by using the minimum
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number of CUs that satisfies predefined thresholds on the detection accuracy.

In [52], an energy efficiency optimization problem is formulated by minimiz-

ing the number of sensing CUs while satisfying predefined constraints on the

detection and false-alarm probabilities. However, considering a limited frame

length, minimizing the number of sensing CUs does not necessarily maximize

energy efficiency. In limited frame length, modifying the time given for a stage

will affect the time distribution for other stages in CSS. Hence, minimizing the

the number of sensing CUs may decease the reporting time but it gives more

time for data transmission which consumes more energy. In [53], the mini-

mum number of sensing CUs that satisfies two constraints on detection and

false-alarm probabilities is mathematically formulated. Unlike [52], in [53] only

the energy consumed in sensing stage is considered, while energy consumed

in results’ reporting and data transmission have not been taken into consider-

ation. It is worth mentioning that the attention in [52, 53] has been focused to

energy consumption not to energy efficiency, representing a drawback in all of

them. Moreover, they assume identical sensing performance for all CUs, which

is unrealistic assumption in light of different channel conditions including the

multi-path fading and shadowing.

In [54], the CUs are divided into non-disjoint subsets such that only one sub-

set senses the spectrum while the other subsets enter a low power mode. The

energy minimization problem is formulated as a network lifetime maximiza-

tion problem with constraints the detection accuracy. However, the mapping

between network life time and energy consumption is not investigated. Simi-

larly, the authors of [55] propose an algorithm that divides the CUs into subsets.

Only the subset that has the lowest cost function and guarantees the desired

detection accuracy is selected. The desired detection accuracy is defined by
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two thresholds on detection and false-alarm probabilities, while the cost func-

tion is represented by the total energy consumption. The proposed algorithm

is built based only on the OR rule. Although OR rule can limit the interfer-

ence at the licensed users, but it causes a high false-alarm rates. Moreover, the

achievable throughput of the proposed algorithm is not discussed in the paper.

In both works [54, 55], the proposed algorithms assume that the local sensing

performance of each CU is available at the FC in advance, which requires ex-

tra resource expenditure in terms of time and energy due to the accompanied

overhead.

A distributed approach for selecting the sensing CUs is presented in [56].

The proposed algorithm is based on excluding CUs that have high correlated

spectrum sensing results. In detail, it is assumed that each CU has the ability

to overhear the sensing results of other CUs. Thus, each CU calculates its cor-

relation is within an acceptable range, it will participate in the sensing stage.

Otherwise, the corresponding CU will not participate. Besides its additional

complexity, the ability to overhear the sensing result of other CUs is not always

possible.

In [57], the instantaneous battery level is considered as a base for selecting

the participating CUs in CSS. Particularly, the FC classifies the CUs into two

groups based on their battery level which is assumed to be known at the FC.

The minimum number of sensing CUs is determined such that a predefined

threshold on detection probability is satisfied. The minimum number of the

sensing users is selected form the second group (which has th battery highest

level). If the number of CUs in the second group is less than the minimum

required number of CUs, the rest is selected form the first group (which has the
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lowest battery level)with equal probabilities. Although the algorithm shows

a good performance in extending the lifetime of the CRN by considering the

battery level, it does not guarantee the achievable energy efficiency.

In [58], a two-stage CSS is proposed, where CUs are divided into two groups.

In the first stage, the first group senses the spectrum and reports the local deci-

sions to the FC. If the FC decides that the spectrum is occupied, the CSS will be

terminated. Otherwise, a second stage will be commenced, where the second

group of CUs senses and reports the results to the FC. At the FC, the sensing

results of both stages are processed in order to issue a global final decision. The

energy efficiency is maximized by optimizing the number of CUs in each group

and the fusion thresholds. A suboptimal solution for the maximization prob-

lem is found using the well-known particle swarm optimization algorithm. A

practical drawback is in combining sensing results obtained at different time in-

stants. This might degrade the reliability of the global decision as it is based on

results gathered from two different stages.

Three different energy-efficient CSS algorithms for multi-channel systems

are proposed in [59]. The three approaches select the sensing users based on

their SNRs. In the first algorithm, the minimum number of CUs that satisfies

the desired false-alarm probability and minimizes the the energy consumption

is assigned to sense a specific channel. The energy consumption includes the

energy consumed in sensing and reporting. The second algorithm assigns the

CUs with the highest SNRs over a specific channel to sense it, while, in the

third algorithm, it is assumed that CUs already sensed the channel, and only

the CUs with the highest SNRs will report their sensing results. However, the

three proposed algorithms assume the availability of the SNRs at the FC which
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is unrealistic assumption. Moreover, the energy consumed in data transmission

is not taken into account.

Optimizing the sensing time

Optimizing the sensing time/period constitutes another approach that can be

adopted for enhancing the energy efficiency of CSS. In [60, 61, 62], the sens-

ing time/period is investigated for individual sensing systems. An adaptive

sensing period based on the past spectrum occupancy pattern is presented in

[60]. Also, they propose a sequential sensing policy that enforces the CUs to

extend the sensing time when its sensing result lies in a specific range. In [61],

the CU switch to a non-sensing mode (sleep mode) when a primary user is de-

tected. The non-sensing time is optimized for maximizing a utility function

that combines energy saving and throughput loss. The sensing and transmis-

sion durations are optimized in [62] with the aim of maximizing the energy ef-

ficiency while satisfying constraints on detection accuracy and maximum avail-

able power. However, the proposals in [60, 61, 62] consider only a single CU

and do not investigate their proposal based on CSS scenario.

As for CSS, [63, 64] and [53] consider the sensing time as a possible approach

to reduce the energy consumption. In [63], the CUs perform an initial short

sensing stage called coarse sensing. If the sensing result of a CU lies outside

a specific predefined range, a binary local decision will be reported from the

corresponding CU to the FC. In the case that the sensing result lies in the prede-

fined range, no local decision will be reported from the corresponding CU. At

the FC, a global decision (either used or unused) can be made only if the ma-

jority decide it. The global decision cannot be made if no majority exists, and
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therefore, a another sensing stage is commenced by all CUs, called fine sens-

ing. The fine sensing stage is two times longer that the coarse stage. Regardless

of the fine sensing results, all CU will report their binary decision to the FC

where the global decision should follow the majority decision. Although this

two-stage sensing scheme can affectively reduce sensing time, it causes extra

energy consumption in reporting stage since it is repeated twice, which is not

taken into account. Moreover, the influence of waiting the first global decision

on the achievable throughput is not investigated in [63], which might degrade

energy efficiency.

In [64], a utility function that consists of the difference between the achiev-

able throughput (revenue) and the consumed energy (cost) is maximized by

optimizing the sensing time. A constraint is kept on the detection probabil-

ity.However, only the utility function does not consider the energy/time spent

during reporting the results to the FC. Also, only the AND rule is adopted at the

FC, which causes a high missed detection rate. The optimal sensing time that

minimizes energy consumption is obtained in [53]. Two constraints on the false

alarm and detection probabilities are set, while only the sensing energy is con-

sidered in the formulated problem. In [65], energy efficiency is maximized by

optimizing the number of sensing users, the sensing time, the transmit power

and the local detection threshold jointly and individually. An iterative algo-

rithm is presented to solve the joint optimization. An interesting property of

[65] is considering the energy efficiency as a performance metric to be maxi-

mized with a constraint on the detection probability. However, the energy con-

sumed in reporting are not considered in energy consumption calculations.

A utility function that includes the difference between the achievable
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throughput and the consumed energy is maximized in [66] by a joint optimiz-

ing of the sensing time and the number of sensing users. The optimal solution

is found using an iterative algorithm. However, the energy and time consumed

in reporting the results to the FC are not taken into consideration.

In [67] the sensing time is optimized in order to maximize the energy effi-

ciency. The energy consumption function includes all the energy consumed in

sensing, reporting and data transmission. However, no closed form expression

of the optimal sensing time is given. Instead, the golden section search algo-

rithm is used to find the optimal value.

A related work is in [68], where the sampling rate of the sequential sensing is

optimized in order to reduce the energy consumption. The optimization prob-

lem is subject to constraints on detection and false alarm probabilities. However,

the work only considers a single CU, and energy expenditure during CSS have

not been considered in formulating the optimization problem.

3.1.2 Energy-Efficient Approaches for The Reporting Stage

The second stage of CSS is the reporting stage, where the CUs transmit their

local sensing results to the FC. Compared to the sensing power, the power con-

sumed in the reporting could be higher. On the other hand, the time spent in

sensing is much longer than the time spent in reporting. Therefore, the energy

consumed in the reporting stage may be comparable to the energy consumed

during the sensing stage. Several works have studied techniques for reducing

the energy consumption during the reporting stage, as summarized as follows
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Optimizing the report form

In order to report the local result to the FC, each CU has to represent its own

result by using a finite a number of bits. The reporting load has a contrasting

impact on the overall performance of the CSS. On the one hand, increasing the

number of bits enhances the amount of knowledge that is available at the FC,

which improves the detection accuracy. On the other hand, a larger number of

bits requires more bandwidth and increases the energy consumption. A single-

bit reporting scheme is called hard-decision scheme, while multiple-bit report-

ing schemes are called soft-based reporting schemes. Although many works

have compared them under different setups and assumptions [69, 70, 71, 72],

none of them has investigated the resulting energy efficiency.

Censoring and Confidence Voting

Censoring is a promising approach that can significantly reduce the reporting

CUs. In censoring, a CU does not report its sensing result unless it lies outside a

specific range [46, 73, 74]. The censoring thresholds are optimized for minimiz-

ing the energy consumption with constraints on the detection accuracy in [41].

Two setups for the availability of the prior information about the probability of

spectrum occupancy are considered,namely, blind setup and knowledge-aided

setup. However, the considered problem would show more effectiveness if the

energy efficiency maximization was considered rather than energy consump-

tion minimization as a problem objective. Besides, energy consumed in data

transmission is not considered while computing the total energy consumption.

Recently, in [75], censoring and truncated sequential sensing are combined
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in order to reduce the energy consumption in CSS. Specifically, the spectrum is

sequentially sensed, and once the accumulated energy of the sensed samples

lies outside a certain region, the sensing is stopped and a binary decision is sent

to the FC. If the sequential sensing process continues until a timeout, censoring

is applied an no decision is sent. The thresholds of the censoring region are op-

timized in order to minimize the maximum energy consumption per CU subject

to a constraint on the detection accuracy. Similar to [41], transmit energy is not

considered. Moreover, only two FRs are investigated instead of considering the

general K-out-of-N FR.

In [76], a confidence voting scheme is presented. It works as follows: if the

spectrum sensing of a specific CU agrees with the global decision, it gains its

confidence; otherwise, it loses its confidence. When a user’s confidence level

drops below a threshold, it considers itself as unreliable and stops sending its

results. But it keeps sensing the spectrum and tracking the global decision. As

long as the result matches, it gains its confidence. Once its confidence level

passes beyond the threshold, it rejoins the voting. The energy saving and the

detection accuracy of this approach are investigated in [76]. However, confi-

dence level is based on the global decision which is in some cases not reliable

enough, especially in case of malfunction or malicious CUs. Moreover, detec-

tion accuracy cannot be guaranteed since the number of reported CUs is varying

in each sensing round.

A simple approach is presented in [77], where the reported sensing statistics

from CUs will processed sequentially at the FC. The FC performs a hypothesis

test each time after receiving a statistic from a CU. The FC stops the reporting

process when statistics gathered is sufficient for making a decision at a speci-
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fied reliability level. Otherwise, it will acquire an additional statistic from an-

other CU and repeat the above procedures until it terminates. The FC employs

Neyman-Pearson decision strategy instead of K-out-of-N FR. The analytical and

simulation results in [77] do not show the performance of the proposed algo-

rithm in terms of improving energy efficiency.

Clustering

Clustering is a popular approach to reduce the overhead load between the CUs

and the FC. In clustering, CUs are separated into clusters and one from each

cluster is nominated as cluster-head, which is in charge of collecting sensing re-

sults from cluster-members and reporting a cluster-decision to the FC on behalf

of the cluster-members [78]. The cluster-head can be dynamically changed in

each CSS round. The energy saving and the accuracy loss are investigated in

[76]. In addition to energy consumption analysis, time delay is conducted in

[79]. In [80] and [81] clustering and censoring approaches are combined in one

energy-efficient algorithm considering the noisy reporting channels. In [82], a

multi-level cluster-based CRN is proposed, where the cluster-head that are far

away from the FC can forward their cluster decisions to the near CH rather than

the FC. Such a technique aims at reducing energy consumption in reporting pro-

cess, however, it may generate synchronization challenges.

Although clustering reduces reported information to the FC, it induces extra

energy consumption during results exchange inside the cluster itself. Besides,

creating clustering is a complicated process that adds a significant amount of

complexity to the CRNs, especially in mobile CUs scenario.
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3.1.3 Energy-Efficient Approaches for The Decision-Making

Stage

Every CSS round ends by making a global decision about the spectrum oc-

cupancy. The global decision is made by processing the received local re-

sults/decisions, where a fusion rule is applied. Regardless of the form of the

received results, a predefined fusion threshold is needed to make a decision.

In [83], the fusion threshold of the K-out-of-N rule is optimized for maximiz-

ing energy efficiency without constraints. In [84], the optimal fusion threshold

that maximizes the throughput of CRN is obtained with constraints on the con-

sumed energy per CU and the overall detection probability.
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Part II

Improving Energy Efficiency in

Local Sensing Stage
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CHAPTER 4

ENERGY-EFFICIENT COOPERATIVE SPECTRUM SENSING BY

COORDINATED REDUCTION OF THE SENSING USERS

4.1 Introduction

An important factor of the amount of energy consumed during local sensing

stage is the number of participating CUs. In conventional CSS scheme, the total

consumed energy in local sensing stage is proportionally increased as the num-

ber of sensing CUs increases. Therefore, reducing the number of sensing CUs

should highly limit the energy consumption.

In this chapter, we propose an algorithm to reduce the consumed energy to

the minimum value, while keeping the detection accuracy over the desirable

bound. The detection accuracy is measured in terms of the detection probabil-

ity and the false alarm probability. The algorithm is based on maintaining the

minimum number of users to sense the spectrum and report the results to the

FC. Notice that our proposal helps to reduce the energy consumed in both local

sensing and reporting stages. Furthermore, we present a practical way to select

the users which sense the spectrum without complicated selection’s conditions.

The selection of the sensing users depends on a predefined parameter which

represents the fulfillment of the detection accuracy. Then, when a new user con-

tends for the spectrum, the FC checks the parameter and decides if there is a

need to let it sense or not. Likewise, when a currently sensing user leaves the

network, the FC checks the parameter in order to decide if there is a need to

invite another user to sense the spectrum or not. In case that a new sensing user

needs to be invited, the priority is given to those users which do not occupy
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the spectrum. This priority preserves the local energy of the users which have a

channel and already spent a part of their energy in data transmission.

The contributions of this work are extended to study the performance of

the proposed algorithm in different scenarios of fusion rules. The proposed

algorithm is run according to the most popular rules, namely, OR-Rule [85] and

Majority Rule [86], and a comparison between them is performed in terms of

energy efficiency.

4.2 System Model

Consider an infrastructure-based CRN consisting of N CUs. The CUs do not

have any prior information about the transmitted signal of the licensed users,

hence, the optimal sensing technique is just the energy detector itself, which

provides a simple and low cost hardware implementation [69]. For simplicity,

the sensing channel is assumed to be Gaussian channel, and the reporting chan-

nel is considered error-free channel.The hard-based CSS scheme is adopted as

a reporting scheme in this chapter. The received local binary decisions form

sensing CUs will be processed at the FC based on the K-out-of-N rule. Specifi-

cally, two special FRs derived from K-out-of-N rule will be discussed: OR rule

and Majority rule. Two quantities are used to evaluate the overall detection ac-

curacy, namely, the overall detection probability (PD) and overall false-alarm

probability (PF ). Both are defined in (1.7) and (1.8), respectively.

Before proceeding to our algorithm in the next section, let us define the total
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consumed energy (Ecss) in CSS process, which can be expressed as follows:

Ecss = Ns(ρsTs + ρrτ) (4.1)

where Ns the actual number of sensing users, ρs is the sensing power, Ts is the

sensing time, ρr is the consumed power during the result’s reporting to the FC,

and τ is the reporting solt for each CU (Nsτ = Tr).

4.3 The Proposed Algorithm

The proposed algorithm is based on reducing the consumed energy in the lo-

cal sensing stage by reducing the number of sensing users, while guaranteeing

the sensing accuracy. The accuracy of the sensing process is guaranteeing by

satisfying two conditions. The first condition is to keep the overall detection

probability above a predefined threshold (P th
D ), while the second is to keep the

false-alarm probability below a predefined threshold (P th
F ). Let us define a pa-

rameter (I), which represents an indicator of the fulfillment of the two thresh-

olds. When (I = 1) the two conditions are satisfied, and when (I = 0) at least

one of the conditions is not satisfied. Thus, I can be expressed as follows:

I =

 0 if PD < P th
D or PF > P th

F

1 if PF ≥ P th
F and PF ≤ P th

F

(4.2)

The idea is to reduce the number of sensing users to the minimum number

of users (Nmin
S ), while keeping the I-indicator equals to ”1”. The selection of the

users sensing the spectrum will be random, providing priority to those users

which currently do not use a channel. This priority is given for the aim of saving
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the local energy of those users which have already transmit data and consume

power in data transmission. Fig. 4.1 describes the proposed algorithm.

As shown in Fig. 4.1, assume the I-indicator in random state (0 or 1). Then,

for any new CU which contends for the access to the spectrum, the FC will

check; if (I = 1), the CU will not sense the channel and will be considered in the

scheduling of the data transmission. If (I = 0), the CU will participate in the

sensing process. On the contrary, for any CU which leaves the CRN, the FC will

immediately check I . If it is 1, no need to take any action. Otherwise, the FC

will invite a CU (from the non-sensing CUs) to sense the spectrum. The priority

of inviting will be given to those CUs that do not use the licensed spectrum, as

explained above. In addition to the overall energy saving objective, with the

proposed priority of invitation we try to balance the consumed energy between

the sensing users, which represents another advantage of this algorithm.

As a result, the consumed energy during the CSS in the proposed algorithm

will be different from that of the classical approach, derived in Eqn.(4.1), due to

the reduction of the number of sensing users. We can write the resulting overall

amount of consumed energy during CSS in the proposed algorithm as follows:

Emin
css = Nmin

s (ρsTS + ρrτ) (4.3)

Where Nmin
s is the minimum number of sensing CUs which can satisfy the two

thresholds (P th
D and P th

F ).

The percentage of saved energy as compared with the classical approach can

be derived as follows:

Esaved = 1− Nmin
s

N
(4.4)
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Figure 4.1: The flow chart of the proposed algorithm .

There are many of decision-making rules, for each rule, we need a different

number of CUs to attain the desired performance. As a result, The exact value

of Nmin
S in (4.4) needed to determine the amount of energy saving depends on

the applied FR, which will be discuss soon.

4.4 Analytical Description of Decision Making Scenarios

Energy saving in the proposed algorithm is achieved by satisfying the system

requirements represented by P th
D and P th

F according to the minimum number
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of sensing users. Hence, the amount of consumed energy depends on how the

global decision is made at the FC side regarding the availability of the spectrum.

In this sense, the global decision relies on the FC which is applied over the col-

lected local reports by the FC. This section is devoted to discuss our algorithm

in accordance with two different FRs for the decision making, namely, OR rule

and Majority rule. The discussion includes analytical description of the amount

of saved energy in each scenario.

4.4.1 OR Rule

In this scenario, each sensing user, after finishing the sensing process, makes a

local decision on the spectrum availability. This decision is based on predefined

threshold (λ) and it is reported to the FC by a single bit ”1 = busy”, or ”0 =

free”. When all the local decisions reach the BS, the BS applies the OR rule

in order to output the global decision. The Or rule implies that if at least one

CU makes a local decision of busy (or 1), the global decision will be busy (or

1). Otherwise; the global decision will be free (or 0). In other words, the global

decision will not be free, unless all the users decide it, which is simply like the

logical OR operation [85].

According to this scenario, the local detection probability for each user Pdn,

i.e. the probability of a local decision ”1” when the channel is, in fact, busy, can

be written as:
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Pdn = Pr{”1”/ ”channel is busy”}

= Pr{Yn(t) ≥ λ/ ”channel is busy”} (4.5)

Notice that, Yn(t) is the average of S samples taken by each local detector.

The exact mathematical expression of Pdn is given in (1.4). However, by using

the central limit theorem, Pdn can be approximated as follows [86],

Pdn = Q

(
λ−

(
σ2
x + σ2

n

)(
σ2
x + σ2

n

)
/
√
S

)
(4.6)

where

Q(x) =
1√
2π

∫ ∞
x

exp
(−t2

2

)
.dt

and the false alarm probability for each user Pfn, which is the probability of a

local decision ”1” when the channel is free, is given as:

Pfn = Pr{”1”/ ”channel is free”}

= Pr{Yn(t) ≥ λ/ ”channel is free”} (4.7)

Also, by using the central limit theorem, the exact expression of Pfn, given in

(1.5), can be approximated as follows[86]

Pfn = Q

(
λ− σ2

n

σ2
n/
√
S

)
(4.8)

Regarding the OR rule, the overall detection probability ( i.e. the probability

of a global decision of ”1” when the channel is busy) is defined as the probability

that at least one of the users reports a local decision of ”1” when the channel is

busy. Mathematically, we can express the overall probability of detection as :

POR
D = 1−

(
1− Pdn

)Ns (4.9)
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The overall false alarm probability can then be defined as the probability that

at least one of the users reports ”1” when the channel is free.

POR
F = 1−

(
1− Pfn

)Ns (4.10)

By analyzing these two equations, we can conclude that decreasing the

number of sensing users will decrease the detection and false-alarm proba-

bilities. Hence, the number of sensing users must be within a specific range

[Nmin
s Nmax

s ] to maintain the desired performance of the system given by

[P th
D , P

th
F ]. Thus, as P th

D is a lower threshold, Nmin
s is determined as follows:

POR
D = 1−

(
1− Pdn

)Ns ≥ P th
d

1−
(
1− Pdn

)Nmin,OR
s = P th

D

Nmin,OR
s =

log(1− P th
D )

log(1− Pdn)
(4.11)

Similarly, we can obtain Nmax
s from the upper threshold P th

F as follows:

POR
F = 1−

(
1− Pfn

)Ns
< P th

F

1−
(
1− Pfn

)Nmax,OR
s = P th

F

Nmax,OR
s =

log(1− P th
F )

log(1− Pfn)
(4.12)

As a result, we can state the range for the number of sensing user that satis-

fies the performance requirements as follows:

log(1− P th
D )

log(1− Pdn)
< Ns <

log(1− P th
F )

log(1− Pfn)
(4.13)
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4.4.2 Majority Rule

In this case, the Majority rule is employed, where the majority of the local de-

cisions will decide the global decisions. In other words, if the majority of the

sensing CUs (≥ Ns)have decide that the channel is used, the FC will agree with

them. Otherwise; the global decision will be free [86].

The individual false alarm and detection probabilities are similar to (1.4) and

(1.5) because the same procedure has been applied to obtain the local decision.

Nevertheless, the global decision is taken according to different rules. Thus, the

overall probabilities will be different from (4.9) and (4.10).

The overall detection probability based on the majority rule (PMaj
D ) can be

expressed as follows

PMaj
D =

Ns∑
i=Ns/2

(
Ns

i

)
(Pdn)i

(
1− Pdn

)Ns−i (4.14)

The overall false alarm probability based on the Majority rule (PMaj
F ) is given

as follows

PMaj
F =

Ns∑
i=Ns/2

(
Ns

i

)
(Pfn)i

(
1− Pfn

)Ns−i (4.15)

To find the minimum number of sensing users that satisfies the desired per-

formance of the CRN (i.e. the accuracy thresholds), we define two quantities

Nmin,D
s and Nmin,F

s . Whereas Nmin,D
s is the minimum number of sensing users

that fulfills the detection probability threshold (P th
D ), Nmin,F

s is the minimum

number of sensing user that complies with the threshold of false alarm proba-
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bility (P th
F ). Hence, the minimum number of users being selected for acceptable

performance of the system is:

Nmin,Sum
s = Max

{
NMin,F
s , NMin,D

s

}
(4.16)

Notice that the number of minimum sensing users in the equations (4.14),

(4.15) and (4.16) are analytically invisible.

4.5 Simulations Results

The proposed algorithm is simulated for a CRN Of 20 CUs. During simulation,

the local detection threshold has been set to (λ = σ2
n + 0.1σ2

x ), as this value gives

a good results for both rules. The variance of the nose signal is assumed(σ2
n =

−10dB), and the variance of the licensed signal is assumed (σ2
x) within the range

[−5dB 15dB].

The amount of saved energy is calculated as the difference from the con-

sumed energy in the classical scheme, where all the CUs participate in the sens-

ing. The relationship between the amounts of saved energy in spectrum sensing

stage versus the channel condition (σ2
x) is shown in Fig. 4.2 for both rules of de-

cision making: Majority rule and OR rule. The detection probability and the

false alarm probability thresholds are given as (P th
D = 0.9) and (P th

F = 0.1) re-

spectively as in IEEE P802.22 standard.

Clearly, that the amount of saved energy increases as σ2
x increases, where it

reaches 95% when σ2
x equals to 13 dB. Comparing between both rules in terms
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Figure 4.2: The amount of saved energy versus σ2
x for both FRs at P th

D = 0.9 and
P th
F = 0.1 .

of energy efficiency, both have the same performance in good channel condi-

tions. But, in poor conditions (less than 7dB), Majority rule is still saving a good

amount of energy (40%) when the channel worsens (−5dB). On the contrary,

Or rule results show that there is no saving gain at poor channel conditions

(less 0dB), due to the inability of this rule to fulfill the thresholds of detection

accuracy.

Despite high detection accuracy thresholds and bad channel conditions, sim-

ulation results, shown in Fig. 4.2, claim that huge amounts of energy saving are

achieved in the spectrum sensing stage by means of our approach, especially

by the Majority rule. Indeed, final results have lived up to initial expectations

in energy savings. In Fig. 4.3, we apply less detection accuracy, and show the

performance of the proposed algorithm in terms of energy efficiency versus σ2
x.
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Figure 4.3: The amount of saved energy versus σ2
x for both rules at P th

D = 0.8 and
P th
F = 0.2 .

In Fig. 4.3, we choose the thresholds of detection accuracy to be: P th
D = 0.8

and P th
F = 0.2, obtaining that the percentage of saved energy at (σ2

x = −5dB)

is increased to 60%. This is due to the low restriction on the detection accuracy

which can be achieved by lower number of sensing users. Notice also that the

performance of OR rule is enhanced at (σ2
x = 0dB), which refers to the ability of

the rule to fulfill the less performance thresholds.

Fig. 4.4 is a generalization of the last two figures, where a 3D view of the

saved energy versus the detection and false alarm probabilities at σ2
x = 0dB.

Fig. 4.4 summaries the obtained results from Fig. 4.2 and Fig. 4.3, which shows

the high percentage of saved energy in slight detection accuracy requirements

for both rules and with the same percentage. Otherwise, in heavy requirements

of detection accuracy, the Majority rule outperforms the OR rule in energy sav-

ing according to our proposed algorithm.
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Figure 4.4: The amount of saved energy versus P th
D and P th

F for both rules at σ2
x = 0dB

.

4.6 Summary

Aiming to reduce the energy consumed in CSS, an algorithm for reducing the

number of participating CUs in the sensing process has been proposed in this

chapter. The proposed algorithm implies involving only the minimum number

of CUs in sensing that guarantees the desired detection accuracy. The detection

accuracy is considered satisfied if two thresholds on detection and false-alarm

probabilities are satisfied. The proposed algorithm has been evaluated accord-

ing to two different FRs, namely, OR rule and Majority rule. Compared to OR

rule, simulation results show that the Majority rule experiences a high perfor-

mance being able to achieve huge amounts of saved energy even under harsh

channel conditions and high detection accuracy requirements.
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CHAPTER 5

ENERGY-EFFICIENT PARTIAL-COOPERATIVE SPECTRUM SENSING IN

COGNITIVE RADIO OVER FADING CHANNELS

5.1 Introduction

In the previous chapter, an algorithm is proposed to randomly exclude a num-

ber of the CUs from participation in CSS. Likewise, in this chapter, a novel al-

gorithm to reduce the number of participating CUs is proposed. However, the

selection of the excluded CUs is not random, where the CUs who consume a

high amount of energy during CSS are excluded.

It is normally accepted that not all of CUs spend the same amount of energy

in CSS process. Specifically, as CUs are distributed around the FC at different

distances, the mount of energy needed to report the sensing results should be

different among CUs. Considering the total energy consumption by all CUs,

preventing the set of CUs that heavily contributes in energy expenditure from

sensing and reporting will effectively reduce the total consumption.

The idea behind our proposal is to prevent the CUs which consume a larger

amount of energy from participating in the CSS. The participation decision of

each CU is taken individually by the CU itself. In detail, each CU estimates

the expected amount of energy that will be consumed if it participates, and

compares it to a predefined threshold. If it is less than the threshold, the cor-

responding CU will participate in CSS. Otherwise, it will not participate. Doing

so, not only the number of sensing CUs is reduced, but also the CUs that greatly

increase the energy consumption will be prevented from participating, resulting
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in lower energy consumption.

It is worth mentioning that the proposed approach improves the energy ef-

ficiency not only by reducing energy consumption, but also by increasing the

amount of successfully transmitted data. The increase in amount of successfully

transmitted data is due to the decrease in the overall false alarm probability, as

the number of involving users in CSS decreases. As the number of the involving

CUs depends on the participation threshold, an optimization of this threshold

is carried out to maximize energy efficiency.

The proposed approach includes all the required calculations to expect the

amount of energy consumed in CSS. Moreover, a detailed energy consumption

model is presented, that includes energy expenditure in all stages of the sensing,

reporting and transmission.

5.2 System Model

We consider a centralized CRN of N CUs. The channels between the CUs and

the licensed users and the channels between the CUs and the FC are modeled

as narrow-band Rayleigh fading with additive white Gaussian noise (AWGN).

The channel variance between any CU and the target spectrum is denoted by

µ2, while the channel variance between any CU and the FC is denoted as σ2
i .

The CUs are distributed randomly around the FC . The distance between ith

CU and the FC , denoted as (di), is uniformly distributed di ∼ U [dmin, dmax],

where dmin and dmax are the minimum and the maximum distances, respectively.

The adopted sensing technique is energy detection method, and the reporting

scheme is hard scheme. Thus, each sensing CU, after sensing makes a binary
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local decision ui{1, 0} about spectrum status is made. if ui = 1, then the ith CU

decides it is used. Otherwise, the spectrum is identified as unused by the ith

CU.

The local performance is measured by the detection probability (Pd,i) and

the false-alarm probability (Pf,i). For simplicity, we assume an identical perfor-

mance among the CUs, and hence, Pd,1 = Pd,2 = ... = Pd and Pf,1 = Pf,2 = ... =

Pf . Pd and Pf for Rayleigh fading channels are given in [31] and [87].

Aiming at comparing with the proposed approach, we consider the conven-

tional approach of CSS. In the conventional CSS, all CUs should participate in

the spectrum sensing process. Therefore, after a local decision is issued individ-

ually by each CU, all local decisions should be reported to the FC. Without loss

of generality, we consider OR rule as the FR at the FC. The overall performance

is measured by the overall detection probability (PD) and the overall false alarm

probability (PF ), which are given in (4.9) and (4.10), respectively, in Chapter 4.

Regarding the total energy consumed in the conventional CSS approach, if

we denote the energy consumed by the ith CU during sensing and reporting by

Es,i, Er,i, respectively, and the energy consumed by the scheduled user is Et, the

total energy consumed is given as:

Etot =
N∑
i=1

Es,i +
N∑
i

Er,i + PunusedEt (5.1)

where Punused is the probability of identifying the spectrum as unused (or free),

and is given as:

Punused = 1− P0PF − P1PD (5.2)

where P0 and P1 are the probabilities that the spectrum is actually unused and

used, respectively.
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Notice that the sensing energy is identical for all CUs and equal to Es, thus,

(5.1) can be simplified as:

Etot = NEs +
N∑
i

Er,i + PunusedEt (5.3)

As the energy is defined as the consumed power multiplied by the time, (5.3)

can be rewritten as:

Etot = NαsTs +
N∑
i=1

αr,iTr + PunusedαtTt (5.4)

where Ts, Tr, and Tt are the time consumed by a CU in sensing, reporting and

transmission, respectively. αs, αr and αt are the consumed power during sens-

ing, reporting and transmission, respectively.

Another important quantity that should be defined is the amount of the suc-

cessfully transmitted data (D) measured in bits. Notice that D depends on the

correct identification of the unused spectrum. D is given as:

D = P0(1− PF )RTt (5.5)

where R is the data rate in bps, and the factor P0(1 − PF ) represents the proba-

bility of the correct identification of the unused spectrum. From (5.5), it is also

clear that the D increases as PF decreases.

Finally, for the purpose of assessing the energy efficiency in [Joule/bit], we

define the consumed energy per bit (EpB) as follows:

EpB =
Etot
D

(5.6)
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5.3 The Proposed Approach

Motivated by improving the energy efficiency in cognitive radio systems, we

propose a novel approach for spectrum sensing which reduces energy con-

sumption during this process with a constraint on the achievable detection ac-

curacy. The idea is to reduce the number of users participating in spectrum

sensing, which results in a partial cooperative spectrum sensing. The novelty

of our proposal is that the participation decision is taken individually by each

CU, and on a base of expected energy consumption. In other words, each CU

calculates its expected energy consumption in case of participating in spectrum

sensing, and compares it to a predefined threshold called participation thresh-

old (γp). If it is lower than γp, the CU will participate. Otherwise, the CU will not

participate. By such mechanism, we try to reduce energy consumption by an ef-

fective way that implies preventing the CUs who will consume large amount of

their energy in spectrum sensing from participation.

