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Summary

The Eshelbian force is the main concept of a celebrated theoretical framework
associated with the motion of dislocations and, more in general, defects in
solid. Similarly, it is proven that a force driving the configuration of an elastic
structure is generated through the motion and release mechanism of flexural
and torsional energy. This configurational force, analytically derived through
different approaches and experimentally validated, provides counterintuitive
but crucial effects in elasticity. In particular, it affects:

� equilibrium paths in systems with variable length;

� instabilities, bifurcation and restabilization occurring in a structure
penetrating in a movable constraint.

Furthermore, this configurational force (called ‘Eshelby-like’ in analogy to
continuum mechanics) opens a totally new perspective in the mechanics of
deformable mechanisms, with possible broad applications in:

� new weighing devices as the ‘elastica arm scale’;

� torsional locomotion along perfectly smooth channel and configurational
actuators, capable of transforming torque into propulsive force.
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Chapter 1

Introduction

Eshelbian (or configurational) forces have been introduced by Eshelby [1–4]
to describe motion of massless (for instance: voids, microcracks, vacancies, or
dislocations) or heavy (for instance inclusions) defects within a solid body as
a result of mechanical or thermal loading, until an equilibrium configuration
is reached. Examples are the crack-extension force of fracture mechanics, the
Peach–Koehler force of dislocations, or the material force developing on a
phase boundary in a solid under loading. Nowadays configurational forces are
the cornerstone of a well-developed theory (see for instance the monographs
by Gurtin [5], Kienzler and Herrmann [6], and Maugin [7, 8]).

The aim of this thesis is to prove analytically and experimentally the
existence of configurational, and therefore called by analogy ‘Eshelby-like’,
forces acting on elastic structures having a movable smooth and bilateral
constraint which can realize the release of elastic energy. Furthermore, its
action on extremely deformable systems is investigated in terms of loading
paths, instabilities, critical load, bifurcation and restabilization. Finally,
application of configurational mechanics to elastic structures will be shown
through the deformable arm scale, torsional locomotion and torsional actuator.

The Euler elastica theory is employed in Chapter 2 to solve postcritical
behaviour of elastic inextensible planar rods with various boundary conditions
loaded with an end thrust. The determination of the equilibrium of beams
subject to large deflection is the central thread which runs throughout the
present work.

In Chapter 3 it is shown the existence of an ‘Eshelby-like’ or ‘configura-
tional’ force in a simple elastic structure, see Fig. 1.1. This unexpected force
arises from a smooth and bilateral constraint that leaves the elastic rod the
possibility of sliding, thus releasing energy. It is analytically derived both
through variational calculus and asymptotic approach and experimentally
measured on a model structure designed, realized and tested1.

1D. Bigoni, F. Dal Corso, F. Bosi and D. Misseroni. “Eshelby-like forces acting on
elastic structures: theoretical and experimental proof”. In: Mechanics of Materials (2015),
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CHAPTER 1. INTRODUCTION

Figure 1.1: Structural scheme (upper) of the elastic system employed to disclose a Eshelby-
like force and (lower) its practical realization. The elastic rod of total length
l̄ is subject to a dead vertical load P on its right end, is constrained with a
sliding sleeve inclined at an angle α (with respect to the vertical) and has an
axial dead force S applied at its left end. The presence of the Eshelby-like
force M2/(2B) influences the force S at equilibrium, which results different
from P cosα, as anyone would conclude from the equilibrium in the sliding
direction of the sleeve.

The influence of ‘Eshelby-like’ force on an elastic rod which can slide into a
frictionless sleeve thus varying its length, is analyzed in Chapter 4 with respect
to two different loading conditions. In the former, the postcritical behaviour
of the system shown in Fig. 1.2 is strongly governed by configurational forces
generated by the movable constraint, whereas in the latter, presented in
Fig. 1.3, a different loading path (with softening) and a new critical load
(more than two times lower) have been discovered with respect to the solution
present in technical literature. Due to the presence of ‘Eshelby-like’ force,
both systems exhibit a force reversal, fully substantiated by experimental
tests.

Chapter 5 addresses the bifurcation and instability analysis of an elastic
rod penetrating into a sliding sleeve ending with a linear elastic spring2.
This simple elastic system, reported in Fig. 1.4 with its practical realization
where experiments have been conducted, shows several unexpected behaviours

80, pp. 368-374.
2D. Bigoni, F. Bosi, F. Dal Corso and D. Misseroni. “Instability of a penetrating blade”.

In: Journal of the Mechanics and Physics of Solids (2014), 64, pp. 411-425.
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Figure 1.2: The design scheme (left) of the elastic structure with variable length subject
to an end thrust P and (right) the experimental set-up. The elastic planar
rod of bending stiffness B is restrained by a clamp in its bottom side, while,
at a distance L, a frictionless sleeve is attached. The ‘Eshelby-like’ force acts
as an additional axial load for the rod, whose amount changes at varying of
the external axial load P .

Figure 1.3: The scheme (upper) and the real model (lower) of the elastic structure subject
to a concentrated transversal force F . The elastic planar rod of bending
stiffness B has its left edge clamped, whereas at the opposite side, at a
distance L, it is present a frictionless and bilateral sliding sleeve in which the
rod can slide and may change its free deformed length. The ‘Eshelby-like’
deeply influences the loading path and the critical load of this system, with
respect to the solution reported in literature.

3



CHAPTER 1. INTRODUCTION

Figure 1.4: Structural scheme (left) and practical realization (right) of the structure
analyzed in Chapter 5. The penetrating blade is an elastic rod whose free
length l is a function of the applied axial load P . The blade has a free end
subject to the dead load P , while at the other edge the blade slides into a
frictionless sleeve and it is restrained by an axial linear spring of stiffness k.

including an increase of buckling load at decreasing of elastic stiffness, a finite
number of buckling loads for a system with infinite degrees of freedom (leading
to a non-standard Sturm-Liouville problem), more than one bifurcation
loads associated to each bifurcation mode, a restabilization of the straight
configuration after the second bifurcation load associated to the first instability
mode, postcritical paths and stability are deeply influenced by the presence
of an ‘Eshelby-like force’ and an asymptotic self-restabilization of the straight
configuration occurs for compliant systems with imperfection of tilt angle or
initial constant curvature.

Figure 1.5: Scales across millenia: a traditional balance (left) is based on the lever princi-
ple, while the innovative elastica arm scale (right) is based on deformation and
principles from configurational mechanics. In this particular configuration,
the deformable arm scale is working without counterweight.

4



A first innovative application of configurational mechanics to elastic
systems, presented in Chapter 6, lies in the concept of the elastica arm scale,
a result of nonlinear equilibrium kinematics of rods, so that deflection of
the deformable arms becomes necessary for the equilibrium, which would
be impossible for a rigid system. In this sense, the proposed concept (and
prototype), which can work with or without counterweight, may be seen as
an innovative advance with respect to the classical balances, see Fig. 1.53.

Figure 1.6: The design scheme (upper) and the torsional apparatus (lower) of the elastic
system employed to disclose the ‘Eshelby-like’ propulsive force related to
torsion. The elastic rod is subject to an applied torque M at one edge,
while the other edge is inserted into a perfectly smooth and fitting female
constraint, able to react to the applied moment.

Finally, Chapter 7 is devoted to the analysis of an elastic rod inserted into
a frictionless and fitting socket head subject to a torque, realizing a uniform
twisting moment, Fig. 1.6. It is theoretically proven and experimentally
shown that, although perfectly smooth, the constraint generates an expulsive

3F. Bosi, D. Misseroni, F. Dal Corso and D. Bigoni. “An Elastica Arm Scale”. In:
Proceedings of the Royal Society A (2014), 470, 20140232. Cover paper.

5
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CHAPTER 1. INTRODUCTION

Figure 1.7: Left: a dynamic photo showing the torsional ‘gun’ in action; if the system is
quickly twisted, the release mechanism of torsional elastic energy produces a
propulsive force. Right: a sequence of three photos taken at 30 fps, showing
that the propulsive force overcomes gravity.

axial force on the rod, which explains why screwdrivers at high torque have
a tendency to disengage from screw heads. The smooth constraint can be
viewed as a tight channel where locomotion, always linked with bending, is
now generated from torsion. This new type of motion finds direct evidence
in the realization of a configurational ‘gun’ or actuator, reported in Fig. 1.7,
capable of transforming torque into propulsive force4.

4D. Bigoni, F. Dal Corso, D. Misseroni and F. Bosi. “Torsional locomotion”. In:
Proceedings of the Royal Society A (2014), 470, 20140599.

6
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Chapter 2

The Euler elastica

The determination of the equilibrium of an elastic inextensible rod
subject to a large deflection is a problem of great interest, which is here
addressed in its simplest form, namely, in a two-dimensional context.
When a straight elastic rod is compressed, the determination of the
critical load and of the postcritical behaviour provides a beautiful
example of linear and nonlinear eigenvalue problem. The elastica
theory will be employed throughout the present thesis in order to solve
nonlinear equilibria of planar elastic rods.

The purpose of this section is to provide the Euler elastica theory with
reference to an elastic rod subject to all possible boundary conditions because
it will be useful in all the following chapters. We will follow and generalize
Bigoni [13], classical references are Timoshenko and Gere [14], Love [15] and
Reiss [16], while recent works have been presented by Wang [17], Vaz [18],
Mikata [19], and O’Reilly and Peters [20, 21]. We will also address stability
of equilibrium configurations, which has been treated by Maddocks [22],
Manning et al. [23], Hoffman et al. [24], Manning [25, 26], Kuznetsov and
Levyakov [27], Levyakov [28], Kuznetsov and Levyakov [29], Jin and Bao [30],
Levyakov [31], Levyakov and Kuznetsov [32], and Sachkov and Levyakov [33].

2.1 The kinematics of an inextensible rod in a plane

We consider an inextensible rod of length l, rectilinear in a reference config-
uration and smoothly deformed, as shown in Fig. 2.1. In the (undeformed)
deformed configuration, the generic point can be picked up using (a coordinate
x0 ∈ [0, l]) a curvilinear coordinate s ∈ [0, l], so that inextensibility implies
that x0 = s (so that dx0 = ds).

The displacement u of the point x0 from the reference configuration is

u = u1(x0)e1 + u2(x0)e2 = x− x0, (2.1)

which, introducing the (twice-continuously differentiable) deformation

x = g(x0), (2.2)

7



CHAPTER 2. THE EULER ELASTICA

Figure 2.1: The kinematics of an elastic inextensible rod of length l, rectilinear in
the reference configuration. Displacement of a point x0 of coordinate x0

is u(x0) = x − x0. Note that inextensibility implies that the curvilinear
coordinate s is equal to the coordinate x0, namely, s = x0.

and noting that the point x0 has coordinate x0 (so that x0 = x0e1), becomes

u = g(x0e1)− x0e1. (2.3)

Note that, since e1 is fixed, the dependence of function g on the unit
vector could be omitted, so that equation (2.2) would become the parametric
representation of the curve describing the elastica.

Let us consider now two neighbour points of the reference configuration
at coordinates x0 and x0 + ω0, defining the vector t0 = ω0e1. This vector is
mapped to

g(x0 + ω0e1)− g(x0), (2.4)

so that, assuming ω0 small and performing a Taylor series expansion of the
deformation around ω0 = 0, yields the transformed vector (tangent to the
deformed line at x0) as

F(ω0e1) (2.5)

where
F =

∂g

∂x0
=
(
u′1 + 1

)
e1 ⊗ e1 + u′2e2 ⊗ e1 + e2 ⊗ e2, (2.6)

where the superscript ′ denotes differentiation with respect to the coordinate
x0 = s and the symbol ‘⊗’ denotes the dyadic product.

Since the elastica is assumed inextensible, the length of the transformed
vector F(ω0e1) must maintain the same length of the initial vector t0 = ω0e1,
therefore from equation (2.5) we obtain

|Fe1| = 1, (2.7)

8



2.1. THE KINEMATICS OF AN INEXTENSIBLE ROD IN A PLANE

which, using equation (2.6) yields

u′1 + 1 =
√

1− (u′2)2. (2.8)

Taking the derivative of equation (2.8) finally provides the inextensibility
constraint in the form

u′′1 = − u′2u
′′
2√

1− (u′2)2
. (2.9)

Since the inextensibility constraint is enforced and the tangent to the elastica
at x is given by the unit vector t

t =
(
u′1 + 1

)
e1 + u′2e2 =

√
1− (u′2)2 e1 + u′2e2, (2.10)

the angle θ of inclination of the tangent t to the elastica at x is given by

sin θ = x′2 = u′2, cos θ = x′1 =
√

1− (u′2)2, (2.11)

and the length d of the projection of the elastica onto the e1 axis is

d =

l∫
0

cos θds =

l∫
0

√
1− (u′2)2 d. (2.12)

The unit vector n normal to the elastica at x can be obtained through
differentiation (with respect to s) of the scalar product t · t, so that t′ is
found normal to t in the form

t′ = − u′2u
′′
2√

1− (u′2)2
e1 + u′′2e2, or

t′ = −θ′ sin θe1 + θ′ cos θe2.

(2.13)

The unit normal can therefore be obtained from equations (2.13)1 or
(2.13)2, through division by the modulus (the so-called ‘curvature’): 1

|t′| = |u′′2|√
1− (u′2)2

= |θ′|, (2.15)

thus obtaining

n = sign(u′′2)

(
−u′2e1 +

√
1− (u′2)2 e2

)
or,

n = sign(θ′) (− sin θe1 + cos θe2) .

(2.16)

1 Note that the inverse of F is

F−1 =
1√

1− (u′2)2
e1 ⊗ e1 + e2 ⊗ e2 −

u′2√
1− (u′2)2

e2 ⊗ e1. (2.14)

9



CHAPTER 2. THE EULER ELASTICA

The signed curvature χ is2

χ =
u′′2√

1− (u′2)2
, or χ = θ′. (2.21)

2.2 Total potential energy, constitutive equation and
the elastica

The elastica is assumed to be loaded at its edges by forces generating a
bending moment and a normal and a shearing force distribution along the
deformed line.

The constitutive equation used for the elastica is the celebrated Jacob
Bernoulli’s assumption that the effects of normal and shearing forces are
neglected and that the curvature of the deflection curve is linearly proportional
to the bending moment as

θ′(s) =
M(s)

B
, (2.22)

in which B is the bending stiffness (equal to the product between the Young
modulus and the moment of inertia of the cross section area of the rod in the
linear beam theory).

For the systems reported in Fig. 2.2 the total potential energy V(θ(s))
can be written as

V(θ(s)) =

l∫
0

B
(θ′(s))2

2
ds−P

l − l∫
0

cos θ(s)ds

−R l∫
0

sin θ(s) ds, (2.23)

where the first term is the strain energy and R is a Lagrangian multiplier
(representing –as will be shown below– the vertical reactions of the supports,

2 If the deformed elastica is described in a Cartesian system in which its coordinates are

x̃ = s+ u1(s)− u1(0), ỹ = f(x̃), (2.17)

the signed curvature (2.21) can be obtained from the expression

χ =
d2f/dx̃2

[1 + (df/dx̃)2]3/2
, (2.18)

by considering the identity

u2(s) = f(s+ u1(s)− u1(0)), (2.19)

from which the two following equations (keeping into account the inextensibility constraint)
can be derived

df
dx̃

=
u′2√

1− (u′2)2
,

d2f

dx̃2
=

u′′2
[1− (u′2)2]2

, (2.20)

(where a prime denotes differentiation with respect to s), which have to be substituted
into equation (2.18) to obtain equation (2.21).

10



2.2. TOTAL POTENTIAL ENERGY, CONSTITUTIVE EQUATION AND THE ELASTICA

Figure 2.2: The considered elastic rods subjected to axial thrust (positive when compres-
sive), with different constraints at their edges.

when present). Functional (2.23) is defined over the set of kinematically
admissible deformed lines, meaning every twice-differentiable displacement
field u corresponding to a rotation field θ and curvature θ′ related via the
constitutive equation (2.22) to the bending moment.

Considering a variation θ̃(s) of θ(s), satisfying the boundary conditions
for each system

i) θ′(0) = θ′(l) = θ̃′(0) = θ̃′(l) = 0 and
l∫

0

sin θ(s)ds = 0

ii) θ′(0) = θ(l) = θ̃′(0) = θ̃(l) = 0

iii) θ(0) = θ′(l) = θ̃(0) = θ̃′(l) = 0

iv) θ(0) = θ(l) = θ̃(0) = θ̃(l) = 0

v) θ(0) = θ′(l) = θ̃(0) = θ̃′(l) = 0 and
l∫

0

sin θ(s)ds = 0

vi) θ(0) = θ(l) = θ̃(0) = θ̃(l) = 0 and
l∫

0

sin θ(s)ds = 0

(2.24)

we can evaluate the first variation δV of functional V, which, keeping into

11
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account integration by parts

l∫
0

θ′(s)θ̃′(s) = −
l∫

0

θ′′(s)θ̃(s) ,

becomes

δV = −
l∫

0

[
θ′′(s) +

P

B
sin θ(s) +

R

B
cos θ(s)

]
θ̃(s) ds, (2.25)

holding for all admissible perturbing fields θ̃(s).
Imposing the vanishing of the first variation (2.25) yields the ‘differential

equilibrium equation for the elastica’

θ′′(s) +
P

B
sin θ(s) +

R

B
cos θ(s) = 0, (2.26)

making transparent the fact that R represents the vertical reaction of the
support, always null except in the following cases:

� for the structure (i) in the special situation (not be addressed for
simplicity in the following) in which the two supports coincide;

� for the structure (v);

� for the structure (vi), when antisymmetric buckling modes are consid-
ered.

2.2.1 Simply supported elastica

Let us start considering the doubly pinned rod (i), so that, defining λ2 = P/B,
the equations governing the equilibrium of the elastica for a simply supported
rod are

θ′′(s) + λ2 sin θ(s) = 0, s ∈ [0, l] governing diff. equation

θ′(0) = θ′(l) = 0, b.c.: null moment at both supports

u1(0) = 0 b.c.: null horiz. displ. at the left support

u2(0) = u2(l) = 0, b.c.: null vert. displ. at both supports

u′1(s) = cos θ(s)− 1, s ∈ [0, l] diff. equation for the horizontal displ.

u′2(s) = sin θ(s), s ∈ [0, l] diff. equation for the vertical displ.
(2.27)

12
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Equations (2.27) define a nonlinear eigenvalue problem, for which the
trivial solution θ = 0 is always possible, so that the question arises whether
nontrival solutions exist or not. Bifurcation corresponds to the situation in
which the trivial solution (or possibly a bifurcated solution) of (2.27) splits
into two or more, as λ passes through a critical value λcr, called ‘bifurcation
point’.

Before embarking in the solution of the problem (2.27), let us consider its
linearization about the solution θ(s) = 0, for which the horizontal displace-
ment is null, u1(s) = 0, so that the remaining equations are

θ′′(s) + λ2θ(s) = 0, s ∈ [0, l] governing diff. equation

θ′(0) = θ′(l) = 0, boundary conditions

u2(0) = u2(l) = 0, boundary conditions

u′2(s) = θ(s), s ∈ [0, l] diff. equation for the vertical displ.
(2.28)

Equations (2.28) define a linear eigenvalue problem, also called ‘Sturm-
Liouville problem’ (Broman [34]). It admits the infinite solutions

θ(s) = An cos
nπs

l
, n = 0, 1, 2, ... (2.29)

and

u2 = A0 = 0, n = 0︸ ︷︷ ︸
trivial solution

, u2 =
lAn
nπ

sin
nπs

l
, n = 1, 2, ...︸ ︷︷ ︸

bifurcation mode

(2.30)

where the trivial solution holds for every thrust P , while the nontrivial
solutions hold if and only if

λ = λn =
nπ

l
, ⇔ P = P crn =

n2π2B

l2
, n = 1, 2, ... (2.31)

which defines the Euler’s critical loads. As a consequence of the linearization,
the amplitudes An (n = 1, 2, ...) of the bifurcation modes remain undeter-
mined, nevertheless the critical loads correctly identify the bifurcation points
on the trivial path, λn, as will be proven below.

Let us now solve the nonlinear problem (2.27). First of all, we note that if

θ(s), u1(s), u2(s),

represent a solution corresponding to λ2, the fields

±θ(s) + 2nπ, u1(s), ±u2(s), n = ...,−2,−1, 0, 1, 2, ...

13



CHAPTER 2. THE EULER ELASTICA

also represent other solutions (symmetrical with respect to the x1–axis) and
the fields

±θ(s) + (2n+ 1)π, −u1(s)− 2s, u2(s), n = ...,−2,−1, 0, 1, 2, ...

are valid for −λ2. These solutions correspond to deformations symmetric
with respect to the x1 or the x2–axis, which will be ignored without loss of
generality. Therefore, defining without loss of generality θ̂ = θ(ŝ), where ŝ is
curvilinear coordinate where the bending moment is null (ŝ = 0 for (ii), ŝ = l
for (iii), ŝ = l/2 for (iv)) so that for this particular case

θ̂ = θ(0), (2.32)

we can only consider 0 ≤ θ̂ ≤ π.
A multiplication of equation (2.27)1 by θ′(s) yields

d
ds

[
1

2
(θ′(s))2 − λ2 cos θ(s)

]
= 0, (2.33)

so that integration and consideration of equations (2.27)2 and (2.32) leads to

θ′(s) = λ

√
2(cos θ(s)− cos θ̂), (2.34)

where we have selected the positive root, since the two solutions differ merely
in sign.

An equation formally identical to equation (2.34) is usually obtained in
the analysis of the oscillation of a simple pendulum (Temme [35]), so that it
is a standard expedient to operate the following change of variables

κ = sin
θ̂

2
, κ sinφ(s) = sin

θ(s)

2
, (2.35)

leading through trigonometric formulae to the differential problem

dφ(s)

ds
= λ

√
1− κ2 sin2 φ(s). (2.36)

The boundary conditions imply that sinφ(0) = 1 and sin2 φ(l) = 1, so that

φ(0) =
4h+ 1

2
π, φ(l) =

2j + 1

2
π, h, j = 0,±1,±2, ... (2.37)

and therefore separating the variables and integrating equation (2.36) yields

sλ =

φ(s)∫
4h+1

2
π

dφ√
1− κ2 sin2 φ

, h = 0,±1,±2, ... (2.38)

14
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which, for s = l, becomes

lλ =

2j+1
2

π∫
4h+1

2
π

dφ√
1− κ2 sin2 φ

, h, j = 0,±1,±2, ... (2.39)

Taken over one period, the integral (2.39) is equal to 2K(κ), where

K(κ) =

π
2∫

0

dφ√
1− κ2 sin2 φ

, (2.40)

is the complete elliptic integral of the first kind or the so-called ‘real quarter
period of the elliptic function’ (Byrd and Friedman [36]; Temme [35]).

The integral in equation (2.39) can be rewritten as a function of an integer
m as

lλ = 2mK(κ), ⇔ P =
B

l2
4m2

[
K

(
sin

θ̂

2

)]2

, (2.41)

an equation providing the relation between the applied load P and the
rotation of the rod’s edge on the left associated to the m–th bifurcation mode
(and coincident with Reiss [16], his equation (3.16)).

For small θ̂, a Taylor series expansion of equation (2.41) provides exactly
equation (2.31), thus proving that

the critical Euler loads (2.31), calculated from the linearized theory,
correctly determine the bifurcation points emanating from the
trivial path.

Let us go back now to equation (2.38) and note that the integral on the
right hand side can always be written as

φ(s)∫
4m+1

2
π

(· · ·) ds = −

4m+1
2

π∫
0

(· · ·) ds+

φ(s)∫
0

(· · ·) ds, (2.42)

so that, since (Byrd and Friedman [36])

4m+1
2

π∫
0

dφ√
1− κ2 sin2 φ

= (4m+ 1)K(κ), m = 0,±1,±2, ... (2.43)

we obtain

sλ+ (4m+ 1)K(κ) =

φ(s)∫
0

dφ√
1− κ2 sin2 φ

, m = 0,±1,±2, ... (2.44)
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which provides

φ(s) = am (sλ+ (4m+ 1)K(κ), κ), m = 0,±1,±2, ... (2.45)

where ‘am’ denotes the Jacobi amplitude function of modulus κ. Employing
the property (Byrd and Friedman [36])

am (x± 2nK(κ), κ) = am (x, κ)± nπ, n = 0,±1,±2, ...

equation (2.45) can be simplified to

φ(s) = am (sλ+ K(κ), κ) + 2mπ, m = 0,±1,±2, ... (2.46)

so that the definition of φ(s), equation (2.35)2, yields

sin
θ(s)

2
= κ sn (sλ+ K(κ), κ), (2.47)

where ‘sn’ is the Jacobi sine amplitude function, defined as

sn (x, κ) = sin (am (x, κ)) .

A substitution of equation (2.47) into equation (2.34), where the identity
cos θ = 1− 2 sin2(θ/2) is employed, yields

θ′(s) = 2λκ cn (sλ+ K(κ), κ), (2.48)

where ‘cn’ is the Jacobi cosine amplitude function, defined as

cn (x, κ) = cos (am (x, κ)) .

Note that, due to the properties

cn (K(κ), κ) = cn (3K(κ), κ) = cn [(2m+1)K(κ), κ] = 0, m = 0,±1,±2,±3

the boundary conditions (2.27)2, namely θ′(0) = θ′(l) = 0, are satisfied3.
According to equations (2.3) and (2.27)(5,6), the differential equations

determining the points x of the deformed elastica are

x′1(s) = cos θ(s), x′2(s) = sin θ(s), (2.49)

which, since cos θ = 1− 2 sin2(θ/2) and sin θ = 2 sin(θ/2)
√

1− sin2(θ/2) and
using equation (2.47), provide the two differential equations

x′1(s) = 1− 2κ2 sn2(sλ+ K(κ), κ),

x′2(s) = 2κ sn (sλ+ K(κ), κ)dn (sλ+ K(κ), κ),

(2.50)

3 equation (2.41) has been used in the boundary condition at θ′(l).
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where ‘dn’ is the Jacobi elliptic function, defined as

dn (sλ+ K(κ), κ) =
√

1− κ2 sn2(sλ+ K(κ), κ). (2.51)

Since the following differentiation rules are known (Byrd and Fried-
man [36])

∂

∂ x
E(x, κ) =

√
1− κ2 sin2 x,

∂

∂ x
am (x, κ) = dn (x, κ),

∂

∂ x
cn (x, κ) = − sn (x, κ) dn (x, κ),

(2.52)

where E(x, κ) is the incomplete elliptic integral of the second kind of modulus
κ, defined as

E(x, κ) =

x∫
0

√
1− κ sin2 t dt,

taking into account the boundary conditions (2.27)3,4, we integrate equations
(2.50), thus arriving at the equations describing the shape of the elastica 4

x1(s) = −s+
2

λ
{E [am (sλ+ K(κ), κ) , κ]− E [am (K(κ), κ) , κ]} ,

x2(s) = −2κ

λ
cn(sλ+ K(κ)),

(2.53)
which are identical with those provided by Love [15] (his equations (12) at n.
263).

The displacement of the point of application of the force P is negative (for
P > 0) and its absolute value can be immediately obtained from equations
(2.53)1, since |u1(l)| = l − x1(l), in the form

|u1(l)| = 2l − 2

λ
{E [am (lλ+ K(κ), κ) , κ]− E [am (K(κ), κ) , κ]} , (2.54)

so that using now equation (2.41) we obtain

|u1(l)|
l

= 2− E [am ((2m+ 1)K(κ), κ) , κ]− E [am (K(κ), κ) , κ]

mK(κ)
, m = 1, 2, ...

(2.55)

4These relations are valid also for the hinged-clamped case (ii), where the value of λ as

a function of the angle of θ̂ is obtained through the relation lλ = (2m− 1)K(sin
θ̂

2
)
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which eventually can be simplified to (an equation given by Reiss [16], his
equation (3.20))5

|u1(l)|
l

= 2− 2E (κ)

K(κ)
, (2.56)

where E(π/2, κ) = E(κ) represents the complete elliptic integral of the second
kind. Note that (2.56) is independent of the bifurcation mode m, so that the
displacement of the right pin of the rod depends only on θ̂ (through κ).

The mid-span deflection of the rod is null for even values of the mode m,
while for odd m can be evaluated as

|u2(l/2)|
l

=
κ

mK(κ)
, m = 1, 3, 5, ... (2.57)

In summary, for a given θ̂ and a given mode m we can calculate the
corresponding λ (using equation (2.41)) and u1(l) (using equation (2.56)) and
plot the elastica (using equations (2.53)). The bifurcation diagram showing
the load P (normalized through division by π2B and multiplication by l2)
as a function of the displacement of the right pin of the rod (normalized
through division by l) is shown in Fig. 2.3. In the figure the first three critical
loads and the corresponding three branches are reported. We may note that
the branches do not cross each other and the load is continuously increasing
during the post-critical behaviour.

