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INTRODUCTION

After the development of laser sources, atomic gases have been used as an
optical medium to study non-linear processes. Via the presence of atoms an
intense laser beam can influence its own properties or those of other beams
[1]. The gaseous samples allow to treat directly the discrete and well-known
energetic structure of atoms to carry out ab initio calculations starting
from the interaction between light and a single atom. These predictions
can be experimentally tested with high precision by means of spectroscopic
techniques.

Later on, light has been demonstrated as a very powerful tool not only to
study atoms but also to manipulate them. During the last thirty years,
in the field of Atomic Molecular Optical (AMO) Physics the development
of laser cooling and trapping of neutral atoms [2] has lead to an impres-
sive series of achievements related to the investigation of the outstanding
properties of ultracold matter. Among these, the experimental realization
of Bose Einstein Condensation (BEC) is the most famous [3].

The combination of these reciprocal interactions induces back-action ef-
fects that result in surprising phenomena. For instance, the kick given by
the probe light to the interrogated atoms in the precision spectroscopy
experiment of [4] was able to shift the position of the resonance fluores-
cence line of a significant amount. Furthermore, in the first experiments
with optical lattices [5, 6], the change in the lattice constant due to the
effective index of refraction of the atomic sample itself was detected via
Bragg spectroscopy [7].

More recently, the mutual effects arising from atom-laser interaction in an
ultracold sample were shown in a most clean way by the cavity optome-
chanics experiment [8]. In this setup a BEC is put inside an optical cavity
and then a laser beam is shined which is far off-resonant with respect any
electronic transitions of atoms while it is resonant with a cavity mode.
The excitation of the cavity mode induces an effective lattice potential for
the condensate which is then modulated in density. The refractive index
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due to the presence of the atomic medium is then accordingly spatially
modulated resulting in a shift of the cavity frequency. This interplay has
a sharp signature in the oscillating transmission spectrum of the cavity.

The use of ultracold matter as an efficient tool to manipulate light is the
key idea of the present work. We start from an optical point of view: we
have investigated the features of ultracold atomic gases as an extremely
dispersive and tunable medium for light propagation. Inspired by the de-
velopment in solid-state systems of structures designed to have a specific
optical response such as Photonic Crystals [9] or metamaterials [10], we
have joined the sharp features of cold samples with the intriguing effects
deriving from spatially modulated geometries and coherent dressing of
atomic states. The focus is the proof of principle of techniques which may
be important in view of optical information processing. Cold matter al-
lows to get rid of spurious effects present in solid-state devices and then to
address the underlying physics in these phenomena. Cold gases take also
advantage from the suppression of Doppler broadening with respect hot
atomic vapor.

Before the achievement of BEC, some attention was paid to the study
of coherent scattering of photons by the atoms in the condensate phase
to determine the refractive index of the sample [11-13]. The use of light
which is resonant with some atomic transition enhances dramatically the
atom-photon coupling: the strong coupling regime is reached when the
matrix element for the interaction is bigger then the linewidth of the
atomic transition. While in semiconductors this coupling leads to mixed
radiation-matter excitations called polaritons, in gaseous atomic media
resonant light is usually strongly absorbed preventing the observation of
the Rabi splitting.

The achievement of Mott Insulator (MI) phase for a BEC loaded into a
deep optical lattice [14] has opened an interesting perspective in order to
observe polariton physics in ultracold samples: the strong localization of
atoms at the lattice sites is in fact responsible for a quenching of absorp-
tion [15]. In a modern perspective, the atomic MI can be seen as a sort of
extremely resonant photonic crystal. A key point discussed in literature is
the existence of a complete photonic band gap in such structures [16-18].
The interplay of conventional polariton (Rabi) splitting and the diffraction
due to the lattice arrangement is at basis of different regimes for the opti-
cal response [19]. Although the radiation-matter coupling is much weaker
than in solid-state dielectric structures, the high regularity of MI strongly
decreases the dephasing mechanisms.

The response of this systems around the resonance frequency is domi-
nated by both strong reflectivity and absorption processes which result in
light being forbidden from propagating through the medium. By exploiting
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dark resonances in dressed atomic gases it is possible to overcome this lim-
itation. The existence of non absorbing resonances in three-level atomic
systems pumped by two laser beams was first discovered during spec-
troscopic experiments in sodium vapors [20]. Thanks to the interference
between different excitation processes, atoms are driven into a coherent
superposition of states that is eventually decoupled from radiation: this
is the essence of the Coherent Population Trapping [21]. Furthermore, the
coherent control of the optical response of a medium by means of a strong
laser field allows for the optical switching of the propagation of a second
weak probe beam, leading to the so called FElectromagnetically Induced
Transparency (EIT) [22-24]. Among the different realizations, ultracold
samples offer a unique environment which is protected from decoherence:
this is favourable even in the case of such a robust phenomenon as EIT.

The propagation of light through otherwise optically opaque media can be
described within a polariton treatment in the three-level system. Beyond
the conventional resonant polaritons typical of two-level atoms, a nar-
row branch appears at resonance: this is the Dark Polariton (DP) which
consists of a coherent mixing of radiation and atomic excitations corre-
sponding to a two-photon Raman resonance [25-27]. The DP is responsible
for EIT and shows interesting properties: it is long-living because of the
suppression of absorption, it suffers no reflection at the boundaries of the
system and, most remarkably, its group velocity can be optically tuned by
means of the control beam down to very small values [28]. The complete
turn off of the control beam provides a full mapping of the probe pulse
into atomic (spin-like) excitations. The process can be reversed resulting
in a light storage and retrieval from atoms [29]. Both ultraslow light and
light storage were demonstrated in cold atomic samples [30,31] while more
recently the use of an atomic MI has shown a promising increase of the
storage time up to some hundreds of milliseconds [32].

The increase of the interaction time due to the small speed of probe pulses
joined with the tunability of the optical response enhances the possibilities
to perform a dynamic modulation of the light signal. Such modulations are
the goal of Dynamic Photonic Structures (DPS) [33]. The general concept
of DPS is based on a pulsed experiment where the optical response of a
medium is varied in time while the probe signal is inside the structure.
This configuration allows for an efficient manipulation at both classical and
quantum level. The perturbation of the medium can be applied through a
control laser beam (all-optical technique) or by means of other mechanisms
(e.g. injection of carries or magnetic field ramps).

Although the more complete modern theories implies that both light and
matter are represented by quantum fields, radiation-matter interaction
can still be treated within a semi-classical picture in a lot of situations:
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the electro-magnetic (e.m.) field is considered as a classical object and the
energetic structure of matter is quantized. This formalism dates back to
the birth of quantum mechanics and can be applied to all the processes
in which the quantum nature of light is still hidden such as e.g. the stim-
ulated emission, up to many aspects of laser physics [34]. In particular,
at the level of linear optics, i.e. for weak e.m. fields, classical Maxwell’s
theory fully describes the dynamics of the radiation field. Within this for-
malism the effect of radiation on the matter appears through the minimal
coupling replacement into the Schrodinger’s equation. Vice versa, the pres-
ence of matter generates a polarization term into the Maxwell’s equations
which gives the refractive properties of the material. The self-consistent
connection between the two formalisms is given by a density matrix rep-
resentation of the atomic evolution which allows to transfer the results of
the Schrédinger’s equation into Maxwell’s. Dissipative effects due to vac-
uum fluctuations (i.e. spontaneous emission) are included within a master
equation treatment.

The propagation of light through an ultracold atomic gas is the main topic
of the present work.

The thesis consists of two parts.

In Part I (Chapters 1,2,3), we give a complete description of the 1D pho-
tonic bands of a MI of two-level atoms paying attention to both band
diagrams and reflectivity spectra. The role of regular periodicity of the
system is addressed within a polariton formalism. The scattering on de-
fects inside lattices of three-level atoms is also studied in view of optical
detection of impurities in such structures. The light is used as a probe of
systems engineered by the use of other laser beams.

Part IT (Chapters 4,5) is devoted to the development of a general frame-
work for the time-dependent processing of a propagating slow DP in a
spatially inhomogeneous system. The coherently tunable atomic gas acts
as a DPS. Applications of this concept concerning wavelength conversion
and reshaping of the pulse are also discussed.

The theoretical tools used to face the semi-classical theory of radiation-
matter interaction in the systems under investigation are: Mazwell-Bloch
(MB) formalism [35] and Transfer Matriz (TM) technique [36].

We have restricted to a 1D geometry with transverse polarized probe
beams which allows to consider e.m. radiation as a scalar field. We have
solved the photonic band problem by means of TM that give the stationary
response of 1D layered dielectric structures starting from the susceptibility
of each single layer. The interest in this technique is related to its sim-
plicity, numerical stability and to the fact that it allows to simultaneously
calculate both dispersion law and reflectivity spectra.

The study of the time evolution of a pulse injected and propagating
through an EIT medium is performed by means of MB equations for the
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coupled electric and atomic polarization fields. The use of a modified ver-
sion of the conventional Slowly Varying Envelope Approzimation (SVEA)
makes possible to handle the problem of reflection at interfaces in a unified
treatment without the need for coupled mode theory.

The thesis is organized as follows.

In Chapter 1, we briefly review the semi-classical theory for atom-laser
interaction by using Optical Bloch Equations (OBE). The general form
for the evolution of atomic coherences and the corresponding resonant
cases are reported in order to derive the dispersive susceptibility for both
two-level and three-level atoms. It is also discussed the difference between
the response of a single atom as compared to a cloud (Clausius-Mossotti
formula).

The photonic bands of an atomic MI are studied in Chapter 2. Two dis-
tinct regimes are individuated depending on the relative position of the
resonant and Bragg frequencies with respect to polariton splitting. The
band diagram as well as reflectivity spectra are discussed. For the reflec-
tion properties, two different geometries are addressed: the semi-infinite
system and the finite slab. The variation of resonant reflectivity from a
single atom to a long lattice is also highlighted.

In Chapter 3, the EIT phenomenon in an atomic gas is introduced and
its main features are discussed in terms of a polariton dispersion. The
reflectivity dip corresponding to the slow DP is used to study the scattering
on defects of the atomic system such as lack of atoms at some sites of a
MI. The defect can be seen as a cavity which supports localized modes.
Furthermore, by using an atomic defect instead of a vacuum region, a peak
appears and it can be moved within the EIT window.

A complete MB formalism is developed in Chapter 4 aiming to study
the propagation of a pulse through a generic inhomogeneous and time-
dependent structure composed of alternating layers of vacuum and EIT
media. The modified SVEA (mSVEA) is presented and its main features
and limitations are pointed out. The pulse propagation is investigated in
two geometries: a homogeneous layer and an interface, in both static and
dynamic situations. An effective equation for the flow of the electric field
intensity is derived.

Finally, in Chapter 5 we describe some relevant physical aspects of DPS.
The chapter is divided in three parts. The first one deals with the problem
of the effective coupling between different polariton bands, induced by the
time-evolution of the system parameters. In the second part, we propose
the scheme for a cold gas Photon Energy Lifter [37] which performs a
wavelength conversion of a DP pulse. In the last part, it is presented the
general idea of a inhomogeneous structure (EIT chain) devoted to the
reshaping of the electric field of a light signal. At the level of linear optics,
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this is equivalent to the manipulation of photon wavefunction. Both for
the photon lifter and the EIT chain, realistic values extracted from current
experiments are used in the simulations.

The acronyms and physical constants used in the thesis are summarized
in the final appendix Notation.
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CHAPTER 1

RESONANT ATOM-LIGHT
INTERACTION

The interaction between atoms and light is mainly determined by the res-
onances related to the discrete structure of the energetic levels. The sep-
aration in energy between the different levels and the use of light sources
with a reduced spread in frequency (i.e. lasers) allow to play selectively
with one or few of these levels. Dilute cold gases offer the possibility to
study the optical response of the whole medium with simple techniques
starting from the atomic behavior.

In Section 1, we summarize the derivation of the optical response of an
atom to a probe field via a density matrix approach. The resulting Optical
Bloch Equations (OBE) are presented.

In Section 2, we calculate the stationary situations at linear order in the
probe field in order to obtain the susceptibility of an ensemble of two-level
atoms. From the general case, we specify the atomic susceptibility for a
resonant radiation and we introduce a generalized oscillator strength f as
an adimensional parameter describing the atom-photon coupling.

We apply the same procedure to the case of a three-level A atomic config-
uration in Section 3. In this case the response of the atomic gas is tailored
by the intensity of a control laser beam.

In Section 4, we show a brief derivation of the Clausius-Mossotti correction
for the susceptibility of a dense atomic bulk. It results in an effective shift
of the atomic resonance frequency.



4 CHAPTER 1

1.1 OprpTIiCAL BLOCH EQUATIONS

We consider a semi-classical picture in which the (light) electric field
E(z,t) is a classical object while the atomic transitions are represented
through operators (i.e. the density matrix). We specify the density matrix
only to the relevant atomic levels, i.e. the initial state, the levels coupled
through some light field to the ground state and the levels which can be
reached through decay mechanisms. In the weak excitation regime, the
dynamics of the atomic ensemble under the action of resonant or quasi-
resonant coherent (laser) fields can be described using a linearized form of
the OBE [21,35]. The general form of OBE is:

L O0p A A
i = [H, )+ L(5). (1.1)

The first term in the LHS is the usual Von Neumann commutator for the
evolution of the density matrix p under the action of a radiation-matter
Hamiltonian H. In order to describe the real evolution of the atomic Sys-
tem, the OBE include dissipative terms, £(p). These terms come from a
master equation treatment and are responsible for the loss of coherence
in the radiation-matter interaction as well as spontaneous emission [24].
In fact, the relevant quantities for our purposes are the so called co-
herences pqy, i.e. the off-diagonal elements of the atomic density matrix

p = Y a4 Pab|a) (b, where a and b label the internal atomic states '. In
terms of the coherences p;, the atomic polarization reads
P(xat) :Zn(xat) dlg (plg(x:t)+pgl(x:t))- (1'2)

l

Here, dg; is the electric dipole moment of the transition from the ground
|g) state to a generic excited state |l); n(z,t) is the atomic density of the
medium. The susceptibility is then determined from its definition

P(w) = eox(w)€(w), (1.3)

which is given here in the frequency domain. In the following we will
consider two cases: the two-level atom and the three-level A configuration,
shown in Fig. 1.1.

'From now on, we drop the symbol **’ from the notation wherever it is clear which
quantities are operators.
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F1GURE 1.1: Excitation schemes: on the left, 2-level atom; on the right, 3-level
A scheme.

1.2 RESONANT SUSCEPTIBILITY FOR TWO-LEVEL
ATOM

We consider the electric field of alaser E(t) = £ (e ! + c.c.) that interacts
with the transition between two levels of an atom: the ground state |g) and
an excited state |e). We suppose that the other levels are far from probe
frequency w which is tuned near the transition frequency we, = w. — w,.
The Hamiltonian of the system consists of an atomic part,

Hy = hwg |g) (9] + hwe [e) (el (1.4)

and a radiation-matter interaction part,
Hap = —deg€ (7" |€) (g| + h.c.) . (1.5)
Within the rotating wave approximation [34,35], we are only considering

the resonant terms for interaction. The first term in the RHS of equation
(1.1), that corresponds to the usual Von Neumann equation, gives

i % = —d.&€ (pegei“’t — pgee_i‘“t) , (1.6a)
ihdsge = —d.,E (pgee_i‘”t — pegei‘”t) , (1.6b)
S () ey ey e — ) E, (1L60)
e~ g, - Wy) Peg — deg (Pec — Pgg) ' (1.6d)

dt
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We eliminate the exponential factors by introducing the reduced coher-
eNCeS Peg = Peg™t and pye = pgee” ™!, while p,. and p,, are unchanged:

B~ € (g~ ) (1.7a)
P = g (e~ ). (1.7)
DD = (g — ) g e (e — ) (1.7¢)
By~ )~ (e~ ). (L7)

We use the second term in the RHS of equation (1.1) to introduce the life-
time of the atomic level v which determines the decay of the excited state

population p.. and the lose of coherence during the interaction process.
The OBE then read

dp o€ . -
—dig = 1 ; (peg - pge) + Y Pee> (18&)
Apee ey . ~

a 7; (Pge = Peg) = VPee; (1.8D)
dﬁe . ~ ‘de £ 7

dtg = —1(Weg — W) Peg — 1 7; (Pee = Pgg) — 5 Peg: (1.8¢)
dpge , N e v .

di = +1 (Weg - LU) Peg + ZTg (pee - ng) - §pge' (18d)

From the first two equations, it is visible the conservation of the trace of
the density matrix, while the latter two equations state that the density
matrix is always hermitian. For this reason, we need only one from the
last two equations. We also note the quantity Q = —(d.,€)/h which is
usually called the Rabi frequency of the laser field. If we consider a gas of
atoms which are in the ground state at the intial time and we assume the
electric field to be weak, at linear order in £ we obtain p,y = 1 and p.. = 0
from (1.8). We are interested in particular in the stationary solution of the
equation (1.8¢c):

ey 1

Peg = —1 - =

hoi(w — weg) —7/2
degE 1
B weg —w—17/2

(1.9)

(1.10)

By using (1.2) and (1.3), we obtain the susceptibility of a gas of two-level

atoms:
ndz, 1

€l Weg —w — 17/2

X(w) = (1.11)

We remind that this result is valid in the range of frequency near the
resonance.
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1.2.1 The oscillator model

To get the susceptibility far off-resonance it is possible to model the atomic
transition as an harmonic oscillator with proper frequency w,, subject to
a forcing term due to the probe field E and affected by a dissipative term
based on 7. To write the equation of motion of such a system we introduce
the mass m, and charge e of the electron and we assume z as the direction

of oscillation: » .
z 5 z
meﬁ = el — mew;, 2 — mefya. (1.12)

By switching to the frequency domain, we obtain
—mow?z + mewggz —imeywz = eE. (1.13)

The polarization of the atomic gas is given in terms of the dipole moment
of the single atom
P =nez = ¢xFE, (1.14)
where n is the atomic density. From (1.13) and (1.14), we obtain the
ne? 1

_ 1.15
X(w) oo 2, — 7 — i (1.15)

which is the so called Drude-Lorentz formula. The factor

2
) ne
= 1.16
“p M€ ( )

is the square of the plasma frequency of the atomic gas. In the limit of
resonant excitation, (w — we,), the linearized form of (1.15) gives the
expression (1.11) and it is possible a comparison with the measurable
quantities related to a real atom. In general, the plasma frequency is used
to express the numerator of the susceptibility by defining the adimensional
oscillator strength f [38]:

2
fwy

2 _ 2 — v
We, — wW? — iYW

x(w) = (1.17)
Throughout the present work, we decide to use the slightly different for-
mulation

fwi,
w2 —w? —iyw’
which keeps the adimensionality of f, but it uses the transition frequency
instead of w,. From the comparison of (1.15) and (1.11), we obtain:

(1.18)

X(w) =

w nd?
feq = —39, (1.19)
2 Goh
In the following we will always refer to the oscillator strength as a crucial
parameter to determine the strength of radiation-matter interaction.
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1.3 RESONANT SUSCEPTIBILITY FOR THREE-LEVEL
ATOM

In the case of the A scheme depicted in Fig. 1.1, we also consider the
level |m) that is coupled to the excited state via a (generally) strong
coherent field, represented through its Rabi frequency €2.. This field is
addressed as the control or dressing field to distinguish from the probe
field E. The optical transition between the state |m) and the ground state
is forbidden for symmetry rules: the state is then long-living with respect
le) and therefore it is called metastable. It means that 7,, < 7., where the
subscripts clearly refer to the different atomic states. We also assume the
excited state to have the same decay rate v, towards both the ground and
metastable states. The Hamiltonian for the three-level A configuration is
given by

Hay = hwglg) (gl + hwele) (el + Tiwp [m) (m[,  (1.20a)
Hap = —de€ (e ™" |e) (g] + h.c.) +
%0,
+h? (e7™" |e) (m| + h.c.). (1.20Dh)

As the density matrix is hermitian, the general form of the OBE equations
is given by the six equations:

d ‘ hye
ih—sig = —dey€ (Peg@lwt — c.c.) + i%peea (1.21a)
dn.. | .,
ih c/l)t = deg€ (Peg@lwlt - C'C') + 2 (Pmee et — C'C') +
i (1.21b)
d hQ) : h
ik pdn;m _ _Tc (pmeefzwct _ C.C.) + i%ﬂee; (121C)
dp —iw —iw
Zhd—:g = hwegpeg + degge t(pee - ng) + Tcpmge ! +
e
_i%pega (1.21d)
. dp Wwe —iw
th d?g = NWmgPmg + Tcpeg6 = degEe "Pme +
"Ym
i ’; Pimg: (1.218)
dpme hQC i '
ih d = hwmepme + —Celwet (pee - pmm) - deggewtpmg +
dt 2
e
—i%pme- (1.21f)

At the linear order in the amplitude of the electric field £ only the ground
state is populated: pyy = 1 while p, = ppr, = 0. Furthermore the coher-
ence P, is a term of second order in the amplitude of the probe field as



Resonant atom-light interaction 9

can be seen from (1.21f) and (1.21e). By exploiting these observations, we
are left with the equations (1.21d) and (1.21e) in order to determine the
linear susceptibility:

d , h<2 : h
Zh% = hwegpeg - deggeilwt + Tcpmgeilw(:t - i%peiﬂ (122&)
L dp h< iw Dy
ih dj;g = NWmgPmg + Tcpege et szpmg. (1.22Dh)

To eliminate the exponential phases we define new coherence variables:

feg = Peg€™t and pry = pmge’@ ). The equations then become

dﬁeg _ Ye . ~ .degg .Qc ~

—dt = - (5 + Z(Se) Peg T1 3 - Z?ﬂmga (1'233)
dﬁmg _ r)/m . ~ .QC ~

it = (5 ion) =i e (1.23b)

Here we have defined the one-photon detuning from the excited state
de = Weg — w and the detuning 6p = wpy + w. — w from the two-photon
Raman transition that connects the ground to the metastable state. The
stationary solution of the reduced system (1.23) reads

i€Q,/2

bre = —Pog—el 2 1.24

Pmg pgvm/2+263 ( a)
dog€ , 0?2 1 !

