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Abstract

Braided rivers are complex, fascinating fluvial pattern, which represent the
natural state of many gravel and sand bed rivers. Both natural and human
causes may force a change in the boundary conditions, and consequently im-
pact the river functionality. Detailed knowledge on the consequent morpho-
logical response is important in order to define management strategies which
combine different needs, from protection of human activities and infrastructures
to preservation of the ecological and biological richness.

During the last decades, research has made significant advance to the de-
scription of this complex system, thanks to flume investigations, development
of new survey techniques and, to a lesser extent, numerical and analytical so-
lutions of mathematical models (e.g. Ashmore, 2013).

Despite that, many relevant questions, concerning the braided morphody-
namics at different spatial and temporal scales (from the unit process scale,
to the reach scale, and eventually to the catchment scale) remain unanswered.
For example, quantitative analysis of the morphological response to varying
external controls still requires investigation and needs the definition of suitable,
stage-independent braiding indicators. In addition, the morphodynamics of the
fundamental processes, such as bifurcations, also needs further analysis of the
driving mechanisms.

General aim of the present study is to develop new methods to exploit, in
an integrated way, the potential of the new possibilities offered by advanced
monitoring techniques, laboratory models, numerical schemes and analytical
solutions. The final goal is to fill some gaps in the present knowledge, which
could ultimately provide scientific support to river management policies.

We adopted analytical perturbation approaches to solve the two-dimensional
shallow water model; we performed laboratory simulations on a large, mobile-
bed flume; we analysed existing topographic measurements from LiDAR and
Terrestrial Laser scanning Devices; and we simulated numerically the river hy-
drodynamics. Within each of the six, independent, research chapters, we inter-
connected results from the different approaches and methodologies, in order to
take advantage of their potential.

Summarising, the more relevant and novel outcomes of the present work can
be listed as follows:
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(i) We explored the morphological changes during a sequence of flood events
in a natural braided river (Rees River, NZ) and we proposed a morphologi-
cal method to assess the sediment transport rate. In particular we propose
a semi-automatic method for estimating the particles path-length (Ash-
more and Church, 1998) on the basis of the size of the deposition patches,
which can be identified on the basis of DEM of differences. Comparison
with results of numerical simulation confirmed that such an approach can
reproduce the response of the bedload rate to floods of different duration
and magnitude.

(ii) We developed a new indicator of the reach-scale morphology and, on
the basis of existing laboratory experiments, we explored its dependence,
under regime conditions, to the controlling factors: slope, discharge, con-
finement width, grain size. In spite of its synthetic nature, this simple
indicator embeds the information needed to estimate the variability of the
Shield stress throughout the braided network, and consequently enables
to assess the transport-rate and its variation with the driving discharge.

(iii) We investigated, through flume experiments, the effect of the flow un-
steadiness on the sediment transport in a braided river. This is possible
only by following a statistical approach based on multiple repetitions of
the same flow hydrograph. Results revealed that for confined network an
hysteresis of the bedload response occurs, which leads to higher sediment
transport during increasing flow, whereas relatively unconfined networks
always show quasi-equilibrium transport rates.

(iv) A second set of laboratory experiments provided information on the mor-
phodynamics of a braided network subject to variations of the sediment
supply. We proposed a simple diffusive model to quantify the evolution of
the one-dimensional bed elevation profile. Such simple approach, albeit
having a limited range of practical applications, represents the first at-
tempt to quantify this process and enables to study the relevant temporal
and spatial scales of the phenomenon.

(v) We solved analytically the two-dimensional morphodynamic model for a
gravel-bed river bifurcation. This furnishes a rigorous proof to the idea
proposed by Bertoldi and Tubino (2007) to interpret the morphological
response of bifurcation in light of the theory of the morphodynamic in-
fluence. The analytical approach enables to investigate the fundamental
mechanics which leads to balance, and unbalance, configurations and,
from a more practical point of view, allows for a better prediction of the
instability point than the existing 1D models (e.g. Bolla Pittaluga et al.,
2003).
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Chapter 1

Introduction

Rivers represent a fundamental resource of water, energy, fishing, navigation
and are recognised as an opportunity for sport and recreation activities. In
addition they ensure more subtle but important functions, such as assimilation
and dilution of pollutants, recycling of nutrients and recharge of groundwater
resources. Rivers also represent an important ecosystem of high biodiversity,
which sustain the life of a large variety of species.

Classic engineering has been mainly focused on the hydraulic protection
against flooding risk and on the hydropower exploitation, often without much
consideration about other aspect of the river functionality. Nonetheless, recent
trend of river restoration and rehabilitation are based on a more comprehensive
analysis of the fluvial system with more relevance of biological and ecological
aspects. Such approach sometimes suggests intervention such as removal of
some bank protections, re-opening or creation of secondary channels and miti-
gation of the hydopeaking effect due to hydropower production (e.g. Klaassen
et al., 2002).

The definition of sustainable and cost-effective intervention requires a deep
knowledge of the river dynamics from many point of view: chemical, biological,
ecological, hydrological, hydrodynamical, morphodynamical.

Different morphological patterns result depending on the flow regime, geo-
logical conditions, sediment availability and vegetation characteristics. Specifi-
cally, under conditions of relatively high stream power, coarse bed material and
large sediment supply the multi-thread braided planform is likely to develop
(e.g. Lane, 1957; Leopold and Wolman, 1957; Church, 2002).

1.1 The braided rivers

Braided rivers are characterised by complex and highly dynamics network of
channels which develops on alluvial plains composed by gravel or sand.

A rigorous definition of braided rivers is not trivial; indeed there are multi-
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1.1. The braided rivers

channel rivers which are usually not classified as braided (i.e. the so-called
anastomosing pattern) or, on the other hand, braided rivers which under very
high or very low flows show only a single wetted channel.

In addition, thresholds between channel patterns are often not sharp but a
gradual transition from braided to different channel patterns is often observed
(e.g. Gurnell et al., 2009). Additional terminology has been introduced to define
the so-called wandering rivers which are defined by Desloges and Church (1989)
as ”irregularly sinuous channels, sometimes split about channel islands and in
some places braided”.

Murray and Paola (1994) defined the braiding phenomena as “the funda-
mental instability of laterally unconstrained free-surface flow over cohesionless
beds” whereas according to Ashmore (2013) “Braided rivers have a distinctive
alluvial morphology characterised by an unstable network of multiple channels
separated by ephemeral bars“.

From a morphodyamical perspective we could define as braided the rivers
having complex and unpredictable dynamics due to the strong non-linear in-
teraction between different processes (in-channel processes, bank erosion, bifur-
cations, avulsions, vegetation) which lead to a continuously-changing channel
pattern.

This rapidly varying environment leads to much larger biological and eco-
logical richness than other river patterns (e.g Tockner et al., 2003, 2006)). The
habitat diversity can be enhanced by secondary effects related to the morpho-
logical complexity such as the great variability of the temperature distributions
(Tonolla et al., 2010) or the exchanges of groundwater at the local and at the
reach scale (Doering et al., 2013).

Natural rivers are often populated by different species of riparian vegeta-
tion, which mutually interact with the morpholodynamics, thus playing a fun-
damental role in the evolution of the river network (e.g. Tal and Paola, 2010;
Coulthard, 2005; Bertoldi et al., 2011b,a).

These rivers are often heavily impacted by human activities which altered
the functionality from both morphological and ecological point of view. In
particular they are affected both by direct impacts, such as gravel mining, con-
struction of embankments, channelisation and by variations at the catchment
scale due to modifications of the land use, torrents regulations, construction of
hydropower schemes and climate changes. For example Liebault et al. (2012)
have shown a 53% decrease of the braided channel network French Alps during
the last 200 years.

Many European rivers showed a large variety of physical, ecological, and
environmental impacts due to anthropic pressure; in particular several braided
rivers experienced a narrowing process, and in some cases a dramatic change
of river pattern from multi-thread to single channel (e.g. Rinaldi et al., 2005;
Gurnell et al., 2009).

Among the most significant stressors a key role is played by the sediment
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Figure 1.1: Picture of the River Rakaia (New Zealand, 43◦21′ S, 171◦27′ E). Courtesy
of Bill Irwin (www.billirwinarts.com).

mining, which can lead to relevant incision both upstream and downstream the
excavation site with consequent impacts on infrastructures, channel instability,
water table lowering and sediment deficit in coastal zones (Rinaldi et al., 2005).

The more common practices carried out by agencies involved with river
management about sediment mining are often very crude and poorly based upon
scientific knowledge; therefore this problem require a deeper understanding of
the relevant processes (Rinaldi et al., 2005).

1.2 Braided rivers morphodynamics and predictions

The local properties of braided rivers (such as sediment transport or number
of channels at a given section) show a strong spatial and temporal variability,
which can not be predicted in detail for long times. This feature, typical of com-
plex, non-linear systems, was clearly described by Paola (1996), who compared
braiding phenomena with turbulence in fluids, which is a well-known complex
phenomenon whose prediction is possible only from a statistical point of view.

For this reason it is often necessary to study the braided rivers morpho-
dynamics through a statistical approach; for example it is possible to analyse
how the reach-averaged or the time-averaged properties (width, total and ac-
tive number of channels, sediment transport rate) depend upon the controlling
conditions (slope, maximum available width, water and sediment supply, bed
material).

Many laboratory and field studies have pursued those questions during the
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last decades (see Ashmore, 2013, for a comprehensive review).

The definition of reach-averaged quantities needs, first of all, to asses what
is the length required for constructing a sufficiently robust statistics. Sampling
criteria for braiding intensity indicate that a suitable reach length (needed to
average out bar-scale variation in braiding) is at least ten times the channel
width (Egozi and Ashmore, 2009). Behind this practical question there is a more
conceptual problem concerning the length scale of the braided morphology.

Single-thread meandering rivers show a dominant length scale which is pro-
portional to the channel width (e.g. Seminara and Tubino, 1992). Similarly,
straight gravel-bed channels often develop migrating alternate bars (e.g. Ikeda,
1984; Lanzoni, 2000), whose wavelength is again scaling with the channel width.

The definition of a length scale of a braided river is more challenging, be-
cause of the coexistence of different spatial and temporal scales (Sapozhnikov
and Foufoula-Georgiou, 1998). However, since braided channels are initiating
from regular bars, it has been proposed (Ashmore, 2001) that the character-
istic length scale is related to the pool-bar length; specifically laboratory and
field observations (Hundey and Ashmore, 2009) suggest that the confluence-
bifurcation length is 4÷ 5 times the main channel width.

Evidences of internal scaling of the planimetric properties (e.g. Sapozh-
nikov and Foufoula-Georgiou, 1996; Lane, 2006) suggest that braided networks
are self-similar fractals. However, it is not clear whether this similarity is ex-
actly isotropic or if there is a degree of self-affinity (Sapozhnikov and Foufoula-
Georgiou, 1998; Walsh and Hicks, 2002). The temporal scale of the channels
kinematic is proportional to the square root of the length (Sapozhnikov and
Foufoula-Georgiou, 1997), which correspond to the Froude scaling of the hy-
drodynamics and morphodynamics between rivers having different sizes.

The external scaling (i.e., similarity between rivers of different sizes, see
figure 1.2) is implicit in the success of physical models of braiding in reproducing
the morphodynamics of full-scale braided rivers (e.g. Hong and Davies, 1979).
Specifically, Froude similarity has been proven to hold on a braided range of
scales, from laboratory flume to large rivers (e.g. Young and Warburton, 1996).

The definition of the braiding richness requires the specification of suitable
indexes. One of the most natural is the average number of channels (e.g. Egozi
and Ashmore, 2008) across river sections. Only a subset of the total channels
in a braided river are transporting bed material load and actively forming the
braided pattern and river morphology; Bertoldi et al. (2009d) has shown the
role of the dimensionless stream power in defining the active index, whereas
the total number of channel appears to be more related to the dimensionless
discharge. The ratio between active and total number index ranges from 0.3 to
0.8 depending on the stream power (Bertoldi et al., 2009d; Egozi and Ashmore,
2009), with a typical value around 0.4. Similarly Bertoldi et al. (2009d) sug-
gested that the wetted width increases with discharge and the active width (i.e.
the fraction of river width where sediment transport occurs) increases with the
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(a) Brahmaputra) (b) Sunwapta (c) Trento’s flume

Figure 1.2: Example of braided rivers of different scales. a) Brahmaputra river
(Bagladesh-India 25◦53′ N , 89◦54′ E), from Google Earth, Digital Globe (2014); b)
Sunwapta river (Alberta, Canada), from Bertoldi (2005) c) Flume experiment (Trento,
Italy); flow is from the top to the bottom.

stream power.

Much less is known about the effect of the variation through time of the
controlling conditions, namely water and sediment supply.

Egozi and Ashmore (2009) described the adjustment of channels, the change
of braiding index and the associated temporal scales after stepwise increments of
the liquid discharge; they found that the stable value was achieved via gradual
increase of total braiding intensity while active braiding intensity adjusted very
quickly to the increased flow.

Few studies investigated the morphological response of braided network to
variations of the sediment availability; reducing the feed rate in a laboratory
braided network, causes an incision of the main channel, in some cases, a tran-
sition to single-thread planform (Germanoski and Schumm, 1993; Marti and
Bezzola, 2006; Madey et al., 2009; Pryor et al., 2011).
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Figure 1.3: Bifurcation of the River Sunwapta (Alberta, Canada). From Bertoldi
(2005). Flow is from left to right.

1.3 The fundamental unit processes

1.3.1 Bifurcations

Bifurcations represent a basic mechanism for developing and sustaining braided
networks.

Theoretical approaches based on one-dimensional models, and equipped
with a suitable description of the two and three-dimensional dynamics at the
bifurcation (Wang et al., 1995; Bolla Pittaluga et al., 2003), as well as labo-
ratory (Federici and Paola, 2003; Bertoldi and Tubino, 2007) and numerical
experiments (Edmonds and Slingerland, 2008; Kleinhans et al., 2008; Siviglia
et al., 2013), demonstrated that the aspect ratio (i.e. the width to depth ratio)
is the key parameter controlling the distribution of water and sediment between
the distributaries.

Specifically, it is clear that in gravel-bed channels small aspect ratios and
relatively high Shields stresses lead to a stable, balanced configuration. Con-
versely, in a wide channel with low shear stress an instability often arises and
produces an unbalanced configuration, with an uneven repartition of water and
sediment fluxes between the distributaries. Such an unbalance condition is pro-
moted by the process of bank erosion; indeed, as predicted by the theoretical
model of Miori et al. (2006), this process tend to increase aspect ratio and a to
decrease the Shields stress, which invariably leads to unbalanced bifurcations.

1.3.2 Confluences

Anabranch confluences and associated bars are fundamental in the braided river
morphodynamics (Ashmore et al., 1992).

The dynamics of confluences has been extensively studied in the last decades
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both in the field and in laboratory models. The morphological configuration
depends upon the discharge ratio and the angle between the tributaries. Typi-
cally the flow convergence induces a double-helical circulation which drives the
sediment towards the bank; this leads to a scour region with the characteris-
tic spoon or trough shape (Ashmore, 2013). Because of the high relevance in
engineering application many studies (e.g. Mosley, 1976; Ashmore and Parker,
1983; Best, 1986) have focused on the depth of the scour zone, which is typ-
ically 2 ÷ 3 times the depth of the channels and decreases with the discharge
ratio between the confluent branches (e.g. Best and Rhoads, 2008). Where the
two currents join, a mixing interface develops and a shear layer occurs (Rhoads
and Sukhodolov, 2008), whose intensity depends on the momentum differences
between the incoming currents.

In the case of mobile banks the orientation of the downstream branch de-
pends on the water and sediment supply of the tributary channels (Ashmore,
2013).

1.3.3 Bars

Migrating alternate bars are large-scale bed forms characterised by a sequence
of steep consecutive diagonal fronts with deep pools at the downstream face
and gentler riffles along the upstream face, whose height and wavelength scale
with flow depth and channel width respectively (Lanzoni, 2000).

The formation of alternate bars in sand and gravel bed channels have been
extensively studied through analytical theories, numerical simulation, labora-
tory models (e.g. Ikeda, 1984; Jaeggi, 1984; Colombini et al., 1987; Tubino et al.,
1999; Lanzoni, 2000).

In particular, analytical theories have demonstrated that migrating alter-
nate bars are the fundamental mechanism of instability of gravel bed channels
and have identified the aspect ratio as the crucial parameters controlling this
process; indeed for relatively narrow channels any small perturbation of the bot-
tom is damped in time, whereas for aspect ratio higher than a critical threshold
migrating bars develop. The length of these migrating bed waves is typically
7÷ 12 times the width.

A second class is represented by the steady bars, also called forced bars
because induced by channel curvature (Blondeaux and Seminara, 1985; Semi-
nara and Tubino, 1992), variations of width (Repetto et al., 2002; Luchi et al.,
2011), localised obstacles (Struiksma and Crosato, 1989; Crosato et al., 2011).
The wavelength, longer than for migrating bars, typically falls in the range of
15÷ 30 times the channel width.

Laboratory experiments confirm the importance of bars in the initial de-
velopment of braiding (Jang and Shimizu, 2005; Bertoldi and Tubino, 2005;
Federici and Paola, 2003). Indeed, starting from a straight single-thread chan-
nel the development of alternate (mode 1), central (mode 2) or multiple (mode
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> 2) bars causes the development of a sinuous channel and ultimately the
opening bifurcation and the formation of a braided network.

The actual development probably depends on the initial conditions. Ac-
cording to Bertoldi and Tubino (2005), starting from a narrow straight channel
an initial widening due to the uniform bank erosion occurs. Once the critical
aspect ratio for the formation of alternate bars (e.g. Colombini et al., 1987)
a train of downstream migrating bars appears; this alternating bottom per-
turbation causes a deviation of the flow field, a nonuniform bank erosion and
consequently leads to a regular sequence of bumps and, eventually, to a sinuous
channel. At the same time the channel keeps widening until initial bifurcation
develops via chute cutoff.

When the aspect ratio is relatively large the theories show the formation of
central or multiple bars. Several works investigated the role of both migrating
and steady bars on the development of braided rivers (e.g. Parker, 1976; Fredsoe,
1978; Paola, 2001; Crosato and Mosselmann, 2009), showing the role of the
channel aspect ratio in determining the initial bar type and the number of
channels.

1.4 The sediment transport

Direct measurements of bedload in natural braided rivers is very complicate,
so that available data often have limited spatio-temporal extension and are
typically measured during flood events of small magnitude.

Due to these difficulties, but also because of the possibility of a much higher
control of the experimental conditions, the sediment transport in braided net-
works has been mainly investigated through laboratory-scale physical models.
An exact dynamic similarity between the prototype and the reduced scale model
is usually impossible to achieve; however, as reported by many studies (e.g.
Young and Warburton, 1996; Warburton, 1996; Shvidchenko and Kopaliani,
1998), a well designed laboratory model is able to reproduce in both qualitative
and quantitative way the phenomena observed in the real-scale rivers.

Flume experiments have revealed an high variability of the solid transport
over a broad range of temporal scales (e.g. Ashmore, 1988; Hoey and Sutherland,
1991); temporal fluctuations of the bed load (Ashmore, 2001) can be related
to the frequent breakdown of an organised morphology (for instance due to
chute cut-off or avulsion), with increased activity of the network during the
high transport pulses (e.g. Ashmore, 1991).

Since the reach-averaged transport rate is usually well correlated with the
total discharge, several empirical functions have been developed to predict av-
erage bedload rate from river discharge or stream power (Thompson, 1985;
Davies, 1987; Ashmore, 1988; Young and Davies, 1990, 1991; Shvidchenko and
Kopaliani, 1998). However, it is not clear how this relationships depends on
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Figure 1.4: Example of sediment transport measured during one of our long-term
experiments. A filtering algorithm which removes the frequency components faster
than 1 h and 5 h (red and blue lines respectively) has been applied.

the experimental conditions and to what extent the coefficient obtained from
the regression of experimental data are generally applicable.

After the first attempts to predict this flux through standard transport
formulae (Carson and Griffith, 1987; Ashmore, 1988; Griffith, 1989) it became
evident (Paola, 1996; Nicholas, 2000; Ferguson, 2003) the great importance of
spatial variability of the hydraulic parameters, bottom morphology and grain
size. Indeed the local transport intensity varies nonlinearly with the shear stress
and consequently the reach-average bedload flux depends not only on the mean
Shields stress but also on its spatial distribution across the section. This effect
is particularly significant in braided networks, where the transport rate can be
several times bigger than in the equivalent uniform, rectangular cross-section
(Bertoldi et al., 2009a).

For this reason approaches based on the probability density function of
the shear stress, and in particular on the Euler gamma function, have been
introduced (Paola, 1996; Nicholas, 2000), whereas alternative methods have
been proposed by Ferguson (2003); Bertoldi et al. (2009a).

An opportunity to estimate (a posteriori) the reach-averaged transport rate
on the basis of repeated topographical surveys, is provided by the so-called
morphological methods (Ashmore and Church, 1998), which can be divided in
two categories, namely the budget method and the path-length method.

The first one is simply based on the net volume variation in a control volume,
and therefore needs knowledge of the flux across one boundary condition; this
problem can be solved by applying a bedload formula (e.g. Ham and Church,
2000) assuming zero flux at one boundary section (e.g. McLean, 1990; McLean
and Church, 1999) or considering a non-negative flux throughout the reach
(Ferguson et al., 1992; Goff and Ashmore, 1994).
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The path-length is defined as the travel distance of the sediment particles be-
tween the surveys; it is easy to prove (e.g. Einstein, 1937; Ashmore and Church,
1998) that the sediment transport can be calculated as the product between
this path-length and the eroded (or deposited) volume. Neill (1971) applied
this method for the case of meandering rivers; for the case of braided rivers
a match-up of the erosion and deposition areas is often not possible so that
an estimate of the mean travel distance should be inferred, for instance from
pool-pool or bar-bar spacing. Evidence about the connection between morpho-
logical change and bed-load flux makes braided rivers a candidate for applying
this path-length method (Ashmore, 2013); nevertheless a robust procedure to
obtain this estimate from morphological data is still missing.

1.5 Aims and methods of the present study

General aim of the present work is to provide significant insight to the braided
rivers morphodynamics and sediment transport, with particular reference to
the effects due to the flow unsteadiness.

More specifically, we are interested in understanding how the river morphol-
ogy and its dynamics depends on the different conditions (sediment substrate,
discharge, slope, width, sediment supply) and what is the response of the sys-
tem when these conditions are changing through time (as always the case in
natural rivers).

Knowledge of this river morphodynamics and sediment transport is funda-
mental from the river management point of view. For instance it is important to
know how river respond to: increasing confinement rate due to the construction
of banks or levees; variations of the hydrological regime and sediment availabil-
ity following dam construction, torrents regulation or variations of land use;
changes of the vegetation pattern due to direct or indirect stresses; alterations
caused by gravel mining.

As we have briefly seen within this introduction, a lot of work has been done
to address these questions, and many of them have been, at least partially, an-
swered. However several points are still unclear, unanswered or unexplored, so
that additional effort is needed. New possibilities for further investigations are
nowadays possible, thanks to the development of new technologies, which en-
able more powerful numerical computations, accurate large-scale measurement
of braided morphology and increasing possibilities to share rich databases.

Aim of the SMART PhD programme is to strengthen the connection be-
tween different approaches for studying rivers and their tidal systems. Following
this philosophy we try to take advantage, in an integrated way, different state
of the art methods and available datasets, with the final aim to increase the
scientific knowledge which supports river management policies.

Several approaches can be followed to investigate braided rivers morphody-
namics and sediment transport changes in response to the external conditions.
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Most of existing studies are based either on field observations or on laboratory
experiments.

Physical laboratory models, despite representing only an approximation of
the processes (Young and Warburton, 1996; Paola et al., 2009) have revealed
as a powerful tool for investigating the morphodynamical response to varying
controls.

Field observations allows for a direct study of the braided network in its com-
plexity and have recently received a great impulse, thanks to the development
to new technologies which enable more accurate, extended and cost-effective
surveys. Nevertheless some quantities, primarily the bedload transport, remain
very difficult to measure in the field, so that at present no direct methods exist
for a widespread survey of a complex and heterogeneous braided river.

More recently, the development of numerical models opened new possibili-
ties for exploring the mechanisms which drive the braiding dynamics. Among
this category, we can distinguish between approaches based on the shallow wa-
ter schemes (usually two dimensional, e.g. Shimizu and Itakura, 1989; Jang and
Shimizu, 2005) and methods based on reduced-complexity description, such the
cellular automata models (e.g. Murray and Paola, 1994; Murray, 2003). Despite
being sill under development and having limited capability of quantitative de-
scription, they provide great opportunity to explore the fundamental processes
and their non-linear mutual interactions.

Due to the complexity and nonlinearity of the braiding dynamics the pos-
sibility for analytical treatment of the governing equations is limited. However
, as mentioned above, some specific processes such as bifurcations, alternate
migrating bars, forced bar caused by channel curvature, have been success-
fully afforded with analytical solutions (e.g. Blondeaux and Seminara, 1985;
Colombini et al., 1987; Zolezzi and Seminara, 2001; Repetto et al., 2002; Bolla
Pittaluga et al., 2003; Luchi et al., 2011).

The complexity of the braided river morphodynamics suggests the best way
to overcome the limitations of each specific method is to adopt an integrated
approach, where different tools are combined in order to provide the information
needed for a better understanding of the river processes.

For example analytical approaches, being limited to very specific problems,
can not substitute laboratory investigation; nevertheless they allow for a com-
plete control of the model outcome and a deeper understanding of the physical
mechanisms. Similarly numerical models offers exceptional opportunity to ob-
tain a description of the non-linear interaction among different processes and to
obtain complete picture of the spatio-temporal variation of the relevant quan-
tities.

At the same time we should not forget that models are by definition only a
simplified representation of nature.

On the other hand, studying real rivers is difficult because of the large
extension to survey, the relatively slow temporal evolution, the large number
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of involved processes (included biological components). Moreover the single
elements are not independently acting but are strongly interacting, thus leading
to a complex and largely unpredictable dynamical system.

Therefore we preferred not to focus on a single and specific method by to
adopt a wider perspective, tackling the problem in different ways, namely

• field topographic measurements with recent techniques.

• statistical description of the braided river morphology at a reach scale;

• laboratory modelling of small-scale braided networks;

• numerical modelling of the braided river hydrodynamics;

• direct analytical solution of the depth-averaged shallow water model through
perturbation approaches;

1.5.1 The study rivers

In order to exploring the properties of braided rivers and for the comparison
with model results, we identified few field sites. This choice was principally
based on two criteria: a) the availability of suitable, accurate and complete
dataset; b) the selection of rivers having significantly different conditions in
terms of width, slope and water discharge.

We chose three, well-known and studied, field sites, namely the Rees (New
Zealand), the Tagliamento (Italy) and the Sunwapta (Canada) rivers.

The Rees River, New Zealand

The Rees River drains an area of 405 km2 in the east side of Southern Alps, New
Zealand. The catchment is characterised by rapid uplift (Beavan et al., 2010),
erodible bedrock (Turnbull, 2000) and high annual precipitation (Henderson
and Thompson, 1999) and consequently provides a significant bedload supply.
Mean annual precipitation measured at Rees Valley Station (lower catchment)
in the period 1988 ÷ 2011 is 1462 mm (Williams et al., 2013b). The Rees is
41 km long and together with the adjacent Dart River, has formed a major
delta which is prograding in the Lake Wakatipu (Wild et al., 2008).

The study reach has got an extension of 2.5×0.8 km and is located approxi-
mately 7 km upstream the lake. The coarse gravel deposits on the braidplain are
approximately 17 m deep and underlain by lacustrine silts and clays (Williams
et al., 2011). The median grain size measured in 28 sites throughout the reach is
19.9 mm, with d16 and d84 fractions of 10.4 mm and 35.2 mm respectively (ta-
ble 1.1, from Williams et al. (2013b)). Cross-section surveys of the Rees River
braidplain have been undertaken on five occasions between 1984 and 2006.
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Figure 1.5: Location of the study reach of the Rees River (Otago, New Zealand).

Figure 1.6: Aerial view of the study reach of the River Rees. Flow is from left to
right.

The reach slope is around 0.57% and at low flows approximately the 7% of
the braidplain is typically inundated (Williams et al., 2013b). The few vege-
tated patches within the study reach are growing on unstable bars which are
susceptible to reworking during flow pulses.

The Tagliamento River, Italy

The Tagliamento River is a large gravel-bed braided river in North-East Italy,
relatively pristine and highly dynamic (e.g. Tockner et al., 2003; Bertoldi et al.,
2010).

The total length of the river is 178 km, the catchment area is 2870 km2 and
the width of the active corridor is up to 1.5 km (Van der Nat et al., 2003). The
upper part of the catchment experiences precipitations up to 3000mm (Doering
et al., 2013). Absence of large artificial reservoirs ensures nearly-natural flow
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Percentile Mean [mm] Standard dev. [mm]

d16 10.4 5.0
d50 19.9 10.4
d84 35.2 19.2
d90 40.5 21.9

Table 1.1: Grain size distribution of the reach (Williams et al., 2013b).

(Bertoldi et al., 2009b), characterised by in bimodal (with spring and autumn
peaks), flashy, pluvio-nival hydrological regime (Welber et al., 2012).

At the Pioverno gauging station (drainage area 1880 km2) the maximum
discharge over the period 1932÷1976 was 4050m2s−1, with mean and minimum
discharge 81 m3s−1 and 15 m3s−1 respectively (Surian et al., 2009a).

Our focus is on a 21 km-long reach where airborne LiDAR data are available
after the survey in May 2005. Bertoldi et al. (2011a) estimated the topogra-
phy of the submerged areas on the basis of the red-over-green band intensity
of colour air photographs; furthermore they evaluated the bed morphology un-
der vegetated area by appropriately filtering the high density LiDAR measure-
ments. Median grain size and slope within the reach are substantially constant
(Bertoldi et al., 2011a) and equal to d50 = 40 mm and S = 0.35 % respectively.

Although the water level measurements is measured at different locations
along the river, quantification of the hydrological regime is still uncertain due to
the difficulties in constructing a reliable flow-water stage relationship (Welber
et al., 2012). A rough estimation is provided by Bertoldi et al. (2010) who
reported a 3-years return period discharge of Q = 1700 m3s−1.

The Sunwapta River, Alberta, Canada

The Sunwapta is a small pro-glacial river in the Jasper National Park, Alberta,
Canada (Ashmore et al., 2011). Due to its accessible location and predictable
hydrological regime it has been extensively studied (Ferguson et al., 1992; Goff
and Ashmore, 1994)

The study area is located 3.5 km downstream the Athabaska Glacier, where
the river is braided, not vegetated and is around 100÷ 150 m wide (see figure
1.8). The reach slope is approximately 1.5 % and the grain size is around
d50 = 4 cm and d90 = 11 cm. The peak daily discharge due to the glacier
melting, measured over a period of 17 days in 1999 and 12 days in 2003, ranged
from 8 to 18 m3s−1. The 16 cross-sections measured during August 1999 cover
a range of 150 m (approximately one river width).
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1.5. Aims and methods of the present study

Figure 1.7: Image of the River Tagliamento from Monte Ragogna in the upstream
direction. From www.comitato-arca.it.

1.5.2 The experimental setup

Flume experiments were performed at the hydraulic laboratory of the Trento’s
University (figure 1.9). The facility is 25 m long, 2.9 m wide and covered by a
≃ 0.2 m thick layer of well-sorted sand with median diameter d50 = 1 mm.

The slope can be changed (within the range 0 ÷ 1.7 %) by varying the
thickness of the sand mattress along the flume. A schematic of the experimental
setup is shown in figure 1.10.

Water supply is recirculated using a pump controlled by an inverter, which
enables to adjust the discharge with a resolution of 0.1 ls−1 The sediment is
supplied by a helical screw conveyor, for which a calibration curve has been
constructed.

Input water ans sand fluxes can be automatically controlled through a com-
puted software.

An electromagnetic current meter enables to measure the pumped water
flux while the output sediment is collected and weighted by a system of load
cells (resolution of 0.01 l/s and 0.01 kg respectively). A laser scanner mounted
on a carriage, moving on two rails through the flume, enables to measure the
bottom topography with a vertical resolution of 0.1 mm; because of the limited
penetration of the laser beam into water, the runs must be suspended in order
to have a dry channel network. A second carriage is used for the initial levelling
of the bed and for manually measuring wetted and active area during the run.
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1.6. Outline of the thesis

Figure 1.8: Picture of the River Sunwapta (Alberta, CA). Flow is towards the camera.
From Bertoldi (2005).

The flume width can be reduced by placing a plastic sheet at the centre of
the flume, which confines the stream between two straight banks.

1.6 Outline of the thesis

The present manuscript is organised in six main chapters, which follow the
different methodologies we adopted for approaching the problem, starting from
the analysis of complex, natural braided river, increasing the level of abstraction
with laboratory and numerical models and ending up with the theoretical study
of the fundamental unit processes of channel bifurcations.

This section provides the thread which links the contents of the different
parts of this thesis.

Within Chapter 2 we study the morphological changes during different
flow events in a natural gravel-bed braided river (the Rees River, NZ) and we
propose a morphological method to estimate the sediment transport rate on
the basis of repeated topographic measurements.

Such an analysis is possible a posteriori, once the river morphology and its
changes through time are known. However, if we are interested in predicting the
long-term morphological evolution and its response to varying external controls,
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Figure 1.9: Photograph of the Trento’s flume; from Welber (2013). Flow is towards
the camera.

Figure 1.10: Sketch of the Trento’s flume. Upper part: longitudinal section; lower
part: planimetric view. Based on the Welber (2013).

17



1.6. Outline of the thesis

we must change our approach and study the regime morphodynamics.

This is possible through laboratory models, which enables to fully control
the experimental conditions. For example we can study the regime morphology
attained by a braided network subject to constant flow. The following Chap-

ter 3 is devoted to the analysis of how these regime morphological properties
and the sediment transport at the reach-scale depend on discharge, slope and
confinement width.

This represents only a first, albeit important, starting point. Nevertheless
the constant-discharge experiments are far from the typical hydrological regime
of natural braided river, which shows flow pulses and floods rapidly varying
through time. Within Chapter 4 we study the role of the discharge unsteadi-
ness on the sediment transport; this is possible through a series of repeated
experiments which enable to build an ensemble statistics of the transport rate
during varying flow.

The second controlling factor which may vary in a natural river is the sedi-
ment supply, whose the augmentation or reduction can significantly impact the
braided morphodynamics. Albeit clearly connected with the variation of water
discharge, the effect of the sediment availability is different; indeed the diverse
storage capacity leads to completely distinct spatial and temporal scales. This
processes is explored in Chapter 5 where we analyse, again using laboratory
experiments, the propagation of the aggradation and degradation waves result-
ing from change of the sediment feed rate.

Within the third part of the present manuscript, we studied the problem
from a different perspective, abandoning the reach-scale description and focus-
ing on the single unit processes. Indeed, braided rivers are formed by a series
of fundamental unit process, which act at similar temporal scale and interact
each other in a complex, non-linear way. Albeit this complex interaction, it
is sometimes useful to study the individual processes separately. Indeed iso-
lating the elementary problems from the remaining complex system enables to
deeply study its morphodynamics. This is not different from what we do in the
previous chapter, when we isolate the reach scale from the large, complex and
unpredictable external world.

Specifically, we focus on one of the fundamental processes of braiding net-
work morphodynamics, namely the channel bifurcations. The goal is to provide
analytical support to the experimental findings of Bertoldi and Tubino (2007),
who noticed a strong connection between the bifurcation morphodynamics and
the theory of the morphodynamic influence derived by Zolezzi and Seminara
(2001). We begin our study by considering a simple problem, which clearly
shoes the phenomenon of the upstream influence. Indeed within Chapter 6

we solve the two-dimensional, depth-averaged model for a localised obstacle
in a straight gravel-bed channel. Using a perturbation method we derive the
analytical solution, which highlights the role of the aspect ratio to define the
upstream or downstream direction of the morphodynamic influence.
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1.6. Outline of the thesis

Figure 1.11: Representation of the main perspectives we adopted for the analysis of
a braided reach.

This analysis represents a first step to understand the dynamics of channel
bifurcations. Indeed inChapter 7 we adopt the perturbation approach to solve
the 2D model to the more complex geometrical configuration which represents
a diffluence. This approach enables to explore the close relation between the
upstream relation and the bifurcation instability which is responsible of the
unbalance configuration often observed in gravel-bed bifurcations.
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C

A

B

Chap 1: Introduction

Chap 6: The morphodynamic influence of an obstacle

Chap 2: Distribution of elevation and sediment transport

Chap 1: Morphological changes and sediment

 transport in the Rees River 

Chap 4: Response to changes of the sediment supply

Chap 3: The role of the discharge unsteadiness 

Chap 7: Stability of channel bifurcations 

Chap 8: Conclusions

Figure 1.12: Schematic description of the thesis structure. Letters refers to the three
main parts: 1) Study of the reach-scale morphodynamics; 2) Effect of the variation
through time of water and sediment supply; 3) Analysis of fundamental unit processes.
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Chapter 2

Morphological changes and
sediment transport: The Rees
River (New Zeland)

2.1 Introduction

It is well known that braided rivers are remarkably active even for discharges
well below bankfull (e.g. Surian et al., 2009b; Bertoldi et al., 2010). However
quantitative analysis, through direct measurements of scour and fill volumes
is particularly challenging in braided rivers. Indeed multi-channel networks
are typically shallow, highly heterogeneous and change rapidly through time;
therefore high temporal resolution and accuracy is needed to capture the topo-
graphical variations at the flood event scale Williams et al. (2013b).

