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Introduction

The theory of error correcting codes allows to encode data by adding redundancy
information to it, in order to be able to correct possible errors arose during the
transmission of this encoded data through a noisy channel. The majority of modern
communications use the field of bits as alphabet, and messages can be thought as bit
sequences of equal length k. Once the number of messages is fixed, an analysis of
the noise of the channel provides statistical information on the number and on the
kind of errors that may occur during the transmission. Based on this information,
to each message, we want to add the minimum possible redundancy allowing us to
detect and possibly correct all occurring errors. Clearly a larger redundancy could
correct at least the same number of errors but would overload the channel.

From a mathematical point of view, a code can be seen as the image of an injective
function f from a subset of {0,1}* of size M to a subset of {0,1}" of the same size,
with n > k. Thus f is also invertible.

One trivial example of f could be a function which simply concatenates a word w
to itself 3 times. Once sent through a channel which flips one bit with probability
1/3, when the encoded word f(w) is received, it will be very likely that if the bits
in position ¢, 2,37, for 1 < ¢ < k, disagree, then the transmitted bit was the one
occurring more often.

Applying £, i.e. encoding, and f=!, i.e. decoding, should be an “efficient” task, and,
given f, it should be “easy” to derive how many errors the code can correct. Fur-
thermore, we do not wish n to be much larger than k, as in the trivial example we
described, but at the same time n should be large enough to permit us to correct as
many errors as possible.

An efficient encoding/decoding function for which we can efficiently derive the num-
ber of correctable errors, can be constructed by imposing some specific algebraic con-
straints, yielding what are usually known as linear codes. This algebraic constraints,
though, severely limit the possible choices of f. In fact, there exist codes which are
not linear codes, i.e. do not embed a useful algebraic structure, but which can encode
more messages than any linear code and correct the same number of errors. On the
other hand, these codes do not have efficient encoding and decoding functions, and
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once the encoding function is given it is not easy to determine how many errors these
codes can correct.

In this thesis we deal with such “non-linear” codes, and we focus our research into
two main problems.

In Part II we deal with the problem of determining acceptable code parameters. In
other words, given the number of errors we want to correct and the length n of the
encoded message, we want to determine which is the largest number of messages M
that can be encoded. Usually it is not possible to give a precise value for M, but only
upper or lower limits. In particular, one of our main results is a closed formula for
an upper limit (bound) of M improving some previous estimates.

In Part IIT we provide a deterministic method, in some cases faster than a brute force
search, to find the number of correctable errors for any code, provided that the code
is represented in a particular efficient form. All methods we are aware of solving the
same problem are either brute force methods or probabilistic methods. Probabilistic
methods are very efficient, but can only be applyed to linear codes. Our result on
codes has also an applications in cryptography, since it allows to compute a particular
parameter called the nonlinearity of Boolean functions. These are functions used in
many cryptographic primitives to spread the entropy during encryption.

In more details, this thesis is structured as follows.

Part T is devoted to preliminaries, essential to understand the rest of the manuscript.
In particular we start in Chapter 1 with an overview on polynomial system solving,
with focus on systems with a finite number of solutions, then we provide an overview

on codes in Chapter 2, and an overview on Boolean functions in Chapter 3.

Part II begins with an overview on classical known bounds (Chapter 4), in partic-
ular focusing on upper bounds for nonlinear codes. Chapter 5 and 6 contain original
results. The first chapter generalizes an upper bound for linear codes, i.e. the Gries-
mer bound, to an infinite subset of a larger family of codes, called systematic. The
second chapter presents a new upper bound on the size of nonlinear codes, which
improves in many cases the most important classical upper bounds.

Part IIT faces two important related problems: finding the minimum weight (a
quantity related to the number of correctable errors) of a nonlinear code (Chapter 7)
and finding the nonlinearity of a Boolean function (Chapter 8). We provide original
efficient algorithms for both problems, applying similar techniques based on polyno-
mial system solving methods and fast Fourier transforms. In the first case we find



a deterministic algorithm which, in some cases, is faster than brute force, provided
the code is represented in a certain form which we prove to be as efficient as the
classical representation. In the second case we find a deterministic algorithm of the
same complexity of the best known algorithms which solve the same problem.

Part IV lists the Magma code which implement the new bound of Chapter 6, and
the algorithms of Chapter 7 and 8.






Part 1

Preliminaries






A brief introduction to polynomial system solving

In this chapter we introduce some basic notions and known results from [CLO07]
and [ST09]. Some material comes from the lecture notes of the course Coding Theory
lectured by M. Sala and written by E. Bellini, D. Frapporti, O. Geil, M. Piva, M.
Sala.

In particular, we introduce some important tools to solve a generic polynomial system

of equations with a finite number of solutions.

We denote by [F, the field with g elements, where ¢ is a power of a prime. Let
n > 1 be a natural number and let (IF,)"™ be the vector space of dimension n over F,.
We denote by K any (not necessarily finite) field and by K its algebraic closure.

1.1 Monomial ordering

A monomial in x4, ..., x, is a product of the form

Qo
T

where all of the exponents a; are non negative integers. The sum oy + ... + o is
defined to be the total degree of this monomial. We denote by M(X) = M the set

of all monomials in the variables x4, ..., z,.

A polynomial f in x4, ..., z, with coefficients in K is a finite linear combination

of monomials. That is,

f = Zaaxo‘, o € K,
o

where 2% = 27" - ... - 2% and the sum is over a finite number of m-uples a =
(a1, ..., a;). Then we call a, the coefficient of the monomial x%, we call a,z® a term,
and we denote by deg(f) the total degree of f which is the maximum |a| = a1 +. . .+,

such that the coefficient a, is nonzero.

Note that the sum and product of two polynomials is again a polynomial. Tt
is simple to prove that under addition and multiplication, K[z, ..., z,| = K[X] sa-
tisfies all field axioms except for the existence of multiplicative inverses (since, for
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Chapter 1. A brief introduction to polynomial system solving

example, 1/ is not a polynomial). For this reason K[X], the set of all polynomials

in x1,...,x, with coefficients in K, is called a polynomial ring.

As in the case of univariate polynomials, we would like to be able to arrange
the terms of a multivariate polynomial unambiguously, in descending (or ascending)
“order”. To do this, we have to define a monomial ordering <.

Definition 1.1.1. A monomzal ordering < is a binary relation on M such that:

1. Y my # mg € M, either my < mg or mg < my.

Y mqy,mg, m3 € M, if m; < ms and mo < mg, then my; < mg.
2. ¥ mi,mg,m € M if my < mo then my - m < my - m.
3.1 <m,Yme M,m# 1.

It can be proved that < is a well-ordering, i.e. every non-empty subset of M has
a least element.
Now that we have defined monomial ordering, we report some examples. We can

suppose that x; > ... > x, and let m;, my € M such that m; =z - ... - 22 and
my =l xfr

Lex: lexicographic order. We say that m, <., ms if there exists j such that a; < f;
and o, = for 1 <i < j <.

Example 1.1.2. Let M = M|z,y, z] and > y > z. Then
22 =yt and 2%y = 2y’z.
GrLex: graded lexicographic order and it is also call total lexicographic order. We
say that m; <grr mo if |a| < || or if |a| = |B] and my <, mo.
Example 1.1.3. Let M = M|x,y, 2] and x > y > z. Then

22 <yt and 2%y = ay’z.

DegRevLex: graded reverse lexicographic order. To say that m; <prp ms, first of
all we compare their total degrees: if |o| < |5| then my <pgry ms, otherwise we

51 Br—l

have to compare the total degree of ny = x{*-...-x "  and ny =z . .-x. ],

and so on.

Example 1.1.4. Let M = M|x,y, 2] and x > y > z. Then

22 <yt and 2%y2® < 2y?z since 2y < 2y’



1.2. Basic notions and properties of Grébner bases

Note that DegRevLex is the same to reverse the lexicographic order, that is,
mi1 <prr, Me if there exists j that a; > f; and o; = B for 1 < j <i <.

Weighted Degree. We assign a weight w; € N* to each variable z; and we denote
by w(mi) =Y, a;w; and by w(mgy) = >, f;w;. We say that my <, my if either
w(my) < w(mg) or w(my) = w(msz) and my <e, mo.

Example 1.1.5. Let M = M[z,y,z] and z > y > z. We assign the weight to
each variables w, = 2, w, =1 w, = 3. Then

22 < y* and 2%y2® = xy'z.
We will use the following terminology.

Definition 1.1.6. Let Q € N". Let f = Y ., a.x% be a non zero polynomial in
K[X] and let < be a monomial ordering. We say that z° is the leading monomial
of fif 2% = % for all o # B such that o € Q and it is denoted by Im(f) = 2° .
We denote by T(f) = agz® the leading term of f and by lc(f) = ag the leading

coefficient of f.

Given a monomial ordering, it can be proven that the leading monomial, the
leading term and the leading coefficient of f are well defined and unique.

Example 1.1.7. Let f = 42%y + xy®z + 5z in R[z,y, 2] and let =, be a lex order.
Then Im(f) = 2%y, lc(f) = 4 and T(f) = 42%y.

1.2 Basic notions and properties of Grobner bases

In this section we introduce ideals and Grobner bases.
Definition 1.2.1. A subset I C K[X] is an tdeal if
1. 0e .

2. If ffge I then f+gel.

3. If f € I and h € K[X] then fh € I.
Let fi,..., fs be polynomials in K[X]. If

I:{ZS:)\ifi\)\ieK[X]}

then [ is finitely generated by fi,..., fs and it is denoted by I = (f1,..., fs)-

An ideal generated by one element is called a principal ideal.
A commutative ring A is a Noetherian ring if any ideal I C A is finitely generated.

9



Chapter 1. A brief introduction to polynomial system solving

Definition 1.2.2. We define a semigroup ideal T' as a subset of M such that for
allt €T, m e M we havet-m e T.

Let tq,...,tx € M and set:
k
T = J{\i| A e M},
i=1

Then T is a semigroup ideal of M. We say that T" is generated by {t1,...,t;} and
we write T = (tq,...,tx).

Lemma 1.2.3. Let M C M and I = (m; | m; € M) be an ideal. Then a monomial

m lies in I if and only if m is divisible by m; for some m; € M.
Proof. See Lemma 2 of chapter 2 of [CLO07, §4]. O

Theorem 1.2.4 (Dickson’s Lemma). Every semigroup ideal is generated by a finite

set.
Proof. See Theorem 5 of chapter 2 of [CLO07, §4]. O

In the previous section, we defined the leading term of f € I. For any ideal I, we
can define its ideal of leading terms T(I) as the set of leading terms of elements of I.
That is,

T(I) = {Am | there exists f € [ with T(f) = Am}.

And we denote by (T(7)) the ideal generated by the elements of T(I).
In a similar way we can define the ideal of leading monomials of I, that is,

Im(7) ={lm(f) | fel} Cc M.
It is clear that lm([/) is a semigroup ideal.
Note that, if I = (f1,..., fx), then (T(f1),..., T(fx)) C (T(I)), but these two
ideals may be different and it is the same for Im(7).

Example 1.2.5. Let [ = (f}, fo) where f; = 2> —x and f, = 2y —y + 1. We use
lexicographic ordering on the monomials in K[z,y]. Then zf; —yf; =z, so x € I.
Thus x = T(x) € (T(I)) but x is not divisible by T(f;) = 22 or T(fs) = xy. Hence,
by Lemma 1.2.3, = &€ (T(f1), T(f2))-

Proposition 1.2.6. Let I C K[X] be an ideal. Then (T(I)) is a monomial ideal and
there are gy, ...,gx € I such that (T(I)) = (T(¢1),...,T(gx))-

10



1.2. Basic notions and properties of Grébner bases

Proof. See Proposition 3 of chapter 2 of [CLOO07, §5|. O

Theorem 1.2.7 (Hilbert Basis Theorem). Any ideal I C K[X] has a finite generating
set.

Proof. See Theorem 4 of chapter 2 of [CLOO07, §5]. O

We just noted, in Example 1.2.5, that not all bases {fi,..., fx} of an ideal I have
the special property that (T(I)) = (T(f1),...,T(fx)). Those bases for which the
equality holds give rise to the following definition.

Definition 1.2.8. Let I be an ideal and < be a monomial ordering. We say that
G =A{g1,...,9x} is a Grébner basis for I if (T(I)) = (T(g1),...,T(gx)). We
denote by GB(I).

Equivalently, G is a Grobner basis of [ if G C I and if for all f € I there exist
g; € G such that lm(g;) divides lm(f).

Theorem 1.2.9 (Buchberger Theorem). For every ideal I C K[X]| and for every

monomial ordering < on M, there exist a Gribner basis G for I.
Proof. See Corollary 6 of chapter 2 of [CLOO07, §5]. O

Moreover, there exists an algorithm, that is, Buchberger algorithm [Buc06, Buc98|
[CLOO07, 287| that transforms any finite set of generators for I into a Grobner basis.

Actually, Grobner bases computed using the Buchberger algorithm are often larger
than necessary. We can eliminate some unneeded generators by using the following

lemma.

Lemma 1.2.10. Let G be a Gribner basis for the polynomial ideal I. Let g € G be a
polynomial such that T(g) € (T(G\{g})). Then G\{g} is also a Gribner basis for I

Proof. See Lemma 3 of chapter 2 of [CLO07, §7|. O

Because of Lemma 1.2.10, we can define a minimal Grébner basis for I C K[X]
as a Grobner basis G for I such that for all ¢ € G we have that lc(g) = 1 and
T(g) ¢ (T(G\{g})).

Unfortunately, a given ideal I may have many minimal Grobner bases. But we can
define a special minimal basis, that we call a reduced basis. In this way to any ideal

we can associate a unique basis.

Definition 1.2.11. Let G = {¢1, ..., gx} be a Grobner basis for I. We say that G is
reduced if for all g € G, lc(g) = 1 and no monomial of g divides T(g;) where g; # g
and g; € G.

11



Chapter 1. A brief introduction to polynomial system solving

Proposition 1.2.12. Let [ # {0} be a polynomial ideal. Then, for a given monomial
ordering, I has a unique reduced Grébner basis.

Proof. See Proposition 6 of chapter 2 of [CLO07, §7|. O
It can be proved the following

Proposition 1.2.13. Let I be an ideal in K[ X] and let {g1,..., 91} be a reduced
Grébner basis of I with respect to some monomial order. For any f € K[X] there
exists a unique remainder r € K[X] such that no term of r is divisible by the leading
term of any g; and such that f —r belongs to I.

This unique polynomial 7, that we indicate with Nf(f,I), is sometimes called the
Normal Form of f w.r.t I.

For any ideal I in a polynomial ring K[X], X = {z1,..., .}, we denote by V(I)
the wvariety of I in K, that is the set of all zeros of I in K

VI)={PeK | f(P)=0 Yfel}.
Theorem 1.2.14. Let I = (f1,..., fi) be an ideal in K[X] and let P € K . Then
filP)=...= fi(P)=0 <= g(P)=0 Vgel.
Proof. See Proposition 9 of chapter 2 of [CLOO07, §5]. O

Definition 1.2.15. Let I be an ideal. If the cardinality of V(I) is finite, then I is
called a 0-dimensional ideal.

Theorem 1.2.16 (The Weak Nullstellensatz). Let K be an algebraically closed field
and let I C K[X] be an ideal satisfying V(I) = 0. Then I = K[X].

Proof. See Theorem 1 of chapter 4 of [CLO07, §2]. O

Definition 1.2.17. Forany Z C K a set of points, we denote by I(Z) the vanishing
tdeal of Z, T(Z) C K[X], that is, Z(Z) = {f e K[X] | f(P)=0VP € Z}.

Definition 1.2.18. Let I be an ideal in a polynomial ring K[X], the radical of I,
denote by \/T is the set VI = {f € K[X]| f* € I for some n > 1}.

Note that I C V1. If I = /I, then I is radical, that is, f* € I implies that f € I,
for some n > 1.
It is easy to prove that Z(Z) is radical (Corollary 3 of chapter 4 of [CLO07, §2|).

Theorem 1.2.19 (Hilbert Nullstellensatz). Let K be an algebraically closed field. If
I CK[X] is an ideal, then
VI=1I(V(I))

12



1.2. Basic notions and properties of Grébner bases

Proof. See Theorem 6 of chapter 4 of [CLO07, §2]. O

Theorem 1.2.20 (The Ideal-Variety Correspondence). Let K be an arbitrary field.
If I C Iy are ideals, then V(I3) C V(I1) and, similarly, if V(I2) C V(I1) are varieties,
then Z(V(11)) C Z(V(1))

Proof. See Theorem 7 of chapter 4 of [CLO07, §2]. O

Theorem 1.2.21. Let I C F,[X] be an ideal such that {z] —x; | 1 <i<r} C I,
then I is O-dimensional and radical.

Proof. If {z{ —z; | 1 <4 < r} C [ it means that V(I) C F] and then #V(I) < [F7| =
q". Thus I is 0—dimensional.

Since I C \/7, to prove that I is radical it is sufficient to show that VICI.

Let f = aym; +...a,m, where a; € K, m; € M such that m; = 27" - ... - 2;"" with
1 <4 < n. First of all note that f¢ = f mod I. In fact, since a € F, we have a? = a
and m{ =m; mod I since the field equations are in the ideal and so

1 —

D= (af ) = () (a0) = 2t =y

m r

If f € VI then f* € I by definition of radical of I, f* € I is equivalent to say that
f® =0 mod I. We can always consider that s < ¢ since, otherwise, we reduce s
module ¢q. So f* € = f*- f1° €I, thatis, f2=0 mod [ but f? = f mod [
and so we can conclude that f € I and VICI. O

We now define the escalier N(I), which is the set of all the monomials that are
not leading monomial of any polynomial in I:

Definition 1.2.22. The set N(I) = M\Im([) is called the Hilbert staircase or
footprint or escalier of 1.

Let I C K[X] there is a nice and natural connection between the number of zeros
of I and the number of points in its footprint w.r.t. any ordering.

Theorem 1.2.23. Let I be a 0-dimensional radical ideal in F,. For any monomial
ordering we have: #V(I) = #N(I).
Moreover, the set

B={m+1|meN()}

constitutes a basis for R as a vector space over K

Proof. See [CLOO0T7|, Propotiotion 3 p. 219, Proposition 1 p. 227, Proposition 4 p.
229. U
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Chapter 1. A brief introduction to polynomial system solving

We consider I C K[X] an ideal such that {z! —2; | 1 < i < r} C I and let
R =K[X]/I.

Theorem 1.2.24. Let I be an ideal in K[X]| and let < a monomial ordering. The

set

B={m+1|meN()}
constitutes a basis for R as a vector space over K

Proof. See Theorem 5 of [Gei09]. O

1.3 Solving systems of polynomials equations

Solving multivariate polynomial system of equations is a very important issue in
applied mathematics, with many applications in area such as coding theory and cryp-
tology.

The Polynomial System Solving problem, sometimes referred to with the acronymous
Po0SSo, is a NP-Hard problem in computer algebra.

One way to solve a system of polynomial equations it to find the corresponding Gréb-
ner basis. The historical algorithm to compute Grébner bases is the Buchberger algo-
ritm ([Buc06, Buc98|, [Mor05], [CLOO07, 2§7]). Other algorithms (FGLM [FGLM93],
F4 [Fau99|, F5 [Fau02|, fast FGLM [FM11]) have been proposed to compute Grobner
bases, often more efficiently.

A new trend in the field is to propose dedicated tools to solve structured polynomial
systems (for using the symmetries induced by a finite group [FR09| or the bilinear
structure [FEDS11| or determinantal ideals [FEDS10]).

Dedicated methods for finite fields have also been proposed [BFP09]|, [BFP12|, or for
0-dimensional ideals [MCD*10], [Mor05] (Algorithm 29.3.1).

In Chapters 7 and 8 we deal with three types of systems of polynomial equations,

all with a finite number of or no solutions:
TYPE 1 Multivariate polynomial system

e over the binary field F,
e in k variables x1,...,x:, and

e with r squarefree-polynomials of degree < k.
TYPE 2 Multivariate polynomial system

e over the rational field Q (or a prime field F, with p ~ 2F),

14



1.3. Solving systems of polynomials equations

TYPE 3

in k variables x1,...,x;, and
with one dense (~ 2* terms) squarefree-polynomial g(z1,. .., zx) of degree
k, plus k “Fo-field equations” 3 — xy, ..., 27 — Tp.

Multivariate polynomial system

over the rational field Q (or a prime field F, with p ~ 2F),

in k4 1 variables zq,...,xg,t, and
with one dense (~ 2% terms) squarefree-polynomial g(zy,...,7) —t of
degree k, plus k “Fo-field equations” 2% — 1, ..., 23 — xy.

In particular, in our case, we know that TYPE 1 and TYPE 2 systems either have no

solutions or have a finite number of solutions in {0, 1}*. Regarding TYPE 3 systems,

they always have a finite number of solutions such that (xy,...,zx,t) € {0,1}* ® Z,

for a certain n > k.

We write one example for each type of system we need to solve.

Example 1.3.1 (TYPE 1). In this case we have £ = 4 and » = 11 with an ideal

IGFQ[xl,...

, 4] /(2] + 21, 23 + x2, 23 + 3, 27 + x4) such that

I = {zzoz324 + T22374,

T1T2T3T4 + T1X324,

T1T3T4 + T2X34,

T1T2X3%4 + T1X2X3 + T1T2Ty + T122,
T1X2T3T4 + T1T2X3 + T2X324 + T2X3,
T1T2T3T4 + T1T9T3

T1T2T3X4,

T12223 + X123,

T1T2T3XL4 + T1T2Ty + ToX3Ty + T2y,
T1T2T3 + T1X324,

T1ToT3X4 + T1T2T3 + T1X3T4 + T1X3 + ToX3T4 + ToX3 + T3Ty + .Tg} .

Note that here the equations x? + 1, 23 + To, 3 + x3, 25 + x4 are implicit, since we

are working over the affine algebra Fo[zy, ..., z4]/{(2? + 11, 73 + 29, 23 + 23, 23 + T4).

The solutions of the systems are

V = {(0,0,0,0), (0,0,0,1),(0,0,1,1),(0,1,0,0), (1,0,0,0), (1,0,0,1), (1,1,0,1)} .

15



Chapter 1. A brief introduction to polynomial system solving

Example 1.3.2 (TYPE 2). In this case we have k = 4 and an ideal I € Q|xq, ..., 4]
such that

2 2 2 2
I ={x] —x1,25 — 9, x5 — T3, Ty — T4,
— 4ZL‘1{L'QI‘3ZL'4 + 4[L‘1I‘QZL‘3 - 2l‘1[L‘2l‘4 - 3[L‘1l‘2 + 8l‘1$3l‘4+

- 4[L‘1l‘3 - 4[L‘1l‘4 -+ 6l‘1 -+ 2l‘2l‘3l‘4 - 4[L‘2[L‘3 + 4[L‘2 - 5[L‘3{L‘4 + 7l‘3 + 4[L‘4 - 7} .
The solutions of this system are
VY =1{(0,0,1,0),(0,1,1,0),(1,1,0,0)} .

Example 1.3.3 (TYPE 3). In this case we have k = 4 and an ideal I € Q[z1, ..., z4]
such that

2 2 2 2
I ={x] —x1,25 — 9, x5 — T3, Ty — T4,
— 4ZL‘1{L'QI‘3ZL'4 + 4[L‘1I‘QZL‘3 - 2l‘1[L‘2l‘4 - 3[L‘1l‘2 + 8l‘1$3l‘4+

— 4[L‘1l‘3 - 4[L‘1l‘4 + 6l‘1 + 2l‘2l‘3l‘4 — 4[L‘2[L‘3 + 4[L‘2 - 5[L‘3{L‘4 + 7l‘3 + 4[L‘4 — t} .
The solutions of this system are

V = {(0,0,0,0,0
0,1,0,0,4
1,0,0,0,6

1,1,0,0,7

0,0,0,1,4),(0,0,1,0,7),(0,0,1,1,6)
0,1,0,1,8),(0,1,1,0,7),(0,1,1,1,8)
1,0,0,1,6),(1,0,1,0,9), (1,0,1,1,12),
1,1,0,1,5),(1,1,1,0,10),(1,1,1,1,9)} .

9
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1.4 The 0-dimensional case

From a practical point of view, it is much faster to compute a Grobner basis for
a degree ordering such as the degree reverse lexicographic (DegRevLex) order than
for a lexicographic order. For O-dimensional systems, it is usually less costly to first
compute a DegRevLex-Grobner basis, and then to compute the Lex-Grobner basis
using a change ordering algorithm such as FGLM [FGLM93|. This strategy, called
zero-dim solving, is performed blindly in modern computer algebra softwares such as
MAGMA or MAPLE. This is convenient for the user, but can be an issue for advanced
users. In general, a polynomial system of equations with a finite number of solutions
may yield more efficient algorithms to solve it. In particular, this is the case when
the solutions of the system lie in a finite field, as is our case.
The polynomial system solving problem over finite fields is sometimes referred to as
PoSSo,.
From a complexity-theoretical point of view, PoSSo, is NP-Hard independently of

16



1.4. The 0-dimensional case

the size ¢ [GJ79]. Thus, any algorithm for PoSSo, should be exponential in the worst
case. However, this does not exclude that large family of PoSSo, instances can be
solved in sub-exponential or polynomial complexity. In addition, the exact exponent
occurring in algorithms of exponential complexity is often a critical question in ap-
plications.

We now present some approaches which, according to the author, deserve considera-
tion when trying to solve a system of polynomial equations with a finite number of

solutions.

1.4.1 Representation of 0-dim. ideals

The following notions can be found in [Mor05].
Let X = xy,...,x,. Let J C K[X] be a zero-dimensional ideal, deg(J) = s, and
denote A := K[X]/J the corresponding quotient algebra, which satisfies dimg(A) = s.
For any f € K[X], we will denote [f] € A its residue class modulo J and ®; the
endomorphism ®; : A — A defined by

®s([g]) = [fglVg] € A.

Natural representation

If we fix any K-basis b = {[b1],..., [bs]} of A so that A = spang(b), then for each
g € K[X], there is a unique (row) vector, the Grobner description of g,

Rep(g,b) := (v(g,b1,b),...,7(g,bs, b)) € K*
which satisfies
9] =D (g, b;,b)[b)]
J

and the endomorphism @ is naturally represented by the square matrix

M([f],b) = (v(fbi, bj, b)) : @p(bi) = [fbi] = Z"Y(fbiabjab)[bj]-

Definition 1.4.1. A natural representation of J is the assignement of
o a K-basis b ={[b],...,[bs]} CA and

e the square matrices Ay = (a(h)> = M([zp],b) for each h,1 < h < k.

ij
Remark that, for each f(z1,...,2x) € K[X], M([f].b) = f(A1, ..., Ag).

An equivalent (via the remark above) definition of natural representation can require

the further assignement of

17



Chapter 1. A brief introduction to polynomial system solving

e 53 values fyi(]l.) € K such that
l
qiq5] = Z%(j) 4]
.

for each 7,7,1,1 <1i,5,1 < s.

This notion was introduced in [Tra92b, Tra92a| and reconsidered in [AMMO3], [Mor05,
Definition 29.3.3] under the name of Grobner representation.

The endomorphism @ and its represention M ([f], b) were introduced, with f a linear
form, in [AS88| as a tool for efficient solving 0-dimensional ideals.

If J is given by its Grobner basis wrt a term-ordering < its natural (actually: “lin-
ear” with the definition below) representation can be obtained via [FGLM93, Proce-
dure 3.1].

If Jis an affine complete intersection defined by r polynomials a natural representation
of it can be efficiently computed via Cardinal-Mourren Algorithm [J.P93, Mou05]. We
will assume that both the input and the output ideals of the algorithm are given via

a natural representation.

A Grdébner-free approach to natural representation

Recalling that a set N C M is called an escalier if it is an order ideal, i.e. if for
each \,7 € M, A\t € N = 7 € N and properly extending [Mor05, Definition 29.3.3]

we set

Definition 1.4.2. A natural representation is called a linear representation iff q = N

18 an escalier.

If N = {vy,...,vs} is an escalier then [Mor09] T := M\N is a semigroup ordering,
i.e. T€ T = 7A€ T for each \,7 € M; we set G:={r,...,7,} C T the minimal
basis of T.

1.4.2 Traverso’s Algorithm

Traverso introduced his algorithm in a talk at MEGA-1992, [Tra92b| and in
[Tra92al, in a scenario related to Grobner bases computation of a zero-dimensional
ideal I. The assumption is that, in the course of the computation, one produces an
escalier N D N_(J) and a finite list g1, ..., g, of S-polynomials to be reduced.

The setting was reformulated in [AMMO3], [Mor05, Algorithm 29.3.8] as follows: given
a zero-dimensional ideal | C K[X] via its natural representation

b={b1,....bs}, by =1,M:= {(a(h)> 1 ghgk},

lj
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1.4. The 0-dimensional case

and a finite set of elements F' := {gi,...,¢9.} C K[X], given via their Grobner de-

scriptions

¢ = (", D), ) = y(g;, b, bVi,j,1 <i<r1<j<s,

? 8

so that ¢g; — Zj 165 b € |, for each i, compute with good complexity the linear
representation of the ideal J :=1U (F) .
The basic idea of the algorithm (Algorithm 1) is the following: if we consider an

element g € F', having the Grobner description
g— chbj el, ¢ #0,
j=1

and we enlarge | by adding ¢ to it, then we obtain the relation

t—1
b = — Zcflcjbj mod U {g};
j=1
the decomposition K[X] = | & spang (b) of K[X] into disjoint K-vectorspaces is then

transformed into
K[X] = (1U{g}) @ spang(a \ {¢.}),

and we only have to substitute, in each Grobner description ijl d;b; of the poly-
nomials g; and xhbl — which are respectively encoded in the vectors ¢ and in the
rows (al(f), . als ) of the matrices of M — the instances of b, with — 2211 ¢ tesb,
thus getting > (d; — ¢, '¢;d,)b;.

Since J is an ideal, the inclusion in it of g implies that J necessarily contains also the
polynomials x;,g; note that, if the current natural representation is

(b, M) : b= {b,,..., 0.}, M = M(b) := { (dl(]’f’) }
and g = ) ;_, ¢b] then
Thg = Z b = Z (Z cldl(;l)> bj
=1 j=1 \i=1

which must be inserted in the list F' in order to be treated in the same way.
At termination, if I C {1,...,n} denotes the set of indices of the elements b; which
have not being removed from b in this procedure, then J is described by the natural

representation
b = {b;,i € I}, M'—{(al] ),l,j el,1<h<n)
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Chapter 1. A brief introduction to polynomial system solving

Note that Traverso’s Algorithm needs to perform at most s While-loops, each
costing O(ns?).

Algorithm 1 (Traverso) To compute the natural representation of J := | U
(g1, -, 9r) C K[X] from the natural representation of | C K[X].
Input: | C K[X], a zero-dimensional ideal, deg(l) = s
b :={[b],...,[bs]} C A:=K[X]/I, by,...,bs € K[X]
M = {(ag”) = M([z],b) €K, 1< h < k;}
(b, M), natural representation of |
J:=1U(g1, ..., 9,) CK[X],0:=deg(J), [gi] := D7_, ¢}[bj], for each i,1 <i <
B:={cW,...,cM},c®:=(c,... ) €K
Output: b, M natural representation of J
1: while B# (0 do
2:  Choose ¢ := (cq,...,¢5) € B
32 B:=B\{c}
4 B:=BU{cM:MeMAcM#(0,...,0)}
5. v:=max{j € {l,...,s}:¢; #0}
6
7
8
9

Remove [b,] from b ;

s =s5—1

for h =1..k do

ah) = (a,, ..., A1y Gy 1y - -5 Q)

10: Remove ¢-th column and row from A, € M
11: ¢c:=¢,
12:  Remove (-th component from ¢
13: forh=1.kj=1.sl=1.sdo
14: al(;l) = al(;.l) — éflcjél(h)
15: B :=B,B:=1
16: for d:= (dy,...,ds11) € B' do

17: d:=d,

18: Remove (-th component from d
19: for j =1..sdo

20: dj :=d; — & le;d

21: if d # (0,...,0) then

22: B:=BuU{d}

23: return b, M

Example 1.4.3. Let k = 2K = Fo,| = (23 + 21,235 + x2), 21 > x5 with graded

reverse lexicographical monomial ordering.

20



1.4. The 0-dimensional case

The basis b = N(I) of Kz, z5]/l is

b =1{q1,q,q,qu} ={1,72, 71,1172} .
Suppose we want to find the basis b’ of the algebra Kz, zo]/(I U J), where J =
(91,92) = (w2 + Lxyw0 + 21 + 22 + 1),
Consider g; = x5 + 1 = 0 as a new relation, i.e. | =1U (g;). This means that from
now on, whenever we find z, in elements of b and J we can apply the substitution
To = 1.
We remove g; from |, i.e.
J:J\{g}: <SL’1.T2—|—SL’1+.T2—|—1>.
We update the base b
g =1
(2 = x5 reduces to 1
q3 = 1
qs = x1x9 reduces to x .
Thus now b = {q1,¢3} = {1, 21 }.
We update the polynomial in J = (2129 + 1 + x5 + 1)
T1Xo + 21 + 2o+ 1 reduces tox; +x1+1+1=0.

Thus now J = (), i.e. we can stop the computation and return b = {1,z;}, which

shows that the polynomial system

(2

x§+:p2:()

.T2—|—1:0

l‘1$2+l‘1+l‘2+1:0

\
has only two solutions over (F3)?, which happen to be (0, 1), (1,1).

We now report the same example with vectorial notation.

Example 1.4.4. Let | = (2 + zy,23 + x9) € Flry,x9], 21 > 7o with respect to
DegRevLex order.
The linear representation of | is given by

b = {]-7 Zg, X1, xle}

0010\ /0100
000 1] o100
M=Aabmbl =0 o 1 ol o 0 0 1
0001/ \0oo0o0 1
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Let g1 =22+ 1,92 = 2129 + 21 + 22 + 1 and let us compute the linear representation
of J =1U (g1, 92) using Traverso’s algorithm.
The linear descriptions of g, go are

B={(1,1,0,0),(1,1,1,1)}.
Since B # () we choose ¢ = (1,1,0,0). We have

B=B\{cJU{cM:MeM}={(1,1,1,1),(0,0,1,1)}
t=max{j € {l,...,s}:¢; #0} =2.

We can remove the second element x5 from b, and update M:

b = {1737171’1562}

010 1 00
M = 010,{0 01

0 01 0 01
c=(1,0,0).

Since we have that
(1,1,1,1) reduces to (0,1,1)
(0,0,1,1) reduces to (0,1, 1)

then B = {(0,1, 1)}, which is still not empty.

We choose ¢ = (0,1, 1).

We have
B=B\{c;U{cM:MeM}={(0,1,1)}
v=max{j € {1,...,s}:¢; #0} =3.

We can remove the third element z1x5 from b, and update M:

b={1,2}

{0 6]
01 0 1

c=(1,0).

Since we have that
(0,1,1) reduces to (0,0)

then B = (), and we are done, returning b, M as linear representation of J = 1U (x5 +
1, 2929 + 21 + 22 + 1).
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1.4. The 0-dimensional case

Determining if a solution exists

In Chapter 7 and 8 we need to know if a system of polynomial equations has
a solution or not, rather than finding all the solutions. This is somehow a simpler
problem and can be solved with a simpler version of Traverso’s algorithm. The idea
is briefly described in Algorithm 2, where T(g) denotes the leading term of g and

q(9) = 9 — T(g).