If we denote the estimated energy consumed during spectrum sensing by

the ith CU by Ei, the following equation describes the participation decision (Si)

Si =

 1 (Participate) if Ei < γp

0 (Don′t participate) if Ei ≥ γp

(5.7)

Next, we discuss the calculation of Ei, the resulting performance based on our

proposal, and finally, we address the energy efficiency improvement achieved

by the proposed approach.
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5.3.1 Calculations of Ei

Ei includes the energy consumed during local sensing and decision reporting

by the CU. Thus, Ei is given as:

Ei = Es + Er,i (5.8)

as Es is identical for all CUs, then the determinant factor in Ei is Er,i that can be

written as a product of the reporting time Tr and the power consumed during

reporting αr,i, as follows:

Ei
r = αr,iTr (5.9)

In results’ reporting, the user is in transmission status, and hence, αr,i mainly

depends on the distance from the FC and the desired bite error rate. αr,i is given

as [88]:

αr,i = αc + αPAi (5.10)

where αPAi is the power consumed in the power amplifier stage of the ith user,

and αc is the power consumed by the other circuit elements. αc is identical in all

users and can be modeled as:

αc = αDAC + αfilt + αmix + αsyn (5.11)

where αDAC , αfilt, αmix, and αsyn are the power consumption at the digital-to-

analog converter (DAC), the transmit filters, the mixer, and the frequency syn-

thesizer, respectively. αfilt, αmix, and αsyn can be modeled as constants, while

αDAC can be approximated as:

αDAC =

(
1

2
VddI0(2n1 − 1) + n1Cp(2B + fcor)V

2
dd

)
(5.12)

where I0 is the current supply, n1 is the number of bits in the DAC, Cp is the

parasitic capacitance, Vdd is the voltage supply, fcor is the corner frequency, and

B is the symbol bandwidth.
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The second part of (5.10), αPAi is given as:

αPAi =
ζ

δ
αouti (5.13)

where δ is the drain efficiency of the RF power amplifier, ζ is the Peak-to-

Average Ratio (PAR) which is dependent on the modulation scheme and the

constellation size, and αouti is the transmitted power from the amplifier. When

the channel only experiences a square-law path loss we have:

αouti = ĒbRb (5.14)

where Ēb is the required energy per bit at the receiver for a given BER require-

ment, and Rb is the bit rate. Under Rayleigh fading, Ēb in (5.14) for BPSK mod-

ulation can be given as follows:

Ēb =
No(1− 2Pe)

2

4σ2
i Pe(1− Pe)

(5.15)

where Pe is the BER and σ2
i is channel variance that is given as:

σ2
i =

(4πdi)
2

GtGrλ2
MlNf (5.16)

whereGt is the transmitter antenna gain,Gr is the receiver antenna gain, λ is the

carrier wavelength, Ml is the link margin compensating the hardware process

variations and other additive background noise or interference, and Nf is the

receiver noise figure defined as Nf = Nr
No

with No = 171 dBm/Hz the single-

sided thermal noise Power Spectral Density (PSD) at room temperature and Nr

is the PSD of the total effective noise at the receiver input.

5.3.2 The achievable performance

Let us consider the estimated energy of each CU (Ei) as a random variable with

a Probability Density Function (pdf), fe, and Cumulative Distribution Function
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(CDF), FE . Therefore, for any CU, the probability of participation in the spec-

trum sensing equals to FE(γp). Also, the number of CUs who have decided to

participate (N∗) follows a binomial distribution described as:

Prob.(N∗ = n) =

 N

n

 (FE(γp))
n
(
1− FE(γp)

)N−n (5.17)

where the average number of sensing users N∗ is given by

N∗ = NFE(γp) (5.18)

After reporting the local decisions made by N∗ CUs, OR-rule is applied and a

final decision is made. In case of N∗ = 0, i.e., no users have participated, a

random final decision is made at the FR. Therefore, the average overall detec-

tion probability (P ∗D) and the average overall false alarm probability (P ∗F ) can be

written as:

P ∗D =

 1− (1− Pd)N
∗ if N∗ ≥ 1

0.5 if N∗ = 0
(5.19)

P ∗F =

 1− (1− Pf )N
∗ if N∗ ≥ 1

0.5 if N∗ = 0
(5.20)

where N∗ = 1, 2, ..., N .

5.3.3 Energy Efficiency Optimization

The total energy consumed by the whole system by following the proposed

approach (E∗tot) can be written as follows:

E∗tot =
N∑
i=1

SiEi + P ∗unusedE
∗
t (5.21)
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where the first term represents the consumed energy during spectrum sensing

process, which equals to 0 for the CUs who have not participated because it is

multiplied by Si = 0. The second term represents the energy consumed during

data transmission (E∗t ) which is conditioned by P ∗unused. P
∗
unused is the probability

of identifying the spectrum as unused in our approach, which can be obtained

by substituting P ∗D and P ∗F instead of PD and PF in (5.2).

Regarding the calculation of E∗t , we assume that a CU is randomly sched-

uled for data transmission. Therefore, the calculation of E∗t follows the same

procedure as Er with a proper substitution of the values of fcor, B, and Pe.

The amount of successfully transmitted data in bits, D∗ depends mainly on

the performance of the spectrum sensing, and can be given as:

D∗ = RTt

(
P0(1− P ∗F )

)
(5.22)

Hence, the total energy consumed per successfully transmitted bit based in the

proposed approach (EpB∗) is given as:

EpB∗ =
E∗tot
D∗

(5.23)

Remember that the resulting EpB depends mainly on the number of participat-

ing users which is a function of γp. Therefore, in order to minimize EpB∗, an

optimization of γp is highly motivated.

5.4 Simulation Results

In this section, we present some simulation results in order to illustrate the ad-

vantage of the proposed partial-cooperative spectrum sensing scheme. In par-

ticular, we are interested in finding an optimal value of the energy threshold, γp,
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which minimizes the total energy consumed per successfully transmitted bit in

partial CSS, EpB∗. Table 5.1 lists the simulation parameters used in this section

[88].

Table 5.1: Simulation Parameters
Parameter Value Parameter value

N 10 P0 0.5
Pd 0.8 Pf 0.2
Ts 3ms Tr 0.01ms
Tt 40ms dmin 100m
dmax 7Km αs 106mW
αsyn 50.0mW αfilt 2.5mW
αmix 30.3mW I0 3µA
Vdd 3V fr 2.5GHz
Rb 10Kbps n1 10
Cp 1pF GtGr 5dBi
Nf 10dB Ml 40dB
δ 0.35 fcor 1KHz
Pe 10−5 ζ 514× 10−3

Fig. 5.1 shows the average number of participating CUs in CSS versus the

participation threshold . The x-axis is shown in terms of Emin, Emax and ∆,

where Emin and Emax are the energy consumed in spectrum sensing by a CU

at a distance equals to dmin and dmax, respectively. The constant ∆ is the step

between each two consecutive lines and equals to 1 × 10−14 . Obviously, as

γp increases, the probability of participating in CSS for each CU increases as

well, and hence, the number of participating will increase. Different numbers

of available CUs in the network are shown in Fig. 5.1. However, such change in

the participating CUs will undoubtedly influence the transmitted data, energy

consumption and energy efficiency, as we will see in the next results.

As the number of participating CUs is variable depending on the participa-

tion threshold, it is expected that both the false alarm and detection probabilities
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Figure 5.1: The average number of participating CUs versus γp. (∆ = 1 × 10−14)

will be affected. In order to show the effect of the participation threshold on the

sensing accuracy, we use the false-decision probability (ε) as an evaluation met-

ric. ε, as given in (1.10), is defined as the weighted sum of false alarm probability

and the missed detection probability.

Fig. 5.2 plots the false-decision probability versus participation threshold at

N = 10. At low values of the participation threshold, ε is equal to 0.5 since the

decision is random when no CUs participate in the CSS process. Optimizing

the participation threshold yields in a minimum false-decision probability as

shown in Fig. 5.2. Notice that the minimum false-decision probability attained

by our approach is much less than the attained by the conventional approach.
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Figure 5.2: The false decision probability versus γp. (∆ = 1 × 10−14)

Fig. 5.3 shows the achievable amount of successfully transmitted data ver-

sus the threshold γp. For low values of γp, all CUs will not participate in CSS

since they have Ei larger than γp, which results in P ∗F = 0.5, according to (5.20).

Hence, D∗ is constant since it depends mainly on P ∗F , as stated in (5.22).

As γp increases so that the number of sensing users equals to 1, P ∗F improves,

and consequently, the transmitted data increases. As γp increases, D∗ decreases

since P ∗F increases. For comparative purposes, Fig. 5.3 also shows the plot for

the achievable amount of successfully transmitted data using the conventional

approach, D, where all the users take part in CSS. Since in conventional ap-

proach, D is independent of the value of γp, the plot will be a constant with

respect to γp. In Fig. 5.4, the total energy consumed by the system in partial
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Figure 5.3: The amount of transmitted data versus γp. (∆ = 1 × 10−14)

CSS, E∗tot over different values of γp is plotted. We can see that, as γp increases,

E∗tot first remains the same, but then decreases and then gradually becomes sta-

ble for larger values of γp. The initial flat region in the plot is due to the fact the

estimated energy, Ei of all the CU’s is above γp. Hence, all the CU’s will not par-

ticipate in spectrum sensing, and energy is consumed only in transmission. As

γp is increased, E∗tot decreases even though more CUs participate in CSS. This is

due to the decrease in Punused. The plot for total energy consumed by the system

in conventional approach, is also shown in Fig. 5.4. From the previous figures, it

is clear that increasing γp lowers the energy consumption but with lower trans-

mitted data. Thus, in order to find the optimal value of γp that balances the two

contrasting effects, the total energy consumed per successfully transmitted bit

in partial CSS, EpB∗ versus different values of γp is plotted in Fig. 5.5. As γp
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Figure 5.4: Total consumed energy of the whole system versus γp. (∆ = 1 ×
10−14)

increases, EpB∗ first remains the same, but then decreases and then increases

after a particular value of γp. The value of γp, where EpB∗ is minimum gives

the optimal value of γp. The plot for total energy consumed per successfully

transmitted bit is also shown in Fig. 5.5. The results in Fig. 5.5 clearly shows the

potential gain of using the proposed partial-CSS scheme over the conventional

approach. More precisely, when the optimal value of γp is used, partial CSS pro-

vides a Relative Average Energy Reduction(RAER) per successfully transmitted

bit of approximately 80% with respect to the conventional approach.

The threshold γp plays a key factor in the performance of the proposed ap-

proach. In Fig. 5.6, we plot the percentage of RAER compared to the conven-

tional approach versus the total number of CUs, where RAER is expressed as
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Figure 5.5: Total energy consumed per successfully transmitted bit versus γp.
(∆ = 1 × 10−14)

follows:

RAER% =
EpBconventional − EpBproposed

EpBconventional

× 100% (5.24)

5.5 Summary

A partial cooperative spectrum sensing approach is presented in this chapter,

which aims to reduce the energy consumption in cognitive radio networks. The

proposed approach is based on reducing the number of sensing users. Each user

decides to participate in spectrum sensing if its expected energy consumption

during this process is less than a threshold. An energy consumption model is

discussed in order to compute the total energy consumption. The participation
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Figure 5.6: The Relative Average Energy Reduction per bit versus the total num-
ber of CUs.

threshold is optimized to minimize the energy consumption through computer

simulations.
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CHAPTER 6

OPTIMIZING THE NUMBER OF USERS IN COOPERATIVE SPECTRUM

SENSING UNDER LIMITED TIME CONSTRAINTS

6.1 Introduction

In this chapter, we investigate the problem of optimizing the number of sensing

users for CSS under three different setups: throughput maximization, energy

minimization, and energy efficiency maximization, while satisfying a prede-

fined constraint on the detection probability. The optimization problems are

based on a pragmatic limited time resources constraint. More specifically, we

assume that the total frame has a finite and fixed duration. A fixed part of it is

dedicated for data transmission, while the rest is distributed between local sens-

ing and results’ reporting as a function of the number of sensing users. With this

finite frame duration assumption, if the number of users increases, the report-

ing time has to be longer, and, thus, a shorter time is left for local sensing. Com-

pared with the state-of-the-art, we assume that the time duration of data trans-

mission is kept fixed and sensing/reporting times are variable. State-of-the-art

papers sometimes assume a fixed sensing time and a variable data/reporting

times [52, 89, 90]. Our assumption does not affect data transmission, and, thus,

makes CSS a less invasive process.

Although the work in [52] is related to ours, there are three main differences

between both works : (i) Different time distribution mechanisms are assumed,

where in [52] the sensing time is fixed so that the overhead load affects the

transmission time, while we fix the transmission time and the overhead load

affects the sensing time, (ii) No closed form expression are presented in [52] for
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the two considered setups, while we present simple closed forms for the op-

timal number of sensing users that maximizes throughput and minimizes en-

ergy consumption, (iii) Unlike our work, neither energy minimization nor en-

ergy efficiency maximization are tackled in [52]. Nevertheless, since both works

are based on different assumptions, our approach can be considered as paral-

lel contribution to those presented in [52]. Another related work is [91], where

the sensing time is optimized for throughput maximization. However, the op-

timal number of CUs has not been investigated in [91], and the optimization is

confined on throughput maximization setup. Moreover, the time distribution

assumption is different form ours, where the transmission time is left variable

and the reporting time has not been considered.

The contributions of the work in this chapter can be summarized as follows:

• Deriving, in closed-form, the optimal numbers of sensing users that maxi-

mize the achievable throughput and minimize energy consumption, while

limiting the resulting interference by satisfying a predefined constraint on

detection probability.

• Proposing a simple iterative algorithm that is able to find the optimal num-

ber of sensing users that maximizes the energy efficiency while limiting

the resulting interference by satisfying a predefined constraint on detec-

tion probability

• Proposing a novel scheme that is able to improve energy efficiency by find-

ing the optimal number of sensing users that minimizes energy consump-

tion while keeping the same throughput as when all available users coop-

erate, and satisfying a predefined threshold on the detection probability.
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6.2 System Model

A CR network with N CUs is considered. The sensing channel is assumed to

be additive white Gaussian noise channel with σ2
w noise variance. The transmit-

ted signal by the licensed users is assumed to be circularly symmetric complex

Gaussian (CSCG) distributed with variance σ2
x. This assumption is reasonable

for signals with rich inter-symbol interference, for orthogonal frequency divi-

sion multiplexing (OFDM) signals with linear precoding [91], and under the

assumption that the PUs are operating close to capacity [92] [93]. The adopted

sensing technique is energy detection, and the employed reporting scheme is

soft-based scheme. Also, we assume that the local results are reported to the FC

in different time slots based on a time division multiple access scheme (TDMA)

[52].

6.2.1 Detection Accuracy

According to the soft-based CSS, the overall detection probability (PD) and the

overall false alarm probability (PF ) can be approximated using the central-limit

theorem as follows [45]

PD = Q

(
λ− (σ2

x + σ2
w)

(σ2
x + σ2

w)
/√

nS

)
(6.1)

PF = Q

(
λ− σ2

w

σ2
w

/√
NS

)
(6.2)

where Q(x) = 1√
2π

∫∞
x
exp
(−t2

2

)
dt, S is the total number of collected samples by

all CUs, and n is the actual number of sensing users with 1 ≤ n ≤ N .
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Let us assume that the threshold λ is chosen in order to guarantee a given

detection probability P th
D . Therefore, using (6.1), λ can be computed as follows:

λ =
Q−1(P th

D )(σ2
x + σ2

w)√
nS

+ σ2
x + σ2

w (6.3)

The constraint P th
D is employed in order to limit the resulting interference at

the licensed users, caused when a missed detection occurs. According to (6.3),

PF , given in (6.2), can be rewritten as:

PF = Q

(
Q−1(P th

D )(1 + ζ) + ζ
√
nS

)
(6.4)

where ζ = σ2
x

σ2
w

.

The transmission is organized in frames of fixed time duration. The frame

duration (T ) is divided into three sub-frames: i) the sensing sub-frame of dura-

tion Ts, during which local sensing is performed; ii) the reporting sub-frame of

duration Tr, where local results are reported to the FC; and iii) the data trans-

mission sub-frame of duration Tt, where data transmission occurs if the channel

is identified as free according to (14.8). As a consequence, T = Ts + Tr + Tt. 1

It is assumed that Tt is given and fixed, while Ts and Tr are chosen in order

to trade-off sensing and reporting reliabilities, respectively, such that T is kept

fixed. If we consider τ is the time needed by each CU to report the sensed result

to the FC, then the total reporting time for all CUs is Tr = nτ . Since Tt is assumed

fixed, the duration of the sensing sub-frame can be expressed as a function of

the number of sensing users as follows:

Ts(n) = T − Tt − nτ (6.5)

1Notice that the energy consumed during the idle state is small compared to the total energy
consumption in CSS, thus we neglect it [52].
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Hence, the maximum number of collected samples per user as a function of

the number of sensing users is:

S(n) =
(
T − Tt − nτ

)
fs (6.6)

where fs is the sampling frequency.

Likewise, the total number of collected samples of all sensing users (ST ) is

given:

ST (n) = nS(n) =
(
T − Tt

)
fsn− fsτn2 (6.7)

It can be observed that as n increases, Tr increases, and, consequently, Ts and

S decrease.

6.2.2 Energy Consumption

The energy consumed for CSS by all CUs is made of three contributions: i) the

energy consumed during local sensing (Es); ii) the energy consumed during

results’ reporting (Er); and iii) the energy consumed during data transmission

(Et). While Es and Er are always non–zero, Et is equal to zero if no data is

transmitted. The probability of transmitting data is given by the probability of

identifying the spectrum as unused during CSS, regardless the actual status of

the spectrum. This probability is denoted by Punused, and it was given in (5.2).

Since PD = P th
D , according to (6.3), and P0 + P1 = 1, then Punused (given in

(5.2)) can be rewritten as follows:

Punused = 1− P1P
th
D − P0PF (6.8)
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Therefore, the energy consumed as a function of n is given as follows:

E(n) = Es(n) + Er(n) + PunusedEt (6.9)

where the energies Es, Er and Et are expressed as follow:

Es(n) = nTs(n)ρs (6.10)

Er(n) = nτρr (6.11)

Et = Ttρt (6.12)

where ρs, ρr and ρt are the powers consumed per each CU for local sensing,

results’ reporting, and data transmission, respectively.

It is worth mentioning that increasing n does not necessarily increase the

total energy consumption. This is due to the contrasting effects on Es, Er and

Punused.

6.2.3 Achievable Throughput

The achievable throughput of CSS can be defined as the average amount of the

successfully-delivered transmitted bits. A successful transmission occurs only

in the case of correct identification of the unused spectrum. In other words, the

transmitted bits are successfully delivered if the channel is unused and it is cor-

rectly identified as free [94]. Hence, the achievable throughput (D), measured

in bits, is given in terms of N as :

D(n) = P0(1− PF (n))RTt (6.13)

where the factor P0(1−PF (n)) represents the probability of correct identification

of the unused spectrum, and R is the data transmission rate in bits/s.
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Finally, the energy efficiency is defined as the average throughput over the

average consumed energy (as in (1.11)) as follows [83]

µ(n) =
P0(1− PF (n))RTt

Es(n) + Er(n) + PunusedEt
(6.14)

6.3 Optimization of the Number of Sensing Users

The number of CUs that participate in CSS plays a significant role in the overall

performance of the cognitive radio network. This role is initiated due to the

effect of the number of sensing users on time resources distribution, Eqn.(6.5),

detection accuracy performance, Eqn.(6.4), energy consumption, Eqn.(6.9), and

transmitted data, Eqn.(6.13). In this section, we optimize the number of sensing

users for three different setups, throughput maximization, energy consumption

minimization, and energy efficiency maximization.

6.3.1 Throughput Maximization

Increasing the number of sensing users leads to a higher diversity in the re-

ceived sensing results, which improves the achievable throughput. On the other

hand, larger number of sensing users consumes more time for reporting pro-

cess, which, consequently, decreases the number of collected samples by each

CU. This influences the false alarm probability, and hence, lower throughput

will be achieved. Therefore, it is necessary to optimize the number of sensing

users so that the throughput is maximized.

75



Using (6.13), the throughput maximization problem can be expressed as fol-

lows

max
n

P0(1− PF )RTt (6.15)

since P0, R and Tt are independent of n, and using (6.4), the problem can be

simplified to

max
n
−PF = min

n
Q

(
Q−1(P th

D )(1 + ζ) + ζ
√
nS

)
(6.16)

The optimal n that maximizes D can be obtained by setting ∂PF
∂n

= 0. How-

ever, Q(·) is an integral, therefore, we should use Leibniz integral rule [95] to

find its derivative as follows:

∂PF
∂n

=
−1√
2π

ζfs(T − 2nτ − Tt)
2
√
nfs(T − nτ − Tt)

e−
(Q−1(PthD )(1+ζ)+ζ

√
nS)2

2 (6.17)

Since
√
nS 6= ∞, i.e., the total number of samples is limited, (6.17) will equal

zero only if the following condition is satisfied 2:

T − 2nτ − Tt = 0 (6.18)

that can be solved to obtain the optimal number of sensing users that maximizes

throughput (noptTh) as follows

noptTh =
⌊T − Tt

2τ

⌋
(6.19)

where b·c is the flooring operator. Since the number of sensing users is limited

by the total available CUs (N ), then noptTh can be rewritten as follows

noptTh = min

{⌊T − Tt
2τ

⌋
, N

}
(6.20)

2It is possible to employ the fact that the Q-function is a monotonic decreasing function of its
argument, and hence, maximizing (6.18) is equivalent to (6.16).
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According to (6.20), if the number of available users is N > T−Tt
2τ

, then the

maximum throughput is achieved by dividing the time resources dedicated for

CSS equally between local sensing (Ts) and reporting (Tr). Also, notice that for

N > T−Tt
2τ

, the optimal number of users that achieve the maximum throughput

is independent of N .

6.3.2 Energy Consumption Minimization

Another important objective for optimizing the number of sensing users is en-

ergy consumption minimization. Different numbers of sensing users lead to

different time distribution between sensing and reporting, and hence different

energy consumption. Besides, increasing n results in a lower PF which increases

the energy consumed during the data transmission subframe. In this subsection

we optimize the number of sensing users for the minimum energy consumption.

The energy minimization problem can be formulated as follows:

min
n
E(n) = min

n
Es(n) + Er(n) + PunusedEt (6.21)

by substituting the values of Es, Er and Punused that are given in (6.10), (6.11)

and (6.8), we get

min
n
n(ρsTs(n) + ρrτ) + (1− P0PF − P1P

th
D )ρtTt (6.22)

It is easy to prove that ET is a concave function3 of n ∈ [1, N ]. Hence, the

local minimum values occur at the bounds of the interval, i.e., n = 1, N . Then,

3The concavity of ET can be shown using the second derivative test (∂
2ET

∂n2 < 0)
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the optimal number of sensing users that minimizes energy consumption can

be expressed as follows

noptE =

 1 if ET (1) ≤ ET (N)

N if ET (1) > ET (N)
(6.23)

where E(1) and E(N) the total energy consumption when the n = 1, N ,

respectively, and can be obtained using (6.9).

Notice that the number of the available CUs is bounded by nmax since the

time resources are limited, the maximum number of sensing users can be ex-

pressed as follows:

nmax =
⌈T − Tt

τ
− 1
⌉

(6.24)

where d·e is the ceiling operator. Using (6.5), we can obtain that Ts(nmax) = τ ,

and using (11.11) we can find the number of samples collected by each CU as

S(nmax) = fsτ . Hence, the total number of samples that can be obtained by the

maximum number of users is given by

ST (nmax) = S(nmax)nmax = fs(T − Tt − τ) (6.25)

Likewise, in the case of the minimum number of sensing users, i.e., n = 1,

(6.5) gives Ts(1) = T − Tt − τ , and (11.11) gives S(1) = fs(T − Tt − τ). Then, the

total number of samples that can be collected is expressed as follows

ST (1) = S(1) = fs(T − Tt − τ) (6.26)

As a result, ST (nmax) = ST (1) which implies that Punused(nmax) = Punused(1).

According to this, we conclude that the energy consumed during data trans-

mission is equal whether n = nmax or n = 1. Therefore, since the energy con-

sumed in CSS is less when only one user is participated, we can obtain that
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E(1) < E(nmax). By applying this to (6.23), it can be reformulated to be as fol-

lows

noptE = 1 (6.27)

Similar to throughput maximization setup, the optimal number that mini-

mizes energy consumption is independent of the number of available users and

the time distribution between sensing and reporting.

6.3.3 Energy Efficiency Maximization

As we have optimized the number of sensing users into two different setups,

throughput maximization and energy minimization, it is clear that optimizing

each one of them may lead to high degradation on the other metric. e.g., maxi-

mizing the achievable throughput results in a high energy expenditure and vice

versa. Therefore, since energy efficiency is defined as the ratio of throughput to

energy consumption, maximizing it attains the balance point between the two

contrasting performance indexes.

Energy efficiency, as defined in (6.14), could be maximized by the optimal

number of sensing users using the following problem

max
n

µ = max
n

P0(1− PF )RTt
Es(n) + Er(n) + (1− P0PF − P1P th

D )Et
(6.28)

It is clear that obtaining the optimal n from (6.28) in a closed form expression

is too hard. However, since n is bounded by the available time resources, i.e.,

nmax = T−Tt
τ
− 1, we propose a simple iterative bisection algorithm [96] to find
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the optimal number of users that maximizes energy efficiency, as described in

Algorithm 1.

Algorithm 1 Proposed bisection algorithm to find N optµ

Initialization: Set Nmin = 1 and Nmax = T−Tt
τ
− 1.

Define i = 1
While i 6= 0

N = Nmin+Nmax
2

Compute µ(N − 1), µ(N) and µ(N + 1)
If µ(N + 1) > µ(N) > µ(N − 1)

Nmin = N
If µ(N + 1) < µ(N) < µ(N − 1)

Nmax = N
Ifµ(N + 1) ≤ µ(N) & µ(N) ≥ µ(N − 1)

N optµ = N , i = 0
EndIf

EndWhile

6.3.4 Sub-Optimal Energy-Efficient Approach

Since the optimal number of sensing users that maximizes energy efficiency can

not be extracted in a closed mathematical form, we present in this subsection an

energy-efficient approach that provides a suboptimal solution.

The idea is based on the fact that the achievable throughput is a symmetric

function around the optimal value that maximizes throughput. Therefore, for

large number of available users, the throughput achieved by the total available

number of users can be attained by a less number of sensing users. Therefore, a

huge amount of the consumed energy can be saved, and consequently, we can

improve the overall energy efficiency.

Let us denote the number of sensing users that can achieve the same

throughput as the total number of users by n′. In order to quantify n′, we

80



equalize the achievable throughput using all the available users (Th(N)) and

the achievable throughput using (Th(n′), as follows

Th(N) = Th(n′) (6.29)

using (6.13), this can be rewritten as follows

P0(1− PF (N))RTt = P0(1− PF (n′))RTt (6.30)

since P0, R, and Tt are independent of the number of sensing users, (6.30) can

be simplified as

PF (N) = PF (n′) (6.31)

According to (6.4), (6.31) can be rewritten as follows:

Q

(
Q−1(P th

D )(1 + ζ) + ζ
√
NS

)
= Q

(
Q−1(P th

D )(1 + ζ) + ζ
√
n′S

)
) (6.32)

in order to achieve the equality between the two sides, we must equalize

NS(N) = n′S(n′) (6.33)

where S(N) and S(n′) are the number of collected samples per user when the

number of sensing users is N and n′, respectively. By substituting the number

of collected samples, given in (11.11), we get

N

(
T − Tt −Nτ

)
fs = n′

(
T − Tt − n′τ

)
fs (6.34)

which is simplified as a quadratic equation of n′ as:

τn′
2 − (T − Tt)n′ +

(
T − Tt −Nτ

)
N = 0 (6.35)

where the two solutions (n′1, n′2) of this equation are computed as follows

n′1 = N (6.36)
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n′2 =
T − Tt −Nτ

Nτ
N =

Ts(N)

Tr(N)
N (6.37)

Thus, the number of sensing users that minimizes energy consumption

while achieving the same throughput when all available users participate in

CSS, is given as follows:

n′ = min{N, Ts(N)

Tr(N)
N} (6.38)

Following this energy-efficient approach, a large reduction on the consumed

energy can be achieved without degrading the achievable throughput, there-

fore, the overall energy efficiency of the network will be improved. Also, notice

that the improvement in the energy efficiency mainly depends on the number

of available users.

6.4 Analytical and Simulation Results

A cognitive radio network of N CUs is assumed. The probability that the tar-

get spectrum is used by a licensed user is 0.5. The ratio of the signal power of

the licensed user to the noise power is assumed ζ = −20 dB. The total frame

is assumed to be T = 100ms. During local sensing, each CU collects samples

with sampling frequency fs = 1MHz and consumes power ρs = 0.1W . During

results’ reporting, each CU spends τ = 0.2ms and consumes power ρr = 1W .

In data transmission, the data rate is assumed R = 200Kbps and the transmit

power is assumed ρt = 1W . The number of available users is set to the maxi-

mum, i.e.,N = nmax given in (6.24), unless otherwise is stated. These simulation
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parameters are summarized in Table 6.1. In all next figures, the markers repre-

sent the simulation results, while the analytical results obtained by the derived

equations are represented by solid lines.

Fig. 6.1 shows the average total energy consumption versus the number of

sensing users at a fixed predefined threshold in detection probability P th
D = 0.8.

Four different curves in Fig. 6.1 are corresponding to four different values of Ts+

Tr which represents the time dedicated for CSS. For all curves, the total energy

consumption is a concave function of n, and the minimum energy consumption

always occurs at N = 1. Increasing the number of CUs will increase the energy

consumption, but at the same time, the energy consumed in local sensing and

data transmission will be less due to the limited time constraint, which results

in a concave curve of the energy consumption.

Fig. 6.2 plots the minimum energy consumption versus Ts + Tr for different

values of P th
D . Increasing Ts + Tr increases the minimum energy consumption

because of the increased energy during CSS process. However, after a specific

value of Ts + Tr, the minimum energy consumption decreases since the energy

consumed during the data transmission subframe decreases. Another observa-

tion that can be derived from Fig. 6.2 is the decrease in the minimum energy

consumption as P th
D increases, which is due to increasing PF as P th

D increases,

leading to lower energy consumed during the data transmission subframe.

Table 6.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 ζ −20 dB
fs 1MHz ρt 1W
ρs 0.1W ρr 1W
τ 0.2ms R 200Kbps
T 100ms
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Figure 6.1: The total consumed energy (ET ) versus the the number of sensing users (n)
for different time distributions.(T=100 ms, Pd=0.8)

The average achievable throughput versus the number of sensing users is

plotted in Fig. 6.3 for multiple values of Ts + Tr. The concave shape of the

curves can be interpreted as a result of two contrasting effects on the sensing

performance caused by increasing n. In first part of each curve, the total num-

ber of collected samples increases as N increases, while in the second, the total

number of samples decreases since the number of samples per CU decreases.

The total number of samples affects PF , as indicated in (6.4), which directly af-

fects the average achievable throughput, as indicated in(6.13). Notice that the

theoretical results, represented by the solid lines, exactly match the simulation

results represented by markers.

The maximum achievable throughput is shown in Fig. 6.4 versus Ts + Tr for

P th
D = 0.9, 0.8 and 0.7. Clearly, for a fixed total frame duration T , the increase
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Figure 6.2: The minimum energy consumption versus the time dedicated for CSS (Ts+
Tr) for different values of P th

D . (T=100 ms, N = nmax)

in the time dedicated for CSS (Ts + Tr) increases the detection accuracy. On the

other hand, increasing TS + Tr yields in lower transmission time Tt in view of

the limited frame duration. Therefore, the maximum achievable curve follows

a concave shape as appears in Fig. 6.4 regardless of P th
D . Notice that for low

values of Ts + Tr, the maximum achievable throughput is lower for higher P th
D

due to the higher PF , while, for the high range of Ts + Tr, PF can be reached to

zero for all the considered values of P th
D , implying equal maximum achievable

throughput.

In Fig. 6.5 the energy efficiency versus the number of sensing users is plot-

ted for multiple values of Ts + Tr. Notice that the maximum energy efficiency is

achieved at a low value of n, usually< N/2, and it decreases as Ts+Tr increases.

The maximum energy efficiency is plotted versus Ts + Tr for multiple values of

85



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Number of sensing users (N)

A
ve

ra
g

e 
th

ro
u

g
h

p
u

t 
[b

it
s]

 

 

Ts+Tr = 5 ms
Ts+Tr = 4 ms
Ts+Tr = 3 ms
Ts+Tr = 2 ms

Figure 6.3: The achievable throughput (Th) versus the the number of sensing users (n)
for different time distributions. (T=100 ms, Pd=0.8)

P th
D in Fig. 6.6. Clearly, as Ts + Tr increases the detection accuracy improves,

which enhances the maximum energy efficiency. On the other hand, high val-

ues of Ts + Tr decreases the transmission time, and consequently degrades the

maximum energy efficiency. The theoretical results for the optimal number of

users that maximizes energy efficiency are obtained using Algorithm6.3.3.