The deformed elastic lines have been evaluated and plotted in Fig. 2.4 for
the first two branches at fixed values of θ̂, namely, {10◦,45◦,90◦,135◦, 160◦}.
These values of rotation correspond to rod end displacements, respectively
equal to {0.008, 0.149, 0.543, 1.049, 1.340} l. Note that in Fig. 2.4 also the
undeformed configuration, θ̂ = 0◦, is reported in order to provide the scale of
the displacement.

It should be noticed that the line of thrust (joining the two forces in
Fig. 2.4) intersects the elastica at points of inflexion (θ′ = 0), separating
(using the Love’s nomenclature) different ‘bays’.

2.2.2 In-plane secondary bifurcations of the simply-supported
elastica

Let us go back to Fig. 2.3 and note that on each bifurcated branch there is a
secondary bifurcation point (marked with a circle), which occurs when the
two supports of the rod coincide, namely, when u1(l) = −l, corresponding
to θ̂ = 130.7099◦ and different load values: Pl2/(πB) = 2.1833 for the first

5 The following identities turn out to be useful (Byrd and Friedman [36])

am [K(κ), κ] = π/2, am[(2m+ 1)K(κ), κ] = (2m+ 1)π/2, E(nπ/2, κ) = nE(κ).
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Figure 2.3: Dimensionless load Pl2/(π2B) of a doubly supported rod versus dimensionless
displacement u1(l)/l. The first three principal bifurcation points and branches
are reported together with the first three secondary bifurcation points. All
equilibrium configurations on the second and third branch are unstable
(dashed curves). The first branch becomes unstable after the secondary
bifurcation points.

Figure 2.4: Deformed elastic lines for the first two modes m = 1, 2 at different val-
ues of parameters setting the deformation: the initial inflexion angle
θ̂ = {0, 10◦, 45◦, 90◦, 135◦, 160◦} and corresponding dimensionless displace-
ment of the end of the rod u1(l)/l = {0, 0.008, 0.149, 0.543, 1.049, 1.340}. The
deformed shapes of the elastica represent the post-critical behaviour of the
structure.
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Figure 2.5: Sketch of the in-plane secondary bifurcation modes of the elastica, referred to
the first (upper part) and second (lower part) mode. When the two supports
coincide the structure can suffer a rigid-body rotation. During this rotation,
the horizontal load drops to zero (value reached when the elastica is rotated
at 90◦), so that the force is maintained by the vertical reaction of the support.
For rotation angles greater than 90◦ (not reported) the force changes sign.
For imposed horizontal load, the structure becomes unstable when the two
supports coincide and snaps to the configuration u1 = −2l, where it is in
equilibrium with a tensile load.

mode, Pl2/(πB) = 8.7335 for the second mode, Pl2/(πB) = 19.6504 for the
third mode, and so on.

These secondary bifurcation modes, passed unnoticed until Maddocks [22]
(see also Kuznetsov and Levyakov [29]; Sachkov and Levyakov [33]), have a
simple explanation. In fact, when the two supports of the rod momentarily
coincide during deformation along the bifurcation path, the structure can
rigidly rotate about the pin. During the rigid-body rotation, vertical reactions
of the supports are generated, so that the horizontal load drops until, when
the structure is rotated at 90◦, the horizontal load is reduced to zero and,
finally, further rotation requires a negative force. The situation is sketched
in Fig. 2.5, with reference to the first two modes. For imposed horizontal
load, the situation in which the two supports coincide marks an instability
point, in the sense that: (i.) at this point the structure rigidly rotates and
snaps to the configuration u1 = −2l, where it is subject to a tensile load;
(ii.) equilibrium configurations belonging to the post-critical path m = 1 and
θ̂ > 130.7099◦ are unstable, as shown in Fig. 2.12.
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2.2.3 Doubly clamped elastica

The equations governing the equilibrium of the elastica for a doubly clamped
rod are

θ′′(s) +
P

B
sin θ(s) +

R

B
cos θ(s) = 0, s ∈ [0, l] governing diff. equation

θ(0) = θ(l) = 0, b.c.: null rotation

u1(0) = 0 b.c.: null horizontal displ.

u2(0) = u2(l) = 0, b.c.: null vertical displ.

u′1(s) = cos θ(s)− 1, s ∈ [0, l] diff. eq. for horiz. displ.

u′2(s) = sin θ(s), s ∈ [0, l] diff. eq. for vert. displ.
(2.58)

As the simply supported elastica, also equations (2.58) define a nonlinear
eigenvalue problem, for which the trivial solution θ(s) = 0 is always possible,
so that we are looking for non-trivial solutions. Considering for this particular
system symmetric deformed configurations with 2m inflection points, vertical
equilibium imposes R = 0, so that the differential equation turns out to be
the same as in the previous doubly supported problem. For antisymmetric
configurations with 2m+ 1 inflection points a non null vertical reaction R is
generated.

Linearisation of the problem (2.58) about the solution θ(0) = 0 leads to

θ′′(s) +
P

B
θ(s) = −R

B
, s ∈ [0, l] governing diff. equation

θ(0) = θ(l) = 0,

l∫
0

θ(s)ds = 0, boundary conditions

(2.59)
Equations (2.59) define linear eigenvalue problem that admits the trivial
solution θ(s) = 0 for every thrust P , whereas the infinite non trivial solutions
are only possible when the following equation is satisfied

2

(
1− cos

√
Pl2

B

)
=
Pl2

B
sin

√
Pl2

B
, (2.60)

defining the Euler’s bifurcation loads for the doubly clamped rod as

P cr1 =
4π2B

l2
, P cr2 =

8.98682B

l2
, P cr3 =

16π2B

l2
, P cr4 =

15.45052B

l2
, ...

(2.61)
where the odd (even) bifurcation loads determine the symmetric (antisym-
metric) bifurcation paths.
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Figure 2.6: Deformed (and undeformed) configuration for the first (symmetric) mode
of the doubly clamped rod. Note that, thanks to symmetry, the problem is
reduced to the analysis of a cantilever rod of length l/4 loaded with an end
thrust P .

Symmetric buckling modes

With reference to the symmetric buckling modes with 2m inflection points
(R = 0), the rotation field θ(s) is a solution of the following differential
problem

θ′′(s) + λ2 sin θ(s) = 0, s ∈ [0, l]

θ(0) = θ(l) = 0,
(2.62)

so that, a multiplication of equation (2.62)1 by θ′(s) and its integration leads
to

θ′(s) = ±λ
√

2(cos θ(s)− cos θ̂), (2.63)

where, in this case, θ̂ represents the angle of rotation at the inflection point
s = l/4.

In order to facilitate the analytical description, the symmetry properties
can be exploited, so that four simply clamped rods, of equal length l/4, can
be identified, see Fig. 2.6.

Therefore, limiting the attention only to one quarter of the rod and
selecting the positive root (representing the curvature) of equation (2.63) for
s ∈ [0, l/4], the change of variables (2.35) leads to the differential problem

dφ(s)

ds
= λ

√
1− κ2 sin2 φ. (2.64)

The boundary conditions for the considered problem imply that sinφ(0) = 0
and sinφ(l/4) = 1, so that

φ(0) = hπ, φ(l/4) =
2j + 1

2
π, h, j = 0,±1,±2, ... (2.65)
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and therefore separating the variables and integrating equation (2.64) yields

sλ =

φ(s)∫
hπ

dφ√
1− k2 sin2 φ

, h = 0,±1,±2, ... (2.66)

which, for s = l/4, becomes

l

4
λ =

2j+1
2

π∫
hπ

dφ√
1− k2 sin2 φ

, h, j = 0,±1,±2, ... (2.67)

and can be rewritten as a function of an odd integer m as

lλ = 2(m+ 1)K(κ), ⇔ P =
B

l2
4(m+ 1)2

[
K

(
sin

θ̂

2

)]2

, m = 1, 3, 5, ...

(2.68)
This equation provides the relation between the applied load P and the
rotation θ̂ of the first inflection point (s = l/4) associated with the odd
(symmetric) m–th buckling mode.

For small θ̂, a Taylor series expansion of equation (2.68) provides exactly
the odd critical Euler loads calculated from the linearized theory in equation
(2.61).

Going back to to equation (2.66) and employing the definition of φ(s),
equation (2.35), in addition to the odd nature of Jacobi amplitude function,
namely,

am (x, κ) = −am (−x, κ),

we can write the rotation field for the entire rod as 6

θ(s) = 2arcsin (κ sn (sλ, κ)) s ∈ [0, l]. (2.69)

According to equations (2.11) and (2.69) and taking into account the
boundary conditions (2.24)6, the analytical formulae describing the shape of
the elastica for the entire rod, s ∈ [0, l] can be written as 7

x1(s) = −s+
2

λ
{E [am (sλ, κ) , κ]} ,

x2(s) =
2κ

λ
[1− cn(sλ)] .

(2.70)

6We may note that the equations describing the rotational field, equation (2.69), and
the shape of the elastica, equation (2.70), remain the same also for structure (iii). The only
difference lies in the relation between the load P and the angle of the free edge θ̂ = θ(l),

associated to the mth bifurcation mode, which is lλ = (2m− 1)K(sin
θ̂

2
).

7equation (2.70) describes also the deformed configuration of system (iv), together with
the relation (2.41), providing a connection between the thrust P and the angle θ̂ = θ(l/2)
for different m buckling modes.
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The displacement of the point of application of the force can be imme-
diately obtained from equations (2.70)1, since |u1(l)| = l − x1(l), in the
form

|u1(l)|
l

= −2

(
E(κ)

K(κ)
− 1

)
, (2.71)

which is independent of the bifurcation mode m, so that the displacement
of the right edge of the rod depends only on θ̂ (through κ). The bifurcation
diagram showing the load P (normalized through division by π2B and multi-
plication by l2) as a function of the displacement of the right movable edge
of the rod (normalized through division by l) is shown in Fig. 2.8 together
with the bifurcation diagram valid for antisymmetric buckling modes. In the
figure the first three critical loads and the corresponding three branches (two
symmetric and one antisymmetric) are reported. The deformed elastic lines
have been evaluated and plotted in Fig. 2.9 for the first symmetric branch
(first buckling mode) at fixed values of |u1(l)|/l, namely, {0, 0.2, 0.6, 1.0, 1.4},
together with the first anti-symmetric branch (second buckling mode), de-
scribed by equations (2.86), (2.89), and (2.95). Note that in Fig. 2.9 also
the undeformed configuration, P = 0, is reported, providing the scale bar for
displacements.

Antisymmetric buckling modes

Let us go back now to equation (2.58) and solve the non linear differential
equation in the case of antisymmetric (even) buckling modes with 2m + 1
inflection points (R 6= 0). Antisymmetry properties allow us to conclude that
one inflection point is located at s = l/2, so that we may observe that the
structure can be regarded as formed with two equal clamped-hinged rods
subject to end thrust, Fig. 2.7. Therefore, we can consider only one half of
the rod represented by the following differential problem 8

θ′′(s) +
P

B
sin θ(s) +

R

B
cos θ(s) = 0, s ∈

[
0,
l

2

]
θ(0) = θ′

(
l

2

)
= 0,

l/2∫
0

sin θ(s)ds = 0.

(2.72)

Defining γ2 =
√
P 2 +R2/B and the angle ψ(s) = θ(s) + β, where β is the

angle defining the inclination of the resultant of P and R with respect to the

8We can note that equilibrium equations for the structure (v) are exactly the same of
the antisymmetric configuration of the structure (vi).
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Figure 2.7: Deformed configuration for the second (antisymmetric) mode for the doubly
clamped rod. Note that, thanks to antisymmetry, one inflection point is
located at the mid-span, so that the problem is reduced to a clamped-guided
rod of length l/2.

horizontal direction, so that

cosβ =
F√

P 2 +R2
, sinβ =

R√
P 2 +R2

, (2.73)

the differential problem (2.72) can be rewritten as

ψ′′(s) + γ2 sinψ(s) = 0, s ∈
[
0,
l

2

]
,

ψ(0) = β,

ψ′
(
l

2

)
= 0,

l/2∫
0

sin (ψ(s)− β) ds = 0.

(2.74)

Before proceeding with the non-trivial solutions of the differential problem
(2.74), let us define θ(l/2) = −θ∗, so that ψ(l/2) = −ψ∗ = −θ∗ + β and an
inflection point exists in the buckled rod, located at s = l∗, where the angle of
rotation is θ(l∗) = θ∗ and θ′(l∗) = 0 (ψ(l∗) = ψ∗ and ψ′(l∗) = 0), as reported
in Fig. 2.7. Multiplication of equation (2.74)1 by ψ′(s) and integration in the
variable s yields

d
ds

[
1

2
(ψ′(s))2 − γ2 cosψ(s)

]
= 0, (2.75)

so that consideration of boundary conditions at the inflection point s = l∗

leads to
ψ′(s) = ±λ

√
2(cosψ(s)− cosψ∗), (2.76)
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where the + (−) sign means a positive (negative) curvature. From equation
(2.76) and considering Fig. 2.7, the following conditions can be derived

ψ
′
(s) = +λ

√
2 (cosψ(s)− cosψ∗), s ∈ (0, l∗) ,

ψ
′
(s) = −λ

√
2 (cosψ(s)− cosψ∗), s ∈

(
l∗,

l

2

)
.

(2.77)

It is a standard expedient to operate the following change of variables

η = sin
ψ∗

2
, η sinω(s) = sin

ψ(s)

2
, (2.78)

leading to the following differential equation

dω(s)

ds
= ±γ

√
1− η2 sin2 ω(s). (2.79)

The boundary conditions imply that

ω(0) = ωβ, ω(l∗) =
π

2
ω

(
l

2

)
= −π

2
, (2.80)

where ωβ = arcsin

(
1

η
sin

(
β

2

))
.

Therefore, separation of variable and integration of the positive root of
equation (2.79) between 0 and l∗ yields

l∗∫
0

γds =

π
2∫

ωβ

dω√
1− η2 sin2 ω

, (2.81)

which expresses the non-trivial solution for l∗, related to η, γ and β, as

l∗γ = K(η)−K (ωβ, η) , (2.82)

where

K(x, η) =

x∫
0

dω√
1− η2 sin2 ω

, (2.83)

is the incomplete elliptic integral of the first kind. Now, let us integrate
the negative root of equation (2.79) between l∗ and l/2 and recall Riemann
theorem and the property of integral of even functions

−

−π
2∫

π
2

dω√
1− η2 sin2 ω

= 2

π
2∫

0

dω√
1− η2 sin2 ω

(2.84)
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2.2. TOTAL POTENTIAL ENERGY, CONSTITUTIVE EQUATION AND THE ELASTICA

to obtain

γ

(
l

2
− l∗

)
= 2K(η), (2.85)

so that, considering the periodicity of boundary conditions (2.80) and using
equations (2.82) and (2.85), we arrive at

γl = 2 [(m+ 1)K(η)−K (ωβ, η)] m = 2, 4, 6, ... (2.86)

Note that equation (2.86) provides the relation between the load P and the
angles θ∗ (through η and ψ∗) and β associated with the even (antisymmetric)
m–th buckling mode. The above equation is one of the two equations to be
solved in our problem. The other relation that allows the resolution of the
problem can be obtained from condition (2.72)3, which can be rewritten as

l∗∫
0

sin (ψ(s)− β) ds+

l
2∫

l∗

sin (ψ(s)− β) ds = 0 (2.87)

and considering equation (2.78) and trigonometric angle difference identity,
as

ψ∗∫
β

sinψ cosβ

γ
√

2(cosψ − cosψ∗)
dψ −

ψ∗∫
β

sinβ cosψ

γ
√

2(cosψ − cosψ∗)
dψ

−
−ψ∗∫
ψ∗

sinψ cosβ

γ
√

2(cosψ − cosψ∗)
dψ +

−ψ∗∫
ψ∗

sinβ cosψ

γ
√

2(cosψ − cosψ∗)
dψ = 0.

(2.88)

The third integral of equation (2.88) is null because the integrand is an odd
function, while the other terms, since the following relations are considered

cosψ = 1− 2 sin2(ψ/2), sinψ = 2 sin(ψ/2)

√
1− sin2(ψ/2),

can be rewritten, using equation (2.78), in the final form (Mikata [19])

−2η cosωβ
(
1− 2η2 sin2 ωβ

)
+ 2η sinωβ

√
1− η2 sin2 ωβ

{
(m+ 1)

[
2E(η)

−K(η)
]
− [2E(ωβ, η)−K(ωβ, η)]

}
= 0, m = 2, 4, 6, ...

(2.89)
Equations (2.86) and (2.89) are highly non-linear and represent the non-trivial
solution. The relation between β and θ∗ (the former contained in ωβ and the
latter in η) can be numerically obtained from equation (2.89) and used into
equation (2.86) to obtain the relation P − θ∗.
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Our aim now is to calculate the transverse and axial components of the
deflected rod. To this purpose, if we integrate equation (2.79) from s = 0 up
to a generic point before the inflection point s = l∗

s∫
0

γds =

ω(s)∫
ωβ

dω√
1− η2 sin2 ω

, (2.90)

we would arrive, considering decomposition (2.42) and equation (2.78)2, at

sin
(ω

2

)
= η sn [γs+ K(ωβ, η), η] , (2.91)

where this relation is valid for the entire rod once the following properties of
elliptic integral (Byrd and Friedman [36]) are considered

sn(−x+ 2K(η), η) = −sn(−x, η) = sn(x, η). (2.92)

Finally, from integration of the kinematic fields (2.11), the analytical form for
the transverse and axial displacements can be obtained, valid for the entire
rod s ∈ (0, l), as 9

x1(s) = + sinβ

[
−2η

γ
cn
(
γs+ K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
cosβ

{
−s+

2

γ

[
E [am (γs+ K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
,

x2(s) = cosβ

[
−2η

γ
cn
(
γs+ K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
− sinβ

{
−s+

2

γ

[
E [am (γs+ K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
.

(2.95)

9equation (2.95) holds also for the structure (v), together with

γl = (2m+ 1)K(η)−K (ωβ , η) , m = 1, 2, 3, ... (2.93)

and

−2η cosωβ
(
1− 2η2 sin2 ωβ

)
+2η sinωβ

√
1− η2 sin2 ωβ {(2m+ 1) [2E(η)−K(η)]− [2E(ωβ , η)−K(ωβ , η)]} = 0,

(2.94)
defining the relation between P , β and θ∗ associated with the m–th bifurcation mode.
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The displacement of the movable clamped edge, where the thrust is
applied, can be obtained from equation (2.95), since |u1(l)| = l − x1(l). For
a given θ∗ and a given even mode m, we can obtain β (through equation
(2.89)), P (using equations (2.86) and (2.73)) and |u1(l)| (through equation
(2.95)1). The bifurcation diagram showing the load P (normalized through
division by π2B and multiplication by l2) as a function of the displacement
of the right movable edge of the rod (normalized through division by l) is
shown in Fig. 2.8 together with the bifurcation diagram valid for the first
and third symmetric buckling mode, equation (2.71).

Figure 2.8: Dimensionless load Pl2/(π2B) for a doubly clamped rod versus the dimension-
less displacement |u1(l)|/l. The first three bifurcation points and branches
are reported together the secondary bifurcation point. The solid lines rep-
resent stable equilibrium configurations, while dashed curves correspond to
unstable configurations. Note that the first branch becomes unstable after
the secondary bifurcation point.

2.2.4 In-plane secondary bifurcation of doubly clamped elas-
tica

It can be noticed from Fig. 2.8 that for the doubly clamped elastica (structure
(vi)) a secondary bifurcation point (marked with a circle) exists, occurring
when the two edges of the rod coincide, namely, θ̂ = 130.7099◦ 10. When

10The angle θ̂ = 130.7099◦ corresponds to the value κ = 0.9089, which is the root of the
equation 2E(κ)−K(κ) = 0.
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Figure 2.9: Deformed elastic lines for the first two modes m = 1, 2 (symmetric and
antisymmetric) at different values of dimensionless displacements |u1(l)|/l =
{0, 0.2, 0.6, 1.0, 1.4}. The deformed shapes of the elastica represent the post-
critical behaviour of the structure.

this value of the load is attained, the rod configuration becomes ‘8-shaped’
(Fig. 2.9) and vertical reactions are generated at the edges, so that, increasing
the thrust P the rod snaps on the stable ‘S-shaped’ configuration of the anti-
symmetric second mode [37], Fig. 2.13. Issues on stability will be addressed
in the next section.

2.3 Stability of the elastica

Stability of the elastica’s configurations can be judged by analyzing the
second variation of the total potential energy V with respect to variations
θ̃(s) satisfying the boundary conditions reported in equation (2.24), plus the
supplementary condition

l∫
0

θ̃(s) cos θ(s) ds = 0, (2.96)

following from the vanishing of the first variation of the constraint represented
by equation (2.24)1,5,6 and holding for the systems (i), (v) and (vi) in which
both the edges of the rod have null vertical displacements.

The second variation of V can be calculated as

δ2V =

l∫
0

[(
θ̃′(s)

)2
− P

B
θ̃2(s) cos θ(s) +

R

B
θ̃2(s) sin θ(s)

]
, (2.97)
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which, using integration by parts
l∫

0

(
θ̃′(s)

)2
= −

l∫
0

θ̃′′(s)θ̃(s) ,

yields

δ2V = −
l∫

0

[
θ̃′′(s) +

P

B
θ̃(s) cos θ(s)− R

B
θ̃(s) sin θ(s)

]
θ̃(s) ds (2.98)

for all admissible θ̃(s), subject to the different boundary conditions, in relation
with the considered structural system. Therefore, the stability criterion is

δ2V


> 0 stability

< 0 instability
(2.99)

In order to treat condition (2.98), let us denote with φn(s) (s ∈ [0, l]) the
non-trivial solutions of the following Sturm-Liouville problem11

φ′′n(s) + δn

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φn(s) = CRn cos θ(s), (2.101)

subject to the following constraints representing the boundary conditions
(2.24)

i) φ′n(0) = φ′n(l) = 0 and
l∫

0

cos θ(s)φn(s)ds = 0

ii) φ′n(0) = φn(l) = 0

iii) φn(0) = φ′n(l) = 0

iv) φn(0) = φn(l) = 0

v) φn(0) = φ′n(l) = 0 and
l∫

0

cos θ(s)φn(s)ds = 0

vi) φn(0) = φn(l) = 0 and
l∫

0

cos θ(s)φn(s)ds = 0

(2.102)

11When isoperimetric constraints are not present, namely there is not the condition (2.96),
stability can be also addressed evaluating the eigenvalues δn of the following Sturm-Liouville
problem

− φ′′n(s)−
(
P

B
cos θ(s)− R

B
sin θ(s)

)
φn(s) = δnφn(s). (2.100)

When at least one eigenvalue is negative, the associated equilibrium configuration is
unstable, while, if all eigenvalues are positive, the equilibrium is stable, see Manning et
al. [23] and Hoffman et al. [24].
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where φn(s) are the eigenfunctions associated to the eigenvalues δn with
weight function

P

B
cos θ(s)− R

B
sin θ(s), (2.103)

and CRn is a constant that represents the isoperimetric constraint (2.96) and
‘has the meaning of R’, so that in the unconstrained systems (for systems
(ii), (iii), (iv) and (i), except when the two supports coincide) CRn = 0.

It is known (see for instance Broman [34]) that: (i.) problem (2.101)
admits a countably infinite set of eigenvalues δn and these can be arranged
in an increasing sequence (δn < δn+1 for each integer n)12, (ii.) δn −→ ∞
when n −→ ∞, (iii.) the system φn(s), s ∈ [0, l] is an orthogonal system
with the weight function (2.103). Multiplication of the differential equation
(2.101) by φn and integration between 0 and l yields (keeping into account
the boundary conditions (2.102) and using integration by parts)

δn

l∫
0

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φ2
n(s) ds =

l∫
0

(φ′n(s))2 ds, (2.104)

while writing equation (2.101) for the eigenfunction φm

φ′′m(s) + δm

(
P

B
cos θ(s)− R

B
sin θ(s)

)
φm(s) = CRm cos θ(s), (2.105)

combining equations (2.101) and (2.105) multiplied by φm and φn respectively,
integrating between 0 and l and taking into account boundary conditions,
the following orthogonality condition is obtained

l∫
0

φn(s)φm(s)

(
P

B
cos θ(s)− R

B
sin θ(s)

)
ds = 0, n 6= m. (2.106)

Condition (2.104) defines a norm and equation (2.106) a weighted orthogo-
nality condition for the functions φn(s) with weight function (2.103).

Therefore, system φn(s) with weight function (2.103) can be used to give a
Fourier series representation (converging in the mean) to the square-integrable
function θ̃(s),

θ̃(s) =

∞∑
n=1

cnφn(s), (2.107)

where cn are the Fourier coefficients.
We do not need to specify coefficients cn, rather we can simply substi-

tute the Fourier representation (2.107) into condition (2.98) and keep into

12δn ≥ 0, see [34], pag. 41 – 44.
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consideration equation (2.101) to obtain

δ2V =

l∫
0

[ ∞∑
n=1

(δn − 1)cnφn(s)

(
P

B
cos θ(s)− R

B
sin θ(s)

)]

×

[ ∞∑
m=1

cmφm(s)

]
ds

(2.108)

which, employing conditions (2.104) and (2.106) finally becomes

δ2V =
∞∑
n=1

(1− 1

δn
)c2
n

l∫
0

(φ′n(s))2 ds


> 0 stability

< 0 instability
(2.109)

so that we arrive at the stability requirement
δn /∈ [0, 1] stability

δn ∈ [0, 1] instability
(2.110)

where δn are solutions of the Sturm-Liouville problem (2.101). The values
δn = 0 or δn = 1 represent ‘transition’ points and thus are called ‘critical’.

2.3.1 Stability of the simply supported elastica

Let us begin considering the stability of the straight configuration of the
simply supported rod, cos θ(s) = 1. In this case, the Sturm-Liouville problem
(2.101), with R = CRn = 0 becomes

φ′′n(s) + δn
P

B
φn(s) = 0, φ′n(0) = φ′n(l) = 0, (2.111)

which has the nontrivial solutions

φn(s) = cos
nπs

l
, δn =

P crn
P
, (2.112)

where P crn are the Euler’s critical loads at different modes n, equation (2.31),
so that when δ1 < 0 or δ1 > 1 (0 < δ1 < 1) the straight configuration is
stable (unstable), which corresponds to P < P cr1 (P > P cr1 )13.

13This statements is valid also for the other systems with R = 0, namely (ii), (iii) and
(iv), whose nontrivial solutions are

ii) φn(s) = cos
π + 2nπ

2

s

l

iii) φn(s) = sin
π + 2nπ

2

s

l

iv) φn(s) = sin
nπs

l

and δn =
P crn
P

.
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To judge stability of the deformed elastica, we can substitute equation
(2.41) into equation (2.50) to obtain

cos θ(s) = 1− 2κ2 sn2
[(s
l
2m+ 1

)
K(κ), κ

]
, (2.113)

and rewrite with the nondimensional variable s̃ = s/l ∈ [0, 1] the Sturm-
Liouville problem (2.101), so that for a given mode m and inclination of the
rod edge κ = sin(θ̂/2) the smallest eigenvalue δm has to be determined as
the solution of

φ′′m(s̃) + δm 4m2K2(κ)
{

1− 2κ2 sn2 [(2ms̃+ 1)K(κ), κ]
}
φm(s̃) = 0,

(2.114)
(where ′ denotes differentiation with respect to s̃) subject to the boundary
conditions (2.101)2, namely φ′m(0) = φ′m(1) = 0.

Problem (2.114) can be easily solved with a numerical routine. As noticed
by Kuznestov and Levyakov [29], a numerical procedure can be easily set,
solving the differential equation (2.114) with the boundary conditions

φm(0) = 1, φ′m(0) = 0, (2.115)

so that the trivial solution is always eliminated and iterations on δm can be
performed to match the condition φ′m(1) = 0 14. The iterations have been
performed on the basis of a bisection method and the integration produces
the graphs reported in Fig. 2.10. The smallest eigenvalues δm for the first
three modes m = 1, 2, 3 are reported versus the inclination θ̂ (in degrees) of
the ends of the deformed rod. It is clear that the first mode, m = 1, is stable
(the eigenvalues range between 1 and 10) until the two supports coincide
for θ̂ = 130.7099◦, at which point the eigenvalues become discontinuous and
fall to values within [0, 1] (in particular, δ1 = 9.9228 at θ̂ = 130.7◦ and
δ1 = 0.0059 at θ̂ = 130.8◦). All modes higher than the first (m = 2, 3) are
unstable with eigenvalues belonging to [0, 1]. Note that for all the considered
modes the eigenvalues for θ̂ ≥ 130.7099◦ are all coincident with the values
for m = 1.

The instability mode associated to the unstable configurations occurring
form = 1 and θ̂ > 130.7099◦ (discovered by Maddocks [22]) and corresponding
to ‘self-intersecting’ elastica is not easy to be illustrated and understood.

14The nontrivial solution of the Sturm-Liouville problem (2.101) for the systems (ii), (iii)
and (iv) can be numerically found using the following boundary conditions

ii) φ′m(0) = 0, φm(l) = 0, φm(0) = 1,

iii) φm(0) = 0, φ′m(l) = 0, φm(l) = 1,

iv) φm(0) = 0, φm(l) = 0, φ′m(0) = 1.