Algorithm 2 To know if 1 € J:= (2 —zy,..., 2] — 21, 01, ..., gr) C K[X]
Input: S :={g1,...,9:},9 € K[X]
Output: TRUE if 1 € J, FALSE otherwise

1: N := N(J)

2: R:=10

3: for g € S do

4:  Remove g from S

5: Add (T(g).q(g)) to R

6: for fe€ S do

7 Replace T(g) with ¢(g) in f

8: for (t,q) € R do

9: Replace T(g) with ¢(g) in ¢

10: for z € X do

11: Compute h :=zg mod (z{ — x1,..., 2} — xy)
12: if h contains a term ¢ such that ¢t ¢ N then
13: Find (¢,q) in R // such pair must exists in /7
14: Replace t with ¢ in h

15:  Remove T(g) from N
16: return TRUE if N = (), FALSE otherwise

1.4.83 Hybrid approach

In [BFP09|, the authors present a hybrid approach which can improve the way of
solving zero-dimensional multivariate systems over finite fields with at least 22 ele-
ments. This approach uses Grobner bases techniques and exhaustive search. A more
accurate analysis of the hybrid approach is given in [BFP12| by the same authors.
In general, when we want to solve a system which has coefficients over a finite field
[F,, we can always find all the solutions in the ground field by exhaustive search. The
complete search should take O(q*) operations if k is the number of variables. The idea
of the hybrid approach is to mix exhaustive search with Grobner bases computations.
Instead of computing one single Grobner basis of the whole system, we compute the
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Chapter 1. A brief introduction to polynomial system solving

Grobner bases of ¢" subsystems obtained by fixing r variables. The intuition is that
the gain obtained by working on systems with less variables may overcome the loss
due to the exhaustive search on the fixed variables.

The main problem is to realize if such a trade-off may exists and in that case to
choose the best one. That is to choose properly the value of » making the complexity
of the hybrid approach minimal. If Cop(A) is the complexity of solving a Grobner
basis using algorithm A, then the complexity of the hybrid approach is clearly

O(¢"Cap(A)) .

In [BFP09| an algorithm to find the best trade-off when using F5 algorithm to solve
each Grobner basis is given.

1.4.4 XL family of algorithms

One particular algorithm has received considerable attention from the crypto-
graphic community: the XL algorithm [CKPS00] (and its several variants, e.g.,
[Cou04], [CP03], [CP02]) was originally proposed by cryptographers to tackle prob-
lems arising specifically from cryptology. In particular XI. was introduced as an
efficient algorithm for solving polynomial equations in case a single solution exist.
Other more general variants of XL algorithm, such as MutantXL [BDMMO09],[BCDM10],
MXL, [MMDBO08], MXL3 [MCD"10], have been proposed.

Though, in [ACFP12], it is claimed that the XL family of algorithms can be simulated
using redundant variants of Fj algorithm.

1.4.5 Boolean polynomial systems

In [BD09], the authors introduce a specialized data structure for Boolean polyno-
mials based on zero-suppressed binary decision diagrams(ZDDs), which are capable of
handling these polynomials more efficiently with respect to memory consumption and
also computational speed. Furthermore, they concentrate on high-level algorithmic
aspects, taking into account the new data structures as well as structural properties
of Boolean polynomials. For example, a new useless-pair criterion for Grobner basis
computations in Boolean rings is introduced.

The authors provide an entire framework, i.e. a C-++ library called PolyBoRi (Polynomials
over Boolean Rings), to efficiently compute Grobner basis over Boolean polynomials.

The authors point out that the advantage of PolyBoRi grows with the number of
variables.
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1.4. The 0-dimensional case

1.4.6 Magma approach

The software Magma implements various optimized versions of Buchberger algo-
rithm and F, algorithm, see [CBFS13] for details. Visit also [Stel3| for some practical
timings.

In particular, since Version 2.15, a special type of polynomial ring is available: the
boolean polynomial ring in k& variables. Such a ring is a multivariate polynomial
ring defined over Fy but such that all monomials are reduced modulo the field re-
lations SL’ZQ = x; for each 1 < ¢ < k (so a bit vector representation can be used
for monomials). As we have already mentioned, the ring is the quotient algebra
Folx1, ...,z /(23 + x1,..., 27 + x3). This particular structure allows very fast com-
putations, though it is not declared which particular algorithms are used in this case.
Furthermore, since Version 2.20, Magma includes a new dense variant of the Fy al-
gorithm.

Quoting from Magma documentation [CBFS13]:

The dense variant is currently only practically applicable to input systems
over a finite field where the input polynomials are considered “dense”; that
is, if the input polynomials are written as a matrix with columns labeled by
the monomials, then the input matrix should be dense. Equivalently: if the
field size is q and the set of all monomials occurring in the input has size m,
then the number of monomials in each input polynomial should be reasonably
close to (1 - 1/q)m.

Also, according to Magma documentation, a new experimental optional heuris-
tic which can be selected for the algorithm when solving systems of equa-
tions over GF(2), called the Reduction Heuristic, which can give an even
greater reduction in time and memory usage for some large examples.

The Reduction Heuristic is a new experimental heuristic which can be selected
in the dense variant of F4 when attempting to solve certain kinds of systems
of equations over GF(2) where it is assumed that there is a very small number
of solutions, so the Groebner basis will consist of mostly linear polynomials
or collapse to 1 when there is no solution. The heuristic attempts to reduce
the size of the matrices involved in the linear algebra phase of each F4 step.
When the heuristic is selected, the run may simply fail, but when it succeeds,
it often saves significant time and memory usage. The kinds of systems for
which the saving in time and memory usage tends to be greatest are those
such that in the F4 steps of maximal degree D, the number of S-polynomials
is relatively small compared to the total number of monomials of degree D.
Currently the Reduction Heuristic depends on a manual choice by the user of
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Chapter 1. A brief introduction to polynomial system solving

a numerical parameter M. Thus if B is the sequence of input polynomials, to
select the Reduction Heuristic with parameter M, one should currently invoke
the algorithm with something like the following:

GroebnerBasis(B, D: ReductionHeuristic := M) ;
where M is the expected maximal degree reached in the computation.

To understand how to correctly choose M, in particular for the binary case, please
see [Stel3| or [CBFS13|.
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A brief introduction to nonlinear and systematic

codes

2.1 Basic notion and notation

We first recall a few definitions. A good introduction to coding theory can be
found in [PBH9S|.
Let F, be the finite field with ¢ elements, where ¢ is any power of any prime.
Let n > k > 1 be integers. Let C' C Fy,C' # (). We say that C' is an (n,|C]),-code.
Any c € C'is a word. Note that here and afterwards a “code” denotes what is called

a “non-linear code” in literature.

Definition 2.1.1. Let ¢ : (F,)F — (F,)" be an injective function and let C' = Im(¢).

k

We say that C is an (n,q"),-systematic code if ¢(v); = v; for any v € (F,)* and

any 1 <1 < k.

If C'is a vector subspace of (F,)", then C' is a linear code. Clearly any non-zero
linear code is equivalent to a systematic code.

We denote by C(n, k, q) the class of all systematic codes, by Cy(n, k, ¢) the subset
of C(n, k, q) of codes with the zero-vector as a word. In case ¢ = 2, we will often write
C(n, k) instead of C(n, k,2) and Cy(n, k) instead of Cy(n, k, 2).

Definition 2.1.2. Let C' be an (n,k,q) code. We call C* a punctured code of C,
the code obtained from C deleting the same coordinate i, 1 <1 < n, in each word.

Remark 2.1.3. If C' is a systematic code, then a punctured code C* obtained by
deleting a non-systematic component is still systematic. So, that, if C' € C(n, k, q),
then C* € C(n — 1, k, q).
Moreover if C' is linear then any punctured code C* of C' is linear.

From now on, F will denote I, and ¢ is understood.

From the definition of systematic code it follows that, given a systematic code C,
to any vector a € F¥ we can associate only one vector b € F*~* such that (a,b) € C,
where (a,b) is the concatenation of ¢ and b. From now on, given a systematic code
C, we use F' to denote this association, a b In particular any ¢ € C' can be seen
as ¢ = (a, F(a)) for (exactly) one a € F*.
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We denote with d(c, ) the (Hamming) distance of two words ¢, € C, which
is the number of different components between ¢ and ¢/. We denote with d a number
such that 1 < d < n to indicate the minimum (Hamming) distance of a code,
which is

d= min {d(c,d)}.

c,c'eC,c#c!

Note that a code with only one word has, by convention, distance equal to infinity.
The whole F" has distance 1, and d = n in a systematic code is possible only if k = 1.

From now on, n, k are understood.

Definition 2.1.4. Let [, m € N such that | < m. In F™, we denote by B/"(x) the
set of vectors with distance from the word x less than or equal to I, and we call it the
ball centered in x of radius .

For conciseness, B denotes the ball centered in the zero vector.
Obviously, B]" is the set of vectors of weight less than or equal to [ and
L /m
= 30 (")
J=0 J

We also note that any two balls having the same radius over the same field contain

the same number of vectors.

Definition 2.1.5. The number A,(n,d) denotes the mazimum number of words in a

code over By of length n and distance d.

Definition 2.1.6. Let C € C(n, k,q). We denote by W; = W;(C') the number of words
in C' with weight i. Integer set {Wy, ..., Wy} is called the weight distribution of
C.

Definition 2.1.7. Let C' € C(n,k,q). We denote by D, = D;(C) the number of
(unordered) word pairs having distance i, i.e.:

D; = |{(cg,¢2) | 1,2 € C,d(cy, c0) =i}
Integer set {Dy, ..., D,} is called the distance distribution of C.

Definition 2.1.8. A code C' is distance-invariant if for any 1 < i < n and any
¢, € C, we have

{y e Cldley) =i} =y e Cld(d,y) =i}
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2.2. Equivalence of codes

Clearly linear codes are distance-invariant. The distance distribution of distance-
invariant codes (containing the zero vector) can be immediately obtained from their
weight distribution.

Two important parameters are the information rate and the relative distance of a
code.

Definition 2.1.9. For a (possibly) nonlinear code over F, with M codewords and
length n, we call information rate, or simply rate, of the code, the value log, M/n.
If the code has minimum distance d, we call relative distance the value d/n.

If a code is a (n, ¢*,d),-linear code, the information rate is trivially k/n. In the
linear case the rate of a code is a measure of the number of information coordinates
relative to the total number of coordinates. The higher the rate, the higher the pro-
portion of coordinates in a codeword that actually contain information rather than
redundancy.

The relative distance is a measure of the error-correcting capability of the code rela-
tive to its length.

Once the relative distance is fixed, a code is considered to be good if its information
rate is the highest possible. Actually it is not easy to determine this relation, and
coding theorist often can only formulate upper and lower bounds on this values.

The last fundamental and largly studied parameter we want to mention is the

covering radius of a code.

Definition 2.1.10. We define the covering radius p = p(C') to be the smallest integer
s such that Fy is the union of the spheres of radius s centered at the codewords of C.
FEquivalently,
C) = ind .
p(C) max min (z,c)

When s = Ld;;J we say that the code is perfect. Such codes satisfy the so called

Sphere Packing bound (Section 4.2.1).

2.2 Equivalence of codes

Definition 2.2.1. Two binary codes Cy and Cy of length n are said to be permutation
equivalent if there exists a coordinate permutation m such that Cy = {n(c) | ¢ € C}}.
They are said to be equivalent if there exists a vector a € (Fy)™ and a coordinate
permutation T such that Cy = {a +7(c) | c € Cy}.
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Chapter 2. A brief introduction to nonlinear and systematic codes

Note that two equivalent codes have the same minimum distance.
Two structural properties of binary codes are the rank and the dimension of the
kernel.

Definition 2.2.2. The rank r of a binary code C, is the dimension of the linear span
(C) of C, i.e.
r = rank(C) = dim((C))

The kernel ker(C) of a binary code C' is defined as
K =ker(C)={z e (Fy)" |2+ C=C}.

We will often assume 0 € C. Note that if C' is linear, then 0 € C, but if C is
nonlinear, then 0 does not need to belong to C. In this case, we can always consider
a new binary code C' = C' + ¢ for any ¢ € C, which is equivalent to C, such that
0ecC.

Since 0 € C, ker(C) is a binary linear subcode of C.
We denote with dg the dimension of the kernel of C'. In general, C' can be written as

the union of cosets of K, and K is the largest such linear code for which this is true
[BGHS83|. Therefore

t

C=JE+a),

i=0
where ¢ = (0,...,0),t+ 1 = |C]/2¢x.

Example 2.2.3. Consider the code C
C={(1,1,0,0),(0,1,1,0)(0,0,1,0),(0,0,1, 1),
(0,0,0,0),(1,1,1,0),(1,0,1,0),(1,1,1,1), }
We have that
K =ker(C) ={(1,1,0,0),(0,0,0,0)}
The |C|/29% = 4 cosets of C are

0,0,0,0
0,0,1,1
1,0,1,0
0,0,1,0

=

0,0,0,0
0,0,1,1
1,0,1,0
0,0,1,0

1,1,0,0)}

1,1,1,1)}
)
)

)

)

~=
A~~~ ~~ —~

={

The parameters r,dx can be used to distinguish between non-equivalent binary

0,1,1,0)}
1,1,1,0)}

)

K+ (
K+ (
K+ (
K+ (

S~ Nt N
~— ~— ~— ~—
o~ o~ o~ o~

)

codes, since equivalent ones have the same r, dg.
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A brief introduction to Boolean function

In this chapter we summarize some definitions and known results from [Carl0]
and [MS77], concerning Boolean functions and the classical techniques to determine

their nonlinearity.

We denote by F the field F5. The set F” is the set of all binary vectors of length
n, viewed as an [F-vector space.
Let v € F*. The Hamming weight w(v) of the vector v is the number of its nonzero
coordinates. For any two vectors vy, vy € F", the Hamming distance between v; and
vy, denoted by d(vy,vy), is the number of coordinates in which the two vectors differ.

A Boolean function is a function f : F” — F. The set of all Boolean functions from
F” to F will be denoted by B,.

3.1 Representations of Boolean functions

3.1.1 FEvaluation vector

We assume implicitly to have ordered F", so that F" = {py,...,pan}.
A Boolean function f can be specified by a truth table, which gives the evaluation of
f at all p;’s.

Example 3.1.1. A Boolean function in Bs is specified by the truth table:

T1 o .Tg‘f(X) ‘
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Chapter 3. A brief introduction to Boolean function

Definition 3.1.2. We consider the evaluation map:

B, —F"  fe= f=(f(p1)s--- fp2)).
The vector f is called the evaluation vector of f.

Example 3.1.3. Let f € Bs, f(z1, %2, 23) = 172 + x123 + 2. We order the vectors
in F? as follows:

V1 = (anao)a V2 = ana 1)a V3 = (07 1a0)7 Vg = (170;0)7

vs = (0,1,1), v5=(1,0,1), v;=(1,1,0), vs=(1,1,1).

o~~~

So we have:
f=1(0,0,1,0,0,1,1,1).

Once the order on F” is chosen, i.e. the p;’s are fixed, it is clear that the evaluation
vector of f uniquely identifies f.

3.1.2  Algebraic normal form

A Boolean function f € B, can be expressed in a unique way as a square free
polynomial in F[X| = Flzy,...,x,], i.e.
f=2 X"
veln

where XV = g% ... g%

This representation is called the Algebraic Normal Form (ANF).

Example 3.1.4. Let f € B3 be the function in the previous example. This function
is equal to one if and only if (z1+1)(zo+ 1)x3 = 1 or 21 (z2+ 1)xg = 1 or xyx9w5 = 1.
Then the ANF is:

f(X) = (x1 4+ D) (zg + 1)z + x1(22 + 1) 23 + 212973 = T12973 + Toxg + T3 .

Definition 3.1.5. The degree of the ANF of a Boolean function f is called the alge-
braic degree of f, denoted by deg f, and it is equal to max{w(v) | v € F" b, # 0}.

Let A, be the set of all affine functions from F” to F, i.e. the set of all Boolean
functions in B,, with algebraic degree 0 or 1. If a € A,, then its ANF can be written
as

a(X) =ag +Zaixi.
i=1

It is interesting to find properties of Boolean functions which are invariant under an
affine coordinate change (we say that they are affine invariants).
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3.1. Representations of Boolean functions

Remark 3.1.6. Let AGL(2,n) be the general affine group acting over . By changing
the coordinates AGL(2,n) acts on B,. In other words, any orbit of AGL(2,n) shares

the same affine invariants.
Proposition 3.1.7. The algebraic degree of f € B,, is an affine invariant.

There exists a simple divide-and-conquer butterfly algorithm ([Carl0|, p.10) to
compute the ANF from the truth-table (or vice-versa) of a Boolean function, which
requires O(n2") bit sums (with big O constant 1/2), while O(2") bits must be stored.
This algorithm is known as the fast Mdbius transform.

3.1.3 Numerical normal form

In [CG99| a useful representation of Boolean functions for characterizing several
cryptographic criteria (see also [CGO01[, [Car02]) is introduced.
Boolean functions can be represented as elements of K[X]/(X? — X)), where (X?— X)
is the ideal generated by the polynomials 22 — z1,...,22 — x,, and K is Z, Q, R, or
C.

Definition 3.1.8. Let f be a function on F" taking values in a field K. We call the
numerical normal form (NNF) of f the following expression of f as a polynomial:

n

Flan ) =Y M) =) axm,

uelFn =1 uelm

with A, € K and u = (uq, ..., uy,).

It can be proved ([CG99|, Proposition 1) that any Boolean function f admits a
unique numerical normal form. As for the ANF, it is possible to compute the NNF
of a Boolean function from its truth table by mean of an algorithm similar to a fast
Fourier transform, thus requiring O(n2") additions over K and storing O(2") elements
of K.

From now on let K = Q.

The truth table of f can be recovered from its NNF by the formula

flu) = Z)\G,Vu e,

a=u

where a < u <= Vi € {1,...,n} a; < u;. Conversely, as shown in [CG99| (Section
3.1), it is possible to derive an explicit formula for the coefficients of the NNF by
means of the truth table of f.

33



Chapter 3. A brief introduction to Boolean function

Proposition 3.1.9. Let f be any integer-valued function on F". For every u € F",
the coefficient \, of the monomial X" in the NNF of f is:

A= (1" Y ()M f(a). (3.1)
a€F™|a=<u

It is possible to convert a Boolean function from NNF to ANF simply by reducing
its coefficients modulo 2.
The inverse process is less trivial. One can either apply Proposition 3.1.9 to the
evaluation vector of f, or can apply recursively the fact that

a+[g‘b = a+Zb+Z (—Qab) s (32)

and the fact that each variable has to be square-free (we are working over the affine
algebra K[z, -+, x,|/(x? — 21, -+, 22 —1,)).

Example 3.1.10. Let
FO (@1, 9, 13) = 2012005 — 2129 — a3 + 1
be a Boolean function in NNF. Reducing its coefficients modulo 2 we obtain
FO (@1, 22, 23) = 2122 + 2aw3 + 1.

Notice that the ANF has only three monomials, while the NNF has four monomials.
This is due from the fact that passing from ANF to NNF each sum in F involving two
terms is equivalent to a sum in Z involving three terms, as shown in Equation (3.2).
The inverse process can be done recursively, first converting the sum of xxs + xox3
over F and then the sum over F of its result with the term 1, precisely (indicating
with @ the sum in F and as usual the sum in Z):

(2172 @ 2ox3) D 1 = (2179 + 1213 — 2(2172) (2273)) B 1 =
= (2122 + wox3 — 2(21202) (T223)) + 1+
— 2(x1x9 + wowy — 2(1120) (T273)) =
= T1X9 + Tox3 — 2:613:;:63 +1—2x129 — 2w923 + 4$1£L’§$3 =

= 2010973 — T1Xy — Toxz + 1

3.2 Nonlinearity of a Boolean function

Definition 3.2.1. Let v € F"*. The Hamming weight w(v) of the vector v is the
number of its nonzero coordinates. For any two vectors vy,vy € F", the Hamming
distance, d(vy,vy), between vy and vy is the number of coordinates in which the two

vectors differ.
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3.3. Walsh transform of a Boolean function

Definition 3.2.2. Let f, g € B,,. The distance d(f, g) between f and g is the number
of v € F" such that f(v) # g(v).

The following lemma is obvious:

Lemma 3.2.3. Let f, g be two Boolean functions. Then

d(f,g) =d(f,g) =w(f +g).

Definition 3.2.4. Let f € B,,. The nonlinearity of f is the minimum of the distances

between f and any affine function

N(f) = min d(f, @) .

aG.An

We denote by v(n) the following natural number

v(n) = maxN(f).

Proposition 3.2.5. The non-linearity of f € B,, is an affine invariant.
The maximum nonlinearity for a Boolean function f is bounded by:

max{N(f) | f€ B} <2"! —2571, (3.3)

3.3 Walsh transform of a Boolean function

Definition 3.3.1. The Walsh transform of a Boolean function f € B, is the following

function:
F:F'—Z oz Yy (—1)"vH0,

yekn

where x -y is the scalar product of x and y.
We have the following fact: ([Carl0]|, p.42)
Fact 3.3.2.

N(f) = min{2"' — ZF(v)} = 2! — 1max{ﬁ(v)}

1
velfFn 2 2 veFn»

Definition 3.3.3. The set of integers {EF(v) | v € F} is called the Walsh spectrum
of the Boolean function f.
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Chapter 3. A brief introduction to Boolean function

It is possible (JCar10], p.18) to compute the Walsh spectrum of f from its evalua-
tion vector in O(n2") integer operations (with big O constant 1), while storing O(2")
integers, by means of the fast Walsh transform (the Walsh transform is the Fourier
transform of the sign function of f). Thus the computation of the nonlinearity of a
Boolean function f, when this is given either in its ANF or in its evaluation vector,
requires O(n2") integer operations and a memory of O(2").

Faster methods are known in particular cases, for example when the ANF is a
sparse polynomial [Call3al, [Call3b].

The Walsh transform of a Boolean function f satisfies the following relation

Fact 3.3.4. Let f € B,, and let F' be the Walsh transform of f. Then

{ 22" ify =0

Y F)F(z+y) = 0 ifyt0

x€efn
Corollary 3.3.5 (Parseval’s equation).
> Fa)=2".
rzelfn
Let o« =Y " a;z; (so a € A, with ap = 0). Then

F(a) _ Z (_l)mu—i-f(a:) .

xzelfn

We observe that F(a) is equal to the number of 0’s minus the number of 1’s in the
vector f+ a. Then

~

Fla)=w(f+a+1)—w(f+a)=2"-2d(f,a).

So we have

d(f,a)=2""' - ZF(a).

| —

In the same way, we obtain that

Ad(f,a+1)=2""1+ ~F(a).

| —

3.4 Non-linearity and Walsh transform

Let m be a monomial in Flz1, ..., x,] with deg(m) = k > 2, then we will see that
N(m) =w(m) '. Let a € Ay, a # 0, 1:

d(0,a) < d(0,m) + d(a,m),

Tt is well-known that w(m) = 2"~*.
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3.4. Non-linearity and Walsh transform

then
d(a,m) > w(a) — w(m) =271 — 277k,

As w(m) = 2"k < 2n71 — 27k for any k > 2, then we have that N(m) = 2n~F,

From the relation between the distance and the Walsh transform, we have that

1. 1 A
ol n—1__ - —_on—1_ =~
N(f) = min(2 5 (a) =2 max | F'(a)] .
From Parseval’s equation we can deduce that max,cp |F(a)| > v/2* = 25. Then
N(f) <w(n) <207t =227 (3.4)

This bound, valid for every Boolean function, is called the universal non-linearity
bound. In this bound the equality occurs if and only if |F(a)| = 2% for every a € F™.
The corresponding functions are called bent functions. They can exist only for even
values 2 of n, because 2"~ — 22! must be an integer. For n odd, inequality v(n) <
271 — 25-1 cannot be tight. If n = 2d + 1, then

v(n) =v(2d+1) <[22 — 2% 1] = |22 — /22071

As regards lower bounds, it is well-known that for any n = 2d + 1 there exist some
quadratic functions with non-linearity 22¢ — 2¢. So we have the following result

Theorem 3.4.1. Let n = 2d+ 1 be an odd integer. Then
924 _ 9d < y(n) < |22 — /22071
For n = 2d + 1, it has been shown that
v(n) =2% —2% forn =1,3,5,7,

and

v(n) > 22 — 2% for n > 15.

Moreover, v(15) > 16276. While for n = 9, 11, 13 nothing is known, apart from
Theorem 3.4.1. We summarize the situation for n odd in the following table:

2actually, we will see in the following section, that they exist for every n even.
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Chapter 3. A brief introduction to Boolean function

n | Maximum non-linearity
3 v(3) =2

5 v(5) =12

7 v(7) = 56

9 240 < wv(9) <244

11| 992 < p(11) < 1001
13 | 4032 < v(13) < 4050
15 | 16276 < v(15) < 16293
17 | 65280 < v(17) < 65354

Table 3.1: Maximum non-linearity for n odd

3.5 Bent functions

In this section n is an even integer.

Definition 3.5.1. A Boolean function f € B,, is called bent if |F(a)| =23, for every
acF".

Example 3.5.2. Let f € By, f(z1,%2,73,74) = x122 + x374. If we compute the
Walsh transform of f for any a € F*, we see that F'(a) = %4, so f is bent.

‘ a F(a) H a F(a) H a F(a) H a F(a) ‘
0,0,0,0)] 4 [[(1,0,0,00] 4 [, 1,,00] 4 [o1,1)] -4
(0,0,0,1)| 4 ||(0,0,1,1)| —4 | (1,0,1,0)| 4 | (1,1,0,1)| —4
0,0,1,0)| 4 |(0,1,0,1)] 4 [@,1,00)]| -4 || (1,1,1,0)| —4
(0,1,0,0)| 4 ||(1,0,0,1)| 4 | (0,1,1,1)| —4 | (1,1,1,1)| 4

A bent function f € B, is further away from any affine function @ € A,. More
precisely, we have the following proposition:

Proposition 3.5.3. A Boolean function f € B, is bent if and only if its distance
between any affine function is equal to 271 4+ 2271,

We have a bound on the algebraic degree of a bent function:
Proposition 3.5.4. If f € B,, is a bent function and n > 2 then deg f < 3.

For any even n and an even integer m < n we can construct bent function as
the sum of a bent function in m variables and a bent function in n — m variables as
follows
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3.5. Bent functions

Proposition 3.5.5. Let f € B, such that f(z1,...,2,) = g(z1,. .., Tpm)+A(Ts1, - -, Tn),
with g € B,,, and h € B,,_,,. Then f is a bent function if and only if g and h are bent

functions.

Corollary 3.5.6. For any even n > 2 the Boolean function f = xix9 + x304 + -+ +

Tp_1Tn 1S bent.

Since N(f) = 2"~! — 257! for any bent function f (see equation 3.4), and at least

one exists for every n even, then we have

Theorem 3.5.7. For n even, v(n) = 2" — 2371,

n | Maximum non-linearity
2 v(2) =1

4 v(4) =6

6 v(6) = 28

8 v(8) =120

10 v(10) = 496

12 v(12) = 2016

14 v(14) = 8128

16 v(16) = 32640

Table 3.2: Maximum non-linearity for n even
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Introduction

The problem of bounding the size of a code depends heavily on the code family
that we are considering. In this part we are interested in three types of codes: linear
codes, systematic codes and non-linear codes. Referring to the subsequent section
for rigorous definitions, with linear codes we mean linear subspaces of (F,)", while
with non-linear codes we mean (following consolidated tradition) codes that are
not necessarily linear. In this sense, a linear code is always a non-linear code, while a
non-linear code may be a linear code, although it is unlikely. Systematic codes form
a less-studied family of codes, whose definition is given in the next section. Modulo
code equivalence all (non-zero) linear codes are systematic and all systematic codes
are non-linear. In some sense, systematic codes stand in the middle between linear
codes and non-linear codes. The size of a systematic code is directly comparable with
that of a linear code, since it is a power of the field size.

In this part we propose some theoretical bounds, that is, bounds on the size of a
code that can be obtained by a closed-formula expression. Algorithmic bounds exist,
and actually one of these (the Linear Programming bound [Del73|) is considered in
general the most powerful known bound.

Any upper bound for non-linear codes is also an upper bound for both systematic
codes and linear codes, while an upper bound for systematic codes is also an upper
bound for linear codes. Given the constraint on the size of systematic codes, when we
consider an upper bound on the size of non-linear codes, we will consider the largest
power of ¢ which is less than or equal to the upper bound.

The algebraic structure of linear codes would suggest the knowledge of a high num-
ber of bounds strictly for linear codes, and only a few bounds for the other case.
Rather surprisingly, the literature reports only one bound for linear codes, the Gries-
mer bound (|Gri60]), no bounds for systematic codes and many bounds for non-
linear codes. Among those, we recall some theoretical bounds: the Johnson bound
([Joh62],[Joh71|,[HP03|), the Elias-Bassalygo bound (|Bas65],[HP03]), the Levenshtein
bound ([Lev98|), the Hamming (Sphere Packing) bound and the Singleton bound
(|[PBH98]), and the Plotkin bound ([Plo60]|, [HP03]).

Since the Griesmer bound is specialized for linear codes, we would expect it to beat
the other bounds, but even this does not happen, except in some cases. So we have an
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unexpected situation where the bounds holding for the more general case are numer-
ous and beat bounds holding for the specialized case. Actually, as far as it concern
the Griesmer bound, it seems to hold also in the more general systematic case. We
investigate this fact in Chapter 5, and we prove the bound holds also for an infinite
family of systematic codes.

Chapter 4 is an overview of known bounds, with a special focus on upper bounds.
In Chapter 6 we present an original upper bound which holds for all codes containing
a systematic code, and we compare it with other well known upper bounds.
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Overview of known classical bounds

4.1 Preliminaries

For ease of reading, we first recall a few definitions.
Let IF, be the finite field with ¢ elements, where ¢ is any positive power of any prime.
Let n > k > 1 be integers. Let C' C (F,)", C' # (). We say that C'is an (n, |C|),-code.
Any ¢ € C'is a codeword. Note that here and afterwards a “code” denotes what is
called a “non-linear code” in the introduction.
Let ¢ : (F,)* — (F,)" be an injective function and let C' = Im(¢). We say that C is
an (n, ¢*),-systematic code of dimension k if (¢(v)); = v; for any v € (F,)* and
any' component 1 < i < k. If C is a vector subspace of (F,)", then C is a linear
code. Clearly any non-zero linear code is equivalent to a systematic code.
From now on, F will denote F, and ¢ is fixed.
We denote with d(c, ) the (Hamming) distance of two words ¢, € C, which is
the number of different components between ¢ and ¢’. We denote with d a number
such that 1 < d < n to indicate the minimum distance of a code, which is d =
min, vec£o{d(c, ) }. If C'is an (n, M),-code with distance d then we can write that
C'is an (n, M, d),-code. We will omit ¢ when clear from the context. Note that a
code with only one codeword has, by convention, minimum distance equal to infinity.
The whole F" has minimum distance 1, and d = n in a systematic code is possible
only if k£ = 1.

From now on, n, k are fixed.

Definition 4.1.1. Let [, m € N be such that | < m. In F™, we denote by B]"(x) the
set of vectors with distance from the word x less than or equal to I, and we call it the
ball centered in x of radius .

For conciseness, B]" denotes the ball centered in the zero vector.

Obviously, B]" is the set of vectors of weight less than or equal to [ and

=Y ("),

J=0

ISubscript i indicates the i-th component of a vector.
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Chapter 4. Overview of known classical bounds

We also note that any two balls having the same radius over the same field contain

the same number of vectors.

Definition 4.1.2. The number A,(n,d) denotes the mazimum number of codewords

in a code over F, of length n and minimum distance d.

We now recall some results regarding the quantity A,(n,d), whose proofs can be
found in [HP03| or in [Rom92|.

Theorem 4.1.3. It holds that
o Ifd>1 then Ay(n,d) < A,(n—1,d—1).
o Ifn>1 then Ay(n,1) = q" and A,(n,n) = q.
e If ¢ =2 and d is even, then Ay(n,d) = As(n—1,d —1).

The last property holds since if d is odd, then C' is an (n, M, d) code if and only
if the code C' obtained by adding a parity check bit (i.e. the sum of all the bits of
a codeword) to each codeword in C' is an (n 4+ 1, M,d + 1) code. So in order to
understand the behavior of As(n,d) it is sufficient to understand its behavior for d

evel.

Theorem 4.1.4. Let C' be a code with distance d and length n on IF,. Then:
A,(n,d) < qA,(n—1,d)

Proof. Let C be an (n,M,d) code on F, and let M = A,(n,d). Given v € F, we
denote by (), the subset of C' of elements with v in the n-th position. For some v,
the set C, is an F, code with at least M /q codewords. Erasing from the words in C,
the n-th component, a code B of length n — 1 and distance d is obtained. So that

M
— < |G| < Ay(n—1,4d)
q

which implies

4.2 Upper bounds

4.2.1 The Hamming upper bound

From the fact that the spheres of radius t = L%J are pairwise disjoint, the sphere

packing bound (or Hamming bound ) immediately follows:
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4.2. Upper bounds

Theorem 4.2.1 (Hamming bound).

n

q
Ayn,d) <
0 4) = g

Proof. Let M be the total number of codewords in a code C. The union of the
balls of radius ¢ around all codewords is contained in (IF,)". Then, since each ball is

non-intersecting, summing the number of elements in each, we obtain:
M|B| <q"

Since last formula holds for any code, we have:

n

q
| Bl

Aq (n7 d) S

Codes that meet the Sphere Packing bound are called perfect.

4.2.2  The Plotkin upper bound

First, we provide a binary version of the Plotkin bound and its general version in

the case of any alphabet.

Theorem 4.2.2 (Plotkin bound - binary case [Plo60]). We have two different cases:

1. If d is even and 2d > n then

Aaln,q) <2 de—nJ

2. If d 1s odd and 2d + 1 > n, then

As(n, d) g% d+1 J

2d+1—n
We report the proof of the first inequality.

Proof. Let C' be a generic binary (M, n) code (in particular the theorem will hold
when M = As(n,q), where M is the number of codewords and n the length of the
code. The bound is proved by bounding the quantity Z(x’y)e()%#y d(z,y) in two

different ways.
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Chapter 4. Overview of known classical bounds

On the one hand, there are M choices for  and for each such choice, there are M — 1
choices for y. Since by definition d(z,y) > d for all z and y (x # y), it follows that

> d(zy) = M(M - 1)d.
(z.y)€C? zy
On the other hand, let A be an M x n matrix whose rows are the elements of C'.
Let s; be the number of zeros contained in the 7’th column of A. This means that
the 7’th column contains M — s; ones. Each choice of a zero and a one in the same
column contributes exactly 2 (because d(z,y) = d(y,z)) to the sum > - d(z,y)

Z d(z,y) = ZQsi(M — 5).

z,yeC

and therefore

If M is even, then the quantity on the right is maximized if and only if s; = M/2
holds for all 7, then

1
Z d(z,y) < anM?

z,yeC

Combining the upper and lower bounds for ) d(z,y) that we have just derived,

z,yeC
1
M(M —1)d < 5nM?
which given that 2d > n is equivalent to
2d
M < )
—2d—n

wez| |

Since M is even, it follows that

2d —n

On the other hand, if M is odd, then >} 2s;(M — s;) is maximized when s; = 21

which implies that
1
> d(z,y) < 5n(M2 —1).
z,yeC
Combining the upper and lower bounds for vayec d(z,y), this means that

M(M = 1)d < %n(M2 )

or, using that 2d > n,

Since M is an integer,

M < 2d 1| = 2d 1 <2 d
—|2d—n - |2d—n " l2d—n|’

This completes the proof of the bound. O
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Plotkin bound is a very strong bound and it is experimentally known to be very
tight in the tiny range where it can be applied. In fact, in the binary case Leven-
shtein proved that if Hadamard’s conjecture is true then Plotkin’s bound is sharp. A
discussion and analysis of this facts can be found in [Rom92|.

Though Hadamard’s conjecture is probably true, its resolution remains a difficult
open question. Let us indicate with P(n,d) the Plotkin bound in the binary case. In
[dLGO1] de Launey and Gordon consider the ratio R(n,d) = As(n,d)/P(n,d). They
present an efficient heuristic for constructing for any d > n/2, a binary code which
has at least 0.495P(n,d) codewords. Their result is confirmed by a computer calcu-
lation, which shows that R(n,d) > 0.495 for d up to one trillion.

Plotkin bound says that a good binary code (meeting this bound) must have about
the same number of ones and zeros on each column of the M x n matrix of all code-
words.

