
University of Trento

Department of Mathematis

Ph.D. in Mathematis

XXVI Cyle

Computational tehniques for nonlinear odes

and Boolean funtions

Emanuele Bellini

Supervisor: Prof. Massimiliano Sala

Head of PhD Shool: Prof. Franeso Serra Cassano

Deember, 2014

University of Trento

Department of Mathematis

Ph.D. in Mathematis

XXVI Cyle

Computational tehniques for nonlinear odes

and Boolean funtions

Ph.D.Thesis of:

Emanuele Bellini

Supervisor:

Prof. Massimiliano Sala

Head of PhD Shool:

Prof. Franeso Serra Cassano

Deember, 2014

Contents

I Preliminaries 5

1 A brief introdution to polynomial system solving 7

1.1 Monomial ordering . 7

1.2 Basi notions and properties of Gröbner bases 9

1.3 Solving systems of polynomials equations 14

1.4 The 0-dimensional ase . 16

1.4.1 Representation of 0-dim. ideals 17

1.4.2 Traverso's Algorithm . 18

1.4.3 Hybrid approah . 23

1.4.4 XL family of algorithms . 24

1.4.5 Boolean polynomial systems 24

1.4.6 Magma approah . 25

2 A brief introdution to nonlinear and systemati odes 27

2.1 Basi notion and notation . 27

2.2 Equivalene of odes . 29

3 A brief introdution to Boolean funtion 31

3.1 Representations of Boolean funtions 31

3.1.1 Evaluation vetor . 31

3.1.2 Algebrai normal form . 32

3.1.3 Numerial normal form . 33

3.2 Nonlinearity of a Boolean funtion 34

3.3 Walsh transform of a Boolean funtion 35

3.4 Non-linearity and Walsh transform 36

3.5 Bent funtions . 37

II On ode bounds 41

4 Overview of known lassial bounds 45

4.1 Preliminaries . 45

CGC i

4.2 Upper bounds . 46

4.2.1 The Hamming upper bound 46

4.2.2 The Plotkin upper bound . 47

4.2.3 The Johnson upper bounds 49

4.2.4 The Singleton upper bound and MDS odes 51

4.2.5 The Elias upper bound . 52

4.2.6 The Linear Programming upper bound 52

4.2.7 The Levenshtein upper bound 53

4.2.8 The Zinoviev-Litsyn-Laihonen upper bound 54

4.2.9 The Griesmer upper bound for linear odes 55

4.3 Lower bounds . 57

4.3.1 The Gilbert-Varshamov lower bound 57

5 A generalization of the Griesmer bound to systemati odes 59

5.1 The Griesmer bound . 59

5.2 The ase q ≥ d . 60

5.3 The ase d = 1, 2, 3, 4 . 60

5.4 The ase q = 2 and d = 5, 6 . 61

6 A new bound on the size of odes 65

6.1 A �rst result for a speial family of odes 65

6.2 An improvement of the ZLL bound 67

6.2.1 Restrition to the systemati ase 70

6.2.2 Theoretial omparison with the ZLL bound 70

6.3 Experimental omparisons: linear ase 71

6.4 Experimental omparisons: nonlinear ase 72

6.5 Tables . 73

III Polynomials tehniques for minimum weight problems 75

7 Computing the minimum weight of a ode 79

7.1 Polynomials and vetor weights . 80

7.2 Representing a ode as a set of Boolean funtions 81

7.2.1 Memory ost of representing a ode 83

7.3 Number of oe�ients of the NNF . 85

7.4 Finding the odewords with weight < t 87

7.5 Finding the odewords with weight exatly t 88

7.6 Complexity onsiderations . 92

ii

7.6.1 From list of odewords to de�ning polynomials in NNF 93

7.6.2 From de�ning polynomials to weight polynomial 93

7.6.3 Evaluation of the weight polynomial 93

7.6.4 Comparison with brute-fore method 95

7.6.5 Comparison with Brouwer-Zimmerman method for linear odes 97

7.7 Binary odes whose ardinality is not a power of 2 98

7.7.1 Method 1: expanding the ode 98

7.7.2 Method 2: dividing into subodes 100

8 Computing the nonlinearity of Boolean funtion 103

8.1 Polynomials and vetor weights . 104

8.2 Nonlinearity and polynomial systems over F 105

8.3 Nonlinearity and polynomial systems over Q 109

8.4 Computing the nonlinearity using fast polynomial evaluation 111

8.5 Properties of the nonlinearity polynomial 112

8.6 Complexity of onstruting the nonlinearity polynomial 117

8.7 Complexity onsiderations . 119

8.7.1 Some onsiderations on Algorithm 9 119

8.7.2 Algorithm 9 and 10 . 120

8.7.3 Algorithm 11 . 121

IV MAGMA ode 123

9 Funtions for Part II 125

9.1 Nordstrom-Robinson ode . 125

9.2 Bound A, B . 127

9.2.1 The Johnson bound . 127

9.2.2 The Linear Programmin bound 134

9.2.3 The best known nonlinear upper bound 135

9.2.4 Bound B . 138

9.2.5 Bound A . 139

9.2.6 Comparison with known bounds 140

10 Funtions for Part III 147

10.1 Traverso's algorithm . 147

10.2 Basi funtions . 155

10.2.1 Algebrai and numerial normal form 155

10.2.2 Fast transforms . 160

iii

10.3 Minimum weight algorithms . 166

10.4 Nonlinearity algorithms . 170

Bibliography 182

iv

Introdution

The theory of error orreting odes allows to enode data by adding redundany

information to it, in order to be able to orret possible errors arose during the

transmission of this enoded data through a noisy hannel. The majority of modern

ommuniations use the �eld of bits as alphabet, and messages an be thought as bit

sequenes of equal length k. One the number of messages is �xed, an analysis of

the noise of the hannel provides statistial information on the number and on the

kind of errors that may our during the transmission. Based on this information,

to eah message, we want to add the minimum possible redundany allowing us to

detet and possibly orret all ourring errors. Clearly a larger redundany ould

orret at least the same number of errors but would overload the hannel.

From a mathematial point of view, a ode an be seen as the image of an injetive

funtion f from a subset of {0, 1}k of size M to a subset of {0, 1}n of the same size,

with n ≥ k. Thus f is also invertible.

One trivial example of f ould be a funtion whih simply onatenates a word w

to itself 3 times. One sent through a hannel whih �ips one bit with probability

1/3, when the enoded word f(w) is reeived, it will be very likely that if the bits

in position i, 2i, 3i, for 1 ≤ i ≤ k, disagree, then the transmitted bit was the one

ourring more often.

Applying f , i.e. enoding, and f−1
, i.e. deoding, should be an �e�ient� task, and,

given f , it should be �easy� to derive how many errors the ode an orret. Fur-

thermore, we do not wish n to be muh larger than k, as in the trivial example we

desribed, but at the same time n should be large enough to permit us to orret as

many errors as possible.

An e�ient enoding/deoding funtion for whih we an e�iently derive the num-

ber of orretable errors, an be onstruted by imposing some spei� algebrai on-

straints, yielding what are usually known as linear odes. This algebrai onstraints,

though, severely limit the possible hoies of f . In fat, there exist odes whih are

not linear odes, i.e. do not embed a useful algebrai struture, but whih an enode

more messages than any linear ode and orret the same number of errors. On the

other hand, these odes do not have e�ient enoding and deoding funtions, and

CGC 1

one the enoding funtion is given it is not easy to determine how many errors these

odes an orret.

In this thesis we deal with suh �non-linear� odes, and we fous our researh into

two main problems.

In Part II we deal with the problem of determining aeptable ode parameters. In

other words, given the number of errors we want to orret and the length n of the

enoded message, we want to determine whih is the largest number of messages M

that an be enoded. Usually it is not possible to give a preise value forM , but only

upper or lower limits. In partiular, one of our main results is a losed formula for

an upper limit (bound) of M improving some previous estimates.

In Part III we provide a deterministi method, in some ases faster than a brute fore

searh, to �nd the number of orretable errors for any ode, provided that the ode

is represented in a partiular e�ient form. All methods we are aware of solving the

same problem are either brute fore methods or probabilisti methods. Probabilisti

methods are very e�ient, but an only be applyed to linear odes. Our result on

odes has also an appliations in ryptography, sine it allows to ompute a partiular

parameter alled the nonlinearity of Boolean funtions. These are funtions used in

many ryptographi primitives to spread the entropy during enryption.

In more details, this thesis is strutured as follows.

Part I is devoted to preliminaries, essential to understand the rest of the manusript.

In partiular we start in Chapter 1 with an overview on polynomial system solving,

with fous on systems with a �nite number of solutions, then we provide an overview

on odes in Chapter 2, and an overview on Boolean funtions in Chapter 3.

Part II begins with an overview on lassial known bounds (Chapter 4), in parti-

ular fousing on upper bounds for nonlinear odes. Chapter 5 and 6 ontain original

results. The �rst hapter generalizes an upper bound for linear odes, i.e. the Gries-

mer bound, to an in�nite subset of a larger family of odes, alled systemati. The

seond hapter presents a new upper bound on the size of nonlinear odes, whih

improves in many ases the most important lassial upper bounds.

Part III faes two important related problems: �nding the minimum weight (a

quantity related to the number of orretable errors) of a nonlinear ode (Chapter 7)

and �nding the nonlinearity of a Boolean funtion (Chapter 8). We provide original

e�ient algorithms for both problems, applying similar tehniques based on polyno-

mial system solving methods and fast Fourier transforms. In the �rst ase we �nd

2

a deterministi algorithm whih, in some ases, is faster than brute fore, provided

the ode is represented in a ertain form whih we prove to be as e�ient as the

lassial representation. In the seond ase we �nd a deterministi algorithm of the

same omplexity of the best known algorithms whih solve the same problem.

Part IV lists the Magma ode whih implement the new bound of Chapter 6, and

the algorithms of Chapter 7 and 8.

3

Part I

Preliminaries

5

A brief introdution to polynomial system solving

In this hapter we introdue some basi notions and known results from [CLO07℄

and [ST09℄. Some material omes from the leture notes of the ourse Coding Theory

letured by M. Sala and written by E. Bellini, D. Frapporti, O. Geil, M. Piva, M.

Sala.

In partiular, we introdue some important tools to solve a generi polynomial system

of equations with a �nite number of solutions.

We denote by Fq the �eld with q elements, where q is a power of a prime. Let

n ≥ 1 be a natural number and let (Fq)
n
be the vetor spae of dimension n over Fq.

We denote by K any (not neessarily �nite) �eld and by K its algebrai losure.

1.1 Monomial ordering

A monomial in x1, . . . , xr is a produt of the form

xα1
1 · . . . · xαr

r

where all of the exponents αj are non negative integers. The sum α1 + . . . + αr is

de�ned to be the total degree of this monomial. We denote by M(X) =M the set

of all monomials in the variables x1, . . . , xr.

A polynomial f in x1, . . . , xr with oe�ients in K is a �nite linear ombination

of monomials. That is,

f =
∑

α

aαx
α, aα ∈ K,

where xα = xα1
1 · . . . · xαr

r and the sum is over a �nite number of m-uples α =

(α1, . . . , αr). Then we all aα the oe�ient of the monomial xα, we all aαx
α
a term,

and we denote by deg(f) the total degree of f whih is the maximum |α| = α1+. . .+αr

suh that the oe�ient aα is nonzero.

Note that the sum and produt of two polynomials is again a polynomial. It

is simple to prove that under addition and multipliation, K[x1, . . . , xr] = K[X] sa-

tis�es all �eld axioms exept for the existene of multipliative inverses (sine, for

CGC 7

Chapter 1. A brief introdution to polynomial system solving

example, 1/x is not a polynomial). For this reason K[X], the set of all polynomials

in x1, . . . , xr with oe�ients in K, is alled a polynomial ring.

As in the ase of univariate polynomials, we would like to be able to arrange

the terms of a multivariate polynomial unambiguously, in desending (or asending)

�order�. To do this, we have to de�ne a monomial ordering ≺.

De�nition 1.1.1. A monomial ordering ≺ is a binary relation onM suh that:

1. ∀ m1 6= m2 ∈M, either m1 ≺ m2 or m2 ≺ m1.

∀ m1, m2, m3 ∈M, if m1 ≺ m2 and m2 ≺ m3, then m1 ≺ m3.

2. ∀ m1, m2, m ∈M if m1 ≺ m2 then m1 ·m ≺ m2 ·m.

3. 1 ≺ m, ∀m ∈M, m 6= 1.

It an be proved that ≺ is a well-ordering, i.e. every non-empty subset ofM has

a least element.

Now that we have de�ned monomial ordering, we report some examples. We an

suppose that x1 ≻ . . . ≻ xr and let m1, m2 ∈ M suh that m1 = xα1
1 · . . . · xαr

r and

m2 = xβ1

1 · . . . · xβr
r .

Lex: lexiographi order. We say that m1 ≺lex m2 if there exists j suh that αj < βj

and αi = βi for 1 ≤ i < j ≤ r.

Example 1.1.2. LetM =M[x, y, z] and x ≻ y ≻ z. Then

x2 ≻ y4 and x2yz3 ≻ xy4z.

GrLex: graded lexiographi order and it is also all total lexiographi order. We

say that m1 ≺GrL m2 if |α| < |β| or if |α| = |β| and m1 ≺lex m2.

Example 1.1.3. LetM =M[x, y, z] and x ≻ y ≻ z. Then

x2 ≺ y4 and x2yz3 ≻ xy4z.

DegRevLex: graded reverse lexiographi order. To say that m1 ≺DRL m2, �rst of

all we ompare their total degrees: if |α| < |β| then m1 ≺DRL m2, otherwise we

have to ompare the total degree of n1 = xα1
1 · . . .·xαr−1

r−1 and n2 = xβ1

1 · . . .·xβr−1

r−1 ,

and so on.

Example 1.1.4. LetM =M[x, y, z] and x ≻ y ≻ z. Then

x2 ≺ y4 and x2yz3 ≺ xy4z sine x2y ≺ xy4.

8

1.2. Basi notions and properties of Gröbner bases

Note that DegRevLex is the same to reverse the lexiographi order, that is,

m1 ≺DRL m2 if there exists j that αj > βj and αj = βj for 1 ≤ j < i ≤ r.

Weighted Degree. We assign a weight wi ∈ N ∗
to eah variable xi and we denote

by w(m1) =
∑

i αiwi and by w(m2) =
∑

i βiwi. We say that m1 ≺w m2 if either

w(m1) < w(m2) or w(m1) = w(m2) and m1 ≺lex m2.

Example 1.1.5. LetM =M[x, y, z] and x ≻ y ≻ z. We assign the weight to

eah variables wx = 2, wy = 1 wz = 3. Then

x2 ≺ y4 and x2yz3 ≻ xy4z.

We will use the following terminology.

De�nition 1.1.6. Let Ω ∈ N r
. Let f =

∑

α∈Ω aαx
α
be a non zero polynomial in

K[X] and let ≺ be a monomial ordering. We say that xβ is the leading monomial

of f if xβ ≻ xα for all α 6= β suh that α ∈ Ω and it is denoted by lm(f) = xβ .

We denote by T(f) = aβx
β
the leading term of f and by lc(f) = aβ the leading

oe�ient of f .

Given a monomial ordering, it an be proven that the leading monomial, the

leading term and the leading oe�ient of f are well de�ned and unique.

Example 1.1.7. Let f = 4x2y + xy3z + 5z in R[x, y, z] and let ≻lex be a lex order.

Then lm(f) = x2y, lc(f) = 4 and T(f) = 4x2y.

1.2 Basi notions and properties of Gröbner bases

In this setion we introdue ideals and Gröbner bases.

De�nition 1.2.1. A subset I ⊂ K[X] is an ideal if

1. 0 ∈ I.

2. If f, g ∈ I then f + g ∈ I.

3. If f ∈ I and h ∈ K[X] then fh ∈ I.
Let f1, . . . , fs be polynomials in K[X]. If

I =
{ s∑

i=1

λifi | λi ∈ K[X]
}

then I is �nitely generated by f1, . . . , fs and it is denoted by I = 〈f1, . . . , fs〉.

An ideal generated by one element is alled a prinipal ideal.

A ommutative ring A is a Noetherian ring if any ideal I ⊂ A is �nitely generated.

9

Chapter 1. A brief introdution to polynomial system solving

De�nition 1.2.2. We de�ne a semigroup ideal T as a subset of M suh that for

all t ∈ T , m ∈M we have t ·m ∈ T .

Let t1, . . . , tk ∈M and set:

T =
k⋃

i=1

{λti | λ ∈M}.

Then T is a semigroup ideal of M. We say that T is generated by {t1, . . . , tk} and
we write T = 〈t1, . . . , tk〉.

Lemma 1.2.3. Let M ⊂ M and I = 〈mi | mi ∈ M〉 be an ideal. Then a monomial

m lies in I if and only if m is divisible by mi for some mi ∈M .

Proof. See Lemma 2 of hapter 2 of [CLO07, �4℄.

Theorem 1.2.4 (Dikson's Lemma). Every semigroup ideal is generated by a �nite

set.

Proof. See Theorem 5 of hapter 2 of [CLO07, �4℄.

In the previous setion, we de�ned the leading term of f ∈ I. For any ideal I, we

an de�ne its ideal of leading terms T(I) as the set of leading terms of elements of I.

That is,

T(I) = {λm | there exists f ∈ I with T(f) = λm}.

And we denote by 〈T(I)〉 the ideal generated by the elements of T(I).

In a similar way we an de�ne the ideal of leading monomials of I, that is,

lm(I) = {lm(f) | f ∈ I} ⊂ M.

It is lear that lm(I) is a semigroup ideal.

Note that, if I = 〈f1, . . . , fk〉, then 〈T(f1), . . . ,T(fk)〉 ⊆ 〈T(I)〉, but these two

ideals may be di�erent and it is the same for lm(I).

Example 1.2.5. Let I = 〈f1, f2〉 where f1 = x2 − x and f2 = xy − y + 1. We use

lexiographi ordering on the monomials in K[x, y]. Then xf2 − yf1 = x, so x ∈ I.
Thus x = T(x) ∈ 〈T(I)〉 but x is not divisible by T(f1) = x2 or T(f2) = xy. Hene,

by Lemma 1.2.3, x 6∈ 〈T(f1),T(f2)〉.

Proposition 1.2.6. Let I ⊂ K[X] be an ideal. Then 〈T(I)〉 is a monomial ideal and

there are g1, . . . , gk ∈ I suh that 〈T(I)〉 = 〈T(g1), . . . ,T(gk)〉.

10

1.2. Basi notions and properties of Gröbner bases

Proof. See Proposition 3 of hapter 2 of [CLO07, �5℄.

Theorem 1.2.7 (Hilbert Basis Theorem). Any ideal I ⊂ K[X] has a �nite generating

set.

Proof. See Theorem 4 of hapter 2 of [CLO07, �5℄.

We just noted, in Example 1.2.5, that not all bases {f1, . . . , fk} of an ideal I have

the speial property that 〈T(I)〉 = 〈T(f1), . . . ,T(fk)〉. Those bases for whih the

equality holds give rise to the following de�nition.

De�nition 1.2.8. Let I be an ideal and ≺ be a monomial ordering. We say that

G = {g1, . . . , gk} is a Gröbner basis for I if 〈T(I)〉 = 〈T(g1), . . . ,T(gk)〉. We

denote by GB(I).

Equivalently, G is a Gröbner basis of I if G ⊆ I and if for all f ∈ I there exist

gi ∈ G suh that lm(gi) divides lm(f).

Theorem 1.2.9 (Buhberger Theorem). For every ideal I ⊆ K[X] and for every

monomial ordering ≺ onM, there exist a Gröbner basis G for I.

Proof. See Corollary 6 of hapter 2 of [CLO07, �5℄.

Moreover, there exists an algorithm, that is, Buhberger algorithm [Bu06, Bu98℄

[CLO07, 2�7℄ that transforms any �nite set of generators for I into a Gröbner basis.

Atually, Gröbner bases omputed using the Buhberger algorithm are often larger

than neessary. We an eliminate some unneeded generators by using the following

lemma.

Lemma 1.2.10. Let G be a Gröbner basis for the polynomial ideal I. Let g ∈ G be a

polynomial suh that T(g) ∈ 〈T(G\{g})〉. Then G\{g} is also a Gröbner basis for I.

Proof. See Lemma 3 of hapter 2 of [CLO07, �7℄.

Beause of Lemma 1.2.10, we an de�ne a minimal Gröbner basis for I ⊆ K[X]

as a Gröbner basis G for I suh that for all g ∈ G we have that lc(g) = 1 and

T(g) 6∈ 〈T(G\{g})〉.
Unfortunately, a given ideal I may have many minimal Gröbner bases. But we an

de�ne a speial minimal basis, that we all a redued basis. In this way to any ideal

we an assoiate a unique basis.

De�nition 1.2.11. Let G = {g1, . . . , gk} be a Gröbner basis for I. We say that G is

redued if for all g ∈ G, lc(g) = 1 and no monomial of g divides T(gi) where gi 6= g

and gi ∈ G.

11

Chapter 1. A brief introdution to polynomial system solving

Proposition 1.2.12. Let I 6= {0} be a polynomial ideal. Then, for a given monomial

ordering, I has a unique redued Gröbner basis.

Proof. See Proposition 6 of hapter 2 of [CLO07, �7℄.

It an be proved the following

Proposition 1.2.13. Let I be an ideal in K[X] and let {g1, . . . , gk} be a redued

Gröbner basis of I with respet to some monomial order. For any f ∈ K[X] there

exists a unique remainder r ∈ K[X] suh that no term of r is divisible by the leading

term of any gi and suh that f − r belongs to I.
This unique polynomial r, that we indiate with Nf(f, I), is sometimes alled the

Normal Form of f w.r.t I.

For any ideal I in a polynomial ring K[X], X = {x1, . . . , xr}, we denote by V(I)
the variety of I in K, that is the set of all zeros of I in K

V(I) = {P ∈ K
r | f(P) = 0 ∀ f ∈ I}.

Theorem 1.2.14. Let I = 〈f1, . . . , fk〉 be an ideal in K[X] and let P ∈ K
r
. Then

f1(P) = . . . = fk(P) = 0 ⇐⇒ g(P) = 0 ∀ g ∈ I.

Proof. See Proposition 9 of hapter 2 of [CLO07, �5℄.

De�nition 1.2.15. Let I be an ideal. If the ardinality of V(I) is �nite, then I is

alled a 0-dimensional ideal.

Theorem 1.2.16 (The Weak Nullstellensatz). Let K be an algebraially losed �eld

and let I ⊆ K[X] be an ideal satisfying V(I) = ∅. Then I = K[X].

Proof. See Theorem 1 of hapter 4 of [CLO07, �2℄.

De�nition 1.2.17. For any Z ⊂ K
r
a set of points, we denote by I(Z) the vanishing

ideal of Z, I(Z) ⊂ K[X], that is, I(Z) = {f ∈ K[X] | f(P) = 0 ∀P ∈ Z}.

De�nition 1.2.18. Let I be an ideal in a polynomial ring K[X], the radial of I,

denote by

√
I is the set

√
I = {f ∈ K[X] | fn ∈ I for some n ≥ 1}.

Note that I ⊆
√
I. If I =

√
I, then I is radial, that is, fn ∈ I implies that f ∈ I,

for some n ≥ 1.

It is easy to prove that I(Z) is radial (Corollary 3 of hapter 4 of [CLO07, �2℄).

Theorem 1.2.19 (Hilbert Nullstellensatz). Let K be an algebraially losed �eld. If

I ⊆ K[X] is an ideal, then √
I = I(V(I))

12

1.2. Basi notions and properties of Gröbner bases

Proof. See Theorem 6 of hapter 4 of [CLO07, �2℄.

Theorem 1.2.20 (The Ideal-Variety Correspondene). Let K be an arbitrary �eld.

If I1 ⊂ I2 are ideals, then V(I2) ⊂ V(I1) and, similarly, if V(I2) ⊂ V(I1) are varieties,
then I(V(I1)) ⊂ I(V(I2))

Proof. See Theorem 7 of hapter 4 of [CLO07, �2℄.

Theorem 1.2.21. Let I ⊂ Fq[X] be an ideal suh that {xqi − xi | 1 ≤ i ≤ r} ⊆ I,

then I is 0-dimensional and radial.

Proof. If {xqi −xi | 1 ≤ i ≤ r} ⊆ I it means that V(I) ⊂ F r
q and then #V(I) ≤ |F r

q | =
qr. Thus I is 0−dimensional.

Sine I ⊆
√
I, to prove that I is radial it is su�ient to show that

√
I ⊆ I.

Let f = a1m1 + . . . anmn where ai ∈ K, mi ∈M suh that mi = x
α1,i

1 · . . . · xαr,i
r with

1 ≤ i ≤ n. First of all note that f q = f mod I. In fat, sine a ∈ Fq we have a
q = a

and mq
i = mi mod I sine the �eld equations are in the ideal and so

m q
i = (x

α1,i

1 · . . . · xαr,i

r)q = (xq1)
α1,i · . . . · (xqr)αr,i = x

α1,i

1 · . . . · xαr,i

r = mi

If f ∈
√
I then f s ∈ I by de�nition of radial of I, f s ∈ I is equivalent to say that

f s = 0 mod I. We an always onsider that s < q sine, otherwise, we redue s

module q. So f s ∈ I =⇒ f s · f q−s ∈ I, that is, f q = 0 mod I but f q = f mod I

and so we an onlude that f ∈ I and

√
I ⊆ I.

We now de�ne the esalier N(I), whih is the set of all the monomials that are

not leading monomial of any polynomial in I:

De�nition 1.2.22. The set N(I) = M\lm(I) is alled the Hilbert stairase or

footprint or esalier of I.

Let I ⊂ K[X] there is a nie and natural onnetion between the number of zeros

of I and the number of points in its footprint w.r.t. any ordering.

Theorem 1.2.23. Let I be a 0-dimensional radial ideal in Fq. For any monomial

ordering we have: #V(I) = #N(I).

Moreover, the set

B = {m+ I | m ∈ N(I)}

onstitutes a basis for R as a vetor spae over K

Proof. See [CLO07℄, Propotiotion 3 p. 219, Proposition 1 p. 227, Proposition 4 p.

229.

13

Chapter 1. A brief introdution to polynomial system solving

We onsider I ⊂ K[X] an ideal suh that {xqi − xi | 1 ≤ i ≤ r} ⊂ I and let

R = K[X]/I.

Theorem 1.2.24. Let I be an ideal in K[X] and let ≺ a monomial ordering. The

set

B = {m+ I | m ∈ N(I)}

onstitutes a basis for R as a vetor spae over K

Proof. See Theorem 5 of [Gei09℄.

1.3 Solving systems of polynomials equations

Solving multivariate polynomial system of equations is a very important issue in

applied mathematis, with many appliations in area suh as oding theory and ryp-

tology.

The Polynomial System Solving problem, sometimes referred to with the aronymous

PoSSo, is a NP-Hard problem in omputer algebra.

One way to solve a system of polynomial equations it to �nd the orresponding Gröb-

ner basis. The historial algorithm to ompute Gröbner bases is the Buhberger algo-

ritm ([Bu06, Bu98℄, [Mor05℄, [CLO07, 2�7℄). Other algorithms (FGLM [FGLM93℄,

F4 [Fau99℄, F5 [Fau02℄, fast FGLM [FM11℄) have been proposed to ompute Gröbner

bases, often more e�iently.

A new trend in the �eld is to propose dediated tools to solve strutured polynomial

systems (for using the symmetries indued by a �nite group [FR09℄ or the bilinear

struture [FEDS11℄ or determinantal ideals [FEDS10℄).

Dediated methods for �nite �elds have also been proposed [BFP09℄, [BFP12℄, or for

0-dimensional ideals [MCD

+
10℄, [Mor05℄ (Algorithm 29.3.1).

In Chapters 7 and 8 we deal with three types of systems of polynomial equations,

all with a �nite number of or no solutions:

TYPE 1 Multivariate polynomial system

� over the binary �eld F2,

� in k variables x1, . . . , xk, and

� with r squarefree-polynomials of degree ≤ k.

TYPE 2 Multivariate polynomial system

� over the rational �eld Q (or a prime �eld Fp with p ∼ 2k),

14

1.3. Solving systems of polynomials equations

� in k variables x1, . . . , xk, and

� with one dense (∼ 2k terms) squarefree-polynomial g(x1, . . . , xk) of degree

k, plus k �F2-�eld equations� x21 − x1, . . . , x2k − xk.

TYPE 3 Multivariate polynomial system

� over the rational �eld Q (or a prime �eld Fp with p ∼ 2k),

� in k + 1 variables x1, . . . , xk, t, and

� with one dense (∼ 2k terms) squarefree-polynomial g(x1, . . . , xk) − t of

degree k, plus k �F2-�eld equations� x21 − x1, . . . , x2k − xk.

In partiular, in our ase, we know that TYPE 1 and TYPE 2 systems either have no

solutions or have a �nite number of solutions in {0, 1}k. Regarding TYPE 3 systems,

they always have a �nite number of solutions suh that (x1, . . . , xk, t) ∈ {0, 1}k ⊕ Zn

for a ertain n ≥ k.

We write one example for eah type of system we need to solve.

Example 1.3.1 (TYPE 1). In this ase we have k = 4 and r = 11 with an ideal

I ∈ F2[x1, . . . , x4]/〈x21 + x1, x
2
2 + x2, x

2
3 + x3, x

2
4 + x4〉 suh that

I = {x1x2x3x4 + x2x3x4,

x1x2x3x4 + x1x3x4,

x1x3x4 + x2x3x4,

x1x2x3x4 + x1x2x3 + x1x2x4 + x1x2,

x1x2x3x4 + x1x2x3 + x2x3x4 + x2x3,

x1x2x3x4 + x1x2x3

x1x2x3x4,

x1x2x3 + x1x3,

x1x2x3x4 + x1x2x4 + x2x3x4 + x2x4,

x1x2x3 + x1x3x4,

x1x2x3x4 + x1x2x3 + x1x3x4 + x1x3 + x2x3x4 + x2x3 + x3x4 + x3} .

Note that here the equations x21 + x1, x
2
2 + x2, x

2
3 + x3, x

2
4 + x4 are impliit, sine we

are working over the a�ne algebra F2[x1, . . . , x4]/〈x21 + x1, x
2
2 + x2, x

2
3 + x3, x

2
4 + x4〉.

The solutions of the systems are

V = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 1, 0, 1)} .

15

Chapter 1. A brief introdution to polynomial system solving

Example 1.3.2 (TYPE 2). In this ase we have k = 4 and an ideal I ∈ Q[x1, . . . , x4]

suh that

I = {x21 − x1, x22 − x2, x23 − x3, x24 − x4,
− 4x1x2x3x4 + 4x1x2x3 − 2x1x2x4 − 3x1x2 + 8x1x3x4+

− 4x1x3 − 4x1x4 + 6x1 + 2x2x3x4 − 4x2x3 + 4x2 − 5x3x4 + 7x3 + 4x4 − 7} .

The solutions of this system are

V = {(0, 0, 1, 0), (0, 1, 1, 0), (1, 1, 0, 0)} .

Example 1.3.3 (TYPE 3). In this ase we have k = 4 and an ideal I ∈ Q[x1, . . . , x4]

suh that

I = {x21 − x1, x22 − x2, x23 − x3, x24 − x4,
− 4x1x2x3x4 + 4x1x2x3 − 2x1x2x4 − 3x1x2 + 8x1x3x4+

− 4x1x3 − 4x1x4 + 6x1 + 2x2x3x4 − 4x2x3 + 4x2 − 5x3x4 + 7x3 + 4x4 − t} .

The solutions of this system are

V = {(0, 0, 0, 0, 0), (0, 0, 0, 1, 4), (0, 0, 1, 0, 7), (0, 0, 1, 1, 6),
(0, 1, 0, 0, 4), (0, 1, 0, 1, 8), (0, 1, 1, 0, 7), (0, 1, 1, 1, 8),

(1, 0, 0, 0, 6), (1, 0, 0, 1, 6), (1, 0, 1, 0, 9), (1, 0, 1, 1, 12),

(1, 1, 0, 0, 7), (1, 1, 0, 1, 5), (1, 1, 1, 0, 10), (1, 1, 1, 1, 9)} .

1.4 The 0-dimensional ase

From a pratial point of view, it is muh faster to ompute a Gröbner basis for

a degree ordering suh as the degree reverse lexiographi (DegRevLex) order than

for a lexiographi order. For 0-dimensional systems, it is usually less ostly to �rst

ompute a DegRevLex-Gröbner basis, and then to ompute the Lex-Gröbner basis

using a hange ordering algorithm suh as FGLM [FGLM93℄. This strategy, alled

zero-dim solving, is performed blindly in modern omputer algebra softwares suh as

MAGMA or MAPLE. This is onvenient for the user, but an be an issue for advaned

users. In general, a polynomial system of equations with a �nite number of solutions

may yield more e�ient algorithms to solve it. In partiular, this is the ase when

the solutions of the system lie in a �nite �eld, as is our ase.

The polynomial system solving problem over �nite �elds is sometimes referred to as

PoSSoq.

From a omplexity-theoretial point of view, PoSSoq is NP-Hard independently of

16

1.4. The 0-dimensional ase

the size q [GJ79℄. Thus, any algorithm for PoSSoq should be exponential in the worst

ase. However, this does not exlude that large family of PoSSoq instanes an be

solved in sub-exponential or polynomial omplexity. In addition, the exat exponent

ourring in algorithms of exponential omplexity is often a ritial question in ap-

pliations.

We now present some approahes whih, aording to the author, deserve onsidera-

tion when trying to solve a system of polynomial equations with a �nite number of

solutions.

1.4.1 Representation of 0-dim. ideals

The following notions an be found in [Mor05℄.

Let X = x1, . . . , xk. Let J ⊂ K[X] be a zero-dimensional ideal, deg(J) = s, and

denote A := K[X]/J the orresponding quotient algebra, whih satis�es dimK(A) = s.

For any f ∈ K[X], we will denote [f] ∈ A its residue lass modulo J and Φf the

endomorphism Φf : A→ A de�ned by

Φf ([g]) = [fg]∀[g] ∈ A.

Natural representation

If we �x any K-basis b = {[b1], . . . , [bs]} of A so that A = spanK(b), then for eah

g ∈ K[X], there is a unique (row) vetor, the Gröbner desription of g,

Rep(g,b) := (γ(g, b1,b), . . . , γ(g, bs,b)) ∈ Ks

whih satis�es

[g] =
∑

j

γ(g, bj,b)[bj]

and the endomorphism Φf is naturally represented by the square matrix

M([f],b) =
(
γ(fbi, bj ,b)

)
: Φf (bi) = [fbi] =

∑

j

γ(fbi, bj ,b)[bj].

De�nition 1.4.1. A natural representation of J is the assignement of

� a K-basis b = {[b1], . . . , [bs]} ⊂ A and

� the square matries Ah :=
(

a
(h)
ij

)

=M([xh],b) for eah h, 1 ≤ h ≤ k.

Remark that, for eah f(x1, . . . , xk) ∈ K[X], M([f],b) = f(A1, . . . , Ak).

An equivalent (via the remark above) de�nition of natural representation an require

the further assignement of

17

Chapter 1. A brief introdution to polynomial system solving

� s3 values γ
(l)
ij ∈ K suh that

[qiqj] =
∑

l

γ
(l)
ij [ql]

for eah i, j, l, 1 ≤ i, j, l ≤ s.

This notion was introdued in [Tra92b, Tra92a℄ and reonsidered in [AMM03℄, [Mor05,

De�nition 29.3.3℄ under the name of Gröbner representation.

The endomorphism Φf and its representionM([f],b) were introdued, with f a linear

form, in [AS88℄ as a tool for e�ient solving 0-dimensional ideals.

If J is given by its Gröbner basis wrt a term-ordering < its natural (atually: �lin-

ear� with the de�nition below) representation an be obtained via [FGLM93, Proe-

dure 3.1℄.

If J is an a�ne omplete intersetion de�ned by r polynomials a natural representation

of it an be e�iently omputed via Cardinal-Mourren Algorithm [J.P93, Mou05℄. We

will assume that both the input and the output ideals of the algorithm are given via

a natural representation.

A Gröbner-free approah to natural representation

Realling that a set N ⊂ M is alled an esalier if it is an order ideal, i.e. if for

eah λ, τ ∈M, λτ ∈ N =⇒ τ ∈ N and properly extending [Mor05, De�nition 29.3.3℄

we set

De�nition 1.4.2. A natural representation is alled a linear representation i� q = N

is an esalier.

If N = {υ1, . . . , υs} is an esalier then [Mor09℄ T :=M\N is a semigroup ordering,

i.e. τ ∈ T =⇒ τλ ∈ T for eah λ, τ ∈ M; we set G := {τ1, . . . , τu} ⊂ T the minimal

basis of T.

1.4.2 Traverso's Algorithm

Traverso introdued his algorithm in a talk at MEGA-1992, [Tra92b℄ and in

[Tra92a℄, in a senario related to Gröbner bases omputation of a zero-dimensional

ideal I. The assumption is that, in the ourse of the omputation, one produes an

esalier N ⊃ N<(J) and a �nite list g1, . . . , gr of S-polynomials to be redued.

The setting was reformulated in [AMM03℄, [Mor05, Algorithm 29.3.8℄ as follows: given

a zero-dimensional ideal I ⊂ K[X] via its natural representation

b = {b1, . . . , bs}, b1 = 1,M :=
{(

a
(h)
lj

)

, 1 ≤ h ≤ k
}

,

18

1.4. The 0-dimensional ase

and a �nite set of elements F := {g1, . . . , gr} ⊂ K[X], given via their Gröbner de-

sriptions

c(i) = (c
(i)
1 , . . . , c

(i)
s), c

(i)
j = γ(gi, bj ,b)∀i, j, 1 ≤ i ≤ r, 1 ≤ j ≤ s,

so that gi −
∑s

j=1 c
(i)
j bj ∈ I, for eah i, ompute with good omplexity the linear

representation of the ideal J := I ∪ 〈F 〉 .
The basi idea of the algorithm (Algorithm 1) is the following: if we onsider an

element g ∈ F , having the Gröbner desription

g −
ι∑

j=1

cjbj ∈ I, cι 6= 0,

and we enlarge I by adding g to it, then we obtain the relation

bι ≡ −
ι−1∑

j=1

c−1
ι cjbj mod I ∪ {g};

the deomposition K[X] = I⊕ spanK(b) of K[X] into disjoint K-vetorspaes is then

transformed into

K[X] = (I ∪ {g})⊕ spanK(q \ {qι}),

and we only have to substitute, in eah Gröbner desription

∑s
j=1 djbj of the poly-

nomials gi and xhbl � whih are respetively enoded in the vetors c(i) and in the

rows

(

a
(h)
l1 , . . . , a

(h)
ls

)

of the matries of M � the instanes of bι with −
∑ι−1

j=1 c
−1
ι cjbj

thus getting

∑

j(dj − c−1
ι cjdι)bj .

Sine J is an ideal, the inlusion in it of g implies that J neessarily ontains also the

polynomials xhg; note that, if the urrent natural representation is

(b′,M′) : b′ := {b′1, . . . , b′σ},M′ = M(b′) :=
{(

d
(h)
lj

)}

and g =
∑s

l=1 clb
′
l then

xhg =
s∑

l=1

clxhb
′
l =

s∑

j=1

(
s∑

l=1

cld
(h)
lj

)

bj

whih must be inserted in the list F in order to be treated in the same way.

At termination, if I ⊂ {1, . . . , n} denotes the set of indies of the elements bj whih

have not being removed from b in this proedure, then J is desribed by the natural

representation

b′ = {bj , i ∈ I},M′ = {
(

a
(h)
lj

)

, l, j ∈ I, 1 ≤ h ≤ n}.

19

Chapter 1. A brief introdution to polynomial system solving

Note that Traverso's Algorithm needs to perform at most s While-loops, eah

osting O(ns2).

Algorithm 1 (Traverso) To ompute the natural representation of J := I ∪
〈g1, . . . , gr〉 ⊂ K[X] from the natural representation of I ⊂ K[X].

Input: I ⊂ K[X], a zero-dimensional ideal, deg(I) = s

b := {[b1], . . . , [bs]} ⊂ A := K[X]/I, b1, . . . , bs ∈ K[X]

M :=
{(

a
(h)
ij

)

=M([xh],b) ∈ Ks2 , 1 ≤ h ≤ k
}

(b,M), natural representation of I

J := I ∪ 〈g1, . . . , gr〉 ⊂ K[X], σ := deg(J), [gi] :=
∑s

j=1 c
i
j [bj], for eah i, 1 ≤ i ≤ r

B := {c(1), . . . , c(r)}, c(i) := (ci1, . . . , c
i
s) ∈ Ks

Output: b,M natural representation of J

1: while B 6= ∅ do

2: Choose c := (c1, . . . , cs) ∈ B

3: B := B \ {c}
4: B := B ∪ {cM : M ∈M ∧ cM 6= (0, . . . , 0)}
5: ι := max{j ∈ {1, . . . , s} : cj 6= 0}
6: Remove [bι] from b ;

7: s := s− 1

8: for h = 1..k do

9: â(h) := (aι1, . . . , aι,ι−1, aι,ι+1, . . . , aι,s)

10: Remove ι-th olumn and row from Ah ∈M

11: ĉ := cι

12: Remove ι-th omponent from c

13: for h = 1..k,j = 1..s,l = 1..s do

14: a
(h)
lj := a

(h)
lj − ĉ−1cj â

(h)
l

15: B′ := B,B := ∅
16: for d := (d1, . . . , ds+1) ∈ B′

do

17: d̂ := dι

18: Remove ι-th omponent from d

19: for j = 1..s do

20: dj := dj − ĉ−1cj d̂

21: if d 6= (0, . . . , 0) then

22: B := B ∪ {d}
23: return b,M

Example 1.4.3. Let k = 2,K = F2, I = 〈x21 + x1, x
2
2 + x2〉, x1 > x2 with graded

reverse lexiographial monomial ordering.

20

1.4. The 0-dimensional ase

The basis b = N(I) of K[x1, x2]/I is

b = {q1, q2, q3, q4} = {1, x2, x1, x1x2} .
Suppose we want to �nd the basis b′

of the algebra K[x1, x2]/(I ∪ J), where J =

〈g1, g2〉 = 〈x2 + 1, x1x2 + x1 + x2 + 1〉.
Consider g1 = x2 + 1 = 0 as a new relation, i.e. I = I ∪ 〈g1〉. This means that from

now on, whenever we �nd x2 in elements of b and J we an apply the substitution

x2 = 1.

We remove g1 from I, i.e.

J = J \ {g} = 〈x1x2 + x1 + x2 + 1〉 .
We update the base b

q1 = 1

q2 = x2 redues to 1

q3 = x1

q4 = x1x2 redues to x1 .

Thus now b = {q1, q3} = {1, x1}.
We update the polynomial in J = 〈x1x2 + x1 + x2 + 1〉

x1x2 + x1 + x2 + 1 redues to x1 + x1 + 1 + 1 = 0 .

Thus now J = ∅, i.e. we an stop the omputation and return b = {1, x1}, whih
shows that the polynomial system

x21 + x1 = 0

x22 + x2 = 0

x2 + 1 = 0

x1x2 + x1 + x2 + 1 = 0

has only two solutions over (F2)
2
, whih happen to be (0, 1), (1, 1).

We now report the same example with vetorial notation.

Example 1.4.4. Let I = 〈x21 + x1, x
2
2 + x2〉 ∈ F[x1, x2], x1 > x2 with respet to

DegRevLex order.

The linear representation of I is given by

b = {1, x2, x1, x1x2}

M = {x1b, x2b} =

0 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1

,

0 1 0 0

0 1 0 0

0 0 0 1

0 0 0 1

.

21

Chapter 1. A brief introdution to polynomial system solving

Let g1 = x2 + 1, g2 = x1x2 + x1 + x2 + 1 and let us ompute the linear representation

of J = I ∪ 〈g1, g2〉 using Traverso's algorithm.

The linear desriptions of g1, g2 are

B = {(1, 1, 0, 0), (1, 1, 1, 1)} .

Sine B 6= ∅ we hoose c = (1, 1, 0, 0). We have

B = B \ {c} ∪ {cM : M ∈M} = {(1, 1, 1, 1), (0, 0, 1, 1)}
ι = max{j ∈ {1, . . . , s} : cj 6= 0} = 2 .

We an remove the seond element x2 from b, and update M:

b = {1, x1, x1x2}

M =

0 1 0

0 1 0

0 0 1

 ,

1 0 0

0 0 1

0 0 1

c = (1, 0, 0) .

Sine we have that

(1, 1, 1, 1) redues to (0, 1, 1)

(0, 0, 1, 1) redues to (0, 1, 1)

then B = {(0, 1, 1)}, whih is still not empty.

We hoose c = (0, 1, 1).

