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Introdu
tion
After the development of laser sour
es, atomi
 gases have been used as anopti
al medium to study non-linear pro
esses. Via the presen
e of atoms anintense laser beam 
an in
uen
e its own properties or those of other beams[1℄. The gaseous samples allow to treat dire
tly the dis
rete and well-knownenergeti
 stru
ture of atoms to 
arry out ab initio 
al
ulations startingfrom the intera
tion between light and a single atom. These predi
tions
an be experimentally tested with high pre
ision by means of spe
tros
opi
te
hniques.Later on, light has been demonstrated as a very powerful tool not only tostudy atoms but also to manipulate them. During the last thirty years,in the �eld of Atomi
 Mole
ular Opti
al (AMO) Physi
s the developmentof laser 
ooling and trapping of neutral atoms [2℄ has lead to an impres-sive series of a
hievements related to the investigation of the outstandingproperties of ultra
old matter. Among these, the experimental realizationof Bose Einstein Condensation (BEC) is the most famous [3℄.The 
ombination of these re
ipro
al intera
tions indu
es ba
k-a
tion ef-fe
ts that result in surprising phenomena. For instan
e, the ki
k given bythe probe light to the interrogated atoms in the pre
ision spe
tros
opyexperiment of [4℄ was able to shift the position of the resonan
e 
uores-
en
e line of a signi�
ant amount. Furthermore, in the �rst experimentswith opti
al latti
es [5, 6℄, the 
hange in the latti
e 
onstant due to thee�e
tive index of refra
tion of the atomi
 sample itself was dete
ted viaBragg spe
tros
opy [7℄.More re
ently, the mutual e�e
ts arising from atom-laser intera
tion in anultra
old sample were shown in a most 
lean way by the 
avity optome-
hani
s experiment [8℄. In this setup a BEC is put inside an opti
al 
avityand then a laser beam is shined whi
h is far o�-resonant with respe
t anyele
troni
 transitions of atoms while it is resonant with a 
avity mode.The ex
itation of the 
avity mode indu
es an e�e
tive latti
e potential forthe 
ondensate whi
h is then modulated in density. The refra
tive indexv



vi INTRODUCTIONdue to the presen
e of the atomi
 medium is then a

ordingly spatiallymodulated resulting in a shift of the 
avity frequen
y. This interplay hasa sharp signature in the os
illating transmission spe
trum of the 
avity.The use of ultra
old matter as an eÆ
ient tool to manipulate light is thekey idea of the present work. We start from an opti
al point of view: wehave investigated the features of ultra
old atomi
 gases as an extremelydispersive and tunable medium for light propagation. Inspired by the de-velopment in solid-state systems of stru
tures designed to have a spe
i�
opti
al response su
h as Photoni
 Crystals [9℄ or metamaterials [10℄, wehave joined the sharp features of 
old samples with the intriguing e�e
tsderiving from spatially modulated geometries and 
oherent dressing ofatomi
 states. The fo
us is the proof of prin
iple of te
hniques whi
h maybe important in view of opti
al information pro
essing. Cold matter al-lows to get rid of spurious e�e
ts present in solid-state devi
es and then toaddress the underlying physi
s in these phenomena. Cold gases take alsoadvantage from the suppression of Doppler broadening with respe
t hotatomi
 vapor.Before the a
hievement of BEC, some attention was paid to the studyof 
oherent s
attering of photons by the atoms in the 
ondensate phaseto determine the refra
tive index of the sample [11{13℄. The use of lightwhi
h is resonant with some atomi
 transition enhan
es dramati
ally theatom-photon 
oupling: the strong 
oupling regime is rea
hed when thematrix element for the intera
tion is bigger then the linewidth of theatomi
 transition. While in semi
ondu
tors this 
oupling leads to mixedradiation-matter ex
itations 
alled polaritons, in gaseous atomi
 mediaresonant light is usually strongly absorbed preventing the observation ofthe Rabi splitting.The a
hievement of Mott Insulator (MI) phase for a BEC loaded into adeep opti
al latti
e [14℄ has opened an interesting perspe
tive in order toobserve polariton physi
s in ultra
old samples: the strong lo
alization ofatoms at the latti
e sites is in fa
t responsible for a quen
hing of absorp-tion [15℄. In a modern perspe
tive, the atomi
 MI 
an be seen as a sort ofextremely resonant photoni
 
rystal. A key point dis
ussed in literature isthe existen
e of a 
omplete photoni
 band gap in su
h stru
tures [16{18℄.The interplay of 
onventional polariton (Rabi) splitting and the di�ra
tiondue to the latti
e arrangement is at basis of di�erent regimes for the opti-
al response [19℄. Although the radiation-matter 
oupling is mu
h weakerthan in solid-state diele
tri
 stru
tures, the high regularity of MI stronglyde
reases the dephasing me
hanisms.The response of this systems around the resonan
e frequen
y is domi-nated by both strong re
e
tivity and absorption pro
esses whi
h result inlight being forbidden from propagating through the medium. By exploiting



INTRODUCTION viidark resonan
es in dressed atomi
 gases it is possible to over
ome this lim-itation. The existen
e of non absorbing resonan
es in three-level atomi
systems pumped by two laser beams was �rst dis
overed during spe
-tros
opi
 experiments in sodium vapors [20℄. Thanks to the interferen
ebetween di�erent ex
itation pro
esses, atoms are driven into a 
oherentsuperposition of states that is eventually de
oupled from radiation: thisis the essen
e of the Coherent Population Trapping [21℄. Furthermore, the
oherent 
ontrol of the opti
al response of a medium by means of a stronglaser �eld allows for the opti
al swit
hing of the propagation of a se
ondweak probe beam, leading to the so 
alled Ele
tromagneti
ally Indu
edTransparen
y (EIT) [22{24℄. Among the di�erent realizations, ultra
oldsamples o�er a unique environment whi
h is prote
ted from de
oheren
e:this is favourable even in the 
ase of su
h a robust phenomenon as EIT.The propagation of light through otherwise opti
ally opaque media 
an bedes
ribed within a polariton treatment in the three-level system. Beyondthe 
onventional resonant polaritons typi
al of two-level atoms, a nar-row bran
h appears at resonan
e: this is the Dark Polariton (DP) whi
h
onsists of a 
oherent mixing of radiation and atomi
 ex
itations 
orre-sponding to a two-photon Raman resonan
e [25{27℄. The DP is responsiblefor EIT and shows interesting properties: it is long-living be
ause of thesuppression of absorption, it su�ers no re
e
tion at the boundaries of thesystem and, most remarkably, its group velo
ity 
an be opti
ally tuned bymeans of the 
ontrol beam down to very small values [28℄. The 
ompleteturn o� of the 
ontrol beam provides a full mapping of the probe pulseinto atomi
 (spin-like) ex
itations. The pro
ess 
an be reversed resultingin a light storage and retrieval from atoms [29℄. Both ultraslow light andlight storage were demonstrated in 
old atomi
 samples [30,31℄ while morere
ently the use of an atomi
 MI has shown a promising in
rease of thestorage time up to some hundreds of millise
onds [32℄.The in
rease of the intera
tion time due to the small speed of probe pulsesjoined with the tunability of the opti
al response enhan
es the possibilitiesto perform a dynami
 modulation of the light signal. Su
h modulations arethe goal of Dynami
 Photoni
 Stru
tures (DPS) [33℄. The general 
on
eptof DPS is based on a pulsed experiment where the opti
al response of amedium is varied in time while the probe signal is inside the stru
ture.This 
on�guration allows for an eÆ
ient manipulation at both 
lassi
al andquantum level. The perturbation of the medium 
an be applied through a
ontrol laser beam (all-opti
al te
hnique) or by means of other me
hanisms(e.g. inje
tion of 
arries or magneti
 �eld ramps).Although the more 
omplete modern theories implies that both light andmatter are represented by quantum �elds, radiation-matter intera
tion
an still be treated within a semi-
lassi
al pi
ture in a lot of situations:



viii INTRODUCTIONthe ele
tro-magneti
 (e.m.) �eld is 
onsidered as a 
lassi
al obje
t and theenergeti
 stru
ture of matter is quantized. This formalism dates ba
k tothe birth of quantum me
hani
s and 
an be applied to all the pro
essesin whi
h the quantum nature of light is still hidden su
h as e.g. the stim-ulated emission, up to many aspe
ts of laser physi
s [34℄. In parti
ular,at the level of linear opti
s, i.e. for weak e.m. �elds, 
lassi
al Maxwell'stheory fully des
ribes the dynami
s of the radiation �eld. Within this for-malism the e�e
t of radiation on the matter appears through the minimal
oupling repla
ement into the S
hr�odinger's equation. Vi
e versa, the pres-en
e of matter generates a polarization term into the Maxwell's equationswhi
h gives the refra
tive properties of the material. The self-
onsistent
onne
tion between the two formalisms is given by a density matrix rep-resentation of the atomi
 evolution whi
h allows to transfer the results ofthe S
hr�odinger's equation into Maxwell's. Dissipative e�e
ts due to va
-uum 
u
tuations (i.e. spontaneous emission) are in
luded within a masterequation treatment.The propagation of light through an ultra
old atomi
 gas is the main topi
of the present work.The thesis 
onsists of two parts.In Part I (Chapters 1,2,3), we give a 
omplete des
ription of the 1D pho-toni
 bands of a MI of two-level atoms paying attention to both banddiagrams and re
e
tivity spe
tra. The role of regular periodi
ity of thesystem is addressed within a polariton formalism. The s
attering on de-fe
ts inside latti
es of three-level atoms is also studied in view of opti
aldete
tion of impurities in su
h stru
tures. The light is used as a probe ofsystems engineered by the use of other laser beams.Part II (Chapters 4,5) is devoted to the development of a general frame-work for the time-dependent pro
essing of a propagating slow DP in aspatially inhomogeneous system. The 
oherently tunable atomi
 gas a
tsas a DPS. Appli
ations of this 
on
ept 
on
erning wavelength 
onversionand reshaping of the pulse are also dis
ussed.The theoreti
al tools used to fa
e the semi-
lassi
al theory of radiation-matter intera
tion in the systems under investigation are: Maxwell-Blo
h(MB) formalism [35℄ and Transfer Matrix (TM) te
hnique [36℄.We have restri
ted to a 1D geometry with transverse polarized probebeams whi
h allows to 
onsider e.m. radiation as a s
alar �eld. We havesolved the photoni
 band problem by means of TM that give the stationaryresponse of 1D layered diele
tri
 stru
tures starting from the sus
eptibilityof ea
h single layer. The interest in this te
hnique is related to its sim-pli
ity, numeri
al stability and to the fa
t that it allows to simultaneously
al
ulate both dispersion law and re
e
tivity spe
tra.The study of the time evolution of a pulse inje
ted and propagatingthrough an EIT medium is performed by means of MB equations for the
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oupled ele
tri
 and atomi
 polarization �elds. The use of a modi�ed ver-sion of the 
onventional Slowly Varying Envelope Approximation (SVEA)makes possible to handle the problem of re
e
tion at interfa
es in a uni�edtreatment without the need for 
oupled mode theory.The thesis is organized as follows.In Chapter 1, we brie
y review the semi-
lassi
al theory for atom-laserintera
tion by using Opti
al Blo
h Equations (OBE). The general formfor the evolution of atomi
 
oheren
es and the 
orresponding resonant
ases are reported in order to derive the dispersive sus
eptibility for bothtwo-level and three-level atoms. It is also dis
ussed the di�eren
e betweenthe response of a single atom as 
ompared to a 
loud (Clausius-Mossottiformula).The photoni
 bands of an atomi
 MI are studied in Chapter 2. Two dis-tin
t regimes are individuated depending on the relative position of theresonant and Bragg frequen
ies with respe
t to polariton splitting. Theband diagram as well as re
e
tivity spe
tra are dis
ussed. For the re
e
-tion properties, two di�erent geometries are addressed: the semi-in�nitesystem and the �nite slab. The variation of resonant re
e
tivity from asingle atom to a long latti
e is also highlighted.In Chapter 3, the EIT phenomenon in an atomi
 gas is introdu
ed andits main features are dis
ussed in terms of a polariton dispersion. There
e
tivity dip 
orresponding to the slow DP is used to study the s
atteringon defe
ts of the atomi
 system su
h as la
k of atoms at some sites of aMI. The defe
t 
an be seen as a 
avity whi
h supports lo
alized modes.Furthermore, by using an atomi
 defe
t instead of a va
uum region, a peakappears and it 
an be moved within the EIT window.A 
omplete MB formalism is developed in Chapter 4 aiming to studythe propagation of a pulse through a generi
 inhomogeneous and time-dependent stru
ture 
omposed of alternating layers of va
uum and EITmedia. The modi�ed SVEA (mSVEA) is presented and its main featuresand limitations are pointed out. The pulse propagation is investigated intwo geometries: a homogeneous layer and an interfa
e, in both stati
 anddynami
 situations. An e�e
tive equation for the 
ow of the ele
tri
 �eldintensity is derived.Finally, in Chapter 5 we des
ribe some relevant physi
al aspe
ts of DPS.The 
hapter is divided in three parts. The �rst one deals with the problemof the e�e
tive 
oupling between di�erent polariton bands, indu
ed by thetime-evolution of the system parameters. In the se
ond part, we proposethe s
heme for a 
old gas Photon Energy Lifter [37℄ whi
h performs awavelength 
onversion of a DP pulse. In the last part, it is presented thegeneral idea of a inhomogeneous stru
ture (EIT 
hain) devoted to thereshaping of the ele
tri
 �eld of a light signal. At the level of linear opti
s,



x INTRODUCTIONthis is equivalent to the manipulation of photon wavefun
tion. Both forthe photon lifter and the EIT 
hain, realisti
 values extra
ted from 
urrentexperiments are used in the simulations.The a
ronyms and physi
al 
onstants used in the thesis are summarizedin the �nal appendix Notation.
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CHAPTER 1
Resonant atom-lightintera
tion
The intera
tion between atoms and light is mainly determined by the res-onan
es related to the dis
rete stru
ture of the energeti
 levels. The sep-aration in energy between the di�erent levels and the use of light sour
eswith a redu
ed spread in frequen
y (i.e. lasers) allow to play sele
tivelywith one or few of these levels. Dilute 
old gases o�er the possibility tostudy the opti
al response of the whole medium with simple te
hniquesstarting from the atomi
 behavior.In Se
tion 1, we summarize the derivation of the opti
al response of anatom to a probe �eld via a density matrix approa
h. The resulting Opti
alBlo
h Equations (OBE) are presented.In Se
tion 2, we 
al
ulate the stationary situations at linear order in theprobe �eld in order to obtain the sus
eptibility of an ensemble of two-levelatoms. From the general 
ase, we spe
ify the atomi
 sus
eptibility for aresonant radiation and we introdu
e a generalized os
illator strength f asan adimensional parameter des
ribing the atom-photon 
oupling.We apply the same pro
edure to the 
ase of a three-level � atomi
 
on�g-uration in Se
tion 3. In this 
ase the response of the atomi
 gas is tailoredby the intensity of a 
ontrol laser beam.In Se
tion 4, we show a brief derivation of the Clausius-Mossotti 
orre
tionfor the sus
eptibility of a dense atomi
 bulk. It results in an e�e
tive shiftof the atomi
 resonan
e frequen
y.

3



4 CHAPTER 11.1 Opti
al Blo
h EquationsWe 
onsider a semi-
lassi
al pi
ture in whi
h the (light) ele
tri
 �eldE(x; t) is a 
lassi
al obje
t while the atomi
 transitions are representedthrough operators (i.e. the density matrix). We spe
ify the density matrixonly to the relevant atomi
 levels, i.e. the initial state, the levels 
oupledthrough some light �eld to the ground state and the levels whi
h 
an berea
hed through de
ay me
hanisms. In the weak ex
itation regime, thedynami
s of the atomi
 ensemble under the a
tion of resonant or quasi-resonant 
oherent (laser) �elds 
an be des
ribed using a linearized form ofthe OBE [21,35℄. The general form of OBE is:i~��̂�t = [Ĥ; �̂℄ + L(�̂): (1.1)The �rst term in the LHS is the usual Von Neumann 
ommutator for theevolution of the density matrix �̂ under the a
tion of a radiation-matterHamiltonian Ĥ. In order to des
ribe the real evolution of the atomi
 sys-tem, the OBE in
lude dissipative terms, L(�̂). These terms 
ome from amaster equation treatment and are responsible for the loss of 
oheren
ein the radiation-matter intera
tion as well as spontaneous emission [24℄.In fa
t, the relevant quantities for our purposes are the so 
alled 
o-heren
es �ab, i.e. the o�-diagonal elements of the atomi
 density matrix�̂ = Pa;b �ab jai hbj, where a and b label the internal atomi
 states 1. Interms of the 
oheren
es �lg the atomi
 polarization readsP (x; t) =Xl n(x; t) dlg (�lg(x; t) + �gl(x; t)) : (1.2)Here, dgl is the ele
tri
 dipole moment of the transition from the groundjgi state to a generi
 ex
ited state jli; n(x; t) is the atomi
 density of themedium. The sus
eptibility is then determined from its de�nitionP(!) = �0�(!)E(!); (1.3)whi
h is given here in the frequen
y domain. In the following we will
onsider two 
ases: the two-level atom and the three-level � 
on�guration,shown in Fig. 1.1.1From now on, we drop the symbol `^' from the notation wherever it is 
lear whi
hquantities are operators.
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tion 5
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Figure 1.1: Ex
itation s
hemes: on the left, 2-level atom; on the right, 3-level� s
heme.1.2 Resonant Sus
eptibility for two-levelatomWe 
onsider the ele
tri
 �eld of a laser E(t) = E (e�i!t + 
:
:) that intera
tswith the transition between two levels of an atom: the ground state jgi andan ex
ited state jei. We suppose that the other levels are far from probefrequen
y ! whi
h is tuned near the transition frequen
y !eg = !e � !g.The Hamiltonian of the system 
onsists of an atomi
 part,HA = ~!g jgi hgj+ ~!e jei hej ; (1.4)and a radiation-matter intera
tion part,HAR = �degE �e�i!t jei hgj+ h:
:� : (1.5)Within the rotating wave approximation [34, 35℄, we are only 
onsideringthe resonant terms for intera
tion. The �rst term in the RHS of equation(1.1), that 
orresponds to the usual Von Neumann equation, givesi~d�ggdt = �degE ��egei!t � �gee�i!t� ; (1.6a)i~d�eedt = �degE ��gee�i!t � �egei!t� ; (1.6b)i~d�egdt = ~ (!e � !g) �eg + deg (�ee � �gg) Ee�i!t; (1.6
)i~d�gedt = �~ (!e � !g) �eg � deg (�ee � �gg) Eei!t: (1.6d)



6 CHAPTER 1We eliminate the exponential fa
tors by introdu
ing the redu
ed 
oher-en
es ~�eg = �egei!t and ~�ge = �gee�i!t, while �ee and �gg are un
hanged:i~d�ggdt = �degE (~�eg � ~�ge) ; (1.7a)i~d�eedt = �degE (~�ge � ~�eg) ; (1.7b)i~d~�egdt = ~ (!eg � !) ~�eg + degE (�ee � �gg) ; (1.7
)i~d~�gedt = �~ (!eg � !) ~�eg � degE (�ee � �gg) : (1.7d)We use the se
ond term in the RHS of equation (1.1) to introdu
e the life-time of the atomi
 level 
 whi
h determines the de
ay of the ex
ited statepopulation �ee and the lose of 
oheren
e during the intera
tion pro
ess.The OBE then readd�ggdt = idegE~ (~�eg � ~�ge) + 
�ee; (1.8a)d�eedt = idegE~ (~�ge � ~�eg)� 
�ee; (1.8b)d~�egdt = �i (!eg � !) ~�eg � idegE~ (�ee � �gg)� 
2 ~�eg; (1.8
)d�gedt = +i (!eg � !) ~�eg + idegE~ (�ee � �gg)� 
2 ~�ge: (1.8d)From the �rst two equations, it is visible the 
onservation of the tra
e ofthe density matrix, while the latter two equations state that the densitymatrix is always hermitian. For this reason, we need only one from thelast two equations. We also note the quantity 
 = �(degE)=~ whi
h isusually 
alled the Rabi frequen
y of the laser �eld. If we 
onsider a gas ofatoms whi
h are in the ground state at the intial time and we assume theele
tri
 �eld to be weak, at linear order in E we obtain �gg = 1 and �ee = 0from (1.8). We are interested in parti
ular in the stationary solution of theequation (1.8
): ~�eg = �idegE~ 1i(! � !eg)� 
=2 = (1.9)= degE~ 1!eg � ! � i
=2 : (1.10)By using (1.2) and (1.3), we obtain the sus
eptibility of a gas of two-levelatoms: �(!) = nd2eg�0~ 1!eg � ! � i
=2 : (1.11)We remind that this result is valid in the range of frequen
y near theresonan
e.



Resonant atom-light intera
tion 71.2.1 The os
illator modelTo get the sus
eptibility far o�-resonan
e it is possible to model the atomi
transition as an harmoni
 os
illator with proper frequen
y !eg subje
t toa for
ing term due to the probe �eld E and a�e
ted by a dissipative termbased on 
. To write the equation of motion of su
h a system we introdu
ethe mass me and 
harge e of the ele
tron and we assume z as the dire
tionof os
illation: med2zdt2 = eE �me!2egz �me
dzdt : (1.12)By swit
hing to the frequen
y domain, we obtain�me!2z +me!2egz � ime
!z = eE: (1.13)The polarization of the atomi
 gas is given in terms of the dipole momentof the single atom P = nez = �0�E; (1.14)where n is the atomi
 density. From (1.13) and (1.14), we obtain the�(!) = ne2me�0 1!2eg � !2 � i
! (1.15)whi
h is the so 
alled Drude-Lorentz formula. The fa
tor!2p = ne2me�0 (1.16)is the square of the plasma frequen
y of the atomi
 gas. In the limit ofresonant ex
itation, (! ! !eg), the linearized form of (1.15) gives theexpression (1.11) and it is possible a 
omparison with the measurablequantities related to a real atom. In general, the plasma frequen
y is usedto express the numerator of the sus
eptibility by de�ning the adimensionalos
illator strength f [38℄:�(!) = f!2p!2eg � !2 � i
! : (1.17)Throughout the present work, we de
ide to use the slightly di�erent for-mulation �(!) = f!2eg!2eg � !2 � i
! ; (1.18)whi
h keeps the adimensionality of f , but it uses the transition frequen
yinstead of !p. From the 
omparison of (1.15) and (1.11), we obtain:f!eg2 = nd2eg�0~ : (1.19)In the following we will always refer to the os
illator strength as a 
ru
ialparameter to determine the strength of radiation-matter intera
tion.