For all these systems, the first mode, m = 1, is stable (no eigenvalues belong to [0, 1]), while
upper investigated modes, m = 2, 3 are unstable with at least one eigenvalue belonging to
[0,1].
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Figure 2.10: The smallest eigenvalues δm for the Sturm-Liouville problem (2.114) as
functions of the rotation θ̂ of the ends of the rod. These determine the
stability of the different modes of elastica (m = 1, 2, 3 are investigated). The
light gray region corresponds to stability, so that only the first mode m = 1
is stable and only until the two supports of the rod coincide, a situation
corresponding to θ̂ = 130.7099◦.

Therefore, we have performed an experiment with the beam model shown in
Fig. 2.11, made up of an AISI 1095 steel strip (180mm × 12mm × 0.07mm),
having a 7mm wide cut, dividing the strip into two parts (one 5mm wide and
the other ‘∩-shaped’ with each of the two legs 2.5mm wide). The model is
suspended vertically in a self-intersecting configuration, in equilibrium with a
7 g dead weight. This equilibrium is only possible due to a ‘minimal’ friction
between a contact point internal to the ‘∩-shaped’ part of the rod. If this
configuration is just touched, the curved loop moves and flips around one
hinge so violently that the images shown in Fig. 2.12 are blurred although
taken with 1/500 s exposure time (a Genie HM1400, DALSA Corporation) of
a high speed camera (equipped with a 18-35mm 1:3.5-4.5 D AF Nikkor lens,
from Nikon Corporation, at 50 shots per second).

We finally note that with the proposed procedure to check stability of
the elastica configurations it is not directly possible to conclude that all
modes m > 1 are unstable, though mechanical considerations suggest that
this might be the case. Our check of the instability of the modes m = 2, 3
substantiates the Love’s [15] statement ‘the instability of forms of the elastica
with more than the smallest possible number of inflexions between the ends
is well known as an experimental fact’.
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Figure 2.11: An unstable configuration of a rod model used to experimentally check
the instability of ‘self-intersecting elastica’ (cut from a 180mm × 12mm
× 0.07mm steel strip) suspended vertically and subject to a 7 g weight.
The unstable configuration is maintained due to a minimal friction at
one intersection point. A gentle movement of air is sufficient to break
equilibrium, thus generating the motion recorded in Fig. 2.12.

Figure 2.12: Experiment documenting the instability of ‘self-intersecting elastica’: the
curved loop moves vertically towards the hinge and finally flips around this
at the bottom of the sample. Photos have been taken at a speed of 50 shots
per second, with an exposure time of 1/500 s.
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2.3.2 Stability of the doubly clamped elastica

The stability of the straight configuration of the doubly clamped rod (vi)
can be analyzed considering that sin θ(s) = 0 and cos θ(s) = 1, therefore the
Sturm-Liouville problem (2.101) becomes

φ′′n(s) + δn
P

B
φn(s) = CRn, φn(0) = φn(l) = 0,

l∫
0

φn(s)ds = 0 (2.116)

where the solutions of this differential problem is

φn(s) = A1 cos

[√
δn P

B
s

]
+A2 sin

[√
δn P

B
s

]
+
A3B

δn P
, (2.117)

so that inserting solution (2.117) into the boundary conditions in (2.116) we
arrive at a system of equations for A1, A2 and A3 which can be written in
the following matrix form

δn P

B
0 1

cos

[√
δn P

B
l

]
sin

[√
δn P

B
l

]
B

δn P

δn P

B
sin

[√
δn P

B
l

]
δn P

B
cos

[√
δn P

B
l

]
l





A1

A2

A3


=



0

0

0


.

(2.118)
The non trivial solution of (2.117) can be obtained when the following
determinant of the previous matrix is null

2

(
cos

[√
δn P

B
l

]
− 1

)
+

√
δn P

B
l sin

[√
δn P

B
l

]
= 0, (2.119)

so that δn can be numerically obtained showing that the straight configuration
is stable only for P < P cr1 , whereas for P > P cr1 at least one eigenvalue δn
belongs to [0, 1], therefore those configurations are unstable.

To investigate stability of the deformed elastica, the numerical procedure
proposed by Levyakov and Kuznetsov [32] is reported in the following and,
where feasible, we retain as much of the notation and conventions of [32] as
possible15. The Sturm-Liouville problem (2.101) can be rewritten with the
nondimensional variable s̃ = s/l ∈ [0, 1] for a given mode m as

φ′′m(s̃) + δm L(s̃)φm(s̃) = CRmN(s̃), (2.120)
15The analysis of stability with isoperimetric constraints can be also performed following

Manning et al. [23], Hoffman et al. [24] and Manning [25, 26] through the conjugate point
theory.
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where

L(s̃) =


P

B
cos θ(s̃) for odd modes

P

B
cos θ(s̃)− R

B
sin θ(s̃) for even modes

(2.121)

andN(s̃) = cos θ(s̃). Note that, for the odd buckling modes with 2m inflextion
points, equation (2.68) can be inserted into the definition of cos θ(s), similarly
to equation (2.50), to obtain

cos θ(s̃) = 1− 2κ2 sn2 [(2(m+ 1)s̃)K(κ), κ] , m = 1, 3, 5, (2.122)

where it is a function of the inclination of the rod inflection point θ̂, while
for the even buckling modes with 2m+ 1 inflection points we can write

cos θ(s̃) = sinβ [2η sn [γs̃+ K(ωβ, η), η] dn [γs̃+ K(ωβ, η), η]]

+ cosβ
[
1− 2η2 sn2 [γs̃+ K(ωβ, η), η]

]
,

sin θ(s̃) = cosβ [2η sn [γs̃+ K(ωβ, η), η] dn [γs̃+ K(ωβ, η), η]]

− sinβ
[
1− 2η2 sn2 [γs̃+ K(ωβ, η), η]

]
,

(2.123)

and the parameters β, γ, P and R can be calculated through equations (2.89),
(2.86) and (2.73) as a function of the inclination of the rod at inflection point
θ∗.

Equation (2.120) is subjected to the boundary conditions φm(0) = 0,
φm(1) = 0 and the constraint 16

1∫
0

φm(s̃)N(s̃)ds̃ = 0. (2.124)

The numerical method for calculating the eigenvalues δm consist of dividing
the interval 0 ≤ s̃ ≤ 1 into n segments of equal length h = n−1 and denoting
the coordinate of the starting points of the segments by si−1 = h(i − 1),
with i = 1, ..., n. For the ith segment, the functions L(s̃) and N(s̃) are
approximated by their average values Li and Ni calculated at the midpoint
of the ith segment, so that equation (2.120) becomes

φ′′m(s̃) + δm Li φm(s̃) = CRmNi, (2.125)

which is an ordinary differential equation with constant coefficients. The
solution equation (2.125) is

φm(s̃) = A1iF1i(s̃− s̃i−1) +A2iF2i(s̃− s̃i−1) + CRm
Ni

δn Li
, (2.126)

16for system (v) the boundary conditions are φm(0) = φ′m(1) = 0, while the constraint

remains
1∫

0

φm(s̃)N(s̃)ds̃ = 0
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where A1i and A2i are constants, whereas the coefficients F1i and F2i are
defined for δmLi > 0 as

F1i(s̃− s̃i−1) = cos ai(s̃− s̃i−1) F2i(s̃− s̃i−1) = sin ai(s̃− s̃i−1) (2.127)

while for δmLi < 0 they are

F1i(s̃−s̃i−1) = cosh ai(s̃−s̃i−1) F2i(s̃−s̃i−1) = sinh ai(s̃−s̃i−1) (2.128)

with ai =
√
|δm Li|.

The constants A1i and A2i can be expressed by means of φm(s̃i−1) =
φm,i−1 and φ′m(s̃i−1) = φ′m,i−1 as

A1i = φm,i−1 − CRm
Ni

δm Li
, A2i =

φ′m,i−1

ai
, (2.129)

so that the quantity φm(s̃i) = φm,i at the right end of the segment are
calculated

φm,i = φm,i−1 F1i(h) + φ′m,i−1

F2i(h)

ai
+ CRmNi

1− F1i(h)

δm Li
, (2.130)

as well as its derivative

φ′m,i = φm,i−1 F
′
1i(h) + φ′m,i−1

F ′2i(h)

ai
− CRmNi

F ′1i(h)

δm Li
. (2.131)

Equations (2.130) and (2.131) have to be used for constructing the general
solution of equation (2.125) satisfying the condition of continuity of φm
and φ′m at the ends of each integration segments. Since equation (2.125) is
linear, its general solution can be written as a combination of three particular
solutions

φm(s̃) = c1ϕ1(s̃) + c2ϕ2(s̃) + CRmϕ3(s̃), (2.132)

where c1 and c2 are constants. Using the following initial data

ϕ1(0) = 1, ϕ′1(0) = 0, CRm = 0,

ϕ2(0) = 0, ϕ′2(0) = 1, CRm = 0,

ϕ3(0) = 0, ϕ′3(0) = 0, CRm = 1,

(2.133)

the functions ϕi(s̃) (i = 1, 2, 3) can be constructed separately using the
recurrence relations (2.130) and (2.131). Note that solutions ϕi(s̃) can be
directly obtained solving numerically the differential equation (2.120) (where
φm(s̃) is substituted with ϕi(s̃)) through NDSolve of Mathematica© with
the boundary conditions (2.133).
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Inserting the general solution (2.132) into relation (2.124), the constraint
can be rewritten as

1∫
0

[c1ϕ1(s̃) + c2ϕ2(s̃) + CRmϕ3(s̃)]N(s̃)ds̃ = 0, (2.134)

while the boundary conditions φm(0) = 0 and φm(1) = 0 bring to the following
relations

c1 = 0,

c1ϕ1(1) + c2ϕ2(1) + CRmϕ3(1) = 0.
(2.135)

Equations (2.134) and (2.135)2 constitute a homogeneous system of algebraic
equation for c2 and CRm which can be written in the matrix form

ϕ2(1) ϕ3(1)
1∫

0

ϕ2(s̃)N(s̃)ds̃
1∫

0

ϕ3(s̃)N(s̃)ds̃




c2

CRm

 =


0

0

 . (2.136)

The non trivial solution of the system (2.136) can be obtained imposing
the vanishing of the matrix’s determinant ∆, so that, varying the eigenvalue
δm from 0 to 1 we can study the behaviour of ∆. If exists at least a value
of δm ∈ [0; 1] such as ∆ = 0, the non trivial solution of (2.132) satisfies
boundary conditions and the corresponding equilibrium is unstable, otherwise
it is stable. Therefore, for the doubly clamped elastica the study of stability
can be conducted analyzing the determinant ∆, which becomes17

∆ = ϕ2(1)

1∫
0

ϕ3(s̃)N(s̃)ds̃− ϕ3(1)

1∫
0

ϕ2(s̃)N(s̃)ds̃, (2.137)

where the integrals have to be numerically solved. The above mentioned
numerical procedure bring to the results of stability (solid curve) or instability
(dashed curve) reported in Fig. 2.8, showing clearly the secondary bifurcation
and the jump from the first to the second mode once the two edges of the
rod are overlapped.

In order to understand the instability mode associated to the unstable
configurations occurring for m = 1 and θ̂ > 130.7099◦ and corresponding to
‘self-intersecting’ elastica an experiment has been performed with the beam
model made up of a PMMA strip (490mm × 15mm × 1.5mm), having a
13mm wide cut, dividing the strip into two parts (one 12mm wide and the
other ‘∩-shaped’ with each of the two legs 6mm wide). Four configurations
have been reported in Fig. 2.13, confirming theoretical predictions.

17for the system (v) the determinant is ∆ = ϕ′2(1)

1∫
0

ϕ3(s̃)N(s̃)ds̃−ϕ′3(1)

1∫
0

ϕ2(s̃)N(s̃)ds̃
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2.3. STABILITY OF THE ELASTICA

Figure 2.13: Experiment documenting the analytical results obtained for the doubly
clamped elastica: (1) and (2) confirm the stability of the first mode; (3)
shows the instability (note that this configuration must be held in this
position with one hand, otherwise it slips into configuration (4)) of the first
symmetric mode after secondary bifurcation point, when the two edges of
the rod are overlapped; and (4) certifies the stability of the second ‘S-shaped’
antisymmetric mode when |u1(l)|/l > 1.
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Chapter 3

The existence of Eshelby-like
force in elastic structures

The Eshelbian (or configurational) force is the main concept of a
celebrated theoretical framework associated with the motion of dis-
locations and, more in general, defects in solids. In a similar vein,
in an elastic structure where a (smooth and bilateral) constraint can
move and release energy, a force driving the configuration is generated,
which therefore is called by analogy ‘Eshelby-like’ or ‘configurational’.
This force (generated by a specific movable constraint) is derived both
via variational calculus and, independently, through an asymptotic
approach. Its action on the elastic structure is counterintuitive, but is
fully substantiated and experimentally measured on a model structure
that has been designed, realized and tested.

Configurational (or: ‘material’, ‘driving’, ‘non-Newtonian’) forces have
been introduced by Eshelby [1–4] to describe the fact that massless (for
instance: voids, microcracks, vacancies, or dislocations) or heavy (for instance
inclusions) defects may move within a solid body as a result of mechanical
or thermal loading. The Eshelbian force is defined as the negative gradient
of the total potential energy V of a body with respect to the parameter κ
determining the configuration of the defect, namely,

− ∂V(κ)

∂κ
. (3.1)

Examples are the crack-extension force of fracture mechanics, the Peach–
Koehler force of dislocations, or the material force developing on a phase
boundary in a solid under loading. Nowadays configurational forces are the
cornerstone of a well-developed theory (see for instance the monographs by
Gurtin [5], Kienzler and Herrmann [6], and Maugin [7, 8], and the journal
special issues by Dascalu et al. [38], and Bigoni and Deseri [39]).

Let us consider an elastic structure in equilibrium upon load and assume
that a (frictionless and bilateral) constraint can move – a feature which may
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Figure 3.1: Structural scheme of the elastic system employed to disclose a Eshelby-like
force. The elastic rod of total length l̄ is subject to a dead vertical load P
on its right end, is constrained with a sliding sleeve inclined at an angle α
(with respect to the vertical) and has a axial dead force S applied at its left
end. The presence of the Eshelby-like force M2/(2B) influences the force S
at equilibrium, which results different from P cosα. The other reactions at
the end of the sliding sleeve are the force P sinα perpendicular to the axis of
the sleeve and the counterclockwise reaction moment Pe.

be considered as a ‘defect’ – in a way to allow the system to reconfigure
through a release of elastic energy, then a force is generated, similar to an
Eshelbian or configurational one.

To reveal this force in an indisputable way, and directly measure it,
the simple elastic structure sketched in Fig. 3.1 has been designed, which
inflectionlength can change through sliding along a sleeve and therefore
discloses (in two different and independent ways, namely, using variational
and asymptotic approaches) the presence of an Eshelby-like force. The
structure has been subsequently realized and instrumented (see Fig. 3.2,
reporting a series of photos demonstrating the action of the Eshelby-like
force), so that the configurational force has been measured at equilibrium
and it is shown to perfectly match the theoretical predictions.

In this example configurational forces are non-zero, but small for small
deflections1 and become progressively important when displacements grow.
Their effects are counterintuitive and unexpected, so that for instance, the
structure shown in Fig. 3.2, which can wrongly be thought to be unable to
provide any axial action, is instead subject to an axial Eshelby-like force
transmitted by the sliding sleeve. In particular, at the end of the sliding
sleeve, the axial force S at equilibrium with a load P (inclined of α with
respect to the rod’s axis) is not simply equal to −P cosα, as when the sliding
sleeve is replaced by a clamp, but will be determined (Section 3.1.3) to be a

1 The fact that these forces are small for small displacement does not mean that they are
always negligible, since their action is in a particular direction, which may be ‘unexpected’.
For instance, in the case of null axial dead load, S = 0, and sliding sleeve orthogonal to
the vertical dead load P , α = π/2 (Fig. 3.1), the Eshelby-like force is the only axial action,
so that equilibrium becomes impossible.

44



motion

motion

10 N

2 N

6 N

Figure 3.2: The practical realization of the elastic structure shown in Fig. 3.1 reveals an
axial Eshelby-like force, so that, while at low vertical force (2 N) the elastic
rod tends, as expected, to slip inside the sliding sleeve (upper photo), at 6 N
the equilibrium is surprisingly possible (note that the tangent at the loaded
end of the elastic rod is horizontal, see the photo in the centre) and at 10 N
the elastic rod is expelled from the sliding sleeve (lower photo), even if the
system is inclined at 15◦ with respect to the horizontal (α = 75◦).
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function of the rotation of the rod at its end, θl̄, as

S = −P cos (α+ θl̄) = −P cosα+ 2P

(
sin2 θl̄ + α

2
− sin2 α

2

)
︸ ︷︷ ︸

Eshelby-like force

, (3.2)

which for for small deflections (sin θl̄ ≈ θl̄) becomes

S = −P cosα+ P
3 vl̄

2(l̄ − lin)
sinα︸ ︷︷ ︸

Eshelby-like force

, (3.3)

where vl̄ is the transversal displacement at the loaded end of the rod of length
l̄ − lin (external to the sliding sleeve). Equations (3.2) and (3.3) show that
there is an ‘unexpected’ term (null if the elastic rod is constrained by a clamp
instead of a sliding sleeve), defined as the ‘Eshelby-like force’. Although there
is a little abuse of notation2, this definition is motivated by the fact that the
Eshelby-like force is null, would the total potential energy of the system be
independent of a configurational parameter.

3.1 Eshelby-like force produced by a sliding sleeve

An inextensible elastic rod (straight in its unloaded configuration, with
bending stiffness B and total length l̄) has one end constrained with a sliding
sleeve, is subject to an edge axial (dead) force S, and has the other end
subject to a dead transversal load P (inclined at an angle α, see Fig. 3.1).
Introducing the curvilinear coordinate s ∈ [0, l̄], the length lin of the segment
of the rod internal to a (frictionless, perfectly smooth and bilateral) sliding
sleeve, and the rotation θ(s) of the rod’s axis, it follows that θ(s) = 0 for
s ∈ [0, lin]. Denoting by a prime the derivative with respect to s, the bending
moment along the elastic rod is M(s) = Bθ′(s), so that at the loaded edge
of the rod, we have the zero-moment boundary condition θ′(l̄) = 0.

The total potential energy of the system is

V(θ(s), lin) = B

l̄∫
lin

[
θ
′
(s)
]2

2
ds− P

[
l̄ cosα− cosα

l̄∫
lin

cos θ(s)ds

+ sinα

l̄∫
lin

sin θ(s)ds

]
− S lin,

(3.4)

2 The introduction of the nomenclature ‘Eshelby-like force’ allows to distinguish terms
generated by the possibility of configurational changes of the system, while ‘Eshelby forces’
must always vanish at equilibrium.
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which at equilibrium becomes

V(θeq(s, leq), leq) = B

l̄∫
leq

[
θ
′
eq (s, leq)

]2

2
ds− P

[
l̄ cosα

− cosα

l̄∫
leq

cos θeq(s, leq)ds+ sinα

l̄∫
leq

sin θeq(s, leq)ds

]

− S leq,
(3.5)

where leq is the length of the elastic rod inside the sliding sleeve and θeq the
rotation of the rod’s axis at the equilibrium configuration.

Before proceeding, we remember the that, for an integral defined as

I(ζ) =

β(ζ)∫
α(ζ)

f(x, ζ)dx (3.6)

the Leibniz rule of differentation is

dI(ζ)

dζ
= f(β, ζ)

dβ
dζ
− f(α, ζ)

dα
dζ

+

β(ζ)∫
α(ζ)

∂f(x, ζ)

∂ζ
dx. (3.7)

The Eshelbian force related to the sliding in the sleeve can be calculated
by taking the derivative with respect to leq of the total potential energy
at equilibrium, equation (3.5), which becomes, considering the Leibniz’s
rule (3.7)

∂V(leq)

∂leq
= B

l̄∫
leq

θ′eq(s)
∂θ′eq(s)

∂leq
ds+ P

[
cosα

l̄∫
leq

sin θeq(s)
∂θeq(s)

∂leq
ds

− sinα

l̄∫
leq

cos θeq(s)
∂θeq(s)

∂leq
ds

]
− P cosα−B

[θ′eq(leq)]
2

2
− S.

(3.8)

In particular, keeping into account integration by parts

θ′eq
∂θ′eq
∂leq

=

(
θ′eq

∂θeq
∂leq

)′
− θ′′eq

∂θeq
∂leq

, (3.9)
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the equilibrium of the elastica

Bθ′′eq(s) + P [cosα sin θeq(s) + sinα cos θeq(s)] = 0, s ∈ [leq, l̄] (3.10)

and the boundary condition θ′eq(l̄) = 0, we arrive at the following expression
for the Eshelby force

− ∂V(leq)

∂leq
= B

[θ′eq(leq)]
2

2
+Bθ′eq(leq)

∂θeq
∂leq

∣∣∣∣
s=leq

+ P cosα+ S. (3.11)

The fact that θeq is a function of s− leq and of the angle of rotation of the
beam at the loaded end θl̄ (function itself of leq) yields

∂θeq
∂leq

∣∣∣∣
s=leq

= − ∂θeq
∂s

∣∣∣∣
s=leq

+
∂θeq
∂θl̄

∂θl̄
∂leq

∣∣∣∣
s=leq

. (3.12)

Since θeq is always zero at s = leq for all θl̄, the second term in the right-hand
side of equation (3.12) is null and that equation becomes

∂θeq
∂leq

∣∣∣∣
s=leq

= −θ′eq(leq), (3.13)

so that the vanishing of the derivative with respect to leq of the total potential
energy, equation (3.11), represents the axial equilibrium

M2

2B︸︷︷︸
Eshelby-like force

= S + P cosα, (3.14)

where M = Bθ′eq(leq) is the reaction moment, equal to Pe, where e is the
load eccentricity (to the sliding sleeve).

Note that the presence of the Eshelby-like force can be obtained in a
simpler but indisputable way also starting from the total potential energy
of the same system with α = 90◦, assuming a linear behaviour, so that at
equilibrium is written as

Vlin(leq) = −P
2(l̄ − leq)3

6B
− Sleq, (3.15)

and the negative derivative respect to the free parameter leq brings to

− ∂Vlin(leq)

∂leq
= −P

2(l̄ − leq)2

2B
+ S, (3.16)

which must be set equal to zero at equilibrium, so that the Eshelby-like
force in small displacement is exactly the same as equation (3.14), since
P cosα = 0,

M2

2B︸︷︷︸
Eshelby-like force

= S, (3.17)
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where M is the reaction moment at the constraint, namely P (l̄ − leq).
Although the Eshelby force must vanish at equilibrium, the contribution

M2/(2B) is a ‘counterintuitive term’ which depends on the configurational
parameter leq (and would be absent if the elastic rod would be constrained
with a movable clamp instead than a sliding sleeve) and is for this reason
indicated as the ‘Eshelby-like force’.

This term has wrongly been neglected by a number of authors who have
considered sliding sleeve constraints, while a term M2/(2B) correctly enters
in calculations referred in a different context, namely, adhesion mechanics, in
which it is equated to an ‘adhesion energy’ (Majidi [40]; Majidi et al. [41]
and He et al. [42]).

Since equilibrium is only possible when equation (3.14) is satisfied, the
presence of the Eshelby-like force (parallel to the direction of sliding) explains
the reason why the equilibrium is possible for the configuration shown in the
central photo in Fig. 3.2 and why the rod is ‘expelled’ from the sliding sleeve
in the lower photo.

In the next sections the existence of the Eshelby-like force (3.14) will be
demonstrated via two different and independent approaches (an asymptotic
method and a variational technique).

3.1.1 Asymptotic approach

The Eshelbian force (3.14) can be obtained via an asymptotic approach. This
has been found in a forgotten article published in Russian by Balabukh et
al. [43]. The main idea is to consider an imperfect sliding sleeve (Fig. 3.3
having a small gap ∆ (the distance between the two rigid, frictionless and
parallel surfaces realizing the sliding device), so that the perfect sliding sleeve
case is recovered when the gap is null, ∆ = 0. Within this space, the elastic
rod is deflected, so that ϑ(∆) denotes the angle at its right contact point,
where the forces H, V , M are applied. The length of the rod detached from
the two surfaces representing the imperfect sliding sleeve is denoted with
a(∆). The frictionless contact generates the reaction forces R and Q, in
equilibrium with the axial dead force S at the other end. For small ∆, the
equilibrium is given by

Q =
M

a(∆)
, R = V +

M

a(∆)
, S =

(
V +

M

a(∆)

)
ϑ(∆)−H. (3.18)

On application of the virtual work for a linear elastic inextensible rod yields
the geometric quantities a(∆) and ϑ(∆)

a(∆) =

√
6B∆

M
, ϑ(∆) =

1

2

√
6M∆

B
, (3.19)
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Figure 3.3: Deformed configuration of an elastic rod within an imperfect sliding sleeve
made up of two smooth, rigid and frictionless planes placed at a distance ∆.
Applied and reaction forces (left) and values obtained in the limit ∆ → 0,
revealing the Eshelbian force (right).

so that forces Q, R and S can be written as

Q = M

√
M

6B∆
, R = V +M

√
M

6B∆
, S =

M2

2B
+
V

2

√
6M∆

B
−H.
(3.20)

In the limit of perfect (zero-thickness) sliding sleeve, ∆→ 0, the horizontal
component of the reaction R does not vanish, but becomes the Eshelbian
force (3.14)

lim
∆→0

R(∆)ϑ(∆) =
M2

2B
. (3.21)

3.1.2 Variational approach

The total potential energy (3.4) has a movable boundary lin, so that it is
expedient (Courant and Hilbert [44], see also Majidi et al. [41]) to introduce
a small parameter ε and take variations (subscript ‘var’) of an equilibrium
configuration (subscript ‘eq’) in the form

θ(s, ε) = θeq(s) + εθvar(s), lin(ε) = leq + εlvar , (3.22)

with the boundary conditions

θeq(leq) = 0, θ(leq + εlvar) = 0, θ
′
eq(l̄) = 0. (3.23)

A Taylor series expansion of θ(lin) for small ε yields

θ(leq + εlvar, ε) = θeq(leq) + ε
(
θvar(leq) + θ

′
eq(leq)lvar

)
+
ε2

2
lvar

(
2θ
′
var(leq) + θ

′′
eq(leq)lvar

)
+ O

(
ε3
)
,

(3.24)

so that the boundary conditions (3.23) lead to the following compatibility
equations

θvar(leq) + θ
′
eq(leq)lvar = 0, 2θ

′
var(leq) + θ

′′
eq(leq)lvar = 0. (3.25)
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Taking into account the Leibniz rule of differentiation and the boundary
(3.23) and compatibility (3.25) conditions, through integration by parts, the
first variation of the functional V is

δεV = −
l̄∫

leq

[
Bθ
′′
eq(s) + P (cosα sin θeq(s) + sinα cos θeq(s))

]
θvar(s)ds

+

[
B
θ
′
eq(leq)

2

2
− P cosα− S

]
lvar,

(3.26)
so that the equilibrium equations (3.10) and (3.14) are obtained, the latter
of which, representing the so-called ‘transversality condition’ of Courant and
Hilbert [44], provides the Eshelby-like force.

3.1.3 The Eshelby-like force expressed as a function of the
transversal load

The equilibrium configuration of the elastic rod satisfies the elastica equation
(3.10) (see Love [15], and Bigoni [13]), that introducing the auxiliary angle
ϕ(s) = θeq(s) + α and the normalized load λ2 = P/B writes as

ϕ
′′
(s) + λ2 sinϕ(s) = 0, s ∈ [leq, l̄] (3.27)

subject to the boundary conditions ϕ(leq) = α and ϕ′(l̄) = 0. Integration of
equation (3.27) yields

ϕ
′
(s) = ±λ

√
2 [cosϕ(s)− cos(θl̄ + α)], (3.28)

taken in the following with the ’+’ sign, so that introducing the change of
variable

η = sin
θl̄ + α

2
, η sinφ(s) = sin

ϕ(s)

2
, (3.29)

where θl̄ = θeq(l̄) representing the rotation measured at the free end of the
rod, we end up with the following differential problem

φ
′
(s) = λ

√
1− η2 sin2 φ(s) (3.30)

subject to φ(leq) = m = arcsin [sin(α/2)/ η] and φ(l̄) = π/2.
Restricting the attention only to the first (stable) mode of deformation,

the integration of (3.30) leads to the relation between the rotation measured
at the free end of the rod θl̄ and the applied vertical load

P =
B

(l̄ − leq)2
[K (η)−K (m, η)]2 , (3.31)
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where K (η) is complete elliptic integral of the first kind, whereas K (m, η)
is the incomplete elliptic integral of the first kind. Moreover, through the
integration of (3.30) and the implemented change of variable, the rotation
field (for the first mode) can be obtained as

θeq(s) = 2 arcsin

[
η sn

(
(s− leq)

√
P

B
+ K(m, η), η

)]
− α, (3.32)

where sn is the Jacobi sine amplitude function.
The Eshelby-like force (3.14) can be expressed, taking into account equa-

tion (3.28), as
M2

2B
= 2P

(
η2 − sin2 α

2

)
, (3.33)

so that the axial force S at the end of the sliding sleeve, which will be
measured through a load cell in the experiments, is given by equation (3.2).
It can be noted from equation (3.2) that the measured load S is (in modulus)
bounded by P and that S tends to P only in the ‘membrane limit’, when B
tends to zero and θl̄ + α to π.