In spite of recent developments in new observation technologies such as
digital photogrammetry, Structure from Motion and airborne LiDAR (Gao,
2009; Marcus and Fonstad, 2010) difficulties persist with the acquisition of
morphological data at time and space resolutions suitable to quantify fluvial
morphodynamics. In particular, as pointed out by (Ashmore, 2013) there are
not yet sufficient data to determine how the frequency distribution and areal
extent of elevation changes depend on the flood intensity.

The present work aims to address this weakness, and attempts to quantify
the morphological variation and study the linkage between volumes and dis-
tributions of morphological changes and flood characteristics. This has been
possible thanks to the dataset introduced by Brasington (2010) which quanti-
fies the changing morphology of a 2.5× 0.8 km reach of the Rees River in New
Zealand, through sequential floods in 2009-2010 (Williams et al., 2013b).

A second relevant problem this chapter seeks to address is application of
morphological change data to estimate sediment transport rate indirectly.

Direct measurement of bedload in a braided reach is complicated because of
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2.1. Introduction

the high number of samples needed to cover the lateral and temporal variation
(Bertoldi et al., 2009a). Many existing indirect methods, such as sediment
budgeting are often not applicable because of they need the knowledge of the
material inflow which is often difficult to estimate.

An alternative morphological method is based on the travel distance of the
particles during the event, (e.g. Einstein, 1937; Ashmore and Church, 1998).
The estimation of this distance, called also path length is the main challenge
of this approach. As pointed out by Pyrce and Ashmore (2003a), existing
research has often assumed or inferred that the travel distance is correlated
with the morphological scale and in particular with the meander wavelength
(e.g. Neill, 1971, 1987), the bar-pool distance or multiples of channel width
(McLean, 1990; Ham and Church, 2000) or with the distance between sites of
erosion and deposition (Goff and Ashmore, 1994; Ashmore and Church, 1998;
McLean and Church, 1999; Eaton and Lapointe, 2001). In many of these studies
the estimated bedload is in a good agreement with more traditional methods
such as trap sampling or bedload functions (Pyrce and Ashmore, 2003a).

However this is in contrast with direct measurements of the path length us-
ing tracers, which reveal a large variety of results (Pyrce and Ashmore, 2003a)
usually poorly related with the bar spacing. As explained by Pyrce and Ash-
more (2003b) this is probably due to the low Shields stresses which cause partial
mobility or to discharges which are well below the formative; indeed they ob-
served that in a laboratory meandering and alternate bars channels the forma-
tive discharge produces a symmetric distribution of the path length which well
represented by the bar pool (or meander wavelength) spacing. These consider-
ations suggests that attention must be paid to generalise results obtained for a
particular river pattern (i.e meandering) and for particular flow conditions (i.e.
bankfull) to different systems (i.e. braided rivers) characterised with a different
morphodynamics.

Even more complex is the application of the method to braided rivers where
there is neither regular spacing between bar and pools nor a clear connection
between the scour and deposition areas. Ashmore and Church (1998) iden-
tified two possible approaches for estimating the path length on the basis of
morphological variations. The first procedure, called match-up, requires the
identification and paring of erosion and deposition areas. While clear in princi-
ple, this approach is often not applicable because of the sediment redistribution
across the network (transferring between braids during avulsions for example)
makes direct matching patches often impossible. The second possibility is to de-
termine a mean travel distance on the basis of the pool-pool or bar-bar spacing
(Hundey and Ashmore, 2009; Ashmore, 2013)

While these approaches offer indirect solutions to path-length estimation,
their application is not straightforward and difficult to validate for a number of
reasons. First, there current exist datasets that could provide a adequate mor-
phological and transport data (and similarly no laboratory models) to validate
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2.2. The study site

the model and quantify the capability to predict the reach averaged bedload.
Secondly, as highlighted by Ashmore and Church (1998), whether topographic
surveys before and after a flow event alone, are sufficient to capture the patterns
of scour and deposition that may involve multiple cycles of cut and fill within
a single flood. Indeed laboratory modelling by Lindsay and Ashmore (2002),
revealed that compensatory fill and cut occurs over a wide range of temporal
scales and makes practically impossible to capture all the volume variations.
Thirdly, there are insufficient studies that quantify the dependence of the path
length on the elapsed time. While, this effect has been proven not to be im-
portant in meandering laboratory channels, no similar studies are available for
braided networks. In particular it is not clear to what extent an estimation
based on the characteristic length is representative of the transport with dif-
ferent discharges and in particular during below threshold flow. Finally, there
is the more practical issue of manually identifying channels, bifurcations and
confluences in order to measure the characteristic length scales - observations
which themselves may also be biased by the water stage.

The research presented here outlines a novel procedure, based on the auto-
matic detection and measurement of erosion and deposition patches, to identify
the scale of the morphological changes and this is used to examine the sensi-
tivity of transport rates estimated from repeated morphological surveys of a
braided reach of the Rees River.

2.2 The study site

2.3 Data collection

Within the Rees-scan project detailed topographic surveys were undertaken
before and after 10 sequential storm events covering a wide range of flow mag-
nitudes and durations, over the period October 2009 to May 2010 (Brasington,
2010). At the same time continuous hydrological data were acquired, thereby
allowing an estimate of the discharge history.

This section describes this dataset briefly and the procedures followed used
construct the relevant topographic models. For more comprehensive and de-
tailed explanation see Williams et al. (2013b).

2.3.1 Topographic data

The backbone of the surveys involved data acquired using the ArgoScan system,
which incorporated a Terrestrial Laser Scanner, an RTK-GPS and a panoramic
camera mounted on an amphibious vehicle (Williams et al., 2013b).

This enabled static laser scans to be obtained at very high resolution, from
multiple sites across the study reach at high speed. Most of the surveys in-
corporated measurements from over 300 locations, separated by a distance of
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approximately 70÷ 90 m. At each location a point cloud of about 10÷ 15 · 106
was acquired with a point spacing of 15 mm at a range of 30 m, and two
GPS -located targets where positioned 10 − 15 m from the scanner, to pro-
vide georeferencing information to estimate the scanner coordinates. The large
dataset was then transformed in a 0.5 m DEM through the post-processing
method detailed by Brasington et al. (2012).

The infrared laser scanner used did not penetrate through the water, so
the inundated topography (< 10 % at low flow) was estimated using standard
optical-bathymetric techniques (e.g. Marcus and Fonstad, 2008; Gao, 2009).
For this purpose aerial RGB photographs were acquired from an helicopter at
a height of 1200 m above the ground (object space resolution of 0.2 m) and
selected to minimise sun glint. These were subsequently geo-referenced and
resampled to the same coordinate system as the scan data (Williams et al.,
2013b). Acoustic measurements of the water depth taken along two different
transect enables a calibration of the observed depth with the blue/red band
intensity ratio to obtain maps of the water depth. This map was then com-
bined with an estimation of the water surface level, based on the assumption
of linear variation of the free surface across each anabranch, in order to obtain
the topography of the submerged areas.

A comparison with independent GPS-RTK measurements reveals a mean
standard deviation of the DEM error of 0.044 m for the exposed bars and
0.128 m for the submerged channels.

During the study, a short period of mining activity occurred between surveys
05 and 06 a small (≃ 3.39 · 103 m3) volume of material was extracted. In order
to exclude this artificial change from the analysis the mining site was manually
identified and removed. Finally DEMs were rotated by an angle of −120◦
(using a bilinear interpolation method) to align the system of reference with
the (approximate) mean direction of the flow and thus minimise the effects of
numerical resampling across path in subsequent analysis.

2.3.2 Hydrological and sediment transport data

Water level data were sampled every 15 min minutes during the period from
September 2009 to March 2011 at a gauging station located 1 km downstream
the confluence between the Invincible Creek and the Rees River, where the
stream is confined in a relatively stable, single channel that enabled calibration
of a flow-stage curve Williams et al. (2013a).

The resulting flow record is reported in figure 2.1 and provides a clear in-
dication of the range of different duration and magnitude events sampled. The
mean flow was 18 m3s−1 and the maximum peak 419 m3s−1.

Wild et al. (2008) offer an estimation of the Dart-Rees delta deposition rate
during the period 1966÷2007, obtained from measurements of delta propagation
from aerial photography and echo-sounder profiles. They estimate the combined
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2.3. Data collection

Figure 2.1: Estimated discharge during the study periods. Numbers and relative
segments indicates the duration of the morphological surveys.

Figure 2.2: DEM of difference during the more intense flood event. Flow from left
to right.
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sedimentation rate to be of the order 270 ± 30 · 103 m3/year. The fraction of
this amount carried by the Rees River can be roughly estimated comparing the
stream power of the two rivers; specifically Wild (2012) assumed a power law
with exponent 1.75 which, considering the similar slope and the hydrological
regime of the two contributors leads to

QsDart

QsRees
≃
(
QDart

QRees

)1.75

≃ 3.1÷ 7.2 (2.1)

which gives a mean annual transport rate of the Rees in the range Vt = 30 ÷
70 · 103 m3/year.

2.4 Methods

This section described the procedure to obtain DEM of Difference (or DoD)
which quantifies the observed significant morphological changes between two
surveys, and also outlines the path length concept and a possible method to
apply it, explains the numerical simulations used to provide baseline estimates
of bedload transport.

2.4.1 Data manipulation

In order to quantify morphological changes it is fundamental to adopt a proce-
dure to distinguish variability in elevation from spurious differences that may
arise from measurement error and interpolation.

Several approaches have been proposed to estimate the DEM uncertainties
and propagate this errors into the DoD (Wheaton et al., 2010).

In this work we follow a probabilistic method (Lane et al., 2003; Brasington
et al., 2003; Williams et al., 2011) that starts from a local estimation of the error
of the individual DEMs and under the hypothesis of random and independent
samples give rise to the standard deviation of the DoD as

σ1−2(x, y) =
√

(σ1)2 + (σ2)2 (2.2)

Assuming a Gaussian probability distribution (e.g. Lane et al., 2003) it is pos-
sible to determine, for each point on the map, the error associated with a given
confidence interval, namely

∆z(x, y) = Z σ1−2(x, y) Z =
√
2 erf−1 (1− P ) (2.3)

where P = 1 − CI represents the probability that the error is larger than ∆z
and erf−1 is the inverse error function.

In this procedure, knowledge of the spatial structure of the uncertainty of the
original DEM is fundamental (Wheaton et al., 2010). Indeed (Brasington et al.,
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Figure 2.3: Map of the estimated error σ(x, y) for the first (00) survey. Values in [m].

2003) found significant spatial differences in DEM errors, with low uncertainty
in flat and smooth areas with high point densities, and much higher uncertainty
in steep zones with large roughness and low measurement density.

In the Rees River dataset, it is clear that different uncertainty is asso-
ciated to the points of the submerged areas, where the less precise optical-
bathymetric technique was adopted. As described by Williams et al. (2013b)
independent depth and bed elevation observations acquired with GPS-RTK
and echo-sounding, enables an estimation DEM error in these submerged ar-
eas, which was found to have a mean value of

σ(x, y) = σwet = 0.125 m (2.4)

While this error is likely to vary across the study reach, there are insufficient
data to capture or model the spatial pattern, and in all further analyses, the wet
area of the DEM were assumed to have constant error. For the exposed bed,
more information are available, so that a quantification of the spatial pattern
of error is possible. In particular we can distinguish between a global error and
a component due to the local variability of the measurements, namely

σ(x, y) = σdry + σloc(x, y) (2.5)

where σdry is 0.044 m (Williams et al., 2013b) and σloc(x, y), which accounts
for the presence of steep regions and high roughness due to cobbles or vegetated
patches, varies between 0.01÷ 0.03 m for the bare ground and 0.3÷ 0.8 m for
vegetated areas.

In the example map shown in figure 2.3 the main channel is denoted to have
a constant error of σ = 0.125 as described above, but the higher uncertainty
on the true left reflects greater uncertainty in TLS measurements in vegetated
area, while the circular spot distribution on exposed gravel reflects increasing
uncertainty in laser spot measurement with distance from each scan position.

In order to calculate the distribution of elevations with respect the mean
braidplain slope the reach average gradient must be obtained. Since this would
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be used as a constant reference the slope was computed on the basis of the initial
topography represented by the first DEM, or dem 00. Specifically, the minimum
elevation along each cross sections was identified and a longitudinal profile fitted
to these measurements using simple linear regression. The resulting surface was
then used to compute the difference between each DEM and this average trend.
As a last step the reference elevation was fixed as the reach-average value of
the detrended dem 00.

2.4.2 The path length method

As originally derived by Einstein (1937) sediment transport can be computed
as the product between the eroded volume Ve (per unit length Ld and time ∆t)
and the travel distance of the bed material Lt, namely

Qs = (1− p)
Ve

Ld ∆t
Lt (2.6)

where p is the porosity of the bed material. This formula is the basis for
constructing a family of morphological methods for estimating the sediment
transport (e.g. Neill, 1971; Goff and Ashmore, 1994; Haschenburger and Church,
1998; Ashmore and Church, 1998).

The same approach can be applied in terms of volumes of deposition; how-
ever in the following, for the sake of notation compactness, we will express all
the formula using the erosion volume.

In order to illustrate the fundamentals of this approach let us consider the
river reach of length Ld sketched in figure 2.4; let us also suppose the ideal case
of an individual volume of sediment Ve,i which, during a given period, is eroded
and deposited downstream at a longitudinal distance Li.

The reach-averaged transport is defined as the spatial mean of the volume
of sediment passing through each section

(
Vt(x)

)
, namely

V t =
1

Ld

∫

Ld

Vt(x) dx (2.7)

In the example of figure 2.4 the transport is constant for between xi and xi+Li

whereas is vanishing outside this region; consequently the averaged transport
can be easily computed as

V t =
1

Ld
Ve,iLi (2.8)

where Li is called path length or transport length. More generally if N vol-
umes are eroded and transported downstream we can simply sum the previous
expression, obtaining

V t =
1

Ld

N∑

i=1

ViLi (2.9)
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Figure 2.4: Sketch of the movement of volumes for the Ashmore and Church (1998)
method. The dashed lines represent the limits of the study reach.

It is clear that the importance of each path length Li is proportional to the
relative volume; therefore a suitable definition of the average transport length
should be weighed with the volume, namely

Lt =
1

Ve

N∑

i=1

Ve,iLt,i (2.10)

which allows to calculate the volume transported during the time interval ∆t
by combining reach averaged parameters as follows

Vt = Qs (1− p) ∆t =
Ve
Ld

Lt (2.11)

Since each particle follows a different trajectory we should in principle apply
Eq. 2.10 by considering volume and path length of each individual grain, so
that N should be the number of displaced particles. As this is practically
impossible a suitable approximation is to estimate the average path length of
the grains within each single erosion and deposition unit, which can be identified
as disconnected erosion/deposition patches.

It is also useful to underline that in order to obtain a statistically significant
spatial average the reach extension should be large enough to capture the spatial
variability of the bedload. Some observations about this problem are reported
in appendix 2.9.3.

This simple derivation provides a useful linkage between erosion and depo-
sition volumes and sediment transport. However, it does not solve the problem
of the transport estimation, due to the uncertainties in the estimation of Lt.
Ultimately, this approach transforms the problem from the estimation of the
transport to the evaluation of the path length; the advantage of this change is
that the length scale, can however, be inferred from the geometry of the river.
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Figure 2.5: Example: deposition and erosion patches (blue and red areas respectively)
and relative ellipses. In this example the patches having A < 100 m2 are excluded from
the analysis (yellow colour for erosion, cyan for deposition).

Analysis of scour and deposition patches

Once the series of DoDs have been computed and significant elevation changes
filtered, it is possible to identify the patches scour and deposition, count their
number and measure their extension. To achieve this semi-automatically in-
dividual patches were defined as sets of pixels having at least one corner in
common (the so-called 8-connectivity) to measure the area Ap and the volume
of the scour or fill within the patch. In addition we defined the length of the
patches Lp as the major axes of the ellipse which has the same second order
moments, namely

σx =
1

A

∫

A
(x− x)2dA σy =

1

A

∫

A
(y− y)2dA σxy =

1

A

∫

A
(x− x)(y− y) dA

(2.12)
where the overbar indicates the mean values (coordinates of the mass centre).
An automatic procedure that computes it for each individual patch was imple-
mented. In this way we obtain a fully-automatic procedure which avoid biases
due to subjective interpretations.

An example of how the fitted to patches is illustrated in figure 2.5.

Since we are interested in the relation between the morphological changes
and the path length we need to introduce a reach scale metric which takes into
account also the number of particles moved from/to the patches; in particular
the definition of Eq. 2.10 suggest that the single length should be mass by the
volume. Following this consideration we defined the weighted patches length as

Lpw =
1

Ve

N∑

i=1

VeLp (2.13)
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Parameter Symbol Value
Representative sediment size d84 35.2 mm
Nikuradse roughness length ks 0.08 m
Mean grid size ≃ 2 m
Horizontal eddy viscosity νH 0.1m2s−1

Secondary currents coefficient βc 0.5
Gravitational acceleration g 9.81 ms−2

Time step dt 1.2 s

Table 2.1: Most important parameters of the numerical simulations; the same values
of Williams et al. (2013a) have been adopted.

2.4.3 Numerical simulations

Direct measurements of the bedload across the entire reach are not available
and practically almost impossible because of the high number of samples needed
to cover the lateral and temporal variation (e.g. Bertoldi et al., 2009a).

One possible way to overcome this dearth of data is to estimate transport
rates using an independent numerical model. Unfortunately, in spite of the
recent development of numerical schemes for predicting the morphological evo-
lution of braided rivers (e.g. Shimizu and Itakura, 1989; Jang and Shimizu,
2005), such computer models are still in early stages and remain to be fully
tested.

For this reason we preferred to follow an alternative approach based purely
on more established hydrodynamic simulation methods. In this case it is as-
sumed that despite that the morphological evolution through time, such ad-
justment does not significantly change the distribution of stresses for a given
water discharge. In this case we expect that the reach-averaged bedload de-
pends on the driving discharge but not on the current precise, deterministic
morphological configuration.

This idea is supported by the observation of some morphological reach-
averaged indicator changes between different flood events. For example in figure
2.8 shows hypsometric curves obtained by removing a constant slope and the
mean elevation (slightly different for each DEM ). It is clear that the elevation
distribution does not vary significantly between the events, which suggests that
dependent reach-scale properties, such as the bed shear stress distribution may
also be relatively constant in time and vary only with water stage.

Under this hypothesis we can run a numerical simulation for a frozen mor-
phology, determine the distribution of the shear stresses, use a bedload relation
Qs(Q) to estimate the total transport during the event.

This approach was implemented using depth-averaged Delft3D model. For
this, the model setup (grid, boundary conditions, formulation and parameters)
was based on the similar work by Williams et al. (2013b) for the same reach of
the Rees River. A list of the more relevant parameters adopted in this model
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Figure 2.6: Hypsometric curves of the bottom elevation of the different surveys after
removing a constant slope S = 0.574 %. Only the area common between the different
DEMs has been considered.

is reported in figure 2.1.

Specifically, simulations involved a relatively slow (0.1 m3min−1) linear
growth of the discharge from a basic value Q = 30 m3s−1 to the peak Q =
420 m3s−1, for a total duration of approximately 68 h. The increase is slow
enough in order to ensure a quasi-equilibrium state at each instant, so that the
discharge is approximately uniform throughout the reach.

Figure 2.7 illustrated an example of the water depth predicted by the nu-
merical model, and clearly demonstrated the complexity of the channel network
and the broad distribution of depths.

Using this simulations, the distribution of stresses was extracted at regular
intervals of discharge, the local bedload intensity determined using established
transport formulae developed for gravel bed rivers. The most critical step at
this point is the choice of a representative particle diameter which can strongly
affect the results at least from a quantitative point of view. This problem can
be partially circumvented by considering a multi-grain bedload representation,
in which the different classes of bed material of diameter di and an a relative
abundance fi are selected, grouped here into four representative classes (see
table 2.2) and used to parameterise the standard bedload formula.

For example the transport relation of Wong and Parker (2006b), is given as

qsi = 4.93 (θi − ξiθcr)
1.6 (2.14)

where the coefficient ξi takes into account the exposure/hiding effect for the
individual class i and, according to Ashida and Michiue (1972), depend on the
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Figure 2.7: Example: water depth (in [m]) predicted by the numerical model for
Q = 120 m3s−1.
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Figure 2.8: Sediment rate curve resulting from the numerical model. The topography
of dem 08 has been considered.

sediment size distribution as follows







ξi = 0.843 d/di d/d < 0.4

ξi =

(
log10(19)

log10(19) + log10(di/d)

)2

otherwise
(2.15)

where d is the mean diameter.

If we consider Eq. 2.14 for each class and multiply the result by the relative
abundance fi

qs =

N∑

i=1

fi qsi (2.16)

we obtain an estimation of the local bedload intensity.

Moreover if this calculation is then repeated at regular time intervals during
the growing discharge simulation described above, it is possible to obtain a full
scale sediment rating curve, as plotted in figure 2.8.

Class Size di[mm] Abundance fi[ %]
d16 10.4 33
d50 19.9 34
d84 35.2 30
d90 40.5 13

Table 2.2: Grain size classes adopted for the bedload estimation.
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2.5 Results

This section presents the result analyses in terms of deposition and scour vol-
umes, distributions of these volumes, characteristic length and connection be-
tween morphological changes and sediment transport.

2.5.1 Analysis of deposition and scour volumes

The analysis of the erosion and deposition volumes and of the relative active
areas reveals several interesting features which can be summarised as follows:

[1] As one expects, both the erosion and deposition volumes (figure 2.9, upper
panel) depend on the magnitude of the storm event; however not only the peak
discharge but also the flood duration is important for determining the morpho-
logical changes. For example the event 00-01 produces volumes or erosion and
deposition which are very similar to the event 07-08 in spite of the much lower
peak discharge; similarly the sequence of peaks in the period 01-05 moves much
more material than the storms 07-08 and 08-09 even with a similar maximum
flow.
For this reason the maximum discharge is poorly correlated with the amount of
material excavated or deposited (see figure 2.11, upper panel); but a more con-
sistent relationship exists with the flow volume exceeding the threshold value
(lower panel) albeit the pattern is nonlinear and with relatively high Ve occur-
ring for the smallest events.
[2] Morphological activity across the braided network was significant even at
modest flows. For example the peak discharge of the event 00-01 (Q = 73m3s−1)
was much smaller than the 18-months maximum (Q = 475 m3s−1) and corre-
sponds to a return period of less than one month. In spite of this, the event
mobilised a volume of 20 · 103 m3 and re-arranged 10 % of the braidplain.
[3] Notwithstanding the role of small events, the biggest flow pulses, and espe-
cially event 09-10, result significant net erosion. However from our data it is
not possible to assess whether this is the result of fluctuations longer than the
study area or the product of an incision trend of the reach (i.e. whether the
upstream or autogenic supply dominates).
[4] The mean thickness of the scour/deposition sites (figure 2.9, middle panel)
varies on weakly between events (from 0.32 m to 0.42 m for the erosion sites).
This means that the higher volumes moved by the bigger events are mainly
due to increases in the area of mobile bed, rather than local increases in the
intensity of transport that would give rise to deeper scour or fill.
The comparison between the frequency distribution of the changes (figure 2.10)
during events with completely different magnitudes confirms the absence of
strong differences in the variations of elevation between distinct floods. How-
ever, as one expects, due to the higher number of samples available, the distri-
bution of the 09−10 event is more regular and it seems to be well approximated
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2.5. Results

Figure 2.9: Scour and deposition volumes (upper panel), active areas (central panel)
and mean variation of elevation in the active areas (lower panel) for the different events.

by a Gaussian curve (red line of figure 2.10b).

2.5.2 Characteristic length and sediment transport

In this section we will analyse the metrics of the scour and deposition patches
and their variation between events. This analysis is extended to provide a
first-order estimate of the transport rates morphologically, by assuming that
the mean patch size is representative of the particle travel distance. The re-
sult of this morphological prediction are presented, and correlated with flood
magnitude and duration.

Analysis of scour and deposition patches

Initial inspection of DEM of difference suggest different bedload responses with
flood magnitude, characterised by variations in the mean size of the erosion
and deposition patches. Specifically, minor flood pulses are characterised by
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(a) Small event (06-07).

(b) Largest event (09-10).

Figure 2.10: Histograms of the bed level changes. Each bar represents the extension
of the area that experienced the elavation change ∆η. The red line on the lower panel
represents the best-fitting Gaussian distribution.

Figure 2.11: Correlation between erosion volumes and the different parameters
adopted in order to quantify the intensity of the storm event. Vol represents the
volume of water exceeding the threshold Qcr = 30 m3s−1.
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Figure 2.12: Cumulative (and normalised) spectral density of the cross-section aver-
aged profiles for the different events. The total (sum of erosion and deposition across
the section) volume has been considered.

small areas of morphological change, which are related principally to in-channel
processes.

Some insight to the spatial scale of the morphological variations by spectral
analysis of the cross-section averaged longitudinal profiles.

Specifically, the cumulative power spectral density, can be computed as
follows

CSD(λ) =

∫ λ

0
|η̂(λ)|2dλ (2.17)

where η̂ indicates the Fourier transform and represents the percentage of signal
variance contained in wavenumbers lower than a given value. If we compute this
function for the longitudinal profiles of the cross-section averaged volumes and
normalise the results we obtain results shown in figure 2.12. This plot illustrate
that for the smaller events (05-06 and 06-07), the wavenumbers > 0.005 (i.e.
wavelengths ≤ 200 m) comprise the 10 % of the variability, whereas for the
larger flood events 01-05 and 09-10 the same region of the spectrum contains
less than 1 % the total variance of the signal.

Despite this evidence, a quantitative analysis of the characteristic length
from cross-section averaged quantity is complicated, because the computation
of the averages regions containing different length-scales, so that the resulting
profile contains superimposed information. Furthermore this analysis condenses
variability into a single value of length, without any appreciation of the spatial
variation in the volume of each erosion and deposition.

In order to overcome these limitations a frequency analysis of the ero-
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Figure 2.13: Cumulative frequency distribution of the weighted major axis length of
erosion and deposition patches.

sion/deposition patches size was undertaken, as described earlier in the methods
section.

The result shows a large variability from site to site and gives rise to an heavy
tailed distribution (see for example figure 2.13). An important consequence of
this result, is the likely sensitivity of estimates of the mean size of patches, to
the method of computation.

If we consider the simple mean values (upper and middle panels of figure
2.14) we can see that both Ap and Lp significantly change between the events.
In particular it is clear that the bigger floods produce patches which are on
average larger; we can also observe that the differences are stronger in terms of
area, which indicates, as one may expect, that both the principal dimensions
of the patches are increasing with the flow duration and magnitude.

However, as we implied in Eq. 2.13, if we are interested in the mean travel
distance of the particles the arithmetic mean must be weighted by the impor-
tance of each patch using its associated erosion volume (which is a measure of
the number of eroded particles). This weighted metric is much more sensitive to
area and, as shown in figure 2.14 (lower panel), produces much higher (longer)
values (of the order of few hundreds of meters).

Referring only to the erosion patches (yellow bars) the values range from
50 m for the event 05-06 to 300 m for the sequence of flow peaks in the interval
01-05 and emphasise the dependence to the patches size to the driving discharge.
Comparing Lpw with the volume of erosion of figure 2.9 (upper panel) it is clear
that a good correlation exist; only the relative importance of the event 01-05
and 09-10 is exchanged, with the previous having an higher patches length and

39



2.5. Results

Figure 2.14: Analysis of size of the scour (yellow bar) and deposition (red bar)
patches. Upper panel: mean area. Central panel: mean length of the semi-major axes
of the ellipse having the same second-order moments. Lower panel: mean length of the
semi-major axes.
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Event Ve [m3] Vd [m3] Vt,e [m3] Vt,d [m3]
00-01 22.8 26.0 1.02 2.49
01-05 70.6 54.2 10.46 5.10
05-06 2.8 9.9 0.069 0.22
06-07 9.7 7.5 0.34 0.15
07-08 27.3 30.6 1.67 2.07
08-09 34.2 28.3 2.99 1.55
09-10 98.4 68.8 12.38 7.10

Cumulative 266 225 28.9 18.7

Table 2.3: Estimated volume of the bedload transport for different storm events.
L = 2 km and p = 0.3 are adopted as parameters.

the latter a larger scour volume.

In terms of deposition, however, the results are significantly different. In
particular the Lpw of the first two events becomes very similar and comparable
with the one of the event 09 − 10. The reason of this relevant difference is
not clear; in particular we do not know whether it is related to the limited
extension of the reach which makes the statistics not sufficiently robust or to
the fact the incision is globally dominant. Some consideration about the effect
of compensation as well as the comparison with numerical results suggest that
the erosion pattern may provide more consistent results. For this reason in
the calculation of the transport we will adopt the Lpw of the scour pattern.
However further investigation is clearly needed to understand this variation.

Sediment transport

As highlighted previously, an estimation of the path length allows determination
of transport on the basis of the volumes of scour and fill.

Taking the mean weighted semi-major axes of the scour patches as a measure
of the path length (Lt = Lpw), as described above, Eq. 2.11 can be applied
to estimate the volume transported during the event. The resulting transport
rate for each event is presented in table 2.3. Despite the physical basis for this
approach further empirical support and robust testing is clearly needed.

The validity of these results can be tested through three approaches. First,
we can compare the cumulative volumes of table 2.3 with the estimate of the
annual transport for the Rees obtained by (Wild, 2012) (Vt = 30 · 103 ÷ 70 ·
103 m3/year), based on the estimates of the delta growth. Because no hydro-
logical records are available for the period considered by (Wild, 2012), direct
comparison with 2009-2010 is clearly hazardous. However, this comparison
places both estimates in the same order of magnitude and that if anything, the
morphological approach is possibly an underestimate the actual bedload.

Secondly, the estimated transport volume can be compared to the hydro-
logical forcing. As discussed earlier, rather a simple dependence on the peak
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(a) Ideal case.

(b) Example in which significant underestimation occurs.

Figure 2.15: Schematic representation of the relation between the average transport
and the estimation based on patches length and erosion volume.

Figure 2.16: Example of variation of the bedload along a streamline. Results from
numerical model with Q = 323 m3s−1.
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discharge, a proportional relation with a nonlinear transport law, such as

Vt ∝
∫

Qδdt (2.18)

where, according to the laboratory studies of Bertoldi et al. (2009a), the expo-
nent is, for unconfined networks, of the order δ = 1.5÷ 1.7 might be expected.
This formula does not enable estimation of the transport but can provide an
indication of the relative role of storm magnitude and duration (Bertoldi et al.,
2010).

If we compare the transport estimate against predictions based on Eq. 2.18
for different values of the exponent (ranging from 1.5 to 2.0) the result reveal
a very strong correlation.

Nevertheless the transport during the smallest event (05-06) is evidently
overestimated by Eq. 2.18 which, being a simple power law without any thresh-
old, predicts a significant transport during long periods of very low flow. Field
observations suggest us that significant morphological adjustment is uncom-
mon at discharges below Qcr = 30 m3s−1 so this was used to threshold effective
discharges, Q > Qcr. By thresholding the driving discharge in this way, the cor-
relation between the morphological transport rate and discharge is presented
in figure 2.17, for a range of Q exponents. This demonstrated the very high
correlation for exponents in the range 1.5 ÷ 2.0 which are expected to be rep-
resentative of the transport for varying discharge.

Finally we can directly compare the Vt from the path length method with
the transport estimated through the numerical model. As one might expect
the result (reported in figure 2.18) is dependent upon the bedload formula and
the representative diameter adopted; for instance from the biggest flood the
numerical outcome indicates a conveyed volume varying from 11 to 31 · 103 m3.
The choice of transport formula and particle parameters constitute a prime
source of uncertainty, that make any comparison complicated. However, here
we consider the multi-grain estimation based on the Wong and Parker (2006b)
formula as a reasonable approach, and this demonstrate (see 2nd panel of figure
2.18) that the morphological approach slightly (≃ 30%) underestimates the
reach-averaged bedload.

Nevertheless the strong correlation between the two estimation methods is
clear (figure 2.18). As these two approaches, are completely independent seems
reasonable to assert that the path length estimation is, at the very least, broadly
representative of the relative magnitude of the sediment transport measured
between different flood events.

Inverting Eq. 2.6 enables an alternative perspective on this comparison,
namely in terms of transport length. Again the value of Lt strongly depends on
the formulation and the parameters adopted; nonetheless the variability of the
path length between the events is correctly captured. This is relevant because
methods based on the bar or confluence bifurcation spacing as proposed by Ash-
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Figure 2.17: Correlation between the estimated volume of bedload transport and the
different metrics considered in order to quantify the intensity of the storm events. Int
indicates the temporal integral normalised with the larger value, Vol represents the
volume of water exceeding the threshold Qcr = 30 m3/s. .
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Figure 2.18: Reach-averaged sediment transport, computed from the numerical model
and using our approach (considering scour patches). Upper panels: Wong and Parker
(2006b) (Eq.2.14). Lower panel: Parker (1990). Two different values of the critical
discharge have been considered, the regression refers to Qcr = 40 m3s−1; porosity is
fixed to p = 0.3.
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Figure 2.19: Path length computed from the numerical model and using the present
approach (considering scour patches). Upper panels: Wong and Parker (2006b)
(Eq.2.14). Lower panel: Parker (1990); two different values of the critical discharge
have been considered, the regression refers to Qcr = 40 m3s−1; porosity is fixed to
p = 0.3.

more and Church (1998); Ashmore (2013) lead to a number which is invariant
to discharge and consequently would produce a much weaker correlation with
the numerical results.

It is valuable to underline that the result also depends on the threshold
chosen; in particular the Lt of the event 05-06 is rather sensitive to the value
of Qcr and would triple changed from 40 to 30 m3s−1. Nevertheless the other
points are substantially stable and the positive correlation between the two
estimate is independent to any choice of the parameters.

Summarising the review of the results presented above, highlights the fol-
lowing key points:

• The size of the patch strongly varies between the different event.

• The path length derived from the numerical method is also variable.

• A significant correlation between the path length and the patches size
exist.

In the following sections we will discuss how a variation of the path length
between the event can be expected on the basis of some considerations about
the compensation effect.
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2.6 Discussion

The results presented in the previous section are based on measurements that
are unavoidably limited by the accuracy, spatial extent and spatio-temporal
resolution of the morphological data. While it is impossible to mitigate these
effects entirely, a robust analysis of the sensitivity of the results obtained to
these effects is needed.

In the following sub-sections an analysis of the methodological sensitivity
is undertaken that considers the influence of: a) the temporal resolution of the
survey data; b) the spatial extent of the study area; and c) the confidence inter-
val adopted to distinguish between significant and spurious elevation changes
identified in the DoD.

2.6.1 Relationship between patches size and path length

In the previous analysis of transport we assumed there was a connection between
the size of the erosion patches and the path length.

This principle, while lacking an unambiguous physical basis, was justified
through the identification of a clear variation in the characteristic length scale
of patches with forcing discharge rather than on a detailed study of the actual
mechanics of sediment transport.

Further corroboration for this approach was provided through a comparison
of the estimated transport rate with those obtained from an independently-
derived numerical model.

The following discussion aims to review the physical principles governing
sediment transport, in order to better understand the potential but also the
limitations of the patch-based approach to derive the path-length.

Starting with a simple ideal example; it is useful to consider a generic hy-
draulic streamline at a given instant of time, from which it is possible to com-
pute the bedload intensity along this curve, giving rise to results similar to
those shown in figure 2.15a. The average sediment discharge on the streamline
is proportional to the total area of the triangles, namely

qs =
1

L

∫ L

x=0
qs(x) dx =

1

L

N∑

i=1

Lt,iVe,i (2.19)

where Le,i is the length of the erosion (growing qs) sites.
Since the reach-averaged transport at any instant of time can be computed

as the integral along all the possible streamlines it is clear that if the bedload
followed a similar “peaked” behaviour throughout the network, the approxima-
tion to path length provided by patch size would provide a reliable estimation.

However if we consider the signal on figure, here the streamlines incorporates
multiple peaks and the area of the triangles does not account for the total
transport. The blue areas, which represent a flux throughout different patches
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is not included in the computation of Eq. 2.19. The magnitude of this error
depends on the intensity and the distance of this movement across multiple
patches.

By extension, the most severe error would occur when a significant fraction
of material moves throughout the river without leading to erosion and deposi-
tion. In the case of straight channels with migrating alternate bars, analytical
theories (e.g. Colombini et al., 1987) reveal that, as long as the bar height is
relatively small, only a minor fraction of the bedload is involved in scour and fill
processes. Under these conditions there is not direct connection between any
morphological signal and bedload transport and thus no opportunity to infer
the path length from the bed level changes.