Plotkin bound has been generalized to any alphabet by Blake and Mullin (p. 84 of
[BM76]):

Theorem 4.2.3 (Plotkin bound - g-ary case). Let g be an integer and dq > n(q—1),
then:

dq
And < —"1
o) < dg —n(qg—1)

Elias gave another refinement of the bound which is stated in Section 4.2.5.
Using theorem 4.1.4 and the Plotkin bound, we can derive the following properties:

1. if d is even, then Ay(2d,d) < 4d,

since Ay(2d, d) <pnm 242(2d — 1,d) <piothin 2 - 2 | 5727 | = 4d;

2. if d is even, then A5(2d + 1,d) < 8d;
3. if d is odd, then A5(2d,d) < 2d + 2;
4. if d is odd, then A»(2d + 1,d) < 4d + 4.

We leave to the reader the proof of (2), (3) and (4).

4.2.3 The Johnson upper bounds

A nonlinear (n, M,d) code C over F, is a constant weight code provided every
codeword has the same weight w.
Define A,(n,d,w) to be the maximum number of codewords in a constant weight
(n, M) code over F, of length n and minimum distance at least d whose codewords
have weight w. Obviously A,(n,d,w) < A,(n,d).
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Theorem 4.2.4 (Restricted Johnson bound for A,(n,d,w)).

nd(q —1)
Aq(n, d,w) < L]wz —2(q — L)nw + nd(q — 1)J

provided qu* — 2(q — 1)nw +nd(q — 1) > 0

Removing the restriction of quw? — 2(¢ — 1)nw + nd(g — 1) > 0 Johnson obtained:

Theorem 4.2.5 (Unrestricted Johnson bound for A,(n,d, w)). The following
cases hold:

1. If 2w < d, then Ay(n,d,w) = 1.

2. if 2w > d and d € {2e — 1,2e}, then, setting ¢* =q— 1,

Ay(n, d,w) < {ﬂ {M { {WJ JH

w w—1 e

3. If w < e, then As(n,2e — 1,w) = Ay(n,2e,w) = 1.

4. if w > e then,

As(n,2e — 1,w) = As(n,2e — 1,w) < F V_l { {WJ JH

w |w—1 e

The bounds on A,(n,d, w) can be used to give upper bounds on A,(n,d) also due
to Johnson ([Joh62],[Joh71]). These bounds strengthen the Sphere Packing bound.
The idea of the proof is to count not only the vectors in F, that are within distance
t = (d —1)/2 of all codewords (that is, the disjoint spheres of radius ¢ centered at
codewords) but also the vectors at distance ¢+ 1 from codewords that are not within
these spheres.

Theorem 4.2.6 (Johnson bound for A,(n,d)). Let t = |(d —1)/2]

1. If d is odd, then

n

q
A (n,d) <
’ - t n i I (q_l)t+1_ d A (nvdvd)
> i=0 (z)<q - 1)+ ) Aq(nydyt(‘iz) -

2. If d is even, then

n

q
AQ(”? d) <
=~ . B ; (tn )(qil)t-ﬁ—l
> im0 (z)(q - 1)+ qu(n,d,t—i—l)
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4.2. Upper bounds

3. If d is odd, then

4. If d is even, then

5. If d is odd, then

(4.1)

Bound 4.1 strengthens the Sphere Packing bound and the two bounds in fact
agree precisely when (¢ + 1)|(n — t). Recall that codes that meet the Sphere Packing
bound are called perfect. An (n, M,2t+ 1) binary code with M = Ay(n, 2t + 1) which
attains the Johnson bound 4.1 is called nearly perfect. The classification of such codes
is known. One example of nearly perfect code is the [256, 16, 6]- Nordstrom-Robinson
code, of which we provide a Magma construction in Section 9.1.

4.2.4  The Singleton upper bound and MDS' codes

The next bound is a rather weak bound in general.

Theorem 4.2.7 (Singleton bound).
Aq(n,d) S qnfdJrl

Proof. First observe that there are ¢" many g-ary words of length n, since each letter
in such a word may take one of ¢ different values, independently of the remaining
letters.

Now let C be an arbitrary g-ary block code of minimum distance d. Clearly, all
codewords ¢ € (' are distinct. If we delete the first d—1 letters of each codeword, then
all resulting codewords must still be pairwise different, since all original codewords
in C' have Hamming distance at least d from each other. Thus the size of the code
remains unchanged.

The newly obtained codewords each have length
n—(d—1)=n—-d+1
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Chapter 4. Overview of known classical bounds

and thus there can be at most

n—d+1
q

of them. Hence the original code C' shares the same bound on its size |C|:
O] < Ag(n,d) < "
O

Codes reaching the Singleton bound are called Mazimum Distance Separable (MDS)
codes. This class of codes contains the very important family of codes known as Reed-

Solomon codes.

4.2.5 The Elias upper bound

Extending the ideas of Plotkin, in 1960 Elias discovered a new bound without
publishing it. The same bound was published by Bassylago in 1965 [Bas65].
Despite this bound is rather weak, its importance lies in the fact that the asymptotic
form of this bound is superior to many classical bounds.

Theorem 4.2.8 (Elias bound). Let r = 1 — ¢~'. Suppose that w < rn and w? —
2rnw + rnd > 0. Then

n

rnd q
w? — 2rnw +rnd | B|

A,(n,d) <

(4.2)

4.2.6  The Linear Programming upper bound

This bound, discovered by Delsarte in 1975 [Del73], is in general the most powerful
of the classical bounds, but it requires the use of linear programming. Before stating
the bound we need to introduce a couple of new definitions.

Definition 4.2.9. The (Hamming) distance distribution of a code C' of length n is
the list B; = B;(C) for 0 <i <n, where

Bi(C)=> [{veC|dv,c)=1i}.

ceC

Definition 4.2.10. The Krawtchouck polynomial K;"(x) of degree k is defined by

o=y () (15)

§=0
for 0 <k <n.

Theorem 4.2.11 (Linear Programming bound). The following hold:

52



4.2. Upper bounds

1. When q > 2, Ay(n,d) <max{> " _, By}, where the mazimum is taken over all
B,, subject to the following conditions:

(a) Bo=1and B, =0 for1 <w <d-—1,
(b) B, >0 ford <w <mn, and
(c) > B (w) >0 for1 <k <n.

2. When d is even and q =2, Ay(n,d) <max{> " _, B}, where the mazimum is

taken over all B,, subject to the following conditions:

(a) Bo=1 and B, =0 for 1 <w <d—1 and all odd w,
(b) B, >0 ford<w<mn, and B, <1, and
(¢) S0 BuKp?(w) >0 for 1 <k < |n/2].

Solving the inequalities of this theorem is accomplished by linear programming,
hence the name. At times other inequalities can be added to the list which add more
constraints to the linear program and reduce the size of > " | B,,. In specific cases
other variations to the Linear Programming bound can be performed to achieve a

smaller upper bound.

4.2.7  The Levenshtein upper bound

In 1978, Levenshtein proved a bound in the setting of systems of orthogonal poly-
nomials. The article was written in Russian. The first English version of this bound,
stated using the language of coding theory, can be found in [Lev95|, published in
1995. In [Lev98| the whole theory regarding this bound is exposed in more than one
hundred pages.

Here we only provide the basic definitions to state the bound.

Definition 4.2.12. Let di(n,q) = di(n) be the smallest root of the equation K,"(z) =
0.
Define the function

Lyt f din—1)4+1<z2<dp_1(n—2)+1
gLy 7 2) if di(n—2)+1<z<dg(n—1)+1
where
n K"il’q(z —1)
Ln7q = Bn — — 1 kk_l— 44
K (2) = B (k) (¢—1) Ki(2) (4.4)
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Chapter 4. Overview of known classical bounds

Theorem 4.2.13 (Levenshtein bound).
Ayfn,d) < 1(d) (4.5)

Levenshtein bound is one of the strongest bound, especially for small values of q.
An intuition of its behavior can be grasp from Table 6.1 and 6.2.
We notice that the computation of this bound requires the computation of the roots of
a Krawtchouck polynomial, which can be very long compared to other closed formula
upper bounds.

4.2.8 The Zinoviev-Litsyn-Laihonen upper bound

In 1984, Zinoviev and Litsyn |ZL.84] prove a bound for non-linear codes, in a Rus-
sian written article.
In 1998 Litsyn and Laihonen prove the same bound, Theorem 1 of [L198], and apply
it to show some results on asymptotic bounds.
In the work of 1984, the authors obtain some new bounds for the dual distance of gen-
eralized concatenated codes and BCH codes. The use of these bounds in the existing
code-shortening arrangements lead to a number of codes with optimal parameters.
A construction was proposed for shortening arbitrary (linear and nonlinear) codes.
Application of this construction to existing codes yields a large number of codes with
optimal known parameters.
In the paper of 1998, they consider upper bounds on minimum distance and covering
radius of a code, generalizing techniques from [LT96] and combining them with the
mentioned upper bound on the asymptotic information rate of non-binary codes. The
upper bound on the information rate is an application of a shortening method of a
code. These results were aimed to improve on the best currently known asymptotic
upper bounds on minimum distance and covering radius of non-binary codes in cer-
tain intervals.

We write the bound with our notation as follows.

Theorem 4.2.14 (Zinoviev-Litsyn-Laihonen (ZLL) bound). Let 1 < d < n. Let
t € N be such thatt <n—d. Let r € N be such that 0 <r <t and 0 <r < %d. Then
qt
A (n,d) < @Aq(n —t,d—2r).
Note that t < n — d implies d — 2r < n —t so that the value A ,(n —t,d — 2r) is
meaningful.

We present an improvement of this bound in Section 6.
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4.2.9 The Griesmer upper bound for linear codes

Thanks to their strong algebraic structure, linear codes enjoy more specific bounds.
We show here an important bound due to Griesmer [Gri60|, which generalizes the
Singleton bound.

Theorem 4.2.15 (Griesmer bound). Let n be the smallest integer such that there

exists an (n,q") binary linear code with minimum distance at least d. Then

Proof. Let N(k,d) denote the minimum length of a binary code of dimension k£ and
distance d. Let C be such a code. We want to show that

vz 2[4

Let G be a generator matrix of C. We can always suppose that the first row of G is
of the form r = (1,...,1,0, ..., 0) with weight d:

The matrix G’ generates a code C’, which is called the residual code of C. C’ has
obviously dimension k¥’ = k — 1 and length n’ = N(k,d) —d. C" has a distance d’, but
we don’t know it.
Let u € C' s.t. w(u) = d’. There exists a vector v € (Fy)? s.t. the concatenation
(v|u) € C. Then

w(v) +w(u) =wv|u) > d.

On the other hand, also (v|u) +r € C, since r € C' and C'is linear, so
w((vlu) +r) > d.
But w((v|u) +r) = w(((1,1,...,1) + v)|u) = d — w(v) + w(u), so this becomes
d—w(v) +w(u) > d.
By summing this with w(v) 4+ w(u) > d, we obtain
d+ 2w(u) > 2d.

But w(u) = d’, so we get
d >dj2.
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This impliesn’ > N(k—1,d/2), therefore n’ > [N(k — 1,d/2)] (due to the integrality
of n'), so that
N(k,d) > [N(k — 1,d/2)] + d.

By induction over k we will eventually get

(note that at any step the dimension decreases by 1 and the distance is halved, and
/2]
2

we use the identity [ —‘ = [2% for any integer a and positive integer k). [
Since [d/¢"] = d and [d/q] > 1fori=1,...,k—1, we have that n > > [4] >

d+ S ¥ '1=d+ k —1, which is the Singleton bound.

Griesmer also showed that for certain values of k and d the equality holds. In 1965

Solomon and Stiffler [SS65] simplified Griesmer’s proof and at the same time gener-

alized it to linear codes over an arbitrary finite field F,, where it takes the form

k—1

d

> [
More important, however, Solomon and Stiffler introduced the notion of puncturing a
(¢* — 1, k) maximal-length shift-register code and showed that for many more values
of k and d equality holds. It can be also shown that the Griesmer bound is implied
by the Plotkin bound in case 2¥~! divides d.
There exists nonlinear and systematic codes with ¢* codewords overpassing the Gries-

mer bound. Though the Griesmer bound holds for some families of systematic codes
and we investigate this fact in Section 5.

Example 4.2.16. The following is a (19, 2%, 10)y-nonlinear code.
Furthermore 37 [52] = 20.

C = {(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1
0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0
1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1
1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1
1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,1,0
1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,1,0,1,0
0,0,0,1,1,0,1,1,0,0,1,1,1,1,0,1,0,1,0

1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0),
0,0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1),
1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,0),
1,1,0,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1)
0,1,0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,1)
)
)
)

)
)
)
)

)

) )

0,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,1,0, 1),
0,0,0,0,1,1,0,1,1,0,0,1,1,1,1,0,1,0, 1),
0,0,1,1,0,1,1,0,0,1,1,1,1,0,1,0,1,0,0)}

)

)

A~~~ I~ I~~~ N /N
—_ — — — — O~ —
A~~~ Y~ I~ I~ N

)
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4.3. Lower bounds

4.3 Lower bounds

There are fewer lower bounds presented in literature, as lower bounds are often
tied to particular constructions of codes. For example, if a code with a given length
n and minimum distance d is produced, its size becomes a lower bound on the code

size.

4.3.1 The Gilbert-Varshamouv lower bound
Theorem 4.3.1 (Gilbert-Varshanov bound).

qn
! 1B
Proof. Let C be a code of length n and minimum Hamming distance d having maximal
size:

|C] = Ay(n, d).

Let y € Fy be arbitrary. If y in is not in B} () for all x € C then d(x,y) > d for
every x € C. Thus CU{y} is a code C’ of distance d, length n and |C"| = A,(n,d)+1,
which is impossible. Thus y € B} ,(z) for some z € C.

Therefore, the union of all balls of radius d — 1 centered in all codewords of C' must

cover all FZ. Hence we deduce:

[Fyl = [ Uzec Bi_1(2)]

<> IBi(@)]

zeC

That is:

(using the fact [F| = ¢"). O
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A generalization of the Griesmer bound to

systematic codes

In this section we want to prove that the Griesmer bound applies also to systematic
codes in the following cases:

e g>d
e d=1,2,3,4
e g=2,d=5,6

5.1 The Griesmer bound

From now on let ¢ be the power of a prime number, and n, k, d three integers such
that a [n, ¢", d], systematic code exists.

Theorem 5.1.1 (Griesmer bound). Let n be such that there exists an [n, "], linear

k—1 ’—d—‘
— | ¢

J

code with distance at least d. Then

Lemma 5.1.2. If k = 1, then for each q,n,d such that a systematic code C exists,

then
=0 14

qJ

Proof. For k =1 we have Zf;é [i-‘ =d, and clearly n > d. O

In the following sections let C' be a [n, ¢, d], systematic code, with k > 2, such
that 0 € C, and let us indicate a word of C' as ¢ = (¢, ¢), where ¢ is the systematic

part of ¢ and ¢ is the nonsystematic part of c.
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Chapter 5. A generalization of the Griesmer bound to systematic codes

5.2 The case ¢ > d

Theorem 5.2.1. If ¢ > d, for all k > 2, there exists no q_ ary systematic code such
k=1rd
that n <32 o[ 1.

Proof. If ¢ > d we have that [%} =1 for all i > 1, and so:

k—1
d d d
—J=d+[-1++[-—=]=d+k-1
DIl =da [l T
But we also have, by the Singleton bound, that n > d + k — 1. O

5.3 The case d=1,2,3,4

Theorem 5.3.1. If d = 1,2, than for all k > 2, there exists no q_ary systematic
code such that n < 3¢ (qi}

Proof. 1f d = 1,2 we have ¢ > d an so we are in the hypothesis of Theorem 5.2.1. [

Theorem 5.3.2. If d = 3,4, then for all k > 2, there exists no q_ ary systematic
code such that n < 3¢ (%1.

Proof. If d = 3 and ¢ > 3 or d = 4 and ¢ > 4 then we are in the hypothesis of
Theorem 5.2.1.

Otherwise, if d = 3 and ¢ = 2 or d = 4 and ¢ = 2,3 then we have that (%1 =2
and (%} =1 for all ¢ > 2, and so:

N

-1

d d
[¥1:d+[51+~-~+(F1:d+k

Il
o

Suppose by contradiction that n < d+ k. It is enough to prove the case n = d+k—1.
Then n—k = d—1. Since 0 € C, if we consider two different words ¢; = (¢1,¢1), o =
(€a, ¢3) such that w(¢;) = w(éz) = 1, then w(é;) = w(é) = d — 1 and, if ¢ = 2 then
GG =¢c¢=(1,...,1), and so d(c1,c2) < 2, contradiction. There is only one case left,
which is the case ¢ = 3 and d = 4. In this case, since k > 2, we have at least 9 words

in C'. Consider the following four words:

co = (G, éo) =(0....0000,0...0)

c1 = (é1,61) =(0...0001, ¢11¢12¢13)
ca = (é2,6) =(0...0002, ca1¢29¢23)
c3 = (¢3,¢3) =(0...0010, c31¢32¢33)
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5.4. The case g =2 and d = 5,6

Since the distance between ci, ¢y, c3 from ¢y must be greater than d, then ¢, ¢, ¢3
must have weigth 3. c11, c12, 13 can be any combination of 1 and 2, let us suppose
(c11, €12, ¢13) = (111). Then, to have d(cy, c2) > 4, we must have (co1, co9, c23) = (222).
And for the same reason (c3jcsacss) must differ from (c1yc12¢13) and from (co1¢9a¢o3)
in at least two positions at the same time, but this is not possible. O

5.4 The case ¢ =2 and d =5,6

Theorem 5.4.1. For k = 2, there exists no binary systematic code such that n <
SV LY for d = 5,6.

Proof. If k = 2 then 3!, [47 = d+ [4] = d+ 3. Suppose by contradiction that
n < d+ 3. It is enough to prove the case n = d + 2. Consider two different words
c1 = (é1,61), 00 = (¢, ¢) such that w(é) = w(é) = 1, then w(é) = w(é) > d — 1.
Since n — k = d, then d(¢1, é&) < 2 and thus d(cy, c2) < 4. O

Theorem 5.4.2. For all k > 3, there exists no binary systematic code such that
n < Zf;ol (47 for d =5,6.

Proof. If d = 5,6, we have that [4] =3, [4] =2 and [£] =1 for all i > 3, and so:

k—1

d d d d

N=d+[=]+[=]4 - 4+[—1=d k—3=d+k+2
222(211 4—[21 +—[41—% 4—[2k711 454+ k—3=d+k+

Suppose by contradiction that n < d+k+2. It is enough to prove the case n = d+k+1,
so that n — k = d + 1. Let us consider the following five words:

) =(0...0000,0...0)

) =(0...0001, ¢ ...c1441)
) =(0...0010,c¢a1 ...c24+1)
) =(0...0011,¢31...c3a41)
) =(0...0101,¢51...C5a41)

We want to show that there is no way to assign 0 or 1 to the ¢;; to obtain distance d
between these five words. Let us do the following considerations:

1. to have d(c1,c)) = w(e1) > d and d(eg,c0) = w(ep) > d, it must be that
w(c1),w(é) > d — 1. Clearly it is not possible that w(é; ), w(¢é;) > d, otherwise
d(c1, ) < 4. So, wlog, we have only one of the two following cases:

(a) either w(é) = d and w(é) =d — 1,
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(b) or w(¢;) =w(é) =d— 1.

2. to have w(cs), w(cs) > d, it must be that w(é), w(és) > d — 2.

Consider the case (1.a). Since d(é,¢é3) = 1 and w(¢é;) = d, the only way to have
distance at least d between cg, 1, c3 (modulo the permutation of the colums) is to
assign the following values to ¢y, c3:

) =(0.. .. 0000, 000000)
) =(0...0001,011111)
) =(0...0011,111000)
) =(0...0010,ca1 ...C24+1)
) =(0...0101,¢51...C5441)

in case d = 5 and:

) =(0.. . 0000, 0000000)
) =(0...0001,0111111)
) =(0...0011,1111000)
) =(0...0010,c¢a1 .. .c24+1)
) =(0...0101,¢51...C5441)

in the case d = 6.

This allows to have d(¢i, é3) = d— 1, which is the only we can reach in our conditions.
Now consider ¢,. ¢; has only a zero and d ones, and ¢; has d — 1 ones, which are
either in the same postitions of the ones in ¢; (this case is impossible because otherwise
d(c,) =1 = d(ey,c2) = 3) or ¢g; = 1. Since w(cy) = d, there remain d bits
to be filled in ¢, and d — 2 of this bit must be ones and the other 2 zeros. Since
c31 = Co1 = 1, to have d(é3,¢é) > d — 1, at least d — 1 of the d rightmost bits must
differ. Thus we have the following situation in case d = 5:

) =(0...0000,000000)
) =(0...0001,011111)
) =(0...0011, 111000)
) =(0...0010,100111)
) =(0...0101,c¢51 ... cs56)
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and in the following situation in case d = 6:

co = (o, @) =(0....0000,0000000)
¢1 = (é1,6) =(0...0001,0111111)
c3 = (G3,65) =(0...0011,1111000)
¢y = (G2, 6) =(0...0010,1001111)
5 = (G5, 65) =(0...0101, cs1 . . . cs7)

Now, ¢ must be such that w(é;) > d —2 and d(¢s,¢;) > d— 1. Thus in & there must
be at most d + 1 — (d — 2) = 3 zero components, which is a contradiction because, in
the case d = 5, if:

co = (¢, éo) =(0...0000,000000)
¢ = (é1,6) =(0...0001,011111)
c3 = (¢3,¢3) =(0...0011,111000)
¢y = (¢é2,6) =(0...0010,100111)
¢s = (¢5,¢5) =(0...0101,100011)
or, in the case d = 6, if:
co = (¢, ¢o) =(0...0000,0000000)
¢ = (é1,¢1) =(0...0001,0111111)
c3 = (¢3,¢3) =(0...0011,1111000)
¢y = (€3,62) =(0...0010,1001111)
cs = (¢5,¢5) =(0...0101,1000111)

then d(co,c5) = 4.

Let us try now with case (1.b), so that we know w(¢;) = w(é) = d — 1. We also
have that d(¢;,é) > d — 2, and at the same time d(¢;, é) can only be 0,2,4, since
there are only two zeros components both in ¢; and in ¢, and ¢; and ¢y have the
same parity. Since d — 2 > 2, then d(é;, é;) must be 4 and the only choice (modulo

permutation of the columns) for ¢, é is:

0...0000,0000000)

co = (o, Go) =(

1 = (@, 6) =(0...0001,001111|1)

¢s = (G2, 6) =(0...0010,111100|1)

¢4 = (€1,¢1) =(0...0100,¢q1 ... Caa41)
c3 = (C3,63) =(0...0011,¢31 ... C3441)
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where the rightmost component exists only in the case d = 6.

Now consider ¢4, which must be such that w(¢;) = d — 1 (it can not be d or d + 1,

otherwise we would be in a similar case to (1.a) ), so that it has two zero components

which, using a reasoning similar to that for ¢; and é, to have d(¢;, ¢;) = d(éy, &) = 4,

must be positioned as follows:

Now, c3 is such that w(é;) > d — 2.

..0000, 000000|0)
..0001,001111[1)
..0010,1111001)
..0100, 110011[1)

.. 0011, C31. .- 63,d+1)

w(é3) = d+ 1 or w(é3) = d is not possible, otherwise we would have d(c3, ;) < 4.

w(c3) = d — 1 is not possible in the case d = 6, because, having only two zeros the

value d(cs, ¢1) can be at most 5.

In the case d = 5, if w(é3) = d — 1, to have d(c3, ;) > 5 the two leftmost component

of ¢3 must be the same as the two leftmost component of ¢ and of ¢4, which are ones,

giving either d(cs, o) = 5 and d(cs3, ¢4) = 3, or d(cs, ¢2) < 5, which is a contradiction.

[t remains to prove that w(¢3) # d — 2. In this case, again, to have d(c3,¢;) > d

the two leftmost component of ¢; must be the same as the two leftmost component

of é; and of ¢, which are ones, obtaining actually d(cs,c;) = 6. In the remaining

components of ¢3 there must be three zeros. If these three zeros are in the same

positions where the leftmost ones of ¢ are, then d(cs,ca) = d and d(cs,cq) < 4.

Otherwise d(cs, ¢2) < d.
This completes our proof.

64

O



A new bound on the size of codes

Partial results in this chapter have been presented at WCC 2013, Bergen, while a
full updated manuscript can be found in [BGS14].
In this chapter we present one (closed-formula) bound (Bound A) for a large part
of non-linear codes (including all systematic codes), which is an improvement of a
bound first introduced by Zinoviev and Litsyn (|[ZL84]), and then applied by Litsyn
and Laihonen ([LL98|). The crux of our improvement is a preliminary result presented
in Section 6.1, while in Section 6.2 we are able to prove Bound A. Then we restrict
Bound A to the systematic/linear case and compare it with many classical upper
bounds by computing their values for a large set of parameters (corresponding to
about one week of computations with our computers). Our findings are in favour of
Bound A and are reported in Section 6.3. For large values of ¢, our bound provides
the best value in the majority of cases.
The only closed-formula bound we never beat is Plotkin’s, but its range is very small
(it must be d > n(1 — 1/q)), which it becomes barely applicable for large ¢’s.

For standard definitions and known bounds, the reader is directed to the original
articles or to any recent good book, e.g. [HP03| or [PBH9S|.

6.1 A first result for a special family of codes

Recall that A,(n,d) denotes the maximum number of codewords in a code over
[F, of length n and minimum distance d.
If we have extra constraints on the weight of the codewords, then the maximum
number of codewords can be smaller than A,(n, d). The following result is an example
and it will be instrumental for the proof of Bound A.

Proposition 6.1.1. Let C be an (n, |C|,d),-code. Let ¢ € N and e > 1 be such that
for any ¢ € C' we have w(c) > d+ €. Then

A

€

Cl<A,(n,d)— )
01 < Ayl d) =

Proof. Let C be the code satisfying our hypothesis. C' belongs to the set of all codes
with distance d that are contained in the ball exterior F" \ B}, _(0). Let D be any
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Chapter 6. A new bound on the size of codes

code of the largest size in this set, then |C| < |D].

Clearly, any codeword c of D has weight w(c) > d + . Consider also D, the largest
code in F" of distance d and such that D C D. By definition, the only codewords of
D of weight greater than d + ¢ — 1 are those of D, while all other codewords of D are

confined to the ball B}, _,(0). Thus:

C] < D] < D] < Ag(n, d)

and

D\ D C By,._,(0).
Let p=d—1andr=d+e—1,s0 that r —p = ¢, and let N = D N B"(0). We have:
D =D\ N,|D|=|D| — |N|. We are searching for a lower bound on |N|, in order to
have an upper bound on |D].
We start with proving B;' (0) C J,cn B, (). Consider y € By (0). If forallz € N
we have that y ¢ B}(z), then y is a vector whose distance from N is at least p + 1.
Since y € B ,(0), also its distance from D \ N is at least p + 1. Therefore, the
distance of y from the whole D is at least p + 1 = d and so we can obtain a new
code DU {y} containing D and with distance d, contradicting the fact that | D] is the
largest size for such a code in F™.
So, our claim must hold, and its consequence is:

INI- 1B ()] = [B,(0)],
which gives:
B0 |Br(0)
1Bp(z)l  |Bi ()]

Using previous observations, we obtain the desired bound:

IN| =

€1 < |D| = |B| - |D N B, (0)]
B2(0)]
< A(n,d) — 121
< A d) = T ]

]

Note that if C' is a linear code then Proposition 6.1.1 is not directly applicable,
since we would have e = 0 (but it might still be applicable by translating the code
with a suitable vector). Note also that the theorem is specially interesting when
|B|/|B}_,| is large, although any positive value of € would give (in the worst case)
an upper bound of A,(n,d) — 1, since we can obviously write

| B¢ ]
1Bial

ICl < Ag(n,d) = T
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6.2 An improvement of the ZLL bound

In 1998 Litsyn and Laihonen prove a bound for non-linear codes: Theorem 1 of
[LL98|, which we write with our notation as follows.

Theorem 6.2.1 (Zinoviev-Litsyn-Laihonen bound). Let 1 < d < n. Lett € N be
such thatt <n —d. Let r € N be such that 0 <r <t and 0 <r < %d. Then

t

Ay(n,d) < |;‘;—t|Aq(n —t,d—2r).

Note that t < n — d implies d — 2r < n —t so that the value A ,(n —t,d — 2r) is
meaningful.

Let C' be an (n,|C|,d),code, let k = [log,(|C|)|. We say that C is systematic-

embedding if C' contains a systematic code D with size |D| = ¢*.

Obviously, a
systematic code is systematic-embedding with D = C. Moreover, if the code is linear
then k is the dimension of C.

All known families of maximal codes are either systematic codes or systematic-

embedding codes (see e.g., [Pre68|, [Ker72] and [BvLW83|).

Definition 6.2.2. We denote with A}(n,d) the mazimum number of codewords that

an (n, |C|, d)-systematic-embedding code can contain.

Although we can only say that A?(n,d) < A,(n, d), there are no known counterex-
amples to A’(n,d) = Ay(n,d).
We are ready to show a strengthening of Theorem 6.2.1 restricted to systematic-
embedding codes: Bound A. In the proof we follow initially the outline of the proof
of [LL98|[Theorem 1| and then we apply Proposition 6.1.1.

Theorem 6.2.3 (Bound A). Let 2 < d <n. Lett € N be such thatt <n —d. Let
r € N be such that 0 < r <t and 0 <r < id. Let C be any (n,|C|, d),-systematic-
embedding code such that |C| = A% (n,d). Let t <k = [log,(|C|)|. Then

Ax(n,d) <

t n—t

q 1B~ )
— (Agn—t,d—2r) - ————+1].
|Bf’| ( ! |Bd75r71|

Proof. We consider an (n, |C], d)-systematic-embedding code C s.t. |C| = A’(n,d).
We number all words in C' in any order:

C={ci|1< i< Ay(n,d)}.
We indicate the i-th codeword with ¢; = (¢;1,...,¢;n). We puncture C as follows:
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(i) we choose any ¢ columns among the k columns of the systematic part of C,
1 < j1,...,75: < n; since two codes are equivalent w.r.t. column permutations
we can suppose j1 = 1,...,7; = t.

Let us split each codeword ¢; € C' in two parts, ¢; = (¢;, ¢;), with:

G =(¢i1,.-.Cit), G =1(Citt1,---:Cin)-
(ii) We choose a z € F.
(iii) We collect in I all i’s s.t. d(z,¢é) < r;
(iv) We delete the first ¢ components of {¢; | i € I}.
Then the punctured code C. obtained by (i),(ii),(iii), (iv) is:
C.={aliel}={a|1<i<An,d),d(z,G) <r}

We claim that we can choose z in such a way that C. is equivalent to a code with the

following properties:

n=n-—t 6.1
d>d—2r (6.2)
_ C

c1= Ky (63)

w(¢;) > d —r for all ¢ # 0. (6.4)

(6.1) is obvious.
As regards (6.2), note that d(c;,c;) = d(é,¢;) + d(é,¢) > d and also that ¢, ¢; €
B!(z) implies d(¢;, ¢;) < 2r. Therefore

2r +d(c, ¢;) > d(é, ¢;) +d(é, ¢5) > d

for any ¢ # j. The proof of (6.3) is more involved and we need to consider the average
number M of the i’s such that ¢ happens to be in a sphere of radius r centered at a
fixed word in F?. The average is taken over all sphere centers, that is, all vectors z’s

in Ft, so that
1 . . * = t
—|IFt| E {i|1 gngq(n,d),cieBr(a:)}\.

zeRt

Let us define a function:

L, d(z,y) <r
0, otherwise

Y Fx F' — {0,1},1/1(:c,y):{
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6.2. An improvement of the ZLL bound

Then we can write M and |B.(y)| (Vy € F') as

Ag(n,d)
2303 dlad) and Bl = 3 i),
zeFt i=1 zeRt

By swapping variables we get:

Ay (n,d)
Mo LYY et
xe]Ft i=1
a(n,d)
A% (n,d) ~
=7 Z PR =~ IBL@)
i=1 xclFt
This means that there exists & € F! such that:
. . " ~ tn A;(n,d) t
Hi|1<i< Aq(n,d),ci €B.(2)} > M > T|Br|.

In other words, there are at least %\Bﬂ ¢;’s such that their ¢;’s are contained in
BL(z). Distinct ¢;'s may well give rise to the same ¢;’s, but they always correspond
to distinct ¢;’s (see the proof of (6.2)), so there are at least %|B£| (distinct) ¢;’s such
that their corresponding ¢;’s fall in B%(%). By choosing z = # we then have at least
%|Bf,| (distinct) codewords of C. and so (6.3) follows.

We claim that (6.4) holds if 0 € C' and z = 0. In fact:
w(c) =d(0,¢) > d, Ve € C such that ¢ # 0, and
2=0 = yeBi(z) <= w(y) <
As a consequence, any nonzero codeword ¢; = (¢, ¢;) of weight at most r in ¢ has
weight at least d — r in the other n — ¢ components.
If 0 ¢ C or z # 0 we consider a code C'+v equivalent to C, by choosing the translation
v in the following way. By hypothesis of systematic-embedding there exists ¢ € C'
such that its first ¢ coordinates form the vector . By considering v = ¢ we obtain
the desired code, thus (6.4) is proved.
Now we call X the largest (n,|X|, d—2r)-code containing the zero codeword and such
that w(z) > d—r = (d—2r)+r,VZ € X. Observe that X satisfies (6.1), (6.2), (6.3),
(6.4) and so |X| > |C.|. Then we can apply Proposition 6.1.1 to X \ {0} and € = r,
and obtain the following chain of inequalities:
B

e+,
|B —2r— 1|

C] 5 _
?\Bﬂ < |G < X[ < Ag(n, d = 2r) —
and since |C| = A}(n, d) we have the bound:

t n

« 9 _ B;
Aj(n,d) < Bl (Aq(n,d—Q) %‘Fl).
2r—1
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Note that Bound A is trivial if » < d—2r—1. Note also that it may be generalized
to any alphabet.

6.2.1 Restriction to the systematic case

When we restrict ourselves to the systematic/linear case, then the maximum num-
ber of codewords of a code of length n and distance d can only be a power of ¢, and
if the dimension of the code C' is k, then the value A’(n,d) is replaced by ¢*. By
choosing ¢ = k in Theorem 6.2.3 we have the following:

Corollary 6.2.4 (Bound B). Let k,d,r € N;d > 2,k > 1. Let n be such that there
exists an (n, q*),-systematic code C with distance at least d.
If0<r< g, then:

By

|Bf| < Ag(n —kd = 2r) — —— o
|Bd72r71

+ 1

6.2.2 Theoretical comparison with the ZLL bound
In the systematic/linear case the Zinoviev-Litsyn-Laihonen bound becomes:
|BF| < Ay(n —k,d—2r).

The case d < 2 is trivial.
The first interesting computations can be done in the case d = 3, since in this case r
can take the value 1, so that:

o |Bf|=(q—1k+1,
o An—k,d—2r)=A,(n—k1)=q"",
o [Bi [ =(q—(n—k) +1,
o BE =Byt = 1.
Our bound then reduces to:
0<¢" " —(g—n—-1,
and so it is stronger than the Zinoviev-Litsyn-Laihonen bound, which reduces to:
0<q¢" " —(¢g—1k—1.

For d > 3 and when restricted to the linear/systematic case, Bound B and the
Zinoviev-Litsyn-Laihonen bound are very close. This happens because
|1 By ]

log, (A — B | +1)] = [log,(A)]
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where A = A,(n — k,d — 2r), since the floor function cuts off the difference between
the two bounds.

To have a fair comparison, the two bounds should be studied in the nonlinear case.
Here it is clear that Bound B beats the Zinoviev-Litsyn-Laihonen bound if and only

if:
B <|£§k| ) 1) .
r —2r—1
Since \fqgtél > 1 we only need that |B?%| > 2|B7=F |, which is:
> (" - 0y ("7 a1y
J=0 J N J=0 J |

For this inequality to hold it is sufficient that r ~ (d —1)/2 (since 0 < r < ¢) with d
large enough.

6.3 Experimental comparisons: linear case

We have analyzed the case of linear codes, implementing Bound B. The algorithm
to compute the bound takes as inputs n, d, and returns the largest & (checks are done
until £ = n — d + 1) such that the inequality of the bound holds. If the inequality
always holds in this range, n —d+1 is returned. Then we compared our upper bound
on k with other bounds, restricting those holding in the general non-linear case to the
systematic case. In particular, they provide a bound on A,(n,d) instead of a bound
on k. As a consequence, for example, if the Johnson bound returns the value A,(n, d)
for a certain pair (n,d), then we compare our bound with the value |log, (A,4(n,d))],
which is the largest power s of ¢ such that ¢° < A,(n,d).