The following three different cases may arise, explaining the experiments
shown in Fig. 3.2.

(i.) the elastic rod within the sliding sleeve is in compression, or ‘pushed
in’, if θl̄ + α < π/2;

(ii.) the elastic rod within the sliding sleeve is unloaded if θl̄ + α = π/2;

(iii.) the elastic rod within the sliding sleeve is in tension, or ‘pulled out’, if
θl̄ + α > π/2.

The case of null axial force, S = 0, occurs when M2/(2B) is equal to
the axial component of the dead load, P cosα, and corresponds to deformed
configurations which have the tangent at the free end orthogonal to the
direction of the dead load P , as in Fig. 3.2 (center).

Finally, it can be noted that the Eshelby-like force M2/(2B) is greater
than the applied load P when

cosα− 2 cos2

(
θl̄ + α

2

)
> 0. (3.34)

Regions in the θl̄ − α plane where the axial force S is positive/negative
and where M2/(2B) > P are shown in Fig. 3.4. From the figure it can be
concluded that M2/(2B) > P is possible only for positive axial load, S > 0,
and high deflections of the rod (at least for rotation at the free end θl̄ greater
than π/3 and depending on α).
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Figure 3.4: Regions in the plane θl̄ − α where S > 0, S < 0 and M2/(2B) > P .

3.2 The experimental evidence of configurational
force

The structure shown in Fig. 3.1 has been realized using for the elastic rod
two C62 carbon-steel strips (25 mm × 2 mm cross section), one 585 mm in
length and the other 800 mm. For these rods the bending stiffness B has
been determined with flexure experiments to be equal to 2.70 Nm2.

The sliding sleeve is 384 mm in length and has been realized with 32 pairs
of rollers (made up of 10 mm diameter and 15 mm length teflon cylinders,
each containing two roller bearings). The tolerance between the metal strip
and the rollers is calibrated with four micrometrical screws.

The axial force S has been measured using a MT1041 load cell (R.C.
300N), while dead loading, measured through a Leane XFTC301 (R.C. 500N)
loading cell, has been provided with a simple hydraulic device in which
water is poured at constant rate of 10 gr/s into a container. Data have
been acquired with a NI CompactDAQ system, interfaced with Labview 8.5.1
(National Instruments). The whole apparatus has been mounted on an optical
table (1HT-NM from Standa) to prevent spurious vibrations, which have
been checked to remain negligible (accelerations have been found inferior to
2 × 10−3 g) with four IEPE accelerometer (PCB Piezotronics Inc., model
333B50) attached at different positions. The tests have been performed in
a controlled temperature (20±0.2 ◦C) and humidity (48±0.5%) room. The
testing set-up is shown in Fig. 3.5.
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Figure 3.5: The test setup for the measure of the axial Eshelby-like force transmitted by
a sliding sleeve, a realization of the scheme reported in Fig. 3.1.

3.2.1 Eshelbian force provided by a roller device

Rollers have been employed in the practical realization of the sliding sleeve,
so that the question may arise how this set-up is tight to our idealization
and can effectively measure the Eshelby-like force. To quantify the effects
introduced by the rollers, an asymptotic approach similar to that presented
in Section 3.1.1 is developed here by considering the statically determined
system given by two rollers with finite radius r and which centers are distant
∆H + 2r and ∆V + 2r in the axial and transversal directions, so that the
model of a perfect sliding sleeve is achieved in the limit of null value for these
three parameters (r, ∆H and ∆V ), Fig. 3.6. In the limit ∆V /∆H → 0, the
roller reactions X and Y are obtained from rotational and translational (in
the transversal direction) equilibrium as

X =
M

cos ξ [∆H + r (2 + sinψ + sin ξ)]
,

Y =
1

cosψ

[
V +

M

∆H + r (2 + sinψ + sin ξ)

]
,

(3.35)

where ξ and ψ are the rotations of the rod at the contact points with the
rollers, so that the translational (in the axial direction) equilibrium leads to

S = V tanψ − M (tan ξ − tanψ)

∆H + r (2 + sinψ + sin ξ)
−H. (3.36)

Restricting attention to small deflections between the rollers, the Euler-
Bernoulli beam theory describes the relationship between the beam’s curvature
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Figure 3.6: Left: the practical realization of the sliding sleeve constraint realized through
pairs of rollers and (right) its scheme where only the first two pairs of rollers
are considered because after those the rod is in the rectilinear configuration
(see the left image).

v
′′
(z) and the applied moment M(z) as

Bv
′′
(z) = Xz cos ξ, (3.37)

where z is the longitudinal coordinate of the beam axis. The angles ξ and ψ
can be obtained through double integration of the elastica (3.37), subject to
the boundary conditions

v(0) = 0, v(∆H + 2r + rsinψ + r sin ξ)) = ∆V + r(2− cosψ + cos ξ),

v
′
(0) = ξ, v

′
(∆H + 2r + r sinψ + r sin ξ)) = ψ,

(3.38)
as

ξ = −M(∆H + 2r)2 (2B +Mr) + 6B (−2B +Mr) ∆V

2B(∆H + 2r) (6B +Mr)
,

ψ =
M(∆H + 2r)2 (4B +Mr) + 6B (2B +Mr) ∆V

2B(∆H + 2r) (6B +Mr)
.

(3.39)

In the limit of ∆V /r → 0, equation (3.39) simplifies to

ξ = −M(∆H + 2r)(Mr + 4B)

2B(Mr + 6B)
, ψ = −ξ, (3.40)

and the translational equilibrium, equation (3.36), reads

M

6B +Mr

[
6M(3B +Mr)

6B +Mr
+
V (∆H + 2r)(4B +Mr)

2B

]
︸ ︷︷ ︸

Eshelby-like force

= S +H, (3.41)

an equation which introduces the concept of Eshelby-like force provided by a
roller device, and reducing in the limits r → 0 and ∆H → 0 to the value of
the Eshelby-like force 3.14 arising from a sliding sleeve.

It can be noted that the lowest value of the configurational force realized
by the roller device occurs in the limit of the sliding sleeve.
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3.2.2 Experiments

Results of experiments are reported in Fig. 3.7 and compared with the
theoretical predictions obtained with the ‘perfect model’ of sliding sleeve,
equation 3.14, and with the ‘roller-version’ of it, equation (3.41), the latter
used with parameters tailored on the experimental set up (r = 5 mm, ∆H = 1
mm).

First of all, we can note that the theoretical values are close to each other,
which is a proof that the rollers have a negligible effect on the determination of
the Eshelby-like force. Moreover, we see that there is an excellent agreement
between the theoretical predictions and the experimental results, which is an
indisputable proof that Eshelby-like forces acting on elastic structures are a
reality.

At http://ssmg.unitn.it/eshelbylikeforce.html can be found movies of the
experiments.

The findings presented in this chapter demonstrate that movable con-
straints applied to elastic structures can generate configurational forces and
that these become dominant when deformations are sufficiently large. Con-
figurational forces can be employed in the design of new deformable systems
with challenging characteristics, which may find applications even at the
micro- and nano-scale, for instance, to control growth of a structural element.
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Figure 3.7: Comparison between experimental results (red curve) and the theoretical
predictions. These have been reported for a perfect sliding sleeve (dashed
curve) and for a sliding sleeve realized with rollers mimicking the experimental
conditions (solid curve). Two rods have been used of external lengths 261
mm (upper) and 424 mm (lower) for different inclinations (90◦, 60◦ and 30◦).
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Chapter 4

The influence of Eshelby-like
force on structures with
variable length

The fact that an elastic rod may change its length during deforma-
tion introduces the possibility that configurational forces develop and
influence the mechanical response. This is indeed the case of two struc-
tures analyzed in the present chapter, where configurational forces are of
chief importance and introduce a reversal in the load/deflection diagram.
These structures are important for several applications, including for
instance artery insertion of a guide wire, or wellbore insertion of a steel
pipe. Experiments on model structures specifically designed, manufac-
tured and tested, fully confirm the strong effect of the configurational
forces.

The buckling of a piece of paper hitting an obstacle during ejection from
a printer, the insertion of a catheter (or a steel piping) in an artery (in a
wellbore), and the so-called ‘inverse spaghetti problem’ are all but examples
of mechanical settings where an elastic rod of variable length is involved.
Usually, the rod is ejected through a sliding sleeve and this produces a
configurational or Eshelby-like force (see Chapter 3 or [9]), which has been
until now neglected [45–48]. The aim of this chapter is to provide direct
theoretical and experimental evidence that the effect of configurational forces
is dominant and cannot be neglected. In particular, it leads to force reversals
that otherwise would not exist.

The setup considered here is an elastic rod of bending stiffness B, clamped
on the left edge and inserted into a frictionless and bilateral sliding sleeve
on the right end, at a distance L. Two loading conditions are investigated:
(i.) the elastic rod is loaded axially, so that it has to buckle to deflect, and
(ii.) transversely with a bi-lateral roller acting at the mid-span of the rod
(along a symmetry axis), see Fig. 4.1. These problems have been already
considered in [45–48], but neglecting configurational forces and without
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Figure 4.1: An elastic planar rod of bending stiffness B is restrained by a clamp in its
left-hand side, while, at a distance L, a frictionless sleeve is attached. This
constraint allows the sliding of the rod, so that it may change its length once
loaded.

experimental validation (which would have revealed a strong discrepancy
between theoretical predictions and experiments).

The elastic systems (i.) and (ii.) are analytically solved through integra-
tion of the elastica ([13, 15]). It is shown that in both systems ‘Eshelby-like’
forces strongly influence the loading paths and yield surprising force reversals,
so that certain equilibrium configurations are possible if and only if the
applied force changes its sign.

4.1 Structure with an end thrust

With reference to the structural system reported in Fig. 4.2 (left), introducing
the curvilinear coordinate s ∈ [0, lout], where lout > L is the length of the
deformed elastic planar rod between the two constraints (clamp and sliding
sleeve), and the rotational field θ(s) of the rod’s axis and denoting by a
prime the derivative with respect to s, the governing equation of the elastica,
together with its boundary conditions, is 1

θ′′(s) + ρ2 sin θ(s) = 0, s ∈ [0, lout]

θ(0) = θ(lout) = 0,

lout∫
0

sin θ(s)ds = 0,

lout∫
0

cos θ(s)ds = L,

(4.2)

1 Equilibrium equations and the existence of the Eshelby-like force can be obtained
starting from the total potential energy, as done in Section 3.1, introducing the small
parameter ε and taking the variation of θ(s, ε) and lout(ε), since it is a movable boundary.
For conciseness only the expression of the total potential energy is reported here as

V(θ(s), lout) = B

lout∫
0

[
θ
′
(s)
]2

2
ds+ P

L̃∫
0

cos θ(s)ds+ Z

L− lout∫
0

cos θ(s)ds

 , (4.1)

where L̃ is the total length of the rod where the thrust is applied, and Z is a Lagrangian
multiplier.
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where ρ2 = P̄ /B and P̄ is the sum of the load P and the Eshelby-like force
acting in the same direction of the thrust, generated by the release mechanism
of flexural energy through the sliding sleeve. The configurational force can
be determined in different ways through derivative, variational or asymptotic
approach (see Section 3.1), as

M2(lout)

2B
= B

θ
′
(lout)

2

2
. (4.3)

Figure 4.2: Left: the design scheme employed to realize the structure shown in Fig. 4.1
loaded with an end thrust and right: the structure as it will be analyzed
through symmetry properties, dividing it into four equal cantilever beams
of length lout; the first cantilever has its end points that lies at a vertical
coordinate of L/4 with respect to the clamp and it is loaded with a dead
load P̄ = P +M2/2B. Note that the structure has been rotated of 90◦ in
order to simplify its experimental design, Fig. 4.4.

Since only the first mode of bifurcation will be taken into account, thanks
to the symmetry properties, the Eshelby-like force may be written also as

M2(0)

2B
= B

θ
′
(0)2

2
, (4.4)

so that the load parameter ρ becomes

ρ =

√
P̄

B
=

√
P

B
+
θ
′
(0)2

2
. (4.5)
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In order to facilitate the analytical description, the symmetry properties
can be exploited, so that the investigation of the system is simplified in the
analysis of one of the four clamped rod of equal length lout/4 subjected to
an end thrust, Fig. 4.2 (right), equation (4.4). Similarly to the analysis of
symmetric buckling modes for the doubly clamped elstica, Section 2.2.3, the
relation between the load parameter ρ and the rotation measured at the free
end of the cantilever θ (s = lout/4) = θq (a quarter of the total deformed
length of the elastic beam) is 2

ρ lout = 4K (υ) , (4.7)

where the kinematic parameter θq has been inserted in the change of variable
necessary for the solution of the differential problem (4.2)

υ = sin
θq
2
. (4.8)

The configurational force, included in ρ, is a function of the curvature at
the clamped end of the rod θ′(0) (θ′(lout)) which can be obtained, through a
multiplication of equation (4.2)1 by θ′ and its integration, together with the
boundary condition θ

(
s = lout/4

)
= θq as

θ
′
(0) =

√
2ρ2(1− cos θq) = 2ρυ, (4.9)

so that equation (4.5) may be rewritten as

ρ =

√
P

B
+ 2ρ2υ2 ⇔ P

B
= ρ2

(
1− 2υ2

)
. (4.10)

Similarly to Section 3.1.3, it is possible to write the rotational field θ(s) for
the cantilever s ∈ [0; lout/4]

θ(s) = 2arcsin (υ sn (sρ, υ)) , (4.11)

as weel as the axial and transverse equations describing the shape of the
elastica 3

x1(s) = −s+
2

ρ
{E [am (sρ, υ) , υ]} ,

x2(s) =
2υ

ρ
[1− cn(sρ)] ,

(4.12)

2The incorrect solution in which the Eshelby-like force is neglected ican be written as√
P

B
lout = 4K (υ) . (4.6)

yielding the curve reported in Fig. 4.3 together with the correct presented solution.
3Equations (4.11) and (4.12) are valid for the entire structure s ∈ [0; lout]
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4.1. STRUCTURE WITH AN END THRUST

where the functions am, cn and sn denote respectively the Jacobi amplitude,
Jacobi cosine amplitude and Jacobi sine amplitude functions, while E(x, υ)
is the incomplete elliptic integral of the second kind of modulus υ.

Although the problem under consideration seems to be fully determined
by equations (4.7), (4.11) and (4.12), the length lout/4 of the cantilever’s
reference configuration (and therefore the length lout of the entire rod) is
still unknown because it is changing since the elastic rod can slide out from
the sliding sleeve due to the applied thrust. This difficulty can be overcome
taking advantage of symmetry properties of the system, because the axial
displacement of the cantilever, for every unknown length lout/4 of it, is
x1(s = lout/4) = L/4, so that, equation (4.12)1 gives

− lout

4
+

2

ρ

{
E

[
am
(
lout

4
ρ, υ

)
, υ

]}
=
L

4
, (4.13)

and therefore, inserting equation (4.7) in (4.13) it is possible to arrive at the
relation between the load parameter ρ and the angle of rotation at the free
edge of the cantilever (or at a quarter of the entire structure) θq

ρ =
4

L
{2E [am (K(υ), υ) , υ]−K(υ)} . (4.14)

The applied thrust P divided by the Eulerian critical load for the structure
Pcr = 4π2B/L2 is calculated from equation (4.10) as a function of the
kinematic parameter θq through equation (4.8) as

P

Pcr
=

4

π2
{2E [am (K(υ), υ) , υ]−K(υ)}2 (1− 2υ2), (4.15)

and it is reported in Fig. 4.3 together with the incorrect solution in which the
configurational force is neglected, equation (4.6). Even though the critical
load does not change between the incorrect and correct solutions, because it
is not affected by the curvature at the constraint, it can be noted that the
correct solution is considerably different from the other, especially because
the unstable postcritical path exhibits a force reversal when θq > 90◦ (see
also experiments in Section 4.1.1), which is not predicted by the incorrect
solution. Moreover, two different deformed equilibrium configurations exist
without any applied load when θq = 90◦ and θq ≈ 130.71◦.

The dimensionless amount of rod pushed out from the sliding sleeve

∆L

L
=
lout

L
− 1 (4.16)

can be easily computed from equations (4.7) and (4.14) as a function of the
rotation angle θq as

∆L

L
=

K(υ)

2E [am (K(υ), υ) , υ]−K(υ)
− 1, (4.17)
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Figure 4.3: Deformation paths of the structure sketched in Fig. 4.2, expressed as the
dimensionless applied dead load P/Pcr versus the angle of rotation θq at
the rod’s quarter reference length. Correct solution (red curve), equation
(4.10), is reported together with the incorrect solution (dashed black curve)
in which the Eshelby-like force is neglected, equation (4.6). Two deformed
(unstable) equilibrium configurations have been sketched in the inset showing
that a compressive thrust (A) or tensile load (B) are necessary to guarantee
equilibrium for θq < 90◦ and θq > 90◦ respectively.

whereas the analytical expression of Eshelby-like force (divided by Pcr),
obtained from equation (4.9), becomes

M2

2BPcr
=

8υ2

π2
{2E [am (K(υ), υ) , υ]−K(υ)}2 . (4.18)

4.1.1 Experimental

With the purpose of verify theoretical findings, experiments have been real-
ized on the model structure reported in Fig. 4.4, designed and realized at
the Instabilities Lab of University of Trento (http://ssmg.unitn.it/). The
displacement has been imposed on the system with loading machine MIDI 10
(Messphysik). During the test the applied axial force P has been recorded
using a MT1041 load cell (R.C. 500N) and the displacement ∆L has been
registered with the displacement transducer mounted on the testing machine.
Data have been acquired with a NI compactRIO system interfaced with
Labview 2013 (National Instruments). The elastic rods has been realized
in solid polycarbonate strips (white 2099 Makrolon UV from Bayer, elastic
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Figure 4.4: The experimental set up realizes the structural scheme reported in Fig. 4.2.

modulus 2350 MPa), with dimensions 650 mm × 24 mm × 2.9 mm The
sliding sleeve, 285 mm in length, has been realized by employing 14 pairs of
rollers from Misumi Europe (Press-Fit Straight Type, 20 mm in diameter
and 25 mm in length), modified to reduce friction. The tolerance between
the polycarbonate blades and the rollers is calibrated with four micrometrical
screws. This constraint has been fixed to the two columns of the load frame
as it is clearly visible in Fig. 4.4. Temperature near the testing machine has
been monitored with a thermocouple connected to NI compaqRIO and has
been found to lie around 22◦C without sensible oscillations during tests.

Experiments are reported in Fig. 4.5 and compared with the theoretical
predictions with and without the configurational force. The former predic-
tion in an excellent agreement with experimental results performed for two
different distances between the two supports (L = 360 mm and L = 410 mm),
whereas the latter is substantially different, revealing that neglecting the con-
figurational force introduces an important error. The dimensionless applied
load P/Pcr versus dimensionless additional length ∆L/L being pushed in
through the sliding sleeve shows a force reversal (not present in the incor-
rect model) when ∆L/L ≈ 1.19. Finally, the dimensionless configurational
force M2/2BPcr is measured as a function of ∆L/L, its strong influence on
postcritical behaviour, because it may reach more than one-third of the rod’s
critical load.
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Figure 4.5: Comparison between theoretical predictions (black curve) and experimental
results for two different distances L = 360 mm (green curve) and L = 410 mm
(red curve) between the two constraints. Applied dimensionless thrust P/Pcr
(upper) and dimensionless ‘Eshelby-like’ force M2/2BPcr (lower) versus
dimensionless additional length ∆L/L that is pushed out from the sleeve.
The postcritical incorrect path obtained without considering the effect of
configurational force is reported with a blue dashed curve in the upper graph.

66



4.2. STRUCTURE WITH TRANSVERSE FORCE

Figure 4.6: Upper: the elastic system loaded with a concentrated transverse force F
that generates, during inflection, the Eshelby-like C force acting in the axial
direction. Center: the structure, thanks to symmetry properties, will be
divided into four equal rods of length lout/4 and only one of them (lower),
subjected to a transverse load F/2 and to the axial load C, will be considered.

4.2 Structure with transverse force

The structure with variable length, reported in Fig. 4.1, subjected to a
transverse load at the mid-span, has been analyzed by Humer [45], who
did not consider the Eshelby-like force arising from the sliding sleeve and
representing an axial variable (because it depends on the bending moment
at the two supports) load for the elastic rod. In the following, the solution
reported in [45] will be re-analyzed considering the effect of configurational
force, which is expressed by equations (4.3) and (4.4).

In particular, with reference to an elastic inextensible planar rod of
curvilinear coordinate s ∈ [0; lout] (with lout > L) and rotational field θ(s),
reported in Fig. 4.6 (upper part), symmetric properties allow us to reduce the
analysis of the entire structure to the investigation of a quarter cantilever rod
of reference length s = lout/4, subjected to a tip force, which is one half of the
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concentrated force F of the original problem, and an axial thrust, which is
exactly the Eshelby-like force M2/2B = C, Fig. 4.6 (lower part). Therefore,
the equilibrium configuration of the elastic rod satisfies the elastica and its
boundary condition

Bθ′′(s) +
F

2
cos θ(s) + C sin θ(s) = 0, s ∈

[
0,
lout

4

]
,

θ(0) = 0,

θ
′
(
lout

4

)
= 0,

(4.19)

Introducing the load parameter

γ2 =
R

B
=

1

B

√(
F

2

)2

+ C2 (4.20)

and the auxiliary angle ψ(s) = θ(s) + β, where β is the inclination, with
respect to the horizontal direction, of the resultant R between F/2 and C,
the differential problem (4.19) can be rewritten as

ψ′′(s) + γ2 sinψ(s) = 0, s ∈
[
0,
lout

4

]
ψ(0) = β,

ψ
′
(
lout

4

)
= 0.

(4.21)

Since the rotation at the free end of the cantilever has been defined as θq
(with θq ∈ [0;π]), it follows that ψ(s = lout/4) = ψq = θq + β, so that an
integration of (4.21)1 yields

ψ
′
(s) = ±γ

√
2(cosψ(s)− cosψq), (4.22)

taken in the following with the ‘+’ sign. Considering the following change of
variables

η = sin
ψq
2
, η sinω(s) = sin

ψ(s)

2
, (4.23)

the differential equation (4.22) can be integrated to obtain the relation
between the load parameter γ and the angles θq and β in the form

γlout = 4 [K(η)−K (ωβ, η)] (4.24)

where ωβ = arcsin

(
1

η
sin

(
β

2

))
and K (ωβ, η) is the incomplete elliptic

integral of the first kind. Equation (4.24) contains the unknown value of
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the configurational force C (included in γ) and the length of the rod in its
reference configuration lout/4. The former can be calculated through the
implemented change of variables as

C = B
θ
′
(0)2

2
= B

ψ
′
(0)2

2
= 2Bγ2

(
η2 − sin2 β

2

)
, (4.25)

so that equation (4.20) becomes

Bγ2 =

√(
F

2

)2

+

(
2Bγ2

(
η2 − sin2 β

2

))2

, (4.26)

and consequently

F

B
= ±2γ2

√
1− 4

(
η2 − sin2 β

2

)2

. (4.27)

The latter may be solved once the equations describing the shape of the
elastica are obtained. In particular, from equation (4.23)2 the rotational field
for the cantilever is 4

θ(s) = 2 arcsin [η sn (γs+ K (ωβ, η) , η)]− β, (4.28)

while the analytical form for the axial and transverse equations describing
the shape of the elastica are calculated from integration of kinematic fields
(Section 2.1, see also equation (2.95)) as

x1(s) = + sinβ

[
−2η

γ
cn
(
γs+ K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
cosβ

{
−s+

2

γ

[
E [am (γs+ K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
,

x2(s) = cosβ

[
−2η

γ
cn
(
γs+ K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
− sinβ

{
−s+

2

γ

[
E [am (γs+ K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
.

(4.29)

Employing the same symmetric property described for the system loaded with
an end thrust and shown also in Fig. 4.6 (lower part), so that x1(lout/4) = L/4

4This equation, together with relation (4.29) holds for the entire rod.
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can be written considering equation (4.24) in the form

γ =
4

L

{
cosβ

[
K(ωβ, η)−K(η) + 2

[
E [am (K(η), η) , η]

− E [am (K(ωβ, η), η) , η]
]]
− 2η sinβ

[
cn
(
K(η), η

)
− cn

(
K(ωβ, η), η

)]}
,

(4.30)

so that the relation between the dimensionless applied transverse force f =
FL2/B and the parameters η (which contains θq) and β is obtained from
equation (4.26) as

f = ±32
{

cosβ
[
K(ωβ, η)−K(η) + 2

[
E [am (K(η), η) , η]

− E [am (K(ωβ, η), η) , η]
]]
− 2η sinβ

[
cn
(
K(η), η

)
− cn

(
K(ωβ, η), η

)]}2

×

√
1− 4

(
η2 − sin2 β

2

)2

,

(4.31)

while the dimensionless Eshelby-like force, considering expression (4.25),
becomes

CL2

B
= 32

(
η2 − sin2 β

2

){
cosβ

[
K(ωβ, η)−K(η) + 2

[
E [am (K(η), η) , η]

− E [am (K(ωβ, η), η) , η]
]]
− 2η sinβ

[
cn
(
K(η), η

)
− cn

(
K(ωβ, η), η

)]}2
,

(4.32)

where the distance between the two supports is introduced as a characteristic
length of the problem. Furthermore, the dimensionless additional length
∆L/L being pushed in through the sliding sleeve is, according to equations
(4.16), (4.24) and (4.30)

∆L

L
=

K(η)−K(ωβ, η)

γL
− 1. (4.33)

Finally, due to symmetry, the mid-span deflection of the structure is twice the
vertical displacement of the free edge of the cantilever w = x2(s = lout/2) =
2x2(s = lout/4) so that it can be written in the following form

w =
1

γ

{
2η cosβ cos(ωβ) + sinβ [2E (ωβ, η)− 2E (η) + K(η)−K(ωβ, η)]

}
,

(4.34)
where γ is defined by (4.30). Equations (4.31), (4.32), (4.33) and (4.34) are
all functions of the two parameters η and β, so they cannot be solved until
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a relation between them is established from either relations sinβ = F/2R
or cosβ = C/R. Considering the former expression and substituting the
definition of F , equation (4.26), we obtain

sinβ =

√
1− 4

(
η2 − sin2 β

2

)2

(4.35)

and therefore, using the double-angle formulas and the change of variable
(4.23)1 we finally arrive at two relations between θq and β

sin2

(
θq + β

2

)
=

1

2
and sin2

(
θq + β

2

)
= 2 sin2

(
β

2

)
− 1

2
, (4.36)

where the latter has no physical meaning since requires θq < 0, whereas the
former is the equation we are looking for, which is symplified in

θq + β =
π

2
, (4.37)

showing that at any load step, the resultant R is always perpendicular to the
tangent of cantilever’s free edge.

The loading paths of the elastic rod are reported in Fig. 4.7 in terms of
dimensionless applied transverse force f as a function of the dimensionless
additional length ∆L/L that is pushed out from the sleeve and the mid-
span dimensionless deflection w/L, in order to compare them with the
solution proposed by Humer [45], who did not take into account the effect of
configurational force 5.

