
Università degli Studi di Trento
Dottorato di ricerca in Modellazione, Conservazione e Controllo dei

Materiali e delle Strutture

Structural optimization: an approach based on
genetic algorithms and parallel computing

PhD candidate: Massimiliano Petrucci

Tutor: Prof. Enzo Siviero - Università IUAV di Venezia
Co-Tutor: Prof. Massimo Majowiecki - Università IUAV di Venezia

March, 20 2009

2

The present text has been typeset with LATEX2ε

Massimiliano Petrucci
Massimiliano Petrucci
http://www.massimilianopetrucci.com
email: max@petrucci.it

0.1. INTRODUCTION 3

0.1 Introduction

Everybody optimizes! Every aspect of life and technology are often deeply
involved in optimization. Companies optimize in order to reduce costs. Fi-
nance investors optimize their portfolio in order to minimize risks and obtain
high rates of return. Even nature optimizes. Physical systems spontaneously
tend to a state of minimum energy. In every branch of engineering the de-
signers are always called to optimize different aspects of their projects.

The importance of structural optimization (seen as minimum design of
weight of structures) was first recognized by the aerospace industry where
aircraft structural designs are often controlled more by weight than by cost
considerations. In other industries dealing with civil, mechanical and auto-
motive engineering systems, minimization of cost is the most important ob-
jective although the weight of the system affect its cost and performance [67].
Nowadays both people and industries are more and more sensitive to the
environmental problems related to the scarcity of raw material and conven-
tional energy sources. This fact leads to a growing demand for lightweight,
efficient and low cost structures. As a consequence the interest in design
optimization is increasing.

This work focus on optimization techniques with special emphasis on
topics regarding structural optimization. The subject is treated both from
a theoretical and practical point of view. A software has also been developed
in order to implement some of the methods that have been presented. Some
numerical simulations have been performed and the final results are critically
discussed.

0.2 The research activity

The original idea of my research activity was the study of optimization
methods dealing with truss structures.

The work has been divided in several phases. First of all I tried to
evaluate the state of art in the different fields of optimization as appear
from scientific literature and books on this topic.

Secondly I compared the different methodologies in order to understand
which could be adapted to for optimization of discrete structures at real
scale. In particular I have found worthy of interest the methods based on
evolving strategies. So I concentrated on this approach, as it appeared to me
very promising, examining in particular several implementation of genetic
algorithms. In this phase I realized that a great improvement in performance
could be achieved adopting parallel computing techniques, being genetic
algorithms very adaptable to this kind of computation strategies.

So I spent a part of my time in studying topics regarding parallel pro-
gramming and the creation of a computer cluster. After few consideration

4

I decided for a Beowulf architecture and chose C++ as programming lan-
guage.

In the final part of my work I developed an optimization tool that is able
to work with 3D truss-like structure and that benefits of the advantages of
parallel computing. Several numerical simulations have been performed and
some results are discussed at the end of this thesis. The software imple-
mentation has been a very important part of this work since it required
the solving of several problems that at a first sight, with only a theorycal
approach, I realized I have missed. In fact programming requires a com-
plete comprehension of all the involved processes in order to have working
application. The simulations have also been interesting because they have
shown the importance of the calibration of the parameters required by the
optimization procedure.

0.3 Structure of the thesis

This work focus on optimization techniques with special emphasis on topics
regarding structural optimization.

The first Chapter is an introduction to concepts, terminology and prob-
lems related to optimization procedures.

Chapter Two covers different optimization methods, with specific em-
phasis on the field of structural optimization. It starts by explaining the
basis of optimization and derivative based classical methodologies, then fol-
lows by explaining heuristic methods of optimization. For the sake of com-
pleteness only a little introduction is given about genetic algorithms since
they are deeply discussed in another chapter. Finally a description of ESO,
seen as a sort of introduction to evolving algorithms, is given.

Chapter Three focuses on genetic algorithms. Their main features, ad-
vantages and drawbacks are discussed.

Chapter Four deals with various topics on parallel computing that will
be useful for the design of the GA’s parallelization.

Chapter Five gives a description of the software and explains how it
works. It includes also the numerical simulations with comments on the
results. At the end, some conclusions are given.

Chapter 1

Optimization of structures

1.1 Introduction

In general, the optimization is a set of actions we can do in order to maximize
one ore more objectives we have previously defined. To apply this tool we
must have a comprehensive understanding of the real system we want to
study, in other terms we have a model of it and we know the unknown
variables that describe it. But this is not sufficient. We also need to know
the objective we are looking for. When each of these requirements are well-
defined, we can apply optimization.

Nowadays a lot of techniques have been defined, but none of them can
be blindly applied to solve every problem. Each class of problems has a set
of techniques which perform better than others.

Strictly speaking the optimization is the minimization (or the maximiza-
tion1) of an objective function f(x) subject to constraints in its own variables
x (also called parameters) and could be expressed, from a mathematical per-
spective, in the following way[48]:

min f(x)x∈�n : subject to
�

ci(x) = 0, i ∈ Υ
cj(x) ≥ 0, j ∈ Ξ (1.1)

where ci and cj are functions in x while Υ and Ξ are set of indices. Those
function represents the constraints.

The system (1.1) describe a generic optimization problem. In structural
optimization the variables are often related to stresses, displacements, vi-
bration frequencies or others. From a structural the point of view, many
authors agree on the following classification about the different levels of
optimization [8]:

size optimization deals with minimization (or maximization) of one or
more response variable (such as tension, deformation, frequency of vi-
bration) acting on one or more design variables (for example, thickness

1It is sufficient substitute f with −f in (1.1).

5

6 CHAPTER 1. OPTIMIZATION OF STRUCTURES

of a plate or cross section of a bar) while respecting some conditions
(equilibrium, restraints, and so on). In such a case the domain of
design variables is known a priori and is fixed during the whole opti-
mization process;

shape optimization aims to find the optimal shape of domain, which is
no more fixed and become a design variable itself;

topology optimization for continuum structures deals with the number,
position, shape of holes and topology of the domain.

1.1.1 Design variables

The parameters that can change, in order to optimize the structures, are
called design variables and represent the degrees of freedom of the struc-
tures2.

These variables can be discrete or continuous. Typically discrete vari-
ables can assume only isolated values, taken from a list of possible values.
The can be expressed with an integer index which reference the value as-
sumed with the position inside the list of possible values. This choice is quite
common in steel structures where, for manufacturing reasons, the cross sec-
tional dimension are usually mapped to a finite set of commercial available
cross sections. Continuous variable instead can freely change inside a defined
range of variation.

Usually solving an optimization problem with discrete design variables
is much more difficult than solving an analogous problem with continuous
variables. For this, when is possible, the discrete form of the problem is
disregarded towards a continuous approach. Only once the (continuous)
optimum is found, the design variable are translated to the nearest discrete
value. However this rounding off techniques works well only if the available
values of the integer variables are spaced very (or enough) close each to
another3.

Instead when the discrete solutions are spaced too far apart, the prob-
lem must be solved with discrete variables. The branch of mathematical
programming which deals with this case is called integer programming.

The choice of each design variable should be done carefully, since it can
deeply interfere with the success of the optimization procedure. In particu-
lar the design variables should be consistent with the model: for continuous
structures this means that the distribution of design variables should be

2The could be cross sectional dimensions, member sizes, geometrical parameters, ma-
terial properties. . .

3In other words we can say that the variables are spaced reasonably close when changing
the continuous variable to the nearest integer does not change the response of the structure
substantially.

1.1. INTRODUCTION 7

coarser than the nodes of the discretized model. With frame structure usu-
ally this can’t be done since usually each finite element is mapped one-to-one
to a member of the structure.

In the following design variables are expressed in the vector x = {x1, x2, . . . , xn}.

1.1.2 Objective function

The measure of the effectiveness of the optimization process is expressed by
one function f(x) or by a set of functions f(x) = {f1(x), f2(x), . . . , fp(x)}
that are called objective functions. In the field of structural optimization
the most common are weight, displacements, stresses, vibration frequencies,
buckling loads, cost or any combination of them. In the latter case, i.e.
when more than a single objective are taken in account, the optimization is
defined as multicriteria.

Dealing with more objectives could be really difficult and if it is possible
it is avoided. In many cases this can be done trying to reduce the number
of objective functions to one. This can be done mainly in two ways:

• A new composite objective function is introduced, replacing all the
objectives.4

• The most important objective function is chose and taken as the only
objective function while limits are imposed on the remaining objec-
tives.

Edgeworth-Pareto optimization

When it is difficult to chose (or to weight) between the objectives an help
could come from the so-called Edgeworth-Pareto optimization: a branch
of mathematical programming which gives a systematical approach to this
kind of problems. It was firstly applied in the field of multicriteria structural
optimization by [71] and [72]. For details see [67].

A vector of design variables x∗ is Edgeworth-Pareto optimal if, for any
other vector of design variables x, either the values assumed by all the
objective functions remain the same or at least one of the worsens compared
to its value at x∗. In order to estimate the values of weights an iterative
procedure based on a series of Edgeworth-Pareto optimal designs can be
successfully adopted, after that, constraints can be imposed.

A possible approach could be based on the minimization of the deviation
of the individual objective functions from their individual minimal values.
The expression

di(x) =
fi(x)− f∗i

f∗i
i=1,. . . ,p (1.2)

4For example, given p objectives oi, p weight wi are introduced to model the different
importance among the different objectives, and the final objective is expressed in the form
f(x) = w1f1 + w2f2 + . . . + wpfp.

8 CHAPTER 1. OPTIMIZATION OF STRUCTURES

where

• f∗i is the value assumed by fi at x∗i as a result of the independent
minimization of the single i-th objective function.

represents the normalized distance of each of the objective functions (at a
certain x) from its individual optimum. Hence the Edgeworth-Pareto can
be usually posed in two forms:

• as a problem of minimization of the largest deviation of the objective
functions from their individual minima (l∞ norm)

minimize max
i=1,...,p

[di(x)] (1.3)

• as a problem of minimization of the distance (i.e. the l2 or euclidean
norm) from the reference point f∗ = (f∗1 , f∗2 , . . . , f∗p) to f = (f1, f2, . . . , fp)

minimize
p�

i=1

d2
i (1.4)

where, in (1.4), weighting coefficients could eventually be used in order
to differentiate the importance in contribution of the single objective
function fi.

1.1.3 Constraints

In the formulation of an optimization problem, the values of design variables
cant’t vary freely but are subjected to constraints. These can be present in
two forms:

• inequality constraints which impose upper or lower limits to a design
variables.

• equality constraints which impose that a design variable must assume
a known value.5

1.2 The solution process

The problem expressed in the form (1.1) can be solved in many different
ways. For example the so-called search methods are numerical search tech-
niques that start from an initial design and proceed in small steps to improve

5Most techniques developed for non linear optimization problems can usually handle
only inequality constraints. When an equality constraint must be introduced, a common
strategy is to impose two inequality constraints that form an upper and lower bound
constraint that coincide with the equality constraint value we want to replace.

1.2. THE SOLUTION PROCESS 9

the value of the objective function or the degree of compliance with the con-
straints, or both. The search is terminated when no progress can be made in
improving the objective function without violating some of the constraints,
or when that progress become very slow. Others methods employ the nec-
essary conditions that must be satisfied at minimum but many others are
available [49]. Most of them will be discussed in the following chapters.

Roughly speaking, in the optimization of continua it’s necessary to un-
derstand if, in each point of the domain, the material should be present
or not. Typically a finite element approach is adopted, discretizing the do-
main a mesh and conducting an analysis to understand if each finite element
must exist or not. Operating in this way, initially the structural topology is
undefined, being itself a design variable.

For truss-like structures a common methodology is the ground structure
approach (GS) which is based on the research of all the possible connection
between a fixed number of points. The optimization procedure, using a finite
element analysis, evaluates the connections and states between which nodes
a member must exist, eliminating unnecessary bars.

In any case, i.e. for both continuum and discrete structures, the above
optimization is a discrete problem that is transformed into a continuous
problem by introducing a continuous function that, for continua, is a density
parameter while for discrete structures represents the area of cross sections
(admitting the existence of members with area equals to zero).

A drawback of those approach (for both continuum and discrete struc-
tures) is that, since the nodal points are not taken as design variables, the
choice of the number of nodes and nodal positions is fundamental for the
success of the procedure and to obtain an efficient topology design, a dense
mesh (meaning an high computational cost) is required. For this reason the
original GS method has been extended with the introduction of the opti-
mization of both the position and connectivity of a certain number of nodes,
leading to a sort of two-level combined optimization [8]. Unfortunately this
approach is not satisfactory because it’s hard to handle mathematically.
Moreover,it has been adopted only for specific problems at little scale and,
until now, there is no evidence that could also be used for more general
problems or practical applications at larger scale.

In the pastOptimality Criteria (OC) and Mathematical Programming
(MP) methods gained a lot of popularity among researchers . Among them
Vanderplaats [70] used a MP approach employing with success several nu-
merical techniques such as gradient method, sequential quadratic program-
ming and approximation methods. Most of them consider approximated
objective and constraints functions based on Taylor series. Therefore, this
approach allows, for example, to linearize the nonlinear problem before em-
ploying the algorithm for searching the optimal solution. On other occasions,
techniques based on Lagrange multipliers or linear programming methods are
used. Unfortunately neither of these methods is so robust and efficient to

10 CHAPTER 1. OPTIMIZATION OF STRUCTURES

be applied in general (or almost in a large class of problems). Also the
OC methods [60], which are based on the Kuhn-Tucker theorem and that
roughly speaking can be seen as a sort of generalization of the method of
the lagrangian multipliers for the search of global minimum for a regular
and convex function, made a success in the past but at, the end, they are
characterized by the same limitation.

In fact, both OC and MP, are mathematical strategies (in literature are
defined as hard computing techniques) that today appear less interesting
because of the intrinsic difficulties that can be encountered for their appli-
cation in structural problems. This is mainly due to the fact that they need
to compute derivatives of functions which are, in great part, not regular. In
addition their deterministic approach has been criticized since it can’t take
into account the uncertainty and approximations that are commonly present
in real applications. Recently Adeli [2] tried to address this question with
probability and fuzzy strategies in conjunction with evolutive algorithms.

From this study many other techniques have come to light that are wor-
thy to remember such as the Evolutionary Structural Optimization (ESO)
that was developed by Xie and Steven. This is a very flexible methodol-
ogy since it can deal with different conditions of constraints (such as on
tensions, stiffness, displacements or their difference, vibration frequencies)
both on continuum and discrete problems. It is based on the definition of a
rejection criterion which depends strictly from the adopted constraints and
that is used to find the locations where the material is unnecessary and can
be removed or eventually migrated to more stresses places if needed. It relies
on the simple concept that by slowly removing inefficient material from a
structure, the residual shape evolves in the direction of making the struc-
ture better. Despite its simplicity, it can produce result comparable to more
complicated techniques and it can be used for a wide range of structural
problems including statics, dinamics and buckling [74].

More sophisticates approaches are the so-called solid isotropic material
with penalization (SIMP), or the Homogenization Method, pionereed by
Bendsøe [8]. They have been successfully adopted for topology, shape and
material optimization of both continuum and discrete linear elastic struc-
tures. The development of the Homogenization method of optimization led
to an important step forward in the area of structural optimization. This
is because this method can do two things at once. It can determine both
the topology of the structure, and the microstructure of the material that
constitutes the structure. This was achieved by minimizing the compliance
of the structure using classical quadratic programming techniques, where
material density in each element was a design variable. It has also been
applied to discrete linear elastic structures [7].

Finally, in the opinion of the author of the present work, today the most
promising approaches seem just those based on evolutive algorithms that,
taking their inspiration from the observation of natural events, paved the

1.3. TRENDS IN STRUCTURAL OPTIMIZATION 11

way for a new vision in optimization techniques. From a certain point of
view, even ESO can be seen, in some way, a first step towards new strategies
of resolution, but genetic algorithms and genetic programming [47] are the
most important demonstrations of totally a different approach compared to
the hard computing schemes seen above.

Genetic algorithms (GA) takes their inspiration from the evolutionist
theory due to Darwin and its natural law of the survival of the fittest. This
methodology perform a global search of the optimal solution by the succeed-
ing of populations, made of random created individuals, that evolves and
reproduce according to the laws of nature. The aim is to select a population
of individuals that at each new generation improve respect to the previous.
At the end of the selection, the individual with highest fitness represent the
optimal solution. The algorithm use only discrete variables (since also real
design variables are coded in binary string). So these algorithm works al-
ways on a finite set of points that belong to the so called research space (thus
it must be defined before the optimization begins). In the form they have
been described, GAs work only for unconstrained optimization problems but
constrained optimization problems can be reduced to the unconstrained case
simply by matching with a penalty or augmented lagrangian method. As
will be explained in detail in the next chapters, genetic algorithms can be
seen, from different points of view, as a really valuable alternative to the
more traditional hill climbing methods.

1.3 Trends in structural optimization

To optimize, it is necessary to have clear in mind the objective of the opti-
mization because only from a good choice of the objective could stem useful
results. In structural optimization common objective are:

• Minimization of weight.

• Maximization of stiffness.

• Minimization of cost design.

• Some control on free vibrations.

• . . .

• Any combination of the previous items.

Typically older papers on optimization of structures focused the atten-
tion on the maximization of stiffness combined with reduction of weight.
Later were introduced techniques dealing with other kinds of objectives and
restraints (for example on absolute and relative displacements or on frequen-
cies). Finally nonlinear analysis has been used as well [68].

12 CHAPTER 1. OPTIMIZATION OF STRUCTURES

During the years a really large number of research papers have been
published but most them has in common the fact that they consider, as
objective, the minimization of the weight as it were an implicit assumption
that weight of structure is the best measure for evaluating the cost of the
structure. Even if, roughly speaking, this is partly true, there is the risk
to neglect other important terms, besides material cost, that contribute to
define the final cost. Recently [2] some critics raised against this approach
by some authors who correctly stated that actually the minimum weight
cost not necessarily coincides with the minimum cost design.

In their opinion, a modern point of view should evaluate the cost in
terms of the life-cycle cost of the structure itself, taking in account more
terms, such as the costs of

• materials;

• fabrication;

• erection;

• maintenance;

• disassembling at the end of structure life.

So it’s clear that this approach in cost optimization introduce more realism
but, in this way, additional difficulties are encountered. Among them there
is the definition of the cost function and the uncertainties and fuzziness
involved in determining the cost parameters.

Unfortunately, for real problems, constraint evaluation very often in-
volves many sources of imprecision and approximation. If the algorithm is
forced to satisfy these condition exactly it could fail, in the sense of missing
the true optimal solution.

To address this issue, some authors [2] integrated techniques based on
probability and fuzzy theories to evolutive algorithms. The first approach is
known as reliability-based optimization and relies on the theory of probabil-
ity6. The second is known as fuzzy optimization and is established around
the concept of possibility7.

1.4 Optimization tools

During the last decades many computational methods have gained success
in many fields of engineering. Among them the Finite Element Method has
proven to be of common use not only in academic contexts but also between
professional engineers which, in the recent years, often need to execute more
and more sophisticated calculations.

6Under the assumption that natural events can be considered as statistical variables.
7Expressed by membership functions according to fuzzy set theory of Zadeh [1].

1.4. OPTIMIZATION TOOLS 13

For this reason Finite Element Applications (FEA) are now essential
tools for modern design. Furthermore, such a diffusion is due partly to
the great advances in technology which bring to us computers much more
powerful respect to only few years ago; partly to the graphic user interfaces
that are more intuitive and user friendly so that computers can now be used
also by non specialists.

The same things can not be said about the application of the numerical
optimization methods which, despite their advance, are actually limited to
academic research or very specialized companies in industry. In structural
engineering the practical applications are actually really rare. Much wider
is their diffusion in the fields of mechanics, aeronautics and electronics.

Maybe, several reasons can be found to explain a so slow penetration
of this methods in the field of structures (specially if compared to other
branches of technology). Firstly the subject is really complex, requiring
also a deep knowledge and solid background in many topics of structural
mechanics (such as the finite element methods). Secondly (and this is an
important difference with the FEA case) a unique formulation that can
be successfully applied to a really large class of problems is still missing,
and so the creation of “multipurpose” software tools that could deal with
a sufficiently wide set of structural problems appear to be a really difficult
task. This explains the lack of interest in practical optimization methods
by professional engineers.

Formerly, further difficulties arose from the high computational cost de-
riving from the optimization algorithms. Specially from those that required
a large number of finite element analysis, leading to optimization procedures
that could be very time-consuming activities. In such a case the growing
computation power of modern processors, the large availability of commod-
ity hardware and the techniques of parallel computing can be, today, a valid
response since they allow to obtain, cheaply, high computing power with
relatively low cost using only off the shelf hardware and free open source
software.

Operating in this way become possible to achieve so high performance
that, only a few years ago, could not even be imagined for a simple user,
being accessible only to research centers. Unfortunately all those benefits
doesn’t come at no cost: parallel computing code is much more difficult to
implement when compared to traditional programming. This is the reason
because parallel application are not so popular among users yet, even if
today most computers and laptop are provided with multicore processors.

14 CHAPTER 1. OPTIMIZATION OF STRUCTURES

Chapter 2

Optimization methods

2.1 Introduction

Before the advent of high speed computation most of the solutions of struc-
tural analysis problems were mainly based on formulations employing dif-
ferential equations. These equations were solved analytically (for example
by using infinite series) and the unknowns were, typically, displacements or
stresses, defined on continuum domain. Occasionally some numerical tech-
niques could be employed, but usually only towards the end of the solution
process.

In the early beginning of structural optimization a very similar approach
was used because the unknowns were functions representing the structural
properties (to be optimized). In such case the solution was based on calculus
of variations. And the class of structural problems concerning the seek of
the optimum of function (which model the structural properties to mini-
mize or maximize) is known as function or distributed parameter structural
optimization.

Starting from late 50s and 60s the introduction of electronic calculator
in conjunction with the use numerical methods produced a deep transfor-
mation in the solution procedure. Among these, the Finite Element Method
(FEM) gained a wide success, being extremely well suited to computer im-
plementations1.

This approach makes possible a strong simplification of the structural
problems because, discretizing the domain, does not assume as unknown
functions, but discrete values of displacements or stresses in a finite set
of points of the model, called nodes. As a consequence, the differential

1FEM is based on displacements method of solution of structural problems. This is
undoubtedly one of the main reason of its success between engineers. The displacement
methods , in fact, is easy to translate in algorithms. In contrast the force method should
require a much more complex implementation that only recently has been clearly formal-
ized.

15

16 CHAPTER 2. OPTIMIZATION METHODS

equations of the problem are translated into algebraic equations, much more
easier to solve.

The same transition happened to structural optimization. With the
natural adoption of the Finite Element Method, the searching of an optimum
function has been substituted by the searching of the optimum values for
a finite set of parameters; this is known as parameter optimization. The
associated mathematic discipline is called mathematical programming.

2.2 General formulation

An optimization problem can therefore be expressed in the form

minimize f(x) (2.1)
such that gj(x) ≥ 0 j = 1, . . . , ng (2.2)

hk(x) = 0 k = 1, . . . , ne (2.3)

where x is the n-dimensional vector of design variables while hj(x) and gj(x)
are respectively the equality and inequality constraints.

The choice of minimizing the objective function f in (2.1) is not re-
strictive in any way because it can be easily transformed into a maximizing
problem considering the negative of f . For the same reason the sign adopted
of inequalities constraints is purely conventional since if there is an inequal-
ity of opposite sign, such as gj(x) ≤ 0, it can be transformed into a ≥ type
by multiplying the expression by −1.

If both the objective function and the constraints are linear functions
of the design variables x the optimization problem is said to be linear ;
otherwise not linear. Therefore in a linear problem the objective function f
can be expressed in the form

f(x) = c1x1 + . . . + cnxn = cTx (2.4)

and can be solved with a mathematical branch called linear programming.

2.3 Classical methods

These methods are based on the classical tools adopted to find the minima
and maxima of functions and functionals and are based on the techniques
of the ordinary differential calculus and the calculus of variations. Even
this approach can be successfully adopted to find exact solutions in closed
form only for very simple cases, because of the lack of realism due to the
necessary simplifying assumptions that are implicitly required, it can be
usefully employed to validate solutions based on numerical approximated
methods. Unfortunately most realistic optimization problems cannot be

2.3. CLASSICAL METHODS 17

simplified to the point where the can be solved by techniques based on
classical tools.

2.3.1 Differential calculus

The most common method for unconstrained optimization is differential
calculus. This approach is based on the necessary and sufficient condition
for the existence of a stationary point in a function, as explained below.

It is know that a continuously differentiable objective function f(x1, x2, . . . , xn)
of n independent design variables attains its minimum or maximum value
inside its domain2 when the n partial derivatives of the design variable x
vanish simultaneously3, or

∂f

∂x1
=

∂f

∂x2
= . . . =

∂f

∂xn
= 0 (2.5)

The (2.5) is a necessary condition for the existence of a stationary point. A
stationary point x∗ satisfies the condition ∂f

∂x∗i
∀i = 1, n. If the function is a

scalar-valued type, the vector of first derivatives is the gradient vector ∇f
and is commonly used to find search directions in optimization algorithms.

The sufficient condition for a stationary point x∗ to be an extreme point
can be expressed by the Hessian matrix4 H of the objective function f .

H(x∗) =





∂2f(x∗)
∂x2

1

∂2f(x∗)
∂x1∂x2

. . . ∂2f(x∗)
∂x1∂xn

∂2f(x∗)
∂x2∂x1

∂2f(x∗)
∂x2

2
. . . ∂2f(x∗)

∂x2∂xn

.
∂2f(x∗)
∂xn∂x1

∂2f(x∗)
∂xn∂x2

. . . ∂2f(x∗)
∂x2

n




(2.6)

In fact, it can be proven that if H evaluated at x∗ is positive-defined then
the stationary point x∗ is a minimum, otherwise if H(x∗) is negative-defined
than x∗ is a maximum.

definition 1 Given a symmetric matrix A of order n, and an n-dimensional
vector x if xTAx > 0 ∀ x ∈ �n and xTAx = 0 ⇔ x = 0 then A is said to be
positive-defined. Otherwise, if xTAx < 0 ∀ x ∈ �n and xTAx = 0 ⇔ x = 0
then A is said to be negative-defined.

Well known properties of matrix analysis can be adopted to further in-
vestigate the semi or full positive or negative definition of H to see if x∗

could be a minimum, maximum or a saddle point.
This seems a very elegant method, however, the conditions for H to be

either positive or negative definite may not always be satisfied, requiring
2the design space �n.
3without considering, at this stage, constraints of any kind.
4i.e. the matrix of the second derivatives

18 CHAPTER 2. OPTIMIZATION METHODS

higher derivatives of the objective function to satisfy these conditions. Al-
though it can be used to find the optimum of simple structural systems,
the OF must be twice differentiable, something that may not always be
achievable, especially when dealing with discrete finite elements structural
domains.

2.3.2 Variational calculus

Sometimes the objective function is expressed in the form of a functional.
In this case the aim of the optimization is to find a function (or a set of
functions) that minimize the numerical value assumed by the functional5.
The problem can then be solved adopting the methods of the branch of
mathematics known as calculus of variations that deals with the minima
and maxima of functionals. Certain aspects of these procedures are similar
to techniques shown in 2.3.1. More details can be found in [67].

2.3.3 Constrained optimization

Equally constrained problems can be expressed in the form

minimize f(x) (2.7)
subject to hj(x) = 0 (j = 1, 2, . . . , ne) (2.8)

where x = (x1, x2, . . . , xn)T and the number of equality constraints ne ≤ n6.

Variable elimination (or direct substitution)

If the equality constraints can be solved explicitly for ne design variables
then the objective function can be written in a new form7. This approach
is known as variable elimination or direct substitution. It should be noted
that the new objective function won’t subjected to any constraints and it
can be minimized using the procedures described in 2.3.1 and 2.3.2.

Method of Lagrange multipliers

When the constraints can’t be solved explicitily8 is commonly used the so-
called method of Lagrange multipliers.

For an objective function f(x) of n design variables to be a minimum,
the differential change df in the objective function must still vanish.

df =
∂f

∂x1
x1 +

∂f

∂x2
x2 + . . . +

∂f

∂xn
xn = 0 (2.9)

5A functional J can be expressed as J =
� b

a
F (x, y, y�)dx where y� = dy

dx . In a more
general case F can be a function of more than one function (y1, y1, . . . , yp) and each of
these functions can depend on n independent variables (x1, x2, . . . , xn).

6In fact, if ne > n the problem is over-constrained and in general it admits no solution.
7in terms of n− ne independent variables
8For example when they are defined in terms of integrals.

2.3. CLASSICAL METHODS 19

The derivative terms can not be set to zero individually because the differ-
ential changes in the design variables (dx1, dx2, . . . , dxn) are strictly depen-
dent each on another through the constraint equations (2.8). If, for the sake
of simplicity, we assume the existence of only a single constraint equation
h(x) = 0, the differential changes in the design variables are related through

dh =
∂h

∂x1
x1 +

∂h

∂x2
x2 + . . . +

∂h

∂xn
xn = 0 (2.10)

Multiplying (2.10) by an arbitrary constant λ, and adding the result to
the (2.9) we obtain

�
∂f

∂x1
+ λ

∂h

∂x1

�
+

�
∂f

∂x2
+ λ

∂h

∂x2

�
+ . . . +

�
∂f

∂xn
+ λ

∂h

∂xn

�
= 0 (2.11)

λ is determined so that the quantities inside each of the parenthesis
vanish in order to satisfy (2.11). This leads to a system of n equations for
n + 1 unknowns9. The constraints equation h(x) = 0 provides the (n + 1)th
required relation which is necessary to solve the system.

These considerations can be easily extended to the case of multiple con-
straints functions introducing a Lagrange multiplier λ for each of the con-
straints functions.