R i S NAYD B S 1.24b

oy = o [ -y MR_WQ] (1.24D)

As in the previous case, it is straightforward to obtain the linear suscep-
tibility

ey . Q1 -

— 5. — e 1.25

XW) =55 0 = 1e/2 = o | (1.25)

where we have introduced the oscillator strength (1.19).

1.3.1 Coupled Oscillators model

We calculate the off-resonance susceptibility by using a coupled harmonic
oscillators model. For simplicity we consider the Raman resonance con-
dition, which consists of using the same frequency for both the harmonic
oscillators. We start from the single oscillator model (1.12) and we add
a second harmonic oscillator through the coupling constant given by the
control Rabi frequency €2.. The Newton’s equation for this system are

d?z 9 dz
meW = —Mmew,z + eE — mewe, ey — mefya (1.26)
d*y dy

Mo = Tl — MetwegQeZ = MeYm (1.27)
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where the friction term for the second oscillator is proportional to the de-
phasing rate. By considering an oscillatory forcing field E(t) at frequency
w, we solve the model. From the second equation we obtain

Y(—w? 4 w2, — iYmw) = WegSlez. (1.28)

By substituting this result into (1.26), we express the oscillating dipole in
terms of the forcing electric field

02w? !
d=ez=— (wzg—uﬂ—z’yw— 5 S ) E. (1.29)
me w2, — w? —iypw

The dielectric susceptibility is then

ne> [ , 02w?, -
= — W — YW — 1.30
X(w) e [weg w? — iyw pr Z'“me] ; (1.30)

which gives, in the resonant limit w — w,, and by introducing the oscillator
strength, the expression (1.25).

1.4 CLAUSIUS - MOSSOTTI SUSCEPTIBILITY

In the previous sections, we have calculated the dielectric response of the
atomic medium starting from the single atom behavior given by the Bloch
equations and then by multiplying the atomic density n. This procedure
automatically identifies two different quantities: the susceptibility xy we
have mentioned up to now, and the polarizability a. The first quantity
is defined in relation to macroscopic fields, namely the polarization of a
region containing a huge number of atoms and the mean electric field,
while the latter gives the polarization of a single atom in terms of the
local electric field acting on it. Strictly speaking the OBE give the atomic
polarizability and in the calculations we have assumed that

X = na. (1.31)

This relation is a sort of first order approximation which holds for dilute
systems. To obtain the correct relation between the two quantities, we
need to consider the difference between the mean electric field E and the
local one FEj,.. The local electric field acting on the single atom we are
considering is given by the mean field contribution E, minus the average
polarization induced by the region (macroscopically small, but with a large
number of atoms) surrounding it Ep, plus the detailed effect of the same
atoms Fy:

Ejoe = E — Ep + Egp. (1.32)
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It is demonstrated that the global effect of a set of dipoles arranged in a
cubic lattice on one of them vanishes: Eg.; = 0 [39]. On the other hand, the
average effect of a homogeneous polarization P inside a spherical cavity
round the atom gives [39]

4
Fioe = E + %P. (1.33)
Then the susceptibility results
no
X=—ar (1.34)
1 =
5 N

This formula is know as the Clausius-Mossotti or Lorentz-Lorenz correc-
tion?. If we substitute (1.11) to  in (1.34) we get

_fwe [y Amfug]”
5 | 2 3 2 | -

X (1.35)

The typical value of f in the ultracold atomic gases is of the order of
1071 to 1078: this shift in the position of the resonance frequency, which
is in the MHz to GHz range, is to be considered in the experiments. In
the following we always refer to the (shifted) resonance frequency for the
considered atomic gas as wey. As we have seen above, the calculation of
this shift depends on the particular geometry under investigation and its
derivation on specific cases is beyond the aim of this work.

2A detailed derivation of this effect in the case of a lattice of atoms can be found
in [18,40].






CHAPTER 2

OPTICAL RESPONSE OF A MOTT
INSULATOR OF TWO-LEVEL
ATOMS

After the achievement of Bose Einstein Condensation (BEC) [3] in alkali
atoms, one of the most important trends emerged in the field of laser
trapping are Optical Lattices [5,6]: the trapping effect of light intensity is in
this case modulated via the interference of countepropagating laser beams.
Atoms are trapped in the nodes or anti-nodes of the stationary wave via
a dynamical Stark effect [41]. In this way it is possible to modulate in
a periodic way the atomic density. Optical lattices can be combined with
other trapping techniques (e.g. dipole traps) to shape the periodicity along
one, two or three dimensions.

During the same years, strong efforts were put in the theoretical modeling
and experimental realization of the so called Photonic Crystals [9,42].
The well known concept of interference of light diffracted from a periodic
arrangement of atoms, which is at the basis of the X-ray optics [43] and
all the related studies on the crystalline structures [44], was then renewed
by noticing the similarities between the roles of the dielectric constant in
the Maxwell’s equations and the potential in the Schrodinger’s equation.
The Floquet-Bloch theorem [45] for the e.m. field in periodic dielectric
structures states that the dispersion law for light contains propagation
bands and forbidden gaps [46] in close analogy with the case of electrons
in crystalline structures. The scalability of Maxwell’s equations then allows
to built up structures which works in different frequency domains, from
microwave to visible light.

13
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Optical lattices allow an engineering of periodic atomic structures; a spa-
tial modulation of the optical response of the atomic medium in the range
of optical wavelengths means that these structures can be used as pho-
tonic crystals [47,48]. Furthermore, the observation of strong resonant
light-matter coupling, which is forbidden by absorption processes in ho-
mogeneous gases, can be studied in Mott Insulator (MI) systems where
absorption is suppressed because of localization of atoms [15,40]. The
simultaneous occurrence of narrow optical resonances and the periodic
arrangement of atoms offers the possibility to study the mixing of these
effects in the building up of photonic bands and in the relative reflectivity
spectra. The atomic MI is then a remarkable example of resonant photonic
crystal.

Section 1 contains a brief summary about the MI phase of an ultracold
atomic sample trapped in an optical lattice: this is the structure that we
investigate in the following.

In Section 2, we introduce the Transfer Matriz (TM) technique for the
study of the optical response of a layered dielectric structure. We model
the MI of two-level atoms as a 1D chain of atomic sheet with resonant
susceptibility.

In Section 3, we discuss the band diagram of the system. Two distinct
regimes are discriminated depending on whether the atomic resonant fre-
quency and the Bragg frequency are close or far away in terms of the
resonant light-atoms coupling.

Section 4 is devoted to the study of the reflectivity spectra in both the
regimes previously determined. Two different geometries are discussed:
a semi-infinite system and a finite slab, where the multiple reflections
of a polariton inside the structure give rise to Fabry-Perot fringes in the
spectrum. We also discuss the crossover between the Lorentzian reflectivity
of a single atom and the formation of forbidden gaps for long lattices.

2.1 THE MOTT INSULATOR PHASE

The modulation of the atomic density in an optical lattice generally de-
pends on the intensity of the trapping field. In particular this value fixes
the tunneling rate J between neighboring sites: the ratio between J and
the local atomic repulsive interaction U, which depends on the atomic
species, estimates the mobility of an atom throughout the optical lattice
in the Bose-Hubbard model [49]. Below a critical value of this ratio, for
commensurate fillings, a quantum phase transition between a superfluid
and a MI state takes place. The MI is characterized by a fixed number of
atoms in each site without coherence between the wavefunction of atoms
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sitting at the different sites as it was experimentally observed [14,50,51].
The strong localization of atoms at lattice sites can be estimated by com-
paring the oscillator length of a single site:

h
= 2.1
Qho 9 Wi ) ( )

where m is the atomic mass and wy, is the trapping frequency, with the
trapping wavelength. If we express the trapping frequency in terms of the
recoil energy

Rk R 1

m N am

h "
o =\ SN (B, JB)  2my/N (2:3)

Here Ap is the wavelength of the trapping laser. While in the first real-
izations of MI, N was of the order of 20 [14], it is nowadays possible to
reach much deeper lattices with N = 130 [52]. For this reason it is a good
approximation to assume the atoms to have a point-like structure.

r

(2.2)

we obtain

The absence of fluctuation in the occupation number of the lattice sites
ensures the extreme regularity of the periodic structure. This fact has
a crucial role in the radiation-matter interaction: the resulting discrete
translational symmetry imposes a modification of the e.m. vacuum which
results in a suppression of the absorption process [15,40]. Furthermore
the presence of an energy gap for the many-body excitation of the system
protects the radiation-matter interaction against decoherence processes.

2.2 TRANSFER MATRIX TECHNIQUE

To study the propagation of monochromatic light through a MI of atoms,
we model the system as a one-dimensional chain of atomic planes separated
by a distance a (lattice constant): each of these planes has a superficial
homogeneous density o, = na. The wavevector of light is normal to the
atomic planes. To get the band diagram and the reflectivity spectra, we
consider the stationary solution of the Maxwell’s equations given by the
TM technique [36].

The basic idea of this algorithm is the discretization of an arbitrary com-
plex 1D dielectric structure in many homogeneous layers. The spatial part
of the electric field is expanded in terms of the two counterpropagating
waves at a fixed energy hw:

BE(z,t) = (BEpe™* + E_e™") e ™", (2.4)
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FIGURE 2.1: Pictorial representation of how the TM technique works.

and it is then represented by a two-component vector E = (E,,E_). In
a homogeneous layer with refractive index n; and length d, these plane
waves have wavevectors

ks = +n2, (2.5)
C

where ¢ is the speed of light in vacuum. The plane waves acquire a phase
e’ during the path through the layer. The electric field at the end of
the layer F/(d) is then calculated by applying the matrix

eznlkd 0
Mm,d(w) = ( 0 —inikd ) (2-6)

€

to the vector E(O) corresponding to the origin of the layer; here k = w/c.
The passage through an interface between neighboring layers with differ-
ent refractive indeces n; and ny gives rise to reflection and transmission
according to the continuity condition for the electric field, as expressed by
Fresnel laws [39]

E' 27’11
tnion, = — = , 2.7
1—N2 E+ Ny _|_n2 ( a)
E_ ny — No
, = —/ =— 2.7b
T'ni—ns E_|_ n +n2 ( )

Here the " denotes the quantities in the layer with index ny. The transfer
matrix of the interface is then given by

ny+nyg N9 —ny

_ 2n 2n
Mn1—>n2 - n2 _2n1 n2 +2n1 . (28)

2712 2712

By using the matrices (2.6) and (2.8), it is possible to describe every 1D
structure! as it is depicted in Fig. 2.1.

'Tn fact, a continuous variation of the dielectric properties can also be described as
long as the discretization step is chosen much shorter than the radiation wavelength,
according to the spatial derivative of the refractive index.
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2.2.1 Application to periodic structures

TM technique is very powerful in the case of periodic structures: in fact,
by diagonalizing the TM describing the elementary cell for each frequency
w, it is possible to obtain the band diagram and the electric field for the
propagating modes of an infinite structure.

If there is no absorption (i.e. the dielectric constant ¢ € R) and the cell is
symmetric, the structure is invariant for time and space reversal, which is
always the case in the systems we are presently investigating. Because of
these symmetries, the eigenvalues A\; and Ay of the TM of the elementary
cell show peculiar properties:

1. space reversal invariance implies that det(M) = 1 which gives A\; =
(A2) 7

2. time reversal invariance implies A\; = AJ.

Under these assumptions, the general form of the eigenvalues of the TM
is
)\i — ej:iK(u))a, (29)

where a is the length of the elementary cell. By looking at the expres-
sion of these eigenvectors, it is clear that they are either real or complex
conjugated. If they are real, then the Bloch wavevector has two possible
forms:

Kw) = 0+if, (2.10)
Kw) = §+zﬂ(w); (2.11)

where (3 is real. The electric field is evanescent inside the structure with

extinction length
1

B:
and the propagation is forbidden in an infinite system: these solutions

correspond to the gaps in the band spectrum. If instead the eigenvalues
A4 are complex conjugated, the band diagram is determined through the

formula o) [ (M ) | (2.13)

(2.12)

gezt -

a 2

where K (w) belongs to the first Brillouin zone (fBz), —7 < Ka < 7. In
the present analysis, the bands show a symmetry for opposite wavevectors
corresponding to the same frequency (i.e. energy) and for this reason we
usually show in the figures only half the fBz.
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2.2.2 Transfer Matrix for an atomic plane

We consider the scattering of light on a single atomic plane to derive the

related TM: we model the atomic sheet as a Dirac-like impurity embedded

in vacuum in the origin of propagation axis [53], x = 0. Its susceptibility

can be written by using the expression for the two-level atomic gas (1.11):
_ Jweg 1

X(w,x) = R— ad(z) = Pr(w)d(x), (2.14)

where we have introduced the refractive power Pr(w). We use this expres-
sion to calculate the polarization which appears into the wave equation
for the propagation of the electric field [39]

0*E(x)

922 +k* (1 + eox(w,2)) E(z) = 0. (2.15)

We integrate in space between the symmetric boundaries —/ and +[ and
then let [ — 0; the d-like polarization generates a discontinuity in the first
derivative of the electric field:

a_E OF
o0x

ox

We note that, differently form its derivative, the electric field is continuous
through the atomic defect, exactly as it happens in the case of the wave-
function and its spatial derivative for a d-like potential in the Schrodinger’s
equation. By imposing the boundary condition, we calculate the electric
field components at the opposite sides of the atomic plane: from these
values we get the elements of the TM. The product with the TM of a
vacuum layer of length a generates the TM for the elementary cell of the
structure under analysis:

etka (1 +i%> e—ika <Zw>

M(w) = " (—iPR(QM)k> eika<1 : iPR(QM)k> . (217)

>:_%wm@my (2.16)

=01

2.3 PHOTONIC BANDS

To get a simple physical understanding of the system, it is useful to con-
centrate our discussion on the simplest case of a 1D geometry: most effects
related to resonant light-matter interaction are in fact independent from
the dimensionality of the system under consideration [40,54,55]. In partic-
ular we concentrate on the interplay between the periodicity of the system
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and the resonant behavior of the optical response which has never been
studied in a systematic way. Interesting discussions of the optical proper-
ties of different kinds of 1D resonant PCs can be found in [48,56-61].

A challenging question in the study of photonic bands is the search for
a complete (i.e. 3D) photonic band gap [62,63] which allows to stop the
incoming radiation despite its direction and polarization in a certain fre-
quency region: the debate for the case of atomic samples is still open and
continues to attract interest [15-18,64], but this is beyond our aim.

As introduction to the periodic case, we briefly discuss the properties of
the resonant susceptibility (1.11) which describes a homogeneous system.
In all the figures, the shaded regions indicate the forbidden gaps.

2.3.1 Bulk of resonant atoms

2.5¢

€g

1.5}

wWww

0.51

2
K/k
eg

FI1GURE 2.2: Polariton dispersion for a bulk of non-absorbing two-level atoms:
the oscillator strength is f = 10~'. The gray area indicates the polariton gap.
For the sake of clarity, the dipole moment has been exaggerated with respect
to actual values of atomic systems.

As we stated above, the characteristic element in the dispersion law of a
bulk of non-absorbing two-level atoms is the polariton gap which appears
above the resonance frequency w.,. As we neglect the absorption, the di-
electric constant is always real. The gap opens up where €(w) = 1+ x(w) is
negative, i.e. for [we, —w =+ (f/2)we,y] < 0. In fact, in this case the refractive
index of the medium n(w) = /€(w) is imaginary and therefore the field is
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FIGURE 2.3: Polariton dispersion of a two-level atomic gas: zoom on the region
near the polariton gap. The red dot-dashed line is the resonant frequency and
the blue dashed line shows the Rabi splitting. Same parameters as in Fig. 2.2.

evanescent. We immediately see that the width of the gap is fixed by the
oscillator strength:

Awy = gweg. (2.18)

The other important quantity is the width of the Rabi splitting which
opens corresponding to the crossing between the transition frequency and
the vacuum dispersion of light: it indicates the strength of the radiation-
matter coupling. This splitting can be calculated from the general form of
the light dispersion?:

w2

(W)= = K2, (2.19)

2
where we substitute the resonant wavevector K = k.,. Because we are
looking for the splitting near the resonant frequency, we solve the equation
for the frequency detuning 6, = (wey — w) and we retain terms up to the
second order in b, (f/2)wey K wey. By substituting the appropriate values,

2We use different notations depending on the variable which is the independent
through the calculation: the Capital letters (2, K) refer to the dependent variables,
vice versa for the small ones (w, k).
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we obtain:

<1 + f;gzg) (weg - 58)2 = wzg
f foo

63 + 6e§weg — Zwe

The leading order of the solution in terms of f is given by

0 = i\/—fweg.
2
The different width of the gap and the Rabi splitting is clearly shown in
Fig. 2.3.