The inequality in Theorem 6.2.4 involves the value A,(n — k,d — 2r), which is the
maximum number of codewords that we can have in a non-linear code of length
n — k and distance d — 2r. To implement Bound B it is necessary to compute
A,(n — k,d — 2r); when this value is unknown (we use known values only in the
binary case for n = 3,...,28,d = 3,...,16), we return instead an upper bound on
it, choosing the best among the Hamming (Sphere Packing), Singleton, Johnson, and
Elias bound (the Plotkin bound is used when possible). Even though the Levenshtein
bound is a very strong bound, we do not use it because it performs very slow as n
grows, and neither we use the Linear Programming bound. This means that if better
values of A,(n — k,d — 2r) can be found, then Bound B could return even tighter
results.

Table 6.1 and 6.2 show a comparison between all bounds’ performance, except for
Plotkin’s, due to its restricted range. For each bound and for each ¢ power of a
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prime in the range {2,...,29} we have computed, for all values n = 3,...,100 and
d=3,...,n—1, the percentage of cases where Bound B is the “best” known bound
among the Griesmer, Johnson, Levenshtein, Elias, Hamming, Singleton bound, and
Bound B. Both wins and draws are counted in the percentage, since more than one
bound may reach the best known bound, and in this case we increased the percentage
of each best bound. Up to ¢ = 7 the Levenshtein bound is the most performing
bound. From 9 < ¢ < 29 we have that Bound B is the most performing bound, and
in the case ¢ = 29 it is the best known bound almost 91% of the times.

It can be shown that there are some cases where Bound B is tight, as for the param-
eters (17,7)o, for which there exists a code with dimension 10.

The first line of Tables 6.3, and 6.4 give emphasis to the percentage of times Bound
B improves the best known bound (thus the cases where it beats all other bounds).
In the considered range, Bound B starts to beat all other bounds from ¢ = 7. The
second line represents the percentage of the ties.

The third row of Tables 6.3 and 6.4 shows how many times (percentage over the
|B(r,n—k)|
[B(d—2r—1,n—k)]
formally, we can view § as the probability to randomly pick up a codeword of weight

number of draws and wins) the value 6 = | | is different from zero. In-
less than r from a ball of radius d — 2r — 1. We can notice that this percentage is very
high, which means that a weaker version of Bound B, which is similar to the Zinoviev-
Litsyn-Laihonen bound for systematic codes, could be used, by simply searching the
largest k satisfying:

|B¥| < Ay,(n — k,d—2r)+1

It is curious to notice that in all the wins we have § = 0, and that 6 = 0 also 38094
times over the 46967 ties and wins. This means that the weaker version of Bound B
is sufficient to obtain most of the wins and ties in the investigated cases.
Comparisons have been made using inner MAGMA (|[MAG]|) implementations of
known upper bounds, except for the Johnson bound. For this bound we noted that
the inner MAGMA implementation could be improved.

6.4 Experimental comparisons: nonlinear case

Since systematic-embedding codes are a subset of nonlinear codes, an upper bound
on a systematic-embedding code implies an upper bound on a nonlinear code. Clearly
nothing can be said in the opposite case. So we can compare Bound A with other
bounds on nonlinear codes, such as the Linear Programming bound. In Table 6.5
some of these comparison are reported. In the first and the third rows it can be seen
that Bound A ties with the Linear Programming bound, which is beaten in all the
other rows. Also a bound from Schrijver ([Sch05]) is beaten for A5(20, 8), even though
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2 3 4 5t 7 8 9 11

38.0 31.2 31.2 32.0 40.7 486 55.3 66.4
40.6 31.1 335 351 357 355 351 333
181 156 164 164 16.0 159 156 14.7
56.3 39.8 323 29.1 309 37.0 433 552
72.6 69.7 66.3 64.0 60.8 58.2 545 46.3
6.9 32.2 38.2 40.0 40.8 40.1 372 314
0.0 0.02 0.08 0.19 0.61 093 124 3.62

L m Qo ®S

Table 6.1: When each bound is the best for 2 < ¢ < 11.

13 16 17 19 23 25 27 29

76.4 81.6 82.8 85.4 88.1 88.7 89.4 90.8
30.8 266 249 219 171 155 144 133
13.6 119 11.3 10.1 827 755 7.05 6.61
63.4 719 723 719 69.8 694 68.7 67.9
40.0 329 30.v 275 226 20.7 194 184
270 21.8 20.0 176 125 108 9.66 8.69
444 463 699 6.71 101 120 14.1 18.0

CHCESE NN

Table 6.2: When each bound is the best for 13 < ¢ < 29.

for these values it is known that the best known bound is 256 from Brouwer’s tables
(|[Broa]). Finally an improvement in the ternary case of [Brob| is given in the last

row.

6.5 Tables

The following tables show the results computed in the range n = 3,...,100,
d=3,...,n—1.
In Tables 6.1 and 6.2 the following letters have the following meaning: J for Johnson,
H for Hamming, G for Griesmer, L for Levenshtein, E for Elias, S for Singleton, and
B for our bound. In Table 6.5 the following letters have the following meaning: S
for Schrijver bound [Sch05], LP for the Linear Programming bound, and BR for the
bound in Brouwer’s tables (|Broa|, [Brob]).
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q 2 3 4 5t 7 8 9 11
W |0 0 0 0 0.19 1.05 1.83 3.96
D 38.0 31.2 31.2 32.0 399 476 535 624
0=144.7 T71.1 61.8 59.8 68.8 742 79.7 854
0

Table 6.3: Statistics for Bound B for 2 < ¢ < 11.

q 13 16 17 19 23 25 27 29
W 1351 421 5.11 757 147 176 19.8 21.2
D 729 T4 Trr 778 734 TL1 69.6 69.6
0=188.0 885 88.5 883 8.0 83.0 80.9 786
0

Table 6.4: Statistics for Bound B for 13 < ¢ < 29.

g n d |A S LP BR

2 19 8 | 145 142 145 135

2 20 8 | 271 274 290 256

2 22 10195 87 95 84

2 25 10| 537 503 551 466

2 26 101|933 886 1040 836

3 16 3 1240029 - - 1304424

Table 6.5: Some relevant nonlinear comparison.
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Introduction

In this chapter we analyse two algorithms from [Gue09] (also in [GS07], [GOS10],
[GOS09]) and [Sim07] (also in [Sim09|, [SSO7b], [SS07a|). The first one is used to
compute the minimum weight of a systematic code (and can be easily extended to
compute the distance of a systematic code), the second to compute the nonlinearity
of a Boolean function. They are basically the same algorithm, which reduce both
problems to the problem of solving a polynomial system of equations over a finite
field to find all the codewords with weight less than or equal to a certain quantity.
We first generalize the first method to work for any nonlinear code and then make
some consideration on the complexity of the algorithm.

We also provide two different and new algorithms to compute the minimum weight
of a binary code and the nonlinearity of a B.f. . The first of these algorithms reduces
again the two problems to the problem of solving a polynomial system of equations,
though defined over the rationals or over big prime fields instead of the finite field [Fs,
and with a very different structure from the previous one. The second method takes
advantage of fast Fourier techniques, yielding an easy analysis of its complexity and
turning out to be a very efficient solution to solve the two problems, even compared

to known results.
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Computing the minimum weight of a code

The computation of the minimum weight and of the minimum distance of a code
are necessary in order to establish the error-correction capability of the code.
If C is linear, it is easy to show that the minimum weight coincides with the minimum
distance and the Brouwer-Zimmerman minimum weight probabilistic algorithm for
linear codes over finite fields [Zim96] can be used (or any of its variations, such as
[CCI8]).
Algorithms to solve the decoding problem for a random linear code which are faster
than brute-force are known, see for example [BJMM12], [Pet10], and [BLP11]. These
randomized Las Vegas type algorithms, are known as Information Set Decoding al-
gorithms. The most performing one is [BJMM12], which has an asymptotic running
time of 20:04934n , 9n/20,
In the nonlinear case the minimum weight and the minimum distance may be differ-
ent. For nonlinear codes with large kernel some algorithms are known which perform
better than brute force ([PVZ12]), but in general, we are not aware of any efficient
algorithm to compute the two parameters. In particular, to compute the minimum
weight of a generic binary (n, 2¥)-nonlinear code with brute force we need to perform
O(n2*) bit operations and to store O(n2*) bits.
The main result of this chapter is a deterministic algorithm to compute the minimum
weight of any random binary code represented as a set of B.f. in numerical normal
form (NNF).
In Section 7.2 and 7.3, we first show that this representation does not have any par-
ticular drawback with respect to the classical representation (code as a set of binary
vectors).
In Section 7.4 we generalize an algorithm, from [GOS06] and [Gue05] to find all code-
words of weight less than ¢ for any nonlinear code (in the previous work the algorithm
was designed to work only for systematic codes). Their algorithm reduces the compu-
tation of the minimum weight of a nonlinear code to the problem of solving a system
of polynomial equations over F,.
In Section 7.5, for the binary case, we reduce the computation to the problem of
solving a polynomial system of equations over QQ or Z, with p prime, containing only
the “field equations” and one single dense polynomial of which we have to find the
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Chapter 7. Computing the minimum weight of a code

zeros. Then we show how to find such solutions applying fast Fourier techniques.
Finally, in Section 7.6 we develop a new method: we show that, using fast Fourier
techniques to compute the minimum weight starting from the NNF representation of
a binary nonlinear code has a complexity of O((n/h+k)2¥), where n/h is the average
number of nonzero monomials of the Boolean functions representing the code. In par-
ticular, there are many important cases where our method is faster than brute-force
(e.g. in the linear case and in the nonlinear case when the NNF representation of the
code is sparse), and cases where it is faster than the Brouwer-Zimmerman method.

7.1 Polynomials and vector weights

Here we introduce some common notation between the two problems we are going
to analyze, recalling some definitions and results about the weight of vectors in F”,
taken from [GOS06] and [Gue05|.

We denote by E,[X] the set of field equations, i.e. the following set of polynomials
in FX] = Flzy,...,x5]: B[X] = {2 —x1,...,29 — x5}, where s > 1 is an integer,

understood from now on.

Definition 7.1.1. Let 1 <t < s and m € F[X]. We say that m is a square free
monomial of degree t (or a simple t-monomial) if:

m =y, - - Tp,, where hy,...,hy € {1,... s} and hy # h;, VYl # 7,

i.e. a monomial in F[X] such that deg, (m) =1 for any 1 <i <t. We denote by
M the set of all square free monomials of degree t in F[X].

Let t € N, with 1 <t < s and let I,; C F[X] be the following ideal

I = {0y, ...,0} UE,[X]),

where o; are the elementary symmetric functions:

o1 = X1 +x2+ -+ Ts,

09 = SL’1.T2—|—SL’1SL’3+"'—|—5L’1.Ts+.T2$L’3+"'+.T3715L’s,
Os—1 = X1Tx3: " Ty 2Ts—1 + -+ ToX3 " Ts_1Ys,

Og = T1X9* " "Ts_1Tg.

We also denote by I, 511 the ideal (E,[X]).

For any 1 <i < s, let P; be the set which contains all vectors in F" of weight 7,
P, ={v e F"| w(v) =i}, and let @Q; be the set which contains all vectors of weight
up to %, Q; = Uo<j<i P} -
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7.2. Representing a code as a set of Boolean functions

Theorem 7.1.2. Let t be an integer such that 1 <t < s. Then the vanishing ideal
Z(Qr) of Q is
I(Qt) — lst+1

and its reduced Grobner basis G is

G=E/[X|UMg;, fort>2,
G={xy,...,xs}, fort=1.

Let I C F[X] be an ideal and let X’ be a subset of X. We denote by Ix/ the
elimination ideal of I, i.e. Ix, = I NTF[X'].
Let F[Z] be a polynomial ring over F. Let m € My, m = 2, ---2,,. For any
W e (F[Z))*, W = (Wh,...,W,), we denote by m(W) the following polynomial in
F(Z]:
(W) = W, - Wh, .

Example 7.1.3. Let n = s = 3 and W = (2123 + 13, T2, Tox3) € (Fz1, 79, 23])® and
m = z123. Then
m(W) = (.Tl.l’g + .’173)(1’21’3) .

7.2 Representing a code as a set of Boolean functions

Now we show that any binary (n, 2¥)-code C with 2¥ codewords can be represented
in a unique way as a set of n Boolean functions f1,..., f, : (F3)* — Fy. It is sufficient
to consider the matrix whose rows are all the codewords of C'. Then we can consider
each column 7, with 1 < ¢ < n, as truth table of a certain Boolean function f;, for a
fixed order of the vectors v € (Fy)*.

Then, each f; can be represented as a square free polynomial in the variables x1, ..., xy
either with coefficients in Fy (Algebraic Normal Form, see Section 3.1.2) or with
integer coefficients (Numerical Normal Form, see Section 3.1.3).

Let us remark that the NNF coefficients require more memory space when stored
with respect to the ANF, since they are integers instead of bits, and furthermore, the
NNF is usually much denser than the ANF, as shown in Example 3.1.10, Equation
3.2, and proved in Proposition 7.3.1.

We indicate with f() a Boolean function represented in algebraic normal form, and

with f® a Boolean function represented in numerical normal form.

Definition 7.2.1. Given a binary (n,2%)-code C, consider a fized order of the code-
words of C' and of the vectors of (Fy)*. Then consider the matriz M whose rows
are the codewords of C'. We call the defining polynomials of the code C' the set
Fo=A{f1,..., fa} of the uniquely determined Boolean functions whose truth table are
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the columns of M. We also indicate with F' = (fi,..., fn) the vector whose com-
ponents are the defining polynomials of C. With abuse of notation, we sometimes

write

F z
Fo=A{N" - 1P} or Fe= {17 117
Notice that F is an encoding function, since F : (Fy)* — (Fy)".

Example 7.2.2. Consider the code
C = {c1,09,¢3,¢4} = {(0,1,0,0,1), (1,1,1,0,1), (1,0,0,0,0), (1,0,0,1,1)} .
Consider the vectors of (IF)? ordered as follows
vi =(0,0), vo=(1,0), v3=(0,1), vy=(1,1).

Each column is the truth table of the following Boolean functions represented in ANF

I
|
8
5
g
(e}
+
5
_I_
8
[N}

f% = NNF

(f1)
(f2)
fiP = NNF(f3) = —a122 + 21
(f2)
fi¥ = NNF(f5)

Thus the defining polynomials of C' are

‘FC:{fla"'afN}a

where each f; can be represented as a truth table, as polynomials in algebraic or
numerical normal form.
Furthermore we have that for each 1 <4 <4

ci = F(vi) = (fi(vi), fo(vi), f3(vi), fa(vi)) -
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7.2. Representing a code as a set of Boolean functions

7.2.1 Memory cost of representing a code

Let us call vectorial the representation of a code as a list of vectors over Fy, and
Boolean the representation of the same code as a list of Boolean functions.
For a random code, in terms of memory cost, the two representations are equivalent.
In the vectorial representation we need to store all the components of each codeword,
which are n times 2* codewords. In the Boolean representation we need to store the
2% coefficients of the n defining polynomials. In both cases we need a memory space
of order O(n2*).
If the code C is linear it can be represented with a binary generator matrix of size
k x n. In this case the defining polynomials are linear Boolean functions, i.e. any is

of the form .
Z Aii, A € Fy,
i=1

which means that to represent them it is sufficient to store kn elements of Fy, yielding
again an equivalent representation.

As shown in [PVZ12], if C'is a binary code of length n with kernel K of dimension d
and t coset leaders given by the set S = {ci,..., ¢}, we can represent it as the kernel
K plus the coset leaders S (see Example 2.2.3). Since the kernel needs a memory
space of order O(nk), then the kernel plus the ¢ coset leaders takes up a memory space
of order O(n(k +t)). When C' is linear then C' = ker(C), so the generator matrix is
used to represent C'. On the other hand, when t+ 1 = |C|, then representing the code
as the kernel plus the coset leaders requires a memory of O(n|C|) = O(n2*) (since we
are supposing the code has 2* codewords. In the latter case, a Boolean representation

could be more convenient, as shown in the following example.

Example 7.2.3. Consider the code

C = {(0’07 0’0)7 (1’07 0’ ]')7 (0’ ]‘70’0)’ (]‘7 ]‘70’ 1)’
(0,0,1,1),(1,0,1,0),(0,1,1,1), (1,1,1,1)}.

We have that ker(C') = {(0,0,0,0}, thus we have 8 coset leaders. On the other hand,
the defining polynomials of C' are

Fo = {x1, 2, 23, T12973 + 11 + T3}

which is a much more compact representation.

Unfortunately the code in this example has distance 1.

Another situation in which a Boolean representation is more convenient is the case

where the dimension k of the code is much less than the length n, i.e. when certain
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components have to be repeated. As shown in [Gue09]| (see Appendix), many optimal
codes have this form.

Example 7.2.4. The code
¢ =4(0,0,0,0,0,0,0,0,0,0,0,0),(1,1,1,1,1,1,1,1,0,0,0,0)
(1,1,1,1,0,0,0,0,1,1,1,1),(0,0,0,0,1,1,1,1,1,1,1,1) }

is linear, with distance 8, dimension 2 and is optimal since it reaches the Plotkin
bound. Its generator matrix is

o 111111110000
\111100001111])°

The same code can be represented with the 3 Boolean polynomials
Ty + T2, 71, T2,

each repeated 4 times.
Instead, the code
c =4(0,0,0,0,0,0,0,0,0,0,0,0),(1,1,1,1,1,1,1,1,0,0,0,0)
(1,1,1,1,0,0,0,0,1,1,1,0),(0,0,0,0,1,1,1,1,1,1,1,1) }
is nonlinear, with distance 7, dimension 2 and has kernel
K =(0,0,0,0,0,0,0,0,0,0,0,0)
with 4 coset leaders.
The same code can be represented with the 4 Boolean polynomials
T+ T2, X1, T2, T12s -
where the first two are repeated 4 times, the third 3 times, and the last only once.

Example 7.2.5. We show now a larger example.
Consider the binary (16, 2*)-nonlinear code
¢ ={(0,0,0,1,0,1,0,0,1,0,1,1,0,0,1,0),(1,0,0,1,0,1,1,0,1,0,1,1,1,0,1, 1),

(1,0,0,0,0,1,0,0,1,1,1,0,1,0,0,0), (1,0,0,0,0,1,1,0,1,0,1,0,1,0,0, 1),
(0,1,1,1,0,1,0,0,0,0,1,1,0,0,1,0),(1,1,1,1,0,1,1,1,0,0,1,1,1,0, 1, 1),
(1,0,1,1,0,0,0,0,0,1,1,0,1,1,0,0),(1,0,0,1,1,0,1,0,0,0,1,0,1,1,0,0),
(0,0,0,1,1,1,0,0,1,0,0,1,0,0,1,1),(1,0,0,1,1,1,0,0,1,1,0,1,0, 1,1, 1),
(1,0,0,0,1,1,0,0,1,1,0,0,1,0,0,1),(1,0,0,0,1,1,0,0,1,0,0,0,0,1,0, 1),
(0,0,1,1,0,0,0,0,0,0,0,1,0,0,1,1),(0,0,1,0,0,0,1,1,1,1,0,0,0,0, 1, 1),
(1,1,0,1,0,1,0,0,0,1,1,0,1,1,1,1),(0,1,1,0,0,1,1,0,0,0,0,1,0,1,0,0)} .
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7.3. Number of coefficients of the NNF

This code has average weight 7.5 and 120 ones over 256 components. Its minimum
distance is 3 and its minimum weight is 5.

The same code represented as a set of B.f. ’s in NNF is

F ={— 2z — 12304 + 21 + T2, 209X3T4 — ToX3 — T3Ty + T3,
201934 — T1XoX3 — ToT3Ty + X3, —T1X3%4 + ToTz — To + 1,
— T1T2T3%4 + T1T2T3 — T34 + T4, 2X923T4 — Loy — T3T4 + 1,
T1X3%4 — X124 + 21, —T1X9T3 + X123,
— T1T2X3T4 + L1374 — X3 + 1, —T1 X%y — T1T2 + T124 + T2,
— T1ToX3T4 + TX3Ty — Tg + 1, 201 L9134 — L1234 — T + 1,
— X1Tg — T1X4 + X1 + Ta, —X1T3T4 + T1XT4 + T2T3,
— T1T2X3%4 + ToT3Ty — Tp + 1, —T1T2%3 — T1Ty + Ty + T4},

which is a set of n = 16 B.f. with 2,3 or 4 coefficients, for a total of 16 coefficients
varying in the set {—1,1,2}.

It is worth noticing that a linear structure of a nonlinear binary code can be found
over a different ring. For example there are binary codes which have a Z4-linear or
ZoZ.4-linear structure and, therefore, they can also be compactly represented using
quaternary generator matrix, as shown in [HKC*94] and [BFCP*10].

7.3 Number of coefficients of the NNF

In order to prove that representing a code with practical parameters and using
NNF B.f.’s is as convenient as the usual representation of the code, in this sec-
tion we want to study the distribution of the number of nonzero coefficients of a
B.f. represented in NNF, i.e., once the number of variables k is fixed we want to know
how many B.f. ’s have only 1 nonzero coefficient, how many have 2, and so on.

We are also interested in finding a relation between this distribution and the distri-
bution of the number of nonzero coefficients of a B.f. represented in ANF.

In Table 7.1 we report the distribution of the nonzero coefficients of B.f. ’s represented
in ANF and NNF with £ = 1,2, 3,4 variables. As one may expect, the ANF follows
a binomial distribution. This means that choosing a random B.f. its ANF is likely to
have half of the coefficients equal to 0 and half equal to 1. This does not happen for
the NNF, eventhough for £ small the two distributions are close. This means that,
when k is small, a random binary (n, 2¥)-nonlinear code can be represented with a set
of B.f. ’s in NNF with half of the coefficients equal to 0 with high probability, while
sparse NNF' representations are more rare as k grows.
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k 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Arl)1 2 1 -
N:1|1 2 1 - -
A:211 4 6 4 1 -
N:2|1 4 5 4 2 - - - - - - - - - - -
A:3)11 8 28 56 70 56 28 8 1 - - - - - - - -
N:3|1 8 19 42 59 50 34 28 15 - - - - - - - -
A:4)1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
N:4|1 16 65 304 840 1768 3250 5458 8077 9986 9819 7948 5954 4458 3193 2830 1569

Table 7.1: Distribution of the nonzero coefficients in the ANEF and NNF.

Proposition 7.3.1. Let f be a B.f. in k variables. Let f® and f® be respectively
the ANF and the NNF of f. Then if f®) is a polynomials with r < 2F non zero

coefficients, then f%) is a polynomial with no more than min{2* 2" — 1} nonzero

coefficients.

Proof. When computing the NNF from the ANF we have again the r initial terms of
the ANF, plus (;) terms which are all possible double product of the r initial terms,
plus, in general, (”) terms which are all possible i-product of the r initial terms, for

i

each i € {1,...,r}. Thus we will have

zr: (Z) —9r 1 (7.1)

i=1
terms to be summed together. If no sum of similar monomials becomes zero than we

have 2" — 1 nonzero terms. O

By Proposition 7.3.1, if we want a NNF with no more than s terms then we have
to choose the ANF with no more than r = log,(s + 1) terms.

Proposition 7.3.2. Let f be a linear B.f. in k variables. Let £ and @ be respec-
tively the ANF and the NNF of f. We have

f(F):.fCil‘i‘...—i—.’Eir,

forr < k. Then f® is a polynomial with exactly 2" — 1 nonzero coefficients.

In particular,

o= e el

ve(Fa)"
v=(v1,...,u)F0

Proof. Directly from Proposition 3.1.9. O

Proposition 7.3.2 says that linear B.f. ’s are always denser when represented in
NNF with respect to the ANF representation.
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7.4 Finding the codewords with weight < ¢

We are now ready to present a general method to find all the codewords of weight
less than ¢, for some t < n, using polynomial system solving techniques.

We can define an ideal whose variety is the set of points in (IF5)* such that evalu-
ated in the defining polynomials f;,;i = 1,...,n of C give the codewords of C' which
have weight less than t.

Definition 7.4.1. We call weights ideal over Fy the ideal
Wh = (Bs[X] H{m (A7 (X), .., fP(X)) [ m € My}), WE € B[ X],
where B[ X] = {x3 — x1,..., 22 — x1,} are the field equations.
The name comes from the following lemma:

Lemma 7.4.2. Let C be a binary (n,2%)-code. Lett € N such that 1 <t <n. Then
VWE) #0D <= FceC st w() <t—1

Clearly this variety is empty if there is no codeword of weight less than ¢.

To find the minimum weight of a binary (n, 2¥)-code, supposing the defining poly-
nomials are given in ANF we can use the following algorithm:

Algorithm 3 Basic algorithm to compute the minimum weight of a code C'
Input: a binary (n, 2%)-code C defined by £, ..., f&
Output: the minimum weight of C
1 g1
2: while VW) = () do
3 g—g+1
4: return j —1

We will see in the upcoming chapters how this algorithm can be used in particular
to compute the nonlinearity of a B.f. . The same algorithm could also be used to
compute the distance of a code C, by computing the minimum weight of the code
C" composed by the difference of all possible pair of codewords of the initial code C.
The complexity of computing V(W{) is estimated in the following theorem.

Theorem 7.4.3. To find the variety of the ideal W, is equivalent to solve a multi-

variate system of (?) polynomials of degree < k in k variables.
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Proof. Recall that W§ = (Eq[ X U{m(f1(X),..., fu(X)) | m € M,,})., thus the
system is composed by the k field equations (which we do not consider as these
equations are only saying that the solutions will be binary vectors) plus M, | = (})
polynomials in the variables X = xy, ..., x;. Since this polynomials are in ANF, their
degree is at most k. O

The construction of the system W{, dominates the entire cost of Algorithm 3.

n
t

tions from previous while cycles. Furthermore, all multiplications of the polynomials

This is because ( ) monomials have to be evaluated. Clearly one can save computa-

fi(]F) should be done considering their normal forms with respect to the ideal being
constructed. This saves time when 1 is in the ideal, but when the ideal is not triv-
ial, (?) operations must be done to construct it, and the resulting system has to be
solved.

To brute force the system requires to evaluate 2¥ points.

Even for small values of ¢ with respect to n (t < n) we have

(n) _nn—1)...(n—t+1) _

t) t! -

- (n—t/2) _ (n/t —0.5)""
tte=t/2mt V27t

_ et(ln(n/t70.5)+1)fln\/ﬁ

and if ¢ > k, then (7) ~ etIn(n/t=0.5)+1)~Inv2mt -, ok

A Grobner basis of the ideal WE is a much simpler description of WE. A way to
solve this system is thus to find a Grébner basis with one of the techniques outlined
in Section 1.3. We are currently not aware though of which algorithm is best.
Furthermore not all the monomials in M,,; may be useful to solve the system (as
shown when computing the nonlinearity of a Boolean function, see Table 8.3 and 8.4),
though it is still unclear which monomials should be chosen to determine it in a few
steps.

As a last comment, we point out that the zeros of the ideal WE reveal those vectors
which evaluated in the defining polynomials give the codewords of C' of weight less
than t. To compute the minimum weight we do not need to actually find such zeros,
but we only have to determine if any zero exists, which is somehow a simpler problem,
as shown in Section 1.4.2.

7.5 Finding the codewords with weight exactly ¢

It is possible to construct a polynomial with integer coefficients whose evaluations
in {0,1}* C Z* are the weights of the codewords of the code C.
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Definition 7.5.1. Let X = zy,..., 23, and X? — X =22 —xq,..., 22 — 1. We call
the weight polynomial of the code C' the polynomial

we(X) = 3" FO(X) € ZIX]/(X? - X),

i=1
where the fi(Z) ’s are the defining polynomials of the code C' in NNF.

Theorem 7.5.2. Let v € {0,1}% C Z*. Then there exist a codeword ¢ € C' such that
w(c) = e(v).

Proof. 1t is sufficient to note that a codeword ¢ € C'is such that ¢ = (fl(Z) (P),..., ,SZ)(P))
for some P € {0,1}*, and that the sum of all fi(Z) is over the integers. O

Example 7.5.3. Continuing from Example 7.2.2 we have that
wo(y,w2) = A7+ A7+ B2+ 17+ 7 =2 —mm + 2.
Evaluating too in vy, vo, v3, v4 We get
we(vi) =2, we(vy) =4, te(vs) =1, we(vy) =3,
which are, respectively, the weights of the codewords
(0,1,0,0,1),(1,1,1,0,1),(1,0,0,0,0),(1,0,0,1,1).

We can define an ideal whose variety is the set of points in {0,1}* such that
evaluated in the sum of the defining polynomials f( t = 1,...,n of C give the
codewords of C' which have weight exactly ¢.

Definition 7.5.4. We call weights ideal over Z the ideal
We = (B[ X] | {we(X) — t}), W € QlX],
where Eo[X] = {22 — x1,...,22 — a3}
Lemma 7.5.5. Let C be a binary (n,2%)-code. Lett € N such that 1 <t <n. Then
VOVL) £ 0 < 3ceC st we)=t

Clearly this variety is empty if there is no codeword of weight .
Algorithm 4 is a method to find the minimum weight of a binary (n,2*)-code, sup-
posing the defining polynomials are given in ANF.
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Algorithm 4 To find the minimum weight of a binary code C
Input: fl(]F), ceey ()
Output: the minimum weight of C

L: fl-(Z) — NNF(fi(F)), foreachi=1,...,n
2: 7+ 0 B

3: while V(WL) = 0 do

4: j<+—7+1

5. return j

If we know that the code contains the 0 codeword and we are interested in finding
the minimum weight different from 0, then j must be initialized to 1.
Algorithm 4 can be modified to eliminate the while cycle. Instead of checking if a
solution of the system

(2
i —x1 =0

(7.2)
3 —x, =0
\mc({L‘l,...,ZL‘k) —j =0
exists in the affine algebra Q/(z? — x1,..., 27 — x;) for each j € {1,...,n}, we can
add the variable ¢ to the system
(x% —x1=0
(7.3)
zp —a =0
\mc(.’lﬂ'l, .. .,.Tk) —t=0
and solve it in Q[t]/(x? — x1, ..., 22 — z}), with respect to lexicographical monomial

ordering, to find as a solution a polynomial t(¢), whose solutions are integers, repre-
senting the weights of the codewords of C'. We are interested in the smallest solution
of t(t).

We did not investigate further which of the two solutions is best.

Example 7.5.6. Consider the code

C ={(0,1,0,0,1)
(1,1,0,0,1)
(1,0,1,0,0)
(1,0,0,1,1)}.
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7.5. Finding the codewords with weight exactly t

The defining polynomials of C'in ANF and NNF are respectively

1Y
£
£
719
i

= 21292 + X1 + T2

= T9 + 1
= T1X9 + I9
= T122

:x1x2+x2+1

(Z)
1

(Z)
2
(Z)
3

(Z)
4

(Z)
5

= —T1T2 + 1 + T2

= —X9 + 1
= —T1T9 + X2

= T122

=x1T9— 22+ 1.

The weight polynomial of C' is
mc(l‘l, IL‘Q) =T + 2.

If we want to find all the codewords ¢ € C such that w(c) = 3, we can compute a
Grobner basis of the ideal W?(’;, which is

B({roc(z1, 72)

Its variety is V(WBC) =
Then we consider the points p € V(Wé) and compute

CcC =

2
- 3,7

2

{(1,0), (1, 1)}.

F(p) =

— T2})

=GB({x1 —1

= {21 —

(fi(p), fo(p), f3(p), fa(p), f5(P)) ,

1,373 — .TQ} .

2

VOV) = {(1,0),(1,1)}
F((1,0)) = (1,1,0,0,1)
F((1,1)) =(1,0,0,1,1)

— Ta})

Instead of computing the Grobner basis, which is sometimes a heavy task, we can
consider the evaluation vector of o over the set {0,1}? and consider only those

pairs whose evaluation is 3,

e ((0,0)) =2
we((1,0) =3
e ((0,1)) =2
we((1,1)) =3,

Which are (1,0), (1,1).
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Chapter 7. Computing the minimum weight of a code

If we wanted to find the minimum weight of C, we could either use Algorithm 4

or to solve the system

x%—m:O
23— 15 =0

m($1,$2):$1+2—t20

with respect to lexicographical order and with respect to the variable ¢.
We find the solution t(t) = 2 — 5t +6, whose roots are 2 and 3, implying the minimum
weight of the code is 2.

As shown in the last example, once we have the weight polynomial tos of the
code C, not only we can find the minimum weight of C, but we also find which are
the codewords having certain weights by looking at its evaluation vector over the
set {0, 1}*. As we will see in Section 7.6.3, computing this evaluation has a cost of
O(k2%). The complexity maintains the same order if the number of terms of each
defining polynomial in NNF is on average O(£2*).

To summarize, we state the algorithm to find the evaluation vector of the weight
polynomial ¢ of a binary (n, 2F)-code C given as a list of 2¢ codewords (and thus
also the minimum weight of C'). We indicate with C; ; the j-th component of the i-th
word of C, with 1 < j <mnmand 1 <i<2"

Algorithm 5 To find the evaluation vector of too from the list of codewords of C.
Input: c¢i,...,con € C

Output: the evaluation vector o, of too
1: f]@ < NNF of the binary vector (Cy;,...,Cq ;) for 1 <j <n
2 e fP 4+ 4 P
3: W, < Evaluation of w¢ over {0, 1}*
4: return .

7.6 Complexity considerations

First of all let us notice that given a binary (n, 2¥)-code as a list of 2¥ codewords,
to find all the codewords of weight ¢ using brute force requires n2* bit operations,
since we have to check each component of each codeword of C'.

We now analyze the complexity of Steps 1, 2, and 3 of Algorithm 5. Then we compare
our method to compute the minimum weight of a binary code with brute force and,
in the linear case, with the Brouwer-Zimmerman method (|Zim96]).
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7.6. Complexity considerations

7.6.1 From list of codewords to defining polynomials in NNF

Proposition 7.6.1. The overall worst-case complexity of determining the coefficients
of the n defining polynomials in NNF of the code C given as a list of vectors is
O(nk2").

Proof. We want to find the NNF of the Boolean function whose truth table is given
by a column of the binary matrix

01,1 01,2 e Cl,j e Cl,n
C - Ci,l Ci,Z ce Ci,j ce Ci,n
CQICJ 02k72 e CQICJ' e C2]€7n

whose rows are the codewords of the code C.

In [CG99| (Proposition 2) it is shown that to compute the NNF of a Boolean function
in k variables given its truth table requires £2¥~1 integer subtractions. Since we have
to compute the NNF for n columns the overall complexity is O(nk2*). O

A similar result holds if we want to determine the coefficients of the n defining

polynomials in ANF.

7.6.2  From defining polynomials to weight polynomial

Proposition 7.6.2. The overall worst-case complexity of summing together all the

defining polynomials in NNF is O(n2%) integer sums.

Proof. Each monomial m in a defining polynomial is square free, and since m €
Z[z1, ..., x;), then a defining polynomial can have no more than 2¥ monomials. Since
the defining polynomials are n, the proposition follows. O

Remark 7.6.3. Clearly, the computational complexity of this steps decreases if the
defining polynomials are sparse.

7.6.3  FEvaluation of the weight polynomial

Algorithm 6 describes the fast Mobius transform to compute the evaluation vector
of a Boolean function f in NNF in k variables.
We use the following notation: the coefficient cyr is the coefficient of the greatest
monomial, i.e. of xy---xp, cov_; the coefficient of the second greatest monomial,

and so on until ¢;, which is the costant term. We provide Example 7.6.4 to clarify
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Chapter 7. Computing the minimum weight of a code

notation.

Notice that the sum in Step 6 is over the integer. If it was a sum in Fy then we would
obtain the truth table of f.

Algorithm 6 Fast Mobius transform for fast integer polynomial evaluation.

Input: vector of coefficients ¢ = (cq, ..

Output: evaluation vector e = (eq, .