In other words an optimization problem with n design variables and
ne equality constraints (as seen in (2.7)) is equivalent to an unconstrained
problem with an auxiliary function

L(x,λ) = f(x) +
ne�

j=1

λjhj (2.12)

where λ = (λ1,λ2, . . . , λne). The optimum value of the design variables
x = (x1, x2, . . . , xne) can be obtained by solving, for the n + ne unknowns,
a system of n + ne equations

∂L
∂xi

= 0, i = 1, . . . , n; (2.13)

∂L
∂λj

= 0, j = 1, . . . , ne. (2.14)

In general we are interested to extremize functionals of several functions
and their derivatives with respect to more than one independent variable
like the following J

J =
� b

a
F (x, y1, y2, y

�
1, y

�
2, y

��
2)dx (2.15)

9The n design variables and the unknown multiplier λ.

20 CHAPTER 2. OPTIMIZATION METHODS

In addition there may be m subsidiary constraints in the form

hi

�
x1, . . . , xn, y1, . . . , yp,

∂y1

∂x1
, . . . ,

∂yp

∂yn

�
= 0 (2.16)

for i = 1, . . . , m. In this case the method of Lagrange multiplier will lead to
an auxiliary functional in the form

L =
�

v

�
f +

m�

i=1

λihi

�
dv (2.17)

where the Lagrange multipliers are no longer constants but functions of
x1, . . . , xn.

example In the problem of constrained optimization described in 2.53
the equality constraints 2.54 state that gi(x) = bi (∀i) , so the problem
remain unaffected if the objective function f(x) is substituted, for any values
assumed by the Lagrangian multipliers λi, by the function

L(x,λ) = f(x) +
N�

i=1

λi(gi(x)− bi) (2.18)

which is the Lagrangian function. If the Lagrangian multipliers are found
such that the point x where L(x,λ) is minimized satisfies all the constraints
gi(x) = bi then the original constrained problem 2.53 has also been solved.

In order to find the values of λi that minimize (2.18), its derivative must
be computed and the equated to the equality constraints:

∂L(x,λ)
∂xj

=
∂f(x)
∂xj

+
m�

i=1

λi
∂gi(x)
∂xj

= 0 (j = 1, . . . , N) (2.19)

∂L(x,λ)
λi

= gi(x1, . . . , xn)− bi = 0 (i = 1, . . . , M) (2.20)

obtaining a system of N +M equations in N +M unknowns10 that in most
cases can be solved.

2.3.4 Local constraints

In many structural problems there are local constraints 11 that can be ex-
pressed in a form similar to the subsidiary constraints (2.16) except that the
equalities are replaced by inequalities.

gi

�
x1, . . . , xn, y1, . . . , yp,

∂y1

∂x1
, . . . ,

∂yp

∂yn

�
≥ 0 (2.21)

10x1, . . . , xN and λ1, . . . , λM .
11i.e. constraints in stress

2.4. MATHEMATICAL PROGRAMMING 21

for i = 1, . . . , m. These inequalities can be easily transformed back to equal-
ities by subtracting the slack functions ti and s and rewriting the (2.21) as

gi

�
x1,

∂yp

∂yn

�
− t2i (x1, . . . , xn) = 0 (2.22)

again for i = 1, . . . ,m. The auxiliary functional previously expressed by
(2.17), assumes now the form

L =
�

v

�
f +

m�

i=1

λi(gi − t2i)

�
dv (2.23)

Now, computing the contribute of ti in the variation of L we get

∂L

∂ti
= −2

�

v
λitiδtidv (2.24)

and setting the coefficients of δti to zero we obtain that

tiλi = 0 (2.25)

for i = 1, . . . ,m which implies that the Lagrangian multipliers λi are equal
to zero when the slack variables ti are not zero. In other words it means
that the Lagrangian multipliers are zero at points in the design space where
the corresponding constraint is not critical [67]. Moreover the (2.25) can be
written in the form

giλi = 0 (2.26)

again for i = 1, . . . , m because ti = 0 ⇔ gi = 0. The (2.26) is called
complementarity condition equation. The advantage in using (2.26) is that
the slack functions can be avoided in the auxiliary functional; we dispense
with the variation of auxiliary functional respect to the Lagrange multiplier
and instead add the inequality constraints to the optimality conditions.

2.4 Mathematical programming

The field of mathematical programming deals with the search of extremes of
a function f defined over an n-dimensional space �n and bounded by a set
S of constraints12. This kind of mathematical programming problems are
defined by f and S and are common in the field of operations research, the
mathematic branch which concern with decision making problems. Accord-
ing to the nature of design variables, objective and constraint functions are
classified in several categories.

12that can be, in a general case, equalities or inequalities and can assume linear and/or
nonlinear forms.

22 CHAPTER 2. OPTIMIZATION METHODS

2.4.1 Linear programming (LP)

An optimization process is said to be linear when both the objective func-
tions and the constraint relations are linear functions of the design variables
x1, . . . , xn. For example

f(x) = c1x1 + c2x2 + . . . + cnxn = cTx (2.27)

where f stands for a generic objective or constraint relation.
Since the necessary condition for an interior minimum is that the first

derivative of the function with respect to the design variables to be equal
to zero, this special feature can be adopted to develop algorithm for finding
optimum solutions. In fact since in linear programming all the functions are
linear, performing this differentiation would create functions with constant
terms which may not necessarily be equal to zero. Applying this property to
the objective function means that the optimum solution can not be located
in the interior of the feasible design space and must lie on the boundaries13

of the design space.
But since the boundaries are defined by the constraints relations which

are also linear functions of the design variables, the optimum design must lie
at the intersection of two or more constraints functions, unless the bounding
constraint is parallel to the contours of the objective function.

A linear programming problem is said to be in a standard form if it is
written as:

minimize: f(x) = cTx (2.28)
subject to: Ax = b Equality constraints (2.29)

x ≥ 0 Inequality constraints (2.30)

where A, c and b are, respectively a m× n matrix, a n-dimensional vector
and a m-dimensional vector. It is important to say that any linear program
including inequality constraints can be put into the standard form by using
the so-called slack or surplus variables.

If the rank of A is m, we can select m independent columns and obtain
a m×m matrix D that is not singular and admit the solution xD = D−1bD

where bD is the corresponding right-hand vector.
Therefore the vector

x =






xD

. . .
0




 (2.31)

such a solution is known as a basic solution for (2.29). A basic solution need
not to satisfy the non-negativity constraints (2.30), but if that happen the
solution is known as a basic feasible solution and can be shown to be an

13which are described by the constraints relations.

2.4. MATHEMATICAL PROGRAMMING 23

extreme point. The number t of basic solution can be estimated from the
theory of permutations, by selecting m variables from a group of n and it is

t =
�

n
m

�
=

n!
m!(n−m)!

(2.32)

but not all basic solutions are also feasible.
The most efficient and reliable method for solving linear programming

problems (also involving a large number of design variables and constraints)
is called the simplex method [6]. The basic idea of the simplex method is to
continually decrease the value of the objective function by going from one
basic feasible solution to another until the minimum value of the objective
function is reached.

Unfortunately real structural problems rarely can be expressed in a so
simplified form that can be solved using LP, since highly nonlinear objective
function and constraints are common in this kind of problems. Nevertheless
LP is of great interest since it is used in different contexts:

• as a procedure for solving nonlinear programming problems NLP by
iterating inside smaller LP steps.14;

• as a part of more complicated solving schemes.

2.4.2 Integer linear programming (ILP)

The solution vector x to linear programming and calculus15 based problems
is assumed to be all positive and continuous. Thus the optimum solution
could have any value between the upper and lower bounds of the design
variables. There are many design situations however, where some or all of
the design variables are restricted to have discrete values. For example cross
sectional areas, number of plies in a laminated composite, etc. This type
of problem is called integer linear programming (ILP) [6] and its standard
form is :

minimize: f(x) = cTx (2.33)
subject to: Ax = b (2.34)

xi ∈ Xi = {di1, di2, . . . , dil} i ∈ Id (2.35)

where Id and Xi are respectively the set of design variables16 that can assume
only discrete values and the corresponding set of allowable discrete values.
This kind of problem is commonly known as discrete programming problem
and it can be easily transformed into a problem where design variables can

14as in sequential linear programmin SLP.
15such as in differential and variational methods described in 2.3.1 and 2.3.2.
16for example the areas of cross sections.

24 CHAPTER 2. OPTIMIZATION METHODS

assume only integer values by representing the index j = 1, . . . , l in the term
dij that appears in (2.35) with the design variable xi. This is the so called
integer linear programming (ILP) problem.

Instead, when some variables are allowed to be continuous while the
remaining can assume only integer values we have the form:

minimize: f(x,y) = cT
1 x + cT

2 y (2.36)
such that: A1x + A2y = b (2.37)

xi ≥ 0 integer (2.38)
yj ≥ 0 (2.39)

(2.40)

that is known as mixed integer linear programming (MILP) problem.
Other problems are characterized by design variables used to model bi-

nary or 0 − 1 type decision making solution17. This type of problem is
termed zero/one binary ILP. In such a case, is possible to pose any ILP18

as a binary ILP by replacing the design variable xi of 2K − 1 with K binary
variables xi1, . . . , xiK in the form

xi = xi1 + 2xi2 + . . . + 2K−1xiK . (2.41)

It is also possible to convert the linear discrete programming problem to
a binary ILP by using binary variables (xij ∈ {0, 1}, j = 1, . . . , l) such that

xi = di1xi1 + di2xi2 + . . . + dilxil (2.42)

and
xi1 + xi2 + . . . + xil = 1 . (2.43)

It may appear to be logical to obtain an integer solution from a con-
tinuous problem by rounding-off the optimal values of the variables to the
nearest integer value, assuming them to be continuous [62]. This approach
scales badly, because for problems with n variables there are 2n possible
rounded-off designs: a very huge number for large values of n.

Moreover such a method can not guarantee that the integer solution is
contained within the constraints: for some problems the optimum design
may not even be one of these rounded-off solutions, and for others none of
these rounded-off designs may be feasible. What may actually happen can
best be shown graphically (see Figure 2.4.2).

Consider the point where two constraints meet at a vertex between two
rows of lattice points of a plane. Suppose that the optimum gives the vertex

17For example in a truss design problem, the presence of a particular member or its
absence of it can be represented by a binary value.

18that admits an upper bound.

2.4. MATHEMATICAL PROGRAMMING 25

feasible region

actual solution point

possible solution points

simplex solution point

nearest integer to simplex solution

x1

x2

Figure 2.1: Nearest integer approximation and optimal solution

marked with the symbol ✦ as the solution. The nearest-integer approxima-
tion to this vertex lies outside the feasible region and hence is not a feasible
solution. The integer solution to the problem may actually be far removed
from the exact solution (as can be seen in Figure 2.4.2).

Brunch and bound

A common algorithm suitable for MILP and nonlinear mixed integer linear
programming is the brunch and bound (BB) algorithm developed by A. H.
Land and A. G. Doig [39] which relies on calculating the upper and lower
bounds on the objective function so that points that result in designs with
objective functions outside the bounds can be found and, therefore, the
number of analysis can be reduced. BB is, in general, an algorithm suited
for finding optimal solutions of various optimization problems, especially in
discrete and combinatorial optimization. It consists of a systematic enumer-
ation of all candidate solutions, where large subsets of fruitless candidates
are discarded in toto, by using upper and lower estimated bounds of the
quantity being optimized

If S denotes the set of the admissible solutions19, a splitting proce-
dure is firstly applied, with the result of returning two ore more subsets
S1, S2, . . . , Ss so that

�s
i=1 Si = S. These subsets have the useful property

that
min f(x)|x∈S = min (v1, v2, . . . , vs) (2.44)

where vi = min f(x)|x∈Si . This initial phase is called branching, since its
recursive application defines a tree structure20 with s nodes, each of them

19S is also known as the search space or feasible region
20also known as the search tree

26 CHAPTER 2. OPTIMIZATION METHODS

representing the subsets Si. The next phase is called bounding and consists
in a procedure that computes upper and lower bounds for the minimum
value of f(x) within a given subset Si.

The basic idea of the BB algorithm is: if the lower bound for some tree
node21 A is greater than the upper bound for some other node B, then A
may be safely discarded from the search. This step is called pruning, and is
usually implemented by maintaining a global variable m (shared among all
nodes of the tree) that records the minimum upper bound seen among all
subregions examined so far. Any node whose lower bound is greater than m
can be discarded. The recursion stops when the current candidate set S is
reduced to a single element; or also when the upper bound for set S matches
the lower bound. Either way, any element of S will be a minimum of the
function within S.

The method is applied, in a MILP context, as follows:

1. Solve the LP problem obtained from the starting MILP problem by
assuming the varibles to be continuous valued.

2. If all the x variables variables of the solution in step 1 have integer
values, the problem is solved and the execution stops here.

3. If several variables assume non integer values the corresponding value
of the objective function is f1. It can be shown that f1 is a lower
bound fL = f1

22. This initial problem is called LP1 and it is posed at
the root of an enumeration tree.

4. Given l as the number of variables that don’t satisfy the integer re-
quirement, the algorithm splits (or branches) the node in two new LP
problems by adding a new constrain to LP1. This new constrain in-
volves only one, let’s say xk, of the l non integers variables and makes
possible the creation of two further problems: LP2 and LP3. As an
example LP2 will require that the value of the branched variable xk to
be less than or equal to the largest integer smaller than xk, and LP3

will have a constraint that xk is larger than the smallest integer larger
than xk.

5. At this point several solution are possible:

(a) no feasible solution: the corresponding node will be discarded.

(b) an all integer feasible solution is reached: the corresponding node
will be discarded but the value of the objective function will be-
come an upper bound fU for the MILP problem. In other words,

21each of them representing a set of candidates.
22This is due to the fact that imposing the continuous variables to take integer values

will cause the objective function f to increase.

2.5. UNCONSTRAINED OPTIMIZATION 27

any node that has a LP solution with a larger value of the ob-
jective function will be neglected and only those solutions that
produce an objective function f� such that fL ≤ f� ≤ fU will
be pursued. If there are no solution with an objective function
smaller than fU then the node is an optimum solution, otherwise
if there are other solutions with objective function smaller than
fU , they may still include valued variables and are classified as
live nodes.

6. Live nodes are branched again by considering one of the remaining non
integer variables (step 4) and resulting solutions are discussed (step 5)
iterating until all the nodes are fathomed.

It has been proven that performance of the Branch and bound algorithm
relies heavily on the choice of the non integer value to be used for branching
and the selection of the node to be branched (see [67]).

2.5 Unconstrained optimization

Even if most structural optimization problems deal with constraints that
bound the design space also unconstrained optimization can be useful in
several situation: in a stage of the design when the constraints are theorically
present but not active yet, as a tool for solving linear and nonlinear systems
and because in some cases also constrained optimization problems can be
casted in an equivalent unconstrained problem optimization.

Several techniques have been developed over the year (see [67]):

• in the field of minimization of function of one variable: univariate
search, bracketing, quadratic interpolation, Fibonacci, golden section
search, bisection, Davidson’s cubic interpolation,Newton, safeguarded
polynomial interpolation.

• in the field of minimization of function of one variable:

– zeroth order methods: univariate search, bracketing, quadratic
interpolation, Fibonacci, golden section search.

– first order methods: bisection, Davidson’s cubic interpolation.

– second order methods: Newton, safeguarded polynomial interpo-
lation.

• in the field of minimization of function of several variables:

• zeroth order methods: sequential simplex, Powell’s conjugate direction
and modifications.

28 CHAPTER 2. OPTIMIZATION METHODS

• first order methods: steepest descent, Fletcher-Reeves’s conjugate gra-
dient, Beale’s restarted conjugate gradient.

• second order methods: Newton, Quasi newton (or variable metric).

2.6 Heuristic algorithms

A bad disadvantage of the methods seen so far is, unfortunately, their inabil-
ity to distinguish between local and global minima (or maxima). In many
structural optimization problem there are more than one local minimum
and, depending from the choice of the starting point, these algorithms may
converge to one of these local extremes. An improvement to the solution
could be made by restarting the optimization from different starting points
but even this approach, besides not being practical for real problems involv-
ing a large number of variables, cannot guarantees the possibility of finding
the global minimum.

If the variables are required to be integer dealing with the problem of
local minima could be even worse. This happen mainly for two reasons.
First of all, in this kind of problems the design space is disjointed and
discontinuous, so derivative information is either useless or even not defined.
Secondly, the discrete values of the variables introduce local minima due to
various combinations of such variables even if the objective function has
a single minimum (for continuous variables). A possible approach is the
use of either random search techniques working inside the design space or
enumerative algorithms.

An interesting feature of this class of methods is that the use a bottom up
approach to model complex system: the derived algorithms stem from very
simple rules, which when combined are able to provide accurate simulations
of complex processes. This trend began in the last few decades, in the field
of artificial intelligence, Langton [33 - 36] and in genetic algorithms, Holland
[37, 38] and Goldberg [39].

This is in contrast with the common scientific approach: usually sci-
entists tries to simplify what happens in nature. They look for smoothly
changing functions that are able to explain the processes that occur in na-
ture, in a way that can be calculated. This is the top down approach. In
general equations that explain an event, an action or a structure, may be
very complex to use. As a consequence they need to be simplified in some
fashion, for example by linearizing or squaring them. In other terms, to be
analyzed, a complex system is reduced to a simpler one [56].

2.6.1 Simulated annealing

The origin of this algorithm takes its roots back to studies in the field of sta-
tistical mechanics which deals with equilibrium of atoms at different temper-

2.6. HEURISTIC ALGORITHMS 29

atures. Studies demonstrates that the rate of cooling has great importance
during the process of solidification of materials or formation of crystals. A
too rapid cooling leads to a low level of stability because the atom tend to
assume relative positions in the lattice structure to reach an energy state
which is minimal, but only in local sense. More stable positions23 for the
atoms can be reached by annealing which consists in reheating to high tem-
perature, and after cooling the material slowly, in order to let the atoms find
positions which minimize a steady state potential energy. Before the steady
state is reached it can be observed that the system can jump to higher level
of energy for limited time. This feature is used in the algorithms based on
simulated annealing such as Metropolis algorithm.

Metropolis algorithm

At a given temperature T the position of a randomly chosen atom is per-
turbed and the resulting change in the energy of the system ∆E is computed.

If ∆E < 0, meaning that the new energy state is lower than the initial
state, the new configuration of the atoms in the system is accepted. Other-
wise, if ∆E ≥ 0 the new configuration can be accepted or rejected depending
on a random probabilistic decision.

The probability of acceptance P (∆E) of a higher energy state is com-
puted as

P (∆E) = e
(−∆E

kBT) (2.45)

where kB is the Boltzmann’s constant. The more T is high, the more P (∆E)
is close to one. Otherwise when T is near to zero P (∆E) becomes really
small.

The acceptance-rejection criterium is based on a random chosen number
x ∈ (0, 1) that is compared with P (∆E). If x < P (∆E) then the perturbed
state is accepted, otherwise if x ≥ P (∆E) the state is rejected.

The algorithm can be described in the following steps:

1. At a given temperature T a number of system configurations are gen-
erated by randomly perturbing atomic positions until a steady state
is reached24.

2. The temperature is reduced and the iteration of the previous step are
started again.

3. The steps 1 and 2 are repeated iteratively while reducing the temper-
ature to achieve the minimal energy state.

23in the sense of global minimum energy.
24or, in other words a thermal equilibrium state is found.

30 CHAPTER 2. OPTIMIZATION METHODS

The algorithm has been also extended to optimization of functions with
many variables by replacing the energy state with an objective function f ,
and by using variables x for the description of the position of the particles.
After these substitutions the moves in the design space from one point xi

to another xj cause a change in the objective function ∆f ij .
The initial temperature T0 has great importance in the performance

and convergence of the algorithm. If a too low value of T0 is chosen the
probability of finding a global minimum are low, so the initial value must
be high enough to permit virtually all moves in the design space to be
acceptable so that almost a random search is performed. In addition the
number of moves must be decided before that T is reduced.

Some authors provide criteria to estimate good values for T0, others
suggest different temperature updating schemes and ideas for evaluating
the number of moves that are needed25, see [67].

2.6.2 Genetic algorithms

These algorithms (which will be described in details later, see Chapter 3)
rely on Darwin’s theory of survival of the fittest. It can be observed from
biology that when a population of biological creatures is allowed to evolve
over generations, the individual characteristics that are most useful for sur-
vival tend to be passed on to the future generations, because individuals
carrying them have more chances to breed. Those features are encoded in
chromosomes which are subjected to operations of genetic mechanics such
as reproduction, crossover, mutation, inversion that result in randomly ex-
change of chromosomal information.

It will be shown that in this kind of approach it is necessary to represent
the possible combinations of the variables in terms of bit strings and an
objective function is used to evaluate the fitness of each solution. For a
simple problem that can be expressed in the form

minimize f(x), x = {x1, x2, x3, x4} (2.46)

a possible binary string representation could be

0 1 1 0� �� �
x1

1 0 1� �� �
x2

1 1����
x3

1 0 1 1� �� �
x4

(2.47)

where base 10 values of the variables are x1 = 6, x2 = 5, x3 = 3, x4 = 11,
and their ranges are {15 ≥ x1, x4 ≥ 0}, {7 ≥ x2 ≥ 0} and {3 ≥ x3 ≥ 0}.

This kind of representation is easier when variable are discrete, while
when they are continuous a large number of bits are usually required. In
general, a continuous variable xi ∈ (xU

i , xL
i) to be approximated (with an

25The number of moves must be large enough to allow the solution to escape from a
local minimum. For discrete problems it depends from the number of variables.

2.7. CONSTRAINED OPTIMIZATION 31

accuracy between two adjacent values xincr) requires m binary digits ac-
cording to the expression

2m ≥ xU
i − xL

i

xincr
+ 1 (2.48)

where m can be taken as the lowest integer that satisfies this expression.
Working with a population of solution, this kind of algorithms suffer a

lower risk of getting stuck at a local minimum and give not a single design
but a set of optimal designs (with eventually differen level of fitness) that
could be very useful to engineers.

The algorithm can be roughly summed up in the following steps:

1. The size of population is chosen and the values of variables are assigned
with randomly chosen values for the bits.

2. The individuals with best values of objective functions are chosen for
reproduction.

3. The new generation is created by exchanging bit information (crossover)
at randomly chosen locations between the individuals found at the pre-
vious step. Crossover can be single or multipoint. A crossover between
2 chromosome of length L can be at a location (or more locations) k
included between 1 and L− 1. As an example given two parent with
L = 9

parent 1 0 1 1 0 1� 0 1 1 1 (2.49)

parent 2 0 1 0 0 1� 0 0 0 1 (2.50)

and k = 5 we have

offspring 1 0 1 1 0 1� 0 0 0 1 (2.51)

offspring 2 0 1 0 0 1� 0 1 1 1 (2.52)

4. Occasionally, random alterations of strings are introduced (mutation).

5. The objective function is computed for all the individuals of the new
generation and iterations from step 2 are performed until there are no
more improvement between generations.

2.7 Constrained optimization

Most problems in the field of structural optimization can be formulated
as constrained optimization problems. Typically the objective function is a

32 CHAPTER 2. OPTIMIZATION METHODS

fairly simple function26 but the design is usually subjected also to a cer-
tain number of constraints (about stresses, displacements, buckling loads,
frequencies, etc.). Moreover the relations between these kind of constraints
and the design variables are complex, and it is necessary to adopt a finite
element analysis in order to evaluate them.

The methods described in this section can be usefully employed when,
as said before, the objective function is not too hard to compute and the
constraints can be evaluated with a moderate computational effort because
they require the exact27 evaluation of both the objective functions and the
constraints whenever it is required by the optimization algorithm.

Even when the problem become large and complex the same approach
can be followed, by substituting the objective function and the constraints
with approximations and finally applying the optimization procedure on the
approximated problem.

The general form of a constrained optimization problem with both equal-
ity and inequality constraints can be expressed in the form below:

minimize: f(x) (2.53)
subject to: hi(x) = bi (i = 1, 2, . . . ,M) Equality constraints (2.54)

gj(x) ≥ 0 (j = 1, 2, . . . , N) Inequality constraints (2.55)

where:

f(x) is the objective function;

hi(x) and gj(x) are the constraint functions28;

bi(x) are constant values;

xj are the design variables29.

The constraints have the property of dividing the design space in two do-
mains: the feasible space where all constraints are satisfied, and the infeasi-
ble domain where at least one of the constraints is violated. In real problems
the minimum of f(x) is commonly found on the boundary between the feasi-
ble and the infeasible domain or, in mathematical terms, where gj(x) = 0 for
at least one j; otherwise the inequality constraints can be removed without
altering the solution.

To reduce numerical issues and ill-conditioning all the design variables
should have similar magnitude and, at the same time, the constraints should
have similar values when they have to represent similar levels of criticality.

26Such as the computation of the total weight of the structure (expressed in function of
the design variables).

27in the sense of a finite element context.
28They could be linear or nonlinear.
29It could be expressed in integer form.

2.7. CONSTRAINED OPTIMIZATION 33

Some techniques can not manage equality constraints. In such a situation
it is possible to replace equality constraints of the form hi(x) = 0 with two
inequality constraints hi(x) ≤ 0 and hi(x) ≥ 0. However, it is not a good
idea to increase the number of constraints. When that number becomes
large it is possible to replace an entire family of inequality constraints by an
equivalent constraint by using the Kreisselmeier-Stainhuaser [KS] function
defined as

KS[gi(x)] = −1
ρ
ln

�
�

i

e−ρgi(x)

�
(2.56)

where the term ρ is a parameter which measures the closeness of the KS-
function to the smallest inequality min [gi(x)]. For any positive value of ρ,
the KS-function is always more negative than the most negative constraints
and so the KS-function is a lower bound envelope to the inequalities30. In
general

gmin ≤ KS[gi(x)] ≤ gmin −
ln(m)

ρ
(2.57)

As shown before, an equality constraint hi(x) = 0 can be represented by
a pair of inequality constraints hi(x) ≤ 0 and hi(x) ≥ 0 (or −hi(x) ≤ 0) and
in such a case the solution is at a point where both constraints are active
simultaneously (hi(x) = −hi(x) = 0) and

• the value of the KS-function tends to zero as the value of ρ tends to
infinity, since from (2.57) we have 0 ≥ KS(h,−h) ≥ − ln(2)

ρ ;

• the gradient of the KS-function at the solution point hi(x) = 0 tends
to zero independently of the value assumed by the parameter ρ.

In general an optimization problem

minimize f(x) (2.58)
such that hk(x) = 0, k = 1, . . . , ne (2.59)

can be rewritten in the form

minimize f(x) (2.60)
such that KS(h1,−h1, h2,−h2, . . . , hne ,−hne) ≥ −� (2.61)

where � is a small tolerance.

30The larger is ρ the closer the KS-functions are to the minimum functions.

34 CHAPTER 2. OPTIMIZATION METHODS

2.7.1 The Kuhn-Tucker conditions

For the problem (2.53), in the special case of equality constraints only, the
necessary conditions for a minimum can be found with the Lagrange multi-
plier method, defining the Lagrangian function L as follows

L(x, λ) = f(x)−
ne�

j=1

λjhj(x) (2.62)

where λi are the lagrangian multipliers. The necessary conditions for a
stationary point at a regular point31 are

∂L
∂xi

=
∂f

∂xi
−

ne�

j=1

λj
∂hj

∂xi
= 0 i = 1, . . . , n (2.63)

∂L
∂λj

= hj(x) = 0 j = 1, . . . , ne (2.64)

that represent n + ne equations for the ne Lagrange multipliers and the n
coordinates for a staionary point.

When the problem (2.53) includes also equality constraints they can
be transformed into inequality constraints by adding slack variables and
rewriting them in the form

gj(x)− t2j = 0 j = 1, . . . , ng (2.65)

where the slack variable tj measures how far the j-th constraint is from
being critical. The new Lagrangian function L can then be rewritten in the
form

L(x, t,λ) = f(x)−
ne�

j=1

λj(gj − t2j) (2.66)

and differentiating with respect to x,t,λ, follows that the necessary condi-
tions for a stationary regular point are

∂L
∂xi

=
∂f

∂xi
−

ng�

j=1

λj
∂gj

∂xi
= 0 i = 1, . . . , n (2.67)

∂L
∂λj

= −gj + t2j = 0 j = 1, . . . , ng (2.68)

∂L
∂tj

= 2λjtj = 0 j = 1, . . . , ng (2.69)

Those, slightly modified to yield the necessary conditions for a stationary
point to be minimum, are known as Kuhn-Tucker conditions and can be
summarized as follows:

31i.e. at a point where the gradients of the constraints are linearly independent. Other-
wise one or more constraints can be removed without affecting the final solution.

2.7. CONSTRAINED OPTIMIZATION 35

Kuhn-Tucker condition 1 Into an inequality constraint problem, a point
x is a local minimum if and only if a set of λj’s may be found that for each
j satisfies the following requirements:

• λj ≥ 0;

• the equation (2.67) is satisfied;

• if a constraint is not active the corresponding λj = 0.

In general it can be shown (see [67]) that the Kuhn-Tucker conditions are
necessary but not sufficient for optimality. They become sufficient when
the number of active constraints equals the number of design variables; if it
doesn’t happen it is necessary to evaluate second derivatives of the objective
function and constraints. In particular, a sufficient condition is that the
Hessian matrix of the Lagrangian function is positive definite in the subspace
tangent to the active constraints.

The Kuhn-Tucker conditions are sufficient also in the case of convex prob-
lems. An optimization problem is convex when both the objective function
and the feasible space are convex. An interesting property of these kind of
problems, is that the minimum is unique and the Kuhn-Tucker conditions
can be successfully adopted to find it.

convexity condition 1 A set of points S is said to be convex whenever
the line segment connecting two points that are in S is in S too.

(x1, x2) ∈ S ⇒ αx1 + (1− α)x2 ∈ S 0 < α < 1

convexity condition 2 A function f is said to be convex if

f [αx2 + (1− α)x1] ≤ αf(x2) + (1− α)f(x1) 0 < α < 1

For a function in n variables it happens when the matrix of the second deriva-
tives is positive semi-definite.

It can be shown that the feasible space is convex if all the inequality
constraints gj are concave32 and the equality constraints are linear.