We have

B = B \ {c} ∪ {cM : M ∈M} = {(0, 1, 1)}
ι = max{j ∈ {1, . . . , s} : cj 6= 0} = 3 .

We an remove the third element x1x2 from b, and update M:

b = {1, x1}

M =

{(

0 1

0 1

)

,

(

1 0

0 1

)}

c = (1, 0) .

Sine we have that

(0, 1, 1) redues to (0, 0)

then B = ∅, and we are done, returning b,M as linear representation of J = I∪ 〈x2 +
1, x1x2 + x1 + x2 + 1〉.

22

1.4. The 0-dimensional ase

Determining if a solution exists

In Chapter 7 and 8 we need to know if a system of polynomial equations has

a solution or not, rather than �nding all the solutions. This is somehow a simpler

problem and an be solved with a simpler version of Traverso's algorithm. The idea

is brie�y desribed in Algorithm 2, where T(g) denotes the leading term of g and

q(g) = g −T(g).

Algorithm 2 To know if 1 ∈ J := 〈xq1 − x1, . . . , xqk − xk, g1, . . . , gr〉 ⊆ K[X]

Input: S := {g1, . . . , gr}, gi ∈ K[X]

Output: TRUE if 1 ∈ J, FALSE otherwise

1: N := N(J)

2: R := ∅
3: for g ∈ S do

4: Remove g from S

5: Add (T(g), q(g)) to R

6: for f ∈ S do

7: Replae T(g) with q(g) in f

8: for (t, q) ∈ R do

9: Replae T(g) with q(g) in q

10: for x ∈ X do

11: Compute h := xg mod 〈xq1 − x1, . . . , xqk − xk〉
12: if h ontains a term t suh that t /∈ N then

13: Find (t, q) in R // suh pair must exists in R

14: Replae t with q in h

15: Remove T(g) from N

16: return TRUE if N = ∅, FALSE otherwise

1.4.3 Hybrid approah

In [BFP09℄, the authors present a hybrid approah whih an improve the way of

solving zero-dimensional multivariate systems over �nite �elds with at least 22 ele-

ments. This approah uses Gröbner bases tehniques and exhaustive searh. A more

aurate analysis of the hybrid approah is given in [BFP12℄ by the same authors.

In general, when we want to solve a system whih has oe�ients over a �nite �eld

Fq, we an always �nd all the solutions in the ground �eld by exhaustive searh. The

omplete searh should take O(qk) operations if k is the number of variables. The idea

of the hybrid approah is to mix exhaustive searh with Gröbner bases omputations.

Instead of omputing one single Gröbner basis of the whole system, we ompute the

23

Chapter 1. A brief introdution to polynomial system solving

Gröbner bases of qr subsystems obtained by �xing r variables. The intuition is that

the gain obtained by working on systems with less variables may overome the loss

due to the exhaustive searh on the �xed variables.

The main problem is to realize if suh a trade-o� may exists and in that ase to

hoose the best one. That is to hoose properly the value of r making the omplexity

of the hybrid approah minimal. If CGB(A) is the omplexity of solving a Gröbner

basis using algorithm A, then the omplexity of the hybrid approah is learly

O(qrCGB(A)) .

In [BFP09℄ an algorithm to �nd the best trade-o� when using F5 algorithm to solve

eah Gröbner basis is given.

1.4.4 XL family of algorithms

One partiular algorithm has reeived onsiderable attention from the rypto-

graphi ommunity: the XL algorithm [CKPS00℄ (and its several variants, e.g.,

[Cou04℄, [CP03℄, [CP02℄) was originally proposed by ryptographers to takle prob-

lems arising spei�ally from ryptology. In partiular XL was introdued as an

e�ient algorithm for solving polynomial equations in ase a single solution exist.

Other more general variants of XL algorithm, suh as MutantXL [BDMM09℄,[BCDM10℄,

MXL2 [MMDB08℄, MXL3 [MCD

+
10℄, have been proposed.

Though, in [ACFP12℄, it is laimed that the XL family of algorithms an be simulated

using redundant variants of F4 algorithm.

1.4.5 Boolean polynomial systems

In [BD09℄, the authors introdue a speialized data struture for Boolean polyno-

mials based on zero-suppressed binary deision diagrams(ZDDs), whih are apable of

handling these polynomials more e�iently with respet to memory onsumption and

also omputational speed. Furthermore, they onentrate on high-level algorithmi

aspets, taking into aount the new data strutures as well as strutural properties

of Boolean polynomials. For example, a new useless-pair riterion for Gröbner basis

omputations in Boolean rings is introdued.

The authors provide an entire framework, i.e. a C++ library alled PolyBoRi (Polynomials

over Boolean Rings), to e�iently ompute Gröbner basis over Boolean polynomials.

The authors point out that the advantage of PolyBoRi grows with the number of

variables.

24

1.4. The 0-dimensional ase

1.4.6 Magma approah

The software Magma implements various optimized versions of Buhberger algo-

rithm and F4 algorithm, see [CBFS13℄ for details. Visit also [Ste13℄ for some pratial

timings.

In partiular, sine Version 2.15, a speial type of polynomial ring is available: the

boolean polynomial ring in k variables. Suh a ring is a multivariate polynomial

ring de�ned over F2 but suh that all monomials are redued modulo the �eld re-

lations x2i = xi for eah 1 ≤ i ≤ k (so a bit vetor representation an be used

for monomials). As we have already mentioned, the ring is the quotient algebra

F2[x1, . . . , xk]/〈x21 + x1, . . . , x
2
k + xk〉. This partiular struture allows very fast om-

putations, though it is not delared whih partiular algorithms are used in this ase.

Furthermore, sine Version 2.20, Magma inludes a new dense variant of the F4 al-

gorithm.

Quoting from Magma doumentation [CBFS13℄:

The dense variant is urrently only pratially appliable to input systems

over a �nite �eld where the input polynomials are onsidered �dense�; that

is, if the input polynomials are written as a matrix with olumns labeled by

the monomials, then the input matrix should be dense. Equivalently: if the

�eld size is q and the set of all monomials ourring in the input has size m,

then the number of monomials in eah input polynomial should be reasonably

lose to (1 - 1/q)m.

Also, aording to Magma doumentation, a new experimental optional heuris-

ti whih an be seleted for the algorithm when solving systems of equa-

tions over GF(2), alled the Redution Heuristi, whih an give an even

greater redution in time and memory usage for some large examples.

The Redution Heuristi is a new experimental heuristi whih an be seleted

in the dense variant of F4 when attempting to solve ertain kinds of systems

of equations over GF(2) where it is assumed that there is a very small number

of solutions, so the Groebner basis will onsist of mostly linear polynomials

or ollapse to 1 when there is no solution. The heuristi attempts to redue

the size of the matries involved in the linear algebra phase of eah F4 step.

When the heuristi is seleted, the run may simply fail, but when it sueeds,

it often saves signi�ant time and memory usage. The kinds of systems for

whih the saving in time and memory usage tends to be greatest are those

suh that in the F4 steps of maximal degree D, the number of S-polynomials

is relatively small ompared to the total number of monomials of degree D.

Currently the Redution Heuristi depends on a manual hoie by the user of

25

Chapter 1. A brief introdution to polynomial system solving

a numerial parameter M. Thus if B is the sequene of input polynomials, to

selet the Redution Heuristi with parameter M, one should urrently invoke

the algorithm with something like the following:

GroebnerBasis(B, D: RedutionHeuristi := M) ;

where M is the expeted maximal degree reahed in the omputation.

To understand how to orretly hoose M , in partiular for the binary ase, please

see [Ste13℄ or [CBFS13℄.

26

A brief introdution to nonlinear and systemati

odes

2.1 Basi notion and notation

We �rst reall a few de�nitions. A good introdution to oding theory an be

found in [PBH98℄.

Let Fq be the �nite �eld with q elements, where q is any power of any prime.

Let n ≥ k ≥ 1 be integers. Let C ⊆ Fn
q , C 6= ∅. We say that C is an (n, |C|)q-ode.

Any c ∈ C is a word. Note that here and afterwards a �ode� denotes what is alled

a �non-linear ode� in literature.

De�nition 2.1.1. Let φ : (Fq)
k → (Fq)

n
be an injetive funtion and let C = Im(φ).

We say that C is an (n, qk)q-systemati ode if φ(v)i = vi for any v ∈ (Fq)
k
and

any 1 ≤ i ≤ k.

If C is a vetor subspae of (Fq)
n
, then C is a linear ode. Clearly any non-zero

linear ode is equivalent to a systemati ode.

We denote by C(n, k, q) the lass of all systemati odes, by C0(n, k, q) the subset
of C(n, k, q) of odes with the zero-vetor as a word. In ase q = 2, we will often write

C(n, k) instead of C(n, k, 2) and C0(n, k) instead of C0(n, k, 2).

De�nition 2.1.2. Let C be an (n, k, q) ode. We all C∗
a puntured ode of C,

the ode obtained from C deleting the same oordinate i, 1 ≤ i ≤ n, in eah word.

Remark 2.1.3. If C is a systemati ode, then a puntured ode C∗
obtained by

deleting a non-systemati omponent is still systemati. So, that, if C ∈ C(n, k, q),
then C∗ ∈ C(n− 1, k, q).

Moreover if C is linear then any puntured ode C∗
of C is linear.

From now on, F will denote Fq and q is understood.

From the de�nition of systemati ode it follows that, given a systemati ode C,

to any vetor a ∈ Fk
we an assoiate only one vetor b ∈ Fn−k

suh that (a, b) ∈ C,
where (a, b) is the onatenation of a and b. From now on, given a systemati ode

C, we use F to denote this assoiation, a
F−→ b. In partiular any c ∈ C an be seen

as c = (a, F (a)) for (exatly) one a ∈ Fk
.

CGC 27

Chapter 2. A brief introdution to nonlinear and systemati odes

We denote with d(c, c′) the (Hamming) distane of two words c, c′ ∈ C, whih
is the number of di�erent omponents between c and c′. We denote with d a number

suh that 1 ≤ d ≤ n to indiate the minimum (Hamming) distane of a ode,

whih is

d = min
c,c′∈C,c 6=c′

{d(c, c′)}.

Note that a ode with only one word has, by onvention, distane equal to in�nity.

The whole Fn
has distane 1, and d = n in a systemati ode is possible only if k = 1.

From now on, n, k are understood.

De�nition 2.1.4. Let l, m ∈ N suh that l ≤ m. In Fm
, we denote by Bm

l (x) the

set of vetors with distane from the word x less than or equal to l, and we all it the

ball entered in x of radius l.

For oniseness, Bm
l denotes the ball entered in the zero vetor.

Obviously, Bm
l is the set of vetors of weight less than or equal to l and

|Bm
l | =

l∑

j=0

(
m

j

)

(q − 1)j.

We also note that any two balls having the same radius over the same �eld ontain

the same number of vetors.

De�nition 2.1.5. The number Aq(n, d) denotes the maximum number of words in a

ode over Fq of length n and distane d.

De�nition 2.1.6. Let C ∈ C(n, k, q). We denote byWi = Wi(C) the number of words

in C with weight i. Integer set {W0, . . . ,Wn} is alled the weight distribution of

C.

De�nition 2.1.7. Let C ∈ C(n, k, q). We denote by Di = Di(C) the number of

(unordered) word pairs having distane i, i.e.:

Di = |{(cq, c2) | c1, c2 ∈ C, d(c1, c2) = i}|

Integer set {D0, . . . , Dn} is alled the distane distribution of C.

De�nition 2.1.8. A ode C is distane-invariant if for any 1 ≤ i ≤ n and any

c, c′ ∈ C, we have

|{y ∈ C | d(c, y) = i}| = |{y ∈ C | d(c′, y) = i}|

28

2.2. Equivalene of odes

Clearly linear odes are distane-invariant. The distane distribution of distane-

invariant odes (ontaining the zero vetor) an be immediately obtained from their

weight distribution.

Two important parameters are the information rate and the relative distane of a

ode.

De�nition 2.1.9. For a (possibly) nonlinear ode over Fq with M odewords and

length n, we all information rate, or simply rate, of the ode, the value logqM/n.

If the ode has minimum distane d, we all relative distane the value d/n.

If a ode is a (n, qk, d)q-linear ode, the information rate is trivially k/n. In the

linear ase the rate of a ode is a measure of the number of information oordinates

relative to the total number of oordinates. The higher the rate, the higher the pro-

portion of oordinates in a odeword that atually ontain information rather than

redundany.

The relative distane is a measure of the error-orreting apability of the ode rela-

tive to its length.

One the relative distane is �xed, a ode is onsidered to be good if its information

rate is the highest possible. Atually it is not easy to determine this relation, and

oding theorist often an only formulate upper and lower bounds on this values.

The last fundamental and largly studied parameter we want to mention is the

overing radius of a ode.

De�nition 2.1.10. We de�ne the overing radius ρ = ρ(C) to be the smallest integer

s suh that Fn
q is the union of the spheres of radius s entered at the odewords of C.

Equivalently,

ρ(C) = max
x∈Fn

q

min
c∈C

d(x, c) .

When s = ⌊d−1
2
⌋ we say that the ode is perfet. Suh odes satisfy the so alled

Sphere Paking bound (Setion 4.2.1).

2.2 Equivalene of odes

De�nition 2.2.1. Two binary odes C1 and C2 of length n are said to be permutation

equivalent if there exists a oordinate permutation π suh that C2 = {π(c) | c ∈ C1}.
They are said to be equivalent if there exists a vetor a ∈ (F2)

n
and a oordinate

permutation π suh that C2 = {a+ π(c) | c ∈ C1}.

29

Chapter 2. A brief introdution to nonlinear and systemati odes

Note that two equivalent odes have the same minimum distane.

Two strutural properties of binary odes are the rank and the dimension of the

kernel.

De�nition 2.2.2. The rank r of a binary ode C, is the dimension of the linear span

〈C〉 of C, i.e.
r = rank(C) = dim(〈C〉)

The kernel ker(C) of a binary ode C is de�ned as

K = ker(C) = {x ∈ (F2)
n | x+ C = C} .

We will often assume 0 ∈ C. Note that if C is linear, then 0 ∈ C, but if C is

nonlinear, then 0 does not need to belong to C. In this ase, we an always onsider

a new binary ode C ′ = C + c for any c ∈ C, whih is equivalent to C, suh that

0 ∈ C ′
.

Sine 0 ∈ C, ker(C) is a binary linear subode of C.

We denote with dK the dimension of the kernel of C. In general, C an be written as

the union of osets of K, and K is the largest suh linear ode for whih this is true

[BGH83℄. Therefore

C =

t⋃

i=0

(K + ci) ,

where c0 = (0, . . . , 0), t+ 1 = |C|/2dK .

Example 2.2.3. Consider the ode C

C = {(1, 1, 0, 0), (0, 1, 1, 0)(0, 0, 1, 0), (0, 0, 1, 1),
(0, 0, 0, 0), (1, 1, 1, 0), (1, 0, 1, 0), (1, 1, 1, 1), }

We have that

K = ker(C) = {(1, 1, 0, 0), (0, 0, 0, 0)}
dK = dim(K) = 1 .

The |C|/2dK = 4 osets of C are

K + (0, 0, 0, 0) = {(0, 0, 0, 0), (1, 1, 0, 0)}
K + (0, 0, 1, 1) = {(0, 0, 1, 1), (1, 1, 1, 1)}
K + (1, 0, 1, 0) = {(1, 0, 1, 0), (0, 1, 1, 0)}
K + (0, 0, 1, 0) = {(0, 0, 1, 0), (1, 1, 1, 0)}

The parameters r, dK an be used to distinguish between non-equivalent binary

odes, sine equivalent ones have the same r, dK .

30

A brief introdution to Boolean funtion

In this hapter we summarize some de�nitions and known results from [Car10℄

and [MS77℄, onerning Boolean funtions and the lassial tehniques to determine

their nonlinearity.

We denote by F the �eld F2. The set Fn
is the set of all binary vetors of length

n, viewed as an F-vetor spae.

Let v ∈ Fn
. The Hamming weight w(v) of the vetor v is the number of its nonzero

oordinates. For any two vetors v1, v2 ∈ Fn
, the Hamming distane between v1 and

v2, denoted by d(v1, v2), is the number of oordinates in whih the two vetors di�er.

A Boolean funtion is a funtion f : Fn → F. The set of all Boolean funtions from

Fn
to F will be denoted by Bn.

3.1 Representations of Boolean funtions

3.1.1 Evaluation vetor

We assume impliitly to have ordered Fn
, so that Fn = {p1, . . . , p2n}.

A Boolean funtion f an be spei�ed by a truth table, whih gives the evaluation of

f at all pi's.

Example 3.1.1. A Boolean funtion in B3 is spei�ed by the truth table:

x1 x2 x3 f(X)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

CGC 31

Chapter 3. A brief introdution to Boolean funtion

De�nition 3.1.2. We onsider the evaluation map:

Bn −→ F2n f 7−→ f = (f(p1), . . . , f(p2n)) .

The vetor f is alled the evaluation vetor of f .

Example 3.1.3. Let f ∈ B3, f(x1, x2, x3) = x1x2 + x1x3 + x2. We order the vetors

in F3
as follows:

v1 = (0, 0, 0), v2 = (0, 0, 1), v3 = (0, 1, 0), v4 = (1, 0, 0),

v5 = (0, 1, 1), v6 = (1, 0, 1), v7 = (1, 1, 0), v8 = (1, 1, 1).

So we have:

f = (0, 0, 1, 0, 0, 1, 1, 1) .

One the order on Fn
is hosen, i.e. the pi's are �xed, it is lear that the evaluation

vetor of f uniquely identi�es f .

3.1.2 Algebrai normal form

A Boolean funtion f ∈ Bn an be expressed in a unique way as a square free

polynomial in F[X] = F[x1, . . . , xn], i.e.

f =
∑

v∈Fn

bvX
v ,

where Xv = xv1 · · ·xvn .
This representation is alled the Algebrai Normal Form (ANF).

Example 3.1.4. Let f ∈ B3 be the funtion in the previous example. This funtion

is equal to one if and only if (x1+1)(x2+1)x3 = 1 or x1(x2+1)x3 = 1 or x1x2x3 = 1.

Then the ANF is:

f(X) = (x1 + 1)(x2 + 1)x3 + x1(x2 + 1)x3 + x1x2x3 = x1x2x3 + x2x3 + x3 .

De�nition 3.1.5. The degree of the ANF of a Boolean funtion f is alled the alge-

brai degree of f, denoted by deg f , and it is equal to max{w(v) | v ∈ Fn, bv 6= 0}.

Let An be the set of all a�ne funtions from Fn
to F, i.e. the set of all Boolean

funtions in Bn with algebrai degree 0 or 1. If α ∈ An then its ANF an be written

as

α(X) = a0 +
n∑

i=1

aixi .

It is interesting to �nd properties of Boolean funtions whih are invariant under an

a�ne oordinate hange (we say that they are a�ne invariants).

32

3.1. Representations of Boolean funtions

Remark 3.1.6. Let AGL(2, n) be the general a�ne group ating over Fn
. By hanging

the oordinates AGL(2, n) ats on Bn. In other words, any orbit of AGL(2, n) shares

the same a�ne invariants.

Proposition 3.1.7. The algebrai degree of f ∈ Bn is an a�ne invariant.

There exists a simple divide-and-onquer butter�y algorithm ([Car10℄, p.10) to

ompute the ANF from the truth-table (or vie-versa) of a Boolean funtion, whih

requires O(n2n) bit sums (with big O onstant 1/2), while O(2n) bits must be stored.

This algorithm is known as the fast Möbius transform.

3.1.3 Numerial normal form

In [CG99℄ a useful representation of Boolean funtions for haraterizing several

ryptographi riteria (see also [CG01℄, [Car02℄) is introdued.

Boolean funtions an be represented as elements of K[X]/〈X2−X〉, where 〈X2−X〉
is the ideal generated by the polynomials x21 − x1, . . . , x2n − xn, and K is Z, Q, R, or

C.

De�nition 3.1.8. Let f be a funtion on Fn
taking values in a �eld K. We all the

numerial normal form (NNF) of f the following expression of f as a polynomial:

f(x1, . . . , xn) =
∑

u∈Fn

λu(
n∏

i=1

xui

i) =
∑

u∈Fn

λuX
u ,

with λu ∈ K and u = (u1, . . . , un).

It an be proved ([CG99℄, Proposition 1) that any Boolean funtion f admits a

unique numerial normal form. As for the ANF, it is possible to ompute the NNF

of a Boolean funtion from its truth table by mean of an algorithm similar to a fast

Fourier transform, thus requiring O(n2n) additions over K and storing O(2n) elements

of K.

From now on let K = Q.

The truth table of f an be reovered from its NNF by the formula

f(u) =
∑

a�u

λa, ∀u ∈ Fn ,

where a � u ⇐⇒ ∀i ∈ {1, . . . , n} ai ≤ ui. Conversely, as shown in [CG99℄ (Setion

3.1), it is possible to derive an expliit formula for the oe�ients of the NNF by

means of the truth table of f .

33

Chapter 3. A brief introdution to Boolean funtion

Proposition 3.1.9. Let f be any integer-valued funtion on Fn
. For every u ∈ Fn

,

the oe�ient λu of the monomial Xu
in the NNF of f is:

λu = (−1)w(u)
∑

a∈Fn|a�u

(−1)w(a)f(a) . (3.1)

It is possible to onvert a Boolean funtion from NNF to ANF simply by reduing

its oe�ients modulo 2.

The inverse proess is less trivial. One an either apply Proposition 3.1.9 to the

evaluation vetor of f , or an apply reursively the fat that

a +F b = a +Z b+Z (−2ab) , (3.2)

and the fat that eah variable has to be square-free (we are working over the a�ne

algebra K[x1, · · · , xn]/〈x21 − x1, · · · , x2n − xn〉).

Example 3.1.10. Let

f (N)(x1, x2, x3) = 2x1x2x3 − x1x2 − x2x3 + 1

be a Boolean funtion in NNF. Reduing its oe�ients modulo 2 we obtain

f (F)(x1, x2, x3) = x1x2 + x2x3 + 1 .

Notie that the ANF has only three monomials, while the NNF has four monomials.

This is due from the fat that passing from ANF to NNF eah sum in F involving two

terms is equivalent to a sum in Z involving three terms, as shown in Equation (3.2).

The inverse proess an be done reursively, �rst onverting the sum of x1x2 + x2x3

over F and then the sum over F of its result with the term 1, preisely (indiating

with ⊕ the sum in F and as usual the sum in Z):

(x1x2 ⊕ x2x3)⊕ 1 = (x1x2 + x2x3 − 2(x1x2)(x2x3))⊕ 1 =

= (x1x2 + x2x3 − 2(x1x2)(x2x3)) + 1+

− 2(x1x2 + x2x3 − 2(x1x2)(x2x3)) =

= x1x2 + x2x3 − 2x1x
2
2x3 + 1− 2x1x2 − 2x2x3 + 4x1x

2
2x3 =

= 2x1x2x3 − x1x2 − x2x3 + 1

3.2 Nonlinearity of a Boolean funtion

De�nition 3.2.1. Let v ∈ Fn
. The Hamming weight w(v) of the vetor v is the

number of its nonzero oordinates. For any two vetors v1, v2 ∈ Fn
, the Hamming

distane, d(v1, v2), between v1 and v2 is the number of oordinates in whih the two

vetors di�er.

34

3.3. Walsh transform of a Boolean funtion

De�nition 3.2.2. Let f, g ∈ Bn. The distane d(f, g) between f and g is the number

of v ∈ Fn
suh that f(v) 6= g(v).

The following lemma is obvious:

Lemma 3.2.3. Let f, g be two Boolean funtions. Then

d(f, g) = d(f, g) = w(f + g) .

De�nition 3.2.4. Let f ∈ Bn. The nonlinearity of f is the minimum of the distanes

between f and any a�ne funtion

N(f) = min
α∈An

d(f, α) .

We denote by ν(n) the following natural number

ν(n) = max
f∈Bn

N(f) .

Proposition 3.2.5. The non-linearity of f ∈ Bn is an a�ne invariant.

The maximum nonlinearity for a Boolean funtion f is bounded by:

max{N(f) | f ∈ Bn} ≤ 2n−1 − 2
n
2
−1 . (3.3)

3.3 Walsh transform of a Boolean funtion

De�nition 3.3.1. The Walsh transform of a Boolean funtion f ∈ Bn is the following
funtion:

F̂ : Fn −→ Z x 7−→
∑

y∈Fn

(−1)x·y+f(y) .

where x · y is the salar produt of x and y.

We have the following fat: ([Car10℄, p.42)

Fat 3.3.2.

N(f) = min
v∈Fn
{2n−1 − 1

2
F̂ (v)} = 2n−1 − 1

2
max
v∈Fn
{F̂ (v)}

De�nition 3.3.3. The set of integers {F̂ (v) | v ∈ Fn} is alled the Walsh spetrum

of the Boolean funtion f .

35

Chapter 3. A brief introdution to Boolean funtion

It is possible ([Car10℄, p.18) to ompute the Walsh spetrum of f from its evalua-

tion vetor in O(n2n) integer operations (with big O onstant 1), while storing O(2n)

integers, by means of the fast Walsh transform (the Walsh transform is the Fourier

transform of the sign funtion of f). Thus the omputation of the nonlinearity of a

Boolean funtion f , when this is given either in its ANF or in its evaluation vetor,

requires O(n2n) integer operations and a memory of O(2n).

Faster methods are known in partiular ases, for example when the ANF is a

sparse polynomial [Çal13a℄, [Çal13b℄.

The Walsh transform of a Boolean funtion f satis�es the following relation

Fat 3.3.4. Let f ∈ Bn and let F̂ be the Walsh transform of f . Then

∑

x∈Fn

F̂ (x)F̂ (x+ y) =

{

22n if y = 0

0 if y 6= 0

Corollary 3.3.5 (Parseval's equation).

∑

x∈Fn

F̂ (x) = 22n .

Let α =
∑n

i=1 aixi (so α ∈ An with a0 = 0). Then

F̂ (a) =
∑

x∈Fn

(−1)x·a+f(x) .

We observe that F̂ (a) is equal to the number of 0's minus the number of 1's in the

vetor f + α. Then

F̂ (a) = w(f + α + 1)− w(f + α) = 2n − 2d(f, α) .

So we have

d(f, α) = 2n−1 − 1

2
F̂ (a) .

In the same way, we obtain that

d(f, α + 1) = 2n−1 +
1

2
F̂ (a) .

3.4 Non-linearity and Walsh transform

Let m be a monomial in F[x1, . . . , xn] with deg(m) = k ≥ 2, then we will see that

N(m) = w(m) 1

. Let α ∈ An, α 6= 0, 1:

d(0, α) ≤ d(0, m) + d(α,m) ,

1

It is well-known that w(m) = 2n−k
.

36

3.4. Non-linearity and Walsh transform

then

d(α,m) ≥ w(α)− w(m) = 2n−1 − 2n−k .

As w(m) = 2n−k ≤ 2n−1 − 2n−k
for any k ≥ 2, then we have that N(m) = 2n−k

.

From the relation between the distane and the Walsh transform, we have that

N(f) = min
a∈Fn

(2n−1 − 1

2
F̂ (a)) = 2n−1 − 1

2
max
a∈Fn
|F̂ (a)| .

From Parseval's equation we an dedue that maxa∈Fn |F̂ (a)| ≥
√
2n = 2

n
2
. Then

N(f) ≤ ν(n) ≤ 2n−1 − 2
n
2
−1 . (3.4)

This bound, valid for every Boolean funtion, is alled the universal non-linearity

bound. In this bound the equality ours if and only if |F̂ (a)| = 2
n
2
for every a ∈ Fn

.

The orresponding funtions are alled bent funtions. They an exist only for even

values

2

of n, beause 2n−1 − 2
n
2
−1

must be an integer. For n odd, inequality ν(n) ≤
2n−1 − 2

n
2
−1

annot be tight. If n = 2d+ 1, then

ν(n) = ν(2d+ 1) ≤ ⌊22d − 2
2d+1

2
−1⌋ = ⌊22d −

√
2 2d−1⌋ .

As regards lower bounds, it is well-known that for any n = 2d + 1 there exist some

quadrati funtions with non-linearity 22d − 2d. So we have the following result

Theorem 3.4.1. Let n = 2d+ 1 be an odd integer. Then

22d − 2d ≤ ν(n) ≤ ⌊22d −
√
2 2d−1⌋ .

For n = 2d+ 1, it has been shown that

ν(n) = 22d − 2d for n = 1, 3, 5, 7 ,

and

ν(n) > 22d − 2d for n ≥ 15 .

Moreover, ν(15) ≥ 16276. While for n = 9, 11, 13 nothing is known, apart from

Theorem 3.4.1. We summarize the situation for n odd in the following table:

2

atually, we will see in the following setion, that they exist for every n even.

37

Chapter 3. A brief introdution to Boolean funtion

n Maximum non-linearity

3 ν(3) = 2

5 ν(5) = 12

7 ν(7) = 56

9 240 ≤ ν(9) ≤ 244

11 992 ≤ ν(11) ≤ 1001

13 4032 ≤ ν(13) ≤ 4050

15 16276 ≤ ν(15) ≤ 16293

17 65280 < ν(17) ≤ 65354
.

.

.

.

.

.

Table 3.1: Maximum non-linearity for n odd

3.5 Bent funtions

In this setion n is an even integer.

De�nition 3.5.1. A Boolean funtion f ∈ Bn is alled bent if |F̂ (a)| = 2
n
2
, for every

a ∈ Fn
.

Example 3.5.2. Let f ∈ B4, f(x1, x2, x3, x4) = x1x2 + x3x4. If we ompute the

Walsh transform of f for any a ∈ F4
, we see that F̂ (a) = ±4, so f is bent.

a F̂ (a) a F̂ (a) a F̂ (a) a F̂ (a)

(0, 0, 0, 0) 4 (1, 0, 0, 0) 4 (0, 1, 1, 0) 4 (1, 0, 1, 1) −4
(0, 0, 0, 1) 4 (0, 0, 1, 1) −4 (1, 0, 1, 0) 4 (1, 1, 0, 1) −4
(0, 0, 1, 0) 4 (0, 1, 0, 1) 4 (1, 1, 0, 0) −4 (1, 1, 1, 0) −4
(0, 1, 0, 0) 4 (1, 0, 0, 1) 4 (0, 1, 1, 1) −4 (1, 1, 1, 1) 4

A bent funtion f ∈ Bn is further away from any a�ne funtion α ∈ An. More

preisely, we have the following proposition:

Proposition 3.5.3. A Boolean funtion f ∈ Bn is bent if and only if its distane

between any a�ne funtion is equal to 2n−1 ± 2
n
2
−1
.

We have a bound on the algebrai degree of a bent funtion:

Proposition 3.5.4. If f ∈ Bn is a bent funtion and n > 2 then deg f ≤ n
2
.

For any even n and an even integer m < n we an onstrut bent funtion as

the sum of a bent funtion in m variables and a bent funtion in n−m variables as

follows

38

3.5. Bent funtions

Proposition 3.5.5. Let f ∈ Bn suh that f(x1, . . . , xn) = g(x1, . . . , xm)+h(xm+1, . . . , xn),

with g ∈ Bm and h ∈ Bn−m. Then f is a bent funtion if and only if g and h are bent

funtions.

Corollary 3.5.6. For any even n ≥ 2 the Boolean funtion f = x1x2 + x3x4 + · · ·+
xn−1xn is bent.

Sine N(f) = 2n−1− 2
n
2
−1

for any bent funtion f (see equation 3.4), and at least

one exists for every n even, then we have

Theorem 3.5.7. For n even, ν(n) = 2n−1 − 2
n
2
−1
.

n Maximum non-linearity

2 ν(2) = 1

4 ν(4) = 6

6 ν(6) = 28

8 ν(8) = 120

10 ν(10) = 496

12 ν(12) = 2016

14 ν(14) = 8128

16 ν(16) = 32640
.

.

.

.

.

.

Table 3.2: Maximum non-linearity for n even

39

Part II

On ode bounds

41

Introdution

The problem of bounding the size of a ode depends heavily on the ode family

that we are onsidering. In this part we are interested in three types of odes: linear

odes, systemati odes and non-linear odes. Referring to the subsequent setion

for rigorous de�nitions, with linear odes we mean linear subspaes of (Fq)
n
, while

with non-linear odes we mean (following onsolidated tradition) odes that are

not neessarily linear. In this sense, a linear ode is always a non-linear ode, while a

non-linear ode may be a linear ode, although it is unlikely. Systemati odes form

a less-studied family of odes, whose de�nition is given in the next setion. Modulo

ode equivalene all (non-zero) linear odes are systemati and all systemati odes

are non-linear. In some sense, systemati odes stand in the middle between linear

odes and non-linear odes. The size of a systemati ode is diretly omparable with

that of a linear ode, sine it is a power of the �eld size.

In this part we propose some theoretial bounds, that is, bounds on the size of a

ode that an be obtained by a losed-formula expression. Algorithmi bounds exist,

and atually one of these (the Linear Programming bound [Del73℄) is onsidered in

general the most powerful known bound.

Any upper bound for non-linear odes is also an upper bound for both systemati

odes and linear odes, while an upper bound for systemati odes is also an upper

bound for linear odes. Given the onstraint on the size of systemati odes, when we

onsider an upper bound on the size of non-linear odes, we will onsider the largest

power of q whih is less than or equal to the upper bound.

The algebrai struture of linear odes would suggest the knowledge of a high num-

ber of bounds stritly for linear odes, and only a few bounds for the other ase.

Rather surprisingly, the literature reports only one bound for linear odes, the Gries-

mer bound ([Gri60℄), no bounds for systemati odes and many bounds for non-

linear odes. Among those, we reall some theoretial bounds: the Johnson bound

([Joh62℄,[Joh71℄,[HP03℄), the Elias-Bassalygo bound ([Bas65℄,[HP03℄), the Levenshtein

bound ([Lev98℄), the Hamming (Sphere Paking) bound and the Singleton bound

([PBH98℄), and the Plotkin bound ([Plo60℄, [HP03℄).

Sine the Griesmer bound is speialized for linear odes, we would expet it to beat

the other bounds, but even this does not happen, exept in some ases. So we have an

CGC 43

unexpeted situation where the bounds holding for the more general ase are numer-

ous and beat bounds holding for the speialized ase. Atually, as far as it onern

the Griesmer bound, it seems to hold also in the more general systemati ase. We

investigate this fat in Chapter 5, and we prove the bound holds also for an in�nite

family of systemati odes.

Chapter 4 is an overview of known bounds, with a speial fous on upper bounds.

In Chapter 6 we present an original upper bound whih holds for all odes ontaining

a systemati ode, and we ompare it with other well known upper bounds.

44

Overview of known lassial bounds

4.1 Preliminaries

For ease of reading, we �rst reall a few de�nitions.

Let Fq be the �nite �eld with q elements, where q is any positive power of any prime.

Let n ≥ k ≥ 1 be integers. Let C ⊆ (Fq)
n
, C 6= ∅. We say that C is an (n, |C|)q-ode.

Any c ∈ C is a odeword. Note that here and afterwards a �ode� denotes what is

alled a �non-linear ode� in the introdution.

Let φ : (Fq)
k → (Fq)

n
be an injetive funtion and let C = Im(φ). We say that C is

an (n, qk)q-systemati ode of dimension k if (φ(v))i = vi for any v ∈ (Fq)
k
and

any

1

omponent 1 ≤ i ≤ k. If C is a vetor subspae of (Fq)
n
, then C is a linear

ode. Clearly any non-zero linear ode is equivalent to a systemati ode.

From now on, F will denote Fq and q is �xed.

We denote with d(c, c′) the (Hamming) distane of two words c, c′ ∈ C, whih is

the number of di�erent omponents between c and c′. We denote with d a number

suh that 1 ≤ d ≤ n to indiate the minimum distane of a ode, whih is d =

minc,c′∈C,c 6=c′{d(c, c′)}. If C is an (n,M)q-ode with distane d then we an write that

C is an (n,M, d)q-ode. We will omit q when lear from the ontext. Note that a

ode with only one odeword has, by onvention, minimum distane equal to in�nity.

The whole Fn
has minimum distane 1, and d = n in a systemati ode is possible

only if k = 1.

From now on, n, k are �xed.

De�nition 4.1.1. Let l, m ∈ N be suh that l ≤ m. In Fm
, we denote by Bm

l (x) the

set of vetors with distane from the word x less than or equal to l, and we all it the

ball entered in x of radius l.

For oniseness, Bm
l denotes the ball entered in the zero vetor.

Obviously, Bm
l is the set of vetors of weight less than or equal to l and

|Bm
l | =

l∑

j=0

(
m

j

)

(q − 1)j .

1

Subsript i indiates the i-th omponent of a vetor.

CGC 45

Chapter 4. Overview of known lassial bounds

We also note that any two balls having the same radius over the same �eld ontain

the same number of vetors.

De�nition 4.1.2. The number Aq(n, d) denotes the maximum number of odewords

in a ode over Fq of length n and minimum distane d.

We now reall some results regarding the quantity Aq(n, d), whose proofs an be

found in [HP03℄ or in [Rom92℄.

Theorem 4.1.3. It holds that

� If d > 1 then Aq(n, d) ≤ Aq(n− 1, d− 1).

� If n ≥ 1 then Aq(n, 1) = qn and Aq(n, n) = q.

� If q = 2 and d is even, then A2(n, d) = A2(n− 1, d− 1).

The last property holds sine if d is odd, then C is an (n,M, d) ode if and only

if the ode C obtained by adding a parity hek bit (i.e. the sum of all the bits of

a odeword) to eah odeword in C is an (n + 1,M, d + 1) ode. So in order to

understand the behavior of A2(n, d) it is su�ient to understand its behavior for d

even.

Theorem 4.1.4. Let C be a ode with distane d and length n on Fq. Then:

Aq(n, d) ≤ qAq(n− 1, d)

Proof. Let C be an (n,M, d) ode on Fq and let M = Aq(n, d). Given v ∈ Fq we

denote by Cv the subset of C of elements with v in the n-th position. For some v,

the set Cv is an Fq ode with at least M/q odewords. Erasing from the words in Cv

the n-th omponent, a ode B of length n− 1 and distane d is obtained. So that

M

q
≤ |Cv| ≤ Aq(n− 1, d)

whih implies

Aq(n, d) ≤ qAq(n− 1, d)

4.2 Upper bounds

4.2.1 The Hamming upper bound

From the fat that the spheres of radius t =
⌊
d−1
2

⌋
are pairwise disjoint, the sphere

paking bound (or Hamming bound) immediately follows:

46

4.2. Upper bounds

Theorem 4.2.1 (Hamming bound).

Aq(n, d) ≤
qn

|Bn
t |

Proof. Let M be the total number of odewords in a ode C. The union of the

balls of radius t around all odewords is ontained in (Fq)
n
. Then, sine eah ball is

non-interseting, summing the number of elements in eah, we obtain:

M |Bn
t | ≤ qn

Sine last formula holds for any ode, we have:

Aq(n, d) ≤
qn

|Bn
t |

Codes that meet the Sphere Paking bound are alled perfet.

4.2.2 The Plotkin upper bound

First, we provide a binary version of the Plotkin bound and its general version in

the ase of any alphabet.

Theorem 4.2.2 (Plotkin bound - binary ase [Plo60℄). We have two di�erent ases:

1. If d is even and 2d > n then

A2(n, q) ≤ 2

⌊
d

2d− n

⌋

2. If d is odd and 2d+ 1 > n, then

A2(n, d) ≤ 2

⌊
d+ 1

2d+ 1− n

⌋

We report the proof of the �rst inequality.

Proof. Let C be a generi binary (M,n) ode (in partiular the theorem will hold

when M = A2(n, q), where M is the number of odewords and n the length of the

ode. The bound is proved by bounding the quantity

∑

(x,y)∈C2,x 6=y d(x, y) in two

di�erent ways.

47

Chapter 4. Overview of known lassial bounds

On the one hand, there areM hoies for x and for eah suh hoie, there are M −1

hoies for y. Sine by de�nition d(x, y) ≥ d for all x and y (x 6= y), it follows that
∑

(x,y)∈C2,x 6=y

d(x, y) ≥M(M − 1)d.

On the other hand, let A be an M × n matrix whose rows are the elements of C.

Let si be the number of zeros ontained in the i'th olumn of A. This means that

the i'th olumn ontains M − si ones. Eah hoie of a zero and a one in the same

olumn ontributes exatly 2 (beause d(x, y) = d(y, x)) to the sum

∑

x,y∈C d(x, y)

and therefore

∑

x,y∈C
d(x, y) =

n∑

i=1

2si(M − si).

If M is even, then the quantity on the right is maximized if and only if si = M/2

holds for all i, then
∑

x,y∈C
d(x, y) ≤ 1

2
nM2.

Combining the upper and lower bounds for

∑

x,y∈C d(x, y) that we have just derived,

M(M − 1)d ≤ 1

2
nM2

whih given that 2d > n is equivalent to

M ≤ 2d

2d− n.

Sine M is even, it follows that

M ≤ 2

⌊
d

2d− n

⌋

.

On the other hand, if M is odd, then

∑n
i=1 2si(M − si) is maximized when si =

M±1
2

whih implies that

∑

x,y∈C
d(x, y) ≤ 1

2
n(M2 − 1).

Combining the upper and lower bounds for

∑

x,y∈C d(x, y), this means that

M(M − 1)d ≤ 1

2
n(M2 − 1)

or, using that 2d > n,

M ≤ 2d

2d− n − 1.

Sine M is an integer,

M ≤
⌊

2d

2d− n − 1

⌋

=

⌊
2d

2d− n

⌋

− 1 ≤ 2

⌊
d

2d− n

⌋

.

This ompletes the proof of the bound.

48

4.2. Upper bounds

Plotkin bound is a very strong bound and it is experimentally known to be very

tight in the tiny range where it an be applied. In fat, in the binary ase Leven-

shtein proved that if Hadamard's onjeture is true then Plotkin's bound is sharp. A

disussion and analysis of this fats an be found in [Rom92℄.

Though Hadamard's onjeture is probably true, its resolution remains a di�ult

open question. Let us indiate with P (n, d) the Plotkin bound in the binary ase. In

[dLG01℄ de Launey and Gordon onsider the ratio R(n, d) = A2(n, d)/P (n, d). They

present an e�ient heuristi for onstruting for any d ≥ n/2, a binary ode whih

has at least 0.495P (n, d) odewords. Their result is on�rmed by a omputer alu-

lation, whih shows that R(n, d) > 0.495 for d up to one trillion.

Plotkin bound says that a good binary ode (meeting this bound) must have about

the same number of ones and zeros on eah olumn of the M × n matrix of all ode-

words.

Plotkin bound has been generalized to any alphabet by Blake and Mullin (p. 84 of

[BM76℄):

Theorem 4.2.3 (Plotkin bound - q-ary ase). Let q be an integer and dq > n(q−1),

then:

Aq(n, d) ≤
dq

dq − n(q − 1)

Elias gave another re�nement of the bound whih is stated in Setion 4.2.5.

Using theorem 4.1.4 and the Plotkin bound, we an derive the following properties:

1. if d is even, then A2(2d, d) ≤ 4d,

sine A2(2d, d) ≤Thm 2A2(2d− 1, d) ≤P lotkin 2 · 2
⌊

d
2d−2d+1

⌋
= 4d;

2. if d is even, then A2(2d+ 1, d) ≤ 8d;

3. if d is odd, then A2(2d, d) ≤ 2d+ 2;

4. if d is odd, then A2(2d+ 1, d) ≤ 4d+ 4.

We leave to the reader the proof of (2), (3) and (4).

4.2.3 The Johnson upper bounds

A nonlinear (n,M, d) ode C over Fq is a onstant weight ode provided every

odeword has the same weight w.

De�ne Aq(n, d, w) to be the maximum number of odewords in a onstant weight

(n,M) ode over Fq of length n and minimum distane at least d whose odewords

have weight w. Obviously Aq(n, d, w) ≤ Aq(n, d).

49

Chapter 4. Overview of known lassial bounds

Theorem 4.2.4 (Restrited Johnson bound for Aq(n, d, w)).

Aq(n, d, w) ≤
⌊

nd(q − 1)

qw2 − 2(q − 1)nw + nd(q − 1)

⌋

provided qw2 − 2(q − 1)nw + nd(q − 1) > 0

Removing the restrition of qw2 − 2(q − 1)nw + nd(q − 1) > 0 Johnson obtained:

Theorem 4.2.5 (Unrestrited Johnson bound for Aq(n, d, w)). The following

ases hold:

1. If 2w < d, then Aq(n, d, w) = 1.

2. if 2w ≥ d and d ∈ {2e− 1, 2e}, then, setting q∗ = q − 1,

Aq(n, d, w) ≤
⌊
nq∗

w

⌊
(n− 1)q∗

w − 1

⌊

· · ·
⌊
(n− w + e)q∗

e

⌋

· · ·
⌋⌋⌋

3. If w < e, then A2(n, 2e− 1, w) = A2(n, 2e, w) = 1.

4. if w ≥ e then,

A2(n, 2e− 1, w) = A2(n, 2e− 1, w) ≤
⌊
n

w

⌊
n− 1

w − 1

⌊

· · ·
⌊
n− w + e

e

⌋

· · ·
⌋⌋⌋

The bounds on Aq(n, d, w) an be used to give upper bounds on Aq(n, d) also due

to Johnson ([Joh62℄,[Joh71℄). These bounds strengthen the Sphere Paking bound.