= 0. (2.20)

(2.21)

2.3.2 Band diagram of a Mott Insulator

In the analysis of the band diagram of the MI, two frequency scales are
to be considered: the atomic resonance frequency we,, and the Bragg fre-
quency wp, = cm/a of the lattice which carries information on the pe-
riodicity of the lattice and derives from the famous Bragg condition for
diffraction spectroscopy [44]. As we have seen in the introductory discus-
sion, the width of the frequency region in which radiation and matter
strongly interact is determined by the Rabi splitting (2.21). Starting from
this consideration, two different regimes can be distinguished according to
the ratio between the detuning w., — wp, and the Rabi splitting.

Purely excitonic regime

The purely excitonic regime corresponds to the case when the resonance
frequency w,, and the Bragg frequency wp, are well separated |wp, — wey| >
V/fweg. An example of polaritonic dispersion for this regime is shown in
Fig. 2.4 for w., < wp,.

Two main features characterize this regime: the region of the polariton
gap and the foldings of the light line at the edges of the f{Bz. Near the res-
onant frequency, the polariton dispersion shows the usual Rabi splitting:
in fact the wavelength of the radiation is much bigger than the periodicity
and the system can be considered for many aspects as a bulk. Far from
this region, the polaritonic modes tend to almost purely radiation or mat-
ter modes. At the edges of the fBz, for frequencies multiple of wg,, the
vacuum dispersion of light crosses itself because of the periodicity of the
system: this is a pictorial representation of Bragg scattering processes on
the atomic lattice. In this case the far off-resonance value of the susceptibil-
ity (1.15) represents the effective interaction between counterpropagating
light modes induced by the presence of atoms.
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FIGURE 2.4: Polariton dispersion in a 1D lattice of two-level atoms. Purely
excitonic regime: f ~ 3.6 - 10_2(w3r/weg) , WBr [Weg = 4.
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FIGURE 2.5: Polariton dispersion in a 1D lattice of two-level atoms: zoom on
the two lower-lying gaps. Purely excitonic regime: parameters as in Fig. 2.4.
(a) Excitonic gap near the resonance frequency (red dot-dashed line), the blue
dashed line shows the Rabi splitting. (b) First Bragg gap.
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The anticrossings due to these processes result in the opening of gaps
at the edges of the fBz as shown in Fig. 2.5. Around w,,, there is the
usual polaritonic gap of resonant dielectrics [39], while just above wp,
we have the first of the gaps due to Bragg scattering. There is a small
difference from the bulk case: the former gap extends on both sides of w,,
because of the limited size of the fBz. As long as the detuning between
the two frequency scales diminishes, this gap passes from above to below
Weg- 1ts width remains of the order of the oscillator strength (2.18). The
latter one is instead located strictly above wg,. Its lower edge is exactly
at wpg, and corresponds to a propagating modes which is unaffected by
the presence of the atoms that are located at the electric field nodes.
As usual, the polaritonic density of states vanishes inside the gaps, and
radiative propagation at these frequencies is forbidden.

Mixed Exciton-Bragg regime

2
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FIGURE 2.6: Polariton dispersion in a 1D lattice of two-level atoms. Mixed
exciton-Bragg regime: f ~ 2.4 - 1073 (wp, /weg) and 1 — (wey/wpr) = 1.4 - 1072,

The condition (wp, — Weg) < \/fweg defines the mized exciton-Bragg
regime. The name suggests the strong interplay between the periodicity
and the atomic resonance in the frequency spectrum. In fact, three modes
are simultaneously mixed: the two counterpropagating e.m. modes, the in-
coming one at k and the first Bragg diffracted at k — 27 /a, and the atomic
excitation.
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FIGURE 2.7: Polariton dispersion in a 1D lattice of two-level atoms: zoom on
the gap region near wp,. Mixed exciton-Bragg regime: same parameters as in
Fig. 2.6.

Differently from the previous case, the Rabi splitting is now located close
to the edges of the fBz. As one can see in Fig. 2.6, this results in much wider
forbidden gaps of the order of the splitting. It is interesting to note the
presence of a mini-band which ranges between w,, and wp,: the squeezing
effect due to the reduced detuning between the two main frequencies in-
duces a very flat dispersion over most of the fBz. As in the previous regime,
the polariton dispersion touches the vacuum light line at the Bragg fre-
quency because of the electric field showing nodes at the atomic locations.

The maximum extension of the two gaps is \/f/2we, and it corresponds
to the complete squeezing of the mini-band, wp, = w,4. The separation in
frequency between the modes at kg, is /2 fw,, and there is a factor V2
with respect the usual Rabi splitting: this factor comes from the structure
of the electric field that contains a superposition of equal weights of the
two Bragg reflected plane waves.

2.4 REFLECTIVITY SPECTRA

The band diagram describes the physics of an infinite structure with a full
discrete translational invariance: there are propagating modes correspond-
ing to the bands separated by gaps of forbidden energy. Most spectroscopic
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experiments, however, involve light beams which are incident onto finite
systems and therefore require a description of the interfaces between re-
gions of different optical properties, namely the external vacuum and the
atomic lattice. Maxwell’s theory requires in fact the continuity of both
the electric field and its spatial derivative. We consider plane waves in
vacuum and polariton modes (eigenvectors of the TM) inside the atomic
structure. By imposing suitable boundary conditions, we calculate the re-
flectivity spectra of the system [48,55,56,58-61]. Two geometries will be
considered: a semi-infinite lattice, and a finite slab.

—)
(a)
— S
< a——
(b)

FIGURE 2.8: Geometries considered for the reflectivity spectra. Panel (a): semi-
infinite system (vacuum on the left, lattice on the right). Panel(b): finite slab
(vacuum at both side of a finite lattice). Thin arrows indicate the plane waves
in vacuum and thick arrows indicate polariton eigenmodes in the lattice.

Semi-infinite geometry

In this configuration illustrated in Fig. 2.8(a), there is a single interface,
dividing the space in two semi-infinite regions: vacuum and lattice.

We first consider the input problem with an incoming and a reflected plane
wave in the vacuum and a single transmitted polariton Bloch mode in the
lattice. We fix the wavevector k = w/c of the plane wave and then we
choose the polariton mode with Bloch wavevector K (w) in order to satisfy
energy conservation. We calculate the electric field and its derivative by
considering a symmetric elementary cell with the atomic plane at its cen-
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FIGURE 2.9: Upper panel (a): Reflectivity spectra in the purely excitonic regime
for a semi-infinite lattice. Lower panels: (b) Bragg gap. (¢) Excitonic gap. Pa-
rameters as in Fig. 2.4.
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FicUrRE 2.10: Upper panel: Reflectivity spectra in the mixed exciton-Bragg
regime for a semi-infinite lattice. In the bottom panel: zoom on the gap region
and mini-band reflectivity. Parameters as in Fig. 2.4.
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ter: this way, also the derivative is continuous through the interface. The
reflection amplitude r;, is then expressed in terms of the ratio between
the wavevectors inside and outside the lattice:

. B(0)+ (i/k)E'(0)
" E(0) = (1/k)E'(0)’

(2.22)

where the ' denotes the spatial derivative of the electric field. The mis-
match between the wavevectors of the polariton state and the incom-
ing wave determines the reflectivity R;, = |7‘m\2 shown in Fig. 2.9 and
Fig. 2.10: this is significant around the gaps where the incoming wave is
strongly interacting with the atomic resonance [Fig. 2.9(b)], the Bragg
diffracted wave [Fig. 2.9(c)], or both [Fig. 2.10(b)]. In the mixed exciton-
Bragg regime, we note that the reflectivity remains quite large in between
the two gaps: the flatter the middle-polariton branch, the higher the cor-
responding reflectivity. It is then hard to exploit the slow light properties
of this mini-band because the amount of light that can be coupled into
the system is small. In the present semi-infinite geometry, reflectivity is
complete for frequencies corresponding to the gaps where the wave vector
becomes imaginary and the field inside the lattice consists of an evanescent
wave.

The output problem corresponds to two counterpropagating Bloch modes
with the same energy inside the lattice, let’s call them® E* and E~, and
a single transmitted plane wave in the external vacuum. The reflectivity
is given by Rou = |rou|? with

N0+ /RE )
"B O+ G/ME0)

(2.23)

It is straightforward to note that the reflectivity is the same in input and
output case: in fact, E* = (E7)* which is a consequence of the system
being invariant under time reversal and spatial parity.

Finite slab

Reflectivity spectra for a finite system [Fig. 2.8(b)] are shown in Fig. 2.11
and Fig. 2.12. There are two main differences with respect to the semi-
infinite case: the propagation takes place also in the intervals of frequency
corresponding to the gaps for an infinite system and there are fast oscilla-
tions on top of the reflectivity spectrum around the main gaps. In this case
light can propagate through the system also in the ranges of frequency in
which the Bloch wavevector K is imaginary: it is the ratio of the length

3We use here the superscript to distinguish the propagating modes from their com-
ponents within the TM formalism that are labeled below.
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F1GURE 2.11: Upper panel: Reflectivity spectra in the purely excitonic regime
for a finite slab of atomic planes with N = 20 cells. Lower panels: (b) Reflectivity
peak at wp, (c) Gap near the resonant frequency. Parameters as in Fig. 2.4.
The gray regions correspond to the gaps for the infinite system.
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FiGURE 2.12: Upper panel: Reflectivity spectra in the mixed exciton-Bragg
regime for a finite slab of atomic planes with N = 20 cells. Bottom panel: zoom
on the region near wpg, for the case N = 20 (black dot-dashed line) and N = 100
(blue solid line). Parameters as in Fig. 2.4. The gray regions correspond to the
gaps for the infinite system.
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of the lattice L on the extinction length 1/K which discriminates between
a short system, KL < 1, and a long one, KL > 1. The crucial role
of the parameter KL for a Bloch wavevector either real or imaginary, is
clear from the expression for the reflectivity of a system composed by N
elementary cells [57]:

my osin(KaN) ?

v = maasin(KaN) — sin(Ka(N —1))| ’

(2.24)

where the m coefficients represents the elements of the elementary cell and
we have L = Na.

In the short lattice case, the spectrum is mainly characterized by a Lorentzian
peak corresponding to the atomic resonance. The paradigm of this regime
is the single atomic plane which gives the reflectivity:

2
my 2

R = |-

ma2
(w —Weg 4 1 )2

1+ ——

Weg [ ka
The width of the peak is fixed by the oscillator strength and the corre-
sponding Lorentzian shape is shown in Fig. 2.13. As the number of atomic
planes grows the peak initially acquires a width proportional to N. For
N — o0, the reflectivity reaches value 1 into the whole gap regions and
not only at the resonance frequency. The development of these stop bands
is not uniform along the spectrum, in fact the extinction length is pro-
portional to the susceptibility and it becomes small near w,, while it is
much bigger in other regions of frequency corresponding to a gap in the
infinite system. For example, the far off-resonant gaps develop slower as
compared to the polaritonic gap. This is the case depicted in Fig. 2.11(b)
and Fig. 2.11(c): we compare the strength of the reflectivity peaks re-
spectively near resonance and at Bragg frequency, in the purely excitonic

regime. For this reason the short and long lattice cases depends also on
the range of frequency under investigation.

(2.25)

In the long lattice regime, the appearance of the fringes at the gap edges
can be explained by considering the slab geometry of the system. Two
interfaces at respectively zp, = —((N — 1) 4+ 1/2)a and zpeer = a/2 now
separate three regions of space: the vacuum with the incident and reflected
plane waves, the finite-size lattice with counterpropagating polaritons, and
again vacuum with now only a transmitted plane wave. The field in the
last cell (z € [—a/2,a/2]) is determined by the output problem considered
above to be

Ey(z) = ET(2) + row B (). (2.26)
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F1GURE 2.13: Typical Lorentzian reflectivity peak for a single atomic plane.
Parameters as in Fig. 2.4.

As both E*(z) are Bloch states, the field in the first cell (taking z €
[—((N —1)+1/2)a,—((N — 1) — 1/2)a]) has the simple form

Ey(z) = By (x+(N=1)1) e MN=D gp B (z+(N—1)1) ¥ V=D (2.27)

By solving the continuity conditions at the front interface at * = zy,, we

get B B

i(w/e)e s f?st(xfr) + i(C/W)f?Qt(xfr) _
E(zpr) —i(c/w)Egy(zg)

Because of the phase factors in (2.27), fast oscillations occur in the reflec-

tivity (2.28) due to the Fabry-Perot-like interference of Bloch waves which

undergo multiple reflections at the lattice boundaries. The period Aw of

these oscillations is fixed by the group velocity v, = dw/dK and the total
length of the system L,

Tsiap = €° (2.28)

=+ Ugr (2.29)

the slower vg,, the closer the peaks. This relation clarifies the fact that the
fringes appear near the gaps where the interaction between radiation and
matter mostly deforms the vacuum dispersion of light.

It is instructive to compare the envelope of this oscillations with the spec-
trum in the semi-infinite geometry. We can consider a simplified model
where the lattice is replaced by a bulk medium of refractive index n. In
this case, the reflectivity for a single interface separating vacuum and
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medium is

Ry = (1 — n>2. (2.30)

1+n
For a slab of thickness L, the reflectivity is [65]

(n — 1/n)? sin®*(wnL/c)
4cos?(wnL/c) + (n+ 1/n)2sin?(wnl/c)

Rgiap = (2.31)

Fabry-Perot oscillations are apparent, with a maximum reflectivity at the

peaks equal to
1—n%\?
grlzgg: - (m) . (232)

In the limit n — 1, the ratio (RZ%’/R;nt) — 4: this is due to the presence
of two counterpropagating Bloch modes in the slab as compared to the
single propagating mode in the semi-infinite case. This factor 4 provides
a good approximation in the lattice case as well, as one can easily see in
the low-reflectivity tails of the spectra shown in Fig. 2.14.
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F1GURE 2.14: Comparison between the low reflectivity tails of the spectra below
the resonance frequency for the semi-infinite case (dashed blue line is 4 times
R) and the finite slab (solid black line) with N = 100 (long lattice limit).
Parameters as in Fig. 2.6.






CHAPTER 3

SCATTERING OF SLOW LIGHT ON
DEFECTS

In Chapter 2, we have noticed the formation of a squeezed mini-band in
the photonic spectrum of a Mott Insulator (MI) of two-level atoms in
the mixed exciton-Bragg regime. The width of this mini-band is fixed by
the detuning between the resonant and Bragg frequencies and it is then
in principle tunable by acting on these atomic degrees of freedom. The
reduced slope of the dispersion means that the polaritonic propagating
modes are slow as compared to the vacuum speed of light. This slow
light [28] behavior is very interesting: if the electric field propagates slowly,
the interaction time with the underlying medium is enhanced opening a
rich variety of possibilities to probe the system as well as to manipulate
the propagating radiation. However, high reflection at interfaces in the
corresponding frequency range inhibit the use of such a feature [39,48, 56,
66,67].

The so called A excitation scheme for a three-level atomic system, dis-
cussed in the Chapter 1, generates a peculiar dispersion for the probe
beam which joins together slow light behavior, a good impedance match-
ing at interfaces and strong suppression of absorption [21]. The crucial
ingredient is the strong dressing of the transition between the metastable
and the excited state via the control (or dressing) field: the application of a
resonant probe in fact drives the atoms into a coherent superposition of the
lower-lying and long living states that is decoupled from the excited level.
The resulting Electromagnetically induced transparency (EIT) [22-24] of-
fers fascinating perspectives to coherently play with light.

35
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The reflectivity dip can be used to inject slow light into the structure as
a probe. In the case of atomic MI is of great interest the possibility to
detect the presence of defects, such as lack of atoms at some lattice site:
we then expect a change in the optical response of the system.

In Section 1, we introduce the resonant behavior of a three-level system
by using the susceptibility derived in Chapter 1. We present and discuss
the expressions for the group velocity, reflectivity and absorption corre-
sponding to the two-photon Raman resonance.

Section 2 is instead devoted to the study of the reflection of the slow Dark
Polariton (DP) on defects embedded in a lattice of three-level atoms. The
vacuum defect is shown to behave like an empty cavity with proper local-
ized modes. On the other hand, the presence of a two-level atomic impurity
along the 1D system with resonant frequency corresponding to the EIT
reflectivity dip gives rise to complete reflection. Effect of absorption is also
discussed.

3.1 EIT DISPERSION

The dispersion arising from the resonant susceptibility (1.25) is charac-
terized by three polaritonic branches [26,27,29] as shown in Fig. 3.1. The
bands are calculated by using the general law for light dispersion in matter
(2.19).

In the regime /f > Q./w.,, the upper (UP) and lower (LP) polaritons
have a structure similar to the two-level case and the leading order of
the Rabi splitting is given by the oscillator strength. The presence of
the metastable state and the control field results in the appearance of
a third central band: the DP (or middle polariton) carries all the nice
properties related to EIT. The width of the central band is controlled by
the amplitude of the dressing field, €2..

We focus the analysis on the susceptibility at Raman resonance, dp =
0, to obtain the relevant quantities that describe the propagation of a
DP. In particular we consider a resonant dressing of the transition from
the metastable state to the excited state, d, = dr. The expressions for
the susceptibility and its first and second order derivatives with respect
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FI1GURE 3.1: Polaritonic dispersion in an EIT atomic medium near resonance.
Oscillator strength: f = 0.04. Rabi frequency of the control field: €2, = 0.07 we,
(black solid line), 2, = 0.04 wey (blue dashed line).

frequency are [68]:

.fweg 27777,
= 3.1

X‘(SR:() L 2 Qg + '}/e’)/m, ( a)
aX o fweg 4(93 B 77%17,) 3 1b
8_ - 2 Q2 27 ( ) )

W 55=0 (€22 + Yeym)
5?2 oo 16(7,Q2 + 27,02 — A3
’x _fweg 160982 + 298l — 7). (3.10)

Here we have ordered the terms in brackets depending on the relative
strength for the typical values of atomic systems under investigation here,

(Qc R Ve > 'Vm)-

The slope of the band gives the group velocity of a travelling wavepacket:

o dw _
Vor © k|,
~1
_ / Weg a_X _
= c < E(weg) + 9 —e(weg) ER 6R:0> —
- (3.2)
fwd, '
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FI1GURE 3.2: Group velocity near Raman resonance in an EIT atomic medium.
Parameters and colours as in Fig. 3.1.

It is the ratio between the intensity of the control field and the Rabi
splitting that tunes the propagation speed in the atomic medium. As far
as we lower the control field the DP mini-band is squeezed and the DP
slows down as it is depicted in Fig. 3.1 and Fig. 3.2.

It is also important to estimate the absorption experienced by the radi-
ation during the propagation: this is given by the imaginary part of the
susceptibility. We see from the expression (3.1a) that at Raman resonance
the absorption is determined by the dephasing parameter ~,,: as it comes
from non-radiative processes, it is in general orders of magnitude smaller
than the usual atomic linewidth; for this reason, it can be neglected. By
using the Taylor expansion of K (w), it is then the second order derivative
to give the leading order in the absorption process:

1 82/@}

= —Im[— (W — wey)? =

Vgr 2 Ow? | |5 g

1 we, 0% )

= _ (C() — we ) =
€4 /€(Weg) Ow? §r=0 !
o fwl

= 127 Q4g (W — wey)?. (3.3)

Here we have exploited the linearity of the DP band near Raman reso-
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F1cURE 3.3: Reflectivity spectrum for an EIT atomic medium near resonance.
Parameters and colours as in Fig. 3.1.

nance, Aw = v, AK, and the formula

0%k oy 1 w 0y 1
2 ¢ [mm(l_ ) 2 &u?]' (3:4)

The expression (3.3) shows the parabolic behavior in the absorption spec-
trum near Raman resonance with the resulting dip whose amplitude is
fixed by the dressing frequency.