2.7.2 Quadratic programming problems

When the objective function is quadratic and both the equality and in-
equality constraints are linear we have one of the simplest form of nonlinear
constrained optimization problems, known as quadratic programming (QP)

32or all −gj are convex.

36 CHAPTER 2. OPTIMIZATION METHODS

problem. If, for the sake of simplicity we consider only inequality constraints,
it can be expressed in the form

minimize f(x) = cTx +
1
2
xTQx (2.70)

such that Ax ≥ b, (2.71)
xi ≥ 0 i = 1, . . . , n (2.72)

Since the constraints are linear, if the matrix Q is semi-positive or pos-
itive defined then a global minimum solution for the problem exists. More-
over, if the quadratic form xTQx is positive (or semi-positive) defined then
the problem can be solved with the Khun-Tucker conditions.

In such a case the Lagrangian function is

L(x, λ, µ, t, s) = cTx+
1
2
xTQx−λT (Ax−{t2j}−b)−µT (x−{s2

i }) (2.73)

where λ and {t2j} are, respectively, the vector of the Lagrangian multipliers
and the vector of positive slack variables for the inequality constraints. µ
and {s2

i } are the same for the nonnegativity constraints. It is possible to
obtain the necessary condition for a stationary point by differentiating the
Lagrangian as follows

∂L
∂x

= c−Qx−AT λ− µ = 0

∂L
∂λ

= Ax− {t2j}− b = 0

∂L
∂µ

= x− {s2
i } = 0

∂L
∂tj

= 2λjtj = 0 j = 1, . . . , ng

∂L
∂si

= 2µisi = 0 i = 1, . . . , n

where ng is the number of inequality constraints, while n is the number of
design variables. For additional details on achieving solution see [67]

2.7.3 On the practical computation of Lagrangian multipli-
ers

The direct application of Kuhn-Tucker conditions to find a minimum is could
be really complex in real problems. More often they are used to check wether
a candidate minimum point satisfies the necessary conditions or to evaluate
the sensitivity of the optimum solution to small changes in some parameters
of the problem.

2.7. CONSTRAINED OPTIMIZATION 37

The equation (2.67), for reasons that will be clearer later, can be rewrit-
ten according to matrix notation in the form

∇f −Nλ = 0 (2.74)

Where, said n the number of the design variables and r the number of
active constraints, Nij = ∂gj

∂xi
, with j = 1, . . . , r and i = 1, . . . , n.

Typically r < n, so that with n equations in terms of r unknowns the
system is over-determined. Assuming the gradients linearly independent the
rank of the system is r. For numerical reasons the system is not solved by
a subset of r equations but is is used the following least-squares approach.

A residual vector u is introduced as u = Nλ−∇f .
The Euclidean norm of the residual is

�u�2 = (Nλ−∇f)T (Nλ−∇f) = λTNTNλ−2λTNT ∇f+∇fT ∇f (2.75)

A least-square solution of (2.74) will aim to the minimization of the
square of the Euclidean norm of the residual respect to λ; differentiating
with respect to each Lagrangian multiplier we obtain

2NTNλ− 2NT∇f = 0 (2.76)

or
λ = (NTN)−1NT∇f (2.77)

This is the best solution from a least square point of view. Substituting the
(2.77) into (2.74) we obtain

P∇f = 0 (2.78)

where P is defined as

P = I−N(NTN)−1NT (2.79)

From a geometrical point of view, P projects a vector into the subspace
tangent to the active constraints, and it is called projection matrix. Hence,
(2.78) implies that the gradient of the objective function has to be orthogonal
to that subspace.

The main problem with (2.77) is that it is an ill-conditioned and ineffi-
cient method. Better results can be achieved adopting a QR-factorization
for the matrix M. It consists in finding an r× r upper triangular matrix R
and an n× n orthogonal matrix Q such that

QN =
�
Q1 N
Q2 N

�
=

�
R
0

�
(2.80)

where Q has been further subdivided in Q1 (containing the first r rows of
Q) and Q2 (containing the last n − r rows of Q). Since Q is orthogonal

38 CHAPTER 2. OPTIMIZATION METHODS

�u�2 = �Qu�2 and

�u�2 = �Qu�2 = �QNλ−Q∇f�2 =
����

�
R
0

�
λ−Q∇f

����
2

=
����

�
Rλ−Q1∇f
−Q2∇f

�����
2

(2.81)
From (2.81) it can be seen that �u�2 is minimized by choosing a value

for λ such that
Rλ = Q1∇f (2.82)

2.7.4 Gradient Projection method

Introduced by Rosen, it is based on projecting the search direction into the
subspace tangent to the active constraints. For the case of linear constraints
the problem is defined as

minimize f(x) (2.83)

such that gj(x) = aT
j (x)− bj ≥ 0, j = 1, . . . , ng (2.84)

The selection of the r active constraints only, can be done by restricting
the values of j such that j ∈ IA, where IA is the set of the index of active
constraints. In such a case we have

ga = NTx− b = 0 (2.85)

where ga is the vector of active constraints and the columns of the matrix
N are the corresponding gradients.

The basic idea is that x lies in the subspace tangent to active constraints.
If

xi+1 = xi + αs (2.86)

and both xi and xi+1 satisfies (2.85), then

NT s = 0 (2.87)

Trying to find the direction along the most negative directional derivative
(steepest descent) which satisfies (2.87), the problem can be rewritten in the
form

minimize sT∇f

such that NT s = 0 (2.88)

and sT s = 1

The corresponding Lagrangian is

L(s, λ, µ) = sT∇f − sTNλ− µ(sT s− 1) (2.89)

2.7. CONSTRAINED OPTIMIZATION 39

and the condition for L to be stationary can be obtained by differentiation

∂L
∂s

= ∇f −Nλ− 2µs = 0 (2.90)

and premultiplying by NT we obtain

NT∇f −NTNλ = 0 (2.91)

and we can find λ
λ = (NTN)−1NT∇f (2.92)

and so, from (2.90)

s =
1
2µ

�
I−N(NTN)−1NT

�
∇f =

1
2µ

P∇f (2.93)

where P is the projection matrix defined in 2.79. But, for numerical reasons,
(2.79) is not an efficient way to compute P. A better approach is based on
a QR-factorization:

P = QT
2 Q2 (2.94)

where the matrix Q2 consists of the last n− r rows of the Q, as computed
in the QR-factorization of the matrix N.

2.7.5 Generalized reduced gradient methods

With this approach, the matrix N of the previous paragraph is partitioned
as

NT =
�
N1 N2

�
(2.95)

where N1 is the transpose of r linearly independent rows of N.
Recalling (2.87) is possible to evaluate the components si of the direction

vector. The r equations corresponding to the elements of N1 are used to
eliminate the r components of s leading to a reduction of the order of the
problem. Once computed N1, Q2 can be evaluated as follows

QT
2 =

�
-N−1

1 N2

I

�
(2.96)

The optimization procedure can be summed up as follows:

1. The vector s is computed from (2.93). A search with a one dimensional
optimization is done until s = 0.

2. When s = 0 from (2.78), it means that the Kuhn-Tucker conditions
may be satisfied.

3. The Lagrangian multipliers are evaluated according to (2.77) or (2.82).

40 CHAPTER 2. OPTIMIZATION METHODS

4. If all the Lagrangian multipliers are nonnegative the Kuhn-Tucker con-
ditions are satisfied and the optimization can be terminated.

5. If some of the Lagrangian multipliers are negative, no progress can
be done with the current set of active constraints. The constraints
associated with the most negative multiplier is removed, and both
P and s are recalculated. If s �= 0 a one dimensional search can
be executed (go to step 1), otherwise if s = 0 and there are still
negative multiplier, another constraint is removed, until all Lagrange
multipliers are nonnegative.

After a direction has been computated (1) a one dimensional search
is carried to evaluate the parameter α which appear in (2.86) and if new
constraints became active the set of the active constraints must be updated.
For details see [67].

The same approach can be extended to non linear constraints by lin-
earizing the constraints about xi

N =
�
∇g1(xi) ∇g2(xi) . . . ∇gr(xi)I

�
(2.97)

and taking care of the following observations:

• Because of the nonlinearity of the constraints the one dimensional
search moves33 away the constraint boundary (see Figure 2.7.5). In
order to move x back to the constraints boundaries a correction is
necessary. As it happens in nonlinear finite element analysis with
Riks-Wempner or Crisfield methods, a restoration procedure must be
done. Using a linear approximation we have

gj ≈ gj(xi) +∇gT
j (xi − xi) (2.98)

and so the desired correction xi − xi) in the tangent subspace which
tends to reduce gj to zero can be computed as

xi − xi = −N(NTN)−1ga(xi) (2.99)

• N must be re-evaluated at each point.

For details see [5].

2.7.6 The feasible directions method

While in the gradient projection method we try to follow the constraint
boundaries, in the feasible directions method we try to stay as far away as
possible from them. Starting from a point x we look for a feasible direction.

33in tangent subspace

2.7. CONSTRAINED OPTIMIZATION 41

Figure 2.2: Projection and restoration moves

The vector s, which defines the direction, is said to be feasible if, applied to
x, keeps x in the feasible domain. This concept can be expressed with the
following the formula (if constraints are smooth)

sT∇gj > 0 j ∈ IA (2.100)

In addition, if the application of s improve (in the sense that diminish)
the objective function that direction is said to be usable. In mathematical
terms:

sT∇f = sTg < 0. (2.101)

The direction which is - in some sense - “best” is the direction that, at the
same time, reduce the objective function and keep away from the constraint
boundaries as much as possible. That compromise can be obtained by the
following problem definition:

maximize β (2.102)

such that − sT∇gj + θjβ ≤ 0 j ∈ IA (2.103)

sT∇f + β ≤ 0 θj ≥ 0 (2.104)
|si| ≤ 1 (2.105)

where the θj are positive numbers34 which measure how far x will move from
the constraint boundaries. The solution can be obtained via the simplex
method. If βmax > 0 then we have found a feasible solution. Otherwise if
βmax = 0 it can be shown that the Kuhn-Tucker equations are satisfied. For
details see [25].

2.7.7 Projected Lagrangian methods (Sequential Quadratic
Programming)

It’s based on a theorem which states that the optimum is a minimum of the
Lagrangian function in the subspace of vectors orthogonal to the gradients

34Also called push-off factors.

42 CHAPTER 2. OPTIMIZATION METHODS

of the active constraints (the tangent subspace). In this subspace the La-
grangian is approximated in a quadratic form leading to a more complex
(but also more efficient35) direction seeking algorithm which requires the
solution of a quadratic programming problem where the objective function
is quadratic, while the constraints are linear.

For the sake of simplicity, in this context will be discussed a simplified
version of Powell’s projected Lagrangian algorithm (see [14]) containing only
inequality constraints.

minimize f(x) (2.106)
such that gj(x) ≥ 0 j = 1, . . . , ng (2.107)

Let’s suppose that at the i-th iteration the design is at xi. We are looking
for a search direction s. This can be computed as solution of the following
quadratic problem

minimize φ(s) = f(xi) + sT g(xi) +
1
2
sTA(xi,λi)s (2.108)

such that gj(xi) + sT∇gj(xi) ≥ 0 j = 1, . . . , ng (2.109)

where g is the gradient of f and A is positive definite approximation to the
Hessian of the Lagrangian function. After the solution both s and λi+1 are
known. The update procedure is xi+1 = xi + αs where α is evaluated by
minimizing the function

ψ(α) = f(x) +
ng�

j=1

µj |min(0, gj(x))| (2.110)

where µj coincide with the absolute values of the Lagrange multipliers for
the first iteration, i.e.

µj = max
����λ(i)

j

��� ,
1
2

�
µ(i−1)

j +
���λ(i−1)

j

���
��

(2.111)

where (i) means i-th iteration.
Going more into details, matrix A is at first initialized as identity matrix,

and the updated using a BFGS (Broyden [22], Fletcher [57], Goldfarb [13],
Shanno [20]) procedure

Anew = A− A∆x∆xTA
∆xTA∆x

+
∆l∆lT

∆xT ∆x
(2.112)

where ∆x = xi+1 − xi and ∆l = ∇xL(xi+1, ∇i) − ∇xL(xi, λi). L is the
Lagrangian function and ∇x is its gradient with respect to x.

35in the sense of a faster convergence of the algorithm

2.8. APPROXIMATED METHODS 43

To be sure that A is positive definite, if ∆xT δl ≤ 0.2∆xTA∆x then ∆l
is modified in

∆lnew = θ∆l + (1− θ)A∆x (2.113)

with

θ =
0.8∆xTA∆x

∆xTA∆x−∆xT ∆l
(2.114)

2.8 Approximated methods

2.8.1 Strategies for computational cost reduction

A structural analyst need a design software that includes the calculation of
the structural response as well as the implementation of a constrained opti-
mization algorithm [67]. This approach requires an high computational cost
since the optimization procedure may require evaluating objective function
and constraints a really large number of times. This is commonly achieved
by repeated finite element analysis that are needed to evaluate the structural
response (stresses, displacements, vibration periods, and so on...).

To address the problem of the computational cost, several techniques
have been introduced. Among them, the sequential approximate optimiza-
tion by Schmit and Farshi [64], employs a sequence of approximate analysis
during portions of the optimization process. Typically the structure is ana-
lyzed only at a limited number of points in the design space. The response at
those points is then used to construct a polynomial approximation. Finally
the optimization procedure is applied to the structural problem described
by the polynomial approximation.

In general the approximations can be classified in:

explicit that is generated by repeated use of finite element analysis;

implicit due to the dependence of the response on the structural design
variables via finite element analysis;

global such as the polynomial approximation described so far (if n is the
number of design variables then for a quadratic approximations n(n+
1)/2 design points are needed);

local when the objective function and constraints are replaced by approx-
imations (linear, in their simplest form) based on derivatives. These
approximations are acceptable only in the neighborhood of the design
space, and limits (known as move limits) to the magnitude in changes
on the variables must be introduced.

An exact analysis is computed only when a design point is obtained from
the approximated optimization. After that new derivatives are calculated
in order to evaluate the new approximations for the objective function and

44 CHAPTER 2. OPTIMIZATION METHODS

constraints. The process is repeated until convergence. Those are called
cycles in order to be distinguished from the iterations computed inside the
approximate optimizations.

The approximations used for constraints and objective unctions are com-
monly based on the value of the function to approximate and its derivatives
at one or several points. They can be subdivided in:

local such as those based on the Taylor series. They are sufficiently accu-
rate only in a very limited region of the design space. Linear forms are
often inaccurate even in the neighborhood of the center point of the
expansion. More precise values can be obtained adding one or more
terms in the series, requiring the calculation of higher-order deriva-
tives. Moreover, some authors introduce ad hoc variables36 leading to
the so-called reciprocal or conservative approximations;

global approach attempts to approximate the function in the entire design
space. It is the case of the response surface approach where the func-
tion is sampled at a number of points and a polynomial expression is
fitted to the data.

midrange they are a compromise between the previous two types of ap-
proximations.

The reduction of computational cost can also be addressed with fast
reanlysis techniques. Those, assuming that the structural response is known
at the design point x0, aim to evaluate the effect of a small perturbation
∆x on the response.

Said u0 = u(x0) the displacement field at x0 and u0+∆u = u(x0) at the
perturbed state x0 + ∆x, the equations of equilibrium at the design point
x0 can be written, from a Finite Element Method perspective, as

K0u0 = f0 (2.115)

where K0 and f0 are, respectively, the stiffness matrix and the load vector
at x0.

Instead, the equations of equilibrium at the perturbed state x0 +∆x are

(K0 + ∆K) (u0 + ∆u) = (f0 + ∆f) (2.116)

Subtracting (2.115) from (2.116) follows

(K0 + ∆K)∆u = ∆f−∆Ku0 (2.117)

Neglecting the term ∆K∆u in (2.117) a first approximation ∆u1 is ob-
tained to ∆u:

K0∆u1 = ∆f−∆Ku0 (2.118)
36also known as intervening variables.

2.8. APPROXIMATED METHODS 45

Higher order approximations can then be achieved subtracting (2.118)
from (2.117) as follows

(K0 + ∆K) (∆u−∆u1) = −∆K∆u1 (2.119)

As before, neglecting the term ∆K(∆u−∆u1) in (2.119) an approximation
∆u2 to ∆u−∆u1 can be computed simply by solving

K0∆u2 = −∆Ku1 (2.120)

At the end ∆u =
�

∆ui where ∆ui is obtained from

K0∆ui = −∆K∆ui−1 (2.121)

A similar approach can be extended to Eigenvalues37 problems too. This
can be written in the form:

K0u0 − µ0M0u0 = 0 (2.122)

where now M0, u0 and µ0 are, respectively, the mass matrix, the eigenvector
and the eigenvalue. All of them evaluated at x0. If µ0 is a non-repeated
eigenvalue at the point x + ∆x we have

(K0 + ∆K) (u0 + ∆u)− (µ0 + ∆µ) (M0 + ∆M) (u0 + ∆u) = 0. (2.123)

Subtracting (2.122) in (2.123) and neglecting, in the perturbation, quadratic
and cubic terms we have

(K0 − µ0M0)∆u + (∆K0 − µ0∆M)∆u0 −∆µM0u0 ≈ 0 (2.124)

Since both M0 and K0 are symmetric, pre-multiplying (2.122) by uT
0 gives

∆µ ≈ uT
0 (∆K− µ0∆M)u0

uT
0 M0u0

. (2.125)

Alternatively multiplying (2.123) by u0 + ∆uT and neglecting higher terms
gives

µ0 + ∆µ ≈ uT
0 (∆K0 + ∆K)u0

uT
0 (∆M0 + ∆M)u0

. (2.126)

Other techniques with the same purpose, are available (see [55]). Obvi-
ously there is no guarantee that this method converges.

37Such as optimizations involving vibrations or buckling.

46 CHAPTER 2. OPTIMIZATION METHODS

2.8.2 Sequential linear programming (SLP)

There are problems where the computation of a single evaluation of the
objective function, constraints and derivatives is very large, compared to
the computational cost associated with the optimization operations. With
these problems, it is beneficial to simplify them by redefining the original
problem into an approximate one. One of the most popular methods is that
of Sequential Linear Programming (SLP).

In order to see how this method works, it is necessary to look at a typical
optimization problem of the form:

minimize f(x) (2.127)
subject to gj(x) ≥ 0 j = 1, . . . , ng. (2.128)

Starting from an initial trial solution x0, the objective function and con-
straints equations are approximated by linear equations using a Taylor series
expansion about x0. The optimization problem can then be represented as
follows:

minimize f(x0) +
n�

i=1

(xi − x0i)
�

∂f

∂xi

�

x0

(2.129)

subject to gj(x0) +
n�

i=1

(xi − x0i)
�

∂g

∂xi

�

x0

≥ 0 j = 1, . . . , ng

and ali ≤ xi − x0i ≤ aui.

The last set of constraints represent the upper (aui) and lower (ali) bounds
of the allowed changes in xi and are called move limits. If these limits are
small, a good approximation can be guaranteed. In such a case the final
solution to the linearized problem xL, can then be treated as an optimum38,
and if the original solution x0 is replaced with xL the optimization process
can then be started with this new solution. The process is then repeated,
thus replacing the original optimization problem with a sequence of linear
programming (LP) problems. Each linear optimization is called cycle. This
approach has some drawbacks:

1. It is efficient only if the computational cost of the LP cycles is small
(compared to the cost of the analysis);

2. if the move limits are not chosen in a proper way, the method may
never converge (the limits should be shrinked as the solution become
closer to the optimum);

38Even if, in general, xL is far from the optimum solution for the involved approxima-
tions.

2.8. APPROXIMATED METHODS 47

3. if the starting point is infeasible then the solution may be infeasible
too. In such a case the constraints should be relaxed. This can be
done, by replacing the problem described by the system (2.129) with

minimize f(x0) +
n�

i=1

(xi − x0i)
�

∂f

∂xi

�

x0

+ kβ (2.130)

subject to gj(x0) +
n�

i=1

(xi − x0i)
�

∂g

∂xi

�

x0

+ β ≥ 0 j = 1, . . . , ng

and ali ≤ xi − x0i ≤ aui, β ≥ 0.

where β is an additional design variable representing the allowed mar-
gin of constraint violation while k is a number chosen to make the
contribution of β in f large enough so that LP cycles will emphasize
reducing β over reducing f (see [67]).

4. Finally, in some cases the solution could cycle between two points.

2.8.3 Sequential nonlinear programming (SNLP)

The SLP method can be generalized by using nonlinear approximations for
some of the constraints and objective function. But, differently from SLP,
with this more general approach, only the functions which are computa-
tionally expensive to calculate are approximated by using either linear39 or
nonlinear40 approximations, while inexpensive constraints do not need to be
approximated at all (see [67]). The solution process to these type of problem
is similar to SLP. An initial trial solution x0 to the problem is required. The
functions41 which requires large computational resource for evaluation are
then approximated about x0. As with SLP, appropriate move limits must be
specified to safeguard against large changes in the design variables, resulting
in poor approximations. Said x1 the solution of the approximate problem,
a new exact structural analysis is performed42. The results are then used
to construct the new approximation and to perform a new optimization,
repeating the process until the minimum value of the objective function is
reached. So the original problem (2.127) is replaced by the system

minimize fapprox(x,xi
0) (2.131)

subject to gapprox,j(x,xi
0) ≥ 0 j = 1, . . . , ng

and �x− xi
0�,≤ ai fori = 0, 1, 2, . . . ,

39i.e. SLP
40i.e. quadratic or cubic
41Objective and/or constraints.
42At x1.

48 CHAPTER 2. OPTIMIZATION METHODS

where fapprox and gapprox,j are, respectively, the approximate objective func-
tion and constraints about x0. xi

0 is the solution of the i-th minimization
and ai is a properly chosen move limits.

2.9 Other methods

2.9.1 Homogenization Method

The homogenization method (see [56] [9], [7]), allows for the simultaneous
optimization of a structure’s topology, shape and size. It can do this, be-
cause the structure is described by a global density function that assigns
material to all parts of the structure. The structure is represented using fi-
nite elements, each of which consists of a composite material with microvoids
with a density variation covering all values in the interval {0, 1}. In its most
general form, the homogenization optimization method is concerned with
minimizing the compliance of a structure with a fixed given volume of ma-
terial, where the density of the material is used as the design variable. The
given volume is discretized using finite elements, and the density of the each
of these elements is controlled with geometric variables that govern the ma-
terial and its microstructure. This is done to correctly relate the material
density with the effective material property. The mathematical formulation
of the homogenization optimization problem is:

minimize l(u), u ∈ U,E (2.132)
subject to aE(u,v) = l(v) ∀v ∈ U

E ∈ Ead (2.133)

with

ae(u,v) =
�

Ω
Eijkl(x)εij(u)εkl(v)dΩ (2.134)

l(u) =
�

Ω
fudΩ +

�

Γ
tudΓ (2.135)

εij =
1
2

�
∂ui

∂xj
+

∂uj

∂xi

�
(2.136)

where

l(u) is the load linear form;

a(u,v) is the energy bilinear form and can be seen as the internal
virtual work of an elastic body at the equilibrium u for an arbitrary
virtual displacement v;

f are the body loads;

2.9. OTHER METHODS 49

t are the surface tractions;

εij are the linearized strains;

U is the space of kinematically admissible displacement fields;

Ead is the set of the admissible stiffness tensors [8];

Eijkl is the rigidity tensor dependent on the design variables, which
could be the density, layering and orientation of the layering of each
element.

The solution to this problem can be found using SLP, NLP or any other of
the techniques mentioned previously. For example, discretizing the problem
(2.132) with a finite element mesh

min
u,Ee

fT u

con: K(Ee)u = f ,

e Ee ∈ Eadm.

where f and u are, respectively the load and displacement vectors. The
tangent stiffness matrix K depends on the stiffness Ee of in element e with
e = 1, . . . , N and can be written in the form

K =
N�

e=1

Ke(Ee)

where Ke is the element stiffness matrix.
It’s important to note that there are two field of interest: the displace-

ment u and the stiffness E.

2.9.2 Optimal layout theory

According to Omquerin [56], the basic assumptions for this theory come
from the work of Mitchell on truss optimization [43]. These were further
developed by Hemp [73] and, later, by Prager and Rozvany [54]. The optimal
layout theory is based on four fundamental concepts (taken from [56]).

1. The idea of structural universe, consisting of the union of all potential
members in all possible directions at all points of the available space.

2. The necessity of a Continuum-type Optimality Criterion (COC), a
condition of cost (or weight) minimization which can be based on the
Kuhn-Tucker conditions.

50 CHAPTER 2. OPTIMIZATION METHODS

3. The concept of an adjoint structure, which is a fictitious structure used
as a convenient mechanical analogy for interpreting certain quantities
in optimality criteria.

4. The layout criterion function φe which is defined from the optimality
criteria and which can be written in the form φe = 1 for Ae �= 0 and
φe ≤ 1 for Ae = 0 where Ae is the cross-sectional area of the e-th
element.

The expression for the layout criterion function φ usually contains the
strain εe in e-th element of the real structure and the strain in e-th of the
adjoint structure. However the optimal structure found by this method may
be restricted to a discrete system consisting of a finite number of bars. The
real and adjoint strain fields are defined on the entire available space in a
continuum type fashion and both of these strain fields must be kinematically
admissible. More in detail, the exact layout optimization method consists
in the following operations:

1. Find the adjoint strain field such that:

(a) The kinematic boundary (supports) conditions and the kinematic
continuity conditions (compatibility) are fulfilled.

(b) The layout criterion function φe must take a unit value in at least
one direction at all points of the available space.

2. Adopt member cross sections along lines with φ = 1 such that the
resulting system can transmit the external loads in a stable fashion,
and the resulting real and adjoint strains in the non-vanishing members
agree with those in the strain fields adopted previously.

It can be noted that in order to simultaneously fulfill the conditions
mentioned above (especially the last one), the method requires considerable
intuitive insight and ingenuity from the operator who is carrying out the
optimization (see [61]).

2.9.3 Shape optimization

In the shape optimization method, a structural domain is described by its
contours, which are geometrically represented by splines. These splines are
defined by the coordinates of the control nodes (the design variables). Shape
optimization, therefore consists in varying the boundaries of the analysis
models (see [44]).

Let’s consider a structural domain (see Figure 2.9.3 on page 51). A
section of its boundary may be represented by a shape function fs, and an
optimal shape for this region is desired based on a chosen criterion. This
problem can be described by the function

Js : fs −→ x ∈ � (2.137)

2.9. OTHER METHODS 51

where the value of c can represent, for example, the Von Mises stress or the
compliance of the structure. To minimize Js, fs is represented as a function
of N unknown parameters x = (x1, x2, . . . , xN).

Figure 2.3: Body of structure: the section AB is to be optimized.

According to Krzesinski (see [23]) the formulation of the shape optimiza-
tion problem can then be written as a nonlinear programming problem for
a function F : x −→ c. The optimization problem then becomes:

Minimize F (x) (2.138)
subjected to hj = 0 for j = 1, 2, . . . , k (2.139)

gi ≥ 0 for i = 1, 2, . . . , m (2.140)

Some researches do a distinction between this type of optimization. In
particular, shape optimization can be intended in a narrow or broad sense.
From a Finite Element Method point of view it can be considered as shape
optimization an optimization which involves the positions of the nodes of
the finite element mesh, and their connectivity43. In contrast sizing opti-
mization takes in account the properties of the elements which characterizes
their stiffness, such as cross-sectional area for bars, or thickness for plates.
In a narrow sense, shape optimization regards the optimum design of the
2D or 3D shape of structural elements. In broad sense, it includes also
the geometrical optimization for skeleton structures (the search of the opti-
mum locations of the joints of the structure)44, and topological optimization
which regards the connectivity of the structure (for example, which nodes

43i.e. the existance or the removal of finite elements between nodes.
44When combined with sizing optimization, a two-level optimization approach is recom-

mended where geometry variables are treated in a different way than the sizing variables
(see [67]).

52 CHAPTER 2. OPTIMIZATION METHODS

are connected by elements). Unfortunately, in any case, several problems
must be considered in shape optimization:

• As the shape of the domain changes the mesh must be changed. In fact
simple re-meshing rules that are limited to translate boundary nodes
can introduce distortions and, consequently, loss of accuracy. To solve
this problem, manual re-meshing, or sophisticated mesh generators are
then required (see [63], [76]).

• Some difficulties may arise for the existence or creation of internal
boundaries (holes)

2.9.4 Computer aided shape optimization (CAO)

This method takes inspiration from nature by observing the growth of trees
(see citemattheck, [56]). In trees, only the outermost growth ring adapts
to external loading. This adaptation is done in such a way that a state
of constant Von Mises stress is present at the surface of the tree. In so
doing the structure generated will try to avoid localized stress peaks, and
will produce a minimum weight design. This growth mechanism has been
studied to develop an optimization methodology that follows these biological
growth rules and is implemented with the aid of software for finite element
analysis. This methods is based on the following steps (see [56]):

1. A finite element model is generated, based on a structure with an
initial reasonable design shape.

2. The finite element mesh is then covered with a thin layer of finite
elements which have a much smaller modulus of elasticity than the
rest of the structural material. This layer is introduced to model the
growth ring in trees.

3. The application of loads will cause some regions to be heavily stressed
and others to be lowly stressed. The surface layer will be treated as
a movable layer that can ba wither swelled or shrunken by using the
equation

ε̇v = k (σV onMises − σref) (2.141)

where σV onMises and σref are, respectively, the Von Mises stress distri-
bution calculated using FEA and a reference stress value. The swelling
(or growth) of the surface layer will produce a distribution of swelling
displacements on the surface according to (2.141). It is also possible
to allow shrinking (ε̇v < 0) or to prohibit this as is the natural case in
real tree growth.

If this swelling option is unavailable in the FE software, the swelling
procedure may be replaced by a thermal expansion of the soft surface

2.9. OTHER METHODS 53

layer. The temperature is then set equal to the Von Mises stresses in
the surface layer. Only this layer has a non-zero thermal expansion
coefficient but the material below the surface layer has a vanishing
coefficient of thermal expansion. This means that only the surface
layer is allowed to increase its volume.