8 CHAPTER 11.3 Resonant Sus
eptibility for three-levelatomIn the 
ase of the � s
heme depi
ted in Fig. 1.1, we also 
onsider thelevel jmi that is 
oupled to the ex
ited state via a (generally) strong
oherent �eld, represented through its Rabi frequen
y 

. This �eld isaddressed as the 
ontrol or dressing �eld to distinguish from the probe�eld E. The opti
al transition between the state jmi and the ground stateis forbidden for symmetry rules: the state is then long-living with respe
tjei and therefore it is 
alled metastable. It means that 
m � 
e, where thesubs
ripts 
learly refer to the di�erent atomi
 states. We also assume theex
ited state to have the same de
ay rate 
e towards both the ground andmetastable states. The Hamiltonian for the three-level � 
on�guration isgiven by HA = ~!g jgi hgj+ ~!e jei hej+ ~!m jmi hmj ; (1.20a)HAR = �degE �e�i!t jei hgj+ h:
:�++~

2 �e�i!
t jei hmj + h:
:� : (1.20b)As the density matrix is hermitian, the general form of the OBE equationsis given by the six equations:i~d�ggdt = �degE ��egei!t � 
:
:�+ i~
e2 �ee; (1.21a)i~d�eedt = degE ��egei!t � 
:
:�+ ~

2 ��mee�i!
t � 
:
:�+�i~
e�ee; (1.21b)i~d�mmdt = �~

2 ��mee�i!
t � 
:
:�+ i~
e2 �ee; (1.21
)i~d�egdt = ~!eg�eg + degEe�i!t(�ee � �gg) + ~

2 �mge�i!
t +�i~
e2 �eg; (1.21d)i~d�mgdt = ~!mg�mg + ~

2 �egei!
t � degEe�i!t�me +�i~
m2 �mg; (1.21e)i~d�medt = ~!me�me + ~

2 ei!
t (�ee � �mm)� degEei!t�mg +�i~
e2 �me: (1.21f)At the linear order in the amplitude of the ele
tri
 �eld E only the groundstate is populated: �gg = 1 while �ee = �mm = 0. Furthermore the 
oher-en
e �me is a term of se
ond order in the amplitude of the probe �eld as
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an be seen from (1.21f) and (1.21e). By exploiting these observations, weare left with the equations (1.21d) and (1.21e) in order to determine thelinear sus
eptibility:i~d�egdt = ~!eg�eg � degEe�i!t + ~

2 �mge�i!
t � i~
e2 �eg;(1.22a)i~d�mgdt = ~!mg�mg + ~

2 �egei!
t � i~
m2 �mg: (1.22b)To eliminate the exponential phases we de�ne new 
oheren
e variables:~�eg = �egei!t and ~�mg = �mgei(!�!
)t. The equations then be
omed~�egdt = ��
e2 + iÆe� ~�eg + idegE~ � i

2 ~�mg; (1.23a)d~�mgdt = ��
m2 + iÆR� ~�mg � i

2 ~�eg: (1.23b)Here we have de�ned the one-photon detuning from the ex
ited stateÆe = !eg � ! and the detuning ÆR = !mg + !
 � ! from the two-photonRaman transition that 
onne
ts the ground to the metastable state. Thestationary solution of the redu
ed system (1.23) reads~�mg = �~�eg i

=2
m=2 + iÆR ; (1.24a)~�eg = degE~ �Æe � i
e=2� 
2
4 1ÆR � i
m=2��1 : (1.24b)As in the previous 
ase, it is straightforward to obtain the linear sus
ep-tibility �(!) = f!eg2 �Æe � i
e=2� 
2
4 1ÆR � i
m=2��1 ; (1.25)where we have introdu
ed the os
illator strength (1.19).1.3.1 Coupled Os
illators modelWe 
al
ulate the o�-resonan
e sus
eptibility by using a 
oupled harmoni
os
illators model. For simpli
ity we 
onsider the Raman resonan
e 
on-dition, whi
h 
onsists of using the same frequen
y for both the harmoni
os
illators. We start from the single os
illator model (1.12) and we adda se
ond harmoni
 os
illator through the 
oupling 
onstant given by the
ontrol Rabi frequen
y 

. The Newton's equation for this system aremed2zdt2 = �me!2egz + eE �me!eg

y �me
dzdt (1.26)med2ydt2 = �me!2egy �me!eg

z �me
mdydt ; (1.27)



10 CHAPTER 1where the fri
tion term for the se
ond os
illator is proportional to the de-phasing rate. By 
onsidering an os
illatory for
ing �eld E(t) at frequen
y!, we solve the model. From the se
ond equation we obtainy(�!2 + !2eg � i
m!) = !eg

z: (1.28)By substituting this result into (1.26), we express the os
illating dipole interms of the for
ing ele
tri
 �eldd = ez = e2me �!2eg � !2 � i
! � 
2
!2eg!2eg � !2 � i
m!��1E: (1.29)The diele
tri
 sus
eptibility is then�(!) = ne2me�0 �!2eg � !2 � i
! � 
2
!2eg!2eg � !2 � i
m!��1 ; (1.30)whi
h gives, in the resonant limit ! ! !eg and by introdu
ing the os
illatorstrength, the expression (1.25).1.4 Clausius - Mossotti Sus
eptibilityIn the previous se
tions, we have 
al
ulated the diele
tri
 response of theatomi
 medium starting from the single atom behavior given by the Blo
hequations and then by multiplying the atomi
 density n. This pro
edureautomati
ally identi�es two di�erent quantities: the sus
eptibility � wehave mentioned up to now, and the polarizability �. The �rst quantityis de�ned in relation to ma
ros
opi
 �elds, namely the polarization of aregion 
ontaining a huge number of atoms and the mean ele
tri
 �eld,while the latter gives the polarization of a single atom in terms of thelo
al ele
tri
 �eld a
ting on it. Stri
tly speaking the OBE give the atomi
polarizability and in the 
al
ulations we have assumed that� = n�: (1.31)This relation is a sort of �rst order approximation whi
h holds for dilutesystems. To obtain the 
orre
t relation between the two quantities, weneed to 
onsider the di�eren
e between the mean ele
tri
 �eld E and thelo
al one Elo
. The lo
al ele
tri
 �eld a
ting on the single atom we are
onsidering is given by the mean �eld 
ontribution E, minus the averagepolarization indu
ed by the region (ma
ros
opi
ally small, but with a largenumber of atoms) surrounding it EP , plus the detailed e�e
t of the sameatoms Edet: Elo
 = E � EP + Edet: (1.32)
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tion 11It is demonstrated that the global e�e
t of a set of dipoles arranged in a
ubi
 latti
e on one of them vanishes: Edet = 0 [39℄. On the other hand, theaverage e�e
t of a homogeneous polarization P inside a spheri
al 
avityround the atom gives [39℄ Elo
 = E + 4�3 P: (1.33)Then the sus
eptibility results� = n�1� 4�3 n�: (1.34)This formula is know as the Clausius-Mossotti or Lorentz-Lorenz 
orre
-tion2. If we substitute (1.11) to � in (1.34) we get� = f!eg2 �!eg � ! � i
2 � 4�3 f!eg2 ��1 : (1.35)The typi
al value of f in the ultra
old atomi
 gases is of the order of10�10 to 10�8: this shift in the position of the resonan
e frequen
y, whi
his in the MHz to GHz range, is to be 
onsidered in the experiments. Inthe following we always refer to the (shifted) resonan
e frequen
y for the
onsidered atomi
 gas as !eg. As we have seen above, the 
al
ulation ofthis shift depends on the parti
ular geometry under investigation and itsderivation on spe
i�
 
ases is beyond the aim of this work.

2A detailed derivation of this e�e
t in the 
ase of a latti
e of atoms 
an be foundin [18, 40℄.





CHAPTER 2
Opti
al response of a MottInsulator of two-levelatoms
After the a
hievement of Bose Einstein Condensation (BEC) [3℄ in alkaliatoms, one of the most important trends emerged in the �eld of lasertrapping are Opti
al Latti
es [5,6℄: the trapping e�e
t of light intensity is inthis 
ase modulated via the interferen
e of 
ountepropagating laser beams.Atoms are trapped in the nodes or anti-nodes of the stationary wave viaa dynami
al Stark e�e
t [41℄. In this way it is possible to modulate ina periodi
 way the atomi
 density. Opti
al latti
es 
an be 
ombined withother trapping te
hniques (e.g. dipole traps) to shape the periodi
ity alongone, two or three dimensions.During the same years, strong e�orts were put in the theoreti
al modelingand experimental realization of the so 
alled Photoni
 Crystals [9, 42℄.The well known 
on
ept of interferen
e of light di�ra
ted from a periodi
arrangement of atoms, whi
h is at the basis of the X-ray opti
s [43℄ andall the related studies on the 
rystalline stru
tures [44℄, was then renewedby noti
ing the similarities between the roles of the diele
tri
 
onstant inthe Maxwell's equations and the potential in the S
hr�odinger's equation.The Floquet-Blo
h theorem [45℄ for the e.m. �eld in periodi
 diele
tri
stru
tures states that the dispersion law for light 
ontains propagationbands and forbidden gaps [46℄ in 
lose analogy with the 
ase of ele
tronsin 
rystalline stru
tures. The s
alability of Maxwell's equations then allowsto built up stru
tures whi
h works in di�erent frequen
y domains, frommi
rowave to visible light. 13
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al latti
es allow an engineering of periodi
 atomi
 stru
tures; a spa-tial modulation of the opti
al response of the atomi
 medium in the rangeof opti
al wavelengths means that these stru
tures 
an be used as pho-toni
 
rystals [47, 48℄. Furthermore, the observation of strong resonantlight-matter 
oupling, whi
h is forbidden by absorption pro
esses in ho-mogeneous gases, 
an be studied in Mott Insulator (MI) systems whereabsorption is suppressed be
ause of lo
alization of atoms [15, 40℄. Thesimultaneous o

urren
e of narrow opti
al resonan
es and the periodi
arrangement of atoms o�ers the possibility to study the mixing of thesee�e
ts in the building up of photoni
 bands and in the relative re
e
tivityspe
tra. The atomi
 MI is then a remarkable example of resonant photoni

rystal.Se
tion 1 
ontains a brief summary about the MI phase of an ultra
oldatomi
 sample trapped in an opti
al latti
e: this is the stru
ture that weinvestigate in the following.In Se
tion 2, we introdu
e the Transfer Matrix (TM) te
hnique for thestudy of the opti
al response of a layered diele
tri
 stru
ture. We modelthe MI of two-level atoms as a 1D 
hain of atomi
 sheet with resonantsus
eptibility.In Se
tion 3, we dis
uss the band diagram of the system. Two distin
tregimes are dis
riminated depending on whether the atomi
 resonant fre-quen
y and the Bragg frequen
y are 
lose or far away in terms of theresonant light-atoms 
oupling.Se
tion 4 is devoted to the study of the re
e
tivity spe
tra in both theregimes previously determined. Two di�erent geometries are dis
ussed:a semi-in�nite system and a �nite slab, where the multiple re
e
tionsof a polariton inside the stru
ture give rise to Fabry-Perot fringes in thespe
trum. We also dis
uss the 
rossover between the Lorentzian re
e
tivityof a single atom and the formation of forbidden gaps for long latti
es.2.1 The Mott Insulator phaseThe modulation of the atomi
 density in an opti
al latti
e generally de-pends on the intensity of the trapping �eld. In parti
ular this value �xesthe tunneling rate J between neighboring sites: the ratio between J andthe lo
al atomi
 repulsive intera
tion U , whi
h depends on the atomi
spe
ies, estimates the mobility of an atom throughout the opti
al latti
ein the Bose-Hubbard model [49℄. Below a 
riti
al value of this ratio, for
ommensurate �llings, a quantum phase transition between a super
uidand a MI state takes pla
e. The MI is 
hara
terized by a �xed number ofatoms in ea
h site without 
oheren
e between the wavefun
tion of atoms



Opti
al response of a Mott Insulator of two-level atoms 15sitting at the di�erent sites as it was experimentally observed [14, 50, 51℄.The strong lo
alization of atoms at latti
e sites 
an be estimated by 
om-paring the os
illator length of a single site:aho =r ~2m!tr ; (2.1)where m is the atomi
 mass and !tr is the trapping frequen
y, with thetrapping wavelength. If we express the trapping frequen
y in terms of there
oil energy Er = ~2k2L2m = h2�2L 12m; (2.2)we obtain aho =s ~2mN(Er=~) = �L2�pN : (2.3)Here �L is the wavelength of the trapping laser. While in the �rst real-izations of MI, N was of the order of 20 [14℄, it is nowadays possible torea
h mu
h deeper latti
es with N = 130 [52℄. For this reason it is a goodapproximation to assume the atoms to have a point-like stru
ture.The absen
e of 
u
tuation in the o

upation number of the latti
e sitesensures the extreme regularity of the periodi
 stru
ture. This fa
t hasa 
ru
ial role in the radiation-matter intera
tion: the resulting dis
retetranslational symmetry imposes a modi�
ation of the e.m. va
uum whi
hresults in a suppression of the absorption pro
ess [15, 40℄. Furthermorethe presen
e of an energy gap for the many-body ex
itation of the systemprote
ts the radiation-matter intera
tion against de
oheren
e pro
esses.2.2 Transfer Matrix te
hniqueTo study the propagation of mono
hromati
 light through a MI of atoms,we model the system as a one-dimensional 
hain of atomi
 planes separatedby a distan
e a (latti
e 
onstant): ea
h of these planes has a super�
ialhomogeneous density �n = na. The waveve
tor of light is normal to theatomi
 planes. To get the band diagram and the re
e
tivity spe
tra, we
onsider the stationary solution of the Maxwell's equations given by theTM te
hnique [36℄.The basi
 idea of this algorithm is the dis
retization of an arbitrary 
om-plex 1D diele
tri
 stru
ture in many homogeneous layers. The spatial partof the ele
tri
 �eld is expanded in terms of the two 
ounterpropagatingwaves at a �xed energy ~!:E(x; t) = �E+eik+x + E�eik�x� e�i!t; (2.4)
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Figure 2.1: Pi
torial representation of how the TM te
hnique works.and it is then represented by a two-
omponent ve
tor ~E = (E+; E�). Ina homogeneous layer with refra
tive index n1 and length d, these planewaves have waveve
tors k� = �n1!
 ; (2.5)where 
 is the speed of light in va
uum. The plane waves a
quire a phaseeik�d during the path through the layer. The ele
tri
 �eld at the end ofthe layer ~E(d) is then 
al
ulated by applying the matrixMn1;d(!) = � ein1kd 00 e�in1kd � (2.6)to the ve
tor ~E(0) 
orresponding to the origin of the layer; here k = !=
.The passage through an interfa
e between neighboring layers with di�er-ent refra
tive inde
es n1 and n2 gives rise to re
e
tion and transmissiona

ording to the 
ontinuity 
ondition for the ele
tri
 �eld, as expressed byFresnel laws [39℄ tn1!n2 = E 0+E+ = 2n1n1 + n2 ; (2.7a)rn1!n2 = E�E+ = n1 � n2n1 + n2 : (2.7b)Here the 0 denotes the quantities in the layer with index n2. The transfermatrix of the interfa
e is then given byMn1!n2 = 0B� n1 + n22n2 n2 � n12n2n2 � n12n2 n2 + n12n2 1CA : (2.8)By using the matri
es (2.6) and (2.8), it is possible to des
ribe every 1Dstru
ture1 as it is depi
ted in Fig. 2.1.1In fa
t, a 
ontinuous variation of the diele
tri
 properties 
an also be des
ribed aslong as the dis
retization step is 
hosen mu
h shorter than the radiation wavelength,a

ording to the spatial derivative of the refra
tive index.



Opti
al response of a Mott Insulator of two-level atoms 172.2.1 Appli
ation to periodi
 stru
turesTM te
hnique is very powerful in the 
ase of periodi
 stru
tures: in fa
t,by diagonalizing the TM des
ribing the elementary 
ell for ea
h frequen
y!, it is possible to obtain the band diagram and the ele
tri
 �eld for thepropagating modes of an in�nite stru
ture.If there is no absorption (i.e. the diele
tri
 
onstant � 2 R) and the 
ell issymmetri
, the stru
ture is invariant for time and spa
e reversal, whi
h isalways the 
ase in the systems we are presently investigating. Be
ause ofthese symmetries, the eigenvalues �1 and �2 of the TM of the elementary
ell show pe
uliar properties:1. spa
e reversal invarian
e implies that det(M) = 1 whi
h gives �1 =(�2)�1;2. time reversal invarian
e implies �1 = ��2.Under these assumptions, the general form of the eigenvalues of the TMis �� = e�iK(!)a; (2.9)where a is the length of the elementary 
ell. By looking at the expres-sion of these eigenve
tors, it is 
lear that they are either real or 
omplex
onjugated. If they are real, then the Blo
h waveve
tor has two possibleforms: K(!) = 0 + i�; (2.10)K(!) = �a + i�(!); (2.11)where � is real. The ele
tri
 �eld is evanes
ent inside the stru
ture withextin
tion length `ext = 1� ; (2.12)and the propagation is forbidden in an in�nite system: these solutions
orrespond to the gaps in the band spe
trum. If instead the eigenvalues�� are 
omplex 
onjugated, the band diagram is determined through theformula K(!) = 1a ar
os�Tr(M(!))2 � ; (2.13)where K(!) belongs to the �rst Brillouin zone (fBz), �� < Ka < �. Inthe present analysis, the bands show a symmetry for opposite waveve
tors
orresponding to the same frequen
y (i.e. energy) and for this reason weusually show in the �gures only half the fBz.



18 CHAPTER 22.2.2 Transfer Matrix for an atomi
 planeWe 
onsider the s
attering of light on a single atomi
 plane to derive therelated TM: we model the atomi
 sheet as a Dira
-like impurity embeddedin va
uum in the origin of propagation axis [53℄, x = 0. Its sus
eptibility
an be written by using the expression for the two-level atomi
 gas (1.11):�(!; x) = f!eg2 1!eg � ! a Æ(x) = PR(!) Æ(x); (2.14)where we have introdu
ed the refra
tive power PR(!). We use this expres-sion to 
al
ulate the polarization whi
h appears into the wave equationfor the propagation of the ele
tri
 �eld [39℄�2E(x)�x2 + k2 (1 + �0�(!; x))E(x) = 0: (2.15)We integrate in spa
e between the symmetri
 boundaries �l and +l andthen let l! 0; the Æ-like polarization generates a dis
ontinuity in the �rstderivative of the ele
tri
 �eld:� �E�x ����x=0+ � �E�x ����x=0�� = �PR(!)k2E(0): (2.16)We note that, di�erently form its derivative, the ele
tri
 �eld is 
ontinuousthrough the atomi
 defe
t, exa
tly as it happens in the 
ase of the wave-fun
tion and its spatial derivative for a Æ-like potential in the S
hr�odinger'sequation. By imposing the boundary 
ondition, we 
al
ulate the ele
tri
�eld 
omponents at the opposite sides of the atomi
 plane: from thesevalues we get the elements of the TM. The produ
t with the TM of ava
uum layer of length a generates the TM for the elementary 
ell of thestru
ture under analysis:M(!) = 0BB� eika�1 + iPR(!)k2 � e�ika�iPR(!)k2 �eika��iPR(!)k2 � e�ika�1� iPR(!)k2 � 1CCA : (2.17)
2.3 Photoni
 BandsTo get a simple physi
al understanding of the system, it is useful to 
on-
entrate our dis
ussion on the simplest 
ase of a 1D geometry: most e�e
tsrelated to resonant light-matter intera
tion are in fa
t independent fromthe dimensionality of the system under 
onsideration [40,54,55℄. In parti
-ular we 
on
entrate on the interplay between the periodi
ity of the system
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al response of a Mott Insulator of two-level atoms 19and the resonant behavior of the opti
al response whi
h has never beenstudied in a systemati
 way. Interesting dis
ussions of the opti
al proper-ties of di�erent kinds of 1D resonant PCs 
an be found in [48, 56{61℄.A 
hallenging question in the study of photoni
 bands is the sear
h fora 
omplete (i.e. 3D) photoni
 band gap [62, 63℄ whi
h allows to stop thein
oming radiation despite its dire
tion and polarization in a 
ertain fre-quen
y region: the debate for the 
ase of atomi
 samples is still open and
ontinues to attra
t interest [15{18,64℄, but this is beyond our aim.As introdu
tion to the periodi
 
ase, we brie
y dis
uss the properties ofthe resonant sus
eptibility (1.11) whi
h des
ribes a homogeneous system.In all the �gures, the shaded regions indi
ate the forbidden gaps.2.3.1 Bulk of resonant atoms
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Figure 2.2: Polariton dispersion for a bulk of non-absorbing two-level atoms:the os
illator strength is f = 10�1. The gray area indi
ates the polariton gap.For the sake of 
larity, the dipole moment has been exaggerated with respe
tto a
tual values of atomi
 systems.As we stated above, the 
hara
teristi
 element in the dispersion law of abulk of non-absorbing two-level atoms is the polariton gap whi
h appearsabove the resonan
e frequen
y !eg. As we negle
t the absorption, the di-ele
tri
 