In Fig. 6.7, we compare the performance of the proposed sub-optimal

energy-efficient approach presented in Section 6.3.4 to the optimal energy-

efficient approach presented in Section 6.3.3. In Fig. 6.7 the energy efficiency

of both approaches is shown versus the number of the available users (N ) for

different values of Ts + Tr. For each curve, N varies on the range [1, nmax]. The

optimal approach uses the optimal number of sensing users that maximizes

energy efficiency, while the sub-optimal approach uses the optimal number of
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Figure 6.4: The maximum achievable throughput versus the time dedicated for CSS
(Ts + Tr) for different values of P th

D . (T=100 ms, N = nmax)

sensing users that minimizes energy consumption without affecting the achiev-

able throughput, given in (6.38). The energy efficiency by the optimal approach,

the red curves in Fig. 6.7, increases while N ≤ noptµ, then it keeps constant for

the rest of the range noptµ ≤ N ≤ nmax. In contrast, the energy efficiency in

the sub-optimal approach is equal to the energy efficiency achieved by N while

N ≤ noptTh. After that, for the range N > noptTh, the energy efficiency will show

a symmetric curve a round noptTh. For example, on the curve Ts +Tr = 5ms, the

energy efficiency of the sub-optimal approach for N ≤ 13 equals to the energy

efficiency achieved byN , see Fig. 6.5. Notice that for Ts+Tr = 5ms, noptTh = 12.5

is obtained by (6.20) so that the achieved energy efficiency should be symmetric

around N = 12.5, as exactly appears in Fig. 6.7. The maximum deviation of the

sub-optimal approach from the optimal approach occurs when N = nmax and it

is within 2%− 9% for the considered values.
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Figure 6.5: The energy efficiency (µ) versus the the number of sensing users (n) for
different time distributions. (T=100 ms, Pd=0.8)

Also, for the purpose of comparison, in Fig. 6.8 we compare the achievable

energy efficiency by our proposal and by the approach proposed in [52]. Briefly,

in [52], they propose an energy efficient algorithm based on minimizing the

number of sensing users while achieving two constraints on detection proba-

bility and false alarm probability. As mentioned in the introduction, in [52] the

reporting time affects the transmission time while the sensing time is fixed. In

Fig. 6.8, the total frame length is considered 100ms for both proposals. We con-

sider Ts = 1ms for the proposed approach in [52], and Ts + Tr = 5ms in our

approach. The constraint on the detection probability is set to a fixed value re-

gardless of the number of users, as shown in the figure, while the constraint

on the false alarm probability that should be satisfied by the other approach

is tuned to be equal to the false alarm probability achieved by our approach.
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Figure 6.6: The maximum energy efficiency versus the time dedicated for CSS (Ts+Tr)
for different values of P th

D . (T=100 ms, N = nmax)

The circles on the two curves of the other approach indicate that the approach

cannot satisfy the false alarm probability achieved by our proposal, so that the

energy efficiency that is corresponding to the minimum false alarm probability

is considered. Apparently, our proposal outperforms the approach presented in

[52], this refers to the fact that in their proposal the number of sensing users is

minimized without considering the achievable throughout, whereas in our ap-

proach we minimize the number of sensing users while keeping the achievable

throughput above a threshold.

The effect of the constraint on detection probability (P th
D ) on the three ap-

proaches, the optimal energy efficient, Section 6.3.3, the proposed suboptimal

energy efficient in Section 6.3.4, and the energy efficient approach proposed in

[52], is shown in Fig. 6.9 for N = 24. As P th
D increases, PF increases, Th de-
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Figure 6.7: The efficiency metric (µ) by the optimal number of of sensing users and
by the proposed energy efficient approach versus the number of available users (n) for
different time distributions.(T=100 ms, Pd=0.8)

creases, E decreases, and µ improves. This is because the effect on reducing

E is higher than the effect on reducing Th. Our approach can achieve higher

energy efficiency, up to 3.5%, than that of the approach proposed in [52].

6.5 Summary

Optimization the number of sensing users in CSS has been investigated in this

chapter for throughput maximization, energy consumption minimization and

energy efficiency maximization. The optimization problems have been formu-

lated under limited time assumption. This assumption implies that the total

frame length is limited, where data transmission occupies a fixed part of it, and
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Figure 6.8: The efficiency metric by the proposed energy efficient approach (Ts + Tr =
5ms) and the approach proposed in [52] (Ts = 1ms) versus the number of available
users. (T=100 ms)

the the rest of the frame is distributed between local sensing and results’ report-

ing. Our results can be summarized into the following main conclusions:

• The optimal number of sensing users that maximizes the achievable

throughput while satisfying a predefined threshold in detection proba-

bility should consume time for results’ reporting equal to the time spent

during local sensing.

• The optimal number of sensing users that minimizes energy consumption

while satisfying a predefined threshold in detection probability is 1.
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energy efficient approach proposed in Section 6.3.4, and the energy efficient approach
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D ) for differ-
ent time distributions.(T=100 ms, N=24)

• A simple bisection algorithm is proposed to find the optimal number of

sensing users that maximizes energy efficiency while satisfying a prede-

fined threshold in detection probability.

• A sub-optimal energy-efficient approach is presented that is able to

achieve energy efficiency near to the optimal solution, while satisfying

a predefined threshold in detection probability and attaining the same

throughput when all the available users are participated in CSS.
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Part III

Improving Energy Efficiency in

Results’ Reporting Stage
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CHAPTER 7

ENERGY EFFICIENCY ANALYSIS OF SOFT AND HARD COOPERATIVE

SPECTRUM SENSING SCHEMES

7.1 Introduction

Improving energy efficiency can be attained by several directions. The most

energy consuming stage in CSS is the results’ reporting stage. In literature there

are two popular reporting schemes to convey the individual sensing results to

the FC, namely, soft scheme and hard scheme. In soft scheme, each CU reports

its sensing result as it is to the FC, usually by quantizing it with large number

of bits, while in hard scheme, each CU makes a local decision according to its

sensing result, and then, conveys the local decision by a single bit to the FC.

Several previous works have compared between both schemes with regard

to the achievable detection accuracy. In [44], the authors conclude that the

soft scheme provides higher detection accuracy, which also has been proved

even in presence of noisy reporting channels in [70]. On the other hand, [69]

shows that the gain of soft over the hard scheme is set lower than a fraction of

a dB. Moreover, in [72], it has been demonstrated that the detection accuracy

of both schemes will nearly converge under low SNR values when the ratio

between the number of sensing users in hard and soft schemes equals 1.6. In-

deed, as soft scheme provides more accurate sensing data to the FC, it is self-

evident to have more reliable decisions at the FC. However, considering the

larger time/bandwidth resources required in the soft scheme may change these

results, especially, if we assume that increasing the reported data will affect the

local sensing performance. In such a consideration, the frame length is assumed
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limited and any variation in the reporting time will vary the local sensing time,

while the data transmission is kept fixed.

This chapter provides a fair comparison between the two schemes in terms

of throughput, energy consumption and, most importantly, energy efficiency.

The energy efficiency is defined as the ratio between the achievable throughput

and the consumed energy [83]. As the throughput and energy consumption are

influenced by the detection accuracy, the energy efficiency can be introduced

as a comprehensive metric that combines all the affecting aspects on the over-

all performance of the cognitive transmission. The soft scheme provides higher

detection accuracy, while hard scheme attains higher resources efficiency. Thus,

this trade-off should be investigated. The contributions of the chapter include

comparisons between both schemes in terms of throughput, energy consump-

tion and energy efficiency metrics. For each metric, a closed form expression of

the frame length that makes both schemes are identical is derived.

7.2 System Model

Consider a CRN consisting of N CUs. The sensing technique used in local sens-

ing is energy detection. The sensing results are sent to the FC on a dedicated

channel in a TDMA-based method, where each CU has its own reporting time

slot [52]. At the FC, received reports form CUs are processed, and a global

decision about spectrum occupancy is made by applying a specific fusion rule

(FR). According the issued global decision, a CU will be scheduled for data

transmission for the rest of the frame if the spectrum was identified as unused.

Otherwise, all CUs stay idle during the rest of the frame.
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According to Fig. 7.1, the time frame for the cognitive transmission T is di-

vided into three sub-frames: the sensing sub frame Ts for spectrum sensing,

reporting sub-frame for result reporting Tr, and transmission sub-frame Tt for

data transmission. We assume that the frame duration is limited, and Ts con-

sumes a fixed part of it. The rest of the frame, i.e., T −Ts, is divided between re-

porting and transmission sub-frames. Indeed, the reporting sub-frame is firstly

computed and the rest of the frame will be dedicated for data transmission.

Mathematically, Tr, which depends on number of CUs and the duration of the

time slot (τ ), is computed as follows

Tr = Nτ (7.1)

which is used to obtain Tt as follows

Tt = T − Ts −Nτ (7.2)

Figure 7.1: The frame structure of the cognitive transmission.

Three different metrics are used to evaluate the overall performance of the

considered CRN, namely, the achievable throughput, the total energy consump-

tion, and the energy efficiency. The formulas of theses quantities are respec-

tively revised as follows

D = P0(1− PF )RTt (7.3)

E = NTsρs +Nτρt + (1− P0PF − P1PD)ρtTt (7.4)

µ =
D

E
(7.5)
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As mentioned earlier, the local sensing results can be conveyed into two dif-

ferent popular schemes: hard or soft. Next, we discuss both schemes and inves-

tigate the related evaluation metrics for each scheme.

7.2.1 Hard-based CSS Scheme

According to the hard scheme, each CU compares its sensing result to a prede-

fined threshold, denoted by λH , and makes a local binary decision about spec-

trum availability (ui ∈ {1 ≡ used, 0 ≡ unused}). In reporting phase, all CUs

convey their local decisions, a single bit per CU, towards the FC consecutively.

If we consider that the duration of the time slot required for hard scheme is de-

noted by τH , then the total reporting time (THr ) and the transmission time (THt )

for hard scheme can be easily obtained by a proper substitution in (7.1) and

(7.2), respectively.

Upon receiving the local decisions at the FC, a specific fusion rule should

be applied to output the global decision. In this chapter, we consider the most

popular FR that is called OR rule [72] since it causes the minimum interference

to the licensed users. OR-Rule implies that the global decision will not be used,

unless all CUs agree on that. Thus, the overall detection probability (PH
D ) and

the overall false alarm probability (PH
F ) based on the OR-Rule were given in

(4.9) and (4.10), and are revised here respectively as follows:

PH
D = 1−

(
1− Pd

)N (7.6)

PH
F = 1−

(
1− Pf

)N (7.7)

where Pd and Pf refer to the local detection probability and the local false alarm

probability, respectively. Both are given for AWGN sensing channels in (1.4)
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and (1.5), and are rewritten as follows [31].

Pd = Q(
√

2Tsfsγ,
√
λH) (7.8)

Pf =
Γ(Tsfs, λH/2)

Γ(Tsfs)
≡ ΦTsfs(λH/2) (7.9)

where fs is the sampling frequency, γ is the signal to noise ratio, Q(a, b) is the

generalized Marcum Q-function [38], and Γ(.) is the gamma function [39].

7.2.2 Soft-based CSS scheme

Unlike the hard scheme, the local sensing result is reported as it is in soft scheme

without any processing at the local level. The sensing result is usually quantized

by a large number of bits that is enough to ignore the resulting quantization

distortion. By denoting the time slot required for reporting the sensing result

in soft scheme by τS (> τH), the corresponding reporting time (T Sr ) and trans-

mission time (T St ) can be easily obtained by replacing τ by τS in (7.1) and (7.2),

respectively.

At the FC, in order to make the global decision, the received local sens-

ing results are summed and compared to predefined threshold, denoted by λS .

Thus, the detection probability (P S
D) and the false alarm probability (P S

F ) for soft

scheme are given for AWGN sensing channels in (6.1) and (6.2), and are rewrit-

ten as follows [31].

P S
D = Q(

√
2NTsfsγ,

√
λS)) (7.10)

P S
F =

Γ(NTsfs, λS/2)

Γ(NTsfs)
≡ ΦNTsfs(λS/2) (7.11)
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7.3 Performance Analysis

As we have discussed both schemes and report their related evaluation met-

rics, this section provides a fair comparison between them in terms of several

performance aspects. The comparison is established based on the assumption

that both schemes attain the same false-alarm probability (P th
F ). To do so, both

thresholds λH and λS should be tuned to obtain PH
F = P S

F = P th
F , as follows

λH = 2 Φ−1
Tsfs

(
1− N

√
1− P th

F

)
(7.12)

λS = 2 Φ−1
NTsfs

(
P th
F

)
(7.13)

where Φ−1
x is the inverse function of Φx.

Since Ts identical in the both schemes, T Sr > THr implies that more accurate

sensing data will be available at the FC in the soft scheme, leading to higher

detection probability:

P S
D > PH

D (7.14)

However, due to the limited frame duration, T Sr > THr will also implies that

T St < THt , which consequently, affects the throughput D, energy consumption

E and energy efficiency µ as well. Particularly, soft and hard schemes pose a

trade-off between detection accuracy and resource efficiency. Next, we study

this trade-off in all performance aspects, stating the sufficient condition on the

number of participating CUs and time frame.

We start by comparing the achievable throughput. Specifically, we look for

the case(s) when the achievable throughput of the hard scheme (DH) is higher

than it for the soft scheme (DS), as follows

DH ≥ DS (7.15)
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Notice the throughput can be obtained by replacing PF and Tt in (5.5) by P th
F

and T St for DS , or by P th
F and THt for DH , respectively.

P0(1− P th
F )RTHt ≥ P0(1− P th

F )RT St (7.16)

Now, as THt > T St , we can conclude that (7.15) is always satisfied. This

indicates that the hard scheme always achieves more throughput than the soft scheme

regardless of any factor.

Regarding the average energy consumption, we identify the sufficient con-

ditions by which the hard scheme consumes energy higher than the soft scheme

by solving the following:

EH ≥ ES (7.17)

The energy consumption can be obtained by replacement τ , PF , PD and Tt

in (7.4) by τH , P th
F , PH

D and THt for hard scheme or by τS , P th
F , P S

D and T St for

soft scheme, respectively. Notice that the first term in (7.4) is identical for both

schemes so that can be canceled out. The rest of (7.17) can be expressed as

follows

NτH + (1− P0P
th
F − P1P

H
D )THt ≥

NτS + (1− P0P
th
F − P1P

S
D)T st (7.18)

Be denoting the difference in reporting time in both schemes by ∆τ defined

as follows

∆τ = τS − τH ≡ THt − T St
N

(7.19)

(7.18) can be simplified to be

−N∆τ(P0P
th
F + P1P

H
D ) + P1T

S
t (P S

D − PH
D ) ≥ 0 (7.20)
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that can be solved for T st as follows

T st ≥
N∆τ

(
P0P

th
F + P1P

H
D

)
P1∆PD

(7.21)

which can be solved for T by substituting the values of T St as follows

T ≥ Ts +NτS +
N∆τ

(
P0P

th
F + P1P

H
D

)
P1∆PD

(7.22)

where ∆PD = P S
D − PH

D . Eqn.(7.22) can be solved for N as follows

N ≤ T − Ts
τS − ∆τ(P0P thF +P1PHD )

P1∆PD

(7.23)

While (7.22) acts as a lower bound on the time frame duration by which the

hard scheme consumes energy more than the soft scheme, (7.23) represents an

upper bound on the number of participating CUs.

Another comprehensive metric that can better assess the performance of CSS

is the energy efficiency. To compare between the both schemes in terms of en-

ergy efficiency, we investigate the satisfaction of the following case:

DH

EH
≥ DS

ES
(7.24)

Using (7.3), (7.4) and some mathematical operations, (7.24) can be rewritten

as a quadrature equation of T St as follows

T st
2 + AT st +B ≤ 0 (7.25)

where A and B are constants defined as follows

A = −N∆τ
1− P1∆PD
P1∆PD

(7.26)
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B = −N2∆τ
PsTs + Ptτ

s

PtP1∆PD
(7.27)

Now, by using the general formula to solve quadrature equations, (7.25) can

be solved as

T st ≤
−A
2

+

√
A2

4
−B (7.28)

where it can be written in terms of T using (7.2) as follows

T ≤ −A
2

+

√
A2

4
−B + Ts +Nτ s (7.29)

Notice that (7.29) represents the minimum frame length by which the soft

scheme can achieve higher energy efficiency that the hard scheme.

7.4 Simulation Results

A cognitive radio network consisting N CUs is considered. All simulation pa-

rameters regarding local sensing performance, energy consumption and net-

work specifications are summarized in Table 7.1. In this section, we compare

both schemes in terms for throughput, energy consumption and energy effi-

ciency in order to validate our analytical results previously.

Table 7.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 ρs 10mW
ρt 100mW fs 0.1MHz
γ −10 dB R 64K bps
τH 0.1msec τ s 0.8msec
Ts 1msec P th

F 0.1
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For a fair comparison we set the fusion thresholds, i.e., λH and λS , such that

the false-alarm probability of both schemes equals to a specific threshold set to

P th
F = 0.1.

Fig. 7.2 shows the achievable throughput for both schemes versus the frame

length. Clearly, the hard scheme achieves higher throughput than the soft

scheme for the whole range of T , which insures our analytical result. The

throughput difference between the two schemes should diminish as T increases.
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Figure 7.2: The achievable throughput for both schemes versus the frame length (T ).
(N = 10)

The total energy consumption versus T is plotted in Fig. 7.3 for both

schemes. Notice that increasing T leads to increasing E because of the increase

in the transmit energy. However, for low values of T , i.e., T < 25msec, the hard

scheme consumes less energy that the soft, while for T > 25msec, soft scheme

consumes less energy than the hard scheme. Notice that the inversion point is
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occurred exactly at the point given in (7.22) that is indicated by the black line in

Fig. 7.3.
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Figure 7.3: The total energy consumption versus T for both schemes. (N = 10)

Fig. 7.4 shows the energy efficiency versus T for both schemes. Likewise,

the energy efficiency is higher for hard scheme at short time frames, while the

soft scheme attains higher energy efficiency at longer frames. The critical frame

length, at which both schemes achieve equal energy efficiency, is exactly as the

one given in (7.29).

The achievable throughput versus the number of CUs is shown in Fig. 7.5

for both schemes. It is shown that the hard scheme always outperforms the

soft scheme in amount of the achievable throughput. Also, the difference in

throughput magnifies as the number of CUs increases because of the increase in

the difference in Tt.
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Figure 7.4: The energy efficiency versus T for both schemes. (N = 10)

Fig. 7.6 and Fig. 7.7 plot the total energy consumption and energy efficiency

versus the number of CUs, respectively. For each figure, we plot the critical

frame length at which the both schemes have the same performance. Clearly,

the reversal in energy consumption (or energy efficiency) is occurred exactly

when the condition (7.22) (or (7.29)) is satisfied. Notice that the critical frame

length at N = 1 in both figures Fig. 7.6-b and Fig. 7.7-b is infinite value, and

hence it does not appear in them.

7.5 Summary

Considering the difference in the required time resources between hard and soft

CSS schemes, this chapter has investigated their performance in terms of the
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Figure 7.5: The achievable throughput for both schemes versus the number of CUs (N ).
(T = 50msec)

achievable throughput, consumed energy and energy efficiency. Our results

have shown that hard scheme always provides higher throughput than soft

scheme, and hard scheme consumes less energy and attains higher energy ef-

ficiency than soft scheme at short time-frames and large number of CUs. More-

over, the contributions of this chapter include deriving closed form expressions

for the critical frame length that equalizes the energy consumption and energy

efficiency in both schemes, which have been validated by simulation results.
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CHAPTER 8

ENERGY-EFFICIENT COOPERATIVE SPECTRUM SENSING BY

TERMINATING THE REPORTING PROCESS

8.1 Introduction

In this chapter, a novel reporting scheme is proposed in order to reduce energy

consumption in CSS without affecting the detection accuracy. The proposed re-

porting scheme is based on the assumption that the results are reported to the

FC consecutively in a TDMA scheme. Hence, this assumption allows the FC

to terminate the reporting process whenever the received results are enough

to make a global decision according to the employed FR. In other words, the

received results should be immediately processed at the FC, and the global de-

cision should be made whenever the amount of information is enough to make

it. Consequently, the reporting phase is terminated by broadcasting a message

from the FC informing the CUs to quit reporting. Notice that the employed FR

has a key role as it decides how much information is needed to make a global

decision.

Considering the definition of the energy efficiency as the ratio of the average

successfully transmitted bits to the average energy consumption, the properties

of the proposed scheme are as follows; (i) The energy consumption reduction

refers to preventing the rest of CUs, which wait their turn, from reporting, (ii)

Since the reporting process will be terminated earlier, more time will be allo-

cated to data transmission, which improves achievable throughput, and conse-

quently, energy efficiency, (iii) The proposed scheme does not require/induce

any energy consumption in preceding/following stages in the cognitive trans-
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mission, (iv) Most importantly, the proposed scheme does not affect the detec-

tion accuracy, and (v) The proposed scheme is consistent with most of the other

energy-efficient CSS approaches presented in the literature, and can be jointly

applied with any of them, which enhances the overall joint achievable energy

efficiency.

The mathematical formulation of the proposed reporting scheme is pre-

sented in this chapter. Moreover, the proposed scheme is consistent with both

types of sensing data: soft and hard, as will be explained later. Also, The sig-

nificance of the order of the CUs during reporting phase is investigated, and

the consistency with other energy efficient approaches is discussed and proved

through computer simulations.

8.2 System Model

Consider a CRN consisting of N CUs. The adopted method for spectrum sens-

ing is energy detection method. If we denote the received signal of the sth sam-

ple by the ith CU by ri,s (given in (1.1)), then the output of the energy detector

can be expressed as follows

Yi =
S∑
s=1

| ri,s |2 (8.1)

where S = Tsfs, and fs is the sampling frequency during sensing.

According to [87] and [31], Yi follows a central chi-square (χ2) distribution

with 2S degrees of freedom under H0 hypothesis, and non-central chi-square

distribution with 2S degrees of freedom and a non centrality parameter 2Sγi

under H1 hypothesis. Therefore, the probability density function of Yi is ex-
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pressed as follows

fYi(y) =


1

2SΓ(S)
yS−1e−y/2 H0

1
2

(
y

2γi

)S−1
2 e−

2γi+y

2 IS−1(
√

2γiy) H1

(8.2)

where Γ(.) is the gamma function [39] and Iv(.) is the vth order modified Bessel

function of the first kind [39].

As described in previous chapters, in soft-based CSS, CUs send their actual

sensing information, i.e., Y ’s, to the FC without any local processing, and a

global decision is made at the FC by combining them appropriately. The most

popular combining scheme is the equal-gain combining (EGC) [97], where all

the received results are summed up at the FC, as follows

Y0 =
N∑
i=1

Yi (8.3)

Hence, the pdf of the statistic Y0 follows the same distribution of Yi, de-

scribed in (8.2), with replacing each 2S by the product 2NS, as follows [87]

[31]

fY0(y) =


1

2NSΓ(NS)
yNS−1e−y/2 H0

1
2

(
y

2γ0

)NS−1
2 e−

2γ0+y
2 INS−1(

√
2γ0y) H1

(8.4)

where γ0 =
∑N

i=1 γi. The overall detection and false alarm probabilities in soft-

based CSS are given in (6.1) and (6.2), respectively.

In contrast to S-CSS, employing H-CSS implies that each CU processes its

sensing result (Yi) and issues a local binary decision ui{1, 0} about the spectrum

status. If Yi ≥ λloc, then ui = 1 (the spectrum is identified as used by the ith CU).

Otherwise, ui = 0 (the spectrum is identified as unused by the ith CU).
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The detection accuracy of the local decision is also measured by local de-

tection probability and local false alarm probability, which are given as follows

[87]

P local
d,i = QS(

√
2γi,

√
λloc) (8.5)

P local
f,i =

Γ(S, λloc/2)

Γ(S)
(8.6)

According to H-CSS, all the obtained local decisions should be reported to

the FC. At the FC, a specific fusion rule (FR) is employed to process these re-

ported decisions in order to make a global decision. The general FR is K-out-of-N

rule [98].

The overall detection probability and false alarm probability in hard-based

CSS can be expressed in mathematical forms for arbitrary values ofK as follows:

P hard
D =

N∑
k=K

(Nk)∑
j=1

∏
i∈A(N,k)

j

Pd,i
∏

i/∈A(N,k)
j

(
1− Pd,i

)
(8.7)

P hard
F =

N∑
k=K

(Nk)∑
j=1

∏
i∈A(N,k)

j

Pf,i
∏

i/∈A(N,k)
j

(
1− Pf,i

)
(8.8)

where A(N,k)
1 , A

(N,k)
2 , ..., A

(N,k)

(Nk)
represent all the possible combinations of k inte-

gers drawn from the interval [1, N ], and the number of these combinations is(
N
k

)
.

Depending on K, two popular FRs are derived from the K-out-of-N rule: OR

rule (K = 1) and AND rule (K = N ). The overall detection probability and false

alarm probability for H-CSS based on OR rule are respectively given as follows

P or
D = 1−

N∏
i=1

(
1− Pd,i

)
(8.9)
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P or
F = 1−

N∏
i=1

(
1− Pf,i

)
(8.10)

while for AND rule as follows

P and
D =

N∏
i=1

Pd,i (8.11)

P and
F =

N∏
i=1

Pf,i (8.12)

However, as a special case, when all CUs have identical sensing perfor-

mance, i.e., Pd,i = Pd &Pf,i = Pf ∀i, the overall detection and false-alarm proba-

bilities are respectively given for any value of K as follows:

P hard
D =

N∑
k=K

(
N

k

)
P k
d (1− Pd)N−k (8.13)

P hard
F =

N∑
k=K

(
N

k

)
P k
f (1− Pf )N−k (8.14)

For both schemes, the energy efficiency (µ) is used as an evaluation metric

as defined in (6.14).

8.3 The Proposed Energy-Efficient Cooperative Spectrum Sens-

ing (EE-CSS)

The energy consumed during CSS represents a challenge that degrades the over-

all energy efficiency of cognitive transmission. The energy consumed in results’

reporting dominates the energy consumption in CSS. Therefore, reducing the
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number of CUs that report their results to the FC represents a preferred energy-

efficient approach since it leads to a huge reduction in the consumed energy [54].

However, such approach should not negatively affect the achievable perfor-

mance represented by the detection accuracy of CSS. In this section, we present

a novel reporting scheme by which the total amount of energy consumed is

reduced, the achievable detection accuracy is kept unaffected, the amount of

transmitted data is increased, and hence, higher energy efficiency is achieved.

The idea behind our proposal is that while the CUs report their results, the

FC should process these local results immediately, and whenever the FC can

make a global decision from the received results, a message is sent from the

FC to the rest of CUs, preventing them from reporting their local results. In

other words, according to the adopted FR, in some cases, the FC can make the

global decision without hearing from all the CUs, and hence, the reporting pro-

cess should be stopped and the data transmission process can be commenced

earlier. Accordingly, the number of reporting CUs decreases, which reduces the

consumed energy, and the data transmission can be started earlier, achieving

higher amount of transmitted data. Notice that the performance of the CSS rep-

resented by the detection accuracy is not affected.

Let us denote the number of the reporting CUs based on our proposal by M .

In the rest of this section, we formulate the average number of reporting CUs

based on the proposed technique in both S-CSS and H-CSS. Afterward, a dis-

cussion on the resultant energy consumption, detection accuracy, transmitted

data and energy efficiency is presented.
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8.3.1 Energy-Efficient S-CSS

In S-CSS, the global decision is made by comparing the sum of received results

to a predefined threshold (λs). Thus, at a specific point during the reporting

phase, if the sum of the received results up to that point is larger than λs, then

the decision can be made without waiting the other results of the rest of CUs.

In view of this, the number of reporting CUs will be m if the sum of the

results of the first m − 1 reporting CUs is less than λs and the sum of the re-

sults of the first m reporting CUs is larger than or equal λs. Mathematically, the

probability of the number of reporting CUs in S-CSS is expressed as follows:

Pr.{M = m} =

 F (m−1)(λs)
(
1− F (m)(λs)

)
1 ≤ m < N

F (N−1)(λs) m = N
(8.15)

where F (x)(y) is the cumulative distribution function (CDF) of the sum of the

sensing results for the first x reporting CUs. The pdf of F (x)(y), denoted by

f (x)(y), is given as follows

f (x)(y) =


1

2xSΓ(xS)
yxS−1e−y/2 H0

1
2

(
y

2γx

)xS−1
2 e−

2γx+y
2 IxS−1(

√
2γxy) H1

(8.16)

where γx =
∑x

i=1 γi and F (0)(·) = 1.

The average number of reporting CUs (M
soft

) can be computed as follows

M
soft

=
N∑
m=1

mPr.{M = m} (8.17)

by using (8.15), (8.17) can be rewritten as follows

M
soft

= NF (1:N−1)(λs) +
N−1∑
m=1

mF (1:m−1)(λs)
(
1− F (1:m)(λs)

)
(8.18)
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Fig. 8.1 shows the average number of reporting CUs of the proposed EES-

CSS versus the global decision threshold for different numbers of the available

CUs. The parameters used to generate this figure are listed in Table 8.1. All CUs

are assumed to be identical γ = 10. Clearly, the average number of reporting

CUs according to the proposed scheme is lower than it in the conventional S-

CSS, and it increases as the global decision threshold (λs) increases.
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Figure 8.1: The average number of reporting CUs versus the global decision threshold
in the proposed Soft-based CSS for different numbers of CUs. All CUs have γ = 10

The decrease in the number of reporting CUs will affect the system in two

ways: first it decreases the total energy consumed in CSS, and it makes the data

transmission, if any, starts earlier. The former effect reduces the total energy

consumption, while the latter increases the achievable throughput. Thus, both

result in improved energy efficiency. Let us define Energy Efficiency Ratio (EER)

as the ratio of the achievable energy efficiency of the proposed EES-CSS to the
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Table 8.1: Simulation Parameters
Parameter Value

P0 0.5
Fs 105Hz
T 30msec
Ts 1msec

τ(soft) 0.8msec
τ(hard) 0.1msec
Tt T −Nτ − Ts
ρs 10mW
ρt 100mW
ρr 100mW
R 100Kbps

achievable energy efficiency of the conventional S-CSS, as follows:

ERR =
µ′

µ
(8.19)

where µ′ is the achievable energy of the proposed approach, defined as follows:

µ′ =

P0

(
1− PF

)
R

(
Tt + (N −M)τ

)
NρsTs +Mρrτ + Pt

(
Tt + (N −M)τ

)
ρt

(8.20)

Compared to (6.14), in (8.20) the number of reporting CUs has been changed

form N to M and the transmission time has been increased by (N −M)τ .

In Fig. 8.2 the EER of the proposed EES-CSS is shown versus the global de-

cision threshold for different number of the available CUs. The improvement in

the energy efficiency is notable and significant due to the reasons we have dis-

cussed earlier. It is worthy mentioning that the detection accuracy is not affected

by the proposed scheme.

In Fig. 8.1 and Fig. 8.2, all CUs are assumed to have equal SNR. Hence, the

order of CUs during reporting phase does not affect the overall performance

of the proposed scheme since all are identical at the FC side. In contrast, hav-

ing CUs with non-equal SNRs implies that the reporting order has a significant
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Figure 8.2: The ratio of the achievable energy efficiency of the proposed S-CSS to the
achievable energy efficiency of the conventional S-CSS versus the global decision thresh-
old for different numbers of CUs. All CUs have γ = 10

influence on the achievable performance of the proposed scheme. Thus, the

reporting order should be carefully designed in order to maximize the energy

efficiency achieved by the proposed scheme.

Since the proposed scheme aims at terminating the reporting phase as fast

as possible, then those CUs that are able to do so should report their results

first. In S-CSS scheme, the global decision can be made earlier if the sum of the

received results exceeds λs. Hence, the CUs should report their results to the FC

according to a descending order of their average reported results, i.e., Y ’s.

Using (8.2), the average of Yi can be expressed as follows

Yi = TsFs(2 + γi) (8.21)

which implies that the optimal reporting order is equivalent to a descending or-
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der of the corresponding SNRs.

Fig. 8.3 and Fig. 8.4 show the average number of reporting CUs and EER

of the optimal order (descending in SNRs) and the worst order (ascending in

SNRs) versus the global decision threshold. 10 CUs are considered with SNR

set γ10
i=1 = {1, 2, 3, 4, ...., 10}.

A significant gain can be noted between the optimal order and the worst

word represented by the average number of reporting CUs, see Fig.8.3, which

results in a higher energy efficiency, see Fig. 8.4.
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Figure 8.3: The average number of reporting CUs versus the global decision threshold
in the proposed Soft-based CSS for the optimal oder and the worst order. N = 10 and
γ10
i=1 = {1, 2, 3, ...., 10}
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Figure 8.4: The ratio of the achievable energy efficiency of the proposed S-CSS to the
achievable energy efficiency of the conventional S-CSS versus the global decision thresh-
old for the optimal order and the worst order. N = 10 and γ10
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8.3.2 Energy-Efficient H-CSS

In H-CSS, the global decision can be made whenever the number of received

1’s exceeds K − 1 or the number of received 0’s exceeds N − K. Accordingly,

the probability of the number of reporting CUs follows the threshold K in the

K-out-of-N FR, as follows

P{M = m} =



0 m < min{K,N −K + 1}

Pad + Paf K ≤ m < N −K + 1

Pcd + Pcf N −K + 1 ≤ m < K

Pad + Pcd + Paf + Pcf max{N −K + 1, K} ≤ m < N

Pad
Pd,N

+
Paf
Pf,N

m = N

(8.22)
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where

Pad = P1Pd,m

(m−1
K−1)∑
j=1

∏
i∈A(m−1,K−1)

j

Pd,i
∏

i/∈A(m−1,K−1)
j

(
1− Pd,i

)
(8.23)

Paf = P0Pf,m

(m−1
K−1)∑
j=1

∏
i∈A(m−1,K−1)

j

Pf,i
∏

i/∈A(m−1,K−1)
j

(
1− Pf,i

)
(8.24)

Pcd = P1

(
1− Pd,m

) (m−1
N−K)∑
j=1

∏
i/∈A(m−1,N−K)

j

Pd,i
∏

i∈A(m−1,N−K)
j

(
1− Pd,i

)
(8.25)

Pcf = P0

(
1− Pf,m

) (m−1
N−K)∑
j=1

∏
i/∈A(m−1,N−K)

j

Pf,i
∏

i∈A(m−1,N−K)
j

(
1− Pf,i

)
(8.26)

where A(x,y)
1 , A

(x,y)
2 , ..., A

(x,y)

(xy)
represent all the possible combinations of y integers

drawn from the interval [1, x].