The strong difference between the proposed solution (red curve, that will
be validate by experimental observations, see next section) and the incorrect

5Relation between the dimensionless applied force f and the kinematic parameter θq
reported in [45] (in the following with superscript ‘H’) is

fH = 128ι2
{
cn
(
K(ι), ι

)
− cn

(
K

(
arcsin

√
2

2ι
, ι

)
, ι

)}2

, (4.38)

where ι =

√
1 + sin θq

2
, while the dimensionless additional length is written as

∆L

L

H

=

K(ι)−K

(
arcsin

√
2

2ι
, ι

)
2ι

[
cn
(
K

(
arcsin

√
2

2ι
, ι

)
, ι

)
− cn

(
K(ι), ι

)] − 1, (4.39)

and the dimensionless mid-span deflection is

w

L

H
=

2E

(
arcsin

√
2

2ι
, ι

)
− 2E (ι) + K(ι)−K

(
arcsin

√
2

2ι
, ι

)
4

[
cn
(
K

(
arcsin

√
2

2ι
, ι

)
, ι

)
− cn

(
K(ι), ι

)] (4.40)
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Figure 4.7: Equilibrium paths of the structure sketched in the inset subjected to a
concentrated transverse load F . Proposed model considering the effect of
configurational force (red curve) is compared with the incorrect solution in
which the Eshelby-like force is neglected (dashed black curve). Dimensionless
additional length ∆L/L (upper) and dimensionless mid-span deflection (lower)
versus dimensionless applied load f .
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Figure 4.8: The experimental set up that realizes the structural scheme reported in
Fig. 4.6.

in which the Eshelby-like force is neglected (black dashed curve) can be noted
from Fig. 4.7. In particular, the maximum admissible dimensionless applied
load fcr, after which no equilibrium configurations exist and the rod slides
indefinitely out of the sleeve, in the present model, is

fcr ≈ 26.69, (4.41)

whereas fHcr = 64 is found in the incorrect solution, which is ≈ 2.4 higher than
the correct value and therefore may represent a dangerous underestimation
of the ‘peak’ load for this structural system. Furthermore, the loading paths
are completely different, because in [45] the applied load F increases with
an increase of the additional length ∆L, while in the proposed solution,
after the ‘critical’ load fcr is reached, a softening path is present in which
the rod is in an unstable equilibrium configuration (or stable configuration
under displacement control, as realized in the experiments) and an increase
of the additional length ∆L implies a decrease of the transverse load F . This
unstable path exhibits also a force reversal when ∆L ≈ 1.19L or, equivalently
either w ≈ 0.83L or θq = 90◦.

The effect of the Eshelby-like force is clearly visible in the inset of Fig. 4.7
(left), where the deformed configuration for a dimensionless load f = 25
obtained with our solution is reported together with the one calculated
through the incorrect model, which shows less inflection.

4.2.1 Experimental

The system sketched in Fig. 4.6 has been realized to provide a direct experi-
mental evidence of the theoretical predictions. In particular, the structural
apparatus (Fig. 4.8) has been designed and manufactured at the Instabilities
Lab (http://ssmg.unitn.it/) of the University of Trento.

The transverse load at the mid span of the system has been provided by
using two rollers from Misumi Europe (Press-Fit Straight Type, 20 mm in
diameter and 25 mm in length) acting on both the upper and lower side of
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the elastic blade. This constraint has been fixed on the movable crosshead of
a MIDI 10 load frame (from Messphysik) and leaves the blade free to move
in the horizontal direction. The upper roller works when F > 0, whereas the
lower roller is foundamental to register negative value of F . Three rods of
same length (1600 mm) and width (b = 24.9 mm), but different height of the
cross section (h = {1.9; 2.85; 3.85} mm), have been employed during tests.
The elastic rod are realized in solid polycarbonate (white 2099 Makrolon UV
from Bayer, elastic modulus 2350 MPa). Two load cells and two displacement
transducers have been mounted on the system (see Fig. 4.6) to monitor:
(i.) the applied transverse load F using MT1041-R.C. 500N load cell (from
Mettler S.p.A.), (ii.) the axial reaction at the clamp (equal to the Eshelby-like
force C) using OC-K5U-C3-R.C. 50N load cell (from Gefran S.p.A), (iii.) the
mid span deflection using a displacement transducer mounted into the load
frame, and (iv.) the additional length that slide out of the sleeve employing a
magnetic non-contact displacement transducer GC-MK5 (from Gemac). Data
have been acquired with NI compactRIO system interfaced with Labview
2013 (National Instruments). The sliding sleeve in which the polycarbonate
rod is free to slide consists of two parts of different length: the lower part
(1250 mm) works as a support for the all strip, while the upper (500 mm),
required only in the last part, is shorter in order to fix the device to measure
the additional length through the magnetic displacement transducer. The
lower and the upper sides of the sliding sleeve have been realized by employing
respectively 82 and 32 rollers from Misumi Europe (Press-Fit Straight Type,
20 mm in diameter and 25 mm in length), modified to reduce friction. The
tolerance between the polycarbonate rod and the rollers is calibrated with
four micrometrical screws. Temperature near the testing machine has been
monitored with a thermocouple connected to NI compaqRIO and has been
found to lie around 22◦ C, without sensible oscillations during tests.

Experimental results, presented in Figs. 4.9, 4.10 and 4.11 for different
thickness of the cross sections (h = {1.9; 2.85, 3.85} mm), fully confirm the
present model (and therefore prove the inaccuracy of the solution presented
in [45]). In particular, Figs. 4.9 and 4.10 show an unstable (in load control)
region after the maximum admissible load is reached and confirm the force
reversal, for which an upward concentrated force is needed to guarantee
equilibrium when ∆L/L ≥∼ 1.19 or w/L ≥∼ 0.83. Moreover, the behaviour
of the dimensionless Eshelby-like force as a function of the dimensionless
concentrated load is reported in Fig. 4.11, showing that its magnitude is
comparable to the applied force, and therefore has a noteworthy effect on
this elastic system. In all cases the theoretical predictions have been found
to be extremely tight to experimental results.

74



4.2. STRUCTURE WITH TRANSVERSE FORCE

Figure 4.9: Comparison between theoretical (black curve) and experimental results per-
formed on three rods with width b = 24.9 mm, but different thickness of
h = 1.9 mm (blue curve), h = 2.85 mm (red curve) and h = 3.85 mm (green
curve). Dimensionless additional length ∆L/L is reported as a function of
the dimensionless transverse load f .

Figure 4.10: Comparison of theoretical (black curve) and experimental results for rods
with different thickness of h = 1.9 mm (blue curve), h = 2.85 mm (red
curve) and h = 3.85 mm (green curve). Dimensionless mid-span deflection
w/L is reported as a function of the dimensionless transverse load f .
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Figure 4.11: Comparison between theoretical prediction (black curve) and experimental
results performed on rods with different cross sections: width b = 24.9 mm,
h = 1.9 mm (blue curve), h = 2.85 mm (red curve) and h = 3.85 mm
(green curve). Dimensionless ‘Eshelby-like’ force CL2/B is reported versus
dimensionless transverse load f .
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Chapter 5

Instability and restabilization
of a penetrating blade

Application of a dead compressive load at the free end of an elastic
rod (the ‘blade’) induces its penetration into a sliding sleeve ending
with a linear elastic spring. Bifurcation and stability analysis of this
simple elastic system shows a variety of unexpected behaviours: (i.) an
increase of buckling load at decreasing of elastic stiffness; (ii.) a finite
number of buckling loads for a system with infinite degrees of freedom
(leading to a non-standard Sturm-Liouville problem); (iii.) more than
one bifurcation loads associated to each bifurcation mode; (iv.) a
restabilization of the straight configuration after the second bifurcation
load associated to the first instability mode; (v.) the presence of
an Eshelby-like (or configurational) force, deeply influencing stability;
(vi.) a self-restabilization of the straight configuration is possible for
compliant blades with imperfection of tilt angle or initial curvature.

Despite the common belief that structural instability is a fully mature field
of mechanics, it has recently been shown that it is still possible to discover
new and ‘unexpected’ phenomena in the critical and postcritical behaviour
of simple structures, such as tensile buckling (Zaccaria et al. [49]), buckling
inducing shrinking of a structure (Shim et al. [50]), multiple bifurcations
in single degree of freedom structures (Bigoni et al. [51]), frictional flutter
instability (Bigoni and Noselli [52]), and that buckling can be exploited to
facilitate adhesion (Chan et al. [53]), or to create flexible electronics (Rogers
et al. [54]), or to switch a phononic band gap (Bertoldi and Boyce [55]), or
to induce a pattern transformation (Li et al. [56]).

The aim of the present chapter is to explore the critical and postcriti-
cal behaviour of a simple elastic structure, displaying several unexpected
effects, some of which were previously known but received only marginal
attention (Feodosyev [57]; Tarnai [58]), while others were simply unknown.
The importance of the mechanical features highlighted and discovered here
lies in the fact that they disprove common believes (for instance, engineers
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P

B

l(P)

kk sliding
sleeve

Figure 5.1: The penetrating blade is an elastic planar rod whose free length l is a function
of the amount of the applied axial load P . The blade has a free end subject
to the dead load P , while at the other edge the blade slides into a frictionless
sleeve and is restrained by an axial linear spring.

Figure 5.2: Left: the design scheme employed to realize the structure shown in Fig. 5.1
and right: its practical realization (prototype 1). Note that the sliding sleeve
is borne by a transparent plexiglass support (represented grey on the left).
Details of the experimental setup are given in Section 5.5.

believe that critical loads always increase with the stiffness of a structure,
and mathematicians that a bifurcation problem of an elastic rod is always a
Sturm-Liouville problem), correct errors in several published works (where
the so-called ‘Eshelby-like force’ is wrongly omitted in the calculations, see
references in Chapter 2 and Chapter 3), provide a new understanding of the
adhesion energy between a structure and a substrate (Majidi [40]; Majidi
et al. [41]), and open the way to unconventional mechanical applications,
as for instance to continuous self-restabilizing systems (a simple example of
this behaviour is reported by Potier-Ferry [59]). The considered mechanical
problem is the following.

A blade (an elastic planar rod) is forced to penetrate an elastic movable
clamp (a frictionless sliding sleeve with a final linear spring) through the
application of a dead compressive load at the other edge, Fig. 5.1.

This system is shown to exhibit several surprising and counterintuitive
mechanical behaviours, theoretically predicted by elastic analysis and exper-
imentally confirmed through a physical model (Fig. 5.2, for details of the
experimental setup see Section 5.5).

The sliding sleeve, which constrains one edge of an elastic rod, is shown in
the previous chapter to induce Eshelby-like force in the structure, generated
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Figure 5.3: An Eshelby-like force is generated when the blade (elastic planar rod) buckles,
so that the length of the rod inserted into the sliding sleeve (leq) decreases
when the applied compressive load P is increased. As a consequence, the
length of the rod inside the sliding sleeve can become even smaller than in
the unloaded configuration (i.e. leq < 0, lower part, right) with the increasing
of the compressive load. This counterintuitive effect is due to the presence of
an vertical upward Eshelby-like force generated by the sliding sleeve which is
greater than the vertical downward load P . The structural model has been
realized following the scheme reported in Fig. 5.2.

by the fact that the rod, freely sliding at one edge, can change its length
and therefore release elastic energy. The presence of a configurational force
produced by the sliding sleeve in the structure shown in Fig. 5.1 strongly
affects the post-critical behaviour and its stability. The effects of this force
can be counterintuitive, so that the springs in the structure shown in Fig. 5.3
at low load (upper part on the right, P = 20N) are subject to an higher
elongation than that occurring when a higher load P is applied (lower parts
on the left, P = 30N , and on the right, P = 40N).
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CHAPTER 5. INSTABILITY AND RESTABILIZATION OF A PENETRATING BLADE

5.1 More than one critical load for each instabil-
ity mode and finite number of critical loads for
continuous elastic systems

Let us consider an inextensible elastic beam with constitutive behaviour
defined by the Euler-Bernoulli equation

M(s) = B
dθ(s)
ds

, (5.1)

where B is the constant bending stiffness, θ(s) is the angle of inclination of
the tangent to the elastica at the curvilinear coordinate s. The Euler formula
provides the n-th critical load (associated to the n-th instability mode) for
an elastic clamped-free planar rod of length l as

Pcr,n =
(2n− 1)2π2B

4l2
, n ∈ N+. (5.2)

Equation (5.2) shows that the n-th critical load Pcr is unique whenever
the beam length l is fixed, but this uniqueness may be lost when the length
becomes a function of the applied axial load, l = l(P ).

If, as shown in Fig. 5.1, an axial spring is introduced, the elastic planar
rod (or ‘blade’) can penetrate into the constraint (a sliding sleeve) of an
amount leq, so that

l(P ) = l̄ − leq(P ), (5.3)

where l is the outer length of the blade at null axial load P , l(P = 0) = l̄. In
the particular case of a linear spring with stiffness k and considering the blade
in the straight configuration the equilibrium equation in the axial direction
is given by

P = kleq, (5.4)

(an equation that does not hold when the curvature at the point s = leq is
different from zero, θ′eq(leq) 6= 0, Section 5.2) so that the length of the outer
part of the blade is l(P ) = l − P/k and the Euler formula (5.2) becomes

Pcr,n =
(2n− 1)2π2B

4

(
l − Pcr,n

k

)2 , n ∈ N+. (5.5)

The solution for the critical load Pcr,n from equation (5.5) leads to the
following cubic equation

p3
cr,n − 2p2

cr,n + pcr,n −
4

27qn
= 0, n ∈ N+, (5.6)
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where pcr,n and qn are respectively the dimensionless n-th critical load and
dimensionless relative stiffness (spring stiffness multiplied by the bar length
and divided by a critical load) of the elastic system, the latter given as

qn =
16kl̄3

27(2n− 1)2π2B
, n ∈ N+, (5.7)

and the former is the ‘n-th’ and critical ‘cr’ value of the dimensionless load

p =
P

kl̄
. (5.8)

Note that the dimensionless relative stiffness is positive, qn > 0, defined in a
way that for n = 1 there is no buckling for q1 < 1, and that the dimensionless
n-th critical load pcr,n has to satisfy the following inequality1

pcr,n ≤ 1, n ∈ N+, (5.9)

corresponding to l(P ) ≥ 0, in other words, to the constraint that the blade
cannot buckle after complete penetration into the sliding sleeve.

The solution of the cubic equation (5.6) yields the following conclusions:

i) since all the coefficients of the cubic equation (5.6) are real, the following
infinite sequence always exists of real roots

pCcr,n =
1

3

2 + 3

√
qn

2− qn + 2
√

1− qn
+

3

√
2− qn + 2

√
1− qn

qn

 > 1,

n ∈ N+,

(5.10)

all violating the constraint (5.9) and thus representing meaningless
solutions from mechanical point of view;

ii) in the case when for a given m ∈ N+ the inequality

qm+1 < 1 < qm, ⇔ (2m− 1)2 < q1 < (2m+ 1)2 , (5.11)

is satisfied, in addition to the sequence of real roots (5.10) other 2m real
roots exist for the cubic equation (5.6),

pAcr,n

pBcr,n

 =
1

3

[
2− 1± i

√
3

2
3

√
qn

2− qn + 2
√

1− qn

−1∓ i
√

3

2

3

√
2− qn + 2

√
1− qn

qn

]
, n ∈ N+

(5.12)

1 This restriction holds only for the calculation of the critical loads. Indeed, as it will
be shown in Section 5.2, equilibrium configurations with p ≥ 1 are possible for non-trivial
deformation paths.
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CHAPTER 5. INSTABILITY AND RESTABILIZATION OF A PENETRATING BLADE

satisfying the following property

0 < pAcr,n ≤ pAcr,m ≤ pBcr,m ≤ pBcr,n < 1, n ≤ m n,m ∈ N+

(5.13)
so that 2m critical loads are obtained, which correspond to 2 critical
loads for the same n-th instability mode;

iii) in the particular case when, for a given m ∈ N+, qm = 1 (or, equivalently,
q1 = [2m− 1]2), the two real roots associated to the m-th mode (5.12)
are coincident,

pAcr,m = pBcr,m =
1

3
, m ∈ N+, (5.14)

so that 2m− 1 critical loads are obtained, though 2m postcritical paths
still exist.

Usually, a compressed elastic rod (with ordinary boundary conditions, e.g.
doubly pinned) evidences one bifurcation load of the fundamental equilibrium
path associated to each bifurcation mode. The structure shown in Fig. 5.1
displays two (actually three, but one of these will be shown to be physically not
accessible) bifurcation loads for the straight configuration associated to each
bifurcation mode, a situation occurring also in the simpler system analyzed
by Bigoni [13].

Dimensionless critical loads, calculated with equation (5.12), are reported
as functions of the dimensionless relative stiffness parameter q1 in Fig. 5.4
for the first three modes (n = 1, 2, 3) together with the experimental
data observed on Prototype 1. As it will be shown in the following, the
dimensionless load pAcr,1 corresponds to the lower buckling load and to the
loss of stability of the straight configuration, while the dimensionless load
pBcr,1 corresponds to the upper bifurcation load and to the restabilization of
the straight configuration. Note that there is no bifurcation for q1 < 1 (the
situation shown in Fig. 5.5 (upper part), but for q1 > 1 there are always two
bifurcation loads associated to the first mode (n=1) (called ‘buckling’ and
‘restabilization’) and later, for sufficiently high q1, there are two bifurcation
loads associated to the second mode and two to the third.

Moreover, while pAcr,1 corresponds to a critical buckling load for which
there is a spontaneous departure from the straight configuration of the blade,
pBcr,1 denotes a load from which the straight configuration returns to be
stable, but cannot be spontaneously reached by the blade from its buckled
configuration. Finally, we may observe the following.

� The buckling load of the system is governed by the relative spring/bending
stiffness, so that an increase (decrease) of elastic stiffness of the spring
yields a decrease (increase) in the buckling load. Moreover, if the
stiffness of the spring is low enough compared to the rod’s bending
stiffness (‘highly compliant’ system), there will be no buckling, but only
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5.2. TOTAL POTENTIAL ENERGY AND EQUILIBRIUM EQUATIONS

Figure 5.4: Dimensionless bifurcation loads pcr,n (buckling load pAcr,n and restabilization
load pBcr,n) as a function of the dimensionless relative stiffness q1 of the elastic
system. Note that if the stiffness ratio q1 decreases, then the n-th buckling
load increases while the n-th restabilization load decreases, and the number
of bifurcation modes can even reduce to zero in the case of ‘highly compliant
systems’ (q1 < 1), where bifurcation does not occur. Experimental data
(white dots) observed on Prototype 1 are also reported.

a straight penetration into the sliding sleeve. In these conditions an
increase in the elastic stiffness of the spring may induce buckling, Fig.
5.5. Previously, this effect was theoretically noticed by Feodosyev [57]
and on a simpler structure by Tarnai [58].;

� Buckling of an elastic rod (with ordinary boundary conditions, e.g.
doubly pinned) is governed by a Sturm-Liouville problem (Broman [34]),
admitting an infinite number of bifurcation loads. This is related to
the fact that the system ‘has infinite degrees of freedom’. Although the
system shown in Fig. 1 is continuous, the moving boundary introduced
by the sliding sleeve leads to a non-standard Sturm-Liouville problem,
so that a finite number (which depends on the elastic properties of the
system) of pairs (two for each mode) of buckling loads is found.

5.2 Total potential energy and equilibrium equa-
tions

An inextensible elastic planar rod (straight in its unloaded configuration,
with bending stiffness B and total length l̄) has one end constrained with a
sliding sleeve and a coaxial spring of stiffness k, while at the other edge is
subject to an axial (dead compressive) force P , see Fig. 5.1. Introducing the
curvilinear coordinate s ∈ [0, l̄] and the rotation field θ(s) of the planar rod’s
axis, the axial and transverse equations decribing the shape of the elastica
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can be written as

x1(s) =

∫
cos θ(s)ds, x2(s) =

∫
sin θ(s)ds. (5.15)

With reference to the structural system reported in Fig. 5.1, the sliding sleeve
introduces the condition of null rotation for a portion of the rod,

θ(s) = 0, s ∈ [0, lin], (5.16)

where lin is the length of the rod inside the (frictionless, perfectly smooth
and bilateral) sliding sleeve, while on the other end of the rod (s = l̄) the
boundary condition is

θ
′ (
l̄
)

= 0. (5.17)

The total potential energy is

V(θ, lin) =

l̄∫
lin

B

[
θ
′
(s)
]2

2
ds+

1

2
k (lin)2 − P

l̄ − l̄∫
lin

cos θ(s)ds

 . (5.18)

Since the total potential energy (5.18) is written for a system with a moving
boundary lin, it is expedient (Courant and Hilbert [44], see also Majidi et
al. [41]) to introduce a small parameter ε and to take variations (subscript
‘var’) of an equilibrium configuration (subscript ‘eq’) in the form

θ(s, ε) = θeq(s) + εθvar(s), lin(ε) = leq + εlvar, (5.19)

with the boundary conditions at the sliding sleeve (s = lin)

θeq(leq) = 0, θ(leq + εlvar) = 0, (5.20)

and the boundary conditions at the other end (s = l̄)

θ
′
eq

(
l̄
)

= 0, θ
′
var

(
l̄
)

= 0. (5.21)

A Taylor series expansion of θ(lin) for small ε yields

θ(leq + εlvar, ε) = θeq(leq) + ε
[
θvar(leq) + θ

′
eq(leq)lvar

]
+
ε2

2
lvar

[
2θ
′
var(leq) + θ

′′
eq(leq)lvar

]
+ O

(
ε3
)
,

(5.22)

so that the boundary conditions (5.20) lead to the following compatibility
equations

θvar(leq) + θ
′
eq(leq)lvar = 0, 2θ

′
var(leq) + θ

′′
eq(leq)lvar = 0. (5.23)

85



CHAPTER 5. INSTABILITY AND RESTABILIZATION OF A PENETRATING BLADE

The first variation of the total potential energy (5.18) is

δεV = +

l̄∫
leq

Bθ
′
eqθ
′
var(s)ds−

l̄∫
leq

P sin θeq(s)θvar(s)ds

+

[
kleq − P cos θeq(leq)−

B

2
θ
′
eq(leq)

2

]
lvar,

(5.24)

and, taking into account the Leibniz rule of differentiation (see Section 3.1)
and the boundary conditions (5.20) and (5.21), together with compatibility
equations (5.23), through integration by parts, the first variation of the
functional V becomes

δεV = −
l̄∫

leq

[
Bθ
′′
eq + P sin θeq(s)

]
θvar(s)ds+

[
kleq − P +

B

2
θ
′
eq(leq)

2

]
lvar,

(5.25)
from which, by imposing vanishing for any admissible variation θvar(s) and
lvar, the elastica is obtained

Bθ
′′
eq(s) + P sin θeq(s) = 0, (5.26)

as well as the axial equilibrium condition

P = kleq +
B

2

[
θ
′
eq(leq)

]2

︸ ︷︷ ︸
Eshelby-like Force

, (5.27)

revealing the presence of an Eshelby-like force (Chapter 3 and Bigoni et
al. [9]) generated by the sliding sleeve (see also the asymptotic derivation by
Balabukh et al. [43]) and representing the so-called ‘transversality condition’
of Courant and Hilbert [44]. Note that, equation (5.27) reduces to the ‘trivial’
axial equilibrium equation, equation (5.4), only in the case of null curvature
at the sliding sleeve, θ′eq(leq) = 0.

It can be noted from the axial equilibrium equation (5.27) that, the
surprising (and never noticed before) equilibrium configuration shown in Fig.
5.6 is possible in the absence of the spring (k = 0), when the elastica is such
that the curvature at the sliding sleeve satisfies

P =
B

2

[
θ
′
eq(leq)

]2
, (5.28)

corresponding to the fact the dead load P and the Eshelby-like force are
equal and opposite. In the absence of the vertical configurational force the
equilibrium would be impossible (note that this configuration for the structure
is unstable, as will be proven in Section 5.3 but has been photographed due
to the small friction inside the sliding sleeve, even if a small perturbation of
the system causes its collapse).
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Figure 5.6: The vertical and upward Eshelby-like force (equal and opposite to the ap-
plied downward load) generated by the sliding sleeve makes the equilibrium
configuration possible, even if unstable. Note that the tangent to the end
of the blade is horizontal, as will be theoretically rationalized in the next
section.

5.2.1 The elastica

The rotation field at equilibrium θeq(s) (Fig. 5.1) is the solution of the
following non-linear second–order differential equation with moving boundary
condition 

d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l

)
θeq (leq) = 0,

dθeq(s)
ds

∣∣∣∣
s=l̄

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′
eq(leq)

]2
,

(5.29)

where the normalized axial load λ2 = P/B has been introduced.
The problem has the trivial solution (denoted with (0))

θ(0)
eq (s) = 0, l(0)

eq =
P

k
, (5.30)

while non-trivial solutions can be obtained through the following procedure.
Multiplication of equation (5.29)1 by dθeq/ds and integration in the variable
s yields [

dθeq(s)
ds

]2

− 2λ2 cos θeq(s) = constant, (5.31)
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so that, setting θeq(l) = θl and using the boundary condition (5.29)3, it
follows only the solution with the ‘+’ sign has been considered)

dθeq(s)
ds

= λ
√

2(cos θeq(s)− cos θl). (5.32)

It is now a standard expedient to operate the following change of variables

η = sin
θl
2
, η sinφ(s) = sin

θeq(s)

2
, (5.33)

leading to the following differential problem equivalent to the system (5.29)

dφ(s)

ds
= λ

√
1− η2 sin2 φ(s),

φ (leq) = hπ,

φ(l̄) =
2j + 1

2
π,

h, j ∈ Z

leq = λ2B

k
(1− 2η2).

(5.34)

Integration of the differential problem (5.34) leads to non-trivial η, related
to the rotation of the loaded end θl through equation (5.33), as a function of
the load parameter λ,

(2n− 1)K(η) = λ

[
l̄ − λ2B

k
(1− 2η2)

]
, n ∈ N+, (5.35)

where n corresponds to the number of the instability mode and K(η) is the
complete elliptic integral of the first kind,

K(η) =

π
2∫

0

dφ√
1− η2 sin2 φ

. (5.36)

Using the dimensionless parameters pn and qn, equation (5.7) and (5.8),
the solution (5.35) can be rewritten in the following form

(1− 2η2)2p3
n− 2(1− 2η2)p2

n + pn−
4

27qn

[
2K(η)

π

]2

= 0, n ∈ N+, (5.37)

which is a cubic equation providing in general three ‘deformation paths’
(An;Bn;Cn) corresponding to the n-th mode, namely, three dimensionless
loads (pAn ; pBn ; pCn) for each mode as functions of the rotation at the loaded
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end θl, through inversion of relation (5.33)1, and the relative dimensionless
stiffness qn

pAn = pAn (θl, qn), pBn = pBn (θl, qn), pCn = pCn(θl, qn), n ∈ N+.
(5.38)

Note that in the limit of undeformed configuration (implying a null angle
at the loaded end θl → 0, so that η → 0, K(η → 0) → π/2), the cubic
equation (5.37) corresponds to that obtained within the small displacement
theory, equation (5.6), and again yields the critical dimensionless loads
(pAcr,n; pBcr,n; pCcr,n), given by equation (5.10) and (5.12).

For a given value of the applied load, the rotation at the loaded end (related
to the three ‘deformation paths’) can be computed from equation (5.37) and
then, through inversion of relation (5.33)1, the corresponding rotation field
can be obtained

θeq(s) = 2 arcsin
[
η sn

(
λ (s− leq) , η

)]
, (5.39)

from which the axial and transverse equations describing the shape of the
elastica are obtained by integration, equation (5.15), as

x1(s) = −s+
2

λ
E
[
am
(
λ (s− leq) , η

)
, η
]
− leq,

x2(s) =
2η

λ

[
1− cn

(
λ (s− leq) , η

)]
,

(5.40)

which can be evaluated at the loaded end in order to obtain axial and
transverse displacements, thus yielding

u1

(
l̄
)

=
2

λ
[E (η)−K (η)]− leq, u2(l̄) =

2η

λ
. (5.41)

In equation (5.40) the functions am, cn and sn denote the Jacobi amplitude,
Jacobi cosine amplitude and Jacobi sine amplitude functions,

cn (x, η) = cos [am (x, η)] , sn (x, η) = sin [am (x, η)] , (5.42)

while E(x, η) is the incomplete elliptic integral of the second kind of modulus
η, defined as

E(x, η) =

x∫
o

√
1− η2 sin2 t dt. (5.43)

Finally, in the case when the stiffness of the axial spring vanishes (k = 0,
Fig. 5.6), equation (5.28) represents the only possible equilibrium configura-
tion of the system. This equation can be rewritten, by introducing a change
of variables in equation (5.33), as

1− 2 sin2

(
θl̄
2

)
= 0. (5.44)
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Equation (5.44) reveals that the only equilibrium configuration for the system
without spring occurs when the end tangent to the rod is orthogonal to the
sliding sleeve, θl = π/2, representing a purely geometrical condition, visibly
satisfied in Fig. 5.6.

Note that, when k = 0, if another load P ∗ will be hung at the other free
end of the rod (at the end of the rectilinear part of the blade outside the
sliding sleeve, bottom part of Fig. 5.6), the unique (unstable) equilibrium
configuration, shown in Fig. 5.7, is possible through the following relation

P cos θl̄ + P ∗ = 0, (5.45)

where the two weights have to satisfied the condition

0 ≤ P ∗

P
≤ 1, (5.46)

and the limit P ∗ = 0 occurs in Fig. 5.6, while P ∗ = P reveals a non-physical
situation because means θl̄ = π, a situation that happens only if the length
of the inflected elastica tends to ∞.

Figure 5.7: The Eshelby-like force guarantees other equilibria by hunging another load
at the bottom end of the rod. The geometrical condition of equilibrium is
possible when equation 5.45 is satisfied. In figure the loads are P = 2N and
P ∗ = 3N, so that the angle θl̄ = 131.81◦.