onstant is always real. The gap opens up where �(!) = 1+�(!) isnegative, i.e. for [!eg�!+(f=2)!eg℄ < 0. In fa
t, in this 
ase the refra
tiveindex of the medium n(!) =p�(!) is imaginary and therefore the �eld is
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Figure 2.3: Polariton dispersion of a two-level atomi
 gas: zoom on the regionnear the polariton gap. The red dot-dashed line is the resonant frequen
y andthe blue dashed line shows the Rabi splitting. Same parameters as in Fig. 2.2.evanes
ent. We immediately see that the width of the gap is �xed by theos
illator strength: �!pol = f2!eg: (2.18)The other important quantity is the width of the Rabi splitting whi
hopens 
orresponding to the 
rossing between the transition frequen
y andthe va
uum dispersion of light: it indi
ates the strength of the radiation-matter 
oupling. This splitting 
an be 
al
ulated from the general form ofthe light dispersion2: �(!)!2
2 = K2; (2.19)where we substitute the resonant waveve
tor K = keg. Be
ause we arelooking for the splitting near the resonant frequen
y, we solve the equationfor the frequen
y detuning Æe = (!eg � !) and we retain terms up to these
ond order in Æe; (f=2)!eg � !eg. By substituting the appropriate values,2We use di�erent notations depending on the variable whi
h is the independentthrough the 
al
ulation: the Capital letters (
;K) refer to the dependent variables,vi
e versa for the small ones (!; k).
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al response of a Mott Insulator of two-level atoms 21we obtain: �1 + f!eg2Æe � (!eg � Æe)2 = !2egÆ2e + Æef2!eg � f4!2eg = 0: (2.20)The leading order of the solution in terms of f is given byÆe = �pf2 !eg: (2.21)The di�erent width of the gap and the Rabi splitting is 
learly shown inFig. 2.3.2.3.2 Band diagram of a Mott InsulatorIn the analysis of the band diagram of the MI, two frequen
y s
ales areto be 
onsidered: the atomi
 resonan
e frequen
y !eg, and the Bragg fre-quen
y !Br = 
�=a of the latti
e whi
h 
arries information on the pe-riodi
ity of the latti
e and derives from the famous Bragg 
ondition fordi�ra
tion spe
tros
opy [44℄. As we have seen in the introdu
tory dis
us-sion, the width of the frequen
y region in whi
h radiation and matterstrongly intera
t is determined by the Rabi splitting (2.21). Starting fromthis 
onsideration, two di�erent regimes 
an be distinguished a

ording tothe ratio between the detuning !eg � !Br and the Rabi splitting.Purely ex
itoni
 regimeThe purely ex
itoni
 regime 
orresponds to the 
ase when the resonan
efrequen
y !eg and the Bragg frequen
y !Br are well separated j!Br � !egj �pf!eg. An example of polaritoni
 dispersion for this regime is shown inFig. 2.4 for !eg < !Br.Two main features 
hara
terize this regime: the region of the polaritongap and the foldings of the light line at the edges of the fBz. Near the res-onant frequen
y, the polariton dispersion shows the usual Rabi splitting:in fa
t the wavelength of the radiation is mu
h bigger than the periodi
ityand the system 
an be 
onsidered for many aspe
ts as a bulk. Far fromthis region, the polaritoni
 modes tend to almost purely radiation or mat-ter modes. At the edges of the fBz, for frequen
ies multiple of !Br, theva
uum dispersion of light 
rosses itself be
ause of the periodi
ity of thesystem: this is a pi
torial representation of Bragg s
attering pro
esses onthe atomi
 latti
e. In this 
ase the far o�-resonan
e value of the sus
eptibil-ity (1.15) represents the e�e
tive intera
tion between 
ounterpropagatinglight modes indu
ed by the presen
e of atoms.
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Figure 2.4: Polariton dispersion in a 1D latti
e of two-level atoms. Purelyex
itoni
 regime: f � 3:6 � 10�2(!Br=!eg) , !Br=!eg � 4.
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(b)Figure 2.5: Polariton dispersion in a 1D latti
e of two-level atoms: zoom onthe two lower-lying gaps. Purely ex
itoni
 regime: parameters as in Fig. 2.4.(a) Ex
itoni
 gap near the resonan
e frequen
y (red dot-dashed line), the bluedashed line shows the Rabi splitting. (b) First Bragg gap.
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al response of a Mott Insulator of two-level atoms 23The anti
rossings due to these pro
esses result in the opening of gapsat the edges of the fBz as shown in Fig. 2.5. Around !eg, there is theusual polaritoni
 gap of resonant diele
tri
s [39℄, while just above !Brwe have the �rst of the gaps due to Bragg s
attering. There is a smalldi�eren
e from the bulk 
ase: the former gap extends on both sides of !egbe
ause of the limited size of the fBz. As long as the detuning betweenthe two frequen
y s
ales diminishes, this gap passes from above to below!eg. Its width remains of the order of the os
illator strength (2.18). Thelatter one is instead lo
ated stri
tly above !Br. Its lower edge is exa
tlyat !Br and 
orresponds to a propagating modes whi
h is una�e
ted bythe presen
e of the atoms that are lo
ated at the ele
tri
 �eld nodes.As usual, the polaritoni
 density of states vanishes inside the gaps, andradiative propagation at these frequen
ies is forbidden.Mixed Ex
iton-Bragg regime

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

K/k
Br

ω
/ω

B
r

Figure 2.6: Polariton dispersion in a 1D latti
e of two-level atoms. Mixedex
iton-Bragg regime: f � 2:4 � 10�3(!Br=!eg) and 1� (!eg=!Br) � 1:4 � 10�2.The 
ondition (!Br � !eg) . pf!eg de�nes the mixed ex
iton-Braggregime. The name suggests the strong interplay between the periodi
ityand the atomi
 resonan
e in the frequen
y spe
trum. In fa
t, three modesare simultaneously mixed: the two 
ounterpropagating e.m. modes, the in-
oming one at k and the �rst Bragg di�ra
ted at k�2�=a, and the atomi
ex
itation.
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Figure 2.7: Polariton dispersion in a 1D latti
e of two-level atoms: zoom onthe gap region near !Br. Mixed ex
iton-Bragg regime: same parameters as inFig. 2.6.Di�erently from the previous 
ase, the Rabi splitting is now lo
ated 
loseto the edges of the fBz. As one 
an see in Fig. 2.6, this results in mu
h widerforbidden gaps of the order of the splitting. It is interesting to note thepresen
e of a mini-band whi
h ranges between !eg and !Br: the squeezinge�e
t due to the redu
ed detuning between the two main frequen
ies in-du
es a very 
at dispersion over most of the fBz. As in the previous regime,the polariton dispersion tou
hes the va
uum light line at the Bragg fre-quen
y be
ause of the ele
tri
 �eld showing nodes at the atomi
 lo
ations.The maximum extension of the two gaps is pf=2!eg and it 
orrespondsto the 
omplete squeezing of the mini-band, !Br = !eg. The separation infrequen
y between the modes at kBr is p2f!eg and there is a fa
tor p2with respe
t the usual Rabi splitting: this fa
tor 
omes from the stru
tureof the ele
tri
 �eld that 
ontains a superposition of equal weights of thetwo Bragg re
e
ted plane waves.2.4 Refle
tivity spe
traThe band diagram des
ribes the physi
s of an in�nite stru
ture with a fulldis
rete translational invarian
e: there are propagating modes 
orrespond-ing to the bands separated by gaps of forbidden energy. Most spe
tros
opi




Opti
al response of a Mott Insulator of two-level atoms 25experiments, however, involve light beams whi
h are in
ident onto �nitesystems and therefore require a des
ription of the interfa
es between re-gions of di�erent opti
al properties, namely the external va
uum and theatomi
 latti
e. Maxwell's theory requires in fa
t the 
ontinuity of boththe ele
tri
 �eld and its spatial derivative. We 
onsider plane waves inva
uum and polariton modes (eigenve
tors of the TM) inside the atomi
stru
ture. By imposing suitable boundary 
onditions, we 
al
ulate the re-
e
tivity spe
tra of the system [48, 55, 56, 58{61℄. Two geometries will be
onsidered: a semi-in�nite latti
e, and a �nite slab.
(a)
(b)Figure 2.8: Geometries 
onsidered for the re
e
tivity spe
tra. Panel (a): semi-in�nite system (va
uum on the left, latti
e on the right). Panel(b): �nite slab(va
uum at both side of a �nite latti
e). Thin arrows indi
ate the plane wavesin va
uum and thi
k arrows indi
ate polariton eigenmodes in the latti
e.Semi-in�nite geometryIn this 
on�guration illustrated in Fig. 2.8(a), there is a single interfa
e,dividing the spa
e in two semi-in�nite regions: va
uum and latti
e.We �rst 
onsider the input problem with an in
oming and a re
e
ted planewave in the va
uum and a single transmitted polariton Blo
h mode in thelatti
e. We �x the waveve
tor k = !=
 of the plane wave and then we
hoose the polariton mode with Blo
h waveve
tor K(!) in order to satisfyenergy 
onservation. We 
al
ulate the ele
tri
 �eld and its derivative by
onsidering a symmetri
 elementary 
ell with the atomi
 plane at its 
en-
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e
tivity spe
tra in the purely ex
itoni
 regimefor a semi-in�nite latti
e. Lower panels: (b) Bragg gap. (
) Ex
itoni
 gap. Pa-rameters as in Fig. 2.4.
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(b)Figure 2.10: Upper panel: Re
e
tivity spe
tra in the mixed ex
iton-Braggregime for a semi-in�nite latti
e. In the bottom panel: zoom on the gap regionand mini-band re
e
tivity. Parameters as in Fig. 2.4.



28 CHAPTER 2ter: this way, also the derivative is 
ontinuous through the interfa
e. There
e
tion amplitude rin is then expressed in terms of the ratio betweenthe waveve
tors inside and outside the latti
e:rin = E(0) + (i=k)E 0(0)E(0)� (1=k)E 0(0) ; (2.22)where the 0 denotes the spatial derivative of the ele
tri
 �eld. The mis-mat
h between the waveve
tors of the polariton state and the in
om-ing wave determines the re
e
tivity Rin = jrinj2 shown in Fig. 2.9 andFig. 2.10: this is signi�
ant around the gaps where the in
oming wave isstrongly intera
ting with the atomi
 resonan
e [Fig. 2.9(b)℄, the Braggdi�ra
ted wave [Fig. 2.9(
)℄, or both [Fig. 2.10(b)℄. In the mixed ex
iton-Bragg regime, we note that the re
e
tivity remains quite large in betweenthe two gaps: the 
atter the middle-polariton bran
h, the higher the 
or-responding re
e
tivity. It is then hard to exploit the slow light propertiesof this mini-band be
ause the amount of light that 
an be 
oupled intothe system is small. In the present semi-in�nite geometry, re
e
tivity is
omplete for frequen
ies 
orresponding to the gaps where the wave ve
torbe
omes imaginary and the �eld inside the latti
e 
onsists of an evanes
entwave.The output problem 
orresponds to two 
ounterpropagating Blo
h modeswith the same energy inside the latti
e, let's 
all them3 E+ and E�, anda single transmitted plane wave in the external va
uum. The re
e
tivityis given by Rout = jroutj2 withrout = �E+(0) + (i=k)E 0+(0)E�(0) + (i=k)E 0�(0) : (2.23)It is straightforward to note that the re
e
tivity is the same in input andoutput 
ase: in fa
t, E+ = (E�)� whi
h is a 
onsequen
e of the systembeing invariant under time reversal and spatial parity.Finite slabRe
e
tivity spe
tra for a �nite system [Fig. 2.8(b)℄ are shown in Fig. 2.11and Fig. 2.12. There are two main di�eren
es with respe
t to the semi-in�nite 
ase: the propagation takes pla
e also in the intervals of frequen
y
orresponding to the gaps for an in�nite system and there are fast os
illa-tions on top of the re
e
tivity spe
trum around the main gaps. In this 
aselight 
an propagate through the system also in the ranges of frequen
y inwhi
h the Blo
h waveve
tor K is imaginary: it is the ratio of the length3We use here the supers
ript to distinguish the propagating modes from their 
om-ponents within the TM formalism that are labeled below.
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)Figure 2.11: Upper panel: Re
e
tivity spe
tra in the purely ex
itoni
 regimefor a �nite slab of atomi
 planes withN = 20 
ells. Lower panels: (b) Re
e
tivitypeak at !Br (
) Gap near the resonant frequen
y. Parameters as in Fig. 2.4.The gray regions 
orrespond to the gaps for the in�nite system.
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(b)Figure 2.12: Upper panel: Re
e
tivity spe
tra in the mixed ex
iton-Braggregime for a �nite slab of atomi
 planes with N = 20 
ells. Bottom panel: zoomon the region near !Br for the 
ase N = 20 (bla
k dot-dashed line) and N = 100(blue solid line). Parameters as in Fig. 2.4. The gray regions 
orrespond to thegaps for the in�nite system.
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e L on the extin
tion length 1=K whi
h dis
riminates betweena short system, KL � 1, and a long one, KL � 1. The 
ru
ial roleof the parameter KL for a Blo
h waveve
tor either real or imaginary, is
lear from the expression for the re
e
tivity of a system 
omposed by Nelementary 
ells [57℄:RN = ���� m1;2sin(KaN)m2;2sin(KaN)� sin(Ka(N � 1))����2 ; (2.24)where the m 
oeÆ
ients represents the elements of the elementary 
ell andwe have L = Na.In the short latti
e 
ase, the spe
trum is mainly 
hara
terized by a Lorentzianpeak 
orresponding to the atomi
 resonan
e. The paradigm of this regimeis the single atomi
 plane whi
h gives the re
e
tivity:R = �����m1;2m2;2 ����2 == "1 + �! � !eg!eg 4f 1ka�2#�1 : (2.25)The width of the peak is �xed by the os
illator strength and the 
orre-sponding Lorentzian shape is shown in Fig. 2.13. As the number of atomi
planes grows the peak initially a
quires a width proportional to N . ForN ! 1, the re
e
tivity rea
hes value 1 into the whole gap regions andnot only at the resonan
e frequen
y. The development of these stop bandsis not uniform along the spe
trum, in fa
t the extin
tion length is pro-portional to the sus
eptibility and it be
omes small near !eg while it ismu
h bigger in other regions of frequen
y 
orresponding to a gap in thein�nite system. For example, the far o�-resonant gaps develop slower as
ompared to the polaritoni
 gap. This is the 
ase depi
ted in Fig. 2.11(b)and Fig. 2.11(
): we 
ompare the strength of the re
e
tivity peaks re-spe
tively near resonan
e and at Bragg frequen
y, in the purely ex
itoni
regime. For this reason the short and long latti
e 
ases depends also onthe range of frequen
y under investigation.In the long latti
e regime, the appearan
e of the fringes at the gap edges
an be explained by 
onsidering the slab geometry of the system. Twointerfa
es at respe
tively xfr = �((N � 1) + 1=2)a and xba
k = a=2 nowseparate three regions of spa
e: the va
uum with the in
ident and re
e
tedplane waves, the �nite-size latti
e with 
ounterpropagating polaritons, andagain va
uum with now only a transmitted plane wave. The �eld in thelast 
ell (x 2 [�a=2; a=2℄) is determined by the output problem 
onsideredabove to be Est(x) = E+(x) + routE�(x): (2.26)
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Figure 2.13: Typi
al Lorentzian re
e
tivity peak for a single atomi
 plane.Parameters as in Fig. 2.4.As both E�(x) are Blo
h states, the �eld in the �rst 
ell (taking x 2[�((N � 1) + 1=2)a;�((N � 1)� 1=2)a℄) has the simple form~Est(x) = E+(x+(N�1)l) e�ikl(N�1)+routE�(x+(N�1)l) eikl(N�1): (2.27)By solving the 
ontinuity 
onditions at the front interfa
e at x = xfr, weget rslab = e2i(!=
)xfr ~Est(xfr) + i(
=!) ~E 0st(xfr)~Est(xfr)� i(
=!) ~E 0st(xfr) : (2.28)Be
ause of the phase fa
tors in (2.27), fast os
illations o

ur in the re
e
-tivity (2.28) due to the Fabry-Perot-like interferen
e of Blo
h waves whi
hundergo multiple re
e
tions at the latti
e boundaries. The period �! ofthese os
illations is �xed by the group velo
ity vgr = d!=dK and the totallength of the system L, �! = �L vgr : (2.29)the slower vgr, the 
loser the peaks. This relation 
lari�es the fa
t that thefringes appear near the gaps where the intera
tion between radiation andmatter mostly deforms the va
uum dispersion of light.It is instru
tive to 
ompare the envelope of this os
illations with the spe
-trum in the semi-in�nite geometry. We 
an 
onsider a simpli�ed modelwhere the latti
e is repla
ed by a bulk medium of refra
tive index n. Inthis 
ase, the re
e
tivity for a single interfa
e separating va
uum and
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al response of a Mott Insulator of two-level atoms 33medium is Rint = �1� n1 + n�2 : (2.30)For a slab of thi
kness L, the re
e
tivity is [65℄Rslab = (n� 1=n)2 sin2(!nL=
)4 
os2(!nL=
) + (n + 1=n)2 sin2(!nL=
) (2.31)Fabry-Perot os
illations are apparent, with a maximum re
e
tivity at thepeaks equal to Rmaxslab = �1� n21 + n2�2 : (2.32)In the limit n! 1, the ratio (Rmaxslab =Rint)! 4: this is due to the presen
eof two 
ounterpropagating Blo
h modes in the slab as 
ompared to thesingle propagating mode in the semi-in�nite 
ase. This fa
tor 4 providesa good approximation in the latti
e 
ase as well, as one 
an easily see inthe low-re
e
tivity tails of the spe
tra shown in Fig. 2.14.
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Figure 2.14: Comparison between the low re
e
tivity tails of the spe
tra belowthe resonan
e frequen
y for the semi-in�nite 
ase (dashed blue line is 4 timesR) and the �nite slab (solid bla
k line) with N = 100 (long latti
e limit).Parameters as in Fig. 2.6.





CHAPTER 3
S
attering of slow light ondefe
ts
In Chapter 2, we have noti
ed the formation of a squeezed mini-band inthe photoni
 spe
trum of a Mott Insulator (MI) of two-level atoms inthe mixed ex
iton-Bragg regime. The width of this mini-band is �xed bythe detuning between the resonant and Bragg frequen
ies and it is thenin prin
iple tunable by a
ting on these atomi
 degrees of freedom. Theredu
ed slope of the dispersion means that the polaritoni
 propagatingmodes are slow as 
ompared to the va
uum speed of light. This slowlight [28℄ behavior is very interesting: if the ele
tri
 �eld propagates slowly,the intera
tion time with the underlying medium is enhan
ed opening ari
h variety of possibilities to probe the system as well as to manipulatethe propagating radiation. However, high re
e
tion at interfa
es in the
orresponding frequen
y range inhibit the use of su
h a feature [39,48,56,66, 67℄.The so 
alled � ex
itation s
heme for a three-level atomi
 system, dis-
ussed in the Chapter 1, generates a pe
uliar dispersion for the probebeam whi
h joins together slow light behavior, a good impedan
e mat
h-ing at interfa
es and strong suppression of absorption [21℄. The 
ru
ialingredient is the strong dressing of the transition between the metastableand the ex
ited state via the 
ontrol (or dressing) �eld: the appli
ation of aresonant probe in fa
t drives the atoms into a 
oherent superposition of thelower-lying and long living states that is de
oupled from the ex
ited level.The resulting Ele
tromagneti
ally indu
ed transparen
y (EIT) [22{24℄ of-fers fas
inating perspe
tives to 
oherently play with light.35



36 CHAPTER 3The re
e
tivity dip 
an be used to inje
t slow light into the stru
ture asa probe. In the 
ase of atomi
 MI is of great interest the possibility todete
t the presen
e of defe
ts, su
h as la
k of atoms at some latti
e site:we then expe
t a 
hange in the opti
al response of the system.In Se
tion 1, we introdu
e the resonant behavior of a three-level systemby using the sus
eptibility derived in Chapter 1. We present and dis
ussthe expressions for the group velo
ity, re
e
tivity and absorption 
orre-sponding to the two-photon Raman resonan
e.Se
tion 2 is instead devoted to the study of the re
e
tion of the slow DarkPolariton (DP) on defe
ts embedded in a latti
e of three-level atoms. Theva
uum defe
t is shown to behave like an empty 
avity with proper lo
al-ized modes. On the other hand, the presen
e of a two-level atomi
 impurityalong the 1D system with resonant frequen
y 
orresponding to the EITre
e
tivity dip gives rise to 
omplete re
e
tion. E�e
t of absorption is alsodis
ussed.
3.1 EIT DispersionThe dispersion arising from the resonant sus
eptibility (1.25) is 
hara
-terized by three polaritoni
 bran
hes [26,27,29℄ as shown in Fig. 3.1. Thebands are 
al
ulated by using the general law for light dispersion in matter(2.19).In the regime pf � 

=!eg, the upper (UP) and lower (LP) polaritonshave a stru
ture similar to the two-level 
ase and the leading order ofthe Rabi splitting is given by the os
illator strength. The presen
e ofthe metastable state and the 
ontrol �eld results in the appearan
e ofa third 
entral band: the DP (or middle polariton) 
arries all the ni
eproperties related to EIT. The width of the 
entral band is 
ontrolled bythe amplitude of the dressing �eld, 

.We fo
us the analysis on the sus
eptibility at Raman resonan
e, ÆR =0, to obtain the relevant quantities that des
ribe the propagation of aDP. In parti
ular we 
onsider a resonant dressing of the transition fromthe metastable state to the ex
ited state, Æe = ÆR. The expressions forthe sus
eptibility and its �rst and se
ond order derivatives with respe
t
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Figure 3.1: Polaritoni
 dispersion in an EIT atomi
 medium near resonan
e.Os
illator strength: f = 0:04. Rabi frequen
y of the 
ontrol �eld: 

 = 0:07!eg(bla
k solid line), 

 = 0:04!eg (blue dashed line).frequen
y are [68℄:�jÆR=0 = if!eg2 2
m
2
 + 
e
m ; (3.1a)���! ����ÆR=0 = f!eg2 4(
2
 � 
2m)(
2
 + 
e
m)2 ; (3.1b)�2��!2 ����ÆR=0 = if!eg2 16(
e
2
 + 2
m
2
 � 
3m)(
2
 + 
e
m)3 : (3.1
)Here we have ordered the terms in bra
kets depending on the relativestrength for the typi
al values of atomi
 systems under investigation here,(