1: e<c¢

2: forv=0,...,k do

forz=0,...,.b+2"—1do

Cot142i € Cxtl + Cpp1q0i

3: b+ 0

4: repeat

5:

6:

7: b+ b+ 201
8: until b = 2*

9: return e

702k>

..,62k)

Example 7.6.4. Consider k£ = 3 and lexicographical ordering with z; > x5 > x3.
Let f = 8xyxox3 + 321 + 2. Then

c=(c,...

e=(ep,...

) 08) = (27 07 07 07 37 07 07 8)
Jes) = (2,2,2,2,5,5,5,13) .

where the vector e has been obtained following the scheme in Figure 7.1.

(1, T2, 3)
000
001
010
011
100
101
110

111

Step 1

C

a

i
i

cg

Co +

C3

+

Cq

Cs

+

+

c1+ ¢
C3

c3+ ¢y
Cs

cs + Cg
cr

cr+cg

Step 2
i+
+

=3

+
+

1
¢+ ¢
c1+c3

cptceyt ezt

Cs
cs + Cg
cs + cr

cs + cg+ Ccr +cg

Step 3

+
+
+
+

e
1
c1+ o
¢+ c3
cit+e+c3tey
c1+cs
c1+co+c5+c
c1+c3+c5+cr

c1+Cct+c3+ceqg+c5+cg+cr+cg

Figure 7.1: Butterfly scheme describing the fast M&bius transform.

Proposition 7.6.5. Evaluating the weight polynomial over the set {0,1}* has a com-

putational cost of O(k2¥) integer operations.

Proof. This is the cost of Algorithm 6, i.e. k2¥~! integer sums.
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7.6. Complexity considerations

7.6.4 Comparison with brute-force method

Theorem 7.6.6. Let h be a positive integer. If the code C' is given as a set of B.f. s
whose NNF have on average 2% /h coefficients different from 0, then computing the
minimum weight of C' requires at most

(Goo)?

integer sums.

Proof. By Proposition 7.6.5 computing the evaluation vector of the weight polynomial
e requires k287! integer sums using the fast Mdbius transform. To compute the
weight polynomial we need to sum the n defining polynomials fl-(Z),z' =1,...,n,in
NNF. If each of these polynomials has on average 2¥ /h coefficients then the complexity
of computing o requires O(n%) integer sums. So the final complexity is at most
(n/h)2F + k2k-1.

O

The codewords of a random code have on average half 0’s and half 1’s, thus, if
we consider that 0’s do not count when summing the defining polynomials, then the

2F=1 integers sums.

computation will require n
Our method is more efficient than brute force when n/h + k < n. This is very
likely to happen for a random code.
Notice also that if the sets of nonzero monomials of two polynomials in NNF are
disjoint, then the sum of the two polynomials is simply their concatenation. So, if the
defining polynomials of a code are “disjoint”, then the cost of computing the weight
polynomial is O(1), and the final cost of finding the minimum weight becomes the
cost of computing the evaluation of ¢, i.e. O(k2871).
Fact 7.6.7 shows that, for n > k, when the code is linear our method to compute the
minimum nonzero weight (i.e. the distance of the code) given the set of the defining
polynomials in NNF is more efficient than the classical method which uses brute force,

given the list of the codewords of the code.

Fact 7.6.7 (Comparison with brute force when n ~ 2%). Consider a random binary
(n, k)-linear code C' such that n ~ 2. Then computing the minimum weight of C

1. given the list of its codewords and using brute force requires
O(22k‘)
integer operations.
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Chapter 7. Computing the minimum weight of a code

2. given the list of the defining polynomials in NNF and finding the minimum of
e requires

0(2:%)
integer operations.

Proof. The complexity of finding the minimum weight of C' in case 1 is O(n2*) =
O(22%F),

The complexity of finding the minimum weight of C in case 2 is O((n/h + k)2%) (by
Theorem 7.6.6), where n/h is the average number of nonzero coefficients of the NNF.
If the linear code C'is random, then so are the random linear defining polynomials. A
random linear function in k variables has on average k/2 nonzero coefficient in ANF
and thus 2%/2 — 1 nonzero coefficients in NNF by proposition 7.3.2, i.e. n/h ~ 2F/2,
and

O((n/h + k)2¥) = O((2¥% + k)2F) = O(27%) .

O

Remark 7.6.8. If the code is non linear and the ANF has on average k/2 coefficients
then n/h < 2¥/2 and our method is even faster.

In Table 7.2 we show the coefficient of growth of the complexity of our method in
three different cases. The first line shows the coefficient of growth of the brute force
method applied to a linear code. The second line shows the coefficient of growth of
our method applied to a linear code. In the third line our method is applied to a
nonlinear code whose representation in ANF is sparse, and in the last line nonlinear
codes with dense representaion in ANF are considered.

For the comparison we choose for each k, 10 random (2%, k)-codes and 10 random
(251 k + 1)-codes and compute the average times ¢;,t, to compute the minimum
weight in each case. Then we report the number log, (1 /ts).

k 8—9 9—-10 10—11 11-—12
Brute-force Linear ANF  1.93 1.98 2.00 1.99
Linear ANF 1.32 1.38 1.53 1.61

Sparse Nonlinear ANF 0.89 1.12 1.32 1.38
Dense Nonlinear ANF 2.09 2.03 2.04 2.08

Table 7.2:
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7.6. Complexity considerations

7.6.5 Comparison with Brouwer-Zimmerman method for linear codes

In the linear case the defining polynomials of a code C' clearly have a sparse ANF.
This is not necessarily so with the NNF. Consider the following example.

Example 7.6.9. Suppose C is a (10, 2%),-linear code, i.e. k = 4,n = 10. Then it
has 10 defining polinomials fi, ..., fio € F[z1, 22, z3,24]. Consider one of them, for
example f5. If féF) = x4 + w3 + x5 + 71 is the ANF of f5 then the NNF is

Z
fé ) — _ 8T 1ToT3ly + 412003 + 421 X224 — 221X
4+ dxix304 — 20103 — 20124 + X1 + 4Tox374

— 2T9x3 — 2X9X4 + Ty — 2X3%4 + T3 + T4

i.e. the NNF has all the coefficients different from 0.
Consider now fg. If fé]F) = x5 + x4 is the ANF of fz then the NNF is

féZ) = —2x479 + T4 + T2 .

As shown in Example 7.6.9 if a defining polynomial in Flzy, ..., z;] is linear and
with less than k variables, than many coefficients of the NNF are 0, precisely, the
coefficients of the monomials containing the missing variable in the ANF. In this case
the computation of the minimum weight of C' (and thus of the distance of C, since
the code is linear) is faster than brute force.

In Table 7.3 we compare the time #; needed to compute the minimum weight w of a
linear code given as list of codewords with the MAGMA command

MinimumWeight (C:Method:=‘Zimmerman’’),

with the time ¢ needed to compute w when the code is given as a list of B.f. ’s in
NNF using our method. The comparison has been done for 10 random linear codes
fixing a pair (k,n), with n > k. In the column w,, the average minimum weight
found is shown.

An AMD E2-1800 APU processor with 850 MHz has been used for the computations.
We can see that there are cases, i.e. (k,n) = (8,1200) or (k,n) = (9,1800), where
our method is 10 times faster than the Brouwer-Zimmerman method. This is not
surprising, since the it is known that there are cases where brute force performs
better than the Brouwer-Zimmerman method, e.g.

> C := RandomLinearCode (GF(2),20000,20) ;

> time MinimumWeight (C:Method:="Zimmerman") ;
9665

Time: 4.220
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Chapter 7. Computing the minimum weight of a code

k' n t to t1/ta Way

8 100k =800 0.043 0.007 6.143 360.1
8 150k = 1200 0.122 0.012 10.17 b554.1
8 200k =1600 0.122 0.015 &8.13 745.2
8 250k =2000 0.171 0.011 15.55 935.0
9 100k =900 0.833 0.019 4.368 403.1
9 150k =1350 0.116 0.020 5.800 615.6
9 200k = 1800 0.277 0.024 11.54 834.0
9 250k =2250 0.256 0.029 8.828 1050.0
10 100k = 1000 0.050 0.031 1.613 448.3
10 150k = 1500 0.136 0.041 3.317 687.5
10 200k = 2000 0.178 0.050 3.560 922.7
10 250k =2500 0.185 0.056 3.304 1168.3

Table 7.3: Comparison with Brouwer-Zimmerman method

> time MinimumWeight (C:Method:="Distribution") ;
9665
Time: 0.520

We also recall that Brouwer-Zimmerman method is probabilistic, while our method

is deterministic.

7.7 Binary codes whose cardinality is not a power of 2

Algorithm 5 can be modified to work also with binary codes whose cardinality is
not a power of 2. We now present two methods to find the minimum weight of such
codes.

7.7.1 Method 1: expanding the code

A first method consist in “expanding” the code until it reaches a size of 2¥. The
key observation is that the minimum weight vector of a list of vectors in (F2)™ (i.e. the
codewords of C) is equal to the minimum weight vector of the same list concatenated
to the list of some repeated words of C' (eventhough this new list is not a code

anymore).

Proposition 7.7.1. Let C' be a binary nonlinear code of length n and with m code-
words, where 271 < m < 2F. Then there exists a set F' of n Boolean functions
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7.7. Binary codes whose cardinality is not a power of 2

fi,--., fu such that

C=F = {(her ot fulwn o a)) | . mi) € (F2)F)
Proof. Suppose

C={c1,. . emy ={(Cr1,Cras ... .Ch)s oo (Conty, Conos - - o, o)}

Then consider the (2% x n) matrix M whose first m rows are the codewords of C' and

the last 2¥ —m rows are equal the a fixed codeword of C, e.g. ¢,,:

0171 0172 P CLn
M = Cm,l Cm,Q e Cm,n
Cm,l Cm,Q cee Cm,n
2F —m
Cm,l Cm,Q s Cm,n
2k —m
—

Then for each i = 1,...,n, thei-th column M is the vector (Cy;,...,Chmi, Criy - -, Cinii)
of length 2¥ and can be seen as the truth table of a B.f. in k variables.

Clearly the minimum weight codeword of C'is the same as the minimum weight vector
of the list L. O

In the proof of Proposition 7.7.1 we constructed the matrix M concatenating
to the matrix composed by the m codewords of C' one fixed codeword of C. A
different choice of the concatenated 2 — m codewords determines a different set
F={fi,..., f.}. Different choices may yield to more convenient representation, but
we did not investigate further.
We report in Algorithm 7 the steps to compute the minimum weight of a nonlinear

binary code with size not a power of 2.

Algorithm 7 To find the evaluation vector of too from the list of codewords of C'.
Input: C' = {c1,...,cn}

Output: the evaluation vector o, of too
2k_m

. P——
1: Construct the matrix M, whose rows are c¢i,...,Cm,Cmy - -+, Cm

2k _m
——t——
f](Z) < NNF of the binary vector (Cy,...,Cnj, Cmj, ..., Cmyj) for 1 <j<n
we — 7 4+ [P
W, + Evaluation of w¢ over {0, 1}*

return o,
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Chapter 7. Computing the minimum weight of a code

It easy to see that the complexity of Algorithm 7 is again O(nk2¥).

7.7.2 Method 2: dividing into subcodes

A second approach is to divide the code C' in subcodes whose cardinality is a
power of 2. Then to each of these codes we can apply Algorithm 5 and then take the
minimum of all the results, as shown in Algorithm 8.

Algorithm 8 To find the list of the weights of all C' codewords.
Input: C = {¢1,...,cn}

Output: the evaluation vector o, of too

: Let (b, ..., bs,b1) be the binary expansion of m (with b; Isb)

ve = (), empty list

:for:=1,...,r do

if b; = 1 then
Construct the (n,2')-code D taking 2°~! new codewords from C
Apply Algorithm 5 to D

i fi¥ + NNF of the j-th column of D, with 1 < j <n

ii: mD<—f1(Z)+...+f,§Z)
iii: w,, <+ Evaluation of rop over {0, 1}*

ot

ve = vellwp
return v,

%

Remark 7.7.2. The complexity of Algorithm 8 is dominated by the complexity of
Algorithm 5 applied to the largest subcode of C' having a size which is a power of 2,
which is
O(n|log, m|2Uoe2™m])
Example 7.7.3. Consider the (5, 11)-code
¢ =4{(0,0,0,1,1),(1,0,1,0,1),(0,1,1,1,1),(0,0,1, 1,0),

(1,0,0,1,1),(1,0,1,1,0),(1,1,1,0,0), (1,1,0,1, 1),

(1,1,1,1,0),(0,0,1,1,1),(1,1,1,1,1)}.
Since the binary expansion of 11 is 1011, then we can split C' in 3 subcodes of size a

power of 2.

{(0,0,0,1,1)}
{(1,0,1,0,1),(0,1,1,1,1)}
{( )
( )

Dy
Dy
Ds

0,0,1,1,0),(1,0,0,1,1),(1,0,1,1,0),(1,1,1,0,0),
1,1,0,1,1),(1,1,1,1,0),(0,0,1,1,1),(1,1,1,1,1)} .
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This code can be represented with 5 constant B.f. ’s, 5 B.f. ’s in one variable and 5 in
three variables, as follows

D, ={0,0,0,1,1}

Dy={—az1+1,29,1,24,1}

D3 = {2x1m9w3 — 2119 — X123 + T — 2m973 + X9 + T3,
T1Ty — XT3 + T3,
— 201293 + X1X9 + 20123 — 1 + Xox3 — T3 + 1,
T1X2%3 — X122 + 1,

2l‘1[L‘2l‘3 — 1Ty — 2[L‘1l‘3 + 21 + l‘g} .
We can compute the weight polynomial for each D;, obtaining

mD1:2
mD2:x1+3

mD3 = 333‘1{1]2{1]3 — 21’1372 — T1T3 + 2:1]1 — ToX3 + Xo9 + T3 + 2,

whose evaluations over {0,1}"~! are

wy = (2)
ng = (374)
ng, = (27 37 37 37 47 47 37 5) .

The minimum entry of these evaluation vectors is 2, which is the minimum weight of
the code.
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Computing the nonlinearity of Boolean function

Any function from (IF3)" to [y is called a Boolean function. Boolean functions
are important in symmetric cryptography, since they are used in the confusion layer
of ciphers. An affine Boolean function does not provide an effective confusion. To
overcome this, we need functions which are as far as possible from being an affine
function. The effectiveness of these functions is measured by several parameters, one
of these is called “nonlinearity” ([Car10]).

In this chapter, we provide three methods to compute the nonlinearity of Boolean
functions. Moreover, we give an estimate of the complexity of our methods, compar-
ing it with the complexity of the classical method which uses the fast Walsh transform
and the fast Mobius transform.

In Sections 3 and 8.1 we recall the basic notions and statements, especially regarding
Boolean functions, which are necessary for our methods.

In Section 8.2 and 8.3 we provide two algorithms which reduce the problem of com-
puting the nonlinearity of a Boolean function to that of solving a polynomial system
of equations. In particular, in Section 8.3 we associate to each Boolean function in
n variables a polynomial whose evaluations represent the distance from all possible
affine functions.

In Section 8.4 we show that this polynomial can be used to find the nonlinearity of a
Boolean function without solving the previously mentioned polynomial systems. In
Section 8.5 we provide some results to express the coefficients of this polynomials,
and we show in Section 8.6 that these can be computed also using fast transforms.
Finally, in Section 8.7 we analyze the complexity of the proposed methods, both ex-
perimentally and theoretically. In particular, we show that using fast Fourier methods
we arrive at a worst-case complexity of O(n2") operations over the integers, that is,
sums and doublings. This way, with a different approach, we reach the same com-
plexity of established algorithms, such as those based on the fast Walsh transform.
Part of the previously mentioned works can be found in [Bell4a|, [Bell4b| and
[BSS14].

For definition and notation on B.f. refer to Section 3.
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Chapter 8. Computing the nonlinearity of Boolean function

8.1 Polynomials and vector weights

Here we present the main results from [SS07al, [Sim09]. The same techniques are
also applied in [GOS06] and [Gue05|. Let K be a field and X = {z1,...,x,} be a set
of variables. We denote by K[X] the multivariate polynomial ring in the variables
X If fi, ..., fv € K[X], we denote by ({f1,..., fv}) the ideal in K[X] generated by

fioo IN

Let ¢ be the power of a prime. We denote by E,[X]| = {z{ — z1,...,27 — 24}, the
set of field equations in F [X] = F,[z,..., x|, where s > 1 is an integer, understood
from now on. We write E[X] when ¢ = 2.

Definition 8.1.1. Let 1 <t < s and m € F,[X]. We say that m is a square free
monomial of degree t (or a simple t-monomial) if:

m =y, - - Tp,, where hy,...,hy € {1,... s} and hy # h;, VYl # 7,

i.e. a monomial in Fo[X] such that deg,, (m) =1 for any 1 <i <t. We denote by
M the set of all square free monomials of degree t in F,[X].

Let t € N, with 1 <t¢ < s and let I;; C F,[X] be the following ideal

I, = {oy,...,0} UE,[X]),

where o, are the elementary symmetric functions:

o1 = T+ T2+ + s,

09 = X1+ X1T3+ -+ 01Ts + Taxz + -+ Ts_1Ts,
Os—1 = X1T9X3+ " Ts_2oTs—1 + -+ ToX3 " Ts_1Ys,

Os = XT1X2 " "Ts_1Tg.

We also denote by I, s+ the ideal (E£,[X]). For any 1 < < s, let P, be the set which
contains all vectors in (IF,)" of weight i, P, = {v € F} | w(v) = i}, and let Q; be the
set which contains all vectors of weight up to i, Q; = Uo<j<; P .

Theorem 8.1.2. Let t be an integer such that 1 <t < s. Then the vanishing ideal
Z(Qt) of Q; is
I(Q) = Loyt

and its reduced Grobner basis G is

G=E/[X|UM;g;, fort>2,
G={xy,...,xs}, fort=1.
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8.2. Nonlinearity and polynomial systems over [F

Let F,[Z] be a polynomial ring over F,. Let m € Mg, m = 2, --- z,,. For any
polynomial vector W in the module (F,[Z])", W = (W, ..., W,), we denote by m(W)
the following polynomial in F,[Z]:

m(W):Whl-...-Wht.

Example 8.1.3. Let n = s =3,¢=2and W = (2,25 +13, T2, 1ox3) € (Flx1, 22, 73])3
and m = z;z3. Then

m(W) = (z122 + x3)(2223) .

8.2 Nonlinearity and polynomial systems over [F

In this section we want to tackle the following problem: to find a method to
compute the nonlinearity of a given Boolean function f € B, by constructing a finite
number of polynomial systems over F5 with /N variables and such that:

A) N is of the order of n,

B) the nonlinearity is obtained by merely deciding which of these systems have a

binary solution.

Since the maximum nonlinearity is of the order of 2"~1, we are satisfied if the number
of systems we have to construct does not exceed 2"~ (or even 27).

In this section we report the solution of the above problem, given by Simonetti in
[SS07a], which depends on Theorem 8.1.2.
The starting idea is to define an ideal such that a point in its variety corresponds to
an affine function with distance at most ¢ — 1 from f.

Let A be the variable set A = {a;}o<i<n. We denote by g,, € F[A, X]| the following

polynomial:
On = ao + Zaﬂi .
i=1

According to Lemma 3.2.3, determining the nonlinearity of f € B, is the same as
finding the minimum weight of the vectors in the set {f +g | g € A,} C F*". We can
consider the evaluation vector of the polynomial g,, as follows:

g0 = (80 (A, p1), - 904, p2n)) € (F[A])Qn .
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Example 8.2.1. We consider the case n = 3. Then g3 = a1x1 + asxs + azxs + ag.
We consider vectors in F3 ordered as follows:

P1 = (07070)7 p2 = (0707 1)7 pP3 = (07 170)7
P4 = (1’070)a pPs = (0, 1, 1)5 Pe = (1a07 1)5
p7 = (1a170)a pPs = (1’171)

The evaluation vector of g3 is:

g3 = (ao, ap + ay, ap + az, ap + as, ap + ay + as,

ag + ay + as, ag + ag + as, ap + a; + as + as) .

Definition 8.2.2. We denote by J'(f) the ideal in F[A]:

‘]tn(f) = <{m(gn(Aa pl) + f(pl)a s agn(Aa pZ") + f(pQ”)) | m & MZ",t} U E[AD
= {{m(gn + f) [ m € Mo} UE[A]).

Remark 8.2.3. As E[A] C JI(f), JI*(f) is zero-dimensional and radical (Theorem
1.2.21 ).

Lemma 8.2.4. For 1 <t < 2" the following statements are equivalent:

1.V (f) # 0,
2. Jue{f+glge A.} such that w(u) <t —1,
3. da € A, such that d(f,a) <t —1.

Proof.

(2)<(3). Obvious.

(1)=(2). Let A = (dg, ay,...,a,) € V(J*(f)) C F*! and let

= (gn(A,v1) + f(v1), ..., 8n(A,v90) + f(von)) € FZ". We have that m(u) = 0 for all
m € Man,. Sou € V(Iyn) and, thanks to Theorem 8.1.2, u € Q;_1, i.e. w(u) <t—1.
(2)=(1). It can be proved by reversing the above argument. O

From Lemma 8.2.4 we immediately have the following theorem.

Theorem 8.2.5. Let f € B,. The nonlinearity N(f) is the minimum t such that
V(Jia(f) # 0.

From this theorem we can derive an algorithm to compute the nonlinearity for a
function f € B,, by determining if the variety of the ideal J;'(f) has a solution or

not.
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Algorithm 9 Basic algorithm to compute the nonlinearity of a Boolean function by
finding if a solution of a polynomial systems over F exists
Input: a Boolean function f

Output: the nonlinearity of f
1 g1

2: while V(J7'(f)) = 0 do

3 J—g+1

4: return j —1

Simonetti’s systems J'(f) are the solutions of the problem we stated at the be-
ginning of this section: they use only n 4 1 variables and all we want to know from
them (in the worst case) is whether they have a solution or not. Observe also that
the solution we are interested in does not lie in some big extension field but it must
remain in ()"

Moreover, the number of systems we need to check is, in the worst case, the maximum
nonlinearity plus one. We claim that with our constraints Simonetti’s solution is, in
principle, still the best-known.

However, a practical application of Algorithm 9 was missing in Simonetti’s work,
where she would use straightfoward applications of Grobner bases. Before proceeding
to propose more refined approaches in the next sections, we would like now to provide

some examples for Simonetti’s original contribution.

Remark 8.2.6. If f is not affine, we can start our check from JJ(f).

Example 8.2.7. Let f : F* — F be the Boolean function:
f(a:l, X, .Tg) =T1T9 + T1T3 + X9 + 1.

We want to compute N(f) and clearly f is not affine. We compute vector f and we
take a general affine function g3, so that:

f=(1,1,0,1,1,0,0,0),

g3 =(ao, ap + ay, ag + az, ag + as, ag + a1 + as,

ap + ay + ag, ag + as + as, ag + a; + as + az).
So

i+%:(ao+1,ao+a1+1,a0+a2,a0+a3+1,
ao+a1+a2+1,a0+a1+a3,a0+a2+a3,

a0+a1 + as +a3) = (p17p2a"'ap8)’
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Ideal J3(f) is the ideal generated by

J3(f) = ({pip2, pip3, - - -, P18}

U{ag + ap, a’ + ay, a3 + ag, a3 + az}) .

We can compute any Groébner basis of this ideal and we obtain that it is trivial,
so V(J3(f)) = 0 and N(f) > 1. Now can compute a Grébner basis for J3(f).
We obtain, using degrevlex ordering with a; > ay > a3z > ag, that G(J3(f)) =
{ag+az+1,a%+as, aja3+ag+1,apaz +ag+az+1,a% +ay, apa; +ag+a;+1,a3 +aop}.
So, N(f) = 2 by Theorem 8.2.5. By inspecting G(J3(f)), we also obtain all affine
functions having distance 2 from f:

oy =1+ x; + 29, ay =1+ g,

a3 =1+ 3, aq =11+ 3.

Example 8.2.8. Let f : F° — F be the Boolean function

[ =2123%475 + 17274 + T1T4T5+ (8.1)
ToX3Ty + ToXyTs + T3T4Ts + T4Ts . (8.2)
We have that
f=10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1).
Then we compute f + g5 and we obtain:

f+ 85 =(ao, a1 + ag, az + ag, az + ao, as + ag, as + ao,
a1 + az + ag, a1 + az + agp, a1 + as4 + ao,
a1 + as + ag, az + az + ag, az + a4 + ao,
az + as + ag, az + a4 + ag, az + as + ao,
ay+ as +ag+ 1,a1 + as + as + ay,
a; +ag +ay+ap+ 1,01 + ag + as + ay,
a1 +ag + a4 + ap, a1 + asz + as + ao,
a; +ay+as + ap,az + az +ag +ag + 1,
az +ag + as + ap, az + a4 + as + ao,
az + a4 + as + ap, a1 + as + az + a4 + aop,
a1 + ag + as + as + ag, a1 + ag + a4 + as + aop,
a1 + as + a4 + as + ag, a2 + as + a4 + a5 + aop,
a; +as+az+ag+as+ag+1)=
=(p1,p2;- -, P32) -
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As it is obvious that f is not affine, we start from the ideal J3(f), which is generated
by

J25<f) = ({p1p2, P1p3, - - -, P31P32} U {aé + agp, af + aq,

2 2 2 2
a; + ag, Qs + as, ay + aq4, Qg + CL5}> .

The Grobner basis of J3(f) with respect to any monomial order is trivial so we
compute a Grobner basis of J3(f). We obtain that the Grobner basis of JP(f) is trivial
with respect to any monomial order for 2 <t¢ < 4. For ¢t = 5, we obtain the following
Grobner basis with respect to the degrevlex order with a; > ay > as > a4 > a5 > ag:

G(‘]g(f)) = {a07 as, G4, asz, Az, al} .

Then N(f) = 4, that is, there is only one affine function o which has distance equal
to 4 from f: a = 0.

8.3 Nonlinearity and polynomial systems over QQ

Here we present an algorithm to compute the nonlinearity of a Boolean function
by solving a polynomial system of equations over QQ rather than over I, which turns
out to be much faster than Algorithm 9. The same algorithm can be slightly modified
to work over the field IF,,, where p is a prime. The complexity of these algorithms will
be analyzed in Section 8.7.

As we have seen in Section 8.2, the nonlinearity of a Boolean function can be
computed solving polynomial systems over F. It is sufficient to find the minimum j
such that the variety of the ideal J*(f) is not empty. Recall that

JI(f) = {mlgn + f) [ m € Man i} U E[A]).

This method becomes impractical even for small values of n, since (2:) monomials
have to be evaluated. A first slight improvement could be achieved by adding to the
ideal one monomial evaluation at a time and check if 1 has appeared in the Grébner
basis. Even this way, the algorithm remains very slow.

For each i = 1,...,2", let us denote:

FE(A) = ga(A i) + F(pi)

the Boolean function where as usual A = {ay, ...,a,} are the n + 1 variables repre-
senting the coefficient of a generic affine function.
In this case we have that:

n

(A, ., 50 (A)) = ga(A) + £ € (F[A])?
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Note that the polynomials fi(F) are affine polynomials.
We also denote by
1i7(4) = NNF(£(4))

(2

the NNF of each fi(F) (A) (obtained as in [CG99|, Theorem 1).

Definition 8.3.1. We call ng(A) = FEA) + -+ £P(A) € Z]A] the integer
nonlinearity polynomial (or simply the nonlinearity polynomial) of the Boolean
function f.

For any t € N we define the ideal N} C Q[A] as follows:

NE= (BIAI AP + -+ #2 — 1)) = (8.3)
= (BIA] | J{ny —1}) (8.4)

Note that the evaluation vector ny represents all the distances of f from all possible
affine functions (in n variables).

Theorem 8.3.2. The variety of the ideal /\/'; is non-empty if and only if the Boolean
function f has distance t from an affine function. In particular, N(f) = t, where t is
the minimum positive integer such that V(NG) # (.

Proof. Note that
Ni = (E[A]) + {{ns(A) —t})

and so
V(N}) = V(E[A]) N V({{ng(A) —t})).
Therefore V(N}) # 0 if and only if 3a = (ao, . . ., @n) € V((E[A])) such that ny(a) = t.
Let « € A, such that «(X) =ag + >, a;2;.
By definition we have
19 =1 = f(p) #alp)

and
P =0 <= f(p)=alp).

Hence

2’71

np(@) =Y f7@) —t =0 < |{i] f(p:) # alpi)}] =t
i=1
— d(f,a)=t.

and our claim follows directly. O
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To compute the nonlinearity of f we can use Algorithm 10 with input f.

Algorithm 10 To compute the nonlinearity of the Boolean function f
Input: f

Output: nonlinearity of f
1. Compute ny
2: 1
3: while V(N7) = () do
4: j+7+1
5 return j

Algorithm 10 can be modified to eliminate the while cycle. Instead of checking if

a solution of the system

(2
ag —ap =0

(8.5)
az—a, =0
\n(;(ao,...,an) —7j=0
exists in the affine algebra Q/(a2 — ao, . ..,a% — a,) for each j € {1,...,2"}, we can

add the variable ¢ to the system
(
ag —ag=0

(8.6)

2 _
a; — a, =0

\n(;(ao,...,an)—t:()

and solve it in Q[t]/{a2 — ao, ...,a% — a,), with respect to lexicographical monomial

) 'n
ordering, to find as a solution a polynomial £(¢), whose zeros are integers, representing
the possible distances of the Boolean function f from the affine functions. We are
interested in the smallest solution of ¢(¢).

We did not investigate further which of the two solutions is best.

8.4 Computing the nonlinearity using fast polynomial evalu-

ation

Once the nonlinearity polynomial ny is defined, we can use another approach to
compute the nonlinearity avoiding the hard task of solving a polynomial system of
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Chapter 8. Computing the nonlinearity of Boolean function

equations.

We have to find the minimum nonnegative integer ¢ in the set of the evaluations of
ng, that is, in {ns(a) | a € {0,1}"** c Z"*}.

We write explicitly the modified algorithm.

Algorithm 11 To compute the nonlinearity of the Boolean function f
Input: f

Output: nonlinearity of f
1. if f € A, then
return 0
: else

Compute m = min{n;(a) | a € {0,1}"*'}

2
3
4:  Compute ny
b)
6 return m

Example 8.4.1. Consider the case n = 2, f(z1,22) = zzo + 1. We have that
f=1(1,1,1,0) and g, = (ag, ap + a1, ap + ag, ap + a; + az).
Let us compute all fi(F) = (gn + [f): and fi(Z),for i=1,...,2%

AO =ag+1 = fi7 = —ap+1
2(F)=ao+a1+1 —>f2(Z):2a0a1—a0—a1+1
éF)Zao+a2+1 —>f:§Z)22aoa2—ao—a2+1
B = ag + a1 + ag — ¥ = daparaz — 2a0a; — 2agas

+ag — 2a1a2 + ay + as
Then ny = fl(Z) + fz(Z) + f?EZ) + fiZ) = 4agaias — 2ag — 2a1a2 + 3 and since
ny=(3,1,3,1,3,1,1,3)

then the nonlinearity of f is 1.
Observe that the vector n; represents all the distances of f from all possible affine
functions in 2 variables, that is, from 0,1, 21,21 + 1,29, 220 + 1,21 + 22, 21 + 22 + 1.

8.5 Properties of the nonlinearity polynomial

From now on, with abuse of notation, we sometimes consider 0 and 1 as elements
of F and other times as elements of Z.
We have the following definition
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8.5. Properties of the nonlinearity polynomial

Definition 8.5.1. Given by,...,b, € F

by®...®b, = Z (=2)" =1 o

where the sum on the right is in 7.

It is easy to show that by @ ... @b, € {0,1}.
We give a theorem to compute the coefficients of the nonlinearity polynomial.

Theorem 8.5.2. Let v = (vg,v1,...,v,) € F"™ 0 = (vy,...,v,) € F*, A =
ay’ - -ayr € F[A] and ¢, € Z be such that ny = Y o1 ¢, A”. Then the coefficients

of ny can be computed as:

co=Y_ flu)=w(f) ifv=0 (8.7)
o= (20 Y [f<u> —5| irvro (8.5)
=

Proof. The nonlinearity polynomial is the integer sum of the 2" numerical normal
forms of the affine polynomials g,,(A,u) ® f(u) € F[A], each identified by the vector
u e F" ie.:

ny =Y NNF(ga(4,u)® f(u)) =

uclFn

> NNF(ao® a1ty & ... & anuy, & f(u))

u€elfFn

which is a polynomial in Z[A].
The NNF of g,,(A,u) & f(u) is a polynomial with 2! terms, i.e.:

NNF(gn(A,u) © f(u) = Y AAY,

Ue]Fn+1

for some A\, € Z, and by Proposition 3.1.9

(W) = (<10 ST (=)™ (go(a,u) @ f(w))

a€Ft+la=<v

Let us prove Equation (8.7). When v = (0,...,0) we have

€,....0) = Z [gn((O,,O),u)@f(u)] = Z f(u)

uelFn u€Fn
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Let us prove Equation (8.8). Suppose v # 0.
Now the coefficient ¢, of the monomial A" of the nonlinearity polynomial is such that:

Cy = Z Ao (u) =

= 2D Y (1) au(aw) @ f(u)] =

a=v

=0y 0 Y ()" gaa,w) @ fw)] (8.9)

uelfn aE]F”"’l
a=v

We prove that each u such that o = (vq,...,v,) A u yields a zero term in the
summation, as follows.

If o A wthen 3i € {1,...,n}s.t. v; > w;, le. v; =1,u; = 0. We claim that Va € F*+!
s.t. a 2 v Ja = (ag,...,a,) € F"" st. a < v and

(—1)" @ gu(a,u) @ fu)] + (~1)" g, (a,u) @ f(u)] =0 (8.10)

It is sufficient to choose a; # a; and a; = a; for all j € {1,...,n},j # i. Clearly
a =vand a < v since v; = 1.

By direct substitution we obtain

(=" gu(a,u) @ f(w)] + (=1)" [gu(a, u) @ f(u)] =
=(=1)"Vag ® ayuy @ ... G au; B ... D anu,|+
(1) (=1) (@ ® Q1w B ... B G D - .. D Gy
=(=1)

)Y@ [au; — a;u] = 0.

Thanks to (8.10) we can continue from (8.9) and get

YN ()" gala ) + f(u)

q&elﬂ‘" an-Q— 1
12U g=<w

—2g,(a,u) f(uv)], (8.11)

where we used a ® b = a + b — 2ab.
Now we consider v, u fixed, and v < u.

There are exactly 2%(*) vectors a such that a < v, i.e.:
{a € F* | a < v} = 2V (8.12)

Now we want to study the internal summation in (8.11).
If u=(0,...,0) then Va = (ay,...,a,) = v we have g,(a,u) = ag D aju; ®...au, =
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ag.
Otherwise, if u # (0,...,0) we can consider the following set of indices U = {j | u; =
1} = {j1,- -, Jw(w)}, which has size w(u).

Since @ < v and ¥ < u then (ay,...,a,) = u by transitivity. For all j ¢ U we have
a; = 0, and then w(ag, aj, ..., a;,.,) = w(a).

Thus, for any u € F" we have

1 if w(a) is odd
gn(a,u) =ay®aj; ©...®aj,,, = (8.13)
0 if w(a) is even
and each of the two cases happens for exactly one half of the vectors a < v. Clearly
the two halves are disjoint.
This yields, from (8.9) and (8.11), the following chain of equalities:

Cp = Z Ao(u) =

ueln
—C Y| S s
u€clF” acFn+1
0= a=v
gn(a,u)=0
> 0" ) -
acFrt+l,
a=v
gn(a,u)=1
S DM D MO ST RIS
U~E<]Fn L GE]Fn+1, GE]Fn+1,
v=u a<v a=v
gn(a,u)=0 gn(a,u)=1
= (" 3 (20 ) + 20 ) - 1) =
ue]Fn L
=
— (_1)W(U) Z 2w(v)]c(u) o 2w(v)—1:| —
ue]F’VL L
=
~ (2" Y [0~ 3]
2
ue]F’VL L
V=
which proves the theorem. O

In particular we have:

Corollary 8.5.3. Let u = (uq,...,u,) and

_ ul Un ul Un
ny = E Cou)a1 - Q" +aop E Chu)ly - Q"

u€elFn w€Fn
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Then we have that:

C(I,O,...,O) = 2” — 2W(i) (814)
And Vo € F*, 0 # 0 we have:
6(176) = _20(0,6)7 . (815)

Corollary 8.5.3 shows that it is sufficient to store half of the coefficients of ny,
precisely the coefficients of the monomials where ay does not appear.