The idea of the proof is to ount not only the vetors in Fq that are within distane

t = (d − 1)/2 of all odewords (that is, the disjoint spheres of radius t entered at

odewords) but also the vetors at distane t+1 from odewords that are not within

these spheres.

Theorem 4.2.6 (Johnson bound for Aq(n, d)). Let t = ⌊(d− 1)/2⌋

1. If d is odd, then

Aq(n, d) ≤
qn

∑t
i=0

(
n
i

)
(q − 1)i +

(n

t+1)(q−1)t+1−(dt)Aq(n,d,d)

Aq(n,d,t+1)

2. If d is even, then

Aq(n, d) ≤
qn

∑t
i=0

(
n
i

)
(q − 1)i +

(n

t+1)(q−1)t+1

Aq(n,d,t+1)

50

4.2. Upper bounds

3. If d is odd, then

A2(n, d) ≤
2n

∑t
i=0

(
n
i

)
+

(n

t+1)−(
d

t)A2(n,d,d)

⌊ n
t+1⌋

4. If d is even, then

A2(n, d) ≤
2n

∑t
i=0

(
n
i

)
+

(n

t+1)
⌊ n

t+1⌋

5. If d is odd, then

A2(n, d) ≤
2n

∑t
i=0

(
n
i

)
+

(nt)(
n−t
t+1

−⌊n−t
t+1 ⌋)

⌊ n
t+1⌋

(4.1)

Bound 4.1 strengthens the Sphere Paking bound and the two bounds in fat

agree preisely when (t+ 1)|(n− t). Reall that odes that meet the Sphere Paking

bound are alled perfet. An (n,M, 2t+1) binary ode withM = A2(n, 2t+1) whih

attains the Johnson bound 4.1 is alled nearly perfet. The lassi�ation of suh odes

is known. One example of nearly perfet ode is the [256, 16, 6]-Nordstrom-Robinson

ode, of whih we provide a Magma onstrution in Setion 9.1.

4.2.4 The Singleton upper bound and MDS odes

The next bound is a rather weak bound in general.

Theorem 4.2.7 (Singleton bound).

Aq(n, d) ≤ qn−d+1

Proof. First observe that there are qn many q-ary words of length n, sine eah letter

in suh a word may take one of q di�erent values, independently of the remaining

letters.

Now let C be an arbitrary q-ary blok ode of minimum distane d. Clearly, all

odewords c ∈ C are distint. If we delete the �rst d−1 letters of eah odeword, then

all resulting odewords must still be pairwise di�erent, sine all original odewords

in C have Hamming distane at least d from eah other. Thus the size of the ode

remains unhanged.

The newly obtained odewords eah have length

n− (d− 1) = n− d+ 1

51

Chapter 4. Overview of known lassial bounds

and thus there an be at most

qn−d+1

of them. Hene the original ode C shares the same bound on its size |C|:

|C| ≤ Aq(n, d) ≤ qn−d+1.

Codes reahing the Singleton bound are alledMaximum Distane Separable (MDS)

odes. This lass of odes ontains the very important family of odes known as Reed-

Solomon odes.

4.2.5 The Elias upper bound

Extending the ideas of Plotkin, in 1960 Elias disovered a new bound without

publishing it. The same bound was published by Bassylago in 1965 [Bas65℄.

Despite this bound is rather weak, its importane lies in the fat that the asymptoti

form of this bound is superior to many lassial bounds.

Theorem 4.2.8 (Elias bound). Let r = 1 − q−1
. Suppose that w ≤ rn and w2 −

2rnw + rnd > 0. Then

Aq(n, d) ≤
rnd

w2 − 2rnw + rnd
· qn

|Bn
w|

(4.2)

4.2.6 The Linear Programming upper bound

This bound, disovered by Delsarte in 1975 [Del73℄, is in general the most powerful

of the lassial bounds, but it requires the use of linear programming. Before stating

the bound we need to introdue a ouple of new de�nitions.

De�nition 4.2.9. The (Hamming) distane distribution of a ode C of length n is

the list Bi = Bi(C) for 0 ≤ i ≤ n, where

Bi(C) =
∑

c∈C
|{v ∈ C | d(v, c) = i} .

De�nition 4.2.10. The Krawthouk polynomial Kn,q
k (x) of degree k is de�ned by

Kn,q
k (x) =

k∑

j=0

(−1)j(q − 1)k−j

(
x

j

)(
n− x
k − j

)

for 0 ≤ k ≤ n.

Theorem 4.2.11 (Linear Programming bound). The following hold:

52

4.2. Upper bounds

1. When q ≥ 2, Aq(n, d) ≤ max{∑n
w=0Bw}, where the maximum is taken over all

Bw subjet to the following onditions:

(a) B0 = 1 and Bw = 0 for 1 ≤ w ≤ d− 1,

(b) Bw ≥ 0 for d ≤ w ≤ n, and

()

∑n
w=0BwK

n,q
k (w) ≥ 0 for 1 ≤ k ≤ n.

2. When d is even and q = 2, Aq(n, d) ≤ max{∑n
w=0Bw}, where the maximum is

taken over all Bw subjet to the following onditions:

(a) B0 = 1 and Bw = 0 for 1 ≤ w ≤ d− 1 and all odd w,

(b) Bw ≥ 0 for d ≤ w ≤ n, and Bn ≤ 1, and

()

∑n
w=0BwK

n,2
k (w) ≥ 0 for 1 ≤ k ≤ ⌊n/2⌋.

Solving the inequalities of this theorem is aomplished by linear programming,

hene the name. At times other inequalities an be added to the list whih add more

onstraints to the linear program and redue the size of

∑n
w=0Bw. In spei� ases

other variations to the Linear Programming bound an be performed to ahieve a

smaller upper bound.

4.2.7 The Levenshtein upper bound

In 1978, Levenshtein proved a bound in the setting of systems of orthogonal poly-

nomials. The artile was written in Russian. The �rst English version of this bound,

stated using the language of oding theory, an be found in [Lev95℄, published in

1995. In [Lev98℄ the whole theory regarding this bound is exposed in more than one

hundred pages.

Here we only provide the basi de�nitions to state the bound.

De�nition 4.2.12. Let dk(n, q) = dk(n) be the smallest root of the equation K
n,q
k (z) =

0 .

De�ne the funtion

Ln,q(z) =

Ln,q
k (z) if dk(n− 1) + 1 < z ≤ dk−1(n− 2) + 1

qLn−1,q
k (z) if dk(n− 2) + 1 < z ≤ dk(n− 1) + 1

(4.3)

where

Ln,q
k (z) = |Bn

k−1| −
(
n

k

)

(q − 1)k
Kn−1,q

k−1 (z − 1)

Kn,q
k (z)

(4.4)

53

Chapter 4. Overview of known lassial bounds

Theorem 4.2.13 (Levenshtein bound).

Aq(n, d) ≤ Ln,q(d) (4.5)

Levenshtein bound is one of the strongest bound, espeially for small values of q.

An intuition of its behavior an be grasp from Table 6.1 and 6.2.

We notie that the omputation of this bound requires the omputation of the roots of

a Krawthouk polynomial, whih an be very long ompared to other losed formula

upper bounds.

4.2.8 The Zinoviev-Litsyn-Laihonen upper bound

In 1984, Zinoviev and Litsyn [ZL84℄ prove a bound for non-linear odes, in a Rus-

sian written artile.

In 1998 Litsyn and Laihonen prove the same bound, Theorem 1 of [LL98℄, and apply

it to show some results on asymptoti bounds.

In the work of 1984, the authors obtain some new bounds for the dual distane of gen-

eralized onatenated odes and BCH odes. The use of these bounds in the existing

ode-shortening arrangements lead to a number of odes with optimal parameters.

A onstrution was proposed for shortening arbitrary (linear and nonlinear) odes.

Appliation of this onstrution to existing odes yields a large number of odes with

optimal known parameters.

In the paper of 1998, they onsider upper bounds on minimum distane and overing

radius of a ode, generalizing tehniques from [LT96℄ and ombining them with the

mentioned upper bound on the asymptoti information rate of non-binary odes. The

upper bound on the information rate is an appliation of a shortening method of a

ode. These results were aimed to improve on the best urrently known asymptoti

upper bounds on minimum distane and overing radius of non-binary odes in er-

tain intervals.

We write the bound with our notation as follows.

Theorem 4.2.14 (Zinoviev-Litsyn-Laihonen (ZLL) bound). Let 1 ≤ d ≤ n. Let

t ∈ N be suh that t ≤ n− d. Let r ∈ N be suh that 0 ≤ r ≤ t and 0 ≤ r ≤ 1
2
d. Then

Aq(n, d) ≤
qt

|Bt
r|
Aq(n− t, d− 2r).

Note that t ≤ n− d implies d − 2r ≤ n − t so that the value Aq(n− t, d − 2r) is

meaningful.

We present an improvement of this bound in Setion 6.

54

4.2. Upper bounds

4.2.9 The Griesmer upper bound for linear odes

Thanks to their strong algebrai struture, linear odes enjoy more spei� bounds.

We show here an important bound due to Griesmer [Gri60℄, whih generalizes the

Singleton bound.

Theorem 4.2.15 (Griesmer bound). Let n be the smallest integer suh that there

exists an (n, qk) binary linear ode with minimum distane at least d. Then

n ≥
k−1∑

i=0

⌈
d

2i

⌉

.

Proof. Let N(k, d) denote the minimum length of a binary ode of dimension k and

distane d. Let C be suh a ode. We want to show that

N(k, d) ≥
k−1∑

i=0

⌈
d

2i

⌉

Let G be a generator matrix of C. We an always suppose that the �rst row of G is

of the form r = (1, ..., 1, 0, ..., 0) with weight d:

G =

[

1 ... 1 0 ... 0

∗ ∗ ∗ G′

]

.

The matrix G′
generates a ode C ′

, whih is alled the residual ode of C. C ′
has

obviously dimension k′ = k−1 and length n′ = N(k, d)−d. C ′
has a distane d′, but

we don't know it.

Let u ∈ C ′
s.t. w(u) = d′. There exists a vetor v ∈ (F2)

d
s.t. the onatenation

(v|u) ∈ C. Then
w(v) + w(u) = w(v|u) ≥ d.

On the other hand, also (v|u) + r ∈ C, sine r ∈ C and C is linear, so

w((v|u) + r) ≥ d.

But w((v|u) + r) = w(((1, 1, ..., 1) + v)|u) = d− w(v) + w(u), so this beomes

d− w(v) + w(u) ≥ d.

By summing this with w(v) + w(u) ≥ d, we obtain

d+ 2w(u) ≥ 2d.

But w(u) = d′, so we get

d′ ≥ d/2.

55

Chapter 4. Overview of known lassial bounds

This implies n′ ≥ N(k−1, d/2), therefore n′ ≥ ⌈N(k − 1, d/2)⌉ (due to the integrality
of n′

), so that

N(k, d) ≥ ⌈N(k − 1, d/2)⌉+ d.

By indution over k we will eventually get

N(k, d) ≥
k−1∑

i=0

⌈
d

2i

⌉

(note that at any step the dimension dereases by 1 and the distane is halved, and

we use the identity

⌈

⌈a/2k−1⌉
2

⌉

=
⌈

a
2k

⌉
for any integer a and positive integer k).

Sine ⌈d/q0⌉ = d and ⌈d/qi⌉ ≥ 1 for i = 1, . . . , k−1, we have that n ≥∑k−1
i=0

⌈
d
2i

⌉
≥

d+
∑k−1

i=1 1 = d+ k − 1, whih is the Singleton bound.

Griesmer also showed that for ertain values of k and d the equality holds. In 1965

Solomon and Sti�er [SS65℄ simpli�ed Griesmer's proof and at the same time gener-

alized it to linear odes over an arbitrary �nite �eld Fq, where it takes the form

n ≥
k−1∑

i=0

⌈
d

qi

⌉

.

More important, however, Solomon and Sti�er introdued the notion of punturing a

(qk − 1, k) maximal-length shift-register ode and showed that for many more values

of k and d equality holds. It an be also shown that the Griesmer bound is implied

by the Plotkin bound in ase 2k−1
divides d.

There exists nonlinear and systemati odes with qk odewords overpassing the Gries-

mer bound. Though the Griesmer bound holds for some families of systemati odes

and we investigate this fat in Setion 5.

Example 4.2.16. The following is a (19, 24, 10)2-nonlinear ode.

Furthermore

∑3
i=0

⌈
10
2i

⌉
= 20.

C = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0),
(1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1),

(0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0), (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0),

(1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1), (1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1),

(1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1), (0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1),

(1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0), (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1),

(1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0), (0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1),

(0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0), (0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0)}

56

4.3. Lower bounds

4.3 Lower bounds

There are fewer lower bounds presented in literature, as lower bounds are often

tied to partiular onstrutions of odes. For example, if a ode with a given length

n and minimum distane d is produed, its size beomes a lower bound on the ode

size.

4.3.1 The Gilbert-Varshamov lower bound

Theorem 4.3.1 (Gilbert-Varshanov bound).

Aq(n, d) ≥
qn

|Bn
d−1|

Proof. Let C be a ode of length n and minimumHamming distane d having maximal

size:

|C| = Aq(n, d).

Let y ∈ Fn
q be arbitrary. If y in is not in Bn

d−1(x) for all x ∈ C then d(x, y) ≥ d for

every x ∈ C. Thus C∪{y} is a ode C ′
of distane d, length n and |C ′| = Aq(n, d)+1,

whih is impossible. Thus y ∈ Bn
d−1(x) for some x ∈ C.

Therefore, the union of all balls of radius d − 1 entered in all odewords of C must

over all Fn
q . Hene we dedue:

|Fn
q | = | ∪x∈C Bn

d−1(x)|

≤
∑

x∈C
|Bn

d−1(x)|

= |C|
d−1∑

j=0

(
n

j

)

(q − 1)j

That is:

Aq(n, d) ≥
qn

∑d−1
j=0

(
n
j

)
(q − 1)j

(using the fat |Fn
q | = qn).

57

A generalization of the Griesmer bound to

systemati odes

In this setion we want to prove that the Griesmer bound applies also to systemati

odes in the following ases:

� q ≥ d

� d = 1, 2, 3, 4

� q = 2, d = 5, 6

5.1 The Griesmer bound

From now on let q be the power of a prime number, and n, k, d three integers suh

that a [n, qk, d]q systemati ode exists.

Theorem 5.1.1 (Griesmer bound). Let n be suh that there exists an [n, qk]q linear

ode with distane at least d. Then

n ≥
k−1∑

j=0

⌈
d

qj

⌉

.

Lemma 5.1.2. If k = 1, then for eah q, n, d suh that a systemati ode C exists,

then

n ≥
k−1∑

j=0

⌈
d

qj

⌉

.

Proof. For k = 1 we have

∑k−1
j=0

⌈
d
qj

⌉

= d, and learly n ≥ d.

In the following setions let C be a [n, qk, d]q systemati ode, with k ≥ 2, suh

that 0 ∈ C, and let us indiate a word of C as c = (c̄, c̃), where c̄ is the systemati

part of c and c̃ is the nonsystemati part of c.

CGC 59

Chapter 5. A generalization of the Griesmer bound to systemati odes

5.2 The ase q ≥ d

Theorem 5.2.1. If q ≥ d, for all k ≥ 2, there exists no q_ary systemati ode suh

that n <
∑k−1

i=0 ⌈ dqi ⌉.
Proof. If q ≥ d we have that ⌈ d

qi
⌉ = 1 for all i ≥ 1, and so:

k−1∑

i=0

⌈ d
qi
⌉ = d+ ⌈d

q
⌉ + · · ·+ ⌈ d

qk−1
⌉ = d+ k − 1

But we also have, by the Singleton bound, that n ≥ d+ k − 1.

5.3 The ase d = 1, 2, 3, 4

Theorem 5.3.1. If d = 1, 2, than for all k ≥ 2, there exists no q_ary systemati

ode suh that n <
∑k−1

i=0 ⌈ d
qi
⌉.

Proof. If d = 1, 2 we have q ≥ d an so we are in the hypothesis of Theorem 5.2.1.

Theorem 5.3.2. If d = 3, 4, then for all k ≥ 2, there exists no q_ary systemati

ode suh that n <
∑k−1

i=0 ⌈ d
qi
⌉.

Proof. If d = 3 and q ≥ 3 or d = 4 and q ≥ 4 then we are in the hypothesis of

Theorem 5.2.1.

Otherwise, if d = 3 and q = 2 or d = 4 and q = 2, 3 then we have that ⌈d
q
⌉ = 2

and ⌈ d
qi
⌉ = 1 for all i ≥ 2, and so:

k−1∑

i=0

⌈ d
qi
⌉ = d+ ⌈d

q
⌉+ · · ·+ ⌈ d

qk−1
⌉ = d+ k

Suppose by ontradition that n < d+k. It is enough to prove the ase n = d+k−1.

Then n−k = d−1. Sine 0 ∈ C, if we onsider two di�erent words c1 = (c̄1, c̃1), c2 =

(c̄2, c̃2) suh that w(c̄1) = w(c̄2) = 1, then w(c̃1) = w(c̃2) = d − 1 and, if q = 2 then

c̃1 = c̃2 = (1, . . . , 1), and so d(c1, c2) ≤ 2, ontradition. There is only one ase left,

whih is the ase q = 3 and d = 4. In this ase, sine k ≥ 2, we have at least 9 words

in C. Consider the following four words:

c0 = (c̄0, c̃0) =(0 . . . 0000, 0 . . .0)

c1 = (c̄1, c̃1) =(0 . . . 0001, c11c12c13)

c2 = (c̄2, c̃2) =(0 . . . 0002, c21c22c23)

c3 = (c̄3, c̃3) =(0 . . . 0010, c31c32c33)

60

5.4. The ase q = 2 and d = 5, 6

Sine the distane between c1, c2, c3 from c0 must be greater than d, then c̃1, c̃2, c̃3

must have weigth 3. c11, c12, c13 an be any ombination of 1 and 2, let us suppose

(c11, c12, c13) = (111). Then, to have d(c1, c2) ≥ 4, we must have (c21, c22, c23) = (222).

And for the same reason (c31c32c33) must di�er from (c11c12c13) and from (c21c22c23)

in at least two positions at the same time, but this is not possible.

5.4 The ase q = 2 and d = 5, 6

Theorem 5.4.1. For k = 2, there exists no binary systemati ode suh that n <
∑k−1

i=0 ⌈ d
2i
⌉ for d = 5, 6.

Proof. If k = 2 then

∑1
i=0⌈ d

2i
⌉ = d + ⌈d

2
⌉ = d + 3. Suppose by ontradition that

n < d + 3. It is enough to prove the ase n = d + 2. Consider two di�erent words

c1 = (c̄1, c̃1), c2 = (c̄2, c̃2) suh that w(c̄1) = w(c̄2) = 1, then w(c̃1) = w(c̃2) ≥ d − 1.

Sine n− k = d, then d(c̃1, c̃2) ≤ 2 and thus d(c1, c2) ≤ 4.

Theorem 5.4.2. For all k ≥ 3, there exists no binary systemati ode suh that

n <
∑k−1

i=0 ⌈ d
2i
⌉ for d = 5, 6.

Proof. If d = 5, 6, we have that ⌈d
2
⌉ = 3, ⌈d

4
⌉ = 2 and ⌈ d

2i
⌉ = 1 for all i ≥ 3, and so:

k−1∑

i=0

⌈ d
2i
⌉ = d+ ⌈d

2
⌉+ ⌈d

4
⌉+ · · ·+ ⌈ d

2k−1
⌉ = d+ 5 + k − 3 = d+ k + 2

Suppose by ontradition that n < d+k+2. It is enough to prove the ase n = d+k+1,

so that n− k = d+ 1. Let us onsider the following �ve words:

c0 = (c̄0, c̃0) =(0 . . . 0000, 0 . . .0)

c1 = (c̄1, c̃1) =(0 . . . 0001, c11 . . . c1,d+1)

c2 = (c̄2, c̃2) =(0 . . . 0010, c21 . . . c2,d+1)

c3 = (c̄3, c̃3) =(0 . . . 0011, c31 . . . c3,d+1)

c5 = (c̄5, c̃5) =(0 . . . 0101, c51 . . . c5,d+1)

We want to show that there is no way to assign 0 or 1 to the cij to obtain distane d

between these �ve words. Let us do the following onsiderations:

1. to have d(c1, c0) = w(c1) ≥ d and d(c2, c0) = w(c2) ≥ d, it must be that

w(c̃1),w(c̃2) ≥ d− 1. Clearly it is not possible that w(c̃1),w(c̃2) ≥ d, otherwise

d(c1, c2) ≤ 4. So, wlog, we have only one of the two following ases:

(a) either w(c̃1) = d and w(c̃2) = d− 1,

61

Chapter 5. A generalization of the Griesmer bound to systemati odes

(b) or w(c̃1) = w(c̃2) = d− 1.

2. to have w(c3),w(c5) ≥ d, it must be that w(c̃3),w(c̃5) ≥ d− 2.

Consider the ase (1.a). Sine d(c̄1, c̄3) = 1 and w(c̃1) = d, the only way to have

distane at least d between c0, c1, c3 (modulo the permutation of the olums) is to

assign the following values to c1, c3:

c0 = (c̄0, c̃0) =(0 . . . 0000, 000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 011111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, c21 . . . c2,d+1)

c5 = (c̄5, c̃5) =(0 . . . 0101, c51 . . . c5,d+1)

in ase d = 5 and:

c0 = (c̄0, c̃0) =(0 . . . 0000, 0000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 0111111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 1111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, c21 . . . c2,d+1)

c5 = (c̄5, c̃5) =(0 . . . 0101, c51 . . . c5,d+1)

in the ase d = 6.

This allows to have d(c̃1, c̃3) = d−1, whih is the only we an reah in our onditions.

Now onsider c2. c̃1 has only a zero and d ones, and c̃2 has d − 1 ones, whih are

either in the same postitions of the ones in c̃1 (this ase is impossible beause otherwise

d(c̃1, c̃2) = 1 =⇒ d(c1, c2) = 3) or c21 = 1. Sine w(c2) = d, there remain d bits

to be �lled in c̃2, and d − 2 of this bit must be ones and the other 2 zeros. Sine

c31 = c21 = 1, to have d(c̃3, c̃2) ≥ d − 1, at least d − 1 of the d rightmost bits must

di�er. Thus we have the following situation in ase d = 5:

c0 = (c̄0, c̃0) =(0 . . . 0000, 000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 011111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, 100111)

c5 = (c̄5, c̃5) =(0 . . . 0101, c51 . . . c56)

62

5.4. The ase q = 2 and d = 5, 6

and in the following situation in ase d = 6:

c0 = (c̄0, c̃0) =(0 . . . 0000, 0000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 0111111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 1111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, 1001111)

c5 = (c̄5, c̃5) =(0 . . . 0101, c51 . . . c57)

Now, c̃5 must be suh that w(c̃5) ≥ d−2 and d(c̃5, c̃1) ≥ d−1. Thus in c̃5 there must

be at most d+ 1− (d− 2) = 3 zero omponents, whih is a ontradition beause, in

the ase d = 5, if:

c0 = (c̄0, c̃0) =(0 . . . 0000, 000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 011111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, 100111)

c5 = (c̄5, c̃5) =(0 . . . 0101, 100011)

or, in the ase d = 6, if:

c0 = (c̄0, c̃0) =(0 . . . 0000, 0000000)

c1 = (c̄1, c̃1) =(0 . . . 0001, 0111111)

c3 = (c̄3, c̃3) =(0 . . . 0011, 1111000)

c2 = (c̄2, c̃2) =(0 . . . 0010, 1001111)

c5 = (c̄5, c̃5) =(0 . . . 0101, 1000111)

then d(c2, c5) = 4.

Let us try now with ase (1.b), so that we know w(c̃1) = w(c̃2) = d − 1. We also

have that d(c̃1, c̃2) ≥ d − 2, and at the same time d(c̃1, c̃2) an only be 0, 2, 4, sine

there are only two zeros omponents both in c̃1 and in c̃2, and c1 and c2 have the

same parity. Sine d − 2 > 2, then d(c̃1, c̃2) must be 4 and the only hoie (modulo

permutation of the olumns) for c̃1, c̃2 is:

c0 = (c̄0, c̃0) =(0 . . . 0000, 000000|0)
c1 = (c̄1, c̃1) =(0 . . . 0001, 001111|1)
c2 = (c̄2, c̃2) =(0 . . . 0010, 111100|1)
c4 = (c̄4, c̃4) =(0 . . . 0100, c41 . . . c4,d+1)

c3 = (c̄3, c̃3) =(0 . . . 0011, c31 . . . c3,d+1)

63

Chapter 5. A generalization of the Griesmer bound to systemati odes

where the rightmost omponent exists only in the ase d = 6.

Now onsider c4, whih must be suh that w(c̃4) = d − 1 (it an not be d or d + 1,

otherwise we would be in a similar ase to (1.a)), so that it has two zero omponents

whih, using a reasoning similar to that for c̃1 and c̃2, to have d(c̃1, c̃4) = d(c̃4, c̃2) = 4,

must be positioned as follows:

c0 = (c̄0, c̃0) =(0 . . . 0000, 000000|0)
c1 = (c̄1, c̃1) =(0 . . . 0001, 001111|1)
c2 = (c̄2, c̃2) =(0 . . . 0010, 111100|1)
c4 = (c̄4, c̃4) =(0 . . . 0100, 110011|1)
c3 = (c̄3, c̃3) =(0 . . . 0011, c31 . . . c3,d+1)

Now, c3 is suh that w(c̃3) ≥ d− 2.

w(c̃3) = d+ 1 or w(c̃3) = d is not possible, otherwise we would have d(c3, c1) ≤ 4.

w(c̃3) = d − 1 is not possible in the ase d = 6, beause, having only two zeros the

value d(c3, c1) an be at most 5.

In the ase d = 5, if w(c̃3) = d− 1, to have d(c3, c1) ≥ 5 the two leftmost omponent

of c̃3 must be the same as the two leftmost omponent of c̃2 and of c̃4, whih are ones,

giving either d(c3, c2) = 5 and d(c3, c4) = 3, or d(c3, c2) < 5, whih is a ontradition.

It remains to prove that w(c̃3) 6= d − 2. In this ase, again, to have d(c3, c1) ≥ d

the two leftmost omponent of c̃3 must be the same as the two leftmost omponent

of c̃2 and of c̃4, whih are ones, obtaining atually d(c3, c1) = 6. In the remaining

omponents of c̃3 there must be three zeros. If these three zeros are in the same

positions where the leftmost ones of c̃2 are, then d(c3, c2) = d and d(c3, c4) ≤ 4.

Otherwise d(c3, c2) < d.

This ompletes our proof.

64

A new bound on the size of odes

Partial results in this hapter have been presented at WCC 2013, Bergen, while a

full updated manusript an be found in [BGS14℄.

In this hapter we present one (losed-formula) bound (Bound A) for a large part

of non-linear odes (inluding all systemati odes), whih is an improvement of a

bound �rst introdued by Zinoviev and Litsyn ([ZL84℄), and then applied by Litsyn

and Laihonen ([LL98℄). The rux of our improvement is a preliminary result presented

in Setion 6.1, while in Setion 6.2 we are able to prove Bound A. Then we restrit

Bound A to the systemati/linear ase and ompare it with many lassial upper

bounds by omputing their values for a large set of parameters (orresponding to

about one week of omputations with our omputers). Our �ndings are in favour of

Bound A and are reported in Setion 6.3. For large values of q, our bound provides

the best value in the majority of ases.

The only losed-formula bound we never beat is Plotkin's, but its range is very small

(it must be d > n(1− 1/q)), whih it beomes barely appliable for large q's.

For standard de�nitions and known bounds, the reader is direted to the original

artiles or to any reent good book, e.g. [HP03℄ or [PBH98℄.

6.1 A �rst result for a speial family of odes

Reall that Aq(n, d) denotes the maximum number of odewords in a ode over

Fq of length n and minimum distane d.

If we have extra onstraints on the weight of the odewords, then the maximum

number of odewords an be smaller than Aq(n, d). The following result is an example

and it will be instrumental for the proof of Bound A.

Proposition 6.1.1. Let C be an (n, |C|, d)q-ode. Let ǫ ∈ N and ǫ ≥ 1 be suh that

for any c ∈ C we have w(c) ≥ d+ ǫ. Then

|C| ≤ Aq(n, d)−
|Bn

ǫ |
|Bn

d−1|
.

Proof. Let C be the ode satisfying our hypothesis. C belongs to the set of all odes

with distane d that are ontained in the ball exterior Fn \Bn
d+ǫ−1(0). Let D be any

CGC 65

Chapter 6. A new bound on the size of odes

ode of the largest size in this set, then |C| ≤ |D|.
Clearly, any odeword c of D has weight w(c) ≥ d + ǫ. Consider also D̄, the largest

ode in Fn
of distane d and suh that D ⊆ D̄. By de�nition, the only odewords of

D̄ of weight greater than d+ ǫ− 1 are those of D, while all other odewords of D̄ are

on�ned to the ball Bn
d+ǫ−1(0). Thus:

|C| ≤ |D| ≤ |D̄| ≤ Aq(n, d)

and

D̄ \D ⊆ Bn
d+ǫ−1(0).

Let ρ = d− 1 and r = d+ ǫ− 1, so that r− ρ = ǫ, and let N = D̄ ∩Bn
r (0). We have:

D = D̄ \N, |D| = |D̄| − |N |. We are searhing for a lower bound on |N |, in order to

have an upper bound on |D|.
We start with proving Bn

r−ρ(0) ⊆
⋃

x∈N B
n
ρ (x). Consider y ∈ Bn

r−ρ(0). If for all x ∈ N
we have that y /∈ Bn

ρ (x), then y is a vetor whose distane from N is at least ρ + 1.

Sine y ∈ Bn
r−ρ(0), also its distane from D̄ \ N is at least ρ + 1. Therefore, the

distane of y from the whole D̄ is at least ρ + 1 = d and so we an obtain a new

ode D̄∪{y} ontaining D and with distane d, ontraditing the fat that |D̄| is the
largest size for suh a ode in Fn

.

So, our laim must hold, and its onsequene is:

|N | · |Bn
ρ (x)| ≥ |Bn

r−ρ(0)| ,
whih gives:

|N | ≥ |B
n
r−ρ(0)|
|Bn

ρ (x)|
=
|Bn

ǫ (0)|
|Bn

d−1(x)|
.

Using previous observations, we obtain the desired bound:

|C| ≤ |D| = |D̄| − |D̄ ∩ Bn
d+ǫ−1(0)|

≤ Aq(n, d)−
|Bn

ǫ (0)|
|Bn

d−1(x)|
.

Note that if C is a linear ode then Proposition 6.1.1 is not diretly appliable,

sine we would have ǫ = 0 (but it might still be appliable by translating the ode

with a suitable vetor). Note also that the theorem is speially interesting when

|Bn
ǫ |/|Bn

d−1| is large, although any positive value of ǫ would give (in the worst ase)

an upper bound of Aq(n, d)− 1, sine we an obviously write

|C| ≤ Aq(n, d)− ⌈
|Bn

ǫ |
|Bn

d−1|
⌉ .

66

6.2. An improvement of the ZLL bound

6.2 An improvement of the ZLL bound

In 1998 Litsyn and Laihonen prove a bound for non-linear odes: Theorem 1 of

[LL98℄, whih we write with our notation as follows.

Theorem 6.2.1 (Zinoviev-Litsyn-Laihonen bound). Let 1 ≤ d ≤ n. Let t ∈ N be

suh that t ≤ n− d. Let r ∈ N be suh that 0 ≤ r ≤ t and 0 ≤ r ≤ 1
2
d. Then

Aq(n, d) ≤
qt

|Bt
r|
Aq(n− t, d− 2r).

Note that t ≤ n− d implies d − 2r ≤ n − t so that the value Aq(n− t, d − 2r) is

meaningful.

Let C be an (n, |C|, d)q-ode, let k = ⌊logq(|C|)⌋. We say that C is systemati-

embedding if C ontains a systemati ode D with size |D| = qk. Obviously, a

systemati ode is systemati-embedding with D = C. Moreover, if the ode is linear

then k is the dimension of C.

All known families of maximal odes are either systemati odes or systemati-

embedding odes (see e.g., [Pre68℄, [Ker72℄ and [BvLW83℄).

De�nition 6.2.2. We denote with A∗
q(n, d) the maximum number of odewords that

an (n, |C|, d)-systemati-embedding ode an ontain.

Although we an only say that A∗
q(n, d) ≤ Aq(n, d), there are no known ounterex-

amples to A∗
q(n, d) = Aq(n, d).

We are ready to show a strengthening of Theorem 6.2.1 restrited to systemati-

embedding odes: Bound A. In the proof we follow initially the outline of the proof

of [LL98℄[Theorem 1℄ and then we apply Proposition 6.1.1.

Theorem 6.2.3 (Bound A). Let 2 ≤ d ≤ n. Let t ∈ N be suh that t ≤ n − d. Let
r ∈ N be suh that 0 ≤ r ≤ t and 0 ≤ r ≤ 1

2
d. Let C be any (n, |C|, d)q-systemati-

embedding ode suh that |C| = A∗
q(n, d). Let t ≤ k = ⌊logq(|C|)⌋. Then

A∗
q(n, d) ≤
qt

|Bt
r|

(

Aq(n− t, d− 2r)− |Bn−t
r |

|Bn−t
d−2r−1|

+ 1

)

.

Proof. We onsider an (n, |C|, d)-systemati-embedding ode C s.t. |C| = A∗
q(n, d).

We number all words in C in any order:

C = {ci | 1 ≤ i ≤ A∗
q(n, d)}.

We indiate the i-th odeword with ci = (ci,1, . . . , ci,n). We punture C as follows:

67

Chapter 6. A new bound on the size of odes

(i) we hoose any t olumns among the k olumns of the systemati part of C,

1 ≤ j1, . . . , jt ≤ n; sine two odes are equivalent w.r.t. olumn permutations

we an suppose j1 = 1, . . . , jt = t.

Let us split eah odeword ci ∈ C in two parts, ci = (c̃i, c̄i), with:

c̃i = (ci,1, . . . , ci,t), c̄i = (ci,t+1, . . . , ci,n).

(ii) We hoose a z ∈ Ft
.

(iii) We ollet in I all i's s.t. d(z, c̃i) ≤ r;

(iv) We delete the �rst t omponents of {ci | i ∈ I}.

Then the puntured ode C̄z obtained by (i),(ii),(iii), (iv) is:

C̄z = {c̄i | i ∈ I} = {c̄i | 1 ≤ i ≤ A∗
q(n, d), d(z, c̃i) ≤ r}.

We laim that we an hoose z in suh a way that C̄z is equivalent to a ode with the

following properties:

n̄ = n− t (6.1)

d̄ ≥ d− 2r (6.2)

|C̄z| ≥
|C|
qt
|Bt

r| (6.3)

w(c̄i) ≥ d− r for all c̄i 6= 0. (6.4)

(6.1) is obvious.

As regards (6.2), note that d(ci, cj) = d(c̃i, c̃j) + d(c̄i, c̄j) ≥ d and also that c̃i, c̃j ∈
Bt

r(z) implies d(c̃i, c̃j) ≤ 2r. Therefore

2r + d(c̄i, c̄j) ≥ d(c̃i, c̃j) + d(c̄i, c̄j) ≥ d

for any i 6= j. The proof of (6.3) is more involved and we need to onsider the average

number M of the i's suh that c̃i happens to be in a sphere of radius r entered at a

�xed word in Ft
. The average is taken over all sphere enters, that is, all vetors x's

in Ft
, so that

M =
1

|Ft|
∑

x∈Ft

|{i | 1 ≤ i ≤ A∗
q(n, d), c̃i ∈ Bt

r(x)}| .

Let us de�ne a funtion:

ψ : Ft × Ft −→ {0, 1}, ψ(x, y) =
{

1, d(x, y) ≤ r

0, otherwise

.

68

6.2. An improvement of the ZLL bound

Then we an write M and |Bt
r(y)| (∀y ∈ Ft

) as

M =
1

qt

∑

x∈Ft

A∗
q(n,d)∑

i=1

ψ(x, c̃i) and |Bt
r(y)| =

∑

x∈Ft

ψ(x, y) .

By swapping variables we get:

M =
1

qt

∑

x∈Ft

A∗
q(n,d)∑

i=1

ψ(x, c̃i) =

=
1

qt

A∗
q(n,d)∑

i=1

∑

x∈Ft

ψ(x, c̃i) =
A∗

q(n, d)

qt
|Bt

r(c̃i)| .

This means that there exists x̂ ∈ Ft
suh that:

|{i | 1 ≤ i ≤ A∗
q(n, d), c̃i ∈ Bt

r(x̂)}| ≥M ≥ A∗
q(n, d)

qt
|Bt

r| .

In other words, there are at least

|C|
qt
|Bt

r| ci's suh that their c̃i's are ontained in

Bt
r(x̂). Distint ci's may well give rise to the same c̃i's, but they always orrespond

to distint c̄i's (see the proof of (6.2)), so there are at least
|C|
qt
|Bt

r| (distint) c̄i's suh
that their orresponding c̃i's fall in B

t
r(x̂). By hoosing z = x̂ we then have at least

|C|
qt
|Bt

r| (distint) odewords of C̄z and so (6.3) follows.

We laim that (6.4) holds if 0 ∈ C and z = 0. In fat:

w(c) = d(0, c) ≥ d, ∀c ∈ C suh that c 6= 0, and

z = 0 =⇒ y ∈ Bt
r(z) ⇐⇒ w(y) ≤ r.

As a onsequene, any nonzero odeword ci = (c̃i, c̄i) of weight at most r in c̃i has

weight at least d− r in the other n− t omponents.

If 0 /∈ C or z 6= 0 we onsider a ode C+v equivalent to C, by hoosing the translation

v in the following way. By hypothesis of systemati-embedding there exists ĉ ∈ C

suh that its �rst t oordinates form the vetor x̂. By onsidering v = ĉ we obtain

the desired ode, thus (6.4) is proved.

Now we allX the largest (n̄, |X|, d−2r)-ode ontaining the zero odeword and suh

that w(x̄) ≥ d− r = (d−2r)+ r, ∀x̄ ∈ X . Observe that X satis�es (6.1), (6.2), (6.3),

(6.4) and so |X| ≥ |C̄z|. Then we an apply Proposition 6.1.1 to X \ {0} and ǫ = r,

and obtain the following hain of inequalities:

|C|
qt
|Bt

r| ≤ |C̄z| ≤ |X| ≤ Aq(n̄, d− 2r)− |Bn̄
r |

|Bn̄
d−2r−1|

+ 1,

and sine |C| = A∗
q(n, d) we have the bound:

A∗
q(n, d) ≤

qt

|Bt
r|

(

Aq(n̄, d− 2r)− |Bn̄
r |

|Bn̄
d−2r−1|

+ 1

)

.

69

Chapter 6. A new bound on the size of odes

Note that Bound A is trivial if r ≤ d−2r−1. Note also that it may be generalized

to any alphabet.

6.2.1 Restrition to the systemati ase

When we restrit ourselves to the systemati/linear ase, then the maximum num-

ber of odewords of a ode of length n and distane d an only be a power of q, and

if the dimension of the ode C is k, then the value A∗
q(n, d) is replaed by qk. By

hoosing t = k in Theorem 6.2.3 we have the following:

Corollary 6.2.4 (Bound B). Let k, d, r ∈ N, d ≥ 2, k ≥ 1. Let n be suh that there

exists an (n, qk)q-systemati ode C with distane at least d.

If 0 ≤ r ≤ d
2
, then:

|Bk
r | ≤ Aq(n− k, d− 2r)− |Bn−k

r |
|Bn−k

d−2r−1|
+ 1.

6.2.2 Theoretial omparison with the ZLL bound

In the systemati/linear ase the Zinoviev-Litsyn-Laihonen bound beomes:

|Bk
r | ≤ Aq(n− k, d− 2r).

The ase d ≤ 2 is trivial.

The �rst interesting omputations an be done in the ase d = 3, sine in this ase r

an take the value 1, so that:

� |Bk
1 | = (q − 1)k + 1,

� Aq(n− k, d− 2r) = Aq(n− k, 1) = qn−k
,

� |Bn−k
1 | = (q − 1)(n− k) + 1,

� |Bn−k
d−2r−1| = |Bn−k

0 | = 1.

Our bound then redues to:

0 ≤ qn−k − (q − 1)n− 1 ,

and so it is stronger than the Zinoviev-Litsyn-Laihonen bound, whih redues to:

0 ≤ qn−k − (q − 1)k − 1 .

For d > 3 and when restrited to the linear/systemati ase, Bound B and the

Zinoviev-Litsyn-Laihonen bound are very lose. This happens beause

⌊logq(A−
|Bn−k

r |
|Bn−k

d−2r−1|
+ 1)⌋ ≈ ⌊logq(A)⌋

70

6.3. Experimental omparisons: linear ase

where A = Aq(n− k, d− 2r), sine the �oor funtion uts o� the di�erene between

the two bounds.

To have a fair omparison, the two bounds should be studied in the nonlinear ase.

Here it is lear that Bound B beats the Zinoviev-Litsyn-Laihonen bound if and only

if:

qt

|Bt
r|

(

|Bn−k
r |

|Bn−k
d−2r−1|

− 1

)

≥ 1.

Sine

qt

|Bt
r|
≥ 1 we only need that |Bn−k

r | ≥ 2|Bn−k
d−2r−1|, whih is:

r∑

j=0

(
n− t
j

)

(q − 1)j ≥ 2

d−2r−1∑

j=0

(
n− t
j

)

(q − 1)j.

For this inequality to hold it is su�ient that r ∼ (d− 1)/2 (sine 0 ≤ r ≤ d
2
) with d

large enough.

6.3 Experimental omparisons: linear ase

We have analyzed the ase of linear odes, implementing Bound B. The algorithm
to ompute the bound takes as inputs n, d, and returns the largest k (heks are done

until k = n − d + 1) suh that the inequality of the bound holds. If the inequality

always holds in this range, n−d+1 is returned. Then we ompared our upper bound

on k with other bounds, restriting those holding in the general non-linear ase to the

systemati ase. In partiular, they provide a bound on Aq(n, d) instead of a bound

on k. As a onsequene, for example, if the Johnson bound returns the value Aq(n, d)

for a ertain pair (n, d), then we ompare our bound with the value ⌊logq(Aq(n, d))⌋,
whih is the largest power s of q suh that qs ≤ Aq(n, d).

The inequality in Theorem 6.2.4 involves the value Aq(n − k, d − 2r), whih is the

maximum number of odewords that we an have in a non-linear ode of length

n − k and distane d − 2r. To implement Bound B it is neessary to ompute

Aq(n − k, d − 2r); when this value is unknown (we use known values only in the

binary ase for n = 3, . . . , 28, d = 3, . . . , 16), we return instead an upper bound on

it, hoosing the best among the Hamming (Sphere Paking), Singleton, Johnson, and

Elias bound (the Plotkin bound is used when possible). Even though the Levenshtein

bound is a very strong bound, we do not use it beause it performs very slow as n

grows, and neither we use the Linear Programming bound. This means that if better

values of Aq(n − k, d − 2r) an be found, then Bound B ould return even tighter

results.

Table 6.1 and 6.2 show a omparison between all bounds' performane, exept for

Plotkin's, due to its restrited range. For eah bound and for eah q power of a

71

Chapter 6. A new bound on the size of odes

prime in the range {2, . . . , 29} we have omputed, for all values n = 3, . . . , 100 and

d = 3, . . . , n − 1, the perentage of ases where Bound B is the �best� known bound

among the Griesmer, Johnson, Levenshtein, Elias, Hamming, Singleton bound, and

Bound B. Both wins and draws are ounted in the perentage, sine more than one

bound may reah the best known bound, and in this ase we inreased the perentage

of eah best bound. Up to q = 7 the Levenshtein bound is the most performing

bound. From 9 ≤ q ≤ 29 we have that Bound B is the most performing bound, and

in the ase q = 29 it is the best known bound almost 91% of the times.

It an be shown that there are some ases where Bound B is tight, as for the param-

eters (17, 7)9, for whih there exists a ode with dimension 10.

The �rst line of Tables 6.3, and 6.4 give emphasis to the perentage of times Bound

B improves the best known bound (thus the ases where it beats all other bounds).