As a special case, when all CUs have identical performance, (8.23)-(8.26) can

be rewritten as follows:

Pad = P1

(
m− 1

K − 1

)
PK
d (1− Pd)m−K (8.27)

Paf = P0

(
m− 1

K − 1

)
PK
f (1− Pf )m−K (8.28)

Pcd = P1

(
m− 1

N −K

)
Pm−N+K−1
d (1− Pd)N−K+1 (8.29)

Pcf = P0

(
m− 1

N −K

)
Pm−N+K−1
f (1− Pf )N−K+1 (8.30)

In the following, we obtain the average number of reporting CUs according

to the proposed technique for the two popular rules derived from K-out-of-N

rule, OR rule and AND rule, when all CUs have identical sensing performance:
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OR rule

In OR rule, K = 1, which means the global decision will be “used” if at least

one CU reports “1”. Eqn. (10.3) can be simplified in the case of OR rule by

substituting K = 1 as follows

Prob.{M or = m} =

 Pad + Paf 1 ≤ m < N

Pad
Pd

+
Paf
Pf

m = N
(8.31)

The average number of reporting CUs in OR rule, denoted by M
OR

, can be

derived after some algebra from (8.31), and is given as

M
or

=
P1P

or
D

Pd
+
P0P

or
F

Pf
(8.32)

where P or
D and P or

F are given in (8.9) and (8.10), respectively.

AND rule

AND rule is another rule derived from the general K-out-of-N rule by substitut-

ing K = N , which means the global decision will be “used” only when all CUs

report “1”. Eqn. (10.3) can be simplified in the case of AND rule as follows

Prob.{Mand = m} =

 Pcd + Pcf 1 ≤ m < N

Pad
Pd

+
Paf
Pf

m = N
(8.33)

By the same way, we can write the average number of the reporting CUs

based on our proposal for the AND rule (M
and

) as follows

M
and

=
P1(1− P and

D )

1− Pd
+
P0(1− P and

F )

1− Pf
(8.34)
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where P and
D and P and

F are given in (8.11) and (8.12), respectively.

Fig. 8.5 plots the average number of reporting CUs according to the pro-

posed EEH-CSS versus the global decision threshold (K) for different numbers

of the available CUs. Unlike the curve of EES-CSS in Fig. 8.1, the average num-

ber of reporting CUs shows a concave curve in terms of the decision threshold.

This is due to the fact that in S-CSS the global decision can made earlier only

if the sum of the received results is larger than a threshold, while in H-CSS the

global decision can be issued earlier in two cases: i) if the number of received

1’s is equal toK, or ii) if the number of the received 0’s exceedsN−K. Thus, for

low values of K, the reporting phase is early terminated due to the high prob-

ability of receiving K 1’s, whereas for high values of K, the high probability of

receiving N −K + 1 0’s causes the early termination of the reporting phase.
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Figure 8.5: The average number of reporting CUs versus the global decision threshold
in the proposed Hard-based CSS for different numbers of CUs. All CUs have γ = 10

The decrease in the average number of reporting CUs, shown in Fig. 8.5, is
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reflected on the energy efficiency ratio of the proposed EEH-CSS to the conven-

tional H-CSS as shown in Fig. 8.6. Notice that the curves do not take the same

behavior that was followed in Fig. 8.5, i.e., concave shape, because of that al-

though high values of K achieve low number of reporting CUs, the increase in

Pt alleviate the resulting effect on the energy efficiency. The same parameters

listed in Table 8.1 have been used except τ which has been set to 0.1msec. The

local decision threshold (λloc) has been set so that the resulting local false-alarm

probability is Pf,i = 0.3.
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Figure 8.6: The ratio of the achievable energy efficiency of the proposed Hard-based
CSS to the achievable energy efficiency of the conventional Hard-CSS versus the global
decision threshold for different numbers of CUs. All CUs have γ = 10

Similar to the proposed EES-CSS, in case of non-equal SNRs among CUs,

the reporting order has a significant effect on the improvement of the overall

performance of the proposed EEH-CSS scheme. A CRN of 10 CUs with the

average SNRs γ10
i=1 = {0.03, 0.06, 0.09, ...., 0.3}. The local false-alarm probability

is set to 0.3 for all CUs by controlling λloc as in (8.6), while the corresponding
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local detection probability for each CU is obtained using (8.5). Fig. 8.7 shows

the average number of reporting CUs versus K for two different orders in the

reporting phase; ascending order and descending order of the SNRs. Apparently,

there is a significant difference in the average number of reporting CUs between

the two orders. However, identifying the optimal order depends on K and the

SNRs of the CUs. Fig. 8.8 shows the resulting EER for the considered CRN

according to the different orders.
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Figure 8.7: The average number of reporting CUs versus the global decision threshold
in the proposed Hard-based CSS for the ascending oder and the descending order. N =
10 and γ10

i=1 = {0.03, 0.06, 0.09, ...., 0.3}

8.4 Consistency with Other Approaches

An interesting property of the proposed scheme is that it can be jointly applied

with many other approaches for energy efficient CSS, enabling to improve the
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Figure 8.8: The ratio of the achievable energy efficiency of the proposed Hard-based
CSS to the achievable energy efficiency of the conventional Hard-CSS versus the global
decision threshold for the ascending oder and the descending order. N = 10 and γ10
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{0.03, 0.06, 0.09, ...., 0.3}
achievable energy efficiency of such approaches without any effect on their de-

tection accuracy. Such approaches include most of the proposed energy efficient

CSS proposed in the literature, such as cluster-based CSS [76] [79], dynamic-

head cluster-based CSS [99], confidence-voting scheme [76], censoring scheme

[100], minimizing the number of participating CU in CSS [52] [101] [53], and

optimizing the sensing time [53] or the fusion rule. In this section, we prove

the consistency of the proposed approach with only the energy-efficient cluster-

based CSS approach as an example.

8.4.1 Cluster-based CSS

Cluster-based cooperative spectrum sensing method was proposed to improve

the sensing performance [78]. By separating all CUs into a few clusters and
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selecting the most favorable user in each cluster, named cluster-head, to report

to the FC, the proposed method can exploit the user selection diversity so that

the sensing performance can be enhanced. Moreover, clustering technique is

adopted to save energy consumed in reporting results, where each cluster-head

processes the local decisions of its cluster-members and reports only one local

decision to the FC in behalf of the whole cluster [76] [79].

The reader can notice that the proposed scheme is consistent with the cluster-

based approach, and both can be applied together without affecting the detec-

tion accuracy of the network. The proposed scheme can be applied in both the

reporting phase between the cluster-members and cluster-head, and the report-

ing phase between the cluster-heads and the FC.

For comparison, we consider 50 CUs are clustered into 10 clusters, each clus-

ter contains 5 CUs. The members of each cluster report their local decisions to

the cluster-head. The cluster-head makes a cluster-decision based on the ma-

jority decision. The cluster-decisions will be forwarded to the FC consecutively

based on a TDMA scheme. Finally, the FC will make the final decision based

on the employed fusion rule. The local threshold for each CUs λloc is set so that

Pf,i = 0.3, and the power consumed in reporting the local decision between a

cluster-member and a cluster-head is considered 50mW . The other parameters

are in Table 8.1.

Fig. 8.9 shows the achievable energy efficiency versus the overall false-alarm

probability of the cluster-based CSS, the proposed approach and the conven-

tional H-CSS. As an example, at PF = 0.1, the cluster-based approach can im-

prove the energy efficiency by 15% compared to the conventional H-CSS, while

the proposed scheme achieves 11% improvement. However, since our proposal
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is consistent with the cluster-based approach, both can be applied together and

an improvement up to 20% can be attained, as shown in Fig. 8.9.
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Figure 8.9: The achievable energy efficiency versus the global false-alarm probability
(PF ) for the compared approaches. All CUs have γ = 10

8.5 Summary

The problem of improving the energy efficiency of CSS by reducing the energy

consumption in results’ reporting phase has been investigated in this chapter,

where a novel energy-efficient reporting scheme has been presented in this

work. The idea of the proposed scheme is based on terminating the report-

ing phase whenever the final decision can be made and exploiting the remain-

der time for data transmission. The most interesting property of the proposed
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scheme is that it does not affect the detection accuracy. Moreover, the proposed

scheme can be jointly applied with many other energy efficient proposals, en-

hancing their achievable energy efficiency. Analytical and simulation results

show a considerable improvement in the energy efficiency, thus demonstrating

the good potential of the proposed strategy.
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CHAPTER 9

AN OBJECTION-BASED REPORTING SCHEME FOR COOPERATIVE

SPECTRUM SENSING

9.1 Introduction

In this chapter, we propose a novel reporting scheme for CSS, called objection-

based CSS scheme. The proposed scheme includes that one of the CUs will

broadcast its local decision. Accordingly, the other CUs should object/agree

with the announced decision. Each objecting CU will send an objection report

to the FC on its reporting time slot, while the agreeing CUs will stay silent on

their time slots. As a result, the number of reporting CUs should be reduced,

leading to reduce the energy consumed in CSS while the detection accuracy is

kept unaffected. The detection accuracy will not be degraded since all the made

local decisions will be available at the FC without reporting all of them. Thus,

the global decision will be identical to the conventional CSS when all CUs report

their local decisions.

Notice that the number of the reporting CUs in the proposed scheme de-

pends on the performance of the broadcasting CU. Hence, a practical and ef-

ficient method for selecting the broadcasting CU is presented in this chapter.

Moreover, since the broadcasting CU consumes energy more than the other

CUs, a novel schedluing algorithm is proposed, aiming to compensate the extra

energy expenditure of the broadcasting CU by improving its achieved through-

put. The chapter includes a mathematical framework and intensive analysis

that have been made in order to investigate the performance of the proposed

scheme.
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9.2 System Model

A CRN of N CUs is considered. The sensing technique is assumed to be energy

detection, and the hard-based scheme is adopted in this chapter. Accordingly,

the local detection probability (Pdi) and local false-alarm probability (Pfi) of the

ith CU are given in (1.4) and (1.5), respectively. We consider that the reporting

phase is performed based on a TDMA approach, where each CU has its own

time slot. At the FC, the K-out-of-N rule is employed as the FR for processing

the local decisions and making the global decision. The overall detection prob-

ability (PD) and the overall false-alarm probability (PF ) are both respectively

expressed in (8.13) and (8.14).

9.3 The Proposed Objection-based Reporting Scheme

In the conventional CSS scheme, all CUs should report their local decisions to

the FC, each on its time slot. This implies extra energy consumption that is con-

tinuous as long as the CRN lasts. The total energy consumption in a sensing

round by the whole CRN is given in (6.9). According to (6.9), the energy con-

sumption increases as the number of CUs increases, which may result in a huge

energy expenditure in case of high number of CUs. To this end, we propose

a novel CSS that is able to limit the number of reporting CUs, and to reduce

the total energy consumption without affecting the global detection accuracy

achieved by the CRN.

Following our proposal, only one CU will broadcast its local decision to the

whole network on the first time slot in the reporting phase. As the other CU
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have heard the broad-casted local decision, the CUs that agree with it will stay

silent during their time slots, while those CU who have different local decision

should object and inform the FC during their time slots.Therefore, the num-

ber of reporting CUs should be less than N , and consequently, the energy con-

sumption decreases. The total energy consumption based on the proposed CSS

scheme can be given as follows

Epro = NEr + Ebc +N∗i Er + PfreeEt (9.1)

where Ebc is the energy consumed in broadcasting and N∗i is the number of the

objecting CUs given that the ith users is broadcasting. The energy consumed in

receiving the broad-casted decision is considered to be included in the reporting

energy (Er).

It is worth noting that all the local decisions will be available at the FC by

the end of the CSS process. Thus, the proposed scheme will not degrade the

detection accuracy, and it still provides the same detection accuracy as in the

conventional CSS scheme.

From (9.1), the total energy consumption depends on the number of object-

ing CUs. The probability that the ith CU will send an objection report given that

the jth CU is the broadcasting CU can be expressed as follows

Pobji = P0

(
Pfj(1− Pfi) + (1− Pfj)Pfi

)
+P1

(
Pdj(1− Pdi) + (1− Pdi)Pdi

)
(9.2)

The four terms that appear in (9.2) represent the four probable cases of send-

ing an object by the jth CU, as follows: (i) The broadcasting CU makes a false-

alarm while the jth CU does not, (ii) The broadcasting CU correctly identifies
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a free channel while the jth CU makes a false-alarm, (iii) The broadcasting CU

correctly detects a licensed user while the jth CU does not, and (iv) The broad-

casting CU miss-detects a licensed user while the jth CU correctly detects it.

The average number of the objecting CUs given that the ith CU is broadcast-

ing can be derived as follows

N∗i =
N−1∑
n=1

nP (N∗i = n) (9.3)

where

P (N∗i = n) =

(N−1
n )∑
k=1

(
P0Pfi

∏
t∈Ak

(1− Pft)
∏
l /∈Ak

Pfl

+P0(1− Pfi)
∏
t∈Ak

Pft
∏
l /∈Ak

(1− Pfl)

+P1Pdi
∏
t∈Ak

(1− Pdt)
∏
l /∈Ak

Pdl

+P1(1− Pdi)
∏
t∈Ak

Pdt
∏
l /∈Ak

(1− Pdl)
)

(9.4)

where Ak (k = 1, 2, ...
(
N−1
n

)
) represents the whole possible combinations of n

CUs out of the total number of N CUs.

9.3.1 The selection of the broadcasting CU

The selection of the broadcasting CU is a key factor in the performance of the

proposed scheme. Specifically, the local sensing accuracy of the broadcasting

CU, i.e., Pdi and Pfi, determines the amount of the saved energy obtained by the

proposed scheme. A tricky point is that the broadcasting CU is not necessary to

be the one that achieves the best sensing accuracy. On the contrary, the broad-
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casting CU should be selected so that its decision will most likely agree with the

majority of the other CUs in the network.

The selection of the broadcasting CU should be performed in order to mini-

mize the total energy consumption, which is attained by reducing the number of

objecting CUs. Thus, the optimal broadcasting CU should be the CU that more

accords with the majority of the other CUs. Notice that the majority decision

can be different form the global decision taken at the FC. For example, if the FC

employs AND rule or OR rule, it is likely that the global decision does not agree

with the majority decision.

A practical algorithm to select the broadcasting CU is to initiate a counter

for each CU at the FC. This counter is updated each CSS round based on the

accordance with the majority decision. Specifically, if the local decision of a CU

agrees with the majority decision, its corresponding counter will be incremented

by one. If we denote the agreement counter of the ith CU at the kth CSS round

by αi,k, then αi,k should be updated as follows

αi,k =


αi,k−1 + 1, if ui,k = Mk

αi,k−1, if ui,k 6= Mk

(9.5)

where Mk is the majority decision, and αi,0 = 0.

Each CSS round, the FC will select the broadcasting CU based on the current

state of the counters, where the broadcasting probability of the ith CU is given

as follows

Pbc,i =
αi,k∑N
i=1 αi,k

(9.6)

The selected CU will act as a broadcasting CU on the first time slot. This im-

plies that the FC should update the reporting order in each round to avoid any
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probable collision during reporting the local decisions.

9.3.2 Throughput Reward

The broad-casted decision should be transmitted to the whole CRN, while in

normal reporting, the decision is sent only to the FC. Hence, broadcasting con-

sumes more energy than normal reporting since it is adjusted to cover a wider

area. Thus, those CUs that have high values at their α counters will suffer

from high energy expenditure, while the others will save energy due to not

even reporting the local decision. Motivated by this, the proposed scheme of-

fers a throughput reward to the CUs broadcasting more often. Particularly, the

scheduling policy adopted is not equally probable among CUs. Instead, the

scheduled CU for data transmission in each frame, if any, will based on a new

metric that is based on the contribution in the broadcasting process. Doing

so, those CUs that lose their energy in broadcasting will be compensated by

achieving higher throughput. According to this throughput reward, a propor-

tional fairness can be attained among CUs in their achievable energy efficiency

in bit/Joule.

The scheduling probability for a specific CU is equal to the broadcasting

probability given as follows

Psch,i = Pbc,i =
αi,k∑N
i=1 αi,k

(9.7)

Notice that (9.7) does not imply that the broadcasting CU in a specific round

is the scheduled CU on the corresponding data transmission frame.

The individual performance of each CU can be represented by the individual
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energy efficiency defined as the ratio between the achievable throughput to the

consumed energy.

µi =
Di

Ei
(9.8)

The average individual energy consumed by the ith CU can be expressed as

follows

Ei = Es + Pbc,iEbc + (1− Pbc,i)Pobj,iEr + Psch,iPunusedEr (9.9)

The individual achievable throughput can be given as follows

Di = P0(1− PF )Psch,iRTt (9.10)

where the transmitted data are considered successfully delivered only if the free

channel has been correctly identified as free, represented by factor P0(1−PF ) in

(9.10).

From (9.9) and (9.10), increasing the broadcasting probability increases the

individual energy expenditure, but it also increases the individual achievable

throughput, leading to a balance in the achievable energy efficiency among CUs.

The flow charts shown in Fig. 9.1 depict the procedure of the proposed

objection-based CSS at FC side and CU side.

9.4 Numerical Analysis and Simulation Results

In this section, the performance of the proposed CSS scheme is proved by nu-

merical and simulation results. All the necessary parameters regarding detec-

tion performance, energy consumption and network specifications are summa-

rized in Table 9.1.
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Figure 9.1: A flow chart of the proposed objection-based CSS

Numerical results for a CRN that consists of 5 CUs are shown in Table 9.2

and Table 9.3. The first two columns in Table 9.2 list the individual sensing per-

formance of each CU, which are selected randomly. The employed FR is consid-

ered majority rule (K = N/2). The individual energy consumption, achievable

throughput and energy efficiency are shown in Table 9.2 for both the proposed

scheme and the conventional scheme. The conventional CSS scheme refers to

the scheme where all CUs sense and report their results to the FC, and the sched-

uled CU is randomly chosen where all CUs are equal probable.

.
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Table 9.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 Tt 0.2 sec
R 1M bps Es 0.1mJ
Er 1.0mJ Ebc 1.8mJ
Et 6mJ

Table 9.2: Numerical Results- Individual Performance
Pd Pf BC% E[mJ ] Econv[mJ ] D[Kb] Dconv[Kb] µ[Mb/J ] µconv[Mb/J ]

CU1 0.6 0.1 21.30 1.58 1.86 20.61 19.28 13.04 10.37
CU2 0.5 0.4 17.08 1.43 1.86 16.39 19.33 11.46 10.39
CU3 0.6 0.3 18.74 1.49 1.86 18.23 19.42 12.23 10.44
CU4 0.8 0.05 21.97 1.61 1.86 21.39 19.32 13.29 10.38
CU5 0.55 0.1 20.91 1.56 1.86 19.89 19.16 12.75 10.30

Regarding the individual energy consumption shown in Table 9.2, the re-

sults show that all CUs have saved different amounts of energy compared to

the conventional scheme. However, the different individual energy consump-

tion among CUs refers to the different broadcasting and objecting probabilities.

The distribution of the transmitted data is almost identical in the conventional

scheme, whereas in the proposed scheme, the transmission opportunity is dis-

tributed based on the contribution in the broadcasting phase. Consequently, the

individual energy efficiency for each CU has been improved in the proposed

scheme compared to the conventional scheme.

A primary note on the global performance shown in Table 9.3 is that the

global detection accuracy is equal in both schemes. Not effecting the detection

accuracy is an interesting property that usually does not exist in most of the

proposed schemes in the literature. The proposed scheme results in 17.5% saved

energy for the whole CRN, leading to 21% energy efficiency improvement for

the whole CRN.
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Table 9.3: Numerical Results - Global Performance

PD PF E[mJ ] D[Kb] µ[Mb/J ]
Conventional Scheme 0.7 0.03 9.3 96.51 10.83

Proposed Scheme 0.7 0.03 7.67 96.51 12.55

For the purpose of comparison to other schemes, we choose the confidence

voting scheme (CV) that is presented in [76]. Briefly, CV scheme implies that

each CU has a confidence counter which is updated each CSS round as follows.

If the local decision matches the global decision, the confidence counter is incre-

mented by one, while if the local decision mismatches the global decision, it is

decreased by one. When the confidence counter is below a specific threshold,

the corresponding CU will not report its local decision. CV scheme attempts

to reduce the energy consumption in reporting phase by limiting the number

of reporting CUs. However, unlike our proposed scheme, CV scheme influ-

ences the global detection accuracy since not all the decisions will be present

at the FC. The global energy efficiency versus the total number of CUs for the

three schemes is shown in Fig.9.2. The detection and false-alarm probabilities

for the CUs are selected uniformly from the periods [0.4 0.95] and [0.05 0.6], re-

spectively. The voting threshold of CV scheme is set to zero. The global energy

efficiency has been opted as a comparison base since it incorporates all the per-

formance aspects, see (1.11)-(9.10).

Generally, the global energy efficiency of all schemes decreases due to the

increase in the energy consumed in local sensing. However, the objection-based

scheme still achieves higher energy efficiency than the other schemes. This is a

result of reducing the number of reporting CUs without degrading the detection

accuracy nor the global achievable throughput.
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Figure 9.2: The global energy efficiency (µ) versus the number of CUs (N ). (The value
at N = 5 is different form the obtained value in Table 9.3 because of the different Pd and
Pf used.)

9.5 Summary

In this chapter, a novel collaborative spectrum sensing scheme for cognitive ra-

dio networks has been proposed. The proposed scheme implies that one of the

CUs broadcasts its local decision about the spectrum availability to the whole

network. The other CUs that have a different local decision should send an ob-

jection to the FC, each on its corresponding reporting time slot, while the CUs

that agree with the announced decision should stay silent. The amount of the

saved energy refers to limiting the number of reporting CUs without affecting

the overall detection accuracy. A practical algorithm to select the broadcast-

ing CU in each round is presented. Moreover, a reward policy is proposed

in order to compensate the broadcasting CUs by increasing their scheduling

probabilities. Simulation and analytic results show the superiority of the pro-
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posed scheme compared to the conventional scheme and the confidence voting

scheme.
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CHAPTER 10

ENERGY-EFFICIENT REPORTING SCHEME FOR COOPERATIVE

SPECTRUM SENSING BY EXPLOITING THE ARRIVAL TIME

10.1 Introduction

As mentioned earlier, Two main schemes have been proposed for reporting the

local sensing results to the FC, soft-based scheme and hard-based scheme. In

soft-based scheme, high accurate sensing results will be available at the FC since

each CU reports its sensing result as it is without any local processing. In con-

trast, hard-based scheme suffers from the low accuracy since the each sensing

result is conveyed by only a single bit. However, hard-based scheme is consid-

ered as a resource efficient scheme in terms of time and energy, while soft-based

scheme requires more energy and time consumption in results’ reporting. Such

a trade-off between resource efficiency and detection accuracy has motivated us

to propose a novel reporting scheme in this chapter. The proposed reporting

scheme is able to approximately provide detection accuracy as in the soft-based

scheme by reporting only a single bit as in the hard-based scheme.

The idea behind the proposed scheme is based on exploiting the time di-

mension as an indicator of the sensing results. Specifically, the arrival time of a

single bit from each CU at the FC can be adjusted to indicate the actual sensing

result. In detail, the proposed scheme implies splitting the reporting period to

several time slots, and mapping these slots to specific intervals on the range of

the local sensing result. Each CU (after obtaining the sensing result) will report

a single bit on the time slot that is corresponding to the actual sensed value. At

the FC, whenever a bit is received, the sensing result can be extracted by de-
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mapping the time slot on which the bit is received to the corresponding interval

of the sensing result range. Doing so, each CU reports only one bit as in the

hard-based scheme, while the actual sensing result can be extracted at the FC,

providing a high accuracy as in the soft-based scheme.

However, according to this proposal, there is probability that more than a

CU report on the same time slot, and hence, their reports will collide and appear

as one report to the FC. Also, the division of the reporting period and spectrum

sensing intervals affects the overall performance of the proposed scheme. These

effects are intensively investigated in this chapter. Moreover, the performance

of the proposed scheme is compared to the soft and hard schemes, where simu-

lation results demonstrate that our proposal outperforms both schemes in terms

of detection accuracy and energy efficiency.

10.2 System Model

A CRN consists of a set of CUs is considered. The energy detection is employed

as the sensing technique in this chapter. The time frame (T ) of the cognitive

transmission is divided into three phases, sensing phase Ts where local sensing

is performed by each CU, reporting phase Tr where local results are reported to

the FC, and data transmission phase Tt where one of the CUs is scheduled for

data transmission. The total energy consumption by the whole network, which

includes the energy consumed during the three phases, is given in (6.9). The

average achievable throughput in terms of the successfully transmitted bit is

expressed in (6.13).
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10.3 The Proposed Reporting Scheme

Motivated by the need for a reporting that achieve a balance between energy

efficiency and detection accuracy, we propose a novel reporting scheme that

is able to consume an amount of energy as in hard scheme while achieving

a detection accuracy almost as in soft scheme. In this proposal, the reporting

phase Tr is split into L time slots ({τ1, τ2, ....τL}). Likewise, the possible range of

the sensing result, which is represented by the average of the collected energy

samples, is divided into L intervals using L+1 thresholds (γ1, γ2, ...., γL+1). Each

interval is represented by a unique level vl. Upon ending the local sensing and

computing the samples’ average (Ai) at each CU, if Ai is within the lth interval,

i.e., γl ≤ Ai < γl+1, then, one bit will be reported to the FC on the lth time slot. At

the FC, whenever a bit is received on the ith time slot, the FC will consider the

samples’ average of the reporting CU equals to vl. Fig. 10.1 shows the mapping

between the time slots and the samples’ average.

Figure 10.1: Description of the quantization intervals used at the CU-end, frame divi-
sion at the FC-end, and the mapping between them in the proposed scheme.
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In formulas, a CU that has obtained a samples’ average Ai will report one bit

on the time slot (τ (i)) given by

τ (i)(γl ≤ Ai < γl+1) = τl (10.1)

At the FC, the recovered samples’ average (Âi) of a CU whose reported bit

has been received at the FC on the lth time slot is expressed as follows

Âi(τ
(i) = τl) = vl (10.2)

Following this proposal, each CU reports only one bit to the FC so that the en-

ergy consumed in reporting is equal to the hard scheme. On the other hand, the

resulting detection accuracy is affected by several factors, the thresholds γ’s , the

recovered values v’s, and the number of levels L. In the following we discuss

each one of them.

10.3.1 Quantizer Design

The process of representing the samples averages in discrete levels is considered

as a scalar quantization process [102]. Thus, the selection of the thresholds γ’s

and the representing values v’s follow the typical problem of quantization de-

sign. The optimal γ’s and v’s that minimize the squared-error distortion could

not be formulated in analytical forms, and they are obtained using an iterative

algorithm [32]. Therefore, in this work we consider an maximum-entropy quan-

tization process in order to reduce complexity and smooth the following analy-

sis [103]. According to the maximum-entropy quantization, the thresholds are

selected so that the probability that the sensed valued lies in an interval is equal
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probable for all intervals, as follows

Pr(γl ≤ Ai < γl+1) =
1

L
for l = 1, ..., L (10.3)

where the notation Pr(.) refers to the probability of an event. (10.3) can be

rewritten using the cumulative distribution function of the samples’ average

(FA) as follows

FA(γl+1)− FA(γl) =
1

L
for l = 1, ..., L (10.4)

The optimal level v for each interval has been found to be the centroid (the

conditional expected mean) of the corresponding interval [32]. Therefore, the

representing level of any interval can be given as

vl =

∫ γl+1

γl
xfA(x) · dx

Pr(γl ≤ Ai < γl+1)
for l = 1, ..., L (10.5)

which can be simplified as follows

vl = L

∫ γl+1

γl

xfA(x) · dx for l = 1, ..., L (10.6)

where fA is the probability density function of A.

10.3.2 Reports Collision

Due to the absence of results exchange among CUs, there is a probability that

two or more CUs report their bits on the same time slot. This implies that the

sent reports on the same time slot will collide, and hence, the FC will be unable

to recognize if the received signal from one or more CUs. Therefore, the FC will

deal with them as one CU. Obviously, these collisions affect directly the achiev-

able performance and the detection accuracy since the number of participating

CUs in making the final decision will be lower than the total available CUs.
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If we denote the number of reporting CUs in the lth time slot by nl, then the

probability of nl is expressed as follows

Pr.(nl = i) =
N∑
i=0

(
N

i

)(
1

L

)i(
1− 1

L

)N−i
(10.7)

Notice that (10.7) is identical for all time slots because of the equal probable

levels. Accordingly, the average number of reporting CUs in any time slot can

be given as:

n̄ =
N

L
(10.8)

It is worthy to mention that the average number of reporting CUs decreases

as the number of levels increases. However, the increase in number of levels

requires more time resources for the reporting process.

10.4 Performance Optimization

The proposed scheme for reporting the local results to the FC reduces the energy

consumption in CSS. On the other hand, the achievable detection accuracy de-

pends on the number of used quantization levels (time slots), where an increase

in the number of levels improves the detection accuracy. However, increasing

the number of time slots reserves more time resources for CSS (Tr), which, in

turn, affects the time dedicated for transmission (Tt) since the total frame length

T is fixed. Such decrease on Tt results into two contrasting effects on the achiev-

able energy efficiency. First, shorter Tt results in lower throughput, as indicated

in (6.13), which consequently, degrades the achievable energy efficiency. Sec-

ond, lower Tt decreases the total energy consumption during data transmission,

as appears in (6.9), and hence, energy efficiency is improved.
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The number of the time slots should be optimized so that the achievable

energy efficiency is maximized. To this goal, the resulting detection probabil-

ity and false-alarm probabilities should be computed based on the proposed

scheme. Both probabilities depend on the number of CUs (N ) and the number

of time slots (L). However, due to the possible collision among different CUs,

the number of successfully received reports could be less than the total number

of sent reports. If we denote the number of successfully received reports by x

(1 ≤ x ≤ N )1, then the probability of x is expressed as follows

Pr.(x = i) =
L!

LN

(
L

i

) Ki∑
k=1

Sk∏i
j=1 dkj!

(10.9)

where dkj ( j = 1, 2, .., i and k = 1, 2, ..., Ki) is the jth element in the setDk that

contains i non-zero elements whose sum is N , i.e.,
(∑i

j=1 dkj = N, dkj 6= 0
)
, K

is the number of possible sets that satisfy D, and Sk is the number of different

combinations of the set Dk. For example, consider L = 10 and N = 6 and we

want to compute the probability that only two reports are received successfully,

i.e., Pr(x = 2). In other words, we compute the probability that 6 CU report on

2 time slots. In this case, 3 different sets can satisfy the condition of D, which

are D1 = {5, 1}, D2 = {4, 2} and D3 = {3, 3}, and the number of the different

combinations of each one is S1 = 2, S2 = 2 and S3 = 1, respectively. Now, by

substituting these values in (10.9), Pr(x = 2) can be easily computed.

At the FC, if i CUs have reported on the same time slot, their reports will

collide, and be considered as only one report. The final decision is made by

comparing the sum of the received results to a predefined threshold. Thus, the

average achievable detection probability and false-alarm probability are given

1Notice that if more than one report are sent on the same time slot, one of them will be
consider as received successfully
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respectively as follows:

P̄D(L,N) =
N∑
i=1

Pr(x = i)PD(i) (10.10)

P̄F (L,N) =
N∑
i=1

Pr(x = i)PF (i) (10.11)

where PD(i) and PF (i) are respectively the detection probability and false-alarm

probability when i CUs are involved.

Now, let us investigate energy consumption and throughput. Following the

proposed scheme, (6.9) can be rewritten as follows:

ET = ρsTs + ρrNτ + Punusedρt(T − Ts − Lτ) (10.12)

where ρs, ρr and ρt are the consumed power during sensing, reporting and

transmission, respectively. Notice that the energy consumption during sensing

and reporting is independent of L, while the transmit energy is directly affected

by increasing L. This effect is related to the change on Punused and the decrease

in transmission time.

Regarding the throughput, (6.13) can be rewritten as follows

Th = P0(1− PF )R(T − Ts − Lτ) (10.13)

Likewise, the throughput will be affected here also by increasing L due to

the decrease in PF and the decrease in the transmission time.

From (10.12) and (10.13), we can say that the achievable energy efficiency is

influenced by L, and hence, L should be optimized so that the energy efficiency

is maximized.
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10.5 Simulation Results

A CRN of N CUs is considered. The sensing channel is assumed to be ad-

ditive Gaussian noise channel with an average signal to noise ratio equals

SNR = −10dB2. The proposed scheme is compared to the two classical

schemes, Soft Scheme and Hard Scheme, in terms of the detection accuracy

and energy efficiency. The common simulation parameters among the three

schemes are shown in Table 10.1. In SS, the sensing results are reported using 8

bits, where the resulting quantization noise is ignored.

Table 10.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 Fs 0.1 MHz
τ 20 µs ρr 1 W
ρt 1 W ρs 0.1W
T 50ms Ts 1ms

SNR −10dB R 200Kbps

Fig. 10.2 shows the missed-detection probability versus the false alarm prob-

ability for the proposed scheme (L = 10) and both HS and SS. It is clear that at

a fixed false alarm probability, our proposal can achieve lower missed detection

probability than the HS. This is due to the more accurate results provided by our

proposal. On the other hand, the SS still attains lower missed detection than the

proposed scheme, due to the perfect accuracy in the reported sensing results. It

is obvious that the number of levels (L) have an important role in the detection

performance since increasing the number of levels improves the accuracy in the

reported information. In Fig 10.3, the detection probability is plotted versus the

number of levels at a fixed false-alarm probability (PF = 0.1). Clearly, the de-

tection probability increases as the number of levels increases. The proposed

2All derived equations are applicable to any other fading model that could be considered.
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scheme outperforms the HS with a small number of levels, while the achievable

detection probability by the SS represents the maximum detection probability

that can be attained by the proposed scheme. However, for L ≥ 12, the dif-

ference in detection probability can be ignored between our proposal and the

SS.
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Figure 10.2: The missed detection probability versus the false alarm probability for the
three schemes. (N = 5).