 � 
e � 
m).The slope of the band gives the group velo
ity of a travelling wavepa
ket:vgr = d!dk ����ÆR=0 == 
 q�(!eg) + !eg2p�(!eg) ���! ����ÆR=0!�1 == 
1 + f!2eg
2
 : (3.2)
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Figure 3.2: Group velo
ity near Raman resonan
e in an EIT atomi
 medium.Parameters and 
olours as in Fig. 3.1.It is the ratio between the intensity of the 
ontrol �eld and the Rabisplitting that tunes the propagation speed in the atomi
 medium. As faras we lower the 
ontrol �eld the DP mini-band is squeezed and the DPslows down as it is depi
ted in Fig. 3.1 and Fig. 3.2.It is also important to estimate the absorption experien
ed by the radi-ation during the propagation: this is given by the imaginary part of thesus
eptibility. We see from the expression (3.1a) that at Raman resonan
ethe absorption is determined by the dephasing parameter 
m: as it 
omesfrom non-radiative pro
esses, it is in general orders of magnitude smallerthan the usual atomi
 linewidth; for this reason, it 
an be negle
ted. Byusing the Taylor expansion of K(!), it is then the se
ond order derivativeto give the leading order in the absorption pro
ess:
(!)vgr = 12 Im ��2k�!2� ����ÆR=0 (! � !eg)2 == 1
 !eg4p�(!eg) �2��!2 ����ÆR=0(! � !eg)2 == i2
ef !2eg
4
 (! � !eg)2: (3.3)Here we have exploited the linearity of the DP band near Raman reso-
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Figure 3.3: Re
e
tivity spe
trum for an EIT atomi
 medium near resonan
e.Parameters and 
olours as in Fig. 3.1.nan
e, �! = vgr�K, and the formula�2k�!2 = 1
 "���! 1p�(!) �1� !4�(!) ���!� + !2 1p�(!) �2��!2# : (3.4)The expression (3.3) shows the paraboli
 behavior in the absorption spe
-trum near Raman resonan
e with the resulting dip whose amplitude is�xed by the dressing frequen
y.3.1.1 Re
e
tivity dipA 
ru
ial feature of EIT is the vanishing re
e
tivity experien
ed by anin
oming wave at Raman resonan
e. The robustness of this behavior isguaranteed by the fa
t that the va
uum light line 
rosses the DP bran
hregardless of the parti
ular values 
hosen for the system parameters, as itis reported in Fig. 3.3.To show this good impedan
e mat
hing, we derive the re
e
tivity at theinterfa
e between a homogeneous medium under EIT 
ondition and va
-uum by using the simple model for re
e
tivity at the interfa
e betweenmedia with di�erent refra
tive indi
es (2.30). The index of refra
tion forthe atomi
 medium in the vi
inity of Raman resonan
e, ! = !eg + Æ!, is



40 CHAPTER 3obtained from the dispersion law:n(!) = 
K! = !eg + (
=vgr)Æ!!eg + Æ! ; (3.5)where we use the linear form of the dispersion near Raman resonan
e andwe have 
=vgr � 1� (Æ!=!eg)(
=vgr). We put this result into the formula(2.30) and we get the re
e
tivity at the boundary of the EIT medium:R = � Æ!(1� 
=vgr)2!eg + Æ!(1 + 
=vgr)�2 ; (3.6)here we eliminate the term proportional to (vgr=
) in the numerator andthe terms in ÆK in the denominator. We then obtain the expression forthe paraboli
 dip R(!) � (! � !eg)24!2eg � 
vgr�2 : (3.7)The width of the dip is �xed by the group velo
ity and it is then propor-tional to the 
ontrol �eld intensity, 
2
 . The 
oupling of light is not allowedover the whole DP band, but only in the region near Raman resonan
e asyou 
an see in Fig. 3.3.3.2 S
attering on defe
tsAs we have seen above, the linear sus
eptibility gives a stati
 des
riptionof a polariton that propagates through a homogeneous system. The modelis valid either for a mono
hromati
 wave or a wavepa
ket: in fa
t as long asthe radiation-matter intera
tion is 
onstant in time, the modes at di�erentenergies do not intera
t and they 
an be treated separately.Within a stati
 pi
ture, it is of great interest the investigation of the s
at-tering in the presen
e of defe
ts. In fa
t, the opti
al response of a systemo�ers the possibility to infer some information about its internal stru
-ture. Here we present a simple approa
h to the s
attering problem. We
onsider a 1D geometry for the propagation of the polariton: in this 
asethe s
attering is given by the re
e
tivity from the defe
t. The re
e
tiv-ity on a va
uum slab embedded in a homogeneous EIT medium is givenby an os
illatory fun
tion depending on the length of the defe
t with anenvelope whi
h is related to the re
e
tivity on a single interfa
e1 (2.32).Furthermore, if we 
onsider an atomi
 gas trapped in an opti
al latti
e inthe MI phase, it is important from both a theoreti
al and an experimentalpoint of view to have tools to test the regularity of the stru
ture [69,1See the dis
ussion in Chapter 2.
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attering of slow light on defe
ts 4170℄. The EIT dispersion o�er the possibility to test the response of themedium also in the resonan
e region where the two-level system has abad impedan
e mat
hing. In the following we will study the latti
e 
aseboth near resonan
e and round the Bragg frequen
y in the purely ex
itoni
regime. In the �rst 
ase we expe
t a result similar to the bulk system whilein the latter 
ase we look for the lo
alization of light in the defe
t due to theperiodi
ity. We note that, near the Bragg frequen
y, the di�eren
e betweenthe two-level and three-level atoms is not important be
ause we are farfrom resonan
e. We use the TM algorithm that o�ers a numeri
ally easyand safe way to 
al
ulate the re
e
tivity spe
tra for di�erent geometries.We �rst negle
t the absorption by following the approa
h of Chapter 2 andthen we introdu
e 
e in order to determine the robustness of the di�erente�e
ts: in fa
t, in the 
ase of three-level atoms spontaneous emission fromthe ex
ited state is no more quen
hed and the Hop�eld argument [40℄ isnot valid in general.3.2.1 Va
uum defe
tIn Fig. 3.5 and Fig. 3.7, we show the re
e
tivity spe
tra for a set of va
uumdefe
ts with varying length embedded both in an in�nite system and inbetween two �nite slabs.
(a)
(b)Figure 3.4: Va
uum defe
t embedded in atomi
 EIT latti
es. Panel (a): semi-in�nite atomi
 latti
es. Panel (b): �nite slabs of atomi
 media. The big arrowsindi
ate polariton modes, while the thin ones represent plane waves.



42 CHAPTER 3In the �rst 
ase (bla
k lines), we divide the spa
e in three parts as in Fig.3.4(a): two semi-in�nite regions of EIT atomi
 medium separated by a de-fe
t of length l; in the �rst atomi
 part, we 
onsider two 
ounterpropagat-ing polariton modes (in
ident and re
e
ted); two plane waves travellingin opposite dire
tions are used to built the ele
tri
 �eld in the va
uumdefe
t while a single transmitted polariton is propagating in the se
ondsemi-in�nite atomi
 layer. Frequen
y mat
hing 
onditions are imposed atthe interfa
es. As usual, the stru
ture of the polariton modes 
omes fromthe diagonalization of the TM of the elementary 
ell and the re
e
tion andtransmission 
oeÆ
ients are 
al
ulated by imposing boundary 
onditionsat the two interfa
es.In the latter 
ase (red lines), the �ve regions depi
ted in Fig. 3.4(b) of spa
ehave to be 
onsidered: an initial and a �nal part of va
uum separatedby the atomi
 system whi
h is 
omposed by two �nite layers, ea
h ofwhi
h with N=2 
ells, and the defe
t in between them. The spe
tra forthis geometry are 
al
ulated from the TM of the whole atomi
 systemMtot =MN=2MlMN=2, RN = ����mtot;(1;2)mtot;(2;2) ����2 : (3.8)The spe
tra in Fig. 3.5 and Fig. 3.7 re
all the 
ases studied in the pre-vious 
hapter. The main di�eren
es between the semi-in�nite geometryand the �nite slabs in fa
t are the same: the spe
tra for the �nite systemsshow Fabry-Perot interferen
e fringes due to the re
e
tion of the polaritonmodes at the interfa
es of the slabs and there is a fa
tor 4 whi
h multi-plies the spe
trum of the in�nite 
ase to re
over the peaks of the �nitegeometry where the re
e
tivity is small. Furthermore, propagation is for-bidden at gap frequen
ies for the semi-in�nite media, while it depends onthe number of 
ells, N=2, in the �nite systems: here we 
onsider the longlatti
e limit.Resonan
e regionIn the region near resonan
e shown in Fig. 3.5, we observe a dependen
eof the re
e
tivity on the length of the defe
t whi
h 
an be analyzed for thein�nite stru
ture. If the defe
t is not present (l = 0), a polariton mode 
anpropagate through the system without any re
e
tion for frequen
ies 
orre-sponding to the photoni
 bands; in the gaps, the propagation is forbiddenand we �x R = 1 in the �gures for simpli
ity. As long as we introdu
e adefe
t, there is some re
e
tion due to the mismat
h of the ele
tri
 �eldbetween plane waves and polariton modes. This mismat
h is related to therelative phase a

umulated by the plane waves in the propagation through
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(d)Figure 3.5: Polariton s
attering on a va
uum defe
t: re
e
tivity spe
tra for anin�nite system (solid bla
k lines) and a 
ouple of �nite slabs (solid red lines).The length of the defe
t (in units of the inverse of the resonant wavelength2�=keg) is: l = 0 (a), l = 0:1 (b), l = 0:2 (
), l = 0:5 (d). Parameters of thesystem: f = 0:04, 

 = 0:07!eg . The �nite slabs 
ontain N=2 = 100 
ells.
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Figure 3.6: Comparison between minimum re
e
tivity defe
ts, 
orrespondingto values in the set of lm [see 
ondition (3.10)℄: m = 1 (solid bla
k line), m = 2(dashed green line), m = 3 (dotted blue line), m = 4 (dot-dashed red line).Parameters as in Fig. 3.5.the defe
t �l(!) = e2 i(!=
)l: (3.9)Exa
tly at Raman resonan
e the EIT dispersion 
rosses the va
uum lightline and the atomi
 medium is transparent to the polariton propagation:the re
e
tivity dip guarantees the perfe
t 
oupling from the atomi
 gasto va
uum and vi
e versa, as we stated above. As far as we move awayfrom Raman resonan
e, re
e
tivity in
reases till the gaps. When the defe
trea
hes the length lm = m(�=keg) (3.10)with m integer, the phase displa
ement vanishes at Raman resonan
e andit is in general small along the DP mini-band be
ause ! � !eg: the re
e
-tivity is small along the whole spe
trum. Nevertheless, it is not exa
tlyzero away from Raman resonan
e and there is an in
rease proportional tom, as it is shown in Fig. 3.6 in parti
ular in the regions near the gaps.Bragg frequen
yNear the Bragg frequen
y, we observe the formation of lo
alized modes forfrequen
ies inside the gaps for the �nite stru
ture: this feature is 
learlyvisible in the 
omparison between the two di�erent geometries in Fig. 3.7.



S
attering of slow light on defe
ts 45

0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R

(ω
 −

 ω
B

r)/
ω

eg

(a) 0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R

(ω
 −

 ω
B

r)/
ω

eg

(b)
0 0.2 0.4 0.6 0.8 1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R

(ω
 −

 ω
B

r)/
ω

eg

(
) 0 0.2 0.4 0.6 0.8 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

R

(ω
 −

 ω
B

r)/
ω

eg

(d)Figure 3.7: Polariton s
attering on a va
uum defe
t near Bragg frequen
y:re
e
tivity spe
tra for an in�nite system (solid bla
k lines) and a 
ouple of�nite slabs (solid red lines). In the �nite 
ase, we observe the appearan
e oflo
alized modes for frequen
ies inside the gap of the semi-in�nite geometry.The lengths of the defe
ts, expressed in units of the latti
e 
onstant a, are:l = 0 (a), l = 0:2 (b), l = 0:5 (
), l = 0:7 (d). Coupling strengths of the systemas in Fig. 3.5. The �nite slabs 
ontain N=2 = 150 
ells.
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Figure 3.8: Compression of the width of the lo
alized mode resonan
e byin
reasing the number of 
ells in the atomi
 latti
es: N=2 = 150 (solid bla
kline), N=2 = 175 (dotted blue line), N=2 = 200 (dashed red line). The defe
t islong l = 0:5 a.In this 
ase, the defe
t be
omes a sort of 
avity embedded in between thetwo latti
es that a
t as mirrors. Be
ause the system is �nite, some light
an tunnel through the stru
ture and a stationary state for the ele
tri
�eld is established: it is peaked 
orresponding to the defe
t and it vanishesexponentially in the atomi
 parts. The phase displa
ement between thetwo plane waves in the defe
t is now given by�Braggl = e2i(�=a)l: (3.11)By varying the length of the defe
t l 2 [0; a℄, the frequen
y of the lo
alizedmode shift from the upper bound to the lower bound of the Bragg gap:it is in the 
enter when �Braggl = �1. Be
ause we are 
onsidering the slab
ase, the re
e
tivity of the mirrors depends on the number of 
ells of ea
hlatti
e (2.24): by varying the lengths of the slabs L = (N=2)a we 
hangethe width of the resonan
e as it is shown in Fig. 3.8.3.2.2 Atomi
 defe
tIt is also of interest to 
onsider the 
ase of an atomi
 impurity embeddedin the three-level atomi
 latti
e; we built up a toy model that des
ribes asort of photon blo
kade pro
ess as it was suggested in the investigation ofthe non-linear intera
tion in a four-level atomi
 gas [71℄.
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(a) (b)Figure 3.9: The four-level 
on�guration (Panel a) whi
h is studied with tothe toy model based on the two-level defe
t (Panel b): the dressed atom has anallowed transition jmi $ je2i that is near resonant with the probe ele
tri
 �eld.This transition is mimi
ked by using the two-level atom in the semi-in�nitegeometry.The atomi
 
on�guration we want to mimi
 is depi
ted in Fig. 3.9: inaddition to the three-level � 
on�guration, the metastable state is 
oupledto a se
ond ex
ited state je2i and this transition is near resonant with thejgi $ jei one. The idea is that we have a sequen
e of travelling photons: aphoton brings one of the three-level atoms into the jmi state and then thenext photon sees the two-level transition to the je2i state. To reprodu
ethis situation, we simply substitute the TM of the va
uum defe
t withthe one 
ontaining the phase shift indu
ed by a two-level atom (2.17)des
ribed by its resonant frequen
y !d and os
illator strength fd whi
his in general di�erent from f be
ause of the di�erent dipole moment. Inthe re
e
tivity spe
trum, a peak appears 
orresponding to the resonantfrequen
y as we have seen in the previous 
hapter for the single atom
ase (2.25). By tuning the atomi
 parameters, it is possible to shift andto 
hange the width of the re
e
tion peak within the mini-band, as it isshown in Fig. 3.10. The two-level impurity a
ts as a wall that abruptlyblo
ks the 
ow through the otherwise transparent medium.3.2.3 E�e
t of absorptionTo estimate the e�e
t of absorption we introdu
e 
e 6= 0 in the expressionsof the sus
eptibility derived in Chapter 1. In this 
ase, only the �niteslabs geometry makes sense be
ause in the semi-in�nite 
ase polaritonsare 
ompletely absorbed regardless of the extin
tion length.Near the Bragg frequen
y there are no 
hanges in the re
e
tivity spe
trum



48 CHAPTER 3

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

R

(ω
 −

 ω
eg

)/
ω

eg

Figure 3.10: Polariton s
attering on an atomi
 two-level defe
t embedded inan in�nite latti
e of three-level atoms. Os
illator strengths for the atomi
 latti
eas in Fig. 3.5. Atomi
 parameters for the impurity: fd = 0:3f , !d = !eg (solidbla
k line); fd = 0:6f , !d = !eg (dotted blue line); fd = 0:6f , !d = (1:01)!eg(red dashed line).for the number of 
ells studied above: this is due to the fa
t that we dis
ussthe purely ex
itoni
 regime and then Bragg frequen
y is far o�-resonantand absorption is vanishingly small.It is instead strong the e�e
t in the resonan
e region: the re
e
tivity peaks
orresponding to the gaps for the in�nite stru
ture are redu
ed dependingon the value of 
e. Furthermore, the Fabry-Perot like fringes disappearbe
ause the multiple re
e
tions at the interfa
es of the stru
ture are for-bidden be
ause of absorption. The 
omparison between the spe
tra withdi�erent values of 
e is in Fig. 3.11.For the atomi
 defe
t, it is 
ru
ial to 
he
k the behavior of the impuritypeak: its form strongly depends on the detuning between !d and !eg; infa
t the re
e
tion is peaked at !d while 
orresponding to Raman resonan
ewe have the absorption dip 
hara
teristi
 of EIT. In Fig. 3.12(a) we seethat if !d = !eg the 
entral peak is un
hanged regardless the value of
e, while in the detuned 
ase of Fig. 3.12(b), the impurity re
e
tion isstrongly redu
ed in an asymmetri
 way. Furthermore, as long as we raise
e, we squeeze the absorption dip and the tails of the peak are damped.
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Figure 3.11: E�e
t of absorption on the re
e
tion from defe
ts. Case of a va
-uum defe
t for a slab geometry, spe
trum near resonan
e frequen
y, parametersas in Fig. 3.5; di�erent values of the ex
ited state linewidth: 
e = 0 (solid greyline), 
e = 0:01!eg (dashed bla
k line), 
e = 0:07!eg (dot-dashed blue line).
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(b)Figure 3.12: E�e
t of absorption of the re
e
tion from defe
ts. Atomi
 defe
tfor a slab geometry, spe
trum near resonan
e frequen
y; atomi
 parameters forthe latti
e as in Fig. 3.5. The os
illator strength for the atomi
 impurity isfd = 0:6 f . (a) Resonan
e 
ases (!d = !eg): 
e = 0:01!eg (solid bla
k line),
e = 0:07!eg (dot-dashed blue line). (
) Detuned 
ases (!d = 1:01!eg): 
e =0:01!eg (dotted red line), 
e = 0:07!eg (dashed green line).
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Dynami
 EIT
The 
ontrol of light pulse propagation in matter is a key element of opti
aldevi
es for fundamental s
ien
e as well as for te
hnologi
al appli
ations. Inmany 
ases, this is made diÆ
ult by the presen
e of 
ompeting e�e
ts likedispersion and absorption. Furthermore, the available time for manipula-tion is limited by the very high propagation speed of light in 
onventionalmaterials.As we have seen in Part I, by dressing the matter ex
itations with 
oher-ent external �elds, a resonant probe laser pulse 
an be made to propagatea
ross an otherwise strongly absorbing medium at an ultraslow group ve-lo
ity and without being distorted. This is the Ele
tromagneti
ally Indu
edTransparen
y (EIT). The in
oming light is 
oupled to a Dark Polariton(DP) whi
h shows vanishing absorption and dispersion [25{27, 29℄ andwhose group velo
ity 
an be 
ontrolled via the intensity of the 
ontrol�eld [28℄.The dynami
al modulation of the 
ontrol �eld while the pulse is propagat-ing opens up a wide variety of possibilities for light manipulation in thespirit of the so-
alled Dynami
 Photoni
 Stru
tures (DPS) [33℄. For exam-ple, by 
ompletely swit
hing o� the 
ontrol �eld, the probe light 
an behalted and stored as an atomi
 (spin-like) ex
itation, and later retrievedafter a ma
ros
opi
 time: su
h light storage te
hniques [29,72{75℄ are 
on-sidered as a 
ru
ial tool for all-opti
al information te
hnologies. A periodi
dynami
al modulation of a spatially homogeneous 
ontrol �eld 
an leadto intriguing phenomena su
h as frequen
y triggering in time of the EITband [76℄. A non-adiabati
 variation of the 
ontrol �eld has been pro-posed as a tool to 
ompensate the pulse broadening at the exit of a delayline [77, 78℄ or after retrieval of a previously stored light wavepa
ket [79℄.Extremely fast modulations of the 
ontrol �eld have been anti
ipated toprodu
e a substantial dynami
al Casimir emission [80℄.Light trapping s
hemes have been proposed whi
h exploit a spatially mod-ulated medium: the 
reation of a 
ontrol �eld grating as well as the use of53



54 Dynami
 EITatoms trapped in regular periodi
 stru
tures allow the 
reation of tunablestop bands within the EIT window [58, 59, 81, 82℄. Mutual intera
tions ofmoving spin 
oheren
e gratings is also an eÆ
ient way to stop two-
olorlight and to perform wavelength 
onversion and it has been re
ently ex-perimentally realized [83, 84℄.A 
ombined spatial and temporal modulation of the 
ontrol �eld is dis-
ussed in [85{87℄ where the simultaneous propagation of both 
ontrol andprobe pulses is 
onsidered: a ramp of the 
ontrol �eld in an otherwise ho-mogeneous medium indu
es di�erent propagation velo
ities in the di�erentparts of the probe pulse, whi
h then results in a 
ontrollable reshaping ofits pro�le.Dilute ultra
old gases are among the most promising media for EIT ap-pli
ations. Both slow light and light storage have been experimentallyrealized in this systems [30, 31℄. The �rst experimental realization of EITin a Mott Insulator (MI) has been re
ently reported for light storage pur-poses [32℄. Unfortunately, the typi
al size of atomi
 samples is often smallas 
ompared to the duration and waist of the probe pulse, whi
h imposesstri
t bounds on the eÆ
ien
y of storage te
hniques. Most of the theo-reti
al works were so far fo
used on the 
ase of a homogeneous atomi
medium with some boundary 
ondition.In Part II, we present a model that is able to in
lude the spatial inhomo-geneity of a system and therefore to des
ribe the propagation dynami
sat the interfa
e between va
uum and the EIT medium. E�e
ts of dynami
modulation in homogeneous systems are des
ribed. By taking advantageof the interfa
es of the medium, we show how it is possible to manipulatethe wavepa
ket shape by means of a dynami
al modulation of the 
ontrol�eld intensity.The multi-layer stru
ture o�ers the possibility to spatially engineer theradiation-matter intera
tion by exploiting the advan
ed trapping te
h-niques of ultra
old atoms, while waveguide te
hnology supports the 
re-ation of va
uum dispersion regions of tunable length. In the usual pulseds
heme in homogeneous system [85, 86℄ the manipulation s
heme is lim-ited to a single interfa
e, while in this 
ase we 
an �gure out a wide rangeof di�erent stru
tures involving several interfa
es and several layers withdi�erent group velo
ities. As an example, the lossless swit
hing from asingle pulse to a train of separated pulses 
an be addressed. Furthermore,the redu
ed opti
al depth of ea
h layer allow for a more eÆ
ient modula-tion [75℄.