In braided rivers, significant temporal variability in transport rates is well
establishes (Ashmore, 1991; Warburton and Davies, 1994; Bertoldi et al., 2009a)
and, not surprisingly associated with large spatial fluctuations, as confirmed
by event-scale morphological budgeting Lane et al. (1994); Goff and Ashmore
(1994).

In order to investigate effects of spatial variation in the Rees River, a simple
particle tracking model, based on the hydraulic simulations of the depth aver-
age model was developed. In this, the trajectory of several particles seeded at
equally spaced points across the entrance section, was determined by allowing
them to follow streamlines neutrally. Computing the stress variation along each
streamline, and applying a bedload formula provides estimates of the longitu-
dinal transport, as illustrated in figure 2.16. This reveals that the transport
rate vanishes to zero several times along the reach, which is encouraging as
it suggests the absence of significant throughput. In addition some peaks are
relatively smooth and with a single relevant maximum, albeit not perfectly tri-
angular as sketched in figure 2.15. On the other hand some areas of transport
show a multiple maximum which produce a disconnection between the erosion
sites and consequent an underestimation of the transport.

The computing the erosion patches size is, however, different from the one-
dimensional representation we depicted above. The advantage of the two di-
mensional patches analysis lies in that a small isolated interruption of the scour
does not necessarily cause a disconnection of the patches as in the 1D exam-
ple. The confounding problem of the multiple peaks, represents a flux through
patches, suggests, that if anything, the patch based approach might lead to an
underestimate of the path length and consequently of the transport. Evidence
from the particle tracking model, however, suggests that this effect is likely to
be limited for the Rees, and not significantly variable between different events
so that we are able to capture the relative bedload intensity between the events.
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2.6.2 Volume compensation and temporal resolution

It is well known that subsequent phases of scour and refill (or viceversa) produce
a compensation effect which can lead to a significant underestimation of the
volumes (Goff and Ashmore, 1994; Lindsay and Ashmore, 2002).

The probability of compensation and the consequent effect of volume es-
timation increases with elapsed time between topographic surveys. For this
reason Ashmore and Church (1998) suggested that it is important to asses
what temporal and spatial resolution of morphological data is necessary for a
comprehensive estimation of the erosion and deposition volumes.

Ultimately the choice of resolution is likely to be as much based on practi-
cal (site access, instrumentation, cost, manpower) issues that limit the survey
quality and frequency, as theoretical concerns. However it is not clear whether
simple intensification of the sampling interval between events will necessarily
(and predictably) result in an improvement in the estimation of cut and fill
volumes (Ashmore and Church, 1998; Ashmore, 2013).

For example the laboratory experiments of Lindsay and Ashmore (2002)
suggest, in fact, that the compensation is significant even at relatively short
timescales, so that is often practically impossible measure the total variation.

This section outlines an evaluation the impact of sampling interval on the
volumes of erosion and deposition in the Rees. The following section 2.6.3,
extends this analysis to consider, from theoretical and empirical perspectives,
the impact of this sampling effect on estimates of transport rate.

Let us consider three DEMs measured at the time instants t0, t1, t2, from
which we compute the volume of erosion between them. Due possible compen-
sation effects, the following inequality holds

V 0−2
e ≤ V 0−1

e + V 1−2
e = Ṽ 1−2

e (2.20)

where the superscript indicates the interval of the volume calculation and we
defined Ṽ as the sum of the intermediate volumes.

If we compute these quantities for each couplet of measurements we obtain
the result of figure 2.20, which shows reported Ve and and Ṽe in terms of erosion
(upper panel) and deposition (lower panel). From this it is clear that the
“missing” volume due to compensation is of the order of 20 ÷ 30 % for all the
couplets observed. It is trivial to prove that this underestimation, as evident
in figure 2.20, is exactly the same in the erosion and deposition volumes.

The key question that ensues is, how does the undersampling of volume scale
with the elapses time between surveys. This can be addresses by considering
the same theoretical experiment reported above, but involving more than two
steps in the calculation.

For example, we can estimate the volumes of scour and deposition during
the entire entire period Ṽ 00−10

e (N) by using a different number of differences N
between N+1 intermediate surveys. For N = 1 we have simply V 00−10

e , whereas
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(a) Erosion.

(b) Deposition.

Figure 2.20: Comparison (in terms of global erosion and deposition volumes) be-
tween the the difference between two DEMs and the sum of the differences with an
intermediate DEM.
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Figure 2.21: Volume of scour/deposition for the entire period 00-10 estimated by
using a different number of DEMs, from two (first and last only) to eight (sum of seven
differences between intermediate DEMs).

for N = 7 we are summing the differences between all the available surveys
(while 10 surveys were undertaken, only 7 DEMs have been fully developed),
whereas all for others values of N we selected the DEMs in order to distribute
the volumes in the more uniform way possible

The result of this experiment are shown in figure 2.21. which reveal that the
compensation volumes estimated from the first and last topographies (N = 1)
is significantly lower than the volume obtained by increasing the number of
intermediate surveys. However, by using just N = 3 (i.e. involving DEMs 00,
05, 08, 10) over 80 % of the volume of the whole dataset (N = 7) is obtained.

While this sampling experiment provides some useful insights into the scal-
ing of compensation losses, the available data are clearly insufficient to ulti-
mately identify the possible magnitude to all missing volumes of scour and
fill.

The laboratory experiments of Lindsay and Ashmore (2002) suggest that
such a measurement frequency would be difficult to achieve. They observed
that the volume of erosion/deposition during an interval ∆t increases with the
frequency of measurements as follows

Ṽe = a+
b

i
Ve = a+

b

∆t
(2.21)

where a and b are empirical constants and i is the interval between surveys.

Accordingly, even for small intervals the missing volumes increased dramat-
ically tending towards infinity (V = ∞ for i → 0). Nonetheless, the authors
highlighted that, although an infinite volume is physically unreasonable, a large
volume would result if we were able to capture the individual grains movements.
However practical restrictions of the minimum detectable variations make it im-
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possible to reach the temporal and spatial resolution needed for capturing these
values (Lindsay and Ashmore, 2002).

2.6.3 Effect of the volume compensation on the transport esti-
mate

The significant compensation effect observed in the laboratory experiments of
Lindsay and Ashmore (2002), and to a lesser extent in the Rees River dataset,
could be taken to imply that morphological transport estimation based on the
path length approach will always be biased.

In meandering channels, such as studied in the experiments of Pyrce and
Ashmore (2003b), the compensation effect still occurs at the scale of the grain
size. Indeed it is possible to consider the transport and the associated morpho-
logical evolution at a larger scale, at which no significant subsequent scour and
refill occurs.

Such an approach may, however, not be possible for braided networks which
exhibit compensatory elevation changes across a wide range of scales, from
individual grain exchanges, to bank erosion and avulsion, and ultimately to a
complete reworking of the entire braidplain.

These considerations pose a relevant problem to the usage of the path length
method in braided morphologies. Nevertheless the very few applications of the
approach used in braided rivers (see Ashmore and Church, 1998) suggest that
at the event-scale the method offers tangible results.

In this section we aim evaluate the conditions under which the method could
be reliably applied despite the ever present risk of morphological compensation.

The transport during a given period ∆t can be computed by applying the
path length method (Eq. 2.11) directly for the entire period or using a number
of intermediate steps having at regular intervals i, namely

Vt =
Ve
Ld

Lt Vt =
Ṽe(i)

Ld
Lt(i) (2.22)

Since the result must be the same the following relation holds

Lt(i) = Lt
Ṽe(i)

Ve
(2.23)

and implies a connection between the path length and the compensation. Specif-
ically, if no compensation occurred, the path length would be constant and in-
dependent on the interval i. However according to the experiments of Lindsay
and Ashmore (2002), this may be not the case and, in particular, their empirical
relation (Eq. 2.21) implies

Lt(i) = Lt
Ṽe(i)

Ve
= Lt(∞)

i

b/a+ i
(2.24)
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Figure 2.22: Path length as a function of the measurement interval ∆t consequent
to the formula proposed by Lindsay and Ashmore (2002).

which indicates that the path length can not be constant but must increases
with the elapsed time as in figure 2.22.

The variations of Lt are due to the increase in time of the probability of
multiple travels of the single particles. From a macroscopic perspective, this
is the cause of the compensation, and as such explains why the patch length
changes with time on the basis of the compensation effect.

In the case of the Rees River the flow intensity and duration vary consid-
erably and only a limited number of DEMs available; thus it is impossible to
analyse completely the dependency of transport rates on interval i for a given
time period as shown in in figure 2.22.

Nevertheless, the results shown in figure 2.21 offers some useful insights. In
particular if we compute the transport rate based on the interval 00-10 using
only the volume V 00−10 and then more fully by considering the intermediate
differences (volumes Ṽ 00−10(N)), namely

V 00−10
t =

1

Ld
V 00−10
e L0−10

t =
1

Ld
Ṽ 00−10
e (N) L̃0−10

t (N) (2.25)

where L̃0−10
t (N) is an equivalent travel distance which is the average (weighted

with the volume) of each intermediate the path length.

If Ṽ 00−10
e (N) increases with N the transport length L̃0−10

t (N) must diminish
in order to maintain the same transport.

This results offers an interesting opportunity to examine whether this de-
crease is also evident in the characteristic size of the scour and deposition
patches obtained as the time interval of DoDs varies too. Examination of fig-
ure 2.23 reveals that the equivalent path length estimated on the basis of the
patches sites is actually decreases with N . Consequently the volume lost be-
cause of the compensation effect is balanced by an increase of our estimation
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Figure 2.23: Transport length Ltot for the entire period 00-10, estimated by using a
different number of intermediate DEMs.

Figure 2.24: Transport volume for the entire period 00-10, estimated through a
different number of intermediate DEMs.

of the step length and the estimation of the transport (figure 2.24) rather in-
dependent on the number of intermediate surveys.

2.6.4 Effect of the confidence interval

As discussed previously, the definition of the DoD and consequently of the
erosion and deposition pattern, depends on the criteria adopted to distinguish
between physical elevation changes and inevitable measurements and interpola-
tion errors. According to the error model described in section 2.4.1, the result-
ing DoD can be classified using a variable confidence interval or CI (equal to
80% in the previous sections), which determines the likelihood of distinguishing
“real” from “spurious” elevation changes. Importantly this choice will also have
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ramifications not only for the total volumes of scour and fill, but also the size
of the observated patches and hence estimated path length.

Experimentation varying the CI reveals that increasing the CI (providing
a stricter test of significance) results in a reduction in the average patches size
because it causes a decrease of the active area but also reduces the connectivity
between patches, causing a splitting of some areas.

The results of this sensitivity analysis are summarised in figure 2.25, which
reveals that the CI is increased from 70 % to 90 %, the estimated path-length
decreases significantly, especially for the larger events, which exhibit a decrease
of as much as 40 %. This effect on the path length (or rather patch size) tends
towards zero as far as CI increases to 100%. This observation suggests a double
dependence of transport rate on the selection of CI, which will affect both the
overall volume of erosion measured and the estimation of the path length, and
necessitates an examination of the resulting overall bias in transport rates.

Reduction of the CI inevitably introduces greater likelihood of incorporat-
ing spurious volumes in the change analysis, which will lead to a consequent
overestimate the transport. However if we assume that these errors are spa-
tially uncorrelated, the probability to introduce artificial connectivity between
patches should be low, and suggest that a lower value of CI may actually be
more appropriate for an estimation of the patch size.

Unfortunately the extent to which the error can be treated as uncorrelated
at the pixel scale is unknown so that any concomitant change in Lp cannot be
treated as an unambiguous, reliable result. Clearly further examinations of this
is necessary in the future.

2.7 Conclusions

From the analysis of the morphological changes of the Rees River, the numerical
simulation and some theoretical considerations about the methods it has been
possible to clarify the research questions we formulated at the beginning of this
chapter.

The reach-scale erosion and deposition volumes depend on both magnitude
and duration of the flood. The variation in scour and fill volumes displaced dur-
ing different floods appear to be related principally to increases in the active
area rather than the average depth of the scour or deposition. Also the fre-
quency distribution of the elevation changes appears to be largely independent
of the flow magnitude.

Quantitative analysis of the size of the deposition and scour patches based
on an automated algorithm reveals a strong dependence of the reach-averaged
length to the intensity of the driving event. In particular it is noticeable that
the small flow pulses produce much smaller areas of scour and fill than those
associated with much large floods.
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Figure 2.25: Comparison between weighted length of scour and deposition patches
computed with different confidence intervals. The central panel represents the result
of figure 2.14.
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Some observation suggests that the average size of these patches may be
representative of the path length. Moreover the comparison with the numerical
results confirms that such a relationship probably exists and can be used to
estimate the reach-averaged bedload during the different flood events.

Theoretical concerns about the compensation effect suggest that the path
length should not be a fixed number, but increases with the elapsed time and
with the flow intensity, which is consistent with our observation about the
patches size.

The method is relatively robust with respect to the compensation effect
despite significant underestimation of the scour/deposition volumes.

The choice of the error model adopted to detect morphological variations
affects both the path length as well as detectable morphological change. In
particular the confidence interval of the probabilistic error model, despite not
being crucial to determine the relative transport between events, significantly
influences the absolute values of the resulting bedload.

Due to the high degree of uncertainty, attention must be exercise when
employing these results. Indeed due to the lack of direct measurements or
reliable estimates of the reach averaged transport it is not possible to assert in
which extent the method is suitable for quantitative predictions. Nevertheless
the connection between patches size and path length offers useful approach
and at the very least, offers insight into the relative rate of bedload transport
between the events studied, and hence a quantitative scaling between sediment
transport and driving hydraulics.

57



2.8. List of symbols and acronyms

2.8 List of symbols and acronyms

Acronyms

ADCP Acoustic doppler current profiler;
DEM Digital elevation model;
DoD Digital model of the elevation differences;
CSD Cumulative spectral density;
TLS Terrestrial laser scanner;
RTK −GPS Real time kinematic global positioning system;

Symbols

Ap [l] Mean area of the patches;
CI [−] Confidence interval in the error model;
d50 [l] Median grain size;

d [l] Mean grain size;
dx [l] x-percentile of the grain size distribution;
fi [−] Fraction of the grain size i;
i [t] Survey interval;
Ld [l] Length of the domain;
Lp [l] Mean semi-major axis of the patches;
Lpw [l] Mean semi-major axis of the patches weighted with the volume;
Lt [l] Path length of the particles;

L̃t [l] Equivalent path length computed using intermediate surveys;
p [−] Porosity of the bed material;
t [t] Time;
P [−] Probability of higher errors (1− CI);
Q [l3t−1] Water discharge;
R2 [−] Coefficient of determination;
qsi [l2t−1] Bedload intensity of the grain size i;
Qs [l3t−1] Solid discharge;
Ve [l3t−1] Volume of erosion;
Vd [l3t−1] Volume of deposition;

Ṽe/d [l3t−1] Erosion/deposition volume estimated using intermediate surveys;
Vt [l3t−1] Solid volume transported by the river;

Ṽy [l3t−1] Volume of transport estimated using intermediate surveys;
x [l] Longitudinal coordinate;
Lt [l] Travel distance of the particles;
y [l] Transverse coordinate;
∆t [t] Time interval;
λ [l] Wavenumber;
ξ [−] Exposure/hiding factor of the grain class i;
θi [−] Shields parameter of the grain class i;
θcr [−] Critical Shields parameter;
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2.9 Appendixes

2.9.1 Distributions of the morphological variations

In the discussion above we have seen how reach scale volumes of erosion and
deposition strongly depend on both duration and intensity of flow pulses. This
section addresses the additional question of where those fill and cut volumes
are located?

First of all we look at how morphological changes are distributed in eleva-
tion. For each event we computed for any location the scour/deposition depth
and the elevation before the event; we then divided the elevation in 300 classes
between −1.5 m and +1.5 m and we summed the volumes for each class. The
resulting distributions, represented in figure 2.26, shows several interesting fea-
tures. Firstly, the scour distributions (panel 2.26a) reveals that erosion manly
occurs at elevations around zero (average reach elevation); however the posi-
tion of the peaks seems to depend on the maximum discharge, which relatively
high for events 07-08 and 09-10. Secondly, the second panel 2.26b shows, as
one might expect, the deposition occurs in lower areas of the braidplain, and
in particular shows a maximum around −0.5 m which is slightly higher, albeit
comparable, than the bed relief index (which ranges from 0.32 m to 0.36 m
among different DEMs).

As a second step we studied the transverse distribution of the volumes.
Figure 2.27 shows significant differences between events having similar erosion
volumes; it is evident that event 09−10 involves a wider region of the braidplain
than the event 01− 05, which is longer in time but less intense.

Finally, it is also interesting to analyse how the net erosion which occurred
during the bigger events is distributed along the longitudinal direction. Figure
2.28 reveals that during the bigger event (09 − 10) an evident incision occurs
in the narrowing region while during event 01− 05 the incision is located more
upstream. In addition we can see that the smaller events shows a variability
only on shorter spatial scales, which is consistent with the idea that the length
scale of the morphological variations depend on flood intensity and magnitude.

2.9.2 Comparison between different methods

An algorithm to filter the small patches

Many patches of erosion and deposition show an very small area (only one
or few pixels). Clearly, size and connectivity between these areas is highly
affected by the error model and the confidence interval adopted to filter out
the measurement uncertainties; consequently we expect that such small area
are not representative of particles path length and should be excluded from the
analysis.
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(a) Erosion

(b) Deposition

Figure 2.26: Distribution elevation of the scour (upper panel) and erosion (lower
panel) volumes. The elevation refers to the antecedent topography.
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Figure 2.27: Longitudinal integral of the scour volumes as a function of the transverse
coordinate y for the different storm events. A 10 m window average has been adopted
to filter the signals.

Figure 2.28: Longitudinal profile of the laterally integrated net volume for different
storm events. A 100 m window average has been adopted to filter the signals.
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Among the several procedures suitable to eliminate these small patches, the
more easy is a simple removal of area smaller than a defined threshold; as one
may image the disadvantage of this simple approach is the difficulty to define
a physically based criterion to determine the threshold.

A more reasonable, although still simplified method is based on the concept
that two close area of erosion without any deposition patch in the middle can
not be representative of the transport length; indeed the hypothesis that there
is no sediment flux across different erosion sites is in this case clearly not sat-
isfied. Many similar situations occurs simply because of the limited accuracy
of the DEMs, which leads to an apparent separation of patches with are in fact
connected. In order to reduce the impact of this side-effect we implemented
an algorithm which removes scour zones which are closer to other (bigger) cut
areas than to the nearest deposition patch.

Effect on the patches metrics

As one might expect, the effect of filtering out the smaller areas significantly
affects any estimation of the average length and area of patches. In particular
in table 2.5 we report the result of the two algorithms, namely

1. Simple elimination of patches smaller than 10 m2 (labelled Thresh).

2. Removal of patches close to larger areas of the same type (called Filt).

It is evident that the area extension as well as the major axes length is highly
dependent on the method adopted to identify the erosion/deposition patches;
however it is also clear that in, terms of variation between events both quantities
show similar trend. Figures 2.29 and 2.31 compare (in terms of mean area and
patches length respectively) results of the two methods for both erosion and
deposition. In general there is a good correlation between the different metrics;
for example the simple thresholding, albeit reducing about 5 times the length
and 8 times the area of patches, gives a coefficient of determination R2 ≥ 0.93
with the original, non-thresholded, metrics. This means that, despite the very
different magnitude, relative variation of patches size between events is rather
independent of the choice of the method.

From table 2.5 we can also see that in terms of weighted patches length Lpw

(defined in Eq. 2.13) not substantial differences occurs between the methods.
This result, which is clear also in figure 2.32, reveals that since the weighted
averaged assign more importance to bigger patches, it is robust with respect to
the algorithm adopted to eliminate the small, insignificant areas.

2.9.3 Some considerations about the reach extent

When we perform any reach-scale analysis we must always deal with the ques-
tion of which is the extension needed to obtain a representative sampling and
consequently to construct a robust statistics.
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Parameter Type No-filters Thresh A > 10 m2 Filt. algorithm
Scour Dep Scour Dep Scour Dep

Mean area 00-01 15.3 19.7 115.2 140.1 40.3 50.0
Ap [m2] 01-05 44.8 35.8 305.0 258.2 106.0 94.0

05-06 4.7 12.0 56.4 85.4 7.4 31.0
06-07 9.4 8.5 86.9 68.3 20.6 18.7
07-08 20.9 25.0 162.4 177.7 49.4 63.3
08-09 28.0 27.1 214.6 177.3 66.0 66.8
09-10 40.0 52.9 325.0 332.0 137.6 111.0

Mean length 00-01 4.58 4.84 24.48 24.44 9.39 9.60
Lp [m] 01-05 6.70 5.58 36.09 30.14 13.29 11.74

05-06 2.67 4.39 17.58 22.38 3.55 8.91
06-07 3.73 3.68 22.16 19.37 6.46 6.38
07-08 5.14 5.22 29.03 27.28 10.00 10.54
08-09 5.62 5.43 32.57 26.79 11.02 10.72
09-10 5.69 6.79 34.72 33.68 14.94 12.33

Weighted length 00-01 89.5 191.4 93.7 199.0 95.2 201.1
Lpw[m] 01-05 296.2 188.3 300.2 192.6 301.2 194.3

05-06 49.8 44.7 59.8 48.1 53.2 49.6
06-07 70.2 40.8 76.7 45.6 75.9 44.4
07-08 122.1 135.2 126.9 139.3 125.9 141.3
08-09 174.6 109.5 178.8 112.6 178.4 115.1
09-10 251.8 206.4 255.7 208.9 259.4 208.7

Table 2.5: Mean patches area, length and weighted length from the original method
and after removing the smaller areas with the two mechanisms we propose. Both the
results from the erosion and deposition map are reported.
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Figure 2.29: Comparison between the mean area computed without any threshold
and the mean area obtained a) after excluding patches with A < 10 m2 (left panels); b)
after applying the filtering algorithm (right panels). Upper panels: deposition patches,
lower panels: scour patches.

Figure 2.30: Comparison between the mean semi-major length computed without
threshold and the one obtained a) after excluding patches with A < 10 m2 (left pan-
els); b) after applying the filtering algorithm (right panels). Upper panels: deposition
patches, lower panels: scour patches.
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Figure 2.31: Comparison between the weighted mean of the semi-major axes com-
puted with the three methods. Upper panels: deposition patches, lower panel: scour
patches. Dashed line represent the 1 : 1 relation.

On the basis of laboratory observations Egozi and Ashmore (2008) suggested
that estimation of braiding indexed requires a minimum length of 10 times the
average wetted width (measured in formative conditions). However in terms
of morphological changes, such as patches size or the erosion and deposition
volume the necessary domain length may be different and variable with event
magnitude and duration.

We can study this problem for the Rees dataset by computing erosion and
deposition volumes (per unit length) with different length of the domain. The
result, in terms of erosion volume, is reported in figure 2.32. It is clear that
smaller volumes attain a stable value after a distance much shorter than the
higher volumes moved by large floods. This is consistent with the observations
above about the characteristic scale of erosion and deposition patches.

The need of a larger reach for bigger events is expected to be valid even for
the estimate of the path length; indeed it is clear that the number of relatively
large areas, which are more relevant for estimating the weighed patches length
Lpw, tends to reduce for bigger events.

2.9.4 Analysis of channels movements

As we have discussed above, morphological changes, expressed in terms of vol-
ume or active area, depend upon both magnitude and duration of storm events.

In spite of the strong reduction of the costs thanks to new technologies,
detailed topographic surveys are still expensive and not easy to undertake.

A much simple property to observe is the planar geometry of the channel
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Figure 2.32: Erosion volume per unit length computed on windows of different
lengths.

network, which can be identified from aerial or ground-based images collected
during periods of relatively low flow. For this reason the analysis of wetted
area is probably the more straightforward way to obtain information about the
variations in network configuration, due to channel shifting and avulsion, which
occurs during floods and flow pulses.

This section investigates the connection between changes in the inundated
are and the flood intensity.

As we can see from photograph of figure 1.6 there is not an obvious distinc-
tion between dry and wet regions; moreover there are several isolated ponds
which should not be identified as channels. For these reason an automated
recognition of the channels is not straightforward and we preferred to consider
the manual detection of the inundated are performed by Williams et al. (2013a).

If we overlap the maps of different survey (figure 2.33) we can compute
the common area (green patches) obtaining the result of figure 2.35 (upper
panel) which can be adopted as another indicator of the morphological changes.
Unfortunately a direct comparison between the different images is difficult also
due to the different discharge at the time of the flight, which varies between 9.0
and 22.6 l/s.

This flow variation is responsible of part of the changes of the inundated area
in the range 0.83÷ 1.87 · 105 m2. In order to reduce this we computed the ratio
between the common area and the total wetted arae of the two surveys (sum
of the red, green and blue pixels of figure 2.33), obtaining the result of figure
2.35 (lower panel). It is clear that a significant inverse correlation between this
ration and the event duration and magnitude exists, which suggests that such
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Figure 2.33: Map of the wet area during survey 00 (red area) and 01 (blue area).
The common area is depicted in green, the black line represent the extension of the
survey.

a simple index may be adopted in order to quantify morphological changes on
the basis of aerial images.

2.9.5 Path-length approach in the case of significant compen-
sation

This section provides some consideration about the applicability of the path-
length method when significant compensation changes occurs, which as we have
seen above is always the case for braided rivers.

Specifically, it is relevant to notice that, from a theoretical point of view,
Eq. 2.11 is still valid even after multiple travels of the volumes if, and only if,
it is written in the following form

Vt =
V T
e

Ld
Lt (2.26)

where V T
e is the volume of sediment moved at least once during the period,

which is nothing than the volume of the active layer, namely

V T
e =

∫

A
(ηinit − ηmin) dA (2.27)

where ηinit and ηmin indicate the initial and minimum bottom elevation during
the event and A indicates the entire reach surface.

For example if a volume Ve is eroded, deposited and removed again we
can still apply Eq. 2.28 if we consider the total path length composed by two
distinct movements.

The volume V T
e can be significantly different from the volume obtained by

capturing all the scour Ṽe(0). This is evident in the example of figure 2.36,
which represents a random variation of the elevation at a given location, where
the final volume Ve is less than the minimum one V T , albeit both are much
smaller than the total erosion volume Ṽe(0).
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(a) Original image (b) Recognised polygons

Figure 2.34: Example of manual channel recognition for a portion of the braidplain
(survey 09, Williams et al., 2013b)).

Figure 2.35: Changes of wetted area between different events. Upper panel: wetted
area in common. Lower panel: common area divided by the total wetted area of the
two surveys.
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Figure 2.36: Example of the three different definitions of the erosion volumes at a
given location. The time evolution is the result of a simple random process.

From this point of view it is not important to capture all the variations
(which would be probably impossible) but only V T

e , so that the important
compensation we have to consider is the one between Ve and V T

e rather than
between Ve and V T

e as investigated by Lindsay and Ashmore (2002).
Unfortunately no laboratory investigations directly studied V T

e . However
if we imagine the scour and deposition at any location as a random process
we obtain a relation between the maximum value and the mean absolute value
which depends on the process itself.

If a net trend of erosion (as during the events 01-05 and 09-10) occurs it is
clear that the Ve and V T

e would be much more similar than the corresponding
deposition volumes because the final scour would tend to be similar than the
maximum one. This may provide some support to the choice of using erosion
maps for the computation of the transport rate.

In figure 2.37 we report the volume V T
e for the interval 00-10 estimated

using an increasing number of intermediate surveys. We can see that in general
this is different from Ve but not as much as the total variation Ṽe. In addition,
with N = 3 the major part of V T

e is already accounted; this may suggest that
no more temporal resolution is needed to capture the entire mobilised volume.

In order to make Eq. 2.11 generally valid it is possible to define the path
length as follows

Lnew
t =

Ve
V T
e

Lt (2.28)

which can be different from the physical path length if Ve 6= V T
e . This definition

allows to forget for the moment about the difference between Eq. 2.11 and
Eq.2.28 and analyse the effect of compensation affects the path length.
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Figure 2.37: Volumes of erosion V T
e and Ṽ T

e for the entire period 00-10.
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Chapter 3

Distribution of elevation and
sediment transport

3.1 Introduction

The detailed morphological configuration of a braided river is probably unpre-
dictable over relatively long spatial and temporal scales (Paola, 1996; Paola and
Foufoula-Georgiou, 2001). However it is plenty of evidences (e.g Mosley, 1983;
Egozi and Ashmore, 2008; Bertoldi et al., 2009d) that statistical properties, such
as the reach-scale braiding indexes or the time-averaged bedload transport are
not randomly variable but dependent on the controlling parameters.

This statistical description requires the definition of suitable morphological
indicators. For this purpose several braiding indexes have been developed in
the last decades; for example Egozi and Ashmore (2008) identified different
classes (bar index, channel count index, channel length index) and compared
the response to forcing conditions during flume experiments. The measurement
of these quantities is not trivial and, more importantly, is dependent on the
water stage (e.g. Surian, 1999; Van der Nat et al., 2002; Egozi and Ashmore,
2008); for instance the total number of anabranches initially increases with the
discharge, then reaches a maximum value and becomes equal one for large flows
(Bertoldi et al., 2009d).

An alternative description on the reach-scale morphology, based on merely
topographic data, comes from the hypsometric curves, which are widely used in
geomorphology as an indicator of catchments and landforms shape (e.g. Will-
goose and Hancock, 1988). Indeed the recent development of remote sensing
techniques, such as digital photogrammetry, structure from motion, airborne
LiDAR, terrestrial laser scanning (e.g. Gao, 2009; Marcus and Fonstad, 2010;
Brasington et al., 2012) have increased the monitoring possibilities and have
made it easier to obtain a detailed elevation model of relatively large portions
of the braidplain and consequently to compute the hypsometric curves.
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In particular for the analysis of river morphology it is convenient to consider
the distribution of elevation with respect to a planar surface inclined with the
slope rather than an horizontal reference. This morphological indicator can
be adopted for analysing the response to different controls (Bertoldi et al.,
2011a); nonetheless this response has not been extensively investigated and the
effect of grain size, discharge, slope and degree of confinement on the elevation
distribution is still unclear.

One of the most important reach-scale properties of the braided network is
the sediment transport rate. Many laboratory studies (e.g. Thompson, 1985;
Davies, 1987; Young and Davies, 1990, 1991; Shvidchenko and Kopaliani, 1998)
have been performed in order to determine the time averaged bedload in regime
condition on the basis of the controlling parameters, namely discharge, slope
and sediment size. After the first attempts to predict this flux through standard
transport formula (Carson and Griffith, 1987; Ashmore, 1988; Griffith, 1989) it
became evident (Paola, 1996; Nicholas, 2000; Ferguson, 2003) the great impor-
tance of spatial variability of hydraulic parameters, bottom morphology and
grain size. Indeed the local bedload transport rate varies nonlinearly with the
shear stress and the total bedload flux does not depend only on the average
quantities but also on their spatial distribution across the section. This effect
is particularly significant in a braided network, where the bed load flux can be
several times bigger than in the equivalent uniform, rectangular cross-section
(Bertoldi et al., 2009a).

For this reason approaches based on the probability density function of the
shear stress, and in particular on the Euler gamma function, have been in-
troduced (Paola, 1996). In particular (Nicholas, 2000) proposed to adopt the
distribution of the water depth as a surrogate of the bottom stress; in this way
the Euler probability density function can be inferred from the cross-sectional
elevation profile. The main disadvantage of this method is the dependence on
the water discharge of the distribution parameter (Nicholas, 2000). In spite of
this the hypothesis of an analogy between the elevation and the stress distribu-
tion seems to be acceptable at least as a first approximation. For this reason
the simple 1D model proposed by Bertoldi et al. (2009a), which is based on
similar assumptions but without the need of fitting a probability function has
been proven to correctly capture the averaged bedload measured in a set of
laboratory experiments.

These considerations about the transport suggest that a linkage between the
reach-scale distribution and the sediment transport probably exists. However
such a relation has not been directly explored from previous studies which have
mainly focused on the elevation distribution across each single section.

The need to study how the reach-scale morphology depends on the con-
trolling condition and to explore the connections with the sediment transport
motivates this work.

A disadvantage of the distribution of the elevation, computed with respect
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to a planar surface, lies in the definition of the slope, which is not trivial and
may depend on the extension of the studying reach. Moreover the distribu-
tion is affected by the areas with higher elevation, so that for instance two
different results may arise simply because of a different lateral extension of the
computation area.

These considerations suggest to define a different indicator of the braided
topography which is more suitable for assessing the morphological response
to varying conditions. For this reason we introduced a different definition of
the elevation distribution, which does not require the removal of the slope, is
insensible to the inclusion of high-elevation areas such as banks of portions of
the braidplain, is simple to analyse and apparently strongly connected with the
sediment transport.

A series of laboratory experiments and field observation allow us to study
how such indicator responds to different conditions in terms of discharge, slope,
degree of confinement width and grain size. The flume experiments, together
with a depth-averaged numerical model of a natural river, supports the idea
that the reach scale elevation distribution is representative to the shear stress
heterogeneity and can consequently be adopted for estimating the bedload in a
complex topography.

Furthermore if we interpolate the curve with a power-law we can determine
analytically the inundation and bedload curves, which allows us to investigate
the relation between morphological complexity and response to the hydrological
forcing.

3.2 The method

3.2.1 Definition and scaling

The reach-scale indicator we propose here is based on the bottom elevation with
respect to the lowest point across the braided section; therefore it requires the
definition of cross-sections which are orthogonal to the principal direction of
the river. While in a laboratory experiment we can adopt the flume direction,
the definition of a river direction in a natural case is less straightforward.

Since we are interested in the average flow direction at the reach scale we
must define a river direction which varies on the same longitudinal scale. For
this purpose for the River Tagliamento, whose direction is significantly varying
within the study areas, we considered a series of 1 km spaced points located
at the centre of the braidplain and we defined the river axis as the cubic spline
passing through these points to define the river axis.

Once the river axis is identified we can define D as the elevation with respect
to the lowest point and bs of each cross-section “s” as the width of the portion of
the bottom which lies below this height (cumulative length of the blue segments
of figure 3.1a). Imaging a horizontal free surface (as in Nicholas, 2000; Bertoldi
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(a) Example of section.

(b) Average section and notation.

Figure 3.1: Definition of the b(D) curve for each cross-section. bs is the cumulative
length of the blue segments. By repeating the procedure for each section of a braided
river reach we obtain the averaged b(D) curve.

et al., 2009a) the bs(D) curve represents how the wetted width depends on the
maximum water depth across the section.

If we repeat the procedure for all the N sections covering a braided river
reach and we compute the mean value of bs

b =
1

N

N∑

s=1

bs (3.1)

we obtain an averaged curve b(D) which represents the cumulative distribution
of elevation relative to the deepest point of the section.

In principle there is not a well-defined upper limit of the curves; however
since we are interested in the morphologically active area rather than the flood-
plain we need to fix a certain elevation D; for this purpose we can limit b to
the mean wetted width in formative conditions b0, which can be estimated from
the formative discharge according to the method we will present later.

The curve we obtain can be conveniently approximated as a power-law,
namely

b = kDα (3.2)

where k fixes the scale and α is an indicator of the curve shape.
For a single-thread channel with compact section the b(D) curves simply

indicate the section shape. For example, in the contest of estuarine morphology
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Figure 3.2: Definition of the Average section (right side) on the basis of the b(D)
curves and distinction in different shapes on the basis of the coefficient α, following
Toffolon and Crosato (2007).

Toffolon and Crosato (2007) adopted the power-law approximation of that curve
to identify three different section types on the basis of the curve concavity as
represented in figure 3.2.

In the case of a braided morphology the actual section geometry is complex
and variable along the reach; nevertheless we can still define an equivalent
compact section having the same b(D) distribution we call “Average section“.
In particular we consider a section developing on only one side (with a vertical
bank, like in figure 3.1b), which can be specified as

η(y) = D(b) ∀ η = D (3.3)

where η is the bottom elevation along the section as sketched in figure 3.1b.
Before investigating how this average property of the braided network de-

pends on the river features it is convenient to work with dimensionless pa-
rameters; in particular if we consider the gravitational acceleration g and the
mean sediment size ds as scaling parameters we can write the solid and liquid
discharges as

Qs∗ =
Qs

√
g∆ d

5/2
s

Q∗ =
Q

√
g d

5/2
s

(3.4)
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where ∆ is the relative submerged weight of the sediment. Similarly we can
define

b∗ =
b

ds
D∗ =

D

ds
W ∗ =

W

ds
(3.5)

where b and D are the parameters of our curve andW is the confinement width,
defined as the distance between fixed or relatively stable banks, which ranges
from relatively small values in the case of a strongly confined flow to the large
values characteristics of relatively free, unconfined networks.