3.1.1 Reflectivity dip

A crucial feature of EIT is the vanishing reflectivity experienced by an
incoming wave at Raman resonance. The robustness of this behavior is
guaranteed by the fact that the vacuum light line crosses the DP branch
regardless of the particular values chosen for the system parameters, as it
is reported in Fig. 3.3.

To show this good impedance matching, we derive the reflectivity at the
interface between a homogeneous medium under EIT condition and vac-
uum by using the simple model for reflectivity at the interface between
media with different refractive indices (2.30). The index of refraction for
the atomic medium in the vicinity of Raman resonance, w = w4 + 0w, is
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obtained from the dispersion law:

CK  Wey + (c/vg)dw
W Wey + Ow

n(w) = ; (3.5)

where we use the linear form of the dispersion near Raman resonance and
we have ¢/vg, > 1> (dw/wey)(¢/v,). We put this result into the formula
(2.30) and we get the reflectivity at the boundary of the EIT medium:

R:< Sw(l = c/vg) ))2; (3.6)

2weg + dw(1 + c/vy,

here we eliminate the term proportional to (v, /c) in the numerator and
the terms in 0K in the denominator. We then obtain the expression for

the parabolic dip
Riw) ~ =) (2 3.7
@~ ek (2] (3.7
The width of the dip is fixed by the group velocity and it is then propor-
tional to the control field intensity, 2. The coupling of light is not allowed
over the whole DP band, but only in the region near Raman resonance as
you can see in Fig. 3.3.

3.2 SCATTERING ON DEFECTS

As we have seen above, the linear susceptibility gives a static description
of a polariton that propagates through a homogeneous system. The model
is valid either for a monochromatic wave or a wavepacket: in fact as long as
the radiation-matter interaction is constant in time, the modes at different
energies do not interact and they can be treated separately.

Within a static picture, it is of great interest the investigation of the scat-
tering in the presence of defects. In fact, the optical response of a system
offers the possibility to infer some information about its internal struc-
ture. Here we present a simple approach to the scattering problem. We
consider a 1D geometry for the propagation of the polariton: in this case
the scattering is given by the reflectivity from the defect. The reflectiv-
ity on a vacuum slab embedded in a homogeneous EIT medium is given
by an oscillatory function depending on the length of the defect with an
envelope which is related to the reflectivity on a single interface' (2.32).

Furthermore, if we consider an atomic gas trapped in an optical lattice in
the MI phase, it is important from both a theoretical and an experimental
point of view to have tools to test the regularity of the structure [69,

!See the discussion in Chapter 2.
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70]. The EIT dispersion offer the possibility to test the response of the
medium also in the resonance region where the two-level system has a
bad impedance matching. In the following we will study the lattice case
both near resonance and round the Bragg frequency in the purely excitonic
regime. In the first case we expect a result similar to the bulk system while
in the latter case we look for the localization of light in the defect due to the
periodicity. We note that, near the Bragg frequency, the difference between
the two-level and three-level atoms is not important because we are far
from resonance. We use the TM algorithm that offers a numerically easy
and safe way to calculate the reflectivity spectra for different geometries.
We first neglect the absorption by following the approach of Chapter 2 and
then we introduce 7, in order to determine the robustness of the different
effects: in fact, in the case of three-level atoms spontaneous emission from
the excited state is no more quenched and the Hopfield argument [40] is
not valid in general.

3.2.1 Vacuum defect

In Fig. 3.5 and Fig. 3.7, we show the reflectivity spectra for a set of vacuum
defects with varying length embedded both in an infinite system and in
between two finite slabs.

[ N
a—

— > ) > |
<mm——— a—

(b)

FIGURE 3.4: Vacuum defect embedded in atomic EIT lattices. Panel (a): semi-
infinite atomic lattices. Panel (b): finite slabs of atomic media. The big arrows
indicate polariton modes, while the thin ones represent plane waves.
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In the first case (black lines), we divide the space in three parts as in Fig.
3.4(a): two semi-infinite regions of EIT atomic medium separated by a de-
fect of length [; in the first atomic part, we consider two counterpropagat-
ing polariton modes (incident and reflected); two plane waves travelling
in opposite directions are used to built the electric field in the vacuum
defect while a single transmitted polariton is propagating in the second
semi-infinite atomic layer. Frequency matching conditions are imposed at
the interfaces. As usual, the structure of the polariton modes comes from
the diagonalization of the TM of the elementary cell and the reflection and
transmission coefficients are calculated by imposing boundary conditions
at the two interfaces.

In the latter case (red lines), the five regions depicted in Fig. 3.4(b) of space
have to be considered: an initial and a final part of vacuum separated
by the atomic system which is composed by two finite layers, each of
which with N/2 cells, and the defect in between them. The spectra for
this geometry are calculated from the TM of the whole atomic system
Mo = MyjsMi My,

2
Miot,(1,2)

Ry = ‘ (3.8)

Myot,(2,2)

The spectra in Fig. 3.5 and Fig. 3.7 recall the cases studied in the pre-
vious chapter. The main differences between the semi-infinite geometry
and the finite slabs in fact are the same: the spectra for the finite systems
show Fabry-Perot interference fringes due to the reflection of the polariton
modes at the interfaces of the slabs and there is a factor 4 which multi-
plies the spectrum of the infinite case to recover the peaks of the finite
geometry where the reflectivity is small. Furthermore, propagation is for-
bidden at gap frequencies for the semi-infinite media, while it depends on
the number of cells, N/2, in the finite systems: here we consider the long
lattice limit.

Resonance region

In the region near resonance shown in Fig. 3.5, we observe a dependence
of the reflectivity on the length of the defect which can be analyzed for the
infinite structure. If the defect is not present (I = 0), a polariton mode can
propagate through the system without any reflection for frequencies corre-
sponding to the photonic bands; in the gaps, the propagation is forbidden
and we fix R = 1 in the figures for simplicity. As long as we introduce a
defect, there is some reflection due to the mismatch of the electric field
between plane waves and polariton modes. This mismatch is related to the
relative phase accumulated by the plane waves in the propagation through
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F1GURE 3.5: Polariton scattering on a vacuum defect: reflectivity spectra for an
infinite system (solid black lines) and a couple of finite slabs (solid red lines).
The length of the defect (in units of the inverse of the resonant wavelength
27 [keg) is: 1 =0 (a), [ = 0.1 (b), 1 = 0.2 (c), I = 0.5 (d). Parameters of the
system: f = 0.04, Q. = 0.07 wey. The finite slabs contain N/2 = 100 cells.
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FI1GURE 3.6: Comparison between minimum reflectivity defects, corresponding
to values in the set of [,,, [see condition (3.10)]: m =1 (solid black line), m = 2
(dashed green line), m = 3 (dotted blue line), m = 4 (dot-dashed red line).
Parameters as in Fig. 3.5.

the defect
di(w) = e2iterol. (3.9)

Exactly at Raman resonance the EIT dispersion crosses the vacuum light
line and the atomic medium is transparent to the polariton propagation:
the reflectivity dip guarantees the perfect coupling from the atomic gas
to vacuum and vice versa, as we stated above. As far as we move away
from Raman resonance, reflectivity increases till the gaps. When the defect
reaches the length

Ly = (7 [key) (3.10)

with m integer, the phase displacement vanishes at Raman resonance and
it is in general small along the DP mini-band because w ~ w,,: the reflec-
tivity is small along the whole spectrum. Nevertheless, it is not exactly
zero away from Raman resonance and there is an increase proportional to
m, as it is shown in Fig. 3.6 in particular in the regions near the gaps.

Bragg frequency

Near the Bragg frequency, we observe the formation of localized modes for
frequencies inside the gaps for the finite structure: this feature is clearly
visible in the comparison between the two different geometries in Fig. 3.7.
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FIGURE 3.7: Polariton scattering on a vacuum defect near Bragg frequency:
reflectivity spectra for an infinite system (solid black lines) and a couple of
finite slabs (solid red lines). In the finite case, we observe the appearance of
localized modes for frequencies inside the gap of the semi-infinite geometry.
The lengths of the defects, expressed in units of the lattice constant a, are:
I=0(a),!=0.2(b),l=0.5(c), ] =0.7 (d). Coupling strengths of the system
as in Fig. 3.5. The finite slabs contain N/2 = 150 cells.
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FicUrE 3.8: Compression of the width of the localized mode resonance by
increasing the number of cells in the atomic lattices: N/2 = 150 (solid black
line), N/2 = 175 (dotted blue line), N/2 = 200 (dashed red line). The defect is
long [ = 0.5a.

In this case, the defect becomes a sort of cavity embedded in between the
two lattices that act as mirrors. Because the system is finite, some light
can tunnel through the structure and a stationary state for the electric
field is established: it is peaked corresponding to the defect and it vanishes
exponentially in the atomic parts. The phase displacement between the
two plane waves in the defect is now given by

gPross — e2ir/a)l (3.11)

By varying the length of the defect I € [0, a], the frequency of the localized
mode shift from the upper bound to the lower bound of the Bragg gap:
it is in the center when ¢]"*% = —1. Because we are considering the slab
case, the reflectivity of the mirrors depends on the number of cells of each
lattice (2.24): by varying the lengths of the slabs L = (N/2)a we change

the width of the resonance as it is shown in Fig. 3.8.

3.2.2 Atomic defect

It is also of interest to consider the case of an atomic impurity embedded
in the three-level atomic lattice; we built up a toy model that describes a
sort of photon blockade process as it was suggested in the investigation of
the non-linear interaction in a four-level atomic gas [71].



Scattering of slow light on defects 47

|eZEI

ed .../ e -

ImO

g0

(a) (b)

FIGURE 3.9: The four-level configuration (Panel a) which is studied with to
the toy model based on the two-level defect (Panel b): the dressed atom has an
allowed transition |m) <> |es) that is near resonant with the probe electric field.
This transition is mimicked by using the two-level atom in the semi-infinite
geometry.

The atomic configuration we want to mimic is depicted in Fig. 3.9: in
addition to the three-level A configuration, the metastable state is coupled
to a second excited state |e;) and this transition is near resonant with the
lg) <> |e) one. The idea is that we have a sequence of travelling photons: a
photon brings one of the three-level atoms into the |m) state and then the
next photon sees the two-level transition to the |es) state. To reproduce
this situation, we simply substitute the TM of the vacuum defect with
the one containing the phase shift induced by a two-level atom (2.17)
described by its resonant frequency w,; and oscillator strength f; which
is in general different from f because of the different dipole moment. In
the reflectivity spectrum, a peak appears corresponding to the resonant
frequency as we have seen in the previous chapter for the single atom
case (2.25). By tuning the atomic parameters, it is possible to shift and
to change the width of the reflection peak within the mini-band, as it is
shown in Fig. 3.10. The two-level impurity acts as a wall that abruptly
blocks the flow through the otherwise transparent medium.

3.2.3 Effect of absorption

To estimate the effect of absorption we introduce v, # 0 in the expressions
of the susceptibility derived in Chapter 1. In this case, only the finite
slabs geometry makes sense because in the semi-infinite case polaritons
are completely absorbed regardless of the extinction length.

Near the Bragg frequency there are no changes in the reflectivity spectrum
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FI1GURE 3.10: Polariton scattering on an atomic two-level defect embedded in
an infinite lattice of three-level atoms. Oscillator strengths for the atomic lattice
as in Fig. 3.5. Atomic parameters for the impurity: fq = 0.3f, wg = wey (solid
black line); fq = 0.6f, wg = wey (dotted blue line); fy = 0.6f, wyg = (1.01) we,q
(red dashed line).

for the number of cells studied above: this is due to the fact that we discuss
the purely excitonic regime and then Bragg frequency is far off-resonant
and absorption is vanishingly small.

It is instead strong the effect in the resonance region: the reflectivity peaks
corresponding to the gaps for the infinite structure are reduced depending
on the value of v.. Furthermore, the Fabry-Perot like fringes disappear
because the multiple reflections at the interfaces of the structure are for-
bidden because of absorption. The comparison between the spectra with
different values of . is in Fig. 3.11.

For the atomic defect, it is crucial to check the behavior of the impurity
peak: its form strongly depends on the detuning between wy and we,; in
fact the reflection is peaked at wy while corresponding to Raman resonance
we have the absorption dip characteristic of EIT. In Fig. 3.12(a) we see
that if wy = we, the central peak is unchanged regardless the value of
Ve, while in the detuned case of Fig. 3.12(b), the impurity reflection is
strongly reduced in an asymmetric way. Furthermore, as long as we raise
Ye, we squeeze the absorption dip and the tails of the peak are damped.
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F1cURE 3.11: Effect of absorption on the reflection from defects. Case of a vac-
uum defect for a slab geometry, spectrum near resonance frequency, parameters
as in Fig. 3.5; different values of the excited state linewidth: vy, = 0 (solid grey
line), v, = 0.01 w,y (dashed black line), 7, = 0.07we, (dot-dashed blue line).
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DyNAMIC EIT

The control of light pulse propagation in matter is a key element of optical
devices for fundamental science as well as for technological applications. In
many cases, this is made difficult by the presence of competing effects like
dispersion and absorption. Furthermore, the available time for manipula-
tion is limited by the very high propagation speed of light in conventional
materials.

As we have seen in Part I, by dressing the matter excitations with coher-
ent external fields, a resonant probe laser pulse can be made to propagate
across an otherwise strongly absorbing medium at an ultraslow group ve-
locity and without being distorted. This is the Electromagnetically Induced
Transparency (EIT). The incoming light is coupled to a Dark Polariton
(DP) which shows vanishing absorption and dispersion [25-27,29] and
whose group velocity can be controlled via the intensity of the control
field [28].

The dynamical modulation of the control field while the pulse is propagat-
ing opens up a wide variety of possibilities for light manipulation in the
spirit of the so-called Dynamic Photonic Structures (DPS) [33]. For exam-
ple, by completely switching off the control field, the probe light can be
halted and stored as an atomic (spin-like) excitation, and later retrieved
after a macroscopic time: such light storage techniques [29,72-75] are con-
sidered as a crucial tool for all-optical information technologies. A periodic
dynamical modulation of a spatially homogeneous control field can lead
to intriguing phenomena such as frequency triggering in time of the EIT
band [76]. A non-adiabatic variation of the control field has been pro-
posed as a tool to compensate the pulse broadening at the exit of a delay
line [77,78] or after retrieval of a previously stored light wavepacket [79)].
Extremely fast modulations of the control field have been anticipated to
produce a substantial dynamical Casimir emission [80].

Light trapping schemes have been proposed which exploit a spatially mod-
ulated medium: the creation of a control field grating as well as the use of

23
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atoms trapped in regular periodic structures allow the creation of tunable
stop bands within the EIT window [58,59,81,82]. Mutual interactions of
moving spin coherence gratings is also an efficient way to stop two-color
light and to perform wavelength conversion and it has been recently ex-
perimentally realized [83, 84].

A combined spatial and temporal modulation of the control field is dis-
cussed in [85-87] where the simultaneous propagation of both control and
probe pulses is considered: a ramp of the control field in an otherwise ho-
mogeneous medium induces different propagation velocities in the different
parts of the probe pulse, which then results in a controllable reshaping of
its profile.

Dilute ultracold gases are among the most promising media for EIT ap-
plications. Both slow light and light storage have been experimentally
realized in this systems [30,31]. The first experimental realization of EIT
in a Mott Insulator (MI) has been recently reported for light storage pur-
poses [32]. Unfortunately, the typical size of atomic samples is often small
as compared to the duration and waist of the probe pulse, which imposes
strict bounds on the efficiency of storage techniques. Most of the theo-
retical works were so far focused on the case of a homogeneous atomic
medium with some boundary condition.

In Part II, we present a model that is able to include the spatial inhomo-
geneity of a system and therefore to describe the propagation dynamics
at the interface between vacuum and the EIT medium. Effects of dynamic
modulation in homogeneous systems are described. By taking advantage
of the interfaces of the medium, we show how it is possible to manipulate
the wavepacket shape by means of a dynamical modulation of the control
field intensity.

The multi-layer structure offers the possibility to spatially engineer the
radiation-matter interaction by exploiting the advanced trapping tech-
niques of ultracold atoms, while waveguide technology supports the cre-
ation of vacuum dispersion regions of tunable length. In the usual pulsed
scheme in homogeneous system [85,86] the manipulation scheme is lim-
ited to a single interface, while in this case we can figure out a wide range
of different structures involving several interfaces and several layers with
different group velocities. As an example, the lossless switching from a
single pulse to a train of separated pulses can be addressed. Furthermore,
the reduced optical depth of each layer allow for a more efficient modula-
tion [75].



CHAPTER 4

PULSE PROPAGATION THROUGH
INHOMOGENEOUS AND DYNAMIC
STRUCTURES

The description of radiation-matter interaction based on the susceptibility,
that we have used in Part I, refers to a stationary situation. If we want
to model the propagation of a light pulse through a dynamic system, we
need to consider the full evolution in time of the electric field coupled
to the atomic polarizations. The Optical Bloch FEquations (OBE) seen in
Chapter 1 which describe the atomic dynamics have to be plugged into the
Maxwell’s formalism: the resulting set of partial differential equations gives
a complete semi-classical picture [35]. In particular, we focus our attention
on the Dark Polariton (DP) branch near resonance for an atomic medium
under FElectromagnetically Induced Transparency (EIT) conditions: this
system shows the crucial properties of transparency and slow propagation
of light needed in view of applications for the manipulation of the light
signal.

In Section 1, we discuss a peculiar approach to the Mazwell-Bloch (MB)
formalism which allows the simultaneous description of both a spatial
modulation and a time dependence of the atomic parameters and control
beam intensity. The inhomogeneity of the system requires a careful refor-
mulation of the Slowly Varying Envelope Approzimation (SVEA) [34] in
order to safely keep the terms responsible for the reflection at interfaces.

In Section 2, we compare the dispersion obtained from our specific MB
equations with the conventional EIT case discussed in Chapter 3: this

%)
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comparison is also useful in clarifying the mixed nature of polaritons.
For the reflection at interfaces in the stationary situation, we recover the
Fresnel law plus some corrections which are in general small and do not
introduce spurious effects.

In Section 3, we discuss the propagation through a multi-layer structure
composed by vacuum regions and EIT blocks which can be made dynamic.
We analyse the simple cases of a homogeneous medium and a sharp inter-
face between different layers.

Starting from the observation that the scattering of a DP pulse on a sharp
interface, provided the pulse fits in the EIT dip, usually causes only small
reflection in both the static and dynamic cases we derive, in Section 4,
a single effective equation for the propagation of the electric field. This
equation takes into account the effect of the atomic medium through the
polariton group velocity and the relative absorption coefficient. It is useful
to investigate ultraslow light regimes were the MB formalism becomes
numerically too demanding to be solved.

4.1 MAXWELL-BLOCH FORMALISM

We restrict our attention to a 1D geometry at normal incidence for the
probe field. As the different polarizations of e.m. field are in this case
decoupled, the vector nature of Maxwell’s equations disappears and one
is left with a scalar problem for each component [39]:

0? 1 02 0?

— — —— | E(x,t) = pg==P(x,1). 4.1
(a:& 2 8752) (0:1) = no gz P . 1) (4.1)
Here P(x,t) is the polarization of the atomic medium (1.2). The constants
c and p are, respectively, the velocity of light in vacuum and its magnetic
permeability.