The incremental displacements defined by either of the above men-
tioned techniques are now multiplied by reasonably defined factors, in
order to obtain visible shape corrections. The multiplied displacements
are added to the nodal point coordinates of the surface nodes.

4. 4 The inner border of the soft layer will be shifted outwards in such a
way that the thickness of the soft layer will now be kept constant all
the time.

5. Starting with the new structure modified at step 4, steps 3-5 are then
repeated.

6. 6 Finite element analysis is then carried out with the same modulus
of elasticity everywhere to determine if there are still stress peaks in
the structure.

7. Steps from 3 to 6 are repeated until all notch/peak stresses are com-
pletely reduced or until design limitations prohibit any further increase
in the overall dimensions of the design.

In other terms, this method attaches material in regions which are highly
loaded and removes material from under stressed regions.

54 CHAPTER 2. OPTIMIZATION METHODS

2.9.5 Evolutionary structural optimization

Among the different methods have been developed over the last two decades
to produce structures with minimum weight there is the Evolutionary struc-
tural optimization (ESO) developed in 1992 by Steven and Xie[74] which
worked removing understressed (and so unnecessary) material from a struc-
tural domain in an evolutionary fashion, aiming to obtain a fully strained
structure (as possible).

This approach has been entirely developed heuristically without a real
mathematical foundation, but taking inspiration from rules that can be ob-
served from nature, and it has been applied essentially to 2D plane-stress
finite elements. Moving from this roots Querin [11], extended the method
also to the application for structures modeled with many different typologies
of finite elements: truss , 2D plane stress, 2D plane strain, axisymmetric,
plates, shell and 3D brick elements. The original ESO formulation was char-
acterized for strictly binary decision method {0, 1} also known as hard skill.
This boolean value simply states if a finite element must exist or not. This
works well in most cases (when a topology must be found), but for certain
problems is not satisfactory (for example when plates of variable thickness,
or beams with different cross sectional areas are more desirable). For this
reason, the original binary feature has been extended to include a finite set
of N decision variables {xi}i=1,...,N or an entirely variable solution, leading
to the so-called morphing ESO, sometimes also known as soft skill [4], [69].
The range of applications was also extended to non linear problems and for
structures with moving boundaries and support.

The same author has finally developed the Bidirectional Evolutionary
Structural Optimization (BESO) that extended the original ESO idea, al-
lowing not only removal but also introduction for material, based on a new
parameter (Performance Index) that provides an alternative means of mea-
suring the efficiecy of the structure. Performance index comes to be useful
when it’s necessary to chose between two o more topologies that, at the
same time, can satisfy the same domain and same objectives (like minimum
compliance or weight). This parameter is a numerical value that can be used
to compare the different solutions (under the same conditions of loading and
constraints) in order to make a proper choice.

With ESO the analysis become an integral part of the design process (in
the sense of creation) and not an activity that is done after the design has
been prescribed.

The general case should take into account:

• Size, shape and topology optimization at different parts of structure.

• Different optimization criteria at different parts of structure.

• Multiple load environment;

2.9. OTHER METHODS 55

• Multiple support environment;

• Multiple material environment;

• General 2D and 3D shapes;

• Optimization with material and geometric non-linearities.

Eso uses Finite Element Analysis (FEA) as computational engine. FEA is
done over and over until a final solution has been reached. At the end of
each FEA, the computer evaluate the results of analysis and applies some
ESO rules in order to remove inefficient material. The procedure is repeated
over and over, until all redundant material is removed.

The simple concept of Evolutionary structural optimization is that slowly
removing inefficient material from a structure, the shape of the structure
evolves towards an optimum. There are different material rejection criteria,
depending of the kind of constraints has been adopted (stiffness, frequency,
buckling load,. . .).

stress level rejection criterium

The stress (or strain) is an important indicator in structural analysis. Low
level of stress (or strain) denotes the presence of inefficient material. Exces-
sively high levels are indicators of possible imminent structural failure. In
ideal condition, the optimum could be represented by a fully stressed design
where all the material is at the same stress level.

Stress level rejection criterium is based on the idea that lowly stressed
material is under-utilized and then can be removed. In the meanwhile,
during the ESO process, the more material is removed, the more uniform
become the stress level on the structure.

The application of ESO can be summed up in the following steps:

1. Definition of a removal criterion

2. Creation of a fine45 mesh of finite elements.

3. Application of loads and boundary conditions.

4. Evaluation of stress analysis;

5. Removal of under-utilized material46;

Steps 2,3,4 are a typical of finite element analysis. The procedure iterates
from 2 to 5 until convergence.

45With many small elements in order to make possible step 5.
46It is sufficient to remove the element from the mesh

56 CHAPTER 2. OPTIMIZATION METHODS

In this case the stress level can be measured by some sort of average
of all stress components47. For plane stress and isotropic material the von
Mises stress σvm can be computed as follows:

σvm =
�

σ2
x + σ2

y − σxσy + 3τ2
xy (2.142)

where, as usual, σx and σy are normal stresses in x and y directions, while
τxy is the shear stress.

At the end of every cycle of finite element analysis for each element e
the stress level is obtained as ratio between the computed von Mises stress
of the element σv

em and the maximum von Mises stress max (σv
em) of the

whole structure. If this value is less than the current rejection ratio RRi

than the element e is removed from the mesh.

σvm
e

max (σvm
e)

≤ RRi (2.143)

The combined cycle of finite element analysis and element removal is re-
peated using the same value of RRi until a steady state48 is reached. At this
stage the rejection ratio is updated according to the following expression:

RRi+1 = RRi + ER (2.144)

where ER is the evolutionary rate and the iterations can proceed until an-
other steady state is reached.

The ESO process continue when a condition is satisfied, meaning the
reaching of an optimum. It could be when there is no material in the final
structure with a stress level less than a certain ratio (for example 25%) of
the maximum. Ideally the structure at the final stage could become a fully
stressed design if the material ad each point is at maximum stress level, but
this is possible only under particular conditions.

This procedure requires to parameters: the initial rejection ratio RR0

and the evolutionary rate ER. Typical values are RR0 = 1% and ER = 1%,
but often lower values are need to be used. The correct values can be found
with a try and test procedure: if too much material is removed in a single
iteration or steady state then smaller values of RR0 and ER are required.

Multiple load cases and support environments

During their life, real structures are subjected to multiple load cases and
they must be designed taking into account that. Moreover some kind of
structure can be supported in different ways at different time49.

47For isotropic material is common to use Von Mises stress.
48It happens when no more element are deleted at the current iteration.
49This is - for example - the case of airplanes that are supported by air pressure acting

on the wings during the flight and by undercarriage in discrete points when on ground.

2.9. OTHER METHODS 57

The method seen in 2.9.5 can be easily extended to multiple load con-
ditions maintaining the same rejection criterion and the same objective of
achieving a more uniform stress distribution as possible in the new designs.
This can be done in the same way seen before but repeating the analysis for
the different load conditions. The only difference is that for each element e
the rejection criterion expressed in 2.143 must be checked against any load
case50. Finally the element e can be removed only if the condition of re-
jection is satisfied for every load condition; it means that each remaining
element plays a structurally significant role in almost one load condition.
Moving loads can be simulated creating a set of load conditions that follows
the path of the moving load.

With the presence of multiple support environments, things are almost
the same, since the stress analysis must be repeated for each support condi-
tion but this is more computationally onerous than the case of the multiple
loads case since each analysis requires the creation of a different stiffness
matrix, and so for n support environments is necessary to create n different
matrix and to solve the algebraic system there is the need of computing
n matrix inversion. Finally for each element is necessary to evaluate the
rejection criterion of 2.143 as done before, with the only difference that an
element e can be removed only if that criterion is satisfied in every support
condition.

Structures with stiffness or displacements constrains

One of the most important constraints in structural optimization is based on
stiffness, often in order to reduce maximum displacements at certain points
within a certain limit.

stiffness constrains According to finite element method the state of a
structure can be written as

[K]{u} = {P} (2.145)

where [K] is the global stiffness matrix, {u} and {P} are the nodal displace-
ment and nodal load vector.

The strain energy of the structure can be expressed as

C =
1
2
{P}T {u} (2.146)

and it is a sort of inverse measure of stiffness51.
50From a FEA point of view this is not onerous computationally since the global stiffness

matrix must be inverted only once, like in the case of one load condition.
51So maximizing stiffness is analogous to minimizing the strain energy.

58 CHAPTER 2. OPTIMIZATION METHODS

After the removal of the generic element i from a structure with n finite
elements, the stiffness matrix will change by the quantity52.

∆[K] = [K∗]− [K] = −[Ki] (2.147)

where [K∗] is the stiffness matrix of the resulting structure after the element
removal and [Ki] is the stiffness matrix of the ith element.

Ignoring higher order terms from (2.145)

{∆u} = −[K]−1∆[K]{u} (2.148)

and from (2.146) and (2.147)

∆C =
1
2
{P}T {∆u} = −1

2
{P}T − [K]−1[∆K]{u} =

1
2
{ui}T [Ki]{ui}

(2.149)
where {ui} is the displacement vector of the ith element.

The expression

αi =
1
2
{ui}T [Ki]{ui} (2.150)

defines the so-called sensitivity number that represent the change in stiffness
after the removing of the ith element.

The optimization procedure aims to find the lightest structure that sat-
isfies the limit

C ≤ C∗ (2.151)

, where C∗ is the prescribed limit for C. Each time an element is removed the
overall stiffness decreases and, consequently, the strain energy C increases.
So the most effective way to remove elements is to choose the elements with
the minimum αi in order to minimize the grow of C. The procedure of
removals is repeated until is no more possible to remove elements without
violating (2.151). At each iteration the number of elements to remove is
defined by the element removal ratio which is the ratio between the number
of elements to remove at each iteration and the number of elements of the
original model, typical values are between 1% and 2%.

displacements constrains In this case the displacement at a specific
location (for example uj) must be within a prescribed limit (u∗j). This
constrain can be expressed in the form:

|uj | ≤ u∗j (2.152)

In order to find the change in uj due to element removal, it’s necessary to
introduce the unit load vector {Fj} in which only the jth component is equal

52It’s implicit that the element removal won’t affect the vector {P}

2.9. OTHER METHODS 59

to unity and the others are equal to zero. Multiplying (2.148) by {Fj}T we
obtain:

∆uj = {F j}T − [K]−1[Ki]{u} = {uj}T [Ki]{u} = {uij}T [Ki]{ui} (2.153)

where {uj} is the displacement due to the unit load {F j}, {ui} and {uij}
are the element displacement vectors containing respectively the entries of
{u} and {uj} which are related to the ith element. The value

αij = {uij}T [Ki]{ui} (2.154)

indicates the change in the displacement component {uj} due to the removal
of the ith element. Differently from αu in (2.150) that is always positive, αij

in (2.154) can be either positive or negative, meaning that uj may change
in opposite directions. To minimize the change of |uj | in the most effective
way, only the elements with the minimum αij should be removed according
to the element removal ratio. The expression

αi = |αij | (2.155)

defines the so-called sensitivity number in the case of displacements con-
strains.

The optimization procedure can be summed up as follows:

1. Discretize of structure using a fine finite element mesh.

2. Solve the (2.145) for the given load {P} and the virtual unit load {F j}.

3. Compute the sensitivity number αij for each element.

4. Remove elements with lowest αij .

5. Iterate from 2 to 4 until 2.152 can no longer be satisfied.

constrains on the difference of two displacements This type of con-
strains can be useful in the design of buildings53. It can be expressed in the
form

|uj − uk| ≤ δ∗jk (2.156)

where δ∗jk is the prescribed limit for the difference between the displacements
uj and uk. The effect of removing the ith element can be obtained in the
form

∆|uj−uk| = |{uij}T [Ki]{ui}−{uik}T [Ki]{ui}| = |{δi
jk}T [Ki]{ui}| (2.157)

53For example, constraining the relative displacement between two adjacent floors within
certain limits.

60 CHAPTER 2. OPTIMIZATION METHODS

where {uij} and {uik} are the element displacement vectors of the ith ele-
ment due to a unit load applied at the location and direction of uj and uk

and δi
jk = {uij}− {uik} and the sensitivity number is defined as:

αi = {δi
jk}T [Ki]{ui} (2.158)

To minimize the change in displacement difference, it is most effective to
remove the element whose sensitivity number αi from (2.158) is closest to
zero.

The optimization procedure can be summed up as follows:

1. Discretize of structure using a fine finite element mesh.

2. Solve the (2.145) for the given load {P} and the two virtual unit load
corresponding to {uj} and {uk}.

3. Compute the sensitivity number αi for each element according to
(2.158).

4. Remove elements with lowest αi.

5. Iterate from 1 to 3 until 2.156 can no longer be satisfied.

Multiple displacements constrains When it is required that displace-
ments at several different locations or directions be within prescribed limits
there is a so-called multiple displacements constrain and can be written in
the form:

|uj | ≤ u∗j (j=1,. . . ,m) (2.159)

where m is the total number of constrained displacements.
A classical way of dealing with this kind of constrain is the Lagrangian

multipliers method. A simpler approach is the use of the weighted average of
the expected changes in the displacements with constraints due to element
removal. The weighted average can be expressed as:

αi =
m�

j=1

λj |αij | (2.160)

and is defined as the sensitivity number for the ith element. In (2.160) αij is
computed with (2.154) for each displacement constraint, and the weighting
parameter λj is given by

λj = |uj |/u∗j (2.161)

With this approach when a displacement is far below the prescribed limit,
the corresponding weighting parameter will be very small, and thus the cor-
responding constraint will be a little significance in (2.160), but that con-
straint can become dominant when, after some iterations, the corresponding
displacement is approaching to the limit. The optimization procedure can
be summed up as follows:

2.9. OTHER METHODS 61

1. Discretize of structure using a fine finite element mesh.

2. Solve the (2.145) for the given load {P} and the virtual unit loads
corresponding to all displacement constraints.

3. Compute the sensitivity number αi for each element according to
(2.160).

4. Remove elements with lowest αi.

5. Iterate from 2 to 4 until conditions in 2.159 can no longer be satisfied.

Frequency optimization

The dynamic behaviour of a structure depends largely on the first few natu-
ral frequencies. When the frequency of the external dynamic load is “near”
one of them, sever vibrations can occur. In order to avoid that it is often nec-
essary to shift the fundamental frequency or several of the lower frequencies
away from the frequency range of the external dynamic loading.

Sensitivity number for frequency optimization Sensitivity deriva-
tives are often needed to found the best locations for structural modifica-
tions. But usually sensitivity analysis is usually very complicated, especially
in dynamics problems. For this reason it can be used a simpler sensitivity
number which measure the effect on a natural frequency due to the removal
of a generic element.

It is known from FEA that the dynamic behaviour of a structure can be
expressed, as eigenvalue problem, in the form

([K]− ω2
n[M]){un} = {0} (2.162)

where [K] and [M] are the global stiffness and global mass matrix. ωn is
the nth natural frequency and {un} is the eigenvector corresponding to ωn.
ωn and {un} are strictly related each other by the Rayleigh quotient

ω2
n =

kn

mn
(2.163)

where the modal stiffness kn and the modal mass mn are defined as

kn = {un}T [K]{un} (2.164)

mn = {un}T [M]{un} (2.165)

Removing the i-th element from the current structure the change in
frequency will be (from (2.163))

∆(ω2
n) =

∆kn

mn
− kn∆mn

m2
n

=
1

mn
(∆kn − ω2

n∆mn). (2.166)

62 CHAPTER 2. OPTIMIZATION METHODS

To obtain the value of ∆(ω2
n) we assume that the eigenvector {un} is approx-

imately the same before and after the removal of the element54. Therefore
we have

∆kn ≈ {un}T [K]{un} = −{ui
n}T [Ki]{ui

n} (2.167)

∆mn ≈ {un}T [M]{un} = −{ui
n}T [M i]{ui

n} (2.168)

where [Ki] and [M i] are the stiffness and mass matrices of the i-th element,
and {ui

n} is the eigenvector of the i-th element.
After substitution of approximations (2.167) and (2.168) into equation

(2.166) the approximation of the change of the frequency due to the removal
of i-th element is

∆(ω2
n) ≈ 1

mn
{ui

n}T (ω2
n[M i]− [Ki]){ui

n} (2.169)

To decide which element should be removed from the structure so that
the frequency will be shifted towards a desired value it is necessary to cal-
culate, for each element, the sensitivity number for frequency as follows:

αi
n =

1
mn

{ui
n}T (ω2

n[M i]− [Ki]){ui
n}. (2.170)

This value is an indicator of the change in ω2
n as a result of the removal of

the i-th element.

Evolutionary procedures for frequency optimization With evolu-
tionary structural optimization the frequency of a structure can be shifted
towards a desired value by gradually removing material from the structure.
The procedure can be summed up as follow:

1. discretize the structure with a fine mesh of finite elements;

2. solve the eigenvalue problem (2.162);

3. calculate sensitivity number αi
n using (2.170)

• To increase a chosen frequency: remove a number of elements
which have the highest αi

n.

• To reduce a chosen frequency: remove a number of elements
which have the lowest αi

n.

• To keep a chosen frequency ωn constant: remove a number of
elements which have the smallest |αi

n|.
54The assumption that the mode shape does not change significantly in between design

cycles is commonly used in frequency optimization [58].

2.9. OTHER METHODS 63

• To increase the gap between two natural frequencies ωp and ωq:
remove a number of elements which have the highest αi

pq where

αi
pq ≈ ∆(ω2

p − ω2
q) ≈ αi

p − αi
q where p > q (2.171)

4. Repeat steps from 2 to 3 until optimum is reached.

Truss-like structures

Evolutionary procedures can be applied also for pin jointed frames using
very small area steps:

1. An initial structure is defined including loads and support conditions.

2. Conduct FEA.

3. Calculate stresses.

4. Compare member with target value.

5. If absolute stress is above target increase area by a small increment.
Instead if absolute stress is below target decrease area by a small
increment.

6. If area is diminished to zero, remove element from structure. If area
has reached a lower or an upper bound then freeze area.

7. Check to see if previously frozen areas need unfrozen.

8. If volume change per iteration is within a small convergence tolerance
or a prescribed iteration limit has been reached, then stop, otherwise
go to step 2.

A similar approach could be adopted also for rigid jointed frame (see
[74]).

64 CHAPTER 2. OPTIMIZATION METHODS

Chapter 3

Genetic algorithms

3.1 Introduction

Most of the methods described in the previous chapters of the present thesis
are based on deterministic algorithms. Many problems can be solved with
those approaches, but many others can’t. Computer are usually seen as
“static” machines: it seems obvious that a computer program begins from
an initial point to a final point, mindlessly following a fixed specific path.
This is true for the vast majority of applications we are accustomed to, but it
is not in general true. Over the years, some techniques have been developed
to introduce the concept of adaptabilty in computer programs, leading to
the creation of softwares which are able to adapt their own behaviour when
conditions, previously unforeseen by the same programmers, happens.

The original idea takes its inspiration simply by looking at the nature
around us. In biology adaptability and flexibility are the foundations of life.
Implementing biological concepts creates software that evolves solutions. In
particular, genetic algorithms are based on the observations due to Charles
Darwin (in the mid of nineteen century) and in his evolutionary theory based
on the process of natural selection.

According to Darwin and later scientists, while the survival of individuals
of a population determines the characteristics of the next generation, it is
its reproductive success of population of a whole that determines, over the
years, while generations succeed each other, the evolution of a species.

The process of natural selection, commonly known as “the survival of
the fittest”, actually operates through the survival of the best organisms
available at the time. The same concept of organism’s fitness is changing over
the years. What is best today, can’t be that tomorrow and it couldn’t even
been good yesterday. While ignoring how the characteristics were passed
from parents to offsprings Darwin noticed that all those was happening.

At his time DNA was totally unknown but later it was discovered that
those molecule store a really large amount of information, moreover in a

65

66 CHAPTER 3. GENETIC ALGORITHMS

very tiny space. Offspring inherit characteristics through genes (included in
DNA) received by parents. Reproduction can happen in different forms:

• simplest organisms (fungi, bacteria...) reproduce asexually by dupli-
cating themselves; a single-celled amoeba, for example, creates off-
spring by splitting into two new organisms containing the same DNA.

• complex organisms reproduce sexually by combining genes from two
parents in their offspring.

The last approach, by mixing DNA from two different organisms, guarantees
a large variation within a species. Anyway, with this kind of reproduction,
genes are mixed within a population but there isn’t creation of new genes.

The genetic information in a population is defined as genetic pool. The
more the genetic pool is large, the more the population will be healthier
because this will allow a grater number of genetic combinations. It also
will give greater adaptabilty and less chanche to develop recessive genetic
disorders.

The variability among individuals is also increased by mutation which
is a random change in genes. Often mutations has no effect or they disap-
pear as a result of natural selection. But rare mutations are useful because
they can introduce new genes within the population. Reproduction and
mutations evolve population. The evolution can happen in a straight way
(carrying a species from a form to another) or it can lead to the creation of
a new species.

A simplified version of those natural phenomena are simulated in genetic
algorithms (GA). More detail can be found in with Goldberg’s book [21].
In the opinion of the author of this thesis, GAs are a powerful tool for
structural optimization. A computer program in C++ has been written to
test the potentiality of this approach. More details on GAs and some topics
on their implementation will be discussed in this chapter.

3.1.1 On the definition of genetic algorithm

According to Ladd see [38], the quest to apply evolution to computer soft-
ware is not new. Historically, the first papers on this topic date back to 50s
and are due a Norwegian-Italian mathematician: Nils Aall Barricelli1. Other
studies were published during 60s and 70s but only starting from 1975, with
Holland’s work [27] (and later with his phD students such as Goldberg [21])

1Nils Aall Barricelli (b.1912 - d. 1993) was one of the pioneers in evolutionary compu-
tation. His publication of ”Esempi Numerici di processi di evoluzione”, a study in what
would now be called artificial life, in the journal Methodos, in 1954 is perhaps the earliest
published record of an evolutionary simulation. The paper was republished in 1957 in
English, and detailed the results of programs that were run at the Institute for Advanced
Study in Princeton, NJ, in 1953.

3.2. PARAMETERS OF SOLUTION 67

genetic algorithms become popular among scientists. The first industrial
applications were developed during 80s and 90s.

While computer scientists still discuss about a rigorous and commonly
accepted definition for genetic algorithms, it can be said that, in a broad
sense, it is an adaptation of a biological process, whereby organisms evolve
by rearranging genetic material to survive in environments confronting them.
A genetic algorithm creates a set of solutions that reproduce based in their
fitness in a given environment. It can summed up in the following basic
steps:

1. An initial population of random solutions is created.

2. A value of fitness is first evaluated and then assigned to each member
of the population.

3. Solution with higher fitness values are most likely to parent new solu-
tions during reproduction.

4. When the new solution set replaces the old (i.e. a generation is com-
plete) the process continues at step 2 until an “acceptable” solution is
found.

The outcome of a genetic algorithm is strictly based on probability. The
least-fit individual has a small chance at are reproduction, will the most-fit
solution could not reproduce at all. In analogy to DNA the data are stored
in chromosomes containing genes. Chromosomes have been introduced to
group the optimization parameters in homogenous group.

3.2 Parameters of solution

To implement a genetic algorithm, several parameters must be precisely
defined such as

• the population size;

• the selection criterion;

• the genetic operators (crossover and mutation).

3.2.1 Population

The population consist in the set of solutions which must be evaluated at
each generation. In general each organism can be seen as a vector of data.
In general, each element of the vector can contain any kind of information:
integer and real numbers, boolean expressions, characters, bits and so on.
According to standard C++ data types, the software that has been devel-
oped support the following types of data:

68 CHAPTER 3. GENETIC ALGORITHMS

• ints;

• floats;

• bools;

• chars;

3.2.2 Selection

Genetic algorithm use a selection mechanism to select individuals from the
population to insert into a mating pool. Individuals from mating pool are
used to generate new offspring, with resulting offspring forming the basis
of the next generation. As the individuals in the mating pool are the ones
whose genes are inherited by the next generation, it is desiderable that the
mating pool contains good individuals. For this reason selection is one of
the most important aspects of the GA process.

Many techniques have been introduced to find the individual that will
be chosen as parents [3]. The most popular are:

tournament ;

roulette wheel ;

stochastic universal sampling ;

ranking ;

steady-state ;

uniform ;

and others.

The most important selection algorithms will be discussed later but be-
fore it is necessary to give some definitions. A selection mechanism is simply
a process that favors selection of better individuals in the population for the
mating pool. Instead the selection pressure is the degree to which the bet-
ter individuals are favored: the higher the selection pressure, the more the
better individuals are favored. It can also be seen as the probability of the
best individual being selected compared to the average probability of selec-
tion of all individuals. The selection pressure drives the GA to improve the
population fitness over succeeding generations. The convergence rate of a
GA is largely determined by the selection pressure: higher selection pressure
results in higher convergence rates.

Genetic algorithms are able to identify optimal or near-optimal solutions
under a wide range of selection pressure (see [26]). However, if the selection
pressure is too low, the convergence rate will be slow, and the GA will take

3.2. PARAMETERS OF SOLUTION 69

longer to find the optimal solution. If the selection pressure is too high, there
is an increased chance of the GA prematurely converging to an incorrect (i.e.
non optimal) solution.

It is known that in order to have an effective search there must be a search
criteria (which is given by the fitness function) and a selection pressure that
gives individuals with higher fitness a higher chance of being selected. A
good selection algorithm should

• provide selective pressure (and avoid premature convergence2);

• maintain high levels of population diversity;

• allow a wide exploration of the whole research space.

According to Whitley [16], without selection pressure, the search process
becomes random and promising regions of the search space would not be fa-
vored over non-promising regions. On the other hand, population diversity
is crucial to let the genetic algorithm continue a fruitful exploration of the
search space. If the lack of population diversity takes place too early, a pre-
mature stagnation of the search is caused. Under these circumstances, the
search is likely to be trapped in a region not containing the global optimum.
This problem, called premature convergence, has long been recognized as a
serious failure mode for GAs (see [40] and [21]).

Moreover, selective pressure and population diversity are inversely re-
lated [16]: increasing selective pressure results in a faster loss of population
diversity, while maintaining population diversity offsets the effect of increas-
ing selective pressure. The problem of finding the best balance between these
two factors in order that they can bring their beneficial advantages simul-
taneously have been addressed in [42], where a method for finding a useful
compromise is proposed. To accomplish this, most selection methods in-
clude stochastic functions and are designed so that a small proportion of
less fit solutions are selected. This aspect is really important because it
helps to keep the diversity of the population large, preventing premature
convergence on poor solutions. The space of all feasible solutions is called
search space. Each point in the search space represent one feasible solution.

Tournament selection

Tournament selection provides selection pressure by holding a tournament
among s competitors, chosen at random from the population. The param-
eter s represents the tournament size. The winner of the tournament is

2Premature convergence can be detected in different ways: for example evaluating
takeover time (i.e. till best individual replaces all others). If the best individual is good
enough it means that convergence was not premature. Obviously it also depends on what
kind of solution we are expecting (the optimal solution, a good solution, any solution, a
solution within some specific time, a good (on average) set of solutions, and so on.)

70 CHAPTER 3. GENETIC ALGORITHMS

the individual with the highest fitness of the s tournament competitors3,
and the winner is then inserted into the mating pool. The mating pool,
being comprised of tournament winners, has a higher average fitness than
the average population fitness. This fitness difference provides the selection
pressure, which drives the GA to improve the fitness of each succeeding gen-
eration. Increased selection pressure can be provided by simply increasing
the tournament size s, as the winner from a larger tournament will, on av-
erage, have a higher fitness than the winner of a smaller tournament. The
chosen individual can be removed from the population that the selection is
made from if desired, otherwise individuals can be selected more than once
for the next generation. The whole process is repeated as often as many
individuals must be chosen.

Moreover, with little modifications, a more general procedure can be
introduced, which include stochastic approach by a probability p:

• fix the tournament size s;

• chose, randomly, s individuals from the population;

• select the best individual from pool or tournament with probability p;

• select the second best individual with probability p(1− p);

• select the third best individual with probability p(1− p)2, and so on.
In general the i-th individual has probability p(1− p)(i−1).

where p is in the range 0.5 < p ≤ 1. This values are the probability of
the fittest candidate being selected in any given tournament. The restric-
tion that the probability must be greater than 0.5 has been added, since
any lower value would favour weaker candidates over strong ones, negating
the “survival of the fittest” aspect of the evolutionary algorithm. When
p = 1 the tournament selection is deterministic and simply selects the best
individual in any tournament.

Tournament selection has several advantages: it is simple to code and ef-
ficient for both non-parallel and parallel architectures. Besides, since larger
values of s decrease the chance of least-fit individuals to be chosen, selection
pressure can be easily adjusted by changing the tournament size. Details
and advanced applications can be found in [45]. More recently some modi-
fications have been suggested in [75]. Compared to other algorithms is less
computationally expensive since it does not require the fitness evaluation of
all the individuals.

3A 1-way tournament (s = 1) selection is equivalent to random selection.

3.2. PARAMETERS OF SOLUTION 71

Roulette wheel selection

The value of fitness fi is used to associate a selection probability pi of selec-
tion for the i-th individual with the expression

pi =
fi�N

j=1 fj

(3.1)

where N is the number of individuals in the population.
It is a stochastic algorithm and involves the following technique:
The individuals are mapped to contiguous segments of a line, such that

each individual’s segment is equal in size to its fitness. A random number
is generated and the individual whose segment spans the random number
is selected. It also known as fitness proportionate selection or stochastic
sampling with replacement. The process is repeated until the desired number
of individuals is obtained (called mating population). This technique is
analogous to a roulette wheel with each slice proportional in size to the
fitness, see Figure . If a marble is thrown there then an individual is selected.

Figure 3.1: Roulette wheel for a population of 5 individuals: each slice is
proportional in size to the fitness.

Individuals with bigger fitness will be selected more times.
While candidate solutions with a higher fitness will be less likely to be

eliminated, there is still a chance that they may be. Moreover, there is
a chance some weaker solutions may survive the selection process4. This
technique has high selection pressure but can easily lead to premature con-
vergence.