As commonly assumed in the analysis of braided networks (e.g. Egozi and
Ashmore, 2008) we can consider that the reach-scale statistical properties de-
pend on the external controls only; in particular in an equilibrium condition
with constant discharge and uniform slope and confinement width we expect the
b(D) curve and the average transport Qs to depend on the following parameters

{b(D), Qs} = fct(Q,S,W, ρ, ρs, g, ds, σ) (3.6)

where ρ and ρs are water and sediment density respectively, ds is a representa-
tive grain size (for instance the median value) and σ(d/ds) is the sediment size
(d) distribution.

Using the π-theorem we can reduce the number of parameters by writing
the functional dependence in dimensionless form, namely

{b∗(D∗), Qs∗} = fct(Q∗, S,∆, σ,W ∗) (3.7)

This relation, which is independent of the problem scale, holds as far as the
braided network is big enough to avoid the so-called “scale effects” induced by
the water viscosity and the surface tension (e.g. Young and Warburton, 1996)
like development of ripples or cohesion of bed material.

If we neglect the role of ∆, which is usually not much variable within the
most common river minerals, and we restrict our attention on well-sorted grain
size distribution we end up with

{b∗(D∗), Qs∗} = fct(Q∗, S,W ∗) (3.8)

which is the relation between morphodynamical response and controlling pa-
rameter we are going to investigate within the present work.

3.2.2 Flume experiments data

Three different sets of laboratory experiments, performed at the University
of Trento, were considered for the present analysis (Garcia Lugo et al., 2013;
Bertoldi et al., 2009a; Welber et al., 2012). Specifically, 58 experiment were
accomplished in different conditions of slope, water discharge, banks spacing
and sediment size.
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Parameter Symbol TN1 TN2 TN3
# of runs N 26 5 27
Grain size d50 0.63 mm 1.0 mm 1.0 mm
Slope S 0.3÷ 1.5% 1.0% 1.0%
Confinement width W 2.90 m 2.90 m 0.15÷ 1.5 m
Water discharge Q 0.3÷ 4.0 ls−1 1.8 ls−1 1.5÷ 2.5 ls−1

Mean sediment flux Qs 0.68÷ 5.28 gs−1 ≃ 2.4 gs−1 1.04÷ 7.73 gs−1

Scanning resolution dx× dy 10× 1 cm 2.5× 0.5 cm 5× 0.5 cm

Table 3.1: Summary of the main features of the laboratory experiments.

The supply of well-sorted sand was adjusted in order to maintain a long-
term mass balance of the network while the duration of each single run has
been chosen in the range 1.5 h to 110 h in order to allow the system to attain
a statistical equilibrium state.

The first (TN1) series of runs (Bertoldi et al., 2009a) encompass 5 different
slopes, various water supply and well-sorted sand with grain size 0.63 mm. In
the second (TN1) experimental set (Welber, 2012, unpublished) fixed discharge
and slope have been considered, for all the 5 runs. The role of the network
confined was investigated in the TN3 experiment (Garcia Lugo, 2014) where
three different values of discharge were considered for each of seven channel
widths. A summary of the main features of the laboratory experiments is
reported in table 3.1.

3.3 Results

On the basis of the three sets laboratory experiments and the field data we can
investigate how the b(D) curves depend upon the controlling conditions.

The Average section of relatively unconfined networks

The TN1 and TN2 series of experiments reproduced the morphodynamics of
relatively unconfined braided networks; consequently we do not expect any
significant influence of the flume width W ∗, so that the morphological response
should depend, according to Eq. 3.8 onQ∗ and S only. In the present laboratory
dataset the slope changes in the interval 0.3 ÷ 1.7 % while the dimensionless
discharge Q∗ ranges from 0.9 · 104 to 13 · 104.

Considering the bed elevation scan at the end of each run and excluding the
first 2 m in order to remove local effects at the flume inlet we can compute the
curves reported in figure 3.3.

The first feature we can notice is that the curves have the typical Y-shape
represented figure 3.2), which show an opposite concavity with respect to the
typical sections of single-thread rivers. Writing the results in dimensionless
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form allows for a direct comparison of the TN2 and TN3 in spite of the different
sediment size (0.63 mm and 1 mm respectively).

The second important characteristics we can recognise in figure 3.3) is a
clear dependence of the curves on the mean channel slope S, which suggests
that steeper braided networks may be more shallow.

The effect the two controls S and Q∗ on the bed relief can be analysed
by computing the reach-average of the elevation difference within each section
(figure 3.4a) or the reach-averaged Bed Relief Index (figure 3.4) as defined
by Hoey and Sutherland (1991) and scaled using the sediment size. While
apparently there is not a significant influence of the discharge, the slope is
clearly inversely correlated with the bed relief. A possible interpretation of this
behaviour follows the tendency of the gravel-bed channels to maintain a Shields
stress not far from the critical value for sediment motion; indeed in we consider
that the average stress is proportional to the mean water depth multiplied
by the slope it is not surprising that the channel depth respond inversely to
gradient variations.

After this considerations the relevant question which arises is: ”What about
the shape? How does it depend on the experimental conditions? “. In figure
3.3 we can notice that for example the blue lines are less curved than the orange
plots; a quantitative analysis of the growth of b with D can be performed by
computing the exponent of the best-fitting power-law α; if we plot this coeffi-
cient against the discharge we obtain the result of figure 3.5a) where apparently
an inverse correlation exists. However it is again not easy to decouple the roles
of slope and discharge.

One may argue that the stream power, rather than the discharge is the most
suitable parameter to describe the variation in the exponent; however the plot of
figure 3.5b) shows an higher scatter of the points, a tendency of the higher slopes
to give larger α and suggests that the stream power may be not the correct
parameter to define the shape of the distributions. Interestingly this observation
is consistent with the results of Bertoldi et al. (2009d), which reveals that the
parameters which describe the global complexity of the network depend on the
discharge while indexes related to the instantaneous morphological activity are
more related to the stream power.

It is worth to say that for the experiment with relatively large Q∗ we can not
exclude a significant impact of the flume banks, which bounds the maximum
width of the network; for this reason we could interpret the lower of α in
figure 3.5a) as a consequence of the confinement effect rather than a variation
of discharge or gradient. This is not the case for runs with S ≥ 0.7%, for
which the belt width, defined as the area subjected to morphological processes
was significantly smaller than the flume width (for instance < 2 m in run 10,
Bertoldi et al. (2009d)); Thanks to the third series of experiments (TN3) we
will address this problem in the following section.

In terms of slope, dimensionless width and discharge the conditions of the
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Figure 3.3: b(D) curves of the TN1 and TN2 experiments. The square marker at the
end of each curve indicates the formative condition as defined by the simple uniform
flow model of section 3.4. Different colours represent different slopes.

Figure 3.4: Mean variation of elevation across the section, as a function of the dis-
charge, for TN1 and TN2 experiments. Left panel: difference between the highest and
lowest point of the section; right panel: standard deviation of η(y).
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(a) α as a function of the total dimensionless discharge Q∗.

(b) α as a function of the total dimensionless stream power Ω∗ = Q∗S.

Figure 3.5: Coefficient of the power law which best fitting the TN1 (circular markers)
and TN2 (squared markers). Different colours represent different slopes.
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Figure 3.6: b(D) curves of river Sunwapta (left panel) and Rees (right panel). The
dashed line represents the best fitting of the power law b = kDα.

River Sunwapta are similar to the TN1 and TN2 laboratory experiments. In-
deed, considering a representative discharge Q = 18 m3s−1 we have Q∗ =
1.8 · 104, which is approximately the value adopted during five of the TN1 runs
with S = 1.3 %; in addition also the width of the braidplain W ≃ 150 m is sim-
ilar (in dimensionless form) to the one of the TN1 experiments (W ∗ ≃ 3.8 · 103
in the river and W ∗ ≃ 4.6 · 103 in the flume).

The comparison between figure 3.6 and figure 3.3 confirms the analogy in
terms of b∗(D∗) distributions between braided networks having different scales
but similar S, Q∗ and W ∗.

The conditions of the Rees River are rather different, especially for what
concern the hydrological forcing. Indeed, due to the large variability of dis-
charge compared with the pro-glacial Sunwapta River, as well as the limited
duration of the water stage record it becomes difficult to identify a represen-
tative formative discharge. It is clear that the discharge is much higher in the
Rees River: if we roughly consider Q = 300 m3 (value exceeded for 10 h in
the 18-months period covered by hydrological data) we obtain a dimensionless
value Q∗ = 1.7·106, two orders of magnitude larger than the flume experiments.

The effect of this large flow is appreciable in the right panel of figure 3.6; if
we compare the curves with flume results relative to similar slopes (S = 0.57 %)
we notice an important increase of the wetted width in formative condition b∗0
and only a minor effect on the correspondent D∗

0.

At this point it is important to spend some words about the coefficient k:
this parameter depends on both the horizontal and vertical scale of the curves
and can be written as

k∗ =
b∗0
D∗α

0

(3.9)

with b∗0 indicating the wetted width in formative conditions and D∗
0 the corre-
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sponding point on the curve. We have seen that D∗
0 is mainly dependent on the

slope, the b∗0 can strongly increase with the discharge whereas α may depend on
both S and Q∗. This complicate behaviour does not enable, due to the limited
dataset available, to express a general formulation for the coefficient k∗. For
this reason we focus our analysis on the response of the curve shape, expressed
through the coefficient α rather than on a complete description of the regime
morphology.

Similar conditions occur also in the River Tagliamento; however in this
case the morphology is more heterogeneous due to the presence of geological
confinement and the significant impact of the vegetation (Bertoldi et al., 2011a).

The intensity of the flood events (in terms of dimensionless discharge) is
again much larger than in the laboratory; for instance if we assume Q =
1000 m3s−1, which correspond to a wetted area of 90% at the Cornino reach,
(Welber et al., 2012) we have Q∗ = 1 · 106, the same order of magnitude larger
of the one measured in the Rees Reach.

A detailed analysis of the morphological variations within the river can be
performed by dividing the 21 km-long reach in the 12 areas of figure 3.7b, which
display different characteristics in terms of slope, vegetation height and density,
and geological constrains.

At the Area 5 an important bedrock outcrop is located at the middle of the
river corridor and at the Area 9 a geological confinement causes a reduction of
width up to 130 m (Bertoldi et al., 2011a). In addition, as reported by the same
authors, differences in the vegetation dynamics produces significant impact on
the morphological development of the different sub-reaches.

From the analysis of the b(D) curves 3.7b we can immediately see the effect
of the gorge at Area 9, where a U-shaped section can be observed; the narrowing
can be also clearly felt on the adjacent Area 8.

Interestingly the stable rocky island of Area 5 does not affect significantly
the curve shape; this observation could be explained by considering that the
river has enough lateral space to attain a fully-developed braided state even in
the presence of a central stable island.

On the other hand the curves for the wider sub-reaches (e.g. Areas 4,5,11,12)
are similar to the Rees River results of figure 3.6.

It is clear that some of the curves of figure 3.7, for example the number 8,
does not exactly follow a power law; for this reason the result we obtain by
fitting 3.2 has to be interpreted as an indication of the curve concavity rather
than an accurate approximation of the b(D) relation.

The analysis of the exponent (figure 3.8) reveals that there is a significant
inverse correlation between the α and the wetted width b.
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(a) Map of the selected areas. Flow is from left to right.

(b) b(D) curves.

Figure 3.7: b(D) curves for different areas of the study reach. The black squares
represent the estimated width with Q = 1000 m3s−1.
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Figure 3.8: Exponent of the b(D) curves as a function of the specific discharge for
the Sunwapta River and for the different sub-reaches of the Tagliamento River. A
representative discharge Q = 1000 m3s−1 was adopted. The labels refers to the sub-
areas of figure 3.7a.

The effect of the network confinement

In the River Tagliamento the presence of vegetation, the highly variable dis-
charge, the spatial heterogeneity of the geological conditions and the vegetation
characteristics, make it difficult to understand the role the parameters which
control the morphological response. For this reason it is convenient to first anal-
yse the effect of the confinement in a laboratory braided network, where we can
keep constant and uniform controlling conditions within each experimental run.

Results of the TN3 experiments, reported in figure 3.9 reveals several sig-
nificant features. For the wider runs the curves resemble the Y − shape of the
previous experiments, while increasing the confinement rate the b(D) relation
becomes less curved (decreasing α). Ultimately, for W ≃ 60 cm (Q = 1.5 ls−1

and Q = 2.0 ls−1) or for W ≃ 80 cm (Q = 2.5 ls−1) an almost linear trend
(α ≃ 1) can be observed and, following Toffolon and Crosato (2007), we can
call the resulting curve V-shaped. ù

By comparing the curves relative to different experiments we can notice
that the transition between different shapes does not depend only on the flume
width W ∗ but also on the discharge; in particular, as one may expect, the
specific discharge Q∗/W ∗ is apparently a more proper parameter to determine
the morphological effect due to network confinement. Indeed if we plot the
exponent α of the best power-law fitting as a function of the specific discharge
(figure 3.10) we can observe a descending trend which is similar for the three
data series. This monotonic trend is interrupted by some high values around
Q∗/W ∗ = 40; these points correspond to morphological transition between
alternate bars pattern and braided network and are represented by curves which
are not well interpolated with the simple power law (for example the black,
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Figure 3.9: b(D) curves of the TN3 experiments with Q = 2.0 ls−1. Different colours
indicates a different confinement width W ; The square marker at the end of each curve
indicates the formative conditions as defined by the simple uniform flow model defined
in section 3.4.

W = 40 cm curve of figure 3.9)

If we consider the entire set of flume experiments and we analyse the re-
sponse of the exponent α to varying specific discharge we obtain the plot of fig-
ure 3.11a, where we can see that the coefficient is well correlated with Q∗/W ∗

and decreases monotonically from values α > 2.5 to values α < 0.5; on the
contrary in terms of total dimensionless discharge (figure 3.12) there is not an
unique trend and highly different exponents can be found for similar values of
Q∗.

In the analysis of figure 3.11a we should distinguish between two type of
regimes. The first one occurs for Q∗/W ∗ <∼ 100 and correspond to fully
developed and relatively unconfined braided networks (which show a coefficient
α ≥ 2); the second appear for higher specific discharges and is dependent on
the reduction of available width which leads to a simpler morphology.

The plot of figure 3.11a can be useful to determine the point at which the
confinement effect becomes relevant. However it is worth to underline that for
unconfined networks, which by definition do not depend on W , the specific
discharge Q∗/W ∗ might not be the parameter which controls α; indeed the
alignment of the points we observe in the left region of figure 3.11a might
occur simply because no runs with different W are available for TN1 and TN2
experiments.

A similar plot (figure 3.11b) can be obtained by considering the discharge
per unit of wetted width, defined on the basis of the simple (and approximate)
1D model we will detail in the following sections. For the TN1 and TN2 exper-
iments this parameter is significantly correlated with α, whereas for confined
configurations is still representative of the morphological variation due to the
limited space available relatively to the water discharge. Because the parameter
Q∗/b∗ does no implicitly contain the confinement width W ∗ it might be param-
eter which describes α variation in both confined and unconfined networks.
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Figure 3.10: Exponent of the power law which is best fitting the b(D) curves of
TN3 experiments, as a function of the dimensionless specific water discharge. Colours
indicate different Q, the cyan points refer to transition networks, for which a power-law
interpolation may be inappropriate.

3.4 Elevation distribution and sediment transport

3.4.1 Introduction

The b(D) curve we defined above contains information about depth, width
and heterogeneity of the channels network, which are the ingredients crucial
for determining the bedload transport rate (e.g Paola, 1996; Nicholas, 2000;
Ferguson, 2003). Therefore the question which arises is whether we can use
this synthetic information to estimate the solid discharge.

A similar idea, but based on the cross sectional morphology rather than
a reach-scale indicator, has been proposed by Nicholas (2000) whose method
assumes that the cross-sectional geometry can be adopted to estimate the stress
distribution, to fit the Euler probability function and to estimate the local
bedload. This fitting can be highly dependent on the discharge; in order to
overcome this issue Bertoldi et al. (2009a) proposed a simple 1D model which
assumes horizontal free surface and local uniform flow at each cross-section,
bypassing the usage of a probability density function.

The hypothesis behind this method are often not satisfied locally; however
if the procedure is repeated for a number of sections covering the reach scale the
resulting average bedload is consistent with flume measurements. Indeed the
Bertoldi et al. (2009a) model is capable to take into account the spatial variabil-
ity of the hydraulics and consequently to correct the strong under-estimation
which arises by assuming a constant stress across the section.

In the present work we make a step further by considering not the distinct
cross section but the elevation distribution at the reach scale. Albeit being
a natural extension of the existing approaches, estimation of the bedload on
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(a) α as a function of the specific discharge per unit flume width W .

(b) α as a function of the specific discharge per unit wetted width b.

Figure 3.11: Exponent of the power law which is best fitting the b(D) curves of TN1,
TN2, TN3 experiments as a function of the dimensionless specific water discharge.
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Figure 3.12: Exponent of the power law which is best fitting the b(D) curves of TN1,
TN2, TN3 experiments as a function of the total dimensionless discharge.

the basis of a reach-scale average geometry such as the Average section is not
straightforward but requires discussion and validation on the basis of experi-
mental data.

3.4.2 A reach-scale bedload estimator

If we assume uniform flow conditions in the equivalent Average section we
can calculate the distribution of the hydraulic quantities; consequently we can
estimate bedload flux (as well as wetted and active width) accounting for spatial
variability of the flow over the complex morphology.

Firstly, we apply locally an uniform flow formula and integrate along the
section in order to find a stage-discharge relationship; in particular considering
dimensionless variables we write

Q∗ =

∫ b∗

0
C
√
S h∗3/2dy∗ (3.10)

where the local depth h∗ depends on the maximum depth D∗ as follows (see
figure 3.1b)

h∗(y∗) = D∗ − η∗(y∗) (3.11)

The dimensionless Chèzy coefficient can be estimated as (Engelund and Fredsoe,
1982)

C = 6 + 2.5 log

(
h∗

2.5

)

(3.12)

or alternatively, by adopting the Gauckler-Strickler formula, which can be ex-
pressed as (Strickler, 1923)

C = C0 h
∗1/6 C0 =

ks
√
g d

1/6
s

= 6.74 (3.13)
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where ks is Gauckler-Strickler coefficient.

If we numerically integrate Eq. 3.10 we obtain the D(Q) curve and conse-
quently the b(Q) relationship.

Similarly we can estimate the solid discharge by assuming that a standard
beload formula is locally valid and integrating along the section as follows

Qs∗ =

∫ b∗

0
Φ(θ) dy∗ (3.14)

where the dimensionless bedload per unit width Φ is usually (e.g. Meyer-Peter
and Müller, 1948) expressed as a function of the local Shields stress, which
depends on the flow depth through the uniform flow formula

θ =
Sh∗

∆
(3.15)

that enables to close the problem of computing the Qs(D) and Qs(Q) relation-
ships.

Numerical modelling

In order to explore the connection between the reach-scale morphology de-
scribed through the b(D) curve and the Shield stress distribution, we performed
a fixed-bed numerical simulations; in particular we used the depth-averaged hy-
drodynamic model Delft3D to simulate the hydrodynamic response of a natural
braided morphology. The setup, calibration of validation of that model for the
Rees River was performed by (Williams et al., 2013a); on the basis of this work
we can estimate of the distribution of the hydraulic parameters within the reach
for different flow conditions.

We started the simulations by supplying a small discharge and we increased
it until we reached the target Q, defined as the discharge measured at the peak
of the last flood events Q = 323 m3s−1; this peak discharge was maintained
until a steady state hydraulic configuration occurred. As a second test case we
repeated the simulation with a lower (Q = 200 m3s−1) discharge.

The most important parameters of the hydraulic simulations are reported
in table 3.2.

In order to investigate the at-a-station response to varying discharge we
also simulated the effects of a flow hydrograph ranging from a basic value (Q =
30m3s−1) to a peak flow Q = 430m3s−1. In order to avoid effects related to the
local inertia of the hydrodynamics as well as delays due to the propagation of
the flow pulse throughout the network we consider a very slow (6 m3/h) linear
growth of the discharge; in this way we obtain a response which depends only
on the instantaneous discharge and not on the actual shape of the hydrograph.
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Parameter Symbol Value

Representative sediment size d84 35.2 mm
Nikuradse roughness length ks 0.05 m
Mean grid size ≃ 2 m
Horizontal eddy viscosity νH 0.1m2s−1

Secondary currents coefficient βc 0.5
Gravitational acceleration g 9.81 ms−2

Table 3.2: Most important parameters of the numerical simulations.

Figure 3.13: Map of the Shields stress of the Rees River from the hydrodynamic
model with Q = 323 m3s−1. Only areas with θ > 0.038 are represented. Flow is from
left to right; axes are not to scale.

3.4.3 Results

The results of the two-dimensional modelling can be adopted for testing our
hypothesis that the a simple uniform-flow method applied on a representa-
tive Average section can approximately reproduce the variability of the bottom
stress in braided networks.

The map of the Shields stress for the Rees River (figure 3.13) shows that,
during the peak discharge, a relatively large area is active and a very hetero-
geneous distribution of the stress occurs, ranging from θ > 0.2 in few small
regions to θ < 0.1 within approximately the 75 % of the active area.

The comparison with the stress distribution predicted by the Average section
method, for both the peak (Q = 323 m3s−1) and a smaller (Q = 200 m3s−1)
discharge, is represented in figure 3.14, which show that the simple model is
able to capture the overall stress distribution. However these curves reveals that
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Figure 3.14: Cumulative Shields stress distributions of the Rees River reach from
the shallow water model (blue lines) and from the Average section method (red lines),
with discharge Q = 323 m3s−1 (continuous lines) and Q = 200 m3s−1 (dashed plots).
b indicates the area divided by the reach length; the θ axis has been reversed in order
to easily recognise the Average section profile.

the Average section method tends to slightly over-predict the higher stresses,
especially for the smaller discharge, which leads to an overestimate of the reach-
averaged solid discharge (table 3.3). Nevertheless, considering the simplicity of
the approach and the large uncertainties of the bedload estimate in a braided
river, we can accept this error.

Models based on the stress distribution Paola (1996); Nicholas (2000); Fer-
guson (2003) implicitly assume that the bedload is mainly longitudinal; indeed
in order to compute the flux across the sections only the normal component qsx
should be accounted rather than the absolute value |qs| which can be estimated
on the basis of the Shields stress.

Results of numerical model offers the possibility to test this hypothesis and
reveals that the assumption qsx ≃ qs leads to a relatively small (approximately
6÷ 8 %) overestimation of the reach-averaged bedload.

Observation of numerical results suggests that our simple method is able
to capture the spatial variability of the shear stress and consequently the aver-
age transport. However the depth-averaged model is still an highly simplified
representation of a braided network, especially for what concern the transport
mechanisms; this consideration claims for an analysis of the simple method on
the basis of flume experiments.

In this section we compare the average bedload transport measured during
TN1 and TN3 experiments with both (Bertoldi et al., 2009a) and the Average
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Q [m3s−1] Transport formula Qs [m3s−1] Qs D3D [m3s−1] Difference
323 Parker (1990) 0.223 0.199 −11 %
323 Meyer-Peter and Müller (1948) 0.284 0.258 −9 %
323 Wong and Parker (2006a) 0.136 0.123 −10 %
200 Parker (1990)) 0.119 0.085 −29 %
200 Meyer-Peter and Müller (1948) 0.158 0.123 −22 %
200 Wong and Parker (2006a) 0.075 0.057 −24 %

Table 3.3: Reach-averaged bedload from the Average section method and from
Delft3D hydrodynamic simulations; two values of discharges and three different trans-
port formulas have been tested.

Section method.

The results reported in figure 3.15 reveals that our method is capable to
reproduce approximately the trend observed in the laboratory, with an error
comparable with the method proposed by Bertoldi et al. (2009a); as pointed
out by the same authors this result is relevant when compared with the strong
underestimation obtained by simply considering the cross-sectional averaged
hydraulic parameters.

Similarly we can estimate the average solid discharge foe the confined gravel-
bed river reproduced in the TN3 experiments; in addition in this case we can
also compare the active and wetted width predicted by the model with the
spatially averaged values manually measured in the laboratory.

The results of figure 3.16 shows that in this case our method (as well as
the Bertoldi et al. (2009a) approach) tends to overestimate the average solid
discharge, especially adopting the Parker (1990) bedload formula; it is also clear
that this error is relatively more important for smaller values of solid discharges
(wider channels and lower discharges).

Nevertheless both the methods are able to capture the variation of the solid
discharge in a wide set of morphological condition, from an almost flat bed to
an alternate bars pattern to a highly complex braided morphology with signif-
icant fraction of dry area. If we compare the experiments with the prediction
obtained by simply applying the same transport formula in a simply a rectangu-
lar cross-section of widthW (or in other words, considering the mean hydraulic
parameters without including the lateral distribution) we obtain the result of
figure 3.16. Evidently such a prediction is not acceptable because leading to
an underestimation of more than, in the most complex morphology, can exceed
two orders of magnitudes.

At-a station variability

Bertoldi et al. (2009a) adopted their simple 1D model to explore the at-a-station
variability, namely the response to flow variations which are fast enough not to
produce significant morphological changes. However the validity of this model
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(a) Parker (1990) bedload formula.

(b) Wong and Parker (2006a) bedload formula.

Figure 3.15: Comparison between TN1 laboratory observations, the (Bertoldi et al.,
2009a) (black circles) method and the Average section method (magenta squares) in
terms of average solid discharge. The logarithmic formula (Eq.3.12) has been adopted
for the hydraulic resistance. Different filling colours represent different flume slopes.
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Figure 3.16: Comparison between TN3 laboratory observations, the Average section
method and the estimation based on cross-section averaged parameters. The Parker
(1990) formula has been adopted for bedload transport, the Engelund formula (Eq.3.12)
for the hydraulic resistance. Different colours indicates different discharges.

has not been directly tested because of the lack of data.
Similarly we can adopt the Average section method to analyse this response

and compare the results with the at-a-station variation predicted by the numer-
ical model for the Rees River as well as the inundation curves observed in the
river Tagliamento.

Figure ?? illustrates the results from the fixed-bed numerical model under
slowly increasing discharge, which allows to consider a sequence of quasi-steady
states. The response of wetted width to varying flow is predicted rather ac-
curately, whereas the bedload tends to be overestimated for lower flow. It is
worth to underline that the purpose of this analysis is to understand the in-
fluence of the reach-scale average geometry to the at-a-station response rather
than a quantitative prediction of the response to varying discharge.

If we estimate the inundation curve of a braided river during a flood event
in the hypothesis of negligible variation of the average properties of the net-
work during the event. Let us consider for examples the areas of Flagogna
and Cornino of the river Tagliamento; The two study reaches are characterised
by largely different vegetation abundance (4% and 21% of the total area re-
spectively), whereas discharge, longitudinal slope and grain size keep similar
(Welber et al., 2012). If we approximate the b(D) curve with an power law we
obtain an estimation of the wetted area at distinct locations, which comparison
with the inundation curve of the river Tagliamento is reported in figure 3.18.

3.4.4 Discussion

We have seen how the simple reach-scale curve we propose contains the most
important information needed for an approximate estimation of the wetted
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(a) Reach-averaged wetted width.

(b) Reach-averaged solid discharge.

Figure 3.17: Comparison between at-a-station response of the numerical model and
of the Average section method.

Figure 3.18: Measurements of inundated areas at Cornino and Flalogna sub-reaches
(green and red points respectively), from Welber et al. (2012), and estimations using
the analytic solution. S = 0.35%, ds = 4 cm are adopted as parameters.
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width and the sediment transport in both formative and at-a-station conditions.
Bertoldi et al. (2009a) suggested, on the basis of a simple 1D modelling

of the TN1 experiments, that the at-a-station variability is similar to the re-
sponse in formative conditions. An explanation of this behaviour comes from
the observation of the Average section of figure 3.3 which does not change dra-
matically for different discharges; for this reason moving between a single curve
gives a similar response, in terms of width and bedload, than moving between
different curves.

This is not the case of the confined network for which a variation of the
discharges produces a significant modification of the Average section; conse-
quently we expect the at-a-station and formative response to be more different
than in the unconfined case.

Our simple approach also allows for a simple understanding of the at-a-
station response of a complex river to varying hydraulic conditions. Indeed if
we consider the power-law approximation of the b(D) curve (Eq 3.16) we can
write, according to Eq. 3.3

y∗ = k∗ η∗α η∗ =

(
y∗

k∗

)1/α

(3.16)

where k∗ is the coefficient of the power law expressed in dimensionless form.
This simple expression of the bottom elevation allows for an analytical compu-
tation of the cross-sectional integrated variables.

The Gauckler-Strickler resistance formula (Eq. 3.13) allows for writing the
cross-section integral of Eq. 3.10 as

Q∗ = C0

√
S

∫ b∗

0
h∗5/3 dy∗ (3.17)

If we substitute the local depth h∗ obtained from Eq. 3.16 we have

Q∗ = C0

√
S

∫ b∗

0

[

D∗ −
(
y∗

k∗

)1/α
]5/3

dy∗ (3.18)

The solution of this integral can be expressed through the definition of the
following function

F(α, δ) =

∫ 1

0

(

1− z∗1/α
)δ
dz =

Γ(1 + α)Γ(1 + δ)

Γ(1 + α+ δ)
(3.19)

where Γ(x) is the Gamma function. The resulting discharge-stage relation reads

Q∗ = F(α, 5/3)C0 k
∗
√
S D∗

5

3
+α (3.20)

which reveals, in the case of relatively high values of the exponent α, a remark-
ably strong dependence of the discharge on the water depth.
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This reflect the well-known (e.g. Mosley, 1982; Ashmore, 2013) feature of
braided braided rivers, whose water depth increases much slowly with the dis-
charge than in a single-thread channel. This different behaviour is apparent in
Eq.3.20 where the exponent of D in a Y-shaped section is significantly bigger
than the typical 5/3 value we can find for a U-shaped channel. For instance for
α ≃ 2, as typical of relatively unconfined braided topographies, we obtain a big
exponent of D, namely

Q∗ =
9

44
k∗C0

√
S D∗11/3 (3.21)

Even more interesting, because easier to define on the basis of planimetric
measurements, is the at-a-station response of the wetted areas. If we invert
Eq. 3.20 and remember Eq 3.2 we obtain a power-law relationship between the
water discharge and the wetted width, namely

b∗ = k∗
(

Q∗

F(α) k∗ C0

√
S

)ϕ

ϕ =
3α

5 + 3α
(3.22)

which gives an estimation of how the inundation area increased with the dis-
charge in a complex morphology.

A wide range of values for the exponent ϕ have been estimated for braided
rivers. For example Mosley (1983) and Smith et al. (1996) reported low values
(ϕ < 0.5), whereas Ashmore and Sauks (1996) measured a nearly linear ϕ ≃ 1
relation.

According to Ashmore and Sauks (1996) it is unlikely that there is a univer-
sal width-discharge relationship applicable generally to braided rivers. Smith
et al. (1996) showed that the three rivers sampled in their study had sub-
stantially different width-discharge relations that could be ascribed mainly to
differences in channel pattern (braiding intensity).

From our model the b(Q) curve is strongly dependent the section shape; in-
deed the coefficient ϕ tends to be higher in complex (larger α) sections ranging,
according to Eq. 3.22) from ϕ ≃ 0 (U-shaped section) to ϕ = 1 (α→ ∞).

In order to visualise how the at-a-station response of the reach-averaged
wetted with may change in different morphological conditions let us consider
an Average section having an an arbitrary value of the constant k = k0 and call
Q0 the correspondent formative discharge; in addition let us consider two similar
section having a different k (blue and red curves of figure 3.19). For a given α
we can thus calculate on the basis of Eq. 3.22 the inundation curves of figure
3.20. As one may expect the wetted width depends on the curve coefficient k;
in particular for a given depth (for example at the bankfull conditions indicated
by the black marker) both the discharge and the width are proportional to k
which is simply scaling the curves on both axes. For higher values of α, as clear
from Eq. 3.20 ,the inundation curves becomes more linear and less affected by
variations of k.
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Figure 3.19: Test sections adopted for the analysis of the model response. For a given
α the green curve represents the reference section, whose bankfull conditions (square
marker) correspond to a discharge Q0 and a maximum depth D0. The red and blue
curves indicate wider and narrow sections characterised by the same bankfull depth.

Few information are available about the at-a-stage response of the bedload
in a braided network. Indeed the laboratory investigation usually refers to
formative condition and the only analysis available is the one proposed by
Bertoldi et al. (2009a) on the basis of the simple 1D modelling.

If we integrate Eq. 3.14 and we assume a simple bedload formula for the
local transport, we can obtain an analytical expression for the average solid
discharge.

The Shield stress computed by Eq 3.15 is proportional to the local depth,
which can be computed through Eq 3.2, and can be written as

θ =
Sh∗

∆
=
SD∗

∆
(1− z1/α) z =

y∗

kD∗α
(3.23)

and consequently and the integral of Eq. 3.14 becomes

Qs∗ = k∗D∗α

∫ 1

0
Φ(θD, z, α) dz (3.24)

In particular if we assume a bedload formula of the type

Φ = c (θ − θcr)
δ (3.25)

(e.g. Meyer-Peter and Müller, 1948; Wong and Parker, 2006a) we can express
Eq. 3.24 as

Qs∗ = k∗ c (D∗ −D∗
cr)

α+δ

(
S

∆

)δ

F(α, δ) (3.26)

which, if combined with Eq. 3.20 provides a discharge-bedload relationship for
the complex morphology.
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3.4. Elevation distribution and sediment transport

Figure 3.20: Wetted width as function of the water discharge, for distinct values
of the exponent α and the coefficient k of the Average section. The black markers
correspond to average Shields stress θ = 0.06; slope is S = 0.5%.

In order to graphically explore this relation we considered a slope S = 0.5 %
and we fixed the limit of the curves in order to have a mean Shields stress
θ = 0.06, namely

D∗
0 = D

∗
(α+ 1) =

θ

∆S
(α+ 1) (3.27)

In this way we can investigate how the bedload discharge depends on dis-
charge and the shape of the Average section; in particular in figure 3.21 we can
notice that the curves for higher α are only weakly nonlinear and does not show
a relevant threshold for sediment motion. This is much much different from the
behaviour of U-shape sections which shows a strongly nonlinear behaviour in
the region close to the critical threshold for sediment motion.

As one may imagine the Qs for a given discharge decreases with the width
of the section k; however it is interesting to notice how this effect which can
be dramatic in the case of small α is less important for complex morphologies.
This means that for a braided morphology the dependence of the transport to
variations of the Average section width may be weaker than in a single thread
for which a relatively small widening can lead to Shield stresses below the
critical value.
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Figure 3.21: Sediment flux curves for distinct values of the exponent α and the
coefficient k of the Average section. The black markers correspond to a value of the
average Shields stress θ = 0.06. The Meyer-Peter and Müller (1948) transport formula
and a slope S = 0.5% is adopted; δ indicates the exponent of the power-law which fits
the curves.
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3.5 Conclusions

In this work we presented an indicator of the reach-averaged braided morphol-
ogy which represents the portion of braidplain lying below a given elevation,
where the elevation is calculated with respect to the deepest point of each indi-
vidual cross-section. This indicator is expressed as a curve which can be taken
as representative of the reach-averaged geometry; we called therefore Average
section an equivalent compact section having exactly the same width-depth
curve.

The reach-scale geometry of a braided network is expected to respond to the
controlling conditions we identified through dimensional analysis. Specifically,
if the bed material is well-sorted and the effect of vegetation is negligible, the
morphology is expected to depend only on slope, discharge and confinement
width. The role of these parameters was assessed though flume experiment,
which enable to study the simplest case of constant (through time) and ho-
mogeneous (along the flume) conditions. Specifically, we analysed an existing
dataset of 58 experiments carried out at the hydraulic laboratory of the Trento’s
University and we supported the results with morphological data of three nat-
ural braided rivers.

Correlation between the channels depth and the flume slope occurs in the
laboratory experiments, whereas the shape of the Average section, represented
by the exponent α of the fitting power-law is significantly impacted by the
degree of confinement and ranges from α > 2 (indicating the Y-shape typical of
braided morphology) to α < 0.5 (representative of the U-shape characteristics
of single-thread channels).

The reach-scale indicator can be adopted in order to account for the spatial
distribution of the Shields stress, which is recognised to be a crucial ingredient
for the estimation of the solid discharge in a braided network. Numerical hydro-
dynamic simulations suggest that the proposed procedure is able to capture the
shear stress variability; furthermore a comparison based on the set of labora-
tory experiments with different discharges, sediment size, slope and confinement
width confirms the capability of the simple method to approximately predict
the average sediment transport rate within a wide range of morphological con-
ditions, from the nearly single-thread alternate bars pattern to fully-developed
braided networks.