In the onsidered range, Bound B starts to beat all other bounds from q = 7. The

seond line represents the perentage of the ties.

The third row of Tables 6.3 and 6.4 shows how many times (perentage over the

number of draws and wins) the value δ = ⌊ |B(r,n−k)|
|B(d−2r−1,n−k)|⌋ is di�erent from zero. In-

formally, we an view δ as the probability to randomly pik up a odeword of weight

less than r from a ball of radius d−2r−1. We an notie that this perentage is very

high, whih means that a weaker version of Bound B, whih is similar to the Zinoviev-

Litsyn-Laihonen bound for systemati odes, ould be used, by simply searhing the

largest k satisfying:

|Bk
r | ≤ Aq(n− k, d− 2r) + 1

It is urious to notie that in all the wins we have δ = 0, and that δ = 0 also 38094

times over the 46967 ties and wins. This means that the weaker version of Bound B
is su�ient to obtain most of the wins and ties in the investigated ases.

Comparisons have been made using inner MAGMA ([MAG℄) implementations of

known upper bounds, exept for the Johnson bound. For this bound we noted that

the inner MAGMA implementation ould be improved.

6.4 Experimental omparisons: nonlinear ase

Sine systemati-embedding odes are a subset of nonlinear odes, an upper bound

on a systemati-embedding ode implies an upper bound on a nonlinear ode. Clearly

nothing an be said in the opposite ase. So we an ompare Bound A with other

bounds on nonlinear odes, suh as the Linear Programming bound. In Table 6.5

some of these omparison are reported. In the �rst and the third rows it an be seen

that Bound A ties with the Linear Programming bound, whih is beaten in all the

other rows. Also a bound from Shrijver ([Sh05℄) is beaten for A2(20, 8), even though

72

6.5. Tables

q 2 3 4 5 7 8 9 11

B 38.0 31.2 31.2 32.0 40.7 48.6 55.3 66.4

J 40.6 31.1 33.5 35.1 35.7 35.5 35.1 33.3

H 18.1 15.6 16.4 16.4 16.0 15.9 15.6 14.7

G 56.3 39.8 32.3 29.1 30.9 37.0 43.3 55.2

L 72.6 69.7 66.3 64.0 60.8 58.2 54.5 46.3

E 6.9 32.2 38.2 40.0 40.8 40.1 37.2 31.4

S 0.0 0.02 0.08 0.19 0.61 0.93 1.24 3.62

Table 6.1: When eah bound is the best for 2 ≤ q ≤ 11.

q 13 16 17 19 23 25 27 29

B 76.4 81.6 82.8 85.4 88.1 88.7 89.4 90.8

J 30.8 26.6 24.9 21.9 17.1 15.5 14.4 13.3

H 13.6 11.9 11.3 10.1 8.27 7.55 7.05 6.61

G 63.4 71.9 72.3 71.9 69.8 69.4 68.7 67.9

L 40.0 32.9 30.7 27.5 22.6 20.7 19.4 18.4

E 27.0 21.8 20.0 17.6 12.5 10.8 9.66 8.69

S 4.44 4.63 6.99 6.71 10.1 12.0 14.1 18.0

Table 6.2: When eah bound is the best for 13 ≤ q ≤ 29.

for these values it is known that the best known bound is 256 from Brouwer's tables

([Broa℄). Finally an improvement in the ternary ase of [Brob℄ is given in the last

row.

6.5 Tables

The following tables show the results omputed in the range n = 3, . . . , 100,

d = 3, . . . , n− 1.

In Tables 6.1 and 6.2 the following letters have the following meaning: J for Johnson,

H for Hamming, G for Griesmer, L for Levenshtein, E for Elias, S for Singleton, and

B for our bound. In Table 6.5 the following letters have the following meaning: S

for Shrijver bound [Sh05℄, LP for the Linear Programming bound, and BR for the

bound in Brouwer's tables ([Broa℄, [Brob℄).

73

Chapter 6. A new bound on the size of odes

q 2 3 4 5 7 8 9 11

W 0 0 0 0 0.19 1.05 1.83 3.96

D 38.0 31.2 31.2 32.0 39.9 47.6 53.5 62.4

δ =

0

44.7 71.1 61.8 59.8 68.8 74.2 79.7 85.4

Table 6.3: Statistis for Bound B for 2 ≤ q ≤ 11.

q 13 16 17 19 23 25 27 29

W 3.51 4.21 5.11 7.57 14.7 17.6 19.8 21.2

D 72.9 77.4 77.7 77.8 73.4 71.1 69.6 69.6

δ =

0

88.0 88.5 88.5 88.3 85.0 83.0 80.9 78.6

Table 6.4: Statistis for Bound B for 13 ≤ q ≤ 29.

q n d A S LP BR

2 19 8 145 142 145 135

2 20 8 271 274 290 256

2 22 10 95 87 95 84

2 25 10 537 503 551 466

2 26 10 933 886 1040 836

3 16 3 1240029 - - 1304424

Table 6.5: Some relevant nonlinear omparison.

74

Part III

Polynomials tehniques for minimum

weight problems

75

Introdution

In this hapter we analyse two algorithms from [Gue09℄ (also in [GS07℄, [GOS10℄,

[GOS09℄) and [Sim07℄ (also in [Sim09℄, [SS07b℄, [SS07a℄). The �rst one is used to

ompute the minimum weight of a systemati ode (and an be easily extended to

ompute the distane of a systemati ode), the seond to ompute the nonlinearity

of a Boolean funtion. They are basially the same algorithm, whih redue both

problems to the problem of solving a polynomial system of equations over a �nite

�eld to �nd all the odewords with weight less than or equal to a ertain quantity.

We �rst generalize the �rst method to work for any nonlinear ode and then make

some onsideration on the omplexity of the algorithm.

We also provide two di�erent and new algorithms to ompute the minimum weight

of a binary ode and the nonlinearity of a B.f. . The �rst of these algorithms redues

again the two problems to the problem of solving a polynomial system of equations,

though de�ned over the rationals or over big prime �elds instead of the �nite �eld F2,

and with a very di�erent struture from the previous one. The seond method takes

advantage of fast Fourier tehniques, yielding an easy analysis of its omplexity and

turning out to be a very e�ient solution to solve the two problems, even ompared

to known results.

CGC 77

Computing the minimum weight of a ode

The omputation of the minimum weight and of the minimum distane of a ode

are neessary in order to establish the error-orretion apability of the ode.

If C is linear, it is easy to show that the minimum weight oinides with the minimum

distane and the Brouwer-Zimmerman minimum weight probabilisti algorithm for

linear odes over �nite �elds [Zim96℄ an be used (or any of its variations, suh as

[CC98℄).

Algorithms to solve the deoding problem for a random linear ode whih are faster

than brute-fore are known, see for example [BJMM12℄, [Pet10℄, and [BLP11℄. These

randomized Las Vegas type algorithms, are known as Information Set Deoding al-

gorithms. The most performing one is [BJMM12℄, whih has an asymptoti running

time of 20.04934n ∼ 2n/20.

In the nonlinear ase the minimum weight and the minimum distane may be di�er-

ent. For nonlinear odes with large kernel some algorithms are known whih perform

better than brute fore ([PVZ12℄), but in general, we are not aware of any e�ient

algorithm to ompute the two parameters. In partiular, to ompute the minimum

weight of a generi binary (n, 2k)-nonlinear ode with brute fore we need to perform

O(n2k) bit operations and to store O(n2k) bits.

The main result of this hapter is a deterministi algorithm to ompute the minimum

weight of any random binary ode represented as a set of B.f. in numerial normal

form (NNF).

In Setion 7.2 and 7.3, we �rst show that this representation does not have any par-

tiular drawbak with respet to the lassial representation (ode as a set of binary

vetors).

In Setion 7.4 we generalize an algorithm, from [GOS06℄ and [Gue05℄ to �nd all ode-

words of weight less than t for any nonlinear ode (in the previous work the algorithm

was designed to work only for systemati odes). Their algorithm redues the ompu-

tation of the minimum weight of a nonlinear ode to the problem of solving a system

of polynomial equations over Fq.

In Setion 7.5, for the binary ase, we redue the omputation to the problem of

solving a polynomial system of equations over Q or Zp with p prime, ontaining only

the ��eld equations� and one single dense polynomial of whih we have to �nd the

CGC 79

Chapter 7. Computing the minimum weight of a ode

zeros. Then we show how to �nd suh solutions applying fast Fourier tehniques.

Finally, in Setion 7.6 we develop a new method: we show that, using fast Fourier

tehniques to ompute the minimum weight starting from the NNF representation of

a binary nonlinear ode has a omplexity of O((n/h+k)2k), where n/h is the average

number of nonzero monomials of the Boolean funtions representing the ode. In par-

tiular, there are many important ases where our method is faster than brute-fore

(e.g. in the linear ase and in the nonlinear ase when the NNF representation of the

ode is sparse), and ases where it is faster than the Brouwer-Zimmerman method.

7.1 Polynomials and vetor weights

Here we introdue some ommon notation between the two problems we are going

to analyze, realling some de�nitions and results about the weight of vetors in Fn
,

taken from [GOS06℄ and [Gue05℄.

We denote by Eq[X] the set of �eld equations, i.e. the following set of polynomials

in F[X] = F[x1, . . . , xs]: Eq[X] = {xq1 − x1, . . . , xqs − xs} , where s ≥ 1 is an integer,

understood from now on.

De�nition 7.1.1. Let 1 ≤ t ≤ s and m ∈ F[X]. We say that m is a square free

monomial of degree t (or a simple t-monomial) if:

m = xh1 · · ·xht
, where h1, . . . , ht ∈ {1, . . . , s} and hℓ 6= hj , ∀ℓ 6= j ,

i.e. a monomial in F[X] suh that degxhi
(m) = 1 for any 1 ≤ i ≤ t. We denote by

Ms,t the set of all square free monomials of degree t in F[X].

Let t ∈ N, with 1 ≤ t ≤ s and let Is,t ⊂ F[X] be the following ideal

Is,t = 〈{σt, . . . , σs} ∪ Eq[X]〉 ,

where σi are the elementary symmetri funtions:

σ1 = x1 + x2 + · · ·+ xs,

σ2 = x1x2 + x1x3 + · · ·+ x1xs + x2x3 + · · ·+ xs−1xs,

· · ·
σs−1 = x1x2x3 · · ·xs−2xs−1 + · · ·+ x2x3 · · ·xs−1ys,

σs = x1x2 · · ·xs−1xs.

We also denote by Is,s+1 the ideal 〈Eq[X]〉.
For any 1 ≤ i ≤ s, let Pi be the set whih ontains all vetors in Fn

of weight i,

Pi = {v ∈ Fn | w(v) = i}, and let Qi be the set whih ontains all vetors of weight

up to i, Qi = ⊔0≤j≤iPj .

80

7.2. Representing a ode as a set of Boolean funtions

Theorem 7.1.2. Let t be an integer suh that 1 ≤ t ≤ s. Then the vanishing ideal

I(Qt) of Qt is

I(Qt) = Is,t+1 ,

and its redued Gröbner basis G is

G = Eq[X] ∪Ms,t , for t ≥ 2 ,

G = {x1, . . . , xs} , for t = 1 .

Let I ⊂ F[X] be an ideal and let X ′
be a subset of X . We denote by IX′

the

elimination ideal of I, i.e. IX′ = I ∩ F[X ′].

Let F[Z] be a polynomial ring over F. Let m ∈ Ms,t, m = zh1 · · · zht
. For any

W ∈ (F[Z])n, W = (W1, . . . ,Wn), we denote by m(W) the following polynomial in

F[Z]:

m(W) =Wh1 · · ·Wht
.

Example 7.1.3. Let n = s = 3 and W = (x1x2 + x3, x2, x2x3) ∈ (F[x1, x2, x3])3 and

m = z1z3. Then

m(W) = (x1x2 + x3)(x2x3) .

7.2 Representing a ode as a set of Boolean funtions

Now we show that any binary (n, 2k)-ode C with 2k odewords an be represented

in a unique way as a set of n Boolean funtions f1, . . . , fn : (F2)
k → F2. It is su�ient

to onsider the matrix whose rows are all the odewords of C. Then we an onsider

eah olumn i, with 1 ≤ i ≤ n, as truth table of a ertain Boolean funtion fi, for a

�xed order of the vetors v ∈ (F2)
k
.

Then, eah fi an be represented as a square free polynomial in the variables x1, . . . , xk

either with oe�ients in F2 (Algebrai Normal Form, see Setion 3.1.2) or with

integer oe�ients (Numerial Normal Form, see Setion 3.1.3).

Let us remark that the NNF oe�ients require more memory spae when stored

with respet to the ANF, sine they are integers instead of bits, and furthermore, the

NNF is usually muh denser than the ANF, as shown in Example 3.1.10, Equation

3.2, and proved in Proposition 7.3.1.

We indiate with f (F)
a Boolean funtion represented in algebrai normal form, and

with f (Z)
a Boolean funtion represented in numerial normal form.

De�nition 7.2.1. Given a binary (n, 2k)-ode C, onsider a �xed order of the ode-

words of C and of the vetors of (F2)
k
. Then onsider the matrix M whose rows

are the odewords of C. We all the de�ning polynomials of the ode C the set

FC = {f1, . . . , fn} of the uniquely determined Boolean funtions whose truth table are

81

Chapter 7. Computing the minimum weight of a ode

the olumns of M . We also indiate with F = (f1, . . . , fn) the vetor whose om-

ponents are the de�ning polynomials of C. With abuse of notation, we sometimes

write

FC = {f (F)
1 , . . . , f (F)

n } or FC = {f (Z)
1 , . . . , f (Z)

n }

Notie that F is an enoding funtion, sine F : (F2)
k → (F2)

n
.

Example 7.2.2. Consider the ode

C = {c1, c2, c3, c4} = {(0, 1, 0, 0, 1), (1, 1, 1, 0, 1), (1, 0, 0, 0, 0), (1, 0, 0, 1, 1)} .

Consider the vetors of (F2)
2
ordered as follows

v1 = (0, 0), v2 = (1, 0), v3 = (0, 1), v4 = (1, 1) .

Eah olumn is the truth table of the following Boolean funtions represented in ANF

f
(F)
1 (x1, x2) = x1x2 + x1 + x2

f
(F)
2 (x1, x2) = x2 + 1

f
(F)
3 (x1, x2) = x1x2 + x1

f
(F)
4 (x1, x2) = x1x2

f
(F)
5 (x1, x2) = x1x2 + x2 + 1 ,

whose orresponding NNF is

f
(Z)
1 = NNF(f1) = −x1x2 + x1 + x2

f
(Z)
2 = NNF(f2) = −x2 + 1

f
(Z)
3 = NNF(f3) = −x1x2 + x1

f
(Z)
4 = NNF(f4) = x1x2

f
(Z)
5 = NNF(f5) = x1x2 − x2 + 1 .

Thus the de�ning polynomials of C are

FC = {f1, . . . , fn} ,

where eah fi an be represented as a truth table, as polynomials in algebrai or

numerial normal form.

Furthermore we have that for eah 1 ≤ i ≤ 4

ci = F (vi) = (f1(vi), f2(vi), f3(vi), f4(vi)) .

82

7.2. Representing a ode as a set of Boolean funtions

7.2.1 Memory ost of representing a ode

Let us all vetorial the representation of a ode as a list of vetors over F2, and

Boolean the representation of the same ode as a list of Boolean funtions.

For a random ode, in terms of memory ost, the two representations are equivalent.

In the vetorial representation we need to store all the omponents of eah odeword,

whih are n times 2k odewords. In the Boolean representation we need to store the

2k oe�ients of the n de�ning polynomials. In both ases we need a memory spae

of order O(n2k).

If the ode C is linear it an be represented with a binary generator matrix of size

k × n. In this ase the de�ning polynomials are linear Boolean funtions, i.e. any is

of the form

k∑

i=1

λixi, λi ∈ F2 ,

whih means that to represent them it is su�ient to store kn elements of F2, yielding

again an equivalent representation.

As shown in [PVZ12℄, if C is a binary ode of length n with kernel K of dimension dK

and t oset leaders given by the set S = {c1, . . . , ct}, we an represent it as the kernel

K plus the oset leaders S (see Example 2.2.3). Sine the kernel needs a memory

spae of order O(nk), then the kernel plus the t oset leaders takes up a memory spae

of order O(n(k + t)). When C is linear then C = ker(C), so the generator matrix is

used to represent C. On the other hand, when t+1 = |C|, then representing the ode

as the kernel plus the oset leaders requires a memory of O(n|C|) = O(n2k) (sine we

are supposing the ode has 2k odewords. In the latter ase, a Boolean representation

ould be more onvenient, as shown in the following example.

Example 7.2.3. Consider the ode

C = {(0, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0), (1, 1, 0, 1),
(0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1)} .

We have that ker(C) = {(0, 0, 0, 0}, thus we have 8 oset leaders. On the other hand,

the de�ning polynomials of C are

FC = {x1, x2, x3, x1x2x3 + x1 + x3}

whih is a muh more ompat representation.

Unfortunately the ode in this example has distane 1.

Another situation in whih a Boolean representation is more onvenient is the ase

where the dimension k of the ode is muh less than the length n, i.e. when ertain

83

Chapter 7. Computing the minimum weight of a ode

omponents have to be repeated. As shown in [Gue09℄ (see Appendix), many optimal

odes have this form.

Example 7.2.4. The ode

C = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)}

is linear, with distane 8, dimension 2 and is optimal sine it reahes the Plotkin

bound. Its generator matrix is

G =

(

1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1

)

.

The same ode an be represented with the 3 Boolean polynomials

x1 + x2, x1, x2 ,

eah repeated 4 times.

Instead, the ode

C = {(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1)}

is nonlinear, with distane 7, dimension 2 and has kernel

K = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

with 4 oset leaders.

The same ode an be represented with the 4 Boolean polynomials

x1 + x2, x1, x2, x1x2 .

where the �rst two are repeated 4 times, the third 3 times, and the last only one.

Example 7.2.5. We show now a larger example.

Consider the binary (16, 24)-nonlinear ode

C = {(0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0), (1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1),
(1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1),

(0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0), (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1),

(1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0), (1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0),

(0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1), (1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1),

(1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1), (1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1),

(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1), (0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1),

(1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1), (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0)} .

84

7.3. Number of oe�ients of the NNF

This ode has average weight 7.5 and 120 ones over 256 omponents. Its minimum

distane is 3 and its minimum weight is 5.

The same ode represented as a set of B.f. 's in NNF is

F = { − x1x2 − x1x3x4 + x1 + x2, 2x2x3x4 − x2x3 − x3x4 + x3,

2x1x2x3x4 − x1x2x3 − x2x3x4 + x3, −x1x3x4 + x2x3 − x2 + 1,

− x1x2x3x4 + x1x2x3 − x3x4 + x4, 2x2x3x4 − x2x3 − x3x4 + 1,

x1x3x4 − x1x4 + x1, −x1x2x3 + x1x3,

− x1x2x3x4 + x1x3x4 − x3 + 1, −x1x2x4 − x1x2 + x1x4 + x2,

− x1x2x3x4 + x2x3x4 − x4 + 1, 2x1x2x3x4 − x1x3x4 − x2 + 1,

− x1x2 − x1x4 + x1 + x2, −x1x3x4 + x1x4 + x2x3,

− x1x2x3x4 + x2x3x4 − x2 + 1, −x1x2x3 − x1x4 + x1 + x4} ,

whih is a set of n = 16 B.f. with 2, 3 or 4 oe�ients, for a total of 16 oe�ients

varying in the set {−1, 1, 2}.

It is worth notiing that a linear struture of a nonlinear binary ode an be found

over a di�erent ring. For example there are binary odes whih have a Z4-linear or

Z2Z4-linear struture and, therefore, they an also be ompatly represented using

quaternary generator matrix, as shown in [HKC

+
94℄ and [BFCP

+
10℄.

7.3 Number of oe�ients of the NNF

In order to prove that representing a ode with pratial parameters and using

NNF B.f. 's is as onvenient as the usual representation of the ode, in this se-

tion we want to study the distribution of the number of nonzero oe�ients of a

B.f. represented in NNF, i.e., one the number of variables k is �xed we want to know

how many B.f. 's have only 1 nonzero oe�ient, how many have 2, and so on.

We are also interested in �nding a relation between this distribution and the distri-

bution of the number of nonzero oe�ients of a B.f. represented in ANF.

In Table 7.1 we report the distribution of the nonzero oe�ients of B.f. 's represented

in ANF and NNF with k = 1, 2, 3, 4 variables. As one may expet, the ANF follows

a binomial distribution. This means that hoosing a random B.f. its ANF is likely to

have half of the oe�ients equal to 0 and half equal to 1. This does not happen for

the NNF, eventhough for k small the two distributions are lose. This means that,

when k is small, a random binary (n, 2k)-nonlinear ode an be represented with a set

of B.f. 's in NNF with half of the oe�ients equal to 0 with high probability, while

sparse NNF representations are more rare as k grows.

85

Chapter 7. Computing the minimum weight of a ode

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A: 1 1 2 1 - - - - - - - - - - - - - -

N: 1 1 2 1 - - - - - - - - - - - - - -

A: 2 1 4 6 4 1 - - - - - - - - - - - -

N: 2 1 4 5 4 2 - - - - - - - - - - - -

A: 3 1 8 28 56 70 56 28 8 1 - - - - - - - -

N: 3 1 8 19 42 59 50 34 28 15 - - - - - - - -

A: 4 1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

N: 4 1 16 65 304 840 1768 3250 5458 8077 9986 9819 7948 5954 4458 3193 2830 1569

Table 7.1: Distribution of the nonzero oe�ients in the ANF and NNF.

Proposition 7.3.1. Let f be a B.f. in k variables. Let f (F)
and f (Z)

be respetively

the ANF and the NNF of f . Then if f (F)
is a polynomials with r ≤ 2k non zero

oe�ients, then f (Z)
is a polynomial with no more than min{2k, 2r − 1} nonzero

oe�ients.

Proof. When omputing the NNF from the ANF we have again the r initial terms of

the ANF, plus

(
r
2

)
terms whih are all possible double produt of the r initial terms,

plus, in general,

(
r
i

)
terms whih are all possible i-produt of the r initial terms, for

eah i ∈ {1, . . . , r}. Thus we will have
r∑

i=1

(
r

i

)

= 2r − 1 (7.1)

terms to be summed together. If no sum of similar monomials beomes zero than we

have 2r − 1 nonzero terms.

By Proposition 7.3.1, if we want a NNF with no more than s terms then we have

to hoose the ANF with no more than r = log2(s+ 1) terms.

Proposition 7.3.2. Let f be a linear B.f. in k variables. Let f (F)
and f (Z)

be respe-

tively the ANF and the NNF of f . We have

f (F) = xi1 + . . .+ xir ,

for r ≤ k. Then f (Z)
is a polynomial with exatly 2r − 1 nonzero oe�ients.

In partiular,

f (Z) =
∑

v∈(F2)r

v=(v1,...,vh)6=0

(−1)w(v)−1

(
r

w(v)− 1

)

xv1i1 · · ·xvrir .

Proof. Diretly from Proposition 3.1.9.

Proposition 7.3.2 says that linear B.f. 's are always denser when represented in

NNF with respet to the ANF representation.

86

7.4. Finding the odewords with weight < t

7.4 Finding the odewords with weight < t

We are now ready to present a general method to �nd all the odewords of weight

less than t, for some t ≤ n, using polynomial system solving tehniques.

We an de�ne an ideal whose variety is the set of points in (F2)
k
suh that evalu-

ated in the de�ning polynomials fi, i = 1, . . . , n of C give the odewords of C whih

have weight less than t.

De�nition 7.4.1. We all weights ideal over F2 the ideal

W t
C = 〈E2[X]

⋃

{m(f
(F)
1 (X), . . . , f (F)

n (X)) | m ∈Mn,t}〉 ,W t
C ∈ F2[X] ,

where E2[X] = {x21 − x1, . . . , x2k − xk} are the �eld equations.

The name omes from the following lemma:

Lemma 7.4.2. Let C be a binary (n, 2k)-ode. Let t ∈ N suh that 1 ≤ t ≤ n. Then

V(W t
C) 6= ∅ ⇐⇒ ∃c ∈ C s.t. w(c) ≤ t− 1

Clearly this variety is empty if there is no odeword of weight less than t.

To �nd the minimum weight of a binary (n, 2k)-ode, supposing the de�ning poly-

nomials are given in ANF we an use the following algorithm:

Algorithm 3 Basi algorithm to ompute the minimum weight of a ode C

Input: a binary (n, 2k)-ode C de�ned by f
(F)
1 , . . . , f

(F)
n

Output: the minimum weight of C

1: j ← 1

2: while V(Wj
C) = ∅ do

3: j ← j + 1

4: return j − 1

We will see in the upoming hapters how this algorithm an be used in partiular

to ompute the nonlinearity of a B.f. . The same algorithm ould also be used to

ompute the distane of a ode C, by omputing the minimum weight of the ode

C ′
omposed by the di�erene of all possible pair of odewords of the initial ode C.

The omplexity of omputing V(W t
C) is estimated in the following theorem.

Theorem 7.4.3. To �nd the variety of the ideal W t
C is equivalent to solve a multi-

variate system of

(
n
t

)
polynomials of degree ≤ k in k variables.

87

Chapter 7. Computing the minimum weight of a ode

Proof. Reall that W t
C = 〈E2[X]

⋃{m(f1(X), . . . , fn(X)) | m ∈ Mn,t}〉 ., thus the

system is omposed by the k �eld equations (whih we do not onsider as these

equations are only saying that the solutions will be binary vetors) plus |Mn,t| =
(
n
t

)

polynomials in the variables X = x1, . . . , xk. Sine this polynomials are in ANF, their

degree is at most k.

The onstrution of the system W t
C dominates the entire ost of Algorithm 3.

This is beause

(
n
t

)
monomials have to be evaluated. Clearly one an save omputa-

tions from previous while yles. Furthermore, all multipliations of the polynomials

f
(F)
i should be done onsidering their normal forms with respet to the ideal being

onstruted. This saves time when 1 is in the ideal, but when the ideal is not triv-

ial,

(
n
t

)
operations must be done to onstrut it, and the resulting system has to be

solved.

To brute fore the system requires to evaluate 2k points.

Even for small values of t with respet to n (t≪ n) we have

(
n

t

)

=
n(n− 1) . . . (n− t+ 1)

t!
≈

≈ (n− t/2)t
tte−t
√
2πt

=
(n/t− 0.5)tet√

2πt
=

= et(ln(n/t−0.5)+1)−ln
√
2πt

and if t > k, then
(
n
t

)
≈ et(ln(n/t−0.5)+1)−ln

√
2πt > 2k.

A Gröbner basis of the ideal W t
C is a muh simpler desription of W t

C . A way to

solve this system is thus to �nd a Gröbner basis with one of the tehniques outlined

in Setion 1.3. We are urrently not aware though of whih algorithm is best.

Furthermore not all the monomials in Mn,t may be useful to solve the system (as

shown when omputing the nonlinearity of a Boolean funtion, see Table 8.3 and 8.4),

though it is still unlear whih monomials should be hosen to determine it in a few

steps.

As a last omment, we point out that the zeros of the ideal W t
C reveal those vetors

whih evaluated in the de�ning polynomials give the odewords of C of weight less

than t. To ompute the minimum weight we do not need to atually �nd suh zeros,

but we only have to determine if any zero exists, whih is somehow a simpler problem,

as shown in Setion 1.4.2.

7.5 Finding the odewords with weight exatly t

It is possible to onstrut a polynomial with integer oe�ients whose evaluations

in {0, 1}k ⊆ Zk
are the weights of the odewords of the ode C.

88

7.5. Finding the odewords with weight exatly t

De�nition 7.5.1. Let X = x1, . . . , xk, and X
2 −X = x21 − x1, . . . , x2k − xk. We all

the weight polynomial of the ode C the polynomial

wC(X) =

n∑

i=1

f
(Z)
i (X) ∈ Z[X]/〈X2 −X〉 ,

where the f
(Z)
i 's are the de�ning polynomials of the ode C in NNF.

Theorem 7.5.2. Let v ∈ {0, 1}k ⊆ Zk
. Then there exist a odeword c ∈ C suh that

w(c) = wC(v).

Proof. It is su�ient to note that a odeword c ∈ C is suh that c = (f
(Z)
1 (P), . . . , f

(Z)
n (P))

for some P ∈ {0, 1}k, and that the sum of all f
(Z)
i is over the integers.

Example 7.5.3. Continuing from Example 7.2.2 we have that

wC(x1, x2) = f
(Z)
1 + f

(Z)
2 + f

(Z)
3 + f

(Z)
4 + f

(Z)
5 = 2x1 − x2 + 2 .

Evaluating wC in v1, v2, v3, v4 we get

wC(v1) = 2, wC(v2) = 4, wC(v3) = 1, wC(v4) = 3 ,

whih are, respetively, the weights of the odewords

(0, 1, 0, 0, 1), (1, 1, 1, 0, 1), (1, 0, 0, 0, 0), (1, 0, 0, 1, 1) .

We an de�ne an ideal whose variety is the set of points in {0, 1}k suh that

evaluated in the sum of the de�ning polynomials f
(Z)
i , i = 1, . . . , n of C give the

odewords of C whih have weight exatly t.

De�nition 7.5.4. We all weights ideal over Z the ideal

W t

C = 〈E2[X]
⋃

{wC(X)− t}〉 ,W t

C ∈ Q[X] ,

where E2[X] = {x21 − x1, . . . , x2k − xk}.

Lemma 7.5.5. Let C be a binary (n, 2k)-ode. Let t ∈ N suh that 1 ≤ t ≤ n. Then

V(W t

C) 6= ∅ ⇐⇒ ∃c ∈ C s.t. w(c) = t

Clearly this variety is empty if there is no odeword of weight t.

Algorithm 4 is a method to �nd the minimum weight of a binary (n, 2k)-ode, sup-

posing the de�ning polynomials are given in ANF.

89

Chapter 7. Computing the minimum weight of a ode

Algorithm 4 To �nd the minimum weight of a binary ode C

Input: f
(F)
1 , . . . , f

(F)
n

Output: the minimum weight of C

1: f
(Z)
i ← NNF(f

(F)
i), for eah i = 1, . . . , n

2: j ← 0

3: while V(W̄j
C) = ∅ do

4: j ← j + 1

5: return j

If we know that the ode ontains the 0 odeword and we are interested in �nding

the minimum weight di�erent from 0, then j must be initialized to 1.

Algorithm 4 an be modi�ed to eliminate the while yle. Instead of heking if a

solution of the system

x21 − x1 = 0

. . .

x2k − xk = 0

wC(x1, . . . , xk)− j = 0

(7.2)

exists in the a�ne algebra Q/〈x21 − x1, . . . , x2k − xk〉 for eah j ∈ {1, . . . , n}, we an
add the variable t to the system

x21 − x1 = 0

. . .

x2k − xk = 0

wC(x1, . . . , xk)− t = 0

(7.3)

and solve it in Q[t]/〈x21 − x1, . . . , x2k − xk〉, with respet to lexiographial monomial

ordering, to �nd as a solution a polynomial t(t), whose solutions are integers, repre-

senting the weights of the odewords of C. We are interested in the smallest solution

of t(t).

We did not investigate further whih of the two solutions is best.

Example 7.5.6. Consider the ode

C = {(0, 1, 0, 0, 1)
(1, 1, 0, 0, 1)

(1, 0, 1, 0, 0)

(1, 0, 0, 1, 1)} .

90

7.5. Finding the odewords with weight exatly t

The de�ning polynomials of C in ANF and NNF are respetively

f
(F)
1 = x1x2 + x1 + x2 f

(Z)
1 = −x1x2 + x1 + x2

f
(F)
2 = x2 + 1 f

(Z)
2 = −x2 + 1

f
(F)
3 = x1x2 + x2 f

(Z)
3 = −x1x2 + x2

f
(F)
4 = x1x2 f

(Z)
4 = x1x2

f
(F)
5 = x1x2 + x2 + 1 f

(Z)
5 = x1x2 − x2 + 1 .

The weight polynomial of C is

wC(x1, x2) = x1 + 2 .

If we want to �nd all the odewords c ∈ C suh that w(c) = 3, we an ompute a

Gröbner basis of the ideal W3

C , whih is

GB({wC(x1, x2)− 3, x21 − x1, x22 − x2}) = GB({x1 − 1, x21 − x1, x22 − x2})
= {x1 − 1, x22 − x2} .

Its variety is V(W3

C) = {(1, 0), (1, 1)}.
Then we onsider the points p ∈ V(W3

C) and ompute

c = F (p) = (f1(p), f2(p), f3(p), f4(p), f5(p)) ,

i.e.:

V(W3

C) = {(1, 0), (1, 1)}
F ((1, 0)) = (1, 1, 0, 0, 1)

F ((1, 1)) = (1, 0, 0, 1, 1)

Instead of omputing the Gröbner basis, whih is sometimes a heavy task, we an

onsider the evaluation vetor of wC over the set {0, 1}2, and onsider only those

pairs whose evaluation is 3,

wC((0, 0)) = 2

wC((1, 0)) = 3

wC((0, 1)) = 2

wC((1, 1)) = 3 ,

Whih are (1, 0), (1, 1).

91

Chapter 7. Computing the minimum weight of a ode

If we wanted to �nd the minimum weight of C, we ould either use Algorithm 4

or to solve the system

x21 − x1 = 0

x22 − x2 = 0

w(x1, x2) = x1 + 2− t = 0

with respet to lexiographial order and with respet to the variable t.

We �nd the solution t(t) = t2−5t+6, whose roots are 2 and 3, implying the minimum

weight of the ode is 2.

As shown in the last example, one we have the weight polynomial wC of the

ode C, not only we an �nd the minimum weight of C, but we also �nd whih are

the odewords having ertain weights by looking at its evaluation vetor over the

set {0, 1}k. As we will see in Setion 7.6.3, omputing this evaluation has a ost of

O(k2k). The omplexity maintains the same order if the number of terms of eah

de�ning polynomial in NNF is on average O(k
n
2k).

To summarize, we state the algorithm to �nd the evaluation vetor of the weight

polynomial wC of a binary (n, 2k)-ode C given as a list of 2k odewords (and thus

also the minimum weight of C). We indiate with Ci,j the j-th omponent of the i-th

word of C, with 1 ≤ j ≤ n and 1 ≤ i ≤ 2k.

Algorithm 5 To �nd the evaluation vetor of wC from the list of odewords of C.

Input: c1, . . . , c2k ∈ C
Output: the evaluation vetor wC of wC

1: f
(Z)
j ← NNF of the binary vetor (C1,j, . . . , C2k,j) for 1 ≤ j ≤ n

2: wC ← f
(Z)
1 + . . .+ f

(Z)
n

3: wC ← Evaluation of wC over {0, 1}k
4: return wC

7.6 Complexity onsiderations

First of all let us notie that given a binary (n, 2k)-ode as a list of 2k odewords,

to �nd all the odewords of weight t using brute fore requires n2k bit operations,

sine we have to hek eah omponent of eah odeword of C.

We now analyze the omplexity of Steps 1, 2, and 3 of Algorithm 5. Then we ompare

our method to ompute the minimum weight of a binary ode with brute fore and,

in the linear ase, with the Brouwer-Zimmerman method ([Zim96℄).

92

7.6. Complexity onsiderations

7.6.1 From list of odewords to de�ning polynomials in NNF

Proposition 7.6.1. The overall worst-ase omplexity of determining the oe�ients

of the n de�ning polynomials in NNF of the ode C given as a list of vetors is

O(nk2k).

Proof. We want to �nd the NNF of the Boolean funtion whose truth table is given

by a olumn of the binary matrix

C =

C1,1 C1,2 . . . C1,j . . . C1,n

.

.

.

.

.

.

.

.

.

.

.

.

Ci,1 Ci,2 . . . Ci,j . . . Ci,n

.

.

.

.

.

.

.

.

.

.

.

.

C2k,1 C2k,2 . . . C2k,j . . . C2k,n

whose rows are the odewords of the ode C.

In [CG99℄ (Proposition 2) it is shown that to ompute the NNF of a Boolean funtion

in k variables given its truth table requires k2k−1
integer subtrations. Sine we have

to ompute the NNF for n olumns the overall omplexity is O(nk2k).

A similar result holds if we want to determine the oe�ients of the n de�ning

polynomials in ANF.

7.6.2 From de�ning polynomials to weight polynomial

Proposition 7.6.2. The overall worst-ase omplexity of summing together all the

de�ning polynomials in NNF is O(n2k) integer sums.

Proof. Eah monomial m in a de�ning polynomial is square free, and sine m ∈
Z[x1, . . . , xk], then a de�ning polynomial an have no more than 2k monomials. Sine

the de�ning polynomials are n, the proposition follows.

Remark 7.6.3. Clearly, the omputational omplexity of this steps dereases if the

de�ning polynomials are sparse.

7.6.3 Evaluation of the weight polynomial

Algorithm 6 desribes the fast Möbius transform to ompute the evaluation vetor

of a Boolean funtion f in NNF in k variables.

We use the following notation: the oe�ient c2k is the oe�ient of the greatest

monomial, i.e. of x1 · · ·xk, c2k−1 the oe�ient of the seond greatest monomial,

and so on until c1, whih is the ostant term. We provide Example 7.6.4 to larify

93

Chapter 7. Computing the minimum weight of a ode

notation.

Notie that the sum in Step 6 is over the integer. If it was a sum in F2 then we would

obtain the truth table of f .

Algorithm 6 Fast Möbius transform for fast integer polynomial evaluation.

Input: vetor of oe�ients c = (c1, . . . , c2k)

Output: evaluation vetor e = (e1, . . . , e2k)

1: e← c

2: for i = 0, . . . , k do

3: b← 0

4: repeat

5: for x = b, . . . , b+ 2i − 1 do

6: ex+1+2i ← ex+1 + ex+1+2i

7: b← b+ 2i+1

8: until b = 2k

9: return e

Example 7.6.4. Consider k = 3 and lexiographial ordering with x1 ≻ x2 ≻ x3.

Let f = 8x1x2x3 + 3x1 + 2. Then

c = (c1, . . . , c8) = (2, 0, 0, 0, 3, 0, 0, 8)

e = (e1, . . . , e8) = (2, 2, 2, 2, 5, 5, 5, 13) .

where the vetor e has been obtained following the sheme in Figure 7.1.

Step 1 Step 2 Step 3

(x1, x2, x3) c e

000 c1 //

**❚❚❚
❚❚❚❚

❚❚❚
❚❚❚ c1 //

##●
●●

●●
●●

●●
●●

●●
●● c1 //

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

c1

001 c2 // + c1 + c2 //

##●
●●

●●
●●

●●
●●

●●
●● c1 + c2 //

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

c1 + c2

010 c3 //

**❚❚❚
❚❚❚❚

❚❚❚
❚❚❚ c3 // + c1 + c3 //

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

c1 + c3

011 c4 // + c3 + c4 // + c1 + c2 + c3 + c4 //

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

c1 + c2 + c3 + c4

100 c5 //

**❚❚❚
❚❚❚❚

❚❚❚
❚❚❚ c5 //

##●
●●

●●
●●

●●
●●

●●
●● c5 // + c1 + c5

101 c6 // + c5 + c6 //

##●
●●

●●
●●

●●
●●

●●
●● c5 + c6 // + c1 + c2 + c5 + c6

110 c7 //

**❚❚❚
❚❚❚❚

❚❚❚
❚❚❚ c7 // + c5 + c7 // + c1 + c3 + c5 + c7

111 c8 // + c7 + c8 // + c5 + c6 + c7 + c8 // + c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8

Figure 7.1: Butter�y sheme desribing the fast Möbius transform.

Proposition 7.6.5. Evaluating the weight polynomial over the set {0, 1}k has a om-
putational ost of O(k2k) integer operations.

Proof. This is the ost of Algorithm 6, i.e. k2k−1
integer sums.

94

7.6. Complexity onsiderations

7.6.4 Comparison with brute-fore method

Theorem 7.6.6. Let h be a positive integer. If the ode C is given as a set of B.f. 's

whose NNF have on average 2k/h oe�ients di�erent from 0, then omputing the

minimum weight of C requires at most

(n

h
+ k
)

2k

integer sums.

Proof. By Proposition 7.6.5 omputing the evaluation vetor of the weight polynomial

wC requires k2k−1
integer sums using the fast Möbius transform. To ompute the

weight polynomial we need to sum the n de�ning polynomials f
(Z)
i , i = 1, . . . , n, in

NNF. If eah of these polynomials has on average 2k/h oe�ients then the omplexity

of omputing wC requires O(n2k

h
) integer sums. So the �nal omplexity is at most

(n/h)2k + k2k−1
.

The odewords of a random ode have on average half 0's and half 1's, thus, if

we onsider that 0's do not ount when summing the de�ning polynomials, then the

omputation will require n2k−1
integers sums.

Our method is more e�ient than brute fore when n/h + k < n. This is very

likely to happen for a random ode.

Notie also that if the sets of nonzero monomials of two polynomials in NNF are

disjoint, then the sum of the two polynomials is simply their onatenation. So, if the

de�ning polynomials of a ode are �disjoint�, then the ost of omputing the weight

polynomial is O(1), and the �nal ost of �nding the minimum weight beomes the

ost of omputing the evaluation of wC , i.e. O(k2
k−1).

Fat 7.6.7 shows that, for n≫ k, when the ode is linear our method to ompute the

minimum nonzero weight (i.e. the distane of the ode) given the set of the de�ning

polynomials in NNF is more e�ient than the lassial method whih uses brute fore,

given the list of the odewords of the ode.

Fat 7.6.7 (Comparison with brute fore when n ∼ 2k). Consider a random binary

(n, k)-linear ode C suh that n ∼ 2k. Then omputing the minimum weight of C

1. given the list of its odewords and using brute fore requires

O(22k)

integer operations.

95

Chapter 7. Computing the minimum weight of a ode

2. given the list of the de�ning polynomials in NNF and �nding the minimum of

wC requires

O(2
3
2
k)

integer operations.

Proof. The omplexity of �nding the minimum weight of C in ase 1 is O(n2k) =

O(22k).

The omplexity of �nding the minimum weight of C in ase 2 is O((n/h+ k)2k) (by

Theorem 7.6.6), where n/h is the average number of nonzero oe�ients of the NNF.

If the linear ode C is random, then so are the random linear de�ning polynomials. A

random linear funtion in k variables has on average k/2 nonzero oe�ient in ANF

and thus 2k/2 − 1 nonzero oe�ients in NNF by proposition 7.3.2, i.e. n/h ∼ 2k/2,

and

O((n/h+ k)2k) = O((2k/2 + k)2k) = O(2
3
2
k) .

Remark 7.6.8. If the ode is non linear and the ANF has on average k/2 oe�ients

then n/h ≤ 2k/2 and our method is even faster.

In Table 7.2 we show the oe�ient of growth of the omplexity of our method in

three di�erent ases. The �rst line shows the oe�ient of growth of the brute fore

method applied to a linear ode. The seond line shows the oe�ient of growth of

our method applied to a linear ode. In the third line our method is applied to a

nonlinear ode whose representation in ANF is sparse, and in the last line nonlinear

odes with dense representaion in ANF are onsidered.

For the omparison we hoose for eah k, 10 random (2k, k)-odes and 10 random

(2k+1, k + 1)-odes and ompute the average times t1, t2 to ompute the minimum

weight in eah ase. Then we report the number log2(t1/t2).

k 8− 9 9− 10 10− 11 11− 12

Brute-fore Linear ANF 1.93 1.98 2.00 1.99

Linear ANF 1.32 1.38 1.53 1.61

Sparse Nonlinear ANF 0.89 1.12 1.32 1.38

Dense Nonlinear ANF 2.09 2.03 2.04 2.08

Table 7.2:

96

7.6. Complexity onsiderations

7.6.5 Comparison with Brouwer-Zimmerman method for linear odes

In the linear ase the de�ning polynomials of a ode C learly have a sparse ANF.

This is not neessarily so with the NNF. Consider the following example.

Example 7.6.9. Suppose C is a (10, 24)2-linear ode, i.e. k = 4, n = 10. Then it

has 10 de�ning polinomials f1, . . . , f10 ∈ F[x1, x2, x3, x4]. Consider one of them, for

example f5. If f
(F)
5 = x4 + x3 + x2 + x1 is the ANF of f5 then the NNF is

f
(Z)
5 =− 8x1x2x3x4 + 4x1x2x3 + 4x1x2x4 − 2x1x2

+ 4x1x3x4 − 2x1x3 − 2x1x4 + x1 + 4x2x3x4

− 2x2x3 − 2x2x4 + x2 − 2x3x4 + x3 + x4

i.e. the NNF has all the oe�ients di�erent from 0.

Consider now f6. If f
(F)
6 = x2 + x4 is the ANF of f6 then the NNF is

f
(Z)
6 = −2x4x2 + x4 + x2 .