CHAPTER 4
Pulse propagation throughinhomogeneous and dynami
stru
tures
The des
ription of radiation-matter intera
tion based on the sus
eptibility,that we have used in Part I, refers to a stationary situation. If we wantto model the propagation of a light pulse through a dynami
 system, weneed to 
onsider the full evolution in time of the ele
tri
 �eld 
oupledto the atomi
 polarizations. The Opti
al Blo
h Equations (OBE) seen inChapter 1 whi
h des
ribe the atomi
 dynami
s have to be plugged into theMaxwell's formalism: the resulting set of partial di�erential equations givesa 
omplete semi-
lassi
al pi
ture [35℄. In parti
ular, we fo
us our attentionon the Dark Polariton (DP) bran
h near resonan
e for an atomi
 mediumunder Ele
tromagneti
ally Indu
ed Transparen
y (EIT) 
onditions: thissystem shows the 
ru
ial properties of transparen
y and slow propagationof light needed in view of appli
ations for the manipulation of the lightsignal.In Se
tion 1, we dis
uss a pe
uliar approa
h to the Maxwell-Blo
h (MB)formalism whi
h allows the simultaneous des
ription of both a spatialmodulation and a time dependen
e of the atomi
 parameters and 
ontrolbeam intensity. The inhomogeneity of the system requires a 
areful refor-mulation of the Slowly Varying Envelope Approximation (SVEA) [34℄ inorder to safely keep the terms responsible for the re
e
tion at interfa
es.In Se
tion 2, we 
ompare the dispersion obtained from our spe
i�
 MBequations with the 
onventional EIT 
ase dis
ussed in Chapter 3: this55
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omparison is also useful in 
larifying the mixed nature of polaritons.For the re
e
tion at interfa
es in the stationary situation, we re
over theFresnel law plus some 
orre
tions whi
h are in general small and do notintrodu
e spurious e�e
ts.In Se
tion 3, we dis
uss the propagation through a multi-layer stru
ture
omposed by va
uum regions and EIT blo
ks whi
h 
an be made dynami
.We analyse the simple 
ases of a homogeneous medium and a sharp inter-fa
e between di�erent layers.Starting from the observation that the s
attering of a DP pulse on a sharpinterfa
e, provided the pulse �ts in the EIT dip, usually 
auses only smallre
e
tion in both the stati
 and dynami
 
ases we derive, in Se
tion 4,a single e�e
tive equation for the propagation of the ele
tri
 �eld. Thisequation takes into a

ount the e�e
t of the atomi
 medium through thepolariton group velo
ity and the relative absorption 
oeÆ
ient. It is usefulto investigate ultraslow light regimes were the MB formalism be
omesnumeri
ally too demanding to be solved.4.1 Maxwell-Blo
h formalismWe restri
t our attention to a 1D geometry at normal in
iden
e for theprobe �eld. As the di�erent polarizations of e.m. �eld are in this 
asede
oupled, the ve
tor nature of Maxwell's equations disappears and oneis left with a s
alar problem for ea
h 
omponent [39℄:� �2�x2 � 1
2 �2�t2�E(x; t) = �0 �2�t2P (x; t): (4.1)Here P (x; t) is the polarization of the atomi
 medium (1.2). The 
onstants
 and �0 are, respe
tively, the velo
ity of light in va
uum and its magneti
permeability.We 
onsider a laser probe pulse of the form E(x; t) = (E(x; t)e�i!0t+ 
:
:),where !0 is the 
arrier frequen
y and the pulse envelope E is assumedto vary on a time s
ale mu
h slower than !0. Under this approxima-tion, we 
an perform a modi�ed Slowly Varying Envelope Approximation(mSVEA) and negle
t the se
ond order time-derivatives of the envelope.Di�erently from the 
onventional SVEA dis
ussed in textbooks, e.g. [34℄,all the derivatives of the �eld with respe
t to the spatial 
oordinates areretained: this feature is in fa
t 
ru
ial as we intend to investigate 
on�gu-rations involving abrupt jumps in the spatial distribution of atoms n(x).For this reason we have not separated out the spatial part of the enve-lope from the 
arrier. The same form P (x; t) = (P(z; t)e�i!0t + 
:
:) isassumed for the atomi
 polarization. This leads to the following rewriting
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 stru
tures 57of Maxwell's equation (4.1):� �2�x2 + !0
2 �!0 + 2i ��t�� E = ��0!20P: (4.2)Here we have negle
ted the �rst order derivative in time of the polariza-tion envelope whi
h is proportional to se
ond-order time derivative of theele
tri
 �eld [68℄.The presen
e of three-level atoms is taken into a

ount by plugging theopti
al polarization (1.2) arising from the OBE (1.23) into the Maxwell'sequation (4.2). The resulting set of MB equations is then given by1!0 �E�t = i2 1k20 � �2�x2 + k20� E + i2 ndeg�0 ~�eg; (4.3a)�~�eg�t = ��
e2 + iÆe� ~�eg + idegE~ � i

2 ~�mg; (4.3b)�~�mg�t = ��
m2 + iÆR� ~�mg � i

2 ~�eg: (4.3
)After 
hoosing an appropriate normalization, the MB equations 
an be
ast in the more symmetri
 form�E�t = i2 � �2�x2 + 1� E + ipf!eg2 ~�eg; (4.4a)�~�eg�t = ��
e2 + iÆe� ~�eg + ipf!eg2 E � i

2 ~�mg; (4.4b)�~�mg�t = ��
m2 + iÆR� ~�mg � i

2 ~�eg: (4.4
)In parti
ular, we 
hoose the probe frequen
y !0 as the unit for frequen
y,and the same with k0 = (!0=
) for the waveve
tor1. The ele
tri
 �eld ismeasured in terms of E0 =rn~!02�0 : (4.5)The physi
al meaning of this 
hoi
e is related to the energy density in thesystem: the energy density asso
iated to the atoms isWat = n~!0j~�egj2; (4.6)where we use the fa
t that the probe frequen
y is near resonan
e, !0 � !eg;while the energy in the e.m. �eld is [88℄Wem = 2�0E20 jEj2: (4.7)E0 is then the ele
tri
 �eld asso
iated to an ex
itation whi
h is exa
tlyshared between atoms in the ex
ited state and photons: (jEj2 = j~�egj2 =1;Wat =Wem). The strength of the light-matter 
oupling is quanti�ed bythe adimensional os
illator strength f de�ned in (1.19).1This means that we have made the following substitutions: !0t $ t, k0z $ z,
e=!0 $ 
e, et
.



58 CHAPTER 44.1.1 Features and limitations of mSVEABefore pro
eeding, it is important to assess the features and limitations ofthe mSVEA approa
h that we introdu
ed in the previous subse
tion. Thisapproximation leads in fa
t to equations (4.2) and (4.4) that di�er fromthe standard formalism used for EIT-related problems and o�er importantadvantages for the spe
i�
 systems under 
onsideration here.In the absen
e of atoms the mSVEA Maxwell's equation (4.2) with P = 0gives the following approximate dispersion for the free e.m. �eld2:
(k) = 
2k2 + !202!0 : (4.8)On one hand, this dispersion is able to simultaneously des
ribe both theforward (k > 0) and the ba
kward (k < 0) propagating photons. This willbe useful to handle re
e
tivity problems without the need for a 
oupledmode theory. On the other hand, the deviation from the linear dispersionof light is responsible for a spurious wavepa
ket broadening. However, thise�e
t start to be important over propagation lengths that are mu
h longerthat the ones under investigation here.At the interfa
e with a generi
 semi-in�nite medium of linear sus
eptibility�(
), the re
e
tivity of a mono
hromati
 wave at normal in
iden
e 
anbe straightforwardly 
al
ulated from (4.2) asR(
) = ����1� k0=k1 + k0=k ����2 (4.9)where the mSVEA waveve
tors in va
uum and in the medium are respe
-tively k = !0
 r1 + 2
� !0!0 (4.10)k0 = !0
 r1 + �(
) + 2
� !0!0 : (4.11)Provided the frequen
y 
 is 
lose to the 
arrier !0, the approximate re-
e
tivity (4.9) is a

urate up to 
orre
tions of the order (
 � !0)=!0.This 
ondition is well satis�ed in an EIT medium in the frequen
y regionaround resonan
e as the light propagation is dominated by the frequen
ydispersion of the sus
eptibility �(
).2In deriving the formula (4.8), we remember that the equation (4.2) gives the dis-persion for the envelope whi
h is shifted by (�!0) with respe
t the dispersion of theele
tri
 �eld
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 stru
tures 59It is important to note that at the level of the mSVEA approximation oneis allowed to repla
e the k2 term in (4.8) with a generi
 fun
tion F (k) thatsatis�es the 
onditions: 
(�k0) = 
jk0j; (4.12)d
dk �����k0 = �
: (4.13)This feature is of great interest when one is to numeri
ally solve the setof equations (4.4).In fa
t, we solve the set of MB equations by means of a Finite Di�eren
eTime Domain (FDTD) algorithm with a 4th order Runge-Kutta s
heme topropagate the �elds in time. Spatial derivatives of the �elds are evaluatedin momentum spa
e using a Dis
rete Fast Fourier Transform. The 
ru
ialissue limiting the speed of the numeri
al 
al
ulation is the time step of theFDTD evolution: its maximum value is set by the width of the frequen
yband 
onsidered in the problem. A proper 
hoi
e of F (k) with suitableupper and lower bounds allows to restri
t this bandwidth without a�e
tingthe physi
s.In parti
ular, we have 
hosen an Erf-shaped3 fun
tion whi
h gives thedispersion 
(k) = 
k0�1 + Erf(p�jk � k0j)2k0 � : (4.14)The bandwidth is 
hosen wide enough not to introdu
e spurious physi
sin the frequen
y region of interest 
lose to !0. The 
hoi
e of a linear F (k)at !0 suppresses the spurious dispersion of the wavepa
ket that would beotherwise introdu
ed by the mSVEA. We have 
he
ked that the results donot depend on the spe
i�
 
hoi
e of F (k) and remain the same if, e.g., alinear form or the original quadrati
 form of F (k) are taken whi
h are of
ourse 
omputationally mu
h more time-
onsuming.4.2 Homogeneous system: Polariton pi
tureThe MB formalism (4.4) shows how the ele
tri
 �eld and the atomi
 polar-izations intera
t via the laser �elds. If we 
onsider a homogeneous atomi
medium, this intera
tion gives rise to mixed eigenmodes for the systems:these states are exa
tly the polaritons [26, 27, 29, 40℄.3Here we use the following de�nition for the Erf fun
tion: Erf(x) = 2p� R x0 e�y2dy.
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(f)Figure 4.1: Polariton dispersion resulting from the diagonalization of the MBformalism (4.4), (4.15). We 
onsider a resonant dressing and the probe 
ar-rier is at Raman resonan
e (Æe = ÆR = 0). Parameters of the system: os
illatorstrength f = 0:04, 
ontrol Rabi frequen
y 

 = 0:07!eg, ex
ited state linewidth
e = 0:01!eg . Panel (a): Band diagram for both positive and negative waveve
-tor; panel (
): Group velo
ity of the polariton wavepa
ket (positive bran
h);panel (e): E�e
tive linewidth for the polaritons. Panels (b), (d) and (f) 
ontainthe zoom near the positive DP bran
h respe
tively for (a), (
) and (e).
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 stru
tures 614.2.1 Polariton dispersionIn the following we 
onsider the parti
ular 
ase of a resonant dressingand probe 
arrier, !0 = !eg, whi
h 
orresponds to the Raman resonan
e
ondition. From the se
ular equation for the matrix0� F (k) pf!eg=2 0pf!eg=2 �i
e=2 

=20 

=2 �i
m=21A ; (4.15)whi
h is equivalent to the system (4.4) multiplied by !eg, we obtain thedispersion for the model we have built up. We use the resonant frequen
yas the origin for the frequen
y axis: 
 = ! � !eg. By 
onsidering a linearform for the dispersion of light in va
uum, F (k) = 
jkj � !eg, we have(
jkj � !eg � 
) ���
� i
e2 ���
� i
m2 �� 
2
4 �+�pf!eg2 �pf!eg2 (�
� i
m)� = 0;
jkj = !eg + 
 + f!2eg4 ��
� i
e2 � 
2
4(�
� i
m=2)��1 : (4.16)This dispersion 
orresponds to the linearization near the resonant fre-quen
y of the general law (2.19) we used in the previous 
hapter:
k = �!eg + 
+ 12�(
)!eg� : (4.17)If we expand the dispersion near Raman resonan
e
(k) = �
�k (k � keg) + 12 �2
�k2 (k � keg)2; (4.18)and we use the relations �
�k = � �k�
��1 ; (4.19)�2
�k2 = �v3gr �2k�
2 ; (4.20)we 
an derive the expressions for the group velo
ity (3.2) and the polaritonlifetime (3.3) for the DP near Raman resonan
e:vgr
 = �1 + f !2eg
2
 ��1 ; (4.21)
(k) = 
e2 4f!2eg
4
 1
 v3gr(k � 1)2 == 
e2 4
2
f 2!4eg 
2(k � 1)2: (4.22)



62 CHAPTER 4In Fig. 4.1, we see the polariton bran
hes resulting from the (4.16): in thepresent work, we are interested in the 
entral mini-band where the groupvelo
ity of light and the absorption rate are small [see Fig. 4.1(b), Fig.4.1(d), Fig. 4.1(f)℄.4.2.2 Polariton stru
tureThe diagonalization of the matrix (4.15) gives also the stru
ture of thepolaritons in terms of ele
tri
 �eld and atomi
 polarizations. To 
al
ulatethe 
omponents of the eigenve
tor, we rewrite the matrix by subtra
tingfrom the diagonal terms the dispersion F (k) and we also negle
t the atomi
linewidths whi
h are small as 
ompared to resonan
e frequen
y:0� 0 pf!eg=2 0pf!eg=2 !eg � 
jkj 

=20 

=2 !eg � 
jkj1A : (4.23)The expli
it form of the polaritons is given by [24℄uLP = sin�
os� E � sin� �eg + 
os�
os� �mg; (4.24a)uDP = 
os� E � sin� �mg; (4.24b)uUP = sin�sin� E + 
os� �eg + 
os�sin� �mg: (4.24
)Here we have de�ned the anglestan(�) = pf!eg

 ; (4.25a)tan(2�) = pf!2eg + 
2
2(!eg � 
jkj) : (4.25b)Furthermore, for ea
h polariton state at a wave ve
tor k, the group velo
ityand the lifetime are related to the relative weights of the radiation andmatter ex
itation 
omponents:vgr(k) = 
 jE(k)j2jE(k)j2 + j~�eg(k)j2 + j~�mg(k)j2 ; (4.26)
(k) = 
e j~�eg(k)j2jE(k)j2 + j~�eg(k)j2 + j~�mg(k)j2 : (4.27)4.3 Multi-layer system: the EIT 
hainWe 
onsider a pulse of light laun
hed into a layered geometry 
onsistingof several atomi
 EIT media separated by empty regions of spa
e. We
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 stru
tures 63assume the atoms in the di�erent EIT layers to have the same Ramanfrequen
y. The probe pulse 
arrier is taken exa
tly on Raman resonan
eand the pulse bandwidth is assumed to �t within the EIT frequen
y win-dow. The propagation of the pulse a
ross the system 
an be simulatedusing the MB formalism (4.4) with spatially dependent f(x) and 

(x). Api
torial view of the layered medium, the EIT 
hain, is shown in Fig. 4.2.In the following, we distinguish two situations: the stati
 
ase in whi
hthe radiation-matter parameters remain 
onstant during the propagationand the dynami
 s
heme whi
h is 
hara
terized by a time perturbationof some quantity. In parti
ular, we address the variation in time of thedressing �eld amplitude 

.We point out that in all the �gures representing the propagation of thepolariton, we will report only the ele
tri
 �eld 
omponent whi
h is thequantity we inje
t in the atomi
 system and we measure at the end of thepro
ess. It is 
lear that the ele
tri
 �eld and the polariton are the samething in va
uum, while there are the atomi
 polarization 
omponent inmatter.The shaded parts in the �gures 
orrespond to atomi
 media while the whiteones are the va
uum regions. The pulses move from left to right, apart the
ases of re
e
ted peaks, and the dashed lines represent the initial pulses.In all the examples shown in the following, we have used standard valuesfor the some parameters: os
illator strength f = 0:04 and ex
ited statelinewidth 
e = 10�3 !0. The pulses are gaussian-shaped with temporallength !0 �t = 400.

Control

Probe

Transmission
        line

Figure 4.2: Pi
torial s
heme of a double-layer EIT 
hain. The dire
tion of the
ontrol beam is 
hosen orthogonal to the probe simply for 
larity and in generalit depends on the spe
i�
 setup.
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aseIn a stati
 situation, the pulse propagates a
ross the whole stru
ture withonly a negligible re
e
tion at the interfa
es as it is shown in Fig. 4.3 forthe 
ase of a va
uum defe
t in between two atomi
 EIT layers. The prop-agation time is equal to the sum of the thi
kness of ea
h layer divided bythe relative group velo
ity. As usual, the 
ontinuity of the ele
tri
 �eldis preserved by the boundary 
onditions at the interfa
es. As a 
onse-quen
e of the spatial dependen
e in the propagation speed, the shape ofthe wavepa
ket is modi�ed while going from one layer to another, whi
hgives rise to dis
ontinuities in the derivative of the pulse envelope at theinterfa
es: the spatial width of a pulse entering an EIT layer is in fa
tshrunk by (vgr=
) as a 
onsequen
e of the redu
ed group velo
ity (see Fig.4.4). The reversed pro
ess takes pla
e when it leaves the layer.We 
an des
ribe the same pro
ess also in terms of the polariton pi
ture.In the presen
e of an interfa
e, the di�erent waveve
tor 
omponents ofthe polariton wavepa
ket are mixed by the spatial inhomogeneity of thesystem. On the other hand, as long as the system is stati
, energy 
on-servation imposes a mat
hing 
ondition between the waveve
tors a
rossthe interfa
e. If we 
onsider the region around Raman resonan
e, the dis-persion is linear both in va
uum and in the EIT layer, yet with di�erentslopes. For a given frequen
y width of the wavepa
ket, the waveve
torspread, i.e. the inverse spatial width of the pulse, is then in
reased bythe ratio 
=vgr when entering a EIT medium, whi
h re
overs the intuitiveresult stated above.An important distin
tion has therefore to be 
arefully made in the no-tation: the width of the wavepa
ket in the EIT layer will be denoted by��x = (�t vgr) while in va
uum it will be denoted by �x = (�t 
).By using the lifetime of the DP (4.22), we de�ne two quantities that areuseful to des
ribe the propagation of a wavepa
ket through a homogeneousEIT layer of length L. In fa
t, the intensity of the DP �eld de
ays in timeas IDP (
) / e�2
(
)t = e�L=`abs : (4.28)From this relation, we obtain the absorption length`abs = vgr2
(
) : (4.29)In the 
ase of a DP pulse we 
an estimate the range over whi
h it 
an prop-agate undistorted. By using the relations for the frequen
y and waveve
torspreads �
 = 1=�t and �k = 1=��x , we have:`abs(�
) = �vgr
 f!2eg4
e �t� ��x; (4.30)
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(d)Figure 4.3: A DP 
rossing a va
uum defe
t in between two atomi
 layers.The group velo
ity in the atomi
 medium is vgr = 0:11
. Solid lines representthe ele
tri
 �eld at the end of propagation. (a) Real spa
e representation. (b)Waveve
tor spa
e, re
e
tion round k=k0 = �1 with re
e
tivity dip; in the mainpeak the dashed initial pulse is 
overed by the solid line. Panels (
) and (d) showthe details of the re
e
ted peak in both real and momentum spa
e. By varyingthe length of the defe
t the result 
hange quantitatively but the re
e
ted peakis always negligible as 
ompared to the transmitted one.
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Figure 4.4: Propagation a
ross a stati
 interfa
e. Solid line: pulse shape whilebeing spatially 
ompressed in entering into a medium with vgr = 0:11 
. Dottedline: pulse shape on
e 
ompletely entered.For a pulse going through an atomi
 samples, we obtain a gaussian trans-mittivity window in frequen
y:T (!) = e�
2=�!2Tr : (4.31)where the width of the window is�!Tr = 12r 
L 
2
pf!2eg
e ; (4.32)Provided the pulse �ts the EIT re
e
tivity (3.7) and absorption (4.32) dipin ea
h layer and provided the start and end layers 
onsist of the samemedium, the pulse duration and shape remain un
hanged at the end ofthe propagation pro
ess. In more pi
torial terms, the Raman point on theDP bran
h allows for a good impedan
e mat
hing between the di�erentregions of spa
e: it a
ts as the link along the EIT 
hain.4.3.2 Dynami
 
aseAs shown in (4.21) and (4.26), the variation of the dressing laser intensitythat a�e
ts the group velo
ity also tunes the ele
tri
 �eld amplitude of the
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tures 67probe pulse: the more photoni
 the polariton, the faster it is. The modula-tion of this external parameter o�ers a straightforward way to dynami
allya
t on the EIT 
hain.The 
ombined 
hange of group velo
ity and ele
tri
 �eld suggests a varietyof possible geometries depending on the desired appli
ation; for example,if we are thinking to a tunable delay line [89℄, we will be more interested inmodifying the group velo
ity without a�e
ting the shape. Instead, we will
onsider the spatial dependen
e of the 
ontrol �eld in order to reshape thepulse [90℄ to go beyond the limiting dimensions and pro�les of wavepa
ketsobtained with standard te
hniques.For this reason, while dis
ussing the e�e
t of 
ontrol �eld modulation, two
ases will be distinguished: the homogeneous layer, when the pulse is 
om-pletely 
ontained in a single EIT sli
e during the whole time-modulationsequen
e, and the interfa
e, when the modulation takes pla
e while thepulse is instead overlapping two neighboring layers. The latter pro
ess isalways feasible, while the former depends on the ratio between the lengthof the pulse in the medium and the thi
kness of the involved EIT layers.All the possible geometries related to the EIT 
hain 
an be derived fromthese two basi
 situations as it will be shown in the next 
hapter. For theexamples of dynami
 modulation shown here, the ramp time is �xed at!0� = 100.Homogeneous LayerWhen the whole pulse �ts into the EIT medium, the dynami
s is easilyunderstood within the polariton pi
ture dis
ussed above and it is 
har-a
terized by the waveve
tor 
onservation. A time-dependent perturbationwith ramp time � of the dressing �eld indu
es an evolution in the polaritonwavefun
tion and group velo
ity by 
hanging the weights of radiation andmatter 
omponents [26, 27, 29℄ as it is 
lear from (4.24). For ea
h valueof k, this evolution results in a �nite transition rate from the DP to theUP and LP: we will dis
uss in the next 
hapter this pro
ess in detail. Ingeneral, the matrix element of the 
oupling goes as the time derivative ofthe perturbation and 
an be negle
ted as long as the pro
ess is adiabati
,i.e. slow as 
ompared to the inverse of the splitting between the di�erentbands [91{94℄. Then we expe
t that providedpf!eg� � 1; (4.33)a polariton inje
ted on the DP bran
h will spend all its lifetime on thisbran
h. In parti
ular, the dynami
al modulation of the frequen
y spe
trumensures that if the pulse ful�lls the EIT 
ondition at the entran
e time,then it will ful�ll it at all later times [33℄.
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ket propagation in a dynami
 homogeneous EIT layer.Dotted line: propagation without modulation. Solid line: result of a slow downramp vfgr = vigr=2. Dot-dashed line: result of a speed up ramp vfgr = 1:8 vigr.We 
onsider a generi
 variation in the group velo
ity from the initial valuevigr to the �nal one vfgr. The resulting pulse shape does not depend onthe fun
tional form of the velo
ity variation. The spatial shape of thepulse is �xed by the initial distribution in the waveve
tor spa
e (�k)and is not modi�ed. The peak ele
tri
 �eld intensity is instead multipliedby (vfgr=vigr) a

ording to (4.26). In the 
ase in whi
h the group velo
itymodulation is brought ba
k to the initial value (vfgr = vigr), the pulseemerges with an un
hanged pro�le: as a result, the layer 
an be 
onsideredas a very 
ompa
t, yet programmable delay line. Examples of modulationsare illustrated in Fig. 4.5.Interfa
eA dynami
al modulation taking pla
e while the pulse overlaps an interfa
eprovides a simple way of reshaping the pulse: only the part of the pulsewhi
h is lo
ated inside the EIT layer is in fa
t a�e
ted by the modulationof the dressing �eld. In 
ontrast to the the spatially homogeneous 
ase
onsidered above, the shape of the emerging pulse now strongly dependson the details of the modulation ramp even in the adiabati
 limit. This
ru
ial fa
t is illustrated in Fig. 4.6: the group velo
ity of a EIT medium
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tures 69is redu
ed while a pulse is exiting into va
uum.The results 
an be understood by isolating three portions of the pulse: the�rst part is already in va
uum when the modulation begins, while the lastpart is still in the EIT medium when the modulation is 
ompleted. The�rst part is therefore not a�e
ted by the modulation, while the ele
tri
 �eldamplitude of the third part is homogeneously lowered. When this part ofthe pulse eventually exits into va
uum, its spatial length is stret
hed outeven more than the �rst part by a fa
tor vigr=vfgr. As 
learly visible in the�gure, this results into a strongly asymmetri
 pulse shape.Finally, the modi�
ation of the 
entral part of the pulse depends in a non-trivial way on the details of the ramp. For a fast [but still adiabati
 as
ompared to the interband splitting, a

ording to (4.33)℄ modulation, the�rst and third parts of the pulse are 
onne
ted by a sharp jump in the ele
-tri
 �eld amplitude. For slower ramps, this jump is repla
ed by a smooth
rossover. Details about this pro
ess in more 
ompli
ated stru
tures andappli
ations to realisti
 experimental situations will be dis
ussed in thenext 
hapter.
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Figure 4.6: A DP pulse exiting from a EIT medium into va
uum, vigr = 0:11 
.Dotted line: propagation without modulation. Solid line: result of a slow downramp vfgr = vigr=2.