This method allows for a very simple investigation of the at-a-station re-
sponse of the braided network to changing discharge. Indeed, assuming a power-
law interpolation of the curves we can compute analytically the bedload and
active width and analyse the connection between average geometry and at-a-
station response.
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3.6 List of symbols and acronyms

DEM Digital elevation model;
∗ Dimensionless quantity;
ad, bd [l] Coefficients of river stage duration curve;
b [l] Wetted width;
ba [l] Active width;
ba [l] Wetted width in formative conditions;
C [−] Dimensionless Chèzy coefficient;
C0 [−] Coefficient in the power-law formula for C;
D [l] Maximum water depth along the section;
D0 [l] Depth of the Average section corresponding to b0;
Dcr [l] Critical depth for sediment motion;
ds [l] Sediment size;
F [−] Transverse integral for the computation of Q;
G [−] Transverse integral of the bedload formula;
h [l] Local flow depth;
k [k] Coefficient of the b(D) curve;
g [lt−2] Gravity acceleration;
t [t] Time;
Q [l3t−1] Liquid discharge;
Qs [l3t−1] Solid discharge;
S [−] Slope;
Vs [l3t−1] Solid volume transported by the river;
W [l] Confinement width;
x [l] Longitudinal coordinate;
y [l] Transverse coordinate;
α [−] Exponent of the b(D) curve;
β [−] Half width to depth ratio;
γ [−] Exponent of the Qs(Q) power-law formula;
γw [Ml−2t−2] Specific weight of water;
∆ [−] Relative submerged density of sediment;
δ [−] Exponent of the power-law bedload formula;
η [l] Bottom elevation;
ρ [Ml−3] Water density;
ϕ [−] Exponent of the inundation (b(Q))curve;
Φ [−] Dimensionless bedload flux intensity;
σ [−] Grain size distribution;
θ [−] Shields parameter;
θcr [−] Critical Shields parameter;
θD [−] θ at the deepest point of the cross-section;
Ω [Mlt−3] Total stream power;
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3.7 Appendix

3.7.1 Averaging length and spatial scales of braiding

The indicator we proposed above is defined at the reach-scale, where the length
of the reach should be sufficiently large to obtain a statistically significant esti-
mation of the b(D) curve. At this point some natural question arises: “which
is this length?”, “How does it scale?” As one may image, behind these tech-
nical questions of practical relevance there is the more theoretical concept the
longitudinal scale of the braiding network.

We can have an idea of the problem by looking at how the curves change
while reducing the length of the analysis windows. If we consider a region of
length L which starts from the flume outlet we obtain, for different runs of the
TN3 experiments, the curves of figure 3.22. Apparently a 2 m-wide window
is sufficient to obtain a significant estimation of the curve; however this result
may be misleading because dependent on the portion of the flume where the
average is computed; for example if we repeat the curves of figure 3.22d by
moving upstream the L = 1 ÷ 5 windows we obtain the result of figure 3.23;
in this case the estimation obtained with a L = 5 m moving average is rather
different and reveals that this length is not sufficient for a reliable computation.

A more general picture of this problem can be obtained by considering the
variability of these curves along the flume. We can consider for example the
width of the section which correspond to D∗ = 15, reported in figure 3.24; this
signal contains important fluctuations which reflects to the spatial variability
of the braided morphology. For this reason computing the “average section” on
the basis of a single curve would lead to almost random results; a more stable
(but sill variable) b estimation is obtained by performing a moving average on
a window L = 5 m whereas a more robust result occurs if L = 10 m.

At this point a more fundamental question arises: “which is the character-
istic spatial scale of this braiding networks?”.

We considered the wetted width b(x) computed through the Bertoldi et al.
(2009a) method; the signal, reported in figures shows again an important vari-
ability whose frequency content can be studied in the Fourier domain.

Before performing this analysis it is worth to recall some useful definitions
namely the discrete Fourier transform, which reads

η̂m =
N−1∑

i=0

η(idx)e2πim/N (3.28)

and the power spectral density, which can be estimated through the so-called
periodogram

PSD
(

λ =
i

L

)

=
2

N
|η̂|2 (3.29)
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(a) Run 1. (b) Run 3.

(c) Run 4. (d) Run 5.

Figure 3.22: Average section of the TN3 experiments, computed on different windows
of length L placed at the downstream portion of the flume. Different panel refers to
different runs.

104



3.7. Appendix

Figure 3.23: Average section of the run 5 of the TN3 experiments, computed by
positioning the windows in order to avoid overlapping (except for the bigger window
L = 20 m which overlaps all the others).

Figure 3.24: Londinal profiles of b(D∗ = 15) of the TN2 experiments. The vertical
dashed lines separate different runs.

Figure 3.25: Londinal profiles of wetted width of the TN2 experiments according to
the Bertoldi et al. (2009a) method. The vertical dashed lines separate different runs.
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Figure 3.26: Fourier spectrum of the b(x) signal. Upper panel: single components,
lower panel: cumulative energy content.

where λ is the wavenumber (the number of oscillations per unit length) and
PSD represents how the variance of the signal is distributed in frequency, with
the mean of all the components representing the variance (also called the power)
of the signal.

The computation of these quantities leads the results of figure 3.26, where
we can see that the more powerful harmonics correspond to a wavelength of
≃ 9 m,

The initial three wavelength contain only a small variability which indicated
a negligible variation between the four different experiments; for the same rea-
son the higher component are associated with wavenumbers with are multiple
of 1/18 m−1, which corresponds to the channel length.

On the right part of the spectrum the small amplitude of the high modes
suggests that no rapid variation occurs or, from another point of view, that
a correlation between close sections exists. For this reason the longitudinal
resolution of the measurement is not affecting that much the statistics, indeed
what happens at relatively close sections (the dx of the TN3 is only 2.5 cm)
is highly correlated and not additional information is added if the number of
sections is increased.

This analysis allows for an global overview of the b(x) spectrum in the series
of four experiments but does not tell us anything about how the frequency
content varies between different runs and in space within each single run; this
variation can be appreciated by a combined space-frequency analysis obtained
with a wavelet transform.
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Figure 3.27: Map of the (normalised) continuous wavelet transform of the b(x) signals
of the TN3 experiments. The Morlet scaling function has been adopted; the vertical
dashed lines separate different runs.

In particular we consider the so-called Morlet wavelet which is defined as

ψ(x) = e−x2/2 cos(5x) (3.30)

which represents a damped cosine of periodicity 2π/5 ≃ 1.25.
In figure 3.27 we can see that most of the power of the signal is contained

in a region between 4 and 8 m; notice than this length represent the scale
of the wavelets and not directly the wavelength. The first Run 1 contains
clearly more variability which peaks at a slightly smaller scale, while the other
runs are more homogeneous both in terms of total energy and distribution in
wavelength. Within each experiment there are not big changes but an higher
content of smaller scales (≃ 3÷ 4 m) seems to be more important in the upper
portion of the flume.

Having an idea of which are the most relevant scales of this problem we
can face the question of how these scales changes in different conditions, and in
particular with the flume width.

In a channel with alternate bars the wavelength of the bed level fluctuations
is proportional to the width; for this reason we expect in the narrower exper-
iments of the TN3 series a length scale which increases with the channel size
W . Following this idea we want to investigate whether such a scaling is valid
also in a wider, braided network.

Some hints about this intriguing question can be obtained by analysing
the profile of the minimum elevation across the sections. In particular we can
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Figure 3.28: Cumulative spectrum of TN1 and TN3 experiments.

compute the (cumulative) Fourier spectrum for each of the 27 runs and we take
the average of the three runs with the same widthW ; In this way we obtain nine
curves which, together with the results of the TN2 experiments, are reported
as a cumulative distribution in figure 3.28. By comparing these plots we can
notice that for relatively narrow W ≤ 30 cm runs a significant fraction of
the signal variance is contained in the upper region of the spectrum (i.e. fast
spatial variability) whereas for all the other curves the smaller wavenumbers
dominates.

The spectra for W ≥ 40 cm are rather similar, which suggests that in these
wide configurations the characteristic length may not scale W . This is not
surprising because in the limit of very wide flumes we do not expect the banks
to play any role and consequently no correlation between W and the spatial
scale.

Similar observations come from the estimation of the path length determined
on the basis of the Ashmore and Church (1998) method, which enables to
determine the volume Vt transported during a time interval ∆t on the basis of
the volume of erosion Ve through the following formula

Vt = Qs (1− p) ∆t =
Ve
L
Lt (3.31)

where L is the length of the surveyed area and Lt is the mean travel distance
of the sediment grains.

Repeated measurement of the braided topography at the end of part of the
TN3 experiments enables to compute the volume of erosion as a difference of
DEMs, while the transported volume is known from weight measurements.
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Figure 3.29: Path length of the TN3 experiments, computed through the inverse
application of the Ashmore and Church (1998) method.

In particular the measured variations are in the range ∆z = 0.22 ÷ 0.46
in a time interval between 5 and 300 min chosen in proportion to the Exner
timescale in order to: a) ensure measurable changes b) limit as much as possible
the compensation of scour and deposition volumes, which causes underestima-
tion of Ve (i.e. Lindsay and Ashmore, 2002).

Considering a fixed sediment porosity p we can invert Eq. 3.31 in order to
find an estimation of LT . The results on figure 3.29 (left panel) suggest that
there is not a clear relation between L and W .

3.7.2 Sensitivity of the coefficient α to the curve extension

As we mentioned before, the upper limit of the curves has been chosen on the
basis of the wetted width computed with a simplified method which requires to
identify a representative discharge, whose choice is arbitrary.

This degree of uncertainty affect the curves extensions and consequently the
estimation of the best-fitting power law. In this section we will briefly analyse
the impact of this choice on the exponent α.

In figure 3.30 we can see how the exponent change with the maximum
depth, expressed as a ratio with the original one (Dform), in TN1 and TN2
experiments. Notice that the variation of the depth of +33 % correspond to a
much higher (≃ +100 %) increase of the liquid discharge.

If we repeat the analysis of figure 3.11 by varying the formative discharge of
±50% with respect we do not notice significant variations in the trend between
the exponent α and the specific discharge. Similar consideration arises from
the analysis of the river Taglimento sub-reaches with an increased water flow
(Q = 1500 m3s−1).
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Figure 3.30: Variability of the coefficient α with the maximum D adopted as a limit
of the curves. Only a single run for each slope (the one with lower Q) of the TN1 and
TN2 experiments is considered. The dashed line correspond to Dform, which is the
value adopted in the previous analyses.
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Chapter 4

Sediment transport and
discharge unsteadiness: a
laboratory study

4.1 Introduction

Prediction of sediment transport in braided rivers is a challenging task because
of its high spatial and temporal variability and due of difficulties to model the
morphodynamical evolution on relatively long periods of time.

Many laboratory experiments were performed in the last two decades in
order to analyse the morphological response of the braided network to different
controlling parameters (e.g. Ashmore, 1982, 1991; Egozi and Ashmore, 2008;
Bertoldi et al., 2009d). Most investigations focused on the regime conditions
attained, after an initial transitory, by flume networks subject to constant water
and sediment supply. Due to the complexity of the system, detailed morpho-
logical evolution is not predictable in the long term (e.g. Paola, 1996); however
it is possible to predict the averaged properties at the reach scale, which are ex-
pected to respond to experimental conditions (e.g. Egozi and Ashmore, 2008),
namely slope, grain size distribution and water discharge.

Similarly it is possible to study how the time-averaged sediment transport,
in the case of constant discharge and sediment supply, depends on control-
ling factors (e.g. Ashmore, 1982; Warburton and Davies, 1994; Bertoldi et al.,
2009a,d) Such outcomes provide an useful indication of bedload intensity, when
the morphology is in equilibrium with the flow conditions.

However braided rivers are subject to flow pulses and floods which are often
rapidly varying through time (e.g. Brasington et al., 2000; Van der Nat et al.,
2003), so that the equilibrium rarely occurs. It is therefore important to in-
vestigate the response of the system to varying discharge. Egozi and Ashmore
(2009) studied such a problem in terms of reach-averaged braiding indexes,
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analysing the transitory phase during which the total and active number of
channels adapts to new, different flow conditions. At present there are not
similar investigations about the response of the sediment transport rate; in-
deed the laboratory studies which considered a variable discharge (Young and
Davies, 1990; Shvidchenko and Kopaliani, 1998; Marti and Bezzola, 2006) fo-
cused on the total transport during a single or multiple flow events rather than
on the “instantaneous” (i.e. shorter than the flow variations) response of sed-
iment transport rate during the flow hydrograph. Consequently it is not clear
to what extent predictions derived by assuming bedload in equilibrium with
the instantaneous discharge are valid during natural flood events which show a
flashy nature.

Aim of the present research is to investigate the impact of unsteadiness (i.e
time variation) of the flow on sediment transport rate in braided networks. This
apparently simple task is actually challenging because: a) even in laboratory
flumes direct surveys of the local bedload throughout the flume are difficult;
b) indirect measurements such as morphological methods (i.e. Ashmore and
Church, 1998) are not sufficiently accurate for a detailed estimation of the
instantaneous sand flux at the different sections.

For this reason most of the laboratory investigations are based on transport
measurements at the flume outlet which, being not spatially averaged, shows
strong, low frequency, variability though time (Ashmore, 1988; Warburton and
Davies, 1994). If we are interested in the cumulative transport during one or
multiple flow events this is not a big issue; indeed we can simply compute the
average transport over a sufficiently long time period (i.e. longer that the time
scale of the fluctuations).

Conversely, if we want to study the detailed time evolution of bedload during
a flow hydrograph, we can filter the signal only through a moving average having
a window shorter than the flow variations. This time average does not enable
to eliminate the internally-generated bedload fluctuations, because they are
typically much longer than the flow changes.

In this work we intend to overcome this problem by introducing a statistical
approach. In particular the present strategy, which is not new but never applied
for investigating transport in braided streams, is to repeat several time the
flow hydrograph in order to construct an ensemble statistics which enables to
appreciate variations of the mean transport due to changes of discharge.

4.2 Background

Before starting the description of the experiments it is worth to clarify two
fundamental concepts, namely the unsteadiness of the transport in a complex
morphology and the stochastic nature of braided networks.
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4.2.1 Example: the role of the unsteadiness in alternate mi-
grating bars morphology

Several transport models for gravel-bed channels assumed the bedload to be
in equilibrium with the instantaneous discharge, so that an unique sediment
rate curve can be defined. However when the discharge is varying through
time significant deviations with respect to the equilibrium may cause hysteresis
effect often observed in natural gravel-bed rivers (Lee et al., 2004; Kuhnle,
1992; Humphries et al., 2012; Mao et al., 2014). Specifically, as summarised by
Humphries et al. (2012), the bedload may show a delay with respect to flow
because of a lag in the development of the bedforms, the time needed to remove
the armour layer, inertial properties of the bed and differences in mobility
between consolidated and loose bed (Neill, 1957; Griffith and Sutherland, 1977;
Bell and Sutherland, 1983; Reid et al., 1985; Jain, 1992; Plate, 1994).

In addition to these in-channel processes the river morphology often shows
macroscopic bedforms due to presence of the alternate, central bars or braiding
channels. In this case a possible approach is to forget about the local bedload
(at a given cross section) and to focus on the spatially averaged transport,
which shows relevant hysteresis effects due to the “inertia” of the morphological
adaptation to the current flow conditions.

The channel morphology in regime conditions is expected to depend on
the discharge and consequently can be treated as a dependent variable; it is
therefore possible to define and equilibrium transport rate as a function of the
discharge which does not need knowledge of the actual morphological configu-
ration.

A similar approach is valid under equilibrium conditions, which occurs when
the discharge is constant or slowly varying. However when the flow conditions
is relatively rapidly varying through time the morphology, and consequently the
transport, may significantly differ from the equilibrium with the instantaneous
flow.

The complexity of braided networks makes it difficult to predict the response
of the bedload rate during varying discharge. For this reason we prefer to start
our discussion with a simple example, namely a channel with alternate bars,
for which some theoretical considerations are possible on the basis of analytical
solutions of the two-dimensional morphodynamical models.

Several theoretical studies (see Seminara and Tubino, 1989; Seminara, 1995,
for a comprehensive review) revealed that migrating alternate bars are the
product of an instability mechanism which arises if the aspect ratio of the
channel exceeds a critical value βcr. This threshold can be determined through
a linear stability analysis, whereas the equilibrium state attained by the bars
under super-critical conditions can be described only by a nonlinear model.

The weakly nonlinear theory of Colombini et al. (1987), based on the an-
alytical solution of the two-dimensional model, enables to predict equilibrium
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amplitude, as well as temporal evolution, of the migrating alternate bars; ac-
cording to this approach the equilibrium amplitude increases with the following
parameter

ǫ =
β − βcr
βcr

(4.1)

where β is the aspect ratio and βcr depends on the flow discharge because it is
a function of the Shields stress and the relative submergence.

As the discharge increases both the Shield stress and the relative submer-
gence increases, while the aspect ratio decreases. It is easy to prove that ǫ,
and consequently the equilibrium amplitude of the bars, diminishes with the
discharge until the aspect ratio is large enough to prevent the formation of
alternate migrating bars.

The adaptation to the new flow conditions is not instantaneous but needs
time to develop; according to Tubino (1991) we can determine the evolution of
the bar height A under varying discharge from a weakly nonlinear approach,
which leads to the following equation

dA

dτ
= (1 + α1∆Q)A+ α2A

3 (4.2)

where τ is a dimensionless time, scaled with reference to the linear growth rate
of bars and ∆Q is the variation of discharge with respect to a basic state (in
this example the lower discharge).

From Eq. 4.2 we can determine the equilibrium amplitude for a given dis-
charge perturbation, namely

Ae =

√

1 + α1∆Q

α2
(4.3)

If we indicate with the underscript 0 the reference state we can write the cor-
respondent equilibrium amplitude as

A0 =

√
1

α2
(4.4)

In order to analyse the response of this model we consider a very simple flow
sequence illustrated in figure 4.2, namely a periodical variation of the discharge
between two constant values Q0 and 2Q0. As one may expect the response
depends on the duration of the flow pulses with respect to the timescale of the
bar growth.

Specifically, if the period is sufficiently long, alternate bars have time to fully
develop before any significant change of discharge. For example in figure 4.2a
we report the solution of Eq. 4.2 for a relatively long hydrograph; we can see
that the amplitude of the bars significantly varies, with an higher growth/damp
rate after the Q increase/decrease and reduces when the amplitude approaches
the equilibrium value.
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Figure 4.1: Example of hysteresis of the transport rate curve due to flow unsteadiness.
The red curve shows the response in equilibrium (i.e. constant discharge through time)
conditions. Clockwise hysteresis indicates an advance (i.e. negative lag) of the sediment
transport with respect to the water discharge.

On the opposite case if the variation are very fast there is no time for any
significant morphological change and the bars maintain (after the transitory
phase at the beginning of each cycle) a constant height which correspond to
the equilibrium amplitude for an intermediate, equivalent discharge (sometimes
called “formative”). Figure 4.2b illustrates the solution for a rather short pe-
riod; we can see that, after a transitory which depend on the initial conditions,
the oscillations in amplitude are small and approximately linear.

Once the morphological response has been found we can investigate the
impact on the unsteadiness on the bedload transport Qs.

In order to separate the effect of the discharge per-se in time and the effect of
the temporal variation of the flow, we can introduce the following decomposition

Qs = Qs0(Q)
︸ ︷︷ ︸

Equilibrium bedload

+ ∆Qs(Q,A)
︸ ︷︷ ︸

Effect of unsteadiness

(4.5)

where Qs0(Q) is the transport in equilibrium with the discharge Q (i.e. long-
term response with a constant Q) and the residual component ∆Qs depends
on the instantaneous morphology (represented by the bar height A) and the
current discharge Q.

During the rising and falling limb of the hydrograph we may have (depend-
ing on the sign of ∆Qs) a positive of negative lag of the response of the trans-
port rate to varying discharge, which leads to a counterclockwise or clockwise
hysteresis as exemplified in figure 4.1.

Equation 4.5 also highlights the two ingredients that can in general affect
the reach-averaged transport in a braided morphology, namely

1. the instantaneous discharge;
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2. the morphological condition.

An estimation of the effect of the unsteadiness (second term on the right
hand side of Eq. 4.5) is possible on the basis of the results by Francalanci
et al. (2012), who studied what they called “morphologically averaged” sedi-
ment transport and resistance. They found that the spatial heterogeneity of
the Shields stress induced by the alternate bars pattern causes, because of the
non-linear response of the bedload to stress variations, an increase of transport
rate.

Consequently, for a given discharge the average bedload increases with the
bars amplitude.

For the qualitative description of the phenomenon we do not need to deter-
mine the exact expression for ∆Qs(Q,A) but we can simply model this effect
as a linear response, namely

∆Qs = k (A−Ae(Q)) (4.6)

where k is a positive constant.
According to Eq. 4.6 the disequilibrium of the transport depends on the

difference between bars amplitude and the equilibrium value; consequently if the
discharge variations are sufficiently slow we do not expect significant deviation
with respect to Qs0 whereas for rapid changes the contribution of ∆Qs may be
important. Figure 4.3 illustrates the response of the bedload to the flow and bar
height variation of figure 4.2. In the case of relatively long period (figure 4.2a)
the instantaneous disequilibrium is important after the discharge variations but
tend to vanish as the discharge is kept constant. If the period of oscillations
is short, such as in figure , the bar amplitude and consequently the transport
are never in equilibrium because the duration of the constant discharge phase
is not sufficient to allow a full adaptation to the current flow.

This interesting theoretical outcome is valid for alternating bars channels.
and provides an example of adaptation process of river morphology to varying
discharge.

From this starting point we can move towards our main question about the
response of wider gravel-bed rivers having braided morphology. In this case the
analytic bar theory does not enable to fully explore the complex morphology and
sediment transport, which can be described only through fully nonlinear mathe-
matical models or laboratory experiments. However we expect some similarities
with the migrating bars response; indeed if the duration of the flow variations
(relative to the timescale of the braiding morphology) is small, the morphology,
and consequently the stress distribution, might be not in equilibrium. Since
the reach-averaged sediment transport depends on the morphology trough the
stress distribution (Paola, 1996; Nicholas, 2000; Ferguson, 2003; Bertoldi et al.,
2009a), the morphological disequilibrium is expected to produce, analogously
to the alternate bars case, an hysteresis of the transport rate.
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(a) “Long” hydrograph.

(b) “Short” hydrograph.

Figure 4.2: Height of the alternate bars predicted by the Tubino (1991) theory for
a channel subject to periodic variations of the water discharge between two constant
values. HI and LO indicate the high and low flow phases respectively; the dashed
line represent the equilibrium amplitude of the alternate bars; time is relative to the
timescale of the bar growth.
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(a) “Long” hydrograph.

(b) “Short” hydrograph.

Figure 4.3: Bedload transport of a channel subject to periodic variations of the water
discharge between two constant values, according to the result of figure 4.2 and to the
transport estimation of Eq. 4.6. HI and LO indicate the high and low flow phases
respectively; the dashed line represent the equilibrium transport rate; Time is relative
to the timescale of the bar growth.
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4.2.2 Variability of sediment transport rate: a fundamental
problem

It is well established that the bedload transport follows a stochastic behaviour
(Einstein, 1937). In a simple channel under uniform flow conditions the trans-
port fluctuations are induced by randomness of flow turbulence and conse-
quently are characterised by relatively small timescales. For this reason these
bedload pulsations can be easily filtered out using a time average, so that for
most practical applications we can forget about the random nature and model
the bedload transport as a deterministic function of the Shields stress.

As far as the morphological complexity increases the bedload pulsations
can act on longer timescales. Specifically, it is well established (Ashmore, 1988;
Warburton and Davies, 1994; Bertoldi et al., 2009a) that the transport rate
in braided networks shows important, low-frequency fluctuations which reflects
the complex, unpredictable morphological evolution. For example in figure 4.4
we report the solid discharge measured at the flume outlet during a laboratory
run with constant discharge; from the red and blue lines, obtained by removing
the frequency components faster than 1 h and 5 h respectively, we can see
important bedload fluctuations even on relatively long timescales.

The instantaneous bedload is not uniquely dependent on the controlling
factors such as discharge, slope, type of sediment (which in this case are kept
constant). Indeed it is expected to be different between repeated experiments
and it can be modelled, similarly to the turbulent motion within the channels,
as a random process (Paola, 1996). This random field has a complicate, and
to a large extent unknown, spatial and temporal structure which is resulting
from the dynamics of “coherent” structures which are not ejections, sweeps, or
vortical structures such as in turbulence, but bars, confluences, bifurcations,
avulsions,. . .

The statistical (for example the mean and the standard deviation) are ex-
pected to depend deterministically on the external controls. Moreover if the
channel is homogeneous and the conditions stationary, both the spatial and the
temporal averages can be adopted as a surrogate of the statistical mean, so
that they depend on the experimental conditions rather than being a random
value. This properties allows to study how the reach-averaged morphological
indexes (e.g. Egozi and Ashmore, 2008) or the time-average sediment transport
rate (e.g. Bertoldi et al., 2009a) depend on slope, discharge, grain size. The
spatial/temporal average is statistically robust if computed over a sufficiently
large interval, specifically much larger than the integral scale of the process we
are going to study.

Things are different under unsteady conditions. Indeed if the variation of
the discharge is faster than the minimum averaging time needed to filter out
the internal variability it is not possible to obtain a robust statistics using
the temporal average. This is often the case in braided rivers, as we can see

119



4.3. Method

from some simple rough calculations. Figure 4.4 shows that a 5 h average
is not sufficient to obtain a reliable transport estimate. The Trento’s flume
can be consider as a 1 : 50 model of a prototype river having d50 = 50 mm,
width 150 m and slope 1.0% (i.e. not much dissimilar to the river Sunwapta,
see section 1.5.1); since the Froude scaling implies that the temporal scale
is the square root of the length one (e.g. Young and Warburton, 1996) the
evolution through time of the prototype is

√
50 ≃ 7 times slower than in the

model. Therefore we can say that an average on a window of 5 h × 7 = 35 h
would not be sufficient to estimate the transport rate. The discharge during
typical flood event can significantly vary within few hours, much faster than the
minimum averaging time (which is significantly longer than 35 h); consequently
it is clearly impossible to remove the internal fluctuations and at the same
time maintain the temporal resolution needed to capture the effect of the flow
variations.

This poses a fundamental problem in the analysis of braided network under
unsteady conditions; indeed if we want to study the effect of relatively fast
temporal variation of the controlling conditions (such as water or sediment
supply) we cannot distinguish between that effect and the internal pulsation
which are invariably occurring in a braided system.

Due to the strong fluctuations generated by the system the result of a single
hydrograph is almost meaningless, in the sense that can be completely different
in repeated experiments. For Egozi and Ashmore (2009) this problem was not
fundamental because their analysis was focused on the morphological response
in terms of channel pattern and braiding indexes for which a spatial, reach
scale average can be computed; indeed as clear from Egozi and Ashmore (2008)
the spatial average allows for filtering out the major part of the fluctuations,
obtaining a statistics which depend on the controlling factor rather than being
unpredictable such the local values.

This is not possible for the sediment transport because at present there are
not reliable methods for the estimation of the spatial pattern of the instanta-
neous bedload throughout the channel. Consequently we can only study the
transport rate at the outlet; this signal contains significant, long-period fluctu-
ations which cannot be simply filtered out. This poses a fundamental limit to
the interpretation of the result of a single experiment.

4.3 Method

In order to overcome the fundamental limitation described above we follow a
novel methodology in the analysis of laboratory braided networks, namely a
statistical approach based on repeated experiments under identical conditions.

Constructing an ensemble statistics over a sufficiently large number of ex-
periments enables to distinguish between variations of bedload due to changing
discharge and internally-generated random fluctuations.
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Figure 4.4: Time averaged sediment output measured during the constant-discharge
run W3 EQ2.5 RW. Two different cut-off periods (1 h and 5 h) have been adopted to
filter out high-frequency oscillations.

The number of repetitions needed to build a significant statistics is not easy
to asses and is as usually the result of a balance between the need of accurate
estimates and the limited resources (time, manpower) available. We will further
discuss this point in the following.

Another important step is the choice of the discharge curve. For this pur-
pose two different approaches are possible: the more direct is to reproduce the
typical shape of a natural flood (Young and Davies, 1990; Shvidchenko and
Kopaliani, 1998; Marti and Bezzola, 2006); a second option is to adopt a simple
hydrograph, more suitable to highlight the unsteady effects in the response of
the system. In the present work we are interested in understanding changes
of sediment transport due to morphological adaptation to new flow conditions;
therefore the natural choice is a stepwise varying discharge as adopted by Egozi
and Ashmore (2009). This approach enables to clearly distinguish between bed-
load variations due to the increase of the discharge per se and those due to the
morphological adjustment to new flow conditions. In the following we consider
a hydrograph varying very quickly between two constant values (high flow and
low flow phases) such as in figure 4.6.

4.3.1 Experimental set-up

We performed two sets of experiments at the hydraulics laboratory of the Uni-
versity of Trento (see section 1.5.2).

The choice of the discharge values was based on a balance between different
needs: a) the high discharge should not be too high, in order to maintain a
relatively unconfined network when the total width of the flume is used; b) the
low discharge should be significantly different from the high flow but, at the
same time, large enough to ensure a sufficient morphological activity. Consid-

121



4.3. Method

ering that previous experiments on the same flume investigated the equilibrium
state with Q = 1.5 l/s and 2.5 l/s (Garcia Lugo, 2014) we selected these values
as the low and high discharges of the adopted stepwise hydrograph.

Similarly the slope S = 1% was adopted in order to be consistent with previ-
ous data of the same flume; this gradient ensures a relatively high stream power
without increasing too much the discharge which, according to Bertoldi et al.
(2009d), would need a much wider flume to maintain unconfined conditions.

In order to ensure a global mass balance of the flume and prevent the devel-
opment of aggradation and degradation waves due to an excess or deficit of the
sediment supply, we varied the sand feed rate with the discharge according to
the sediment rate curve derived on the basis of existing equilibrium experiments
in the same flume (Garcia Lugo (2014), see appendix 4.8.1).

Previous experiments (see Chapter 3 ) shows that a different morphological
response to varying discharge occurs in the degree of confinement of the braided
network. Within the present work we intend to investigate the transport rate in
both the relatively unconfined and confined configurations, obtained by adopt-
ing the total width the Trento’s flume (W = 2.9 m) and a reduced (W = 1 m)
width respectively; the latter was obtained in a practical and relatively quick
way by placing in the larger flume a plastic sheet, adjusted in order to form
an U-shape section whose bottom was covered by a sufficiently thick sand layer
(see figure 4.5).

Experiment W1

During the first experiment we reduced the width to W = 1 m. In this case
morphology and sediment transport can be significantly impacted by the pres-
ence of channel banks; this is true, in particular, at the high flow Q = 2.5 l/s,
whereas at low discharge Q = 1.5 l/s the network morphodynamics and bedload
transport are more similar to those observed in the wider, unconfined case.

Five constant-discharge runs were performed (see table 4.1a). Specifically,
in addition to the existing TN3 runs, we performed, for the two reference dis-
charges (1.5 l/s and 2.5 l/s) two longer runs (101 h and 39 h respectively); this
enables a more robust estimate of the equilibrium transport rate. These runs
started with a sloping planar surface or with the braided morphology result-
ing from previous experiments; during the first, transitory phase the braided
network developed, until a statistically stationary state was attained.

In order to explore the connection between the morphological changes and
the sediment transport we used the final morphology of the three TN3 exper-
iments, which was scanned with a resolution of 5 × 0.5 cm in the longitudinal
and transverse direction respectively.

Afterwards we proceeded with the stepwise-variable discharge, by repeating
26 times the hydrograph of figure 4.6

The duration of the high flow phase (2 h) was selected in order to allow the
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Figure 4.5: Picture of the flume during experiment W1 (W = 1 m). Flow is from
the camera, discharge is Q = 2.0 l/s.

Run Discharge Duration
W1 Q1.5 TN3 1.5 ls−1 52 h
W1 Q1.5 RW 1.5 ls−1 101 h
W1 Q2.0 TN3 2.0 ls−1 38 h
W1 Q2.5 TN3 2.5 ls−1 24 h
W1 Q2.5 RW 2.5 ls−1 39 h

(a) Experiment W1 (W = 1 m).

Run Discharge Duration
W3 Q2.5 RW 2.5 ls−1 72 h
W3 Q1.5 RW 1.5 ls−1 100 h
W3 Q1.8 TN2 1.8 ls−1 -

(b) Experiment W3 (W = 2.9 m).

Table 4.1: Summary of the long-lasting, constant discharge runs of the W1 and W3
experiments.
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Figure 4.6: Hydrodraph adopted during experiment W1. The red points represent
the instants of the manual surveys of wetted and active widths.

development of significant morphological changes; The discharge within each
cycle, represented in figure 4.6, was initially increased form 0.5 l/s (the mini-
mum possible value of our pumping system) to 1.5 l/s and than, after a period
of 7min, increased again to 2.5 l/s for 120 min and finally reduced to 1.5 l/s
until the end of the 350 min cycle. Each flow variation followed steps of 0.1 l/s
at intervals of 30 s. Only the last decrease was instantaneous in order to avoid
as much as possible morphological variations due to the low flows. Between
the cycles a morphologically inactive, very small flow prevented sand drying.
The first five cycles were performed only to ensure that the morphological state
is not influenced by the initial conditions but the result of the periodic flow
variations; for this reason only the lasts 21 hydrographs were adopted for the
statistical analysis.

We manually surveyed the dry and active area at 20 sections equally spaced
between x = 3m to x = 22m, where x = 0 indicates the flume entrance; we per-
formed eight measurement during six different cycles (cycles 1, 5, 9, 13, 17, 21)
at regular intervals of 30 min and 60 min for the low flow and high flow phases
respectively (see figure 4.6). For more details see section 4.8.2.

Experiment W3

In this set of experiments the width of the flume was set to W = 2.9 m, which
allows to minimise the confinement effect due to the presence of the lateral
walls.

In order to characterise the equilibrium morphology and transport rate we
firstly performed two long, constant-discharge runs (see table 4.1b). We started
from a flat, sloping bed with a small channel drawn in the middle in order to
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Figure 4.7: Picture of the flume during W3 C5 (W = 2.9 m). Flow is from the
camera, discharge is Q = 1.5 l/s.
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Figure 4.8: Liquid discharge during experiment W3. The vertical dashed lines indi-
cate interruptions of the flow needed for the laser scanning. The whole sequence was
repeated three times (plus three additional cycles), for a total of 24 cycles and 6 scans.

speed up the initial phase of braided development; a Q = 2.5 l/s was maintained
for approximately 72 hours (with few pauses needed for emptying the sediment
trap at the outlet) and followed with a 100 h period with low flow Q = 1.5 l/s.

For the non-equilibrium runs we repeated the flow cycle 24 times; we adopted
a hydrograph similar to the experiment W1 but with total duration of the cycle
of 12 h, with 8 h of high flow (Q = 2.5 l/s) and 4 h of low flow (Q = 1.5 l/s).
We chose a longer duration with respect of the W1 experiments because of re-
duced sediment transport observed (for a given discharge) for the wider flumes
(see appendix 4.8.1), which implies lower bedload intensity and probably slower
morphological evolution. The phases of flow growth and decline were formed
by 1 min-long steps of 0.1 l/s.

Differently from the W1 experiment measured the bottom topography dur-
ing the cycles. Since the laser scanner needs a dry network we periodically
stopped the flow at the end of both high and low flow phases. Specifically,
practical considerations about laboratory timetables and the periodic need to
supply new dry sand to the feeder suggested to adopt the two flow sequences
reported in figure 4.8, which was repeated three times and followed by three
additional cycles.

The dashed lines of figure 4.8 represents the instant of the topographic
survey, having a resolution of 5 × 0.5 mm in the longitudinal and transverse
direction respectively; the laser scanning covered a maximum width of 2.5 m,
so that it did not enable to survey the morphology of the external part of the
flume (20 cm for each side).

An example of the channel morphology is reported in figure 4.9.
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Figure 4.9: Morphology at the end of the end of the W3 1.5 RW. Axes are not to
scale (2 : 1 aspect ratio). Elevations in [cm] with respect to the initial slope.

Q [ls−1] W [m] Qs [gs−1] Tskip[h]
1.5 1.0 1.42 6.5
2.5 1.0 3.64 3
1.5 2.9 0.68 12
2.5 2.9 2.36 4

Table 4.2: Sediment transport rate from the equilibrium experiments of table 4.1.
Tskip indicates the initial time needed for the development of the braided network, not
considered in the computation of the averaged transport rate.

4.4 Results

In order to analyse the effect of the flow variations through time, it is important
to obtain a reliable estimate of the equilibrium transport rate; this is possible
from the long-lasting, constant-discharge runs listed in table 4.1. By eliminating
the initial transitory phase (needed for the full development of the braided
network) from each run, and computing the average transport rate, we obtained
results of table 4.2; they show a strong dependence of the sediment transport
on the water discharge, as well as a lower bedload rate in the wider, unconfined
flume. A more comprehensive analysis of the role of discharge and confinement
rate on the sediment transport under equilibrium is reported in appendix 4.8.1.

Before starting the analysis of the flow cycles, it is worth to consider that the
variability of measured bedload is not only due to transport rate fluctuations
but is also caused by additional sources of noise produced by the gauging system
(see the description of section 1.5.2). Indeed, the weight we acquire is influenced
by oscillations of the water level in the tank, as well as by electronic noise and
round-off errors introduced by the the digital signal processing. This additional
variability is mainly affecting the short timescales, so that it can be strongly
reduced by applying a time filtering. For this reason we pre-processed the
signals using a moving average with a time window of 20 min. The choice
of this time constant derives from a balance between two opposite needs: a)
eliminating as much as possible the variability due to the gauging system and
to small-scale bedload fluctuations; b) maintaining a sufficient time resolution
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Figure 4.10: Example: variability of the beload during the first three cycles of ex-
periment W1. The dashed line shows the liquid discharge.

to appreciate the temporal variations of the response.