The previous two figures show that the detection accuracy of the proposed

scheme depends on the number of levels (time slots). However, in view of

the limited time resources, increasing the number of time slots affects the en-

ergy consumption, achievable throughput and energy efficiency. This is due
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Figure 10.3: The detection probability versus the number of levels (time slots) at a fixed
false alarm probability (PF = 0.1) for the three schemes. (N = 5).

to increasing the number of time slots that are dedicated for reports reception,

which reduces the time spent in data transmission. Hence, energy consumption,

throughput and energy efficiency will be affected. Also, since energy efficiency

is affected by detection performance that mainly depends on L. Fig. 10.4 depicts

the energy efficiency versus the false alarm probability for the proposed scheme

(at L = 20) compared to the SS and the HS. Our proposal can achieve higher

energy efficiency than the other two schemes for most of the range of PF .

The achievable energy efficiency by the proposed scheme using the optimal

L is shown in Fig. 10.5 versus the number of sensing users N . The proposed
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Figure 10.4: The energy efficiency versus the false alarm probability for the three
schemes. (N = 10).

scheme achieves higher energy efficiency than the other schemes due to the

low energy consumption and the high accuracy in the reported results. The

proposed scheme outperforms the other two schemes over the whole range of

the number of CUs.
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10.6 Summary

A novel energy-efficient reporting scheme for spectrum sensing results is pre-

sented in this work. The proposed scheme gets benefits from both soft-based

scheme and hard-based scheme, where each CU reports only a single bit on a

time slot related to its actual sensing result. At the FC, the sensing result is ex-

tracted based on the arrival time. Extended discussion and simulation results

have demonstrated the superiority of the proposed scheme in terms of achiev-

able energy efficiency over both hard-based scheme and soft-based scheme.
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Part IV

Improving Energy Efficiency in

Decision Making Stage
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CHAPTER 11

ENERGY EFFICIENCY ANALYSIS OF DECISION FUSION RULES IN

COOPERATIVE SPECTRUM SENSING

11.1 Introduction

In the decision-making stage, the FC applies a predefined fusion rule [97] in

order to make a global decision based on the received local decisions. Consider-

ing noisy local decisions, there are several FRs, such as the Likelihood Ratio rule

(LR), the Maximum Ratio Combining rule (MRC) or the Equal Gain Combining

rule (EGC). However, In order to make a global decision, each FR requires a

different amount of prior information about the detection performance of each

user and the fading effect of the channels between the users and the FC. Neglect-

ing the impact of required prior information and the consumed energy to this

end, LR has been proved to be the optimal in terms of achievable performance

[20].

As mentioned earlier, the total frame structure is divided into three phases:

sensing, reporting and data transmission. The time dedicated for reporting

phase mainly depends on the number of users and the amount of information

that has to be reported to the FC. Thus, the difference in the amount of reported

data for each FR implies a different reporting time, leading to a different time

distribution among the three phases. For instance, LR requires knowledge of

detection probability and false alarm probability of each CU at the FC, while

MRC and EGC do not need this information. Consequently, time, bandwidth

and energy requirement of each FR vary. To the best of our knowledge, this

issue has not been addressed in the literature.
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Motivated by such considerations, this chapter is aimed at comparing LR,

MRC, and EGC decision FRs in CSS in terms of consumed energy and achiev-

able performance. Unlike other previous works, this chapter builds the compar-

ison under a limited time assumption, which implies an equal frame length for

all the rules. According to this assumption, the time specified for data transmis-

sion is fixed and the rest of the frame is distributed between collecting the sam-

ples from the spectrum and reporting decision and prior information required

for each rule. It is shown by simulation that consumed energy and achievable

performance of decision FRs depend on various factors, such as the number of

cognitive users, the frame length, and the Signal-to-Noise-Ratio (SNR). The role

of every factor is discussed in detail in the next sections. In particular, our analy-

sis shows that, in critical conditions, the EGC rule has the best performance in both the

achievable detection probability and in the consumed energy. The critical conditions

are represented by short frame time, large number of users and low SNR.

11.2 System Model

Consider a CRN consisting of N CUs. Energy detection is assumed to be the

sensing technique. The reporting scheme adopted in this chapter is hard-based

scheme. According to the hard scheme, each CU should report a local binary de-

cision (ui = {0, 1}) to the FC. The sensing channels are assumed additive white

Gaussian noise channels, so that the local detection and false alarm probabili-

ties are given as in (1.4) and (1.5). The reporting channel is assumed to be noisy

channel, where the sent local decisions are received corrupted at the FC. The
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received decision from the ith CU is given as follows

yi = hiui + wi (11.1)

where hi is the channel envelope (hi > 0) with variance σ2
h,i, and wi is the ad-

ditive white Gaussian noise with variance σ2
w,i. Let γi denote the SNR of user i

given as:

γi =
σ2
h,i

σ2
w,i

(11.2)

At the FC, three different FRs are considered, described in what follows.

LR rule:

LR rule is based on a complete knowledge of the channel envelop (h), the lo-

cal performance indices (Pd, Pf ), and the received decision (y). LR rule can be

derived as [97]:

δLR =
N∏
i=1

Pdie
− (yi−hi)

2

2σ2w + (1− Pdi)e
− (yi+hi)

2

2σ2w

Pfie
− (yi−hi)2

2σ2w + (1− Pfi)e
− (yi+hi)

2

2σ2w

(11.3)

MRC rule:

In MRC rule, the global decision is issued by assuming a knowledge of the chan-

nel fading (h) and the received decisions (y) from the CUs. Notice that MRC

does need the local performance indexes to obtain the global decision. The MRC

is given as [97]:

δMRC =
1

N

N∑
i=1

hiyi (11.4)

157



EGC rule:

Unlike the other rules, EGC need no knowledge of any information other than

the received decisions (y). EGC rule is written as follows [97]:

δEGC =
1

N

N∑
i=1

yi (11.5)

For each FR, after calculating the corresponding δ , δ is compared to a predefined

threshold (ζ) to obtain the global decision. Mathematically, the global decision

(U ) is computed as follows

U =

 −1 if δ < ζ

1 if δ ≥ ζ
(11.6)

It worth noting that the threshold ζ is independent of the local detection thresh-

old λ.

Notice that the assumed knowledge on some information in each rule is

achievable by reporting it with the local decisions to the FC. However, this pro-

cess consumes time, bandwidth and energy. Therefore, a fair comparison has to

consider the amount of these prior information reported to the FC, and its effect

on the overall performance of CSS.

11.3 Frame Structure and Energy Consumption

For a fair comparison among the three rules, and as they have different amount

of prior information to be reported (which results in different performance in

terms of detection probability and consumed energy), we propose to perform
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a fair comparison under a limited and fixed time frame duration. In this sec-

tion, we discuss the limited time assumption in detail, and then quantify the

consumed energy for each rule.

11.3.1 Limited Time Assumption:

Unlike state-of-the-art works, we assume that the total frame length is equal

for all rules. This practical assumption gives all the rules the same time re-

sources, which explicitly accounts for the difference in the amount of the re-

quired prior information, resulting in a fair comparison. The total frame (T ) is

divided into three sub-frames, namely; the sensing sub-frame (Ts), where the

samples for spectrum sensing are collected; the reporting sub-frame (Tr), where

local decisions and prior information are reported to the FC; and the transmis-

sion sub-frame (Tt), where data transmission starts if the channel is estimated

to be available according to the outcome of the CSS, represented by (11.6). Our

assumption implies an equal transmission sub-frame in all rules, and due to the

different amounts of prior information among rules, the reporting sub-frame is

different in each rule, and consequently, the sensing sub-frame is also variable

among the rules.

The performance of the spectrum sensing depends on how many samples

the users collect and how much information the users provide the FC. Accord-

ing to the limited time assumption, Ts and Tr are variable among the rules,

which means different number of samples and different amount of informa-

tion. While the prior information is predefined, Tr is easily calculated. The rest

of the frame is equal to Ts + Tt. By subtracting the fixed amount Tt, the rest is Ts
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, which can be used to compute the number of samples for each rule.

Assume the required bits to convey the local decision (u), the channel fading

(h), and the performance indexes (Pd, Pf ) are Bu, Bh and BI respectively. Then

the total required bits (B) to report all prior information for each rule can be

computed as

BLR = Bu +Bh +BI (11.7)

BMRC = Bu +Bh (11.8)

BEGC = Bu (11.9)

Notice that Bu = 1 because of using the hard scheme. It is clear that LR rule re-

ceives more prior information from the users, which improves its performance.

However, this results in decreasing the number of samples, as we will see later,

which negatively affects the achievable performance. Tr for all users is given as:

Tr =
NB

D
(11.10)

where D is the reporting data rate. Notice that Tr is different for each rule due

to the difference in B. Then, the number of samples per user S can be written as

follows:

S = (T − Tt −NB/D)fs (11.11)

where fs is the sampling frequency. Notice that the number of samples for a

specific rule can be obtained by substituting the corresponding B for that rule.

From the equations of the required bits and the available samples, a trade-off

between the number of samples and the number of bits appears. This is due to

the limited time assumption we consider in this chapter.
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11.3.2 Consumed Energy Calculations:

By taking into account that the optimization of the FR to minimize the con-

sumed energy in cognitive radio as the main goal of this chapter, in this section

we present the necessary calculations to quantify the total energy consumption

in each rule.

The consumed energy can be classified in three types, the consumed energy

during sensing (Es), during reporting (Er), and during data transmission (Et).

Hence, the total consumed energy by all users, given in (6.9), is revised here:

Etot = NρsTs + ρrTr + P1(1− PD)ρtTt + P0(1− PF )ρtTt (11.12)

Notice that Es, Er and Et are computed by multiplying the time of each stage

by the amount of power ρs, ρr and ρt for the three types respectively. Also, P1

and P0 are the probability of occupying the channel or not, respectively, where

P0 + P1 = 1.

While the consumed energy during sensing and reporting always exists, the

energy consumed during data transmission is conditioned by identifying the

channel as free. The channel is identified as free in two cases, the missed detec-

tion and the non-false-alarm. Hence, the third and the fourth terms in (11.12)

are multiplied by the probabilities of these two cases. As (1 − PD = PMD) and

by assuming ρr and ρt are equal, (11.12) is simplified as follows:

Etot = NρsTs + ρr(Tr + P1PMDTt) + P0(1− PF )ρrTt (11.13)

By assuming E0 is the energy consumed per unit time in transmission and re-

ception, then ρs and ρr are given as:

ρs = xE0 (11.14)
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ρr = (1− x)E0 (11.15)

where 0 < x < 1 is the percentage of the power consumed in sensing per unit

time to E0. By using (15.31) and (11.15), (11.13) can be expressed as follows:

Etot = xNE0Ts + (1− x)E0

(
Tr + Tt(1− P1PD − P0PF )

)
(11.16)

The normalized energy (Etot
E0

) can be derived from (11.16) as follows:

EN = xNTs + (1− x)

(
Tr + Tt(1− P1PD − P0PF )

)
(11.17)

Eqn.(11.17) represents the normalized consumed energy per user during the

cognitive transmission. For a specific rule, EN can be obtained by substituting

in (11.17) the corresponding parameters Ts, Tr and PM .

We are interested in the consumed energy per bit. Therefore, we define the

throughput in bits as the total number of bits has been successfully transmitted

from all the users during Tt, given in (6.13). Using (6.13) and (11.17), we can

write the normalized Energy per Bit (EpB) as follows:

EpB =

xNTs + (1− x)

(
Tr + Tt(1− P1PD − P0PF )

)
RP0Tt(1− PF )

(11.18)

11.4 Simulation and Evaluation

In this section we present the simulation results of the comparison of the three

decision-fusion rules. The results show the performance of the rules in terms

of achievable detection probability and consumed energy at a given false alarm

probability (P th
F ). The simulation parameters are shown in Table 11.1. From

the stated equations and the simulation results, it seems that the superiority of
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a rule among the others, either in PD or E, depends mainly on three factors,

namely, frame length (T ), number of users (N ), and the SNR. Next, we discuss

the effects of these factors on the energy consumption and detection probability

of the three considered decision rules.

11.4.1 Frame Length (T ):

To show the effect of increasing the time resources on the achievable detection

probability, we plot Figure 11.1. Remember that the detection probability is in-

dependent of the transmission time Tt, therefore, we plot the detection probabil-

ity versus the sum of sensing and reporting sub-frames (Ts+Tr). For low values

of (Ts + Tr), the difference in the number of samples is more effective than the

difference in the amount of prior information, and hence, EGC achieves higher

detection probability than LR and MRC. As (Ts + Tr) increases, the effect of the

difference in the collected samples among the rules gets lower compared to the

effect of difference in the amount of prior information, which yields in a higher

detection probability for LR. Figure 11.2 is developed to show the normalized

energy consumption per bit (EpB) for the three rules versus the total frame time

(T ). As expected, the rule with the highest detection probability is the most en-

ergy efficient rule, as shown in the figure. Hence, EGC consumes less energy

Table 11.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 σ2
x/σ

2
n -7 dB

Bu 1 bit BI 8 bits
Bh 4 bits Fs 1KHz
D 10Kbps P th

F 0.1
R 100Kbps x 0.1
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Figure 11.1: The detection probability versus sensing and reporting time for all rules.
( N = 10, SNR = 7dB)

than the other rules for short frames, while, for long frames, the LR is the most

energy efficient rule.

11.4.2 Number of Users (N ):

The detection probability and the normalized energy consumption versus the

number of users for all rules are shown in Figure 11.3 and Figure 11.4 respec-

tively. For small number of users, LR rule achieves the highest detection prob-
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Figure 11.2: The normalized consumed energy per bit versus the frame length for all
rules. ( N = 10, SNR = 7dB)

ability. While, for large number of users, the detection probability achievable

by EGC is the highest. This can be justified as follows, as the number of users

increases, Tr increases, according to (7.1), resulting in less Ts, and consequently,

less number of samples. As LR rule has the longest Tr, due to the large prior in-

formation, the detection probability of LR rule is negatively affected more than

the other rules by increasing the number of users, as shown in Figure 11.3. Re-

garding the consumed energy, Figure 11.4 confirms the conclusions from the

last subsection, the rule with highest detection probability at a given number of

users is the most energy efficient rule. Even though more energy is consumed

due to the large number of users, the amount of successfully transmitted data

165



1 3 5 7 9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of users

D
et

ec
ti

o
n

 p
ro

b
ab

ili
ty

 (
P

D
)

 

 

LR
MRC
EGC

Figure 11.3: The detection probability versus the number of users for all rules. (T =
45msec, SNR = 7dB)

increases, which improves the energy efficiency.

11.4.3 The Signal-to-Noise-Ratio (SNR):

The SNR is an important parameter in optimizing the decision-fusion rule in

terms of the detection probability or the consumed energy. Fig. 11.5 represents

the achievable detection probability for all rules versus the SNR. At low SNR

range, EGC has a better performance than the others, while, as SNR increases,

the LR rule starts outperforming the other rules. Notice that, at low SNR val-
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Figure 11.4: The normalized consumed energy versus the number of users for all rules.
(T = 45msec, SNR = 7dB)

ues, the samples are almost similar due to the large noise signal affecting the

reported decisions, which amplifies the effect of the difference in the number

of collected samples, and as EGC has the largest number of samples, this im-

plies the highest detection probability. Figure 11.6 represents the normalized

consumed energy per bit versus the SNR for all rules. The rule with highest

PD is the most power efficient also in this case, where EGC consumes less en-

ergy at the low SNR range. From this discussion about the effect of the three

factors, the simulation results indicate that EGC has the best performance at

critical conditions. These critical conditions, which are most of the time encoun-
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Figure 11.5: The detection probability versus the average SNR for all rules.(T =
135msec, N = 10)

tered in practical situations, are represented by short frames, large number of

users and low SNR values.

11.5 Summary

An energy consumption analysis for three decision-fusion rules , LR, EGC and

MRC, has been presented in this chapter. The chapter includes a comparison

among the three FRs in terms of the achievable detection probability and energy

consumption. The comparison is based on the limited time assumption, where
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Figure 11.6: The normalized consumed energy versus the average SNR for all
rules.(T = 135msec, N = 10)

the time resources are equal and limited for all rules. The results show that

EGC rule outperforms the other rules, either in detection probability or energy

efficiency, in critical conditions. The critical conditions are represented by short

frames, large number of users and low SNR values.
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CHAPTER 12

OPTIMIZING THE K-OUT-OF-N FUSION RULE FOR COOPERATIVE

SPECTRUM SENSING

12.1 Introduction

The general FR for hard-based CSS is called K-out-of-N rule [104], where N is

the total number of reported local decisions, while K is a predefined threshold

on the number of local decisions that identify the spectrum as used. Several

authors have investigated the optimization of several parameters of the K-out-

of-N rule aiming at different objectives. For example, in [105] the number of

cooperative users (N ), the FR (K), and the energy detection threshold are all

optimized individually in order to minimize the error rate, while in [45], K is

optimized for throughput maximization. The authors of [52], optimize N for

two different setups, energy efficient setup and throughput maximization setup.

In [106], K is optimized for throughput maximization and detection probability

maximization. Also, K is optimized in [107] to minimize the erroneous decision

probability.

However, optimizing the FR for throughput maximization can result in high

energy consumption. Also, considering the minimization of energy consump-

tion as an objective for optimizing the parameters of the FR will degrade the

throughput. Therefore, in this chapter, the energy efficiency is chosen as an ob-

jective for optimizing the K-out-of-N rule, which represents the first effort in this

direction to the best of our knowledge. The main benefit of using energy ef-

ficiency as an objective is to achieve the balance between the throughput and

energy consumption since the energy efficiency is defined as the ratio between
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the achievable throughput to the consumed energy. However, to avoid a large

interference at the licensed users, a constraint is put on the resulting missed de-

tection probability so that the interference is kept within the acceptable range.

In this chapter, the achievable energy efficiency is compared between the

false-decision minimization and energy efficiency maximization setups when

both satisfy a specific missed detection probability. The results show that en-

ergy efficiency setup can achieve a better performance than the false decision

minimization setup in terms of the achievable energy efficiency and resulting

missed detection probability.

12.2 System Model

Consider a CRN of N CUs. The employed method for spectrum sensing is en-

ergy detection method, and the hard-based reporting scheme is considered. The

local performance of each CU is measured by the local detection probability

(Pdi) and the local false-alarm probability (Pfi). For simplicity, we assume an

identical performance among the CUs, and hence, Pd1 = Pd2 = ... = Pd and

Pf1 = Pf2 = ... = Pf .

The reporting channel between any CU and the FC is assumed to be noisy

[108], and modeled as binary symmetric channel with error probability Pe, and

it is identical among all CUs. At the FC, a specific FR is employed to process

these received decisions in order to make the global decision. The general FR

is K-out-of-N rule, where K is predefined integer ((1 ≤ K ≤ N)), and N is the

total number of received decisions to be processed. The idea behind this rule is
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to compare the number of CUs whose local decisions have been received as 1

to K. If it is larger than or equal K, then the spectrum is used. Otherwise, the

spectrum is unused. After issuing the global decision, if it is ”unused”, a CU will

be scheduled for data transmission. Otherwise, the spectrum will not be used

by any CU.

The overall performance of CSS can be evaluated by two indicators, the over-

all detection probability (PD) and the overall false-alarm probability (PF ). Con-

sidering noisy reporting channels, PD and PF , which are given in (8.13) and

(8.14), can be rewritten respectively as follows:

PD =
N∑
i=K

(
N

i

)
P i
x(1− Px)N−i (12.1)

PF =
N∑
i=K

(
N

i

)
P i
y(1− Py)N−i (12.2)

where Px is the probability of receiving a local decision of ”1” when the spec-

trum is used, and Py is the probability of receiving a local decision of ”1” when

the spectrum is unused. Both Px and Py can be given respectively as follows

Px = Pd(1− Pe) + (1− Pd)Pe (12.3)

Py = Pf (1− Pe) + (1− Pf )Pe (12.4)

However, in order to evaluate the detection accuracy of CSS in one metric,

both PD and PF are combined to define the probability of false global decision,

denoted by ε, which is defined as follows

ε = P0PF + P1(1− PD) (12.5)

where P1 is the probability of the spectrum being used by a licensed user (P1 =

1− P0).
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The energy efficiency (µ) of a CRN is also used as an indicator of the overall

performance of the CRN. Energy efficiency is given as follows

µ =
P0(1− PF )RTt

NEcss + (1− P0PF − P1PD)Et
(12.6)

where Ecss the energy consumed during CSS by a CU, and Et is the consumed

energy during data transmission.

12.3 Optimizing the Fusion Rule Parameters (K and N )

Both parameters of the K-out-of-N rule, K and N , have an effect on the overall

achievable detection accuracy of CSS, which directly affects the other perfor-

mance metrics of the cognitive transmission, such as false-decision probability,

achievable throughput, energy consumption, and energy efficiency. Therefore,

K and N should be optimized in order to achieve the best achievable perfor-

mance. In this section, we discuss the optimal K and N for different setups.

12.3.1 Minimizing the False-Decision Probability (ε)

The false decision probability is divided into two terms, as indicated in (12.5),

the first term refers to the false alarm probability (PF ), while the second refers to

the missed detection probability (1−PD). For a fixedN , large values ofK results

in less false alarm probability which decreases ε. On the other hand, this leads

to higher missed detection probability, and consequently, higher ε. Therefore, K

should be optimized in order to minimize the overall false decision probability.

However, minimizing the false-decision probability without a constraint on the
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missed detection probability may lead to a high interference at the licensed user.

Thus, we optimize K and N for the minimum ε while guaranteeing an upper

bound of missed detection, denoted by ζ .

The optimization of K to minimize the false decision probability with a con-

straint on the missed detection probability can be expressed as follows

min
K

ε ≡ min
K

P0PF + P1(1− PD) (12.7)

subject to

1− PD ≤ ζ (12.8)

The K value that satisfies (12.7) without the constraint is obtained by equating

the derivative of ε to zero, as follows

P0
∂PF
∂K
− P1

∂PD
∂K

= 0 (12.9)

The derivatives of PF and PD can be computed approximately as follows

∂PF
∂K

= PF (K + 1)− PF (K) =

(
N

K

)
)PK

y (1− Py)N−K (12.10)

∂PD
∂K

= PD(K + 1)− PD(K) =

(
N

K

)
PK
x (1− Px)N−K (12.11)

by substituting (12.10) and (12.11) in (16.40), and after some mathematical ma-

nipulations, the optimalK that minimizes the false decision probability without

satisfying the constraint is given in a closed form expression as follows

K1 =
ln P0

P1
+N ln( 1−Py

1−Px )

ln(Px(1−Py)

Py(1−Px)
)

(12.12)

Notice that a similar formula has been reported in [105] without considering

the prior knowledge about the activity of the licensed users, i.e. P0 = P1 = 0.5.
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According to (12.12), for a given N , the optimal K that minimizes ε while

satisfying the constraint on the missed detection probability is expressed as fol-

lows

Koptε = min{K1, K2} (12.13)

where K2 is the value that satisfies the constraint on the missed detection prob-

ability given in (12.8). The closed-form expression of K2 is difficult to be com-

puted. Thus, an approximated expression is proposed in this chapter. To this

end, we use the Demoiver-Laplace theorem [109] which approximates the bino-

mial distribution with a normal distribution. Accordingly, PD, given in (12.1),

can be expressed as

PD ≈ Q

(
K − 0.5−NPx√
NPx(1− PX)

)
(12.14)

whereQ(x) = 1√
2π

∫ x
0
e−u

2/2 ·du. By substituting (12.14) in the constraint in (12.8),

K2 can be written as1

K2 ≈ Q−1(1− ζ)
√
NPx(1− PX) +NPx + 0.5 (12.15)

where Q−1(x) is the inverse function of Q(x).

Also, for a given K, as the number of processed decisions (N ) increases,

PF increases and PMD decreases. Thus, these two contrasting effects should

be balanced by optimizing N for the minimum false decision probability. The

optimization of N to minimize the false decision probability with a constraint

on the missed detection probability can be expressed as follows

min
N

ε ≡ min
N

P0PF + P1(1− PD) (12.16)

subject to

1− PD ≤ ζ (12.17)
1This formula is accurate only if N is very large. For further information the reader is kindly

referred to [109]
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Assume N1 is the value that solves the minimization problem without con-

sidering the constraint. Then, N1 is obtained by equating the derivative of ε to

zero, as follows

P0
∂PF
∂N
− P1

∂PD
∂N

= 0 (12.18)

However, (16.41) is a transcendental equation, and it is too hard to obtain a

closed form expression of the optimal N for any value of K. However, we can

solve the optimization problem for two popular FRs as special cases, i.e., the

OR-rule (K = 1) and the AND-rule (K = N ), as follows:

N or
1 =

ln P1

P0
+ ln

( ln(1−Px)
ln(1−Py)

)
ln( 1−Py

1−Px )
(12.19)

Nand
1 =

ln P1

P0
+ ln

(
ln(Px)
ln(Py)

)
ln(Py

Px
)

(12.20)

For arbitrary FRs, however, an approximated solution for N1 that minimizes

ε can be derived from (12.12). The approximation is based on the fact that the

optimalN is the value that makesK optimal as given in (12.12). Mathematically,

N1 is approximately given as:

N1 ≈
ln P1

P0
+K ln

(Px(1−Py)

Py(1−Px)

)
ln( 1−Py

1−Px )
(12.21)

By considering the constraint on the missed detection probability, the optimalN

that minimizes ε and keeps the missed detection probability less than ζ is given

as

N optε = max{N1, N2} (12.22)

where N2 is the value that satisfies the constraint. Using again the Demoiver-

Laplace theorem, an approximated expression ofN2 can be computed as follows

N2 ≈ 2K+Q−1(1−ζ)
2Px

+ 0.5

√(
2K+Q−1(1−Px)

Px

)2

− 4K
2−K+0.25

Px

(12.23)
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12.3.2 Maximizing the Energy Efficiency

The maximum achievable throughput occurs at the minimum PF , as indicated

in (6.13). According to (6.9) and (5.2), low PF increases energy consumption.

Therefore, optimizing the parameters of the FR for the maximum throughput

results in high energy consumption, leading to poor energy efficiency. On the

other hand, optimizing the parameters of the FR for the minimum energy con-

sumption degrades the achievable throughput, and consequently, leads to poor

energy efficiency. However, in order to achieve a good trade-off between these

contrasting objectives, and since energy efficiency combines the two perfor-

mance metrics, throughput and energy consumption, it is more convenient to

optimize the parameters of the FR for the maximum energy efficiency.

Furthermore, another important aspect that should be taken into account

for the optimization of the K-out-of-N rule is the resultant interference at the

licensed user caused by the missed detection during CSS. This effect can be

controlled by introducing a constraint on the missed detection probability, so

that the interference can be kept below an acceptable threshold.

OptimizingK for maximum energy efficiency and a constraint on the missed

detection probability can be stated as follows

max
K

µ ≡ max
K

P0(1− PF )RTt
NEcss + (1− P0PF − P1PD)Et

(12.24)

subject to

1− PD ≤ ζ (12.25)

The solution of (12.24) (without considering the constraint) cannot be de-

rived in closed form. Thus, by applying similar methods used to derive (12.12),
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we write the sufficient condition that should be satisfied by the optimalK (with-

out constraint) as follows

K3 =

ln

(
NEcss+P1Et(1−PD)

P1Et(1−PF )

)
+N ln( 1−Py

1−Px )

ln(Px(1−Py)

Py(1−Px)
)

(12.26)

Then, since the missed detection probability increases as K increases for a

given N , the optimal K that maximizes the energy efficiency while fulfilling the

missed detection requirement is given as follows:

Koptµ = min{K3, K2} (12.27)

whereK2 the value of theK that satisfies the constraint on missed detection, ap-

proximated in the previous section using Demoiver-Laplace theorem in (12.15)

.

The optimization of N in order to maximize the energy efficiency can be

formulated similar to (12.24) by replacing K with N , as follows

max
N

µ ≡ max
N

P0(1− PF )RTt
NEcss + (1− P0PF − P1PD)Et

(12.28)

subject to

1− PD ≤ ζ (12.29)

However, it is very difficult to obtain the optimal N for the general K-out-

of-N rule. Hence, we apply the same approximation used to find the optimal

N that minimizes ε in (12.21). The approximation is based on the fact that the

optimal N is the value that makes K optimal. Therefore, the solution of (12.28)

(without considering the constraint) can be given be solving (12.26) for N , as
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follows

N3 ≈
ln

(
P1Et(1−PF )

N3Ecss+P1Et(1−PD)

)
−K ln(Py(1−Px)

Px(1−Py)
)

ln( 1−Py
1−Px )

(12.30)

By considering the constraint on the missed detection, and since the missed

detection decreases as N increases for a given N , the optimal N that solves

(12.28) for the maximum energy efficiency while keeping the missed detection

under the maximum allowed bound is expressed as follows

N optµ = max{N3, N2} (12.31)

where N2 is the value that satisfies the required missed detection probability,

approximated in the previous section using the Demoiver-Laplace theorem in

(12.23).

12.4 simulation results

A CRN consisting NT CUs is assumed. The parameters regarding the local per-

formance, energy consumption, reporting channel, data rate and transmission

time are all summarized in Table 12.1. These parameters are assumed identical

among all CUs.

Table 12.1: Simulation Parameters
Parameter Value Parameter value

NT 10 Pd 0.7
Pf 0.2 Pe 0.1
Et 1 Joule Ecss 12 mJoule
R 100Kbps Tt 0.3 sec

The false-decision probability versus K for different values of N is shown in

Fig. 12.1. It is clearly shown that for any value of N , ε is a convex function of K,
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and thus, a minimum exists. This behavior is common for all curves, and can

be interpreted as follows. Increasing K reduces PF and PD. This creates two

contrasting effects on ε, ε decreases as PF decreases , and, at the same time, ε

increases as PD decreases. The two effects are balanced at the optimal K value,

yielding the minimum ε.
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Figure 12.1: The average false-decision probability (ε) of versus the threshold K for
different values of N . The solid lines represent the simulation results, while the markers
represent the analytical results.

Another result can be observed in Fig. 12.1 is that for a given K, the optimal

N that minimizes the false-decision probability is the value that makes the cor-

responding K optimal among all other K. For example, if K = 2, the optimal
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N is at N = 4, and at the same time, for N = 4, the optimal K is 2. This ob-

servation confirms our approximated formula of the optimal N for minimizing

false-decision probability given in (12.22).

Regarding the achievable energy efficiency, it is plotted in Fig. 12.2 for differ-

ent pairs of (K, N ). Approximately, µ has the same behavior of ε as in Fig. 12.1.

However, for a given N , the value of K that maximizes µ is less than the value

ofK that minimizes ε by one in most cases. Also, Fig. 12.2 confirms the accuracy

of the approximated formula given in (12.21), where it gives the optimal N , for

a given K, as the value of N that makes K optimal, which is clearly proved by

the results in Fig. 12.2.

Although the results in Fig 12.1 and Fig. 12.2 show the same behavior asK or

N vary, the optimum values of µ and ε occur at different values for both setups.

In Fig. 12.1, the minimum ε occurs at N = 10 and K = 5, while the maximum µ

is achieved at N = 3 and K = 1, as shown in Fig. 12.2.

For the purpose of showing the importance of optimizing K and N for en-

ergy efficiency maximization on the overall system performance, we consider

two scenarios as follows

• Scenario 1: where we use the optimal values of K and N that maximize

the energy efficiency with a constraint on the missed detection probability.

• Scenario 2: where we use the optimal values of K and N that minimize

the false-decision probability with a constraint on the missed detection

probability.

Fig. 12.3 shows the achievable energy efficiency in both scenarios as a func-
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Figure 12.2: The average energy efficiency (µ) of versus the threshold K for different
values ofN . The solid lines represent the simulation results, while the markers represent
the analytical results.

tion of the constraint on the missed detection probability (ζ) for a total number

of CUs equals to 15. It is clearly shown that Scenario 1 provides better energy

efficiency than Scenario 2 while keeping the missed detection probability be-

low the acceptable value. The difference in energy efficiency increases as the

acceptable missed detection probability (constraint) increases. Therefore, this

comparison confirms that the K-out-of-N rule should be optimized for maxi-

mizing energy efficiency as in Scenario 1, which improves the overall network

performance and, at the same time, limits the resultant interference at the li-

censed users caused by the missed detection.
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In Fig. 12.4 both scenarios are compared in terms of the achievable energy

efficiency versus the total number of CUs for a missed detection probability

equals to 5%. Also in this case, Scenario 1 achieves better energy efficiency than

Scenario 2, and the difference between them increases as the NT increases.
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Figure 12.3: The achievable energy efficiency versus the average missed detection prob-
ability for both Scenario 1 (maximizing energy efficiency) and Scenario 2 (minimizing
false-decision probability). The total number of CUs is 15.
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Figure 12.4: The achievable energy efficiency versus the total number of CUs for both
Scenario 1 (maximizing energy efficiency) and Scenario 2 (minimizing false-decision
probability). The constraint on the average missed detection probability is 5%.

12.5 Summary

In this chapter, we have optimized the K-out-of-N fusion rule in cooperative

spectrum sensing for two different setups: maximizing the energy efficiency

and minimizing the false decision probability. The optimization in both setups

is performed with a constraint on the missed detection probability. Closed form

expressions for N and K in both setups are provided. The results have shown

that energy efficiency maximization setup significantly improves the network
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performance in terms of the achievable energy efficiency and the resulting in-

terference.
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Part V

The Trade-off Between Energy

Efficiency and Security in

Cooperative Spectrum Sensing
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CHAPTER 13

AN INTRODUCTION TO SPECTRUM SENSING DATA FALSIFICATION

ATTACK

Although CSS improves the reliability of spectrum sensing process, it intro-

duces several challenges to CRNs. Beside the extra consumed energy resources,

the security risks pose a significant challenge for CSS process [110] [111]. Due

to the limited resources given for overhead exchange to the FC, applying typi-

cal security protocols against outsider attackers becomes infeasible. Moreover,

it is possible to have insider malicious users that act as attackers based on dif-

ferent motivations. Thus, CSS is highly vulnerable for security attackers, which

threatens the overall performance of the CSS process [112].