This concept will be used in Chapter 6 for the design of an innovative
elastica arm scale.
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5.3 Stability of configurations

In order to evaluate the stability of the equilibrium configurations for the
penetrating blade, the second variation of the functional V, equation (5.18),
has to be calculated. Considering the boundary conditions (5.20) and the
perturbations in the rotation field θvar(s) and in the length lvar satisfying the
compatibility equations (5.23), the second variation evaluated at an inflexed
equilibrium configuration can be written as

δ2
εV =

1

2

kl2var +B

l̄∫
leq

[
θ
′
var(s)

]2
ds− P

l̄∫
leq

[θvar(s)]
2 cos θeq(s)ds

 .

(5.47)
The stability or instability of an equilibrium configuration is then related to the
sign of the second variation δ2

εV, evaluated for that equilibrium configuration,
namely,

δ2
εV =

{
> 0 stable equilibrium configuration,

< 0 unstable equilibrium configuration,
(5.48)

for any admissible perturbations θvar(s) and lvar satisfying the compatibility
equation (5.23).

Considering the auxiliary function Γ(s), solution of the following boundary
value problem (the Riccati equation plus a boundary condition, see van
Brunt [60]) 

∂Γ(s)

∂s
− P cos θeq(s)−

Γ(s)2

B
= 0,

Γ(l̄) = 0,

(5.49)

the compatibility equation (5.23) and the following identity

l̄∫
leq

d
ds
[
θ2
var(s)Γ(s)

]
ds−

[
θ2
var(s)Γ(s)

]l̄
leq

= 0, (5.50)

the second variation, equation (5.47), can be rewritten as

δ2
εV =

1

2

B
l̄∫

leq

[
θ
′
var(s) +

Γ(s)

B
θvar(s)

]2

ds+ l2var

[[
θ
′
eq(leq)

]2
Γ(leq) + k

] .

(5.51)
To judge the stability of the equilibrium configurations, the two conditions

obtained by Majidi et al. [41] are exploited here. In particular (note that the
existence of a bounded Γ(s) on the interval

[
leq, l̄

]
implies that the integral

in (5.51) is non-negative)
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� Necessary condition (N) for the equilibrium configuration defined by
{θeq(s), leq} to be stable (so that it minimizes the functional V) are
that

– (N1) the auxiliary function Γ(s), solution of to the boundary-value
problem (5.49), cannot become unbounded in the interval

[
leq, l̄

]
;

– (N2) the following inequality is satisfied

∆ =
[
θ
′
eq(leq)

]2
Γ(leq) + k ≥ 0. (5.52)

� Sufficient condition (S) for the trivial {θeq(s) = 0, leq = P/k} equilib-
rium configuration to be stable is that the auxiliary function Γ(s),
solution of the boundary-value problem (5.49), is bounded.

In order to obtain the auxiliary function Γ(s), it is instrumental to consider
the Jacobi transformation

Γ(s) = −BΛ
′
(s)

Λ(s)
, (5.53)

leading to the following Jacobi boundary value problem
Λ
′′
(s) + λ2 cos θeq(s) Λ(s) = 0,

Λ(l̄) = 1,

Λ
′
(l̄) = 0.

(5.54)

Once the function Γ(s) and the auxiliary function Λ(s) are obtained for a
specific equilibrium configuration by solving the differential equation (5.49)
and (5.54), the stability of that equilibrium configuration can be judged
through the necessary (N1 and N2) and sufficient (S) conditions.

5.3.1 Stability of trivial configurations

In the case when the equilibrium configuration is straight, identifying the
trivial solution {θeq(s) = 0; leq = P/k}, the Jacobi boundary value problem
(5.54) simplifies to 

Λ
′′
(s) + λ2 Λ(s) = 0,

Λ(l̄) = 1,

Λ
′
(l̄) = 0,

(5.55)

which, through the Jacobi transformation (5.53), leads to the following
solution for the auxiliary function Γ (s)

Γ (s) =
√
PB tan

(√
P

B

(
l̄ − s

))
. (5.56)
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The auxiliary function Γ (s), equation (5.56), is bounded for s ∈
[
leq = P/k, l̄

]
if and only if

P

B

(
l̄ − P

k

)2

<
π2

4
, (5.57)

which can be rewritten in the dimensionless form

p (1− p)2 <
4

27q1
, (5.58)

so that, considering the necessary (N1 and N2) and sufficient (S) conditions,
the trivial straight configuration is:

� for q1 < 1: stable (‘highly compliant’ systems, see equation (5.7));

� for q1 > 1:

– stable if P < PA
cr,1,

– unstable if PA
cr,1 < P < PB

cr,1 ,

– stable if PB
cr,1 < P < kl̄.

In usual structural systems, stability of the fundamental path is lost after
buckling and is not ‘later’ recovered. Differently, the straight configuration of
the structure shown in Fig. 5.1 returns to be stable after a second bifurcation
load (associated to the first instability mode) is met (Fig. 5.8), a situation
occurring also in the simpler systems analyzed by Bigoni [13] and Potier-
Ferry [59].2

5.3.2 Stability of non-trivial configurations

In the case of non-trivial equilibrium configurations, θeq(s) 6= 0, the function
Λ(s), solution of the Jacobi problem (5.54), can be obtained only through
numerical integration. Numerical investigations performed varying the dimen-
sionless relative stiffness q1 and the applied load P show which non-trivial
configuration is unstable, through application of the necessary condition
(N). In particular, a configuration is unstable either (N1) when the function
Λ(ŝ) = 0 with ŝ ∈

[
leq, l̄

)
, namely, the auxiliary function Γ(s), is bounded,

or (N2) when ∆ < 0, see equation (5.52).
It is concluded that unstable equilibrium configurations are:

� all the investigated non-trivial equilibrium configurations of the paths
An, Bn, and Cn with n ≥ 2, due to condition (N1);

2 For monotonically increasing loading the structure buckles and does not ‘spontaneously’
return in the straight configuration. Therefore, the system has to be set in this configuration
to observe its stability beyond the second buckling load.
A system that spontaneously self-restabilizes has been shown by Potier-Ferry [59].
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q 1
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1
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P= N0

l = mm�� 0

P= N20
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Figure 5.8: The straight configuration for the blade (elastic planar rod) is stable at small
load (upper part, right), becomes unstable at higher load (lower part, left)
and, for further increase, it eventually returns stable (lower part, right). The
structural model has been realized following the scheme reported in Fig. 5.2.
The length of the blade inside the sliding sleeve at equilibrium is leq, while
q1 is the dimensionless relative stiffness defined by equation (5.7).

� all the non-trivial equilibrium configurations of the path B1, due to
condition (N2);

� all the non-trivial equilibrium configurations of the path A1, due to
condition (N2), when q1 < 1;

� the non-trivial equilibrium configurations associated to a negative slope
in the θl̄ − P plane (snap-through instability) of the path A1, due to
condition (N2), and occurring only when 1 < q1 < qST ≈ 1.6875.

All other non-trivial equilibrium configurations not listed above satisfy the
necessary conditions (N1 and N2) and therefore could be stable, although this
cannot be proven and remains an open problem. However, although stability
for these cases cannot –for the moment– be rigorously decided, the stability
of the non-trivial equilibrium configurations A1 has been experimentally
confirmed (see the experimental results presented in the next section).

Finally, it is straightforward to judge the stability of the system in the case
when the axial spring is absent (k = 0, Fig. 5.6) and conclude that, although
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the auxiliary function Γ(s) is always bounded, all the possible equilibrium
configurations are unstable due to condition (N2).

5.4 Theoretical behaviour of the blade

The buckling loads of the structure sketched in Fig. 5.1 are given by equa-
tion (5.12). Moreover, for a given value of the applied load P , λ is known
from its definition (λ2 = P/B), so that equation (5.35) allows the calcu-
lation of the corresponding η and thus leq is known from equation (5.34)4.
Finally, equation (5.40) give the components of the elastica and, in particular,
equation (5.41) permit the evaluation of the displacement components of
the blade’s end point. Instability (stability) of the configurations has been
determined using condition N (condition S) obtained in Section 5.3. As
we have already mentioned in that section, the stability of the ascending
branches of the first-mode of postcritical behaviour (where the necessary
condition for stability is verified) has been only conjectured on the basis of
our experimental results, while stability and instability of all the rest of the
trivial and bifurcated paths has been rigorously proven.

Restricting the attention for the moment only to the first bifurcation
mode of the structure shown in Fig. 5.1, the dimensionless load p = P/(kl̄) is
plotted as a function of the dimensionless displacement components {x1(s =
l̄) = u1(l̄)/l̄, x2(s = l̄) = u2(l̄)/l̄, θl̄} in Fig. 5.9, for different values of the
dimensionless stiffness q1, taken equal to 0.7, 1.1, and 2. Note that solid
(dashed) lines represent stable (unstable) configurations.

The following observations can be drawn.

� The upper part of Fig. 5.9 is relative to q1 = 0.7. In this case, no
bifurcation occurs and the blade rigidly penetrates into the sliding
sleeve. Note that alternative (and unstable) equilibrium configurations
exist in addition to the trivial straight configuration, but (with the
exception of the figure on the left, which can give a false impression of
bifurcation) they do not cross (and even ‘touch’) the trivial path, so
that these non-trivial unstable configurations cannot spontaneously be
reached by the system.

� Both the central and the lower parts of Fig. 5.9 show two bifurcation
loads associated to the first bifurcation mode and show the restabilization
of the straight configuration after the second buckling load.

� The central part of Fig. 5.9, referred to q1 = 1.1, shows an example
of a descending path of the lower equilibrium branch, associated to
a snap-through of the system. On the other hand, the lower part of
Fig. 5.9, referred to q1 = 2, shows that the lower equilibrium branch
has always a positive slope (so that snap-through does not occur).
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Figure 5.9: First-mode of bifurcation: deformation paths of the structure sketched in the
inset, expressed as the (dimensionless) applied load versus (dimensionless)
displacement components and rotation of the blade loaded edge.
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Figure 5.10: Force vs. blade’s edge rotation of the structure sketched in the inset,
evidencing the first, second and third mode of bifurcation. The threshold
marked as ‘complete penetration’ corresponds to the complete penetration
of the blade into the sliding sleeve. In the example on the left there is no
bifurcation, while in the central part of the figure only the first mode is
involved. In the part of the figure on the right first, second and third mode
of bifurcation may occur before the ‘complete penetration’ is attained.

� Comparing the central and the lower parts of Fig. 5.9 we may observe
that an increase in the stiffness of the system decreases the buckling
load and increases the restabilization load.

� The fact that a vertical Eshelby-like force is generated and ‘expels’
the blade from the sliding sleeve after buckling is not directly visible in
Fig. 5.9. The visualization of this effect requires plotting P as a function
of leq, which is done in Fig. 5.12 where comparison with experiments is
presented.

An example of bifurcation paths involving the first, the second and the third
mode is reported in Fig. 5.10, where the load P (made dimensionless through
division by kl̄) is plotted as a function of the rotation of the loaded end of
the blade, θl̄. In the three parts of Fig. 5.10, referring (from left to right)
to q1 equal to 0.5, 2, and 9, a line denoted as ‘complete penetration’ is
reported at the value of parameter p = P/(kl̄) = 1, corresponding to the
complete penetration of the blade into the sliding sleeve. Therefore, curves
reported beyond that limit are mathematically corrected, but meaningless
from mechanical point of view. A situation where the postcritical paths do
not intersect the vertical axis (corresponding to stable equilibrium only for
the trivial straight configuration), and thus bifurcation does not occur, is
reported in the left part of the figure, q1 = 0.5. Here, first- and second-mode
non-trivial unstable configurations exist below the ‘complete penetration’
limit but these cannot be reached during loading of the system. Bifurcation
is possible in the central, q1 = 2, and right, q1 = 9, parts of the figure.
While only first mode bifurcations occur in the former case, in the latter case
first, second and third modes bifurcations are possible. In general, all modes
superior to the first have been always found unstable in all cases analyzed
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Figure 5.11: The unloaded configuration (left) and two deformed configurations (center
and right) of Prototype 0. At high load (right) the base of the structure has
an upward rigid translation when compared with the configuration at low
load (center), a clear indication of the presence of the Eshelby-like force.

(not only in those reported in this section).

5.5 Experiments

An essential part in the present study is to show that all the found mechanical
behaviours can be realized in practice. To this purpose, we have designed,
realized and tested model structures to verify the theoretical findings. We
have already anticipated with Figs. 5.5–5.6 that the theory has been fully
confirmed, so that the intention is now to provide quantitative support.

Two prototypes (called ‘Prototype 0’, see Fig. 5.11, and ‘Prototype 1’,
Fig. 5.2, right) of the structure sketched in Fig. 5.1 have been realized,
according to the design scheme shown in Fig. 5.2 (left).

� Prototype 0. It has been realized (Fig. 5.11) to provide a qualitative
experimental validation of the features displayed by the mechanical
system shown in Fig. 5.1. Two blades have been employed (with lengths
250 mm and 200 mm), both realized with a C62 carbon-steel strip
(25 mm × 1 mm cross section). The sliding sleeve, 31 mm in length,
has been realized with three pairs of rollers (15 mm diameter teflon
cylinders, each containing two roller bearings). Three pairs of carbon
steel (EN 10270-1 SH) springs (D19060, 0.8 mm wire diameter and
5 mm mean coil diameter; D19130, 1.6 mm wire diameter and 12.5
mm mean coil diameter; D19100, 1.25 mm wire diameter and 8 mm
mean coil diameter all purchased from D.I.M.) have been used. The
two linear bushings (LHFRD12) used to maintain horizontal the bar to
which the blade is clamped have been purchased from Misumi Europe.
Load has been controlled by manually imposing given weights.
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� Prototype 1. The linear elastic spring represented in Fig. 5.1 has been
realized by hanging a highly-stiff horizontal bar (to which the elastic
blade is clamped) with two metal springs. The horizontal bar can
only rigidly translate as constrained by two linear bushings (LHFRD12,
Misumi Europe). The dead load at the end of the blade has been
imposed by filling (at a constant rate of 10 g/s) two containers with
water and has been measured with two miniaturized Leane XFTC301
(R.C. 500N) load cells. Five blades have been employed (lengths: 600
mm, 530 mm, 510 mm, 430 mm, and 360 mm) with the ‘stiff’ springs
and four blades (lengths: 600 mm, 530 mm, 510 mm and 430 mm) with
the ‘compliant’ one, all realized with C62 carbon-steel strips (25 mm
× 2 mm cross section) in the experiments performed with Prototype 1
(Fig. 5.2, on the right). For these blades the bending stiffness B has
been determined with flexure experiments to be equal to 2.70 Nm2.
The same sliding sleeve employed by Bigoni et al. (2013) has been used,
which is 384 mm in length and has been realized with 32 pairs of rollers
(made up of 10 mm diameter and 15 mm length teflon cylinders, each
containing two roller bearings). The tolerance between the metal strip
and the rollers can be calibrated with four micrometrical screws and
have been set to be 0.1 mm. Two pairs of carbon steel (EN 10270-1 SH)
springs (the so-called ‘stiff’: D19130, 1.6 mm wire diameter and 12.5
mm mean coil diameter, k=600 N/m; and the so-called ‘compliant’:
D19100 1.25 mm wire diameter and 8 mm mean coil diameter, k=540
N/m, purchased from D.I.M.) have been used. The penetration length
leq has been obtained by measuring the displacement of the lower edge
of the blade through a magnetic noncontact displacement transducer
GC-MK5 (from Gemac).

Both prototypes have fully confirmed the theory, although Prototype 0
only in a qualitative way, so that Prototype 1 has been later manufactured to
obtain quantitative results.For both Prototypes 0 and 1, all the experimental
tests have been performed in a controlled temperature (20±0.2◦C) and humid-
ity (48±0.5%) room and data have been acquired with a NI CompactDAQ
system, interfaced with Labview 8.5.1 (National Instruments). Furthermore,
photos have been taken with a Sony NEX 5N digital camera, equipped
with 3.5-5.6/18-55 lens (optical steady shot from Sony Corporation) and
movies have been recorded during the tests with a Sony handycam (model
HDR-XR550VE).

Experimental results, expressed in terms of applied load P (measured
in N) as a function of the amount of blade internal to the sliding sleeve, leq
(measured in cm), are reported in Fig. 5.12. Results reported on the left refer
to ‘compliant’ spring, k = 540N/m, while result reported on the right to the
‘stiff’ one, k = 600N/m. Four blades of different length have been used in
the former case, five in the latter. Experimental results (solid lines) have
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Figure 5.12: Comparison of theoretical and experimental results obtained with the set-up
shown in Fig. 5.2.
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been reported in the figures together with theoretical predictions (dashed
lines). For both spring stiffnesses, the blades with shortest length show a
pure translation without buckling, while buckling has been observed for all
the other lengths. A snap-through behaviour was theoretically predicted
for l̄ = 51 cm of the ‘compliant’ spring case and for l̄ = 43 cm of the ‘stiff’
spring case. In the former case (l̄ = 51 cm) the descending postcritical path
is so short and weakly inclined that it becomes hardly visible in the graph
and therefore the snap-through has not been experimentally observed. On
the other hand, in the latter case (l̄ = 43 cm) the snap-through has been so
violent that the experiment has been immediately interrupted and subsequent
data have not been measured.

A very nice agreement between theory and experiments (fully confirming
the presence of the Eshelby-like force) can be noted from Fig. 5.12, with
departures from the straight configuration observed to occur slightly before
the theoretical loads for buckling, which is nothing but the usual effect of
the imperfections (see for instance Bigoni et al. [51]). Experiments clearly
show that the blade is ejected from the sliding sleeve (which corresponds to
a decrease in leq) during the postcritical behaviour of the structure.

Movies of the experiments can be found at http://ssmg.unitn.it//blade.html.

5.6 Blade with different boundary conditions

In this section will be briefly shown the governing equations for the blade
with different boundary conditions at its right edge (clamped, clamped in
rotation and simply supported), while the other edge remains constrained
by a linear spring of stiffness k and can slide into a perfect smooth and
frictionless sleeve. These systems are similar to those extensively analyzed in
Chapter 2, so that we cross-refer to them for details.

5.6.1 Clamped blade

Let us consider the system in Fig. (5.13), where an inextensible elastic planar
rod is forced to penetrate a sliding sleeve, restrained by an axial linear spring
of stiffness k, through the application of a dead compressive load P at the
other edge, which is constrained by a movable clamp.

Considering only the outer part of the beam at an equilibrium configura-
tion, under the assumption that the inner part of the blade would not buckle,
since the elastica configuration of the inner part is completely defined by the
kinematic constraint θ(s) = 0 for s ∈ [0, leq], the rotation field at equilibrium
θeq(s) is unknown only for the outer part, so that, introducing the normalized
axial load λ2 = P/B, it is a solution of the following differential problem
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Figure 5.13: The penetrating blade in an equilibrium configuration with a movable
clamped end subjected to a dead load P . The system can slide into a
frictionless channel and is restrained by a spring of stiffness k coaxial to the
elastic planar rod.



d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = θeq

(
l̄
)

= 0,

dθeq(s)
ds

∣∣∣∣
s=

l̄+3leq
4

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′
eq(leq)

]2
,

(5.59)

where the curvature is null for s = (l̄ + 3leq)/4 and s = (3l̄ + leq)/4, but only
the former condition will be used because, thanks to the symmetry of the
problem, only the first quarter of the outer blade will be considered, as in
Section 2.2.3. For conciseness, only the first bifurcation mode will be analyzed,
but relations for superior (unstable) modes may be determined following

Section 2.2.3. The rotation at the inflection point is θeq
(
l̄ + 3leq

4

)
= θq

and, through change of variables and Riemann theorem, integration of the
differential problem (5.59) leads to the relation between load parameter λ
and the angle θq

4K

(
sin

θq
2

)
= λ

[
l̄ − λ2B

k

(
1− 2 sin2 θq

2

)]
. (5.60)

From equation (5.60) can be observed that the relation P − θq is equal to the
behaviour P−θl̄, obtained through equation (5.35), except for the value of the

stiffness parameter for which there is no buckling, that is now qq1 < 27π2kl̄
3

B
.

The analytical form for the axial and transverse equations describing the
shape of the elastica of the outer part of the blade s ∈

(
leq, l̄

)
is obtained by

integration of equation (5.15) as
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x1(s) = −s+
2

λ
E

[
am
(
λ (s− leq) , sin

θq
2

)
, sin

θq
2

]
− leq,

x2(s) =
2

λ
sin

θq
2

[
1− cn

(
λ (s− leq) , sin

θq
2

)]
.

(5.61)

5.6.2 Blade clamped in rotation

The differential problem governing the behaviour of the system reported in
Fig. (5.14), where the elastic blade is constrained in rotation at its loaded
edge, is 

d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = θeq

(
l̄
)

= 0,

dθeq(s)
ds

∣∣∣∣
s=

l̄+leq
2

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′
eq(leq)

]2
,

(5.62)

where the rotation at the inflection point (midspan of the outer part of the
elastic rod, namely s = (l̄+ leq)/2) is named θm. For this system, the relation
between the dimensionless load parameter λ and the rotation at the rod’s
midspan θm, for the first buckling mode, is written as

2K

(
sin

θm
2

)
= λ

[
l̄ − λ2B

k

(
1− 2 sin2 θm

2

)]
. (5.63)

Equation (5.63) is similar to equation (5.35) referred to the blade with one
free edge, except for the value of the stiffness parameter for which there is no

buckling, that is now qm1 <
27π2

4

kl̄3

B
. The analytical form for the axial and

transverse displacements of this system, from which it is possible to calculate
the shape of any deformed configurations, is the same reported in equation
(5.61).

5.6.3 Simply supported blade

Let us consider the system in Fig. (5.15), where the elastic blade is simply
supported in its loaded edge and may slide into the frictionless sliding sleeve.
An axial spring of stiffness k restrains the other edge of the planar rod.

Considering only the outer part of the beam, under the assumption that
the inner part of the blade would not buckle, the rotation field θ(s) is obtained
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Figure 5.14: The penetrating blade in an equilibrium configuration clamped in rotation
at its loaded edge. The system can slide into a frictionless channel and is
restrained by a spring of stiffness k coaxial to the elastic planar rod.

Figure 5.15: The penetrating blade in a deformed equilibrium configuration, where its
loaded edge is simply supported, while the other edge slides into a frictionless
channel and it is restrained by a spring of stiffness k. At the curvilinear
coordinate s = l∗ exists an inflection point and the rotation angle is denoted
with θ(s = l∗) = θ∗. The angle β defines the inclination with respect the
horizontal direction of the resultant between the applied dead load P and
the vertical reaction of the support R.

through the following differential problem

d2θeq(s)
2 +

P

B
sin θeq(s) +

R

B
sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = 0,

dθeq(s)
ds

∣∣∣∣
s=l̄

= 0,

l̄∫
0

sin θ(s)ds = 0,

√
P 2 +R2

B
=
k

B
leq +

1

2

[
θ
′
eq(leq)

]2
.

(5.64)

Introducing the normalized load γ2 =
√
P 2 +R2/B and the angle ψ(s) =

θeq(s) + β, where β is the angle of the resultant between P and R as in
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Fig. 5.15, the differential problem (5.64) is rewritten as

d2ψ(s)

ds2
+ γ2 sinψ(s) = 0, s ∈

(
leq, l̄

)
ψ (leq) = β,

dψ(s)

ds

∣∣∣∣
s=l̄

= 0,

l̄∫
0

sin (ψ(s)− β) ds = 0,

√
P 2 +R2

B
=
k

B
leq +

1

2

[
ψ
′
(leq)

]2
.

(5.65)

Similarly to antisymmetric buckling modes of doubly clamped rod, analyzed
in Section 2.2.3, it is a standard expedient to operate the following change of
variables

η = sin
ψ∗

2
, η sinω(s) = sin

ψ(s)

2
, (5.66)

where ψ∗ = θ∗ + β. Integration of differential problem (5.65) leads to the
non-trivial for θ∗, related to the dimensionless load parameter γ and the
angle β for the first bifurcation mode

3K (η)−K (η, ωβ) = γ

[
l̄ − γ2B

k

(
1− 2η2

)]
, (5.67)

where ωβ = arcsin

(
η−1 sin

(
β

2

))
. Using dimensionless parameters p =

P

kl̄

and q∗1 =
27π2

2

kl̄3

B
(so that, for q∗1 < 1 the system does not show bifurcation)

it is possible to rewrite equation (5.68) in the following form

pq∗1
(
1− p

(
1− 2η2

))2
=

(
1− 2 sin2 β

2

)
[3K(η)−K (η, ωβ)]2 . (5.68)

Since only this equation is not sufficient to define a relation between the load
P and the kinematic parameter θ∗, we have to use condition (5.64)4 in order
to provide a correspondence between θ∗ and β, which is written, similarly to
equation (2.89) reported in Section 2.2.3, as

−2η cosωβ
(
1− 2η2 sin2 ωβ

)
+2η sinωβ

√
1− η2 sin2 ωβ {3 [2E(η)−K(η)]− 2E(ωβ, η) +K(ωβ, η)} = 0.

(5.69)
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Equations (5.68) and (5.69) are highly non-linear and represent the non-trivial
solution. The relation between β and θ∗ (the former contained in ωβ and the
latter in η) can be numerically obtained from equation (5.69) and used into
equation (5.68) to have the relation P − θ∗. Finally, from integration of the
kinematic fields (5.15) we are able to write the analytical form for the axial
and transverse displacements of the outer part of the blade s ∈

(
leq, l̄

)
as

x1(s) = + sinβ

[
−2η

γ
cn
(
γ (s− leq) + K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
cosβ

{
−s+

2

γ

[
E [am (γ (s) + K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
,

x2(s) = cosβ

[
−2η

γ
cn
(
γ (s) + K(ωβ, η), η

)
+

2η

γ
cn
(
K(ωβ, η), η

)]
− sinβ

{
−s+

2

γ

[
E [am (γ (s) + K(ωβ, η), η) , η]

− E [am (K(ωβ, η), η) , η]
]}
.

(5.70)

5.7 The imperfect blade and its self-restabilization

In the following the effects of imperfections on the behaviour of the penetrating
blade will be considered. In particular, defect of tilt angle α and initial
constant curvature χ0 are analyzed through both theoretical and experimental
approaches, showing that, for some values of the dimensionless stiffness q1

and imperfection parameters, a monotonic increase of the load P concurs to
an increase and then a decrease of inflection, until the rod tends to return in
its straight configuration when it is completely penetrated into the sleeve,
revealing the asymptotic nature of the self-restabilization.

5.7.1 Penetrating blade with an imperfection of angle

An inextensible elastic planar rod with bending stiffness B and total length
l̄ is allowed to slide into a frictionless sliding sleeve with a linear spring of
stiffness k at its end. The other edge of the beam is loaded through a dead
vertical compressive load P , see Fig. 5.16 (left). The system can be considered
geometrically imperfect because of its initial tilt angle α respect the vertical
position, so that by varing the imperfection parameter α we can obtain a
family of imperfect systems that may eventually degenerate to the perfect
system when α→ 0 (Section 5.2.1).
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Figure 5.16: The elastic planar rod of constant bending stiffness B has a free end subject
to the dead load P , while the other edge of the blade slides into a frictionless
sleeve and is restrained by an axial linear spring of stiffness k. The length of
the blade inside the sliding sleeve at equilibrium is leq, while the total length
of the rod in its unloaded configuration is l̄. The system is made imperfect
because of the presence of a tilt angle defect α. The design scheme is
reported on the left, while for the experiments the prototype 1 (Section 5.5)
has been used, inclined through the movable beam of an electromechanical
tension-compression machine, as visible on the right.

Total potential energy and equilibrium equations

Introducing the curvilinear coordinate s ∈
[
0; l̄
]
and the rotation θ(s) of the

plane rod’s axis, since lin is the segment of the rod inserted into the perfectly
smooth and bilateral sliding sleeve, it follows that θ(s) = 0 for s ∈ [0; lin].
Denoting by a prime the derivative with respect to s, the total potential
energy of the system is

V(θ, lin) =

l̄∫
lin

B

[
θ
′
(s)
]2

2
ds+

1

2
k (lin)2 − P

[
cosα

l̄ − l̄∫
lin

cos θ(s)ds


+ sinα

l̄∫
lin

sin θ(s)ds

]
.