As shown in Example 7.6.9 if a de�ning polynomial in F[x1, . . . , xk] is linear and

with less than k variables, than many oe�ients of the NNF are 0, preisely, the

oe�ients of the monomials ontaining the missing variable in the ANF. In this ase

the omputation of the minimum weight of C (and thus of the distane of C, sine

the ode is linear) is faster than brute fore.

In Table 7.3 we ompare the time t1 needed to ompute the minimum weight w of a

linear ode given as list of odewords with the MAGMA ommand

MinimumWeight(C:Method:=�Zimmerman�),

with the time t2 needed to ompute w when the ode is given as a list of B.f. 's in

NNF using our method. The omparison has been done for 10 random linear odes

�xing a pair (k, n), with n ≫ k. In the olumn wav the average minimum weight

found is shown.

An AMD E2-1800 APU proessor with 850 MHz has been used for the omputations.

We an see that there are ases, i.e. (k, n) = (8, 1200) or (k, n) = (9, 1800), where

our method is 10 times faster than the Brouwer-Zimmerman method. This is not

surprising, sine the it is known that there are ases where brute fore performs

better than the Brouwer-Zimmerman method, e.g.

> C := RandomLinearCode(GF(2),20000,20) ;

> time MinimumWeight(C:Method:="Zimmerman") ;

9665

Time: 4.220

97

Chapter 7. Computing the minimum weight of a ode

k n t1 t2 t1/t2 wav

8 100k = 800 0.043 0.007 6.143 360.1

8 150k = 1200 0.122 0.012 10.17 554.1

8 200k = 1600 0.122 0.015 8.13 745.2

8 250k = 2000 0.171 0.011 15.55 935.0

9 100k = 900 0.833 0.019 4.368 403.1

9 150k = 1350 0.116 0.020 5.800 615.6

9 200k = 1800 0.277 0.024 11.54 834.0

9 250k = 2250 0.256 0.029 8.828 1050.0

10 100k = 1000 0.050 0.031 1.613 448.3

10 150k = 1500 0.136 0.041 3.317 687.5

10 200k = 2000 0.178 0.050 3.560 922.7

10 250k = 2500 0.185 0.056 3.304 1168.3

Table 7.3: Comparison with Brouwer-Zimmerman method

> time MinimumWeight(C:Method:="Distribution") ;

9665

Time: 0.520

We also reall that Brouwer-Zimmerman method is probabilisti, while our method

is deterministi.

7.7 Binary odes whose ardinality is not a power of 2

Algorithm 5 an be modi�ed to work also with binary odes whose ardinality is

not a power of 2. We now present two methods to �nd the minimum weight of suh

odes.

7.7.1 Method 1: expanding the ode

A �rst method onsist in �expanding� the ode until it reahes a size of 2k. The

key observation is that the minimum weight vetor of a list of vetors in (F2)
n
(i.e. the

odewords of C) is equal to the minimum weight vetor of the same list onatenated

to the list of some repeated words of C (eventhough this new list is not a ode

anymore).

Proposition 7.7.1. Let C be a binary nonlinear ode of length n and with m ode-

words, where 2k−1 < m < 2k. Then there exists a set F of n Boolean funtions

98

7.7. Binary odes whose ardinality is not a power of 2

f1, . . . , fn suh that

C = F = {(f1(x1, . . . , xk), . . . , fn(x1, . . . , xk)) | (x1, . . . , xk) ∈ (F2)
k}

Proof. Suppose

C = {c1, . . . , cm} = {(C1,1, C1,2, . . . , C1,n), . . . , (Cm,1, Cm,2, . . . , Cm,n)}

Then onsider the (2k× n) matrixM whose �rst m rows are the odewords of C and

the last 2k −m rows are equal the a �xed odeword of C, e.g. cm:

M =

C1,1 C1,2 . . . C1,n

.

Cm,1 Cm,2 . . . Cm,n

Cm,1 Cm,2 . . . Cm,n

.

Cm,1 Cm,2 . . . Cm,n

2k −m

Then for eah i = 1, . . . , n, the i-th olumnM is the vetor (C1,i, . . . , Cm,i,

2k−m
︷ ︸︸ ︷

Cm,i, . . . , Cm,i)

of length 2k and an be seen as the truth table of a B.f. in k variables.

Clearly the minimum weight odeword of C is the same as the minimum weight vetor

of the list L.

In the proof of Proposition 7.7.1 we onstruted the matrix M onatenating

to the matrix omposed by the m odewords of C one �xed odeword of C. A

di�erent hoie of the onatenated 2k − m odewords determines a di�erent set

F = {f1, . . . , fn}. Di�erent hoies may yield to more onvenient representation, but

we did not investigate further.

We report in Algorithm 7 the steps to ompute the minimum weight of a nonlinear

binary ode with size not a power of 2.

Algorithm 7 To �nd the evaluation vetor of wC from the list of odewords of C.

Input: C = {c1, . . . , cm}
Output: the evaluation vetor wC of wC

1: Construt the matrix M , whose rows are c1, . . . , cm,
2k−m

︷ ︸︸ ︷
cm, . . . , cm

2: f
(Z)
j ← NNF of the binary vetor (C1,j, . . . , Cm,j,

2k−m
︷ ︸︸ ︷

Cm,j, . . . , Cm,j) for 1 ≤ j ≤ n

3: wC ← f
(Z)
1 + . . .+ f

(Z)
n

4: wC ← Evaluation of wC over {0, 1}k
5: return wC

99

Chapter 7. Computing the minimum weight of a ode

It easy to see that the omplexity of Algorithm 7 is again O(nk2k).

7.7.2 Method 2: dividing into subodes

A seond approah is to divide the ode C in subodes whose ardinality is a

power of 2. Then to eah of these odes we an apply Algorithm 5 and then take the

minimum of all the results, as shown in Algorithm 8.

Algorithm 8 To �nd the list of the weights of all C odewords.

Input: C = {c1, . . . , cm}
Output: the evaluation vetor wC of wC

1: Let (br, . . . , b2, b1) be the binary expansion of m (with b1 lsb)

2: vC = (), empty list

3: for i = 1, . . . , r do

4: if bi = 1 then

5: Construt the (n, 2i−1)-ode D taking 2i−1
new odewords from C

6: Apply Algorithm 5 to D

i: f
(Z)
j ← NNF of the j-th olumn of D, with 1 ≤ j ≤ n

ii: wD ← f
(Z)
1 + . . .+ f

(Z)
n

iii: wD ← Evaluation of wD over {0, 1}k

7: vC = vC ||wD

8: return vC

Remark 7.7.2. The omplexity of Algorithm 8 is dominated by the omplexity of

Algorithm 5 applied to the largest subode of C having a size whih is a power of 2,

whih is

O(n⌊log2m⌋2⌊log2 m⌋) .

Example 7.7.3. Consider the (5, 11)-ode

C = {(0, 0, 0, 1, 1), (1, 0, 1, 0, 1), (0, 1, 1, 1, 1), (0, 0, 1, 1, 0),
(1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 1, 1),

(1, 1, 1, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 1)} .
Sine the binary expansion of 11 is 1011, then we an split C in 3 subodes of size a

power of 2.

D1 = {(0, 0, 0, 1, 1)}
D2 = {(1, 0, 1, 0, 1), (0, 1, 1, 1, 1)}
D3 = {(0, 0, 1, 1, 0), (1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 1, 1, 0, 0),

(1, 1, 0, 1, 1), (1, 1, 1, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 1)} .

100

7.7. Binary odes whose ardinality is not a power of 2

This ode an be represented with 5 onstant B.f. 's, 5 B.f. 's in one variable and 5 in

three variables, as follows

D1 = {0, 0, 0, 1, 1}
D2 = { − x1 + 1, x1, 1, x1, 1}
D3 = {2x1x2x3 − x1x2 − x1x3 + x1 − 2x2x3 + x2 + x3,

x1x2 − x2x3 + x3,

− 2x1x2x3 + x1x2 + 2x1x3 − x1 + x2x3 − x3 + 1,

x1x2x3 − x1x2 + 1,

2x1x2x3 − x1x2 − 2x1x3 + x1 + x3} .

We an ompute the weight polynomial for eah Di, obtaining

wD1 = 2

wD2 = x1 + 3

wD3 = 3x1x2x3 − 2x1x2 − x1x3 + 2x1 − x2x3 + x2 + x3 + 2 ,

whose evaluations over {0, 1}i−1
are

wD1
= (2)

wD2
= (3, 4)

wD3
= (2, 3, 3, 3, 4, 4, 3, 5) .

The minimum entry of these evaluation vetors is 2, whih is the minimum weight of

the ode.

101

Computing the nonlinearity of Boolean funtion

Any funtion from (F2)
n
to F2 is alled a Boolean funtion. Boolean funtions

are important in symmetri ryptography, sine they are used in the onfusion layer

of iphers. An a�ne Boolean funtion does not provide an e�etive onfusion. To

overome this, we need funtions whih are as far as possible from being an a�ne

funtion. The e�etiveness of these funtions is measured by several parameters, one

of these is alled �nonlinearity� ([Car10℄).

In this hapter, we provide three methods to ompute the nonlinearity of Boolean

funtions. Moreover, we give an estimate of the omplexity of our methods, ompar-

ing it with the omplexity of the lassial method whih uses the fast Walsh transform

and the fast Möbius transform.

In Setions 3 and 8.1 we reall the basi notions and statements, espeially regarding

Boolean funtions, whih are neessary for our methods.

In Setion 8.2 and 8.3 we provide two algorithms whih redue the problem of om-

puting the nonlinearity of a Boolean funtion to that of solving a polynomial system

of equations. In partiular, in Setion 8.3 we assoiate to eah Boolean funtion in

n variables a polynomial whose evaluations represent the distane from all possible

a�ne funtions.

In Setion 8.4 we show that this polynomial an be used to �nd the nonlinearity of a

Boolean funtion without solving the previously mentioned polynomial systems. In

Setion 8.5 we provide some results to express the oe�ients of this polynomials,

and we show in Setion 8.6 that these an be omputed also using fast transforms.

Finally, in Setion 8.7 we analyze the omplexity of the proposed methods, both ex-

perimentally and theoretially. In partiular, we show that using fast Fourier methods

we arrive at a worst-ase omplexity of O(n2n) operations over the integers, that is,

sums and doublings. This way, with a di�erent approah, we reah the same om-

plexity of established algorithms, suh as those based on the fast Walsh transform.

Part of the previously mentioned works an be found in [Bel14a℄, [Bel14b℄ and

[BSS14℄.

For de�nition and notation on B.f. refer to Setion 3.

CGC 103

Chapter 8. Computing the nonlinearity of Boolean funtion

8.1 Polynomials and vetor weights

Here we present the main results from [SS07a℄, [Sim09℄. The same tehniques are

also applied in [GOS06℄ and [Gue05℄. Let K be a �eld and X = {x1, . . . , xs} be a set
of variables. We denote by K[X] the multivariate polynomial ring in the variables

X. If f1, . . . , fN ∈ K[X], we denote by 〈{f1, . . . , fN}〉 the ideal in K[X] generated by

f1, . . . , fN .

Let q be the power of a prime. We denote by Eq[X] = {xq1 − x1, . . . , xqs − xs} , the
set of �eld equations in Fq[X] = Fq[x1, . . . , xs], where s ≥ 1 is an integer, understood

from now on. We write E[X] when q = 2.

De�nition 8.1.1. Let 1 ≤ t ≤ s and m ∈ Fq[X]. We say that m is a square free

monomial of degree t (or a simple t-monomial) if:

m = xh1 · · ·xht
, where h1, . . . , ht ∈ {1, . . . , s} and hℓ 6= hj , ∀ℓ 6= j ,

i.e. a monomial in Fq[X] suh that degxhi
(m) = 1 for any 1 ≤ i ≤ t. We denote by

Ms,t the set of all square free monomials of degree t in Fq[X].

Let t ∈ N, with 1 ≤ t ≤ s and let Is,t ⊂ Fq[X] be the following ideal

Is,t = 〈{σt, . . . , σs} ∪ Eq[X]〉 ,

where σi are the elementary symmetri funtions:

σ1 = x1 + x2 + · · ·+ xs,

σ2 = x1x2 + x1x3 + · · ·+ x1xs + x2x3 + · · ·+ xs−1xs,

· · ·
σs−1 = x1x2x3 · · ·xs−2xs−1 + · · ·+ x2x3 · · ·xs−1ys,

σs = x1x2 · · ·xs−1xs.

We also denote by Is,s+1 the ideal 〈Eq[X]〉. For any 1 ≤ i ≤ s, let Pi be the set whih

ontains all vetors in (Fq)
n
of weight i, Pi = {v ∈ Fn

q | w(v) = i}, and let Qi be the

set whih ontains all vetors of weight up to i, Qi = ⊔0≤j≤iPj .

Theorem 8.1.2. Let t be an integer suh that 1 ≤ t ≤ s. Then the vanishing ideal

I(Qt) of Qt is

I(Qt) = Is,t+1 ,

and its redued Gröbner basis G is

G = Eq[X] ∪Ms,t , for t ≥ 2 ,

G = {x1, . . . , xs} , for t = 1 .

104

8.2. Nonlinearity and polynomial systems over F

Let Fq[Z] be a polynomial ring over Fq. Let m ∈ Ms,t, m = zh1 · · · zht
. For any

polynomial vetorW in the module (Fq[Z])
n
,W = (W1, . . . ,Wn), we denote by m(W)

the following polynomial in Fq[Z]:

m(W) = Wh1 · . . . ·Wht
.

Example 8.1.3. Let n = s = 3, q = 2 andW = (x1x2+x3, x2, x2x3) ∈ (F[x1, x2, x3])3

and m = z1z3. Then

m(W) = (x1x2 + x3)(x2x3) .

8.2 Nonlinearity and polynomial systems over F

In this setion we want to takle the following problem: to �nd a method to

ompute the nonlinearity of a given Boolean funtion f ∈ Bn by onstruting a �nite

number of polynomial systems over F2 with N variables and suh that:

A) N is of the order of n,

B) the nonlinearity is obtained by merely deiding whih of these systems have a

binary solution.

Sine the maximum nonlinearity is of the order of 2n−1
, we are satis�ed if the number

of systems we have to onstrut does not exeed 2n−1
(or even 2n).

In this setion we report the solution of the above problem, given by Simonetti in

[SS07a℄, whih depends on Theorem 8.1.2.

The starting idea is to de�ne an ideal suh that a point in its variety orresponds to

an a�ne funtion with distane at most t− 1 from f .

Let A be the variable set A = {ai}0≤i≤n. We denote by gn ∈ F[A,X] the following

polynomial:

gn = a0 +
n∑

i=1

aixi .

Aording to Lemma 3.2.3, determining the nonlinearity of f ∈ Bn is the same as

�nding the minimum weight of the vetors in the set {f + g | g ∈ An} ⊂ F2n
. We an

onsider the evaluation vetor of the polynomial gn as follows:

gn = (gn(A, p1), . . . , gn(A, p2n)) ∈ (F[A])2
n

.

105

Chapter 8. Computing the nonlinearity of Boolean funtion

Example 8.2.1. We onsider the ase n = 3. Then g3 = a1x1 + a2x2 + a3x3 + a0.

We onsider vetors in F3
ordered as follows:

p1 = (0, 0, 0), p2 = (0, 0, 1), p3 = (0, 1, 0),

p4 = (1, 0, 0), p5 = (0, 1, 1), p6 = (1, 0, 1),

p7 = (1, 1, 0), p8 = (1, 1, 1).

The evaluation vetor of g3 is:

g3 = (a0, a0 + a1, a0 + a2, a0 + a3, a0 + a1 + a2,

a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3) .

De�nition 8.2.2. We denote by Jn
t (f) the ideal in F[A]:

Jn
t (f) = 〈{m

(
gn(A, p1) + f(p1), . . . , gn(A, p2n) + f(p2n)

)
| m ∈M2n,t} ∪ E[A]〉

= 〈{m(gn + f) | m ∈M2n,t} ∪ E[A]〉 .

Remark 8.2.3. As E[A] ⊂ Jn
t (f), J

n
t (f) is zero-dimensional and radial (Theorem

1.2.21).

Lemma 8.2.4. For 1 ≤ t ≤ 2n the following statements are equivalent:

1. V(Jn
t (f)) 6= ∅,

2. ∃u ∈ {f + g | g ∈ An} suh that w(u) ≤ t− 1,

3. ∃α ∈ An suh that d(f, α) ≤ t− 1.

Proof.

(2)⇔(3). Obvious.

(1)⇒(2). Let Ā = (ā0, ā1, . . . , ān) ∈ V(Jn
t (f)) ⊂ Fn+1

and let

u = (gn(Ā, v1) + f(v1), . . . , gn(Ā, v2n) + f(v2n)) ∈ F2n
. We have that m(u) = 0 for all

m ∈M2n,t. So u ∈ V(I2n,t) and, thanks to Theorem 8.1.2, u ∈ Qt−1, i.e. w(u) ≤ t−1.
(2)⇒(1). It an be proved by reversing the above argument.

From Lemma 8.2.4 we immediately have the following theorem.

Theorem 8.2.5. Let f ∈ Bn. The nonlinearity N(f) is the minimum t suh that

V(Jn
t+1(f)) 6= ∅.

From this theorem we an derive an algorithm to ompute the nonlinearity for a

funtion f ∈ Bn, by determining if the variety of the ideal Jn
t (f) has a solution or

not.

106

8.2. Nonlinearity and polynomial systems over F

Algorithm 9 Basi algorithm to ompute the nonlinearity of a Boolean funtion by

�nding if a solution of a polynomial systems over F exists

Input: a Boolean funtion f

Output: the nonlinearity of f

1: j ← 1

2: while V(Jn
j (f)) = ∅ do

3: j ← j + 1

4: return j − 1

Simonetti's systems Jn
j (f) are the solutions of the problem we stated at the be-

ginning of this setion: they use only n + 1 variables and all we want to know from

them (in the worst ase) is whether they have a solution or not. Observe also that

the solution we are interested in does not lie in some big extension �eld but it must

remain in (F2)
n+1

.

Moreover, the number of systems we need to hek is, in the worst ase, the maximum

nonlinearity plus one. We laim that with our onstraints Simonetti's solution is, in

priniple, still the best-known.

However, a pratial appliation of Algorithm 9 was missing in Simonetti's work,

where she would use straightfoward appliations of Gröbner bases. Before proeeding

to propose more re�ned approahes in the next setions, we would like now to provide

some examples for Simonetti's original ontribution.

Remark 8.2.6. If f is not a�ne, we an start our hek from Jn
2 (f).

Example 8.2.7. Let f : F3 → F be the Boolean funtion:

f(x1, x2, x3) = x1x2 + x1x3 + x2 + 1 .

We want to ompute N(f) and learly f is not a�ne. We ompute vetor f and we

take a general a�ne funtion g3, so that:

f =(1, 1, 0, 1, 1, 0, 0, 0),

g3 =(a0, a0 + a1, a0 + a2, a0 + a3, a0 + a1 + a2,

a0 + a1 + a3, a0 + a2 + a3, a0 + a1 + a2 + a3).

So

f + g3 =(a0 + 1, a0 + a1 + 1, a0 + a2, a0 + a3 + 1,

a0 + a1 + a2 + 1, a0 + a1 + a3, a0 + a2 + a3,

a0 + a1 + a2 + a3) = (p1, p2, . . . , p8) .

107

Chapter 8. Computing the nonlinearity of Boolean funtion

Ideal J3
2 (f) is the ideal generated by

J3
2 (f) = 〈{p1p2, p1p3, . . . , p7p8}

∪{a20 + a0, a
2
1 + a1, a

2
2 + a2, a

2
3 + a3}〉 .

We an ompute any Gröbner basis of this ideal and we obtain that it is trivial,

so V(J3
2 (f)) = ∅ and N(f) > 1. Now an ompute a Gröbner basis for J3

3 (f).

We obtain, using degrevlex ordering with a1 > a2 > a3 > a0, that G(J
3
3 (f)) =

{a2+a3+1, a23+a3, a1a3+a0+1, a0a3+a0+a3+1, a21+a1, a0a1+a0+a1+1, a20+a0}.
So, N(f) = 2 by Theorem 8.2.5. By inspeting G(J3

3 (f)), we also obtain all a�ne

funtions having distane 2 from f :

α1 = 1 + x1 + x2, α2 = 1 + x2,

α3 = 1 + x3, α4 = x1 + x3 .

Example 8.2.8. Let f : F5 → F be the Boolean funtion

f =x1x3x4x5 + x1x2x4 + x1x4x5+ (8.1)

x2x3x4 + x2x4x5 + x3x4x5 + x4x5 . (8.2)

We have that

f = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1) .

Then we ompute f + g5 and we obtain:

f + g5 =(a0, a1 + a0, a2 + a0, a3 + a0, a4 + a0, a5 + a0,

a1 + a2 + a0, a1 + a3 + a0, a1 + a4 + a0,

a1 + a5 + a0, a2 + a3 + a0, a2 + a4 + a0,

a2 + a5 + a0, a3 + a4 + a0, a3 + a5 + a0,

a4 + a5 + a0 + 1, a1 + a2 + a3 + a0,

a1 + a2 + a4 + a0 + 1, a1 + a2 + a5 + a0,

a1 + a3 + a4 + a0, a1 + a3 + a5 + a0,

a1 + a4 + a5 + a0, a2 + a3 + a4 + a0 + 1,

a2 + a3 + a5 + a0, a2 + a4 + a5 + a0,

a3 + a4 + a5 + a0, a1 + a2 + a3 + a4 + a0,

a1 + a2 + a3 + a5 + a0, a1 + a2 + a4 + a5 + a0,

a1 + a3 + a4 + a5 + a0, a2 + a3 + a4 + a5 + a0,

a1 + a2 + a3 + a4 + a5 + a0 + 1) =

=(p1, p2, . . . , p32) .

108

8.3. Nonlinearity and polynomial systems over Q

As it is obvious that f is not a�ne, we start from the ideal J5
2 (f), whih is generated

by

J5
2 (f) = 〈{p1p2, p1p3, . . . , p31p32} ∪ {a20 + a0, a

2
1 + a1,

a22 + a2, a
2
3 + a3, a

2
4 + a4, a

2
5 + a5}〉 .

The Gröbner basis of J5
2 (f) with respet to any monomial order is trivial so we

ompute a Gröbner basis of J5
3 (f). We obtain that the Gröbner basis of J5

t (f) is trivial

with respet to any monomial order for 2 ≤ t ≤ 4. For t = 5, we obtain the following

Gröbner basis with respet to the degrevlex order with a1 > a2 > a3 > a4 > a5 > a0:

G(J5
5 (f)) = {a0, a5, a4, a3, a2, a1} .

Then N(f) = 4, that is, there is only one a�ne funtion α whih has distane equal

to 4 from f : α = 0.

8.3 Nonlinearity and polynomial systems over Q

Here we present an algorithm to ompute the nonlinearity of a Boolean funtion

by solving a polynomial system of equations over Q rather than over F, whih turns

out to be muh faster than Algorithm 9. The same algorithm an be slightly modi�ed

to work over the �eld Fp, where p is a prime. The omplexity of these algorithms will

be analyzed in Setion 8.7.

As we have seen in Setion 8.2, the nonlinearity of a Boolean funtion an be

omputed solving polynomial systems over F. It is su�ient to �nd the minimum j

suh that the variety of the ideal Jn
t (f) is not empty. Reall that

Jn
t (f) = 〈{m(gn + f) | m ∈M2n,t} ∪ E[A]〉 .

This method beomes impratial even for small values of n, sine
(
2n

t

)
monomials

have to be evaluated. A �rst slight improvement ould be ahieved by adding to the

ideal one monomial evaluation at a time and hek if 1 has appeared in the Gröbner

basis. Even this way, the algorithm remains very slow.

For eah i = 1, . . . , 2n, let us denote:

f
(F)
i (A) = gn(A, pi) + f(pi)

the Boolean funtion where as usual A = {a0, . . . , an} are the n + 1 variables repre-

senting the oe�ient of a generi a�ne funtion.

In this ase we have that:

(f
(F)
1 (A), . . . , f

(F)
2n (A)) = gn(A) + f ∈ (F[A])2

n

109

Chapter 8. Computing the nonlinearity of Boolean funtion

Note that the polynomials f
(F)
i are a�ne polynomials.

We also denote by

f
(Z)
i (A) = NNF(f

(F)
i (A))

the NNF of eah f
(F)
i (A) (obtained as in [CG99℄, Theorem 1).

De�nition 8.3.1. We all nf (A) = f
(Z)
1 (A) + · · · + f

(Z)
n (A) ∈ Z[A] the integer

nonlinearity polynomial (or simply the nonlinearity polynomial) of the Boolean

funtion f .

For any t ∈ N we de�ne the ideal N t
f ⊆ Q[A] as follows:

N t
f = 〈E[A]

⋃

{f (Z)
1 + · · ·+ f

(Z)
2n − t}〉 = (8.3)

= 〈E[A]
⋃

{nf − t}〉 (8.4)

Note that the evaluation vetor nf represents all the distanes of f from all possible

a�ne funtions (in n variables).

Theorem 8.3.2. The variety of the ideal N t
f is non-empty if and only if the Boolean

funtion f has distane t from an a�ne funtion. In partiular, N(f) = t, where t is

the minimum positive integer suh that V(N t
f) 6= ∅.

Proof. Note that

N t
f = 〈E[A]〉+ 〈{nf (A)− t}〉

and so

V(N t
f) = V(〈E[A]〉) ∩ V(〈{nf (A)− t}〉) .

Therefore V(N t
f) 6= ∅ if and only if ∃ā = (ā0, . . . , ān) ∈ V(〈E[A]〉) suh that nf(ā) = t.

Let α ∈ An suh that α(X) = ā0 +
∑n

i=1 āixi.

By de�nition we have

f
(Z)
i = 1 ⇐⇒ f(pi) 6= α(pi)

and

f
(Z)
i = 0 ⇐⇒ f(pi) = α(pi) .

Hene

nf (ā) =

2n∑

i=1

f
(Z)
i (ā)− t = 0 ⇐⇒ |{i | f(pi) 6= α(pi)}| = t

⇐⇒ d(f, α) = t .

and our laim follows diretly.

110

8.4. Computing the nonlinearity using fast polynomial evaluation

To ompute the nonlinearity of f we an use Algorithm 10 with input f .

Algorithm 10 To ompute the nonlinearity of the Boolean funtion f

Input: f

Output: nonlinearity of f

1: Compute nf

2: j ← 1

3: while V(N j
f) = ∅ do

4: j ← j + 1

5: return j

Algorithm 10 an be modi�ed to eliminate the while yle. Instead of heking if

a solution of the system

a20 − a0 = 0

. . .

a2n − an = 0

nC(a0, . . . , an)− j = 0

(8.5)

exists in the a�ne algebra Q/〈a20 − a0, . . . , a2n − an〉 for eah j ∈ {1, . . . , 2n}, we an
add the variable t to the system

a20 − a0 = 0

. . .

a2n − an = 0

nC(a0, . . . , an)− t = 0

(8.6)

and solve it in Q[t]/〈a20 − a0, . . . , a2n − an〉, with respet to lexiographial monomial

ordering, to �nd as a solution a polynomial t(t), whose zeros are integers, representing

the possible distanes of the Boolean funtion f from the a�ne funtions. We are

interested in the smallest solution of t(t).

We did not investigate further whih of the two solutions is best.

8.4 Computing the nonlinearity using fast polynomial evalu-

ation

One the nonlinearity polynomial nf is de�ned, we an use another approah to

ompute the nonlinearity avoiding the hard task of solving a polynomial system of

111

Chapter 8. Computing the nonlinearity of Boolean funtion

equations.

We have to �nd the minimum nonnegative integer t in the set of the evaluations of

nf , that is, in {nf(ā) | ā ∈ {0, 1}n+1 ⊂ Zn+1}.
We write expliitly the modi�ed algorithm.

Algorithm 11 To ompute the nonlinearity of the Boolean funtion f

Input: f

Output: nonlinearity of f

1: if f ∈ An then

2: return 0

3: else

4: Compute nf

5: Compute m = min{nf (ā) | ā ∈ {0, 1}n+1}
6: return m

Example 8.4.1. Consider the ase n = 2, f(x1, x2) = x1x2 + 1. We have that

f = (1, 1, 1, 0) and gn = (a0, a0 + a1, a0 + a2, a0 + a1 + a2).

Let us ompute all f
(F)
i = (gn + f)i and f

(Z)
i ,for i = 1, . . . , 22:

f
(F)
1 = a0 + 1 → f

(Z)
1 = −a0 + 1

f
(F)
2 = a0 + a1 + 1 → f

(Z)
2 = 2a0a1 − a0 − a1 + 1

f
(F)
3 = a0 + a2 + 1 → f

(Z)
3 = 2a0a2 − a0 − a2 + 1

f
(F)
4 = a0 + a1 + a2 → f

(Z)
4 = 4a0a1a2 − 2a0a1 − 2a0a2

+ a0 − 2a1a2 + a1 + a2

Then nf = f
(Z)
1 + f

(Z)
2 + f

(Z)
3 + f

(Z)
4 = 4a0a1a2 − 2a0 − 2a1a2 + 3 and sine

nf = (3, 1, 3, 1, 3, 1, 1, 3)

then the nonlinearity of f is 1.

Observe that the vetor nf represents all the distanes of f from all possible a�ne

funtions in 2 variables, that is, from 0, 1, x1, x1 + 1, x2, x2 + 1, x1 + x2, x1 + x2 + 1.

8.5 Properties of the nonlinearity polynomial

From now on, with abuse of notation, we sometimes onsider 0 and 1 as elements

of F and other times as elements of Z.

We have the following de�nition

112

8.5. Properties of the nonlinearity polynomial

De�nition 8.5.1. Given b1, . . . , bn ∈ F

b1 ⊕ . . .⊕ bn =
∑

v=(v1,...,vn)∈Fn,v 6=0

(−2)w(v)−1 · bv11 · · · bvnn .

where the sum on the right is in Z.

It is easy to show that b1 ⊕ . . .⊕ bn ∈ {0, 1}.
We give a theorem to ompute the oe�ients of the nonlinearity polynomial.

Theorem 8.5.2. Let v = (v0, v1, . . . , vn) ∈ Fn+1
, ṽ = (v1, . . . , vn) ∈ Fn

, Av =

av00 · · · avnn ∈ F[A] and cv ∈ Z be suh that nf =
∑

v∈Fn+1 cvA
v
. Then the oe�ients

of nf an be omputed as:

cv =
∑

u∈Fn

f(u) = w(f) if v = 0 (8.7)

cv = (−2)w(v)
∑

u∈Fn

ṽ�u

[

f(u)− 1

2

]

if v 6= 0 (8.8)

Proof. The nonlinearity polynomial is the integer sum of the 2n numerial normal

forms of the a�ne polynomials gn(A, u)⊕ f(u) ∈ F[A], eah identi�ed by the vetor

u ∈ Fn
, i.e.:

nf =
∑

u∈Fn

NNF(gn(A, u)⊕ f(u)) =
∑

u∈Fn

NNF(a0 ⊕ a1u1 ⊕ . . .⊕ anun ⊕ f(u))

whih is a polynomial in Z[A].

The NNF of gn(A, u)⊕ f(u) is a polynomial with 2n+1
terms, i.e.:

NNF(gn(A, u)⊕ f(u)) =
∑

v∈Fn+1

λvA
v ,

for some λv ∈ Z, and by Proposition 3.1.9

λv(u) = (−1)w(v)
∑

a∈Fn+1|a�v

(−1)w(a)
(

gn(a, u)⊕ f(u)
)

.

Let us prove Equation (8.7). When v = (0, . . . , 0) we have

c(0,...,0) =
∑

u∈Fn

[
gn((0, . . . , 0), u)⊕ f(u)

]
=
∑

u∈Fn

f(u) .

113

Chapter 8. Computing the nonlinearity of Boolean funtion

Let us prove Equation (8.8). Suppose v 6= 0.

Now the oe�ient cv of the monomial Av
of the nonlinearity polynomial is suh that:

cv =
∑

u∈Fn

λv(u) =

=
∑

u∈Fn

(−1)w(v)
∑

a∈Fn+1,
a�v

(−1)w(a)
[
gn(a, u)⊕ f(u)

]
=

= (−1)w(v)
∑

u∈Fn

∑

a∈Fn+1,
a�v

(−1)w(a)
[
gn(a, u)⊕ f(u)

]
. (8.9)

We prove that eah u suh that ṽ = (v1, . . . , vn) � u yields a zero term in the

summation, as follows.

If ṽ � u then ∃i ∈ {1, . . . , n} s.t. vi > ui, i.e. vi = 1, ui = 0. We laim that ∀a ∈ Fn+1

s.t. a � v ∃ā = (ā0, . . . , ān) ∈ Fn+1
s.t. ā � v and

(−1)w(a)
[
gn(a, u)⊕ f(u)

]
+ (−1)w(ā)

[
gn(ā, u)⊕ f(u)

]
= 0 (8.10)

It is su�ient to hoose āi 6= ai and āj = aj for all j ∈ {1, . . . , n}, j 6= i. Clearly

ā � v and a � v sine vi = 1.

By diret substitution we obtain

(−1)w(a)
[
gn(a, u)⊕ f(u)

]
+ (−1)w(ā)

[
gn(ā, u)⊕ f(u)

]
=

=(−1)w(a)
[
a0 ⊕ a1u1 ⊕ . . .⊕ aiui ⊕ . . .⊕ anun

]
+

(−1)w(a)(−1)
[
ā0 ⊕ ā1u1 ⊕ . . .⊕ āiui ⊕ . . .⊕ ānun

]

=(−1)w(a)[aiui − āiui] = 0 .

Thanks to (8.10) we an ontinue from (8.9) and get

cv = (−1)w(v)
∑

u∈Fn

ṽ�u

∑

a∈Fn+1,
a�v

(−1)w(a)
[
gn(a, u) + f(u)

−2gn(a, u)f(u)
]
, (8.11)

where we used a⊕ b = a+ b− 2ab.

Now we onsider v, u �xed, and ṽ � u.

There are exatly 2w(v)
vetors a suh that a � v, i.e.:

|{a ∈ Fn+1 | a � v}| = 2w(v)
(8.12)

Now we want to study the internal summation in (8.11).

If u = (0, . . . , 0) then ∀a = (a0, . . . , an) � v we have gn(a, u) = a0⊕a1u1⊕ . . . anun =

114

8.5. Properties of the nonlinearity polynomial

a0.

Otherwise, if u 6= (0, . . . , 0) we an onsider the following set of indies U = {j | uj =
1} = {j1, . . . , jw(u)}, whih has size w(u).

Sine a � v and ṽ � u then (a1, . . . , an) � u by transitivity. For all j /∈ U we have

aj = 0, and then w(a0, aj1, . . . , ajw(u)
) = w(a).

Thus, for any u ∈ Fn
we have

gn(a, u) = a0 ⊕ aj1 ⊕ . . .⊕ ajw(u)
=

1 if w(a) is odd

0 if w(a) is even
(8.13)

and eah of the two ases happens for exatly one half of the vetors a � v. Clearly

the two halves are disjoint.

This yields, from (8.9) and (8.11), the following hain of equalities:

cv =
∑

u∈Fn

λv(u) =

= (−1)w(v)
∑

u∈Fn

ṽ�u

[
∑

a∈Fn+1,
a�v

gn(a,u)=0

(−1)w(a)f(u)+

∑

a∈Fn+1,
a�v

gn(a,u)=1

(−1)w(a)(1− f(u))
]

=

= (−1)w(v)
∑

u∈Fn

ṽ�u

[
∑

a∈Fn+1,
a�v

gn(a,u)=0

f(u) +
∑

a∈Fn+1,
a�v

gn(a,u)=1

(f(u)− 1)

]

=

= (−1)w(v)
∑

u∈Fn

ṽ�u

[

2w(v)−1f(u) + 2w(v)−1(f(u)− 1)

]

=

= (−1)w(v)
∑

u∈Fn

ṽ�u

[

2w(v)f(u)− 2w(v)−1

]

=

= (−2)w(v)
∑

u∈Fn

ṽ�u

[

f(u)− 1

2

]

whih proves the theorem.

In partiular we have:

Corollary 8.5.3. Let u = (u1, . . . , un) and

nf =
∑

u∈Fn

c(0,u)a
u1
1 · . . . · aun

n + a0
∑

u∈Fn

c(1,u)a
u1
1 · . . . · aun

n .

115

Chapter 8. Computing the nonlinearity of Boolean funtion

Then we have that:

c(1,0,...,0) = 2n − 2w(f) (8.14)

And ∀ṽ ∈ Fn, ṽ 6= 0 we have:

c(1,ṽ) = −2c(0,ṽ), . (8.15)

Corollary 8.5.3 shows that it is su�ient to store half of the oe�ients of nf ,

preisely the oe�ients of the monomials where a0 does not appear.

Corollary 8.5.4. Eah oe�ient c of the nonlinearity polynomial nf is suh that

|c| ≤ 2n.

Corollary 8.5.5. Given the nonlinearity polynomial of f as

nf (a0, . . . , an) = c(0,...,0) +
∑

(p0,...,pn)∈Fn+1

(p0,...,pn) 6=(0,...,0)

c(p0,...,pn)a
p0
0 · . . . · apnn

then the nonlinearity polynomial of f ⊕ 1 is related to that of f by the following rule:

nf⊕1(a0, . . . , an) = 2n − c(0,...,0)+
∑

(p0,...,pn)∈Fn+1

(p0,...,pn) 6=(0,...,0)

−c(p0,...,pn)ap00 · . . . · apnn

A sheme that shows how to derive the oe�ients of the nonlinearity polynomial

in the ase n = 3 an be seen in Tables 8.1 and 8.2.

u f(u) + gn(a0, a1, a2, a3, u) 1 a3 a2 a2a3 a1 a1a3 a1a2 a1a2a3

000 v1 + a0 v1

001 v2 + a0 + a3 v2 1− 2v2

010 v2 + a0 + a2 v3 1− 2v3

011 v2 + a0 + a2 + a3 v4 1− 2v4 1− 2v4 −2 + 4v4

100 v2 + a0 + a1 v5 1− 2v5

101 v2 + a0 + a1 + a3 v6 1− 2v6 1− 2v6 −2 + 4v6

110 v2 + a0 + a1 + a2 v7 1− 2v7 1− 2v7 −2 + 4v7

111 v2 + a0 + a1 + a2 + a3 v8 1− 2v8 1− 2v8 −2 + 4v8 1− 2v8 −2 + 4v8 −2 + 4v8 4− 8v8

Table 8.1: Computation of the oe�ients of the nonlinearity polynomial with n = 3.

Eah line represents the NNF oe�ients of the terms of f(u)+gn(A, u) not ontaining

a0.

116

8.6. Complexity of onstruting the nonlinearity polynomial

u f(u) + gn(a0, a1, a2, a3, u) a0 a0a3 a0a2 a0a2a3 a0a1 a0a1a3 a0a1a2 a0a1a2a3

000 v1 + a0 1− 2v1

001 v2 + a0 + a3 1− 2v2 −2 + 4v2

010 v2 + a0 + a2 1− 2v3 −2 + 4v3

011 v2 + a0 + a2 + a3 1− 2v4 −2 + 4v4 −2 + 4v4 4− 8v4

100 v2 + a0 + a1 1− 2v5 −2 + 4v5

101 v2 + a0 + a1 + a3 1− 2v6 −2 + 4v6 −2 + 4v6 4− 8v6

110 v2 + a0 + a1 + a2 1− 2v7 −2 + 4v7 −2 + 4v7 4− 8v7

111 v2 + a0 + a1 + a2 + a3 1− 2v8 −2 + 4v8 −2 + 4v8 4− 8v8 −2 + 4v8 4− 8v8 4− 8v8 −8 + 16v8

Table 8.2: Computation of the oe�ients of the nonlinearity polynomial with n = 3.

Eah line represents the NNF oe�ients of the terms of f(u) + gn(A, u) ontaining

a0.

8.6 Complexity of onstruting the nonlinearity polynomial

We write the algorithm (Algorithm 12) to alulate the nonlinearity polynomial

in O(n2n) integer operations.

Algorithm 12 Algorithm to alulate the nonlinearity polynomial nf in O(n2n)

integter operations.

Input: The evaluation vetor f of a Boolean funtion f(x1, . . . , xn)

Output: the vetor c = (c1, . . . , c2n+1) of the oe�ients of nf

Calulation of the oe�ients of the monomials not ontaining a0

1: (c1, . . . , c2n) = f

2: for i = 0, . . . , n− 1 do

3: b← 0

4: repeat

5: for x = b, . . . , b+ 2i − 1 do

6: cx+1 ← cx+1 + cx+2i+1

7: if x = b then

8: cx+2i+1 ← 2i − 2cx+2i+1

9: else

10: cx+2i+1 ← −2cx+2i+1

11: b← b+ 2i+1

12: until b = 2n

Calulation of the oe�ients of the monomials ontaining a0

13: c1+2n ← 2n − 2c1

14: for i = 2, . . . , 2n do

15: ci+2n ← −2ci
16: return c

117

Chapter 8. Computing the nonlinearity of Boolean funtion

In Figure 8.1 Algorithm 12 is shown for n = 3.

(x1, x2, x3) f(x1, x2, x3) Step 1 Step 2 Step 3

000 e1 // + e1 + e2 // + e1 + e2 + e3 + e4 // + e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

001 e2

55❦❦❦❦❦❦❦❦❦❦❦
1−2x

// 1− 2e2 // + 2− 2e2 − 2e4 // + 4− 2e2 − 2e4 − 2e6 − 2e8

010 e3 // + e3 + e4

DD✟✟✟✟✟✟✟✟✟✟✟
2−2x

// 2− 2e3 − 2e4 // + 4− 2e3 − 2e4 − 2e7 − 2e8

011 e4

55❦❦❦❦❦❦❦❦❦❦❦
1−2x

// 1− 2e4

DD✟✟✟✟✟✟✟✟✟✟✟
−2x

// −2 + 4e4 // + −4 + 4e4 − 4e8

100 e5 // + e5 + e6 // + e5 + e6 + e7 + e8

II
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔
4−2x

// 4− 2e5 − 2e6 − 2e7 − 2e8

101 e6

55❦❦❦❦❦❦❦❦❦❦❦
1−2x

// 1− 2e6 // + 2− 2e6 − 2e8

II
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔

−2x
// −4 + 4e6 − 4e8

110 e7 // + e7 + e8

DD✟✟✟✟✟✟✟✟✟✟✟
2−2x

// 2− 2e7 − 2e8

II
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔

−2x
// −4 + 4e7 − 4e8

111 e8

55❦❦❦❦❦❦❦❦❦❦❦
1−2x

// 1− 2e8

DD✟✟✟✟✟✟✟✟✟✟✟
−2x

// −2 + 4e8

II
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔✔
✔
✔
✔
✔
✔
✔
✔
✔

−2x
// 4− 8e8

Figure 8.1: Butter�y sheme to obtain a fast omputation of the nonlinearity poly-

nomial oe�ients, where (e1, . . . , e8) = (f(p1), . . . , f(p8)).

Theorem 8.6.1. Algorithm 12 requires:

1. O(n2n) integer sums and doublings.

In partiular n2n integer sums and n2n−1
integer doublings, i.e. the big O

onstant is c = 3/2, provided doubling osts as summing.

2. the storage of O(2n) integers of size less than or equal to 2n.

Proof. In the �rst part of Algorithm 12 (the omputation of the oe�ients of the

monomials not ontaining a0) the iteration on i is repeated n times.

For eah i, Step 6 and Step 8 or 10 are repeated 2i 2n

2i+1 = 2n/2 times (sine b goes

from 0 to 2n by a step of 2i+1
and x performs 2i steps). In Step 6 only one integer

sum is performed, in Steps 8 we have one integer sum and one doubling, and in Step

10 only one doubling. Then the total amount of integer operation is

O(n2n)

, where the onstant c in the big O notation is 3/2, provided doubling osts as

summing.

Finally the omputation of the oe�ients of the monomials ontaining a0 requires

only 2n integer doublings.

To store all the monomials of the nonlinearity polynomial we have to store 2n+1

integers, although Corollary 8.5.3 shows that it is su�ient to store only the �rst half

of them, i.e. 2n integers. By Corollary 8.5.4, their size is less than or equal to 2n.

118

8.7. Complexity onsiderations

8.7 Complexity onsiderations

First we reall that the omplexity of omputing the nonlinearity of a Boolean

funtion with n variables, having as input its oe�ients vetor, is O(n2n) using the

Fast Möbius and the Fast Walsh Transform.

We now want to analyze the omplexity of Algorithm 9, 10, 11.