In particular some considerations should be taken in account when this
algorithm is chosen. The first is that the results are influenced by the pop-
ulation size. The larger is that size, the more diminish the influence of high
fitness individuals on reproductive success [38]. Secondly fitness scaling
should be take into account.

4It doesn’t happen in truncation selection, a simpler and deterministic algorithm, which
eliminates a fixed percentage of the weakest individuals.

72 CHAPTER 3. GENETIC ALGORITHMS

Fitness scaling is an enhancement to the original procedure. As a pop-
ulation converges on a definitive solution, the differences between fitness
values may become very small. In other words, that produces a roulette
wheel with all the “slices” really similar in size, preventing the best solu-
tions from having a significant advantage in selection. Fitness scaling solve
this problem by adjusting the fitness values to the advantage of the most fit
individuals.

Windowing is the simplest form of fitness scaling [38]. After having
computed the fitness value for each of all individuals, the smallest value is
found. Then this minimum value is subtracted to the fitness of each element
leading to a fitness array with the smallest value equal to zero. As an
alternative, to ensure that all the individuals have a chance at reproduction,
it is also possible to subtract a number which is slightly smaller than the
minimum fitness.

example Table 3.1 shows a population of 11 individuals with their fitness
values fi and probability pi.

individual fitness fi probability pi

1 2.0 0.18
2 1.8 0.16
3 1.6 0.15
4 1.4 0.13
5 1.2 0.11
6 1.0 0.09
7 0.8 0.07
8 0.6 0.06
9 0.4 0.03
10 0.2 0.02
11 0.0 0.00

Table 3.1: roulette wheel selection example: population

The process od selection of 6 individuals consists in the generation of 6
random numbers such as:

0.81 0.32 0.96 0.01 0.65 0.42

As can be seen from Figure 3.2.2 the selection results in the following indi-
viduals:

1 2 3 5 6 9

Stochastic universal sampling

Introduced by Baker [32] it can be seen as a development of the roulette
wheel selection. Individuals are mapped to segments of a line. The segments

3.2. PARAMETERS OF SOLUTION 73

Figure 3.2: roulette wheel selection example: graphic representation of se-
lection mechanism.

are continuous. Each of them represents the fitness of an individual as seen in
Figure 3.2.2 but, in this case, the trials (or pointers) are equally spaced. The
total number of pointers n equals the number of individuals to select. So,
differently from roulette wheel selection where n repeated random sampling
is required, in this case only a single random value is necessary to sample
all of the solution.

Example Using the same population of previous example, the distance d
between pointers is computed:

d = 1/6 = 0.167.

In this case only one random number (in the range [0,0.167]) is required.
Let’s suppose is

0.1

The other pointers can then be computed from the random point

0.267 0.367 0.434 0.601 0.768 0.935

The procedure can be seen in Figure 3.2.2 where the final selection is shown:

Figure 3.3: Stochastic universal sampling selection

1 2 3 4 6 8

Rank-based selection

In rank-based selection (see [66]) population is sorted according to the fitness
values of the single individuals. The fitness assigned to each individual
depends only on its position in the individual rank and not on the actual

74 CHAPTER 3. GENETIC ALGORITHMS

objective value. The worst (least fit) individual will have fitness 1, second
worst 2 and so on, and the best will have fitness n, where n is the population
size. In this way all the individuals have a chance to be selected, but this
can lead to slower convergence, because the best individuals do not differ so
much from other ones.

The effects of rank-based selection can be seen in Figure 3.2.2 that shows
a population with n = 5 with different values of fitness. Figure 3.2.2) shows
the same population after rank selection.

Figure 3.4: Graph of fitness (before rank selection)

Figure 3.5: Graph of order numbers (after rank selection)

This approach overcomes the scaling problems of proportional fitness
assignment, it tends to preserve diversity, and reduce selection pressure.

Rank based selection includes several variants: it can be presented with
linear or nonlinear scaling. In the linear form the fitness is written as

fitness(position) = minValue+(maxValue−minValue)(position)−1)/(n−1)
(3.2)

where minValue and maxValue are chosen by operators, such in the following
expression

fitness(position) = 2− sp + 2(sp− 1)
position− 1

n− 1
(3.3)

3.2. PARAMETERS OF SOLUTION 75

where sp is the selective pressure (sp ∈ [1, 2]) and n is the population size.
In the nonlinear form the fitness could be computed as

fitness(position) =
nX(position−1)

�n
i=1 X(i−1)

(3.4)

where X is computed as the root of the polynomial

0 = (sp− n)X(n−1) + sp · X(n−2) + . . . + sp · X + sp (3.5)

and sp ∈ [1, n− 2].
A qualitative comparison can be seen in Figure 3.2.2 in Figure 3.2.2

Figure 3.6: Comparison between different Rank-based selection algorithms
(linear and nonlinear with different values of selective pressure)

Ranked roulette wheel selection

Al Jadaan, Rajamani, and Rao [3] applied a rank based approach to the
roulette wheel selection, by substituting (3.1) with

pi =
2 · position
n(n + 1)

. (3.6)

This is known as ranked roulette wheel selection. The authors applied this
technique to eight test functions taken from the GA literature. The results
obtained from the comparison between applying the roulette wheel selection
and ranked based roulette wheel selection, shows a faster performance of the
latter. The main problem with the standard roulette wheel selection is that
if good solution is discovered early, its fitness value dominates other fitness
values. Then it will occupy majority portions of the mating pool. This
will reduce the diversity in the mating pool and cause the GAs to converge
to wrong solutions. Ranked roulette wheel selection tries to overcome this
problem and by increasing the diversity.

76 CHAPTER 3. GENETIC ALGORITHMS

Steady state selection

In every generation a few5 individuals with high values of fitness are selected
for creating a new offspring. Then a corresponding number of individuals
are removed and the new offspring is placed in their place. The rest of
population survives to new generation. The replacement strategy can be
addressed in many ways (i.e. removing the worst, the oldest, or randomly
chosen individual). This selection criterion leads to an overlapping system,
where both parents and offspring compete for survival [65]. Its simpler form
can be summed up in the following steps:

1. Select two parents from the population.

2. Create an offspring using crossover and mutation.

3. Evaluate the offspring with the fitness function.

4. Select an individual in the population, which may be replaced by the
offspring.

5. Decide if this individual will be replaced.

More sophisticated variants can be introduced by studying more deeply
steps 4 and 5: some researchers propose a replacement strategy that takes
into account two features of the element to be included into the population:
a measure of the contribution of diversity to the population and the fitness
function. The idea is to replace an element in the population with worse
values for these two features. With this strategy is possible to protect those
individuals that allow the highest levels of diversity to be maintained. More
details can be seen in [42].

Fitness uniform selection

Said m and M the lowest and highest fitness in current generation, a fitness
f is randomly (uniformly) selected in [m,M] and the individual with fitness
closest to f is chosen. Then, to avoid memory problems, individuals from
the most occupied fitness levels must be deleted. This technique maintains
genetic diversity since only one solution is required to have maximal fit-
ness. It aims to favor those solutions that are different from all others and
encourages search [41].

Elitism

Elitism copies the best individual (or a few best individuals) to new popula-
tion. Since it prevents losing the best found solution (until better solutions

5Usually only one or two (see [42]).

3.3. DATA STRUCTURE 77

are found), elitism can very rapidly increase performance of genetic algo-
rithms. Elitism size se denotes the number of best individuals that must
survive at each generation.

3.3 Data structure

Each individual represent a possible solution of the optimization problem.
The information it contains is stored, from analogy with biology, in genes
which are in turn grouped in chromosomes. Differently from most ap-
proaches, here an individual contains one or more chromosome. Actually
the chromosome structure is not strictly necessary, because the data are in-
side genes but they have been introduced in order to get better organized
data. In fact, even if unneeded, they can be used to create homogeneous
group of data. For example, in a structural optimization problem, the first
chromosome could contain design variables dealing with structural geome-
try (such as nodal positions), the second dealing with external loads, the
third with elements’ cross section and so on. This could make the data files
much more readable. Besides that, during an optimization process a chro-
mosome could be temporary “frozen” and so applied only to a subset of the
design variables. This approach could be useful when dealing with complex
problems, leading to a sort of multilevel optimization.

3.3.1 Data encoding

On of the most important aspects of genetic algorithms is the data encoding,
since it brings substantial consequences on the implementation and on the
final results of the optimization process.

Commonly in structural optimization we deal with several types of data:

• integer variables (such as the number of nodes in the finite element
mesh, the number of finite elements, the index representing a particu-
lar cross section inside a section data base, and so on).

• floating point values for representing the structural response (i.e stresses,
displacements and frequencies), geometric properties (for example ar-
eas, moments of inertia), properties of materials, and so on.

• bool values for on-off choices.

• bit values for setting configurations (such as restrain)6

6Bit values can also be substituted by boolean variables, but when dealing with many
parameters, bit values are more efficient in terms of memory and computation cost, because
of the different way they are represented (and corresponding operations are implemented)
in calculators.

78 CHAPTER 3. GENETIC ALGORITHMS

In computer implementation we must take in account that each of them
is characterized by different internal representation, depending on language
(or compiler) choice and computer architecture.

Data are encoded in genes. In the most common approach data are en-
coded as bit. In such a case chromosomes (and individuals) are consequently
represented by a string of bit-values. This has been shown in 2.6.2 at page
30. In that paragraph we saw that the expression (2.48) computes the num-
ber of binary digits that are required to approximate a continuous variable
with the desired accuracy. The main disadvantage is that this encoding is
often not natural for many problems and sometimes corrections must be
made after crossover and/or mutation.

In general, both integer and real values can be represented as bit strings
in various ways. A discretization of real values can be mapped to integers,
and integers can be finally mapped to bits by using the standard binary
coded decimal representation. For example, the integers 15 and 16 are en-
coded as 01111 and 10000. These values are neighbors in integer space, but
they are not neighbors in terms of the bit-space or Hamming neighborhood
associated with the standard binary representation. This happens because
the two mentioned bit string form a so-called Hamming cliff (i.e. adjacent
integers are represented by complementary bit strings and thus share no
bits in common). It may be desirable to use a bit encoding where adjacent
integers are represented by bit strings that are neighbors in Hamming space
and thus differ by a single bit. Gray codes benefit of this property: for any
integer i the binary representation of i is Hamming distance 1 away from bit
representation of the integers i+1 and i−1. Moreover, 0 and the maximum
represented integer are adjacent as well (see [17], [19]). The actual number
gray codes is not known, but one of the most commonly used is the standard
binary reflected gray code (SBRGC). One of the most important advantages
in grey codes in place of the standard binary code is that the former are
always guaranteed to produce a representation in Hamming space where
the number of local optima is less than or equal to the number of optima
in the original real-valued or integer function representation [18]. Some re-
searchers argue that grey codes must be used if the natural representation
of the problem is integer or real valued but the question is still open. Under
certain circumstances binary seems to perform better than grey codes.

Particular attention should be given to precision as well. Numerical tests
has demonstrated that comparing real valued and bit representation is much
more complex than most of literature suggest: genetic algorithms at 20 bits
of precision can be 10 to 100 times slower to converge using 20 versus 10
bits of precision. On one side low precision could lead to miss good solution
(but allows a wider exploration); on the other side high precision can result
in a narrower and slower exploration [15].

We have may other types of encoding. The most appropriate choice
depend mainly on the features of the problem to solve. For ordering problem

3.3. DATA STRUCTURE 79

can be used permutation encoding : each chromosome is a string of integers,
which represents number in a sequence. For example

8 4 1 2 9 5 6 7 3

Many problem in the field of structural optimization deals mainly with
integer and float values. In such a case (and in the writer’s opinion) the
value encoding seems to be the most proper approach, by encoding directly
integer and real numbers. Eventually also chars, or complex object can be
included. A chromosome is a string of some values7 and could have the form:

1 4.5312 31.434 (up) 6 1.4383× 10−12 r (down)

This is the encoding adopted in the optimization software that has been
developed.

Tree encoding is widespread in genetic programming, where data are
expressions or evolving programs. Every chromosome is a tree of some
objects, such as functions (see Figure 3.3.1) or commands in programming
language (see Figure 3.3.1). It’s mainly used with programming language
LISP, because programs in it are represented in this form and can be easily
parsed as a tree [30].

Figure 3.7: Tree encoding of expression (+x/(5y))

Depending on the adopted encoding scheme, proper crossover and mu-
tation operators must be developed.

On value encoding for real numbers

Most implementation of genetic algorithms using floating values design vari-
ables work with bit strings. Others use a different encoding, such as trans-

7Values can be anything connected to problem: integer numbers, real numbers, chars
or more complicated objects.

80 CHAPTER 3. GENETIC ALGORITHMS

Figure 3.8: Tree encoding of a LISP expression

forming a 44 bit string into two floating point values via a series of opera-
tions [35] or similar approaches. In the author opinion the most interesting
technique is due to Ladd [38] and has been adopted in the optimization
software whose result are discussed at the end of the present thesis. Since
the software has been developed in C++ it have been appeared natural to
implement Ladd’s enconding since it takes in account the way the floating
point variables are stored in calculators.

The most common C/C++ compilers for PCs (like GNU gcc or Microsoft
Visual C++) implement 32-bit floats and 64-bit long double according to
IEEE standard 754-1985 8. This standard, developed by the Institute of
Electrical and Electronic Engineers (IEEE) defines those single precision
and double precision floating points formats. More precisely a float is a
32-bit value, while a double is a 64-bit values. In IEEE 754 floating-point
representation, these bits are divided in three basic components:

• a sign bit s;

• an exponent exp;

• a mantissa m.

The sign bit is the highest order bit and it simply defines the polarity of
the number: a value of zero means the number is positive, while a 1 denotes
a negative number.

The mantissa is divided into a fraction and leading digit. It mantissa
represents the number to be multiplied by 2 raised to the power of the
exponent. Numbers are always normalized, represented with one non-zero
leading digit in front of the radix point. In binary math, 1 is the only non-
zero number. Thus, the leading digit is always 1, allowing us to leave it out
and use all the mantissa bits to represent the fraction (the decimals). This
trick maximize the range of possible numbers as well.

But since the mantissa is a binary fraction, it can’t always store exactly a
decimal value. For example there is no binary fraction capable to represent

8Recently, a new revision has been published by IEEE. The current version is the IEEE
754-2008 that has been published in August 2008. It introduces some modifications such
as 3 new formats. So now there are three binary floating-point formats (which can be
encoded using 32, 64, or 128 bits) and two decimal floating-point formats.

3.3. DATA STRUCTURE 81

without errors the values 0.6 or 1/3. Floating point must be seen as an
approximation of a decimal value; this is where rounding errors come from.

The exponent represents a range of numbers, positive and negative. More
precisely it is a binary number representing the number of binary digits is
shifted left (for a positive actual exponent) or shifted right (for a negative ac-
tual exponent). It is also a biased value, thus a bias value must be subtracted
from the stored exponent to yield the actual exponent. The single-precision
bias is 127, while the double-precision bias is 1023. This means that for a
float a stored value of 100 indicates a single-precision exponent of -27. The
exponent base is always 2; this implicit value is not stored.

In floats the exponent occupies 8 bits, while the mantissa uses the
remaining 23 bits. It can be seen in the following diagram:

1 8 23 bit lenght
+-+--------+-----------------------+
|s| exp | mantissa |
+-+--------+-----------------------+
31 30 22 0 bit index

Instead, doubles have a 52-bit mantissa and a 11-bit exponent. A
graphic representation follows.

1 11 52
+-+-----------+--+
|s| exp | mantissa |
+-+-----------+--+
64 63 52 0

Moreover IEEE 754 admit some unusual values. For both representa-
tions, exponent representations of all 0s and all 1s are reserved and used to
indicate the following special numbers:

• 0 when all digits (both in mantissa and exponent) are set to 0, while
sign bit can be either 0 or 1;

• ±∞ when exponent is all 1s and fraction is all zeros;

• NaN 9 when exponent is all 1s and mantissa contains any set of bits
that is not all zeros. In this case the sign bit is irrelevant.

These special cases are really important. Any routine with operates with
bits in floating point representation must avoid generating these special val-
ues. Most of C++ compilers are not able to process them and generate

9NaN stands for “Not a number”. Two versions of NaN s are available: they are used
to represent the result of invalid operations such as dividing by zero, or indeterminate
results such as operations with non-initialized operands.

82 CHAPTER 3. GENETIC ALGORITHMS

exceptions, so the involved algorithm must be able to manage those situa-
tions.

Crossover and mutation operators are deeply influenced by the encoding.
When Ladd’s encoding is adopted, special techniques must be introducted in
those operator in order to manage safely bits in floating point representation,
avoiding the generation of the special number I’ve just described.

3.3.2 Crossover operators

Crossover operators depend on data encoding.

binary encoding

In the case of binary encoding several types of crossover are possible (for the
sake of clearness only the case of one-chromosome individual is considered,
but the following considerations are valid in general):

single point : one crossover point is selected, binary string from the be-
ginning of the individual’s chromosome to the crossover point is copied
from the parent A, the rest is copied from the parent B. For example:
11001011 + 11011111 = 11001111 (see Figure 3.3.2);

multi point : several crossover points are selected. For simplicity let’s con-
sider a two point crossover: two crossover points are selected, binary
string from the beginning of the chromosome to the first crossover
point is copied from the first parent, the part from the first to the
second crossover point is copied from the other parent and the rest
is copied from the first parent again. For example: 11001011 +
11011111 = 11011111 (see Figure 3.3.2);

uniform : bit values are randomly copied from the first or from the sec-
ond parent. For example: 11001011 + 11011101 = 11011111 (see
Figure 3.3.2);

arithmetic : an arithmetic operator is chosen and applied to the parents
to generate the offspring. For example: 11001011 AND 11011111 =
11001001 (see Figure 3.3.2).

Figure 3.9: Single point crossover for binary encoding

3.3. DATA STRUCTURE 83

Figure 3.10: Two points crossover for binary encoding

Figure 3.11: Uniform crossover for binary encoding

Figure 3.12: Arithmetic crossover for binary encoding

permutation encoding

For permutation encoding even a single point crossover can be computed in
different ways. As an example, after having selected one crossover points,
by copying the permutation is copied from the first parent till the crossover
point, then the other parent is scanned and if the number is not yet in the
offspring, it is added.

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

value encoding

Theorically, for value encoding all crossovers operators from binary encod-
ing can be used. But if Ladd’s encoding is adopted, a more sophisticated
technique must be used. Differently from mutation (see section 3.3.3) the
roulette wheel mechanism is no more required, but it remains necessary to
check the bits of the exponent part. This check is required to ensure that
any output value is not one of the special numbers (NaN or ±∞) seen so
far. If it happens, the crossover is repeated (discarding offsprings) until this
condition is satisfied.

tree encoding

One crossover point is selected in both parents and the parents are divided
in that point. A new offspring is finally generated by exchanging the parts
below crossover points (see Figure 3.3.2).

84 CHAPTER 3. GENETIC ALGORITHMS

Figure 3.13: One point crossover for tree encoding

3.3.3 Mutation operators

Mutation is done after crossover and depends on data encoding as well.

binary encoding

When data are binary encoded mutation is computed with a simple bit
inversion: one or more bits are selected and then inverted (see Figure 3.3.3).

Figure 3.14: Mutation for binary encoding

permutation encoding

In this case mutation consists in a simple order changing: two numbers are
selected and exchanged.

(1 7 4 3 5 6 8 9 2) ❀ (1 6 4 3 5 7 8 9 2)

value encoding

Several approaches are available. For real value encoding a simple strategy
is adding (or subtracting) a small random number to the selected values.

(8.65 1.22 4.55 8.21 2.01 9.98 0.21) ❀ (8.65 1.27 4.55 8.21 1.98 9.98 0.21)

If Ladd’s encoding is adopted, a more sophisticated technique must be
used.

3.3. DATA STRUCTURE 85

mutation with Ladd’s encoding requires special attention in managing
the bits of IEEE 754 standard representation in order to avoid generation
of special numbers (such as NaNs or ∞). Besides that the probability
of crossover must take in account the different effects of exchanging bits in
exponent, mantissa or sign. Each of these three groups has a different weight
on the change of the floating value represented. For this reason, the adopted
algorithm considers three values for crossover probability, representing the
relative chances of changing the parts of floating point number:

• Pexp for the exponent;

• Pm for the mantissa;

• Psign for the bit sign.

In this way it is possible to calibrate the influence of these three components.
It’s clear that changing the value of a bit collocated in the exponent or sign
part of representation can produce dramatic effect, since that change may
dramatically alter the magnitude of a floating point number. For the same
reason changes in mantissa are usually less influent.

Ladd computed the probability that a random bit change will affect a
specific component, assuming that all bits have equal chance of mutation.
The result can be seen in table 3.2

float double
sign bit 3.1% 1.6%

exponent 25.0% 17.1%
mantissa 71.9% 81.3%

Table 3.2: Probability of bit locations for a random bit change (from [38])

The exponent, in particular, can introduce large fluctuation inside pop-
ulation. This behaviour can be corrected by adopting different probabilities
and using a technique similar to roulette wheel selection that allow to weight
mutation in favor of changing the mantissa. This can be done as follow:

The source code is largely taken from [38]. Two different version of
mutation are necessary because of the different internal representation of
floats and doubles.

The procedure has been wrapped in the C++ class CGene which imple-
ments the necessary data and functions required for managing data stored in-
side genes. The algorithm requires the introduction of three floats m_sign_weight,
m_mantissa_weight, m_exp_weight, which represents, respectively, the weight
of bit change in sign bit, mantissa and exponent. A pointer pRandomGenerator
to an instance of the class ”CRandomGenerator” is given as well. This class
wraps several random number generators and that pointer is used to obtain a
random number in the interval [0, 1] with the function getRandomDouble().

86 CHAPTER 3. GENETIC ALGORITHMS

Despite the differences in the different bit lengths of the two data types,
the algorithm can be explained as follow:

• a copy of the value to mutate is done and stored for bit manipulations.

• a section (sign, exponent or mantissa) of IEEE 754 representation is
randomly selected for bit mutation.

• Through bit mask a check is done to see if all exponent bits are set to
1. In such a case the value could be a NaN or an∞ so the unmodified
floating point value is returned (ensuring that that any output value
is not one of these special numbers.)

• a roulette wheel mechanism is applied:

• a random number random_pick is generated inside the interval [0, m_total_weight[,
where m_total_weight = m_sign_weight + m_mantissa_weight +
m_exp_weight. Now, three situation can occurr:

1. if random_pick < m_sign_weight then the sign bit is flipped;

2. else if m_sign_weight < random_pick < m_exp_weight then a
randomly chosen bit in the exponent part is flipped;

3. else if random_pick ≥ m_exp_weight then a randomly chosen bit
in the mantissa is flipped.

• The modified bit representation (now corresponding to a new floating
value) is decoded and returned.

Common values for m_exp_weight and m_sign_weight are, respectively,
15% and 2 ÷ 3%. This operator has been implemented in the optimization
software developed for this thesis.

tree encoding

A nodes is selected randomly and its content (operator or number) is changed
(see Figure 3.3.3).

Figure 3.15: Mutation for tree encoding

3.4. ON COMPUTER GENERATED RANDOM NUMBERS 87

3.4 On computer generated random numbers

Genetic algorithms largely depend on random numbers. At the same time
computers are precise and deterministic machine, so it seems almost impos-
sible that a computer could work as a random number generator. On this
paradox researchers and modern philosophers have debated for a long (see
[33]). More precisely, when we deal with computer generated sequences we
should speak of pseudo random sequences, reserving the random term to the
description of intrinsically random physical (natural) phenomena [28].

Even the human mind, which is surely unpredictable, is not good at
generating a set of numbers which are completely unrelated each other.

In addition the random functions present in common languages are, un-
fortunately, totally inadequate, especially in circumstances where a really
large number of random values must be generated. In fact, if those values
are repetitive or reappear cyclically, the algorithm is unlikely to produce
satisfactory results [38].

Computers perform calculation via algorithms: but truly random num-
bers cannot be generated in that way because an algorithm is a sequence of
operations which, for a given set of parameters, produce an output which is
predictable (computed in advance).

Even if, almost theorycally, a random number is a number that is un-
known in advance because it can’t be predicted, for practical applications
pseudo random numbers can suffice. These numbers aren’t really random,
but their sequence is difficult to follow and, in a certain way, they seem to
behave as they were really random.

Researchers have spent a lot of time trying to invent and analyze pseudo-
random number generators that were able to produce the most unpredictable
sequence of values. Typically, a pseudo-random number generators is ini-
tialized with a so-called seed. Some operations are performed on that seed
and the generated result is a pseudo-random number. That number is then
used as the next seed value.

A good pseudo-random generator should be characterized by:

• a long repetition cycle: sooner or later, as the algorithm is applied, the
seed will eventually return to its starting value and the output values
start repeating themselves. The later as possible it happens, the best
it is;

• in order to be not predictabile, the produced numbers should have no
particular features (such as patterns) in common;

• it should pass some statistical tests taken from literature.

• theorically, if two generators were coupled to a particular application
program, they ought to produce statistically the same results;

88 CHAPTER 3. GENETIC ALGORITHMS

Among the available algorithms, the linear congruential method is one
the most commonly used and is also one of the simplest, since it involves
only two operations. Introduced firstly by D. Lehmer in 1954 it can be
written as

Ni+1 = aNi + c(mod m) (3.7)

where Ni is the current seed, Ni+1 is the produced pseudo-random number,
a is a positive integer called multiplier, c is nonnegative integer called incre-
ment. The recurrence (3.7) must eventually repeat itself, with a period that
can’t be greater than the modulus m. All of those parameters define the
efficiency and the “randomness” of the method and must be chosen care-
fully. In fact, it has been shown that the period can be of maximum length
only for proper combinations of a, c and m. In the past, many early gen-
erator happened to make really bad choices of those parameters, leading to
a widespread diffusion, among different systems, of low quality generators.
Moreover, with some unfortunate parameter choices, successions like (3.7)
can produce low order bits that are not random at all.

When c = 0 the recurrence (3.7) is also known as multiplicative linear
congruental method.

This approach (with only little modifications) is used also in the ANSI-C
implementation of rand and srand functions:

static unsigned long next = 1;

int rand(void) {
next = next * 1103515245 + 12345;
return ((unsigned int) (next / 65536UL) % 0x32767UL);

}

void srand(unsigned int seed) {
next = seed;

}

which correspond to (3.7) with a = 1103515245, c=12345, and ,=232. In
many implementations it provides value that lie only between 0 and 32767
(inclusive). So only few thousands values are available before repeating
itself, an inadequate number for genetic algorithms. Other limitations arise
from a software engineering point of view:

• it is necessary to explicitly call srand, otherwise in every execution of
the program the same sequence is generated;

• both rand and srand share the same global seed, even if they are two
different functions;

3.4. ON COMPUTER GENERATED RANDOM NUMBERS 89

• since seed is unique only one sequence is possible in a program and
it isn’t possible to have several pseudo-random generator in the same
program;

• the ANSI rand function returns only values between 0 and RAND_MAX
10. This is a limitation because often the values are required between
different intervals. For example [1, 10[or [0.0, 1.0[.

• a templatized class could be useful since it could produce pseudo-
random number for every type, not only for longs.

• some compilers use some byte-swapping tricks in function rand, in
order to increase “randomness”11. but it has been proven that it ruins
the generator and reduces the period of repetition.

Park & Miller [53] suggest parameters for (3.7) (see Table 3.3). In par-

a m c
32 bit unsigned (long) 16807 or 42871 or 69621 2147483647 0

16 bit 171 30269 0

Table 3.3: suggested values for a,m, c in (3.7)

ticular they have proved that, if a and m are chosen carefully, the form

Ni+1 = Ni · c(mod m) (3.8)

can be as good as the more general form (3.7) with c �= 0.
A generator in the form (3.8) is said to be multiplicative linear congru-

ential.
According to Park & Miller a good compromise is the so-called Minimal

Standard12 which is defined with the parameters

a = 75 = 16807 (3.9)

m = 231 − 1 = 2147483647 (3.10)

One problem that can be encountered with the sequences seen in (3.7) or
(3.8) is that they can suffer from sequences of repetitive values (for example,
certain large values may always be followed by very small values). Such
problems can be avoided by using the same generator to randomize itself.
The basic idea is mixing up the generated values so that they dont appear in
the usual sequence, thus avoiding any correlations or predictable sequences.
This is the case of the technique called shuffle:

10According to ISO/IEC 9899:1999-C99, verb RAND MAX must be at last 32767, but
its actual value can vary depending on implementations.

11Linear congruential generators have low-order bits much less random than their high-
order bits and, if possible, only the latter should be used.

12Minimal Standard was firstly introduced by Lewis, Goldman and Miller in 1969.

90 CHAPTER 3. GENETIC ALGORITHMS

• an array is created and loaded with the first few generated values;

• subsequent invocations of the algorithm are used to generate a random
index into that array;

• the corresponding indexed value is returned and it is replaced in the
array with another random value.

Over the years several modifications have been introduced to overcome
the arithmetic limitation of old computers (see Schrage’s method in [37] and
[50]) but neither of them has been proven to be efficient in general.

A more sophisticated approach is based on L’Ecuyer’s algorithm. Better
results could also been obtained by L’Ecuyer’s approach, consisting in com-
bining two different sequences with different periods [51]. This algorithm
uses an approximate factorization and implement a procedure that aim to
“shuffle” each result in order to reduce correlation in low-order bits. For a
practical implementation see [38].

All the algorithms seen so far aim produce Uniform deviates. Uniform
deviates are just random numbers that lie within a specified range, typically
0.0 to 1.0 for floating-point numbers, or 0 to 232 or 264 for integers. Within
the range they can be thought as think “random numbers”, in the sense
that any one number is just as likely as any other. In other words, uniform
deviates are different from other sorts of random numbers (such as num-
bers drawn from a normal13 distribution with specified mean and standard
deviation).