Corollary 8.5.4. Each coefficient c of the nonlinearity polynomial ny is such that
| < 2m.

Corollary 8.5.5. Given the nonlinearity polynomial of [ as

— Ppo Pn
ns(ao, ..., an) = Co,..0) + E Cposepn) @~ + -+ Oy

(p07~~~7pn)€]Fn+1
(Pg;---pn)#(0,...,0)

then the nonlinearity polynomial of f ® 1 is related to that of f by the following rule:

n
g1 (o, ..., an) = 2" — co,..0+
po D
E : —C(po,epn) g - Ay

(po,---;pn) EF?HL
(PQs--s pn)#(0,..., 0)

A scheme that shows how to derive the coefficients of the nonlinearity polynomial
in the case n = 3 can be seen in Tables 8.1 and 8.2.

U f(u) + gnl(ag, a1, az,a3,w) | 1 as as asas a aias aias a1a,a3
000 vy +ag U

001 w9 +ag+as vy 1 —2v,

010 w9 +ap + as V3 1 —2us

011 w4+ ag+as+ as vy 1—2vy 1—2v4 —2+44u,

100 w9 +ap + a1 Vs 1 — 2uvy

101 vy +ag +a; + as vg 1 —2ug 1—2vs —2+ 4dvg

110 vy +ag+ay + as VU7 1—2v; 1—2v; —2 + 4uy

111 vy +ag+a; +as + as vg 1 —2v3 1—2vg —2+4dvg 1—2v3 —244vg —2+44vg 4 — 8ug

Table 8.1: Computation of the coefficients of the nonlinearity polynomial with n = 3.
Each line represents the NNF coefficients of the terms of f(u)+g,(A, u) not containing

agp.
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8.6. Complexity of constructing the nonlinearity polynomial

u  f(u) + gnlao, a1, as,a3,u) | ao aopas aoaz Aoazaz oy Aoa1a3  Go@idy  GoGidads
000 vy +ag 1-29

001 w9 +ap+as 1—2vy —2+4v,

010 wvg 4+ ap + as 1—2v3 —2+ 4us

011 v +ag+as+ as 1—2vy —2+4vy —2+4v, 4—8uy

100 ve +ag+ ap 1—2v; —2 4 4v;

101 v +ag+a; +as 1—2v5 —2+4vg —24+4vg 4 —8ug

110 ve+ag+ a1 +ag 1—2v7 -2+ 4vy —2 +4v; 4 — 8ur

111 v+ ag+a;+as+as 1—2v3 —2+4vg —2+4vg 4—8vg —2+4+4vg 4—8vg 4—8vsg —8+ 16vg

Table 8.2: Computation of the coefficients of the nonlinearity polynomial with n = 3.
Each line represents the NNF coefficients of the terms of f(u) + g, (A, u) containing
agp.

8.6 Complexity of constructing the nonlinearity polynomial

We write the algorithm (Algorithm 12) to calculate the nonlinearity polynomial
in O(n2") integer operations.

Algorithm 12 Algorithm to calculate the nonlinearity polynomial ny in O(n2")
integter operations.

Input: The evaluation vector f of a Boolean function f(xy,...,x,)
Output: the vector ¢ = (cy,. .., cont1) of the coeflicients of ny
Calculation of the coefficients of the monomials not containing ag
L (e, ..,cm) = f
2: fori=0,...,n—1do
3: b+ 0
4: repeat
5: forx=b,...,b+2"—1do
6: Cz41 € Copt1 T Copi2iql
7: if z =0 then
8: Cotpoipt = 2 = 2Cq 19141
9: else
10: Cot2it1 $= —2Cp42i11
11: b+« b+ 2!

12:  until b= 2"
Calculation of the coefficients of the monomials containing ag
13: Cryon < 2" —2¢;
14: for i =2,...,2" do
15:  Cjpon < —2¢;
16: return c

117



Chapter 8. Computing the nonlinearity of Boolean function

In Figure 8.1 Algorithm 12 is shown for n = 3.

(@1, 9, 23)  f(x1, 20, 23) Step 1 Step 2 Step 3

000 €1 + e+ e —+ er+ext+e3+ey —+ €1 +extezteqst+es+egt+er+eg

001 ez{ 12, 7/+ 2 — 2e; — 2e4
010 es 2 — 2e3 — 2e4

+ e3 + ey

4 —2e9 — 2e4 — 2e5 — 2eg

4— 263 - 2647 267 - 268

011 e

1—2ey

—2+4dey —4 + dey — deg

100 es +  e5+eg —+ estegterteg 4 — 2e5 — 2eq — 2e7 — 2eg
101 eg {7 1— 2e4 7Z+ 2 — 2e5 — 2e8 —4 + deg — 4deg

110 er +  er+tes o 2 — 2e; — 2e8 —4 4 de; — 4deg

111 eg / 1—2eg "—— —2 + 4deg 4 — 8eg

—2x

Figure 8.1: Butterfly scheme to obtain a fast computation of the nonlinearity poly-
nomial coefficients, where (e1,...,es) = (f(p1),.-., f(ps))-

Theorem 8.6.1. Algorithm 12 requires:

1. O(n2") integer sums and doublings.
In particular n2" integer sums and n2""' integer doublings, i.e. the big O

constant is ¢ = 3/2, provided doubling costs as summing.
2. the storage of O(2") integers of size less than or equal to 2".

Proof. In the first part of Algorithm 12 (the computation of the coefficients of the

monomials not containing ag) the iteration on i is repeated n times.

For each i, Step 6 and Step 8 or 10 are repeated 2° 2?:1 = 2"/2 times (since b goes
from 0 to 2" by a step of 271 and z performs 2° steps). In Step 6 only one integer
sum is performed, in Steps 8 we have one integer sum and one doubling, and in Step
10 only one doubling. Then the total amount of integer operation is

O(n2")

, where the constant ¢ in the big O notation is 3/2, provided doubling costs as
summing.

Finally the computation of the coefficients of the monomials containing ay requires
only 2" integer doublings.

To store all the monomials of the nonlinearity polynomial we have to store 27!
integers, although Corollary 8.5.3 shows that it is sufficient to store only the first half
of them, i.e. 2" integers. By Corollary 8.5.4, their size is less than or equal to 2". [
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8.7 Complexity considerations

First we recall that the complexity of computing the nonlinearity of a Boolean
function with n variables, having as input its coefficients vector, is O(n2") using the
Fast Mobius and the Fast Walsh Transform.

We now want to analyze the complexity of Algorithm 9, 10, 11.

8.7.1 Some considerations on Algorithm 9

In Algorithm 9, almost all the computations are wasted evaluating all possible
simple-t-monomials in 2" variables, which are (2: ) This number grows enormously
even for small values of n and t. We investigated experimentally how many of the
(2:) monomials are actually needed to compute the final Grobner basis of Ji*. Our
experiment ran over all possible Boolean functions in 3 and 4 variables. The results
are reported in Tables 8.3, 8.4 and 8.5.

In this tables, for each J;* there are four columns. Let G} be the Grobner basis of J;".
Under the column labeled #C we report the average number of checked monomials
in 2" variables before obtaining G7.

Under the column labeled #S we report the average number of monomials which are
actually sufficient to obtain G7}.

Under the columns labeled “m” e “M” we report, respectively, the minimum and the
maximum number of sufficient monomials to find G} running through all possible
Boolean functions in n variables.

For example, to compute the Grobner basis of the ideal J3 associated to a Boolean
function f whose nonlinearity is 2, we needed to check on average 24 monomials
before finding the correct basis. Between the 24 monomials only 9.7 (on average)
were sufficient to obtain the same basis, where the number of sufficient monomials

never exceeded the range 8 — 11.

J3 J3 3

NL|#S m M #C|#S m M #C|#S m M #C
0|4 4 4 8l0 0 0 0]l0 0 0 o0
45 4 5 44185 7 10 2|0 0 0 0
2 |44 4 5 4 |97 8 11 24|93 8 11 56

Table 8.3: Number of monomials needed to compute the Grobner basis of the ideal
7.
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i T T
NL|#S m M #C | #S m M #C #S m M #C
0 |5 5 5 16 0 0O 0 0 0 0O 0 O
1 525 4 6 8 875 & 11 120 0 0O 0 O
2 483 4 6 5671997 & 12 62.83|14.50 12 18 560
3 (462 4 6 4.76|9.92 & 12 42.72 | 15.76 13 19 315.04
4 1453 4 6 4421983 8 12 3749|1581 13 19 246.19
5 1446 4 5 419(10.11 8 12 34.39|15.89 13 19 215.68
6 1443 4 5 4.00]9.71 8 11 24.00|17.29 16 19 156.86

Table 8.4: Number of monomials needed to compute the Grobner basis of the ideal
Jt=1,2,3.

J Ji J Jh

NL|#S m M #C #S m M #C #S m M #C #S m M #C
00 0 0 o0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 12018 15 23 1820 |0 0 0 0 0 0 0 0 0 0 0 0

4 2144 16 24 1319.96 | 23.99 22 29 4368 |0 0 0 0 0 0 0 0

5 2154 19 24 1003.15 | 26.00 24 28 3851.24 | 23.50 22 25 8008 [0 0 0 0

6 | 1957 19 20 67L7L |28 28 28 2603.79 |28 28 28 7608.79 | 16 16 16 11441

Table 8.5: Number of monomials needed to compute the Grobner basis of the ideal
JAt=4,56,T.

8.7.2  Algorithm 9 and 10

Since it is not easy to estimate the complexity of a Grobner basis computation
theoretically, we give some experimental results, shown in Table 8.6. In this table

we report the coefficients of growth of the analyzed algorithms ! | comparing them
(n+1)2nt!
n2n

compute the nonlinearity of a Boolean function with n variables and the average time

with the value log, [ } For each algorithm we compute the average time ¢,, to

t,+1 to compute the nonlinearity of a Boolean function with n + 1 variables. Then

tn+1
tn

graded reverse lexicographical order is used, with Magma [MAG] (Version 2.19) im-
plementation of the Faugére F'4 algorithm. Since the ideal J*( f) of Definition 8.2.2 is

derived from the evaluation of (2:) monomials (generating at most the same number

we report in the table the value log, ( ) When Grobner bases are computed, then

of equations), then the complexity of Algorithm 9 is equivalent to the complexity of

ITo compute the values in the columns FWT and I\LLP—I—FPE we tested 15000 random Boolean
functions from n = 4, since for n = 3 there are only 2(2") = 256 Boolean functions.
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n | log, [“X2")  FWT NLP+FPE GBonF, GBonQ GBonF
2-3 1.53 - - 1.45 1.86 2.50
3-4 1.31 - - 1.88 2.27 7.51
4-5 1.22 0.90 1.02 2.33 2.91 -

5-6 1.17 0.98 1.09 2.64 3.23 -

6-7 1.14 1.01 1.13 2.76 4.29 -

7-8 1.12 1.22 1.07 3.24 - -

8-9 1.11 0.95 1.17 3.48 - -
9-10 1.09 1.25 1.07 - - -
10-11 1.09 1.07 111 - - -

Table 8.6: Experimental comparisons of the coefficients of growth of the analyzed
algorithms.

solving a polynomial system of at most (2:) equations of degree d (where 1 < d <)
in n+ 1 variables over the field F. This method becomes almost impractical for n = 5.
We recall that t < 2"~1 — 227! (see Equation 3.3).

The complexity of Algorithm 10 is equivalent to the complexity of solving a poly-

nomial system of only n+1 field equations plus one single polynomial n; of degree at
most n+1 in n+1 variables over the field Q (or over a prime field F,) with coefficients
of size less then or equal to 2.
As shown in Table 8.6, solving the system by computing its Grobner basis over a
prime field ¥, with p ~ 2" is much faster than computing the same base over Q. It
may be investigated if there are better size for the prime p, or even faster specialized
algorithms to solve the system.

8.7.8 Algorithm 11

Theorem 8.7.1. Algorithm 11 returns the nonlinearity of a Boolean function f given
as evaluation vector, with n variables in

O(n2")
integers operations (sums and doublings). The big O constant is 2
Proof. Algorithm 11 can be divided in three main steps:

1. Calculation of the nonlinearity polynomial ny. This step, as shown in Theorem
8.6.1, requires O(n2") (with big O constant 3/2) integer operations and O(2")

memory .

121



Chapter 8. Computing the nonlinearity of Boolean function

2. Evaluation of the nonlinearity polynomial ny. This step can be performed using
fast Mobius transform in O(n2") (with big O constant 1/2) integer sums and
O(2™) memory.

3. Computation of the minimum n;(a) with a € Z"*. This step requires no more
than O(2") checks.

The overall complexity is then O(n2") (with big O constant ¢ = 3/2 + 1/2 = 2)
integer operations and O(2") memory. U
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Functions for Part 11

9.1 Nordstrom-Robinson code

The following MAGMA code defines a function to generate the Nordstrom-Robinson

code as a binary matrix.

NordstromRobinsonCode := function()

// from:

// Huffman-Pless

// "Fundamentals of Error Correcting Codes"

// 2.3.4 - The Nordstrom-Robinson code

//

// The existence of the Nordstrom-Robinson code shows that
// A_2(16,6) = 256.

//

// The command:
// > NordstromRobinsonCode() ;

// returns a matrix whose rows are the codeword of the
// Nordstrom-Robinson code.

local C ; // Extended Golay code
local G ; // Generator matrix of C
local v ; // vector of 24 bits
local CT ; // subcode of C of 32 codewords with O in the first 8 components
local c ; // list of 8 special codewords to create the cosets of CT
local CC ; // list of 8 cosets of CT
local N ; // concatenation of the cosets CC[i] (256 codewords of length 24)
local N16 ; // Nordstrom-Robinson code:
// - punturing of N in the first 8 components
// - 256 codewords
// - length 16
// - distance 6
111771177
// STEP 1 - Let C be the [24, 12, 8] extended binary Golay code
111771177

C := GolayCode(GF(2),true) ;

/11711717
// STEP 2 - Let C be the [24, 12, 8] extended binary Golay code
chosen to contain the weight 8 codeword c = 11...100...0

//

111711177

G :

G :=

G :

CGC

GeneratorMatrix(C) ;

SwapColumns(G,2,13) ;
SwapColumns(G,3,15) ;
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G := SwapColumns(G,4,17) ;
G := SwapColumns(G,5,18) ;
G := SwapColumns(G,6,19) ;
G := SwapColumns(G,7,23) ;
G := SwapColumns(G,8,24) ;
C := LinearCode(G) ;
v := Vector(GF(2),[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) ;
/11111717
// STEP 3 - Let C(T) be the subcode of C which is zero on T
// (T is the set consisting of the first eight coordinates)
/11111117
CT := [0 ;
i::=1;
for ¢ in C do
if c[1] eq O and

c[2] eq 0 and

c[3] eq 0 and

c[4] eq 0 and

c[5] eq 0 and

c[6] eq 0 and

c[7] eq 0 and

c[8] eq 0 then

CT[i] := c ;
i:=1i+1;
end if ;

end for ;
/11111117
// STEP 4 - construct c[i] in C
// - cf[0] = (0 ... 0)
// - for 1 <=1 <=7 let
// c[i] = a codeword of C with zeros in the first eight coordinates
// except coordinate i and coordinate 8
/11111117
c:=1[1;

for i in [1..7] do
for x in C do
if x[i] eq 1 and
x[8] eq 1 and
IntegerRing()! (x[1])
IntegerRing()! (x[2])
IntegerRing()! (x[3])
IntegerRing()! (x[4])
IntegerRing()! (x[5])
IntegerRing()! (x[6])
IntegerRing()! (x[7])
IntegerRing()! (x[8]) eq 2 then
cli] := x ;
end if ;
end for ;
end for ;

+ 4+ + + 4+ o+

c[8] := ZeroMatrix(GF(2),1,24)[1] ;

111111177
// STEP 5 - let CC[j] j be the coset c[j] + CT

126




103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136

137

w N =

'S

ot

~

9.2. Bound A, B

// of CT in the extended Golay code C
// For 0 <= j <=7
111117117
cc :=[1 ;
for j in [1..8] do
cclil := [1 ;

for i in [1..#CT] do
CCLj1[i] := CTI[il + c[j] ;
end for ;
end for ;

/11111117
// STEP 6 - Let N be the union of the eight cosets CC[1], ..., CC[8]
/11111117

N := CC[1] cat CC[2] cat CC[3] cat CC[4] cat
CC[5] cat CC[6] cat CC[7] cat CC[8] ;

111177117

// STEP 7 - The Nordstrom-Robinson code N16

// is the code obtained by puncturing N on T

// (set consisting of the first eight coordinates)
111111177

Ni6 := [] ;

for i in [1..#N] do
N16[i] := ZeroMatrix(GF(2),1,16)[1] ;
for j in [1..Ncols(N[i])-8] do
N16[i1[j] := N[il[j+8] ;
end for ;
end for ;

return Matrix(N16) ;
end function ;

9.2 Bound A, B

In this section we provide the code to compute Bound A and B, and all the
MAGMA functions used to obtain the results in Section 6.

9.2.1 The Johnson bound

We have implemented our own version of the Johnson bound, since the one pro-
vided by MAGMA was somehow incomplete.

RR := function(m,r,1)

// RR is called by R, which returns a bound for R(m,r,1)

// using Johnson’s techniques,

// ("A new upper bound for error-correcting codes",

// Selmer M. Johnson, 1962, Ire Transactions On Information Theory).
// Recall that R(m,r,1) = A_2(m,2r-21,r)
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8 local bound, k, t ;

10| // Check parameters m, r

1| if (m 1t 1) or (not IsIntegral(m)) then // m >= 1

12 printf "Error! Parameter (1) must be an integer greater than or equal to 1\n"
13 return -1 ;

14 end if ;

15 if (r 1t 0) or r gt m or (not IsIntegral(r) ) then // 0 <= r <=m

16 printf "Error! Parameter (2) must be an integer in the range [0 .. parameter
(1) I\n" ;
17 return -1 ;

18 end if;
9] if 1 1t O or 1 gt m then // 0 <=1 <=m

20 printf "Error! Parameter (3) must be an integer in the range [0 .. parameter
(1) J\n"

1 return -1 ;

2 end if ;

// Border line cases

ifreqmand 1 eqm then // r =m, 1 =m
return 2 ;

end if ;

if reqmand 1 1t m then // r =m, 1 <m
return 1 ;

30 end if ;

31| if r eq O then // r =0

32 return 1 ;

33 end if ;

[CEE I RN
@ Ut A W N

NN NN
< w =

35 bound := -1 ;

36| 1f r~2 - mx1l gt O then // we can apply R(m,r,1) <= Floor( m(r-1) / (r~2-ml) )
37 if 1 gt O then

38 bound := Min( m*(r-1) div (r~2-mx1l) , Floor(m/r * $$(m-1,r-1,1-1) ) ) ;
39 // sometimes one more reduction returns a better lower bound

10 else // if 1 = 0 we can not check further

11 bound := m*(r-1) div (r~2-mx1l) ;

12 end if ;

13| else // we can apply R(m,r,1) <= Floor( m/r * R(m-1,r-1,1-1) ) until 1 = 0
14 bound := Floor( m/r * $$(m-1,r-1,1-1) ) ;
15 end if ;

17| // search for the best R such that R(R-1)1 >= (m-t)k~2 + t(k+1)"2 - rR,
18| // where R is the variable bound

19 k := rxbound div m ;

0 t := rxbound - mxk ;

1| while ( bound*(bound-1)*1 1t (m-t)*k~2 + t*(k+1)~2 - rxbound ) do
2 //[bound,bound* (bound-1)*1 , (m-t)*k~2 + t*x(k+1)~2 - r*bound ] ;
3 bound := bound - 1 ;

4 k := Floor(rxbound/m) ;

5 t := r*bound - mxk ;

6 end while ;

8 return bound ;
olend function ;

[IT777777777777777117777777777777717777777777777777717777777777

(=)

63|R := function(m,r,1)
64| // R returns a bound for R(m,r,1) using Johnson’s techniques,
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5| //

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

("A new upper bound for error-correcting codes",

Selmer M. Johnson, 1962, Ire Transactions On Information Theory).
Recall that R(m,r,1) = A_2(m,2r-21,1)
INPUT:
- integer m s.t. m >= 1
- integer r s.t. 0 <=1 <=m
- integer 1 s.t. 0 <=1<=m
OUTPUT:

- Johnson Bound for R(n,d,w)

Calls function RR()

Let R(m,r,1) be the maximum number of vectors of size m and weigth r

such that the inner product of any pair of row vectors

is less than or equal to 1.

Compute R(m,r,1) using bounds from Johnson 1963.

Since R(m,r,1) = R(m,m-r,m-2r+1), then R chooses the minimum between them,
i.e. Min( RR(m,r,1) , RR(m,m-r,m-2r+1) ).

Returns -1 in case of bad parameters.

// Check parameters m, r
if (m 1t 1) or (not IsIntegral(m)) then // m >= 1
printf "Error! Parameter (1) must be an integer greater than or equal to 1\n"

return -1 ;

end if ;

if (r 1t 0) or r gt m or (not IsIntegral(r) ) then // 0 <=r <=mn
printf "Error! Parameter (2) must be an integer in the range [0 .. parameter
(1) I\n" ;
return -1 ;

end if;

if 1 1t O or 1 gt m then // 0 <=1 <=m
printf "Error! Parameter (3) must be an integer in the range [0 .. parameter
(1) 1\n"
return -1 ;

end if ;

// Border line cases

if r eqm and 1 eq m then // r
return 2 ;

end if ;

ifreqmand 1 1t m then // r =m, 1 <m
return 1 ;

end if ;

if r eq 0 then // r =0
return 1 ;

end if ;

1]
E
=

]
=]

//Return Min[ RR(m,r,l1) , RR(m,m-r,m-2r+1) ] ;
if m-2*%r+l 1t O then
return RR(m,r,1) ;
end if;
return Min( RR(m,r,1) , RR(m,m-r,m-2*r+1) ) ;

end function ;

//

L1177 7777777777777777777777777777777777777717777771777777777

JohnsonBound_2 := function (n,d)

//
//

Compute Johnson Bound using algorithm from Johnson’s Article 1962,
("A new upper bound for error-correcting codes",
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¥

// Selmer M. Johnson, 1962, Ire Transactions On Information Theory)
// Returns -1 in case of bad parameters

w

ST

local e,denoml,denom2 ;

~

// Check parameters n, d
if (n 1t 1) or (not IsIntegral(n)) then
printf "Error! Parameter (2) must be an integer greater than or equal to 1\n"

e e e e e e e
%

NN NN N NN

s

130 return -1 ;

131 end if ;

32| if (d 1t 1) or (d gt n) or (not IsIntegral(d)) then

133 printf "Error! Parameter (3) must be an integer in the range [1 .. parameter
(2) J\n"

134 return -1 ;

135 end if ;

136 if IsEven(d) then // if d is even A_2(n,d) = A_2(n-1,d-1)
137 return $$(n-1,d-1) ;

138 end if ;

139 e := (d-1) div 2 ;

141 // Border line cases

42| if (d eq 1) then // If d = 1 return the vector space cardinality
143 return 2°n;

144 end if ;

46| // Choose the minimum from the two formula where the following terms are

replaced:
wr| /) [m/(e+1)] <--> 1 + (d+1 e+1)R(n,d+1,e+1)/( (n e+1)-(d e)R(n,d,e) )
148| denoml:= &+[Binomial(n,i): i in [0 .. el]l +
149 ( Binomial(n,e+1) - Binomial(d,e) * R(n,d,e) ) /
150 Floor(n/(e+l1) ) ;
151 if ((Binomial(n,e+1)-Binomial(d,e)*R(n,d,e)) gt 0) then
152 denom2:=  &+[Binomial(n,i):i in [0..e]] +
153 ( Binomial(n,e+1) - Binomial(d,e) * R(n,d,e) ) /
154 (1+
155 ( Binomial(d+1,e+1)*R(n,d+1,e+1) /
156 (Binomial(n,e+1)-Binomial(d,e)*R(n,d,e)) )
157 )
158 return Min ( Floor(2-n/denomi) , Floor(2°n/denom2) ) ;
159 else
160 return Floor( 2°n / denoml );

161 end if;
163 end function ;

wes| /1111117777777 77777777777/77777777777777777777777/777777/77/77/77
167|AA_ := function(K,n,d,w)
169 local q ;

171 q := #K ;

172| // Check parameters

173|  if (not IsField(K)) then

174 printf "Error! parameter (1) must be a field\n" ;

175 return -1 ;

176 end if ;

77| 1f (n 1t 1) or (not IsIntegral(n)) then // n >= 1

178 printf "Error! parameter (2) must be an integer greater than 1\n" ;
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return -1 ;

end if ;

if (d 1t 1) or (d gt n) or (not IsIntegral(d)) then // 1 <=d <=n
printf "Error! parameter (3) must be an integer in the range [1 .. parameter
(2) 1T\n" ;
return -1 ;

end if ;

if w 1t 0 or w gt n or (not IsIntegral(w)) then // 0 <= w <=n
printf "Error! parameter (4) must be an integer in the range [1 .. parameter
(2) JT\n" ;
return -1 ;

end if ;

// Border line cases

if w eq O then // w = 0

return 1 ;

end if ;

if neq 1 or (d eq n and w eq n) then
return q - 1 ;

end if ;

//compute A_q(n,d,w)
if d gt 2*xw then // d > 2uwn*d*(q-1) div (g*w~2-2%(q-1)*n*w+n*d*(q-1))
return 1 ;
end if ;
// check if Restricted Johnson Bound can be used
if ( gq*w~2 - 2*(q-1)*n*w + n*d*(q-1) gt 0 ) then
if w gt 0 and n gt d+1 then // use that A_q(n,d,w) <= n*x(q-1)/w *
A_q(n-1,d-w-1)
return Min( n*d*(g-1) div (g*w~2-2x(g-1)*n*w+nxd*(q-1)) , n*x(g-1) *
$$(K,n-1,d,w-1) div w );
else
return nxd*(q-1) div (gq*w~2-2*(q-1)*n*w+n*d*(q-1)) ;
end if ;
else // use that A_q(n,d,w) <= n*x(q-1)/w * A_q(n-1,d-w-1)
return nx(q-1) * $$(X,n-1,d,w-1) div v ;
end if ;

return 0 ;

end function ;

A_
//
//
//
//
//
//
//
//

/7

//
//

L1177 7777777777777777777777777777777777777717777771777777777

:= function(K,n,d,w)
INPUT:
- field characteristic q, must be a prime power
- integer n s.t. n >=1
- integer d s.t. 1 <=d <=n
- integer w s.t. 0 <= w <=n
OUTPUT:
- Johnson Bound for A_q(n,d,w)

Calls function AA_()

Compute A_q(n,d,w) using bounds from Huffman-Pless 2003

If q =2, Aq(n,d,w) = A_q(n,d,n-w), so A_ chooses the minimum between them,
i.e. Min( AA_q(n,d,w) , AA_q(n,d,n-w) )

local q ;

q := #K ; // cardinality of the field
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// Check parameters
if (not IsField(K)) then
printf "Error! parameter (1) must be a field\n" ;
return -1 ;
end if ;
if (n 1t 1) or (not IsIntegral(n)) then // n >= 1
printf "Error! parameter (2) must be an integer greater than 1\n" ;
return -1 ;

end if ;

if (d 1t 1) or (d gt n) or (not IsIntegral(d)) then // 1 <=d <=n
printf "Error! parameter (3) must be an integer in the range [1 .. parameter
(2) J\n"
return -1 ;

end if ;

if w 1t 0 or w gt n or (not IsIntegral(w)) then // 0 <= w <=n
printf "Error! parameter (4) must be an integer in the range [1 .. parameter
(2) J\n"
return -1 ;

end if ;

q = #K ;

// Border line cases

if w eq O then // w = 0

return 1 ;

end if ;

if neq 1 or (d eq n and w eq n) then
return q - 1 ;

end if ;

if q eq 2 then

return Min( AA_(K,n,d,w) , AA_(K,n,d,n-w) ) ;
else

return AA_(K,n,d,w) ;
end if ;

end function ;
[1117777777777777777777777777777777777777777777777777777777777/
/%

Important note:

5| the formula implemented is taken from the original article

5| by Johnson

("A new upper bound for error-correcting codes",

3| Selmer M. Johnson, 1962, Ire Transactions On Information Theory)

in the binary case, and from Huffman-Pless in the q_ary case
("Fundamentals of Error Correcting Codes", W. Cary Huffman and Vera Pless,
2003, Cambridge University Press).

The bound strictly depends from the value A_q(n,d,w),

which is the maximum number of codewords for a q_ary code, length n, distance d,
and whose words have all weight w.

Since this value cannot be computed explicitly,

5|in this implementation A_q(n,d,w) is only bounded following

the techniques showed in the mentioned papaers.

Thus it is possible to obtain better values using the Johnson Bound

if the value A_q(n,d,w) is known or better bounded.

*/

JohnsonBound_ := function(XK,n,d)
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// INPUT:

// - field K

// - integer n s.t. n >= 1

// - integer d s.t. 1 <=d <=n
// OUTPUT:

// - Johnson Bound for A_q(n,d)
//

// Calls function A_() which calls function AA_Q)
// Return the Johnson upper bound for the cardinality of a largest g_ary code
// of length n and minimum distance d.

local q, t, s, k , A ;

// Check parameters
if (not IsField(K)) then
printf "Error! parameter (1) must be a field\n" ;
return -1 ;
end if ;
if (n 1t 1) or (not IsIntegral(n)) then
printf "Error! parameter (2) must be an integer greater than 1\n" ;
return -1 ;

end if ;

if (d 1t 1) or (d gt n) or (not IsIntegral(d)) then
printf "Error! parameter (3) must be an integer in the range [1 .. parameter
(2) 1\n" ;
return -1 ;

end if ;

q = #K ;

// Border line cases

if n eq 1 or d eq n then
return q ;

end if ;

if (d eq 1) then // If d = 1 return the vector space cardinality
return q°n;

end if ;

if IsEven(d) then // A_q(n,d) <= A_q(n-1,d-1)
return $$(K,n-1,d-1) ;

end if ;
k :=0 ;
t := (d-1) div 2 ;

//compute Sum_0"t (n i)*(gq-1)-"1i
s := &+[Binomial(n,i)*(q-1)~i: i in [0 .. t]1] ;

// UNCOMMENT the following lines (if statement)
// if you want to call the function JohnsonBound_2 when q = 2
if q eq 2 then //compute Johnson bound for A_2(n,d)
A := JohnsonBound_2(n,d) ;
else //compute Johnson bound for A_q(n,d) when q > 2
A := Floor( gn / ( s + ( Binomial(n,t+1)*(g-1)~(t+1) -
Binomial(d,t)*A_(K,n,d,d) ) / A_(X,n,d,t+1) ) ) ;
end if ;

return A ;
end function ;
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9.2.2 The Linear Programmin bound

Here we provide a basic implementation of the Linear Programming bound, as

presented in [HPO03].

KrawtchouckPolynomial := function(q,n,k,x)

// returns the Krawtchouck polynomial in the variable x
// 0 <=k <=n

//

return &+[(-1)~j * (q-1)~(k-j) * Binomial(x,j) * Binomial(n-x,k-j) : j in

[0..k1] ;
end function ;

IITT17777777777777777777777777777777777777777777777777777777777

LPB := function(KK,n,d)

// LinearProgrammingBound := function(KK,n,d)

// return the basic version of the linear programming bound as in

// Huffman-Pless, "Fundamental of error correcting codes" - Theorem 2.6.4
// A_q(n,d) <= max { Sum_{w=0}"{n} (B_w) }

//

// we want to maximase the above mentioned sum with the following costraints:
// * BO =1

// * Bl, ..., B(d-1) =0

// * Bd, ..., Bn >= 0

// * Sum_w=0"n Bw * K(q,n,k,w) >= 0 ,

// for 1 <= k <= n

// where K is the krawtchouck polynomial
//

// furthermore, in the binary case and if d is even, then

5| // * Bw = 0 for all odd w

// % Bn <= 1

// * Sum_w=0"n Bw * K(q,n,k,w) >= 0 ,

// for 1 <= k <= Floor(n/2)

//

local q ;

local R ;

local i ;

local L ; // max { Sum_{w=0}"{n} (B_w) }

local nv ; // number of variables
local nc ; // number of costraints
local 1lhs ; // nc x nv matrix,

// representing the left-hand-side coeffs of the mc constraints
local rhs ; // nc x 1 matrix over the same ring as LHS,

// representing the right-hand-side values of the mc constraints
local rel ; // nc x 1 matrix over the same ring as LHS,

// representing the relations for each constraint, with:

// * 1 for >=

// * 0 for =

// * -1 for <=
local obj ; // 1 x nv matrix over the same ring as LHS,

// representing the coeffs of the objective function to be optimised
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9.2. Bound A, B

#KK ;
RealField() ;

q :
R :

if q eq 2 and IsEven(d) then
nv := Ceiling((n-d+1)/2) ; // would not work if d was odd
nc := Floor(n/2) ;

lhs := Matrix(R, nc, nv, []1);
for k in [1..nc] do
i=1;
for w := d to n by 2 do
lhs[k] [i] := KrawtchouckPolynomial(q,n,k,w) ;

i:=1i+1;
end for ;
end for ;
else
nv := n-d+1 ; // the nonzero variables are Bd, B(d+1), ..., Bn
nc :=n ;

lhs := Matrix(R, nc, nv, []);
for k in [1..nc] do

i=1;
for w := d to n do
lhs[k] [i] := KrawtchouckPolynomial(q,n,k,w) ;
i::=1i+1;
end for ;
end for ;
end if ;
rhs := Matrix(R, nc, 1, [-KrawtchouckPolynomial(q,n,k,0) : k in [1..ncl]) ;
rel := Matrix(R, nc, 1, [1 : k in [1..nc]] ) ;
obj := Matrix(R, 1, nv, [1 : w in [1..nv]]) ;

L := MaximalSolution(lhs, rel, rhs, obj);
return Floor(1l + &+[L[1]1[i] : i in [1..Ncols(L)11) ;

end function ;

9.2.3 The best known nonlinear upper bound

Here we provide a function which computes the best nonlinear upper bound be-
tween the previously implemented upper bounds and those implemented in MAGMA.