A popular attack is represented by reporting false data about the spectrum

status in order to mislead the global decision of the CRN. In the case of mak-

ing a false global decision about an unused spectrum, it gives the chance to the

attacker to access the spectrum alone, whereas, in the case of making a false

global decision about a used spectrum, a legitimate CU, also called honest CU,

will lose its resources without throughput revenue, and more importantly, a

severe interference to the licensed users. Notice that the former case causes in-

efficient exploitation of the unused spectrum, while the latter cases results in

energy waste. Therefore, attackers have a relevant effect on the decision reli-

ability as well as users’ resources (including consumed energy and achievable

throughput).

The attack in which a false information is reported is called Spectrum Sens-

ing Data Falsification (SSDF) [110]. There are several types of SSDF attack, clas-

sified based on the employed strategy in reporting the false sensing data, as
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follows

1. Always-Yes Attacker (Greedy Attacker): this type of attackers always in-

forms the FC that the spectrum is used regardless of its actual sensing re-

sult. The motivation of Always-Yes attacker is to prevent other CUs from

accessing the spectrum, which gives him the chance to use the spectrum

alone. Thus, it is usually called Greedy attacker [113].

2. Always-No Attacker: this type of attackers always informs the FC that the

spectrum is unused regardless of its actual sensing result. The motivation

behind such strategy is to degrade the performance of the CRN and the

licensed users as well. An example of this attacker is Denial-of-Service

(DoS) attack [114]

3. Malicious Attacker: A smarter attacker than the previous types is the ma-

licious attacker. The malicious attacker builds his false report based on its

sensing result, where it usually reports the opposite of its local sensing de-

cision. Such a misbehaving might be conducted constantly or selectively.

The motivation of this attacker can be a combination of the motivations of

greedy and DoS attackers.

However, some honest (non-attacker) CUs may appear like attackers be-

cause of their bad sensing performance caused by either shadowing and fad-

ing, noisy reporting channel or malfunctioning sensor [69]. Such type of CUs

is called unintentional attacker [115]. Nevertheless, both intentional and un-

intentional attackers degrade the detection accuracy, which, in turn, influences

throughput and energy efficiency of the other honest CUs. Therefore, it is of a

paramount importance to eliminate these attackers from the network.
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The two well-known approaches, Bayesian detection [116] and Neyman-

Person test [117], for signal detection are no longer optimal in the presence

of SSDF attack [113]. In addition, both approaches require a prior knowledge

about the local sensing performance. Several works have investigated the de-

fense against SSDF attack. For example, [118] proposes an algorithm to identify

attackers by counting the number of mismatches between each CU’s local de-

cisions and the global decision at the FC. Once, the number of mismatches ex-

ceeds a given threshold, the corresponding CU will be considered an attacker,

and thus, its reports will be ignored. This approach however becomes unreliable

when the the number of attackers is large giving an unreliable global decision.

A detection scheme is proposed in [119], where it calculates a trust value as well

as a consistency value for each CU based on its past reports. Once both values

fall below predefined thresholds, the received reports from the corresponding

CU are no longer considered in the fusion process. However, the algorithm is

valid only for one attacker. In [120] the authors propose to correlate the received

reports (spectrum sensing data) with the channel fading characteristics of the

authenticated users, in such a way that reports from not authenticated users are

filtered out. In [121] authors propose to compare every report with the rest by

using uncertainty reasoning. A similarity degree is given to each report based

on such a comparison, and reports are weighted according to their degree. In

[122] a probabilistic model is used to detect the change in the behavior of a node

and assign reputation to the nodes; the reputation is then used to weight the

node’s reports. A punishment policy for attackers is presented in [123] that can

effectively prevent users from behaving maliciously.

This part of the dissertation is dedicating for combating against SSDF attack-

ers. To this end, three independent works are proposed in this part. The first
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work is a weighted CSS algorithm that is able to totally eliminate the affects

of the attackers, while the second work presents a detection and punishment

polices for attackers. The third work represents a novel low-overhead security

protocol for CSS against outsider attackers.
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CHAPTER 14

ROBUST ALGORITHM AGAINST SPECTRUM SENSING DATA

FALSIFICATION ATTACK IN COGNITIVE RADIO NETWORKS

14.1 Introduction

In this chapter a novel robust algorithm against SSDF attack is presented. The

proposed algorithm is based on setting some evaluation frames by which the

FC can assess the performance of each CU, and consequently, assigns a proper

weight. In an evaluation frame, the target spectrum is used regardless of the

local results reported by the CUs. As a consequence, a CU will be scheduled for

data transmission in each evaluation frame. According to the success delivering

of the transmitted data by the scheduled CU, the FC will be able to identify the

actual spectrum status. In other words, if the scheduled CU successfully deliv-

ers its transmitted data, the spectrum is unoccupied. Thus, the FC will assess

the local results that have been reported during that frame, and consequently, a

proper weight related to the actual performance will be assigned for each CU.

The most interesting thing is that the proposed algorithm is able to convert SSDF

attackers to honest CUs, which highly improves the overall detection accuracy

and energy efficiency.

The proposed algorithm is able to (i) completely eliminate the resulting ef-

fects on CSS caused by many types of SSDF attacks, (ii) convert some types

of SSDF attackers to be honest users, and (iii) alleviate the influence of other

honest users that suffer from poor sensing performance or/and very noisy re-

porting channels. Simulation results show that, compared to many previous

works, a significant improvement in detection accuracy and energy efficiency
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can be attained by the proposed algorithm.

14.2 System Model

Consider an infrastructure-based CRN, e.g. IEEE 802.22 standard, consisting of

a set of CUs that seek to exploit a specific spectrum where they are unlicensed.

To avoid inducing interference to the licensed users, each CU senses the target

spectrum for a specific time and issues a local binary decision uk{−1,+1} about

the activity of the licensed users in the target spectrum. if uk = +1, then the CU

decides that the spectrum is used by a licensed user. Otherwise, the spectrum is

identified as unused by the kth CU.

The local sensing performance of the kth CU is evaluated by the detection

probability (Pdk) and the false-alarm probability (Pf k). During the reporting

process, due to the fading and shadowing between the CUs and the FC, the

reported decisions may be erroneous. Therefore, we consider a noisy reporting

channel between the kth CU and the FC with average error probability denoted

by Pek.

The local sensing process can be modeled as a non-symmetric binary channel

as shown in Fig 14.1-(a), where H1 denotes the event of the used spectrum, and

H0 denotes the event of the unused spectrum. Likewise, the reporting channel

can be modeled as a symmetric binary channel as shown in Fig 14.1-(b). Both

channels can be combined into a cascaded channel modeled as non-symmetric

binary channel. Pxk and Pyk that appear in Fig. 14.1-(c) are respectively defined
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as follows

Pxk = Pr.{yk = +1/H1} = Pdk(1− Pek) + (1− Pdk)Pek (14.1)

Pyk = Pr.{yk = +1/H0} = Pf k(1− Pek) + (1− Pf k)Pek (14.2)

where yk{−1,+1} is the received decision form the kth CU at the FC.

Figure 14.1: The representation of the (a) Sensing channel, (b) Reporting channel and
(c) Cascaded channel (sensing and reporting)

At the FC, a specific FR is employed to process these received decisions in

order to make the global decision U{−1,+1}. If U = −1, the spectrum is iden-

tified as unused, and consequently, one of the CUs will be scheduled for data

transmission during the rest of the frame denoted by Tt. Otherwise (U = +1),

no data transmission will be commenced.

However, in such networks, it is possible to have some SSDF attackers that

try to degrade the overall performance by reporting false data to the FC. The re-
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sulting influence of SSDF attack mainly depends on the adopted strategy. There-

fore, the detection probability and/or the false alarm probability will be affected

by the reported false information, and hence, the achievable energy efficiency

will be degraded as well.

14.3 The proposed algorithm

In this section we propose a novel weighted cooperative spectrum sensing al-

gorithm that is able not only to eliminate the resulting effects of the SSDF at-

tacks, but also to take advantage from some types of the attackers, which con-

sequently, improves the overall performance.

The proposed algorithm is based on setting a number of evaluation frames

by which a proper weight for each CU is computed. The evaluation frames are

randomly distributed over time. In an evaluation frame, the CUs perform their

local sensing, and report their decisions to the FC. At the FC, the global decision

is set to ”unused” (−1) regardless the received decisions, and thereby, a CU will

be scheduled for data transmission. As the considered CRN is infrastructure-

based, the success of the transmission can be easily realized at the FC. According

to the success in delivering the transmitted data of the scheduled CU, the actual

status of the spectrum can be correctly defined. Therefore, all the reported de-

cision from the CUs can be evaluated, and for each CU a specific weight will be

assigned that is related to its actual performance. The above process is repeated

in every evaluation frame. The random distribution of the evaluation frames

will be discussed later.

Let us denote the number of the evaluation frames by L, and Γl as a counter
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that is updated on each evaluation frame, as follows

Γl =

 Γl−1 + 1 if Sl = H0

Γl−1 if Sl = H1

(14.3)

where Γ0 = 0, l = 1, 2, ...., L, and Sl represents the actual spectrum status of the

lth evaluation frame. Sl is decided according to the success of data transmission

or not. Notice that the global value of the counter, i.e., ΓL, represents the number

of evaluation frames in which the licensed spectrum was unoccupied.

Likewise, let us set two counters for each CU, bk,l and fk,l that are updated in

each evaluation frame. The index k represents the CU index, while l represents

the evaluation frame index. These counters are related to the reliability of the

local decision of the corresponding CU, and they are updated as follows

fk,l =

 fk,l−1 + 1 if Sl = H0 & yk,l = +1

fk,l−1 if Sl = H1 & yk,l = +1
(14.4)

bk,l =

 bk,l−1 + 1 if Sl = H1 & yk,l = +1

bk,l−1 if Sl = H0 & yk,l = +1
(14.5)

where yk,l is the received decision from the kth CU on the lth evaluation frame.

Notice that, for any CU, the counter fk,l is equal to the number of false alarms

that have been received by the corresponding CU during the evaluation frames,

while the counter bk,L, represents how many times the kth CU detects success-

fully the licensed user during the evaluation frames.

Based on these counters, two indicators for each CU, αk and βk are computed

at the FC as follows:

αk =
bk,l
l − Γl

(14.6)

βk =
fk,l
Γl

(14.7)
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It is worthy noting that αk and βk express estimated versions of the actual

sensing and reporting performance of the corresponding CU, i.e., Pxk and Pyk

probabilities. Such estimation is improved as the number of evaluation frames

increases.

During the normal time frames, i.e., non-evaluation frames, each local de-

cision is weighted by a specific weight depending on α and β, so as the global

decision is issued according to the following rule:

U =

 +1 if
∑K

k=1 wkyk ≥ λ

−1 if
∑K

k=1 wkyk < λ
(14.8)

where λ is the fusion threshold chosen to satisfy a predefined false alarm prob-

ability, and wk is the weight for the kth CU as follows

wk = log
αk(1− βk)
βk(1− αk)

(14.9)

14.3.1 The distribution of the evaluation frames

Motivated by enhancing the robustness of the proposed algorithm, the evalua-

tion frames are randomly selected by the FC. Thus, the attackers that are aware

of the employed evaluation strategy can not be aware in which frames the eval-

uation will be performed. Therefore, it will be difficult for the attackers to resist

against the proposed algorithm.

For any frame, the probability to be an evaluation frame or not is expressed

as follows

P eva
l =

 q if l < L

0 if l = L
(14.10)
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where q is predefined probability.

Notice that if q = 1, it implies that the L evaluation frames will take place in

the first L frames, which achieves the best performance of the system. However,

if an attacker is aware that q = 1, the attacker can act as an honest user and then

the algorithm fails to combat it. Thus, q plays an important role in the overall

performance of the proposed algorithm. As q decreases, those attackers that are

aware of q need more frames to elude the FC. On the other hand, decreasing q

results on a delay in assigning the proper weights for CUs, which leads to lower

performance.

14.3.2 Effectiveness against SSDF attackers

SSDF attackers are different in their resulting affects. In this subsection, we

discus the most popular types of SSDF attackers, and we show the effectiveness

of our proposal against each type

• Greedy Attack [111]: this type of attackers always reports that the spec-

trum is occupied, i.e., uk = +1, regardless of its sensing results (Pdk =

Pf k = 1). According to (14.4), (14.5), (14.6) and (14.7), by the end of the

evaluation frames, the two indicators will approximately be αk = βk =

1 − Pek, which results in a zero weight wk = 0 according to (14.9). There-

fore, the resulting effect of greedy attackers can be completely eliminated

whatever their number is. Another similar attacker type that always in-

forms the FC that the spectrum is free can be handled by the same way.

• Malicious Attack [111]: this type of SSDF attack always reports the oppo-

site of its local decision to the FC. Thus, its sensing performance can be
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expressed as Pdk = 1 − Pdhk and Pf k = 1 − Pf hk , where Pdhk and Pf
h
k repre-

sent the corresponding values if the CU is honest. Reflecting this to (14.4),

(14.5), (14.6) and (14.7), we can get that the assigned values for a malicious

attacker are approximately equal to αk = 1 − αhk and βk = 1 − βhk , where

αhk and βhk are the corresponding weights if the CU is honest. By substitut-

ing these findings in (14.9), the assigned weight for a malicious attacker is

given as follows:

wmalk = − log
αhk(1− βhk )

βhk (1− αhk)
(14.11)

From (14.8), each local decision will be multiplied by its weight. Hence,

according to (14.11), any decision received from a malicious attacker will

be inverted and multiplied by a weight corresponding to its actual honest

performance as in (14.9). This means that the malicious attacker will not

be an attacker anymore since the proposed algorithm is able to convert it

to an honest CU.

Notice that, whatever the followed strategy, our algorithm has the ability

to identify the actual performance of each CU, and consequently, assign a

suitable weight to its received decisions.

It is worth mentioning that the main disadvantage of the proposed algorithm

is the resulting interference at the licensed users caused during the evaluation

frames. The interference is caused because the spectrum is always targeted in

the evaluation frames regardless of the reported local decisions. Thus, the num-

ber of the evaluation frames should be small enough not to degrade the per-

formance of the licensed users. On the other hand, less number of evaluation

frames will affect the accuracy of the resulting assigned weights. Therefore, the

number of the evaluation frames should be tuned to satisfy the desired perfor-

mance.
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14.4 Simulation Results

A CRN consists of three different classes of CUs according to their sensing per-

formance as shown in Table 14.1. CUs belonging to Class 1 or Class 2 are consid-

ered to be honest users (H), while CUs belonging to Class 3 are assumed to be

SSDF attackers (Att.). The sensing and reporting performance of Classes 1 and

2 are fixed, while the performance of Class 3 is represented in terms of δ ∈ [0, 1].

Table 14.1: Classes’ Performance
Class 1 Class 2 Class 3

Pd 0.8 0.65 1− δ
pf 0.1 0.3 δ
Pe 0.1 0.05 0.1

The performance of the proposed algorithm is compared to two popular al-

gorithms described as follows:

• Equal Gian Combining (EGC): where all CUs have equal weights, i.e.,

wk = 1,∀k

• Attacker-Removal Algorithm (ARA) [118]: where a predefined threshold

(ν) on the number of mismatches between the local decision and the global

decision is set. Whenever the number of mismatches exceeds ν for a spe-

cific CU, it will be identified as an attacker, and its reported results will

not be processed.

The performance of the three algorithms is assessed over a large time win-

dowW . The simulation results consider the attacker of malicious type since it is

the most challenging attacker, and also because the greedy attacker is easy to be

detected and removed by any of the three algorithms. All simulation parame-
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ters regarding the channel statistics, energy consumption and transmission rate

are summarized in Table 14.2.

Table 14.2: Simulation parameters

Parameter Value Parameter Value
P0 0.5 Ecss 12mJ
Et 0.1 J R 100Kbps
Tt 0.1 sec W 2× 103 × Tsec
L 100

Fig. 14.2 compares our proposal and EGC algorithms in terms of average

detection probability. First, PD is shown for a CRN of two honest users, one

from Class 1 and the other form Class 2, at a given false alarm probability

PF = 0.1. The detection probability achieved by our proposal is higher than

that is achieved by EGC. This is due to assigning proper weights that are re-

lated to the actual users performance. Also in Fig. 14.2, we show the achievable

performance when a single malicious attacker form Class 3 joins the considered

CRN. The achievable PD is plotted versus δ which represents the sensing per-

formance of the attacker as it appears to the FC. Since the attacker is a malicious

attacker, it implies that its strategy consists in inverting its local decision and

reporting the inverted local decision to the FC. Therefore, the effectiveness of

such attacker depends on its honest sensing performance. In terms of δ, the

honest (actual) performance of the malicious attacker is given by P h
d = δ and

P h
f = 1− δ, while, due to the malicious strategy, its performance appears at the

FC as Pd = 1− δ and Pf = δ. According to that, as δ increases, the effectiveness

of the malicious attacker should be increased.

For EGC algorithm, as δ increases, the average detection probability de-

creases, which is expected since EGC does not assign weights to the CUs. How-

ever, according to our proposal, a proper weight is assigned for the attacker
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Figure 14.2: The average detection probability PD versus the performance of the at-
tacker represented by δ. (q = 1).

based on its performance (δ). For example, if δ = 0, this means that the attacker

has a very poor honest performance (P h
d = 0 and P h

f = 1) but due to its mali-

cious type, its performance will be highly improved (Pd = 1 and Pf = 0). Hence,

its reported decisions will enhance the global decision reliability. At δ = 0.5, the

assigned weight will be zero, and hence, the decisions reported by the attacker

will be totally removed. In the case of δ > 0.5 up to the worst case δ = 1, our

proposal still achieves an outstanding performance. Notice that the symmetry

of the PD around δ = 0.5, which means that the assigned weight for any attacker

can convert this attacker to be an honest user, which highly improves the overall

performance.

It was stated in [118] that the performance of the their proposal improves as

the percentage of the attackers to the honest CUs decreases. Fig. 14.3 depicts the

average detection probability for the three algorithms (EGC, ARA and our pro-
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Figure 14.3: The average detection probability PD for a CRN consisting one malicious
attacker and different number of honest CUs for the three algorithms. (In ARA ν is set
to the optimal value) (q = 1).

posal) versus different percentages of the attacker presence. Specifically, for all

cases we consider only one malicious attacker with δ = 1, while the number of

honest CUs is variable (2, 4, 6 and 8) half of them belong to Class 1 and the other

half belong to Class 2. In terms of percentages, the considered cases represent

four different percentages of attacker presence as follows: 33.3%, 20%, 14% and

11%. The average detection probability of all algorithms should be improved

since the number of honest users increases, which is shown in Fig. 14.3. How-

ever, the detection probability achieved by our proposal is higher than the other

algorithms since our proposal is able to assign a proper weigh for the attacker,

converting it to an honest user.

Fig. 14.4 explores the achievable energy efficiency for the three algorithm in

the four considered cases. Since the false alarm probability is identical for all al-

gorithms (PF = 0.05), the determining factor in the achievable energy efficiency
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Figure 14.4: The average energy efficiency µ for a CRN consisting one malicious at-
tacker and different number of honest CUs for the three algorithms. (In ARA ν is set to
the optimal value).

is the average detection probability, as indicated in (16.2). The achievable energy

efficiency for all algorithms decreases as the number of CUs increases because

of the high energy consumption, while the achievable throughput is fixed. The

proposed algorithm outperforms the other algorithms even though large energy

is consumed during the evaluation frames.

Up to now, in all the obtained results we have assumed that q = 1, which

means that the evaluation frames will be the first L frames. Accordingly, if

we consider that the attacker is aware of q, the attacker can easily elude the

FC and act as honest user during the first L frames. Thus, we should reduce

q, resulting in spreading the L frames over time. By this way, it will be more

difficult to the attacker to deceive the FC since being aware of q < 1 does not

imply that the attacker is aware in which frames the evaluation takes place.

Fig. 14.5 depicts the detection probability of the proposed algorithm for three
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Figure 14.5: The average detection probability PD for a CRN consisting one malicious
attacker and different number of honest CUs.

different scenarios: i) q = 1 and the attacker is unaware of it, ii) q = 0.1 and

the attacker is unaware of it, and iii) q = 0.1 and the attacker is aware of it. In

the third scenario, since the attacker is aware of q we consider that the attacker

will act as an honest user until the evaluation frames are finished. Using q, the

attacker can predict the average number of frames that is required to perform

the evaluation, which is approximately given by L/q. Notice that varying q from

1 to 0.1 slightly affects the detection probability. In the main while, the proposed

algorithm still achieves a good performance compared to other algorithms (see

Fig. 14.3) even though the attacker is aware of q.
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14.5 Summary

In this chapter, a robust algorithm against SSDF attacker in CSS for

infrastructure-based CRN has been presented. The proposed algorithm is based

on setting a number of evaluation frames in which the actual performance for

each CU is obtained, and a proper weight is derived for each CU. The proposed

algorithm does not require any prior information about the spectrum or CUs.

Moreover, the proposed algorithm takes advantage of attackers and converts

them to honest users. Simulation results show that our algorithm outperforms

other algorithms in detection accuracy and energy efficiency.
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CHAPTER 15

IDENTIFICATION AND PUNISHMENT POLICIES FOR SPECTRUM

SENSING DATA FALSIFICATION ATTACKERS USING

DELIVERY-BASED ASSESSMENT

15.1 Introduction

Identifying attackers is a very crucial process that should be carefully carried out

to avoid detecting honest CUs as attackers. Thus, attacker-identification should

be built on a reliable base that cannot be affected if the number of attackers

is large. In this chapter, we consider the delivery of the transmitted data as a

base of evaluating the individual performance, and consequently, identifying

attackers. Notice that in infrastructure-based cognitive radio networks, the data

transmission is performed through the base station (BS) [124]. Thus, it is easy

to ensure if the transmitted data is successfully delivered or not, and hence, the

actual spectrum status will be known at the FC. Using the obtained spectrum

status, all the individual sensing results can be evaluated accordingly. Based

on the evaluated performance of each CU, attackers can be seamlessly detected

and removed from the fusion process at the FC.

Identifying attackers possess an initial step to alleviate their effects on the

network performance. However, a further action should be taken against iden-

tified attackers in the subsequent data transmission phase. Depriving attackers

of scheduling opportunity in data transmission phase is a bad choice. This is

due to the fact that the attacker-identification is an imperfect process, where a

false identification of an honest CU as an attacker is probable. Moreover, an

identified attacker could be an honest CU that suffers from poor sensing per-
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formance. On the other hand, keeping all CUs, honest and attackers, equal in

scheduling probability is unfair with respect to the honest CUs. In this chapter,

we propose a scheduling policy based on assigning a scheduling probability to

each CU related to its sensing performance. For attackers, such policy estab-

lishes a punishment strategy, where a low scheduling probability is assigned to

them, and hence, reduced individual throughput and energy efficiency. Thus,

the proposed punishment policy is aiming at motivating attackers to quit re-

porting false reports. On the other hand, honest CUs will gain proportional fair

distribution of data transmission corresponding to their local sensing perfor-

mance.

Although the considered setup is challenging, as it will be described later,

both proposed policies show promising results even in the worst case scenario

where the number of attackers is very large. Mathematical analysis and sim-

ulation results explore the significant improvement in the overall performance

achieved by the proposed policies compared to previous works.

The contributions of this chapter can be summarized as follows

• Introducing data delivery as a base for evaluating the performance of the

individuals in infrastructure-based CRNs. Delivery-based assessment is

a novel strategy and has never been proposed before to the best of our

knowledge.

• Proposing a novel attacker-identification algorithm that is able to skillfully

detect attackers and completely eliminate their influence on the CRN.

• Proposing attacker-punishment algorithm that is based on lowering the

energy efficiency of the attacker, motivating it either to quit attacking or to
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leave the CRN.

15.2 System Model

Consider a CRN consisting of N CUs cooperating in order to opportunistically

access the licensed spectrum whenever it is free. The CRN is considered of

infrastructure-based type [125], where the CSS and data transmission is coordi-

nated by the BS. An example of such network is IEEE 802.22 [126]. For the sake

of simplicity, the licensed spectrum is modeled as a single channel although

it can be easily extended to multiple-channel scenario. The probability that the

spectrum is not being used is denoted by P0. In each CSS round, each CU senses

the licensed spectrum and, depending on its sensing result, it solves a hypoth-

esis testing problem deciding on one of two hypotheses, either H0 that implies

spectrum is unused, or H1 for spectrum is used. It then reports its binary local

decision un = {1 ≡ “used”, 0 ≡ “unused”} to the FC that is located at the BS.

The reliability of the local decision of a CU is evaluated by two indicators:

local detection probability (Pdn) and local false-alarm probability (Pdf ). After

reporting the issued local decisions, the FC applies the K-out-of-N fusion rule

to make the global decision. Upon issuing the global decision, a CU will be

scheduled for data transmission only if the global decision is “unused”, while

in case of identifying the spectrum as “used”, the FC will not schedule any of

the CUs in order to avoid interference to the licensed users.
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15.2.1 Attacker Model

As in other wireless networks, CRNs are usually vulnerable to different secu-

rity threats. One of these threats, which is not typical in the other wireless net-

works, is SSDF attack. In SSDF attack, a malicious CU sends false reports about

the spectrum availability to the FC in order to mislead the global decision. The

motivation behind such attack is to exploit the spectrum holes for their own

transmission. To satisfy this motivation, the optimal attack strategy is to always

report the spectrum as “used”, also called ”Always-Yes” attack [127]. However,

such strategy is easy-to-detect at the FC. Thus, smarter attackers usually follow

a different strategy in order to elude the FC and avoid detection and negligence.

The smart strategy is based on inverting the actual local sensing result in a se-

lective manner. Specifically, an attacker decides in each CSS round to attack or

not with a probability, denoted as Pm. If the attacker decides to attack in a spe-

cific round, it simply flips its own local decision and reports it to the FC. Such

attacker model is usually termed as Byzantine attackers [127, 128, 129]. The

sensing performance. i.e., Pdn and Pfn, of an attacker as it appears at the FC

based on such strategy can be mathematically modeled as follows

Pdn = Pm(1− P ac
dn) + (1− Pm)P ac

dn (15.1)

Pfn = Pm(1− P ac
fn) + (1− Pm)P ac

fn (15.2)

where P ac
dn and P ac

fn represent the actual (honest) detection and false-alarm prob-

abilities, respectively. Notice that this model is valid for an honest CU if we set

Pm to zero.

For the sake of simplicity, let us assume that all honest CUs are identical in

there sensing performance, i.e., Pdn = Pdh and Pfn = Pfh. Likewise, the attackers

are considered to have identical performance, i.e., Pdn = Pda and Pfn = Pfa.
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Figure 15.1: An example of a cognitive radio network in presence of SSDF
attackers

Since the main motivation of attackers is to increase their achievable

throughput while degrading the throughput of the honest CUs, the attacker

will exploit the case of false-alarm to perform individual transmission without

coordination from the BS. Specifically, we consider that the attackers will co-

operate among themselves to make their own global decision based on their

honest performance. Accordingly, once a false-alarm occurs at the FC, if their

own global decision does not agree with the decision of the FC, the attackers will

select one of them randomly to transmit its own data individually. From now

on, we denote the detection and false-alarm probabilities of the global decision

of attackers by PA
D and PA

F , respectively.
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15.2.2 Throughput and Energy Efficiency

According to the considered CRN model, an honest CU has the chance to trans-

mit only if it has been legitimately scheduled by the FC. On the other hand, an

attacker can get a transmission opportunity in two cases: (i) if it has been legiti-

mately scheduled by the FC, and (ii) if it has been selected by the other attackers

to transmit in the case of a false-alarm at the FC. We call the achievable through-

put in first case the legitimate throughput, while the illegitimate throughput is

the throughput achieved in the second case.

Notice that increasing the false-alarm probability, which is a result of SSDF

attackers, the illegitimate throughput of attackers will increase, which, in turn,

degrades the achievable throughput of the honest CUs. However, increasing

the throughput is always accompanied with more energy consumption. There-

fore, for evaluation purpose, we use the individual energy efficiency of the CU

as comparison metric between attackers and honest CUs. Individual energy ef-

ficiency of a CU is defined as the ratio of the individual throughput achieved

in bits to the individual energy consumed in Joule. According to the considered

setup, it is expected that the individual achievable throughput, the individual

energy consumption and the individual energy efficiency will be different for

an honest CU and an attacker.

15.2.3 An example

Let us consider a CRN of 5 honest CUs with identical detection and false-alarm

probabilities equal to 0.8 and 0.1, respectively. The global decision is made

211



based on Majority rule. In Fig. 15.2, we plot the effects on the detection accuracy

and the achievable throughput if a number of attackers has joined the CRN. The

local detection and false-alarm probabilities of attackers are identical and equal

to 0.1 and 0.8, respectively. Fig. 15.2-a shows the error probability of the global

decision, as an indicator of the detection accuracy, versus the number of joined

attackers, while Fig. 15.2-b shows the achievable throughput of an attacker and

an honest CU versus the number of joined attackers. The achievable throughout

is divided into two parts: legitimate throughput resulting from scheduling by

the BS, and illegitimate throughput achieved by individual transmission with-

out coordination of the BS. Clearly, the increase in the error probability and the

degradation in the achievable throughput of honest CUs increase as the number

of attackers increases. On the other hand, the throughput of attackers increases

due to the high false-alarm probability that they can cause. Such a simple ex-

ample explores the importance of encountering the attackers in CRNs.

15.3 Delivery-based Assessment

Most of the previous work depends either on a prior knowledge about the local

performance of the CUs or the global decision reliability to detect attackers and

remove them. The prior knowledge is not always available and the global de-

cision lacks reliability in the presence of large number of attackers. Instead, in

this chapter, we propose a novel approach that can be seamlessly evaluate the

sensing performance of each CU, and consequently, identify attackers. The pro-

posed approach is based on the delivery of the transmitted data of the scheduled

CU. Specifically, if the licensed channel has been decided as unused and one of

the CUs has been scheduled for data transmission, the successful delivery of the
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Figure 15.2: Example: (a) the error probability versus the number of attackers,
and (b) the throughput versus the number of attackers

transmitted data reveals that the global decision was correct and the channel is

actually unused. In the other case, if the transmitted data cannot be success-

fully delivered, the global decision is identified as incorrect and the channel is

actually occupied. Notice that in both cases, the FC has doubtlessly realized the

actual channel status, which can be used to assess all the received local decisions

as correct or not.

Delivery-based assessment continues in each data transmission phase in or-

der to formalize a performance indicator for each CU, which can be further

employed to identify attackers and honest CUs. The reader should note that
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considering data delivery as an evaluation base is much more reliable than the

global decision even in the case of large number of attackers.

From implementation point of view, the delivery-based assessment ap-

proach can be easily applied in infrastructure-based CRNs with a BS coordi-

nating the data transmission, as assumed in this chapter. However, for central-

ized CRNs without a BS, where CUs individually access the spectrum, the data

delivery can be verified by an additional monitoring process during data trans-

mission performed by the FC itself or another delegated trusted CU. Notice that

the monitoring process is much easier than spectrum sensing since the transmit-

ting user is known at the FC. Another option which can verify the data delivery

is requesting a feedback from the scheduled CU. However, it should be taken

into account the probability that the scheduled CU is an attacker providing false

feedback. In order to avoid any induced drawback in the delivery-based assess-

ment approach, we consider only infrastructure-based CRNs in this chapter,

which has been widely adopted in the literature [124, 130, 131, 132, 133, 45, 134],

while the applicability of delivery-based approach on other mentioned CRN

types is left as future work.

In the following sections, we describe two novel policies, attacker-

identification policy and attacker-punishment policy. Both of them are de-

veloped based on the delivery-based assessment approach. While attacker-

identification policy aims at detecting attackers and ignoring their reported lo-

cal decision in the fusion process, the attacker-punishment policy is basically a

scheduling policy that leads to a proportional resource distribution according to

the evaluated individual performance of each CU. Such a fair scheduling policy

acts as a punishment for attackers and a reward for honest CUs.
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15.4 Attacker-Identification Policy

Attacker-identification is a key factor to improve the overall performance of

the CRNs either in terms of detection accuracy or energy efficiency. Attacker-

identification should be carefully carried out in order to avoid incorrectly iden-

tifying honest CUs as attackers. Once an attacker is identified, it should be

removed out from the fusion process at the FC, where its reports should be ig-

nored. In this section we propose a novel attacker-identification policy that is

able to identify the attackers whatever their number in the network is.

The proposed policy is based on assessing the local decisions according to

the delivery of the transmitted data of the scheduled CU. In detail, once the

spectrum is identified as “unused”, a CU will be scheduled for data transmis-

sion. Consequently, based on the success of delivering the transmitted data, the

actual spectrum status can be correctly defined and used to evaluate the local

decisions. Thus, the local decisions reported in that round can be classified false

or correct. If the local decision is false, a corresponding counter will be incre-

mented by one. After a sufficient amount of time, let us say W CSS rounds, if a

counter of a specific CU exceeds a predefined threshold, it will be considered as

an attacker, and hence, its reports will be ignored at the fusion process.