The state of the art for generating uniform deviates has advanced con-
siderably in the last decade and now begins to resemble a mature field [29].
In particular the availability of unsigned 64-bit arithmetic in C and C++
and the standardization of programming languages and integer arithmetic
have bring to this field big benefits. The main problem is that many tech-
niques that now are inferior and outdated are currently employed, because
the same were considered good only a few years ago. Recent studies (Press
and others, 2007, see [29]) have shown that following generators shouldn’t
be used:

• generators based on a linear congruential generator (LCG) or a mul-
tiplicative linear congruential generator (MLCG);

• generators whose period is less than 264 ≈ 2 × 1019 or, even worse,
unknown;

• generators that warns that their lower bits are completely random
(they were good some time ago, but now are to be considered as ob-
solete);

13i.e. Gaussian.

3.4. ON COMPUTER GENERATED RANDOM NUMBERS 91

• generators based on C and C++ standard functions rand and srand
because of their poor implementation;

• overengineered generators (i.e with very high periods, or that require
complex arithmetic and/or logical operations, and so on) because they
are wasteful of resources.

The same authors quote:

An acceptable random generator must combine at least two
(ideally, unrelated) methods. The methods combined should
evolve independently and share no state. The combination should
be by simple operations that do not produce results less random
than their operands [29].

and suggest several kind of high quality pseudo-random generator both for
64-bit unsigned integers and double precision floats.

Nowadays many good algorithm for pseudo-random generator exist. A
list can be found in [24] and [52].

From this discussion it can be seen that the choice of a random generator
is very complex and requires specialistic knowledge. In order to have the
possibility of trying different generators it has been written a C++ class
which implements all the functionality which are needed for a generator
used in genetic algorithms. The advantage of this approach is that this
class wraps all the implemented techniques maintaining the same public
interface. In such a way it appears, to the optimization module, totally
transparent and the human operator is free to change, modify or introduce
new generators easily.

Nowadays many generators are available, but from a practical point of
view, it is in the writer opinion that algorithm with few and fast operations
(eventually using registers or first level cache) should be preferred to the
others. If the generator requires to much resources or it is too slow it can
reduce the efficiency and the speed of the genetic algorithm which uses it.
In such a case an hardware random generator could be take into account as
well.

Hardware random generators are independent random sources that are
based on the observation of some physical process. As an example they
could be built by measuring:

• a random noise on an electronic circuit, such as thermal noise;

• the nuclear decay radiation source detected by a Geiger counter;

• the atmospheric noise as detected by a radio receiver;

and so on.

92 CHAPTER 3. GENETIC ALGORITHMS

Chapter 4

Parallel computing

Since genetic algorithm require a lot of repetitive (and independent) high-
cost computation, it has been implemented with parallelism in the computer
program that have been developed for the numerical simulations. This chap-
ter illustrates some topics on parallel computing that must be taken in ac-
count in designing a parallel program.

4.1 Introduction

After few decades in which parallel computing has been considered a very im-
portant computer research subject, the long awaited breakthrough towards
mainstream computing has delayed and has not yet completely materialized.

One of the most important reason of these delay is maybe due to the
fact that parallel computing add a strong layer of complexity when compared
to traditional sequential programming. For that even if parallel hardware
has over the years shown continuous sign of progress and improvements (in
terms of availability, increase of power, cost reduction and so on) parallel
software has always lagged behind and fallen short of expectations, making
it difficult to actually use the hardware in a profitable manner. Is is also
know that programming parallel computers is in general more difficult, error
prone and time-consuming than programming sequential computers.[11].

As will be clearer in the next sections the term parallel refers to both
hardware (a set of computers or processor that can execute programs in
parallel) and software (an algorithm formulated as concurrently running
processes or tasks). At the hardware level, parallel processing can be im-
plemented within the confines of a single machine or can be implemented
within a wider system of connected machines such as a Wide Area Net-
work (WAN), or indeed even the Internet. The most important purpose of
introducing parallelism is the achievement of speedup1. Usually program-

1i.e. to decrease execution wall clock time, however in order to accomplish this, more
CPU time is required: for example, a parallel code that runs in 1 hour on 8 processors

93

94 CHAPTER 4. PARALLEL COMPUTING

mers turn to parallel programming to create programs that are equivalent
in functionality to a sequential version, but which take less time to run.
But parallelism should not be taken as a sort of license to use less efficient
algorithms. Morever for short running parallel programs, there can actually
be a decrease in performance compared to a similar serial implementation
because of he overhead costs associated with setting up the parallel environ-
ment (task creation, communications and task termination can comprise a
significant portion of the total execution time for short runs).

In the ideal case, the speedup should be linear, in practice there are
a number of pitfalls and problems associated with parallel programming,
which very often make real speedup often much lower. In fact many other
factors should be take into account such as the intrinsic algorithmic limits
and the issues related to communication and synchronization.

Moreover the conceptual programming difficulties that make more diffi-
cult for a parallel program to be correctly written if compared to traditional
(i.e. sequential) programming.

In traditional programming the approach that is used to solve a prob-
lem consists in the break of it in a discrete set of simple operations which
are performed sequentially until the reaching of the solution. In this con-
text the software is developed thinking to a single computer with a single
central processor unit (CPU). The problem is subdivided in a set of simple
instructions which are performed sequentially2. In a single instant ti only
an instruction can be executed, since each of them requires, to be executed,
that the previous one is finished (seeFigure 4.1).

Figure 4.1: Schematic of a serial program

The way of thinking in parallel programming is very different. The
problem we want to solve is subdivided in discrete parts that can be solved
concurrently3 in different CPUs. Each part is then subdivided in a set of
instructions. At the same time ti instructions from each part are executed
on the CPUs (seeFigure 4.1). This kind of approach requires the availability
of multiple CPUs. This requirement can be satisfied in different ways:

actually uses 8 hours of CPU time.
2in a precise order, from the first to the last, one after another
3At the same time

4.1. INTRODUCTION 95

Figure 4.2: Schematic of a parallel program

• With a single computer running with multiple CPUs4

• With a set of computers connected in a network 5 (LAN, WAN)

• With a combination of both previous methods.

Anyway parallel programming can largely reduce computation time but
it also requires that the problem to be solved must be efficiently paralleliz-
able, so this kind of approach can’t be employed in any case, but at the same
time it can be often adapted to study complicated phenomena of the real
world where there are many complex, interrelated events happening at the
same time, yet within a sequence. For that it’s commonly adopted for nu-
merical simulations of the more complex systems (weather and climate evo-
lution, chemical and nuclear reactions, biological systems as human genome,
geological and seismic activity, mechanical devices, electronic circuits, man-
ufacturing processes and so on) and where it’s necessary to process a large
amount of data (web engines, advanced graphics, virtual reality, ...). It has
be stated that parallel computing is an attempt to maximize the infinite but
seemingly scarce commodity called time.

The main advantages are:

• The reduction of computing time.

• Can be used for large problems.

• Can use remote resources (LANs, WANs or in the internet) if local are
not sufficient.

• Can be economically advantageous since a cluster of cheap computers
can be less expensive than a mainframe with the same computation
power (cost savings).

4nowadays it is common even in cheap consumer computers: the actual Intel c�and
Amd c�production for personal computers and laptop includes multicore (2-4-8 CPUs)
tecnology.

5This is also known as distributed computing.

96 CHAPTER 4. PARALLEL COMPUTING

• From the point of view of hardware manifacturers there is a cost reduc-
tion due to the fact that it is really expensive to make a single processor
faster if compared to the cost of using a larger number of moderately
fast commodity processors to achieve the same performance.

• When there is the need of manage a large amount of data, can over-
come the limits of memory of single computers.

4.2 Computer architectures

Before the introduction of parallel computing virtually all computers that
appeared over the years were essentially based on the so-called von Neu-
mann6 computer model. This model is based on a so-called stored-program
concept which means that the CPU executes a stored progran which speci-
fies a sequence of read and write operations on the memory (see Figure 4.2).
In more detail, its main features are the followings:

• Program instructions are coded data which tell the computer which
operations to do.

• The single word Data is simply the information to be used by the
program.

• Both data and program instructions are stored in memory.

• The CPU reads instructions and data from memory, decodes the in-
structions and sequentially perform them.

Figure 4.3: The von Neumann model

During the years with the introduction of parallel programming, new
computer models have been introduced with multiple CPUs and all of them
are schematically collected inside the Flynn’s Classical Taxonomy . This
classification is based upon the two possible states (single or multiple) which
characterize Data and Program in multi-processor computer architectures
(see Table 4.2).

6From the name of the Hungarian American mathematician and computer scientist
John von Neumann (1903-1957) .

4.2. COMPUTER ARCHITECTURES 97

Single Data Multiple Data
Single Instruction SISD SIMD

Multiple Instruction MISD MIMD

Table 4.1: Flynn’s Classical Taxonomy

4.2.1 Single Instruction, Single Data (SISD)

This is the oldest and until recently, the most common form of comput-
ers: includes most PCs, single CPU workstations and mainfranes (see Fig-
ure 4.2.1).

• Not parallel but serial computer.

• Single Instructions: only one instruction stream is being acted on by
the CPU during any clock cicle.

• Single Data: only one data stream is being used as input by the CPU
during any clock cicle.

• The execution is deterministic (no parallel operations).

Figure 4.4: Single Instruction, Single Data (SISD)

4.2.2 Single Instruction, Multiple Data (SIMD)

This is a type of parallel computer which is best suited for problems charecter-
ized by a high degree of regularity, such as image processing (see Fig-
ure 4.2.2). It comes in two variety: Processor Arrays (Connection Machine
CM-2, Maspar MP-1, MP-2) and Vector Pipelines(IBM 9000, Cray C90,
Fujitsu VP, NEC SX-2, Hitachi S820).

• Parallel computer.

98 CHAPTER 4. PARALLEL COMPUTING

• Single Instructions: all processing units execute the same instruction
at any given clock cicle.

• Multiple Data: all processing units can operate on a different data
element.

• The execution is deterministic and synchronous (with locksteps).

Figure 4.5: Single Instruction, Multiple Data (SIMD)

4.2.3 Multiple Instruction, Single Data (MISD)

Only few real examples exist of this parallel computer. A possible applica-
tion is the implementation of multiple cryptographic algorithm which can
be used to crack a single coded message, or for multiple frequency filters
operating on a single signal stream (see Figure 4.2.3).

• Parallel computer.

• Single Data: a single data stream is fed into multiple processing units.

• Multiple Instructions: each processing units operates on the data in-
dipendentely.

• The execution is deterministic and synchronous (with locksteps).

4.2.4 Multiple Instruction, Multiple Data (MIMD)

Most modern computers fall into this category. Currently it is the most
common type of parallel computer it can be found in modern supercomputer,
networked parallel computer ”grids”, multiprocessors SMP – including most
recent PCs and laptops(see Figure 4.2.4).

• parallel computer

4.3. PARALLEL COMPUTER MEMORY ARCHITECTURE 99

Figure 4.6: Multiple Instruction, Single Data (MISD)

• Multiple Instructions: each processing units may be exectuing a dif-
ferent instruction stream.

• Multiple Data: each processing units may be working with a different
data stream.

• The execution can be synchronous or asynchronous, deterministic or
non deterministic.

Figure 4.7: Multiple Instruction, Multiple Data (MIMD)

4.3 Parallel computer memory architecture

The most common architectures are shared memory and distributed memory.

4.3.1 Shared memory

All CPUs access all memory as a whole global address space. All processors
can operate independently but all of them share the same memory resources
and all changes in memory location done by one processors ar visible to
all others CPUs (see Figure 4.3.1). A further subdivision could be done
between the type of memory access:

100 CHAPTER 4. PARALLEL COMPUTING

Figure 4.8: Shared memory architecture

Uniform Memory Access (UMA) It’s common in Symmetric Multipro-
cessors (SMP) machines with identical processors, each of them has
equal access and access time to memory. It’s also known as Cache
coherent UMA7.

Non-Uniform Memory Access (NUMA) It’s often made by physically
linking two or more SMPs. One SMP can directly access to the mem-
ory of another SMP, but not all processors share the same access time
to all memories8. The main disadvantage is the lack of scalability
between memory and CPUs: adding more CPUs can geometrically
increase the traffic between shared memory and CPUs and for cache
coherent systems, can geometrically increase the traffic in the cache-
memory management path.

4.3.2 Distributed memory

In this case each processor has its own local memory, so it operates in-
dependently. Memory addresses in one processor do not map to another
processor, so there is the absence of the concept of global address space
across all processors. At the same time is not possible to apply the concept
of cache coherence9. Distributed memory systems require a communication
network10 to work in order to connect the memory of the single CPUs (see
Figure 4.3.2). With this kind of approach memory scales well along with the
number of processors11. Each processor access rapidly to its own memory

7When one processor update a location in shared memory, all the others processors
know about the update. This is obtained at the hardware level.

8Memory access across link is slower.
9Because the changes that each professor makes to its local memory has no effect on

the memory of the others.
10Various techniques can be adopted. Sometimes even a common Ethernet (Gigabit)

can be enough.
11Increasing the number of CPUs let increase the size of memory proportionally.

4.3. PARALLEL COMPUTER MEMORY ARCHITECTURE 101

Figure 4.9: Distributed memory architecture

but it has Non-uniform memory access (NUMA) times. One of the most im-
portant advantages is the cost effectiveness since this model makes possible
the use of commodity, off-the-shelf hardware (processors and networking).
Against, it could be difficult to map existing data structures, based on global
memory, to distributed memory architecture.

4.3.3 Hybrid shared-distributed memory

A few of the main features of the two previous approach are shown in Ta-
ble 4.2.

The advantages of the two architecures seen until now can be combined
in an hibrid architecture. The largest and fastest computers in the world are
today based on this approach, which contains both shared and distributed
components (see Figure 4.3.3):

The shared memory component usually consists in a cache coherent
SMP machine. Processors on a given SMP machine can address that
machine’s memory as global.

The distributed memory component is made by the networking of mul-
tiple SMPs. Network data communications are required to move data
from one SMP to another (as fast as possible) because each SMP knows
only about its own memory, not the memory on another SMP.

Figure 4.10: Hybrid distributed-shared memory architecture

102 CHAPTER 4. PARALLEL COMPUTING

A
rchitecture

C
C

-U
M

A
C

C
-N

U
M

A
D

istributed

E
xam

ples

SM
P

s
SG

I
O

rigin
C

ray
T

3
Sun

V
exx

Sequent
M

aspar
D

E
C

/C
om

paq
H

P
E

xem
plar

IB
M

SP
2

SG
I

C
hallenge

D
E

C
/C

om
paq

IB
M

P
O

W
E

R
3

IB
M

P
O

W
E

R
4

(M
C

M
)

C
om

m
unications

M
P

I
M

P
I

M
P

I
T

hreads
T

hreads
O

penM
P

O
penM

P
shm

em
shm

em
Scalability

to
10s

ofprocessors
to

100s
ofprocessors

to
1000s

ofprocessors

D
raw

backs
M

em
ory-C

P
U

bandw
idth

M
em

ory-C
P

U
bandw

idth
System

adm
inistration

N
on-uniform

access
tim

es
P

rogram
m

ing
is

hard
to

develop
and

m
aintain

Softw
are

A
vailability

m
any

1000s
ISV

s
m

any
1000s

ISV
s

m
any

100s
ISV

s

Table
4.2:

C
om

parison
ofShared

and
D

istributed
M

em
ory

A
rchitectures,taken

from
[10].

4.4. PARALLEL PROGRAMMING MODELS 103

4.4 Parallel programming models

Parallel programming models exist as an abstraction above the hardware
and memory architectures we have seen before. The more common models
are:

• Shared Memory.

• Threads.

• Message Passing.

• Data Parallel.

• Hybrid.

It’s important to note that this classification is totally independent from
the hardware in the sense that each of these model are not specific to a
particular type of machine or a specific memory models, but can be applied
on any underlying hardware. As a consequence the choice of a programming
model instead of another depends on personal taste and on what is actually
available since there is not a model which is absolutely better than the
others.

4.4.1 Shared memory

The tasks12 share a common address space, which they can read and write
asynchronously since the access to the shared memory is managed by mech-
anism such as lock or semaphore. Actually implementation of this model
doesn’t exist any more.

4.4.2 Threads

According to this model a single process is allowed to have multiple, concur-
rent execution path. A thread ’s13 work can be ideally seen as a subroutine
inside a main program a.out (see Figure 4.4.2). This approach requires that
while threads can be created and closed, the main program remain alive
since it has to provide the shared resources and it needs synchronization
constructs14. This kind of implementation is common in shared memory
architectures and operating systems and usually consist in a library of sub-
routines that are called from the parallel code and a set of compiler directives
embedded in the source code. The most famous are

12A Task is a logical discrete section of a computational work. Typically is a program
or a set of instruction executed by one processor.

13The thread is a logical concept, it’s a minimal executable portion of code.
14To ensure that one thread is not updating the same global address at any time.

104 CHAPTER 4. PARALLEL COMPUTING

Figure 4.11: Threads model

POSIX Threads : commonly referred as Pthreads is library based, re-
quires parallel code and available in C language only. It is a very
explicit15 implementation and so requires a lot of attention to details
and care by the programmer.

OpenMP : can use serial code and is available in C/C++ and Fortran.
Is portable and multi-platform, including Unix, Linux, Windows and
Mac Os X. It can be easy and simple to use.

Also Microsoft c� has its own implementation for threads, but is not related
to either the UNIX POSIX standard or OpenMP.

A tipical OpenMP application apply the so-called fork and join approach
(see Figure 4.4.2). The conceptual model of typical OpenMP application
apply the so-called fork and join approach which is characterized by a set
of alternate serial and parallel executions (see Figure 4.4.2).

Figure 4.12: Threads model

1. At the beginning and the end the is a serial process master thread.

15In the sense of low level.

4.4. PARALLEL PROGRAMMING MODELS 105

2. From time to time several parallel process threads begin and execute
indipendently fork.

3. After the parallel part, the master thread waits for all the threads still
executing and finally join them.

4. After joining, the serial process master thread continues.

4.4.3 Message Passing

The implementations of this model consist in a set of library which must be
embedded in the source code, alle the parallelism must be defined by the
programmer. Historically, starting from ’80s several have been introduced
several libraries of this kind, but each of them was very different from the
others and all of them and unfortunatley all of them showed a total lack
of portability. In the ’90s, with the introduction of MPI and MPI-2 things
radically changed. Nowadays MPI is the “de facto” industry standard for
message passing.

In this model, during computation, a set of tasks use own local mem-
ory. Multiple task can reside in the same physical machine or could be
divided across multiple machines. Tasks exchange data by sending and re-
ceiveing messages, this kind of data transfers requires collaboration between
process16(see Figure 4.4.3).

Figure 4.13: Message passing model

4.4.4 Data Parallel

In this model most of the parallel work is focused on performing operations
on a data set. Usually the data is a common structure, such an array. A set
of tasks works on the same data structure, but each of them on a different
partition of the data. All the task perform ”exactly” the same operations,
but in different partitions (see Figure 4.4.4).There are implementations avail-
able in Fortran 90 and 95.

16For example, a send operation must have a matching receive operation.

106 CHAPTER 4. PARALLEL COMPUTING

Figure 4.14: Data parallel model

4.4.5 Other models

Other models exist such as hybrid, single program multiple data (SPMD),
multiple program multiple data (MPMD).

Hybrid

Two or more models are combined. For example:

• MPI + threads.

• MPI + OpenMP.

• Combination of data parallel with message passing17

Single Program Multiple Data (SPMD)

This is an high level programming model that can be built upon a combi-
nation of the parallel programming models shown before. A single program
(a.out) is executed by all task simultaneously. At any moment in time, task
can be executing the same or different instruction within the same program.
Tasks may use different data. (see Figure 4.4.5).

Multiple Program Multiple Data (MPMD)

Like SMPD also multiple program multiple data (MPMD) is an high level
programming model that can be built upon a combination of the parallel
programming models shown before. Typically there are multiple programs

17For example, data parallel implementations on distributed memory architectures actu-
ally use message passing to transmit data between tasks, transparently to the programmer.

4.5. THE DESIGN OF PARALLEL PROGRAMS 107

Figure 4.15: Single Program Multiple Data (SPMD)

(a.out, b.out, c.out, ...). Each task can be executing the same or different
program as other tasks and all tasks may use different data (see Figure 4.4.5).

Figure 4.16: Multiple Program Multiple Data (MPMD)

4.5 The design of parallel programs

Designing a parallel program is undoubtedly a difficult task, which requires a
lot of “manual” work by the programmer. It’s time consuming and often an
error-prone activity. For this reason have been developed some tools18 which
can help the programmer to parallelize existing serial code. Anyway this
kind of tools fail for complex program and if they works, the performance
are usually lower than a manual approach and the resulting program is
not very flexible. For example, a common strategy used in these tools try
to find loops inside the source code to parallelize and try to evaluate if a
parallelization could really increase the performance of the software.

In fact not always parallel means faster. Several aspects should be taken
in count that could rapidly degrade performance and so make not useful a
parallelization of the code. Among the so-called inhibitors19 there are:

• Possible bottlenecks due to intense I/O activity, which are usually slow
if compared to the speed of processor and could bring the CPUs to
wait for data.

• Internal inefficient algorithms that could be substituted by more effi-
cient ones.

18Essentially for Fortran programmers.
19Everything that could slow down the code execution.

108 CHAPTER 4. PARALLEL COMPUTING

• If a program was born as a serial program, it could have an internal
structure that is difficult to adapt to parallel computation, eventually
it could be convenient that is entirely rewritten.

For these reasons it’s very important to do a precise analysis of the
problem that we want to parallelize evaluating, using profiling procedures:

• If the problem is parallelizable

• Possible bottlenecks.

• Which are the portions of code that could have benefit20.

• If the most power-consuming parts can be parallelized.

4.5.1 Analysis of the problem: decomposition

The first think to do is to analyze the problem to solve, in order to see if
it can be broken into discrete chunks of work that can be distributed to
multiple task. This is called decomposition or partitioning. This can be
done essentially in two ways: by domain or by functions. In one case the
focus is on the data manipulated by the computations, in the other is on
the computations themselves.

domain decomposition

The data of the problem is divided in different parts, in this way each par-
allel task works only on a portion of the whole data of the problem (see
Figure 4.5.1). For both mono-dimensional and bi-dimensional arrays this

Figure 4.17: Domain decomposition

can be achieved with block partition or cyclic partition (see Figure 4.5.1).

20Majority of scientific and technical programs usually accomplish most of their work
in a few places, so only them need to be parallelized. It also has no sense spend time in
parallelizing parts which has only a little CPU usage.

4.5. THE DESIGN OF PARALLEL PROGRAMS 109

Figure 4.18: mono-dimensional and bi-dimensional domain decomposition

functional decomposition

In this case the attention is focused more on the computation that on the
data. The decomposition is guided by the work that must be done. Each
task performs a portion of that work (see Figure 4.5.1). This kind of de-

Figure 4.19: Functional decomposition

composition is well suited to problems that can be naturally splitted into
different tasks. For example:

Ecosystem modeling

Each program calculates the population of a given group, where each group’s
growth depends on that of its neighbors. As time progresses, each process
calculates its current state, then exchanges information with the neighbor
populations Figure 4.5.1).

110 CHAPTER 4. PARALLEL COMPUTING

Figure 4.20: Ecosystem modeling

Signal processing

An audio signal data set is passed through four distinct computational filters.
Each filter is a separate process. The first segment of data must pass through
the first filter before progressing to the second. When it does, the second
segment of data passes through the first filter. By the time the fourth
segment of data is in the first filter, all four tasks are busy Figure 4.5.1).

Figure 4.21: Signal processing

Climate modeling

Each model component can be thought of as a separate task. Arrows rep-
resent exchanges of data between components during computation. Each
component interacts with the others. Figure 4.5.1).

Figure 4.22: Climate modeling

4.6. TOPICS IN PARALLEL PROGRAMMING 111

4.6 Topics in parallel programming

A useful parameter that can be employed to classify parallel programs is
the granularity which is the ratio between computation and communication
time. This can be done because computations are always distinct from
communications (see Figure 4.23).

(a) Fine (b) Coarse

Figure 4.23: Fine and coarse granularity

granularity =
computation

communication
fine grain : a relatively small amounts of computational work are done be-

tween communications/synchronization (computation
communication) is low). This

implies high communication overhead and less opportunity for perfor-
mance enhancement and if granularity is very fine it is possible that
the overhead required for communications and synchronization be-
tween tasks takes longer than the computation. Usually it is possible
to apply load balancing techniques (see Figure 4.6).

coarse grain : a relatively large amounts of computational work are done
between communication/synchronization events (computation

communication is high).
This usually implies more opportunity for performance increase, but
it’s harder to load balance efficiently (see Figure 4.6).

Which is the best granularity to pursue depends strongly on the algo-
rithm and the hardware environment in which it runs. In most cases the
overhead associated with communications and synchronization is high rela-
tive to execution speed so it is advantageous to have coarse granularity, on
the other side fine-grain parallelism can help reduce overheads due to load
imbalance.

Besides that, in order to obtain an efficient program it’s necessary to
take in account several key topics:

112 CHAPTER 4. PARALLEL COMPUTING

• Reduction of bottlenecks. For example, a typical bottleneck are com-
munications. In order to obtain the maximum efficency is necessary
to consider the latency21 of the communication system and the band-
width22 available to the system. Sending many small messages can
cause latency to dominate communication overheads. Often it is bet-
ter to package small messages into a larger message, increasing the
bandwidth component.

• If possible, prefer asynchronous communications to synchronous, be-
cause are faster. This is due to the fact that all synchronous commu-
nications add an amount of overhead. Typical methods of synchro-
nization are barriers23, locks or semaphores24 and handshaking25.

• Reduction of dependencies. A dependence exists between program
statements when the order of statement execution affects the results
of the program. This inhibits parallelism. A data dependence results
from multiple use of the same locations in storage by different tasks.

• Using tecniques of load balancing. The work among the task should
be distributed in a manner that all tasks are kept busy all of the time
as possible, in order to minimize the idle time. For example, if all
tasks are subject to a barrier synchronization point, the slowest task
will determine the overall performance Figure 4.6. It’s important to
equally partition the work each task receives and if working with a
/emphcluster of computers, the partition should take in account the
different performance of each computer. Another useful tecniques is
the use of dynamic work assignement to reduce, at /emphruntime, the
load unbalancing as they occur during execution.

• In common situation prefer coarse to fine granularity.

A special attention should also be given to I/O. Usually I/O is a bottle-
neck for the program specially if it must be conducted over the network (over

21Usually expressed in µs represents the time that it takes to send a minimal packet (of
0 bytes) from one point to another.

22Usually expressed in Mb/s, represents the maximum amount of data that can be sent
per unit of time.

23Each task perform its work until it reaches the barries and the stops (or ”blocks”).
When the last task reaches the barrier, all tasks are synchronized. Usually all tasks are
involved.

24Only one task at a time may use (own) the /emphlock or/emphsemaphore or /emph-
flag. The first task to acquire the lock ”sets” it. This task can then safely (serially) access
the protected data or code. Other tasks can attempt to acquire the lock but must wait
until the task that owns the lock releases it.

25It is used in communication operations where some form of coordination is required
with all the tasks participating in the communication. For example, before a task can
perform a send operation, it must first receive an acknowledgment from the receiving task
that it is OK to send.

4.7. LIMITS OF PARALLEL PROGRAMMING 113

a NFS/footnoteNetwork file system.), and parallel I/O systems are still im-
mature today. In an environment where all tasks see the same filespace, write
operations could result in file overwriting if for each tasks’ input/output
file(s) have not been created unique filenames. In the meanwhile read oper-
ations are affected by the fileserver’s ability to handle multiple read requests
at the same time.

A great role is also take by load balancing which is the practice of dis-
tributing work among tasks so that all tasks are kept busy all of the time.
From an apposite point of view it can be considered as a minimization of
task idle time. Load balancing is really important to parallel programs for
performance reasons. As an example, if all tasks are subject to a barrier syn-
chronization point, the slowest task will determine the overall performance
as can be seen from Figure 4.6).

Figure 4.24: Load balancing

4.7 Limits of Parallel programming

The well known /emphAmdahl’s law define the limits of parallel program-
ming.

4.7.1 Amdahl’s law

Amdahl’s Law states that potential program speedup is defined by the frac-
tion of code P that can be parallelized:

speedup =
1

1− P
(4.1)

If no part of the code can be parallelized, P = 0 and the speedup = 1
(no speedup). If all of the code can be parallelized, P = 1 and, theorically,
speedup =∞.

As an example if 50% of the code can be parallelized the code will run
twice as fast, since speedup = 2.

Introducing in 4.1 the number of processors N performing the parallel
fraction of work we have:

114 CHAPTER 4. PARALLEL COMPUTING

N P = 50% P = 90% P = 99%
10 1.82 5.26 9.17

100 1.98 9.17 50.25
1000 1.99 9.91 90.99

10000 1.99 9.91 99.02
100000 1.99 9.99 99.90

Table 4.3: Speedup comparisons: N is the number of processors and P is
the value of the parallel fraction

speedup =
1

P
N + S

(4.2)

where P and S are, in the given order, the parallel and the serial fraction
of code.

From (4.2) appears clear that there are limits to the scalability of par-
allelism regarding to both the number of processors N and the value of the
parallel fraction P . Some results have been summed up in Table 4.7.1 for
different values of N and P , where is possible to see that for low values of
parallel fraction the benefit that come from the addition of more processors
is low and, obviusly, the more parallelizable is the code and more processors
are used the more is the gain in term of speed that tends, asymptotically,
to 100.

However, certain class of problems demonstrate increased performance
by increasing the problem size. Problems that increase the percentage of
parallel time with their size are more scalable than problems with a fixed
percentage of parallel time.

Moreover since parallel applications are much more complex than cor-
responding serial applications it should be taken in account the cost of this
complexity as well. This can be measured, virtually, in programmer time,
analyzing the most important parts of a generic software development cy-
cle26.

Another important aspect is the ability of a parallel program’s perfor-
mance to scale. Scalabilty is not easy to predict since it may depends from
many factors. For example the algorithm (or the parallel libraries) may have
intrinsic limits (adding more resource has no effects) or can be related to
the hardware as well [10].