We consider a laser probe pulse of the form E(z,t) = (€(x,t)e™ ™" +c.c.),
where wq is the carrier frequency and the pulse envelope £ is assumed
to vary on a time scale much slower than wy. Under this approxima-
tion, we can perform a modified Slowly Varying Envelope Approzimation
(mSVEA) and neglect the second order time-derivatives of the envelope.
Differently from the conventional SVEA discussed in textbooks, e.g. [34],
all the derivatives of the field with respect to the spatial coordinates are
retained: this feature is in fact crucial as we intend to investigate configu-
rations involving abrupt jumps in the spatial distribution of atoms n(x).
For this reason we have not separated out the spatial part of the enve-
lope from the carrier. The same form P(z,t) = (P(z,t)e”“°! + c.c.) is
assumed for the atomic polarization. This leads to the following rewriting
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of Maxwell’s equation (4.1):
62 Wy . 6 2
(@ + 0_2 <wg + 22@)) E = —powyP. (42)
Here we have neglected the first order derivative in time of the polariza-

tion envelope which is proportional to second-order time derivative of the
electric field [68].

The presence of three-level atoms is taken into account by plugging the
optical polarization (1.2) arising from the OBE (1.23) into the Maxwell’s
equation (4.2). The resulting set of MB equations is then given by

1 9€ i1 i ey .
AT Ces LR (432)
aﬁeg . Ye . ~ .degg .Qc~

o = (5 i) b IS e, (s
8ﬁmg . Tm . ~ RO7

ot = (5 r) mg =i s (4.5¢)

After choosing an appropriate normalization, the MB equations can be
cast in the more symmetric form

€ _ Z'<a—2+1><s‘+z'vf°‘)‘*“ (4.4a)

ot 2\ 0x2 9 Peo
8/389 _ Ye . - Y fweg .Qc ~

5 - <5 + 266> Peg + 1 5 E— 1= Pmg (4.4b)
aﬁmg _ Tm . ~ .Qc ~

o — (7 + Z5R> Pimg 15 Peg: (4.4c)

In particular, we choose the probe frequency wy as the unit for frequency,
and the same with ky = (wg/c) for the wavevector'. The electric field is

measured in terms of
[nhwg
Ey = ) 4.5
0 26[] ( )

The physical meaning of this choice is related to the energy density in the
system: the energy density associated to the atoms is

Wi = nhwo|eg|”, (4.6)
where we use the fact that the probe frequency is near resonance, wy & weg;
while the energy in the e.m. field is [88]

Wem = 260EC|E]2. (4.7)

&y is then the electric field associated to an excitation which is exactly
shared between atoms in the excited state and photons: (|€]* = |pey|? =
1, Way = Wep). The strength of the light-matter coupling is quantified by
the adimensional oscillator strength f defined in (1.19).

!This means that we have made the following substitutions: wot < ¢, koz + z,
Ye/wo € Ve, etc.
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4.1.1 Features and limitations of mSVEA

Before proceeding, it is important to assess the features and limitations of
the mSVEA approach that we introduced in the previous subsection. This
approximation leads in fact to equations (4.2) and (4.4) that differ from
the standard formalism used for EIT-related problems and offer important
advantages for the specific systems under consideration here.

In the absence of atoms the mSVEA Maxwell’s equation (4.2) with P =0
gives the following approximate dispersion for the free e.m. field%:
Pk 4 W

k) = 5 (4.8)

On one hand, this dispersion is able to simultaneously describe both the
forward (k > 0) and the backward (k < 0) propagating photons. This will
be useful to handle reflectivity problems without the need for a coupled
mode theory. On the other hand, the deviation from the linear dispersion
of light is responsible for a spurious wavepacket broadening. However, this
effect start to be important over propagation lengths that are much longer
that the ones under investigation here.

At the interface with a generic semi-infinite medium of linear susceptibility
X(Q2), the reflectivity of a monochromatic wave at normal incidence can
be straightforwardly calculated from (4.2) as

2

R(Q) =

‘1 L (4.9)

1+ &'k

where the mSVEA wavevectors in vacuum and in the medium are respec-
tively

0 —
ko= 20 )14 920

(4.10)

C Wo
k’ . Wy 1 Q—LUU
= [T+ x(Q) +2 . (4.11)

Wo

Provided the frequency €2 is close to the carrier wy, the approximate re-
flectivity (4.9) is accurate up to corrections of the order (2 — wy)/wy.
This condition is well satisfied in an EIT medium in the frequency region
around resonance as the light propagation is dominated by the frequency
dispersion of the susceptibility y(€2).

2In deriving the formula (4.8), we remember that the equation (4.2) gives the dis-
persion for the envelope which is shifted by (—wg) with respect the dispersion of the
electric field
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It is important to note that at the level of the mSVEA approximation one
is allowed to replace the £? term in (4.8) with a generic function F (k) that
satisfies the conditions:

O(+ky) = clkol, (4.12)
dQ

— = +tc (4.13)
dk |,

This feature is of great interest when one is to numerically solve the set
of equations (4.4).

In fact, we solve the set of MB equations by means of a Finite Difference
Time Domain (FDTD) algorithm with a 4th order Runge-Kutta scheme to
propagate the fields in time. Spatial derivatives of the fields are evaluated
in momentum space using a Discrete Fast Fourier Transform. The crucial
issue limiting the speed of the numerical calculation is the time step of the
FDTD evolution: its maximum value is set by the width of the frequency
band considered in the problem. A proper choice of F(k) with suitable
upper and lower bounds allows to restrict this bandwidth without affecting
the physics.

In particular, we have chosen an Erf-shaped?® function which gives the
dispersion

(4.14)

Q(k) = ckq (1 | Brflv/mlk = k°|)> .

2k

The bandwidth is chosen wide enough not to introduce spurious physics
in the frequency region of interest close to wy. The choice of a linear F'(k)
at wy suppresses the spurious dispersion of the wavepacket that would be
otherwise introduced by the mSVEA. We have checked that the results do
not depend on the specific choice of F (k) and remain the same if, e.g., a
linear form or the original quadratic form of F(k) are taken which are of
course computationally much more time-consuming.

4.2 HOMOGENEOUS SYSTEM: POLARITON PICTURE

The MB formalism (4.4) shows how the electric field and the atomic polar-
izations interact via the laser fields. If we consider a homogeneous atomic
medium, this interaction gives rise to mixed eigenmodes for the systems:
these states are exactly the polaritons [26,27,29,40].

3Here we use the following definition for the Erf function: Erf(z) = % N e~V dy.
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FI1GURE 4.1: Polariton dispersion resulting from the diagonalization of the MB
formalism (4.4), (4.15). We consider a resonant dressing and the probe car-
rier is at Raman resonance (d, = dg = 0). Parameters of the system: oscillator
strength f = 0.04, control Rabi frequency €2, = 0.07 w4, excited state linewidth
Ye = 0.01 wey. Panel (a): Band diagram for both positive and negative wavevec-
tor; panel (c): Group velocity of the polariton wavepacket (positive branch);
panel (e): Effective linewidth for the polaritons. Panels (b), (d) and (f) contain
the zoom near the positive DP branch respectively for (a), (¢) and (e).
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4.2.1 Polariton dispersion

In the following we consider the particular case of a resonant dressing
and probe carrier, wy = we,y, Which corresponds to the Raman resonance
condition. From the secular equation for the matrix

F(k)  Vfwe/2 0
VIwes2 —ive/2 Q)2 |, (4.15)
0 0 )2 —ivm/2

which is equivalent to the system (4.4) multiplied by w,,, we obtain the
dispersion for the model we have built up. We use the resonant frequency
as the origin for the frequency axis: 2 = w — w,,. By considering a linear
form for the dispersion of light in vacuum, F(k) = c|k| — wy, we have

(elk] = wiy = ) [(_Q ) (i) - %] .

_ \/fweg \/7("")69 (—Q o Z")/m) — 0,
2 2
fw?, Ve 0?2 -
—Q—i—— £ . (4.16
4 S T ica—m| @1
This dispersion corresponds to the linearization near the resonant fre-
quency of the general law (2.19) we used in the previous chapter:

clk| = weg + Q +

1
ck = (weg +Q+ §X(Q)weg> : (4.17)
If we expand the dispersion near Raman resonance
0} 10%°Q
k) = Sk = keg) + 5 =5 (k = kieg)?, (4.18)
and we use the relations
Bl9) ak\ !
0% , 0%k
% o —”Ugrﬁ’ (420)

we can derive the expressions for the group velocity (3.2) and the polariton
lifetime (3.3) for the DP near Raman resonance:

2 —1

Ugr fweg
- = 1 4.21
C [ + 5 } , (121)

Yo 4fw? 1

’Y(k) = 5 94957)37.(]{7—1)2:
2

S L ) (4.22)

2 wigg
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In Fig. 4.1, we see the polariton branches resulting from the (4.16): in the
present work, we are interested in the central mini-band where the group
velocity of light and the absorption rate are small [see Fig. 4.1(b), Fig.
4.1(d), Fig. 4.1(f)].

4.2.2 Polariton structure

The diagonalization of the matrix (4.15) gives also the structure of the
polaritons in terms of electric field and atomic polarizations. To calculate
the components of the eigenvector, we rewrite the matrix by subtracting
from the diagonal terms the dispersion F'(k) and we also neglect the atomic
linewidths which are small as compared to resonance frequency:

0 NG 0
Vi Weg)2 weg —clk| /2 : (4.23)
0 Q)2 wey — clk]

The explicit form of the polaritons is given by [24]

urp = sinfcosg & — sing pe, + cosOCosP Py, (4.24a)
upp = costE —sinf pp,,, (4.24Db)
upp = sinfsing & + cose pey + costsing pr,,. (4.24¢)

Here we have defined the angles

\/7“)69

tan(f) = q (4.25a)
i
tan(2¢) == m. (425b)

Furthermore, for each polariton state at a wave vector k, the group velocity
and the lifetime are related to the relative weights of the radiation and
matter excitation components:

vgr(k) = ¢ 5 ~|€(k)|22 - 5 (4.26)
EO + oa B+ 1y ]
) ool
M = e T B+ B 2D

4.3 MULTI-LAYER SYSTEM: THE EIT CHAIN

We consider a pulse of light launched into a layered geometry consisting
of several atomic EIT media separated by empty regions of space. We
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assume the atoms in the different EIT layers to have the same Raman
frequency. The probe pulse carrier is taken exactly on Raman resonance
and the pulse bandwidth is assumed to fit within the EIT frequency win-
dow. The propagation of the pulse across the system can be simulated
using the MB formalism (4.4) with spatially dependent f(z) and Q.(z). A
pictorial view of the layered medium, the EIT chain, is shown in Fig. 4.2.
In the following, we distinguish two situations: the static case in which
the radiation-matter parameters remain constant during the propagation
and the dynamic scheme which is characterized by a time perturbation
of some quantity. In particular, we address the variation in time of the
dressing field amplitude €2..

We point out that in all the figures representing the propagation of the
polariton, we will report only the electric field component which is the
quantity we inject in the atomic system and we measure at the end of the
process. It is clear that the electric field and the polariton are the same
thing in vacuum, while there are the atomic polarization component in
matter.

The shaded parts in the figures correspond to atomic media while the white
ones are the vacuum regions. The pulses move from left to right, apart the
cases of reflected peaks, and the dashed lines represent the initial pulses.
In all the examples shown in the following, we have used standard values
for the some parameters: oscillator strength f = 0.04 and excited state
linewidth 7, = 1072 w,. The pulses are gaussian-shaped with temporal
length wq oy = 400.

Transmission
line

—@—»

Probe

1 Control 1

FI1GURE 4.2: Pictorial scheme of a double-layer EIT chain. The direction of the
control beam is chosen orthogonal to the probe simply for clarity and in general
it depends on the specific setup.
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4.3.1 Static case

In a static situation, the pulse propagates across the whole structure with
only a negligible reflection at the interfaces as it is shown in Fig. 4.3 for
the case of a vacuum defect in between two atomic EIT layers. The prop-
agation time is equal to the sum of the thickness of each layer divided by
the relative group velocity. As usual, the continuity of the electric field
is preserved by the boundary conditions at the interfaces. As a conse-
quence of the spatial dependence in the propagation speed, the shape of
the wavepacket is modified while going from one layer to another, which
gives rise to discontinuities in the derivative of the pulse envelope at the
interfaces: the spatial width of a pulse entering an EIT layer is in fact
shrunk by (vy-/c) as a consequence of the reduced group velocity (see Fig.
4.4). The reversed process takes place when it leaves the layer.

We can describe the same process also in terms of the polariton picture.
In the presence of an interface, the different wavevector components of
the polariton wavepacket are mixed by the spatial inhomogeneity of the
system. On the other hand, as long as the system is static, energy con-
servation imposes a matching condition between the wavevectors across
the interface. If we consider the region around Raman resonance, the dis-
persion is linear both in vacuum and in the EIT layer, yet with different
slopes. For a given frequency width of the wavepacket, the wavevector
spread, i.e. the inverse spatial width of the pulse, is then increased by
the ratio ¢/v, when entering a EIT medium, which recovers the intuitive
result stated above.

An important distinction has therefore to be carefully made in the no-
tation: the width of the wavepacket in the EIT layer will be denoted by
0, = (04 vg) while in vacuum it will be denoted by o, = (0¢¢).

By using the lifetime of the DP (4.22), we define two quantities that are
useful to describe the propagation of a wavepacket through a homogeneous
EIT layer of length L. In fact, the intensity of the DP field decays in time
as

Ipp(Q) oc e 2Dt = o~ L/tavs, (4.28)

From this relation, we obtain the absorption length

_ _Ygr
Labs = () (4.29)

In the case of a DP pulse we can estimate the range over which it can prop-

agate undistorted. By using the relations for the frequency and wavevector
spreads AQ = 1/0; and Ak = 1/5, , we have:

2
lans(AQ) = (%%UJ 5, (4.30)
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FIGURE 4.3: A DP crossing a vacuum defect in between two atomic layers.
The group velocity in the atomic medium is v, = 0.11c. Solid lines represent
the electric field at the end of propagation. (a) Real space representation. (b)
Wavevector space, reflection round k/ky = —1 with reflectivity dip; in the main
peak the dashed initial pulse is covered by the solid line. Panels (¢) and (d) show
the details of the reflected peak in both real and momentum space. By varying
the length of the defect the result change quantitatively but the reflected peak
is always negligible as compared to the transmitted one.
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FIGURE 4.4: Propagation across a static interface. Solid line: pulse shape while
being spatially compressed in entering into a medium with v, = 0.11 ¢. Dotted
line: pulse shape once completely entered.

For a pulse going through an atomic samples, we obtain a gaussian trans-
mittivity window in frequency:

T(w) = e ¥/2%, (4.31)
where the width of the window is
1 [e Q2

Awpy = —y | =t
RV L R,

Provided the pulse fits the EIT reflectivity (3.7) and absorption (4.32) dip
in each layer and provided the start and end layers consist of the same
medium, the pulse duration and shape remain unchanged at the end of
the propagation process. In more pictorial terms, the Raman point on the
DP branch allows for a good impedance matching between the different
regions of space: it acts as the link along the EIT chain.

(4.32)

4.3.2 Dynamic case

As shown in (4.21) and (4.26), the variation of the dressing laser intensity
that affects the group velocity also tunes the electric field amplitude of the
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probe pulse: the more photonic the polariton, the faster it is. The modula-
tion of this external parameter offers a straightforward way to dynamically
act on the EIT chain.

The combined change of group velocity and electric field suggests a variety
of possible geometries depending on the desired application; for example,
if we are thinking to a tunable delay line [89], we will be more interested in
modifying the group velocity without affecting the shape. Instead, we will
consider the spatial dependence of the control field in order to reshape the
pulse [90] to go beyond the limiting dimensions and profiles of wavepackets
obtained with standard techniques.

For this reason, while discussing the effect of control field modulation, two
cases will be distinguished: the homogeneous layer, when the pulse is com-
pletely contained in a single EIT slice during the whole time-modulation
sequence, and the interface, when the modulation takes place while the
pulse is instead overlapping two neighboring layers. The latter process is
always feasible, while the former depends on the ratio between the length
of the pulse in the medium and the thickness of the involved EIT layers.
All the possible geometries related to the EIT chain can be derived from
these two basic situations as it will be shown in the next chapter. For the
examples of dynamic modulation shown here, the ramp time is fixed at
woT = 100.

Homogeneous Layer

When the whole pulse fits into the EIT medium, the dynamics is easily
understood within the polariton picture discussed above and it is char-
acterized by the wavevector conservation. A time-dependent perturbation
with ramp time 7 of the dressing field induces an evolution in the polariton
wavefunction and group velocity by changing the weights of radiation and
matter components [26,27,29] as it is clear from (4.24). For each value
of k, this evolution results in a finite transition rate from the DP to the
UP and LP: we will discuss in the next chapter this process in detail. In
general, the matrix element of the coupling goes as the time derivative of
the perturbation and can be neglected as long as the process is adiabatic,
i.e. slow as compared to the inverse of the splitting between the different
bands [91-94]. Then we expect that provided

Vfwes > 1, (4.33)

a polariton injected on the DP branch will spend all its lifetime on this
branch. In particular, the dynamical modulation of the frequency spectrum
ensures that if the pulse fulfills the EIT condition at the entrance time,
then it will fulfill it at all later times [33].
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FIGURE 4.5: Wavepacket propagation in a dynamic homogeneous EIT layer.
Dotted line: propagation without modulation. Solid line: result of a slow down
ramp vf;r = fu;,,/2. Dot-dashed line: result of a speed up ramp U_{;r = 1.8 vg,.

We consider a generic variation in the group velocity from the initial value
vér to the final one vgr. The resulting pulse shape does not depend on
the functional form of the velocity variation. The spatial shape of the
pulse is fixed by the initial distribution in the wavevector space (Ak)
and is not modified. The peak electric field intensity is instead multiplied
by (v},/vl,) according to (4.26). In the case in which the group velocity
modulation is brought back to the initial value (v], = v!,), the pulse
emerges with an unchanged profile: as a result, the layer can be considered
as a very compact, yet programmable delay line. Examples of modulations

are illustrated in Fig. 4.5.

Interface

A dynamical modulation taking place while the pulse overlaps an interface
provides a simple way of reshaping the pulse: only the part of the pulse
which is located inside the EIT layer is in fact affected by the modulation
of the dressing field. In contrast to the the spatially homogeneous case
considered above, the shape of the emerging pulse now strongly depends
on the details of the modulation ramp even in the adiabatic limit. This
crucial fact is illustrated in Fig. 4.6: the group velocity of a EIT medium
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is reduced while a pulse is exiting into vacuum.

The results can be understood by isolating three portions of the pulse: the
first part is already in vacuum when the modulation begins, while the last
part is still in the EIT medium when the modulation is completed. The
first part is therefore not affected by the modulation, while the electric field
amplitude of the third part is homogeneously lowered. When this part of
the pulse eventually exits into vacuum, its spatial length is stretched out
even more than the first part by a factor v;r/vgr. As clearly visible in the
figure, this results into a strongly asymmetric pulse shape.

Finally, the modification of the central part of the pulse depends in a non-
trivial way on the details of the ramp. For a fast [but still adiabatic as
compared to the interband splitting, according to (4.33)] modulation, the
first and third parts of the pulse are connected by a sharp jump in the elec-
tric field amplitude. For slower ramps, this jump is replaced by a smooth
crossover. Details about this process in more complicated structures and
applications to realistic experimental situations will be discussed in the
next chapter.
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FIGURE 4.6: A DP pulse exiting from a EIT medium into vacuum, vf]r =0.11c
Dotted line: propagation without modulation. Solid line: result of a slow down
ramp vg;r = g, /2.
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4.4 POLARITON FLOW: EFFECTIVE DESCRIPTION

The MB formalism (4.4) gives a complete picture of the pulse propagation
which is able to take into account inter-band transitions* as well as reflec-
tion at the interfaces. In fact, as we see in Fig. 4.1(a), we consider the three
polariton branches for both positive and negative wavevectors. As the so-
lution of the three coupled equations is time- and memory-consuming, it
quickly becomes unfeasible for growing values of the velocity mismatch
between the different media.