Following the proposed policy, a zero-initialized counter, denoted by Bn,i,

for each CU is updated each CSS round as follows

Bn,i =


Bn,i−1 + 1, if Ui = 0 & Si 6= un,i

Bn,i−1, Otherwise
(15.3)

where Si represents the actual status of the spectrum. The global value of the

counter after W rounds Bn,W follows a binomial distribution function, as fol-
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lows

Prob.{Bn,W = b} =

(
W

b

)
λbn(1− λn)W−b (15.4)

where λn denotes the probability that the counter B will be incremented, which

can be derived as follows

λn = P (Bn,i = Bn,i−1 + 1) = P (H0 ∩ un,i = 1 ∩ Ui = 0) + P (H1 ∩ un,i = 0 ∩ Ui = 0)

(15.5)

Using the following theorem on conditional probability [135]

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) (15.6)

the first term in (15.5) can be expanded as follows

P (H0 ∩ un,i = 1 ∩ Ui = 0) = P (H0)P (un,i = 1|H0)P (Ui = 0|un,i = 1 ∩H0)

= P0PfnP (Ui = 0|un,i = 1 ∩H0) (15.7)

Likewise, the second term in (15.5) can be expanded as follows

P (H1 ∩ un,i = 0 ∩ Ui = 0) = P (H1)P (un,i = 0|H1)P (Ui = 0|un,i = 0 ∩H1)

= P1(1− Pdn)P (Ui = 0|un,i = 0 ∩H1) (15.8)

by substituting (15.7) and (15.8) in (15.5), λn can be rewritten as follows

λn = P0PfnP (Ui = 0|un,i = 1 ∩H0) + P1(1− Pdn)P (Ui = 0|un,i = 0 ∩H1) (15.9)

The probability λn can be found for an honest CU, denoted by λh, by substi-

tuting the following probabilities in (15.9)

P (Ui = 0|un,i = 1 ∩H0)∣∣
honest

= 1−
N−1∑

k=K−1

a2∑
j=a1

f(j,M, Pfa)f(k − j,H − 1, Pfh)

(15.10)
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P (Ui = 0|un,i = 0∩H1)∣∣
honest

= 1−
N−1∑
k=K

a2∑
j=a1

f(j,M, Pda)f(k−j,H−1, Pdh) (15.11)

where a1 = max(0, k −H + 1), a2 = min(k,M), H is the number of honest CUs,

M is the number of attackers and the function f(α, β, γ) denotes the binomial

function [135], as follows

f(α, β, γ) =

(
β

α

)
γα(1− γ)β−α (15.12)

By the same way, the probability λn can be found for an attacker, denoted by λa,

by substituting the following probabilities in (15.9)

P (Ui = 0|un,i = 1 ∩H0)∣∣
attacker

= 1−
N−1∑

k=K−1

a4∑
j=a3

f(j,M − 1, Pfa)f(k − j,H, Pfh)

(15.13)

P (Ui = 0|un,i = 0 ∩H1)∣∣
attacker

= 1−
N−1∑
k=K

a4∑
j=a3

f(j,M − 1, Pda)f(k − j,H, Pdh)

(15.14)

where a3 = max(0, k −H), a4 = min(k,M − 1).

Now, from (15.4), the average value of Bn,W of the nth CU, denoted by Bn,W ,

can be derived as follows

Bn,W =
W∑
b=0

b · Prob.{Bn,W = b} =
W∑
b=0

b ·
(
W

b

)
λbn(1− λn)W−b (15.15)

which can be simplified using the binomial law as follows

Bn,W = Wλn (15.16)

Also, if we denote the ignoring threshold by ζ , the ignoring probability of

the nth CU can be expressed as follows:

Pign,n ≡ Prob.{Bn,W ≥ ζ} =
W∑
b=ζ

(
W

b

)
λbn(1− λn)W−b (15.17)
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Accordingly, the average number of the remaining CUs after W CSS rounds,

i.e. those CUs that have not been ignored, can be given as follows

NW = N −
N∑
n=1

Pign,n = H(1− Pign,h) +M(1− Pign,a) (15.18)

where Pign,h and Pign,a are the ignoring probabilities for an honest CU and an

attacker, which can be obtained by substituting λh and λa instead of λn in (15.17),

respectively.

15.4.1 Optimizing of ζ

It is worth noting that ζ has a significant role in the proposed policy. Low values

of ζ may result in identifying some honest CUs as attackers, whereas some at-

tackers can not be identified at high values of ζ . Therefore, ζ should be carefully

optimized. An approach to optimize the threshold ζ is to maximize the differ-

ence between the ignoring probability of attackers and the ignoring probability

of honest CUs. Mathematically, the maximization problem can be expressed as

follows

max
ζ
Pigna − Pignh (15.19)

by substituting the values of Pigna and Pignh using (15.17), the maximization

problem can be rewritten as follows

max
ζ

W∑
b=ζ

(
W

b

)
λba(1− λa)W−b −

W∑
b=ζ

(
W

b

)
λbh(1− λh)W−b (15.20)

The optimal value of ζ can be computed using Lagrange method, where the

derivative of the function with respect to ζ is equalized to zero. Since ζ is an

integer, then the derivative of Pigna and Pignh are respectively given as follows

∂Pigna
∂ζ

= Pigna(ζ + 1)− Pigna(ζ) = −
(
W

ζ

)
λζa(1− λa)W−ζ (15.21)
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∂Pignh
∂ζ

= Pignh(ζ + 1)− Pignh(ζ) = −
(
W

ζ

)
λζh(1− λh)

W−ζ (15.22)

Accordingly, the first derivative of the function under optimization in (15.19)

can be given as follows

∂

∂ζ
(Pigna − Pignh) = −

(
W

ζ

)
λζa(1− λa)W−ζ +

(
W

ζ

)
λζh(1− λh)

W−ζ = 0 (15.23)

The binomial coefficients can be canceled, and the equation can be rearranged

as follows (
λa(1− λh)
λh(1− λa)

)ζ
=

(
1− λh
1− λa

)W
(15.24)

Now, by applying the natural logarithm for both sides, the optimal values of the

ignoring threshold that maximizes the difference between the ignoring proba-

bilities of attackers and honest CUs, denoted by ζ∗, can be given as follows

ζ∗ =

⌈
W

ln
(

1−λh
1−λa

)
ln
(λa(1−λh)
λh(1−λa)

)⌉ (15.25)

where d·e is the ceiling operator that should be applied to ζ∗ to make it an inte-

ger.

15.4.2 Worst-case scenario

For the purpose of exploring the high performance of the proposed attacker-

identification policy, we consider the worst case scenario. The worst case sce-

nario is represented when a large number of attackers is present confronted by

a low number of honest CUs (i.e., M � H).

The performance can be clearly shown in terms of the ignoring probability

of attackers and hones CUs. From (15.17), the ignoring probability of a CU

mainly depends on its corresponding λn probability. Considering the majority
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rule as the employed FR, notice that both probabilities given in (15.9) can be

respectively approximated in such scenario as follows

P (Ui = 0|un,i = 1 ∩H0)∣∣
wc

≈ 0 (15.26)

P (Ui = 0|un,i = 0 ∩H1)∣∣
wc

≈ 1 (15.27)

These approximations are valid since in the case of M � H the probability of

making a correct global decision (as in (15.26)) is almost absent and the proba-

bility of making a false global decision (as in (15.27)) is almost one.

Now, by substituting (15.26) and (15.27) in (15.9), the probabilities λh and λa

can be computed as follows

λh∣∣
wc

≈ P1(1− Pdh) (15.28)

λa∣∣
wc

≈ P1(1− Pda) (15.29)

Consequently, since Pdh → 1 and Pda → 0, then λh → 0 and λa → P1. Using

(15.17), it is easy to show that Pignh ≈ 0 while Pigna is still high, and hence,

attackers can be easily detected with a proper choice of ζ even in the worst-case

scenario.

The optimal ignoring threshold in the worst-scenario (ζ∗wc) can be also ap-

proximated by substituting (15.28) and (15.29) in (15.25), as follows

ζ∗wc ≈
⌈
W

ln
(
P0+P1Pdh
P0+P1Pda

)
ln

(
(1−Pda)(P0+P1Pdh)
(1−Pdh)(P0+P1Pda)

)⌉ (15.30)

15.5 Attacker-Punishment Policy

Ignoring the reports received from the identified CUs as attackers helps to im-

prove the overall performance of the network. However, a false identification
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is probable, where some honest CUs might be identified as attackers by error.

Moreover, as stated earlier, not all of attackers intentionally send false reports

to the FC. Some honest CUs suffer from multi-path fading and shadowing dur-

ing sensing or noisy reporting channels, leading to a bad sensing performance.

This type of honest CUs will appear like attackers at the FC side. Thus, de-

priving CUs that are identified as attackers from data transmission represents a

harmful action towards the unintentional attackers. On the other hand, provid-

ing the same transmission chance among all CUs does not attain fairness from

honest CUs’ point of view. Instead, in this section, we provide a novel schedul-

ing policy that distributes the spectrum resources among CUs in a proportional

fair manner. The proposed scheduling policy allocates scheduling probability

to each CU based on its sensing performance that appears at the FC. Such pol-

icy can be deemed as punishment for attackers, while it provides a fair resource

distribution for honest CUs.

The proposed policy is also based on delivery-based assessment as in the

proposed attacker-identification policy. Therefore, the assigned scheduling

probability for each CU depends on the instantaneous value of the counter B.

The scheduling probability of the nth CU is computed each CSS round as follows

Psn =
xi −Bn,i∑N
j=1(xi −Bj,i)

(15.31)

where xi represents the number of times in which the spectrum was identified

as “unused” by the global decision until the ith CSS round, expressed as follows

xi =


xi−1 + 1, if Ui = 0

xi−1, if Ui = 1

(15.32)

According to (15.31), an increase in the counterBn,i for a CU implies a magni-

fied punishment through reducing the scheduling probability. At ith CSS round,
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the value of xi follows a binomial distribution, where its average value can be

given as follows

xi = i · P (Ui = 0) (15.33)

where P (Ui = 0) is the probability that the spectrum will be identified as unused

at the FC, expressed as follows

P (Ui = 0) = P0(1− PF ) + P1(1− PD) = 1− P0PF − P1PD (15.34)

Consequently, using the average value of Bn,i given in (15.16), the average

value of Psn at the ith round can be easily derived as follows

Psn =
i · P (Ui = 0)− i · λn∑N

j=1

(
i · P (Ui = 0)− i · λj

) =
P (Ui = 0)− λn

NP (Ui = 0)−
∑N

j=1 λj
(15.35)

The reader should note that the computation of P (Ui = 0) and λn are differ-

ent before and after removing the identified attackers. scheduling probabilities

are computed based on the accumulated counters B and x, should be kept up-

dated as long as th CRN lasts.

According to the proposed punishment policy, the average achievable

throughput for an honest CU, denoted by Dh, can be expressed as follows

Dh = P0(1− PF )R · TtPsh (15.36)

where R is the data rate, Tt is the transmission time and Psh is the average

scheduling probability for an honest CU. The factor P0(1 − PF ) represents the

case of no false-alarm at the FC. On the other hand, the average achievable

throughput for an attacker, denoted by Da, is divided into two parts; legitimate

and illegitimate, and can be expressed as follows

Da = P0(1− PF )R · TtPsa + P0PF (1− PA
F )R · Tt · (1/M) (15.37)
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Notice that the first term (legitimate throughput) is identical to the honest CU

except the difference in the scheduling probability, while the second term in-

cludes the illegitimate throughput. The factor P0PF (1− PA
F ) represents the case

that a false-alarm occurs at the FC and no false-alarm made by the attackers’

global decision.

Likewise, the average energy consumption for an honest CU, denoted byEh,

is expressed as follows

Eh = Ecss + P (Ui = 0)Et · Psh (15.38)

where Ecss and Et are the energy consumed in spectrum sensing and data trans-

mission, respectively. For an attacker, the average energy consumed (Ea) is

given as follows

Ea = Ecss+P (Ui = 0)Et ·Psa+
(
P0PF (1−PA

F )+P1PD(1−PA
D )
)
Et ·(1/M) (15.39)

where the first, the second and the third terms refer to the energy consumed

in spectrum sensing, legitimate transmission and illegitimate transmission, re-

spectively.

As a comprehensive metric, the individual energy efficiency can be intro-

duced as the ratio of the average achievable throughput to the average energy

consumption, as follows

µ =
D

E
(15.40)

It is obvious from the proposed attacker-punishment policy that an attacker

will be punished by reducing its scheduling probability that yields in lower-

ing the achievable throughput, and consequently poor energy efficiency. Such

punishment can generate a reaction at the attacker side if its energy efficiency
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falls below a specific threshold. The expected reaction is represented by either

leaving the CR or quiting attacking ad switching to a honest mode.

15.5.1 Worst-case scenario

Considering the worst case scenario (M � H), the analysis can be divided into

two cases, (i) before removing the identified attackers (i ≤ W ), and (ii) after

removing the identified attackers (i > W ):

Case I : i ≤ W : as the number of attackers is very large, then both PD and PF

approximately equal to 0 and 1, respectively. Substituting that in (15.34), it can

be simplified as follows

P (Ui = 0)∣∣
wcI

≈ P1 (15.41)

Using (15.41) and the approximated values of λh and λa, given in (15.28) and

(15.29), the scheduling probability for an honest CU in the worst-case scenario

before removing identified attackers can be approximated as follows

Psh∣∣
wcI

≈ P1 − P1(1− Pdh)
NP1 −MP1(1− Pda)−HP1(1− Pdh)

≈ Pdh
MPda +HPdh

(15.42)

Likewise, the scheduling probability for an attacker in the worst-case scenario

before removing the identified attackers can be approximated as follows

Psa∣∣
wcI

≈ Pda
MPda +HPdh

(15.43)

As Pdh is usually much larger than Pda , the scheduling probability for an

honest CU should be larger than an attacker according to (15.42) and (15.43).
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Case II: i > W : The analysis of this case is different form the previous one

since the ignored attackers are no longer affecting the global decision. For sake

of simplification, we consider that all attacker have been removed and none

of the honest CUs are incorrectly removed. This assumption is reasonable and

can be attained by th proposed attacker-identification policy with a proper ad-

justment of ζ . Also, we consider that the CRN contains a sufficient number

of honest CUs that can attain high global detection probability (≈ 1) and low

global false-alarm probability (≈ 0) after removing attackers. By applying these

assumptions to (15.5) and (15.34), the following approximations can be obtained

λh∣∣
wcII

≈ P0Pfh (15.44)

λh∣∣
wcII

≈ P0Pfa (15.45)

P (Ui = 0)∣∣
wcII

≈ P0 (15.46)

However, these approximation can be directly applied to (15.35) since the

counters are affected by the first case (i ≤ W ). Instead, it can be applied to

(15.31) with taking into account the effect of the first case. Accordingly, the

scheduling probability for an honest CU in the worst-case scenario after remov-

ing the identified attackers can be approximated as follows

Psh∣∣
wcII

≈ WP1 + (i−W )P0 − TP1(1− Pdh)− (i−W )P0Pfh
N(WP1 + (i−W )P0)−M(WP1(1− Pda) + (i−W )P0Pfa)−H(WP1(1− Pdh) + (i−W )P0Pfh)

≈ WP1Pdh + (i−W )P0(1− Pfh)
WP1(MPda +HPdh) + (i−W )P0(N −MPfa −HPfh)

(15.47)

and for an attacker as follows

Psa∣∣
wcII

≈ WP1Pda + (i−W )P0(1− Pfa)
WP1(MPda +HPdh) + (i−W )P0(N −MPfa −HPfh)

(15.48)
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Comparing (15.47) and (15.48), the reader can notice that the scheduling

probability for an honest CU is larger than the scheduling probability for an

attacker since Pdh > Pda and Pfh < Pfa. Also, it can be noted that the difference

increases with time.

15.6 Performance Evaluation and Simulation Results

This section provides a comprehensive evaluation of the two proposed polices.

Particularly, we show the performance of the proposed attacker-identification

policy compared to the proposed policy in [118]. Briefly, the proposed attacker-

identification in [118] has the same procedure as ours except that the evaluation

is based on the agreement with the global decision taken at the FC. Regard-

ing the proposed attacker-punishment policy, as there is no similar policy in

the literature, we explore the performance by comparing the individual energy

efficiency between attackers and honest CUs.

A CRN of a fixed number of honest CUs (H = 5) is considered. The number

of attackers is left variable in order to show its influence on the different system

parameters and probabilities. The simulation parameters regarding the licensed

spectrum occupancy, energy consumption, and local sensing performance are

kept fixed as shown in Table 15.1. Other parameters which differ among figures

are listed in the caption of the corresponding figure.
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Table 15.1: Simulation Parameters
Parameter Value Parameter Value

P0 0.5 R 64 Kbps
Pdh 0.8 Tt 0.03 secs
Pfh 0.1 Ecss 11 mJ
Pda 0.1 Et 0.5 J
Pfa 0.8 FR Majority

15.6.1 Attacker-Identification Policy

The probability of incrementing the Bn counter, λn, plays a key role in the pro-

posed attacker-identification policy. Fig. 15.3 plots λn for honest CUs and attack-

ers versus the total number of attackers present in the CRN. The large difference

between λh and λa even for the whole range of M is due to the reliable evalu-

ation base, i.e., the data delivery, by which the counters are updated. Notice

that even in the case of large number of attackers, the honest CUs still have low

probability of incrementing their counters compared to the attackers. The initial

fluctuation in both curves is due to the FR and odd-even of the total number of

CUs (N ). For example, at M = 2 and M = 3, the total numbers of CUs are

N = 7 and N = 8, respectively, while the FR in both cases is K = 4. However,

the induced fluctuation diminishes as M increases. Another important note is

on the range of M � H , where both λh and λa stay constant and to the values

obtained in (15.28) and (15.29), respectively, which verifies the approximations

we made in the worst-case scenario.

The ignoring probability of attackers and honest CUs versus the ignoring

threshold for the proposed policy and [118] is shown in Fig. 15.4 at M = 1 and

in Fig. 15.5 at M = 10. In both figures and for both types of CUs, the ignoring

probability is a decreasing function of ζ . When the honest CUs represent the
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Figure 15.3: The counter’s incrementing probability for honest CUs (λh) and
attackers (λa) versus the total number of attackers (M ). (W = 30)

majority, Fig. 15.4 both policies present a good performance and all attackers

can be identified without ignoring any of the honest CUs when ζ is properly

adjusted. However, when th attackers pose the majority of the CUs, Fig. 15.5, the

ignoring probability of honest CUs is more than for the attackers in the policy

proposed in [118], whereas our proposal is still able to provide Pigna = 1 and

Pignh = 0 with a proper choice of ζ . This is due to the fact that the global decision

is used in [118] as evaluation base, which is mainly affected by the majority of

CUs, while our proposal is approximately unaffected by the majority of CUs.

The difference between the ignoring probabilities for attackers and honest
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Figure 15.4: The ignoring probability for honest CUs and attackers versus the
ignoring threshold (ζ). (W = 30, M = 1)

CUs, which is used as optimization objective, is shown versus ζ at different

durations of the evaluation time window (W ) in Fig. 15.6. The curve show a

convex shape that achieves its maximum at the optimal ignoring threshold (ζ∗).

From Fig. 15.4, Fig. 15.5 and Fig. 15.6, the importance of optimizing ζ is clear.

Thus, we use the optimal ζ that maximizes the difference between Pigna and

Pignh for the two policies to find the number of ignored attackers and honest

CUs versus the total number of attackers, as shown in Fig. 15.7. Regarding our

proposal, almost all attackers can be identified whatever their number, and, at

the same time, none of the honest CUs will be incorrectly identified as attacker.

On the other hand, the proposal of [118] works well only when the majority of
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Figure 15.5: The ignoring probability for honest CUs and attackers versus the
ignoring threshold (ζ). (W = 30, M = 10)

CUs are honest. In the case of the majority being attackers, the proposal either

identifies all CUs as attackers or does not identify any of them as attackers.

15.6.2 Attacker-Punishment Policy

As we have shown the performance of the proposed attacker-identification

policy in the previous results, we now investigate on the performance of the

attacker-punishment policy. Particularly, the influence on the individual energy

efficiency of attackers and honest CUs will be shown before and after removing

the identified attackers from the fusion process. Notice that, as the energy effi-
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Figure 15.6: The difference between ignoring probability for attackers (Pigna)
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W . ( M = 1)

ciency combines both the throughput and energy consumption together, there

is no need to show them individually.

Fig. 15.8 shows the individual energy efficiency of an attacker and honest

CU versus the total number of attackers before removing the identified attack-

ers, i.e. when i ≤ T . The individual energy efficiency of honest CUs decreases as

the number of attackers increases due to the increase in the false alarm and the

missed detection rates. Increasing the false-alarm rate degrades the achievable

throughput, while increasing the missed-detection rate wastes the energy con-

sumption. The individual energy efficiency of an attacker initially increases and

then starts decreasing as the number of attacker increases, as shown in Fig. 15.8.
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There are two reasons of the initial improvement. The first reason is that in-

creasing the number of attackers will increase the false-alarm rate in the global

decision taken at the FC, which increases their chances to exploit the unoccu-

pied channel in an illegitimate transmission. The second reason is decreasing

the false alarm rate in the decision made cooperatively by the attackers them-

selves. However, at large number of attackers, the individual energy efficiency

degrades as they equally share the illegitimate transmission. An important note

is that if we equally distribute the legitimate transmission opportunities among

all CUs, i.e. without punishment, an attacker will legitimately achieve the same

energy efficiency as an honest CUs, and due to the illegitimate transmission
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attackers will achieve higher energy efficiency than honest CUs.

From Fig. 15.8, the proposed attacker-punishment policy succeeds i reducing

the energy efficiency of attackers at low number of attackers. However, in the

presence of large number of attackers the proposed policy can not provide the

desired performance unless the attackers are removed. Fig. 15.9 and Fig. 15.10

plot the individual energy efficiency of an attacker and an honest CU versus

the ignoring threshold (ζ) after removing the identified attackers at M = 1 and

M = 10, respectively. Apparently, ζ has a significant role in the performance

of the attacker-punishment after removing the identified attackers (i > W ). A

proper choice of ζ can remove all attackers from the fusion process and leave

only the honest CUs. Hence, the former effect of the attackers on the sensing

performance (PD and PF ) will be totally eliminated, which consequently, re-

duces the illegitimate throughput of attackers. Notice that at ζ = W , none of the

attackers nor the honest CUs will be removed and thus the obtained values will

be exactly as in the case of i ≤ W .

The optimization of ζ should be carried out in order to avoid punishing

honest CUs rather than attackers. In Fig. 15.11, ζ is set to the optimal value,

and the individual energy efficiency of an attacker and an honest CU are found

versus the number of attackers. The high performance of the proposed attacker-

punishment policy clearly appears in the difference in the energy efficiency even

in the case of large number of attackers. The individual energy efficiency of an

honest CU slightly decreases as the number of attackers increases due to the

increase in the probability of not-detecting some of the attacker as their num-

ber increases. However, the energy efficiency of an honest CU is still more than

twice the energy efficiency of an attacker.
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Figure 15.8: The individual energy efficiency of an honest CUs and an attacker
versus the total number of attackers (M ) before removing the identified attack-
ers (i ≤ W ). (W = 30)

15.7 Summary

Two policies to combat spectrum sensing data falsification attackers in

infrastructure-based cognitive radio networks have been proposed. The first

policy is an attacker-identification policy that aims at detecting attackers and

ignoring their reported sensing results. The second is an attacker-punishment

policy that redistributes the transmission opportunities among users based on

their local performance. Both policies are developed based on a novel ap-

proach for assessing the local performance according to the delivery of the
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Figure 15.9: The individual energy efficiency of an honest CUs and an attacker
versus the ignoring threshold (ζ) after removing the identified attackers (i > W ).
( M = 1, W = 30).

transmitted data. Analytical and simulation results have shown that the at-

tacker -identification policy is able to identify attackers whatever their number

in the network. Also, it has been shown through simulations that the proposed

attacker-punishment policy is able to punish attackers by degrading their indi-

vidual energy efficiency compared to the honest users.
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Figure 15.10: The individual energy efficiency of an honest CUs and an attacker
versus the ignoring threshold (ζ) after removing the identified attackers (i > W ).
( M = 10, W = 30).
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Figure 15.11: The individual energy efficiency pf an honest CUs and an attacker
at the optimal ignoring threshold (ζ∗) versus the total number of attackers (M )
after removing the identified attackers (i > W ). (W = 30, ζ = ζ∗)
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CHAPTER 16

A LOW-OVERHEAD SECURITY PROTOCOL FOR COOPERATIVE

SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

16.1 Introduction

A possible approach to prevent SSDF outsider attack in CSS is to create a se-

cure link between CUs and FC, implying that only the reported results from

authenticated CUs are accepted and used to make the final decision. In a secure

link, authentication and integrity are fundamental properties. The receiver of

a data message is able to recognize that the conveyed information comes from

the legitimate sender (authentication) and the information was not modified

in transit (integrity). However, due to the overhead required in cryptographic

mechanisms, previous works on this field are mainly based on intrusion detec-

tion techniques instead of using cryptographic operations.

In this chapter, we propose a low-overhead symmetric cryptographic mech-

anism that reduces the effects of the external attackers on the detection accuracy

and the energy efficiency of the legitimate network. To the best of our knowl-

edge, introducing authentication in the centralized CSS process has never been

proposed previously in the literature.. The proposed mechanism implies that

the FC and legitimate CUs share some data that are used to generate authenti-

cation code reported to the FC. The required data are updated by the FC and

sent to the legitimate CUs. However, using a cryptographic mechanism gener-

ates long codes that should be reported to the FC, which results in extra energy

consumption. For this reason, the generated code is truncated to a small num-

ber of bits that is further optimized to maximize detection accuracy and energy
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efficiency.

A related work can be found in [136], where authors also show the efficiency

of introducing the authentication in non-centralized CSS based on ad-hoc CRN

scenario. However, the considered scenario in [136] implies performing authen-

tication and integrity between each two neighboring CUs. Hence, the require-

ments of this scenario are different and do not allow for the novelties proposed

in our protocol. Namely, the protocol in [136] suggests unique keys per CU pair,

user identities are mandatory and no variability on the security bits is proposed.

16.2 System Model

We consider a CRN consisting of L legitimate CUs that try to access a licensed

spectrum whenever it is free. The probability that the spectrum is not being

used by any licensed user is denoted by P0. In order to avoid collision with

licensed users, each CU is enforced to sense and make a local binary decision

ui{1, 0} about the spectrum status. If ui = 1, then the CU decides that the spec-

trum is used. Otherwise, the spectrum is identified as unused by the ith CU. The

reliability of the local decision ui is evaluated by the local detection probability

(Pd,i) and the local false-alarm probability (Pf,i).

In view of CSS, all local decisions have to be reported to the FC, where the

K-out-of-N rule [45] is employed to process these received decisions in order to

make a global decision about spectrum occupancy. However, due to the effects

of the channel between CUs and FC, called reporting channel, the reported deci-

sions may be received in error [23]. We adopt a symmetric noisy channel model

for the reporting channel between the FC and each CU with a bit-error rate Pe,i.
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However, in such an environment, it is possible to have some other CUs that

try to invade the legitimate CRN, and consequently, degrade the overall perfor-

mance. These CUs are usually called attackers or malicious users. The strategy

of these attackers consists of reporting false data about the spectrum status in

order to mislead the global decision of the CRN. There are several types of at-

tacks based on the reported false data. In this work, we consider the worst case,

where the attacker reports a decision that is the opposite of its actual spectrum

sensing result. Without loss of generality, we assume that all legitimate CUs

have equal local detection and false-alarm probabilities represented by Pd and

Pf , respectively. Also, all attackers have local detection and false-alarm prob-

abilities represented by qd and qf , respectively. The number of attackers is de-

noted by M so that the total number of CUs, legitimate and attackers, becomes

N = L+M . Also, the quality of reporting channel is considered identical for all

CUs, legitimate and attackers, with a bit-error probability Pe.

The overall detection accuracy of CSS process is assessed by computing two

metrics regarding the global decision, namely, the overall detection probability

(PD) and the overall false alarm probability (PF ). Both probabilities are com-

bined in one metric that indicates the false-decision probability, denoted by ε,

given as follows:

ε = P0PF + P1(1− PD) (16.1)

where P1 = 1−P0. The first term in (16.1) refers to the false alarm case, whereas

the second term represents the missed detection case.

The overall performance of the cognitive transmission is measured by the

obtainable energy efficiency (µ) of the considered CRN. Energy efficiency is
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given as follows

µ =
P0(1− PF )RTt
Ecss + PunusedEt

(16.2)

where R is the data rate in bps, T is the transmission time, Et is the transmit

energy by the scheduled CU, Punused is the transmitting probability and Ecss is

the energy consumed by all legitimate CUs during CSS.

Since the reported decisions are submitted without any accompanied trans-

mitter identification, the decisions reported by attackers will be considered and

processed together with decisions from legitimate CUs. Thus, the resulting de-

tection accuracy will be influenced, and consequently, the obtainable energy

efficiency. The degradation in overall performance of the CRN depends on the

number of attacks, their actual local performance, and the reporting channel

quality. Next, we discuss the conventional insecure CSS in detail, and then we

propose a novel secure CSS that can mitigate the impact of the malicious users.

16.3 Conventional (Insecure) Cooperative Spectrum Sensing

In conventional CSS, local decisions made by CUs are reported to the FC as

they are, i.e., no security protocol is applied. This is due to the small amount

of the reported data (a single bit), avoiding any transmission delay and saving

the limited energy resources. Consequently, all reports from legitimate and at-

tacker CUs are received at the FC and handled as honest reports, since the FC

has no ability to distinguish between CUs. However, due to channel impair-

ments, the transmitted local decision may be corrupted, and thus, inverted at

the FC. Therefore, the local performance of each CU will appear at the FC dif-

ferently from the actual values. Let us define Px and Py as the local detection
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and local false-alarm probabilities for a legitimate CU as they appear at the FC,

respectively. Px and Py are expressed as follows

Px = Pd(1− Pe) + (1− Pd)Pe (16.3)

Py = Pf (1− Pe) + (1− Pf )Pe (16.4)

and similar quantities for an attack are defined as follows:

qx = qd(1− Pe) + (1− qd)Pe (16.5)

qy = qf (1− Pe) + (1− qf )Pe (16.6)

According to the K-out-of-N FR, the overall detection and false-alarm prob-

abilities of conventional CSS can be expressed in mathematical forms for arbi-

trary values of K as follows:

P insec
D =

N∑
k=K

(Nk)∑
j=1

∏
i∈A(N,k)

j

Px,i
∏

i/∈A(N,k)
j

(
1− Px,i

)
(16.7)

P insec
F =

N∑
k=K

(Nk)∑
j=1

∏
i∈A(N,k)

j

Py,i
∏

i/∈A(N,k)
j

(
1− Py,i

)
(16.8)

where A(N,k)
1 , A

(N,k)
2 , ..., A

(N,k)

(Nk)
represent all the possible combinations of k inte-

gers drawn from the interval [1, N ], where the number of these combinations

is
(
N
k

)
. Notice that if the ith CU is a legitimate (an attacker), Px,i and Py,i are

replaced by Px and Py (qx and qy), respectively.

A popular FR that is derived from the K-out-of-N FR by setting K = 1 is

called OR-Rule. In OR-Rule, if at least one local decision is received at the FC
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as 1, then the global decision will be 1. Otherwise, the global decision is 0. In

this work we adopt OR-Rule as the employed FR since it is preferred as it limits

the induced interference to the licensed users by reducing the missed detection

probability. Both (16.7) and (16.8) can be rewritten for OR-Rule as follows, re-

spectively

P insec
D = 1−

(
1− Px

)L(
1− qx

)M (16.9)

P insec
F = 1−

(
1− Py

)L(
1− qy

)M (16.10)

The achievable false-decision probability, εinsec, transmission probability

(P insec
t ) and energy efficiency (µinsec) for conventional CSS can be easily com-

puted by proper substitution of P insec
D , P insec

F and Einsec
css instead of PD, PF and

Ecss in (16.1), (5.2) and (16.2), respectively. Einsec
css denotes the energy consump-

tion during sensing and reporting by all legitimate CUs in conventional CSS,

which is defined as follows

Einsec
css = LEs + LEr (16.11)

where Es and Er is the energy consumed in local sensing and result reporting

for one CU, respectively.

In the view of OR-Rule, the effects of the performance of malicious users

can be clearly seen in (16.9) and (16.10), where decreasing qx decreases P insec
D

and increasing qy increases P insec
F . As previously mentioned, these effects are

directly reflected on the achievable energy efficiency of the legitimate CRN.
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16.4 Secure Cooperative Spectrum Sensing

This section introduces a security protocol to prevent CSS from spectrum sens-

ing data falsification attacks under a trade-off between security and energy ef-

ficiency. This protocol consists of a low-overhead security mechanism based on

symmetric cryptography with a tunable number of security bits. The objective

of the security mechanism is to authenticate the spectrum sensing reports from

legitimate CUs and reject reports from malicious users with a probability that is

proportional to the number of security bits.

The proposed mechanism is based on the generation of unforgeable Mes-

sage Authentication Codes (MAC) [137] that are computed and sent by legiti-

mate CUs and validated by the FC. A MAC is a sequence of B bits generated

with a Hash function H(·) [138]. A Hash function is a one-way function that

always outputs a fixed length bit sequence for an input data of arbitrary length.

Hash functions cannot be inverted, thus for a given output it is computably im-

possible to obtain the input data. Moreover, a secret key that is only known

by legitimate CUs and the FC is used for MAC generation, depriving malicious

users of the capability of MAC generation. These features make MACs very

suitable for data authentication and integrity. The drawback is the MAC length;

a hash function output is commonly between 128 and 256 bits (depending on

the function), thus this technology may have a high cost in low debit systems

(systems with small data transmissions). In the proposed mechanism the MAC

is truncated to the first B bits, in order to achieve less security overhead and

increased energy efficiency in a tread-off with security.

On the contrary with respect to digital signatures, where computation of
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intensive public key cryptography is used, MAC uses a pre-shared symmetric

key (PSK) between the intended participants, the legitimate CUs and the FC. In

the proposed approach, at initialization phase, the FC must agree on a Master

Session Key to all legitimate CUs. The MSK can be obtained by encrypting the

MSK with a long term PSK, by using extensible authentication protocol (EAP)

[139] or by means of digital certificates (DC) [140]. After initialization phase,

legitimate CUs and FC use the MSK to derive a Temporal Key (TK) that can be

used to provide authentication, integrity and/or confidentiality. TK computa-

tions is performed with a Hash function and triggered by the FC that provides

the extra information required: “TK = H(Info || MSK)” (where the operator ||

refers to concatenation of two bit sequences). The sequence Info is computed

randomly by the FC and provided to all legitimate CUs. This information is

periodically sent by the FC in order to renew the TK. The lifetime of a TK is re-

lated to a timer or the volume of secured traffic exchanged. Note that the MSK

is only used for TK derivation, it has little exposure, so there is no need for its

periodical renewal. It is worth noting that it is common practice to provide a

unique MSK per CU, hence unique TK. In our protocol, however, all authen-

ticated users share the same MSK and TK, hence there is no need to add the

identities of the legitimate CUs in the reports for authentication purposes. The

FC only needs to distinguish between legitimate CUs and malicious users, but

there is no need to differentiate legitimate CUs.