Besides all those difficulties the interest on parallel programming in these
days is still very high. A new interesting parallel library is going to be
released in this year. It is known as OpenCL27 and is a framework for

26They are designing, coding, debugging, tuning and maintenance
27It is the acronim of open computing language.

4.7. LIMITS OF PARALLEL PROGRAMMING 115

writing programs that execute across heterogeneous platforms consisting of
CPUs, GPUs, and other processors. OpenCL provides parallel programming
using both task-based and data-based parallelism.

116 CHAPTER 4. PARALLEL COMPUTING

Chapter 5

Numerical simulations

5.1 Introduction

In order to evaluate the performance of the proposed approach a computer
program have been developed.

It has been entirely written in C++, compiled with GNU gcc1 (g++)
and tested on a cluster of personal computers running Gentoo2 Linux as op-
erating system. The cluster is accessible via Internet using the ssh protocol.

The choice on Linux is due to many reasons:

• it is a small and fast operating system that can run even in old com-
puters with low resources, allowing building cluster with commodity
hardware;

• it is really stable and efficient in networking environments;

• it provides free compilers for almost programming languages;

• is well suited for distributed computing;

• it’s free;

Moreover Gentoo distribution enhance some key features that are very im-
portant in high performance computing. Is highly modular and flexible.
The installation can be personalized in every aspect. Only necessary tools
have been installed, thus avoiding to waste precious and rare resources for
superfluous tasks (such as graphical user interface overhead, unused services
and so on). Since the sources are compiled directly by the user during in-
stallation (no binaries are given), it can can be deeply optimized for the
user’s machines. This feature is useful when the cluster deals with different
architectures. Finally it is easy to maintain and upgrade.

1http://www.gcc.org
2http://www.gentoo.org

117

118 CHAPTER 5. NUMERICAL SIMULATIONS

5.2 The software implementation

From the beginning, the software has been designed with some key points
in mind. The first is that it could be essentially addressed to optimization
of truss structures. Most optimization methods deal with continuum struc-
tures, and apply many techniques that can not directly applied to structures
made with truss elements because of the different nature of problem they
want to deal with.

For simplicity the attention is focused on linear elastic structure. Maybe
an extension to non linear problem could be done in the future, but it is
firstly necessary to test and study simpler problems in order to evaluate
the effects of the variants that can be introduced in an approach based on
genetic algorithms. Many parameters need to be calibrated and nonlinearity
would increase the complexity of the problem.

The basic idea is the application of genetic algorithms to structural prob-
lem, for that it has been necessary to develop a module for the finite element
analysis of 3D truss structures. This module has been written in ANSI C++,
using data structures and algorithms from the standard library. During the
development an XML support has been introduced for input and output
files that has been very useful, also for debugging and data reading purpose.

XML is the acronym of eXtensible Markup Language3: it is an extensible
language that allows the programmers to define the mark-up elements. It
allows to collect data in well organized tree structure that can be written and
parsed efficiently. Besides that, stylesheets can be associated so that XML
files can be read inside web-browsers in very simple and clear way. This
feature must not be underestimated, since it makes input/output files much
easier to read and modify (specially in the case of complex structures). On
the other hand this benefit doesn’t come at no cost. XML files are usually
much larger than corresponding binary files (especially if including tabular
data), but at a final evaluation the advantages (for example they can be
updated incrementally every time is necessary) are much more than the
cost of size. Moreover, when a XML file is properly structured, the parsing
can be done in a very fast and efficient way. For this purpose the libxml24

library has been used as a SAX and DOM5 parser.

3http://www.w3.org
4See http://xmlsoft.org/
5SAX parsers have certain benefits over DOM-style parsers. The quantity of memory

that a SAX parser must use in order to function is typically much smaller than that of a
DOM parser. DOM parsers must have the entire tree in memory before any processing
can begin, so the amount of memory used by a DOM parser depends entirely on the size of
the input data. The memory footprint of a SAX parser, by contrast, is based only on the
maximum depth of the XML file (the maximum depth of the XML tree) and the maximum
data stored in XML attributes on a single XML element. Both of these are always smaller
than the size of the parsed tree itself. Besides, processing documents can often be faster
than DOM-style parsers. Memory allocation takes time, so the larger memory footprint

5.2. THE SOFTWARE IMPLEMENTATION 119

In order to optimize several input data files must be careful prepared.
The file parameters.xml take in account the various setting of the genetic

algorithms. In particular it allows to set the following parameters:

• Which pseudo-random number generator to use. Both linear congru-
ential and multiplicative linear congruential implementation are avail-
able and the constants a, m, c must be introduced as well (for detail
see section 3.4 at page 87).

• Population size s (see 3.2.1).

• Selection process. The choice can be done between

– tournament: tournament size s is also required (see section 3.2.2);

– ranking ;

– roulette wheel: it should also be specified if fitness scaling must
be done;

(for details see section 3.2.2 at page 68).

• Elitism. The size of elitism se must be given, where se is the number of
best individuals that must survive. For se = 0 no elitism is performed
(see 3.2.2).

• Probability for crossover reproduction (in %).

• Probability for mutation (in %).

• Mutation for floating point values: the different weight for sign, man-
tissa or exponent mutation must be specified (see section 3.3.3 at page
85).

• Stop criterium. The optimization procedure can stop when

– a fixed number genmax of generation has been created;

– said deltafitness the difference between maximum fitness among
two generation, the optimization procedure can stop when after
a number n of consecutive generations deltafitness < dfit, where
dfit is a fixed value.

– after n of consecutive generations the maximum fitness doesn’t
grow any more.

The description of the structure to optimize is included in another input
file called structure.xml containing

of the DOM is also a performance issue. (taken from wikipedia)

120 CHAPTER 5. NUMERICAL SIMULATIONS

• The list of materials. For each material must be specified the following
data:

– a unique ID (it is an integer value that let each element of the
list be univocally identified by the program);

– modulus of elasticity E;

– the weight per unit of volume γ;

• The list of section. It contains

– a unique ID (it is an integer value that let each element of the
list be univocally identified by the program);

– the cross section area A;

– the moments of inertia in both principal directions J1 and J2 (not
used);

– a reference to the unique ID of the material;

• The list of nodes. It must include

– a unique ID (integer value);

– the position in global reference system:x, y and z;

• The list of node restraints. In general the nodes are considered free. If
a node is not free, then its restraints are assigned with this list which
contains (for each node that has almost one degree of freedom fixed)

– the nodal unique ID (integer value);

– the restraint for translation in x direction: it can be 0(free) or
1(fixed);

– the restraint for translation in y direction: it can be 0 or 1;

– the restraint for translation in z direction: it can be 0 or 1;

– the restraint for rotation about the x axis: it can be 0 or 1 (not
used);

– the restraint for rotation about the y axis: it can be 0 or 1 (not
used);

– the restraint for rotation about the z axis: it can be 0 or 1 (not
used);

• The list of elements. An element is generated from one node to an-
other. A reference node is used to define the axis rotation in the
three-dimensional space. For each element must be specified:

– the element unique ID (integer value);

5.2. THE SOFTWARE IMPLEMENTATION 121

– the section unique ID (integer value);
– the unique ID of the from node;
– the unique ID of the to node;
– the unique ID of the reference node (not used).

The loads acting on the structure are described in another input file
called loads.xml that includes6:

• the list of the nodal loads. Each entry must declare the load acting on
every loaded node:

– the nodal unique ID (integer value);
– the force acting in x direction;
– the force acting in y direction;
– the force acting in z direction;
– the moment acting around the x axis (not used);
– the moment acting around the y axis (not used);
– the moment acting around the z axis (not used).

Please note that some of those input values are not necessary and are
marked as not used. They should be seen as a sort of placeholders and have
been included for the sake of clearness since they shows how the input file
could be upgraded in future developments, being XML easy to extend.

The design variables must be chosen. The genetic algorithm ignore the
nature of the problem. It works on the values of the design variables and
evaluates the results at every iteration. A file must be given in order to
specify which parameters must have to be considered as design variables.
Among them we could have nodal coordinates, cross sections index (or cross
section areas), and so on. Like before, these data are given within a file
(designvariables.xml) that contains both the list of entities which must be
considered as variables and then the values that each variable can assume.
For each variable we must give minimum and maximum value and eventually,
non admissible values (with �= operator).

For example if we want to chose as design variables the x coordinate
of node number 3 and the section of truss number 2 (we can suppose that
in the list of sections there are 10 elements with ID included in the range
1 ÷ 10) the file designvariables.xml will contain

• nodal list

– 3 (node ID);
– x (design variable);

6for the sake of simplicity we will consider only one load condition

122 CHAPTER 5. NUMERICAL SIMULATIONS

– minimum value for x;

– maximum value for x;

• element’s list

– 2 (truss ID);

– section ID (design variable);

– 1 (minimum value for sectionID);

– 10 (maximum value for sectionID);

The introduction of the file designvariables.xml gives the advantage of
decoupling the data of the problem from the design variables. So the opti-
mization procedure can be more easily extended to other kind of problems.

5.2.1 The finite element analysis

A program (FEsolver) for finite element analysis of three-dimensional truss
structure has been developed implementing a standard 3D truss element
formulation (see [12], [36], [46], [59]) which works with XML files. The
syntax is

int FEsolver(FILE* structure, FILE* loads, FILE* results)

where solver, loads and results are three XML files. The first two are input
files and correspond, respectively, to structure.xml and loads.xml as seen in
section 5.2.

The file results is the output of the solver and contains

• The list of nodes. Each entry specifies:

– the unique ID of the node (integer value);

– the nodal displacement vx in x-direction;

– the nodal displacement vy in y-direction;

– the nodal displacement vz in z-direction;

• The list of Truss element. Each entry specifies:

– the unique elemental ID (integer value);

– the value of axial force;

If for some reasons the analysis can not be done7, a message description
is written in the file and an error code is returned.

7For example stiffness matrix not invertible, numerical problems, errors in restraints
and so on.

5.3. HOW DOES IT WORK ? 123

5.2.2 The fitness evaluation

The fitness evaluation depends on the objective function. In general it can
be done through a function that reads an input file (the result produced by
the FEsolver), extracts the data it is interested to (by using a SAX parser),
does some computations and returns the value of fitness.

The syntax is

double Fitness(FILE* result)

5.3 How does it work ?

A flow chart of how the optimization procedure works can be found in Fig-
ure 5.3 and summarized as follow.

The main procedure read the following files:

• parameters.xml

• structure.xml

• loads.xml

• designvariables.xml

then produce s n-dimensional vectors

design[i] = {v1, v2, . . . , vn} i = 0, 1, 2, . . . , s− 1 (5.1)

where vj is the value of the j-th design variable, s is the population size and
n is the number of design variables.

After its creation, the vector design[i] is populated with random values
vjs that have been produced with respect to the minimum and maximum
admissible values for the corresponding design variables as defined in design-
variables.xml. With the creation and population of the s organisms the first
generation is completed.

Now the input files must be prepared for the finite element analysis
and the following fitness evaluation. As can be seen in Figure 5.1, FEsolver
requires two input files. So s + s input files must be prepared at each
generation. Those files are simply written by copying the files structure.xml
and substituting inside the new i-th file, at the proper locations, the values
of the variables of the array representing the i-th indivudual of the current
generation (see Figure 5.2).

In other words, s copies of structure.xml are respectively merged with
the values of the design variables included in design[i] overwriting them in
the proper position inside the new xml file.

After that, the file loads.xml must be updated in order to take in account
the current values for the self weight nodal loads.

124 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.1: schematic for FEsolver program

Figure 5.2: i-th solution: mapping of design variables into structure.xml

5.3. HOW DOES IT WORK ? 125

Typically computer programs tend to become slow when they are sub-
jected to intense I/O activities. Moreover xml files tend to have larger size
if compared to binary files which deal with same quantity of data. In order
to gain performance (by reducing bottlenecks) thelibxml2 library has been
adopted, coming with that a very efficient XML SAX parser.

Optimization cycles (see Figure 5.3) requires a very large number of finite
element analysis, but the solution of the equilibrium equations Ku = F (see
Figure 5.1) are computationally very expensive. This is particularly true for
large structures. For this reason, I thought as natural to employ paralleliza-

Figure 5.3: schematics of genetic algorithm on the master computer

tion in such a context, being all the finite element analysis independent each
other.

To obtain a better efficiency the genetic algorithm has been parallelized

126 CHAPTER 5. NUMERICAL SIMULATIONS

as can be seen in Figure 5.4.

Figure 5.4: schematics of Finite element analysis parallelization on clients

This can be obtained building a cluster composed by a variable number of
computers, running Linux as operating system and connected each other in
a LAN environment. This approach reserve one master (or head) PC (which
runs the main program and manages the whole optimization procedure) and
a variable number of slave (or client) computers that parallel finite element
analysis.

From recent literature [31] it can be seen that many solutions are today
available to build a cluster cheaply: i.e. using only open source and free
software and installing commodity hardware [34]. Moreover a lot of software
packages and kernel modifications are available and even cluster installation
kits have been recently introduced but, finally, the cluster has been built
with a from scratch approach: adopting a typical Beowulf architecture and
using standard kernels (provided by the Gentoo linux distribution) without
any additional software. Only MPI8 library has been installed as parallel
library (to allow processing to be shared among clients). Finally some disk
space has been shared via the standards Network File System protocol.

NFS has been chosen for its simplicity. Actually it is known that it is not
the ideal solution in every situation, because it is not optimized for the types
of I/O often needed with many high-performance cluster applications. For

8MPI is a communications library that enables parallel programs to be written in C,
C++, FORTRAN and many other programming languages. It can be thought of as a
standard that specifies a library. Users can write code in C, C++, or FORTRAN using a
standard compiler and then link to the MPI library. The library implements a predefined
set of function calls to send and receive messages among collaborating processes on the
different machines in the cluster. (see http://www.lam-mpi.org/)

5.4. NUMERICAL SIMULATIONS 127

some tasks it could be better integrate NFS with other file systems which
provides high-performance and are more adapt to a parallel computing, such
as Parallel Virtual File System (PVFS)9. In addition, when dealing with
large quantities of data, a Database Management System (DBMS) or an
hardware hardware upgrade, such as a network attached storage (NAS) or
astorage area network (SAN) could be taken into account as well.

At the end, this architecture behaves more like a single machine rather
than many workstations. All the computers are networked into the same
TCP/IP LAN. Client nodes do not have neither keyboards nor monitors,
and are accessed only via secure shell. They can be thought of as a sort of
CPU + memory package which can be plugged into the cluster, just like a
CPU or memory module can be plugged into a motherboard. A schematic
can be seen in Figure 5.5.

Figure 5.5: High performance Linux cluster: schematic of beowulf inside a
LAN environment with Network File System

In such a way a so-called high performance linux cluster has been con-
structed (see [31]) using only commodity, off-the-shelf (COTS) inexpensive
hardware and adopting only freely available open source software.

5.4 Numerical simulations

To evaluate the efficiency of the proposal approach several numerical simu-
lations have been conducted on different truss-like structures. Some results
are presented and discussed in the following sections.

5.5 2D truss cantilever

This example deals with both single and multiobjective structural optimiza-
tions. The procedures has been applied to a 2D steel structure, composed

9http://www.parl.clemson.edu/pvfs/

128 CHAPTER 5. NUMERICAL SIMULATIONS

by 12 members and loaded by a nodal force P , as can be seen in Figure 5.6.
This problem presents three different objectives:

Figure 5.6: Optimization problem

• minimization of total weight;

• minimization of vertical displacement of the directly loaded node.

• a combination of both of the previous objectives.

The design variables are the cross area sections. Since the members are
supposed to have a hollow circular cross section, there are two parameters
to evaluate:

• the external diameter Di;

• the thickness ti.

resulting in 24 design variables for each solution. The constraints are:

• the member resistance;

• 0, 1 m < D < 0.7 m;

• 0, 002 m < t < 0.05 m;

For each member the resistance is computed according to allowable stress
method (σ ≤ σallowable), taking into account the resistance penalization for
t > 40mm. The instability problem is neglected. Both the external load
P = 100 kN and the varying self weight of structure are considered by the
optimization procedure as well.

5.5. 2D TRUSS CANTILEVER 129

5.5.1 Material and structural data

The data for the material are:

• Steel type Fe430 (S275)

• Modulus of elasticity E = 206000 MPa

• Shear modulus G = 80000 MPa

• Weight for unit of volume γ = 78.50 kN/m3

• Poisson’s coefficient ν = 0.3

• σallowable = 190 MPa (t < 40mm)

• σallowable = 170 MPa (t ≥ 40mm)

The structural geometry can be seen in Figure 5.7

Figure 5.7: Structural geometry

5.5.2 GA parameters

The parameters for the genetic algorithms are:

• Population size s = 100

• Selection algorithm: roulette wheel;

• Selection probability p = 0.05;

• Crossover probability p = 0.5;

• Mutation probability p = 0.1;

• Elitism activated (elitism size=1).

130 CHAPTER 5. NUMERICAL SIMULATIONS

5.5.3 The optimization process

The structure has been modeled with twelve truss elements, whose number-
ing scheme can be seen in Figure 5.8

Figure 5.8: Numbering scheme

objective 1: weight minimization

The objective is the reduction of the total weight of the structure. The best
result is 8368 N (solution id=57), the worst is 143009 N (solution id=19).
The Figure 5.9 show the history of the objective function (including both
feasible and infeasible solutions). It can be seen that the solution seem to
behave randomly in the initial population and improve (on the average)
going further the following generations. The optimal result is described in
Table 5.1.

element ID Diameter m Thickness m
1 0,654 0,004
2 0,541 0,004
3 0,560 0,004
4 0,391 0,004
5 0,278 0,004
6 0,146 0,004
7 0,109 0,004
8 0,597 0,004
9 0,522 0,004
10 0,428 0,004
11 0,315 0,004
12 0,240 0,004

Table 5.1: Weight optimization

5.5. 2D TRUSS CANTILEVER 131

Figure 5.9: Weight’s history (including both feasible and infeasible solutions)

objective 2: displacements minimization

The same structure has been studied in order to minimize the vertical dis-
placements of node 2. The best result (solution id=1185) is described in
Table 5.2. The corresponding displacement is 0,003894162 m.

element ID Diameter m Thickness m
1 0,248 0,045
2 0,382 0,05
3 0,671 0,049
4 0,7 0,05
5 0,337 0,037
6 0,639 0,047
7 0,658 0,049
8 0,685 0,05
9 0,646 0,037
10 0,517 0,044
11 0,7 0,045
12 0,7 0,05

Table 5.2: Displacement minimization

The Figure 5.10 show the history of the objective function (including
both feasible and infeasible solutions). Usually the peaks in the value of the
displacements represent solutions belonging to the infeasible domain.

objective 3: multiobjective optimization

The objective is made by the combination of the two objectives seen so far:

132 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.10: Displacements’ history (The peaks usually represent solution
belonging to the infeasible domain)

• minimization of total weight;

• minimization of vertical displacement of the directly loaded node.

In order to understand what happen during the optimization process we
will focus our attention in member number 8. This is only for the sake of
simplicity. The same consideration could then be extended also to the other
members. Moreover, since the multi objective problem come from only two
different objectives it is possible to use a plane graph load-displacement.
This makes easier to understand graphically the performance of the solu-
tions.

The first generation was randomly generated with 100 individuals. In
Figure 5.11 is possible to see the distribution of diameters di within the

Figure 5.11: Distribution of bar diameters D in the first generation

initial population. Figure 5.12 and 5.13 show the distribution for thickness
ti and area of cross sections. Figure 5.14 show how the first population

5.5. 2D TRUSS CANTILEVER 133

Figure 5.12: Distribution of bar thickness t in the first generation

Figure 5.13: Distribution of bar area in the first generation

134 CHAPTER 5. NUMERICAL SIMULATIONS

satisfies load and displacement objectives.

Figure 5.14: Weight-Displacement in the first generation

After many generation the optimal (or suboptimal) solutions are ob-
tained. The corresponding results can be seen in Figure 5.15, 5.16 and

Figure 5.15: Distribution of bar area between optimal solutions

5.17 where are represented, respectively, the distribution of the area and
the design variables (di and ti). Figure 5.18 shows the position of the best
solution in the graph load-displacement. It can be seen that the points are
less scattered than in Figure 5.14. This is due to the fact that the present
solutions are better than the initial population. They can be seen, in their
own domain space in Figure 5.19. The execution stops after the creation
of 1215 individuals, meaning that 1215 · 24 = 29160 values for the design
variables have been computed. From the numerical result it can be seen that
the weight varies in the range 1051, 645÷11765, 85 kg and the displacements
remain inside the interval 0, 00460 ÷ 0, 043036 m.

5.5. 2D TRUSS CANTILEVER 135

Figure 5.16: Distribution of bar diameters D between optimal solutions

Figure 5.17: Distribution of bar thickness t between optimal solutions

Figure 5.18: Weight-Displacement for optimal solutions

136 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.19: Optimal solutions in the design space

To see the points of the research space that have been investigated it is
possible to look at Figure 5.20 where the total distribution of areas is visible
and Figure 5.21 where each point represent a solution of the design space.
In Figure 5.22 all the solution (of every generation) are represented in the

Figure 5.20: Distribution of bar area from the beginning to the end of the
optimization

graph displacements–weight.
Finally, since the objective function includes both weight and displace-

ments. The corresponding histories are shown in Figure 5.23 and Figure 5.24
where are represented the value assumed, respectively, by the weight and
the displacements for the over one thousand of solutions that have been
computed during the whole structural optimization process.

As told before, in those observations we have focused the attention on
member 8, but similar considerations could be done for the other members
of the structure.

5.5. 2D TRUSS CANTILEVER 137

Figure 5.21: All the individuals in the design space

Figure 5.22: Performance of all the individuals

Figure 5.23: History of weight

138 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.24: History of displacement

Since the chosen design variables represent the cross section areas, this
applications belong to the class of sizing optimization.

5.6 Double hinged 2D truss

This example deals with the structure represented in Figure 5.25. The struc-

Figure 5.25: Structural scheme

ture has been discretized with 29 2D truss elements. The nodal numbering
scheme can be seen in Figure 5.26. Since the structure is supposed to be

Figure 5.26: Nodal numbering scheme

5.6. DOUBLE HINGED 2D TRUSS 139

symmetric and symmetrically loaded, the number of design variables has
been reduced by using the section numbering scheme of Figure 5.27.

Figure 5.27: Sections’ numbering scheme

5.6.1 Material and structural data

The data for the material are:

• Steel type Fe360 (S235)

• Modulus of elasticity E = 206000 MPa

• Shear modulus G = 80000 MPa

• Weight for unit of volume γ = 78.50 kN/m3

• Poisson’s coefficient ν = 0.3

• σallowable = 160 MPa (t < 40mm)

• σallowable = 140 MPa (t ≥ 40mm)

The structural geometry is described by the nodal coordinates that are
summed up in Table 5.3. The modulus of the external load P is equal
to 100000 N and it is applied at nodes 4 and 6 (see Figure 5.25).

5.6.2 GA parameters

The parameters for the genetic algorithms are:

• Population size s = 100

• Maximum number of generations = 2000;

• Selection algorithm: roulette wheel;

• Mutation probability p = 0.01;

• Elitism activated (elitism size=1).

The algorithm evaluates the self weight of the structure automatically and
takes into account the instability of compress members according to CNR−
UNI 10011 national code.

140 CHAPTER 5. NUMERICAL SIMULATIONS

node ID x m y m z m
1 0,0 0,0 0,0
2 2,0 0,0 0,0
3 4,0 0,0 0,0
4 6,0 0,0 0,0
5 8,0 0,0 0,0
6 10,0 0,0 0,0
7 12,0 0,0 0,0
8 14,0 0,0 0,0
9 16,0 0,0 0,0
11 2,0 0,0 2,0
12 4,0 0,0 2,0
13 6,0 0,0 2,0
14 8,0 0,0 2,0
15 10,0 0,0 2,0
16 12,0 0,0 2,0
17 14,0 0,0 2,0

Table 5.3: Nodal coordinates

sizing optimization

The cross sections are supposed to be hollow circular sections. They are
defined by two parameters: the diameter di and the thickness ti with i =
1, 2, . . . , 15. The thickness is assumed to be constant and equal to 0.005 m,
while the diameter (in meters) must satisfy the constraint 0.1 ≤ di ≤ 0.2.
The numerical simulations gives the optimum result of Table 5.4 (solution
id=1817) corresponding to a weight of 8547.09 N. The weight reduction
(compared to the first random generation) is about 20.6%. The whole opti-
mization process can be seen in Figure 5.28. It is shown that most of weight

Figure 5.28: Sizing optimization: history (complete)

5.6. DOUBLE HINGED 2D TRUSS 141

reduction is performed during the first 100 iterations: a more detailed view
can be seen in Figure 5.29. Weight at iteration 100 equals to 9048.9N cor-

Figure 5.29: Sizing optimization: history (first 100 generations)

responding to a 15.9% of the initial weight. The final solution is presented
in in Figure 5.30.

Figure 5.30: Sizing optimization of double hinged truss

topology optimization

In this topology optimization the structural nodes are allowed to move ver-
tically and horizontally from their original position (see Table 5.3) by a
quantity delta = ±0.8 m. All the members share the same cross section
which is fixed (hollow circular section with diameter d = 0.1143 m and
the thickness t = 0.005 m) and remains constant. The initial geometry is
shown in Figure 5.31. The numerical procedure gives the optimum result of

Figure 5.31: Topology optimization: initial solution

142 CHAPTER 5. NUMERICAL SIMULATIONS

section ID diameter m thickness m
1 0.111 0.005
2 0.102 0.005
3 0.102 0.005
4 0.137 0.005
5 0.111 0.005
6 0.109 0.005
7 0.102 0.005
8 0.104 0.005
9 0.102 0.005
10 0.103 0.005
11 0.100 0.005
12 0.114 0.005
13 0.102 0.005
14 0.143 0.005
15 0.159 0.005

Table 5.4: Sizing optimization: best solution (id=1817), weight=8547.09 N

node ID x m y m z m
1 0.000 0.000 0.000
2 2.216 0.000 0.242
3 3.898 0.000 0.479
4 5.875 0.000 0.460
5 8.000 0.000 0.549
6 10.125 0.000 0.460
7 12.102 0.000 0.479
8 13.784 0.000 0.242
9 16.000 0.000 0.000
11 2.132 0.000 1.262
12 4.008 0.000 1.720
13 5.422 0.000 2.526
14 8.000 0.000 2.444
15 10.578 0.000 2.526
16 11.992 0.000 1.720
17 13.868 0.000 1.262

Table 5.5: Topology optimization: best solution (id=1339), weight=10121.3
N

5.6. DOUBLE HINGED 2D TRUSS 143

Table 5.5 (solution id=1339) corresponding to a weight of 10121.3 N. The
weight reduction (compared to the first randomly created generation) equals
to 6.6%. The final solution is shown in Figure 5.32. A collection of solutions

Figure 5.32: Topology optimization: final solution

found at different generations can be seen in Figure ??. Finally Figures 5.34

Figure 5.33: Topology optimization: solutions at different generations

and 5.35 show the history of weight during the optimization process.

144 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.34: Topology optimization: history of weight (complete)

Figure 5.35: Topology optimization: history (first 100 generations)

5.6. DOUBLE HINGED 2D TRUSS 145

combined optimization

This application is a combination of the two previous optimizations. Here
the cross sections are supposed to be hollow circular sections. They are
defined by two parameters: the diameter di and the thickness ti with i =
1, 2, . . . , 15. The thickness is assumed to be constant and equal to 0.005
m, while the diameter (in meters) must satisfy the constraint 0.1 ≤ di ≤
0.2. At the same time the structural nodes are allowed to move vertically
and horizontally from their original position (see Table 5.3) by a quantity
delta = ±0.8 m.

The numerical simulations gives the optimum result of Tables 5.6 and
5.7(solution id=1672) corresponding to a weight of 8728.59 N. It can be seen
in Figure 5.36.

section ID diameter m thickness m
1 0.106 0.005
2 0.136 0.005
3 0.102 0.005
4 0.161 0.005
5 0.110 0.005
6 0.106 0.005
7 0.103 0.005
8 0.141 0.005
9 0.112 0.005
10 0.134 0.005
11 0.104 0.005
12 0.114 0.005
13 0.105 0.005
14 0.127 0.005
15 0.131 0.005

Table 5.6: Combined optimization: cross sections of best solution (id=1672)

Figure 5.36: Combined optimization: final result

The weight reduction (compared to the first randomly created genera-
tion) is about 23.1% of the initial weight. The whole optimization process

146 CHAPTER 5. NUMERICAL SIMULATIONS

node ID x m y m z m
1 0.000 0.000 0.000
2 2.584 0.000 0.327
3 3.389 0.000 -0.014
4 5.363 0.000 0.354
5 8.000 0.000 -0.107
6 10.637 0.000 0.354
7 12.611 0.000 -0.014
8 13.416 0.000 0.327
9 16.000 0.000 0.000
11 1.670 0.000 1.429
12 4.065 0.000 2.134
13 5.557 0.000 2.376
14 8.000 0.000 1.692
15 10.443 0.000 2.376
16 11.935 0.000 2.134
17 14.330 0.000 1.429

Table 5.7: Combined optimization: nodal positions of best solution
(id=1672)

can be seen in Figure 5.37. It is shown that most of weight reduction is

Figure 5.37: Combined optimization: history of weight (complete)

performed during the first 100 iterations. Weight at iteration 100 equals to
9487.2 N corresponding to a 16.4% of the initial weight. For this reason a
more detailed view can be seen in Figure 5.38.

5.7. 3D TRUSS STRUCTURE 147

Figure 5.38: Combined optimization: history of weight (first 200 genera-
tions)

final comments

A comparison among sizing, topology and combined (sizing+topology) opti-
mization can be seen in Figure 5.39. For this problem, after 2000 generations
the sizing optimization seems to behave better than topology optimization,
but in terms of relative weight reduction both of them are outperformed by
the combined technique (see Table 5.8).