70 CHAPTER 44.4 Polariton flow: effe
tive des
riptionThe MB formalism (4.4) gives a 
omplete pi
ture of the pulse propagationwhi
h is able to take into a

ount inter-band transitions4 as well as re
e
-tion at the interfa
es. In fa
t, as we see in Fig. 4.1(a), we 
onsider the threepolariton bran
hes for both positive and negative waveve
tors. As the so-lution of the three 
oupled equations is time- and memory-
onsuming, itqui
kly be
omes unfeasible for growing values of the velo
ity mismat
hbetween the di�erent media.For this reason, an e�e
tive approa
h able to investigate the ultraslowlight regime 
an be of great interest. Starting from the dispersion of theDP bran
h, we have written a single equation for the ele
tri
 �eld inten-sity. The 
ru
ial feature of this e�e
tive model is that it is able to in
ludethe e�e
t of both absorption and spatial inhomogeneity of the stru
ture.With the derivation of this equation, we have a 
omplete formalism to an-alyze the propagation of a DP pulse through inhomogeneous and dynami
stru
tures: the MB equations 
apture the essential physi
s in relation tospe
i�
 geometry and modulation of the parameters while the e�e
tiveequation allows to test the e�e
t of the developed te
hniques using realis-ti
 values.4.4.1 Continuity equationFrom the MB formalism, we have seen that the dynami
 modulation ofthe pulse does not result into an in
reased re
e
tion as 
ompared to thestati
 
ase and transmittivity is very good as long as the pulse �ts in theEIT transmission window. The features that were observed in the solutionof the MB equations in the absen
e of absorption suggest that the system
an be des
ribed by means of a 
ontinuity equation for the polariton 
owboth in the homogeneous system 
ase and in presen
e of interfa
es.In terms of the polariton density np(x; t), the 
ontinuity equation reads��tnp(x; t) + ��x (np(x; t)vgr(x; t)) = 0: (4.34)Physi
ally, this equation means that the total number of polaritons is
onserved. It is useful to rewrite this equation in terms of the ele
tri
 �eldintensity I = jEj2 
orresponding to the polariton 
ux npvgr [see (4.26)℄instead of the polariton density.For stati
 inhomogeneous geometries with abrupt 
hanges in the polari-ton velo
ity, the polariton density shows in fa
t dis
ontinuities while the4For a detailed dis
ussion see next 
hapter.
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tures 71ele
tri
 �eld remains everywhere 
ontinuous, even at the interfa
es. In thestati
 situation (vgr(x; t) = v0gr(x)), the initial lo
al polariton 
ux (i.e.ele
tri
 �eld in ea
h point) remains 
onstant and propagates following thevelo
ity �eld v0gr(x).Taking into a

ount (4.26), Eq.(4.34) then be
omes�I�t + vgr �I�x = � Ivgr �vgr�t : (4.35)The LHS of the equation 
ontains the propagation terms for the stati
situation. The general solution is a mixed translation and dilation of thestarting pulse I0(x) a

ording to the traje
tories in spa
e-time whi
h aresolution of the Cau
hy problem: ( _� = vgr(�); �(t) = x) [26, 29, 85℄. Thespe
i�
 solution 
learly depends on the geometry. The RHS of (4.35) isinstead responsible for the amplitude variation in the dynami
 
ase.4.4.2 Analyti
 solutions for the interfa
e geometryWe 
onsider a semi-in�nite geometry with the left half-spa
e made of ahomogeneous EIT medium and the right half-spa
e of va
uum; the velo
itygrid is de�ned by vgr(x; t) = v(t)�(�x) + 
�(x); (4.36)where we take into a

ount the possibility of a time perturbation of thegroup velo
ity in the EIT medium. We 
onsider a positive velo
ity v(t) >0, so that the ele
tri
 �eld moves from left to right. If we assume an initialele
tri
 �eld intensity distribution I0(x), the analyti
 solution of (4.35) inthis geometry isI(x; t) = 8>>>><>>>>: I0 �x� It0� v(t)v(0) ; x < 0I0 ��It�x=
0 � v(t� x=
)v(0) ; 0 < x < 
tI0 (x� 
t) ; x > 
t (4.37)Here we have de�ned Iba = Z ba v(t0)dt0: (4.38)This expression allows to study both the homogeneous 
ase and the inter-fa
e geometry and both the dynami
 and the stati
 
ase. In fa
t, dependingon the initial distribution of the ele
tri
 �eld and the time at whi
h welook the solution we 
an address the di�erent situations. Be
ause the ele
-tri
 �eld moves from left to right, the three di�erent parts that 
omposethe solution are divided in a simple way: the �rst part 
ontains the points
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h are still in the atomi
 medium at the observation time, the se
ondpart takes the points whi
h 
ross the interfa
e during the pro
ess while inthe third part there are the points whi
h started in va
uum. In Fig. 4.7we 
ompare the solutions of MB formalism (4.4) with those of the 
onti-nuity equation (4.39) in the 
ase of a stati
 and a dynami
 interfa
e. Theagreement is very good.4.4.3 E�e
t of lossesEven if the 
arrier frequen
y !0 sits exa
tly on Raman resonan
e, �nitetime duration of the wavepa
ket requires in
luding absorption for the tailsof the waveve
tor spe
trum [86,95℄. This leads to a �nite and momentum-dependent de
ay rate for the polaritons a

ording to (4.27). Taking inspi-ration from the approximated form (4.22) of the de
ay rate [68℄, a simpledi�usion term 
an be used to model the broadening 
oming from losses.The propagation equation (4.35) for the intensity I then be
omes�I�t + vgr �I�x = � Ivgr �vgr�t + ��xD�I�x; (4.39)where D = i �d2!dk2�ÆR=0 = vgr 4
ef 
!2eg (4.40)is the di�usion 
oeÆ
ient. We will see the 
ru
ial 
ontribution of this termin the next 
hapter. It is worth noti
ing that this equation is only useful asan e�e
tive model: in fa
t to a
tually take into a

ount losses it is 
ru
ialto use the 
omplete equation for the dark polariton �eld instead of itsintensity [29℄.We solve equation (4.39) by means of a Runge-Kutta algorithm in thetime domain exploiting a spatial grid shaped on the group velo
ity of ea
hlayer: in this way, the numeri
al solution of the propagation is mu
h fasterthan the one of the three MB 
oupled equations. In parti
ular, it is ableto explore regimes where vgr=
� 1.
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(b)Figure 4.7: Comparison between the numeri
al solutions of MB equations(solid, blue line) and the analyti
al result of the 
ontinuity equation (4.35) forthe polariton 
ow (dash-dotted, bla
k line) for the interfa
e geometry both inthe stati
 and dynami
 
ase. The parameters are the same as the 
ases analyzedabove.





CHAPTER 5
EIT-based Dynami
 Photoni
Stru
tures with atoms
The outstanding properties of 
oherent opti
al media supporting Ele
tro-magneti
ally Indu
ed Transparen
y (EIT) seen in Chapters 3 and 4 suggestthat su
h kind of systems are an eÆ
ient environment to perform dynami
modulations of light pulses. Dynami
 photoni
 stru
tures (DPS) [33℄ areattra
ting an in
reasing interest in view of opti
al information pro
essing,and ultra
old samples o�ers a sort of prote
ted environment where the dif-ferent te
hniques 
an be tested. The present Chapter is devoted to studythe e�e
ts and the engineering possibility of a dynami
 manipulation of aslowly propagating polariton in ultra
old atomi
 EIT samples.In Se
tion 1, we test the appli
ation of adiabati
 transition theory [91℄to the Maxwell-Blo
h (MB) formalism developed in the previous 
hapterin analogy with the evolution of the S
hr�odinger's equation. The goal isthe study of the time-dependent 
oupling rate indu
ed between the DarkPolariton (DP) and the other bands (LP and UP). We �nd interestingresults at Raman resonan
e about the general behavior of this 
ouplingdepending whether the shape of the time-dependent modulation of the
ontrol �eld is analyti
 or not. In parti
ular, we show that for an Erf-shaped perturbation an intermediate regime is found before the expe
tedexponential de
ay of the asymptoti
 
oupling with the intera
tion timetakes pla
e. On the other hand a sinusoidal modulation of the 
ontrol�eld indu
es quite a 
umbersome os
illating behavior in the 
oupling. Inboth 
ases adiabati
 transition theory well applies also for short intera
tiontimes. 75



76 CHAPTER 5In Se
tion 2, we propose a Photon Energy Lifter s
heme [37℄ for a homo-geneous EIT ultra
old gas. The idea is to adiabati
ally raise the resonantatomi
 frequen
y after the inje
tion of a DP inside the system. The ex-
itation is then stu
k to the Raman resonan
e and then the 
hange inthe atomi
 frequen
y eventually results in a wavelength 
onversion of theextra
ted pulse. Experimental issues are dis
ussed by 
omparing the prop-erties of di�erent 
old samples routinely obtained in laboratory.Se
tion 3 
ontains a detailed dis
ussions about the results of a modula-tion of the 
ontrol �eld amplitude in the multi-layer EIT 
hain introdu
edin the Chapter 4. The reshaping of the ele
tri
 �eld in the linear opti-
al regime 
an be regarded as a quantum wavepa
ket manipulation sin
eMaxwell's equations are re
overed from the quantum me
hani
al treat-ment of light in the limit of low intensity. The use of inhomogeneousgeometries o�ers an original 
ontribution in the growing �eld of DPS. Re-alisti
 values for the atomi
 samples are used within 
al
ulations 
arriedout with the e�e
tive equation (4.39).5.1 Inter-band 
ouplingWe 
onsider a homogeneous EIT medium and a polariton wavepa
ketwhi
h is propagating a
ross it. We want to study the e�e
t of a variation intime of the dressing amplitude 

 that is performed in a homogeneous way.The advantage of su
h a 
on�guration is that the di�erent k-
omponentof the signal do not mix during the pro
ess and then the problem 
an besolved for the plane wave 
ase.We observe that the set of MB equations with the mSVEA (4.4) hasthe same stru
ture as a S
hr�odinger's equation for a three-
omponentwavefun
tion  whi
h is expanded in terms of the basis (E ; ~�em; ~�eg). Ifwe negle
t absorption, the Hamiltonian for the evolution of the system isrepresented by the matrix (4.23), whi
h at Raman resonan
e readsH(t) = 0� 0 0 pf!eg=2pf!eg=2 0 �

(t)=20 �

(t)=2 0 1A : (5.1)It is useful to rewrite the S
hr�odinger's equation in the polariton basis(UP;DP; LP ), i ��t ~ (t) = � ~H(t) + i _RR�1(t)� ~ (t); (5.2)where R(t) is the matrix whi
h turns the radiation-matter pi
ture intothe polariton one: ~ (t) = R(t) (t). By looking at (4.24), we immediately
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 Photoni
 Stru
tures with atoms 77see that R(t) = 0�sin� 
os� �sin� 
os� 
os�
os� 0 �sin�sin� sin� 
os� 
os� sin�1A : (5.3)The operator ~H = RHR�1 is the Hamiltonian (5.1) whi
h is diagonal inthe polariton basis while the other term, _RR�1, derives from the rotationin the Hilbert spa
e of the instantaneous eigenstates (i.e. the polaritons).5.1.1 Adiabati
 Transition TheoryWe 
onsider a smooth perturbation of the Hamiltonian: if the system isinitially prepared in an eigenstate, it will follow the evolution in time ofthe relative eigenve
tor performing a so 
alled adiabati
 transition [91℄.Furthermore be
ause the eigenstates of the Hamiltonian evolve in timewe expe
t a �nite 
oupling rate among them. The adiabati
 following isdriven by the �rst term on the RHS of equation (5.2) while the se
ondterm 
ouples the di�erent instantaneous eigenstates. If we de�ne a 
har-a
teristi
 time s
ale � for the variation of the Hamiltonian and �! is theenergy gap between a spe
i�
 
ouple of instantaneous eigenstates, the in-tuitive 
ondition for the adiabati
ity with respe
t to the 
hosen transitionis ��! � 1. An exponential de
ay with the in
rease of � in a two-levelsystem is in general expe
ted [96℄.If the system is, at the starting time t0, in the eigenstate jl1i (t0) of theHamiltonian ~H(t0), it turns out that the �rst order in perturbation theoryfor the amplitude of transition between the evolved eigenstate jl1i (T ) andanother instantaneous eigenstate jl2i (T ) of ~H(T ) is [91℄pl1!l2(T ) = ����Z Tt0 dt �l1l2(t) exp�i Z tt0 !l2l1(t0)dt0�����2 ; (5.4)where �l1l2(t) = t hl2j� ddt jl1it� (5.5)is the proje
tion of the evolution of jl1i (t) on jl2i (t), while !l1l2 is thefrequen
y of the transition between the states. The � terms are exa
tly theelements of the 
oupling matrix _RR�1(t). If we assume 
onstant valuesfor �l1l2(t) and !l1l2(t) 
orresponding to respe
tively the maximum andminimum of the two quantities and we substitute them into the integral(5.4), the fa
t that the 
oupling has to be small gives an adiabati
 
riterionthat goes beyond the intuitive 
ondition (4.33) stated in Chapter 4:�����maxl1l2!minl2l1 ����� 1: (5.6)



78 CHAPTER 5In the 
ase of the atomi
 Hamiltonian (5.1), by using the expression (5.3)and the de�nitions (4.24), (4.25) we obtain the matrix for the 
hange ofbasis: R = 1p2 0� sin� �1 
os�p2 
os� 0 �p2 sin�sin� 1 
os� 1A ; (5.7)where we have exploited � = �=4. Be
ause of the unitarity of R, it is easyto write its inverse R�1 and then we have the 
oupling matrix:_RR�1 = 0� 0 (1=p2) _� 0�(1=p2) _� 0 �(1=p2) _�0 (1=p2) _� 0 1A : (5.8)It depends only on the ratio between the Rabi splitting and the 
ontrol�eld intensity:_� = �1 + f !2eg
2
 ��1��pf !eg
2
 � d

dt = � pf !egf !2eg + 
2
 d

dt : (5.9)Consequently the integral (5.4) be
omesp�(T ) = ���� 1p2 Z Tt0 dtpf !eg
2(t) d

(t)dt exp��i Z tt0 
(t0)2 dt0�����2 (5.10)where p�(T ) = pDP!UP;LP and 
2(t) = f !2eg + 
2
(t). In the slow light
ase pf!eg � 

, the 
ondition for adiabati
ity (5.6) requires1f !2eg ����d

(t)dt ����� 1: (5.11)It is important to 
he
k the validity of this 
al
ulation of the e�e
tive
oupling within the MB formalism. In fa
t, it provides a good expressionto estimate the loss of signal in the spe
i�
 dynami
 stru
tures we aredealing with, due to inter-band 
oupling.Two spe
i�
 
ases of adiabati
 perturbations are to be 
onsidered in thefollowing: the �rst one is an Erf-shaped variation of the dressing �eld inten-sity while in the other 
ase we have a sinusoidal tuning. These 
urves arerepresentative of two di�erent 
lasses; in fa
t, the main di�eren
e amongthem is the behavior of the derivatives: the �rst fun
tion is analyti
, whilethe latter one has dis
ontinuities in the se
ond order derivatives at theboundaries of the variation. In the next subse
tions, it is illustrated a
omparison between the results 
oming from the numeri
al simulation ofthe MB equations, with analyti
al results of the integral (5.10) for di�er-ent 
ases. The simulations are 
arried out for polariton plane waves sitting
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e. We investigate the asymptoti
 
oupling p1 whi
h isthe transition rate for large T and the behavior of the peak pmax. For bothof them, we 
al
ulate the dependen
e on the time s
ale of the perturbation� for di�erent values of the os
illator strength f . In general, we 
onsiderpf!eg � 

.5.1.2 Analyti
 Perturbation: Erf shapeWe �rst 
onsider a variation in time of 

 whi
h has the form:

(t) = 

;0 � Æ

 �1 + Erf� t� �� ; (5.12a)d

(t)dt = �Æ

� 2p�e�(t=�)2 : (5.12b)For the spe
i�
 
ase, it is 
lear that t0 ! �1.
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Figure 5.1: Example of result from the simulation of MB equations performedby using a plane wave input: derivative of the ramp for 

(t) (solid red line)and relative evolution of the 
oupling outside the DP (blue dots) are shown.An Erf-shaped ramp of 

 is 
onsidered.By applying the 
ondition (5.6) to the present situation, for the pro
essto be adiabati
 it must hold�����2r 2� Æ

pf !eg 1pf !eg� ������ 1: (5.13)



80 CHAPTER 5It is interesting to note that while the last fra
tion on the LHS expressesthe intuitive 
ondition on the ratio between the rate of 
hange and the en-ergy spa
ing, the 
omplete formula also 
ontains another fra
tion whi
h ismu
h smaller than 1 in the regime under investigation here and it extendsthe validity of the adiabati
ity approximation for smaller � . By using the
oupling integral (5.10) and the expressions for the spe
i�
 
ase (5.12),we �rst introdu
e the rough approximation 
(t)!pf!eg whi
h leaves inthe integrand a gaussian fun
tion and an os
illating term:p(T ) � �����r 2� Æ

pf!eg� Z T�1 dte�(t=�)2eipf!egt=2�����2 : (5.14)By using the general result [97℄Z +10 dt e�(at2+2bt+
) = 12r�ae b2�a
a Erf
� bpa� ; (5.15)we obtainp(T ) � ����� Æ

p2f!eg e�(f !2eg�2=16)Erf
��T� + ipf !eg�4 � ei�(T;f;�)����2 :(5.16)where � is a real fun
tion, and thus the last term be
omes unity aftertaking the absolute value.Asymptoti
 CouplingThe expression (5.16) is qualitatively in agreement with the results 
omingfrom the simulations [see e.g. Fig. 5.1℄. For �xed � and f , the fun
tionErf
(z) = 1� Erf(z) of the 
omplex variable z vanishes forRe [z℄ _ �T !1; (5.17)while it goes to the 
onstant value 2 in the opposite limit:Re [z℄ _ �T ! �1: (5.18)This behavior 
orresponds with the asymptoti
 values for the 
oupling:for T ! �1 it vanishes be
ause it is the beginning of the pro
ess, whilefor T ! +1 the transition rate be
omes stationary be
ause d

=dt! 0.The formula (5.16) suggests a gaussian de
ay for the asymptoti
 
ouplingp1 depending on � . As shown in Fig. 5.2, this approximation holds onlyfor small � while for larger values of the time s
ale of the perturbation thede
ay is smoother. It is interesting within the present analysis to dis
rim-inate between an exponential and a gaussian de
ay. By using numeri
al
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(b)Figure 5.2: Behavior of the asymptoti
 
oupling p1 depending on � for dif-ferent values of the os
illator strength f : (a) f = 0:04, (b) f = 0:4. The 
ontrolRabi frequen
y is �xed as 

;0=!eg = 0:04 with a variation Æ

=!eg = 0:01.Comparison between the data 
oming from the MB simulation (blue dots) andthe gaussian de
ay extra
ted from (5.16) (green 
urve). log p1 is plotted andthe dashed line indi
ates the limiting pre
ision of the simulations. In panel (a) is
learly visible the 
rossover between a gaussian and an exponential de
ay; thislatter is �tted (
yan dashed line) and the exponent is approximately pf!eg� .