For this reason, an effective approach able to investigate the ultraslow
light regime can be of great interest. Starting from the dispersion of the
DP branch, we have written a single equation for the electric field inten-
sity. The crucial feature of this effective model is that it is able to include
the effect of both absorption and spatial inhomogeneity of the structure.
With the derivation of this equation, we have a complete formalism to an-
alyze the propagation of a DP pulse through inhomogeneous and dynamic
structures: the MB equations capture the essential physics in relation to
specific geometry and modulation of the parameters while the effective
equation allows to test the effect of the developed techniques using realis-
tic values.

4.4.1 Continuity equation

From the MB formalism, we have seen that the dynamic modulation of
the pulse does not result into an increased reflection as compared to the
static case and transmittivity is very good as long as the pulse fits in the
EIT transmission window. The features that were observed in the solution
of the MB equations in the absence of absorption suggest that the system
can be described by means of a continuity equation for the polariton flow
both in the homogeneous system case and in presence of interfaces.

In terms of the polariton density n,(z, ), the continuity equation reads

0 0
anp(a:, t) + E (np(z, t)vge(z,t)) = 0. (4.34)

Physically, this equation means that the total number of polaritons is
conserved. It is useful to rewrite this equation in terms of the electric field
intensity I = |£]* corresponding to the polariton flux n,v,, [see (4.26)]
instead of the polariton density.

For static inhomogeneous geometries with abrupt changes in the polari-
ton velocity, the polariton density shows in fact discontinuities while the

4For a detailed discussion see next chapter.
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electric field remains everywhere continuous, even at the interfaces. In the
static situation (vgr(z,t) = v, ()), the initial local polariton flux (i.e.
electric field in each point) remains constant and propagates following the

velocity field v), ().
Taking into account (4.26), Eq.(4.34) then becomes

o, ol 1ou
ot " or Vgr O

(4.35)

The LHS of the equation contains the propagation terms for the static
situation. The general solution is a mixed translation and dilation of the
starting pulse 7°(x) according to the trajectories in space-time which are
solution of the Cauchy problem: (€ = v,,(€),£(t) = x) [26,29, 85]. The
specific solution clearly depends on the geometry. The RHS of (4.35) is
instead responsible for the amplitude variation in the dynamic case.

4.4.2 Analytic solutions for the interface geometry

We consider a semi-infinite geometry with the left half-space made of a
homogeneous EIT medium and the right half-space of vacuum; the velocity
grid is defined by

Vgr (2, 1) = v(t)0(—2z) + cb(z), (4.36)

where we take into account the possibility of a time perturbation of the
group velocity in the EIT medium. We consider a positive velocity v(t) >
0, so that the electric field moves from left to right. If we assume an initial
electric field intensity distribution I°(z), the analytic solution of (4.35) in
this geometry is

I° (:1: — I(t)) %, x <0
](l‘,t) = ]U <_Iéfz/c> v(tv_(ox)/C)a 0<x<ct (437)
I°(z — ct), x> ct

Here we have defined ,
Q:/vww. (4.38)

This expression allows to study both the homogeneous case and the inter-
face geometry and both the dynamic and the static case. In fact, depending
on the initial distribution of the electric field and the time at which we
look the solution we can address the different situations. Because the elec-
tric field moves from left to right, the three different parts that compose
the solution are divided in a simple way: the first part contains the points
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which are still in the atomic medium at the observation time, the second
part takes the points which cross the interface during the process while in
the third part there are the points which started in vacuum. In Fig. 4.7
we compare the solutions of MB formalism (4.4) with those of the conti-
nuity equation (4.39) in the case of a static and a dynamic interface. The
agreement is very good.

4.4.3 Effect of losses

Even if the carrier frequency wy sits exactly on Raman resonance, finite
time duration of the wavepacket requires including absorption for the tails
of the wavevector spectrum [86,95]. This leads to a finite and momentum-
dependent decay rate for the polaritons according to (4.27). Taking inspi-
ration from the approximated form (4.22) of the decay rate [68], a simple
diffusion term can be used to model the broadening coming from losses.
The propagation equation (4.35) for the intensity I then becomes

oL 9l _ 19y, 9,01

or ., oI _ or 4.39
ot ""or T o, 0t 0z 0z (4.39)
where P A
. w Ye ¢
Dzz(—) =gy e 4.40
i), T W (4.40)

is the diffusion coefficient. We will see the crucial contribution of this term
in the next chapter. It is worth noticing that this equation is only useful as
an effective model: in fact to actually take into account losses it is crucial
to use the complete equation for the dark polariton field instead of its
intensity [29].

We solve equation (4.39) by means of a Runge-Kutta algorithm in the
time domain exploiting a spatial grid shaped on the group velocity of each
layer: in this way, the numerical solution of the propagation is much faster
than the one of the three MB coupled equations. In particular, it is able
to explore regimes where v,, /¢ < 1.
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F1GURE 4.7: Comparison between the numerical solutions of MB equations
(solid, blue line) and the analytical result of the continuity equation (4.35) for
the polariton flow (dash-dotted, black line) for the interface geometry both in
the static and dynamic case. The parameters are the same as the cases analyzed
above.






CHAPTER D

EIT-BASED DYNAMIC PHOTONIC
STRUCTURES WITH ATOMS

The outstanding properties of coherent optical media supporting FElectro-
magnetically Induced Transparency (EIT) seen in Chapters 3 and 4 suggest
that such kind of systems are an efficient environment to perform dynamic
modulations of light pulses. Dynamic photonic structures (DPS) [33] are
attracting an increasing interest in view of optical information processing,
and ultracold samples offers a sort of protected environment where the dif-
ferent techniques can be tested. The present Chapter is devoted to study
the effects and the engineering possibility of a dynamic manipulation of a
slowly propagating polariton in ultracold atomic EIT samples.

In Section 1, we test the application of adiabatic transition theory [91]
to the Mazwell-Bloch (MB) formalism developed in the previous chapter
in analogy with the evolution of the Schrodinger’s equation. The goal is
the study of the time-dependent coupling rate induced between the Dark
Polariton (DP) and the other bands (LP and UP). We find interesting
results at Raman resonance about the general behavior of this coupling
depending whether the shape of the time-dependent modulation of the
control field is analytic or not. In particular, we show that for an Erf-
shaped perturbation an intermediate regime is found before the expected
exponential decay of the asymptotic coupling with the interaction time
takes place. On the other hand a sinusoidal modulation of the control
field induces quite a cumbersome oscillating behavior in the coupling. In
both cases adiabatic transition theory well applies also for short interaction
times.

75
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In Section 2, we propose a Photon Energy Lifter scheme [37] for a homo-
geneous EIT ultracold gas. The idea is to adiabatically raise the resonant
atomic frequency after the injection of a DP inside the system. The ex-
citation is then stuck to the Raman resonance and then the change in
the atomic frequency eventually results in a wavelength conversion of the
extracted pulse. Experimental issues are discussed by comparing the prop-
erties of different cold samples routinely obtained in laboratory.

Section 3 contains a detailed discussions about the results of a modula-
tion of the control field amplitude in the multi-layer EIT chain introduced
in the Chapter 4. The reshaping of the electric field in the linear opti-
cal regime can be regarded as a quantum wavepacket manipulation since
Maxwell’s equations are recovered from the quantum mechanical treat-
ment of light in the limit of low intensity. The use of inhomogeneous
geometries offers an original contribution in the growing field of DPS. Re-
alistic values for the atomic samples are used within calculations carried
out with the effective equation (4.39).

5.1 INTER-BAND COUPLING

We consider a homogeneous EIT medium and a polariton wavepacket
which is propagating across it. We want to study the effect of a variation in
time of the dressing amplitude (2. that is performed in a homogeneous way.
The advantage of such a configuration is that the different k-component
of the signal do not mix during the process and then the problem can be
solved for the plane wave case.

We observe that the set of MB equations with the mSVEA (4.4) has
the same structure as a Schrodinger’s equation for a three-component
wavefunction ¢ which is expanded in terms of the basis (£, fem, feg). If
we neglect absorption, the Hamiltonian for the evolution of the system is
represented by the matrix (4.23), which at Raman resonance reads

0 0 VWeg/2
H#) = | Vw2 0 —0.0)/2]. (5.1)
0 —a.)/2 0

It is useful to rewrite the Schrédinger’s equation in the polariton basis
(UP,DP, LP),

= () = (ﬁz(t) + mR—l(t)) b (1), (5.2)

where R(t) is the matrix which turns the radiation-matter picture into
the polariton one: ¢(t) = R(t)1(t). By looking at (4.24), we immediately
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see that
sinfl cos¢ —sing cosf coso

R(t) = cosf) 0 —sinf | . (5.3)
sinfsing cos¢p cosfsing

The operator H = RHR™" is the Hamiltonian (5.1) which is diagonal in
the polariton basis while the other term, RR ™!, derives from the rotation
in the Hilbert space of the instantaneous eigenstates (i.e. the polaritons).

5.1.1 Adiabatic Transition Theory

We consider a smooth perturbation of the Hamiltonian: if the system is
initially prepared in an eigenstate, it will follow the evolution in time of
the relative eigenvector performing a so called adiabatic transition [91].
Furthermore because the eigenstates of the Hamiltonian evolve in time
we expect a finite coupling rate among them. The adiabatic following is
driven by the first term on the RHS of equation (5.2) while the second
term couples the different instantaneous eigenstates. If we define a char-
acteristic time scale 7 for the variation of the Hamiltonian and Aw is the
energy gap between a specific couple of instantaneous eigenstates, the in-
tuitive condition for the adiabaticity with respect to the chosen transition
is TAw > 1. An exponential decay with the increase of 7 in a two-level
system is in general expected [96].

If the system is, at the starting time ¢y, in the eigenstate |l1) (¢y) of the
Hamiltonian H (t,), it turns out that the first order in perturbation theory
for the amplitude of transition between the evolved eigenstate |/;) (T') and
another instantaneous eigenstate |l,) (T') of H(T) is [91]

T ¢
/ dt ay,, () exp <z/ wbll(t')dt')
to to

a1, (1) = ¢ (l2 <% |l1)t> (5.5)

is the projection of the evolution of |l1) (¢) on |ly) (t), while wy,,, is the
frequency of the transition between the states. The « terms are exactly the
elements of the coupling matrix RR (). If we assume constant values
for ay,, (t) and wy,;, () corresponding to respectively the maximum and
minimum of the two quantities and we substitute them into the integral
(5.4), the fact that the coupling has to be small gives an adiabatic criterion
that goes beyond the intuitive condition (4.33) stated in Chapter 4:

2

Pi—1,(T) = : (5.4)

where

mazx
l1lo

Wioty

< 1. (5.6)
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In the case of the atomic Hamiltonian (5.1), by using the expression (5.3)
and the definitions (4.24), (4.25) we obtain the matrix for the change of
basis:

1 sinf -1 cost
R=—|+v2cosd 0 —2sinf |, (5.7)
V2 sinf 1 cost

where we have exploited ¢ = 7/4. Because of the unitarity of R, it is easy
to write its inverse R ™! and then we have the coupling matrix:

0 (1/v/2)0 0
RR™ = | —(1/v2)0 0 —(1/v2)0 | . (5.8)
0 (1/v/2)0 0

It depends only on the ratio between the Rabi splitting and the control
field intensity:

2 -1

) eq | A2 eg A9
j= (14 L0) (Ve) | Vs d )

0?2 0?2 dt fw2, +Q2 dt

Consequently the integral (5.4) becomes

1 (T T wey dQ(t) o) )\
T)= — [ di-—5-2— + dt' 1
po(r) = [ e Sy (s [ 2 (510

where p+(T) = pppovprp and Q* () = fw?, + QZ(t). In the slow light
case /fwe, > Q., the condition for adiabaticity (5.6) requires

1

fuwi,

4. (1)
dt

< 1. (5.11)

It is important to check the validity of this calculation of the effective
coupling within the MB formalism. In fact, it provides a good expression
to estimate the loss of signal in the specific dynamic structures we are
dealing with, due to inter-band coupling.

Two specific cases of adiabatic perturbations are to be considered in the
following: the first one is an Erf-shaped variation of the dressing field inten-
sity while in the other case we have a sinusoidal tuning. These curves are
representative of two different classes; in fact, the main difference among
them is the behavior of the derivatives: the first function is analytic, while
the latter one has discontinuities in the second order derivatives at the
boundaries of the variation. In the next subsections, it is illustrated a
comparison between the results coming from the numerical simulation of
the MB equations, with analytical results of the integral (5.10) for differ-
ent cases. The simulations are carried out for polariton plane waves sitting
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at Raman resonance. We investigate the asymptotic coupling p> which is
the transition rate for large 7" and the behavior of the peak p™**. For both
of them, we calculate the dependence on the time scale of the perturbation
7 for different values of the oscillator strength f. In general, we consider

VWeg > Q.

5.1.2 Analytic Perturbation: Erf shape

We first consider a variation in time of 2. which has the form:

t
Qu(t) = Qoo — 69, [1 T Exf (_>] , (5.12a)
T
dQ.(t 0Q,. 2 :
) _ 98 2 gy (5.12b)
dt T /T
For the specific case, it is clear that t; — —oc.
-3 -3
6X 10 | | | >i]20
5 ﬁ 1
4t d 10.8
g +—
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2 § 10.4
1 10.2
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F1GURE 5.1: Example of result from the simulation of MB equations performed
by using a plane wave input: derivative of the ramp for Q.(¢) (solid red line)
and relative evolution of the coupling outside the DP (blue dots) are shown.

An Erf-shaped ramp of €. is considered.

By applying the condition (5.6) to the present situation, for the process
to be adiabatic it must hold

2 69 1

— 1. 5.13
7T\/7weg\/7wegT<< (5.13)

2
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It is interesting to note that while the last fraction on the LHS expresses
the intuitive condition on the ratio between the rate of change and the en-
ergy spacing, the complete formula also contains another fraction which is
much smaller than 1 in the regime under investigation here and it extends
the validity of the adiabaticity approximation for smaller 7. By using the
coupling integral (5.10) and the expressions for the specific case (5.12),
we first introduce the rough approximation Q(t) — \/fwe, which leaves in
the integrand a gaussian function and an oscillating term:

T
2_ 0% / dto—(t/7)? iv/ Tt/
7T\/7weg7— —o0

By using the general result [97]

oo 2 ]. 2_ac b
/ dt e~ (at?+2bt+e) _ _\/Eeb = Erfc <_> : (5.15)
0 2V a Va

2

2

p(T) ~ (5.14)

we obtain

(1) ~o | =280 (et 10y <_Z N ZM) BT A)
V2 fweg T 4 : )
5.16

where [ is a real function, and thus the last term becomes unity after
taking the absolute value.

Asymptotic Coupling

The expression (5.16) is qualitatively in agreement with the results coming
from the simulations [see e.g. Fig. 5.1]. For fixed 7 and f, the function
Erfc(z) = 1 — Erf(2) of the complex variable z vanishes for

Re[z] oo =T — oo, (5.17)
while it goes to the constant value 2 in the opposite limit:
Re[z] o« =T — —oc. (5.18)

This behavior corresponds with the asymptotic values for the coupling:
for T'— —oo it vanishes because it is the beginning of the process, while
for T'— +o0 the transition rate becomes stationary because d<2./dt — 0.

The formula (5.16) suggests a gaussian decay for the asymptotic coupling
p> depending on 7. As shown in Fig. 5.2, this approximation holds only
for small 7 while for larger values of the time scale of the perturbation the
decay is smoother. It is interesting within the present analysis to discrim-
inate between an exponential and a gaussian decay. By using numerical
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FI1GURE 5.2: Behavior of the asymptotic coupling p>* depending on 7 for dif-
ferent values of the oscillator strength f: (a) f = 0.04, (b) f = 0.4. The control
Rabi frequency is fixed as Q.o/wey = 0.04 with a variation 0§2./w.y = 0.01.
Comparison between the data coming from the MB simulation (blue dots) and
the gaussian decay extracted from (5.16) (green curve). log p™ is plotted and
the dashed line indicates the limiting precision of the simulations. In panel (a) is
clearly visible the crossover between a gaussian and an exponential decay; this
latter is fitted (cyan dashed line) and the exponent is approximately /fweq7.
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evaluations of the complete coupling integral (5.10) it turns out that a
good approximation consists in replacing 1/Q(t) = \/fw,, in the expo-
nent of the oscillating term while retaining the whole €(¢) in the fractional
term.

For T — oc, the integral corresponds to the Fourier Transform of a prod-
uct: the Gaussian derivative of the perturbation times the inverse of Q?(¢).
To further simplify the expression, we expand the denominator of the frac-
tional term and we separate the different orders: up to first order in Q2/f,
the integrand is

2
1) ~ )21 %% (1_—(9670“596)

T VT ey f
1998 (e _6Qc)Erf<£> +
LU T

2f
502 t 04 2
2% Fr f2 0O c —(t/7)? i fwegt/Ql 5.19
T e <r> i (f%é‘g))e ‘ (5.19)

The first and second terms are constant and give only a negligible cor-
rection to the constant coefficient in front of the gaussian decay already
present in (5.16).

The other terms are more complicated: the presence of the gaussian func-
tion allows to solve the corresponding integrals as scalar products in a
gaussian metric. It is then necessary to expand the functions in terms of
Hermite Polynomials [97], which are the basis of the gaussian metric.

By using this method, the Fourier transform of the third term in bracket
[second line of (5.19)] multiplied for the gaussian function results

A/ Erf< )sm (ﬁwegt> W gt =

. ,\/fw T) 2
= AT (—i)Erf [ i X220 ) o= (wdym/16) - (590
N (5.20
where A contains the coefficients in front of the functions to be integrated.

The asymptotic expansion of this expression for large values of 7 is given
by

16 768
e (1 5.21
( +fw3972 +f2w§gr4+ ) (5.21)

The results (5.16) and (5.21) show that at the lowest orders the decay of
the coupling with 7 has a gaussian shape, but with an exponent which
changes from term to term. In Fig. 5.3 it is shown also the contribution
coming from the Erf” term in (5.19). In Fig. 5.2(a), a fit is depicted which
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FicURE 5.3: Effect of the different terms in the first-order approximation of
the integrand (5.19) for the asymptotic coupling p®°: complete integrand (black
circles), terms with simple gaussian decay (red dots), Erf term (green stars),
Erf? term (blue squares). Values as in Fig. 5.2(a).

suggests the fact that an exponential decay may be the result of the sum of
this several gaussian terms: it is interesting to note the crossover between
the two regimes. In the case shown in Fig. 5.2(b) the region of exponential
decay is not reached within the accuracy of the simulations while the
gaussian regime is clearly visible.

Coupling peak

By looking at (5.16), we observe that the modulus of Erfc(z) has a peak
in the region Re[z] ~ 0. The exact position of the peak depends on the
value of 7: for 7 — 07 and 7 — 400, it moves towards 7' = 0. Thus, for
large values of 7, it can be approximated by

/T wegT 2
L

2
p(0) = LA e~ wegm/10) vr —/ dz e’ =
T \/fweg 2 0

2
T%OO ( 2 (5QC ) (z e—(fwggT2/16) + 4 ) %pmaxl (522)

T\ [ Weg 4 fw?,

where the second term comes from the asymptotic expansion of the Daw-
son’s integral [97] and it gives the leading order in the decay. In Fig. 5.4
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FI1GURE 5.4: Behavior of the coupling peak p”** depending on 7 for different
values of f. Comparison between the data coming from the MB simulation (blue
dots), the numerical evaluation of the maximum of the expression (5.16) (red
dashed line) and the analytical expansion for large 7 (5.22) (green solid line).
The relation is linearized by plotting 1/,/p™%. Same values as in Fig. 5.2.
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there is the comparison between this analytic evaluation and the data
coming from the simulation which shows a good agreement.