8.7.1 Some onsiderations on Algorithm 9

In Algorithm 9, almost all the omputations are wasted evaluating all possible

simple-t-monomials in 2n variables, whih are

(
2n

t

)
. This number grows enormously

even for small values of n and t. We investigated experimentally how many of the

(
2n

t

)
monomials are atually needed to ompute the �nal Gröbner basis of Jn

t . Our

experiment ran over all possible Boolean funtions in 3 and 4 variables. The results

are reported in Tables 8.3, 8.4 and 8.5.

In this tables, for eah Jn
t there are four olumns. Let Gn

t be the Gröbner basis of J
n
t .

Under the olumn labeled #C we report the average number of heked monomials

in 2n variables before obtaining Gn
t .

Under the olumn labeled #S we report the average number of monomials whih are

atually su�ient to obtain Gn
t .

Under the olumns labeled �m� e �M� we report, respetively, the minimum and the

maximum number of su�ient monomials to �nd Gn
t running through all possible

Boolean funtions in n variables.

For example, to ompute the Gröbner basis of the ideal J3
2 assoiated to a Boolean

funtion f whose nonlinearity is 2, we needed to hek on average 24 monomials

before �nding the orret basis. Between the 24 monomials only 9.7 (on average)

were su�ient to obtain the same basis, where the number of su�ient monomials

never exeeded the range 8− 11.

J3
1 J3

2 J3
3

NL #S m M #C #S m M #C #S m M #C

0 4 4 4 8 0 0 0 0 0 0 0 0

1 4.5 4 5 4.4 8.5 7 10 28 0 0 0 0

2 4.4 4 5 4 9.7 8 11 24 9.3 8 11 56

Table 8.3: Number of monomials needed to ompute the Gröbner basis of the ideal

J3
t .

119

Chapter 8. Computing the nonlinearity of Boolean funtion

J4
1 J4

2 J4
3

NL #S m M #C #S m M #C #S m M #C

0 5 5 5 16 0 0 0 0 0 0 0 0

1 5.25 4 6 8 8.75 8 11 120 0 0 0 0

2 4.83 4 6 5.67 9.97 8 12 62.83 14.50 12 18 560

3 4.62 4 6 4.76 9.92 8 12 42.72 15.76 13 19 315.04

4 4.53 4 6 4.42 9.83 8 12 37.49 15.81 13 19 246.19

5 4.46 4 5 4.19 10.11 8 12 34.39 15.89 13 19 215.68

6 4.43 4 5 4.00 9.71 8 11 24.00 17.29 16 19 156.86

Table 8.4: Number of monomials needed to ompute the Gröbner basis of the ideal

J4
t , t = 1, 2, 3.

J4
4 J4

5 J4
6 J4

7

NL #S m M #C #S m M #C #S m M #C #S m M #C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 20.18 15 23 1820 0 0 0 0 0 0 0 0 0 0 0 0

4 21.44 16 24 1319.96 23.99 22 29 4368 0 0 0 0 0 0 0 0

5 21.54 19 24 1003.15 26.00 24 28 3851.24 23.50 22 25 8008 0 0 0 0

6 19.57 19 20 671.71 28 28 28 2603.79 28 28 28 7608.79 16 16 16 11441

Table 8.5: Number of monomials needed to ompute the Gröbner basis of the ideal

J4
t ,t = 4, 5, 6, 7.

8.7.2 Algorithm 9 and 10

Sine it is not easy to estimate the omplexity of a Gröbner basis omputation

theoretially, we give some experimental results, shown in Table 8.6. In this table

we report the oe�ients of growth of the analyzed algorithms

1

, omparing them

with the value log2
[(n+1)2n+1

n2n

]
. For eah algorithm we ompute the average time tn to

ompute the nonlinearity of a Boolean funtion with n variables and the average time

tn+1 to ompute the nonlinearity of a Boolean funtion with n + 1 variables. Then

we report in the table the value log2
(tn+1

tn

)
. When Gröbner bases are omputed, then

graded reverse lexiographial order is used, with Magma [MAG℄ (Version 2.19) im-

plementation of the Faugère F4 algorithm. Sine the ideal Jn
t (f) of De�nition 8.2.2 is

derived from the evaluation of

(
2n

t

)
monomials (generating at most the same number

of equations), then the omplexity of Algorithm 9 is equivalent to the omplexity of

1

To ompute the values in the olumns FWT and NLP+FPE we tested 15000 random Boolean

funtions from n = 4, sine for n = 3 there are only 2(2
3) = 256 Boolean funtions.

120

8.7. Complexity onsiderations

n log2
[(n+1)2n+1

n2n

]
FWT NLP+FPE GB on Fp GB on Q GB on F

2-3 1.53 - - 1.45 1.86 2.50

3-4 1.31 - - 1.88 2.27 7.51

4-5 1.22 0.90 1.02 2.33 2.91 -

5-6 1.17 0.98 1.09 2.64 3.23 -

6-7 1.14 1.01 1.13 2.76 4.29 -

7-8 1.12 1.22 1.07 3.24 - -

8-9 1.11 0.95 1.17 3.48 - -

9-10 1.09 1.25 1.07 - - -

10-11 1.09 1.07 1.11 - - -

Table 8.6: Experimental omparisons of the oe�ients of growth of the analyzed

algorithms.

solving a polynomial system of at most

(
2n

t

)
equations of degree d (where 1 < d ≤ t)

in n+1 variables over the �eld F. This method beomes almost impratial for n = 5.

We reall that t ≤ 2n−1 − 2
n
2
−1

(see Equation 3.3).

The omplexity of Algorithm 10 is equivalent to the omplexity of solving a poly-

nomial system of only n+1 �eld equations plus one single polynomial nf of degree at

most n+1 in n+1 variables over the �eld Q (or over a prime �eld Fp) with oe�ients

of size less then or equal to 2n.

As shown in Table 8.6, solving the system by omputing its Gröbner basis over a

prime �eld Fp with p ∼ 2n is muh faster than omputing the same base over Q. It

may be investigated if there are better size for the prime p, or even faster speialized

algorithms to solve the system.

8.7.3 Algorithm 11

Theorem 8.7.1. Algorithm 11 returns the nonlinearity of a Boolean funtion f given

as evaluation vetor, with n variables in

O(n2n)

integers operations (sums and doublings). The big O onstant is 2

Proof. Algorithm 11 an be divided in three main steps:

1. Calulation of the nonlinearity polynomial nf . This step, as shown in Theorem

8.6.1, requires O(n2n) (with big O onstant 3/2) integer operations and O(2n)

memory .

121

Chapter 8. Computing the nonlinearity of Boolean funtion

2. Evaluation of the nonlinearity polynomial nf . This step an be performed using

fast Möbius transform in O(n2n) (with big O onstant 1/2) integer sums and

O(2n) memory.

3. Computation of the minimum nf (a) with a ∈ Zn+1
. This step requires no more

than O(2n) heks.

The overall omplexity is then O(n2n) (with big O onstant c = 3/2 + 1/2 = 2)

integer operations and O(2n) memory.

122

Part IV

MAGMA ode

123

Funtions for Part II

9.1 Nordstrom-Robinson ode

The followingMAGMA ode de�nes a funtion to generate the Nordstrom-Robinson

ode as a binary matrix.

1 NordstromRobinsonCode := funtion()

2 // from:

3 // Huffman-Pless

4 // "Fundamentals of Error Correting Codes"

5 // 2.3.4 - The Nordstrom-Robinson ode

6 //

7 // The existene of the Nordstrom-Robinson ode shows that

8 // A_2(16,6) = 256.

9 //

10 // The ommand:

11 // > NordstromRobinsonCode() ;

12 // returns a matrix whose rows are the odeword of the

13 // Nordstrom-Robinson ode.

14

15 loal C ; // Extended Golay ode

16 loal G ; // Generator matrix of C

17 loal v ; // vetor of 24 bits

18 loal CT ; // subode of C of 32 odewords with 0 in the first 8 omponents

19 loal ; // list of 8 speial odewords to reate the osets of CT

20 loal CC ; // list of 8 osets of CT

21 loal N ; // onatenation of the osets CC[i℄ (256 odewords of length 24)

22 loal N16 ; // Nordstrom-Robinson ode:

23 // - punturing of N in the first 8 omponents

24 // - 256 odewords

25 // - length 16

26 // - distane 6

27

28 /////////

29 // STEP 1 - Let C be the [24, 12, 8℄ extended binary Golay ode

30 /////////

31

32 C := GolayCode(GF(2),true) ;

33

34 /////////

35 // STEP 2 - Let C be the [24, 12, 8℄ extended binary Golay ode

36 // hosen to ontain the weight 8 odeword = 11...100...0

37 /////////

38

39 G := GeneratorMatrix(C) ;

40

41 G := SwapColumns(G,2,13) ;

42 G := SwapColumns(G,3,15) ;

CGC 125

Chapter 9. Funtions for Part II

43 G := SwapColumns(G,4,17) ;

44 G := SwapColumns(G,5,18) ;

45 G := SwapColumns(G,6,19) ;

46 G := SwapColumns(G,7,23) ;

47 G := SwapColumns(G,8,24) ;

48

49 C := LinearCode(G) ;

50 v := Vetor(GF(2),[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0℄) ;

51

52 /////////

53 // STEP 3 - Let C(T) be the subode of C whih is zero on T

54 // (T is the set onsisting of the first eight oordinates)

55 /////////

56

57 CT := [℄ ;

58 i := 1 ;

59 for in C do

60 if [1℄ eq 0 and

61 [2℄ eq 0 and

62 [3℄ eq 0 and

63 [4℄ eq 0 and

64 [5℄ eq 0 and

65 [6℄ eq 0 and

66 [7℄ eq 0 and

67 [8℄ eq 0 then

68 CT[i℄ := ;

69 i := i + 1 ;

70 end if ;

71 end for ;

72

73 /////////

74 // STEP 4 - onstrut [i℄ in C

75 // - [0℄ = (0 ... 0)

76 // - for 1 <= i <= 7 let

77 // [i℄ = a odeword of C with zeros in the first eight oordinates

78 // exept oordinate i and oordinate 8

79 /////////

80

81 := [℄ ;

82 for i in [1..7℄ do

83 for x in C do

84 if x[i℄ eq 1 and

85 x[8℄ eq 1 and

86 IntegerRing()!(x[1℄) +

87 IntegerRing()!(x[2℄) +

88 IntegerRing()!(x[3℄) +

89 IntegerRing()!(x[4℄) +

90 IntegerRing()!(x[5℄) +

91 IntegerRing()!(x[6℄) +

92 IntegerRing()!(x[7℄) +

93 IntegerRing()!(x[8℄) eq 2 then

94 [i℄ := x ;

95 end if ;

96 end for ;

97 end for ;

98

99 [8℄ := ZeroMatrix(GF(2),1,24)[1℄ ;

100

101 /////////

102 // STEP 5 - let CC[j℄ j be the oset [j℄ + CT

126

9.2. Bound A, B

103 // of CT in the extended Golay ode C

104 // For 0 <= j <= 7

105 /////////

106

107 CC := [℄ ;

108 for j in [1..8℄ do

109 CC[j℄ := [℄ ;

110 for i in [1..#CT℄ do

111 CC[j℄[i℄ := CT[i℄ + [j℄ ;

112 end for ;

113 end for ;

114

115 /////////

116 // STEP 6 - Let N be the union of the eight osets CC[1℄, ..., CC[8℄

117 /////////

118

119 N := CC[1℄ at CC[2℄ at CC[3℄ at CC[4℄ at

120 CC[5℄ at CC[6℄ at CC[7℄ at CC[8℄ ;

121

122 /////////

123 // STEP 7 - The Nordstrom-Robinson ode N16

124 // is the ode obtained by punturing N on T

125 // (set onsisting of the first eight oordinates)

126 /////////

127

128 N16 := [℄ ;

129 for i in [1..#N℄ do

130 N16[i℄ := ZeroMatrix(GF(2),1,16)[1℄ ;

131 for j in [1..Nols(N[i℄)-8℄ do

132 N16[i℄[j℄ := N[i℄[j+8℄ ;

133 end for ;

134 end for ;

135

136 return Matrix(N16) ;

137 end funtion ;

9.2 Bound A, B

In this setion we provide the ode to ompute Bound A and B, and all the

MAGMA funtions used to obtain the results in Setion 6.

9.2.1 The Johnson bound

We have implemented our own version of the Johnson bound, sine the one pro-

vided by MAGMA was somehow inomplete.

1 RR := funtion(m,r,l)

2 // RR is alled by R, whih returns a bound for R(m,r,l)

3 // using Johnson's tehniques,

4 // ("A new upper bound for error-orreting odes",

5 // Selmer M. Johnson, 1962, Ire Transations On Information Theory).

6 // Reall that R(m,r,l) = A_2(m,2r-2l,r)

7

127

Chapter 9. Funtions for Part II

8 loal bound, k, t ;

9

10 // Chek parameters m, r

11 if (m lt 1) or (not IsIntegral(m)) then // m >= 1

12 printf "Error! Parameter (1) must be an integer greater than or equal to 1\n"

;

13 return -1 ;

14 end if ;

15 if (r lt 0) or r gt m or (not IsIntegral(r)) then // 0 <= r <= m

16 printf "Error! Parameter (2) must be an integer in the range [0 .. parameter

(1) ℄\n" ;

17 return -1 ;

18 end if;

19 if l lt 0 or l gt m then // 0 <= l <= m

20 printf "Error! Parameter (3) must be an integer in the range [0 .. parameter

(1) ℄\n" ;

21 return -1 ;

22 end if ;

23

24 // Border line ases

25 if r eq m and l eq m then // r = m, l = m

26 return 2 ;

27 end if ;

28 if r eq m and l lt m then // r = m, l < m

29 return 1 ;

30 end if ;

31 if r eq 0 then // r = 0

32 return 1 ;

33 end if ;

34

35 bound := -1 ;

36 if r^2 - m*l gt 0 then // we an apply R(m,r,l) <= Floor(m(r-l) / (r^2-ml))

37 if l gt 0 then

38 bound := Min(m*(r-l) div (r^2-m*l) , Floor(m/r * $$(m-1,r-1,l-1))) ;

39 // sometimes one more redution returns a better lower bound

40 else // if l = 0 we an not hek further

41 bound := m*(r-l) div (r^2-m*l) ;

42 end if ;

43 else // we an apply R(m,r,l) <= Floor(m/r * R(m-1,r-1,l-1)) until l = 0

44 bound := Floor(m/r * $$(m-1,r-1,l-1)) ;

45 end if ;

46

47 // searh for the best R suh that R(R-1)l >= (m-t)k^2 + t(k+1)^2 - rR,

48 // where R is the variable bound

49 k := r*bound div m ;

50 t := r*bound - m*k ;

51 while (bound*(bound-1)*l lt (m-t)*k^2 + t*(k+1)^2 - r*bound) do

52 //[bound,bound*(bound-1)*l , (m-t)*k^2 + t*(k+1)^2 - r*bound ℄ ;

53 bound := bound - 1 ;

54 k := Floor(r*bound/m) ;

55 t := r*bound - m*k ;

56 end while ;

57

58 return bound ;

59 end funtion ;

60

61 ///

62

63 R := funtion(m,r,l)

64 // R returns a bound for R(m,r,l) using Johnson's tehniques,

128

9.2. Bound A, B

65 // ("A new upper bound for error-orreting odes",

66 // Selmer M. Johnson, 1962, Ire Transations On Information Theory).

67 // Reall that R(m,r,l) = A_2(m,2r-2l,r)

68 //

69 // INPUT:

70 // - integer m s.t. m >= 1

71 // - integer r s.t. 0 <= r <= m

72 // - integer l s.t. 0 <= l <= m

73 // OUTPUT:

74 // - Johnson Bound for R(n,d,w)

75 //

76 // Calls funtion RR()

77 // Let R(m,r,l) be the maximum number of vetors of size m and weigth r

78 // suh that the inner produt of any pair of row vetors

79 // is less than or equal to l.

80 // Compute R(m,r,l) using bounds from Johnson 1963.

81 // Sine R(m,r,l) = R(m,m-r,m-2r+l), then R hooses the minimum between them,

82 // i.e. Min(RR(m,r,l) , RR(m,m-r,m-2r+l)).

83 // Returns -1 in ase of bad parameters.

84

85 // Chek parameters m, r

86 if (m lt 1) or (not IsIntegral(m)) then // m >= 1

87 printf "Error! Parameter (1) must be an integer greater than or equal to 1\n"

;

88 return -1 ;

89 end if ;

90 if (r lt 0) or r gt m or (not IsIntegral(r)) then // 0 <= r <= m

91 printf "Error! Parameter (2) must be an integer in the range [0 .. parameter

(1) ℄\n" ;

92 return -1 ;

93 end if;

94 if l lt 0 or l gt m then // 0 <= l <= m

95 printf "Error! Parameter (3) must be an integer in the range [0 .. parameter

(1) ℄\n" ;

96 return -1 ;

97 end if ;

98

99 // Border line ases

100 if r eq m and l eq m then // r = m, l = m

101 return 2 ;

102 end if ;

103 if r eq m and l lt m then // r = m, l < m

104 return 1 ;

105 end if ;

106 if r eq 0 then // r = 0

107 return 1 ;

108 end if ;

109

110 //Return Min[RR(m,r,l) , RR(m,m-r,m-2r+l) ℄ ;

111 if m-2*r+l lt 0 then

112 return RR(m,r,l) ;

113 end if;

114 return Min(RR(m,r,l) , RR(m,m-r,m-2*r+l)) ;

115 end funtion ;

116

117 ///

118

119 JohnsonBound_2 := funtion (n,d)

120 // Compute Johnson Bound using algorithm from Johnson's Artile 1962,

121 // ("A new upper bound for error-orreting odes",

129

Chapter 9. Funtions for Part II

122 // Selmer M. Johnson, 1962, Ire Transations On Information Theory)

123 // Returns -1 in ase of bad parameters

124

125 loal e,denom1,denom2 ;

126

127 // Chek parameters n, d

128 if (n lt 1) or (not IsIntegral(n)) then

129 printf "Error! Parameter (2) must be an integer greater than or equal to 1\n"

;

130 return -1 ;

131 end if ;

132 if (d lt 1) or (d gt n) or (not IsIntegral(d)) then

133 printf "Error! Parameter (3) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

134 return -1 ;

135 end if ;

136 if IsEven(d) then // if d is even A_2(n,d) = A_2(n-1,d-1)

137 return $$(n-1,d-1) ;

138 end if ;

139 e := (d-1) div 2 ;

140

141 // Border line ases

142 if (d eq 1) then // If d = 1 return the vetor spae ardinality

143 return 2^n;

144 end if ;

145

146 // Choose the minimum from the two formula where the following terms are

replaed:

147 // [n/(e+1)℄ <--> 1 + (d+1 e+1)R(n,d+1,e+1)/((n e+1)-(d e)R(n,d,e))

148 denom1:= &+[Binomial(n,i): i in [0 .. e℄℄ +

149 (Binomial(n,e+1) - Binomial(d,e) * R(n,d,e)) /

150 Floor(n/(e+1)) ;

151 if ((Binomial(n,e+1)-Binomial(d,e)*R(n,d,e)) gt 0) then

152 denom2:= &+[Binomial(n,i):i in [0..e℄℄ +

153 (Binomial(n,e+1) - Binomial(d,e) * R(n,d,e)) /

154 (1+

155 (Binomial(d+1,e+1)*R(n,d+1,e+1) /

156 (Binomial(n,e+1)-Binomial(d,e)*R(n,d,e)))

157) ;

158 return Min (Floor(2^n/denom1) , Floor(2^n/denom2)) ;

159 else

160 return Floor(2^n / denom1);

161 end if;

162

163 end funtion ;

164

165 ///

166

167 AA_ := funtion(K,n,d,w)

168

169 loal q ;

170

171 q := #K ;

172 // Chek parameters

173 if (not IsField(K)) then

174 printf "Error! parameter (1) must be a field\n" ;

175 return -1 ;

176 end if ;

177 if (n lt 1) or (not IsIntegral(n)) then // n >= 1

178 printf "Error! parameter (2) must be an integer greater than 1\n" ;

130

9.2. Bound A, B

179 return -1 ;

180 end if ;

181 if (d lt 1) or (d gt n) or (not IsIntegral(d)) then // 1 <= d <= n

182 printf "Error! parameter (3) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

183 return -1 ;

184 end if ;

185 if w lt 0 or w gt n or (not IsIntegral(w)) then // 0 <= w <= n

186 printf "Error! parameter (4) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

187 return -1 ;

188 end if ;

189

190 // Border line ases

191 if w eq 0 then // w = 0

192 return 1 ;

193 end if ;

194 if n eq 1 or (d eq n and w eq n) then

195 return q - 1 ;

196 end if ;

197

198 //ompute A_q(n,d,w)

199 if d gt 2*w then // d > 2wn*d*(q-1) div (q*w^2-2*(q-1)*n*w+n*d*(q-1))

200 return 1 ;

201 end if ;

202 // hek if Restrited Johnson Bound an be used

203 if (q*w^2 - 2*(q-1)*n*w + n*d*(q-1) gt 0) then

204 if w gt 0 and n gt d+1 then // use that A_q(n,d,w) <= n*(q-1)/w *

A_q(n-1,d-w-1)

205 return Min(n*d*(q-1) div (q*w^2-2*(q-1)*n*w+n*d*(q-1)) , n*(q-1) *

$$(K,n-1,d,w-1) div w);

206 else

207 return n*d*(q-1) div (q*w^2-2*(q-1)*n*w+n*d*(q-1)) ;

208 end if ;

209 else // use that A_q(n,d,w) <= n*(q-1)/w * A_q(n-1,d-w-1)

210 return n*(q-1) * $$(K,n-1,d,w-1) div w ;

211 end if ;

212

213 return 0 ;

214 end funtion ;

215

216 ///

217

218 A_ := funtion(K,n,d,w)

219 // INPUT:

220 // - field harateristi q, must be a prime power

221 // - integer n s.t. n >= 1

222 // - integer d s.t. 1 <= d <= n

223 // - integer w s.t. 0 <= w <= n

224 // OUTPUT:

225 // - Johnson Bound for A_q(n,d,w)

226 //

227 // Calls funtion AA_()

228 // Compute A_q(n,d,w) using bounds from Huffman-Pless 2003

229 // If q = 2, A_q(n,d,w) = A_q(n,d,n-w), so A_ hooses the minimum between them,

i.e. Min(AA_q(n,d,w) , AA_q(n,d,n-w))

230

231 loal q ;

232

233 q := #K ; // ardinality of the field

131

Chapter 9. Funtions for Part II

234

235 // Chek parameters

236 if (not IsField(K)) then

237 printf "Error! parameter (1) must be a field\n" ;

238 return -1 ;

239 end if ;

240 if (n lt 1) or (not IsIntegral(n)) then // n >= 1

241 printf "Error! parameter (2) must be an integer greater than 1\n" ;

242 return -1 ;

243 end if ;

244 if (d lt 1) or (d gt n) or (not IsIntegral(d)) then // 1 <= d <= n

245 printf "Error! parameter (3) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

246 return -1 ;

247 end if ;

248 if w lt 0 or w gt n or (not IsIntegral(w)) then // 0 <= w <= n

249 printf "Error! parameter (4) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

250 return -1 ;

251 end if ;

252

253 q := #K ;

254

255 // Border line ases

256 if w eq 0 then // w = 0

257 return 1 ;

258 end if ;

259 if n eq 1 or (d eq n and w eq n) then

260 return q - 1 ;

261 end if ;

262

263 if q eq 2 then

264 return Min(AA_(K,n,d,w) , AA_(K,n,d,n-w)) ;

265 else

266 return AA_(K,n,d,w) ;

267 end if ;

268

269 end funtion ;

270

271 ///

272

273 /*

274 Important note:

275 the formula implemented is taken from the original artile

276 by Johnson

277 ("A new upper bound for error-orreting odes",

278 Selmer M. Johnson, 1962, Ire Transations On Information Theory)

279 in the binary ase, and from Huffman-Pless in the q_ary ase

280 ("Fundamentals of Error Correting Codes", W. Cary Huffman and Vera Pless,

281 2003, Cambridge University Press).

282 The bound stritly depends from the value A_q(n,d,w),

283 whih is the maximum number of odewords for a q_ary ode, length n, distane d,

284 and whose words have all weight w.

285 Sine this value annot be omputed expliitly,

286 in this implementation A_q(n,d,w) is only bounded following

287 the tehniques showed in the mentioned papaers.

288 Thus it is possible to obtain better values using the Johnson Bound

289 if the value A_q(n,d,w) is known or better bounded.

290 */

291 JohnsonBound_ := funtion(K,n,d)

132

9.2. Bound A, B

292 // INPUT:

293 // - field K

294 // - integer n s.t. n >= 1

295 // - integer d s.t. 1 <= d <= n

296 // OUTPUT:

297 // - Johnson Bound for A_q(n,d)

298 //

299 // Calls funtion A_() whih alls funtion AA_()

300 // Return the Johnson upper bound for the ardinality of a largest q_ary ode

301 // of length n and minimum distane d.

302

303 loal q, t, s, k , A ;

304

305 // Chek parameters

306 if (not IsField(K)) then

307 printf "Error! parameter (1) must be a field\n" ;

308 return -1 ;

309 end if ;

310 if (n lt 1) or (not IsIntegral(n)) then

311 printf "Error! parameter (2) must be an integer greater than 1\n" ;

312 return -1 ;

313 end if ;

314 if (d lt 1) or (d gt n) or (not IsIntegral(d)) then

315 printf "Error! parameter (3) must be an integer in the range [1 .. parameter

(2) ℄\n" ;

316 return -1 ;

317 end if ;

318

319 q := #K ;

320

321 // Border line ases

322 if n eq 1 or d eq n then

323 return q ;

324 end if ;

325 if (d eq 1) then // If d = 1 return the vetor spae ardinality

326 return q^n;

327 end if ;

328

329 if IsEven(d) then // A_q(n,d) <= A_q(n-1,d-1)

330 return $$(K,n-1,d-1) ;

331 end if ;

332

333 k := 0 ;

334

335 t := (d-1) div 2 ;

336

337 //ompute Sum_0^t (n i)*(q-1)^i

338 s := &+[Binomial(n,i)*(q-1)^i: i in [0 .. t℄℄ ;

339

340 // UNCOMMENT the following lines (if statement)

341 // if you want to all the funtion JohnsonBound_2 when q = 2

342 if q eq 2 then //ompute Johnson bound for A_2(n,d)

343 A := JohnsonBound_2(n,d) ;

344 else //ompute Johnson bound for A_q(n,d) when q > 2

345 A := Floor(q^n / (s + (Binomial(n,t+1)*(q-1)^(t+1) -

Binomial(d,t)*A_(K,n,d,d)) / A_(K,n,d,t+1))) ;

346 end if ;

347

348 return A ;

349 end funtion ;

133

Chapter 9. Funtions for Part II

9.2.2 The Linear Programmin bound

Here we provide a basi implementation of the Linear Programming bound, as

presented in [HP03℄.

1 KrawthoukPolynomial := funtion(q,n,k,x)

2 // returns the Krawthouk polynomial in the variable x

3 // 0 <= k <= n

4 //

5

6 return &+[(-1)^j * (q-1)^(k-j) * Binomial(x,j) * Binomial(n-x,k-j) : j in

[0..k℄℄ ;

7 end funtion ;

8

9 ///

10

11 LPB := funtion(KK,n,d)

12 // LinearProgrammingBound := funtion(KK,n,d)

13 // return the basi version of the linear programming bound as in

14 // Huffman-Pless, "Fundamental of error orreting odes" - Theorem 2.6.4

15 // A_q(n,d) <= max { Sum_{w=0}^{n} (B_w) }

16 //

17 // we want to maximase the above mentioned sum with the following ostraints:

18 // * B0 = 1

19 // * B1, ..., B(d-1) = 0

20 // * Bd, ..., Bn >= 0

21 // * Sum_w=0^n Bw * K(q,n,k,w) >= 0 ,

22 // for 1 <= k <= n

23 // where K is the krawthouk polynomial

24 //

25 // furthermore, in the binary ase and if d is even, then

26 // * Bw = 0 for all odd w

27 // * Bn <= 1

28 // * Sum_w=0^n Bw * K(q,n,k,w) >= 0 ,

29 // for 1 <= k <= Floor(n/2)

30 //

31

32 loal q ;

33 loal R ;

34 loal i ;

35 loal L ; // max { Sum_{w=0}^{n} (B_w) }

36 loal nv ; // number of variables

37 loal n ; // number of ostraints

38 loal lhs ; // n x nv matrix,

39 // representing the left-hand-side oeffs of the m onstraints

40 loal rhs ; // n x 1 matrix over the same ring as LHS,

41 // representing the right-hand-side values of the m onstraints

42 loal rel ; // n x 1 matrix over the same ring as LHS,

43 // representing the relations for eah onstraint, with:

44 // * 1 for >=

45 // * 0 for =

46 // * -1 for <=

47 loal obj ; // 1 x nv matrix over the same ring as LHS,

48 // representing the oeffs of the objetive funtion to be optimised

134

9.2. Bound A, B

49

50 q := #KK ;

51 R := RealField() ;

52

53 if q eq 2 and IsEven(d) then

54 nv := Ceiling((n-d+1)/2) ; // would not work if d was odd

55 n := Floor(n/2) ;

56

57 lhs := Matrix(R, n, nv, [℄);

58 for k in [1..n℄ do

59 i := 1 ;

60 for w := d to n by 2 do

61 lhs[k℄[i℄ := KrawthoukPolynomial(q,n,k,w) ;

62 i := i + 1 ;

63 end for ;

64 end for ;

65

66 else

67 nv := n-d+1 ; // the nonzero variables are Bd, B(d+1), ..., Bn

68 n := n ;

69

70 lhs := Matrix(R, n, nv, [℄);

71 for k in [1..n℄ do

72 i := 1 ;

73 for w := d to n do

74 lhs[k℄[i℄ := KrawthoukPolynomial(q,n,k,w) ;

75 i := i + 1 ;

76 end for ;

77 end for ;

78 end if ;

79

80 rhs := Matrix(R, n, 1, [-KrawthoukPolynomial(q,n,k,0) : k in [1..n℄℄) ;

81 rel := Matrix(R, n, 1, [1 : k in [1..n℄℄) ;

82 obj := Matrix(R, 1, nv, [1 : w in [1..nv℄℄) ;

83

84 L := MaximalSolution(lhs, rel, rhs, obj);

85

86 return Floor(1 + &+[L[1℄[i℄ : i in [1..Nols(L)℄℄) ;

87

88 end funtion ;

9.2.3 The best known nonlinear upper bound

Here we provide a funtion whih omputes the best nonlinear upper bound be-

tween the previously implemented upper bounds and those implemented in MAGMA.

1 Ball := funtion(KK,r,n)

2 // returns the set B_q(r,n),

3 // whih is the set of vetors over the field KK, of length n and weight less

than or equal to r

4

5 loal B ;

6

7 // hek parameters

8 if not IsField(KK) then

9 printf "Error! Parameter (1) must be a field.\n" ;

135

Chapter 9. Funtions for Part II

10 return -1 ;

11 end if ;

12 if not IsIntegral(n) or n lt 1 then

13 printf "Error! Parameter (2) must be an integer greater than parameter 0.\n" ;

14 return -1 ;

15 end if ;

16 if not IsIntegral(r) or r gt n or r lt 0 then

17 printf "Error! Parameter (3) must be an integer between 0 and parameter

(3).\n" ;

18 return -1 ;

19 end if ;

20

21 B := {} ;

22 V := VetorSpae(KK,n) ;

23 for v in V do

24 if Weight(v) le r then

25 B := B join {v} ;

26 end if ;

27 end for ;

28 return B ;

29 end funtion ;

30

31 ///

32

33 BallSize := funtion(KK,r,n)

34 return &+[Binomial(n,j)*(#KK-1)^j: j in [0 .. r℄℄ ;

35 end funtion ;

36

37 ///

38

39 BestKnownNonlinearUpperBound_ := funtion(KK,n,d)

40 // Compute the best bound for A_q(n,d)

41

42 loal A, q, MM ;

43 loal plot ; // trae variables: they keep trak of what is being used

44

45 plot := false ;

46

47 // hek parameters

48 if not IsField(KK) then

49 printf "Funtion BestKnownNonlinearUpperBound_\n" ;

50 printf "Error! Parameter (1) must be a field.\n" ;

51 return -1, plot ;

52 end if ;

53 if not IsIntegral(d) or d lt 1 then

54 printf "Funtion BestKnownNonlinearUpperBound_\n" ;

55 printf "Error! Parameter (3) must be an integer greater than or equal to

1.\n" ;

56 return -1, plot ;

57 end if ;

58 if not IsIntegral(n) or n lt d then

59 printf "Funtion BestKnownNonlinearUpperBound_\n" ;

60 printf "Error! Parameter (2) must be an integer greater than or equal

parameter (3).\n" ;

61 return -1, plot ;

62 end if ;

63

64 q := Charateristi(KK)^Degree(KK) ;

65 A := q^n ;

66

136

9.2. Bound A, B

67 // Cases q = 2 , d > n , d > 2n/3 , d = 1 , d = 2

68 if q eq 2 then

69 if d gt n then

70 return 1, plot ;

71 end if ;

72 if d gt 2*(n)/3 then

73 return 2, plot ;

74 end if ;

75 if d eq 1 then

76 return 2^(n), plot ;

77 end if ;

78 if d eq 2 then

79 return 2^(n-1), plot ;

80 end if ;

81 end if ;

82

83 //Best known binary bounds from www.win.tue.nl/~aeb/odes/binary-1.html q = 2 ,

n = 5..28 , d = 3..16

84 if (q eq 2) then

85 MM := Matrix(IntegerRing(),23,7,[

86 4, 2, 1, 1, 1, 1, 1,

87 8, 2, 1, 1, 1, 1, 1,

88 16, 2, 2, 1, 1, 1, 1,

89 20, 4, 2, 1, 1, 1, 1,

90 40, 6, 2, 2, 1, 1, 1,

91 72, 12, 2, 2, 1, 1, 1,

92 144, 24, 4, 2, 2, 1, 1,

93 256, 32, 4, 2, 2, 1, 1,

94 512, 64, 8, 2, 2, 2, 1,

95 1024, 128, 16, 4, 2, 2, 1,

96 2048, 256, 32, 4, 2, 2, 2,

97 3276, 340, 36, 6, 2, 2, 2,

98 6552, 673, 72, 10, 4, 2, 2,

99 13104, 1237, 135, 20, 4, 2, 2,

100 26168, 2279, 256, 40, 6, 2, 2,

101 43688, 4096, 512, 47, 8, 4, 2,

102 87333, 6941, 1024, 84, 12, 4, 2,

103 172361, 13674, 2048, 150, 24, 4, 2,

104 344308, 24106, 4096, 268, 48, 6, 4,

105 599184, 47538, 5421, 466, 55, 8, 4,

106 1198368, 84260, 9672, 836, 96, 14, 4,

107 2396736, 157285, 17768, 1585, 169, 28, 6,

108 4792950, 291269, 32151, 3170, 288, 56, 8

109 ℄);

110 if (n le 27) and (n ge 5) and (d ge 3) and (d le 16) then

111 if IsEven(d) then

112 A := MM[n-5,(d-1) div 2℄ ;

113 else

114 A := MM[n+1-5,(d-1) div 2℄ ;

115 end if;

116 end if ;

117 end if ;

118

119 // if possible use Plotkin Bound, and return it, sine all other bounds are

worse

120 if (1-1/q)*n lt (d) then

121 plot := true ;

122 return Min(A,PlotkinBound(KK,n,d)), plot ;

123 end if ;

124

137

Chapter 9. Funtions for Part II

125 A := Min({ A,

126 // LPB(KK,n,d) , // use our implementation

127 // LPB often returns "Numerial instability errors..."

128 JohnsonBound_(KK,n,d) , // use our implementation

129 SpherePakingBound(KK,n,d) ,

130 // LevenshteinBound(KK,n,d) , // very slow

131 // GriesmerBound(KK,n,d) , // it is only for linear odes

132 EliasBound(KK,n,d) ,

133 SingletonBound(KK,n,d)

134 }) ;

135 return A, plot ;

136 end funtion ;

9.2.4 Bound B

1 BoundB := funtion(KK,n,d)

2 // Bound B from Bellini-Guerrini-Sala Artile

3 // return

4 // * the Bound B and five parameters (i,s1,s2,s3,A)

5 // used during the omputations

6 // * -1, in ase of error

7 // * -2, in ase the bound does not apply

8

9 loal s1, s2, s3 ;

10 loal max_i, min_i ;

11 loal q ;

12 loal plot ;

13

14 plot := false ;

15

16 // hek parameters

17 if not IsField(KK) then

18 printf "Funtion BoundB\n" ;

19 printf "Error! Parameter (1) must be a field.\n" ;

20 return -1, -1,-1,-1,-1,-1,plot ;

21 end if ;

22 if not IsIntegral(d) or d lt 2 then

23 printf "Funtion BoundB\n" ;

24 printf "Error! Parameter (3) must be an integer greater than 1.\n" ;

25 return -1, -1,-1,-1,-1,-1,plot ;

26 end if ;

27 if not IsIntegral(n) or n lt d then

28 printf "Funtion BoundB\n" ;

29 printf "Error! Parameter (2) must be an integer greater than or equal

parameter (3).\n" ;

30 return -1, -1,-1,-1,-1,-1,plot ;

31 end if ;

32

33 // find the largest k satisfying |B(i,k)| <= A_q(n-k,d-2i) -

|B(i,n-k)|/|B(d-2i-1,n-k)|

34 q := Charateristi(KK)^Degree(KK) ;

35 t := Floor((d-1)/2);

36

37 for k in [1..n-d+1℄ do

38 max_i := Min({ t , k }) ; // by hypothesis

138

9.2. Bound A, B

39 min_i := Max({ 0 , Ceiling((d-n+k)/2) }) ; // so that A_q(n-k,d-2i) an be

omputed

40

41 for i in [min_i..max_i℄ do // note that i <= (d-1)/2, sine the bound works

for d<k

42 // Compute |B(i,k)|

43 s1 := &+[Binomial(k,j)*(q-1)^j: j in [0 .. i℄℄ ;

44 // Compute |B(i,n-k)|

45 s2 := &+[Binomial(n-k,j)*(q-1)^j: j in [0 .. i℄℄ ;

46 // But we need to remove the zero vetor

47 s1 := s1 - 1 ;

48 // Compute |B(d-2i-1,n-k)|

49 s3 := &+[Binomial(n-k,j)*(q-1)^j: j in [0 .. d-2*i-1℄℄ ;

50

51 // Compute the best bound for A_q(n-k,d-2i)

52 A,plot := BestKnownNonlinearUpperBound_(KK,n-k,d-2*i) ;

53 // Chek the inequality |B(i,k)| <= A_q(n-k,d-2i) -

|B(i,n-k)|/|B(d-2i-1,n-k)|

54 if s1 gt (A - Floor(s2/s3) + 0) then //

55 return /*k - 1*/ q^(k-1), i,s1,s2,s3,A,plot ;

56 end if ;

57 end for ;

58 end for ;

59 return q^(n-d+1), -2,-2,-2,-2,-2,plot ;

60 end funtion;

9.2.5 Bound A

1 BoundA := funtion(KK,n,d)

2 // Bound A from Bellini-Guerrini-Sala Artile

3 // return the Bound A

4

5 loal min ;

6 loal A ;

7 loal q ;

8

9 q := #KK ;

10 min := q^n ;

11 for t in [1..n-d℄ do

12 for r in [0..Minimum({t,Floor((d-1)/2)})℄ do

13 //r,t,n-t,d-2*r-1 ;

14 A := q^t * (BestKnownNonlinearUpperBound_(KK,n-t,d-2*r) -

15 BallSize(KK,r,n-t)/BallSize(KK,d-2*r-1,n-t) + 1)

16 / BallSize(KK,r,t) ;

17 if A lt min then

18 min := A ;

19 end if ;

20 end for ;

21 end for ;

22

23 if Floor(min) lt BestKnownNonlinearUpperBound_(KK,n,d) then

24 "hek these values..." ;

25 "n,d = ", n,d ;

26 end if ;

27 return Floor(min) ;

28 end funtion ;

139

Chapter 9. Funtions for Part II

9.2.6 Comparison with known bounds

The following ode has been used to ompute the results in Tables 6.1 and 6.2,

typing the ommand

1 time F,P,n := Perentage(2,29,3,100) ;

2 // F are the frequenies

3 // P are the perentage

4 // n is the total number of heked ases

and reading the results from the �le StatistisAllBounds.txt.

The omputation took about 108593 seonds.

1 NextPrimePower := funtion (n)

2 // return the next prime power greater than or equal to n

3 loal m ;

4

5 m := n ;

6 if m lt 1 then

7 return 2 ;

8 end if ;

9 m := m + 1 ;

10 while IsPrimePower(m) eq false do

11 m := m + 1 ;

12 end while ;

13 return m ;

14 end funtion ;

15

16 ///

17

18 ountnumberofases := funtion(minq,maxq,n1,n2)

19 // returns 0 if minq=maxq and they are not prime powers

20 loal ; // ounter

21

22 // hek parameters

23 if (minq gt maxq) or (n1 gt n2) or (n1 lt 3) then

24 "ERROR!!" ;

25 "First parameter must be less than seond parameter" ;

26 "Third parameter must be less than forth parameter" ;

27 "Third parameter must be greater than 2" ;

28 end if ;

29

30 //hek minq is a prime power

31 if (minq eq 1) or (not IsPrimePower(minq)) then

32 q := NextPrimePower(minq) ;

33 else

34 q := minq ;

35 end if ;

36

37 := 0 ;

38 while q le maxq do

39 KK := GF(q) ;

140

9.2. Bound A, B

40 for n in [n1..n2℄ do

41 for d in [3..n-1℄ do

42 := + 1 ;

43 end for ;

44 end for ;

45 q := NextPrimePower(q) ;

46 end while ;

47

48 return ;

49 end funtion ;

50

51 ///

52

53 Perentage := funtion(minq,maxq,n1,n2)

54 // Builds a list ontaining the entries of the following table:

55 //

56 // q | 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29

57 // ------------|---

58 // BoundA |

59 // BoundB |

60 // Griesmer |

61 // Johnson |

62 // Levenshtein |

63 // Elias |

64 // Hamming |

65 // Singleton |

66 // ------------|---

67 //

68 // eah entry is the number of times

69 // the respetive bound is the best known upper bound

70 // the results are printed in the file "StatistisAllBounds.txt"

71

72 loal P ; // matrix of the frequenies

73 loal PP ; // matrix of the perentages

74 loal vBound ; // temporary list of all bounds for ertain q,n,d

75 loal bestKB ; // ontains the best known bound for ertain q,n,d

76 loal nCases ; // number of ases heked

77 loal ; // number of ases for a ertain q

78

79 // hek parameters

80 if (minq gt maxq) or (n1 gt n2) or (n1 lt 3) then

81 "ERROR!!" ;

82 "First parameter must be less than seond parameter" ;

83 "Third parameter must be less than forth parameter" ;

84 "Third parameter must be greater than 2" ;

85 end if ;

86

87 // hek minq is a prime power

88 if not IsPrime(minq) then

89 q := NextPrimePower(minq) ;

90 else

91 q := minq ;

92 end if ;

93

94 // initialize matrix of the frequenies with all zero entries

95 PP := Matrix(IntegerRing(),8,maxq,[℄) ; // the matrix ontains also

q=1,6,10,... but this entries remain 0

96 // matrix with the perentage

97 P := Matrix(RealField(4),8,maxq,[℄) ;

98

141

Chapter 9. Funtions for Part II

99 nCases := 0 ;

100 for n in [n1..n2℄ do

101 for d in [3..n-1℄ do

102 q := minq ;

103 while q le maxq do

104 KK := GF(q) ;

105 nCases := nCases + 1 ;

106

107 // insert bounds in a list

108 vBound := [Round(Log(q,BoundA(KK,n,d))),

109 Round(Log(q,BoundB(KK,n,d))) ,

110 //BoundC(KK,n,d) ,

111 Floor(Log(q,JohnsonBound_(KK,n,d))) ,

112 Floor(Log(q,SpherePakingBound(KK,n,d))) ,

113 Round(Log(q,GriesmerBound(KK,n,d))) ,

114 Floor(Log(q,LevenshteinBound(KK,n,d))) ,

115 Floor(Log(q,EliasBound(KK, n, d))) ,

116 Floor(Log(q,SingletonBound(KK, n, d)))

117 // Plotkin wins whenever it an be applied

118 ℄ ;

119 bestKB := Min({x : x in vBound}) ;

120 for i in [1..#vBound℄ do

121 // if the i_th bound in vBound is the best (both when it is only one

both when it draws with other) then inrement vBound[i℄[q℄

122 if vBound[i℄ eq bestKB then

123 PP[i℄[q℄ := PP[i℄[q℄ + 1 ;

124 end if ;

125 end for ;

126 q := NextPrimePower(q) ;

127 end while ;

128 end for ;

129 if (n mod 50) eq 0 then

130 fprintf "StatistisAllBounds.txt","up to n = %o\nNumber of heked ases =

%o\n%o\n", n,nCases,PP ;

131 end if ;

132 end for ;

133

134 // ompute the perentages

135 for i in [1..Nrows(PP)℄ do

136 for j in [1..Nols(PP)℄ do

137 := ountnumberofases(j,j,n1,n2) ;

138 if eq 0 then

139 P[i℄[j℄ := 0 ;

140 else

141 P[i℄[j℄ := PP[i℄[j℄/ ;

142 end if ;

143 end for ;

144 end for ;

145

146 fprintf "StatistisAllBounds.txt","Total number of heked ases =

%o\nFrequenies:\n%o\n\nPerentage:\n%o", nCases, PP, P ;

147 return P, PP, nCases ;

148 end funtion ;

The following ode has been used to ompute the results in Tables 6.3 and 6.4, typing

the ommand

1 time L,D := ompare_boundB(2,29,3,100) ;

142

9.2. Bound A, B

and reading the results from the �le NewResultsB.txt.