Figure 4.10 illustrates the filtered transport rate measured during the first
three flow cycles of the W1 experiment. Different signals show some common
features, such as the peak after around t = 20 min followed by a minimum,
as well as a clear positive correlation with the water discharge. Nevertheless
the resulting signals are remarkably different, and consequently no statistically
significant information, about the bedload rate, can be retrieved from a single
flow cycle.

By considering the entire set of flow cycles we can build a statistics of the
measured transport rate. In figure 4.11, where we report the percentiles of the
21 recorded signals, we can see that median bedload rate increases approxi-
mately five times with the discharge; however the variance of the ensemble is
rather large, so that the minimum value during the high flow phase and the
maximum at low flow are comparable. If we repeat a similar analysis for the ex-
periment W3 (figure 4.12) we obtain an even larger variability of the sediment
transport rate, so that it is not rare to observe a lower transport (20 min-
averaged) at high discharge than at low flow. Another clear difference with the
experiment W1 is the lower median value of the transport rate, consistent with
the result of the equilibrium experiments of table 4.2.

After this first analysis of the statistical response, we can analyse the most
interesting quantity for our investigation, namely the ensemble mean of the
transport rate. In figure 4.13, relative to the W1 experiment, we can see that
mean bedload rate is much less oscillating than the single realisation of figure
4.11.
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Figure 4.11: Statistics of the bedload during experiment W1. A 20 min moving
average filter has been applied. The dashed line shows the liquid discharge.

Figure 4.12: Solid discharge during the 24 cycles of the run W3, after a 20 min
moving window averaging. The dashed line shows the liquid discharge.
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Figure 4.13: Mean solid discharge of the 21 cycles of the experiment W1. A 20 min
moving average filter has been applied. The blue dashed line shows the liquid discharge;
the red and magenta lines indicates the equilibrium values measured during equilibrium
runs.

The signal tends to decrease during the high flow period and to increase
during the low flow phase; however these variations within the constant dis-
charge phases are rather small relatively to the uncertainties embedded in the
estimation.

Assessing whether the observed changes are statistically significant or simply
a random outcome is not banal; indeed sediment transport can not be modelled
as a simple sequence of independent random samples, but it is the result of a
complex system, whose statistical properties are, to a large extent, unknown.
For example we do not know whether the samples are normally distributed and
which is the correlation between observations at different time instants and at
different locations in space.

Nonetheless we can derive some simple, albeit not strictly precise, considera-
tions by dividing the flow cycle in different windows and comparing the average
bedload rate between them. Specifically, we selected for each phase four equal
window having length 29 and 52 min (high and low flow respectively).

The ensemble average and the correspondent standard deviation for the
eight windows is reported in figure 4.14; it is clear that the variability within
the single window is much larger than the differences between the bars. In order
to test whether some changes are statistically significant we need to apply a
suitable test; however, since the samples are not uncorrelated we can not use
classic tests such as t-test or analysis of variance. A more reasonable hypothesis
might be that the differences between each signal are uncorrelated and normally
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(a) Transport rate during the high
flow (Q = 2.5 l/s) phase, averaged on
four 29 min-long windows.

(b) Transport rate during the low flow
(Q = 1.5 l/s) phase, averaged on four
51.5 min-long windows.

Figure 4.14: Analysis of transport during experiment W1. The error bars indicate
the standard deviation between the 21 cycles.

distributed, which enables to compare each couple of windows using a simple
t-test.

Results of table 4.3a reveal that the difference between the first (1) and
the last (4) window is significantly negative, which indicates a decrease of the
transport during that interval. However, since the hypothesis which are behind
this simple approach are not fully tested, we should consider this result as a
qualitative indication rather than a strict probabilistic outcome.

More evident, and more robust from a statistical point of view, is the com-
parison of this within-cycle transport rate with the equilibrium values measured
during equilibrium runs (dashed lines of figure 4.13). Indeed, this comparison
reveals clear differences; specifically, if we treat the equilibrium transport as an
“error-free” value and we compare each single window with a t-test we obtain
that the null hypothesis that the equilibrium and non-equilibrium values are
the same is very low, which indicates an significant increase of the bedload with
respect to the equilibrium conditions.

The transport rate recorded at low flow (table 4.3a) shows only a slight
increase during the phase with constant discharge; therefore it is not possible to
asses any statistically relevant variation. Again the difference is much more clear
with respect to the equilibrium transport measured in the long-term runs with
constant discharge Q = 1.5 l/s. Indeed also in this case the t-test shows, with
high confidence interval, that the non-equilibrium transport rate is significantly
lower.

Nevertheless it is important to remember that the equilibrium values are
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Figure 4.15: Probability that the difference between equilibrium and within-cycle
transport rate is zero, as a function of the uncertainty in the knowledge of equilibrium
bedload. The dashed line represent a 5% threshold; when the curves are below this
line we can assume a statistically significant difference.

∆Qs [gs−1] SD [gs−1] P (x > x)
1-2 −0.143 0.390 5.4%
2-3 −0.072 0.446 23.6%
3-4 −0.031 0.285 31.3%
1-4 −0.245 0.589 3.5%

(a) high flow period.

∆Qs [gs−1] SD [gs−1] P (x < x)
1-2 −0.009 0.263 41.2%
2-3 0.000 0.136 55.9%
3-4 0.026 0.102 49.8%
1-4 0.018 0.362 12.4%

(b) low flow period.

Table 4.3: Mean, standard deviation and probability associated to each difference.
In red we marked the cases for which the probability of the zero-mean hypothesis is
< 5%.

resulting from a temporal average of a relatively long-lasting, but still limited
run; therefore the assumption of “error-free” equilibrium transport rate is not
exact, so that it is worth to account also for the uncertainty of that estima-
tion. A detailed evaluation of this uncertainties is very difficult on the basis
of the present dataset; however we can make some considerations by assuming
a Gaussian distributed error with variance σ2. As expected, such uncertainty
reduces the confidence that the equilibrium and within-cycle transport rates are
different; nonetheless, as reported in figure 4.15, the result remains significant
as far as the standard deviation is less than 0.3 g/s.

The mean transport rate during the cycle is remarkably different within the
relatively unconfined experiment W3. Figure 4.16) shows the mean of the 24
repeated cycles, which contains some variations (for example the peak after two
hours of high flow) which seems to be irregular and therefore might be more
related to a residual random component than to significant oscillations of the
bedload response through time.
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Figure 4.16: Mean solid discharge of the 24 cycles of experiment W3. A 20 min
moving average filter has been applied. The blue dashed line shows the liquid discharge;
the red and magenta lines indicates the equilibrium values measured during equilibrium
runs.

(a) Transport rate during the high
flow (Q = 2.5 l/s) phase, averaged on
four 60 min-long windows.

(b) Transport rate during the low flow
(Q = 1.5 l/s) phase, averaged on four
115.5 min-long windows.

Figure 4.17: Analysis of transport during experiment W3. The error bars indicate
the standard deviation of the average.
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∆Qs [gs−1] SD [gs−1] P (|x| > |x|)
1-2 0.007 0.235 0.95%
2-3 0.264 0.804 62.9%
3-4 0.216 0.373 89.3%
1-4 0.042 0.407 12.2%

(a) High flow.

∆Qs [gs−1] SD [gs−1] P (|x| > |x|)
1-2 0.041 0.198 33.5%
2-3 0.046 0.155 17.2%
3-4 0.013 0.092 49.9%
1-4 0.010 0.312 14.%

(b) Low flow.

Table 4.4: Mean, standard deviation and probability associated to each difference.
In red we marked the cases for which the probability of the zero-mean hypothesis is
< 5%.

We can still proceed as before by testing the differences between four win-
dows. As reported in table 4.4, the only significant variation we can observe is
the increment at the beginning of the high flow stage and in particular between
first and second hour.

More interestingly, if we compare the equilibrium transport rate (dashed
line of figure 4.16) with the mean value during the cycle we do not appreciate,
differently from figure 4.13, any clear deviation induced by the flow unsteadi-
ness. The t-test confirms, as expected, that the within-cycle and the equilib-
rium transport rates comes, with an high level of significance, from the same
statistical population.

Within this section we have shown only results relative to sediment transport
rate. For some considerations about the observed of the response in terms of
wetted and active areas see appendix 4.8.2.

4.5 Discussion

We have seen that, in the confined case, the transport rate is significantly
different during varying discharge than in equilibrium conditions. This effect
can be related to the morphological changes occurring during the varying flow;
specifically we can study these variation using the reach-scale morphological
indicator we developed in Chapter 3 and we called Average section, which is
nothing than a (cumulative) distribution of elevation with respect to the lowest
point of each section.

Unfortunately due to malfunctioning of the scanning device no topographic
survey were possible during W1 experiment. Nevertheless we can compute those
curves for the bed topography measured at the end of different equilibrium
experiments, obtaining the result of figure 4.19. We can clearly see that in the
narrow (W = 1 m) channel a different distribution develops depending on the
water discharge. This is not surprising because consistent with the result of
Chapter 3, which indicates, in the case of relatively confined channels, a strong
dependence of the morphology with the specific discharge Q/W . Moreover it
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Figure 4.18: Average section during W3 experiment. Cx indicates the topography
mesured during the x-th cycle.

is something we may expect if we imagine to increase the discharge until the
aspect ratio becomes favourable for the development of alternate bars, which
would lead to completely different morphological distributions with respect to
the complex braided network which develops for relatively low flows.

Variations of the morphological configuration may explain the reason of
the overshooting we observe. Indeed after the increase of the discharge the
morphology needs time to adapt to the new flow condition and, during the
transitory period, the braided network and its transport rate are not in equi-
librium. This it totally analogous to the process we described, for the case of
migrating alternate bars, in section 4.2.1; indeed in that case the disequilibrium
of the morphology due to relatively fast variations of the water discharge was
causing an excess or deficit of the bedload rate.

More challenging is to understand the reason why the non-equilibrium re-
sponse is overshooting and undershooting during positive and negative variation
of the discharge respectively (clockwise hysteresis of the transport rate such as
in figure 4.1). A possible interpretation comes from the analysis the hypsomet-
ric curves of the three equilibrium W1 runs (figure 4.20), which represent the
portion of the bed which lies below a given elevation η with respect to the initial
slope. It is clear that passing from lower to higher discharges induces scour of
the deepest areas and deposition over the more elevated zones; since the global
mass balance is in equilibrium the two effects compensates in order to give a
zero net variation; however this transfer of mass might enhance the transport
and cause the observed overshooting. Conversely the opposite transition from
Q = 2.5 l/s to Q = 1.5 l/s produces a flattening of the morphology (filling of
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Figure 4.19: Average section during different constant discharge runs, both in the
confined (W1 series) and unconfined (W3 experiment) case.

the deepest areas and erosion of the more elevated regions) which might involve
only a local transfer of mass, thus producing a lower transport. Unfortunately
the absence of detailed information about morphological changes through time
does not enable to investigate more deeply the mechanism responsible of the
transport hysteresis.

Nonetheless, the connection between the reach-scale morphological varia-
tions and the unsteadiness of the transport rate is supported also by the anal-
ysis of the relatively unconfined W3 experiments. Our observations of Chapter
3 suggest that the morphology of a free, unconfined network is less affected
by the formative discharge than in the confined case. This is confirmed by
the analysis of the morphological variation throughout the W3 experiments:
indeed the curves of figure 4.19 are largely independent of the discharge for the
unconfined case W3; this means that, in spite of significant re-arrangement of
the channel network, the reach scale statistical properties are not significantly
flow-dependent. Consequently it is expected that the sediment transport rate
quickly adapt to flow variation because it does not need significant morpho-
logical adjustment which would require a long time to develop. This is also
consistent with the results of Bertoldi et al. (2009a), which suggested that the
at-a-station response of the transport is similar to the response in formative con-
ditions. Those arguments explains the mean bedload rate of the 24 repeated
cycle, which shows a rapid adaptation to quasi-equilibrium conditions.

A possible interpretation of this phenomenon is that an unconfined braided
network can react to flow variations by adjusting not only the specific values of
discharge, stress and transport (such as a confined network or a single-thread
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Figure 4.20: Distribution of elevation during different equilibrium runs of the W1
(confined) experiment. Arrows indicate the changes of the equilibrium distribution
with increasing discharge.

channel) but also by increasing the width; this is probably causing a more gentle
response of the transport and, more generally, a higher resilience to varying
conditions.

Natural flood events do never follow a stepwise variation such as the hydro-
graph we analysed. However on the basis of the present results we can infer that
the expected transport during a “real” flood event is larger during the rising
limb and lower (for the same discharge) during the flow decay. The effect, which
is rather limited within our experiments might be more important in natural
braided rivers; indeed they often show not only fast variations of the flow but
also a very wide range of morphologically active discharges, much wider than
the 2.5/1.5 ratio we explored within this work. For example the Rees River
(see Chapter 2 ) shows significant reworking with remarkably small flow pulses
(return period of less than 1 month), approximately one order of magnitude
lower than the annual peak. These great discharge variations are expected to
cause a larger morphological disequilibrium and consequently a more important
hysteresis of the transport rate with respect to our laboratory observations.

This set of experiments also does not enable to fully investigate the effect of
different confinement rates. However we know, from the results of Chapter 3,
that the degree of confinement probably depends the unit discharge Q/W , so
that the important parameter is probably the width relative to the discharge;
for example the experiment W3, which is relatively unconfined for Q = 2.5 l/s is
expected to be affected by the confinement for higher discharges (larger Q/W ),
which would therefore lead to significant hysteresis.
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It is worth to underline that the present analysis is limited to well-sorted
bed material. Indeed in a natural gravel-bed river the heterogeneity of the grain
size can induce phenomena of selective transport, changes of the bed texture
and armouring effects which may significantly affect the response of the braided
network to the flow variations (e.g. Hassan et al., 2006).

Within the present analysis we assume that the propagation of the discharge
variations along the flume is almost instantaneous. Indeed in the Trento’s flume
experiments the time required for a flow pulse to reach the flume outlet was of
the order of 2 ÷ 3 min, so that sufficiently small to neglect the delay and the
variations of the hydrograph shape between the different sections. However,
for longer channels and for shorter duration of the hydrograph, a significant
delay and change of the flow curve may occur (in particular a decrease of the
peak discharge due to the lamination effect); in this case attention should be
paid to treat the problem as spatially homogeneous and to assume that the
measurements at the outlet is representative of the transport rate throughout
the braided network.

Finally it is worth to clarify the role of the sediment supply in the braided
network morphodynamics and consequently on the sediment flux at the flume
outlet. Indeed, since we are not recirculating the sediment but independently
fixing a feed rate, it is not possible to ensure an exact mass balance for two
reasons:

• It is not possible to predict the fluctuation of the bedload.

• Even the response in terms of mean bedload was unknown before the
analysis of the experiment.

Therefore we adjusted the sand supply on the basis of the mean values measured
during the constant-discharge experiment, and afterwards we checked that a
long-term mass balance is maintained.

You may argue that in this way we may introduce periods of aggradation
or degradation which may affect the resulting transport rate. However, as we
will see in Chapter 6 (Redolfi and Tubino, 2014), any downstream propagation
of such a perturbation would require a very long time; we expect consequently
that any effect due to fluctuation of the sand supply will produce only a local
effect, similarly to the “boundary layer” observed by Wong and Parker (2006b)
during cycles of varying discharge and constant sediment feed rate. Moreover
visual inspection and analysis of the topographic data reveals that no significant
aggradation nor degradation occurs even in the upper portion of the flume.

Another potential problem we can not a priori exclude, is that the first
cycles might be affected by the initial conditions, so that the cycles might be
not statistically identical because of the presence of a long-term transitory.
Nevertheless, the morphological response represented in figure 4.18 does not
show any relevant long-term trend; this is confirmed in terms of transport by
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Figure 4.21: Average during the high flow phase of the different cycles. The green
line indicates the linear trend.

the result of figure 4.21, where we report the mean transport between different
cycles and its linear interpolation.

4.6 Conclusions

Within this work we tackled for the first time the question of the effect of the
discharge unsteadiness on the sediment transport rate in a braided network.
We studied the problem using a laboratory-scale physical model, which enables
to control the water discharge and to measure the sediment transport at the
flume outlet.

It is well established that in a braided network the transport rate at a given
section (as the flume outlet) shows great variability even in an experiment with
constant controlling conditions; this represents a fundamental limitation when
studying the effect of changing discharge because these fluctuations do not en-
able to distinguish between the response of the mean bedload and the stochastic
component. Indeed the timescale of the externally driven flow variations is short
if compared with the timescale of the internally generated fluctuations, so that
a simple filter like time averaging does not allow to remove this “noise” without
hiding the effect of unsteady flow. In order to overcome this issue we adopted
a novel methodology in the analysis of laboratory braided networks based on
a statistical approach; in particular we repeated several time identical simple
hydrographs, in order to determine a mean, statistical response of the system.
The ensemble mean contains much less variability and, if the number of repeti-
tions is sufficiently large, is expected to depend on the external controls, namely
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shape, magnitude and duration of the flow hydrograph.
The flume observations reveal a different response depending on the degree

of confinement of the braided network. When the river is significantly confined
we notice a response of the transport rate to increasing discharge, which ex-
ceeds the equilibrium value (overshooting) whereas a decrease of the discharge
produce with a strong decrease of the transport rate, which falls below the long-
term equilibrium (undershooting). This short-term response is followed by a
phase of gradual adaptation towards the long-term equilibrium conditions. As
a consequence of this non-equilibrium response we expect a clockwise hysteresis
whose importance depends on the rapidity of the flow variations.

The response to changing flow is significantly different for the experiments
with wider, relatively unconfined braided networks, when the transport rate
due to the flow unsteadiness seems to rapidly adapt to the new equilibrium
conditions.

A possible interpretation of this behaviour comes from the analysis of the
morphological newtwork response to the varying flow, measured through dis-
tributions of elevation at the reach scale. For relatively confined braided net-
works, such a distributions changes significantly with the discharge. Since these
changes are not instantaneous but needs time to fully develop, there is a tran-
sitory phase when transport rate is different from the long-term equilibrium
value.

This is not the case for relatively free braided networks, which does not
show any significant variation of bed elevation distributions throughout the
run; this suggest the absence of relevant morphological adjustment to the new
flow conditions. Consequently the effect of unsteadiness on the transport is
weak and not detectable in our observations, and therefore do not undergo any
significant morphological adjustment to the new conditions.

Within the present work the limited number of experiments does not enable
to quantify how the magnitude of the overshooting effect and the temporal scale
of the adaptation to equilibrium conditions depend on the discharge and on the
confinement rate. In addition our analysis is limited to well-sorted sediment
and to very simplified, artificial hydrographs. For these reasons further investi-
gations are needed to fully explore the problem and to give more insight to the
morphodynamical processes which leads to the observed hysteresis.

4.7 List of symbols

Symbols

∗ Dimensionless quantity;
A [l] Amplitude of the alternate bars;
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b [l] Wetted width;
ba [l] Active width;
g [lt−2] Gravitational acceleration;
D [l] Water depth across the section;
d50 [l] Median grain size;
dx [l] Longitudinal resolution of the laser scan;
dy [l] Transverse resolution of the laser scan;
g [lt−2] Gravitational acceleration;
t [t] Time;
τ [−] Time scaled with the linear growth rate of alternate bars;
Q [l3t−1] Water discharge;
Qs [l3t−1] Solid discharge;
W [l] Flume width;
x [l] Longitudinal coordinate;
y [l] Transverse coordinate;
∆ [−] Relative submerged density of sediment;
β [−] Aspect ratio of the channel;
βcr [−] Critical aspect ratio for the formation of alternate bars;
∆Qs [l3t−1] Component of transport due to flow unsteadiness;
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4.8 Appendices

4.8.1 Equilibrium response of braided network with different
confinement width

In this section we analyse the response of the braided network to varying flow
and confinement width in equilibrium conditions, which is needed as a starting
point to understand the braided morphodynamics during unsteady flow.

Most of the measurements reported here comes from the experimental work
of Garcia Lugo (2014), which provide useful information about equilibrium
transport, active and wetted area for different discharges and confinement
width. Therefore this part does not represent a result of the present study
but a collocation of the new equilibrium experiment in a pre-existing dataset.

The experiments of Garcia Lugo (2014) have been carried out using the
same experimental setup we adopted, in particular same flume facility with
equal slope and sediment size. A total of 27 runs were performed with three
different discharges (Q = 1.5, 2.0, 2.5 l/s) and nine different confinement width
in the range W = 0.15÷ 1.5 m.

In general we can assume that the averaged bedload transport Qs and the
active and wetted width (ba and b respectively) depend on the external controls;
in particular for the case of an homogeneous channel with well-sorted sediment
the statistical properties are expected to be function of the sediment calibre
and density, the water density, the gravity acceleration, the channel width and
slope; consequently if we consider the π-theorem we can write in dimensionless
form

{Qs∗, b∗, b∗a} = fct (Q∗, S∗,W ∗,∆) (4.7)

where ∆ is the relative submerged weight of the sediment, fct indicates a generic
function and we defined the following dimensionless widths

b∗ =
b

ds
b∗a =

ba
ds

W ∗ =
W

ds
(4.8)

whereas, similarly to Bertoldi et al. (2009a), we made the discharge dimension-
less as follows

Q∗ =
Q

√

gd5s
Qs∗ =

Qs
√

g∆d5s
(4.9)

where g is the gravitational acceleration and ds the (nearly uniform) grain size.
For a given slope and sediment density we can recombine the parameters of

Eq. 4.7 in order to write
{
Qs∗

W ∗
,
b∗

W ∗
,
b∗a
W ∗

}

= fct

(
Q∗

W ∗
, Q∗

)

(4.10)

following the idea that a linkage exists between the unit (per unit width) dis-
charges (Bertoldi et al., 2009a) we can imagine that the role of Q∗ it is weaker
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Figure 4.22: Solid discharge during equilibrium runs in different conditions of dis-
charge and flume width (TN3 (Garcia Lugo, 2014) and present experiments). Different
colours correspond to different discharges. the black line represents the log-linear fit-
ting.

than the impact of Q∗/W ∗. Indeed from the experimental observations we
report in figure 4.22 is seems that that a functional relation between the unit
discharge and transport approximately holds; this dependence can be expressed
through a power law of exponent 1.54 (black line of figure 4.22).

The scatter of the data is probably dependent on both a residual content
of randomness (due to the limited duration of the equilibrium run) and the
role of the factors we ignored, and in particular total discharge Q∗. Indeed
the experiment with the highest Q∗ show a transport rate which is on average
11 % larger than the prediction of power-law approximation, whereas points
with the lowest Q∗ are 11 % smaller than the fitting curve; this indicates that
the parameter Q∗/W ∗ does not explain the whole variability of the specific
transport but a small dependence on the total discharge Q∗ still remains.

The behaviour of the wetted and active width is reported in figure 4.22.
We can see that both the series depend on the specific discharge and reach a
saturation (i.e 100 % of the available area) for sufficiently high values of Q∗/W .

4.8.2 Analysis of active and dry area during the experiment
W1

In this section we analyse the measurements of wetted and active area we per-
formed during six different cycles of the experiment W1. The objective is to
determine whether there are significant variations within phases of constant
discharge, which may help the interpretation of the observed mean response of
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Figure 4.23: Mean active (asterisk marker) and wetted (square markers) width during
equilibrium run in different conditions of discharge and flume width. Red points: TN3
experiments (Garcia Lugo, 2014), blue points: present (RW) experiments.

the bedload. As a secondary aim we intend to check whether repeated mea-
surements throughout the flume enable to retrieve some information about the
spatial and variability of the active and wetted width.

As we mentioned before for cycles 1, 5, 9, 13, 17, 21 we surveyed eight times
(see figure 4.6) at regular intervals of 30 min and 60 min (high and low phases
respectively) the entire length of the flume, manually measuring the channels
at 20 sections having a regular 1 m spacing.

The active width was defined as the portion of the section in which some
gravel movements can be noticed within an interval of few seconds. Probably
more difficult to define, and consequently more inclined to personal interpre-
tation, is the measurement of the wetted area; indeed a significant fraction of
the bed is covered by a thin layer of water which can not be straightforwardly
classified. In order to reduce as much as possible the degree of subjectivity we
decided to account as dry only the bars where most of the grains were emerging
whereas we classified as wet the areas covered by a thin water film; in spite of
that some measures may be affected by errors and dependent upon the opera-
tor and environmental factors such as the conditions of illumination. In order
to speed up this operation each of the two people surveyed half of the flume,
exchanging their role for each time in order to avoid biases due to the personal
interpretation of the above definition.

According to Egozi and Ashmore (2008) an estimation of the braiding index
with a standard deviation of ±20% can be obtained by considering a reach
which is approximately ten times longer than the average wetted width. In the
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Figure 4.24: Spatial and ensemble average of the active and wetted width during the
cycle. Red and green colours indicated high and low discharge respectively.

present case the standard deviation of the error is lower (of the order of 2÷4%)
probably because the channel is significantly longer (approximately 25÷ 30%)
but also because the width is an indicator less variable than the channel count
index.

The changes during the cycle of the ensemble average (figure 4.24) shows as
expected a strong variation with the discharge; in particular the active width
changes approximately from 55% to 35%.

The variations within a phase of constant discharge are more difficult to
detect and to interpret; the t-testing of the differences between the surveys 1-4
and 5-8 of figure 4.24 reveals the following statistically significant changes

• An increase of the active width (p = 4.5%) between the 1st and 4th survey
during the high flow period (see table 4.6a)

• A decrease of the wetted width (p = 1.9%) between the 3rd and 4th
survey during the high flow period (table 4.7a)

• An increase the wetted width (p = 3.2%) between the 1rd and 4th survey
during the low flow period (table 4.7b)

From this first results it seems that the wetted area follows the trend of the
sediment transport, whereas the active width, at least during the high flow,
tends to vary in the opposite way. However the small number (six) of available
samples and the uncertainties related to the assumption of independent and
normally distributed samples which is behind the t-test makes these findings
relatively weak.

It is also interesting to have a look to the spatial variations of active and
wetted width reported in figures 4.25 and 4.26; we immediately notice that
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∆ba [cm] SD [cm] P (|x| > |x|)
1-2 2.1 3.3 17.6
2-3 −0.6 4.3 73.2%
3-4 0.9 2.0 33.8%
1-4 2.4 2.2 4.5%

(a) High flow.

∆ba [cm] SD [cm] P (|x| > |x|)
1-2 3.3 3.5 6.7%
2-3 −1.0 2.4 34.0%
3-4 −0.8 4.9 72.5%
1-4 1.5 2.7 23.0%

(b) Low flow.

Table 4.6: Mean, standard deviation and probability associated to each difference.
In red we marked the cases for which the probability of the zero-mean hypothesis is
< 5%.

∆b [cm] SD [cm] P (|x| > |x|)
1-2 0.1 1.3 81.8
2-3 0.2 1.7 79.6%
3-4 −1.6 1.2 1.9%
1-4 −1.3 1.4 7.5%

(a) High flow.

∆b [cm] SD [cm] P (|x| > |x|)
1-2 0.1 4.1 94.3%
2-3 2.6 2.6 6.2%
3-4 1.5 2.5 21.8%
1-4 4.1 3.3 3.2%

(b) Low flow.

Table 4.7: Mean, standard deviation and probability associated to each difference.
In red we marked the cases for which the probability of the zero-mean hypothesis is
< 5%.

some sections show a remarkably different (in this case higher) both active and
wetted width with respect to the neighbour cross-section. For example in figure
4.27 we can notice that, throughout the whole series of surveys the section 11
tends to have (during the high flow period) a lower wetted and active width
with respect to section 10; a similar result, albeit less strong, can be obtained
by comparing sections 3 and 4. This observation suggest that a persistence of
the network in space may exist in terms of width; however the limited dataset
available does not allow to deeply explore this interesting behaviour.
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(a) High flow. (b) High flow.

Figure 4.25: Ensemble mean of the wetted width at different locations. Error bars
indicate the standard deviation of the single (6× 4 = 24) measurements.

(a) High flow. (b) High flow.

Figure 4.26: Ensemble mean of the active width at different locations. Error bars
indicate the standard deviation of the single (6× 4 = 24) measurements.
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Figure 4.27: Difference of wetted and active width between sections 10 and 11,
repeatedly measured during the high flow phase of different cycles.
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Chapter 5

A diffusive 1D model for the
morphological response to
varying sediment supply

5.1 Introduction

Braided rivers are often heavily impacted by human activities such as gravel
mining, embankments, hydropower schemes, which can compromise the mor-
phological and an ecological functionality (Rinaldi et al., 2005, e.g.). In particu-
lar many braided rivers experienced degradation often associated with decreas-
ing of the braiding index and narrowing of the active corridor; in some cases a
dramatic change of river morphology from multi-thread to single channel was
observed (Gurnell et al., 2009; Liebault et al., 2012).

Similar processes can be seen also at laboratory scale where reduced sedi-
ment availability produces morphological changes and often a complete modifi-
cation of the river pattern (Germanoski and Schumm, 1993; Marti and Bezzola,
2006).

In the case of single-thread river the 1D model can be approximated, under
the hypothesis of locally uniform flow, with a simple diffusive scheme which
in some cases can be solved even analytically, providing useful insight on the
behaviour of the system (e.g Vreugdenhil and de Vries, 1973; Jaramillo and
Jain, 1984; Wong and Parker, 2006b).

The above assumption is acceptable only if the longitudinal variations are
relatively smooth, as pointed out by Ribberink and Van der Sande (1984) on
the basis of the solution of the more complete linear hyperbolic model. Their
criterion can reformulated as follows

∣
∣
∣
∣

D

SL

(
1− Fr2

)
∣
∣
∣
∣
≪ 1 (5.1)

where D is the water depth, S the slope, Fr the Froude number and L the

149



5.1. Introduction

length scale of the longitudinal variations. It is clear that in the case low-depth
and high slope channels the length scale of the adjustment to the uniform flow L
is relatively short, especially if the Froude number is close to the critical value;
these conditions are more common in gravel bed rivers, for which the simple
diffusive model can be adopted in order to predict the morphological evolution
due to variations of sediment supply, discharge or perturbation of the bed level
(e.g. Lisle et al. (1997); Wong and Parker (2006b)).

If the previous condition (Eq. 5.1) is not satisfied the solution of the com-
plete hyperbolic model is required; the linear version, which can be solved
analytically (Gill, 1988), has been adopted (Zhang and Kahawita, 1990) to re-
produce the experimental results in aggrading laboratory channels (Soni et al.,
1980).

In single-tread channels the long term adaptation of the bed profile to a
variable sediment input mainly results in a slope adjustment able to accomodate
the required transport capacity. However, in the case of a poorly sorted gravel
bed, the development of an armouring layer during degradation can induce
a reduction of sediment transport even without significant variations of slope
(Lisle and Church, 2002; Madey et al., 2009; Pryor et al., 2011).

In addition a braided river has a supplementary way to adjust the sediment
transport through the variation of the network morphology. Indeed the bedload
of a braided river is, for given hydraulic conditions, highly dependent on the
complexity of the network (Paola, 1996; Ferguson, 2003; Bertoldi et al., 2009a);
for this reason different transport rates are possible with the same gradient and
bedload formulas derived for equilibrium braided networks may be not applica-
ble. Our hypothesis, based on experimental observations, is that this effect is
only temporary and the river eventually reaches the equilibrium conditions. In
this case, we can derive a simple diffusive model for predicting the long term
evolution of the bed level profile.

Both the diffusive and the hyperbolic model can be solved, in the case of rel-
atively small variation, assuming a linear approximation; however in some cases
this assumption may be rather inaccurate (Jaramillo and Jain, 1984; Zhang and
Kahawita, 1987). This is because if the flow in a single-thread channel is close
to the critical Shields stress condition the bedload depends relatively strongly
on slope variation. In the case of a braided river the wide distribution of the
Shields stress, as well as the variations of the active width cause a more smooth
dependence of the sediment transport with the stream power, which leads to
a significant transport even at low-flow conditions (see Bertoldi et al., 2009a).
For this reason the model can be linearized and analytically solved and, if the
magnitude of the variations is relatively small, the result furnishes a rather
accurate approximation.
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5.1.1 The diffusive model

Many laboratory investigations have focused on the analysis of the sediment
transport in braided rivers. The sediment is either recirculated or adjusted
in order to ensure a global sediment balance; as a consequence, after a tran-
sitory phase during which the braided network develops, the system attains
a condition of dynamical equilibrium, in which the statistical properties keep
constant.

In this situation the mean solid discharge can be estimated as a temporal
average calculated on a sufficiently long period of time and the slope can be
measured as a spatial average along the entire flume.

For a given uniform bed material we can assume the general expression

qs =
√

g∆d3s F (Q,S,W ) (5.2)

where qs, ∆ and ds are the specific solid discharge, the relative submerged
weight and the grain size respectively and F is a function of the flume width
W , the reach-averaged slope S and the water discharge Q.

The main assumption of the diffusive model is that, considering S as the
local slope and qs as the local sediment transport, the same formula is valid also
during aggradation or incision phases. This hypothesis is not straightforward
but requires some discussion.

First of all the definition of the local quantities in a braided river is not
immediate because of the relevant fluctuations which appear on relatively long
spatial and temporal scales.

Secondly the assumption of a sediment transport which is locally in equilib-
rium is not fulfilled in general. Indeed the transport in a braided river does not
depend only on the gradient but also on the spatial distribution of the stress,
which in turn depends on the river morphology. Since after rapid variations of
the bed elevation the morphology is clearly not in equilibrium with the local
slope we expect the same non-equilibrium also for the sediment transport.

Nevertheless, as we will see in the following, this effect seems to be transi-
tional and in the long term the morphology adapts to the new transport.

The one-dimensional (cross-section averaged) Exner equation reads

∂η

∂t
− ∂qs

∂x
= 0 (5.3)

where η is the mean bottom elevation and x the longitudinal coordinate. If we
substitute Eq. 5.2 into the Exner Eq. 5.3 we obtain the following parabolic
model

∂η

∂t
− k

∂2η

∂x2
= 0 (5.4)

whose diffusion coefficient can be expressed as

k =
F0FS

S0

√

g∆d3s
(1− p)

FS :=
S0
F0

∂F
∂S

(5.5)
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where S0 is the reference slope, p the sediment porosity and F0 = F(S0) repre-
sents the reference bedload. Notice that, being F(S) a nonlinear function, FS

and k are not constants but depend on the local slope S.

If we define T , L and H = S0L as the time, longitudinal (x) and vertical (η)
scales respectively we can express the diffusion Eq. 5.4 is dimensionless form
as

∂η∗

∂t∗
− k∗

∂2η∗

∂x∗2
= 0 k∗ = k

T

L2
(5.6)

From the previous equation the following ratio between the horizontal and
temporal timescales arises

T = L2 S0
F0FS(S0)

1− p
√

g∆d3s
(5.7)

which leads to k∗(S0) = 1.

The spatial scale L depends on the process we want to study. If we are
interested in the evolution of the entire channel we can chose L = Lc, where Lc

is the channel length.

Analysis of the model

Let us consider a channel of length Lc with fixed elevation downstream and
constant water and sediment supply. In the long-term we expect a braided
network in a dynamical equilibrium, having all the statistical properties con-
stant in space and time. In this condition the slope is constant, so that the bed
elevation profile can be expressed as

η∗0 = −(x∗ − L∗
c) (5.8)

where the subscript 0 indicates the initial reference state.

If we suddenly decrease the sediment supply the evolution of the system can
be predicted by the diffusive model after the definition of a suitable formula-
tion for the transport function. Different authors (Ashmore, 1988; Young and
Davies, 1990; Bertoldi et al., 2009a) proposed empirical formulas based on the
stream power. Regression on the data from a series of 27 equilibrium experi-
ment with Q = 1.5÷ 2.5 l/s and W = 0.15÷ 1.5 m performed in the Trento’s
flume (Garcia Lugo et al., 2013) suggests the following relation between specific
liquid and solid discharge

qs ∝ (q S)γ γ = 1.6 (5.9)

where q = Q/W is the specific discharge.

Since the experiments do not explore the different slopes we have to rely on
the assumption that the stream power is the important quantity which affects
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the transport. However due to the lack of direct investigations we must consider
the exponent γ only as approximated value.

We can compare the linear and nonlinear model by solving numerically the
diffusive equation through a finite differences scheme. The result, expressed in
terms of variation of elevation with respect to the initial state (denoted with the
subscript 1) is reported in figure 5.1. This analysis reveals that, if the variations
of the sediment supply are of the order of ±30 %, differences between the linear
and the complete model are small and practically negligible.

This is often the case because according to 5.9 a decrease of the sediment
supply of −50 % will eventually lead to a slope with is 35 % lower than the
initial gradient which is rather high if compared with the variations we are
usually interested in.