Ball := function(KK,r,n)

//  returns the set B_q(r,n),

//  which is the set of vectors over the field KK, of length n and weight less
than or equal to r

local B ;
// check parameters

if not IsField(KK) then
printf "Error! Parameter (1) must be a field.\n"
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return -1 ;

end if ;

if not IsIntegral(n) or n 1t 1 then
printf "Error! Parameter (2) must be an integer greater than parameter 0.\n" ;
return -1 ;

end if ;

if not IsIntegral(r) or r gt n or r 1t O then
printf "Error! Parameter (3) must be an integer between O and parameter
(3).\n" ;
return -1 ;

end if ;

B :={} ;
V := VectorSpace(KK,n) ;
for v in V do
if Weight(v) le r then
B := B join {v} ;
end if ;
end for ;
return B ;

o|end function ;

[IT777777777777777117777777777777717777777777777777717777777777

;| BallSize := function(KK,r,n)

return &+[Binomial(n,j)*(#KK-1)~j: j in [0 .. rl] ;
end function ;

[IT777777777777777117777777777777717777777777777777717777777777

BestKnownNonlinearUpperBound_ := function(KK,n,d)
// Compute the best bound for A_q(n,d)

local A, q, MM ;
local plot ; // trace variables: they keep track of what is being used

plot := false ;

// check parameters
if not IsField(KK) then
printf "Function BestKnownNonlinearUpperBound_\n" ;
printf "Error! Parameter (1) must be a field.\n" ;
return -1, plot ;
end if ;
if not IsIntegral(d) or d 1t 1 then
printf "Function BestKnownNonlinearUpperBound_\n"
printf "Error! Parameter (3) must be an integer greater than or equal to
1.\n"
return -1, plot ;
end if ;
if not IsIntegral(n) or n 1t d then
printf "Function BestKnownNonlinearUpperBound_\n"
printf "Error! Parameter (2) must be an integer greater than or equal
parameter (3).\n" ;
return -1, plot ;
end if ;

q := Characteristic(KK) Degree(KK) ;
A :=qgq™n ;
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67 // Cases q =2 ,d>n,d>2n/3,d=1,d-=2

6s| 1f q eq 2 then

69 if d gt n then

70 return 1, plot ;

71 end if ;

72 if d gt 2*(n)/3 then

73 return 2, plot ;

74 end if ;

75 if d eq 1 then

76 return 2~ (n), plot ;

77 end if ;

78 if d eq 2 then

79 return 2~(n-1), plot ;

80 end if ;

81 end if ;

s3| //Best known binary bounds from www.win.tue.nl/“aeb/codes/binary-1.html q = 2 ,
n=>5..28, d=3..16

sa| if (q eq 2) then

85 MM := Matrix(IntegerRing(),23,7,[

86 4, 2, 1, 1, 1, 1, 1,

87 8, 2, 1, 1, 1, 1, 1,

88 16, 2, 2, 1, 1, 1, 1,

89 20, 4, 2, 1, 1, 1, 1,

90 40, 6, 2, 2, 1, 1, 1,

o1 72, 12, 2, 2, 1, 1, 1,

92 144, 24, 4, 2, 2, 1, 1,

93 256, 32, 4, 2, 2, 1, 1,

94 512, 64, 8, 2, 2, 2, 1,

95 1024, 128, 16, 4, 2, 2, 1,

96 2048, 256, 32, 4, 2, 2, 2,

o7 3276, 340, 36, 6, 2, 2, 2,

98 6552, 673, 72, 10, 4, 2, 2,

99 13104, 1237, 135, 20, 4, 2, 2,

100 26168, 2279, 256, 40, 6, 2, 2,

101 43688, 4096, 512, a7, 8, 4, 2,

102 87333, 6941, 1024, 84, 12, 4, 2,

103 172361, 13674, 2048, 150, 24, 4, 2,

104 344308, 24106, 4096, 268, 48, 6, 4,

105 599184, 47538, 5421, 466, 55, 8, 4,

106 1198368, 84260, 9672, 836, 96, 14, 4,

107 2396736, 157285, 17768, 1585, 169, 28, 6,

108 4792950, 291269, 32151, 3170, 288, 56, 8

109 1);

110 if (n le 27) and (n ge 5) and (d ge 3) and (d le 16) then

111 if IsEven(d) then

112 A := MM[n-5,(d-1) div 2] ;

113 else

114 A := MM[n+1-5,(d-1) div 2] ;

115 end if;

116 end if ;

117 end if ;

118

119 // if possible use Plotkin Bound, and return it, since all other bounds are
worse

120 if (1-1/g)*n 1t (d) then

121 plot := true ;

122 return Min(A,PlotkinBound(KK,n,d)), plot ;

123 end if ;

124
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en

A := Min({ A,
// LPB(KK,n,d) , // use our implementation
// LPB often returns "Numerical instability errors..."
JohnsonBound_(KK,n,d) , // use our implementation
SpherePackingBound(KK,n,d) ,
// LevenshteinBound(KK,n,d) , // very slow
// GriesmerBound(KK,n,d) , // it is only for linear codes
EliasBound(KK,n,d) ,
SingletonBound(KK,n,d)
b

return A, plot ;

d function ;

9.

2.4 Bound B

Bo
//
//
//
//
//
//

undB := function(KK,n,d)
Bound B from Bellini-Guerrini-Sala Article
return

* the Bound B and five parameters (i,sl,s2,s3,A)
used during the computations

¥ -1, in case of error

* -2, in case the bound does not apply

local s1, s2, s3 ;
local max_i, min_i ;
local q ;

local plot ;

plot := false ;

// check parameters
if not IsField(KK) then
printf "Function BoundB\n" ;
printf "Error! Parameter (1) must be a field.\n" ;
return -1, -1,-1,-1,-1,-1,plot ;
end if ;
if not IsIntegral(d) or d 1t 2 then
printf "Function BoundB\n"
printf "Error! Parameter (3) must be an integer greater than 1.\n"
return -1, -1,-1,-1,-1,-1,plot ;
end if ;
if not IsIntegral(n) or n 1t d then
printf "Function BoundB\n" ;
printf "Error! Parameter (2) must be an integer greater than or equal
parameter (3).\n"
return -1, -1,-1,-1,-1,-1,plot ;
end if ;

// find the largest k satisfying |B(i,k)| <= A_q(n-k,d-2i) -
[B(i,n-k)|/IB(d-2i-1,n-k) |

q := Characteristic(KK) ~Degree(KK) ;

t := Floor((d-1)/2);

for k in [1..n-d+1] do
max_i := Min({ t , k }) ; // by hypothesis
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min_i := Max({ 0 , Ceiling((d-n+k)/2) }) ; // so that A_q(n-k,d-2i) can be
computed

for i in [min_i..max_i] do // note that i <= (d-1)/2, since the bound works
for d<k

// Compute |B(i,k) |

sl := &+[Binomial(k,j)*(q-1)~j: j in [0 .. i]] ;

// Compute |B(i,n-k)|

s2 := &+[Binomial(n-k,j)*(q-1)"j: j in [0 .. i]] ;

// But we need to remove the zero vector

sl :=s1 -1 ;

// Compute [B(d-2i-1,n-k) |

s3 := &+[Binomial(n-k,j)*(q-1)"j: j in [0 .. d-2*%i-1]] ;

// Compute the best bound for A_q(n-k,d-2i)
A,plot := BestKnownNonlinearUpperBound_(KK,n-k,d-2*i) ;
// Check the inequality |B(i,k)| <= A_q(n-k,d-2i) -
|IB(i,n-k)|/|B(d-2i-1,n-k) |
if sl gt (A - Floor(s2/s3) + 0 ) then //
return /*k - 1x/ q~(k-1), i,s1,s2,s3,A,plot ;
end if ;
end for ;
end for ;
return q~(n-d+1), -2,-2,-2,-2,-2,plot ;
r|end function;

9.2.5 Bound A

BoundA := function(XK,n,d)
// Bound A from Bellini-Guerrini-Sala Article
// return the Bound A

local min ;

;| local A

| local q ;
q := #KK ;
min := q"n ;

for t in [1..n-d] do
for r in [0..Minimum({t,Floor((d-1)/2)})] do
//r,t,n-t,d-2*%r-1 ;
A := g~t * (BestKnownNonlinearUpperBound_(KK,n-t,d-2*r) -
BallSize(KK,r,n-t)/BallSize(KK,d-2*r-1,n-t) + 1)
/ BallSize(KK,r,t) ;
if A 1t min then
min := A ;
end if ;
end for ;
end for ;

if Floor(min) 1t BestKnownNonlinearUpperBound_(KK,n,d) then
"check these values..." ;
"'n,d =", n,d ;

end if ;

return Floor(min) ;

2zl end function ;
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9.2.6 Comparison with known bounds

The following code has been used to compute the results in Tables 6.1 and 6.2,

typing the command

time F,P,n := Percentage(2,29,3,100) ;

// F are the frequencies

// P are the percentage

// n is the total number of checked cases

and reading the results from the file StatisticsAllBounds.txt.
The computation took about 108593 seconds.

NextPrimePower := function (n)
// return the next prime power greater than or equal to n
local m ;

m :=n ;
if m 1t 1 then
return 2 ;
end if ;
m:=m+ 1 ;
while IsPrimePower(m) eq false do
m:=m+ 1 ;
end while ;
return m ;
end function ;

s\ /1111177777 7777777777777777777777777777777777777777777777777777

:| countnumberofcases := function(ming,maxq,nl,n2)

// returns 0 if ming=maxq and they are not prime powers
local c¢ ; // counter

// check parameters

if (minq gt maxq) or (nl gt n2) or (nl 1t 3) then
"ERROR!!"
"First parameter must be less than second parameter" ;
"Third parameter must be less than forth parameter"
"Third parameter must be greater than 2"

end if ;

//check ming is a prime power
if (minq eq 1) or (not IsPrimePower(ming)) then

q := NextPrimePower(ming) ;
else
q := ming ;
end if ;
c :=0 ;
while q le maxq do
KK := GF(q) ;
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10 for n in [n1..n2] do

11 for d in [3..n-1] do
12 c:=c+1;

43 end for ;

14 end for ;

15 q := NextPrimePower(q) ;
16 end while ;

48 return c ;
1v|end function ;

50
st{//1117777777777777777777777777777777777777777777777777777777777

52

53| Percentage := function(ming,maxq,nl,n2)

54| // Builds a list containing the entries of the following table:

s5(//

s6|// q 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29
57 /) mm e
58| // BoundA

50| // BoundB

|
|
|
|
60| // Griesmer |
61| // Johnson |
62| // Levenshtein |
63| // Elias |
64| // Hamming |
65| // Singleton |
66 /) —==mmmmmm |
or|//

6s| // each entry is the number of times

60| // the respective bound is the best known upper bound

70| // the results are printed in the file "StatisticsAllBounds.txt"
71
7| local P ; // matrix of the frequencies
73| local PP ; // matrix of the percentages

74| local vBound ; // temporary list of all bounds for certain q,n,d
75 local bestKB ; // contains the best known bound for certain q,n,d
76| local nCases ; // number of cases checked

77| local cc ; // number of cases for a certain q
78
70| // check parameters

so| if (ming gt maxq) or (nl gt n2) or (nl 1t 3) then

81 "ERROR!!"

82 "First parameter must be less than second parameter" ;
83 "Third parameter must be less than forth parameter" ;
84 "Third parameter must be greater than 2"

85 end if ;
86
s7| // check minq is a prime power
ss| if not IsPrime(ming) then

89 q := NextPrimePower(ming) ;
0| else
91 q := ming ;

92 end if ;
93
04| // initialize matrix of the frequencies with all zero entries

05| PP := Matrix(IntegerRing(),8,maxq,[]) ; // the matrix contains also
q=1,6,10,... but this entries remain O

96| // matrix with the percentage

o7 P := Matrix(RealField(4),8,maxq,[]) ;

98
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nCases := 0 ;
for n in [n1..n2] do
for 4 in [3..n-1] do
q := minq ;
while q le maxq do
KK := GF(q) ;
nCases := nCases + 1 ;

// insert bounds in a list
vBound := [ Round(Log(q,BoundA(KK,n,d) ) ),
Round (Log(q,BoundB(KK,n,d) ) )
//BoundC(KK,n,d) ,
Floor(Log(q, JohnsonBound_(KK,n,d) )) ,
Floor(Log(q,SpherePackingBound(KK,n,d) )) ,
Round(Log(q,GriesmerBound(KK,n,d) )) ,
Floor(Log(q,LevenshteinBound(KK,n,d) )) ,
Floor(Log(q,EliasBound(KK, n, d) ) ) ,
Floor(Log(q,SingletonBound(KK, n, d4) ) )
// Plotkin wins whenever it can be applied
1
bestKB := Min({x : x in vBound}) ;
for i in [1..#vBound] do
// if the i_th bound in vBound is the best (both when it is only one
both when it draws with other) then increment vBound[i][q]
if vBound[i] eq bestKB then
PP[il[q] := PP[il[q]l + 1 ;
end if ;
end for ;
q := NextPrimePower(q) ;
end while ;
end for ;
if (n mod 50) eq O then
fprintf "StatisticsAllBounds.txt","up to n = Jo\nNumber of checked cases =
%o\n%o\n", n,nCases,PP ;
end if ;
end for ;

>

// compute the percentages
for i in [1..Nrows(PP)] do
for j in [1..Ncols(PP)] do
cc := countnumberofcases(j,j,nl1,n2) ;
if cc eq O then
P[i1[j] := 0 ;
else
P[i1[j] := PP[il[j1/cc ;
end if ;
end for ;
end for ;

fprintf "StatisticsAllBounds.txt","Total number of checked cases =
ho\nFrequencies:\nJ%o\n\nPercentage:\nj,0", nCases, PP, P ;
return P, PP, nCases ;

s|end function ;

The following code has been used to compute the results in Tables 6.3 and 6.4, typing

the command

1‘time L,D := compare_boundB(2,29,3,100) ;
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and reading the results from the file NewResultsB.tzt.

Cco
//
//
//
//
//
//
//
//

mpare_boundB := function(ming,maxq,nl,n2)
when bound B beats or ties other bounds it records
in a list LL a new element of the type:
q,n,d,A,B,J,H,G,E,S,L,P,i,delta,Aq,winB
win is 1 if bound B beats other bounds, 0 otherwise
delta is |IB(i,n-k)I|/IB(d-2i-1,n-k)|
it returns the list containing this records
and the list containing the number of wins for each n

print the results in the file NewResultsB

local q, KK, bestBound, A, B, cp, cv, ct, dlimit, boundList, levB ;

local LL, cLL ; // LL contains all record where Bound B beats other bounds, cLL
is the counter of the list

local DD ; // this list contains

// DD[x,y] contains the number of times Bound B beats other bounds with
distance y in characteristic x

local i, si, s2, s3, Aq, plot, cplot ; // trace variables

if (mingq gt maxq) or (nl gt n2) or (nl 1t 3) then
"ERROR!!"
"First parameter must be less than second parameter" ;
"Third parameter must be less than forth parameter"
"Third parameter must be greater than 2"

end if ;
LL := [] ;
DD := [] ;
if not IsPrimePower(ming) then
q := NextPrimePower(ming) ;
else
q := ming ;
end if ;
LL := [ 3
cLL := 0 ;
while q le maxq do
KK := GF(q) ;
fprintf "NewResultsB" , "\nq = %o\n", q ;
DD[ql := [1 ;

for ii in [1..n2] do // initialize the list to all zeros
DD[q] [ii] := O ;
end for ;

cp := 0 ; // counts the number of times BoundB is less than or equal other
bounds

cv := 0 ; // counts the number of times BoundB is less than (BEATS) other
bounds

ct := 0 ; // counts the total number of d’s tested

cplot := 0 ; // counts how many times Aq(KK,n-k,d-2i) is bounded with plotkin
cfl := 0 ; // counts how many times s2/s3 = 0
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for n in [n1..n2] do
dlimit := n-1 ; // dlimit is the limiti until values are not obvious
if q eq 2 then dlimit := (2*n div 3) ; end if ;
for d in [3..dlimit] do

ct :=ct +1 ;
// to get a direct comparisons with other bounds
// bestBound := BestKnownNonlinearUpperBound_(GF(q),n,d) ;
boundList := [
Floor(Log(q,JohnsonBound_(KK,n,d))) , //use our
implementation

Floor(Log(q,SpherePackingBound(KK,n,d))) ,
//LevenshteinBound(KK,n,d) , // very slow, check apart, only
if needed
Floor(Log(q,GriesmerBound(KK,n,d))) , // it is only for
linear codes
Floor(Log(q,EliasBound(KK,n,d))) ,
Floor(Log(q,SingletonBound(KK,n,d) ))
1
bestBound := Min({x : x in boundList}) ;
// to get a direct comparisons with magma best upper bound
// bestBound := BDLCUpperBound(GF(q),n,d) ;
A := BoundA(KK,n,d) ;
A := Round(Log(q,A)) ; // use Round() because Floor() may return a wrong
result if for example Log(11,11~14) = 13,999999999999..., while it should be
14

B,i,s1,s2,s83,Aq,plot := BoundB(KK,n,d) ;

B := Round(Log(q,B)) ; // use Round() because Floor() may return a wrong
result if for example Log(11,11~14) = 13,999999999999..., while it should be
14

// to compare the bounds in the linear/systematic case, we must compare
Floor(Log(q,.))
// B := Floor(Log(q,B)) ;
// bestBound := Floor(Log(q,bestBound)) ;
if B le bestBound then
levB := Floor(Log(q,LevenshteinBound(KK,n,d))) ;
boundList[#boundList+1] := levB ;
bestBound := Min({ bestBound, levB }) ; // check Levenshtein only if
needed, because it is very slow
if (1-1/9)*n 1t (d) then
v := [q, n, 4, A, B,
boundList[1], boundList[2],
boundList[3], boundList[4],
boundList[5], boundList[6],
Floor(Log(q,PlotkinBound(KK,n,d))),
i, Floor(s2/s3),Aq,0] ;
else // if plotkin cannot be applied fill its place with n
v := [q, n, 4, A, B,
boundList[1], boundList[2],
boundList[3], boundList[4],
boundList[5], boundList[6],
n, i, Floor(s2/s3),Aq,0] ;
end if ;

if B eq bestBound then // count ties

cp :=cp + 1 ;
cLL := cLL + 1 ;
LL[cLL] := v;
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9.2. Bound A, B

// check to be done only for BoundB
LI1177777777777777777777777777777777777777777777777777777777777777777
if plot then // check if plotkin has been used to bound Aq(KK,n-k,d-2i)
cplot := cplot + 1 ;
end if ;
if Floor(s2/s3) eq O then // check if s2/s3 = 0
cfl := cfl + 1 ;
end if ;

[ITTIII00777777777777177777777777771777777777777777177777777777777777

elif B 1t bestBound then // count wins
cv :=cv + 1 ;
vi#v] =1 ;
cLL := cLL + 1 ;
LL[cLL] := v ;

// check to be done only for BoundB
LI1177777777777777777777777777777777777777777777777777777777777777777
if plot then // check if plotkin has been used to bound Aq(KK,n-k,d-2i)
cplot := cplot + 1 ;
end if ;
if Floor(s2/s3) eq 0 then // check if s2/s3 = 0
cfl := cfl + 1 ;
end if ;

L1777 777777777777777777777777777777777777777777777777777777777777777

DD[q][d] := DD[ql[d] + 1 ;
end if ;

end if ;
end for ;
end for ;
fprintf "NewResultsB" , "Tie = %o over %o --> %o \nWin = %o over %o --> %o
\nPlotkin used %o times --> %o\nsl1/s2 is zero %o times --> %o\n",
cp, ct, RealField(4)! (cp/ct*100),
cv, ct, RealField(4)!(cv/ct*x100),
cplot, RealField(4)!(cplot/(cv+cp)*100),
cfl, RealField(4)!(cfl/(cv+cp)*100) ;
q := NextPrimePower(q) ;
end while ;
fprintf "NewResultsB" , " q, n, d, A, B, J, H, G, E, S, L, P, i, delta, Aq,
winB \n%o\n%o", LL,DD ;
printf "...finished checking!\n" ;
return LL, DD ;

1| end function ;

145







W N

5 =

&)
o

NN NN NN
S = N

W O NN
¢ ®

Functions for Part 111

10.1 Traverso’s algorithm

to

We report here and implentatione of Algorithm 1, and of the functions needed
compute the Grobner description, the Grobner and linear representation (see Sec-

tion 1.4.1).

Ne
//
//
//
//
//
//
//
//
//
//
//

| //

//
//

lo

xtConfiguration := function (LL,MAX,MIN)

Example:

nc := NextConfiguration([0,0,0],[1,2,2]1,[0,0,0]) ; nc ;
// [0,0,11 ;

nc := NextConfiguration([0,0,1],[1,2,2]1,[0,0,0]1) ; nc ;
// L0, 0, 2]

nc := NextConfiguration([0,0,2],[1,2,2]1,[0,0,0]1) ; nc ;
// [0, 1, 0]

nc := NextConfiguration([1,2,1],[1,2,2]1,[0,0,0]) ; nc ;
// 1,2, 2]
nc := NextConfiguration([1,2,2],[1,2,2]1,[0,0,0]) ; nc ;
// 1,2, 2]

cal L, i ;
L :=LL ;
// CHECKS
if #L ne #MAX then

return "ERROR! The two list must have the same length!" ;

end if ;
for j in [1..#L] do
if L[] 1t MIN[j] or L[j] gt MAX[j] then
return "ERROR! The input sequence is out of range!" ;
end if ;
end for ;

// CHECK IF FINISHED
if MAX eq L then
return L ;
// FIND NEW CONFIGURATION

else
// find the rightmost element to increase
i = #L ;
while L[i] eq MAX[i] do
i:=1i-1;

end while ;

L[i] := L[i] + 1 ;

for j in [i+1..#L] do
L[j]1 := MIN[j] ;
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Chapter 10.

Functions for Part II1

end for ;
end if ;

return L ;
end function ;

IIT17777777777777777777777777777777777777777777777

HilbertStaircase := function(G)

// G must be a reduced groebner basis
return [LeadingMonomial(g) : g in G] ;

end function ;

IIT11777777777777777777777777777777777777777777777

MonomialsUnderHilbertStaircase := function(G)

// Returns a list containing

// all the monomials under the Hilbert Staircase
// The monomials are in the ring RIG

//

// G must be a reduced groebner basis

// of a finite dimensional ideal!!

//

local HS ; // leading monomials of G

local N ; // monomials under the Hilbert Staircase
local E, temp ;

local R ; // polynomial ring

local RG ; // R/

local max, ind ;

local extr ;

R := Parent(G[1]) ;

RG := quo<R | G> ;

HS := HilbertStaircase(G) ;
N = {3} ;

// FIND "SINGLE-VARIABLE" LEADING MONOMIAL
extr := [0 : i in [1..Rank(R)1] ;
for m in HS do

E := Exponents(m) ;

if #[x : x in E | x ne 0] eq 1 then

max,ind := Max(E) ;
extr[ind] := E[ind] ;
end if ;
end for ;

// CREATE HYPER-CUBE

N :=[1];

E := [0 : i in [1..Rank(R)]1] ;

Append(°N,E) ;

repeat
E := NextConfiguration(E,extr,[0 : i in [1..#E]]) ;
Append("N,E) ;

until E eq extr ;

// EXCLUDE MONOMIAL OVER THE STAIRCASE
for m in HS do

E := Exponents(m) ;

temp := E ;

Exclude("N,temp) ;
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102 repeat

103 temp := NextConfiguration(temp,extr,E) ;
104 Exclude("N,temp) ;

105 until temp eq extr ;

106 end for ;
107
10s| return Sort([&*[RG.i"e[i] : i in [1..Rank(R)]] : e in N]) ;
00| end function ;

110
i\ /111177777777 777777777777777777777777777777777777
112
1135| IdealDegree := function(I)

114| // computes the number of elements under the Hilbert Staircase
15| // #N(I)

116| // Definition 27.12.1, "SPES II", Mora

117
12| if not IsZeroDimensional(I) then

119 "The degree can be computed only for a zero dimensional ideal!!"
120 return -1 ;

121 end if ;

122
123| return #MonomialsUnderHilbertStaircase(Groebner(I)) ;
24| end function ;

125
we| ///1111111777717777777777777/7/777777/7/7777/7/777
127
128| GroebnerRepresentation := function(I,Q)

120 // Q = {ql,...,q9s}

130/ // is a linear indipendent set such that

131|// R[x1l,...,xk]/I = Span of Q with respect to K
132| // see def. 29.3.2, "SPES II'", Mora

133 //

134 // Example:

135|// K := Rationals() ;

36| // R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

wr|// £ = [

138 // x2°3 - x1*x2°2,
139|// x172%x2,

10| // x173 - x272 + x1xx2,
| // x2°4

142 // 1

143/ // I := Ideal(f) ;

144|// Q := MonomialsUnderHilbertStaircase(G) ;
145| // GroebnerRepresentation(I,Q) ;

46| //

147

45| local K ; // base field

1490| local R ; // polynomial ring over K

150/ local G ; // groebner basis of I

151|local s ; // number of elements in Q
152|local n ; // number of variables x1,...,xn
153 local M ; // set of n square matrices

154/ local Xh_ql ; // RG.h*Q[1]

155/ local Mon ; // monomials of Xh_ql

156| lLocal Coeff ; // coefficients of Xh_ql
157 local ind ;

158
150 R := Parent(I[1]) ;
60| K := BaseRing(R) ;

161
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o]
1]

GroebnerBasis(I) ;
RG := quo<R | G> ;

n := Rank(RG) ;
s := #Q ;
M:=[;
for h in [1..n] do
M[h] := Matrix(K,s,s,[]) ;
for 1 in [1..s] do
Xh_ql := RG.h*RG!Q[1] ;
Mon := Monomials(Xh_ql) ;
Coeff := Coefficients(Xh_ql) ;
for j in [1..s] do
ind := Index(Mon,Q[jl) ;
if ind ne 0 then
M[h] [11[j] := Coeff[ind] ;
end if ;
end for ;
end for ;
end for ;

return Q, M ;
end function ;

IITT1177777777777777777777777777777777777777777777

LinearRepresentation := function(I : vect := false)
// A linear representation of an Ideal I

// is a Groebner representation where  is the set
// of the monomials under the Hilbert Staircase

// EXAMPLE 29.2.1, "SPES II", Mora

// K := Rationals() ;

// R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

/] f =L

// x2°3 - x1*x2°2,

// x172%x2,

// x173 - x2°2 + x1*x2,
// x2°4

// 1

// I := Ideal(f) ;

// LinearRepresentation(I) ;

//

// if vect = true  is returned as a vector of vectors and M as a matrix

// if vect = false  is returned as a vector of monomials and M as a list of

monomials
//
local K ; // base field
local R ; // polynomial ring over K
local Q ; // R[x1,...,xk]/I = Span of Q with respect to GF(2)
// i.e. monomials under the Hilbert Staircase
local G ; // groebner basis of I
local s ; // number of elements in Q
local n ; // number of variables x1,...,xn
local M ; // set of n square matrices

local Xh_ql ; // RG.h*xQ[1]

local Mon ; // monomials of Xh_ql
local Coeff ; // coefficients of Xh_ql
local ind ;
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10.1. Traverso’s algorithm

R := Parent(I[1]) ;

K := BaseRing(R) ;
G := GroebnerBasis(I) ;
Q := MonomialsUnderHilbertStaircase(G) ;

RG := quo<R | G> ;

n := Rank(RG) ;
s := #Q ;
M =[] ;

if vect then // VECTORIAL CASE
for h in [1..n] do
M[h] := Matrix(K,s,s,[]) ;
for 1 in [1..s] do
Xh_ql := RG.h*RG!Q[1] ;
Mon := Monomials(Xh_ql) ;
Coeff := Coefficients(Xh_ql) ;
for j in [1..s] do
ind := Index(Mon,Q[jl) ;
if ind ne O then
M[h][1][j] := Coeff[ind] ;
end if ;
end for ;
end for ;
end for ;
Q :=10 ;
for i in [1..s] do
Q[i] := Vector(BaseRing(RG),[0 : j in [1..s]1]) ;
QLil[i] := 1
end for ;
else // POLYNOMIAL CASE
for h in [1..n] do
M[h] := [] ;
for 1 in [1..s] do
M[h]1[1] := RG.h * Q[1] ;
end for ;
end for ;
end if ;

return Q, M ;
end function ;

[I177777777777777711177777777777777777777777777777

LinearRepresentationPOLY := function(I)

// A linear representation of an Ideal I

// is a Groebner representation where  is the set
// of the monomials under the Hilbert Staircase

// EXAMPLE 29.2.1, "SPES II", Mora

// K := Rationals() ;

// R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

// £ = [

// x2°3 - x1*x2°2,

// x1~2%x2,

// x173 - x272 + x1xx2,
ol // x2~4

// 1
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//
//

1 //
a|//
s\ //

lo
lo
lo

en

//

Gr
//
//
//
//
//
//
//
//
//
//
//
//
//
//

s|//

//
//
//
//

1| 1o

lo
lo
lo
lo
lo

I := Ideal(f) ;
LinearRepresentation(I) ;

if vect = true Q is returned as a vector of vectors and M as a matrix
if vect = false Q is returned as a vector of monomials and M as a list of
monomials

cal R ;// polynomial ring
cal A ; // affine algebra R/I
cal Q ;

if T eq [] then
return [] ;
end if ;

R := Parent(I[1]) ;
A :=quo< R | I> ;

return SetToSequence(MonomialBasis(A)) ;

d function ;
[11777777777777777777777777777777777777777777777
oebnerDescription := function(g,Q : vect:=true)
g must be a polynomial in R

Q must be the set of the monomials under the Hilbert Staircase
where each monomial is in R/G,
where G is a Groebner basis

The complexity to compute Groebner Description
should be

0(uds~2), where:

- s is the number of elements in Q

- d is the degree of g

- u is the number of monomials of g in R

The complexity can be reduced to

0(Hor(f)s~2), where
- Hor(f) <= ud, is the Horner complexity of f, i.e.
the number of + required by the recursive Horner representations
if vect = true the description is given as a vector
else it is given as a polynomial in the algebra with base Q
cal R ;
cal RG ;

cal rem ; // remainder of g mod I

cal rem_c ; // coefficients of the remainder

cal rem_m ; // monomials of the remainder

cal GD ; // groebner description of g with respect to Q

if g eq O then
return Vector([Parent(Q[1])!'0 : i in [1..#Q1]) ;

end if ;

R := Parent(g) ;
RG := Parent(Q[1]) ;

rem := RG!Evaluate(g,[RG.i : i in [1..Rank(RG)]]) ;
if not vect then
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340 return rem ;

341 else

342 rem_c := Coefficients(rem) ;

343 rem_m := Monomials(rem) ;

344

345 GD := [Parent(rem_c[1])!'0 : i in [1..#Q]] ;
346 for i in [1..#rem_m] do

347 GD[Index(Q,rem_m[i])] := rem_c[i] ;
348 end for ;

349

350 return Vector(GD) ;

351 end if ;

52| end function ;
5

sal [1111177777777777777777777777777777777777777777777

57| // from "SPES II", Mora, Fig 29.3, Traverso’s Algorithm
58| // Given

59| // - a linear representation (Q,M) of an ideal I
360|// - r groebner descriptions GD = {c_1,...,c_r}
s61|// of r new polynomials not in I

362| // returns the linear representation of an ideal J
363|// where J =T UGD =1 U {c_1,...,c_r}

364| // INPUT:

365\ // - Q, monomials under the Hilbert Staircase
s66|// - M, multiplication tables for each variable
s67|// - GD, sequence of r Groebner descriptions

68| //

369 // EXAMPLE:

s0|// q =2 3 k =2

371|// R := PolynomialRing(GF(q) ,k,"grevlex")

sr2|// G := [R.i"q-R.i : i in [1..k]] ;

373|// G := GroebnerBasis(G) ;

// Q,_ := LinearRepresentation(G : vect := false ) ;
// _,M := LinearRepresentation(G : vect true ) ;
6|// ¢ := Vector(GF(2),[1,0,0,1]1) ;

// Q1,M1 := TraversoVECT(Q,M, [c]) ;

356| Traverso := function( QQ, MM, GD : verb:=true )

I

ars| //

379

3s0|local n ; // number of variables

321|local Q 3 //

382 local M ; //

383 local s ; // number of elements in Q
3s4|local B ; // set of r Groebner descriptions

3s5|local ¢ ; // single Groebner description
326/ local iota ; //

387| local Q_iota, M_iota, c_iota, d_iota ;
3ss|local B1 ; //

380| local temp ; //

390
391 M := MM ;
392/ Q = QQ ;
393 n := #M H
394 S = #Q H
305 I :=[1i : 1 in [1..s811 ;
396 B := GD ;

397
398 if verb then
399 B BEGIN TRAVERSO’S ALGORITHM ------ "oy
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400 end if ;

101| while B ne [] do

102

103 ¢ :=B[1] ; // or ¢ := Random(B) ; // is there an efficient choice?

404

405 if verb then

406 g "oy

407 N "oy

408 "B =", B ;

409 "I =", I

410 "c =", c;

411 end if ;

412

413 Exclude("B,c) ; // remove c from B

414

415 for m in M do

416 temp := c*m ;

417 if Weight(temp) ne 0 and not temp in B then // c*m != 0...0 and c*m not in B

418 Append ("B, temp) ;

419 end if ;

420 end for ;

421

22 iota := Maximum( { j : j in [1..Ncols(c)] | c[j]l ne 0 } ) ;

24 // UPDATE Q

425 Q_iota := Q[iotal ;

26 Remove(~Q, iota) ;

27 s = #0Q ;

29 // SAVE iota COLUMNS AND REMOVE THEM FROM M

430 M_iota := [RemoveRow(Submatrix(M[h],1,iota,Nrows(M[h]),1),iota) : h in [1..n]
1

431 M := [RemoveRowColumn(M[h],iota,iota) : h in [1..n]] ;

432

433 // SAVE iota COORDINATE AND REMOVE IT FROM c

434 c_iota := cl[iotal ;

435 ¢ := RemoveColumn(c,iota) [1] ;

436

437 if verb then

438 " BU [ctm : m in M] -————————- "o

439 HB = H, B ;

440 "I =", 1;

441 "iota = ", iota ;

442 printf "Q[%o] = %o \n",iota,Q_iota ;

443 printf "c[%o]l~-1 = %o \n",iota,c_iota~-1 ;

444 end if ;

445

446 // REPLACE Q[iota] IN MULTIPLICATION TABLES

447 for h in [1..n] do

448 for j in [1..Nrows(M[h])] do // for j in I do

449 for 1 in [1..Ncols(M[h])] do // for 1 in I do

450 M[h] [1]1[j] := M[hI[1]1[j] - c_iota~-1 * c[j] * M_iota[h][1]1[1] ;

451 end for ;

452 end for ;

453 end for ;

454

455 if verb then

456 "M =", M ;

457 end if ;

458
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Bl := B ;
B :=[] ;
// REPLACE Q[iota] IN GROEBNER DESCRIPTIONS
for x in B1 do
d :=x ;
d_iota := d[iotal ;
d := RemoveColumn(d,iota) [1] ;
for j in [1..s] do
d[j] := d[j] - c_iota™-1 * c[j] * d_iota ;
end for ;
if (Weight(d) ne 0) and (not d in B) then // d != 0...0
Append(“B,d) ;
end if ;
end for ;
end while ;

return Q, M ;
end function ;

10.2 Basic functions

Here we present the underlying functions needed to compute the minimum weight
of a nonlinear code (using the techniques of Section 7), and the nonlinearity of a B.f.
(using the techniques of Section 8).

10.2.1 Algebraic and numerical normal form

First, some functions regarding algebraic and numerical normal form are listed.

CoefficientVectorToPolynomial := function(cc : leastleft:=false) // OK!
// given the vector of the coefficients

// (most significant on the left if leastleft = false)

// returns the polynomial with those coefficients

// inverse function of PolynomialCoefficients or ANFCoefficients
//

// Example:

// R := PolynomialRing(GF(2),3) ;

// p := R.1¥R.2 + R.1 + 1 ;

// c := ANFCoefficients(p) ;

// CoefficientVectorToPolynomial(c) ;

/17 $.1x$.2 + $.1 + 1

3| // R := PolynomialRing(Rationals(),3) ;

// p := 3*R.1xR.2 + 2%R.1 + 4 ;

// c := PolynomialCoefficients(p) ;
// CoefficientVectorToPolynomial(c) ;
/7 /] 3%$.1x$.2 + 2%$.1 + 4

s //

local p ; // polynomial to be returned

local K ; // field of the components of c

local n ; // number of variables

local V ; // vector space over R of dimension n
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local R ; // polynomial ring of p

local j ;
if leastleft then
¢ := Vector(Reverse(ElementToSequence(cc))) ;
else
c := cc ;
end if ;
K := Parent(c[1]) ;
n := Integers()!Log(2,Ncols(c)) ;
V := VectorSpace(GF(2),n) ;
R := PolynomialRing(K,n) ;

p :=0;
j := Ncols(c) ;
for v in V do
p :=p + c[jI*&*[R.i"Integers()!v[n-i+1] : i in [1..n]] ;

j=3-1;

return p ;
end function ;

IITT17777777777777777777777777777777777777777777777777777777777

ANFCoefficients := function(f : leastleft := false) // OK!

// given a BF over the ring R

// returns the vector of the coefficients of the Algebraic Normal Form of f
//

// Ex:

// if leastleft = false (default) then

// £ := b12R.1*R.2 + b1*R.1 + b2*R.2 + b0 ;

// returns:

// ¢ = (b12, bl, b2, bO) ;

// otherwise

// c = (b0, bl, b2, bl2) ;

// ATTENTION! The order of the monomials depends on the order defined over R

// and thus also the order of c!!!