1 ompare_boundB := funtion(minq,maxq,n1,n2)

2 // when bound B beats or ties other bounds it reords

3 // in a list LL a new element of the type:

4 // q,n,d,A,B,J,H,G,E,S,L,P,i,delta,Aq,winB

5 // win is 1 if bound B beats other bounds, 0 otherwise

6 // delta is |B(i,n-k)|/|B(d-2i-1,n-k)|

7 // it returns the list ontaining this reords

8 // and the list ontaining the number of wins for eah n

9 // print the results in the file NewResultsB

10

11 loal q, KK, bestBound, A, B, p, v, t, dlimit, boundList, levB ;

12 loal LL, LL ; // LL ontains all reord where Bound B beats other bounds, LL

is the ounter of the list

13 loal DD ; // this list ontains

14 // DD[x,y℄ ontains the number of times Bound B beats other bounds with

distane y in harateristi x

15 loal i, s1, s2, s3, Aq, plot, plot ; // trae variables

16

17 if (minq gt maxq) or (n1 gt n2) or (n1 lt 3) then

18 "ERROR!!" ;

19 "First parameter must be less than seond parameter" ;

20 "Third parameter must be less than forth parameter" ;

21 "Third parameter must be greater than 2" ;

22 end if ;

23

24 LL := [℄ ;

25 DD := [℄ ;

26

27 if not IsPrimePower(minq) then

28 q := NextPrimePower(minq) ;

29 else

30 q := minq ;

31 end if ;

32

33 LL := [℄ ;

34 LL := 0 ;

35

36 while q le maxq do

37 KK := GF(q) ;

38

39 fprintf "NewResultsB" , "\nq = %o\n", q ;

40 DD[q℄ := [℄ ;

41 for ii in [1..n2℄ do // initialize the list to all zeros

42 DD[q℄[ii℄ := 0 ;

43 end for ;

44

45 p := 0 ; // ounts the number of times BoundB is less than or equal other

bounds

46 v := 0 ; // ounts the number of times BoundB is less than (BEATS) other

bounds

47 t := 0 ; // ounts the total number of d's tested

48 plot := 0 ; // ounts how many times Aq(KK,n-k,d-2i) is bounded with plotkin

49 fl := 0 ; // ounts how many times s2/s3 = 0

143

Chapter 9. Funtions for Part II

50

51 for n in [n1..n2℄ do

52 dlimit := n-1 ; // dlimit is the limiti until values are not obvious

53 if q eq 2 then dlimit := (2*n div 3) ; end if ;

54 for d in [3..dlimit℄ do

55 t := t + 1 ;

56 // to get a diret omparisons with other bounds

57 // bestBound := BestKnownNonlinearUpperBound_(GF(q),n,d) ;

58 boundList := [

59 Floor(Log(q,JohnsonBound_(KK,n,d))) , //use our

implementation

60 Floor(Log(q,SpherePakingBound(KK,n,d))) ,

61 //LevenshteinBound(KK,n,d) , // very slow, hek apart, only

if needed

62 Floor(Log(q,GriesmerBound(KK,n,d))) , // it is only for

linear odes

63 Floor(Log(q,EliasBound(KK,n,d))) ,

64 Floor(Log(q,SingletonBound(KK,n,d)))

65 ℄ ;

66 bestBound := Min({x : x in boundList}) ;

67 // to get a diret omparisons with magma best upper bound

68 // bestBound := BDLCUpperBound(GF(q),n,d) ;

69 A := BoundA(KK,n,d) ;

70 A := Round(Log(q,A)) ; // use Round() beause Floor() may return a wrong

result if for example Log(11,11^14) = 13,999999999999..., while it should be

14

71

72 B,i,s1,s2,s3,Aq,plot := BoundB(KK,n,d) ;

73 B := Round(Log(q,B)) ; // use Round() beause Floor() may return a wrong

result if for example Log(11,11^14) = 13,999999999999..., while it should be

14

74

75 // to ompare the bounds in the linear/systemati ase, we must ompare

Floor(Log(q,.))

76 // B := Floor(Log(q,B)) ;

77 // bestBound := Floor(Log(q,bestBound)) ;

78 if B le bestBound then

79 levB := Floor(Log(q,LevenshteinBound(KK,n,d))) ;

80 boundList[#boundList+1℄ := levB ;

81 bestBound := Min({ bestBound, levB }) ; // hek Levenshtein only if

needed, beause it is very slow

82 if (1-1/q)*n lt (d) then

83 v := [q, n, d, A, B,

84 boundList[1℄, boundList[2℄,

85 boundList[3℄, boundList[4℄,

86 boundList[5℄, boundList[6℄,

87 Floor(Log(q,PlotkinBound(KK,n,d))),

88 i, Floor(s2/s3),Aq,0℄ ;

89 else // if plotkin annot be applied fill its plae with n

90 v := [q, n, d, A, B,

91 boundList[1℄, boundList[2℄,

92 boundList[3℄, boundList[4℄,

93 boundList[5℄, boundList[6℄,

94 n, i, Floor(s2/s3),Aq,0℄ ;

95 end if ;

96

97 if B eq bestBound then // ount ties

98 p := p + 1 ;

99 LL := LL + 1 ;

100 LL[LL℄ := v;

144

9.2. Bound A, B

101

102 // hek to be done only for BoundB

103 ///

104 if plot then // hek if plotkin has been used to bound Aq(KK,n-k,d-2i)

105 plot := plot + 1 ;

106 end if ;

107 if Floor(s2/s3) eq 0 then // hek if s2/s3 = 0

108 fl := fl + 1 ;

109 end if ;

110 ///

111

112 elif B lt bestBound then // ount wins

113 v := v + 1 ;

114 v[#v℄ := 1 ;

115 LL := LL + 1 ;

116 LL[LL℄ := v ;

117

118 // hek to be done only for BoundB

119 ///

120 if plot then // hek if plotkin has been used to bound Aq(KK,n-k,d-2i)

121 plot := plot + 1 ;

122 end if ;

123 if Floor(s2/s3) eq 0 then // hek if s2/s3 = 0

124 fl := fl + 1 ;

125 end if ;

126 ///

127

128 DD[q℄[d℄ := DD[q℄[d℄ + 1 ;

129 end if ;

130

131 end if ;

132 end for ;

133 end for ;

134 fprintf "NewResultsB" , "Tie = %o over %o --> %o \nWin = %o over %o --> %o

\nPlotkin used %o times --> %o\ns1/s2 is zero %o times --> %o\n",

135 p, t, RealField(4)!(p/t*100),

136 v, t, RealField(4)!(v/t*100),

137 plot, RealField(4)!(plot/(v+p)*100),

138 fl, RealField(4)!(fl/(v+p)*100) ;

139 q := NextPrimePower(q) ;

140 end while ;

141 fprintf "NewResultsB" , " q, n, d, A, B, J, H, G, E, S, L, P, i, delta, Aq,

winB \n%o\n%o", LL,DD ;

142 printf "...finished heking!\n" ;

143 return LL, DD ;

144 end funtion ;

145

Funtions for Part III

10.1 Traverso's algorithm

We report here and implentatione of Algorithm 1, and of the funtions needed

to ompute the Gröbner desription, the Gröbner and linear representation (see Se-

tion 1.4.1).

1 NextConfiguration := funtion (LL,MAX,MIN)

2 //

3 // Example:

4 // n := NextConfiguration([0,0,0℄,[1,2,2℄,[0,0,0℄) ; n ;

5 // // [0,0,1℄ ;

6 // n := NextConfiguration([0,0,1℄,[1,2,2℄,[0,0,0℄) ; n ;

7 // // [0, 0, 2 ℄

8 // n := NextConfiguration([0,0,2℄,[1,2,2℄,[0,0,0℄) ; n ;

9 // // [0, 1, 0 ℄

10 // ...

11 // n := NextConfiguration([1,2,1℄,[1,2,2℄,[0,0,0℄) ; n ;

12 // // [1, 2, 2 ℄

13 // n := NextConfiguration([1,2,2℄,[1,2,2℄,[0,0,0℄) ; n ;

14 // // [1, 2, 2 ℄

15 //

16

17 loal L, i ;

18 L := LL ;

19 // CHECKS

20 if #L ne #MAX then

21 return "ERROR! The two list must have the same length!" ;

22 end if ;

23 for j in [1..#L℄ do

24 if L[j℄ lt MIN[j℄ or L[j℄ gt MAX[j℄ then

25 return "ERROR! The input sequene is out of range!" ;

26 end if ;

27 end for ;

28

29 // CHECK IF FINISHED

30 if MAX eq L then

31 return L ;

32 // FIND NEW CONFIGURATION

33 else

34 // find the rightmost element to inrease

35 i := #L ;

36 while L[i℄ eq MAX[i℄ do

37 i := i - 1 ;

38 end while ;

39 L[i℄ := L[i℄ + 1 ;

40 for j in [i+1..#L℄ do

41 L[j℄ := MIN[j℄ ;

CGC 147

Chapter 10. Funtions for Part III

42 end for ;

43 end if ;

44

45 return L ;

46 end funtion ;

47

48 //

49

50 HilbertStairase := funtion(G)

51 // G must be a redued groebner basis

52 return [LeadingMonomial(g) : g in G℄ ;

53 end funtion ;

54

55 //

56

57 MonomialsUnderHilbertStairase := funtion(G)

58 // Returns a list ontaining

59 // all the monomials under the Hilbert Stairase

60 // The monomials are in the ring R|G

61 //

62 // G must be a redued groebner basis

63 // of a finite dimensional ideal!!

64 //

65 loal HS ; // leading monomials of G

66 loal N ; // monomials under the Hilbert Stairase

67 loal E, temp ;

68 loal R ; // polynomial ring

69 loal RG ; // R/G

70 loal max, ind ;

71 loal extr ;

72

73 R := Parent(G[1℄) ;

74 RG := quo<R | G> ;

75 HS := HilbertStairase(G) ;

76 N := {} ;

77

78 // FIND "SINGLE-VARIABLE" LEADING MONOMIAL

79 extr := [0 : i in [1..Rank(R)℄℄ ;

80 for m in HS do

81 E := Exponents(m) ;

82 if #[x : x in E | x ne 0℄ eq 1 then

83 max,ind := Max(E) ;

84 extr[ind℄ := E[ind℄ ;

85 end if ;

86 end for ;

87

88 // CREATE HYPER-CUBE

89 N := [℄ ;

90 E := [0 : i in [1..Rank(R)℄℄ ;

91 Append(~N,E) ;

92 repeat

93 E := NextConfiguration(E,extr,[0 : i in [1..#E℄℄) ;

94 Append(~N,E) ;

95 until E eq extr ;

96

97 // EXCLUDE MONOMIAL OVER THE STAIRCASE

98 for m in HS do

99 E := Exponents(m) ;

100 temp := E ;

101 Exlude(~N,temp) ;

148

10.1. Traverso's algorithm

102 repeat

103 temp := NextConfiguration(temp,extr,E) ;

104 Exlude(~N,temp) ;

105 until temp eq extr ;

106 end for ;

107

108 return Sort([&*[RG.i^e[i℄ : i in [1..Rank(R)℄℄ : e in N℄) ;

109 end funtion ;

110

111 //

112

113 IdealDegree := funtion(I)

114 // omputes the number of elements under the Hilbert Stairase

115 // #N(I)

116 // Definition 27.12.1, "SPES II", Mora

117

118 if not IsZeroDimensional(I) then

119 "The degree an be omputed only for a zero dimensional ideal!!" ;

120 return -1 ;

121 end if ;

122

123 return #MonomialsUnderHilbertStairase(Groebner(I)) ;

124 end funtion ;

125

126 //

127

128 GroebnerRepresentation := funtion(I,Q)

129 // Q = {q1,...,qs}

130 // is a linear indipendent set suh that

131 // R[x1,...,xk℄/I = Span of Q with respet to K

132 // see def. 29.3.2, "SPES II", Mora

133 //

134 // Example:

135 // K := Rationals() ;

136 // R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

137 // f := [

138 // x2^3 - x1*x2^2,

139 // x1^2*x2,

140 // x1^3 - x2^2 + x1*x2,

141 // x2^4

142 // ℄ ;

143 // I := Ideal(f) ;

144 // Q := MonomialsUnderHilbertStairase(G) ;

145 // GroebnerRepresentation(I,Q) ;

146 //

147

148 loal K ; // base field

149 loal R ; // polynomial ring over K

150 loal G ; // groebner basis of I

151 loal s ; // number of elements in Q

152 loal n ; // number of variables x1,...,xn

153 loal M ; // set of n square matries

154 loal Xh_ql ; // RG.h*Q[l℄

155 loal Mon ; // monomials of Xh_ql

156 loal Coeff ; // oeffiients of Xh_ql

157 loal ind ;

158

159 R := Parent(I[1℄) ;

160 K := BaseRing(R) ;

161

149

Chapter 10. Funtions for Part III

162 G := GroebnerBasis(I) ;

163

164 RG := quo<R | G> ;

165

166 n := Rank(RG) ;

167 s := #Q ;

168 M := [℄ ;

169 for h in [1..n℄ do

170 M[h℄ := Matrix(K,s,s,[℄) ;

171 for l in [1..s℄ do

172 Xh_ql := RG.h*RG!Q[l℄ ;

173 Mon := Monomials(Xh_ql) ;

174 Coeff := Coeffiients(Xh_ql) ;

175 for j in [1..s℄ do

176 ind := Index(Mon,Q[j℄) ;

177 if ind ne 0 then

178 M[h℄[l℄[j℄ := Coeff[ind℄ ;

179 end if ;

180 end for ;

181 end for ;

182 end for ;

183

184 return Q, M ;

185 end funtion ;

186

187 //

188

189 LinearRepresentation := funtion(I : vet := false)

190 // A linear representation of an Ideal I

191 // is a Groebner representation where Q is the set

192 // of the monomials under the Hilbert Stairase

193 // EXAMPLE 29.2.1, "SPES II", Mora

194 // K := Rationals() ;

195 // R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

196 // f := [

197 // x2^3 - x1*x2^2,

198 // x1^2*x2,

199 // x1^3 - x2^2 + x1*x2,

200 // x2^4

201 // ℄ ;

202 // I := Ideal(f) ;

203 // LinearRepresentation(I) ;

204 //

205 // if vet = true Q is returned as a vetor of vetors and M as a matrix

206 // if vet = false Q is returned as a vetor of monomials and M as a list of

monomials

207 //

208

209 loal K ; // base field

210 loal R ; // polynomial ring over K

211 loal Q ; // R[x1,...,xk℄/I = Span of Q with respet to GF(2)

212 // i.e. monomials under the Hilbert Stairase

213 loal G ; // groebner basis of I

214 loal s ; // number of elements in Q

215 loal n ; // number of variables x1,...,xn

216 loal M ; // set of n square matries

217 loal Xh_ql ; // RG.h*Q[l℄

218 loal Mon ; // monomials of Xh_ql

219 loal Coeff ; // oeffiients of Xh_ql

220 loal ind ;

150

10.1. Traverso's algorithm

221

222 R := Parent(I[1℄) ;

223 K := BaseRing(R) ;

224

225 G := GroebnerBasis(I) ;

226 Q := MonomialsUnderHilbertStairase(G) ;

227

228 RG := quo<R | G> ;

229

230 n := Rank(RG) ;

231 s := #Q ;

232 M := [℄ ;

233

234 if vet then // VECTORIAL CASE

235 for h in [1..n℄ do

236 M[h℄ := Matrix(K,s,s,[℄) ;

237 for l in [1..s℄ do

238 Xh_ql := RG.h*RG!Q[l℄ ;

239 Mon := Monomials(Xh_ql) ;

240 Coeff := Coeffiients(Xh_ql) ;

241 for j in [1..s℄ do

242 ind := Index(Mon,Q[j℄) ;

243 if ind ne 0 then

244 M[h℄[l℄[j℄ := Coeff[ind℄ ;

245 end if ;

246 end for ;

247 end for ;

248 end for ;

249 Q := [℄ ;

250 for i in [1..s℄ do

251 Q[i℄ := Vetor(BaseRing(RG),[0 : j in [1..s℄℄) ;

252 Q[i℄[i℄ := 1 ;

253 end for ;

254 else // POLYNOMIAL CASE

255 for h in [1..n℄ do

256 M[h℄ := [℄ ;

257 for l in [1..s℄ do

258 M[h℄[l℄ := RG.h * Q[l℄ ;

259 end for ;

260 end for ;

261 end if ;

262

263 return Q, M ;

264 end funtion ;

265

266 //

267

268 LinearRepresentationPOLY := funtion(I)

269 // A linear representation of an Ideal I

270 // is a Groebner representation where Q is the set

271 // of the monomials under the Hilbert Stairase

272 // EXAMPLE 29.2.1, "SPES II", Mora

273 // K := Rationals() ;

274 // R<x2,x1> := PolynomialRing(K,2,"grevlex") ;

275 // f := [

276 // x2^3 - x1*x2^2,

277 // x1^2*x2,

278 // x1^3 - x2^2 + x1*x2,

279 // x2^4

280 // ℄ ;

151

Chapter 10. Funtions for Part III

281 // I := Ideal(f) ;

282 // LinearRepresentation(I) ;

283 //

284 // if vet = true Q is returned as a vetor of vetors and M as a matrix

285 // if vet = false Q is returned as a vetor of monomials and M as a list of

monomials

286 //

287 loal R ;// polynomial ring

288 loal A ; // affine algebra R/I

289 loal Q ;

290

291 if I eq [℄ then

292 return [℄ ;

293 end if ;

294

295 R := Parent(I[1℄) ;

296 A := quo< R | I > ;

297

298 return SetToSequene(MonomialBasis(A)) ;

299 end funtion ;

300

301 //

302

303 GroebnerDesription := funtion(g,Q : vet:=true)

304 // g must be a polynomial in R

305 // Q must be the set of the monomials under the Hilbert Stairase

306 // where eah monomial is in R/G,

307 // where G is a Groebner basis

308 //

309 // The omplexity to ompute Groebner Desription

310 // should be

311 // O(uds^2), where:

312 // - s is the number of elements in Q

313 // - d is the degree of g

314 // - u is the number of monomials of g in R

315 // The omplexity an be redued to

316 // O(Hor(f)s^2), where

317 // - Hor(f) <= ud, is the Horner omplexity of f, i.e.

318 // the number of + required by the reursive Horner representations

319 //

320 // if vet = true the desription is given as a vetor

321 // else it is given as a polynomial in the algebra with base Q

322 //

323

324 loal R ;

325 loal RG ;

326 loal rem ; // remainder of g mod I

327 loal rem_ ; // oeffiients of the remainder

328 loal rem_m ; // monomials of the remainder

329 loal GD ; // groebner desription of g with respet to Q

330

331 if g eq 0 then

332 return Vetor([Parent(Q[1℄)!0 : i in [1..#Q℄℄) ;

333 end if ;

334

335 R := Parent(g) ;

336 RG := Parent(Q[1℄) ;

337

338 rem := RG!Evaluate(g,[RG.i : i in [1..Rank(RG)℄℄) ;

339 if not vet then

152

10.1. Traverso's algorithm

340 return rem ;

341 else

342 rem_ := Coeffiients(rem) ;

343 rem_m := Monomials(rem) ;

344

345 GD := [Parent(rem_[1℄)!0 : i in [1..#Q℄℄ ;

346 for i in [1..#rem_m℄ do

347 GD[Index(Q,rem_m[i℄)℄ := rem_[i℄ ;

348 end for ;

349

350 return Vetor(GD) ;

351 end if ;

352 end funtion ;

353

354 //

355

356 Traverso := funtion(QQ, MM, GD : verb:=true)

357 // from "SPES II", Mora, Fig 29.3, Traverso's Algorithm

358 // Given

359 // - a linear representation (Q,M) of an ideal I

360 // - r groebner desriptions GD = {_1,...,_r}

361 // of r new polynomials not in I

362 // returns the linear representation of an ideal J

363 // where J = I U GD = I U {_1,...,_r}

364 // INPUT:

365 // - Q, monomials under the Hilbert Stairase

366 // - M, multipliation tables for eah variable

367 // - GD, sequene of r Groebner desriptions

368 //

369 // EXAMPLE:

370 // q := 2 ; k := 2 ;

371 // R := PolynomialRing(GF(q),k,"grevlex") ;

372 // G := [R.i^q-R.i : i in [1..k℄℄ ;

373 // G := GroebnerBasis(G) ;

374 // Q,_ := LinearRepresentation(G : vet := false) ;

375 // _,M := LinearRepresentation(G : vet := true) ;

376 // := Vetor(GF(2),[1,0,0,1℄) ;

377 // Q1,M1 := TraversoVECT(Q,M,[℄) ;

378 //

379

380 loal n ; // number of variables

381 loal Q ; //

382 loal M ; //

383 loal s ; // number of elements in Q

384 loal B ; // set of r Groebner desriptions

385 loal ; // single Groebner desription

386 loal iota ; //

387 loal Q_iota, M_iota, _iota, d_iota ;

388 loal B1 ; //

389 loal temp ; //

390

391 M := MM ;

392 Q := QQ ;

393 n := #M ;

394 s := #Q ;

395 I := [i : i in [1..s℄℄ ;

396 B := GD ;

397

398 if verb then

399 "------ BEGIN TRAVERSO'S ALGORITHM ------" ;

153

Chapter 10. Funtions for Part III

400 end if ;

401 while B ne [℄ do

402

403 := B[1℄ ; // or := Random(B) ; // is there an effiient hoie?

404

405 if verb then

406 "--" ;

407 "--" ;

408 "B = ", B ;

409 "I = ", I ;

410 " = ", ;

411 end if ;

412

413 Exlude(~B,) ; // remove from B

414

415 for m in M do

416 temp := *m ;

417 if Weight(temp) ne 0 and not temp in B then // *m != 0...0 and *m not in B

418 Append(~B,temp) ;

419 end if ;

420 end for ;

421

422 iota := Maximum({ j : j in [1..Nols()℄ | [j℄ ne 0 }) ;

423

424 // UPDATE Q

425 Q_iota := Q[iota℄ ;

426 Remove(~Q, iota) ;

427 s := #Q ;

428

429 // SAVE iota COLUMNS AND REMOVE THEM FROM M

430 M_iota := [RemoveRow(Submatrix(M[h℄,1,iota,Nrows(M[h℄),1),iota) : h in [1..n℄

℄ ;

431 M := [RemoveRowColumn(M[h℄,iota,iota) : h in [1..n℄℄ ;

432

433 // SAVE iota COORDINATE AND REMOVE IT FROM

434 _iota := [iota℄ ;

435 := RemoveColumn(,iota)[1℄ ;

436

437 if verb then

438 "---------- B U [*m : m in M℄ ----------" ;

439 "B = ", B ;

440 "I = ", I ;

441 "iota = ", iota ;

442 printf "Q[%o℄ = %o \n",iota,Q_iota ;

443 printf "[%o℄^-1 = %o \n",iota,_iota^-1 ;

444 end if ;

445

446 // REPLACE Q[iota℄ IN MULTIPLICATION TABLES

447 for h in [1..n℄ do

448 for j in [1..Nrows(M[h℄)℄ do // for j in I do

449 for l in [1..Nols(M[h℄)℄ do // for l in I do

450 M[h℄[l℄[j℄ := M[h℄[l℄[j℄ - _iota^-1 * [j℄ * M_iota[h℄[l℄[1℄ ;

451 end for ;

452 end for ;

453 end for ;

454

455 if verb then

456 "M = ", M ;

457 end if ;

458

154

10.2. Basi funtions

459 B1 := B ;

460 B := [℄ ;

461

462 // REPLACE Q[iota℄ IN GROEBNER DESCRIPTIONS

463 for x in B1 do

464 d := x ;

465 d_iota := d[iota℄ ;

466 d := RemoveColumn(d,iota)[1℄ ;

467 for j in [1..s℄ do

468 d[j℄ := d[j℄ - _iota^-1 * [j℄ * d_iota ;

469 end for ;

470 if (Weight(d) ne 0) and (not d in B) then // d != 0...0

471 Append(~B,d) ;

472 end if ;

473 end for ;

474 end while ;

475

476 return Q, M ;

477 end funtion ;

10.2 Basi funtions

Here we present the underlying funtions needed to ompute the minimum weight

of a nonlinear ode (using the tehniques of Setion 7), and the nonlinearity of a B.f.

(using the tehniques of Setion 8).

10.2.1 Algebrai and numerial normal form

First, some funtions regarding algebrai and numerial normal form are listed.

1 CoeffiientVetorToPolynomial := funtion(: leastleft:=false) // OK!

2 // given the vetor of the oeffiients

3 // (most signifiant on the left if leastleft = false)

4 // returns the polynomial with those oeffiients

5 // inverse funtion of PolynomialCoeffiients or ANFCoeffiients

6 //

7 // Example:

8 // R := PolynomialRing(GF(2),3) ;

9 // p := R.1*R.2 + R.1 + 1 ;

10 // := ANFCoeffiients(p) ;

11 // CoeffiientVetorToPolynomial() ;

12 // // $.1*$.2 + $.1 + 1

13 // R := PolynomialRing(Rationals(),3) ;

14 // p := 3*R.1*R.2 + 2*R.1 + 4 ;

15 // := PolynomialCoeffiients(p) ;

16 // CoeffiientVetorToPolynomial() ;

17 // // 3*$.1*$.2 + 2*$.1 + 4

18 //

19

20 loal p ; // polynomial to be returned

21 loal K ; // field of the omponents of

22 loal n ; // number of variables

23 loal V ; // vetor spae over R of dimension n

155

Chapter 10. Funtions for Part III

24 loal R ; // polynomial ring of p

25 loal j ;

26

27 if leastleft then

28 := Vetor(Reverse(ElementToSequene())) ;

29 else

30 := ;

31 end if ;

32

33 K := Parent([1℄) ;

34 n := Integers()!Log(2,Nols()) ;

35 V := VetorSpae(GF(2),n) ;

36 R := PolynomialRing(K,n) ;

37

38 p := 0 ;

39 j := Nols() ;

40 for v in V do

41 p := p + [j℄*&*[R.i^Integers()!v[n-i+1℄ : i in [1..n℄℄ ;

42 j := j - 1 ;

43 end for ;

44

45 return p ;

46 end funtion ;

47

48 ///

49

50 ANFCoeffiients := funtion(f : leastleft := false) // OK!

51 // given a BF over the ring R

52 // returns the vetor of the oeffiients of the Algebrai Normal Form of f

53 //

54 // Ex:

55 // if leastleft = false (default) then

56 // f := b12R.1*R.2 + b1*R.1 + b2*R.2 + b0 ;

57 // returns:

58 // = (b12, b1, b2, b0) ;

59 // otherwise

60 // = (b0, b1, b2, b12) ;

61 // ATTENTION! The order of the monomials depends on the order defined over R

62 // and thus also the order of !!!

63 //

64 // => NOTE: the ordering is the one defined by the funtion

65 // LexPolynomialRing(GF(2),n)

66 //

67 // NOTE2: algorithm is "slow". Could be improved.

68 // f := RandomBooleanPolynomial(15);

69 // time a := ANFCoeffiients(f) ;

70 // Time: 911.440

71

72

73 loal R ; // ring of f of n variables

74 loal n ;

75 loal ; // vetor of oeffiients

76 loal mf ; // monomials of f

77 loal mgb ; // all possible monomials in R

78 loal gb ; // generi boolean polynomial

79

80 n := Rank(Parent(f)) ;

81 R := Parent(f) ;

82

83 := Zero(VetorSpae(GF(2),2^n)) ;

156

10.2. Basi funtions

84 gb := Evaluate(Generi_boolean_polynomial(R),[1 : i in [1..2^n℄℄ at [R.i : i

in [1..n℄℄) ;

85

86 mgb := Monomials(gb) ;

87 mf := Monomials(f) ;

88

89 for i in [1..#mgb℄ do

90 if mgb[i℄ in mf then

91 [i℄ := 1 ;

92 end if ;

93 end for ;

94

95 if leastleft then

96 // to have the least signifiant oeff (i.e. the onstant term) on the left

97 return ReverseColumns()[1℄ ;

98 else

99 // to have the most signifiant oeff on the left

100 return ;

101 end if ;

102 end funtion ;

103

104 ///

105

106 AlgebraiNormalForm := funtion(TT)

107 // INPUT:

108 // - TT, sequene of the evalution vetor (truth table) of f

109 // OUTPUT:

110 // - f, Algebrai Normal Form of the truth table TT

111 //

112

113 loal C, f;

114 loal V, n, Q, X, k, pr ;

115

116 n := IntegerRing()!Log(2,#TT) ;

117 V := VetorSpae(GF(2),n) ;

118 Q := BooleanPolynomialRing(n);

119 X := [Q.i : i in [1..n℄℄ ;

120

121 f := Q!TT[1℄ ;

122 k := 1 ;

123

124 for v in V do

125 if Evaluate(f,ElementToSequene(v)) ne TT[k℄ then

126 pr := Q!1 ;

127 for j in [1..n℄ do

128 pr := pr * X[j℄^(IntegerRing()!v[j℄) ;

129 end for ;

130 f := f + pr ;

131 end if ;

132 k := k + 1 ;

133 end for ;

134

135 return Q!f ;

136 end funtion ;

137

138 ///

139

140 Sint := funtion(S)

141 // performs the BINary Sum as INTeger Sum:

142 // EX:

157

Chapter 10. Funtions for Part III

143 // a+b --> over the binary field is

144 // a+b-2ab --> over the integer ring (or the rational field)

145 // a+b+ --> over the binary field is

146 // a+b+-2ab-2b-2a+4ab --> over the integer ring (or the rational field)

147 // ...

148 // To use it:

149 // Q := PolynomialRing(RationalField(),3+1) ;

150 // Sint([Q.1,Q.2℄) ;

151 // -2*$.1*$.2 + $.1 + $.2

152 // Sint([GF(2)!1,1,1℄) ;

153 // 1

154 // Sint([1,1,1℄) ;

155 // 1

156

157 loal sum ;

158 loal Si ;

159

160 if #S eq 0 then // zero sequene

161 return 0 ;

162 end if ;

163

164 if Category(Parent(S[1℄)) eq Category(GF(2)) then

165 Si := [IntegerRing()!S[i℄ : i in [1..#S℄℄ ;

166 else

167 Si := [S[i℄ : i in [1..#S℄℄ ;

168 end if ;

169

170 sum := Si[1℄ ;

171 for i in [2..#Si℄ do

172 sum := sum + Si[i℄ - 2*sum*Si[i℄ ;

173 end for ;

174

175 return sum ;

176 end funtion ;

177

178 ///

179

180 NextMonomialOfWeight := funtion(m,t)

181 // given a simple t-monomial m in R s.t. m is the produt of t variables

182 // returns the "next" monomial with t variables over R[x1,...,xn℄

183 // following a pre-determined rule whih assign:

184 // i --> x_{i_1}*...*x_{i_t}

185 //

186 // RULE:

187 // - ounting from the left, move the first free index to the right

188 // - when and index is moved to the right (inreased)

189 // then all previous indexes must be brought

190 // to the starting position (leftmost)

191 //

192 // To use it:

193 // R := PolynomialRing(GF(2),5) ;

194 // NextMonomialOfWeight(R.1*R.2*R.3,3) ;

195 // $.1*$.2*$.4

196 //

197 // if m = 1 return the first monomial of R

198 // write R!1 to indiate the monomial "1"

199 //

200

201 loal ind ; // list of t indexes

202 loal R ;

158

10.2. Basi funtions

203 loal n ;

204 loal ounter ;

205

206 R := Parent(m) ;

207 n := Rank(R) ;

208

209 // CHECKS

210 for i in [1..n℄ do

211 if Degree(m,i) gt 1 then

212 "ERROR! The monomial m is not a simple t-monomial!" ;

213 return 0 ;

214 end if ;

215 end for ;

216

217 // CHECK t, THE WEIGHT OF m

218 if t ne Degree(m) and m ne 1 then

219 "ERROR! The monomial m has degree different from t" ;

220 return 0 ;

221 end if ;

222

223 // EXTRACT INDEXES

224 if m eq 1 then

225 return &*[R.(j) : j in [1..t℄℄ ;

226 else

227 ind := [i : i in [1..n℄ | Degree(m,i) eq 1℄ ;

228 end if ;

229

230 // FIND NEXT "MONOMIAL"

231 if ind[1℄ eq n-t+1 then

232 "ERROR! The monomial inserted is the last of the list!" ;

233 return m;

234 else

235 j := 1 ;

236 while j le #ind-1 and ind[j℄+1 eq ind[j+1℄ and ind[j℄ ne n do

237 j := j + 1 ;

238 end while ;

239

240 // INCREASE ind[j℄

241 ind[j℄ := ind[j℄ + 1 ;

242

243 // RESET ind[1℄, ..., ind[j-1℄

244 for k in [1..j-1℄ do

245 ind[k℄ := k ;

246 end for ;

247

248 return &*[R.(ind[j℄) : j in [1..#ind℄℄ ;

249 end if ;

250

251 end funtion ;

252

253 ///

254

255 NNFfromANF := funtion(f)

256 // for polynomials

257 loal R, r, Mf, L, m, Q ;

258

259 R := PolynomialRing(Rationals(),Rank(Parent(f))) ;

260 r := Rank(R) ;

261 Q := quo< R | [R.i^2-R.i : i in [1..r℄℄ > ;

262

159

Chapter 10. Funtions for Part III

263 Mf := Monomials(f) ;

264 L := [℄ ;

265 if R!1 in Mf then

266 L := L at [R!1℄ ;

267 end if ;

268

269 for i in [1..r℄ do

270 m := R!1 ;

271 for j in [1..Binomial(r,i)℄ do

272 m := NextMonomialOfWeight(m,i) ;

273 if m in Mf then

274 L := L at [m℄ ;

275 end if ;

276

277 end for ;

278 end for ;

279

280 return Sint([Q!x : x in L℄) ;

281 end funtion ;

10.2.2 Fast transforms

Now we show how to implement fast Fourier like transforms.

1 FastMobiusTransform := funtion(_f:leastleft:=false)

2 // This funtion allows to obtain the evaluation of a BF f with n variables

3 // in only n2^n steps (instead 2^2n).

4 // It is supposed that oeffs are given from the highest monomial to the lowest.

5 // Given the vetor of oeffiients of a BF over the ring R

6 // returns the evaluation vetor of f

7 // using the fast mobius transform.

8 // Sine this operation is an involution,

9 // if it is applied to an evaluation vetor

10 // than the vetor of oeffiients of f is returned.

11 //

12 // ATTENTION! The order of the monomials depends on the order defined over the

13 // ring of the funtion f of whih _f are the oeffiients...

14 // Thus hanging the ring of f, the order of the oeffiients hanges

15 // (eventhough the weight is obviously the same)

16 // and also the FMT hanges (eventhough its weight doesn't)

17 //

18 // Referene:

19 // Cagdas Calik, PhD Thesis, Pag. 9, hap. 2.3

20 // http://s.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/

21 // web/index.php/attahments/single/219

22 //

23 // EX:

24 // f := Vetor(GF(2), [1,0,0,0,0,0,1,0℄) ; // i.e. f = xyz+x with "lex"

25 // FastMobiusTransform(f) ;

26 // (0 1 0 1 0 1 0 0)

27 //

28

29 loal n ; // number of variables of f

30 loal ev_f ;

31 loal lb ; // length of bloks

32 loal nb ; // number of bloks

160

10.2. Basi funtions

33

34 n := IntegerRing()!Log(2,Nols(_f)) ;

35 if leastleft then

36 ev_f := Vetor(GF(2),ElementToSequene(_f)) ;

37 else

38 ev_f := Vetor(GF(2),Reverse(ElementToSequene(_f))) ;

39 end if ;

40

41 for i in [1..n℄ do // n steps, the n_th step returns the evaluation vetor

42

43 lb := 2^i ;

44 nb := (2^n) div lb ;

45 for j in [1..nb℄ do // for eah blok

46

47 for k in [1..lb div 2℄ do // for the first half of the blok

48 ev_f[k+(j-1)*lb℄ := ev_f[k+(j-1)*lb℄ ;

49 end for ;

50

51 for k in [(lb div 2)+1..lb℄ do // for the seond half of the blok

52 ev_f[k+(j-1)*lb℄ := ev_f[k+(j-1)*lb℄ + ev_f[k+(j-1)*lb-(lb div 2)℄ ;

53 end for ;

54

55 end for ;

56 end for ;

57

58 return ev_f ;

59 end funtion ;

60

61 ///

62

63 FastWalshSpetrum := funtion (TT)

64 // INPUT:

65 // - TT, the polarity truth table (evaluation vetor) of f

66 // OUTPUT:

67 // - fws_f, the walsh spetrum of TT

68 //

69 // If f is given by its ANF, the fastest way to ompute the Walsh Spetrum is:

70 // 1 - to ompute the oeffiients vetor of the ANF of f,

71 // 2 - than the truth table with Fast Mobius Transform

72 // 3 - get the polarity truth table of f

73 // 4 - than use Fast Walsh Transform (Spetrum)

74 //

75 // i.e., to use it:

76 // R := BooleanPolynomialRing(3) ;

77 // f := R.1*R.2 + R.3 ;

78 // WalshSpetrum(f) ;

79 // [0, 0, 0, 0, 4, 4, 4, -4 ℄

80 // fmt := FastMobiusTransform(ANFCoeffiients(f)) ;

81 // FastWalshSpetrum([1-2*IntegerRing()!fmt[i℄ : i in [1..Nols(fmt)℄℄) ;

82 // [0, 0, 0, 0, 4, 4, 4, -4 ℄

83 //

84 // Referene:

85 // Cagdas Calik, PhD Thesis, Pag. 11, hap. 2.4

86 // http://s.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/

87 // web/index.php/attahments/single/219

88 //

89

90 loal n ; // number of variables of f

91 loal fws_F ;

92 loal lb ; // length of bloks

161

Chapter 10. Funtions for Part III

93 loal nb ; // number of bloks

94 loal temp ;

95

96 n := IntegerRing()!Log(2,#TT) ;

97 fws_f := [IntegerRing()!TT[i℄ : i in [1..#TT℄℄ ;

98 temp := [℄ ;

99

100 for i in [1..n℄ do // n steps, the n_th step returns the evaluation vetor

101

102 lb := 2^i ;

103 nb := (2^n) div lb ;

104 for j in [1..nb℄ do // for eah blok

105

106 for k in [1..lb div 2℄ do // for the first half of the blok

107 temp[k+(j-1)*lb℄ := fws_f[k+(j-1)*lb℄ + fws_f[k+(j-1)*lb+(lb div 2)℄;

108 end for ;

109

110 for k in [(lb div 2)+1..lb℄ do // for the seond half of the blok

111 temp[k+(j-1)*lb℄ := fws_f[k+(j-1)*lb-(lb div 2)℄ - fws_f[k+(j-1)*lb℄ ;

112 end for ;

113 end for ;

114 fws_f := temp ;

115 end for ;

116

117 return fws_f ;

118 end funtion ;

119

120 ///

121

122 NonLinearityFWT := funtion (bf:in:=false)

123 // omputes the non linearity of f using the FAST Walsh trasform

124 // to be improved:

125 // - the funtion ANFCoeffiients ould be improved

126 // thus it is possible to input the vetor of oeffiients of f

127 // - the max ould be omputed in the last step

128 // - if in = false and bf is a vetor then it is supposed it is the truth table

129 // if in = true and bf is a vetor then it is supposed it is the vetor of

oeffs

130 //

131 // Example:

132 // f := RandomBooleanPolynomial(3) ;

133 // NonLinearityFWT(f) ; // input a Boolean polynomial

134 // // 2

135 // v := ANFCoeffiients(f) ;

136 // NonLinearityFWT(v:in:=true ; // input the vetor of oeffiients

137 // // 2

138 //

139

140 loal TT ; // truth table of f

141 loal PTT ; // polarity truth table of f

142 loal fws ;

143 loal nv ;

144 loal anf ;

145 loal max ;

146

147 if Dimension(Parent(bf)) eq -1 then

148 // Dimension(Parent(f)) is -1 if f is a boolean polynomial,

149 // while if f is a vetor the funtion gives the dimension of the vetor spae

150 anf := ANFCoeffiients(bf) ;

151 TT := FastMobiusTransform(anf) ;

162

10.2. Basi funtions

152 nv := IntegerRing()!Log(2,Rank(Parent(TT))) ;

153 else

154 if in then

155 anf := bf ;

156 TT := FastMobiusTransform(anf) ;

157 else

158 TT := bf ;

159 end if ;

160 nv := IntegerRing()!Log(2,Rank(Parent(TT))) ;

161 end if ;

162 // NOW:

163 // - bf IS A BOOLEAN POLYNOMIAL

164 // - anf IS THE VECTOR OF COEFFICIENTS OF bf

165 // - TT IS THE TRUTH TABLE OF bf

166

167 /*

168 // EXTRACT COEFFICIENTS if needed

169 if Dimension(Parent(f)) eq -1 then

170 // Dimension(Parent(f)) is -1 if f is a boolean polynomial,

171 // while if f is a vetor the funtion gives the dimension of the vetor spae

172 anf := ANFCoeffiients(f) ;

173 nv := Rank(Parent(f)) ;

174 else

175 anf := f ;

176 nv := IntegerRing()!Log(2,Nols(anf)) ;

177 end if ;

178 */

179

180 // ompute the TRUTH TABLE of f using fast mobius transform

181 // TT := FastMobiusTransform(anf) ;

182

183 // ompute the POLARITY TRUTH TABLE of f: 1 -> -1, 0 -> 1

184 PTT := [℄ ;

185 for i in [1..Nols(TT)℄ do

186 if TT[i℄ eq 1 then

187 PTT[i℄ := -1 ;

188 else

189 PTT[i℄ := 1 ;

190 end if ;

191 end for ;

192

193 // Compute the WALSH SPECTRUM using Fast Walsh Transform

194 fws := FastWalshSpetrum(PTT) ;

195

196 // find the MAX entry of the walsh spetrum

197 max := Max({AbsoluteValue(fws[i℄) : i in [1..#fws℄}) div 2 ;

198

199 return 2^(nv-1) - (max) ;

200 end funtion ;

201

202 ///

The next funtion is an implementation of Algorithm 6.

1 FastIntegerPolynomialEvaluation := funtion(_f : leastleft:=false)

2 // This funtion allows to obtain the evaluation of an integer Polynomial f

3 // with n variables

4 // evaluated in points whose ompontents are 0's and 1's

163

Chapter 10. Funtions for Part III

5 // in only n2^n steps.

6 // Given the vetor of oeffiients of a Polynomial over the ring R

7 // RETURNs the evaluation vetor of f

8 // (with respet to points of 0's and 1's omponents

9 // following by default the order 000,001,010,011,...)

10 // using a tehnique like the fast mobius transform.

11 //

12 // ATTENTION! The order of the monomials depends on the order defined over the

13 // ring of the funtion f of whih _f are the oeffiients...