5.1.3 Non-analytic Perturbation: Sin? shape

After the investigation of an analytic form for the perturbation, we analyse
the case of a ramp which has a discontinuity in the second derivative:

QC,O t<0
Q.(t) = Qo+ 5Q,sin? (t%) 0<t<dr (5.23a)
Qo+ 09, t>A4r
0 t<0
dQ.(t )
®) = Z6Qsin (tX) 0<t<4r (5.23b)
dt T T
0 t>4r
-4 4
1x 10 >§10

p(t)

y : : 0
0 50 100 150 200

F1GURE 5.5: Example of result from the simulation of MB equations performed
by using a plane wave input: derivative of the ramp for Q.(¢) (red solid line)
and relative evolution of the coupling outside the DP (blue dots) are shown. A
sinusoidal ramp of €. is considered.

The adiabaticity condition (5.6) takes the form
™ 08, 1
A2V [ Weg /T weyT

which differs from (5.13) just for a numerical coefficient. Performing the
approximation Q(t) — \/fw,, as before, the integral (5.10) is analytically

<1, (5.24)
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solved

T 00, 1 2
p(T) = (m Vo o, = w<2r>12> |

{ (%)2 [1 + cos? <%T> — 2cos <I—TT cos (gwegTﬂ +
T [ Weg sin (%T) sin <gwegT> + f%gg sin? (%T) (}.25)

4T

Asymptotic coupling

By the replacement T' = 47, the integral (5.25) shows an oscillatory be-
havior with and algebraic decay:

= @ 00 (m/7)° 2 cos’ WegT
b ( 8 V[ weg fwiy — [7T/(27')]2> 4 <\/7 eg >, (5.26)

that is proportional to 1/7%.

The drastic change in the decay of the asymptotic coupling with respect to
the Erf case is directly related with the jump in the second order derivative
of Q.(t) at the boundaries of the sinusoidal ramp which is clear from Fig.
5.5. The asymptotic coupling p*> is the square modulus of the Fourier
Transform evaluated at w = /fw,,/2 of a function which is in a good
approximation the derivative of the perturbation. The function (5.23b)
has a jump in its own first derivative. The paradigm of a function which
has a jump is the Heavyside step function: its Fourier Transform shows a
1/w decay. It is also a straightforward property of the Fourier Transform
that, given a function ¢ and its derivative ¢": F(g') oc iwF(g). By applying
a dimensional argument, it is then clear that

P> o 1/(\/ fwey)*. (5.27)

In Fig. 5.6, the analytical result (5.26) is compared to the values obtained
with the MB simulations. The agreement is very good for both the oscil-
latory and decay behavior.

Coupling peak

For 7 — oo, the coupling peak p™** is located at T' = 27 which corresponds
with the maximum rate of variation of the perturbation and it decays as

2
mas [ TV2 09, 2 2
P ~(Tmeg) (m) ’ (528)
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FIGURE 5.6: Behavior of the asymptotic coupling p>° depending on 7 for dif-
ferent values of the oscillator strength f: (a) f = 0.04, (b) f = 0.4. The control
Rabi frequency is fixed as Q.o/wey = 0.04 with a variation 0./w., = 0.01.
Comparison between the data coming from the MB simulation (blue dots) and
the analytical expression (5.26) (green line).
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FI1GURE 5.7: Behavior of the coupling peak p™** depending on 7 for different
values of f. Comparison between the data coming from the MB simulation (blue
circles), the 1/72 dependence for large 7 (green solid curve) and the numerical
evaluation of the peak of (5.25) (red dashed line). Values as in Fig. 5.6. In Panel
(a), the error bars for long 7 values derive from the oscillatory behavior of the
coupling.
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which has the same dependence as for the Erf perturbation.

By looking at the condition (5.6) and its applications to the cases under
investigation [(5.13) and (5.24)], it is evident the origin of the general
behavior found in (5.22) and (5.28): the coupling peak corresponds to the
maximum rate of change of the perturbation, i.e. the steepest part of the
ramp. The fact that 7 is the time scale of the perturbation means exactly
that the derivative of Q.(¢) has a 1/7 dependence which goes squared into
the coupling peak value.

Adiabatic transition theory appears as a very useful tool to investigate the
inter-band coupling within MB dynamic formalism. Although this treat-
ment neglect the role of absorption and the multi-level nature of the sys-
tem [92,93], a very good agreement is shown between analytical results and
simulations. In particular the cross-over between a gaussian and an expo-
nential decay of the asymptotic coupling in the analytic perturbation case
is found which goes beyond standard results. Furthermore, non-analytical
perturbations show an algebraic decay as a result of discontinuities in the
temporal derivatives. The understanding of the Fourier Transform mech-
anism at the basis of the integral (5.4) suggest the possibility to quench
the inter-band coupling also at fast modulation rate by using an ad hoc
tailored perturbation of the control beam.

5.2 PHOTON ENERGY LIFTER

Obtaining a coherent and widely tunable frequency conversion of an opti-
cal signal is a central task in optical telecommunications [98]. Several tech-
niques have been developed during the years to perform this operation,
but most of them suffer from significant limitations in their application
range, or are disturbed by spurious effects.

The basic idea of the photon energy lifter consists in the adiabatic shift of
the polaritonic band on which a photon is injected. If the shift is operated
in a spatially homogeneous way then because of wavevector conservation
the energy of the propagating excitation is simultaneously lifted: when the
polariton leaves the sample, it is reconverted to a photon with a different
colors.

This was originally proposed for solid-state photonic structures [37] and
experimentally demonstrated by ultrafast tuning of a solid-state micro-
cavity [99], but it is interesting to explore the potential of cold atom sys-
tems to this purpose: the very long optical coherence time of ultracold
samples [32,100] and the easy tunability by external electric or magnetic
fields makes them very promising for this kind of applications. Recently,
similar frequency-matching effects were observed experimentally in hot
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atomic vapor [101].

5.2.1 Proposed scheme

As a specific example, we shall consider in what follows a system of Ru-
bidium (8"Rb) atoms. The optical properties are varied by means of an
external magnetic field (taken as perpendicular to the probe propagation
axis) which shifts the atomic levels via the Zeeman effect [102].

We concentrate on the D, transition at a frequency w,, = 27 384 THz [103].
As we are interested in substantial shifts, we focus our attention in the
high field regime (B > 5 x 10* G) where the atomic nucleus is decoupled
from the electronic degrees of freedom, and the energy shift mostly comes
from the electronic total angular momentum only: AE = ugg;J,B,, where
pp is the Bohr magneton, g; is the Landé factor of the considered level
and J, is the z component of the total angular momentum of the elec-
tron. We use the |J =1/2,J, = F1/2) sublevels of the 5255 electronic
ground state as respectively ground |g) and metastable |m) states, and
the |J =3/2,.J, = 1/2) sublevel of the 5*Py, electronic excited state as
excited |e) state. The corresponding Landé factors are g;—i)» = 2 and
gs=3/2 = 4/3. The nucleus is not affected by the optical process and main-
tains the same polarization it had in the initial state: in the absolute
atomic ground state, the nuclear spin is e.g. polarized antiparallel to the
electron spin of the |J =1/2,.J, = —1/2) state.

A linear polarization is used for the dressing light beam that couples the
|m) and the |e) states, and a circular (o) one is used to probe the po-
lariton dispersion on the |g) — |e) transition. Using tabulated values for
the electric dipole moment of the D, transition and assuming an atomic
density n ~ 10 cm 3, the radiation-matter coupling (1.19) for the system
under consideration is of the order of /f ~ 1074

To maximize the available time to perform the lifter operation, it is useful
to have a very slow group velocity, which in turns requires a small dressing
amplitude. In the following, we shall choose Q./w., = 1077. This value
Q. ~ 2w 38 MHz corresponds to 5 times the radiative linewidth of the D
line of Rb atoms.

The dressing frequency is chosen in a way to have . = 0 at the initial
value Bj;, of the magnetic field: the corresponding polariton dispersion is
the one shown in Fig. 5.8(a). The light pulse is injected into the system
in proximity of the resonant point k£ = k.4, where the interface reflectivity
goes to zero, and injection is most effective [see the circle in Fig. 5.8(c)]:
the width of this dip results from (3.7) to be of the order of 2 x 1078w,
and the group velocity (3.2) is v, /c &~ 7 x 1078, i.e. v, ~ 20 m/s.
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The magnetic field variation is performed while the light pulse to be shifted
is completely contained in the lattice and it is propagating through an
effectively bulk system. As the magnetic field is varied in a spatially ho-
mogeneous way, the Bloch wave vector is conserved during the process. If
the field variation is slow enough as compared to the frequency difference
of neighbouring bands, the polaritons will adiabatically follow the band
and their frequency at the end of the process will be accordingly shifted
[see the circle in Fig. 5.8(b)].

As an example, we propose to tune the magnetic field from 1 up to 2 T: this
results in the metastable and excited states being shifted by respectively
(6m — 0g)/weg = 7.3 x 107° and (0, — d,) /wey = 6.1 x 107 with respect to
the ground state. For light initially injected in proximity of w,,, the shift
of the photon frequency results approximately equal to ¢,,, which amounts
to the quite sizeable value 14 GHz/T. As the lifter operation is based on
an adiabatic shift of the polariton dispersion, it completely preserves the
pulse shape and the coherence properties of the incident wavepacket, both
at classical and at quantum level.

5.2.2 Experimental issues

To verify the actual feasibility of such a promising experiment, it is im-
portant to mention the main practical difficulties that may arise in a real
experiment, and discuss how these can be overcome.

1. We have verified that the transmittivity of the lattice interfaces is
close to 1 for both the injection and the extraction process [Fig.
5.8(c) and Fig. 5.8(d)]. The pulse is injected into the lattice at a
frequency corresponding to the EIT reflectivity dip around Raman
resonance. The extraction takes place in close proximity of the Ra-
man resonance where reflectivity is again very low. This, in spite of
the fact we are very close to a gap: thanks to the now significant
detuning o., the metastable state is in fact weakly coupled to light,
and the corresponding crossing point is displaced slightly away from
the light line.

2. In order to have a reasonably long time to vary the magnetic field, we
have verified that the group velocity of the polariton states involved
in the lifter operation is slow. Light initially propagates on the EIT
slow light branch, which is deformed during the lifter operation. At
the end, the wavepacket is found on the very flat region below the
gap where the group velocity is low [Fig. 5.8(e) and Fig. 5.8(f)].

3. The wavepacket has to be shorter than the sample length, still its
frequency spectrum has to fit in the reflectivity dip at both injection
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and extraction. A sample of length L is able to accommodate pulses
with at most Ak 2 1/(L). From Fig. 5.8(a), this corresponds to
a lower bound on the frequency width of the incoming wavepacket
Awip = Ak vl > 2.5 x 107"%w,,. One can easily see in Fig. 5.8(c)
that this frequency spread still fits within the injection window where
reflectivity is low. The same can be verified in Fig. 5.8(b) and Fig.
5.8(d) for the extraction process.

4. In order for the pulse shape not to be affected, dispersion of the
group velocity should be small for the wavevector window Ak under
examination. Initially, this is not a problem, as we are working close
to the center of the EIT branch where the group velocity has a weak
dispersion. The situation can be more critical on extraction, because
of the strong squeezing of the polariton band in the region just below
the gap. The importance of this effect can be reduced by choosing
pulses initially tuned just above the Raman resonance.

5. The main problem in using a BEC is related to the coherence time
fixed by the dephasing mechanism between the ground and the
metastable states. In cold gases 7,, is typically of the order of tens
of KHz [30,90,104] in particular due to atomic collisions although it
is strongly system dependent. For carefully prepared system atomic
coherence up to 1 ms were observed [31] and this is promising in view
of lifter applications. A good candidate for longer coherence time is
the MI phase of ultracold atoms in optical lattice: in the first realiza-
tion of EIT in a MI of Rb atoms [32] a coherence time of 240 ms has
been reported. In this system, the inhomogeneous broadening of the
lineshape is suppressed because of the ordered arrangement of atoms
and the many-body excitation spectrum is gapped. However the MI
is usually much smaller (10 — 30 um) than a BEC cloud and this is
a crucial disadvantage for the lifting process. The use of a thermal
gas created in a Dark Magneto-Optical Trap (DMOT) [105] seems
to show EIT features similar in group velocity and system length to
a BEC, still it requires a simpler setup.

5.2.3 Perspectives

One major constraint that still exists on the experimental parameters
concerns the speed at which the magnetic field has to be actually varied.
As this has to be done while the wavepacket is inside the atomic cloud,
a very slow group velocity and a long system are required. Using values
for state-of-the-art cold atomic samples (either BEC or DMOT) namely
L =200 pm, and vy, = 20 m/s, one obtains that one disposes of a time of
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approximately 10 us to perform the magnetic field variation. This means
that a variation of AB = 1T requires a very large rate of 1 kG/pus.

As this can pose serious difficulties in an actual experiment, it is worth
briefly exploring alternative strategies. An interesting possibility is to fur-
ther reduce the dressing amplitude €).. As the polariton group veloc-
ity is proportional to the square of the dressing amplitude, the value
Q. = 107%w,, similar to the one used in slow light experiment [30] al-
ready leads to a group velocity of the order of 20 cm/s which corresponds
to an available time of 1ms. In the high-field regime considered here, a
photon frequency shift of 1 GHz then requires a magnetic field variation
of 500 G in 1ms, a rate routinely used in cold atom experiments.

This calculations indicates that the possibility to design such an experi-
ment with conventional techniques is realistic; in particular, such a demon-
stration can gain a lot from an increase in the dimensions of actual MI
samples.

5.3 PHOTON WAVEPACKET MANIPULATION

The easy tunability of the properties of the dressing field together with the
slow propagation of the DP allow for an efficient dynamic modulation of
the signal. A dynamic EIT chain can then be the paradigm for a new class
of inhomogeneous DPS: in this case both a space and time modulation
of the wavepacket can in fact be performed. The basic ingredient of the
dynamic EIT chain is the defect geometry.

5.3.1 Dynamic modulation on a vacuum defect

The physics of a defect geometry can be understood in terms of the ho-
mogeneous system and interface cases seen in the previous chapter. Two
regions of a homogeneous EIT medium are separated by a thin layer of
vacuum. The thickness L, of the defect region is taken to be small as
compared to the effective length of the pulse in this layer o,.

The case is shown in Fig. 5.9 and Fig. 5.10. The temporal shape of the
modulation of €, is shown in the inset: v; are the maximum and minimum
values of the group velocity, determined by the maximum and minimum
values QO of the control field amplitude. 7, is the interval between the two
ramps, i.e. the storage time. For a given pulse width &, in the EIT medium,
the pulse width in vacuum is o, = 6x(c/vgi1,). As we have assumed o, > L,
the slope of the pulse in the vacuum is very small, so the pulse amplitude
can be considered as almost homogeneous. The modulation takes place
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FIGURE 5.9: Modulation of a wavepacket using a vacuum defect. In the EIT
medium, the group velocity is decreased from v;'r = 0.11¢ to vy, = 0.02¢ and
then increased back to v:{r as shown in the inset. Pulse at the beginning (dashed
line) and at the end of the process (solid line). Inset: temporal dependence of
.. Parameters of the system: excited state linewidth v, = 103wy, pulse length
koo, = 1600, defect thickness kgLg = 6400.

in three stages: the slow down ramp, the storage time and the speed up
ramp. When €. is decreased, the pulse intensity in the atomic medium
is correspondingly reduced by a factor v, /v, while the amplitude of the
central part remains unchanged as it is sitting in vacuum [Fig. 5.10(a)].
Later on during the storage time, when this part of the pulse enters the
EIT medium again, it results spatially compressed to a narrower width
Lg(v,,/c) [Fig. 5.10(b)]. The part of the pulse that crosses the defect during
the storage time does not experience any modulation: in Fig. 5.10(b), this
part lies just behind the narrow peak and is (75v, — La(v,,/c)) long.
The final ramp which restores the group velocity to its initial value vjr
is responsible for an increase of the electric field amplitude in the EIT
medium. Correspondingly to the vacuum layer, a hole is imprinted in the
pulse profile [Fig. 5.10(c)]. Once entered back into the EIT medium, its
width becomes Lg(v,,/c). This modulation in a vacuum defect geometry is
then a simple example of the wavepacket reshaping. Note that the resulting
dynamics is very different from the homogeneous case where the second
ramp would simply compensate the first one.
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F1GURE 5.10: Modulation of a wavepacket using a vacuum defect. Three snap-
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ramp: setting the hole. Parameters in Fig. 5.9.
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5.3.2 Comparison between Maxwell-Bloch and the
effective equation

1.4 1.6 1.8 2 2.2 2.4
K X X 104

F1GURE 5.11: Comparison between the solutions of the wavepacket propagation
using different methods: MB formalism (solid, blue line); continuity equation
for the polariton flow (dotted, black line); effective equation with absorption
term (dashed, red line). Parameters as in Fig. 5.9.

We compare the MB result with the solution of the effective equation. The
continuity equation model (4.35) can be applied to the defect geometry of
Fig. 5.9, by defining

Vgr(z,t) = v(t) ((—x) + 0(x — Lg)) + cO(x)0(Ly — x), (5.29)

where the beginning of the defect is located at x4 = 0. For times longer
than t = (Lg/c), the solution for the electric field intensity is

'Io(x—zg)% T <0
° (—Ié_‘”/c> % 0<z< Ly
t t
I(z,t) =4 I°(~T¥) 7;((8)) v”((td)) Li<ae<Li+Ti,, (5.30)
I° (Ld — Ctd) ?j)((ttd)) Ly + Izd/c <z < Lg+ 1—6
0 (. -t U_t) ¢
\I(x IO)U() x> Lq+ T}
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Here t4(x) and #o(z) are the instants of time at which the point of the
wavepacket which is located at x at the time ¢ has passed through x = L,
and z = 0, respectively. They can be found by the conditions:

v =Ls+1;, (5.31a)
t(] = td — Ld/C. (531b)

where we have defined ,
70— / o(t')dt' (5.32)

This analytic solution gives the black dash-dotted curve in Fig. 5.11. By
adding also the absorption term, the effective model captures all the fea-
tures with a good agreement. In particular, it perfectly reproduces the
height of the peak that was instead overestimated by the simple conti-
nuity equation (4.35). This is a strong confirmation that the effect of a
small absorption on the propagation can be modeled by a diffusive term:
it is very important in order to investigate to what extent it is possible to
tailor sharp structures on the wavepacket.

5.3.3 Manipulation Schemes in Cold Gases

The EIT chain can be implemented experimentally by using clouds of
ultracold atoms as the EIT media. Optical fibers can be used to fix the
optical distance between the EIT layers [90]: because of compression enter-
ing the atomic regions, the distances in vacuum have to be not negligible
with respect to the length of the pulse o,; for a 1 us-long wavepacket, the
spatial width in vacuum is in fact 300 m.