//

// => NOTE: the ordering is the one defined by the function
// LexPolynomialRing(GF(2) ,n)

//

// NOTE2: algorithm is "slow". Could be improved.
// £ := RandomBooleanPolynomial(15);

// time a := ANFCoefficients(f) ;

// Time: 911.440

3llocal R ; // ring of f of n variables

local n ;

local ¢ ; // vector of coefficients

local mf ; // monomials of f

local mgb ; // all possible monomials in R

s/local gb ; // generic boolean polynomial

n := Rank(Parent(f)) ;
R := Parent(f) ;

Zero(VectorSpace(GF(2),2°n)) ;

(@]
1]
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sa| gb := Evaluate(Generic_boolean_polynomial(R),[1 : i in [1..2"n]] cat [R.i : i
in [1..n11 ) ;

s6|] mgb := Monomials(gb) ;
g7 mf := Monomials(f) ;
88
so| for i in [1..#mgb] do
90 if mgb[i] in mf then
o1 clil =1 ;

92 end if ;

93 end for ;

94
95 if leastleft then

96 // to have the least significant coeff (i.e. the constant term) on the left
o7 return ReverseColumns(c) [1] ;

os| else
99 // to have the most significant coeff on the left
100 return c ;

101 end if ;

102| end function ;
103
wa| ///111177777777777777777777777777777777777777777777717777777777
105
106| AlgebraicNormalForm := function(TT)

107|// INPUT:

1s|// - TT, sequence of the evalution vector (truth table) of f
00| // OUTPUT:

10| // - £, Algebrai Normal Form of the truth table TT

il //

112
113 local C, f;

114/local V, n, Q, X, k, pr ;

115

116 n := IntegerRing() !Log(2,#TT) ;
117V := VectorSpace(GF(2),n) ;

115  Q := BooleanPolynomialRing(n);
19l X :=[Q.1i : i in [1..n]] ;

120

121 f := Q!TT[1] ;

122 k :=1;

123

124 for v in V do

125 if Evaluate(f,ElementToSequence(v)) ne TT[k] then
126 pr := Q!'1 ;

127 for j in [1..n] do

128 pr := pr * X[j]~(IntegerRing()!v[jl) ;

129 end for ;

130 f :=f +pr ;

131 end if ;

132 k =k +1;

133 end for ;
134
135 return Q!f ;
136 end function ;
137
ws| /111117117777 7777777777777777777777777777777/77/77777/77777777/77
139
140/ Sint := function(S)

141|// performs the BINary Sum as INTeger Sum:
12| // EX:
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//
//
//
//
//
//
//
//
//
//
//
//
//

lo
lo

en

//

Ne
//
//
//
//
//
//
//

s|//

//
//
//
//
//
//

5| //

//
//
//
//

lo
lo

a+tb --> over the binary field is
at+b-2ab --> over the integer ring (or the rational field)
atb+c --> over the binary field is
atb+c-2ab-2bc-2ac+4abc --> over the integer ring (or the rational field)

To use it:

Q := PolynomialRing(RationalField(),3+1) ;
Sint([Q.1,Q.21) ;

-2x$.1x$.2 + $.1 + $.2

Sint ([GF(2)'1,1,1]1) ;

1

Sint([1,1,1]) ;

1

cal sum ;
cal Si ;

if #S eq O then // zero sequence
return 0 ;
end if ;

if Category(Parent(S[1])) eq Category(GF(2)) then
Si := [IntegerRing()!S[i] : i in [1..#S]] ;
else
Si := [S[il] : i in [1..#S11 ;
end if ;

sum := Si[1] ;
for i in [2..#Si] do

sum := sum + Si[i] - 2*sum*Sil[i] ;
end for ;

return sum ;
d function ;

LIT1777777777777777777777777777777777777777717777771777777777

xtMonomialOfWeight := function(m,t)

given a simple t-monomial m in R s.t. m is the product of t variables
returns the "next" monomial with t variables over R[x1,...,xn]
following a pre-determined rule which assign:

i --> x_ {i_1}k*...xx_{i_t}

RULE:
- counting from the left, move the first free index to the right
- when and index is moved to the right (increased)

then all previous indexes must be brought

to the starting position (leftmost)

To use it:

R := PolynomialRing(GF(2),5) ;
NextMonomialOfWeight(R.1*R.2%R.3,3) ;
$.1x$.2x$.4

if m = 1 return the first monomial of R
write R!1 to indicate the monomial "1"

cal ind ; // list of t indexes
cal R ;
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203| local n
204| local counter ;

205
206 R := Parent(m) ;
207 n := Rank(R) ;
208

200 // CHECKS

210f for i in [1..n] do

211 if Degree(m,i) gt 1 then

2 "ERROR! The monomial m is not a simple t-monomial!"
3 return 0 ;

A end if ;

5 end for ;

// CHECK t, THE WEIGHT OF m

if t ne Degree(m) and m ne 1 then
"ERROR! The monomial m has degree different from t" ;
return 0 ;

end if ;

No= O © 0w N

w

// EXTRACT INDEXES
if m eq 1 then
return &*[R.(j) : j in [1..t]] ;
else
ind := [1 : i in [1..n] | Degree(m,i) eq 1] ;
end if ;

(N

o N O C

NN NN NN NN NN NN NN NN NN NN
>

WOoWw W NN NN NN N N = e e
S 2

0 // FIND NEXT "MONOMIAL"

1|  if ind[1] eq n-t+1 then

2 "ERROR! The monomial inserted is the last of the list!"
33 return m;
34 else

35 joi=1
36 while j le #ind-1 and ind[j]+1 eq ind[j+1] and ind[j] ne n do
37 j:=3+1;
38 end while ;
39

0 // INCREASE ind[j]

ind[j] := ind[j] + 1 ;

1

3 // RESET ind[1], ..., ind[j-1]

4 for k in [1..j-1] do

5 ind[k] := k ;

6 end for ;

48 return &*[R.(ind[j]) : j in [1..#ind]] ;
49 end if ;

i1|end function ;

[IT777777777777777117777777777777777777777777777777717777777777
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NNFfromANF := function(f)
5| // for polynomials
local R, r, Mf, L, m, Q ;

ot ot Ot O
o N O o

3
)

R := PolynomialRing(Rationals(),Rank(Parent(f)) ) ;
Rank(R) ;
quo< R | [R.i"2-R.i : i in [1..r]] > ;
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Mf := Monomials(f) ;
L:=1[;

if R!1 in Mf then

L := L cat [R!1] ;
end if ;

for i in [1..r] do
m := R!1 ;
for j in [1..Binomial(r,i)] do
m := NextMonomialOfWeight(m,i) ;
if m in Mf then
L :=L cat [m] ;
end if ;

end for ;
end for ;

return Sint([Q'x : x in L]) ;
end function ;

10.2.2  Fast transforms

Now we show how to implement fast Fourier like transforms.

FastMobiusTransform := function(c_f:leastleft:=false)

// This function allows to obtain the evaluation of a BF f with n variables

// in only n2°n steps (instead 272n).

// It is supposed that coeffs are given from the highest monomial to the lowest.
// Given the vector of coefficients of a BF over the ring R

// returns the evaluation vector of f

// using the fast mobius transform.

// Since this operation is an involution,

// if it is applied to an evaluation vector

// than the vector of coefficients of f is returned.

//
// ATTENTION! The order of the monomials depends on the order defined over the
// ring of the function f of which c_f are the coefficients...
// Thus changing the ring of f, the order of the coefficients changes
// (eventhough the weight is obviously the same)

s // and also the FMT changes (eventhough its weight doesn’t)
//

// Reference:

// Cagdas Calik, PhD Thesis, Pag. 9, chap. 2.3

// http://sc.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/

// web/index.php/attachments/single/219

//

// EX:

// £ := Vector(GF(2), [1,0,0,0,0,0,1,0]) ; // i.e. f = xyz+x with "lex"
// FastMobiusTransform(f) ;

// (0101010 0)

//

o|local n ; // number of variables of f

local ev_f ;
local 1b ; // length of blocks
local nb ; // number of blocks
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34/ n := IntegerRing()!Log(2,Ncols(c_f)) ;
35 1f leastleft then

36 ev_f := Vector(GF(2),ElementToSequence(c_f)) ;

37 else

38 ev_f := Vector(GF(2),Reverse(ElementToSequence(c_f))) ;
39 end if H

11| for i in [1..n] do // n steps, the n_th step returns the evaluation vector

13 1b := 27i ;

14 nb := (2°n) div 1b ;

45 for j in [1..nb] do // for each block

16

A7 for k in [1..1b div 2] do // for the first half of the block

18 ev_f[k+(j-1)*1b] := ev_f[k+(j-1)*1b] ;

19 end for ;

50

51 for k in [(1b div 2)+1..1b] do // for the second half of the block
52 ev_f[k+(j-1)*1b] := ev_f[k+(j-1)*1b] + ev_f[k+(j-1)*1b-(1b div 2)] ;
53 end for ;

54

55 end for ;

56 end for ;

57

58 return ev_f ;

50| end function ;

D
o
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FastWalshSpectrum := function (TT)

&

64| // INPUT:

65| // - TT, the polarity truth table (evaluation vector) of f
66| // OUTPUT:

67| // - fws_f, the walsh spectrum of TT

6s|//

60| // If £ is given by its ANF, the fastest way to compute the Walsh Spectrum is:
70| // 1 - to compute the coefficients vector of the ANF of f,

71|// 2 - than the truth table with Fast Mobius Transform
72|// 3 - get the polarity truth table of f

73| // 4 - than use Fast Walsh Transform (Spectrum)

1l //

75| // i.e., to use it:

76| // R := BooleanPolynomialRing(3) ;

7|// £ := R.1¥R.2 + R.3 ;

7s| // WalshSpectrum(f) ;

w|// [ 0, 0, 0, O, 4, 4, 4, -4 ]

g0|// fmt := FastMobiusTransform(ANFCoefficients(f)) ;

si|// FastWalshSpectrum([1-2*xIntegerRing() !fmt[i] : i in [1..Ncols(fmt)1]) ;
s2|// L0, 0, O, O, 4, 4, 4, -4 1]

83 //

s4|// Reference:

s5|// Cagdas Calik, PhD Thesis, Pag. 11, chap. 2.4

s6| // http://sc.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/
87| // web/index.php/attachments/single/219

sz //

90|local n ; // number of variables of f
o1l local fws_F ;
92/ local 1b ; // length of blocks
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local nb ; // number of blocks
local temp ;

n := IntegerRing()!Log(2,#TT) ;
fws_f := [IntegerRing()!TT[i] : i in [1..#TT]1] ;
temp := [] ;

for i in [1..n] do // n steps, the n_th step returns the evaluation vector

1b := 27i ;
nb := (2°n) div 1b ;
for j in [1..nb] do // for each block

for k in [1..1b div 2] do // for the first half of the block
temp[k+(j-1)*1b] := fws_f[k+(j-1)*1b] + fws_f[k+(j-1)*1b+(1b div 2)];
end for ;

for k in [(1b div 2)+1..1b] do // for the second half of the block
temp[k+(j-1)*1b] := fws_f[k+(j-1)*1b-(1b div 2)] - fws_f[k+(j-1)*1b] ;
end for ;
end for ;
fws_f := temp ;
end for ;

return fws_f ;
end function ;

[IT777777777777777117777777777777717777777777777777717777777777

NonLinearityFWT := function (bf:inc:=false)

// computes the non linearity of f using the FAST Walsh trasform

// to be improved:

// - the function ANFCoefficients could be improved

//  thus it is possible to input the vector of coefficients of f

// - the max could be computed in the last step

// - if inc = false and bf is a vector then it is supposed it is the truth table

// if inc = true and bf is a vector then it is supposed it is the vector of
coeffs

//

// Example:

// £ := RandomBooleanPolynomial(3) ;

// NonLinearityFWT(f) ; // input a Boolean polynomial

/117 2

// v := ANFCoefficients(f) ;

5| // NonLinearityFWT(v:inc:=true ; // input the vector of coefficients
/]2
s| //

local TT ; // truth table of f

local PTT ; // polarity truth table of f
local fws ;

local nv ;

local anfc ;

local max ;

if Dimension(Parent(bf)) eq -1 then

// Dimension(Parent(f)) is -1 if f is a boolean polynomial,

// while if f is a vector the function gives the dimension of the vector space
anfc := ANFCoefficients(bf) ;
TT := FastMobiusTransform(anfc) ;

162




10.2. Basic functions

nv := IntegerRing()!Log(2,Rank(Parent(TT))) ;
else
if inc then
anfc := bf ;

© o

e e e e e e
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o

6 TT := FastMobiusTransform(anfc) ;
7 else
8 TT := bf ;
159 end if ;
160 nv := IntegerRing()!Log(2,Rank(Parent(TT))) ;
161 end if ;
162 // NOW:

163 // - bf IS A BOOLEAN POLYNOMIAL

164 // - anfc IS THE VECTOR OF COEFFICIENTS OF bf
165 // - TT IS THE TRUTH TABLE OF bf

166
167 | /%

168 // EXTRACT COEFFICIENTS if needed

60| 1f Dimension(Parent(f)) eq -1 then

170 // Dimension(Parent(f)) is -1 if f is a boolean polynomial,

171 // while if f is a vector the function gives the dimension of the vector space
172 anfc := ANFCoefficients(f) ;

173 nv := Rank(Parent(f)) ;

174 else

175 anfc := f ;

176 nv := IntegerRing()!Log(2,Ncols(anfc)) ;
177 end if ;

178 */

179
1s0| // compute the TRUTH TABLE of f using fast mobius transform
181 // TT := FastMobiusTransform(anfc) ;

182
183 // compute the POLARITY TRUTH TABLE of f: 1 -> -1, 0 -> 1
iga|  PTT := [1 ;

g5  for i in [1..Ncols(TT)] do

186 if TT[i] eq 1 then
187 PTT[i] := -1 ;
188 else

189 PTT[i] =1 H

190 end if ;

191 end for ;

192
103| // Compute the WALSH SPECTRUM using Fast Walsh Transform
104 fws := FastWalshSpectrum(PTT) ;

195
06| // find the MAX entry of the walsh spectrum

197 max := Max({AbsoluteValue(fws[i]) : i in [1..#fws]}) div 2 ;
198
199| return 2~ (anv-1) - (max) ;
200| end function ;

201

2020 ///111111777777777777771777777777777711777777777777771777777777

The next function is an implementation of Algorithm 6.

i|FastIntegerPolynomialEvaluation := function(c_f : leastleft:=false)

2| // This function allows to obtain the evaluation of an integer Polynomial f
3| // with n variables

t|// evaluated in points whose compontents are 0’s and 1’s
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//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

2 //

//
//
//
//
//
//
//
//
//

lo
lo
lo
lo

in only n2°n steps.
Given the vector of coefficients of a Polynomial over the ring R
RETURNs the evaluation vector of f
(with respect to points of 0’s and 1’s components
following by default the order 000,001,010,011,...)
using a technique like the fast mobius transform.

ATTENTION! The order of the monomials depends on the order defined over the
ring of the function f of which c_f are the coefficients...
Thus changing the ring of f, the order of the coefficients changes
(eventhough the weight is obviously the same)
and also the FMT changes (eventhough its weight doesn’t)

Reference:
Cagdas Calik, PhD Thesis, Pag. 9, chap. 2.3

http://sc.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/
web/index.php/attachments/single/219

EX:

R := PolynomialRing(Rationals(),3) ;

f := 8%R.1%R.2%xR.3 + 3*R.1 ;
PolynomialCoefficients(f) ;
// (8003000 0)
for v in VectorSpace(GF(2),Rank(Parent(f))) do
printf "Yo0->%o\n",v,Evaluate(f, [IntegerRing()!v[i] : i in [1..Ncols(v)]]l) ;
end for ;
// (0 0 0)->0
// (0 0 1)->0
// (01 0)->0
// (01 1)->0
// (1 0 0)->3
// (1 0 1)->3
// (1 10)->3
// (1 1)->11
FastIntegerPolynomialEvaluation(PolynomialCoefficients(f)) ;
// Co 0 0 0 3 3 311)

PP, OOk P, OO

cal n ; // number of variables of f
cal ev_f ;

cal 1b ; // length of blocks

cal nb ; // number of blocks

n := IntegerRing()!Log(2,Ncols(c_£f)) ;
if leastleft then

ev_f := Vector(Rationals(), [Integers(O!c_f[i] : i in [1..Ncols(c_£)1]) ;
else

ev_f := Vector(Rationals(),Reverse([Integers()!c_f[i] : i in
[1..Ncols(c_£)11)) ;
end if ;

for i in [1..n] do // n steps, the n_th step returns the evaluation vector

1b := 271 ;
nb := (2°n) div 1b ;
for j in [1..nb] do // for each block

for k in [1..1b div 2] do // for the first half of the block
ev_f[k+(j-1)*1b] := ev_f[k+(j-1)*1b] ;
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end for ;

for k in [(1b div 2)+1..1b] do // for the second half of the block
ev_f[k+(j-1)*1b] := ev_f[k+(j-1)*1b] + ev_f[k+(j-1)*1b-(1b div 2)] ;
end for ;

end for ;
end for ;

return ev_f ;
end function ;

IITT11777777777777777777777777777777777777777777

FastNNFfromTT := function(f : leastleft:=false) //

// This function allows to obtain

// the Numeric Normal Form from the TruthTable of f

// in n2~(n-1) steps

// see:

// "A new representation of Boolean functions" - Carlet and Guillot, Section 3.1

// it is the opposite function of FastIntegerPolynomialEvaluation

//

// Example:

//
FastIntegerPolynomialEvaluation(FastNNFfromTT(Vector(GF(2),[0,1,0,1,0,0,0,0]1)))

//// (0101000 0)

// FastNNFfromTT(Vector(RationalField(),[0,1,1,0])) ;
// // the coefficients must be rationals or binary
//// (-2 1 10)

// R := PolynomialRing(RationalField(),2) ;

// // the coefficients must be rationals

// £ :=R.1 + R.2

// FastNNFfromTT(f) ;

//// (-2 1 10)

//

//local anfc ; // coefficients of the algebrai normal form
local ev_f ;
local n ; // number of varibale of f
local b ;
local temp ;
/*
// EXTRACT COEFFICIENTS if needed
if Dimension(Parent(f)) eq -1 then
// Dimension(Parent(f)) is -1 if f is a boolean polynomial,
// while if f is a vector the function gives the dimension of the vector space
if Category(BaseRing(Parent(f))) eq Category(GF(2)) then
temp := PolynomialCoefficients(f) ;
anfc := [IntegerRing()!temp[i] : i in [1..Ncols(temp)]] ;
elif Category(BaseRing(Parent(f))) eq Category(RationalField()) then
anfc := PolynomialCoefficients(f) ;
else
"ERROR! the base ring of f is not either GF(2) nor the RationalField()!"
end if ;
n := Rank(Parent(f)) ;
else
if Category(Parent(f[1])) eq Category(GF(2)) then
anfc := Vector([IntegerRing()!f[i] : i in [1..Ncols(£)]11) ;
elif Category(Parent(f[1])) eq Category(RationalField()) then
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anfc := f ;
else
"ERROR! the base ring of f is not either GF(2) nor the RationalField()!"
end if ;
n := IntegerRing()!Log(2,Ncols(anfc)) ;
end if ;

n := IntegerRing() !Log(2,Ncols(f)) ;

// ev_f := Reverse([Integers()!f[i] : i in [1..27°nl]) ;
ev_f := [Integers()!f[i] : i in [1..2°n]] ;

// ev_f := [f[i] : i in [1..2°n]] ;

// COMPUTATION OF THE NNF
for i in [0..n-1] do

b :=0 ;
repeat
for x in [b..b+2~i-1]do
// ev_flx + 1] := ev_f[x+2"1 + 1] - ev_f[x + 1] ;
ev_f[x+2~i + 1] := ev_f[x+2"1 + 1] - ev_flx + 1] ;
end for ;

b := b+2~(i+1) ;
until (b eq 2°n) ;
end for ;

if leastleft then
return Vector(ev_f) ;
else
return Vector(Reverse(ev_f)) ;
end if ;
end function ;

10.3 Minimum weight algorithms

The following code is part of our contribution.

DefiningPolynomialsFromCode := function(CC : poly := true)
// if poly = false then the vector of coefficients
// of the ANF of the defining polynomials are returned

1| // otherwise the algebraic normal form as a polynomial

// Example:
// C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,1,0,1, 1,0,0,0,0, 1,0,0,1,1]1) ;
// DefiningPolynomialsFromCode(C) ;

// L

// $.1%$.2 + $.1 + $.2,
// $.2 + 1,

// $.1x$.2 + $.1,

// $.1%$.2,

// $.1x$.2 + $.2 + 1

// 1

// DefiningPolynomialsFromCode(C:poly:=false) ;

5| // [

// 1110,
// (010 1),
// (1010)),
// (100 0),
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10.3. Minimum weight algorithms

// (1101
// 1

| //

local F ;
local C ;

C := Matrix(CC) ;
F:=1[0;
for i in [1..Ncols(C)] do
if poly then
F[i] := AlgebraicNormalForm([C[j][i] : j in [1..Nrows(C)1]1) ;
else
F[il]
end if ;
end for ;

FastMobiusTransform(FastMobiusTransform(Transpose(C) [1])) ;

return F ;

o|end function ;

The next two functions compute the weight polynomial and the weight ideal of,
respectively, Definition 7.5.1 and Definition 7.5.4.

WeightPolynomial := function(CC : verb := false)

// compute the integer weight polynomial of a binary code C

// given as a list of codewords (or a matrix)

// Example:

// C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1]) ;
// WeightPolynomial(C) ;

/7 /7 8.1 + 2

//

local C ;
local F ; // defining polynomials of C in AND
local Fn ; // defining polynomials of C in NNF

3| local n, k ; // length and dimension of C

local R, Q ; // polynomial rings, Q is modulo the field equations

Matrix(CC) ;
Floor(Log(2,Nrows(C))) ;
Ncols(C) ;
DefiningPolynomialsFromCode(C) ;

mB N Q
I

if verb then
printf "Defining polynomials of C in ANF:\n%o\n",F ;
end if ;

R := PolynomialRing(Rationals(),k ) ;
Q := quo< R | [R.i"2-R.i : i in [1..k]] > ;
Fn := [] ;
for i in [1..n] do
// uncomment the following to have the weight polynomial over Q

0| // Fnl[i] := Evaluate(NNFfromANF(F[il),[Q.i : i in [1..k1]1 ) ;

Fnl[i] := Evaluate(NNFfromANF(F[il),[R.i : i in [1..k11 ) ;
end for ;

if verb then
printf "Defining polynomials of C in NNF:\n%o\n",Fn ;
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end if ;

return &+[Fnl[i] : i in [1..#Fnl] ;
end function ;

[IT777777777777777117777777777777717777777777777777717777777777

;| IntegerWeightsIdeal := function(C,t : verb := false)

// compute the ideal whose variety

// contains the words which,

// encoded as codewords of C by the defining polynomials,
// have weight exactly t

//

// Example:

// C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1]) ;
// W3 := IntegerWeightsIdeal(C,3) ;

// W2 := IntegerWeightsIdeal(C,2) ;

// Variety(Ideal(W3)) ;

// /7 [ <1, 0>, <1, 1> 1]

// Variety(Ideal(W2)) ;

// /7 [ <0, 0>, <0, 1> ]

//

local k ; // dimension of C

local wp ; // weight polynomial

local Q ; // polynomial ring of wp

local W ;

k := Floor(Log(2,Nrows(C))) ;
wp := WeightPolynomial(C : verb) ;

if verb then
printf "Weight polynomial of C:\nJo\n", wp ;
end if ;

Q := Parent(wp) ;
wo=1[ ;
for i in [1..k] do

Wl[il := Q.i"2 - Q.1 ;
end for ;

W#W+1] := wp - t;

// uncomment to return an ideal instead of a list of polynomials
// return Ideal(W) ;
return W ;

end function ;

The next function is an extension of Algorithm 5, i.e. it is an implementation of
Algorithm 8 described in Section 7.7.2.

MinWeight := function(C:compute_poly:=false)

// To compute the minimum weight of a binary code C of size m
// using B.f.’s in NNF representation of the code C.

// if m is not a power of 2 then the code C is splitted in

// subcodes of size a power of 2.

// If compute_poly = false,

// then polynomials are represented as vectors.

//
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// Example:

w|// C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1]) ;
11|// w := MinWeightPoly(C) ; w ;

20// 2

13 //

15{local n ; // length of C

16/local m ; // number of codewords of C

17|local k ; // minimum integer such that 2"k > m

iz| local Bm ; // binary decomposition of m

19| local subC ;

20{local w ; // minimum weight

21|local j, temp ;

22/local T ; // temporary code

23| local Fv, Fp ; // list of subcodes as vector and as polynomials
local WPv ; // list of weight polynomials

local EV ; // list of evaluation vectors of the weights polynomials
local t, TIME ;

S B

SN N NN
~N O C

™)
o

TIME := [] ;

¥

n := Ncols(C) ;
Nrows(C)
Ceiling(Log(2,m)) ;

w
o

m
32 k :

34|t := Cputime() ;
35 // CONTRUCT SUBCODES OF CARDINALITY 27i

36| Bm := IntegerToSequence(m,2) ;

371 subC := [* %] ;

gl J =1

39| for i in [1..#Bm] do

10 if Bm[i] eq 1 then

11 if #subC eq O then

12 temp := 0 ;

13 else

14 temp := &+[Nrows(subC[h]) : h in [1..#subCl] ;
15 end if ;

16 subC[j] := Matrix(GF(2),2~(i-1),n,[C[h] : h in [temp+l..temp+2~(i-1)1]) ;
7 j:=3+1;

18 end if ;

19 end for ;
o| TIME[#TIME+1]

Cputime(t) ;

2 // REPRESENT THE CODES AS A SET OF B.f.’s in NNF as vectors
3|t := Cputime() ;

| Fv := [*x %] ;

51 for i in [1..#subC] do

6 Fv[il := [1 ;

7 T := Transpose(subC[i]) ;

8 for h in [1..Nrows(T)] do

9 Fv[i] [h] := FastNNFfromTT(T[h] : leastleft := true) ;
60 end for ;

61 end for ;

62| TIME[#TIME+1] := Cputime(t) ;
63
64| // REPRESENT THE CODES AS A SET OF B.f.’s in NNF as polynomials
65|t := Cputime() ;

66| 1f compute_poly then

67 Fp := [* %] ;

68 for i in [1..#subC] do
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Fplil := [* *] ;
T := Transpose(subC[i]) ;
for h in [1..Nrows(T)] do
Fp[i]l[h] := NNFfromANF(AlgebraicNormalForm(ElementToSequence(T[h]))) ;
end for ;
end for ;
end if ;
TIME[#TIME+1] := Cputime(t) ;
// NOTE:
// CoefficientVectorToPolynomial(Fv[i][j]:1leastleft:=true) = Fp[i] [j]
// order points in TT: 000 100 010 110 001 101 011 111

// CREATE WEIGHT POLYNOMIAL FOR EACH CODE as vector
t := Cputime() ;
WPv := [* %] ;
for i in [1..#Fv] do
WPv[i] := &+[Fv[il[h] : h in [1..#Fv[il]l] ;
end for ;
TIME[#TIME+1] := Cputime(t) ;

0|t := Cputime() ;

// COMPUTE EVALUATION VECTOR FOR EACH WEIGHT POLYNOMIAL
EV := [x %] ;
for i in [1..#WPv] do
EV[i] := FastIntegerPolynomialEvaluation(WPv[i]:leastleft:=true) ;
end for ;
TIME[#TIME+1] := Cputime(t) ;

t := Cputime() ;

// compute the minimum weight

w = Min({Min({EV[i]1[j] : j in [1..Ncols(EV[il)1}) : i in [1..#EV] }) ;
TIME[#TIME+1] := Cputime(t) ;

if compute_poly then
return w, TIME, Fp, Fv, WPv, EV ;
else
return w, TIME, Fv, WPv, EV ;
end if ;
end function ;

10.4 Nonlinearity algorithms

The following code is part of our contribution. The next two functions compute
the nonlinearity polynomial (Algorithm 12) and the ideal NV} of Definition 8.3.1.

NonlinearityPolynomial := function(f : incoeff:=false, leastleft:=false)

// FAST NONLINEARITY POLYNOMIAL

// Compute the nonlinearity polynomial of a Boolean function f

// using a butterfly algorithm (as Fast Fourier Transform)

// INPUT:

// - £, either the anf coeffs or the evaluation vector of a boolean function
// (if incoeff=false then ev.vect., if incoeff=true then anf coeff)

// OUTPUT:

// - nlp, the coeffs vector of the nonlinearity polynomial

//  (if leastleft=false the leftmost coeff is the most significant monomial,
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ul// if leastleft=true the leftmost coeff is the least significant monomial)
12| //

13| // Example:

14| // R := PolynomialRing(GF(2),3) ;

15| // £ := R.1xR.2 + R.3 ;

16| // ¢ := ANFCoefficients(f) ;

// ev_f := EvaluationVector(f) ;

// NonlinearityPolynomial(c:incoeff:=true) ;

//// (-8 0 0 OO O 4 0 4 0 0 0 0 0-2 4
// NonlinearityPolynomial(ev_f) ;

//// (-8 0 0 0O OO 4 0 4 0 0 0 0 0-2 4
// NonlinearityPolynomial(ev_f:leastleft:=true) ;

//// (4-2 0 0 0 OO 4 0 4 0 0 0 0 0-8)
//

[ V) (V) - - -
W N o~ O © W ~
o

O N NN
ot R W N

N
(=]

local ev_f ; // evaluation vector of f

local n ; // number of variables of f

local nlp ; // nonlinearity polynomial coefficients
local b ; // counter

N
w =

W NN

31| /* some checks to transform f */
32| if incoeff then // if f is given by its anf coefficients

33 ev_f := FastMobiusTransform(f) ;

34| else // if f is given by its evaluation vector
35 ev_f :=f ;

36 end if ;

ss|] n := Integers()!Log(2,Ncols(ev_£)) ;

w| // FAST TRANSFORM:

11 // FIRST HALF OF THE NLP

2| nlp := [Integers()!ev_f[i] : i in [1..Ncols(ev_£)]1] ;
i3] for i in [0..n-1] do

end for ;

o

14 b :=0 ;

45 repeat

16 for x in [b..b+27i-1] do // for each block
7 // x+1 ; // upper index

18 // x+2°i + 1 ; // lower index

19 nlp[x+1] := nlp[x+1] + nlp[x+2~i+1] ;
50 if x eq b then

51 nlp[x+2~i+1] := 2~(i) -2*nlp[x+2~i+1] ;
52 else

53 nlp[x+2~i+1] := -2xnlp[x+2~i+1] ;

54 end if ;

55 end for ;

56 b := b+2°(i+1) ;

57 until (b eq 2°n) ;

// SECOND HALF OF THE NLP

61| mnlp[1+2°n] := 2°n -2*nlp[1] ;
62| for i in [2..27n] do

63 nlp[i+2°n] := -2*nlp[i] ;
64 end for ;

=)

66 if leastleft then

67 return Vector(nlp) ;
6| else
69 return Vector(Reverse(nlp)) ;

70 end if ;
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71| end function ;
w| /1111717777 777777777777777777777777777777777777777/77777777/7/77

74
75| gbJRAT := function (t,Nf)

76| // Returns the Groebner Basis of the ideal J_{n,t}(f) OVER THE RATIONALS.

77| // The ideal J_{n,t}(f) has now as generators:

78| // - the field equations: xi~2 - xi

70| // - Nf, the polynomial composed by the sum of the elements of (ev_gn + ev_f)
sol//

s2|local R ; // ring of f over K
g3|local n ; // number of variables of f
s1|local K ; // rational field

ss|local Q 3 // Q[ a_1, ..., a_n, a_{n+}) ]
s6|local G ; // Groebner basis of J

= Parent(Nf) ;

Rank(R) ;

RationalField() ;
PolynomialRing(K,n,"grevlex") ; // much faster

g
oxpB
o

92
2l G =[] ;

94| // ADD FIELD EQUATIONS for the variables of Q in J
95| for i in [1..()] do

96 G[i] := Q.i"2 - Q.1 ;

97 end for ;

08
99 // ADD the NONLINEARITY POLYNOMIAL

100  G[n+1] := Q!Nf - t ;

1| // G := G cat [Q!NonlinearityPolynomial(f) - t] ;
102
103| return GroebnerBasis(G)
04| end function ;

The next two commands

NonLinearityRAT(f:alg:=1);
2| NonLinearityRAT(f:alg:=2);

-

perform, respectively, Algorithm 10 and Algorithm 11.

NonLinearityRAT := function(bf : alg := 1, turnoffcheck := false, inc:=false)
// the nonlinearity of f is x

// if gbJRAT(x,f) !'= {1}

«|// if alg = 1 uses Groebner basis

5| // if alg = 2 the minimum evaluation different from O is returned

W N =

6| // with the fast transform method

7\ // (if inc=false (default) then ev.vect., if inc=true then anf coeff)
s|// uses:

9l // - FastIntegerPolynomialEvaluation(PolynomialCoefficients(£))

10|// if no algorithm is defined returns -1

ul//

12| // Example:

13| // R := PolynomialRing(GF(2),3) ;
14/ // £ := R.1xR.2%R.3 + R.1 ;
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// NonLinearityRAT(f:alg:=2);
/7 /71
// NonLinearityRAT(f:alg:=1);
/1771

local
local
local
local n ;

local temp ; // temporary value

local anfc ; // vector of coefficients of bf
local f ; // truth table of bf

local Nf ; // nonlinearity polynomial of f

0 g -

s
b
b

///////7///////////// - COMPUTE TRUTH TABLE - ////////////////////////////

if Dimension(Parent(bf)) eq -1 then
// Dimension(Parent(f)) is -1 if f is a boolean polynomial,
// while if f is a vector the function gives the dimension of the vector space
anfc := ANFCoefficients(bf) ;
f := FastMobiusTransform(anfc) ;
n := IntegerRing()!Log(2,Rank(Parent(£))) ; // only needed in alg2 and alg3
else
if inc then

anfc := bf ;
f := FastMobiusTransform(anfc) ;
else
f :=Dbf ;
end if ;
n := IntegerRing()!Log(2,Rank(Parent(f))) ; // only needed in alg2 and alg3
end if ;
// NOW:

// - bf IS A BOOLEAN POLYNOMIAL

// - anfc IS THE VECTOR OF COEFFICIENTS OF bf

// - £ IS THE TRUTH TABLE OF bf

I1177777777777777777777777 = BLG L - [////////////7777777//777/77711777/7//
if alg eq 1 then // check if the base gbJRAT contains 1

// compute nonlinearity polynomial
if inc then

Nf := NonlinearityPolynomial(anfc:incoeff:=true) ; // f given as
coefficients
else

Nf := NonlinearityPolynomial(f:incoeff:=false) ; // f given as coefficients
end if ;

Nf := CoefficientVectorToPolynomial(Nf) ; // tranform Nf in a polynomial
// find Groebner basis
i:=0;
while 1 in gbJRAT(i,Nf) do // gbJRAT works faster with
// Nf nonlin.pol. as coeff vector
i:=1i+1;
end while ;

I1777777777777777777777777 = ALG 2 = [///////7//7/77777//7777771/777//77/7

elif alg eq 2 then // FAST TRANSFORM to compute the evaluation
if inc then
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Nf := NonlinearityPolynomial(anfc:incoeff:=true) ; // f given as
coefficients
else

Nf := NonlinearityPolynomial(f:incoeff:=false) ; // f given as coefficients
end if ;

temp := FastIntegerPolynomialEvaluation(Nf) ;
i := Min({temp[j] : j in [1..Ncols(temp)]l }) ;

I177777777777777777777777 = NO ALG - ////////7/7//77777/7777777/1/777//77/7

else
printf "ERROR! Algorithm %o not defined\n", alg ;
return -1 ; // if no algorithm is defined returns -1
end if ;

[17777777711777777177777] - CHECK - //////////17777171777177777777/71/1///]7

if not turnoffcheck then
if inc then

temp := NonLinearityFWT(anfc:inc:=true) ;
else

temp := NonLinearityFWT(bf) ;
end if ;
if temp ne i then

"y = n’ 1;

"= n’ n ;

"= f

"ERROR!! the function ’’ with alg =", alg ;
"returned a different value with respect to the function
’NonLinearityFWT?!!"
return f ;
end if ;
end if ;

return i ;
end function ;
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