14 // Thus hanging the ring of f, the order of the oeffiients hanges

15 // (eventhough the weight is obviously the same)

16 // and also the FMT hanges (eventhough its weight doesn't)

17 //

18 // Referene:

19 // Cagdas Calik, PhD Thesis, Pag. 9, hap. 2.3

20 // http://s.iam.metu.edu.tr/iamWarehouse/iam_Bibliography/

21 // web/index.php/attahments/single/219

22 //

23 // EX:

24 // R := PolynomialRing(Rationals(),3) ;

25 // f := 8*R.1*R.2*R.3 + 3*R.1 ;

26 // PolynomialCoeffiients(f) ;

27 // // (8 0 0 3 0 0 0 0)

28 // for v in VetorSpae(GF(2),Rank(Parent(f))) do

29 // printf "%o->%o\n",v,Evaluate(f,[IntegerRing()!v[i℄ : i in [1..Nols(v)℄℄) ;

30 // end for ;

31 // // (0 0 0)->0

32 // // (0 0 1)->0

33 // // (0 1 0)->0

34 // // (0 1 1)->0

35 // // (1 0 0)->3

36 // // (1 0 1)->3

37 // // (1 1 0)->3

38 // // (1 1 1)->11

39 // FastIntegerPolynomialEvaluation(PolynomialCoeffiients(f)) ;

40 // // (0 0 0 0 3 3 3 11)

41 //

42

43 loal n ; // number of variables of f

44 loal ev_f ;

45 loal lb ; // length of bloks

46 loal nb ; // number of bloks

47

48 n := IntegerRing()!Log(2,Nols(_f)) ;

49

50 if leastleft then

51 ev_f := Vetor(Rationals(),[Integers()!_f[i℄ : i in [1..Nols(_f)℄℄) ;

52 else

53 ev_f := Vetor(Rationals(),Reverse([Integers()!_f[i℄ : i in

[1..Nols(_f)℄℄)) ;

54 end if ;

55

56 for i in [1..n℄ do // n steps, the n_th step returns the evaluation vetor

57

58 lb := 2^i ;

59 nb := (2^n) div lb ;

60 for j in [1..nb℄ do // for eah blok

61

62 for k in [1..lb div 2℄ do // for the first half of the blok

63 ev_f[k+(j-1)*lb℄ := ev_f[k+(j-1)*lb℄ ;

164

10.2. Basi funtions

64 end for ;

65

66 for k in [(lb div 2)+1..lb℄ do // for the seond half of the blok

67 ev_f[k+(j-1)*lb℄ := ev_f[k+(j-1)*lb℄ + ev_f[k+(j-1)*lb-(lb div 2)℄ ;

68 end for ;

69

70 end for ;

71 end for ;

72

73 return ev_f ;

74 end funtion ;

75

76 //

77

78 FastNNFfromTT := funtion(f : leastleft:=false) //

79 // This funtion allows to obtain

80 // the Numeri Normal Form from the TruthTable of f

81 // in n2^(n-1) steps

82 // see:

83 // "A new representation of Boolean funtions" - Carlet and Guillot, Setion 3.1

84 // it is the opposite funtion of FastIntegerPolynomialEvaluation

85 //

86 // Example:

87 //

FastIntegerPolynomialEvaluation(FastNNFfromTT(Vetor(GF(2),[0,1,0,1,0,0,0,0℄)))

;

88 // // (0 1 0 1 0 0 0 0)

89 // FastNNFfromTT(Vetor(RationalField(),[0,1,1,0℄)) ;

90 // // the oeffiients must be rationals or binary

91 // // (-2 1 1 0)

92 // R := PolynomialRing(RationalField(),2) ;

93 // // the oeffiients must be rationals

94 // f := R.1 + R.2 ;

95 // FastNNFfromTT(f) ;

96 // // (-2 1 1 0)

97 //

98

99 //loal anf ; // oeffiients of the algebrai normal form

100 loal ev_f ;

101 loal n ; // number of varibale of f

102 loal b ;

103 loal temp ;

104 /*

105 // EXTRACT COEFFICIENTS if needed

106 if Dimension(Parent(f)) eq -1 then

107 // Dimension(Parent(f)) is -1 if f is a boolean polynomial,

108 // while if f is a vetor the funtion gives the dimension of the vetor spae

109 if Category(BaseRing(Parent(f))) eq Category(GF(2)) then

110 temp := PolynomialCoeffiients(f) ;

111 anf := [IntegerRing()!temp[i℄ : i in [1..Nols(temp)℄℄ ;

112 elif Category(BaseRing(Parent(f))) eq Category(RationalField()) then

113 anf := PolynomialCoeffiients(f) ;

114 else

115 "ERROR! the base ring of f is not either GF(2) nor the RationalField()!" ;

116 end if ;

117 n := Rank(Parent(f)) ;

118 else

119 if Category(Parent(f[1℄)) eq Category(GF(2)) then

120 anf := Vetor([IntegerRing()!f[i℄ : i in [1..Nols(f)℄℄) ;

121 elif Category(Parent(f[1℄)) eq Category(RationalField()) then

165

Chapter 10. Funtions for Part III

122 anf := f ;

123 else

124 "ERROR! the base ring of f is not either GF(2) nor the RationalField()!" ;

125 end if ;

126 n := IntegerRing()!Log(2,Nols(anf)) ;

127 end if ;

128 */

129 n := IntegerRing()!Log(2,Nols(f)) ;

130 // ev_f := Reverse([Integers()!f[i℄ : i in [1..2^n℄℄) ;

131 ev_f := [Integers()!f[i℄ : i in [1..2^n℄℄ ;

132 // ev_f := [f[i℄ : i in [1..2^n℄℄ ;

133

134 // COMPUTATION OF THE NNF

135 for i in [0..n-1℄ do

136 b := 0 ;

137 repeat

138 for x in [b..b+2^i-1℄do

139 // ev_f[x + 1℄ := ev_f[x+2^i + 1℄ - ev_f[x + 1℄ ;

140 ev_f[x+2^i + 1℄ := ev_f[x+2^i + 1℄ - ev_f[x + 1℄ ;

141 end for ;

142 b := b+2^(i+1) ;

143 until (b eq 2^n) ;

144 end for ;

145

146 if leastleft then

147 return Vetor(ev_f) ;

148 else

149 return Vetor(Reverse(ev_f)) ;

150 end if ;

151 end funtion ;

10.3 Minimum weight algorithms

The following ode is part of our ontribution.

1 DefiningPolynomialsFromCode := funtion(CC : poly := true)

2 // if poly = false then the vetor of oeffiients

3 // of the ANF of the defining polynomials are returned

4 // otherwise the algebrai normal form as a polynomial

5 // Example:

6 // C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,1,0,1, 1,0,0,0,0, 1,0,0,1,1℄) ;

7 // DefiningPolynomialsFromCode(C) ;

8 // [

9 // $.1*$.2 + $.1 + $.2,

10 // $.2 + 1,

11 // $.1*$.2 + $.1,

12 // $.1*$.2,

13 // $.1*$.2 + $.2 + 1

14 // ℄

15 // DefiningPolynomialsFromCode(C:poly:=false) ;

16 // [

17 // (1 1 1 0),

18 // (0 1 0 1),

19 // (1 0 1 0),

20 // (1 0 0 0),

166

10.3. Minimum weight algorithms

21 // (1 1 0 1)

22 // ℄

23 //

24

25 loal F ;

26 loal C ;

27

28 C := Matrix(CC) ;

29 F := [℄ ;

30 for i in [1..Nols(C)℄ do

31 if poly then

32 F[i℄ := AlgebraiNormalForm([C[j℄[i℄ : j in [1..Nrows(C)℄℄) ;

33 else

34 F[i℄ := FastMobiusTransform(FastMobiusTransform(Transpose(C)[i℄)) ;

35 end if ;

36 end for ;

37

38 return F ;

39 end funtion ;

The next two funtions ompute the weight polynomial and the weight ideal of,

respetively, De�nition 7.5.1 and De�nition 7.5.4.

1 WeightPolynomial := funtion(CC : verb := false)

2 // ompute the integer weight polynomial of a binary ode C

3 // given as a list of odewords (or a matrix)

4 // Example:

5 // C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1℄) ;

6 // WeightPolynomial(C) ;

7 // // $.1 + 2

8 //

9

10 loal C ;

11 loal F ; // defining polynomials of C in AND

12 loal Fn ; // defining polynomials of C in NNF

13 loal n, k ; // length and dimension of C

14 loal R, Q ; // polynomial rings, Q is modulo the field equations

15

16 C := Matrix(CC) ;

17 k := Floor(Log(2,Nrows(C))) ;

18 n := Nols(C) ;

19 F := DefiningPolynomialsFromCode(C) ;

20

21 if verb then

22 printf "Defining polynomials of C in ANF:\n%o\n",F ;

23 end if ;

24

25 R := PolynomialRing(Rationals(),k) ;

26 Q := quo< R | [R.i^2-R.i : i in [1..k℄℄ > ;

27 Fn := [℄ ;

28 for i in [1..n℄ do

29 // unomment the following to have the weight polynomial over Q

30 // Fn[i℄ := Evaluate(NNFfromANF(F[i℄),[Q.i : i in [1..k℄℄) ;

31 Fn[i℄ := Evaluate(NNFfromANF(F[i℄),[R.i : i in [1..k℄℄) ;

32 end for ;

33

34 if verb then

35 printf "Defining polynomials of C in NNF:\n%o\n",Fn ;

167

Chapter 10. Funtions for Part III

36 end if ;

37

38 return &+[Fn[i℄ : i in [1..#Fn℄℄ ;

39 end funtion ;

40

41 ///

42

43 IntegerWeightsIdeal := funtion(C,t : verb := false)

44 // ompute the ideal whose variety

45 // ontains the words whih,

46 // enoded as odewords of C by the defining polynomials,

47 // have weight exatly t

48 //

49 // Example:

50 // C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1℄) ;

51 // W3 := IntegerWeightsIdeal(C,3) ;

52 // W2 := IntegerWeightsIdeal(C,2) ;

53 // Variety(Ideal(W3)) ;

54 // // [<1, 0>, <1, 1> ℄

55 // Variety(Ideal(W2)) ;

56 // // [<0, 0>, <0, 1> ℄

57 //

58 loal k ; // dimension of C

59 loal wp ; // weight polynomial

60 loal Q ; // polynomial ring of wp

61 loal W ;

62

63 k := Floor(Log(2,Nrows(C))) ;

64 wp := WeightPolynomial(C : verb) ;

65

66 if verb then

67 printf "Weight polynomial of C:\n%o\n", wp ;

68 end if ;

69

70 Q := Parent(wp) ;

71 W := [℄ ;

72 for i in [1..k℄ do

73 W[i℄ := Q.i^2 - Q.i ;

74 end for ;

75

76 W[#W+1℄ := wp - t;

77

78 // unomment to return an ideal instead of a list of polynomials

79 // return Ideal(W) ;

80 return W ;

81 end funtion ;

The next funtion is an extension of Algorithm 5, i.e. it is an implementation of

Algorithm 8 desribed in Setion 7.7.2.

1 MinWeight := funtion(C:ompute_poly:=false)

2 // To ompute the minimum weight of a binary ode C of size m

3 // using B.f.'s in NNF representation of the ode C.

4 // if m is not a power of 2 then the ode C is splitted in

5 // subodes of size a power of 2.

6 // If ompute_poly = false,

7 // then polynomials are represented as vetors.

8 //

168

10.3. Minimum weight algorithms

9 // Example:

10 // C := Matrix(GF(2),4,5,[0,1,0,0,1, 1,1,0,0,1, 1,0,1,0,0, 1,0,0,1,1℄) ;

11 // w := MinWeightPoly(C) ; w ;

12 // 2

13 //

14

15 loal n ; // length of C

16 loal m ; // number of odewords of C

17 loal k ; // minimum integer suh that 2^k > m

18 loal Bm ; // binary deomposition of m

19 loal subC ;

20 loal w ; // minimum weight

21 loal j, temp ;

22 loal T ; // temporary ode

23 loal Fv, Fp ; // list of subodes as vetor and as polynomials

24 loal WPv ; // list of weight polynomials

25 loal EV ; // list of evaluation vetors of the weights polynomials

26 loal t, TIME ;

27

28 TIME := [℄ ;

29

30 n := Nols(C) ;

31 m := Nrows(C) ;

32 k := Ceiling(Log(2,m)) ;

33

34 t := Cputime() ;

35 // CONTRUCT SUBCODES OF CARDINALITY 2^i

36 Bm := IntegerToSequene(m,2) ;

37 subC := [* *℄ ;

38 j := 1 ;

39 for i in [1..#Bm℄ do

40 if Bm[i℄ eq 1 then

41 if #subC eq 0 then

42 temp := 0 ;

43 else

44 temp := &+[Nrows(subC[h℄) : h in [1..#subC℄℄ ;

45 end if ;

46 subC[j℄ := Matrix(GF(2),2^(i-1),n,[C[h℄ : h in [temp+1..temp+2^(i-1)℄℄) ;

47 j := j + 1 ;

48 end if ;

49 end for ;

50 TIME[#TIME+1℄ := Cputime(t) ;

51

52 // REPRESENT THE CODES AS A SET OF B.f.'s in NNF as vetors

53 t := Cputime() ;

54 Fv := [* *℄ ;

55 for i in [1..#subC℄ do

56 Fv[i℄ := [℄ ;

57 T := Transpose(subC[i℄) ;

58 for h in [1..Nrows(T)℄ do

59 Fv[i℄[h℄ := FastNNFfromTT(T[h℄ : leastleft := true) ;

60 end for ;

61 end for ;

62 TIME[#TIME+1℄ := Cputime(t) ;

63

64 // REPRESENT THE CODES AS A SET OF B.f.'s in NNF as polynomials

65 t := Cputime() ;

66 if ompute_poly then

67 Fp := [* *℄ ;

68 for i in [1..#subC℄ do

169

Chapter 10. Funtions for Part III

69 Fp[i℄ := [* *℄ ;

70 T := Transpose(subC[i℄) ;

71 for h in [1..Nrows(T)℄ do

72 Fp[i℄[h℄ := NNFfromANF(AlgebraiNormalForm(ElementToSequene(T[h℄))) ;

73 end for ;

74 end for ;

75 end if ;

76 TIME[#TIME+1℄ := Cputime(t) ;

77 // NOTE:

78 // CoeffiientVetorToPolynomial(Fv[i℄[j℄:leastleft:=true) = Fp[i℄[j℄

79 // order points in TT: 000 100 010 110 001 101 011 111

80

81 // CREATE WEIGHT POLYNOMIAL FOR EACH CODE as vetor

82 t := Cputime() ;

83 WPv := [* *℄ ;

84 for i in [1..#Fv℄ do

85 WPv[i℄ := &+[Fv[i℄[h℄ : h in [1..#Fv[i℄℄℄ ;

86 end for ;

87 TIME[#TIME+1℄ := Cputime(t) ;

88

89 t := Cputime() ;

90 // COMPUTE EVALUATION VECTOR FOR EACH WEIGHT POLYNOMIAL

91 EV := [* *℄ ;

92 for i in [1..#WPv℄ do

93 EV[i℄ := FastIntegerPolynomialEvaluation(WPv[i℄:leastleft:=true) ;

94 end for ;

95 TIME[#TIME+1℄ := Cputime(t) ;

96

97 t := Cputime() ;

98 // ompute the minimum weight

99 w := Min({Min({EV[i℄[j℄ : j in [1..Nols(EV[i℄)℄}) : i in [1..#EV℄ }) ;

100 TIME[#TIME+1℄ := Cputime(t) ;

101

102 if ompute_poly then

103 return w, TIME, Fp, Fv, WPv, EV ;

104 else

105 return w, TIME, Fv, WPv, EV ;

106 end if ;

107 end funtion ;

10.4 Nonlinearity algorithms

The following ode is part of our ontribution. The next two funtions ompute

the nonlinearity polynomial (Algorithm 12) and the ideal N t
f of De�nition 8.3.1.

1 NonlinearityPolynomial := funtion(f : inoeff:=false, leastleft:=false)

2 // FAST NONLINEARITY POLYNOMIAL

3 // Compute the nonlinearity polynomial of a Boolean funtion f

4 // using a butterfly algorithm (as Fast Fourier Transform)

5 // INPUT:

6 // - f, either the anf oeffs or the evaluation vetor of a boolean funtion

7 // (if inoeff=false then ev.vet., if inoeff=true then anf oeff)

8 // OUTPUT:

9 // - nlp, the oeffs vetor of the nonlinearity polynomial

10 // (if leastleft=false the leftmost oeff is the most signifiant monomial,

170

10.4. Nonlinearity algorithms

11 // if leastleft=true the leftmost oeff is the least signifiant monomial)

12 //

13 // Example:

14 // R := PolynomialRing(GF(2),3) ;

15 // f := R.1*R.2 + R.3 ;

16 // := ANFCoeffiients(f) ;

17 // ev_f := EvaluationVetor(f) ;

18 // NonlinearityPolynomial(:inoeff:=true) ;

19 // // (-8 0 0 0 0 0 4 0 4 0 0 0 0 0 -2 4)

20 // NonlinearityPolynomial(ev_f) ;

21 // // (-8 0 0 0 0 0 4 0 4 0 0 0 0 0 -2 4)

22 // NonlinearityPolynomial(ev_f:leastleft:=true) ;

23 // // (4 -2 0 0 0 0 0 4 0 4 0 0 0 0 0 -8)

24 //

25

26 loal ev_f ; // evaluation vetor of f

27 loal n ; // number of variables of f

28 loal nlp ; // nonlinearity polynomial oeffiients

29 loal b ; // ounter

30

31 /* some heks to transform f */

32 if inoeff then // if f is given by its anf oeffiients

33 ev_f := FastMobiusTransform(f) ;

34 else // if f is given by its evaluation vetor

35 ev_f := f ;

36 end if ;

37

38 n := Integers()!Log(2,Nols(ev_f)) ;

39

40 // FAST TRANSFORM:

41 // FIRST HALF OF THE NLP

42 nlp := [Integers()!ev_f[i℄ : i in [1..Nols(ev_f)℄℄ ;

43 for i in [0..n-1℄ do

44 b := 0 ;

45 repeat

46 for x in [b..b+2^i-1℄ do // for eah blok

47 // x+1 ; // upper index

48 // x+2^i + 1 ; // lower index

49 nlp[x+1℄ := nlp[x+1℄ + nlp[x+2^i+1℄ ;

50 if x eq b then

51 nlp[x+2^i+1℄ := 2^(i) -2*nlp[x+2^i+1℄ ;

52 else

53 nlp[x+2^i+1℄ := -2*nlp[x+2^i+1℄ ;

54 end if ;

55 end for ;

56 b := b+2^(i+1) ;

57 until (b eq 2^n) ;

58 end for ;

59

60 // SECOND HALF OF THE NLP

61 nlp[1+2^n℄ := 2^n -2*nlp[1℄ ;

62 for i in [2..2^n℄ do

63 nlp[i+2^n℄ := -2*nlp[i℄ ;

64 end for ;

65

66 if leastleft then

67 return Vetor(nlp) ;

68 else

69 return Vetor(Reverse(nlp)) ;

70 end if ;

171

Chapter 10. Funtions for Part III

71 end funtion ;

72

73 ///

74

75 gbJRAT := funtion (t,Nf)

76 // Returns the Groebner Basis of the ideal J_{n,t}(f) OVER THE RATIONALS.

77 // The ideal J_{n,t}(f) has now as generators:

78 // - the field equations: xi^2 - xi

79 // - Nf, the polynomial omposed by the sum of the elements of (ev_gn + ev_f)

80 //

81

82 loal R ; // ring of f over K

83 loal n ; // number of variables of f

84 loal K ; // rational field

85 loal Q ; // Q[a_1, ..., a_n, a_{n+}) ℄

86 loal G ; // Groebner basis of J

87

88 R := Parent(Nf) ;

89 n := Rank(R) ;

90 K := RationalField() ;

91 Q := PolynomialRing(K,n,"grevlex") ; // muh faster

92

93 G := [℄ ;

94 // ADD FIELD EQUATIONS for the variables of Q in J

95 for i in [1..(n)℄ do

96 G[i℄ := Q.i^2 - Q.i ;

97 end for ;

98

99 // ADD the NONLINEARITY POLYNOMIAL

100 G[n+1℄ := Q!Nf - t ;

101 // G := G at [Q!NonlinearityPolynomial(f) - t℄ ;

102

103 return GroebnerBasis(G) ;

104 end funtion ;

The next two ommands

1 NonLinearityRAT(f:alg:=1);

2 NonLinearityRAT(f:alg:=2);

perform, respetively, Algorithm 10 and Algorithm 11.

1 NonLinearityRAT := funtion(bf : alg := 1, turnoffhek := false, in:=false)

2 // the nonlinearity of f is x

3 // if gbJRAT(x,f) != {1}

4 // if alg = 1 uses Groebner basis

5 // if alg = 2 the minimum evaluation different from 0 is returned

6 // with the fast transform method

7 // (if in=false (default) then ev.vet., if in=true then anf oeff)

8 // uses:

9 // - FastIntegerPolynomialEvaluation(PolynomialCoeffiients(f))

10 // if no algorithm is defined returns -1

11 //

12 // Example:

13 // R := PolynomialRing(GF(2),3) ;

14 // f := R.1*R.2*R.3 + R.1 ;

172

10.4. Nonlinearity algorithms

15 // NonLinearityRAT(f:alg:=2);

16 // // 1

17 // NonLinearityRAT(f:alg:=1);

18 // // 1

19

20 loal i ;

21 loal V ;

22 loal S ;

23 loal n ;

24 loal temp ; // temporary value

25 loal anf ; // vetor of oeffiients of bf

26 loal f ; // truth table of bf

27 loal Nf ; // nonlinearity polynomial of f

28

29 ///////////////////// - COMPUTE TRUTH TABLE - ////////////////////////////

30

31 if Dimension(Parent(bf)) eq -1 then

32 // Dimension(Parent(f)) is -1 if f is a boolean polynomial,

33 // while if f is a vetor the funtion gives the dimension of the vetor spae

34 anf := ANFCoeffiients(bf) ;

35 f := FastMobiusTransform(anf) ;

36 n := IntegerRing()!Log(2,Rank(Parent(f))) ; // only needed in alg2 and alg3

37 else

38 if in then

39 anf := bf ;

40 f := FastMobiusTransform(anf) ;

41 else

42 f := bf ;

43 end if ;

44 n := IntegerRing()!Log(2,Rank(Parent(f))) ; // only needed in alg2 and alg3

45 end if ;

46 // NOW:

47 // - bf IS A BOOLEAN POLYNOMIAL

48 // - anf IS THE VECTOR OF COEFFICIENTS OF bf

49 // - f IS THE TRUTH TABLE OF bf

50

51 ////////////////////////// - ALG 1 - ////////////////////////////////////

52

53 if alg eq 1 then // hek if the base gbJRAT ontains 1

54

55 // ompute nonlinearity polynomial

56 if in then

57 Nf := NonlinearityPolynomial(anf:inoeff:=true) ; // f given as

oeffiients

58 else

59 Nf := NonlinearityPolynomial(f:inoeff:=false) ; // f given as oeffiients

60 end if ;

61 Nf := CoeffiientVetorToPolynomial(Nf) ; // tranform Nf in a polynomial

62 // find Groebner basis

63 i := 0 ;

64 while 1 in gbJRAT(i,Nf) do // gbJRAT works faster with

65 // Nf nonlin.pol. as oeff vetor

66 i := i + 1 ;

67 end while ;

68

69 ////////////////////////// - ALG 2 - ////////////////////////////////////

70

71 elif alg eq 2 then // FAST TRANSFORM to ompute the evaluation

72 if in then

173

Chapter 10. Funtions for Part III

73 Nf := NonlinearityPolynomial(anf:inoeff:=true) ; // f given as

oeffiients

74 else

75 Nf := NonlinearityPolynomial(f:inoeff:=false) ; // f given as oeffiients

76 end if ;

77 temp := FastIntegerPolynomialEvaluation(Nf) ;

78 i := Min({temp[j℄ : j in [1..Nols(temp)℄ }) ;

79

80 ///////////////////////// - NO ALG - ////////////////////////////////////

81

82 else

83 printf "ERROR! Algorithm %o not defined\n", alg ;

84 return -1 ; // if no algorithm is defined returns -1

85 end if ;

86

87 //////////////////////// - CHECK - //////////////////////////////////////

88

89 if not turnoffhek then

90 if in then

91 temp := NonLinearityFWT(anf:in:=true) ;

92 else

93 temp := NonLinearityFWT(bf) ;

94 end if ;

95 if temp ne i then

96 "i = ", i ;

97 "n = ", n ;

98 "f = ", f ;

99 "ERROR!! the funtion '' with alg = ", alg ;

100 "returned a different value with respet to the funtion

'NonLinearityFWT'!!" ;

101 return f ;

102 end if ;

103 end if ;

104

105 return i ;

106 end funtion ;

174

Bibliography

[ACFP12℄ M.R. Albreht, C. Cid, J.C. Faugere, and L. Perret, On the relation be-

tween the mxl family of algorithms and gröbner basis algorithms, Journal

of Symboli Computation 47 (2012), no. 8, 926�941.

[AMM03℄ M. E. Alonso, M. G. Marinari, and T. Mora, The big mother of all dual-

ities: Möller algorithm, Comm. Algebra 31 (2003), no. 2, 783�818.

[AS88℄ W. Auzinger and H. J. Stetter, An elimination algorithm for the om-

putation of all zeros of a system of multivariate polynomial equations,

Internat. Shriftenreihe Numer. Math. 86 (1988), 11�30.

[Bas65℄ L.A. Bassalygo, New upper bounds for error orreting odes, Problemy

Peredahi Informatsii 1 (1965), no. 4, 41�44.

[BCDM10℄ J. Buhmann, D. Cabaras, J. Ding, and M.S.E. Mohamed, Flexible par-

tial enlargement to aelerate gröbner basis omputation over\ mathbb

{F} _2, Progress in Cryptology�AFRICACRYPT 2010, Springer, 2010,

pp. 69�81.

[BD09℄ M. Brikenstein and A. Dreyer, Polybori: A framework for gröbner-basis

omputations with boolean polynomials, Journal of Symboli Computa-

tion 44 (2009), no. 9, 1326�1345.

[BDMM09℄ J. A Buhmann, J. Ding, M.S.E. Mohamed, and W.S.A.E. Mohamed,

Mutantxl: Solving multivariate polynomial equations for ryptanalysis,

Symmetri Cryptography 9031 (2009).

[Bel14a℄ E. Bellini, Yet another algorithm to ompute the nonlinearity of a

boolean funtion, Yet Another Conferene on Cryptography, YACC 2014

(Toulon), 2014.

[Bel14b℄ , Yet another algorithm to ompute the nonlinearity of a boolean

funtion, Preprint http://arxiv.org/abs/1404.2471, 2014.

CGC 175

Bibliography

[BFCP

+
10℄ J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva,

{{{\ mathbb Z} _2}{{\ mathbb Z} _4}}-linear odes: generator ma-

tries and duality, Designs, Codes and Cryptography 54 (2010), no. 2,

167�179.

[BFP09℄ L. Bettale, JC. Faugère, and L. Perret, Hybrid approah for solving mul-

tivariate systems over �nite �elds, Journal of Mathematial Cryptology

3 (2009), no. 3, 177�197.

[BFP12℄ L. Bettale, J.-C. Faugère, and L. Perret, Solving polynomial systems over

�nite �elds: Improved analysis of the hybrid approah, Proeedings of the

37th International Symposium on Symboli and Algebrai Computation,

ACM, 2012, pp. 67�74.

[BGH83℄ H. Bauer, B. Ganter, and F. Hergert, Algebrai tehniques for nonlinear

odes, Combinatoria 3 (1983), no. 1, 21�33.

[BGS14℄ E. Bellini, E. Guerrini, and M. Sala, Some bounds on the size of odes,

IEEE Trans. Inform. Theory 60 (2014), no. 3, 1475�1480.

[BJMM12℄ A. Beker, A. Joux, A. May, and A. Meurer, Deoding random binary

linear odes in 2 n/20: how 1+ 1= 0 improves information set deoding,

Advanes in Cryptology�EUROCRYPT 2012, Springer, 2012, pp. 520�

536.

[BLP11℄ D. J Bernstein, T. Lange, and C. Peters, Smaller deoding expo-

nents: ball-ollision deoding, Advanes in Cryptology�CRYPTO 2011,

Springer, 2011, pp. 743�760.

[BM76℄ I. F. Blake and R. C. Mullin, An introdution to algebrai and ombina-

torial oding theory, Aademi Press, In., 1976.

[Broa℄ A.E. Brouwer, Table of general binary odes.

[Brob℄ , Table of general ternary odes.

[BSS14℄ E. Bellini, I. Simonetti, and M. Sala, Nonlinearity of Boolean funtions:

an algorithmi approah based on multivariate polynomials, Preprint

http://arxiv.org/abs/1404.2741, 2014.

[Bu98℄ B. Buhberger, An algorithmial riterion for the solvability of algebrai

systems of equations, London Math. So. LNS 251 (1998), 535�545.

176

Bibliography

[Bu06℄ , Bruno Buhberger's PhD thesis 1965: An algorithm for �nding

the basis elements of the residue lass ring of a zero dimensional polyno-

mial ideal, J. Symb. Comput. 41 (2006), no. 3-4, 475�511.

[BvLW83℄ R. D. Baker, J. H. van Lint, and R. M. Wilson, On the Preparata and

Goethals odes, IEEE Trans. on Inf. Th. 29 (1983), no. 3, 342�345.

[Çal13a℄ Ça§da³ Çal�k, Computing ryptographi properties of boolean funtions

from the algebrai normal form representation, Ph.D. thesis, Middle East

Tehnial University, 2013.

[Çal13b℄ , Nonlinearity omputation for sparse boolean funtions, arXiv

preprint arXiv:1305.0860 (2013).

[Car02℄ C. Carlet, On the oset weight divisibility and nonlinearity of resilient

and orrelation-immune funtions, Sequenes and their Appliations,

Springer, 2002, pp. 131�144.

[Car10℄ C. Carlet, Boolean funtions for ryptography and error orreting odes,

Boolean Models and Methods in Mathematis, Computer Siene, and

Engineering (2010), 257�397.

[CBFS13℄ J. Cannon, W. Bosma, C. Fieker, and A. Steel, Handbook

of MAGMA funtions, MAGMA Computer Algebra, Sydney,

v2.19 ed., April 2013, Volume 9 - Commutative Algebra and

Algebrai Geometry, Chapter 105.4 - Gröbner basis, pp.3192,

http://magma.maths.usyd.edu.au/magma/handbook/text/1161#12745.

[CC98℄ A. Canteaut and F. Chabaud, A new algorithm for �nding minimum-

weight words in a linear ode: appliation to MEliee's ryptosystem

and to narrow-sense BCH odes of length 511, IEEE Transations on

Information Theory 44 (1998), no. 1, 367.

[CG99℄ C. Carlet and P. Guillot, A new representation of Boolean funtions,

Applied Algebra, Algebrai Algorithms and Error-Correting Codes,

Springer, 1999, pp. 94�103.

[CG01℄ C. Carlet and P. Guillot, Bent, resilient funtions and the Numerial

Normal Form, DIMACS Series in Disrete Mathematis and Theoretial

Computer Siene 56 (2001), 87�96.

177

Bibliography

[CKPS00℄ N. Courtois, A. Klimov, J. Patarin, and A. Shamir, E�ient algo-

rithms for solving overde�ned systems of multivariate polynomial equa-

tions, Pro. of EUROCRYPT 2000, LNCS, vol. 1807, Springer, 2000,

pp. 392�407.

[CLO07℄ D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms, third

ed., Springer, 2007, An introdution to omputational algebrai geometry

and ommutative algebra.

[Cou04℄ N. T. Courtois, Algebrai attaks over gf (2 k), appliation to hfe hal-

lenge 2 and s�ash-v2, Publi Key Cryptography�PKC 2004, Springer,

2004, pp. 201�217.

[CP02℄ N. T. Courtois and J. Pieprzyk, Cryptanalysis of blok iphers with

overde�ned systems of equations, Advanes in Cryptology�ASIACRYPT

2002, Springer, 2002, pp. 267�287.

[CP03℄ N. T. Courtois and J. Patarin, About the xl algorithm over gf (2), Topis

in Cryptology�CT-RSA 2003, Springer, 2003, pp. 141�157.

[Del73℄ P. Delsarte, An algebrai approah to the assoiation shemes of oding

theory, Philips Res. Rep. Suppl. (1973), no. 10, vi+97.

[dLG01℄ W. de Launey and D. M. Gordon, A remark on Plotkin's bound, IEEE

Trans. on Inf. Th. 47 (2001), no. 1, 352�355.

[Fau99℄ J. C. Faugére, A new e�ient algorithm for omputing Gröbner bases

(F4), J. Pure Appl. Algebra 139 (1999), no. 1-3, 61�88.

[Fau02℄ J. C. Faugère, A new e�ient algorithm for omputing Gröbner bases

without redution to zero (F5), Pro. of ISSAC 2002 (New York), ACM,

2002, pp. 75�83.

[FEDS10℄ JC. Faugère, M. S. El Din, and PJ. Spaenlehauer, Computing loi of

rank defets of linear matries using gröbner bases and appliations to

ryptology, Pro. of the 2010 International Symposium on Symboli and

Algebrai Computation, ACM, 2010, pp. 257�264.

[FEDS11℄ JC. Faugere, M. S. El Din, and PJ. Spaenlehauer, Gröbner bases of biho-

mogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms

and omplexity, Journal of Symboli Computation 46 (2011), no. 4, 406�

437.

178

Bibliography

[FGLM93℄ J. C. Faugère, P. Gianni, D. Lazard, and T. Mora, E�ient omputation

of zero-dimensional Gröbner bases by hange of ordering, J. Symboli

Comput. 16 (1993), no. 4, 329�344.

[FM11℄ JC. Faugère and C. Mou, Fast algorithm for hange of ordering of zero-

dimensional gröbner bases with sparse multipliation matries, Pro. of

the 36th international symposium on Symboli and algebrai omputa-

tion, ACM, 2011, pp. 115�122.

[FR09℄ JC. Faugère and S. Rahmany, Solving systems of polynomial equations

with symmetries using sagbi-gröbner bases, Pro. of the 2009 interna-

tional symposium on Symboli and algebrai omputation, ACM, 2009,

pp. 151�158.

[Gei09℄ O. Geil, Algebrai geometry odes from order domains, Gröbner Bases,

Coding, and Cryptography (M. Sala, T. Mora, L. Perret, S. Sakata,

and C. Traverso, eds.), RISC Book Series, Springer, Heidelberg, 2009,

pp. 121�141.

[GJ79℄ M. R. Garey and D. S. Johnson, Computers and intratability: a guide to

the theory of np-ompleteness, WH Freeman & Co., San Franiso (1979).

[GOS06℄ E. Guerrini, M. Orsini, and M. Sala, Computing the distane distribution

of systemati non-linear odes, BCRI preprint, www.bri.u.ie 50, UCC,

Cork, Ireland, 2006.

[GOS09℄ E. Guerrini, E. Orsini, and I. Simonetti, Gröbner bases for the distane

distribution of systemati odes, Gröbner Bases, Coding, and Cryptogra-

phy, Springer, 2009, pp. 367�372.

[GOS10℄ E. Guerrini, M. Orsini, and M. Sala, Computing the distane distribution

of systemati non-linear odes, Journal of Algebra and Its Appliations

9 (2010), no. 2, 241�256.

[Gri60℄ J.H. Griesmer, A bound for error-orreting odes, IBM Journal of Re-

searh and Development 4 (1960), no. 5, 532�542.

[GS07℄ E. Guerrini and M. Sala, An algebrai approah to the lassi�ation of

some non-linear odes, Pro. of WCC 2007 INRIA (2007), 177�185.

[Gue05℄ E. Guerrini, On distane and optimality in non-linear odes, Master's

thesis (laurea), Univ. of Pisa, Dept. of Math., 2005.

179

Bibliography

[Gue09℄ Eleonora Guerrini, Systemati odes and polynomial ideals, Ph.D. thesis,

University of Trento, 2009.

[HKC

+
94℄ Jr. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane,

and P. Solé, The Z4-linearity of Kerdok, Preparata, Goethals, and related

odes, IEEE Trans. on Inf. Th. 40 (1994), no. 2, 301�319.

[HP03℄ W. C. Hu�man and V. Pless, Fundamentals of error-orreting odes,

Cambridge University Press, 2003.

[Joh62℄ S. Johnson, A new upper bound for error-orreting odes, Information

Theory, IRE Transations on 8 (1962), no. 3, 203�207.

[Joh71℄ , On upper bounds for unrestrited binary-error-orreting odes,

Information Theory, IEEE Transations on 17 (1971), no. 4, 466�478.

[J.P93℄ Cardinal J.P., Dualité et algorithms itératifs pour la résolution de sys-

témes polynomiaux, Ph.D. thesis, 1993.

[Ker72℄ A. M. Kerdok, A lass of low-rate nonlinear binary odes, Information

and Control 20 (1972), 182�187; ibid. 21 (1972), 395.

[Lev95℄ V. I. Levenshtein, Krawthouk polynomials and universal bounds for odes

and designs in hamming spaes, Information Theory, IEEE Transations

on 41 (1995), no. 5, 1303�1321.

[Lev98℄ V.I. Levenshtein, Universal bounds for odes and designs, Handbook of

Coding Theory (V. S. Pless and W. C. Hu�man, eds.), vol. 1, Elsevier,

1998, pp. 499�648.

[LL98℄ T. Laihonen and S. Litsyn, On upper bounds for minimum distane and

overing radius of non-binary odes, Des. Codes Cryptogr. 14 (1998),

no. 1, 71�80.

[LT96℄ S. Litsyn and A. Tietäväinen, Upper bounds on the overing radius of a

ode with a given dual distane, European Journal of Combinatoris 17

(1996), no. 2, 265�270.

[MAG℄ MAGMA: Computational Algebra System for Algebra, Number Theory

and Geometry, The University of Sydney Computational Algebra Group.,

http://magma.maths.usyd.edu.au/magma.

180

Bibliography

[MCD

+
10℄ M. S. E. Mohamed, D. Cabaras, J. Ding, J. Buhmann, and S. Buly-

gin, Mxl3: An e�ient algorithm for omputing gröbner bases of zero-

dimensional ideals, Information, Seurity and Cryptology�ICISC 2009,

Springer, 2010, pp. 87�100.

[MMDB08℄ M.S.E. Mohamed, W.S.A.E. Mohamed, J. Ding, and J. Buhmann,Mxl2:

Solving polynomial equations over gf (2) using an improved mutant strat-

egy, Post-Quantum Cryptography, Springer, 2008, pp. 203�215.

[Mor05℄ T. Mora, Solving polynomial equation systems. II, Maaulay's paradigm

and Gröbner tehnology, Enylopedia of Mathematis and its Applia-

tions, vol. 99, Cambridge University Press, 2005.

[Mor09℄ , Gröbner tehnology, Gröbner Bases, Coding, and Cryptography

(M. Sala, T. Mora, L. Perret, S. Sakata, and C. Traverso, eds.), RISC

Book Series, Springer, Heidelberg, 2009, pp. 11�26.

[Mou05℄ B. Mourrain, Bezoutian and quotient ring struture, J. Symboli Comput.

39 (2005), no. 3-4, 397�415.

[MS77℄ F. J. MaWilliams and N. J. A. Sloane, The theory of error-orreting

odes. I, North-Holland Publishing Co., Amsterdam, 1977, North-

Holland Mathematial Library, Vol. 16.

[PBH98℄ V. Pless, R.A. Brualdi, and W.C. Hu�man, Handbook of oding theory,

Elsevier Siene In., 1998.

[Pet10℄ C. Peters, Information-set deoding for linear odes over f q, Post-

Quantum Cryptography, Springer, 2010, pp. 81�94.

[Plo60℄ M. Plotkin, Binary odes with spei�ed minimum distane, Information

Theory, IRE Transations on 6 (1960), no. 4, 445�450.

[Pre68℄ F. P. Preparata, A lass of optimum nonlinear double-error orreting

odes, Inform. Control 13 (1968), no. 13, 378�400.

[PVZ12℄ J. Pujol, M. Villanueva, and F. Zeng, Minimum distane of binary non-

linear odes.

[Rom92℄ S. Roman, Coding and information theory, Graduate Texts in Mathe-

matis, vol. 134, Springer-Verlag, New York, 1992.

181

Bibliography

[Sh05℄ A. Shrijver, New ode upper bounds from the terwiller algebra and

semide�nite programming, IEEE Trans. Inform. Theory 51 (2005), no. 8,

2859�2866.

[Sim07℄ I. Simonetti, On some appliations of ommutative algebra to Boolean

funtions and their non-linearity, Ph.D. thesis, University of Trento,

2007.

[Sim09℄ , On the non-linearity of Boolean funtions, Gröbner Bases,

Coding, and Cryptography (M. Mora T. Perret L. Sakata S. Sala

and C. Traverso, eds.), RISC Book Series, Springer, Heidelberg, 2009,

pp. 409�413.

[SS65℄ G. Solomon and J. J. Sti�er, Algebraially puntured yli odes, Infor-

mation and Control 8 (1965), no. 2, 170�179.

[SS07a℄ M. Sala and I. Simonetti, An algebrai desription of Boolean funtions,

Pro. of WCC 2007 (2007), 343�349.

[SS07b℄ , On the non-linearity of Boolean funtions and Gröbner bases,

preprint, submitted, 2007.

[ST09℄ M. Mora T. Perret L. Sakata S. Sala and C. Traverso, Gröbner Bases,

Coding, and Cryptography, RISC Book Series, Springer, Heidelberg, 2009.

[Ste13℄ Allan Steel, A dense variant of the F4 groebner basis algorithm,

http://magma.maths.usyd.edu.au/users/allan/densef4/#RH, Deember

2013, tinyurl.om/DenseF4.

[Tra92a℄ C. Traverso, Linear gröbner methods and �natural� representations of

algebrai numbers, July 1992, Draft.

[Tra92b℄ , Natural representation of algebrai numbers, Conferene at

MEGA-92, 1992.

[Zim96℄ K.H. Zimmermann, Integral heke modules, integral generalized reed-

muller odes, and linear odes, Berihte des Forshungsshwerpunk-

tes Informations- und Kommunikationstehnik, Tehn. Univ. Hamburg-

Harburg, 1996.

[ZL84℄ V. A. Zinov'ev and S.N. Litsyn, On Shortening of Codes, Problemy

Peredahi Informatsii 20 (1984), no. 1, 3�11.

182

	I Preliminaries
	A brief introduction to polynomial system solving
	Monomial ordering
	Basic notions and properties of Gröbner bases
	Solving systems of polynomials equations
	The 0-dimensional case
	Representation of 0-dim. ideals
	Traverso's Algorithm
	Hybrid approach
	XL family of algorithms
	Boolean polynomial systems
	Magma approach

	A brief introduction to nonlinear and systematic codes
	Basic notion and notation
	Equivalence of codes

	A brief introduction to Boolean function
	Representations of Boolean functions
	Evaluation vector
	Algebraic normal form
	Numerical normal form

	Nonlinearity of a Boolean function
	Walsh transform of a Boolean function
	Non-linearity and Walsh transform
	Bent functions

	II On code bounds
	Overview of known classical bounds
	Preliminaries
	Upper bounds
	The Hamming upper bound
	The Plotkin upper bound
	The Johnson upper bounds
	The Singleton upper bound and MDS codes
	The Elias upper bound
	The Linear Programming upper bound
	The Levenshtein upper bound
	The Zinoviev-Litsyn-Laihonen upper bound
	The Griesmer upper bound for linear codes

	Lower bounds
	The Gilbert-Varshamov lower bound

	A generalization of the Griesmer bound to systematic codes
	The Griesmer bound
	The case Lg
	The case Lg
	The case Lg and Lg

	A new bound on the size of codes
	A first result for a special family of codes
	An improvement of the ZLL bound
	Restriction to the systematic case
	Theoretical comparison with the ZLL bound

	Experimental comparisons: linear case
	Experimental comparisons: nonlinear case
	Tables

	III Polynomials techniques for minimum weight problems
	Computing the minimum weight of a code
	Polynomials and vector weights
	Representing a code as a set of Boolean functions
	Memory cost of representing a code

	Number of coefficients of the NNF
	Finding the codewords with weight Lg
	Finding the codewords with weight exactly Lg
	Complexity considerations
	From list of codewords to defining polynomials in NNF
	From defining polynomials to weight polynomial
	Evaluation of the weight polynomial
	Comparison with brute-force method
	Comparison with Brouwer-Zimmerman method for linear codes

	Binary codes whose cardinality is not a power of 2
	Method 1: expanding the code
	Method 2: dividing into subcodes

	Computing the nonlinearity of Boolean function
	Polynomials and vector weights
	Nonlinearity and polynomial systems over Lg
	Nonlinearity and polynomial systems over Lg
	Computing the nonlinearity using fast polynomial evaluation
	Properties of the nonlinearity polynomial
	Complexity of constructing the nonlinearity polynomial
	Complexity considerations
	Some considerations on Algorithm 9
	Algorithm 9 and 10
	Algorithm 11

	IV MAGMA code
	Functions for Part II
	Nordstrom-Robinson code
	Bound Lg, Lg
	The Johnson bound
	The Linear Programmin bound
	The best known nonlinear upper bound
	Bound Lg
	Bound Lg
	Comparison with known bounds

	Functions for Part III
	Traverso's algorithm
	Basic functions
	Algebraic and numerical normal form
	Fast transforms

	Minimum weight algorithms
	Nonlinearity algorithms

	Bibliography