Figure 5.39: Comparison between different optimizations

5.7 3D truss structure

This model takes its inspiration from a real roof structure that spans about
56 meters. It is double hinged and loaded by one load condition which

148 CHAPTER 5. NUMERICAL SIMULATIONS

optimization initial weight (N) final weight (N) weight reduction
sizing 10760.6 8547.09 20.6%

topology 10841 10121.3 6.6%
sizing & topology 11347.3 8725.59 23.1%

Table 5.8: Comparisons between different optimizations for the double
hinged 2D truss (see Figure 5.25)

includes:

• self weight (automatically computed by the optimization algorithm);

• roof (dead) loads: 0.5 KN/m2;

• snow: 0.48 KN/m2 (according to Italian law);

Roof loads and snow are applied to the top structural nodes according to
their area of influence. An optimization procedure has been applied which
is characterized by the following parameters:

• population size: 100;

• elitism size: 1;

• selection: roulette wheel;

• maximum number of iterations: 2000;

• mutation probability p = 1%;

The procedure includes a finite element analysis and a post processing phase,
in which both the member resistance10 and instability are considered. The
steel type is Fe510 (S355), its weight per unit of volume is 78.50 kN/m2. The
allowable normal stresses are σadm = 240MPa for section thickness t ≤ 40
mm and σadm,thick = 210MPa for t < 40 mm; the modulus of elasticity Es

is 206000 MPa. The structure can be seen in Figure 5.40 and Figure 5.41.
A topology optimization has been performed. The cross sections are

considered fixed and immutable, while the positions of the lower nodes can
translate vertically. In Figure 5.42 their lower and higher admissible posi-
tions are marked respectively with green and red spheres. The difference
between the highest and lower values is 3 meters. The top and restrained
nodes are fixed for architectonic reasons.

Some result can be found in Figure 5.44 where the evolution towards
the final form finding is shown. During the procedure a weight reduction
of roughly 3% respect to initial (traditional) design has been achieved. The
weight’s history is shown in Figure 5.43.

10The allowable stress method is employed.

5.7. 3D TRUSS STRUCTURE 149

Figure 5.40: Structural scheme

Figure 5.41: 3D view

Figure 5.42: The green and red spheres represents, respectively, the higher
and lower bound for vertical translation of bottom nodes

Figure 5.43: History of weight

150 CHAPTER 5. NUMERICAL SIMULATIONS

Figure 5.44: Solutions at different generations

5.8. CONCLUSIONS 151

5.8 Conclusions

Structural optimization aims to achieve the “best” design for a structure and
it has been shown in the previous chapters that, especially in the most recent
approaches, its roots extend to different areas of engineering, mathematics,
science and technology. For this reason, from a certain point of view, it
could also be considered as a multidisciplinary topic.

In the field of structural optimization, there are various methods that
can be successfully used. Most of them can be grouped in two categories.
The first category, gradient based methods, makes use of the computation
of derivatives to search for the optimum. So most of them implicitly assume
that the problem is convex, that a minimum solution can be found, and that
the solution exists. But in structural mechanics this could be an issue since,
often, the problem may be discontinuous and disjointed.

For this reason, other methods which are independent of the gradients of
the functions used are necessary, such as heuristic methods. Most of them
have been developed taking inspiration from observation of nature and are
based on relatively simple rules and common sense.

It seems clear, today, that the techniques based on global search (or
soft) are much more convenient in contrast to those based on local search
(hard). In fact the latter are substantially gradient-based techniques that
focus their attention on a single solution that try to improve by moving
around its neighborhood with the so-called hill climbing technique. Some
of them, such as the penalty function, the augmented Lagrangian and the
conjugate gradient methods aim to find a local optimum, searching in a
direction depending from local gradient. Others apply the first and second
order conditions to find a local minimum, by solving a system of nonlinear
functions. They usually try to find a solution in the neighborhood of the
starting point. If the problem has more than one local optimum the result of
the optimization procedure depend strongly from the choice of the starting
point. Besides that, the convergency is not assured. Moreover when the
objective function or the constraints presents a form of discontinuity (of any
kind), the gradient’s computation become difficult and instable.

On the contrary, the global search techniques create a large set of po-
tential solutions that are, from time to time, selected and modified.

Genetic algorithms can be seen as a really valuable alternative to the
more traditional hill climbing algorithms for many reasons. First of all, from
the numerical point of view, there are only computation of function in place
of gradients. This allows a better numeric efficiency and avoids the typical
problems of gradient-based methods: difficulties in computations and nu-
merical instabilities when there are some sort of discontinuity. Moreover the
algorithm begins with a population of individuals randomly located in the
whole research space, and so the problem of dependency from the starting
point is strongly reduced. Therefore they have a larger amount of probabil-

152 CHAPTER 5. NUMERICAL SIMULATIONS

ity of finding the global optimum avoiding to get drifted and captured by
local optimum values as frequently happen to hard methods.

Finally one of the most important advantages of genetic algorithms is
the feature of being particularly suited to be implemented with techniques
of parallel and distributed computing, since each individual belonging to
a given generation is independent from the others and, therefore, can be
processed in parallel.

For this reason, the optimization program that has been written in C++,
has been designed for parallel computing from the beginning, being the
optimization with genetic algorithms an ideal candidate for parallelization
(also taking into account the high computational cost of the optimization
problems). An alternative way to encode floating point data in structural
optimization problems has been presented as well.

At the end of the present work a numerical application of the proposed
approach is discussed.

For many years optimization has remained to be of more academic in-
terest maybe because of its mathematical complexities [74]. Respect to the
Finite element analysis (FEA) that, in recent years has become a widely
used tool for engineers of many disciplines, structural optimization has un-
doubtedly achieved far less popularity. The aim is to show that nowadays
the field of structural optimization algorithms can be considered mature and
that now it can become accessible to the engineers and scientists. This is
mainly due to two push factors. First the availability of high performance
computing power at low cost, and secondly new algorithms that can finally
handle a really large number of design variables and constraints. This work
has tried to support this idea.

5.8.1 Structural optimization for practising engineer

In the opinion of the author of the present thesis there is the belief that a the
structural optimization can be a useful tool for structural design. A rational
use of computer technologies doesn’t harm or limit the creativity which must
be always present int the design activity. Designing is a really complex work,
it contains many aspects which come from knowledge, technique and art.
It must satisfy, at the same time, requirements that are often in contrast
each other and that only rarely can be expressed in mathematical form.
The ability of keeping all those different needs in equilibrium is its essence.
It is mainly a product of intuition and creativity and it doesn’t must be
influenced by the presence or absence of analysis facilities such as the finite
element analysis or the proposed optimization method.

Instead these tools should be seen as instruments that can help and
support the designer to take his decisions, that can give information and
suggest directions for development, but leaving the designers free to follow
or ignore those according to his own sensibility.

5.9. SUMMARY 153

In the case of optimization neither the objective function nor the con-
straints can include all the needs a designer must take into account (such as
aesthetic sense and all the things that can’t be expressed mathematically),
so in practice is not necessary to find the global optimum in rigorous sense.
In many occasion the designer wants to see a direction, to feel a sensation
and so also suboptimal optimization can be of interest. For this reason
it is not necessary to adopt a very strict convergence criterion, and useful
information can be found from the individuals without the best fitness as
well.

5.9 Summary

An approach based on genetic algorithm and parallel computing has been
presented and discussed for structural optimizations. Some details on its
implementation are given and explained. Numerical simulations demon-
strate the applicability of the proposed approach for the optimization of
truss structures. The results show that parallel computing seems to be a
valuable feature for optimization of large structure, since the genetic proce-
dure requires a lot of finite element analysis. Sharing that computations to
a variable number of computers can effectively improve the time required to
optimize.

The adopted architecture allow to mix computers with different specifi-
cations, age and power. The optimization procedure is entirely managed by
the master PC and a variable number of clients can be added or removed
without difficulty.

The genetic algorithm seem to be a valuable technique for optimization
of structure, since doesn’t suffer many of the limitations of the gradient
based approach. But, on its own, introduce new difficulties in practical
application. Large computational resource are required. This requirements
grows very fast as the structures become more and more complex. This first
issue has been addressed with the proposal of an approach based on parallel
computing.

5.10 Future work

This is only a starting point. Much more work is possible to do. What has
been presented here is just a sort of framework. It is open to upgrades and
extensions.

Future work can include developments on the algorithms and on parallel
implementation. In particular the approach could be applied to large size
structures, with a very high number of variables. Since the calibration of
the parameters is a really important and difficult part of the optimization
procedure, the influence of the parameters could be evaluated by applying

154 CHAPTER 5. NUMERICAL SIMULATIONS

the methodology on classical test taken from literature. Some test could be
done to see if the system scales well. Eventually an integration to a database
could also be taken into account and so on.

List of Figures

2.1 Nearest integer approximation and optimal solution 25
2.2 Projection and restoration moves 41
2.3 Body of structure: the section AB is to be optimized. 51

3.1 Roulette wheel for a population of 5 individuals: each slice is
proportional in size to the fitness. 71

3.2 roulette wheel selection example: graphic representation of
selection mechanism. 73

3.3 Stochastic universal sampling selection 73
3.4 Graph of fitness (before rank selection) 74
3.5 Graph of order numbers (after rank selection) 74
3.6 Comparison between different Rank-based selection algorithms

(linear and nonlinear with different values of selective pressure) 75
3.7 Tree encoding of expression (+x/(5y)) 79
3.8 Tree encoding of a LISP expression 80
3.9 Single point crossover for binary encoding 82
3.10 Two points crossover for binary encoding 83
3.11 Uniform crossover for binary encoding 83
3.12 Arithmetic crossover for binary encoding 83
3.13 One point crossover for tree encoding 84
3.14 Mutation for binary encoding 84
3.15 Mutation for tree encoding 86

4.1 Schematic of a serial program 94
4.2 Schematic of a parallel program 95
4.3 The von Neumann model . 96
4.4 Single Instruction, Single Data (SISD) 97
4.5 Single Instruction, Multiple Data (SIMD) 98
4.6 Multiple Instruction, Single Data (MISD) 99
4.7 Multiple Instruction, Multiple Data (MIMD) 99
4.8 Shared memory architecture 100
4.9 Distributed memory architecture 101
4.10 Hybrid distributed-shared memory architecture 101

155

156 LIST OF FIGURES

4.11 Threads model . 104
4.12 Threads model . 104
4.13 Message passing model . 105
4.14 Data parallel model . 106
4.15 Single Program Multiple Data (SPMD) 107
4.16 Multiple Program Multiple Data (MPMD) 107
4.17 Domain decomposition . 108
4.18 mono-dimensional and bi-dimensional domain decomposition 109
4.19 Functional decomposition . 109
4.20 Ecosystem modeling . 110
4.21 Signal processing . 110
4.22 Climate modeling . 110
4.23 Fine and coarse granularity 111
4.24 Load balancing . 113

5.1 schematic for FEsolver program 124
5.2 i-th solution: mapping of design variables into structure.xml . 124
5.3 schematics of genetic algorithm on the master computer . . . 125
5.4 schematics of Finite element analysis parallelization on clients 126
5.5 High performance Linux cluster: schematic of beowulf inside

a LAN environment with Network File System 127
5.6 Optimization problem . 128
5.7 Structural geometry . 129
5.8 Numbering scheme . 130
5.9 Weight’s history (including both feasible and infeasible solu-

tions) . 131
5.10 Displacements’ history (The peaks usually represent solution

belonging to the infeasible domain) 132
5.11 Distribution of bar diameters D in the first generation 132
5.12 Distribution of bar thickness t in the first generation 133
5.13 Distribution of bar area in the first generation 133
5.14 Weight-Displacement in the first generation 134
5.15 Distribution of bar area between optimal solutions 134
5.16 Distribution of bar diameters D between optimal solutions . . 135
5.17 Distribution of bar thickness t between optimal solutions . . . 135
5.18 Weight-Displacement for optimal solutions 135
5.19 Optimal solutions in the design space 136
5.20 Distribution of bar area from the beginning to the end of the

optimization . 136
5.21 All the individuals in the design space 137
5.22 Performance of all the individuals 137
5.23 History of weight . 137
5.24 History of displacement . 138
5.25 Structural scheme . 138

LIST OF FIGURES 157

5.26 Nodal numbering scheme . 138
5.27 Sections’ numbering scheme 139
5.28 Sizing optimization: history (complete) 140
5.29 Sizing optimization: history (first 100 generations) 141
5.30 Sizing optimization of double hinged truss 141
5.31 Topology optimization: initial solution 141
5.32 Topology optimization: final solution 143
5.33 Topology optimization: solutions at different generations . . . 143
5.34 Topology optimization: history of weight (complete) 144
5.35 Topology optimization: history (first 100 generations) 144
5.36 Combined optimization: final result 145
5.37 Combined optimization: history of weight (complete) 146
5.38 Combined optimization: history of weight (first 200 genera-

tions) . 147
5.39 Comparison between different optimizations 147
5.40 Structural scheme . 149
5.41 3D view . 149
5.42 The green and red spheres represents, respectively, the higher

and lower bound for vertical translation of bottom nodes . . . 149
5.43 History of weight . 149
5.44 Solutions at different generations 150

158 LIST OF FIGURES

List of Tables

3.1 roulette wheel selection example: population 72
3.2 Probability of bit locations for a random bit change (from [38]) 85
3.3 suggested values for a,m, c in (3.7) 89

4.1 Flynn’s Classical Taxonomy 97
4.2 Comparison of Shared and Distributed Memory Architectures,

taken from [10]. 102
4.3 Speedup comparisons: N is the number of processors and P

is the value of the parallel fraction 114

5.1 Weight optimization . 130
5.2 Displacement minimization 131
5.3 Nodal coordinates . 140
5.4 Sizing optimization: best solution (id=1817), weight=8547.09 N142
5.5 Topology optimization: best solution (id=1339), weight=10121.3

N . 142
5.6 Combined optimization: cross sections of best solution (id=1672)145
5.7 Combined optimization: nodal positions of best solution (id=1672)146
5.8 Comparisons between different optimizations for the double

hinged 2D truss (see Figure 5.25) 148

159

160 LIST OF TABLES

Contents

0.1 Introduction . 3
0.2 The research activity . 3
0.3 Structure of the thesis . 4

1 Optimization of structures 5
1.1 Introduction . 5

1.1.1 Design variables . 6
1.1.2 Objective function . 7
1.1.3 Constraints . 8

1.2 The solution process . 8
1.3 Trends in structural optimization 11
1.4 Optimization tools . 12

2 Optimization methods 15
2.1 Introduction . 15
2.2 General formulation . 16
2.3 Classical methods . 16

2.3.1 Differential calculus 17
2.3.2 Variational calculus 18
2.3.3 Constrained optimization 18
2.3.4 Local constraints . 20

2.4 Mathematical programming 21
2.4.1 Linear programming (LP) 22
2.4.2 Integer linear programming (ILP) 23

2.5 Unconstrained optimization 27
2.6 Heuristic algorithms . 28

2.6.1 Simulated annealing 28
2.6.2 Genetic algorithms . 30

2.7 Constrained optimization . 31
2.7.1 The Kuhn-Tucker conditions 34
2.7.2 Quadratic programming problems 35
2.7.3 On the practical computation of Lagrangian multipliers 36
2.7.4 Gradient Projection method 38
2.7.5 Generalized reduced gradient methods 39

161

162 CONTENTS

2.7.6 The feasible directions method 40
2.7.7 Projected Lagrangian methods (Sequential Quadratic

Programming) . 41
2.8 Approximated methods . 43

2.8.1 Strategies for computational cost reduction 43
2.8.2 Sequential linear programming (SLP) 46
2.8.3 Sequential nonlinear programming (SNLP) 47

2.9 Other methods . 48
2.9.1 Homogenization Method 48
2.9.2 Optimal layout theory 49
2.9.3 Shape optimization . 50
2.9.4 Computer aided shape optimization (CAO) 52
2.9.5 Evolutionary structural optimization 54

3 Genetic algorithms 65
3.1 Introduction . 65

3.1.1 On the definition of genetic algorithm 66
3.2 Parameters of solution . 67

3.2.1 Population . 67
3.2.2 Selection . 68

3.3 Data structure . 77
3.3.1 Data encoding . 77
3.3.2 Crossover operators 82
3.3.3 Mutation operators . 84

3.4 On computer generated random numbers 87

4 Parallel computing 93
4.1 Introduction . 93
4.2 Computer architectures . 96

4.2.1 Single Instruction, Single Data (SISD) 97
4.2.2 Single Instruction, Multiple Data (SIMD) 97
4.2.3 Multiple Instruction, Single Data (MISD) 98
4.2.4 Multiple Instruction, Multiple Data (MIMD) 98

4.3 Parallel computer memory architecture 99
4.3.1 Shared memory . 99
4.3.2 Distributed memory 100
4.3.3 Hybrid shared-distributed memory 101

4.4 Parallel programming models 103
4.4.1 Shared memory . 103
4.4.2 Threads . 103
4.4.3 Message Passing . 105
4.4.4 Data Parallel . 105
4.4.5 Other models . 106

4.5 The design of parallel programs 107

CONTENTS 163

4.5.1 Analysis of the problem: decomposition 108
4.6 Topics in parallel programming 111
4.7 Limits of Parallel programming 113

4.7.1 Amdahl’s law . 113

5 Numerical simulations 117
5.1 Introduction . 117
5.2 The software implementation 118

5.2.1 The finite element analysis 122
5.2.2 The fitness evaluation 123

5.3 How does it work ? . 123
5.4 Numerical simulations . 127
5.5 2D truss cantilever . 127

5.5.1 Material and structural data 129
5.5.2 GA parameters . 129
5.5.3 The optimization process 130

5.6 Double hinged 2D truss . 138
5.6.1 Material and structural data 139
5.6.2 GA parameters . 139

5.7 3D truss structure . 147
5.8 Conclusions . 151

5.8.1 Structural optimization for practising engineer 152
5.9 Summary . 153
5.10 Future work . 153

164 CONTENTS

Bibliography

[1] Zadeh L. A. Fuzzy sets. Information and Control, 8(3):338–353, June
1965.

[2] Hojjat Adeli and Kamal C. Sarma. Cost optimization of structures:
fuzzy logic, genetic algorithms, and parallel computing. John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England, 2006.

[3] Rao C. R. Al Jadaan Omar, Rajamani Lakishmi. Improved selection
operator for ga. Journal of Theoretical and Applied Information Tech-
nology, 4(4):269–277, 2008.

[4] Hassani B. Homogenization and topological structural optimization.
PhD thesis, DDepartment of Civil Engineering, University of Wales,
Swansea, 1996.

[5] Rosen J. B. The gradient projection method for non linear program-
ming. part ii: Nonlinear constraints. The society for industrial and
applied mechanics journal, 9(4):514–532, 1961.

[6] E.M.L. Beale. Introduction to optimization. John Wiley & Sons, 1988.

[7] Martin P. Bendsøe. Optimization of structural topology, shape and ma-
terial. Springer, Heidelberg, 1995.

[8] Martin P. Bendsøe and Ole Sigmund. Topology Optimization: The-
ory, Methods and Applications. Springer Verlag, Berlin Heidelberg New
York, 2004.

[9] Rodrigues H. C. Bendsøe M. P., Rasmussen J. Topology and boundary
optimization as an integrated tool for computer aided design. In Pro-
ceedings of the International Conference on Engineering Optimization
in Design Processes, pages 27–34, Germany, Sep 3-4 1990. Karlsruhe
Nuclear Research Center.

[10] Blaise Barney (blaiseb@llnl.gov). Introduction to parallel computing.
Livermore Computing.

165

166 BIBLIOGRAPHY

[11] Leonard Conrad Breebaart. Rule-based Compilation of data-parallel
programs. PhD thesis, Technische Universiteit Delft, 2003.

[12] Zienkiewicz O. C. and Taylor R. L. The Finite Element Method for Solid
and Structural Mechanics. Elsevier, Amsterdam, 6th edition, 2005.

[13] Goldfarb D. A family of variable metric methods derived by variational
means. Math. Comput., 24:23–26, 1970.

[14] Powell M. J. D. A fast algorithm for nonlinearly constrained optimiza-
tion calculations. In Proceedings of the 1977 Dundee conference on nu-
merical analysis. Springer-Verlag, 1978. Lecture notes in mathematics,
pp 144-157.

[15] Whitley D. Practical guidelines for evolutionary algorithms.

[16] Whitley D. he genitor algorithm and selection pressure: why rank-based
allocation of reproductive trials is best. In Schaffer J.D., editor, Pro-
ceedings of the Third International Conference on Genetic Algorithms,
pages 116 – 121, San Mateo, 1989. Morgan Kaufmann.

[17] Whitley D. Genetic algorithms and evolutionary computing. In Van
Nostrand’s Scientific Encyclopedia. John Wiley & Sons, 2002.

[18] Whitley D., Mathias K., Rana S., and Dzubera J. Building better test
function. In Eshelman L., editor, Proceedings of the sixth International
Conference on Genetic Algorithms. Morgan Kaufmann, 1995.

[19] Whitley D. and Rana S. Representation, search and genetic algorithms.
In Proceedings of the 14th national conference on artificial intelligence.
AAAI Press / MIT Press, 1997.

[20] Shanno D.F. Conditioning of quasi newton methods for function mini-
mization. Math. Comput., 24:647–656, 1970.

[21] Goldberg D. E. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, New York, 1989.

[22] Broyden C. G. The convergence of a class of double rank minimization
algorithm 2. the new algorithm. J. Inst. Math. Appl., 6:222–231, 1970.

[23] Krzesinski G. Shape optimization and identification of 2-d elastic struc-
ture by the bem. In Proceedings of the International Conference on
Engineering Optimization in Design Processes, pages 51–58, Germany,
Sep 3-4 1990. Karlsruhe Nuclear Research Center.

[24] Marsaglia G. Random numbers for c: End, at last? posted to
sci.stat.math., 1999.

BIBLIOGRAPHY 167

[25] Vanderplaats G.N. Conmin - a fortran program for constrained function
minimization. TM X-62282, NASA, 1973.

[26] Thierens D. Goldberg D.E., Deb K. Toward a better understanding of
mixing in genetic algorithms. journal of the society of instrument and
control engineers, 32(1):10–16, 1993.

[27] Holland J. H. Adaptation in Natural and Artificial Systems. An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. University of Michigan Press, Ann Arbor, 1975.

[28] Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Nu-
merical Recipes in C++: The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 2002.

[29] Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Nu-
merical Recipes in C++: The Art of Scientific Computing. Cambridge
University Press, 3rd edition, 2007.

[30] Koza J., Keane M., Streeter M., Mydlowec W., Yu J., and Lanza G.
Genetic Programming IV: Routine Human-Competitive Machine Intel-
ligence. Kluwer Academic Publishers, 2003.

[31] Sloan J. High Performance Linux Clusters with OSCAR, Rocks, Open-
Mosix, and MPI (Nutshell Handbooks). O’Reilly Media, Inc., November
2004.

[32] Baker J.E. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the Second International Conference on Genetic Algo-
rithms on Genetic algorithms and their application, pages 14–21, Hills-
dale, NJ, USA, 1987. L. Erlbaum Associates Inc.

[33] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Com-
puter Programming. Addison-Wesley, Reading MA, 3rd edition, 1997.

[34] Karl Kopper. The Linux enterprise cluster. No Starch Press, San
Francisco, 2005.

[35] Davis L., editor. Handbook of genetic algorithms. Van Nostrand Rein-
hold, New York, 1991.

[36] Meek J. L. Computer Methods in Structural Analysis. Routledge, New
York, NY, 10001, 1991.

[37] Schrage L. A more portable fortran random number generator. ACM
Transactions on mathematical software, 5(2):132–138, 1979.

[38] Scott Robert Ladd. Genetic algorithms in C++. M&T Books, New
York, 1996.

168 BIBLIOGRAPHY

[39] Doig A. G. Land A. H. An automatic method for solving discrete
programming problems. econometrica, 28:497–520, 1960.

[40] Eshelman L.J. and Schaffer J.D. Preventing premature convergence in
genetic algorithms by preventing incest. In Belew R. and Booker L.B.,
editors, Proceedings of the Fourth International Conference on Genetic
Algorithms, pages 115–122, San Mateo, 1991. Morgan Kaufmann.

[41] Hutter M. Fitness uniform selection to preserve genetic diversity. In
Proceedings of the 2002 Congress on Evolutionary Computation, pages
783–788, Manno (Lugano), CH, January 2001. IEEE.

[42] Lozano M., Herrera F., and Cano J.R. Replacement strategies to main-
tain useful diversity in steady-state genetic algorithms. In Advances in
Soft Computing, volume 32, pages 85–96. Springer, Berlin / Heidelberg,
2005.

[43] Mitchell A. G. M. The limits of economy of material in frame-structures.
Philosophical Magazine, 8:589–597, 1904.

[44] E. Maute K., Ramm. General shape optimisation. an integrated model
for topology and shape optimisation. In First World Congress of Struc-
tural and Multidisciplinary Optimization, pages 299–306, Germany,
May 28 1995.

[45] Goldberg D.E. Miller B.L. Genetic algorithms, tournament selection
and the effect of noise. Technical Report 95006, Univerisity of Illinois
at Urbana-Champaign, Department of General Engineering, Urbana,
IL, July 1995.

[46] Reddy J. N. An introduction to the finite element method. Mc-Graw
Hill, New York, 2nd edition, 1993.

[47] Kartam Nabil, Ian Flood, and Garrett James H. Jr. Artificial neural
networks for civil engineers: Fundamentals and Applications. ASCE,
New York, 1997.

[48] Jorge Nocedal and Stephen J.Wright. Numerical optimizaion. Springer,
233 Spring Street, New York, NY 10013, USA, 1999.

[49] Banichuk N.V. Introduction to optimization of structures. Springer-
Verlag, New York, 1990.

[50] Bratley P., Fox L.B., and Schrage L.E. A guide to simulation (2nd ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[51] LEcuyer P. Efficient and portable combined random number generators.
Communications of the ACM, 31(6):742–751, 1988.

BIBLIOGRAPHY 169

[52] LEcuyer P. Uniform random number generators: A review. In Andradt-
tir S., editor, Proceedings of the 1997 Winter Simulation Conference,
Piscataway, NJ, 1997. IEEE.

[53] S. K. Park and K. W. Miller. Random number generators: good ones
are hard to find. Commun. ACM, 31(10):1192–1201, 1988.

[54] Rozvany G. I. N. Prager W. Optimization of structural geometry. In
Cesarj L. Bednarek A. R., editor, Dynamical Systems, pages 265–293.
Academic Press, New York, 1977.

[55] Adelman H. M. Pritchard J. I. Differential equation based method
for accurate approximation in optimization. In AIAA ASME ASCE
AHS ASC 31st structures, structural dynamics and material conference,
pages 414–424, Long Beach, CA, April 2-4 1990.

[56] Osvaldo M. Querin. Evolutionary structural optimisation: stress based
formulation and implementation. PhD thesis, Department of Aeronau-
tical Engineering, University of Sydney, Australia, 1997.

[57] Fletcher R. A new approach to variable metric algorithms. Computer
J., 13(3):317–322, 1970.

[58] Grandhi R. Structural optimization with frequency constraints - a re-
view. AIAA J, 31:2296–303, 1993.

[59] Huges T. J. R. The finite element method: linear static and dynamic
finite element analysis. Dover, Mineola, New York, 2000.

[60] G.I.N Rozvany. Structural design via optimality criteria. Kluwer aca-
demic publishers, Dordrecht, 1989.

[61] Kirsh U. Rozvany G. I. N., Bendse M.P. Layout optimization of struc-
tures. Appl. Mech. Rev., 48(2):41–119, 1995.

[62] T.L. Saaty. Optimization in integers and related extremal problems.
McGraw-Hill, New York, 1970.

[63] Yerry M. A. Schephard M. S. Automatic finite element modeling for
use with three-dimensional shape optimization. The Optimimum Shape,
pages 113–135, 1986.

[64] Farsi B. Schmit L. A. Some approximation concepts for structural
synthesis. AIAA Journal, 12(5):692–699, 1974.

[65] ShiZhen and ZhouYang C.T. Comparison of steady state and elitist
selection genetic algorithms. In Proceedings of the International Con-
ference on Intelligent Mechatronics and Automation, pages 495 – 499,
Aug. 26-31 2004.

170 BIBLIOGRAPHY

[66] Artem Sokolov, Darrell Whitley, and Andre’ Motta Salles Barreto. A
note on the variance of rank-based selection strategies for genetic algo-
rithms and genetic programming. Genetic Programming and Evolvable
Machines, 8(3):221–237, 2007.

[67] Raphael T.Haftka and Zafer Gürdal, editors. Elements of structural
optimization, Dordrecht Boston London, 1993. Kluwer Academic Pub-
lishers.

[68] Raphael T.Haftka and Manohar P.Kamat, editors. Elements of struc-
tural optimization, The Haugue Boston London, 1985. Martinus Nijhoff
Publishers, a member of the Kluwer Academic Publishers.

[69] E. Van Keulen F., Hinton. Topology design of plate and shell struc-
tures using the hard kill method. Advances in structural engineering
optimization, pages 137–149, 1996.

[70] G.N. Vanderplaats. Numerical optimizaion tecniques for engineering.
McGraw-Hill, New York, 1984.

[71] Stadler W. Natural structural shapes of shallow arches. J. Appl. Mech.,
44:291–298, 1977.

[72] Stadler W. Natural structural shapes (the static case). Q. J. Mech.
Appl. Math., 31:169–217, 1978.

[73] Hemp W.S. Optimum structures. Oxford University Press, 1973.

[74] Y.M. Xie and G.P. Steven. Evolutionary structural optimization.
Springer Verlag, London, limited edition, 1997.

[75] Andreae P. Xie H., Zhang M. Another investigation on tournament
selection: modelling and visualisation. In GECCO ’07: Proceedings of
the 9th annual conference on Genetic and evolutionary computation,
pages 1468–1475, New York, NY, USA, 2007. ACM.

[76] Botkin M.E. Yang R.J. A modular approach for three-dimensional
shape optimization of structures. AIAA Journal, 25(3):492–497, 1987.