(5.71)

Following the calculus of variations adopted in Section 5.2, the compat-
ibility equations (5.23) and the boundary conditions (5.20) and (5.21) are
used together with Leibniz rule of differentiation and integration by part, in
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order to arrive at the first variation of the functional V

δεV = −
l̄∫

leq

[
Bθ
′′
eq + P

(
cosα sin θeq(s) + sinα cos θeq(s)

)]
θvar(s)ds

+

[
kleq − P +

B

2
θ
′
eq(leq)

2

]
lvar,

(5.72)

from which, imposing the vanishing of equation (5.72) for any admissible
variations θvar(s) and lvar, the differential equilibrium equation for the elastica
with a moving boundary leq is obtained as

θ
′′
eq(s) + λ2 (cosα sin θeq(s) + sinα cos θeq(s)) = 0, s ∈

(
leq, l̄

)
leq =

B

k

(
λ2 cosα− 1

2

[
θ
′
eq(leq)

]2
)
,

(5.73)

where the load parameter λ2 = P/B has been introduced. Operating in a
standard manner following Section 3.1.3, the introduction of the auxiliary
angle ϕ(s) = θeq(s) + α, together with the change of variables (3.29), leads
to the non-trivial solution for η, related to the rotation of the free end θl̄
by means of equation (3.29)1 and the tilt angle α, as a function of the load
parameter λ

K (η)−K (m, η) = λ

[
l̄ − λ2P

k

(
1− 2η2

)]
, (5.74)

where m = arcsin

sin
α

2
η

 and η = sin
θl̄ + α

2
. Recalling the definition of

the dimensionless load p and the dimensionless relative stiffness for the first
mode q1 (spring stiffness multiplied by the bar length and divided by a critical
load) as

p =
P

kl̄
, q =

16kl̄3

27π2B
, (5.75)

the solution (5.74) can be rewritten in the form

(1− 2η2)2p3 − 2(1− 2η2)p2 + p− 16

27π2q
[K (η)−K (m, η)]2 = 0, (5.76)

which is a cubic equation providing three equilibrium paths pA; pB; pC corre-
sponding to the first mode. One of these paths, namely C, has no physical
meaning because the rod is already penetrated into the sliding sleeve, since
pC > 1. The other two paths, namely A and B,are plotted in Fig. 5.17
(left) as a function of the free end rotation θl̄ for q = 0.5, showing that
asymptotic self-restabilization occurs for α = 10◦, whereas it does not happen
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Figure 5.17: Left: equilibrium paths A and B expressed as the dimensionless applied
load p versus rotation of the blade loaded edge θl̄ for dimensionless relative
stiffness q = 0.5 and imperfection angles α = {10; 20}◦. Right: region in the
plane q − α where asymptotic self-restabilization of the system is possible.
Two dots that corresponds to the deformed paths shown in the left graph,
α = 10◦ (A) and α = 20◦ (B), are reported for q = 0.5.

for α = 20◦. This means that for some particular values of the parameters q
and α a monotonic increase of the vertical dimensionless dead load p implies
firstly an increase and then a decrease of inflection up to the initial straight
configuration, in the limit of blade’s complete penetration inside the sliding
sleeve (p→ 1). The restabilization phenomenon is characterized by the join
of paths A and B, or it can be analytically recognized if pA is not defined
for all values of the kinematic parameter θl̄ ∈ [0; 180◦ − α]. Through this
criterion a ‘restabilization’ zone has been discovered in the plane q − α, as
reported in Fig. 5.17 (right).

The rotational field θeq(s) can be expressed through inversion of rela-
tion (3.29)1 as

θ(s) = 2 arcsin [η sn (λ (s− leq) + K (m, η) , η)]− α. (5.77)

from which the axial and transverse equations describing the shape of the
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elastica are obtained by integration of equation (5.15) as

x1(s) = −2η

λ
sinα

{
cn
(
λ (s− leq) + K(m, η), η

)
− cn

(
K(m, η), η

)}
− leq

cosα
{
−s+

2

λ

[
E
[
am
(
η (s− leq) + K(m, η), η

)]
− E

[
am
(
K(m, η), η

)]]}
,

x2(s) =
2η

λ
cosα

{
cn
(
λ (s− leq) + K(m, η), η

)
− cn

(
K(m, η), η

)}
+ sinα

{
−s+

2

λ

[
E
[
am
(
λ (s− leq) + K(m, η), η

)]
− E

[
am
(
K(m, η), η

)]]}
,

(5.78)

where the functions am, cn and sn denote the Jacobi amplitude, Jacobi cosine
amplitude and Jacobi sine amplitude functions while E(x, η) is the incomplete
elliptic integral of the second kind of modulus η. Equations (5.78) can be
evaluated at the loaded end, providing the following axial and transverse
displacement of the free edge of the blade

u1

(
l̄
)

=
1

λ

{
2η sinα cosm+ cosα

[
2E (η)− 2E (m, η) + K (m, η)−K (η)

]
+ K (m, η)−K (η)

}
− leq,

u2

(
l̄
)

=
1

λ

{
2η cosα cosm+ sinα

[
2E (m, η)− 2E (η) + K (η)−K (m, η)

]}
,

(5.79)

Equations (5.74) and (5.79) reveal the response of the system as a function of
the dimensionless load p, for different values of the relative stiffness parameter
q1. In particular, from Fig.5.18 can be noticed that

� for q < 1 asymptotic self-restabilization may occur if the value of
imperfection angle α belongs to the coloured area in Fig.5.17. For these
values the rod ‘spontaneously’ return, for a monotonic increase of p,
in the straight configuration when p→ 1 (upper part of Fig. 5.18, for
q = 0.7 and α = 5◦). If the values of q and α do not belong to the
coloured area, asymptotic self-restabilization does not occur and the
system shows a monotonic increase of inflection with an increase of p
(upper part of Fig. 5.18, for q1 = 0.7 and α = 10◦);

� for q > 1 the imperfect system follows exactly the behaviour of the
perfect system (α = 0◦, see Bigoni et al. [10]) and self-restabilization
cannot occur (bottom part of Fig.5.18, for q = 2 and α = 5◦ or α = 10◦).
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Figure 5.18: First-mode of bifurcation: deformation paths of the structure sketched in the
inset, expressed as the (dimensionless) applied load versus (dimensionless)
displacement components and rotation of the blade loaded edge. In every
graph the path of the perfect system (α = 0◦) is reported together with
the paths of the blade with two different tilt angles (α = 5◦ and α = 10◦).
Note that for q1 = 0.6 and α = 5◦ an asymptotic self-restabilization of the
triavial undeformed configuration occurs.

Finally, considering constant geometrical and material properties of the
rod (B), the reduction of elastic spring stiffness k leads to a decrease of
the inflection on equal applied load P . This effect is the same noticed by
Feodosiev [57], Tarnai [58] and Bigoni et al. [10] where an increase of elastic
stiffness of the spring yields a decrease in the buckling load.

Stability of configurations

In order to evaluate the stability of the equilibrium configurations for the
considered system, the second variation of the functional V, equation (5.71),
has to be calculated considering the boundary conditions (5.20) and the
perturbations in the rotation field θvar(s) and in the length lvar satisfying
the compatibility equations (5.23). Therefore the second variation evaluated
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at an equilibrium configuration can be written as

δ2
εV =

1

2

{[
k − 2P sinαθ

′
eq(leq)

]
l2var +B

l̄∫
leq

[
θ
′
var(s)

]2
ds

+ P

l̄∫
leq

(
sinα sin θeq(s)− cosα cos θeq(s)

)
[θvar(s)]

2 ds
}
.

(5.80)

The stability or instability of an equilibrium configuration is then related to the
sign of the second variation δ2

εV, evaluated for that equilibrium configuration,
as in equation (5.48), for any admissible perturbations θvar(s) and lvar
satisfying the compatibility eqns (5.23).

Considering the auxiliary function Γ(s), solution of the following boundary
value problem (the Riccati equation plus a boundary condition, see [60])

∂Γ(s)

∂s
− P cosα cos θeq(s) + P sinα sin θeq(s)−

Γ(s)2

B
= 0,

Γ(l̄) = 0,

(5.81)

the compatibility equations (5.23) and the identity (5.50), the second variation,
equation (5.47), can be rewritten as

δ2
εV =

1

2

{
B

l̄∫
leq

[
θ
′
var(s) +

Γ(s)

B
θvar(s)

]2

ds

+ l2var

[
θ
′
eq(leq)

(
θ
′
eq(leq)Γ(leq)− 2P sinα

)
+ k
]}
.

(5.82)

The auxiliary function Γ(s) can be obtained through the following Jacobi
transformation

Γ(s) = −BΛ
′
(s)

Λ(s)
, (5.83)

leading to the Jacobi boundary value problem
Λ
′′
(s) + λ2

(
cosα cos θeq(s)− sinα sin θeq(s)

)
Λ(s) = 0,

Λ(l̄) = 1,

Λ
′
(l̄) = 0.

(5.84)

The functions Γ(s) and Λ(s) can be obtained for a specific equilibrium
configuration, defined by {θeq(s), leq}, by solving the differential equations
(5.81) and (5.84), so that the instability of that equilibrium configuration
can be speculated when one of the following necessary conditions of stability
(δ2
εV > 0), obtained by Majidi et al. [41], are not satisfied:
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� (N1) The auxiliary function Γ(s), solution of to the boundary-value
problem (5.81), is not unbounded in the interval

[
leq, l̄

]
, or, equivalen-

tely, the function Λ(s), solution of to the differential problem (5.84),
has a conjugate point to s = l̄ in the interval

[
leq, l̄

)
. 3

� (N2) The following inequality is satisfied

∆ = θ
′
eq(leq)

(
θ
′
eq(leq)Γ(leq)− 2P sinα

)
+ k ≥ 0. (5.85)

Numerical investigations of solution of the Jacobi problem (5.84), per-
formed varying the dimensionless relative stiffness q, the dimensionless applied
load p and the tilt angle α show that equilibrium configurations of the path
reported with a dashed line in Fig.5.18 (B for systems that do not show
self-restabilization and A,B of not-restabilizing path for systems that do
show self-restabilization) are unstable, due to condition N2. All the other
equilibrium paths satisfy the necessary conditions (N1 and N2) and therefore
could be stable, although this cannot –for the moment– be proven and remains
a theoretical open problem, even if the stability of these equilibrium con-
figurations has been experimentally confirmed (see the experimental results
presented in the next section).

Experiments

Experiments have been performed on Prototype 1, which has been already
described in Section 5.5, while the angle of inclination α has been provided
lifting one support of the prototype through the movable (in the vertical
direction) rigid beam of an electromechanical tension-compression machine.
An elastic blade of length 450 mm, realized with C62 Carbon-steel strip (25
mm x 2 mm cross section, bending stiffness B = 2.70 Nm2) has been employed.
Two pair of carbon steel (EN 10270-1 SH) springs (D19100, 1 mm wire
diameter and 3 mm mean coil diameter, k = 225 N/m, purchased from D.I.M.)
have been used. The dead load at the end of the blade has been imposed
by filling (at a constant rate of 10 g/s) two containers with water and has
been measured with two miniaturized Leane XFTC301 (R.C. 500N) load cell.
The penetration length leq has been obtained by measuring the displacement
of the lower edge of the blade through a magnetic noncontact displacement
transducer GC-MK5 (from Gemac). The data have been acquired with a NI
CompactDAQ system, interfaced with Labview 8.5.1 (national Instruments).
Experimental results, expressed in terms of applied dimensionless load p as a
function of the dimensionless amount of the blade inserted into the sliding
sleeve, leq/l̄, are reported in Fig. 5.19 for a dimensionless stiffness parametr
q1 = 0.45. Results reported on the top refer to a tilt angle α = 10◦, for which

3The existence of a bounded Γ(s) on the interval
[
leq, l̄

]
implies that the integral in

(5.82) is non-negative.
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asymptotic self-restabilization occurs, whereas results reported on the bottom
to a tilt angle α = 20◦, for which asymptotic self-restabilization is not shown.
Experimental results (red line) have been reported together with theoretical
prediction (black line), showing every nice agreement between theory and
experiments.

Furthermore, a simple experiment has been performed on Prototype 1,
inclined of α = 12◦ with respect to the vertical direction, hanging different
load {24, 44, 64, 84}N to the blade’s free edge. The length of the C62 carbon-
steel strip initially external to the sliding sleeve is 470 mm, so that using
the two pairs of spring of stiffnes k = 225 N/m, the dimensionless relative
stiffness parameter is q1 = 0.52. From the five photos taken with a Sony
NEX 5N digital camera, equipped with 3.5-5.6/18-55 lens (optical steady
shot from Sony Corporation), is clearly visible the phenomenon of asymptotic
self-restabilization, because deflection of the blade is increased (up to case C))
and then decreased (cases D) and E)) with an increase of the applied vertical
load. When P = kl̄, the blade tends to return in its rectilinear undeformed
configuration, because it is completely penetrated into the sleeve.

5.7.2 Penetrating blade with an imperfection of intrinsic cur-
vature

In this section we briefly show the influence of an initial constant curvature
χ0 on the blade perfect system, Fig.5.1. The system reported in Fig.5.21 in
composed of an inextensible elastic planar rod (of bending stiffness B and
total length l̄) with an initial curvature of the rod χ0 = 1/r (where r is the
radius of curvature), loaded through a dead compressive load P at its free
edge and free to slide into a frictionless sleeve with inside a linear spring of
stiffness k. Since the initial curvature is constant in the curvilinear coordinate
of the beam, the rotation field θ(s) of the elastica of the outer part of the
blade is a solution of the following differential problem

d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈

(
leq, l̄

)
θeq (leq) = 0,

dθeq(s)
ds

∣∣∣∣
s=l̄

= χ0,

λ2 =
k

B
leq +

1

2

[
θ
′
eq(leq)

2 − χ2
0

]
.

(5.86)

Proceding in a standard manner as we have done in previous sections, and
considering only the first bifurcation mode, once the initial curvature χ0 is
known, we obtain relation between the dimensionless load parameter λ and
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Figure 5.19: Comparison between theoretical and experimental results for the system
sketched in the inset where the dimensionless load p is reported as a
function of the dimensionless amount of the blade internal to the sliding
sleeve leq/l̄. On the left portion of the graphs the behaviour of the transverse
dimensionless component of the blade loaded edge, u2

(
l̄
)
/l̄, reveals that,

for α = 10◦ (upper) asymptotic self-restabilization occurs, while for α =
20◦ (lower) asymptotic self-restabilization is not possible. Red dots are
experimental observations not directly measured, but extracted from the
video of the tests.
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Figure 5.20: Dimensionless load parameter p as a function of the transverse dimensionless
component of the blade loaded edge u2

(
l̄
)
/l̄ for α = 12◦ and q1 = 0.52

(upper-left). Five photos revealing an increase and then a decrease of
deflection with an increase of the applied vertical dead load. A point
that represent each photo is reported in the upper-left graph, showing the
excellent agreement between theoretical predictions and experiments.
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Figure 5.21: The elastic planar rod of constant bending stiffness B has a free end subject
to the dead load P , while the other edge of the blade slides into a frictionless
sleeve and is restrained by an axial linear spring of stiffness k. The length
of the blade inside the sliding sleeve at equilibrium is leq, while the total
length of the rod in its unloaded configuration is l̄. The system is made
imperfect because of the presence of an initial constant curvature χ0.

the rotation at the rod’s free end θl̄

K
(

arccos
χ0

2σλ
, σ
)

= λ

[
l̄ − λ2B

k

(
1− 2σ2 +

χ2
0

2λ

)]
(5.87)

where σ =

√
2λ2 − χ2

0 − 2λ2 cos θl̄
2λ

.
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Figure 5.22: First-mode of bifurcation: deformation paths of the structure sketched in the
inset, expressed as the (dimensionless) applied load versus (dimensionless)
rotation of the blade loaded edge. (Left) The value of the dimensionless
relative stiffness q1 = 0.6 allows an asymptotic self-restabilization of the
trivial loading path for low initial dimensionless curvature χ0/l̄ = 0.02,
while for χ0/l̄ = 0.1 it does not occur. (Right) The system with q1 = 2
follows the behaviour of the perfect blade, χ0/l̄ = 0, and does not show
restabilization.

Figure 5.23: Region in the plane q1 − χ0/l̄ where asymptotic self-restabilization of the
system is possible.
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Chapter 6

An elastica arm scale

The concept of ‘deformable arm scale’ (completely different from
a traditional rigid arm balance) is theoretically introduced and ex-
perimentally validated. The idea is not intuitive, but is the result of
nonlinear equilibrium kinematics of rods inducing configurational forces,
so that deflection of the arms becomes necessary for the equilibrium,
which would be impossible for a rigid system. In particular, the rigid
arms of usual scales are replaced by a flexible elastic lamina, free of
sliding in a frictionless and inclined sliding sleeve, which can reach
a unique equilibrium configuration when two vertical dead loads are
applied. Prototypes realized to demonstrate the feasibility of the system
show a high accuracy in the measure of load within a certain range
of use. Moreover, they represent the first innovative application of
configurational mechanics to elastic structures.

The measuring of the weight is a very common action, dating back
to the earliest days of civilization. In fact, for millennia the equal and
unequal arm balance scales have been used (for instance the classic Roman
balance, see Fig. 6.1 left), and still are used (see the overview by Robens
et al. [61]), to measure weight by exploiting equilibrium of a rigid lever, so
that a deformation of the arms would merely represent an undesired effect.
On the other hand, the modern digital weighting systems, inspired by the
principle of the elastic balance and invented at the end of the 17th century
by Robert Hooke are based on the elongation of a spring (Fig. 6.1 right), so
that equilibrium is always satisfied and the weight measure is directly linked
to deformation, where a counterweight is not needed. These are suitable for
different technological sectors.

A new paradigm, based on exploitation of nonlinear kinematics and
configurational mechanics of elastic rods, is proposed here for a scale with
deformable arms, where an inflected equilibrium configuration can be ex-
ploited to measure weight. In a sense, the proposed balance is a sort of
combination between a rigid arm and a spring balance, because equilibrium
and deformation are both simultaneously exploited. Therefore, the concept
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Figure 6.1: (Left) A classical steelyard based on rigid lever principle and (right) a spring
balance based on deformation.

introduced here differs completely from that underlying traditional scale
design, so that the proposed device can work with or without a counterweight.

The ‘elastically deformable arm scale’ is shown on the left of Fig. 6.2
(photo of prototype 1) as a realization of the scheme reported on the right of
Fig. 6.2, where an elastic rod (inclined at an angle α ∈ [0, π/2] with respect
to the two vertical dead loads applied at its edges) is free of sliding in a
frictionless sleeve of length l∗. For given loads (P1 and P2), the scale admits
an equilibrium configuration, possible by virtue of the flexural deformation of
the arms (would these be rigid, the equilibrium would be trivially violated).

This equilibrium configuration is inherently nonlinear, as it necessarily
involves the presence of configurational or ‘Eshelby-like’ forces [9], but can be
derived from stationarity of the total potential energy in a form suitable for di-
rect calculations. Therefore, the nonlinear equilibrium equations (Section 6.1)
can be exploited to determine a load from the measure of a configurational
parameter (the length aeq). Considerations on the second variation of the
total potential energy (Section 6.3), show that the equilibrium configura-
tions of the scale are unstable, a feature that may enhance the precision of
the load measure and that does not prevent the feasibility of the scale, as
shown through realization of two ‘proof-of-concept prototypes’ (Section 6.5).
Furthermore, a sensitivity analysis and the experiments performed on the
prototypes indicate that the deformable arm balance works correctly and
that can be more performing than traditional balances in certain load ranges.

6.1 Flexural equilibrium through Eshelby-like forces

The system shown in Fig. 6.2 (right) attains equilibrium because two forces
exist, tangential to the sliding sleeve, which can be interpreted as ‘con-
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0.1m

P1

aeq

lθα l*

α

0θα
aeq

Figure 6.2: (Left) Prototype 1 and (right) scheme of the deformable arm scale. The rod
used in the prototype is made up of a solid polycarbonate elastic lamina
of bending stiffness B=0.20 Nm2 and total length l̄ + l∗=0.98 m with ends
subject to dead loads P1=2.03 N and P2=2.52 N. The lamina can slide into
a frictionless sliding sleeve (realized with 8 roller pairs) of length l∗=0.148
m, inclined at an angle α=60◦ with respect to the vertical direction. The
theoretical value of the length defining the equilibrium configuration is
aeq=0.35 m, while the value measured on the prototype is equal to 0.34 m.

figurational’ (or ‘Eshelby-like’ [9]), in the sense that they depend on the
configuration assumed by the system at equilibrium. These forces and the
equilibrium conditions of the system can be obtained for an inextensible
elastic lamina of bending stiffness B and total length l̄ + l∗ from the first
variation of the total potential energy of the system [13]

V(θ(s), a) =

a∫
0

B

[
θ
′
(s)
]2

2
ds+

l̄+l∗∫
a+l∗

B

[
θ
′
(s)
]2

2
ds

− P1

cosα

a∫
0

cos θ(s)ds− sinα

a∫
0

sin θ(s)ds


− P2

− cosα

l̄+l∗∫
a+l∗

cos θ(s)ds+ sinα

l̄+l∗∫
a+l∗

sin θ(s)ds

 ,
(6.1)

where s ∈
[
0; l̄ + l∗

]
is a curvilinear coordinate, θ(s) is the rotation of the

rod’s axis, a and a+ l∗, are the curvilinear coordinates at which, respectively,
the left arm terminates and the right one initiates, so that θ(s) = 0 for
s ∈ [a; a+ l∗]. The parameter a, defining the position of the rod with
respect to the sliding sleeve, is variable, to be adjusted until the equilibrium
configuration is reached.

Considering a small parameter ε and taking variations (subscript ‘var ’) of
an equilibrium configuration (subscript ‘eq ’) in the form θ = θeq(s) + εθvar(s)
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and a = aeq + εavar, four compatibility equations are obtained from a Taylor
series expansion of the rotation field θ(ŝ) for ŝ = a and ŝ = a+ l∗, namely
(see [10] or Section 3.1.2 for details),

θvar(aeq) = −avarθ
′
eq(aeq) θvar(aeq + l∗) = −avarθ

′
eq(aeq + l∗),

θ′var(aeq) = −1

2
avarθ

′′
eq(aeq), θ′var(aeq + l∗) = −1

2
avarθ

′′
eq(aeq + l∗),

(6.2)
once the two kinematic boundary conditions at the edges of the sliding sleeve
are considered

θeq(aeq) = 0, θ(aeq+εavar) = 0, θeq(aeq+l
∗) = 0, θ(aeq+εavar+l

∗) = 0.
(6.3)

Through integration by parts and consideration of the first two compati-
bility conditions (6.2) and the static conditions at the free edges, θ′eq(0) =

θ
′
eq(l̄ + l∗) = 0, the first variation of the total potential energy (6.1) can be
obtained as

δεV = −
aeq∫
0

[
Bθ
′′
eq − P1

(
cosα sin θeq(s) + sinα cos θeq(s)

)]
θvar(s)ds

−
l̄+l∗∫

aeq+l∗

[
Bθ
′′
eq + P2

(
cosα sin θeq(s) + sinα cos θeq(s)

)]
θvar(s)ds

+

{
B

2

[
θ
′
eq(aeq + l∗)2 − θ′eq(aeq)2

]
− (P1 + P2) cosα

}
avar,

(6.4)

and imposed to vanish (for every variation in the rotation field θvar(s) and in
the length avar) to obtain the equilibrium configuration. This is governed by:

i) the elastica [15] for the two arms of the lamina

Bθ
′′
eq(s)− Pj sin

[
θeq(s)− (−1)jα

]
= 0, (6.5)

where j = 1 for the left arm (s ∈ [0, aeq]) and j = 2 for the right one
(s ∈

[
aeq + l∗, l̄ + l∗

]
), and

ii) the rigid-body equilibrium condition along the sliding direction of the
sleeve

(P1 + P2) cosα+
M2

1 −M2
2

2B︸ ︷︷ ︸
Eshelby-like forces

= 0, (6.6)

where M1 = Bθ
′
eq(aeq) and M2 = Bθ

′
eq(aeq + l∗). The latter condition

reveals the presence of two so-called ‘Eshelby-like forces’ [9], provided
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by the sliding sleeve at its left and right ends and generated by the
flexural deformation of the left and right arms, respectively, which define
the equilibrium condition of the system and are the key concept of the
deformable arm scale.

Following the same procedure adopted in Section 3.1.3, the rotations
at the free ends at equilibrium, θ0 = θeq(0) and θl̄+l∗ = θeq(l̄ + l∗), can be
obtained by introduction of the auxiliary angles ψ1(s) = θeq(s) + α+ π and
ψ2(s) = θeq(s) + α, for s ∈ [0, aeq] and s ∈

[
aeq + l∗, l̄ + l∗

]
respectively, and

double integration of the elastica (6.5), leading to the following conditions

aeq

√
P1

B
= K (κ1)−K (m1, κ1) ,

(
l̄ − aeq

)√P2

B
= K (κ2)−K (m2, κ2) ,

(6.7)
where K (κj) and K (mj , κj) are respectively the complete and incomplete
elliptic integral of the first kind

K(κj) =

π
2∫

0

dφj√
1− κ2

j sin2 φj
, K(mj , κj) =

π
2∫

mj

dφj√
1− κ2

j sin2 φj
, j = 1, 2.

(6.8)
and

κ1 = sin
θ0 + α+ π

2
, m1 = arcsin

sin
α+ π

2
κ1

 ,
κ2 = sin

θl̄+l∗ + α

2
, m2 = arcsin

sin
α

2
κ2

 ,
κ1 sinφ1(s) = sin

θeq(s) + α+ π

2
, κ2 sinφ2(s) = sin

θeq(s) + α

2
.

(6.9)

Further integration of the elastica (6.5) leads to the solution for the rotation
field at equilibrium

θeq(s) =



π − 2 arcsin

[
κ1sn

(
K(κ1)−

√
P1

B
s, κ1

)]
− α, s ∈ [0, aeq] ,

2 arcsin

[
κ2sn

(√
P2

B
(s− aeq − l∗) + K(m2, κ2), κ2

)]
− α,

s ∈
[
aeq + l∗, l̄ + l∗

]
,

(6.10)
where sn is the Jacobi sine amplitude function. Since the solution (6.10)

123



CHAPTER 6. AN ELASTICA ARM SCALE

Figure 6.3: The Prototype 1 loaded in a configuration which does not need any counter-
weight. The rod used in the prototype is made up of a solid polycarbonate
elastic lamina (inclined at an angle α=30◦ with respect to the vertical di-
rection) of bending stiffness B=0.03 Nm2 and total length l̄ + l∗=0.487 m
with one end subject to a dead load P2=1.53 N. The theoretical value of the
length defining the equilibrium configuration is aeq=0.128 m, while the value
measured on the prototype is equal to 0.126 m.

implies
Bθ
′
eq(aeq)

2 = 2P1 [cos(θ0 + α)− cosα] ,

Bθ
′
eq(aeq + l∗)2 = 2P2

[
cosα− cos(θl̄+l∗ + α)

]
,

(6.11)

the equilibrium along the sliding direction of the sleeve (6.6) can be expressed
as a ‘geometrical condition’ of equilibrium, which relates the angles at the
free edges to the two applied vertical dead loads as

P1 cos(α+ θ0) + P2 cos(α+ θl̄+l∗) = 0, (6.12)

and represents the balance of axial thrust of the deformable scale (0 ≤
α+ θ0 ≤ α and π/2 ≤ α+ θl̄+l∗ ≤ π).

When α+ θl̄+l∗ = π/2 the equilibrium equation (6.12) implies P1 = 0, so
that a counterweight is not needed, Fig. 6.3.

6.2 Mode of use of the elastic scale

The following modes of use of the elastic scale can be envisaged.

� The easiest way to use the elastic scale is referring to equation (6.12)
and measuring the two angles θ0 and θl̄+l∗ . Assuming that P1 and α
are known, P2 can be evaluated. Note that B is not needed in this
mode of use.
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� Another mode of use of the elastic scale is through the measure of
the length aeq. Knowing P1, B, and α, P2 can be determined in the
following steps:

i) Equation (6.7)1 gives θ0;

ii) Equation (6.12) gives θl̄+l∗ as a function of the unknown P2;

iii) Equation (6.7)2 provides an equation for the unknown P2, to be
numerically solved.

Figure 6.4: Equilibrium length aeq versus weight P2 for different inclination α =
{0; 30; 60; 90}◦ . The values of the counterweight P1 and the parameter
B/l̄ are the same adopted during the experiments, Section 6.6

Note that equations (6.7) define aeq as a one-to-one function respectively
of θ0, equation (6.7)1, and θl̄+l∗ , equation (6.7)2, while equation (6.12) defines
a unique relation between θ0 and θl̄+l∗ (within the limits of variability of
these two angles). Therefore, if all the possible deformations of the elastica
which are unstable even for clamped end are not considered, the equilibrium
solution of equations (6.7) and (6.12), when it exists is unique.

In order to adopt the second mode of use (selected for the experiments),
once decided the value of the counterweight P1, the material and geometrical
parameters of the lamina B and l̄, the graph reported in Fig. 6.4 can be
easily utilized to obtain the value of P2 from the measured length aeq. The
inclination of the scale α can be adjusted in order to have an appropriate
range of measured weight P2 or sensitivity S (see Section 6.4.2). In fact,
when α increases from 0◦ (vertical configuration where no counterweight is
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needed) to 90◦ (horizontal configuration), the range of measure weight tends
to increase up to the case when all possible values of P2 are covered, namely
α = 90◦.

6.3 Stability

Equilibrium configurations of the proposed mechanical system are expected to
be unstable by observing that a perturbation of the system at an equilibrium
position, a = aeq, through an increase (or decrease) of a, yields a leftward (or
rightward) unbalanced Eshelby-force, which tends to increase the perturbation
itself. However, instability of the equilibrium configuration exploited in the
deformable arm scale does not necessarily represent a drawback, as it could
increase precision in the measure.