In each spectrum sensing round, the legitimate CUs independently compute

the same MAC using the TK and a new Nonce (random number used only once)

sent by the FC and truncate this MAC to the first B bits:
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MAC =
⌈
H(TK||Nonce)

⌉B (16.12)

where the function
⌈
x
⌉y denotes the truncation operation of x to the first y bits.

Upon computing the MAC, each legitimate CU will produce the report that

should be transmitted to the FC, as follows

Report = MAC ⊕ ui (16.13)

where ⊕ denotes the ’XOR’ operator. Function (16.13) implies that if the local

decision identifies the channel as unused, i.e., ui = 0, the transmitted report of

the corresponding legitimate CU will be exactly as the MAC. On the other hand,

if the channel is identified as used, i.e, ui = 1, the transmitted report will be the

inverse of the generated MAC.

At the FC side, the FC generates the same MAC and validates the received

reports matching with the MAC or its inverse as ’0’ or ’1’, respectively. Any

other reports will be neglected. Remember that all CUs compute the same MAC

because they use the same TK and the same nonce. The Nonce is provided

during the initialization phase (when the FC authenticates CUs and provides the

MSK) and is renewed in every spectrum sensing round when the FC provides

the decision on the channel availability. The Nonce prevents against replay-

attacks [138] since the generated MACs in consecutive spectrum sensing rounds

are different. Thus, an attacker cannot obtain a valid report from a legitimate

CU and re-submit it in a different period. The replay attack that is able to submit

a report at the same spectrum sensing period will be discussed later. Fig. 16.1

illustrates how the proposed security protocol works.

The difference between the proposed authentication mechanism and com-

mon security mechanisms is the truncation of the MAC, and the absence of of
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Figure 16.1: Description of the security protocol proposed and message exchage.
The symbol ⊕ refers to the arithmetic operation “xor”.
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any extra information transmitted with the report, i.e. CUs identities and the

authenticated data (sensing information). This is possible due to the special

characteristics of the CRN scenario, where there is no need to differentiate le-

gitimate CUs and the transmitted sensing information is binary, i.e. ’busy’ or

’available’ channel.

The penalty for the MAC truncation is that the malicious users can now ran-

domly pick a sequence of B bits and get its report validated by the FC if it

matches the actual MAC or its inverse. As a consequence, our proposal presents

a trade-off between the energy consumed in overhead for authentication pur-

poses and the level of security achieved. However, the fact of truncating the

MAC to a small sequence of bits has no further disadvantages in terms of secu-

rity. Note that the decrease of the MAC length produces an increase in the prob-

ability of collision (probability of finding messages producing the same given

MAC), thus it protects the TK against brute force search [138], providing TKs

with longer lifetime. Moreover, the avalanche effect of hash functions (capabil-

ity of significantly change the output when a minor change occurs in the input)

maintains the effectiveness of the proposed protocol even when B is small.

16.4.1 Detection Accuracy and Energy Efficiency

Following the proposed secure protocol, a received report at the FC from a le-

gitimate CU will be validated only if it matches the actual MAC or its inverse.

However, considering the noisy reporting channel, the sent reports may suffer

from probable error during transmission, and thus, arrive at the FC modified.

At the FC, the received report will be regarded only in two cases: either all the
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B bits remain unaffected or all of them have been inverted. In all other cases,

the report will be neglected. Mathematically, the validation probability of a re-

ceived report from legitimate CU (P leg
val ) is given as follows for legitimate CU,

P leg
val = (1− Pe)B + PB

e (16.14)

while the neglecting probability of a received report from a legitimate CU (P leg
neg)

is given as follows

P leg
neg = 1− (1− Pe)B − PB

e (16.15)

Accordingly, P leg
x and P leg

y will be different from the case of conventional CSS

due to the multiple-bit report, which can be respectively expressed as follows

P leg
x = Pd(1− Pe)B + (1− Pd)PB

e (16.16)

P leg
y = Pf (1− Pe)B + (1− Pf )PB

e (16.17)

Clearly, as report length increases, both P leg
x and P leg

y will be decreased.

While the decrease in P leg
x degrades the overall detection probability, the de-

crease in P leg
y improves the overall false-alarm probability.

Regarding the performance of the attack according to secure CSS, we con-

sider that a malicious users generates a random report of B bits and transmits

it to the FC. Similar to the legitimate CUs, the attack report will be validated

only if its identical to the MAC (validated as 0) or its inverse (validated as 1). In

all other cases, the report will be neglected. Thus the validating and neglecting

probability for an attack are respectively given as follows

P att
val =

2

2B
(16.18)

P att
neg = 1− 2

2B
(16.19)
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Compared to the conventional insecure CSS, the validation probability of

attacker’s report is reduced from 1 to 2
2B

that decreases as B increases, while the

neglecting probability is increased from 0 to 1− 2
2B

that increases as B increases.

By the same way, the detection and false-alarm probabilities of an attacker

as it appears at the FC can be evaluated as follows

qsecx = qd
1

2B
+ (1− qd)

1

2B
=

1

2B
(16.20)

qsecy = qf
1

2B
+ (1− qf )

1

2B
=

1

2B
(16.21)

It is worth noting that both qsecx and qsecx are independent of the actual local

performance, i.e., qd and qf , and of the channel effects, i.e., Pe, representing the

main benefit of the proposed security protocol. This independence is due to the

random generation of the report.

Fig. 16.2 shows the sensing performance of the legitimate CUs and the at-

tackers versus B and Pe. At a given Pe, as increasing B results in a decreasing

the probability of receiving an error-free report, it decreases the detection prob-

ability of an honest CU. However, the false-alarm probability of both types of

users is decreased as B increases. Notice that the degradation rate with respect

to B on the performance of an attacker is much faster than it on the sensing

performance of an honest CU.

The effects of Pe on the individual performance of users are shown in

Fig. 16.2-b. As can be seen, both P leq
x and P leg

y start from their initial values,

Pd and Pf respectively, and draw a convex curve as Pe increases with minimum

values at Pe = Pd and Pe = Pf , respectively. The cnvex shape is due to the

contrasting effects of increasing Pe as they appear in the two terms of (16.16) or
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(16.17). The constant value of the qsecx (≡ qsecy ) can be interpreted as a result of the

random generation of the reports by the attackers accompanied by symmetric

uniform noisy reporting channel.
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Figure 16.2: The sensing performance for a legitimate CU and an attack versus (a)
report length at Pe = 0.05 and (b) bit error probability at B = 2. In both curves
Pd = 0.7, Pf = 0.2, qd = 0 and qf = 1.

The overall detection accuracy of the proposed secure CSS, represented by

the overall detection (P sec
D ) and false alarm probabilities (P sec

F ), can be easily ob-

tained by replacement of the local performance of legitimate CUs and attackers

in (16.9) and (16.10) by the values indicated in (16.16), (16.17), (16.20) and (16.21),

as follows

P sec
D = 1−

(
1− P leg

x

)L(
1− 1

2B
)M (16.22)

P sec
F = 1−

(
1− P leg

y

)L(
1− 1

2B
)M (16.23)

The achievable false-decision probability for secure CSS, denoted by εsec, the
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achievable energy efficiency for secure CSS, denoted as µsec, and the transmis-

sion probability for secure CSS, denoted as P sec
unused, can be easily obtained by

replacing PD and PF in (16.1), (16.2) and (5.2) by P sec
D and P sec

F , given in (16.22)

and (16.23), respectively. While the average total energy consumption during

CSS Ecss in (16.2) should be replaced by Esec
css that is expressed as follows

Esec
css = LEs + LBEr (16.24)

16.4.2 Performance in Presence of Replay Attacks

The attack considered in our study consists of a random computation of B bits

by the malicious user. The performance of this attack is formulated in previous

section. However, in this scenario the special case of replay attacks must be

carefully evaluated.

A replay attack in CSS is performed by a malicious user, and consists in the

re-submission of a valid report from a legitimate user. In general, the effective-

ness of a replay attack depends on two parameters, (i) the ability of the attacker

to distinguish the legitimate CUs from other attackers, and (ii) the ability to per-

fectly hear the report. We must also assume that the security protocol is pub-

lic and the attacker knows that the different sensing decisions are represented

by inverted bit sequences. Now let us consider a worst-case scenario, where

a malicious user first intercepts an error-free report from a legitimate CU and

then inverts the bit sequence. The attacker can only use the inverted report in

the current spectrum sensing session since the following session uses a unique

nonce, leading to a different MAC. If the attacker uses the intercepted report

in a different sensing period the effectiveness of such an attack is equivalent
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of computing randomly the B bits (the attack considered in previous section).

In our study we make the reasonable assumption that there is no enough time

window to efficiently perform a replay attack within only one spectrum session

period. However, the implications of such an attack are derived in this section.

If an attacker is able to intercept, invert and re-submit a valid report in the same

spectrum sensing session, it will severely affect the performance of the CSS. The

attacker will perform exactly opposite to the legitimate CU. Thus, its sensing

performance at the FC is represented as follows:

qrex = (1− Pd)(1− Pe)B + PdP
B
e (16.25)

qrey = (1− Pf )(1− Pe)B + PfP
B
e (16.26)

Unlike the performance of the normal attack where the bit sequence is ran-

domly obtained, described in (16.20) and (16.21), the performance of the replay

attack depends on the sensing performance of the legitimate CUs and the re-

porting channel quality.

It is worth noting the importance of using random numbers (nonces) for

MAC generation. No sequential numbers are valid, since the attacker could

predict a future sequential number, then it could play the role of the FC and

challenge an honest CU in order to obtain a valid Hash-MAC for the sensing

period of the predicted sequence number.
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16.5 Comparison and Performance Optimization

The report length, i.e., B, of the proposed secure CSS is a key parameter in the

evaluation of the overall performance with respect to detection accuracy and

energy efficiency. Generally, longer report increases the neglecting probability

of an attacker (16.19). On the other hand, the probability of receiving an error-

free report from a legitimate CU decreases, thus increasing the probability of

neglecting a valid report from the legitimate CU (16.15). These two contrasting

factors impact the overall detection accuracy and the energy efficiency. Thus,

the report length should be optimized based on the above observations. We

start this section by proving that a single-bit secure CSS can outperform the

conventional insecure CSS under any circumstances in both detection accuracy

and energy efficiency.

16.5.1 Secure CSS vs Insecure (Conventional) CSS

Let us denote the secure CSS when B = 1 by single-bit secure CSS. Notice that

P leg
x , P leg

y , and Esec
css for single-bit secure CSS are identical for the corresponding

values in conventional CSS, and the differences are in the values of qx and qy,

which affects PD, PF , ε and µ. In this subsection we prove the superiority of the

single-bit secure CSS over conventional CSS in terms of ε and µ.

Regarding ε, the superiority of the single-bit secure CSS can be ensured if the

following condition is satisfied

εsec ≤ εin (16.27)
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which can be rewritten as follows

P1(1− P sec
D ) + P0P

sec
F ≤ P1(1− P in

D ) + P0P
in
F (16.28)

P1(1−P leg
x )L(

1

2
)M+P0

(
1−(1−P leg

y )L(
1

2
)M
)
≤ P1(1−Px)L(1−qx)M+P0

(
1−(1−Py)L(1−qy)M

)
(16.29)

since P leg
x = Px and P leg

y = Py at B = 1, then the previous condition can be

simplified as

P1(1−Px)L
(

(
1

2
)M − (1− qx)M

)
+P0(1−Py)L

(
((1− qy)M − (

1

2
)M
)
≤ 0 (16.30)

Based on the fact that qx ≤ 0.5 ≤ qy for any attack1, the two terms in (16.30)

are negative, and thus the condition given in (16.27) is always satisfied. There-

fore, the single-bit-secure CSS always provides less false-decision probability

than the conventional CSS.

Similarly, the sufficient condition in energy efficiency is formulated as fol-

lows

µsec ≥ µin (16.31)

which can be rewritten as follows

P0(1− P sec
F )RTt

Esec
css + P sec

t Et
≥ P0(1− P in

F )RTt
Ecss + P in

t Et
(16.32)

since Esec
css = Einsec

css when B = 1, and by performing cross product and some

cancellation in both sides, the previous condition is rewritten as follows

(1− P sec
F )(Ecss + P in

t Et) ≥ (1− P in
F )(Ecss + P sec

t Et) (16.33)
1Notice that if an attack has qx > 0.5 or qy < 0.5, it no longer will be considered as an attack.
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using (16.10) and (16.23), (16.33) can be rearranged into

Ecss(1− Py)L
(

(
1

2
)M − (1− qy)M

)
+Et(1− Py)L

(
(
1

2
)MP in

t − (1− qy)MP sec
t

)
≥ 0

(16.34)

substituting the values of P in
t and P insec

t , the previous formula results in

Ecss(1−Py)L
(

(
1

2
)M−(1−qy)M

)
+Et(1−Py)L(1−Px)L(

1

2
)M
(

(1−qx)M−(1−qy)M
)
≥ 0

(16.35)

Now, it is easy to note that both terms are positive and thus the condition in

(16.31) always holds.

It is worth mentioning that the superiority of the single-bit secure CSS over

the conventional CSS is satisfied regardless the number of the attackers, the per-

formance of attackers, the performance of the legitimate CUs and the reporting

channel quality.

16.5.2 Report Length Optimization

As we have proved the superiority of the proposed single-bit secure CSS over

the conventional secure CSS, we now formulate optimization problems for the

report length for different objectives. Minimizing the false-decision probability

and maximizing the achievable energy efficiency represent the major interests

of any system designer in the framework of cognitive radio networks.

The optimal report length, i.e., number of security bits, that minimizes false

decision probability, denoted by Bminε can be expressed as follows

Bminε = arg min
B
εsec = arg min

B
P1 − P1P

sec
D + P0P

sec
F (16.36)
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by using Lagrange method, Bminε can be found by solving the following equa-

tion

P1
∂P sec

D

∂B
= P0

∂P sec
F

∂B
(16.37)

Let us consider (1 − Pe)B ≈ 1 − PeB and PB
e ≈ 0, then P leg

x and P leg
y can be

rewritten respectively as follows

P leg
x = Pd(1− PeB) (16.38)

P leg
y = Pf (1− PeB) (16.39)

Accordingly, the first derivative of P sec
D and P sec

F are computed as follows

∂P sec
D

∂B
= −M(1− P leg

x )L ln 2

2B − 1
− L(1− P leg

x )L−1PdPe (16.40)

∂P sec
F

∂B
= −

M(1− P leg
y )L ln 2

2B − 1
− L(1− P leg

y )L−1PfPe (16.41)

By substituting (16.40) and (16.41) into (16.37), and after some mathemati-

cal processes, the optimal number of bits that minimizes ε can be expressed as

follows:

Bminε = log2

(
M
(
P0(1− P leg

y )L − P1(1− P leg
x )L

)
ln 2

LPe
(
P0Pf (1− P leg

y )L−1 − P1Pd(1− P leg
x )L−1

) + 1

)
(16.42)

Another important objective is to maximize energy efficiency. The optimal

report length that maximizes energy efficiency can be found by solving the fol-

lowing problem

Bmaxµ = arg max
B

µsec = arg max
B

P0(1− P sec
F )RTt

Esec
css + P sec

t Et
(16.43)

Similar to (16.36), Bmaxµ can be found using Lagrange method

∂µsec

∂B
= 0 (16.44)
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which can be rewritten as follows

(Esec
css + P sec

t Et)
∂P sec

F

∂B
+ (1− P sec

F )(NEr + Et
∂P sec

t

∂B
) = 0 (16.45)

Clearly, obtaining a closed form for Bmaxµ is analytically intractable. How-

ever, a simple bisection search algorithm can be employed to find the optimal

value of B that maximizes energy efficiency.

16.6 Performance Evaluation and Simulation Results

A number of CUs N = 5 is assumed, where L of them are legitimate CUs,

while the rest M = 5−L are considered as attackers. All simulation parameters

regarding local sensing performance for legitimate CUs and attackers, energy

consumption and network specifications are summarized in Table 16.1.

Table 16.1: Simulation Parameters
Parameter Value Parameter value

P0 0.5 Pd 0.7
Pf 0.2 qd 0
qf 1 R 64K bps
Tt 0.1 s Es 2× 10−4 Joule
Er 1× 10−3 Joule Et 1× 10−1 Joule

Fig. 16.3 plots the overall detection and false-alarm probabilities of the pro-

posed secure CSS versus report length, bit-error probability and number of at-

tackers. The system performance increases when the probability of detection

increases and the false-alarm probability decreases. As it can be appreciated in

Fig. 16.3-a, longer reports decrease both P sec
D and P sec

F due to the fact that increas-

ingB decreases the probability of receiving error-free reports, affecting the local
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sensing performance of the legitimate CUs and attackers as well (this effect is

indicated in Fig. 16.2). In Fig. 16.3-b, the false-alarm and detection probabilities

are given for different values of bit-error probability due to different channel

conditions. With the increase of bit-error probability P sec
D is reduced and P sec

F

is magnified. This is because increasing the bit-error probability of reporting

channel increases the probability of validating reports as inverted. Similarly,

increasing the number of attackers (or decreasing the number of honest CUs)

will negatively affect both, decreasing P sec
D and increasing P sec

F , as shown in

Fig. 16.3-c.
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Figure 16.3: The overall detection and false-alarm probabilities for the considered CRN
using the proposed secure CSS versus (a) report length at Pe = 0.05 and M = 1, (b)
bit error probability at B = 2 and M = 1, and (c) number of attacks at B = 2 and
Pe = 0.05.

In the following, we evaluate the performance of the proposed secure CSS
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in terms of false-decision probability and energy efficiency versus B, Pe and M .

Moreover, in each figure we show the performance of the conventional insecure

approaches in order to better show the superiority of our proposal.

Fig. 16.4, Fig. 16.5 and Fig. 16.6 compare between the two different ap-

proaches in terms of the false-decision probability. In Fig. 16.4, for M = 1 and

Pe = 0.15, the proposed secure CSS outperforms the other approach as the re-

port length increases. The conventional CSS shows a constant false-decision

probability since it is independent of B. Regarding the secure approach, it

presents a convex curve. This is because a small number of security bits B

highly reduces the impact of malicious users. However when B increases more

degradation appears on the sensing performance of the legitimate CUs.
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Figure 16.4: The false-decision probability (ε) versus the report length (B) whenM = 1
and Pe = 0.15.
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It is worth noting from Fig. 16.4 that the secure CSS protocol requires op-

timizing B to attain the minimum false-decision probability. In Fig. 16.5 and

Fig. 16.6, the minimum false-decision probability, which is achieved by opti-

mizing B, is plotted versus bit-error probability and the number of attackers,

respectively. In both figures, the minimum false-decision probability increases

for both approaches when the bit-error probability of the reporting channel in-

creases, Fig. 16.5, or when the number of attackers increases, Fig. 16.6. This is be-

cause both effects degrade the overall detection accuracy as shown in Fig. 16.3.

The secure CSS approach outperforms the conventional CSS.
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Figure 16.5: The minimum false-decision probability versus the bit error probability
(Pe) when M = 1.

The comparison between the two different approaches in terms of the en-

ergy efficiency is addressed in Fig. 16.7, Fig. 16.8 and Fig. 16.9. In Fig. 16.7, for

M = 1 and Pe = 0.25, the achievable energy efficiency for the the considered
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Figure 16.6: The minimum false-decision probability versus the number if attackers
(M ) when Pe = 0.2.

approaches versus the report length is shown. The conventional CSS presents

the lowest energy efficiency which is independent of the report length. On the

other hand, the secure CSS proposal draws a concave curve, which can be inter-

preted as a result of the effects on the detection accuracy which can be reflected

on energy efficiency, see (16.2).

The optimal report length that maximizes energy efficiency is used to plot

the maximum energy efficiency versus Pe and M in Fig. 16.8 and Fig. 16.9, re-

spectively. In both figures, the proposed protocol keeps attaining higher energy

efficiency than the conventional approach.
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Figure 16.7: The achievable energy efficiency versus the report length (B) when M = 1
and Pe = 0.25.

16.7 Summary

A secure cooperative spectrum sensing in cognitive radio networks against

spectrum sensing data falsification attacks has been presented in this chapter.

The effects on the detection accuracy and energy efficiency is investigated con-

sidering the conventional conventional cooperative spectrum sensing. The first

contribution of this chapter is proving the feasibility of introducing authenti-

cation in cooperative spectrum sensing by exploiting special characteristics of

cognitive radio networks, which has never been investigated before. Conven-

tional authentication mechanisms imply a heavy overhead, resulting in more

bandwidth and energy consumption. In order to address this problem, this

chapter has proposed a low-overhead energy-efficient security protocol that can
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Figure 16.8: The maximum energy efficiency versus the bit error probability (Pe) when
M = 1.

effectively combat the external malicious users. Moreover, the design of the

proposed protocol alleviates the impact of the noisy reporting channels on the

overall performance.

The superiority of the proposed secure cooperative spectrum sensing over

the conventional (insecure) approach is proved analytically. The influence of

the report length, reporting channel quality and the number of attackers are

discussed. Accordingly, two optimization problems of the report length for

minimizing false-decision probability and maximizing energy efficiency are for-

mulated in the chapter. The overall performance of the legitimate network in

terms of detection accuracy and energy efficiency is shown for the proposed ap-

proach, where it is proved that the proposed protocol can outperform the other

approaches.
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Figure 16.9: The maximum energy efficiency versus the number of attackers (M ) when
Pe = 0.2.
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Part VI

Towards Energy Efficient

Cooperative Spectrum Sensing,

Comprehensive Solutions
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CHAPTER 17

COMPREHENSIVE ENERGY-EFFICIENT SOLUTIONS FOR

COOPERATIVE SPECTRUM SENSING

17.1 Introduction

In Chapter 4 to Chapter 16, different algorithms, policies and protocols have

been presented in order to improve energy efficiency and security in cooper-

ative spectrum sensing in infrastructure-based CRNs. Each proposed work is

dedicated for a single stage of the cooperative spectrum sensing stages. Aim-

ing at maximizing the energy efficiency gain, in this chapter, we propose dif-

ferent combinations among those algorithms. In detail, for each stage in CSS,

an energy-efficient algorithm for each stage is picked up among the works pre-

sented previously in this dissertation. The selected algorithms will be applied

together as a united energy-efficient framework in order to maximize the energy

efficiency in all CSS stages.

The main focus of this chapter is threefold: (i) proposing different ap-

proaches for a comprehensive energy-efficient framework for CSS, (ii) explor-

ing the promising results by combining the proposed approaches in terms of

energy efficiency, and (iii) proving the consistency of the proposed algorithms

in this dissertation, where they can be seamlessly applied together.
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17.2 The First Comprehensive Energy-Efficient Approach

In this section, the first approach of the possible combinations of three different

algorithms for the three different stages of CSS. The first approach includes the

following:

• Local Sensing Stage: the number of sensing users is optimized in order to

maximize the achievable energy efficiency, as proposed in Chapter 6.

• Results’ Reporting Stage: the hard-based CSS is used as it has been

proved to be more energy-efficient than the soft-based CSS in Chapter

7. Also, the scheme presented in Chapter 8 is followed in this approach,

where the reporting process is terminated once the global decision can be

made.

• Decision-Making Stage: the fusion threshold is optimized for energy ef-

ficiency maximization as proposed in Chapter 12.

It is worth noting here that all stages depend on each other. For example,

the number of sensing users is optimized based on a given decision-making

threshold and via versa. Thus, to build the framework, we first consider the

optimal fusion rule is the majority rule in order to obtain the optimal number of

sensing users. Then, the reporting scheme proposed in Chapter 8 is employed

based on the optimal number of sensing users and the optimal fusion rule. The

first approach is compared to four different scenarios. Each scenario implies

applying only one energy-efficient algorithm for a single stage. The considered

scenarios aims at showing the accumulated gain of energy efficiency in case of

using a comprehensive energy efficient approach for all stages. The considered

scenarios are summarized as follows:
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• Conventional CSS: where all the users sense the spectrum and report their

results to the FC. At the FC, the AND rule is employed to issue the global

decision.

• EE sensing only: in this scenario, the optimal number of sensing users

that maximize energy efficiency is used as in Chapter 6. In th following

CSS stages, this scenario follows the conventional CSS scheme, where all

sensing CUs report their results, and the AND rule is employed at the FC.

• EE reporting only: in this scenario, the reporting process follows the

scheme proposed in Chapter 8. In sensing stage, all available CUs sense

the spectrum, while the FR adopted is AND rule.

• Optimal EE fusion rule only:in this scenario, all available CUs sense the

spectrum and report their local results based on the hard-based scheme

as in the conventional CSS. At the FC, Optimal FR that maximizes energy

efficiency is employed as derived in Chapter 12.

The parameters listed in Table 17.1 are used to generate Fig 17.1. Fig 17.1

plots the energy efficiency versus the total number of the CUs in the consid-

ered CRN for all the considered scenarios above and the first comprehensive

approach. An initial note on the results is that the first comprehensive energy

efficient approach achieves the highest energy efficiency among all the other

considered approaches. This is because that the first comprehensive energy effi-

cient approach combines the three different energy-efficient schemes for all the

stages, while each scenario of the others targets only a single stage. Also, it can

be noticed that optimizing the number of sensing users for energy efficiency

maximization the largest contributer to the overall gain in the first comprehen-

sive approach. On the other hand, the energy efficient reporting scheme has the
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lowest improvement, compared to the conventional CSS scheme.

Considering the energy efficiency of the conventional CSS scheme, applying

only the energy efficient sensing yields in an energy efficiency gain ranges from

1.5 to 1.8, while applying only the energy efficient reporting yields in 1.01− 1.1

energy efficiency gain. Using only the optimal fusion rule achieves 1.0−1.45 en-

ergy efficiency gain. However, the energy efficiency gain over the conventional

CSS, which is achieved by the first comprehensive approach, ranges from 1.63

to 2.13. These results clearly indicate that importance of combining different en-

ergy efficient approaches in a comprehensive energy efficient solution in order

to maximize the energy efficiency gain.

Table 17.1: Simulation Parameters for Fig. 17.1 and Fig. 17.2
Parameter Value Parameter value

P0 0.5 σ2
x

σ2
w

−20 dB

fs 1MHz ρt 1W
ρs 0.1W ρr 1W
τ 0.05ms R 100Kbps
T 50ms Tt 45ms
P th
d 0.85 ρbc 1.8W
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Conventional CSS
EE reporting only (Ch. 8)
Optimal EE fusion rule only (Ch.12)
EE sensing only (Ch.6)
The first comprehensive EE approach

Figure 17.1: The energy efficiency versus the total number of CUs for different
proposed EE schemes individually and the first comprehensive energy efficient
approach.

17.3 The Second Comprehensive Energy-Efficient Approach

In this section, the second approach of the possible combinations of three dif-

ferent algorithms for the three different stages of CSS. The second approach

includes the following:
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• Local Sensing Stage: the number of sensing users is optimized in order to

maximize the achievable energy efficiency, as proposed in Chapter 6.

• Results’ Reporting Stage: the hard-based CSS is used as it has been

proved to be more energy-efficient than the soft-based CSS in Chapter

7. Also, the objection-based reporting scheme presented in Chapter 9 is

followed in this approach.

• Decision-Making Stage: the fusion threshold used to make the global

decision is optimized for energy efficiency maximization as proposed in

Chapter 12.

Compared the the first approach, in the second approach, only the report-

ing scheme proposed in Chapter 8 is replaced by the objection-based reporting

scheme proposed in Chapter 9. As in the previous section, four different sce-

narios are considered for comparison, as follows

• Conventional CSS: as described before in the previous section.

• EE sensing only: as described before in the previous section.

• EE Objection-based reporting only: in this scenario, the reporting process

follows the objection-based reporting scheme proposed in Chapter 9. In

sensing stage, all available CUs sense the spectrum, while the FR adopted

is AND rule.

• Optimal EE fusion rule only as described in the previous section.

The same simulation parameters listed in Table 17.1 are used to simulate

the second comprehensive approach. Similar to Fig. 17.1, in Fig. 17.2, almost

the same gains can be achieved by the considered scenario due to the small

272



difference in energy efficiency between the objection-based reporting scheme

and the scheme proposed in Chapter 8.
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Conventional CSS
Objection−based EE reporting only (Ch.9)
Optimal EE fusion rule only (Ch.12)
EE sensing only (Ch.6)
The second comprehensive EE approach

Figure 17.2: The energy efficiency versus the total number of CUs for differ-
ent proposed EE schemes individually and the second comprehensive energy
efficient approach.

17.4 The Third Comprehensive Energy-Efficient Approach

Another third approach can be built from three different energy efficient

schemes, as follows
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• Local Sensing Stage: the minimum number of sensing users that achieves

predefined threshold on detection accuracy is used, as proposed in Chap-

ter 4.

• Results’ Reporting Stage: the hard-based CSS is used as it has been

proved to be more energy-efficient than the soft-based CSS in Chapter

7. Also, the objection-based reporting scheme presented in Chapter 9 is

followed in this approach.

• Decision-Making Stage: the fusion threshold used to make the global

decision is optimized for energy efficiency maximization as proposed in

Chapter 12.

The third comprehensive approach is compared to four different scenarios

described as follows

• Conventional CSS: as described in Section 17.2.

• EE sensing only: where the minimum number of sensing users that

achieves th thresholds on detection accuracy is used as in Chapter 4. In th

following CSS stages, this scenario follows the conventional CSS scheme,

where all sensing CUs report their results, and the AND rule is employed

at the FC.

• EE objection-based reporting only: in this scenario, the reporting process

follows the objection-based reporting scheme proposed in Chapter 9. In

sensing stage, all available CUs sense the spectrum, while the FR adopted

is AND rule.

• Optimal EE fusion rule only:as described in Section 17.2.
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Table 17.2 lists the simulation parameters used in this section. Fig. 17.3

shows the energy efficiency versus the total number of CUs for the third com-

prehensive approach and the other individual schemes.
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Optimal EE fusion rule only (Ch. 12)
EE sensing only (Ch. 4)
The third comprehensive EE approach

Figure 17.3: The energy efficiency versus the total number of CUs for different
proposed EE schemes individually and the third comprehensive energy efficient
approach.

Table 17.2: Simulation Parameters for Fig. 17.3
Parameter Value Parameter value

P0 0.5 P th
D 0.8

P th
F 0.1 ρt 1W
ρs 0.1W ρr 1W
τ 0.05ms R 100Kbps
T 50ms Tt 45ms
ρbc 1.8W Pd 0.9
Pf 0.2
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As shown in Fig. 17.3, applying only the energy efficient algorithm proposed

in Chapter 4 achieves an energy efficiency gain 1.5− 2.13 over the conventional

CSS scheme. On the other hand, applying only the objection-based reporting

scheme provides 1.01− 1.1 energy efficiency gain. In the case of using only the

optimal fusion rule, the energy efficiency gain ranges from 1.53 to 2.18. How-

ever, applying the third comprehensive energy efficient approach, which com-

bines the three scenarios, results in 1.66− 2.37 energy efficiency gain compared

to the conventional CSS scheme.

17.5 Remarks

The presented results in this chapter have shown that the proposed algo-

rithms/schemes in the previous chapter can be combined in different ap-

proaches in order to build a comprehensive energy efficient framework for CSS

process. The built framework has proven the consistency of the proposed al-

gorithms to each other. Most importantly, the results have shown that any of

the proposed approaches in this chapter can at lest double the energy efficiency

of the conventional CSS scheme. Also, it has been shown that the comprehen-

sive approaches improve the energy efficiency gain compared to the separated

energy efficient algorithms.

It is worth mentioning here that other possible comprehensive energy ef-

ficient approaches can be suggested other than the presented in this chapter.

However, the presented approaches in this chapter have been selected since

they represent the most efficient approaches.
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Part VII

Conclusions
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CHAPTER 18

CONCLUSIONS

This dissertation has investigated the high energy consumption problem in

cooperative spectrum sensing for cognitive radio networks. Firstly, a deep re-

view of the state of the art has been presented, where all the proposed energy

efficient approaches for cooperative spectrum sensing have been discussed. The

available works in the literature have been classified into three different ap-

proaches, namely, energy-efficient local sensing stage, energy-efficient report-

ing stage, and energy-efficient decision-making stage. Thus, the classification

depends on the running stage of each work.

Following the classification of the previous works, we have presented sev-

eral energy-efficient algorithms/schemes for the different stages of the cooper-

ative spectrum sensing. Specifically, three different algorithms have been pre-

sented in Part II in order to improve energy efficiency in the local sensing stage

by reducing the number of the participating users in cooperative spectrum sens-

ing process. In Part III, four different approaches aiming at reducing energy

consumption in reporting stage have been presented. The works presented in

Part III focus on: optimizing the report form, reducing the number of report-

ing users, and limiting the reported data. In Part IV, optimization problems for

the employed fusion rule have been presented and solved for energy efficiency

maximization in cooperative spectrum sensing scheme.

Moreover, the energy efficiency problem has been investigated in presence

of malicious users in cooperative spectrum sensing in Part V. Specifically, a

low-overhead authentication protocol for outsider attackers, a energy-efficient

weighted cooperative spectrum sensing scheme , and a punishment policy for
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malicious attackers are all presented in Part V. The main aim of the proposed

works is to eliminate the negative effects of malicious attackers on the energy ef-

ficiency of cognitive radio networks, and to achieve the balance of the trade-off

between security and energy efficiency in cooperative spectrum sensing.

However, as the main aim of this work is design comprehensive energy-

efficient cooperative spectrum sensing, three different comprehensive energy-

efficient approaches have been presented in Part VI. Each comprehensive ap-

proach combines three different energy-efficient algorithms/schemes of the

proposed in this dissertation, one for each stage of the stages of cooperative

spectrum sensing. The evaluation results of the proposed comprehensive ap-

proaches have shown: (i) a significant improvement of the energy efficiency of

cooperative spectrum sensing, (ii) the consistency between the proposed algo-

rithms/schemes in this dissertation, and (iii) the importance of the designing

a comprehensive energy-efficient framework for cooperative spectrum sensing

instead of the the proposed algorithms for individual stages.
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