82 CHAPTER 5evaluations of the 
omplete 
oupling integral (5.10) it turns out that agood approximation 
onsists in repla
ing p
(t) ! pf!eg in the expo-nent of the os
illating term while retaining the whole 
(t) in the fra
tionalterm.For T !1, the integral 
orresponds to the Fourier Transform of a prod-u
t: the Gaussian derivative of the perturbation times the inverse of 
2(t).To further simplify the expression, we expand the denominator of the fra
-tional term and we separate the di�erent orders: up to �rst order in 
2
=f ,the integrand isI(t) � r 2� 1� Æ

pf !eg  1� (

;0 � Æ

)2f !2eg ++2Æ

 (

;0 � Æ

)2f !2eg Erf� t� �+� Æ
2
f !2egErf2� t�� +O� 
4
f 2 !4eg�� e�(t=�)2eipf !egt=2: (5.19)The �rst and se
ond terms are 
onstant and give only a negligible 
or-re
tion to the 
onstant 
oeÆ
ient in front of the gaussian de
ay alreadypresent in (5.16).The other terms are more 
ompli
ated: the presen
e of the gaussian fun
-tion allows to solve the 
orresponding integrals as s
alar produ
ts in agaussian metri
. It is then ne
essary to expand the fun
tions in terms ofHermite Polynomials [97℄, whi
h are the basis of the gaussian metri
.By using this method, the Fourier transform of the third term in bra
ket[se
ond line of (5.19)℄ multiplied for the gaussian fun
tion resultsA Z 1�1 Erf� t�� sin�pf2 !egt� e�(t=�)2dt == Ap�(�i)Erf�ipf !eg�4p2 � e�(f !2eg�2=16): (5.20)where A 
ontains the 
oeÆ
ients in front of the fun
tions to be integrated.The asymptoti
 expansion of this expression for large values of � is givenby A 2p2 2pf� e�(f !2eg�2=32) �1 + 16f !2eg� 2 + 768f 2 !4eg� 4 + :::::� (5.21)The results (5.16) and (5.21) show that at the lowest orders the de
ay ofthe 
oupling with � has a gaussian shape, but with an exponent whi
h
hanges from term to term. In Fig. 5.3 it is shown also the 
ontribution
oming from the Erf2 term in (5.19). In Fig. 5.2(a), a �t is depi
ted whi
h
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Figure 5.3: E�e
t of the di�erent terms in the �rst-order approximation ofthe integrand (5.19) for the asymptoti
 
oupling p1: 
omplete integrand (bla
k
ir
les), terms with simple gaussian de
ay (red dots), Erf term (green stars),Erf2 term (blue squares). Values as in Fig. 5.2(a).suggests the fa
t that an exponential de
ay may be the result of the sum ofthis several gaussian terms: it is interesting to note the 
rossover betweenthe two regimes. In the 
ase shown in Fig. 5.2(b) the region of exponentialde
ay is not rea
hed within the a

ura
y of the simulations while thegaussian regime is 
learly visible.Coupling peakBy looking at (5.16), we observe that the modulus of Erf
(z) has a peakin the region Re [z℄ � 0. The exa
t position of the peak depends on thevalue of � : for � ! 0+ and � ! +1, it moves towards T = 0. Thus, forlarge values of � , it 
an be approximated byp(0) =  r 2� Æ

pf!eg!2 ������e�(f !2eg�2=16)0�p�2 � Z ipf !eg�40 dz e�z21A������2 =�!1�  r 2� Æ

pf !eg!2��4 e�(f !2eg�2=16) + 4f !2eg� 2� � pmax: (5.22)where the se
ond term 
omes from the asymptoti
 expansion of the Daw-son's integral [97℄ and it gives the leading order in the de
ay. In Fig. 5.4



84 CHAPTER 5

0 20 40 60 80 100
0

50

100

150

200

ω
0
τ

(p
m

ax
)−

1/
2

 

 

(a)

0 10 20 30 40 50
0

500

1000

1500

2000

ω
0
τ

(p
m

ax
)−

1/
2

(b)Figure 5.4: Behavior of the 
oupling peak pmax depending on � for di�erentvalues of f . Comparison between the data 
oming from the MB simulation (bluedots), the numeri
al evaluation of the maximum of the expression (5.16) (reddashed line) and the analyti
al expansion for large � (5.22) (green solid line).The relation is linearized by plotting 1=ppmax. Same values as in Fig. 5.2.
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omparison between this analyti
 evaluation and the data
oming from the simulation whi
h shows a good agreement.5.1.3 Non-analyti
 Perturbation: Sin2 shapeAfter the investigation of an analyti
 form for the perturbation, we analysethe 
ase of a ramp whi
h has a dis
ontinuity in the se
ond derivative:

(t) = 8<: 

;0 t < 0

;0 + Æ

sin2 �t �8� � 0 < t < 4�

;0 + Æ

 t > 4� (5.23a)d

(t)dt = 8<: 0 t < 0�8� Æ

sin �t �4� � 0 < t < 4�0 t > 4� (5.23b)
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Figure 5.5: Example of result from the simulation of MB equations performedby using a plane wave input: derivative of the ramp for 

(t) (red solid line)and relative evolution of the 
oupling outside the DP (blue dots) are shown. Asinusoidal ramp of 

 is 
onsidered.The adiabati
ity 
ondition (5.6) takes the form���� �4p2 Æ

pf !eg 1pf !eg� ����� 1; (5.24)whi
h di�ers from (5.13) just for a numeri
al 
oeÆ
ient. Performing theapproximation 
(t)!pf!eg as before, the integral (5.10) is analyti
ally



86 CHAPTER 5solved p(T ) = � �2p2 Æ

pf !eg� 1f !2eg � [�=(2�)℄2�2 ���� �4� �2 �1 + 
os2 � �4� T�� 2 
os� �4� T� 
os�pf2 !egT��+� �4� pf !eg sin� �4� T� sin�pf2 !egT�+ f !2eg4 sin2 � �4� T��:(5.25)Asymptoti
 
ouplingBy the repla
ement T = 4� , the integral (5.25) shows an os
illatory be-havior with and algebrai
 de
ay:p1 =  p28 Æ

pf !eg (�=�)2f !2eg � [�=(2�)℄2!2 4 
os2 �pf !eg�� ; (5.26)that is proportional to 1=� 4.The drasti
 
hange in the de
ay of the asymptoti
 
oupling with respe
t tothe Erf 
ase is dire
tly related with the jump in the se
ond order derivativeof 

(t) at the boundaries of the sinusoidal ramp whi
h is 
lear from Fig.5.5. The asymptoti
 
oupling p1 is the square modulus of the FourierTransform evaluated at ! = pf!eg=2 of a fun
tion whi
h is in a goodapproximation the derivative of the perturbation. The fun
tion (5.23b)has a jump in its own �rst derivative. The paradigm of a fun
tion whi
hhas a jump is the Heavyside step fun
tion: its Fourier Transform shows a1=! de
ay. It is also a straightforward property of the Fourier Transformthat, given a fun
tion g and its derivative g0: F(g0) _ i!F(g). By applyinga dimensional argument, it is then 
lear thatp1 _ 1=(pf!eg�)4: (5.27)In Fig. 5.6, the analyti
al result (5.26) is 
ompared to the values obtainedwith the MB simulations. The agreement is very good for both the os
il-latory and de
ay behavior.Coupling peakFor � !1, the 
oupling peak pmax is lo
ated at T = 2� whi
h 
orrespondswith the maximum rate of variation of the perturbation and it de
ays aspmax �  �p28 Æ

pf !eg!2� 2pf !eg��2 ; (5.28)
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(b)Figure 5.6: Behavior of the asymptoti
 
oupling p1 depending on � for dif-ferent values of the os
illator strength f : (a) f = 0:04, (b) f = 0:4. The 
ontrolRabi frequen
y is �xed as 

;0=!eg = 0:04 with a variation Æ

=!eg = 0:01.Comparison between the data 
oming from the MB simulation (blue dots) andthe analyti
al expression (5.26) (green line).
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Figure 5.7: Behavior of the 
oupling peak pmax depending on � for di�erentvalues of f . Comparison between the data 
oming from the MB simulation (blue
ir
les), the 1=�2 dependen
e for large � (green solid 
urve) and the numeri
alevaluation of the peak of (5.25) (red dashed line). Values as in Fig. 5.6. In Panel(a), the error bars for long � values derive from the os
illatory behavior of the
oupling.
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h has the same dependen
e as for the Erf perturbation.By looking at the 
ondition (5.6) and its appli
ations to the 
ases underinvestigation [(5.13) and (5.24)℄, it is evident the origin of the generalbehavior found in (5.22) and (5.28): the 
oupling peak 
orresponds to themaximum rate of 
hange of the perturbation, i.e. the steepest part of theramp. The fa
t that � is the time s
ale of the perturbation means exa
tlythat the derivative of 

(t) has a 1=� dependen
e whi
h goes squared intothe 
oupling peak value.Adiabati
 transition theory appears as a very useful tool to investigate theinter-band 
oupling within MB dynami
 formalism. Although this treat-ment negle
t the role of absorption and the multi-level nature of the sys-tem [92,93℄, a very good agreement is shown between analyti
al results andsimulations. In parti
ular the 
ross-over between a gaussian and an expo-nential de
ay of the asymptoti
 
oupling in the analyti
 perturbation 
aseis found whi
h goes beyond standard results. Furthermore, non-analyti
alperturbations show an algebrai
 de
ay as a result of dis
ontinuities in thetemporal derivatives. The understanding of the Fourier Transform me
h-anism at the basis of the integral (5.4) suggest the possibility to quen
hthe inter-band 
oupling also at fast modulation rate by using an ad ho
tailored perturbation of the 
ontrol beam.5.2 Photon Energy LifterObtaining a 
oherent and widely tunable frequen
y 
onversion of an opti-
al signal is a 
entral task in opti
al tele
ommuni
ations [98℄. Several te
h-niques have been developed during the years to perform this operation,but most of them su�er from signi�
ant limitations in their appli
ationrange, or are disturbed by spurious e�e
ts.The basi
 idea of the photon energy lifter 
onsists in the adiabati
 shift ofthe polaritoni
 band on whi
h a photon is inje
ted. If the shift is operatedin a spatially homogeneous way then be
ause of waveve
tor 
onservationthe energy of the propagating ex
itation is simultaneously lifted: when thepolariton leaves the sample, it is re
onverted to a photon with a di�erent
olors.This was originally proposed for solid-state photoni
 stru
tures [37℄ andexperimentally demonstrated by ultrafast tuning of a solid-state mi
ro-
avity [99℄, but it is interesting to explore the potential of 
old atom sys-tems to this purpose: the very long opti
al 
oheren
e time of ultra
oldsamples [32, 100℄ and the easy tunability by external ele
tri
 or magneti
�elds makes them very promising for this kind of appli
ations. Re
ently,similar frequen
y-mat
hing e�e
ts were observed experimentally in hot
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 vapor [101℄.5.2.1 Proposed s
hemeAs a spe
i�
 example, we shall 
onsider in what follows a system of Ru-bidium (87Rb) atoms. The opti
al properties are varied by means of anexternal magneti
 �eld (taken as perpendi
ular to the probe propagationaxis) whi
h shifts the atomi
 levels via the Zeeman e�e
t [102℄.We 
on
entrate on theD2 transition at a frequen
y !eg = 2� 384THz [103℄.As we are interested in substantial shifts, we fo
us our attention in thehigh �eld regime (B > 5� 103G) where the atomi
 nu
leus is de
oupledfrom the ele
troni
 degrees of freedom, and the energy shift mostly 
omesfrom the ele
troni
 total angular momentum only: �E = �BgJJzBz, where�B is the Bohr magneton, gJ is the Land�e fa
tor of the 
onsidered leveland Jz is the z 
omponent of the total angular momentum of the ele
-tron. We use the jJ = 1=2; Jz = �1=2i sublevels of the 52S1=2 ele
troni
ground state as respe
tively ground jgi and metastable jmi states, andthe jJ = 3=2; Jz = 1=2i sublevel of the 52P3=2 ele
troni
 ex
ited state asex
ited jei state. The 
orresponding Land�e fa
tors are gJ=1=2 = 2 andgJ=3=2 = 4=3. The nu
leus is not a�e
ted by the opti
al pro
ess and main-tains the same polarization it had in the initial state: in the absoluteatomi
 ground state, the nu
lear spin is e.g. polarized antiparallel to theele
tron spin of the jJ = 1=2; Jz = �1=2i state.A linear polarization is used for the dressing light beam that 
ouples thejmi and the jei states, and a 
ir
ular (�+) one is used to probe the po-lariton dispersion on the jgi ! jei transition. Using tabulated values forthe ele
tri
 dipole moment of the D2 transition and assuming an atomi
density n � 1014 
m�3, the radiation-matter 
oupling (1.19) for the systemunder 
onsideration is of the order of pf � 10�4.To maximize the available time to perform the lifter operation, it is usefulto have a very slow group velo
ity, whi
h in turns requires a small dressingamplitude. In the following, we shall 
hoose 

=!eg = 10�7. This value

 � 2� 38MHz 
orresponds to 5 times the radiative linewidth of the Dline of Rb atoms.The dressing frequen
y is 
hosen in a way to have Æ
 = 0 at the initialvalue Bin of the magneti
 �eld: the 
orresponding polariton dispersion isthe one shown in Fig. 5.8(a). The light pulse is inje
ted into the systemin proximity of the resonant point k = keg, where the interfa
e re
e
tivitygoes to zero, and inje
tion is most e�e
tive [see the 
ir
le in Fig. 5.8(
)℄:the width of this dip results from (3.7) to be of the order of 2� 10�8!egand the group velo
ity (3.2) is vgr=
 � 7� 10�8, i.e. vgr � 20m/s.
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tures with atoms 91The magneti
 �eld variation is performed while the light pulse to be shiftedis 
ompletely 
ontained in the latti
e and it is propagating through ane�e
tively bulk system. As the magneti
 �eld is varied in a spatially ho-mogeneous way, the Blo
h wave ve
tor is 
onserved during the pro
ess. Ifthe �eld variation is slow enough as 
ompared to the frequen
y di�eren
eof neighbouring bands, the polaritons will adiabati
ally follow the bandand their frequen
y at the end of the pro
ess will be a

ordingly shifted[see the 
ir
le in Fig. 5.8(b)℄.As an example, we propose to tune the magneti
 �eld from 1 up to 2T: thisresults in the metastable and ex
ited states being shifted by respe
tively(Æm � Æg)=!eg = 7:3� 10�5 and (Æe� Æg)=!eg = 6:1� 10�5 with respe
t tothe ground state. For light initially inje
ted in proximity of !eg, the shiftof the photon frequen
y results approximately equal to Æm, whi
h amountsto the quite sizeable value 14GHz=T. As the lifter operation is based onan adiabati
 shift of the polariton dispersion, it 
ompletely preserves thepulse shape and the 
oheren
e properties of the in
ident wavepa
ket, bothat 
lassi
al and at quantum level.5.2.2 Experimental issuesTo verify the a
tual feasibility of su
h a promising experiment, it is im-portant to mention the main pra
ti
al diÆ
ulties that may arise in a realexperiment, and dis
uss how these 
an be over
ome.1. We have veri�ed that the transmittivity of the latti
e interfa
es is
lose to 1 for both the inje
tion and the extra
tion pro
ess [Fig.5.8(
) and Fig. 5.8(d)℄. The pulse is inje
ted into the latti
e at afrequen
y 
orresponding to the EIT re
e
tivity dip around Ramanresonan
e. The extra
tion takes pla
e in 
lose proximity of the Ra-man resonan
e where re
e
tivity is again very low. This, in spite ofthe fa
t we are very 
lose to a gap: thanks to the now signi�
antdetuning Æ
, the metastable state is in fa
t weakly 
oupled to light,and the 
orresponding 
rossing point is displa
ed slightly away fromthe light line.2. In order to have a reasonably long time to vary the magneti
 �eld, wehave veri�ed that the group velo
ity of the polariton states involvedin the lifter operation is slow. Light initially propagates on the EITslow light bran
h, whi
h is deformed during the lifter operation. Atthe end, the wavepa
ket is found on the very 
at region below thegap where the group velo
ity is low [Fig. 5.8(e) and Fig. 5.8(f)℄.3. The wavepa
ket has to be shorter than the sample length, still itsfrequen
y spe
trum has to �t in the re
e
tivity dip at both inje
tion
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(f)Figure 5.8: Polariton properties in a 1D homogeneous gas of three-level atoms.Dispersion (a,d), re
e
tivity (b,e), group velo
ity (
,f) in the region aroundresonan
e. Red, solid line is LP; blue, dot-dashed line is DP; bla
k, dottedline is UP; bla
k, dashed line is photon dispersion in va
uum. Parameters for ahomogeneous 
old Rb gas with density n = 1014 
m�3, os
illator strength pf �4� 10�4 and dressing amplitude 

=!eg = 10�7. Panels (a,b,
): ! � ~!m = !eg,Æ
 = 0 (initial state of the photon lifter). Panels (d,e,f): Æ
=!eg = 1:2 � 10�5(�nal state of the lifter). In the di�erent panels, the blue 
ir
les indi
ate theposition of the wavepa
ket to be \lifted".
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tion. A sample of length L is able to a

ommodate pulseswith at most �k & 1=(L). From Fig. 5.8(a), this 
orresponds toa lower bound on the frequen
y width of the in
oming wavepa
ket�!in = �k vingr > 2:5 � 10�10 !eg. One 
an easily see in Fig. 5.8(
)that this frequen
y spread still �ts within the inje
tion window wherere
e
tivity is low. The same 
an be veri�ed in Fig. 5.8(b) and Fig.5.8(d) for the extra
tion pro
ess.4. In order for the pulse shape not to be a�e
ted, dispersion of thegroup velo
ity should be small for the waveve
tor window �k underexamination. Initially, this is not a problem, as we are working 
loseto the 
enter of the EIT bran
h where the group velo
ity has a weakdispersion. The situation 
an be more 
riti
al on extra
tion, be
auseof the strong squeezing of the polariton band in the region just belowthe gap. The importan
e of this e�e
t 
an be redu
ed by 
hoosingpulses initially tuned just above the Raman resonan
e.5. The main problem in using a BEC is related to the 
oheren
e time�xed by the dephasing me
hanism between the ground and themetastable states. In 
old gases 
m is typi
ally of the order of tensof KHz [30,90,104℄ in parti
ular due to atomi
 
ollisions although itis strongly system dependent. For 
arefully prepared system atomi

oheren
e up to 1ms were observed [31℄ and this is promising in viewof lifter appli
ations. A good 
andidate for longer 
oheren
e time isthe MI phase of ultra
old atoms in opti
al latti
e: in the �rst realiza-tion of EIT in a MI of Rb atoms [32℄ a 
oheren
e time of 240ms hasbeen reported. In this system, the inhomogeneous broadening of thelineshape is suppressed be
ause of the ordered arrangement of atomsand the many-body ex
itation spe
trum is gapped. However the MIis usually mu
h smaller (10 � 30�m) than a BEC 
loud and this isa 
ru
ial disadvantage for the lifting pro
ess. The use of a thermalgas 
reated in a Dark Magneto-Opti
al Trap (DMOT) [105℄ seemsto show EIT features similar in group velo
ity and system length toa BEC, still it requires a simpler setup.5.2.3 Perspe
tivesOne major 
onstraint that still exists on the experimental parameters
on
erns the speed at whi
h the magneti
 �eld has to be a
tually varied.As this has to be done while the wavepa
ket is inside the atomi
 
loud,a very slow group velo
ity and a long system are required. Using valuesfor state-of-the-art 
old atomi
 samples (either BEC or DMOT) namelyL = 200�m, and vgr = 20m=s, one obtains that one disposes of a time of



94 CHAPTER 5approximately 10�s to perform the magneti
 �eld variation. This meansthat a variation of �B = 1T requires a very large rate of 1 kG=�s.As this 
an pose serious diÆ
ulties in an a
tual experiment, it is worthbrie
y exploring alternative strategies. An interesting possibility is to fur-ther redu
e the dressing amplitude 

. As the polariton group velo
-ity is proportional to the square of the dressing amplitude, the value

 = 10�8!eg similar to the one used in slow light experiment [30℄ al-ready leads to a group velo
ity of the order of 20 
m/s whi
h 
orrespondsto an available time of 1ms. In the high-�eld regime 
onsidered here, aphoton frequen
y shift of 1GHz then requires a magneti
 �eld variationof 500G in 1ms, a rate routinely used in 
old atom experiments.This 
al
ulations indi
ates that the possibility to design su
h an experi-ment with 
onventional te
hniques is realisti
; in parti
ular, su
h a demon-stration 
an gain a lot from an in
rease in the dimensions of a
tual MIsamples.5.3 Photon Wavepa
ket ManipulationThe easy tunability of the properties of the dressing �eld together with theslow propagation of the DP allow for an eÆ
ient dynami
 modulation ofthe signal. A dynami
 EIT 
hain 
an then be the paradigm for a new 
lassof inhomogeneous DPS: in this 
ase both a spa
e and time modulationof the wavepa
ket 
an in fa
t be performed. The basi
 ingredient of thedynami
 EIT 
hain is the defe
t geometry.5.3.1 Dynami
 modulation on a va
uum defe
tThe physi
s of a defe
t geometry 
an be understood in terms of the ho-mogeneous system and interfa
e 
ases seen in the previous 
hapter. Tworegions of a homogeneous EIT medium are separated by a thin layer ofva
uum. The thi
kness Ld of the defe
t region is taken to be small as
ompared to the e�e
tive length of the pulse in this layer �x.The 
ase is shown in Fig. 5.9 and Fig. 5.10. The temporal shape of themodulation of 

 is shown in the inset: v�gr are the maximum and minimumvalues of the group velo
ity, determined by the maximum and minimumvalues 
�
 of the 
ontrol �eld amplitude. �s is the interval between the tworamps, i.e. the storage time. For a given pulse width ��x in the EIT medium,the pulse width in va
uum is �x = ��x(
=v�gr). As we have assumed �x � Ld,the slope of the pulse in the va
uum is very small, so the pulse amplitude
an be 
onsidered as almost homogeneous. The modulation takes pla
e
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Figure 5.9: Modulation of a wavepa
ket using a va
uum defe
t. In the EITmedium, the group velo
ity is de
reased from v+gr = 0:11 
 to v�gr = 0:02 
 andthen in
reased ba
k to v+gr as shown in the inset. Pulse at the beginning (dashedline) and at the end of the pro
ess (solid line). Inset: temporal dependen
e of