A comparison with the case of a single-thread gravel-bed channel reveals
that, for the same variation of the long-terms equilibrium slope the nonlinear
effects can be significantly more important (see figure 5.2). This is not sur-
prising, because of the strong non-linearity of the bedload transport formula,
especially when the Shields stress is close to the critical threshold.

Figure 5.1: Comparison between the linear and the nonlinear solution (continuous
and dashed lines respectively) after a 30 % reduction of the sediment supply from an
initial condition S0 = 1%. An exponent γ = 1.6 has been adopted.

If we consider the linearized (k∗ = const = 1) version of the model we can
write the diffusion equation 5.6 directly in terms of the variations with respect
to the initial state

∂η∗1
∂t∗

− ∂2η∗1
∂x∗2

= 0 (5.10)

which can be solved analytically for different boundary conditions, included
stepwise modification of the sediment supply (sediment decrease or augmenta-
tion) and/or of the downstream bottom elevation (base-level rising or lowering).

It is important to notice that according to Eq. 5.7 the temporal scale of the
variations is proportional to the square of its length; this means that the time
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Figure 5.2: Comparison between the linear and the nonlinear solution (continuous
and dashed lines respectively) after a reduction of the sediment supply which will
produce the same long-term profile of figure 5.1 for the case of a single-thread channel.
The Parker (1990) transport formula with an initial Shields stress θ0 = 0.06 has been
adopted.

needed for any change increases quadratically with the distance.
The sediment transport at the downstream boundary of the flume depends

on the time with respect to the timescale T , which is proportional to the square
of the domain length Lc.

5.1.2 The hyperbolic model

The validity of a flux-gradient relation in a gravel-bed river is limited by other
effects which can significantly affect the transport capacity, including variations
of channel morphology, roughness and bed surface texture. Among these the
adjustment of the braided morphology is, in the case of a poorly-sorted bed
material, the most important factor, which affects the transport during aggra-
dation and degradation; this effect is expected to be increasingly relevant when
the variations of the bed elevation are relatively fast if compared with the time
needed by the braided network to approach an equilibrium morphology.

From these considerations two important questions arises:
• Which are the spatial and temporal scales at which the non-equilibrium

of the morphology plays an important role?
• What is the response of the bed elevation profile if the variations are
relatively fast?

In order to address these questions we have built a simple linear model in
which we consider an additional contribution to the solid discharge due the non-
equilibrium of the braided morphology, which is assumed to be proportional to
the aggradation/erosion speed

∆qs = −
√

g∆d3s ã
∂η∗

∂t̃
(5.11)
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where t̃ represents the time divided by the Exner timescale, which reads

TE =
HW (1− p)

F0

√

g∆d3s
(5.12)

This choice comes from the assumption that the time required for the forma-
tion of an equilibrium morphology is given by the ratio between the volume
which has to be moved and the sediment transport, where the previous can be
estimated at the product of a vertical scale H and an horizontal scale which
is assumed to be proportional to the width W . Further investigation would be
necessary to asses whether or not such scaling is valid; however what is really
important in our discussion is that for a given configuration the increment of
∆qs, depends only on the incision rate.

Remembering Eq. 5.7 we can calculate the following relation between the
different dimensionless times

t̃ =
t

TE
= t∗

T

TE
= t∗

L2

HW

S0
FS

= t∗
L

W

1

FS
(5.13)

If we sum Eq. 5.2 and Eq. 5.11 we obtain the following expression for the
bedload

qs∗ = F (q∗, S)− ã FS
W

L

∂η∗

∂t∗
(5.14)

and consequently the linearized form of Eq.5.4 becomes

∂η∗

∂t∗
− k∗

∂2η∗

∂x∗2
− a∗

∂2η∗

∂x∗∂t∗
= 0 (5.15)

where the new parameter a∗ is defined as

a∗ = ã
k∗

F0

W

L
(5.16)

Eq. 5.15 is a linear scalar PDE of hyperbolic type which describes the evolution
of the bed elevation.

A more general closure should take into account the history of the mor-
phological evolution and not only the instantaneous variation. Indeed we can
imagine that the actual transport depend on the incision speed in the last pe-
riod and not only on the current scour rate. For this reason we have introduced
the following formulation

∆qs∗ = −a∗
∫

∞

0
G(τ∗)

∂η∗

∂t∗
(t∗ − τ∗) dτ∗ (5.17)

where G is a “memory” function. In particular if we assume that G is a decaying
exponential which follows the Exner timescale we can write

G (τ) =
1

TM

e−τ/TM G (τ∗) =
1

T ∗
M

e−τ∗/T ∗

M (5.18)
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where TM is a constant parameter and T ∗
M depends on the scale of the variations

we are studying

T ∗
m = T̄m FS

W

L
(5.19)

In this way we find a model in which a∗ gives the magnitude of the non-local
effect and T ∗

M indicates its (relative) timescale.

After substituting the closure relation of Eq. 5.17 into the Exner equation
we obtain

∂η∗

∂t∗
− ∂2η∗

∂x∗2
− a∗

∫
∞

0
G(τ∗)

∂2η∗

∂x∗∂t∗
(t∗ − τ∗) dτ∗ = 0 (5.20)

This formulation is very general and can be used even to model processes
which never lose memory of the initial state; in particular if we define b∗ =
a∗/T ∗

M and we let T ∗
M → ∞, we can write Eq. 5.17 as

∆qs∗ = b∗ η∗ (5.21)

which represent the storage volume transport relation proposed by Lisle and
Church (2002) to account for the armouring effect in degrading channels.

In practice the behaviour of the system is much more complex than what can
be seen with this simple model; however this approach allows simple description
of the main processes involved in the river dynamics under unsteady conditions,
which can be useful for predicting, at least in a qualitative way, the bed level
evolution.

Analysis of the model

Our analysis reveals the presence of two different temporal scales T and TE , the
previous representing the time of the evolution of the bed level profile and the
latter indicating the time needed for the development of a braided morphology
at the reach scale. This important consideration allows to neglect the contri-
bution of the hyperbolic component if the variation of the bed level elevation
is relatively slow (T ≫ TE) or, equivalently, when the longitudinal scale of
the slope variation is sufficiently long; indeed if L increases the contribution of
the non-diffusive term (Eq. 5.13) becomes smaller and eventually (for large L)
negligible.

The general solution of the hyperbolic model can be determined by solving
in the Laplace space the integro-differential Eq. 5.47. The result for the case
of an abrupt decrease in the upstream flux is reported in figure 5.3; we can see
that the relative importance of the hyperbolic component is more important in
the early stages of the process, when the elevation change is more rapid.
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Figure 5.3: Evolution of the bottom level profile according to the hyperbolic model.
Continuous line: T ∗

M = 0, dashed line: T ∗

M = 0.05.

5.1.3 Laboratory experiments

Experimental setup

We performed the experiments at the hydraulic laboratory of the Trento Uni-
versity .

In particular we carried out two experiments, one with a reduction of the
sediment supply (erosion) and one with an increase of the sand input (aggrada-
tion). The main features of this experiments are summarised in tables 5.1 and
5.2.

Exp 1

In this experiment we firstly performed a 35 h-long equilibrium run, in which we
maintained the sand supply in balance with the averaged output. In particular
starting from a flat bed with S = 1 % and a small channel traced in the middle
we fed the flume with a constant discharge and with a sand flux Qsin = 2.5 g/s,
which is approximately equal to the temporal average measured during this
phase. After this period we sharply reduced the sand supply to 1.0 g/s for a
period of 130 h. The bed topography was surveyed at the end of the equilibrium
phase and twice during the subsequent degradation.

Exp 2

We started from a flat bed with a small channel cut in the middle and we fed a
constant sediment flux Qsin = 1.6 g/s which, being very close to the temporal
average of the output bedload, allowed to maintain a global equilibrium of the
flume, with a constant slope S = 0.85 %. After a long (354 h) period the
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Run Type Feature Value
Equilibrium Duration 35 h

Mean active width 39 cm
Mean wetted width 92 cm
Sand supply Qsin 2.5 g/s
Sediment output Qs 2.53 g/s
Slope S 1.0 %
Number of scan 2

Degradation Duration 130 h
Sand supply Qsin 1.0 g/s
Number of scan 2

Table 5.1: Main features of Exp 1

Run Type Feature Value
Equilibrium Duration 354 h

Mean active width 41 cm
Mean wetted width 92 cm
Sand supply Qsin 1.6 g/s
Sediment output Qs 1.61 g/s
Slope S 0.85 %
Number of scan 9

Aggradation Duration 64 h
Sand supply Qsin 2.5 g/s
Number of scan 4

Table 5.2: Main features of Exp 2

sand supply was incremented to Qsin = 2.5 g/s, which is approximately the
equilibrium value we measured with S = 1 %.

5.1.4 Experimental results

In this section we present the experimental outcomes in terms of mean bed level
profile, elevation distribution and output solid discharge.

Exp 1

During the initial equilibrium phase a braided network develops. Neglecting
the initial transitory the average solid discharge is Qs = 2.53 g/s and the bed
level profile maintains a slope close to S = 1 % (red and blue lines of figure
5.5).

After the reduction of the sand supply the upstream region of the flume
immediately starts to degrade, decreasing the slope as we can see in the last
two profiles of figure 5.5.

The degradation process begin with the incision of an approximately 30 cm
wide channel near the left bank; this single channel deepens and propagates
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downstream, leaving the other channels completely dry and, after 25 h, it
reaches a distance of approximately 6 m.

After this initial phase a significant bank erosion causes a widening of the
channel, the development of new bifurcations and ultimately a fully braided
morphology even in the region close to the flume inlet (see maps of figure 5.7).

The evolution of the incision process can be seen also from the the variation
of the bed level at some sections located in the upstream region of the flume
(figure 5.4); in particular from the upper panels (x = 1 m and x = 2 m) we
can notice that after 50 h the erosion involves only the left part of the flume,
while at the end the entire section is significantly deeper. At x = 4 m the single
channel that have formed at the early stages of the degradation run widens
and, after 50 h the scour is already spread across the section. The velocity of
the incision is significantly smaller at x = 8 m, where a braided morphology
persists throughout the duration of the experiment.

Figure 5.4: Variation in time of the bottom elevation during Run 1 for several sections
located at distance x from the inlet of the flume.

These observations suggest that the long-term evolution of that system could
be modelled through a diffusive model.

If we consider FS = γ = 1.6 we can compute the diffusion coefficient fol-
lowing Eq. 5.5, which reads

k =
Qs0
S0

FS

(1− p)
= 0.988

[
m2

h

]

(5.22)

if we consider L = Lc = 23 m we can easily calculate the temporal scale (Eq.
5.7) obtaining

T = L2/k = 535 [h] (5.23)

Since in a finite domain we can consider the diffusion process completed when
t∗ ≃ 1 the latter computation provides an estimation of the time needed to
reach the new equilibrium state.
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The prediction of the diffusive model are compared with the actual evolution
of the profiles in figure 5.5)

Figure 5.5: Bed level profiles during Run 1 and analytical solution of the linear model
(dashed lines).

Figure 5.6: Map of the initial part of the flume after 50 h and 115 h of the degradation
phase. Elevation (in [cm]) is relative to the local linear trend.

Exp 2

The rapid augmentation of the sand supply which follows the long equilibrium
run induces a deposition starting from the upstream part of the flume which
propagates downstream.

The topography of this region during the experiment is reported in figure
5.7, where we can notice that after the increase of the sand supply the depo-
sition produces the formation of a central bar with a relatively flat surface.
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Although this observation suggests that a morphological non-equilibrium oc-
curs throughout the whole aggradation phase, the relatively short extension
of the area interested by this phenomenon does not allow to appreciate any
statistically significant non-equilibrium of the local morphology.

Figure 5.7: Map of the initial part of the flume during the equilibrium (upper panel)
and aggradation (lower 3 panels) phases. Elevation (in [cm]) is relative to the local
linear trend.

In figure 5.8 we can see how the cross-sectional averaged, bed level profile
evolves in time.

The computation of the diffusion coefficient (Eq. 5.22) gives in this config-
uration k = 0.744 m2h−1, which correspond to a temporal timescale (Eq. 5.23)
T = 711 h. This calculation permits to evaluate, at least in an approximate
way, the evolution of the bed level profile illustrated in figure 5.8.

5.2 Discussion

The experimental observations suggest that in the case of a non-cohesive and
well-sorted sediment the evolution of the bed level profile of a confined braided
network after a variation of the sediment supply can be modelled, excluding
the initial stage, as a diffusive process.

The present model also permits the estimation of the temporal variation of
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Figure 5.8: Bed level profiles during Run 2 and anaytical solution of the linear model.

the sediment transport measured at the flume outlet. For instance the time
needed for a change equal to 10 % the long-term variation is t∗ ≃ 0.18; in
dimensional terms (Eq. 5.23) this correspond, for the Exp 1, to t ≃ 100 h.
Unfortunately the intrinsic variability of the solid discharge which is typical
of a braided system (Ashmore, 1988; Warburton and Davies, 1994) makes it
difficult to appreciate a variation of the mean bedload transport. Similarly,
because of the fluctuations of the local bed slope which can be observed even
in an equilibrium experiment, it is problematic to study the initial phase of
the profile evolution. Only in the case of relatively smooth variations we can
rely on a single experimental outcome, simply performing a spatial average of
the quantities. This is the most important reason for which it is difficult to
calibrate the constant a of the hyperbolic model.

In our view this is not merely an annoying complication but a fundamental
aspect of the analysis of the complex morphology rivers in unsteady condition;
in order to face this problem we should adopt a statistical approach, perform-
ing a series of identically repeated experiment which would allow to build an
ensemble statistics.

Despite this limits, the evolution of the profiles suggests on one hand that
a correction of the diffusive model is necessary if we are interested in the initial
development and, on the other hand, that the effect is relatively small in the
long-term dynamics of the bed level profile. A value a∗ ≃ 0.2 seems to produce
the best matching between model predictions and observations, while we can
exclude a∗ > 0.3 ÷ 0.5 which would lead to a significantly different evolution.
This rough estimation of the morphological disequilibrium furnishes an idea
of which conditions allows to study the process through the simple diffusive
scheme.

It is worth to underline that the results can significantly vary if further
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ingredients are added to the system; for example it is clear that the presence
of vegetation, poorly sorted and cohesive the bed material, can strongly affect
the river morphodynamics and significantly weaken the incision process.

Further study is also needed to investigate the role of the discharge vari-
ability; we expect that the diffusive model can still be adopted if T ≫ TE and
T ≫ Tflood (the latter indicating the timescale of the discharge variations) while
a more complex interaction between the different processes is expected if the
three temporal scales are similar.

5.3 Conclusions

The diffusive model has been applied for a braided network formed by well
sorted cohesiveless bed material and confined between uniformly distant banks.

This choice is motivated by the fact that simple formulation, which was
extensively adopted, with variable success, for single-thread rivers, is more ap-
propriate for steep and shallow channels typical of gravel-bed braided networks.

We have seen that in the case of a braided river, due to the relatively
smooth dependence of bedload to the stream power, a linear model seems to
be appropriate for many applications.

The introduction of a more complete formulation enables to investigate the
potential effect of the local non-equilibrium of the braided morphology on the
evolution of the bed profiles; our analysis shows that the diffusive model is valid
in the limit of slow variation of the bed level elevation.

The simple model seems to capture the evolution of the bed level profile for
the two laboratory experiments we performed. However, in order to asses in
more details which are the limitation of the diffusive scheme further experiments
would be needed.

A direct outcome of the diffusive model we propose is that the temporal
scale of the evolution of bed level profiles, T , is proportional to the square of
the length scale L and therefore differs from the temporal scale of the local
morphological evolution TE , which is independent of the length L.
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5.4 List of symbols and acronyms

Acronyms

BC Boundary condition;
IC Initial condition;
L Laplace transform;
PDE Partial differential equation;

Symbols

∗ Dimensionless quantity;
ˆ Laplace transform;

0 Reference state;

1 Variation with respect to the reference state;
∆ [−] Variation;
ã, a∗ [−] Coefficient of non-equilibrium bedload;
b∗ [−] Coefficient of the elevation-bedload relation;
c [−] Chézy coefficient;
cD [−] Variation of the Chézy coefficient with the water depth;
D [l] Water depth;
F [−] Transport function for a braided network;
FS [−] Variation of sediment transport with the slope;
Fr [−] Froude number;
ds [l] Sediment size;
g [lt−2] Gravity acceleration;
G [−] Memory function;
H [l] Vertical length scale;
k [l2s−1] Diffusion coefficient;
L [lt−2] Horizontal length scale;
Lc [l] Channel length;
p [−] Porosity of the bed material;
t [t] Time;
T [t] Scaling time;
TM [t] Time scale of the memory function;
q [l2t−1] Liquid discharge per unit width;
Q [l3t−1] Liquid discharge;
qs [l2t−1] Solid discharge per unit width;
Qs [l3t−1] Solid discharge;
s∗ [−] Laplace variable;
S [−] Slope;
U [l] Depth averaged velocity;
W [l] Channel width;
x [l] Longitudinal coordinate;
y [l] Transverse coordinate;
γ [−] Exponent of the bedload power-law formula;
∆ [−] Relative submerged density of sediment;
η [l] Transverse mean of the bottom elevation;
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Φ [−] Dimensionless solid discharge;
ΦT [−] Variation of the solid discharge with the Shields stress;
θ [−] Shields parameter;
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5.5 Appendix

5.5.1 1D models for single-thread rivers

In this section we will derive the diffusive (parabolic) and the hyperbolic 1d
models for single-thread channels. The resulting PDE have the same structure
of the differential equation we derived for a braided network (Eq. 5.10, 5.47,
5.47) and can be solved in a general way through the analytical treatment we
propose in the following sections 5.5.2 and 5.5.2.

The diffusive model

Let us consider a cylindrical rectangular bed channel with uniform sediment
subject to constant discharge Q.

For a given initial bed profile η0(x) and sediment supply Qs(t) we can
predict the evolution by solving numerically the one-dimensional shallow water
and Exner model with a closure for the solid discharge which in the case of
dominant bedload transport is typically expressed as

qs =
√

g∆d3s Φ(θ) (5.24)

If the curvature of the bed profile is relatively small, as specified by Eq.5.1,
we can assume that the local hydraulic conditions depend only on the local
slope and discharge and can be computed through an uniform flow formula.
Following this approach Vreugdenhil and de Vries (1973) proposed a diffusive
model for predicting the bed evolution; indeed the Shields stress in uniform
flow conditions can be expressed as

θ =
SD

∆ds
=

S

∆ds

(
q

ks
√
S

)3/5

(5.25)

substituting Eq. 5.25 into the Exner equation gives

(1− p)
√

g∆d3s

∂η

∂t
+
∂Φ

∂x
=

(1− p)
√

g∆d3s

∂η

∂t
+
∂Φ

∂θ

∂θ

∂x
= 0 (5.26)

considering the uniform flow relationship of Eq. 5.24 we have

(1− p)
√

g∆d3s

∂η

∂t
+
∂Φ

∂θ

7

10

θ

S

∂S

∂x
= 0 (5.27)

Remembering the definition of slope we obtain

∂η

∂t
+ k

∂2η

∂x2
= 0 (5.28)

166



5.5. Appendix

which represent a diffusion equation whose coefficient is

k =
7

10

∂Φ

∂θ

θ

S

√

g∆d3s
(1− p)

(5.29)

Since the coefficient k depends on S and consequently on the solution and Eq.
5.28 is nonlinear.

The linear hyperbolic model

In this section we derived an hyperbolic model for the evolution of the bottom
profile in a rectangular channel according to the 1D shallow water model. This
approach (Zhang and Kahawita, 1990) allows to determine which is the relative
importance of the different terms and in particular the conditions in which the
simple diffusive model is valid.

Let us consider a small perturbation of the flow with respect to a steady-
state condition (uniform flow).

If we neglect the local acceleration term in the momentum equation we can
write the linearized for of the shallow water equations as







∂U∗
1

∂x∗
+

1

Fr2
∂(D∗

1 + η∗1)

∂x∗
+

2

c20

L

D
[U∗

1 −D∗
1 (1 + cD)] = 0

∂D∗
1

∂x∗
+
∂U∗

1

∂x∗
= 0

∂η∗1
∂t∗

+ 2ΦT
∂U∗

1

∂x∗
− 2ΦT cD

∂D∗
1

∂x∗
= 0

(5.30)

where the quantities are made dimensionless by considering a longitudinal scale
L, a vertical scale D and the Exner time scale. ΦT represents the variation of
the bedload with the Shields stress whereas cD the variations of the Chèzy
coefficients with the relative roughness

Substituting the water continuity into the momentum and Exner equations
gives







(

1− 1

Fr2

)
∂U∗

1

∂x∗
+

1

Fr2
∂η∗1
∂x∗

+
2

c20

L

D
[U∗

1 −D∗
1 (1 + cD)] = 0

∂η∗1
∂t∗

+ a1
∂U∗

1

∂x∗
= 0

(5.31)

where for notation compactness we defined

a1 := 2ΦT (1 + cD) (5.32)

Moreover, if we insert the Exner into the momentum equation and compute
the x derivative we get

− 1

a1

(

1− 1

Fr2

)
∂2η∗1
∂x∗∂t

+
1

Fr2
∂2η∗1
∂x2∗

+
2

c20

L

D
(2 + cD)

∂U∗
1

∂x∗
= 0 (5.33)

167



5.5. Appendix

which, if substituted into the Exner formula gives

∂η∗1
∂t∗

+
1

b1

(

1− 1

Fr2

)
∂2η∗1
∂x∗∂t∗

− a1
b1

1

Fr2
∂2η∗1
∂x2∗

= 0 (5.34)

where

b1 :=
2

c20

L

D
(2 + cD) (5.35)

The resulting Eq. 5.34 represent an hyperbolic PDE having the same struc-
ture of Eq. 5.34.

If we consider the following uniform flow relation

Fr2 = c20 S0 (5.36)

we can write the coefficient of the mixed derivative as

a∗ = − 1

b1

(

1− 1

Fr2

)

= − 1

2(2 + cD)

D

S0L

(
Fr2 − 1

)
(5.37)

For a given length of the process L this coefficient becomes small for steep and
shallow channels, and if the condition Eq. 5.1 is fulfilled we obtain the linear
diffusive model.

5.5.2 Solution of the diffusive model

In this section we derive, following a well-known approach, a solution in Fourier
series of the linear diffusion equation with appropriate initial and boundary
conditions.

In particular let us consider the following PDE of Eq. 5.10

∂η∗1
∂t∗

− ∂2η∗1
∂x∗2

= 0 (5.38)

with the initial an boundary conditions






η∗1(x, 0) = 0 IC

∂η∗1(0, t)

∂x∗
= − ∆qs∗

F0 FS
= −∆S

S0
BC1

η∗(L∗
c , t

∗) = 0 BC2

(5.39)

It is easy to prove that the solution of this problem can be expressed as

η∗1(x
∗, t∗) =

∆S

S0

(

1− x∗

L∗
c

− z(x∗, t∗)

)

(5.40)

where z(x, t) is the solution of the same differential Eq. 5.10 but with homoge-
neous (i.e. zero) BC and the following IC

z(x∗, 0) = 1− x∗

L∗
c

(5.41)
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The function z(x∗, t∗) can be found by considering that the triangular IC of
Eq. 5.41 can be decomposed in Fourier cosine series as follows

z(x∗, 0) =

∞∑

j=0

8

m2π2
cos

(
mπx∗

2L∗
c

)

m := 2j + 1 (5.42)

It is not difficult to verify the problem with homogeneous BC and cosinusoidal
IC is

zm(x∗, t∗) = cos

(
mπx∗

2L∗
c

)

exp

(

−m
2π2

4L∗2
c

k∗ t∗
)

(5.43)

Due to the linearity of Eq. 5.10 it is possible to combine Eq 5.43 and Eq.
obtaining the following solution for the triangular IC

z(x∗, t∗) =

∞∑

j=0

8

m2π2
cos

(
mπx∗

2L∗
c

)

exp

(

−m
2π2

4L∗2
c

k∗ t∗
)

m := 2j + 1

(5.44)

In the case Lc → ∞ (semi-infinite domain) the solution of the linear diffusion
equation becomes

η1(x
∗, t∗) = 2

∆S

S0

[√

k∗t∗

π
e−

x
∗2

4k∗t∗ − x∗

2
erfc

(
x∗√
4k∗t∗

)]

(5.45)

if we compute the spatial derivative

∂η∗1
∂x∗

(x∗, t∗) = −∆S

S0
erfc

(
x∗√
4k∗t∗

)

(5.46)

we obtain the evolution of the slope and consequently of the bedload.

5.5.3 Solution of the linear hyperbolic model

In this section we derive a solution of the non-diffusive model by adopting the
method of the Laplace transform. In particular we will find the analytic solution
in the Laplace space, which can be inverted (in general through numerical
integration) in order to find the evolution in time.

In particular we consider the following PDE

∂η∗

∂t∗
− k∗

∂2η∗

∂x∗2
− a∗

∫
∞

0
G(τ∗)

∂2η∗

∂x∗∂t∗
(t∗ − τ∗) dτ∗ = 0 (5.47)

which represents a generalisation of Eq. 5.47, 5.15 and 5.34.
In addition we specify the initial and boundary conditions






η∗1(x
∗, 0) = 0 IC

∂η∗1(0, t
∗)

∂x∗
+
a∗

k∗

∫
∞

0
G(τ∗)

∂η∗

∂t∗
(t∗ − τ∗) dτ∗ = −∆qs∗(t)

F0FS
BC1

η∗1(L
∗
c , t

∗) = ∆η∗(t) BC2

(5.48)
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which represent an initially unperturbed profile subject to a (time dependent)
variation of both the sediment supply (∆qs∗) and the downstream bottom ele-
vation (∆η∗).

The Laplace transform (in time) of the independent variable η∗1 is defined
as

η̂∗1(x
∗, s∗) = L [η∗1(x

∗, t∗)] =

∫
∞

0
η(x∗, t∗)es

∗t∗dt∗ (5.49)

Since in the linear model k∗ = cost and a∗ = const we can solve Eq. 5.47 by
considering its Laplace transform

−k∗∂
2η̂∗1
∂x∗2

− a∗ L(G) s∗ ∂η̂
∗
1

∂x∗
+ s∗ η̂∗1 = 0 (5.50)

where the Laplace transform of the function G(τ∗) (Eq. 5.18) reads

L(G) = 1

1 + s∗ T ∗
M

(5.51)

It is worth to notice that, in the limit case TM = 0 the latter equation gives
L(G) = 1; in this case G(τ∗) is a Dirac distribution and Eq. 5.50 represent the
Laplace transform of the memoryless hyperbolic model of both Eq. 5.15 and
Eq. 5.34.

The general solution of the ordinary differential equation 5.50 can be ex-
pressed as

η̂∗1(x
∗, s∗) = c1e

λ1(s∗)x∗

+ c2e
λ2(s∗)x∗

(5.52)

where the coefficients λ1/2 can be computed as the root of the characteristic
polynomial

λ1/2 =
1

2k∗

[

a∗s∗L(G)±
√

a∗2s∗2L2(G)− 4k∗s∗
]

(5.53)

Although a more general function can be easily implemented let us consider,
for the sake of notation simplicity, a stepwise variation of both ∆qs∗ and ∆η∗

at t∗ = 0; under this assumption the boundary conditions of Eq. 5.48 can be
written in term of Laplace transform as

∂η̂∗1
∂x∗

(0, s∗) +
a∗

k∗
L(G) s∗ η̂∗1(0, s∗) = − 1

s∗
∆qs∗

F0FS

η̂∗1(L
∗
c , s

∗) =
∆η∗

s∗

(5.54)

if we substitute Eq. 5.52 we can fix the constants (in x) c1 and c2.

c2 = −c1e(λ1−λ2)L∗

c − ∆η

s
e−λ2L∗

c

c1 =
− 1

s∗
∆qs∗

F0FS
+ ∆η

s∗ e
−λ2L∗

c

(
λ2 +

a∗

k∗L(G)s
)

(
λ1 − λ2e(λ1−λ2)L∗

c

)
+ a∗

k∗L(G)s∗
(
1− e(λ1−λ2)L∗

c

)

(5.55)
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obtaining the particular solution in the Laplace space η̂∗1(x
∗, s∗). The solution

in the time domain η1(x, t), can be found by computing for each point x, the
numerical inverse of the Laplace transform.

In the case of a semi-infinite domain and a memoryless process (L(G) = 1)
an anaytical solution can be found, in terms of Bessel functions, following the
approach of Gill (1988).

If we define b∗ = a∗/T ∗
M and we consider T ∗

M → ∞ (linear transport-storage
model) Eq.5.51 becomes

a∗ L(G) = b∗ (5.56)

and we can use the solution in the Laplace transform to predict the degradation
of a poorly-sorted gravel-bed river according to the model of Lisle and Church
(2002).

5.5.4 Analysis of the hyperbolic model

In this section we study, through several examples, the behaviour of the linear
hyperbolic model represented by the solution of Eq. 5.52.

If a∗ tends to zero Eq. 5.47 represents the diffusive model whose solution is
reported in the case of a finite (L∗

c = 1) and infinite domains in figure 5.9).

Eq. 5.52 allows also for studying the diffusive process in the case of a
sudden downstream bed level lowering, as reported in figure 5.10 for the case
of a constant sediment supply.

The model response is much different if a 6= 0 (figure 5.11). In particular
if a∗ < 0 (super-critical conditions in of Eq. 5.34) the non-local effects cause
a smoother solution. This behaviour is related to the well-known properties of
super-critical currents to propagate downstream the information, so that the
sediment transport depends on the upstream slope. Conversely if a∗ > 0 (sub-
critical flow in Eq. 5.34) the information travels upstream and a discontinuity
occurs (see Gill (1988) for a fully-analytical treatment of this case).

As one may expect the memory of the recent history (Tm > 0) causes a
smoothing effect which is more evident in the discontinuous case a∗ > 0 (dashed
lines of figure 5.11).

In the case of Eq. the mathematical nature of the model changes completely;
indeed we have in this case an advection-diffusion model with unitary diffusion
coefficient and advection speed −b∗. As clear in both the panels of figure 5.12
the diffusion progress with time, producing a smoother and smoother front
which widens with

√
t∗. However, since the advection speed is (−b∗t∗) the

diffusion length becomes smaller if compared with the front travel; for this
reason, the front appears to be steeper on the left panel even though the elapsed
time is significantly higher than in the left plots.
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Figure 5.9: Evolution of the bottom level profile according to the diffusive model.
Upper panel: finite domain; lower panel: infinite domain
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Figure 5.10: Evolution of the bottom level profile according to the diffusive model in
the case of a sudden bed level lowering at the downstream boundary.

5.5.5 A statistical approach

In the previous analysis we treated all the quantities in a deterministic way;
however it is clear that the local evolution is actually unpredictable and can
be interpreted as a random process. Although in practice we can forget the
random fluctuation by considering spatial/temporal averages this is not always
possible. For this reason it is important, at least from a conceptual point of
view, to consider the problem in a statistical way as briefly discussed in the
present section.

Due to the complex nature of the braiding dynamics the local evolution
is unpredictable and local observations in (almost) identical experiments can
be completely different. In the case of a statistically stationary (or slowly
variable) configuration this fundamental problem can be partially avoided by
studying the reach-averaged or the time-average properties which. Indeed if the
spatial/temporal domain is sufficiently long we expect that the averages are not
a mere random result but deterministic values which are approximately equal
in repeated experiments.

As we mentioned in the discussion section this is not possible if we want
to study processes which changes relatively fast in time and space. In order to
understand the reason let us consider the example of the solid discharge and
denote with 〈·〉 the ensemble mean operator so that 〈Qs(x, t)〉 is the solid dis-
charge we would ideally obtain as an average over a large number of experiments
repeated under identical conditions.

If a braided network is in dynamical equilibrium we can assume a stationary
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Figure 5.11: Evolution of the bottom level profile according to the hyperbolic model
in the case of semi-infinite domain. Upper panel: positive unsteady effect. Lower panel:
negative unsteady effect. Continuous line: T ∗

M = 0; dashed line: T ∗

M = 1 · 10−2 a∗.
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Figure 5.12: Evolution of the bottom level profile according to the volume-storage
model in the case of semi-infinite domain. A unitary negative variation of ∆qs∗/|b∗| is
considered Upper panel: evolution at the unitary scale, at which the diffusion and the
storage processes have the same magnitude. Lower panel: solution on a larger scale,
for which the importance of the diffusion is smaller.
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process; in this case 〈Qs(x, t)〉 is constant and can be estimated as a temporal
average computed over a sufficiently long period of time.

If, on the other hand, the process is not stationary (〈Qs〉 varying in time)
we can not estimate it as a temporal average; indeed it we chose a relatively
long averaging period we lose the 〈Qs(x, t)〉 variability whereas if the averaging
time is smaller is is not possible to filter out the random fluctuations. In this we
must consider the variables η, Qs, S as ensemble averages, which are in general
different from the averages of the single experiment.

Example: A real-scale application

The present work suggests that the propagation of an erosion or deposition wave
in a confined braided network is proportional to the square of the distance;
so that it can be relatively slow. Let us try to quantify the associated time
scale in the case of a 50 m wide river with fixed banks and uniform grain size
ds = 50 mm (50 times bigger than our flume) and S = 1%.

If we call LR and TR the ratio between the geometric and temporal scale
between the prototype (the study river) and our laboratory model we can as-
sume a Froude similarity between systems having different scales; in particular,
since the gravity acceleration g is constant the Froude scaling fixes the following
relation

TR =
√

LR (5.57)

Consequently mere dimensional considerations allows to calculate diffusion co-
efficient of the prototype as

kprot = k
L2
R

TR
= k L

3/2
R = 300

[
m2

h

]

(5.58)

and the water discharge as

Qprot = Q
L3
R

TR
= Q L

5/2
R = 35

[
m3

s

]

(5.59)

so that our laboratory experiments are representative of the river with a dis-
charge Q = 35 m3s−1.

From figure 5.13 (green line) we can see that a variation of the bedload
transport equal to the 50 % of the long-term value requires t∗ ≃ 1; this means
that the time needed to have such a variation at a distance of L = 1 km is

tprot = t∗
L2

k
= 1 ·

(
103 [m]

)2

300
[
m2

h

] = 3.3 · 103 [h] = 140 [d] (5.60)

this time is significantly higher than what we expect for narrower singe-thread
rivers; for instance the equilibrium specific solid discharge we measured in the
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Figure 5.13: Variation through time of the solid discharge at x = L in a semi-infinite
channel for an instantaneous unitary variation of the input solid discharge ∆qs∗.

same flume with a distance between banks W = 0.15 m (corresponding to
W = 7.5 m in the prototype) is approximately 22.5 bigger, which leads to an
evolution 22.5 times faster.

Although these calculation are strictly valid only in the hypothetical values
they are useful to have an idea of which are the time scales and how they change
in different conditions.
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Chapter 6

Analytical solution for a small
obstacle in a gravel-bed
channel

6.1 Introduction

According to the theory of morphodynamic influence (Zolezzi and Seminara,
2001) the dominant direction of propagation of steady two-dimensional pertur-
bations depends upon the local channel conditions; in particular Blondeaux and
Seminara (1985) defined the so-called resonant aspect ratio, which can be calcu-
lated as a function of the Shields stress and relative submergence. If the aspect
ratio of the channel is higher than the resonant value (super-resonant condi-
tions) an upstream influence occurs, while in the narrower (sub-resonant) case
the two-dimensional morphological effects propagate only in the downstream
direction. This morphodynamic influence appears as a sequence of nonmigrat-
ing alternate bars, whose wavelength and damping rate do not depend on the
specific nature of the forcing effect but on the channel conditions in terms of
flow and aspect ratio. An experimental support to these theoretical findings
has been provided by Zolezzi et al. (2005), who have shown the upstream in-
fluence produced, in super-resonant conditions, by a 180◦ curve connecting two
straight channels.

Formation of nonmigrating bars downstream an obstacle which locally re-
stricts the section has been noticed by different studies (e.g. Struiksma and
Crosato, 1989; Crosato et al., 2011) whereas, consistently with the (Zolezzi and
Seminara, 2001) theory, the development of steady bars upstream the obstacle
have been observed, under super-resonant conditions, by the numerical experi-
ments of Siviglia et al. (2013).

Numerical models of river morphodynamics provide a fully nonlinear de-
scription of the evolution through time. On the other hand analytical theories
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Figure 6.1: Sketch of the planimetric configuration.

based on perturbation approaches, despite being limited to a small range of
parameters, allow for a compete control of the solution, which often leads to
a better understanding of the mechanical processes underlying the observed
morphological response.

For modelling the morphological effect of a localised restriction of a gravel-
bed channel no analytical solutions exist in the literature. Aim of this work is to
fill this gap by deriving a solution for a small sinusoidal obstacle; in addition we
intend to study the effect of different hydraulic conditions, the role of secondary
circulations and the impact of the presence of different boundary conditions.

The analytical derivation follows a perturbation approach, starting from the
work of Repetto et al. (2002), who solved the linear problem for the case of a
periodic variation of the channel width. The study is completed with the analy-
sis of the boundary conditions required by the time-dependent model and with
the direct comparison between the linear solution and numerical simulations
obtained with the Delft3D numerical model.