In a rigorous way, the instability of a deformed configuration can be
detected by investigating the sign of the second variation of the total potential
energy, which can be written as

δ2
εV =

1

2

{
B

aeq∫
0

[
θ
′
var(s)

]2
ds+B

l̄+l∗∫
aeq+l∗

[
θ
′
var(s)

]2
ds

− sinα
[
P1θ

′
eq(aeq) + P2θ

′
eq(aeq + l∗)

]
a2
var

+ P1

aeq∫
0

(
cosα cos θeq(s)− sinα sin θeq(s)

)
θ2
var(s)ds

+ P2

l̄+l∗∫
aeq+l∗

(
sinα sin θeq(s)− cosα cos θeq(s)

)
θ2
var(s)ds

}
.

(6.13)

The second variation, equation (6.13), becomes

δ2
εV =

1

2

{
B

aeq∫
0

[
θ
′
var(s) +

Γ1(s)

B
θvar(s)

]2

ds

+B

l̄+l∗∫
aeq+l∗

[
θ
′
var(s) +

Γ2(s)

B
θvar(s)

]2

ds

+

[
Γ2(aeq + l∗)

[
θ
′
eq(aeq + l∗)

]2
− Γ1(aeq)

[
θ
′
eq(aeq)

]2

− sinα
(
P1θ

′
eq(aeq) + P2θ

′
eq(aeq + l∗)

)]
a2
var

}
,

(6.14)
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when the two auxiliary functions Γ1(s) and Γ2(s) are introduced as the
solutions of the following boundary value problems (for details, see 5.3)

∂Γ1(s)

∂s
+ P1 cosα cos θeq(s)− P1 sinα sin θeq(s)−

Γ1(s)2

B
= 0,

Γ1(0) = 0, s ∈ [0, aeq],
∂Γ2(s)

∂s
− P2 cosα cos θeq(s) + P2 sinα sin θeq(s)−

Γ2(s)2

B
= 0,

Γ2(l̄ + l∗) = 0, s ∈ [aeq + l∗, l̄ + l∗].
(6.15)

Considering the necessary condition by Majidi et al. [41], an equilibrium
configuration can be stable if

∆ = Γ2(aeq + l∗)
[
θ
′
eq(aeq + l∗)

]2
− Γ1(aeq)

[
θ
′
eq(aeq)

]2

− sinα
(
P1θ

′
eq(aeq) + P2θ

′
eq(aeq + l∗)

)
≥ 0.

(6.16)

Introducing the Jacobi transformation

Γj(s) = −B
Λ
′
j(s)

Λj(s)
, j = 1, 2, (6.17)

which leads to the following Jacobi boundary value problems
Λ
′′
1(s) +

P1

B

(
sinα sin θeq(s)− cosα cos θeq(s)

)
Λ1(s) = 0,

Λ1(0) = 1,

Λ
′
1(0) = 0, s ∈ [0, aeq],

Λ
′′
2(s) +

P2

B

(
cosα cos θeq(s)− sinα sin θeq(s)

)
Λ2(s) = 0,

Λ2(l̄ + l∗) = 1,

Λ
′
2(l̄ + l∗) = 0, s ∈ [aeq + l∗, l̄ + l∗],

(6.18)
the auxiliary functions Γj(s) with j = 1, 2 have been numerically evaluated
for all configurations considered in the experiments and, although conjugate
points are not present, the unstable character of the configurations follows
from ∆ < 0. Note that, although the equilibrium configurations have been
found to be unstable, the small friction inside the sliding sleeve allows the
experimental photography of these states, as reported in Figs. 6.2 and 6.3.
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6.3.1 Instability of the solution at small rotations

A general proof that all equilibrium configurations are unstable can be easily
derived under the assumption of small rotations. In this case, the equilibrium
configuration can be explicitly obtained as a function of the length a as

θeq(s, a) =



P1 sinα

2B
(s2 − a2), s ∈ [0, a],

P2 sinα

2B

[
(a+ l∗)(a− l∗ − 2l̄ ) + 2(l̄ + l∗)s− s2

]
,

s ∈ [a+ l∗, l̄ + l∗],
(6.19)

so that the total potential energy (6.1) is evaluated as

V(a) = −sin2 α

6B

[
P 2

1 a
3 + P 2

2 (l̄ − a)3
]
− a cosα(P1 + P2). (6.20)

The length a at equilibrium aeq can be obtained by imposing the vanishing
of the first derivative of the total potential energy (6.20), while evaluation of
its second derivative at equilibrium results in the following expression

∂2V(a)

∂a2

∣∣∣∣
aeq

= − sin2 α
[
aeqP

2
1 + (l̄ − aeq)P 2

2

]
< 0, ∀ aeq ∈ [0; l̄], (6.21)

demonstrating the instability of all the equilibrium configurations for small
rotations.

6.3.2 Stable systems

Finally, it is worth noting that a deformable scale where the equilibrium
configuration is stable can be easily obtained by adding to the proposed
system a linear elastic spring of stiffness k, located inside the sliding sleeve
(thus restraining the sliding of the elastic rod, see Chapter 5 or [10]). In
this case, the stabilizing term k(a − a0)2/2 (in which a0 is the length a in
the unloaded configuration) is added to the elastic potential energy (6.1).
Therefore, findings reported in this chapter pave the way to the realization
of stable systems, would instability prevent the practical realization of an
equilibrium configuration, which is not the case of the scale shown in the
Fig. 6.2 (left), as shown below.

6.4 Sensitivity analysis and comparisons between
balances

In order to appreciate the performance of the elastic arm scale, a comparison
with the classical unequal arm balance (Fig. 6.1 left) is needed because it is
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its hystorical predecessor, although still used nowadays in many fields. The
comparison may be possible through the parameter of sensitivity, which will
be adopted both to compare the elastic scale with the classical unequal arm
balance and to evaluate the performances of elastic balances with different
inclination angle α and bending stiffness B.

6.4.1 Steelyard

The steelyard is based on the principle of the lever between two rigid arm,
so that it operates exactly as the second mode of use of the elastic scale,
presented in Section 6.2. In this scale the equilibrium equation is guaranteed
by the moment balance at the fulcrum

P1aeq = P2

(
l̄ − aeq

)
, (6.22)

where P1 is the counterweight associated with the left arm of length aeq,
whereas P2 represents the weigth (to be measured) linked with the right arm
of length l̄ − aeq (see also the scheme in Fig. 6.5). Therefore, also for the
unequal balance, once fixed the value of the counterweight P1 and the total
length of the rigid bar l̄, the value of P2 can be obtained from equation (6.22)
once the length aeq has been measured.

6.4.2 Sensitivity analysis

In the treatise of Robens, Jayaweera and Kiefer [61] the concept of sensitivity
is associated to balances in order to compare their precision in weighing.
Sensitivity, according to DIN/ISO, is defined as the response of a measuring
instrument, which may be an angle or a length, divided by the corresponding
change in the stimulus, that is the mass placed on it. In our case, sensitiv-
ity S is the quotient of the observed variation of the variable aeq and the
corresponding variation of the measured weight at a given weight value

S =
∂aeq
∂P2

. (6.23)

Therefore, definition (6.23) is fundamental to define a quality characteristic
of a balance and for the classical steelyard, taking into account equilibrium
equation (6.22), sensitivity is expressed as

Ssteelyard =
P1 l̄

(P1 + P2)2 , (6.24)

whereas for the elastic arm scale it should be computed numerically due to
the non linearity nature of equilibrium equations (6.7) and (6.12).
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Figure 6.5: Comparison between classical steelyard and elastic scale at different inclina-
tions α = {0; 30; 60; 90}◦: (left) equilibrium length aeq and (right) sensitivity
S versus weight P2. The values of the counterweight P1 and the parameter
B/l̄ are the same adopted during the experiments, Section 6.6

6.4.3 Comparison with steelyard

A comparison between the classical unequal arm balance and our elastic scale
is reported in Fig. 6.5, where the graph on the left shows the equilibrium
length aeq function of the unknown weight P2, while on the right is reported
the sensitivity S, which represent the inclination of the previous graph. From
the first image can be noticed that the roman balance can measure all range
of weight P2, as well as the horizontal configuration (α = 90◦) of the elastic
scale, whereas the other inclined position of the flexible arm balance can
not measure lightweights. Nevertheless, the sensitivity analysis proves that
the inclined elastic scale is able to measure weights with an higher precision
respect the rigid arm balance. In fact, on equal weight to be measured P2,
sensitivity improves with the increasing of the inclination towards the vertical
configuration (α = 0◦) where no counterweight is requested and possible
effects due to friction are considerably reduced.

6.4.4 Comparison with different elastic scales

Finally, a comparison between elastic scales with different bending stiffness
B (in the hypothesis that the length of the flexible rod l̄ remains constant),
reported in Fig. 6.6, demonstrates that a decrease (increase) in the bending
stiffness produces an increase (decrease) of the range of measured weights
and an increase (decrease) in sensitivity S. Therefore a more accurate device
can be designed either reducing the rod’s bending stiffness (keeping constant
the length l̄) or increasing the length l̄ (keeping constant the material and
the section properties, namely B).
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Figure 6.6: Comparison between elastic scales with different parameter B/l̄ at two
different inclinations α = {30; 60}◦: (left) equilibrium length aeq and (right)
sensitivity S versus weight P2.

Figure 6.7: Two prototypes of the deformable arm scale: prototype 0 (left) and prototype
1 (right).

6.5 Prototypes of deformable scale

To test the possibility of realizing a deformable scale, two prototypes (called
‘prototype 0’ and ‘prototype 1’) have been designed, produced and tested (at
the Instabilities Lab of the University of Trento).

In prototype 0 (shown in Fig. 6.7, left) the sliding sleeve is 296 mm
in length and is made up of 27 roller pairs (each roller is a teflon cylinder
10 mm in diameter and 15 mm in length, containing two roller bearings).
In prototype 1 (shown in Fig. 6.2, left, and in Fig. 6.7, right) the sliding
sleeve, 148 mm in length, is realized with 8 roller (Press-Fit Straight Type,
20 mm in diameter and 25 mm in length) pairs from Misumi Europe. The
tolerance between the elastic strip and the rollers inside the sliding sleeve
can be calibrated with four micrometrical screws. Two elastic laminas have
been realized in solid polycarbonate (white 2099 Makrolon UV from Bayer,
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Figure 6.8: Equilibrium length aeq measured on the prototype shown in Fig. 6.2 (left, at
two inclinations α) for different loads P2 versus theoretical predictions.

elastic modulus 2250 MPa), one with dimensions 980 mm × 40.0 mm × 3.0
mm and the other 487 mm × 24.5 mm × 1.9 mm; the latter has been used
for the experiments reported in Fig. 6.8 and 6.9, while the former is shown
in Fig. 6.2 (left). The sliding sleeve is mounted on a system (realized in
PMMA) that may be inclined at different angles α. The two vertical dead
loads applied at the edges of the elastic lamina have been imposed manually.
The tests have been performed on an optical table (1HT-NM from Standa)
in a controlled temperature 20 ± 0.2◦ and humidity 48 ± 0.5% room. The
prototypes represent proof-of-concept devices, demonstrating the feasibility
of the elastic scale, with an accuracy which can be highly improved in a more
sophisticated design.

6.6 Experiments

Experiments have been fulfilled both on prototype 0 and 1, but the following
results are presented only for the second prototype because the results
have been found to be more accurate thanks to the sliding sleeve in it,
designed especially to reduce friction respect to the first prototype. Therefore,
experimental results (presented in Fig. 6.8 in terms of measured values of the
length aeq, for different weights P2) find an excellent agreement with the theory.
The sensitivity of the scale S has been reported in Fig. 6.9, together with the
maximum absolute error ‘err’ found in the experimental determination of the
load P2. The figure correctly shows that errors decrease at high sensitivity.
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Figure 6.9: Sensitivity S of the deformable arm scale (at two inclinations α) as a function
of the load P2, reported together with the maximum absolute error (denoted
by err) on the loads measured on the prototype shown in Fig. 6.2 (left).

Moreover, the sensitivity is so high for small P2 that the scale could in
a certain range of use become more accurate than a traditional balance,
confirming what presented in Section 6.4.3. A movie with experiments on
the prototypes is available at http://ssmg.unitn.it/elasticscale.html.

Finally, the reported findings represent a first step towards applications
to deformable systems, in which nontrivial equilibrium configurations at high
flexure can be exploited even for actuators or to realize locomotion, as will
be explained in the next chapter.
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Chapter 7

Torsional locomotion

The second application of configuration mechanics appears consid-
ering an elastic rod with one edge inserted into a frictionless and fitting
socket head, whereas the other edge is subject to a torque, generating
a uniform twisting moment. It is theoretically shown and experimen-
tally proven that, although perfectly smooth, the constraint realizes an
expulsive axial force on the elastic rod, which amount is independent of
the shape of the socket head. The axial force explains why screwdrivers
at high torque have the tendency to disengage from screw heads and
demonstrates torsional locomotion along a perfectly smooth channel.
This new type of locomotion finds direct evidence in the realization of
a ‘torsional gun’, capable of transforming torque into propulsive force.

Motion based on self-propulsion, or locomotion, is a research topic cur-
rently attracting a strong attention in mechanics, robotics, and biology. Since
pioneering studies by Gray on serpentine propulsion [62–64], elastic bending
of a rod has been shown to produce an axial tractive force. Our previous
results show that a motion along the channel can be induced even when the
applied forces are orthogonal to it. Moreover, it has been shown in previous
chapters (i.e. Chapter 3 and Chapter 6) that the Eshelby-like forces can
have a magnitude comparable with the applied loads. These forces are the
essence of snake and fish locomotion and must play an important role in the
problem of beam snaking occurring during smart drilling of oil wells and
in plumbing [65]. In fact, configurational force are related with the change
in curvature, so that (in the words of Gray [64]) ‘a snake cannot progress
round the arc of a circle or along a perfectly straight line’. From Gray’s
findings, nowadays it is known that an eel cannot glide over a board without
pegs, though its body may develop very large muscular waves. On the other
end, the same eel is able to move forward over a board studded with smooth
pegs or inside a smooth channel with changes in curvature. For this reason,
the sliding sleeve employed in the realization of the elastic arm scale and
considered also in [9] and [10] can be viewed as a perfectly frictionless and
tight channel in which an elastic rod can move through bending, while torsion
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has never been linked to locomotion.1

In mechanics, torsion of elastic rods is an old, but still ongoing and
important research topic [66–73], which is linked in the following to locomotion
through the following model problem.

A rectilinear inextensible elastic rod is subject to an applied torque at
one end while the other edge is inserted into a perfectly smooth and fitting
female constraint, able to react to the applied moment, Fig. 7.1 (A). For
instance, the elastic rod can be realized as a blade of thin rectangular cross
section inserted in a flathead screw, or as a cylindrical rod of hexagonal cross
section inserted in a hex socket. In these conditions, if l is the length of the
rod between the application point of the torque M and the end of the female
constraint, D the torsional rigidity (product of the elastic shear modulus
G and the torsion constant Jt) of the rod, the total potential energy of the
system at equilibrium is

V(l) = −M
2l

2D
. (7.1)

Would the length l of the rod be fixed, nothing special follows, but, since this
length is a free parameter, an ‘Eshelby-like’ or ‘configurational’ force P is
obtained as negative of the derivative of the potential energy with respect to
the configurational parameter, namely, the length l

P = −dV(l)

dl
=
M2

2D
, (7.2)

parallel to the axis of the rod and expelling the rod from the constraint,
if not balanced. This force, nonlinear in M , was never previously noticed.
It is at a first glance unexpected, because of the smoothness of the female
constraint, and simply explains why a screwdriver tends to disengage from a
screw head. Even more interestingly, this axial force (7.2) can be understood
as a propulsive force opening new possibilities for locomotion, while previously
Lavrentiev and Lavrentiev [74] and Kuznetsov et al. [75] related locomotion
of snakes and fish to the possibility of a system of releasing elastic flexural
energy.

7.1 The existence of the torsionally-induced axial
force

The existence of the propulsive force P , equation (7.2), can be proven with a
variational argument and recurring to a perturbation technique.

1The connection between configurational forces and the problem of snake locomotion
may also appear clear for anyone who’s ever tried to use a hand-held snake to unclog a
toilet becuase of the arising of the axial reaction force (i.e. the Eshelby-like force).
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7.1.1 Variational approach

The total potential energy V of a rod, which can slide into a frictionless sleeve,
subject on the left end to an axial dead load S and on the right end to a
torque M is (Fig. 7.1 (B))

V(θ(s), lin) = D

l̄∫
lin

[
θ
′
(s)
]2

2
ds−Mθ(l̄)− S lin, (7.3)

where s is the coordinate along the rod’s axis, θ(s) is the cross section
rotation in its plane, l̄ is the total length of the rod and lin = l̄ − l defines
its portion lying inside the constraint, so that the kinematical boundary
condition θ(lin) = 0 and the statical boundary condition θ′(l̄) = M/D follow.

Considering the rotation field θ(s) and the length lin as the sum of the equi-
librium configuration {θeq(s); leq} and the respective variations {εθvar(s); εlvar}
through a small parameter ε, the boundary conditions, similarly of previous
chapters, define as compatibility equations

θvar(leq) = −θ′eq(leq)lvar = 0,

θ
′
var(leq) = −1

2
θ
′′
eq(leq)lvar,

(7.4)

restricting the variations in the rotation field and in the length.
Equilibrium can be obtained by imposing the stationarity of the functional

V to any small variation in the rotation field θvar(s) and in the length lvar.
The first variation δεV can be obtained as

δεV = −
l̄∫

leq

Dθ
′′
eq(s)θvar(s)ds+

[
D
θ
′
eq(leq)

2

2
− S

]
lvar, (7.5)

so that the equilibrium equations are

θ
′′
eq(s) = 0 s ∈ [leq, l̄],

D
θ
′
eq(leq)

2

2︸ ︷︷ ︸
Eshelby-like Force

−S = 0,
(7.6)

the latter providing the axial equilibrium and showing the Eshelby-like or
configurational force P , equation (7.2), once the former is solved taking into
account the statical boundary condition θ′(l̄) = M/D.
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Figure 7.1: (A) Structural scheme of the elastic system employed to disclose the Eshelby-
like propulsive force related to torsion; the cross section has been sketched
triangular, but can have any shape capable of resisting torsion. (B) Perturba-
tive approach to analyze the Eshelby-like propulsive force P induced by the
application of the torque M : the rod is imperfectly clamped to the sliding
sleeve, in the sense that there is a misfit gap and the contact is idealized as
with circular rollers. (C) Front view of the elastic rod, where the misfit gap
is visible between cross section and torsional constraint. (E) The imperfect
fitting of the rod/sliding sleeve system yields to contact over a certain line,
so that the cross section ‘grasps’ the rollers along this line (sketched red in
the details C and D), where the reaction qi(s), orthogonal to the profile, is
acting.

7.1.2 Perturbative approach

The Eshelby-like force (7.2) can be obtained by introducing the assumption
that the female constraint, though perfectly frictionless, has some geometrical
imperfection. In particular:

� there is a gap between the rod’s cross section and the female;

� the profile of the female is not sharply cut, but has a curvature (sketched
for simplicity as circular in Fig. 7.1 B, E).

This imperfection will be shown to lead to the configurational force
P = M2/2D (independently of the misfit gap and of the female’s profile) and
therefore to remain unchanged in the limit when the imperfection tends to
zero (differently from the propulsive forces generated by bending, Chapter 3
or [9]). This approach was introduced by Balabukh et al. [43] for a system
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subjected to bending and already adopted for a demonstration of the Eshelby-
like force, and is extended now to torsion where it results complicated by the
3D nature of the problem.

The elastic rod (with a polygonal cross section) of axis s is assumed to
be constrained by N (equal to 3 in Fig. 7.1) smooth cylindrical rigid profiles
having a plane normal to their axes containing the s−axis. The shape of the
cross section boundary of each rigid profile (assumed circular for simplicity
in Fig. 7.1 B,C,D) is described by gi = hi(s), with i = 1, .., N . The contact
points may vary along s, so that the contact points are defined by the set C(s).
Considering perfectly frictionless contact, at each contact point a reaction
orthogonal to the profile is acting (Fig. 7.1 C,D,E), expressed by the line force
qi(s), with i ∈ C(s), with transversal component ti(s) and axial component
pi(s) given by

pi(s) = ti(s)h
′
i(s), (7.7)

where a prime denotes a derivative with respect to s. The cross section of the
elastic rod (triangular in Fig. 7.1), considered rigid in its plane, is subject to
an internal twisting moment m(s) varying along the elastic rod in the zone
of contact and in equilibrium in its plane with the contact forces ti(s), so
that the principle of virtual work written for an incremental torsion angle dθ
and corresponding incremental displacements dgi = h′i(s) ds writes as∑

i∈C(s)

ti(s) dgi = m′(s) dθ, (7.8)

which, employing the constitutive equation dθ = m(s)/D ds and the definition
(7.7), becomes ∑

i∈C(s)

pi(s) =

(
m2(s)

)′
2D

. (7.9)

Therefore, a propulsive force P is generated, that can be obtained as

P =

∫ ŝ

0

∑
i∈C(s)

pi(s) ds, (7.10)

where ŝ is the point at which complete detachment from the rigid profiles
occurs (ŝ = max

i
{ŝi}). A substitution of equation (7.9) into equation (7.10)

and subsequent integration yields formula (7.2) for the propulsive force P ,
since m(0) = 0, and m(ŝ) = M by equilibrium. Note that the thrust P is
independent of the shape of the female’s profile and of the amount of the
initial gap, present between the rod and the smooth profiles, meaning that the
amount of propulsive force, equation (7.2), is not affected by imperfections
of the female constraints.
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7.2 Experimental proof of the torsionally-induced
axial force

The system sketched in Fig. 7.1 (B) has been realized to provide a direct
experimental measure of the axial thrust P , equation (7.2). In particular,
the torsional apparatus (Fig. 7.2) has been designed and manufactured at
the Instabilities Lab (http://ssmg.unitn.it/) of the University of Trento. The
torque M is provided through a pulley (180 mm in diameter) loaded at a
constant rate with a simple hydraulic device in which water is poured into
a container at 10 gr/s (the applied load is measured with a miniaturized
cell from Leane, type XFTC301, R.C. 500 N). The elastic rod under twist
is constrained against rotation by employing roller bearings from Misumi
Europe (Press-Fit Straight Type, 20 mm in diameter and 25 mm in length),
modified to reduce friction. Where the torque is applied, the elastic rod
has been left free to slide axially through a double system, consisting of a
linear bushing (LHGS 16-30 from Misumi Europe) mounted over a linear
bearing (type Easy Rail SN22-80-500-610, from Rollon), so that longitudinal
friction has been practically eliminated. The Eshelby-like force has been
measured using a Gefran OC-K2D-C3 (R.C. 50 N) load cell and all data have
been acquired with a NI CompactDAQ system, interfaced with Labview 8.5.1
(National Instruments). The torsional device has been mounted on an optical
table (from TMC, equipped with four Gimbal piston air isolators) to prevent
spurious vibrations, which have been checked to remain negligible employing
two IEPE accelerometers (PCB Piezotronics Inc., model 333B50).

Experimental results, presented in Fig. 7.3 for different cross section,
length, elastic modulus, and constraint condition of the elastic rod subject
to torsion, fully confirm the theoretical predictions. In particular, results
obtained with rods of different lengths l and different misfit gaps ∆ between
the rod’s cross section and the female constraint (right) show unequivocally
the indifference of the Eshelby-like force from these parameters. Moreover,
tests have been conducted with different elastic moduli for the rod employing
HDPE (high-density polyethylene) and PC (polycarbonate) and different
(thin rectangular, square, triangular and trapezoidal, corresponding to D =
{31.29; 36.37; 156.97; 638.86}Nm2, respectively) cross sections left). In all
cases the theoretical predictions have been found to be extremely tight to
experimental results (see the movie available as electronic supplementary
material for a sample of the test).

7.3 Torsional locomotion and torsional guns

Gray [62–64] has been the first to point out that a release of flexural elastic
energy of a rod free of sliding in a frictionless channel can produce a locomotion
force and he employed this force to explain fish and snake movement, so
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Figure 7.2: The torsional apparatus working at imposed twisting moment M , with a
detail of the realization of the frictionless sleeve to constrain a rod with
triangular cross section. The enumerated objects are: (1) optical table, (2)
load cell, (3) accelerometer, (4) roller, (5) elastic rod, (6) axial double sliding
sleeve and (7) water container.

that a snake can propel itself producing bending by the backbone and its
muscles. Within the terminology introduced in the present work, the axial
thrust produced during flexural deformation is the Eshelby-like force related
to the release of elastic energy associated to curvature changes [11]. It is
therefore obvious to conclude that the configurational force P , equation (7.2),
can be interpreted as a propulsive force capable of producing longitudinal
motion through the application of a torque M .

To definitely prove that a torsional deformation can generate a longitudinal
propulsion, a proof-of-concept device has been developed as shown in Fig. 7.4
(A) and (B). In particular, an elastic strip (19.5 mm wide and made in
PC, weight 0.62 N) has been used, realized with two pieces with different
rectangular cross section (one is 1.8 mm and the other 5.3 mm thick), so that
one half of the strip, called ‘soft’ in the following, has D1=3.02 Nm2, while
the other, called ‘stiff’, has D2=67.36 Nm2. The elastic strip is constrained
with two pairs of roller bearings (at a distance l̃ = 535 mm) leaving possibility
of axial motion, but allowing the application of a torque M or a relative
rotation Θ. Initially, the elastic strip is inserted within the rollers so that the
soft part of the strip has a length l1 and the stiff one has a length l2 = l̃ − l1.
If a relative rotation Θ or a constant torque M is imposed between the two
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Figure 7.3: Torsionally-induced axial thrust S measured as a function of the applied
torque M and compared with theoretical predictions equation (7.2) for:
(upper) elastic rods differing in cross section and material (rectangular and
square in PC, triangular and trapezoidal in HDPE), and (lower) elastic rods
in PC with rectangular cross section having different lengths (l = {90; 180}
mm) and a null and a 3 mm misfit gap ∆.
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Figure 7.4: Scheme of the model (A) and photo of the prototype (B) of the torsional
gun. An elastic strip made up of two laminae with different cross sections
(so that one is ‘stiff’, D2=67.36 Nm2, and the other ‘soft’, D1=3.02 Nm2) is
hold between two pairs of roller bearings (at a distance l̃ = 535 mm). The
system can be quickly twisted, so that a release of torsional elastic energy
produces a propulsive force P enough to eject the elastic lamina. (C) The
torsional gun in action: a sequence of three photos taken at 30 fps, showing
that the propulsive force overcomes the gravity.

roller pairs, the total potential energy is respectively

V(Θ, l1) =
D2Θ2

2
(
l1(D2/D1 − 1) + l̃

) , V(M, l1) = −

(
(D2/D1 − 1)l1 + l̃

)
M2

2D2
,

(7.11)
so that the propulsive forces can be calculated as the negative of the derivative
taken with respect to l1

P (Θ, l1) =
D2(D2/D1 − 1)Θ2

2
(
l1(D2/D1 − 1) + l̃

)2 , P (M) =
(D2/D1 − 1)M2

2D2
, (7.12)

two formulas (the former holding for l1 < l̃) showing that the axial thrust is
constant when M is imposed while is a decreasing function of l1 when Θ is
fixed. The elastic properties of the rod affects the amount of the propulsive
force P . For instance, for a material with low shear modulus G, the torsional
rigidities D1 and D2 of the projectile would decrease, while the propulsive
force P would increase (decrease) for a given twisting moment M (for an
imposed angle Θ). With the employed materials and geometrical setup
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(l1=215 mm and l2=320 mm) and for an imposed angle Θ = π/2, the device
realizes an initial propulsive force P = 0.68 N, enough to overcome gravity
when the device is held in a vertical configuration.

During a manual use of the torsional gun, neither Θ, nor M , are precisely
imposed, but a quick hand torsion of the device originates a propulsive
longitudinal force able to eject the rod, even against gravity, see Fig. 7.4 (C)
and the movie available at http://ssmg.unitn.it/torsionallocomotion.html.

Note that, differently from a bow or a catapult, in the ‘torsional gun’ the
elastic deformation is stored in the projectile. The prototype of a torsional
gun proves in an indisputable way that an axial motion can be produced via
torsion, even in the absence of friction, so that a ‘flat animal’ can climb a
frictionless narrow channel by employing a muscular torque.

Moreover, this phenomenon is ideal for development as an actuator. By
using piezoelastic or thermal effects to apply a torque the actuator will produce
linear motion, without the use of motors, gears or transmission mechanisms.
This will lead to less complex systems, to systems without vibrations and
to lighter weight system. Since the longitudinal motion only depends on the
elasticity of the rod, it means that the designer can essentially choose from
a very large variety of materials allowing for actuators that can be used in
extreme conditions such as very high temperature or pressure, chemically
aggressive environments, vacuum etc, for both aerospace applications or
nanotechnology.
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