. Parameters of the system: ex
ited state linewidth 
e = 10�3!0, pulse lengthk0��x = 1600, defe
t thi
kness k0Ld = 6400.
in three stages: the slow down ramp, the storage time and the speed upramp. When 

 is de
reased, the pulse intensity in the atomi
 mediumis 
orrespondingly redu
ed by a fa
tor v�gr=v+gr while the amplitude of the
entral part remains un
hanged as it is sitting in va
uum [Fig. 5.10(a)℄.Later on during the storage time, when this part of the pulse enters theEIT medium again, it results spatially 
ompressed to a narrower widthLd(v�gr=
) [Fig. 5.10(b)℄. The part of the pulse that 
rosses the defe
t duringthe storage time does not experien
e any modulation: in Fig. 5.10(b), thispart lies just behind the narrow peak and is (�sv�gr � Ld(v�gr=
)) long.The �nal ramp whi
h restores the group velo
ity to its initial value v+gris responsible for an in
rease of the ele
tri
 �eld amplitude in the EITmedium. Correspondingly to the va
uum layer, a hole is imprinted in thepulse pro�le [Fig. 5.10(
)℄. On
e entered ba
k into the EIT medium, itswidth be
omes Ld(v+gr=
). This modulation in a va
uum defe
t geometry isthen a simple example of the wavepa
ket reshaping. Note that the resultingdynami
s is very di�erent from the homogeneous 
ase where the se
ondramp would simply 
ompensate the �rst one.
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(
)Figure 5.10: Modulation of a wavepa
ket using a va
uum defe
t. Three snap-shots during the propagation time. (a) Slow down ramp; (b) propagationthrough the defe
t during the storage time: formation of the peak; (
) speed upramp: setting the hole. Parameters in Fig. 5.9.
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tive equation
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Figure 5.11: Comparison between the solutions of the wavepa
ket propagationusing di�erent methods: MB formalism (solid, blue line); 
ontinuity equationfor the polariton 
ow (dotted, bla
k line); e�e
tive equation with absorptionterm (dashed, red line). Parameters as in Fig. 5.9.We 
ompare the MB result with the solution of the e�e
tive equation. The
ontinuity equation model (4.35) 
an be applied to the defe
t geometry ofFig. 5.9, by de�ningvgr(x; t) = v(t) (�(�x) + �(x� Ld)) + 
�(x)�(Ld � x); (5.29)where the beginning of the defe
t is lo
ated at xd = 0. For times longerthan t = (Ld=
), the solution for the ele
tri
 �eld intensity is
I(x; t) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
I0 �x� It0� v(t)v(0) x < 0I0 ��It�x=
0 � v(t� x=
)v(0) 0 < x < LdI0 ��It00 � v(t0)v(0) v(t)v(td) Ld < x < Ld + ItLd=
I0 (Ld � 
td) v(t)v(td) Ld + ItLd=
 < x < Ld + It0I0 �x� It0� v(t)v(0) x > Ld + It0 (5.30)



98 CHAPTER 5Here td(x) and t0(x) are the instants of time at whi
h the point of thewavepa
ket whi
h is lo
ated at x at the time t has passed through x = Ldand x = 0, respe
tively. They 
an be found by the 
onditions:x = Ld + Ittd ; (5.31a)t0 = td � Ld=
: (5.31b)where we have de�ned Iba = Z ba v(t0)dt0: (5.32)This analyti
 solution gives the bla
k dash-dotted 
urve in Fig. 5.11. Byadding also the absorption term, the e�e
tive model 
aptures all the fea-tures with a good agreement. In parti
ular, it perfe
tly reprodu
es theheight of the peak that was instead overestimated by the simple 
onti-nuity equation (4.35). This is a strong 
on�rmation that the e�e
t of asmall absorption on the propagation 
an be modeled by a di�usive term:it is very important in order to investigate to what extent it is possible totailor sharp stru
tures on the wavepa
ket.5.3.3 Manipulation S
hemes in Cold GasesThe EIT 
hain 
an be implemented experimentally by using 
louds ofultra
old atoms as the EIT media. Opti
al �bers 
an be used to �x theopti
al distan
e between the EIT layers [90℄: be
ause of 
ompression enter-ing the atomi
 regions, the distan
es in va
uum have to be not negligiblewith respe
t to the length of the pulse �x; for a 1�s-long wavepa
ket, thespatial width in va
uum is in fa
t 300 m.By using data from [30, 31, 103℄, we estimate realisti
 value for the pa-rameters des
ribing the system. As a typi
al example, we 
onsider a 
loudof Sodium (Na) atoms of density n = 8 � 1013 
m�3. For the opti
al tran-sition, we use the D2 line. As the ground state, we 
an use the jgi =j3S1=2; F = 1; mF = �1i sublevel; for the metastable state, we 
an usejmi = j3S1=2; F = 2; mF = �2i, and for the ex
ited state we 
an usejei = j3P3=2; F = 2; mF = �2i. In this way, the resonan
e frequen
y is!eg = 2� 508THZ, the ele
tri
 dipole moment is deg = 1:5 10�29C m, thelinewidth is 
e = 2� 10MHz and the os
illator strength is f = 6 10�9.For a 
ontrol �eld of Rabi frequen
y 

 = 2� 17MHz, a group velo
ityvgr = 10�7 
 is obtained and an absorption 
oeÆ
ient D = 6 10�7 !eg=k2eg.The parameters of the re
ent experiment [32℄ are not mu
h di�erent. Fromnow on, physi
al units are used in the �gures.We have used the e�e
tive equation (4.39) to simulate several simple ge-ometries. We 
on
entrate our attention on a pair of di�erent 
on�gura-tions: the single and the double layer stru
tures.
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(d)Figure 5.12: Propagation of a light pulse a
ross a single EIT layer: L =200�m, vgr = 10�7 
, D = 6 10�7(!eg=k2eg). Gaussian pulse: �t = 10�s,`abs � 500��x = 15 � 104�m. All 
urves have been obtained using the modelof (4.39). Panel (a) Stati
 
ase: delay between a pulse propagating in va
uum(dashed blue) and one 
rossing the EIT layer (solid red). Panels (b,
,d) Dynami

ases. (b) E�e
t of a slow down ramp for the dressing �eld: �v = �0:5 vgr,� = 3:5�s; (
) E�e
t of a speed up ramp: �v = +0:5 vgr, � = 3:5�s; (d) E�e
tof a double ramp [as e.g. in Fig. 5.9℄: v+gr=v�gr = 10, � = 3:5�s and storage time�s = 8�s. The blue dashed lines in (b,
,d) refer to the stati
 
ase.We �rst 
onsider a single EIT layer whi
h has length L = 200�m. Weinje
t a gaussian pulse with temporal width in va
uum: �t = �x=
 = 10�s.Thanks to the small size of the sample with respe
t the pulse absorption isnegligible, as it 
an be seen from the expli
it expression of the absorptionlength (4.30).The simplest quantity to measure is the time delay a

umulated alongthe propagation for di�erent values of L: if the layer is 
hara
terized by agroup velo
ity vgr, then the delay with respe
t the va
uum (vgr = 
) 
ase



100 CHAPTER 5is T = Lvgr 
� vgr
 vgr=
!0������! Lvgr : (5.33)For a suÆ
iently slow group velo
ity, very small variations in the atomi
layer thi
kness 
an be dete
ted from the delay time. Simulated imagesare shown in Fig. 5.12(a). Of 
ourse, this measurement requires a goodtemporal resolution of the dete
tor as well as some knowledge of the systemparameters, in parti
ular of vgr.The simplest example of dynami
al modulation 
onsists of a single-rampmodulation of 

. As dis
ussed above, the e�e
t of the modulation dependson several parameters: a 
ru
ial quantity is the ratio R = L=��x betweenthe layer thi
kness and the pulse length. Here, we fo
us our attention onthe R < 1 
ase; the dressing �eld is modulated when the peak of the probeis near the 
enter of the layer. Only the small part of the pulse 
ontainedin the layer then feels the modulation. As the layer is thin, the 
rossingtime 
an be faster than the ramp time, whi
h means that di�erent partsof the pulse experien
e di�erent portions of the ramp. Assuming the ramptime to be longer than the 
rossing time, the e�e
t of the modulation onea
h given sli
e of the pulse 
an then be estimated asjEf j2(T ) = jE ij2vigr +�vgr(T )vigr ; (5.34)where T is the time at whi
h the sli
e exits the layer and the initial valuesrefer to the entran
e of the sli
e in the EIT medium. If we approximatethe ramp as linear, the variation in the ele
tri
 �eld is then given by(�v=vigr)(T=�), where �v is the amplitude of the group velo
ity ramp.The plots of Fig. 5.12(b) and Fig. 5.12(
) show the resulting pulse in the
ase of positive and negative values of �v, respe
tively: one 
an see thatthe modulation is most apparent in the �v < 0 
ase where the 
rossingtime is longer.The last 
ase we treat is the double ramp, that is illustrated in Fig. 5.12(d):the pulse is slowed down and then a

elerated ba
k to the initial groupvelo
ity. In the R < 1 
ase under 
onsideration here, the part of the pulsewhi
h is modulated during the slow-down ramp exits from the layer beforethe restoring ramp has begun. This latter ramp is then responsible for the
reation of the peak in the trailing part of the pulse. The resulting shapeis very similar to the 
ase shown in Fig. 5.9, yet time-reversed.Double LayerThe EIT monolayer 
an be used as the building blo
k for more 
omplex ge-ometries. As an example, the 
ase of wavepa
ket manipulation in a double
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(d)Figure 5.13: Propagation of a light pulse a
ross a EIT double-layer stru
ture:L = 30�m (ea
h layer), interlayer distan
e �L = 3 107 �m, vgr = 5 10�7 
,D = 3 10�6 !eg=k2eg. Gaussian pulse: �t = 1�s, `abs � 400 ��x = 6 � 104�m. All
urves have been obtained using (4.39). (a) Slow down ramp in both layers:�v = �0:5 vgr, � = 50ns. (b) Speed up ramp in both layers: �v = +0:5 vgr,� = 50ns. In (a,b) blue dashed lines 
orrespond to the propagation withoutmodulation at the initial group velo
ities while the same for bla
k dotted lineswith the �nal values of group velo
ity. (
) Single ramps with opposite signs inthe di�erent layers: �v = �0:5 vgr, � = 50ns (red dashed and bla
k solid 
urvesare symmetri
 under a sign ex
hange between the two layers). (d) Double rampwith opposite signs in the di�erent layers for di�erent storage times �s = 0:1�s(red solid), 0:5�s (green dashed), 1�s (bla
k dotted).



102 CHAPTER 5layer geometry is illustrated in Fig. 5.13. As in the previous dis
ussions,we restri
t our attention to the short layer regime: in the spe
i�
 
ase 
on-sidered here, the gaussian pulse has a duration �t = 1�s, 
orrespondingto a ��x = 150�m mu
h longer than the single EIT layer L = 30�m and a�x = 300m mu
h longer than the va
uum interlayer distan
e �L = 30m.The use of the same single ramp for the dressing �eld on both layersallows the 
reation of several similar stru
tures on the same pulse. Thesestru
tures are separated by a delay depending on the distan
e betweenthe layers. This is shown in Fig. 5.13(a) and Fig. 5.13(b). By 
hoosing afast enough slow-down ramp, the peak that appears between the di�erentlayers 
an be shaped down to the absorption length. This fa
t is extremelyinteresting in view of 
reating strongly lo
alized polariton, whose dynami
shas been predi
ted to show pe
uliar features [106℄. The result of a pairof ramps with opposite signs in the di�erent layers is illustrated in Fig.5.13(
). By ex
hanging the signs of the ramps, a spe
ular modulation 
anbe obtained.The last 
ase we present 
onsists of a double ramp with opposite signsin the two layers. In this 
ase, an interesting enhan
ement of the 
entralpeak is visible as a 
onsequen
e of the double layer stru
ture. This result iseasily understood by noting that the part of the pulse whi
h is modulatedin the �rst layer by the �rst ramp gets modulated in the same way when
rossing the se
ond layer during the se
ond ramp. In this way, it 
an rea
hhigher values as 
ompared to the single layer 
ase previously 
onsidered.This me
hanism starts being e�e
tive as soon as the storage time is longerthan the interlayer delay time, �s > (�L=
). The eÆ
ien
y is maximumwhen the storage time exa
tly equals the time required for the signal to
ross the whole double layer stru
ture, �s = (�L=
)+2(L=vgr). For longerstorage times �s, the enhan
ement is no longer e�e
tive. The resultingpulse are shown in Fig. 5.13(d) for di�erent values of the storage time �s.In all the 
ases, the initial and �nal part of the pulse are una�e
ted bythe modulation.5.4 The EIT slab: light storageThe 
ase of a EIT layer in va
uum is presently of great experimentalinterest for light storage purposes [29, 72{75℄. The idea is very simple: byswit
hing o� the 
ontrol �eld 

 while the wavepa
ket is inside the EITmedium, the DP is fully mapped into a metastable 
oheren
e �mg. As thishas a vanishing group velo
ity and long lifetime, it 
an remain stored inthe atoms for ma
ros
opi
ally long times. When the 
ontrol �eld 

 isswit
hed on again, the wavepa
ket is retrieved.
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(b)Figure 5.14: Light Storage in an EIT layer. 

 is modulated in time from 
+
 =0:07!0 to 
�
 = 0 with the same shape shown in the inset of Fig. 5.9. The storagetime is !0�s = 1350. The initial group velo
ity in the EIT layer is vgr = 0:11 
.The pulse has a gaussian shape with k0�x = 540 in va
uum and the atomi
 layerhas a length k0Ld = 10. Snapshots during the pro
ess in the absen
e of losses
e = 
m = 0: (a) Initial pulse (blue dotted line), pulse splitted immediatelyafter the stopping ramp (solid blue line) and 
ounterpropagating wavepa
ketsduring the storage time (dashed bla
k line). (b) Emerging wavepa
kets after theretrieval ramp in the absen
e of absorption (solid blue line) and in the presen
eof losses, 
e = 0:07!0 (dashed red line). The arrows indi
ate the dire
tion ofpropagation of ea
h pulse.



104 CHAPTER 5The main limitations to the eÆ
ien
y of a light storage pro
ess originatefrom spontaneous emission pro
esses from the ex
ited state (a �nite �eg
omponent is always present for any pulse of �nite duration), leakages dueto the �nite opti
al depth of sample as the usually 
onsidered systems areshorter than the e�e
tive length of the pulse, and ground-state de
oheren
e
m > 0 [29,75℄. Even though this last e�e
t sets the ultimate limit to theperforman
es of light storage experiments, for the parameters 
onsideredin the present work it is negligible as 
ompared to the other pro
esses.A situation similar to the experimental realization in [32℄ is simulatedin Fig. 5.14: be
ause of numeri
al limitations in the solution of the MBequations, we have been for
ed to 
onsider a EIT medium with a mu
hbigger vgr=
. Apart from this, all other parameters were res
aled in a wayto get the 
orre
t physi
s of the system. During the storage time, 

 ismade to vanish with the same temporal pro�le as shown in the inset inFig. 5.9.As in the previous 
ase, the pro
ess 
onsists of three stages. During thestopping ramp [Fig. 5.14(a)℄, the signal is 
ut in three parts: the front part,whi
h has already 
rossed the defe
t, is not a�e
ted by the modulation.The 
entral sli
e that is 
ontained in the EIT layer is stored as an atomi
polarization and its ele
tri
 �eld vanishes. When the ba
k part of the pulsehits the medium, this is no longer transparent and the pulse is re
e
ted:as the width of the re
e
tivity dip is proportional to the group velo
ityvgr, re
e
tivity is in fa
t substantial in the light storage 
on�gurationvgr = 0 [19, 29, 66℄.When the retrieval ramp is applied, the ex
itations stored in the EIT layerre
over their ele
tri
 �eld 
omponents and propagate out of the atomi
medium. The retrieval eÆ
ien
y (de�ned as the ratio of this pulse to theinitial pulse) is 15% for this simulation, whi
h qualitatively agrees withthe estimation in [32℄. The three emerging wavepa
kets are 
learly visiblein [Fig. 5.14(b)℄. For this system the main problems are the lea
kages dueto small thi
kness of the atomi
 sample whi
h is mu
h smaller than thewaists of the laser beams.To 
on
lude this se
tion, it is important to assess the role of dissipative ef-fe
ts in the light storage pro
ess. The pulse pro�les in the presen
e of spon-taneous emission from the ex
ited state are shown as red dashed 
urvesin Fig. 5.14(b). The �rst part of the pulse is not a�e
ted by absorptionbe
ause the length of the sample is small as 
ompared with the absorptionlength. The retrieved pulse is only partially redu
ed by spontaneous emis-sion pro
esses. The re
e
ted pulse is instead 
ompletely modi�ed: when

 is turned down, lo
alized ex
itations are 
reated near the interfa
e.When 

 = 0, the metastable state is in fa
t de
oupled from light; matterex
itations in the 
at part of LP and UP bands are very sensitive to losses.
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e
ted wavepa
ket qui
kly disappears as soon aslosses are in
luded.Also in the absen
e of absorption, the re
e
tion pro
ess 
an strongly de-pend on the stru
ture of interfa
es and provide re
e
ted pulses with dra-mati
ally di�erent shapes. This features 
an be of great interest when one
onsiders a Mott Insulator of 2-level atoms where absorption 
an be sup-pressed as a 
onsequen
e of the ordered latti
e stru
ture [15℄. In this 
ase,information on the interfa
e stru
ture 
an be inferred from the re
e
tionproperties.





CHAPTER 6
Con
lusion and perspe
tives
In the present thesis, we have investigated the linear opti
al response ofultra
old atomi
 gases in di�erent 
on�gurations. Light-atom strong 
ou-pling, slow light behavior and dynami
 stru
tures are the main keywordsof this work.In Part I, we have addressed the use of light as a probe for the stru
ture ofan atomi
 Mott Insulator (MI). We have 
onsidered stationary situationswhere the 
al
ulations have been 
arried out by using Transfer Matrixte
hnique in a 1D geometry. The system is of great interest be
ause thestrong lo
alization of atoms at the latti
e site positions indu
es a suppres-sion of absorption pro
esses: this is promising in view of the observationof strong light-atoms 
oupling. In parti
ular, we have found visible signa-tures of the interplay between the light-matter mixing and the di�ra
tiondue to the periodi
 arrangement of atoms in both the band diagram andthe re
e
tivity spe
tra.The high re
e
tivity shown by the two-level atomi
 system prevents thepropagation of resonant light inside su
h a sample. The 
oherent dressingof three-level atoms whi
h results into Ele
tromagneti
ally Indu
ed Trans-paren
y (EIT) 
reate a frequen
y window for light propagation in the formof the so 
alled Dark Polariton (DP). We have studied the s
attering ofslow DP on defe
ts as a non-destru
tive probe of the mi
ros
opi
 stru
-ture of the atomi
 MI. These features are robust with respe
t to absoprtionwithin the EIT window.Further results in this dire
tion are expe
ted from a full 3D treatment bymeans of S
attering Matrix. In this 
ase te
hni
al problems related to thedes
ription of the opti
al response of atoms have to be addressed [15,18℄.107



108 CHAPTER 6The solution of the 
omplete s
attering problem from a defe
t in a MIrepresents a big issue from both a theoreti
al and experimental point ofview [69, 70℄. The development of the S
attering Matrix 
ode for atomi
systems is also of interest for the study of light s
attering from severalrandomly pla
ed atoms whi
h is at the basis of 
urrent investigations ofCoherent Ba
ks
attering from atomi
 samples [107℄.Another possible development is related to the toy-model of an atomi
 two-level impurity in a three-level system as the starting point for a 
ompleteinvestigation of non-linear intera
tions at the single photon level.In Part II, we have studied the propagation in time of a DP pulse in-je
ted into a generi
 inhomogeneous and dynami
 stru
ture 
omposed ofva
uum regions and EIT layers. We have built up a 
omplete 1D Maxwell-Blo
h (MB) formalism, adapted to the presen
e of sharp interfa
es throughthe appli
ation of a modi�ed Slowly Varying Envelope Approximation(mSVEA). By using this formalism we have simulated both stati
 and dy-nami
 situations both in homogeneous geometries and at interfa
es. Lightstorage 
on�gurations have been 
omputed as well.We have shown a good agreement between the results of MB formalismand the predi
tion of Adiabati
 Transition theory for the inter-band 
ou-pling due to a dynami
 modulation of the 
ontrol �eld intensity. We havefound a sharp deviation from the expe
ted exponential de
ay of the asymp-toti
 
oupling for fast ramps. A more detailed study may be in order to�nd spe
i�
 form of the perturbation whi
h suppress the 
oupling for fastmodulations and to extend to our 
ase the study of absorption [92℄.Withtin the MB formalism, we have simulated realisti
 
on�guration wherethe inhomogeneity of the stru
ture joined with the dynami
 modulationallow to tailor the shape of the propagating pulse. The patterns that areimprinted in the ele
tri
 �eld envelope are not destroyed by absoprtion.These are examples of quantum pro
essing of DP. The possibility to 
reatehigly lo
alized stru
tures appears interesting in view of the observation ofpe
uliar regimes for the polariton propagation [106℄.Furthermore, an extension of the MB formalism to 2D geometries is promis-ing to study the trapping and guiding of DP within stru
tures with non-absorbing interfa
es where to realize quantum billiards and polaritoni

ir
uits.



Notation
The a
ronyms used through this thesis are summurized here.� e.m. : ele
tro-magneti
;� OBE: Opti
al Blo
h Equations;� EIT: Ele
tromagneti
ally Indu
ed Transparen
y;� MI: Mott Insulator;� TM: Transfer Matrix;� fBz: �rst Brillouin zone;� MB : Maxwell-Blo
h;� SVEA: Slowly Varying Envelope Approximation;� mSVEA: modi�ed Slowly Varying Envelope Approximation;� FDTD: Finite Di�eren
e Time Domain;� DP : Dark Polariton;� LP : Lower Polariton;� UP : Upper Polariton;Furthermore they are repeated the �rst time they appear in ea
h 
hapter.The physi
al 
onstants that are used in this work are [103℄� Speed of Light: 
 = 3 � 108m/s;� Permeability of Va
uum: �0 = 4� � 10�7N=A2;109



110 NOTATION� Diele
tri
 
onstant of Va
uum: �0 = 8:854 � 10�12 F/m;� Redu
ed Plan
k's 
onstant: ~ = 1:055 � 10�34J s;
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