By using data from [30,31,103], we estimate realistic value for the pa-
rameters describing the system. As a typical example, we consider a cloud
of Sodium (Na) atoms of density n = 8 - 10'* cm™. For the optical tran-
sition, we use the Dj line. As the ground state, we can use the |g) =

13S1/2, F = 1,mp = —1) sublevel; for the metastable state, we can use
im) = |3S1)2, F' = 2,mp = —2), and for the excited state we can use
le) = [3P3), F = 2,mp = —2). In this way, the resonance frequency is

weg = 2w 508THZ, the electric dipole moment is de, = 1.5 1072°C m, the
linewidth is 7. = 27 10 MHz and the oscillator strength is f = 6 1077.
For a control field of Rabi frequency . = 27 17 MHz, a group velocity
vgr = 10" ¢ is obtained and an absorption coefficient D = 6 107" wey/kZ,.
The parameters of the recent experiment [32] are not much different. From
now on, physical units are used in the figures.

We have used the effective equation (4.39) to simulate several simple ge-
ometries. We concentrate our attention on a pair of different configura-
tions: the single and the double layer structures.



EIT-based Dynamic Photonic Structures with atoms 99

Single Layer

' 1]
1 AN I 1
’ \‘ : |‘ 0,9 7
A} 1 ‘ Ay
0.8 ! \‘ PR 0.5 f Y
N_ I’ \‘ N_ 1 \\
LI\JO 0.6 ; \‘ Ec> ;
o ' K m 05
— 04 ) - '
Ay I’
I \ I
Al
0.2 '
Qe ” oo 0
70 80 90 100 110 120 130 60 70 80 90 100 110 120
t(us) t(ps)
(a) (b)
1.35} 25
2
1
o~ /
— , 15
LI\JO I: \\ E
i} ! i
~os ' -1
,
K 0.5
'I
0 = 0
60 70 80 90 100 110 120 60
t(ps)

FIGURE 5.12: Propagation of a light pulse across a single EIT layer: L =
200 ym, vy = 107 7¢, D = 6 10*7(weg/kgg). Gaussian pulse: oy = 10us,
lops ~ 5005, = 15 - 10°um. All curves have been obtained using the model
of (4.39). Panel (a) Static case: delay between a pulse propagating in vacuum
(dashed blue) and one crossing the EIT layer (solid red). Panels (b,c,d) Dynamic
cases. (b) Effect of a slow down ramp for the dressing field: Av = —0.5 vy,
7 = 3.5 us; (c) Effect of a speed up ramp: Av = +0.5 vy, 7 = 3.5 ps; (d) Effect
of a double ramp [as e.g. in Fig. 5.9]: v, /v, = 10, 7 = 3.5 s and storage time
7s = 8 us. The blue dashed lines in (b,c,d) refer to the static case.

We first consider a single EIT layer which has length L = 200 um. We
inject a gaussian pulse with temporal width in vacuum: oy = 0, /¢ = 10 ps.
Thanks to the small size of the sample with respect the pulse absorption is

negligible, as it can be seen from the explicit expression of the absorption
length (4.30).

The simplest quantity to measure is the time delay accumulated along
the propagation for different values of L: if the layer is characterized by a
group velocity vy, then the delay with respect the vacuum (v, = ¢) case
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is
L c— , vgr/c—0 L
T=—-"" y = (5.33)

Vgr € Vgr

For a sufficiently slow group velocity, very small variations in the atomic
layer thickness can be detected from the delay time. Simulated images
are shown in Fig. 5.12(a). Of course, this measurement requires a good
temporal resolution of the detector as well as some knowledge of the system
parameters, in particular of v, .

The simplest example of dynamical modulation consists of a single-ramp
modulation of .. As discussed above, the effect of the modulation depends
on several parameters: a crucial quantity is the ratio R = L/, between
the layer thickness and the pulse length. Here, we focus our attention on
the R < 1 case; the dressing field is modulated when the peak of the probe
is near the center of the layer. Only the small part of the pulse contained
in the layer then feels the modulation. As the layer is thin, the crossing
time can be faster than the ramp time, which means that different parts
of the pulse experience different portions of the ramp. Assuming the ramp
time to be longer than the crossing time, the effect of the modulation on
each given slice of the pulse can then be estimated as

el (r) — g e T A (D) (5.34)
v;r

where T is the time at which the slice exits the layer and the initial values
refer to the entrance of the slice in the EIT medium. If we approximate
the ramp as linear, the variation in the electric field is then given by
(Av/v},)(T/7), where Av is the amplitude of the group velocity ramp.
The plots of Fig. 5.12(b) and Fig. 5.12(c) show the resulting pulse in the
case of positive and negative values of Aw, respectively: one can see that
the modulation is most apparent in the Av < 0 case where the crossing
time is longer.

The last case we treat is the double ramp, that is illustrated in Fig. 5.12(d):
the pulse is slowed down and then accelerated back to the initial group
velocity. In the R < 1 case under consideration here, the part of the pulse
which is modulated during the slow-down ramp exits from the layer before
the restoring ramp has begun. This latter ramp is then responsible for the
creation of the peak in the trailing part of the pulse. The resulting shape
is very similar to the case shown in Fig. 5.9, yet time-reversed.

Double Layer

The EIT monolayer can be used as the building block for more complex ge-
ometries. As an example, the case of wavepacket manipulation in a double
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FI1GURE 5.13: Propagation of a light pulse across a EIT double-layer structure:
L = 30pum (each layer), interlayer distance AL = 3 107 ym, v, = 5 1077 ¢,
D=310° weg/kgg. Gaussian pulse: oy = 1 s, Lops ~ 4005, = 6 - 10*um. All
curves have been obtained using (4.39). (a) Slow down ramp in both layers:
Av = —0.5 vy, 7 = 50ns. (b) Speed up ramp in both layers: Av = 40.5 vy,
7 = 50mns. In (a,b) blue dashed lines correspond to the propagation without
modulation at the initial group velocities while the same for black dotted lines
with the final values of group velocity. (¢) Single ramps with opposite signs in
the different layers: Av = 40.5 vy, 7 = 50 ns (red dashed and black solid curves
are symmetric under a sign exchange between the two layers). (d) Double ramp
with opposite signs in the different layers for different storage times 7, = 0.1 us
(red solid), 0.5 us (green dashed), 1 us (black dotted).
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layer geometry is illustrated in Fig. 5.13. As in the previous discussions,
we restrict our attention to the short layer regime: in the specific case con-
sidered here, the gaussian pulse has a duration o; = 1 us, corresponding
to a , = 150 gm much longer than the single EIT layer L = 30 um and a
0, = 300 m much longer than the vacuum interlayer distance AL = 30m.

The use of the same single ramp for the dressing field on both layers
allows the creation of several similar structures on the same pulse. These
structures are separated by a delay depending on the distance between
the layers. This is shown in Fig. 5.13(a) and Fig. 5.13(b). By choosing a
fast enough slow-down ramp, the peak that appears between the different
layers can be shaped down to the absorption length. This fact is extremely
interesting in view of creating strongly localized polariton, whose dynamics
has been predicted to show peculiar features [106]. The result of a pair
of ramps with opposite signs in the different layers is illustrated in Fig.
5.13(c). By exchanging the signs of the ramps, a specular modulation can
be obtained.

The last case we present consists of a double ramp with opposite signs
in the two layers. In this case, an interesting enhancement of the central
peak is visible as a consequence of the double layer structure. This result is
easily understood by noting that the part of the pulse which is modulated
in the first layer by the first ramp gets modulated in the same way when
crossing the second layer during the second ramp. In this way, it can reach
higher values as compared to the single layer case previously considered.
This mechanism starts being effective as soon as the storage time is longer
than the interlayer delay time, 7, > (AL/c). The efficiency is maximum
when the storage time exactly equals the time required for the signal to
cross the whole double layer structure, 7, = (AL/¢) +2(L/v,,). For longer
storage times 7,, the enhancement is no longer effective. The resulting
pulse are shown in Fig. 5.13(d) for different values of the storage time 7.
In all the cases, the initial and final part of the pulse are unaffected by
the modulation.

5.4 THE EIT SLAB: LIGHT STORAGE

The case of a EIT layer in vacuum is presently of great experimental
interest for light storage purposes [29, 72-75]. The idea is very simple: by
switching off the control field €2, while the wavepacket is inside the EIT
medium, the DP is fully mapped into a metastable coherence p,,,. As this
has a vanishing group velocity and long lifetime, it can remain stored in
the atoms for macroscopically long times. When the control field €. is
switched on again, the wavepacket is retrieved.
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FI1GURE 5.14: Light Storage in an EIT layer. Q. is modulated in time from Q =
0.07wq to 2, = 0 with the same shape shown in the inset of Fig. 5.9. The storage
time is wo7s = 1350. The initial group velocity in the EIT layer is vy, = 0.11 c.
The pulse has a gaussian shape with kgo, = 540 in vacuum and the atomic layer
has a length kqLy = 10. Snapshots during the process in the absence of losses
Ye = Ym = 0: (a) Initial pulse (blue dotted line), pulse splitted immediately
after the stopping ramp (solid blue line) and counterpropagating wavepackets
during the storage time (dashed black line). (b) Emerging wavepackets after the
retrieval ramp in the absence of absorption (solid blue line) and in the presence
of losses, v, = 0.07wy (dashed red line). The arrows indicate the direction of
propagation of each pulse.
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The main limitations to the efficiency of a light storage process originate
from spontaneous emission processes from the excited state (a finite p,,
component is always present for any pulse of finite duration), leakages due
to the finite optical depth of sample as the usually considered systems are
shorter than the effective length of the pulse, and ground-state decoherence
Ym > 0]29,75]. Even though this last effect sets the ultimate limit to the
performances of light storage experiments, for the parameters considered
in the present work it is negligible as compared to the other processes.

A situation similar to the experimental realization in [32] is simulated
in Fig. 5.14: because of numerical limitations in the solution of the MB
equations, we have been forced to consider a EIT medium with a much
bigger vy, /c. Apart from this, all other parameters were rescaled in a way
to get the correct physics of the system. During the storage time, €2, is
made to vanish with the same temporal profile as shown in the inset in
Fig. 5.9.

As in the previous case, the process consists of three stages. During the
stopping ramp [Fig. 5.14(a)], the signal is cut in three parts: the front part,
which has already crossed the defect, is not affected by the modulation.
The central slice that is contained in the EIT layer is stored as an atomic
polarization and its electric field vanishes. When the back part of the pulse
hits the medium, this is no longer transparent and the pulse is reflected:
as the width of the reflectivity dip is proportional to the group velocity
vgr, reflectivity is in fact substantial in the light storage configuration
vgr = 019,29, 66].

When the retrieval ramp is applied, the excitations stored in the EIT layer
recover their electric field components and propagate out of the atomic
medium. The retrieval efficiency (defined as the ratio of this pulse to the
initial pulse) is 15% for this simulation, which qualitatively agrees with
the estimation in [32]. The three emerging wavepackets are clearly visible
in [Fig. 5.14(b)]. For this system the main problems are the leackages due
to small thickness of the atomic sample which is much smaller than the
waists of the laser beams.

To conclude this section, it is important to assess the role of dissipative ef-
fects in the light storage process. The pulse profiles in the presence of spon-
taneous emission from the excited state are shown as red dashed curves
in Fig. 5.14(b). The first part of the pulse is not affected by absorption
because the length of the sample is small as compared with the absorption
length. The retrieved pulse is only partially reduced by spontaneous emis-
sion processes. The reflected pulse is instead completely modified: when
). is turned down, localized excitations are created near the interface.
When Q. = 0, the metastable state is in fact decoupled from light; matter
excitations in the flat part of LP and UP bands are very sensitive to losses.
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For these reason, the reflected wavepacket quickly disappears as soon as
losses are included.

Also in the absence of absorption, the reflection process can strongly de-
pend on the structure of interfaces and provide reflected pulses with dra-
matically different shapes. This features can be of great interest when one
considers a Mott Insulator of 2-level atoms where absorption can be sup-
pressed as a consequence of the ordered lattice structure [15]. In this case,
information on the interface structure can be inferred from the reflection
properties.






CHAPTER 6

CONCLUSION AND PERSPECTIVES

In the present thesis, we have investigated the linear optical response of
ultracold atomic gases in different configurations. Light-atom strong cou-
pling, slow light behavior and dynamic structures are the main keywords
of this work.

In Part I, we have addressed the use of light as a probe for the structure of
an atomic Mott Insulator (MI). We have considered stationary situations
where the calculations have been carried out by using Transfer Matrix
technique in a 1D geometry. The system is of great interest because the
strong localization of atoms at the lattice site positions induces a suppres-
sion of absorption processes: this is promising in view of the observation
of strong light-atoms coupling. In particular, we have found visible signa-
tures of the interplay between the light-matter mixing and the diffraction
due to the periodic arrangement of atoms in both the band diagram and
the reflectivity spectra.

The high reflectivity shown by the two-level atomic system prevents the
propagation of resonant light inside such a sample. The coherent dressing
of three-level atoms which results into Electromagnetically Induced Trans-
parency (EIT) create a frequency window for light propagation in the form
of the so called Dark Polariton (DP). We have studied the scattering of
slow DP on defects as a non-destructive probe of the microscopic struc-
ture of the atomic MI. These features are robust with respect to absoprtion
within the EIT window.

Further results in this direction are expected from a full 3D treatment by
means of Scattering Matrix. In this case technical problems related to the
description of the optical response of atoms have to be addressed [15,18].
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The solution of the complete scattering problem from a defect in a MI
represents a big issue from both a theoretical and experimental point of
view [69,70]. The development of the Scattering Matrix code for atomic
systems is also of interest for the study of light scattering from several
randomly placed atoms which is at the basis of current investigations of
Coherent Backscattering from atomic samples [107].

Another possible development is related to the toy-model of an atomic two-
level impurity in a three-level system as the starting point for a complete
investigation of non-linear interactions at the single photon level.

In Part II, we have studied the propagation in time of a DP pulse in-
jected into a generic inhomogeneous and dynamic structure composed of
vacuum regions and EIT layers. We have built up a complete 1D Maxwell-
Bloch (MB) formalism, adapted to the presence of sharp interfaces through
the application of a modified Slowly Varying Envelope Approximation
(mSVEA). By using this formalism we have simulated both static and dy-
namic situations both in homogeneous geometries and at interfaces. Light
storage configurations have been computed as well.

We have shown a good agreement between the results of MB formalism
and the prediction of Adiabatic Transition theory for the inter-band cou-
pling due to a dynamic modulation of the control field intensity. We have
found a sharp deviation from the expected exponential decay of the asymp-
totic coupling for fast ramps. A more detailed study may be in order to
find specific form of the perturbation which suppress the coupling for fast
modulations and to extend to our case the study of absorption [92].

Withtin the MB formalism, we have simulated realistic configuration where
the inhomogeneity of the structure joined with the dynamic modulation
allow to tailor the shape of the propagating pulse. The patterns that are
imprinted in the electric field envelope are not destroyed by absoprtion.
These are examples of quantum processing of DP. The possibility to create
higly localized structures appears interesting in view of the observation of
peculiar regimes for the polariton propagation [106].

Furthermore, an extension of the MB formalism to 2D geometries is promis-
ing to study the trapping and guiding of DP within structures with non-
absorbing interfaces where to realize quantum billiards and polaritonic
circuits.



NOTATION

The acronyms used through this thesis are summurized here.

e e.m. : electro-magnetic;

e OBE: Optical Bloch Equations;

e EIT: Electromagnetically Induced Transparency:;
e MI: Mott Insulator;

e TM: Transfer Matrix;

e fBz: first Brillouin zone;

e MB : Maxwell-Bloch;

e SVEA: Slowly Varying Envelope Approximation;
e mSVEA: modified Slowly Varying Envelope Approximation;
e FDTD: Finite Difference Time Domain;

e DP : Dark Polariton;

e LP : Lower Polariton;

e UP : Upper Polariton;

Furthermore they are repeated the first time they appear in each chapter.

The physical constants that are used in this work are [103]

e Speed of Light: ¢ = 3-10°m/s;

e Permeability of Vacuum: pg = 47 - 1077 N/A?,
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e Dielectric constant of Vacuum: ¢y = 8.854 - 10712 F/m;

e Reduced Planck’s constant: i = 1.055 - 1073*J s;
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Visit Grant.
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2. Jun,22-Jul,2. Summer School Advances on Nanophotonics II at the
Ettore Majorana Centre in Erice.
Poster: LIGHT PROPAGATION IN ATOMIC MOTT INSULATORS.

3. Aug,27-Sep,7. Summer School Nowvel Quantum Phases and Non-
equilibrium Phenomena in Cold Atomic Gases at the ICTP Centre
in Trieste.

Poster: LIGHT PROPAGATION IN ATOMIC MOTT INSULATORS.

4. Nov,30. Joint Meeting Trento-Innsbruck Ultracold Bose and Ferm:
Gases at IQOQI in Innsbruck.

2008

1. Mar,25-29. Conference YAO 2008 (Young Atom Opticians) in Flo-
rence.
Talk: LIGHT PROPAGATION IN ATOoMIC MOTT INSULATORS.

2. Jul,1-11. International School of Physics Enrico Fermi, Course Quan-
tum Coherence in Solid State System, at Villa Monastero in Varenna.
Poster: SCATTERING OF SLOW LIGHT ON DEFECTS.

3. Oct,11-18. INFM School on Physics in Low Dimensions in Lucca.
Poster: 1D PROPAGATION OF SLOW LIGHT VIA TIME-DEPENDENT
ELECTROMAGNETICALLY INDUCED TRANSPARENCY.

2009

1. Feb,17-21. Conference YAO 2009 (Young Atom Opticians) in Vi-
enna.
Talk: PLAYING WITH LIGHT IN ATOMS: DYNAMIC ELECTROMAG-
NETICALLY INDUCED TRANSPARENCY.

VISITS

2008

1. Oct,8-10. Short Visit to the photonic crystal group of prof. Andreani
in Pavia. Invited by Dr. Gerace.
Talk: DYNAMIC PHOTONIC STRUCTURES USING ELECTROMAG-
NETICALLY INDUCED TRANSPARENCY.

2. Nov,16-26. Short Visit to the quantum optics group of prof. Imamoglu
at ETH in Zurich. Invited by Visiting Prof. Carusotto.
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2009

1. Jun,3. Short Visit to the photonic crystal group of prof. Andreani
in Pavia. Invited by Dr. Gerace.
Talk: PROPAGATION OF SLOW LIGHT VIA TIME AND SPACE DE-
PENDENT ELECTROMAGNETICALLY INDUCED TRANSPARENCY.

2. Jun,24-28. Short Visit to the group of Non Linear Dynamics in Quan-
tum Systems of prof. Buchleitner in Freiburg. Invited by Prof. Buch-
leitner.

Talk: PHOTON WAVEPACKET MANIPULATION VIA TIME AND SPACE
DEPENDENT ELECTROMAGNETICALLY INDUCED TRANSPARENCY.

3. Jun,29-30. Short Visit to the quantum optics group of prof. Fleis-
chhauer in Kaiseslautern. Invited by Prof. Fleischhauer.
Talk: PHOTON WAVEPACKET MANIPULATION VIA TIME AND SPACE
DEPENDENT ELECTROMAGNETICALLY INDUCED TRANSPARENCY.
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T also have the idea that the majority of people that want to read (only) this part
of the thesis are not that familiar with English, and maybe they know even less about
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Is this a conclusion? I think that it is more like a beginning...

<K Anche questa la manda direttamente il Padreterno?> domando.
< Tutto ci viene dal Padreterno>> borbotto Peppone. < Tutto: il bene e il
male. Tocca a chi tocca. E’ toccata a not.>>
[Giovannino Guareschi?]

2G. Guareschi. Tutto don Camillo (Vol. Primo). Ed. BUR (Rizzoli), 2008, p. 396.
Many thanks to Alberto and Carlotta Guareschi for their friendship.