6.2 Formulation of the model

We refer to an infinitely-long, rectangular channel of width B∗ with a small,
sinusoidal-shape, obstacle of amplitude a∗ and length L∗ (see figure 6.1), fric-
tionless walls and well-sorted bed material with median grain size d∗s. We
placed the origin of the cartesian system of reference (x∗, y∗) at the right bank,
in correspondence to the narrower section. We adopted a two-dimensional,
mobile-bed, depth-averaged shallow water model, with the Engelund and Fred-
soe (1982) formula for flow resistance, the Parker (1990) closure for the bed
load intensity and the Ikeda (1981) relation for the effect of bottom slope on
the direction of the sediment flux (i.e. Colombini et al., 1987; Crosato et al.,
2011; Siviglia et al., 2013).

This model can be written as a nonlinear differential system of four equation
in the four dependent variables η∗, U∗, V ∗, D∗ (bottom elevation, longitudinal
and transverse velocity and water depth respectively, see figures 6.1 and 6.2) in
the three independent variables x∗, y∗, t∗, the latter indicating the time.
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Figure 6.2: Sketch of the notation. The dashed magenta line represents the obstacle
at x = 0.

These quantities can be made dimensionless as follows







{x, y} :=
{x∗, y∗}
B∗

{U, V } :=
{U∗, V ∗}

U∗
0

D :=
D∗

D∗
0

η :=
η∗

D∗
0

t :=
t∗

T ∗

(6.1)

where ρ is the water density, B∗ is the channel width, U∗
0 , D

∗
0, qs

∗
0 are the ref-

erence values of velocity, depth and specific solid discharge, which are assumed
equal to the uniform flow conditions in the straight (a = 0) channel.

In addition we need to define the dimensionless values of the stress vector
{τ∗x , τ∗y }, the unit bedload vector {qs∗x, qs∗y} and the representative grain size
d∗s, namely

{τx, τy} :=
{τ∗x , τ∗y }
ρU∗2

0

{qsx, qsy} :=
{qs∗x, qs∗y}

qs∗0
ds =

d∗s
D∗

0

(6.2)

Time is scaled using the Exner timescale, which is defined as

T ∗ :=
D∗

0B
∗(1− p)

qs∗0
(6.3)

where p is the porosity of the bed material.

The dimensionless position of the left bank, represented in figure 6.1, can
be expressed as







yB = 1 x < L/2

yB = 1− a

2

[

1 + cos
(

2π
x

L

)]

−L/2 < x < L/2

yB = 1 x < L/2

(6.4)

where L = L∗/B∗ and a = a∗/B∗ are the dimensionless obstacle length and
amplitude respectively (figure 6.2).
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The conservation of momentum, liquid and solid mass can be written in
dimensionless form as







Twβ
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y
+

1

Fr20

∂

∂x
(η +D) + β

τx
D

= 0

Twβ
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y
+

1

Fr20

∂

∂y
(η +D) + β

τy
D

= 0

Twβ
∂D

∂t
+
∂UD

∂x
+
∂V D

∂y
= 0

∂η

∂t
+
∂qsx
∂x

+
∂qsy
∂y

= 0

(6.5)

where the reference Froude number and aspect ratio are given by

Fr0 :=
U∗
0

√
gD∗

0

β :=
B∗

2D∗
0

(6.6)

and the hydrodynamic timescale is defined as follows

T ∗
w := D∗

0/U
∗
0 Tw = T ∗

w/T
∗ (6.7)

The differential system of Eq. 6.5 needs closure equations (i.e. algebraic
relations with the dependent variables) for the quantities τx, τy, qsx, qsy. The
first two variables represent the bottom friction, whose magnitude can be es-
timated by the Chézy formula and the direction of the velocity vector, which
leads to

{τx, τy} = {U, V }|
~U |
C2

(6.8)

where the dimensionless Chèzy coefficient can be determined as (Engelund and
Fredsoe, 1982)

C = 6 + 2.5 log

(
D

2.5 ds

)

(6.9)

or alternatively, by adopting the Gauckler-Strickler formula (Strickler, 1923)

C =
ks

√
g d

∗1/6
s

D1/6 = 6.74D1/6 (6.10)

Assuming, as common for gravel bed rivers, the bedload as the dominant
form of sediment transport we can express the magnitude of the solid discharge
as

|~qs|∗ = Φ(θ)
√

g∆d∗3s (6.11)

where ∆ is the relative submerged weight of the sediment and the Shields
parameter θ is defined as

θ =
τ∗

ρg∆d∗s
= Fr20

|~τ |
∆ds

(6.12)
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If we consider the bedload formula of Parker (1990) we can determine the
function Φ as follows

Φ(θ) = 0.002181G(ξ) θ3/2 (6.13)

where G is a function of ξ := θ/0.0386, namely






G(ξ) = ξ14.2 ξ ≤ 1

G(ξ) = exp
[
14.2(ξ − 1)− 9.28(ξ − 1)2

]
1 < ξ ≤ 1.59

G(ξ) = 5474
(

1− 0.853

ξ

)4.5
ξ > 1.59

(6.14)

Remembering Eq. 6.1 the dimensionless sediment flux can thus be expressed
as

|~qs| = Φ(θ)

Φ0
Φ0 := Φ(θ0) (6.15)

The direction of the bedload can be estimated (Ikeda, 1981; Talmon et al.,
1995) as a sum of two angles: the one formed by the velocity vector (with
respect to the x-axis), given by

γq = tan

(
V

U

)

(6.16)

and the correction due to the bottom gradient in the direction n̂q orthogonal
to the velocity vector, which can be expressed as

γg = − r

β
√
θ

∂η

∂n̂q
(6.17)

The two components of the solid discharge can be easily calculated as

{qsx, qsy} = {cos (γq + γg), sin (γq + γg)}
Φ (θ)

Φ0
(6.18)

which completes the set of closure relations needed to complete the mathemati-
cal description of the differential system. For more details about the formulation
see Colombini et al. (1987); Zolezzi and Seminara (2001).

Once the four closure relations are specified, we can complete the mathe-
matical formulation by specifying the initial and boundary conditions.

The BCs at the two banks can be specified by considering impermeable
walls, which implies the tangency of the solid discharge and velocity, namely







qsy(x, y
B) = qsx

(
x, yB

) dyB

dx
qsy(x, 0) = 0

V (x, yB) = U
(
x, yB

) dyB

dx
V (x, 0) = 0

(6.19)

In addition, if we intend to model a channel of finite length, we must impose
suitable conditions at the open boundaries; we will address this problem within
sections 6.5.2 and 6.7.
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6.3 The perturbation approach

In order to derive an analytical solution of this differential model we adopt a
perturbation approach. For a straight (a∗ = 0) channel a well-know solution is
the simple uniform flow; if we consider this as a basic state and we expand the
general solution in Taylor series for the parameter a we obtain







η = −S0βx+ a η1(x, y, t) +O(a2)

U = U0 + a U1(x, y, t) +O(a2)

V = V0 + a V1(x, y, t) +O(a2)

D = D0 + a D1(x, y, t) +O(a2)

(6.20)

where the subscripts 0 and 1 indicate the basic solution and the first order
approximation respectively.

Without any loss of generality we can choose the scaling parameter U∗
0 , D

∗
0

in order to have an uniform flow solution of the form

{η0, U0, V0, D0} = {−S0βx, 1, 0, 1} (6.21)

where S0 is the bottom slope.
If we substitute this expansion into Eq. 6.5 we obtain the following uniform

flow relations

θ0 =
S0
∆ds

Fr20 = S0 C
2
0 (6.22)

which allows an unique definition of the basic flow once that two independent
parameters (usually θ0 and ds) are specified.

Let us consider a small obstacle (formally the limit of a → 0); this enables
to assume that the perturbation we introduce is small with respect to the basic,
uniform flow. Consequently we can neglect the higher order terms O(a2) which
leads to a linear differential system in the variable a.

If we are interested in determining the (if any) steady state configuration
we can neglect the time derivative of the variables and consider the station-
ary model. Consequently the mathematical nature of the differential problem
changes and the knowledge of initial conditions is not needed.

If we substitute the expansion of Eq. 6.20 into the differential system of Eq.
6.5 and collect the terms the order O(α) we obtain the following linear system







∂U1

∂x
+

1

Fr20

∂(D1 + η1)

∂x
+

β

C2
0

[2 U1 −D1 (1 + CD)] = 0

∂V1
∂x

+
1

Fr20

∂(D1 + η1)

∂y
+

β

C2
0

V1 = 0

∂D1

∂x
+
∂U1

∂x
+
∂V1
∂y

= 0

∂V1
∂y

− r

β
√
θ0

∂2η1
∂y2

+ 2ΦT
∂U1

∂x
− 2ΦTCD

∂D1

∂x
= 0

(6.23)
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where we have defined the following coefficients

ΦT :=
θ0
Φ0

∂Φ

∂θ
|θ=θ0 CD :=

D0

C0

∂C

∂D
|D=D0

(6.24)

which embody the dependence of bedload intensity and Chèzy coefficient on
Shields stress and water depth respectively.

The analytical solution of Eq. 6.23 is not straightforward but requires a
specific strategy that is briefly introduced here and developed in more details
in the following sections. First of all, we divide the domain in three regions
which, as sketched in figure 6.1 are defined as follows:

• channel A: upstream channel, form x = −∞ to x = −L/2;

• channel Obst: region ob the width variation, ranging form x = −L/2 to
x = +L/2;

• channel B: downstream part, form x = +L/2 to x = +∞.

Secondly, we write a general solution for each region. For the channels A
and B it can be obtained by separating the variables and expressing the solution
as a linear superposition of Fourier modes as in Zolezzi and Seminara (2001).
For the central part, where the obstacle is placed, the solution is different due to
the presence of a non-straight bank. From a linear point of view, it is possible
to express the general solution as the sum of this particular result and the
general solution for the straight channels (the same as in channels A and B);
the particular solution be found following Repetto et al. (2002), who tackled
the problem of a channel with periodically varying width.

Finally, we can make the solutions compatible by imposing a matching of
the four values at the boundaries we artificially introduced in order to separate
the three regions.

In this way we obtain an unique solution expressed as a sum of a (theoreti-
cally infinite) number of Fourier components.

6.3.1 General solution for the straight channel A and B

Both the upstream and the downstream channels of figure 6.1 are straight and
rectangular, thus admitting the steady two-dimensional solution described by
Zolezzi and Seminara (2001).

Specifically, for each transverse Fourier mode m ≥ 1, it is possible to find a
solution of the linear problem which can be written as a sum of four complex
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exponentials in x, namely







{η1, U1, D1} = cos(mπy)
4∑

j=1

{η̂mj , Ûmj , D̂mj} exp(λmjx)

V1 = sin(mπy)

4∑

j=1

V̂mj exp(λmjx)

(6.25)

The (complex) coefficients denoted with the hat (i.e. Û) are determined by the
following relation

{η̂mj , Ûmj , V̂mj , D̂mj} = η̃mj{1, φmj , δmj , ξmj} (6.26)

where the coefficients {1, φmj , ξmj , δmj} and the wavenumbers λmj depend on
the basic flow and η̃mj are independent parameters. Notice that, although
the results of Eq. 6.26 is a complex number, only the real part is physically
significant.

As highlighted by Zolezzi and Seminara (2001) the sign of real(λmj) is of
great importance; indeed if we consider a semi-infinite channel such as channel
A, solutions with real(λmj) < 0 are exponentially growing in the upstream
direction and consequently not compatible with the (finite) upstream boundary
conditions. The behaviour of λj (for the first mode m = 1) as a function of
the aspect ratio is reported in figure 6.3. We can notice that for β < βR
(sub-resonant conditions) three of the four eigenvalues λ are negative, so that
only the forth solution is compatible; since the correspondent eigenvalue λ4 is
relatively large this solution rapidly decays and only a local upstream influence
is possible. Conversely in the super-resonant case β > βR three eigenvalues are
positive and significant upstream influence occurs.

A mirrored response can be found for the channel B, which shows significant
downstream influence only in the sub-resonant case, whereas for β > βR the
boundary condition is able to exert only a short, rapidly decaying influence.

If we assume that β < 2βR, the higher modes m ≥ 2 follow always a sub-
resonant behaviour, in the sense that three negative eigenvalues occurs, so that
three independent solutions are possible in the downstream channel B and only
one in the upstream channel A.

Figure 6.4 illustrates, for each Fourier mode, the list of the compatible
eigenvalues, depending on the super/sub resonant character of the channel. For
a more comprehensive description of the phenomena, see Zolezzi and Seminara
(2001).

Differently from most of the other analytical models of river morphodynam-
ics (i.e. Colombini et al., 1987; Zolezzi and Seminara, 2001) we can not neglect,
besides the 2D solution presented above, the presence of the one-dimensional
component. A stationary 1D perturbation of the basic flow can be seen as a
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6.3. The perturbation approach

Figure 6.3: Eigenvalues λj for the first (m = 1) mode. ds = 0.05, θ0 = 0.1, r = 0.5
are adopted as parameters of the basic flow.

Figure 6.4: Structure of the solution for upstream and downstream semi-infinite
channels in super and sub-resonant cases; the red line represent the section at which
the boundary condition is applied.
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uniform variation of the flow due to a (small) change of slope, discharge and
the reference of the elevation, namely

{η1, U1, D1} = η̃0 {1, 0, 0}
︸ ︷︷ ︸

η reference variation

+ Q̃0 {0, γ1, γ2}
︸ ︷︷ ︸

Discharge perturbation

+S1 {−βx, γ3,−γ3}
︸ ︷︷ ︸

Slope variation

(6.27)

where η̃0, S1, Q̃0 are independent parameters and the coefficients γ are defined
as follows

γ2 :=
2

3 + 2CD

1

S0
γ1 := 1− γ2 γ3 :=

1

S0

γ2
2

(6.28)

For a more complete description of the 1D solution, see Chapter 7, section
7.4.

6.3.2 General solution for the central channel Obst

For the central region the solution proposed for the straight channels A and
B is not valid, because it does not satisfy the boundary condition at the left
bank, which introduces a forcing effect in the differential problem. Indeed, if
we express Eq. 6.19 in the primitive variables and we expand in Taylor series
we obtain, for the left (y = 1) bank







dη1
dy

(x, 1) = 0 +O(a2);

V1(x, 1) =
dyB

dx
+O(a2)

(6.29)

which is not satisfied by Eq. 6.26, for which V1 = 0 (straight bank) at both
y = 0 and y = 1.

In order to determine a solution of the linear problem (Eq. 6.23) with
the non-homogeneous lateral boundary condition specified by Eq. 6.29 we can
proceed as follows. First of all, we can notice that in complex notation Eq. 6.19
can be written in the exponential form, namely

yB = 1− a

2

(

1 + e2πix/L
)

(6.30)

Since only the real part has a physical meaning, we should equip all of the
expression involving physical variables with the symbol real(). However, for
the sake of notation compactness we preferred, as common in complex analysis,
to omit the symbol real(), but keeping in mind that only the real part of the
resulting solution is actually meaningful.

A similar lateral boundary condition was considered by Repetto et al. (2002),
who solved a differential system analogous to Eq. 6.23 for an infinite channel
with sinusoidal perturbation of the width; they tackled this problem by sep-
arating the variables and considering longitudinal variations having the same
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structure of Eq. 6.30. However, differently from the present case, they studied a
symmetric channel with sinusoidal variations of the position of both the banks;
it is easy to see that the solution we are looking for correspond to the Repetto
et al. (2002) if we consider only half of the domain y ∈ [0, 1]. In addition our
position, instead of varying from −2δ to 2δ as in Repetto et al. (2002) ranges
from 0 to −a.

Considering these minor differences we can follow the same approach and
seek for a solution of the form







ηF1 (x, y) = −1

2
ηF (y) exp (−2πix/L)

UF
1 (x, y) = −1

2
UF (y) exp (−2πix/L)

V F
1 (x, y) = −1

2
V F (y) exp (−2πix/L)

DF
1 (x, y) = −1

2
DF (y) exp (−2πix/L)

(6.31)

If we substitute these functions into the linearised system of equation we obtain
a first order ordinary differential system of four dependent variables, which leads
to the following 4th order scalar problem in V F

d4V F

dy4
+ Γ1

d2V F

dy2
+ Γ2V

F = 0 (6.32)

with the following boundary conditions given by substituting Eq. 6.30 into Eq.
6.29 





V (1)F = 2πix/L V (0)F = 0

d2V (1)F

dy2
= 2Γ3πix/L

d2V (0)F

dy2
= 0

(6.33)

where the expression of Γj is given by Repetto et al. (2002).

By solving Eq. 6.32 and substituting the result into the ordinary system
it is possible to determine the functions representing the transverse structure,
namely







ηF = ξF1 cosh(k1y) + ξF2 cosh(k2y)

UF = φF1 cosh(k1y) + φF2 cosh(k2y)

V F = γF1 sinh(k1y) + γF2 sinh(k2y)

DF = δF1 cosh(k1y) + δF2 cosh(k2y)

(6.34)

in which the coefficients k1/2 are expressed as

k1 =

√

1

2

(

−Γ1 +
√

Γ2
1 − 4Γ2

)

k2 =

√

1

2

(

−Γ1 −
√

Γ2
1 − 4Γ2

)

(6.35)
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We defined the coefficients ξ1/2 as follows

ξF1/2 = θF1/2 Fr
2
0 − δ1/2 (6.36)

wile the coefficients ξF , φF , γF , δF are functions of the basic flow parameters
as reported (without the superscript F ) by Repetto et al. (2002).

Since, differently from Repetto et al. (2002) we considered a variation of
the bank position (Eq. 6.30) around a non-zero, namely −a/2, the solution of
Eq. 6.31 embeds also a variation of the discharge, which can be computed as
follows

Q1 =

∫ +1

0

(
UF
1 +DF

1

)
dy = −1 @x = ±L/2 (6.37)

This is not an issue because at this stage we are looking for a particular so-
lution of the problem for the channel Obst which does not necessarily satisfy
the conditions at the open boundaries; the correct discharge will be fixed in
the following when we will impose the matching conditions between the three
channels and in particular when we will match the one-dimensional component
(section 6.3.4).

The result of Eq. 6.31 represents a particular solution for the central region;
however it is easy to prove that, due to the linearity of Eq. 6.29 it is possible
to obtain a general solution by summing to Eq. 6.31 the result for the straight
channel (Eq.6.25, which can be expressed as a linear combination of the (infi-
nite) Fourier modes. Thereby we can express the general solution for channel
Obst as follows

{ηobst1 , Uobst
1 , V obst

1 , Dobst
1 } = {ηobst,H1 , Uobst,H

1 , V obst,H
1 , Dobst,H

1 }
︸ ︷︷ ︸

Straight channel component

+{η1, U1, V1, D1}F
︸ ︷︷ ︸

“Forced“ solution”

(6.38)
where the superscript H indicated the homogeneous component of the solution.

At this point the a natural question which may arise is why we need a
general solution and not simply the forced component. The answer is that
considering only the forced component, which is uniquely fixed by the obstacle
geometry, it would be impossible to match the solution at the two boundaries.
Consider for example the bnd 1 : the matching can be ensured by decomposing
the forced solution in Fourier series for each of the four variables η, U, V,D and
imposing that each mode in channel A is equal across the boundary. However,
since only one (or three for m = 1 in super-resonant conditions) independent
solution a matching of four variables is impossible.

Including the homogeneous part introduces four more degrees of freedom
for each Fourier mode which, as we will see in the following section, will make
the problem of matching well posed.
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6.3.3 The matching condition

So far we simply derived the analytical solution of the steady problem for the
three regions (channels A, B, Obst) by following known methods and adapting
them to the slightly different formulation we adopted.

The result we obtained is not unique, but composed by an infinite number
of linearly independent solutions, and in particular 10 for each Fourier mode
(except for the 1D component (m = 0), which is formed by a combination of
9 independent components). Among this wide spectrum of results we want to
find the solution of the entire domain, in the sense that satisfy not only the
problem within the three channels, but also the matching conditions at the two
boundaries bnd 1 and bnd 2 (see figure 6.1). As we will see, this leads to a
unique solution once the water and sediment fluxes (Q1, Qs1) and a reference
value of the bottom elevation (η1) are specified.

For each of the two boundaries (x = ±L/2) we must impose the matching
the four dependent variables. Since the procedure is similar for bnd 1 and bnd
2, we will detail the procedure only with reference to the the first boundary.
Specifically, we will express the solution in both the adjacent channels in Fourier
series and imposing the equality of the coefficients for each mode; in this way
we will derive the relations between the different components needed to satisfy
the matching of the four dependent variables.

Solution for channel A at the bnd 1

The solution for channel A can be expressed by summing N Fourier components
of Eq. 6.25 and can be evaluated at x = −L/2 as follows

Ua
1 (−L/2, y) =

N−1∑

m=0

U
a
m cos (mπy) (6.39)

where the amplitude of each cosine is a linear combination of one or three
components depending on the sub or super-resonant conditions, namely







U
a
m =

4∑

j=2

Ûa
mj exp(−λmjL/2) if β > βR and m = 1

U
a
m = Ûa

m4 exp(−λmjL/2) if β < βR or m ≥ 2

(6.40)

Solution for channel Obst at the bnd 1

The solution for obstacle region channel Obst of Eq. 6.38 at the bnd 1 reads

Uobst
1 (−L/2, y) = Uobst,H

1 (−L/2, y) + UF
1 (−L/2, y) (6.41)
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The homogeneous part can be expressed, analogously to 6.39, as

Uobst,H
1 (−L/2, y) =

N−1∑

m=0

U
obst,H
m cos (mπy) (6.42)

with the important difference that, being, channel Obst of finite length, there
is no reason to exclude any eigenvalue, so that the linear combination of the
four independent solutions can be used. Therefore the coefficients of Eq. 6.49
can be written as follows

U
obst,H
m =

4∑

j=1

Ûobst
mj exp(−λmjL/2) (6.43)

The forced component Eq. 6.31 evaluated at x = −L/2 gives, remembering
that exp(±πi) = −1

UF
1 (−L/2, y) = 1

2
UF (y) (6.44)

In order to compare the solutions across the boundary we must expand
also the forced component in Fourier cos series; in particular we consider the
approximated N modes expansion, namely

UF
1 (−L/2, y) ≃

N−1∑

m=0

U
F
m cos (mπy) (6.45)

where the latter terms can be written on the basis of Eq. 6.34

U
F
m =

1

2

(

φF1 C
cosh
1m + φF2 C

cosh
2m

)

(6.46)

Ccosh
1m and Ccosh

2m are the expansion coefficients of the hyperbolic cosine, which
for m ≥ 2 can be computed as follows

Ccosh
jm = 2

∫ 1

0
cosh(kjy) cos(mπy) dy =

2(−1)mk2
k2j +m2π2

sinh(kj) (6.47)

The definition of coefficients is different for the first mode m = 1, namely

Csinh
j0 = 0 Ccosh

j0 =

∫ 1

0
cosh(kjy) dy =

1

k2
sinh(kj) (6.48)

Since Eq. 6.45 furnishes only an approximation of the forced solution at the
boundary the N -modes solution we obtain is exact only in the limit N → ∞.
However it can be seen that, since the coefficients Cjm tend to rapidly decay
withm a rather small number of components is sufficient to obtain a sufficiently
accurate solution.

By summing Eq. 6.42 and Eq. 6.45 we obtain the general solution of the
channel Obst evaluated at bnd 1 and expressed as a Fourier series

Uobst
1 (−L/2, y) =

N−1∑

m=0

(

U
obst,H
m + U

F
m

)

cos (mπy) (6.49)
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Matching condition at the bnd 1

The equality between Eq. 6.39 and Eq. 6.49 is ensured if each Fourier compo-
nent has the same coefficient across the bnd 1.

Specifically, if we considered, in an approximate way, the first N modes, we
must impose

U
a
m = U

obst,H
m + U

F
m ∀m ∈ [0, N − 1] (6.50)

which represents a set of N conditions.
As one may expect an identical procedure can be followed in order to de-

termine the matching of the variables η and D, which reads

{
ηam = ηobst,Hm + ηFm ∀m ∈ [0, N − 1]

D
a
m = D

obst,H
m +D

F
m ∀m ∈ [0, N − 1]

(6.51)

Matching condition for the transverse velocity V

Slightly different is the derivation for the velocity V which have a different
transverse structure; indeed the general solution in the main channel is in this
case formed by a series of sines, namely

Ua
1 (−L/2, y) =

N−1∑

m=0

U
a
m cos (mπy) (6.52)

On the other side of bnd 1 the Fourier sin transform of the solution in the
obstacle region in this case gives

V
obst
m = V

obst,H
m + V

F
m (6.53)

where the latter terms is the expansion of Eq. 6.34, which reads

V
F
m = a

(

γF1 Csinh
1m + γF2 Ccosh

2m

)

(6.54)

where Csinh
1m and Csinh

2m are the coefficients of the Fouerier sin series expansion
of the hyperbolic sine functions, namely

Csinh
jm = 2

∫ 1

0
sinh(kjx) sin(mπx) = −2(−1)mmπ

k2j +m2π2
sinh(kj) (6.55)

The equality between Eq. 6.52 and Eq. 6.53 is ensured if

V
a
m = V

obst,H
m + V

F
m ∀m ∈ [1, N − 1] (6.56)

Eqs. 6.50, 6.51 and 6.56 represent a set of four matching conditions for
each Fourier mode m, except for m = 0 for which only three conditions are
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needed. An identical number of constraints, which can be derived following the
same matching procedure, occurs at the second boundary bnd 2. Since these
conditions involve each mode separately we can solve an independent problem
for each m, starting from the 1D component m = 0, introducing than the first
2D approximation m = 1 and ultimately refining more and more the solution
by including the higher modes. This procedure is detailed in the following two
subsections.

6.3.4 Matching of the one-dimensional (m = 0) component

For the 1D component we must impose the six matching conditions, while
a total of nine degrees of freedom (η̃0, D̃0, S1 for each of the three regions)
is available. For this reason the problem is underdetermined and admits an
infinite number of solutions. In order to fix this problem we must specify three
additional conditions; from a physical point of view it is clear that the solution
will depend on the discharge, on the sediment flux and to an arbitrary constant
that fixes the bottom elevation with respect to the system of reference. Once
that these three quantities are specified the problem is correctly posed an unique
solution can be found. Because we are not studying the effect of variations of
the total water and sediment flux we can fix Q1 = 0 and Qs1 = 0; in addition
we can assume that cross-section averaged perturbation of the bottom elevation
in channel A is zero, which can be practically obtained by fixing the bed or the
free surface level at the downstream boundary.

The first two conditions Q1 = 0 and Qs1 = 0, if applied for the channel A
at the bnd 1 can be easily translated in a condition on the velocity and depth,
namely

U
a
0 (−L/2) = 0 D

a
0 (−L/2) = 0 (6.57)

which, as one expects, involves only the one-dimensional component.

On the basis of Eq. 6.27 we can say that Eq. 6.57 is satisfied if

Q̃a
0 = 0 Sa

1 = 0 (6.58)

which means undisturbed discharge and slope. Similarly the continuity of water
and sediment mass at the bnd 2 implies that also the downstream channel has
a vanishing perturbation of slope and water discharge, namely

Q̃b
0 = 0 Sb

1 = 0 (6.59)

In addition from the matching condition at the bnd 1 (Eq. 6.50) we have

U
obst,H
0 (−L/2) + U

F
0 = 0 D

obst,H
0 (−L/2) +D

F
0 = 0 (6.60)
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which enables to compute U
obst,H
0 and D

obst,H
0 . Thereby considering Eq. 6.27

we can determine the parameters Q̃obst
0 and Sobst

1 as follows







Q̃obst
0 =

U
obst,H
0 +D

obst,H
0

γ1 + γ2

Sobst
1 =

(γ2Q̃
obst
0 −D

obst,H
0 )

γ3

(6.61)

The third condition can be fixed assuming that the cross sectional average
of the channel B is zero at any location x. For instance we can assume

∫ 1

0
ηb1(x, y)dy = η̃b0 = 0 (6.62)

In this case the matching at the bnd 2 simply gives

η̃obst0 = −ηF0 (6.63)

whereas is it easy to prove that the condition at the bnd 2 implies

η̃a0 = Sobst
1 βL (6.64)

which completes the 1D (averaged across the section) solution.

6.3.5 Matching of the two-dimensional (m ≥ 1) components

When we impose the matching for the two-dimensional components we must
distinguish between the first mode (corresponding to alternate bars) and the
higher harmonics (multiple bars).

The behaviour of the first Fourier mode (m = 1) depends upon the super
or sub-resonant channel condition; indeed the number of linearly independent
solutions for the two straight channels A and B changes between the two cases
(see for example Eq. 6.40).

Let us start from the sub-resonant case and consider, as an example, the
longitudinal velocity; for any m ≥ 1 (2D components) the amplitudes U

a
m and

U
b
m are composed by a linear combination of one and three variables respectively

U
a
m(−L/2) = Ûa

m4 exp (−λm4L/2) U
b
m(+L/2) =

3∑

j=1

Û b
mj exp (λmjL/2)

(6.65)
whereas in the central region all the four eigenvalues are compatible (Eq. 6.43)

U
obst,H
m (±L/2) =

4∑

j=1

Ûobst
mj exp (±λmjL/2) (6.66)
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If we remember Eq. 6.26 we can notice that the solution at the boundaries can
be expressed (not only for U but also for η, V , D) as a function of the following
eight independent parameters







η̃am4

η̃bmj j = {2, 3, 4}
η̃obstmj j = {1, 2, 3, 4}

(6.67)

Under super super-resonant conditions noting changes, for all the modes
m ≥ 2, with respect to the β < βR case; the situation is different for the first
Fourier mode m = 1, whose coefficients for the two straight channels A and B
are a linear combination of three and one independent solutions respectively,
namely

U
a
1(−L/2) =

4∑

j=2

Û b
1j exp (−λ1jL/2) U

b
1(+L/2) = Û b

11 exp (+λ11L/2)

(6.68)
whereas in the channel Obst we have again the same expression of Eq. 6.66.
Consequently for the first mode under super-resonant conditions the following
eight independent parameters appears







η̃a1j j = {1, 2, 3}
η̃b14

η̃obstmj j = {1, 2, 3, 4}
(6.69)

If we consider the matching conditions for the four dependent variables at
x = −L/2 and x = +L/2 (Eqs. 6.50, 6.51, 6.56) we obtain, for both the super
and sub-resonant cases and for each Fourier mode, a system of eight linear
equations in eight unknowns which can be easily solved on order to find the
N -modes solution of out problem.

Specifically, using a matrix notation we can write the linear system as

A~̃η = B (6.70)

where the vector of the known terms B contains the forcing terms ηFm, U
F
m, V

F
m,

D
F
m we defined in Eq. 6.46.
As N increases the and solution rapidly converges to the exact one; thereby

truncating the Fourier series to a limited number of modes (i.e. N = 10) leads
to minor inaccuracies which are irrelevant for most purposes.

6.4 Results

The behaviour of the solution strongly depends on the super of sub-resonant
character of the channel.
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Obstacle

Figure 6.5: Bottom elevation map for the sub-resonant case. The length of the
obstacle (small magenta bump on the left bank) is L = 10. β = 15.7, θ0 = 0.1,
ds = 0.02, r = 0.5, the Meyer-Peter and Müller (1948) bedload formula are adopted as
parameters, which give βR = 15.80.

Figure 6.6: Bottom elevation map for the super-resonant case. The length of the
obstacle (small magenta bump on the left bank) is L = 10. β = 15.9, θ0 = 0.1,
ds = 0.02, r = 0.5, the Meyer-Peter and Müller (1948) bedload formula are adopted as
parameters, which give βR = 15.80.

As an example we consider the case of a L = 10 obstacle placed in two
different, infinitely-long rectangular channels, having βR = 15.80 and aspect
ratio slightly higher and lower than the resonant point (β = 15.7 and β = 15.9
respectively). As illustrated in figures 6.5 and 6.6, this small variation implies
a dramatic change of the solution. Specifically, in agreement with the theory of
the morphodynamic influence, an upstream morphological effect due to the ob-
stacle propagates only in the super-resonant case, whereas under sub-resonant
conditions the downstream influence dominates and an alternate steady bars
patterns develops after the width perturbation.

The behaviour of the different dependent variables along the domain can be
seen in figure 6.7, where we report the longitudinal profiles of the solution along
the left bank. Firstly, we can notice that the transverse velocity is proportional
to the local angle of the bank (derivative the width perturbation B1 represented
by the black line), as required by the impermeability condition (Eq. 6.29).
Secondly, the longitudinal velocity and the bottom elevation are oscillating with
approximately the opposite phase in the upstream (figure 6.6) or downstream
(figure 6.5) direction, depending on the super or sub-resonant character of the
channel; the wavelength of the oscillations is about 20 times the width. Finally,
it is also possible to see that in this specific case the oscillations of the free
surface elevation are quite modest outside the obstacle region; this enables to
clearly appreciate the one-dimensional effect, which leads to a positive elevation
difference between the channels A and B, independently of the aspect ratio β.

Since, in both the examples, the conditions are very close to the resonant
point, the damping rate of the upstream/downstream steady bars is very small,
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(a) Slightly sub-resonant condition (β = 15.7).

(b) Slightly sub-resonant condition (β = 15.9).

Figure 6.7: Longitudinal profiles at the left bank (y = 1) for the first N = 10 Fourier
components of the analytical solution. The parameters of the basic flow are θ0 = 0.1,
ds = 0.02, r = 0.5 which leads to βR = 15.8; the length of the obstacle is L = 10. ∆η
represents the upstream scour produced by the 1D effects of the obstacle.
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Figure 6.8: Bottom elevation map for the sub-resonant case. Same parameters as in
figure 6.5 but with a smaller aspect ratio (β = 12.0), which increases the damping rate
of the downstream steady bars.

so that can not be appreciated in figures 6.5, 6.6 and 6.7. However, as we can see
in figure 6.3, the values of |real(λ2/3)|, which indicates the damping rate of the
forced alternating bars, increases with the distance from β to βR; for example
in figure 6.8 we represented the bottom elevation for (β − βR/βR) = −0.24; we
can see that, in comparison with figure 6.5, the alternate bars are smaller and
tend to rapidly decay in space.

6.5 Discussion

The perturbative approach adopted to derive the analytical solution is strictly
valid in the limit of vanishing obstacle amplitude a. In spite of that, flume
experiments with periodic width variation (Repetto et al., 2002) suggest that
the linear scheme may be able to capture the steady-state channel morphology
even for a width variations up to 50% the channel size.

It is also worth to notice that the time-dependent model shows, when the
aspect ratio exceeds a critical threshold βcr < βR, an instability mechanism
causing, in a straight channel, the formation of migrating alternate bars, which
grow until an equilibrium value is attained (e.g. Colombini et al., 1987). In this
case the presence of a small obstacle is expected to produce a perturbation of
the migrating bars, rather than the steady configuration of figure 6.6. However
laboratory and numerical experiments (e.g. Crosato et al., 2012; Siviglia et al.,
2013) suggest that if the obstacle amplitude a is sufficiently large the nonlinear
interaction suppresses the propagation of migrating bars. This process is similar
to what described by Tubino and Seminara (1990) with reference to meandering
channels, where the migrating perturbation can be annihilated by the presence
of stationary point bars forced by the channel curvature. Therefore we expect
that the system attains a steady-state solution, which may be qualitatively
similar to the analytical but not identical because of the nonlinear terms which
are not accounted by the perturbation method.

At this stage no more elements are available to go beyond these preliminary
considerations about nonlinear interaction between free migrating and steady
bars and about the role of the boundary conditions in this mechanism. A
deeper investigation is possible through a fully nonlinear numerical scheme; in
appendix 6.7.1 we will setup a two-dimensional morphodynamic model using
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Figure 6.9: Bottom elevation map for the super-resonant case from the numerical
experiments of Siviglia et al. (2013). Upper panel: sub-resonant (β = 10.42) case,
lower panel: sub-resonant (β = 16.72) case. θ0 = 0.1, ds = 0.067, r = 0.3 and the
Wong and Parker (2006c) bedload formula have been adopted. The resonant point is
βR = 13.28.

Figure 6.10: Bottom elevation map, for the symmetric obstacle under super-resonant
conditions (β = 28.0, βR = 15.80. The same parameters as in figures 6.5, 6.6 have
been adopted.

the Delft3D code and we will present a few preliminary results.

It is interesting to observe that the solution we derived can be conveniently
extended to a symmetric obstacle by simply mirroring the result across the
y = 0 axis. For example, starting with a sub-resonant configuration (β = 14,
βR = 15.8), we can obtain the result of figure 6.10, which shows the formation
of a central bars pattern downstream the restriction. The aspect ratio becomes
twice the original and therefore the conditions becomes super-resonant (β = 28);
despite that no upstream influence occurs until β > 2βR. This is a peculiar
feature of any symmetric forcing which, according to the linear model, induce
the formation of central steady bars that propagates upstream only if the aspect
ratio exceeds twice the resonant value.
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6.5.1 The effect of the secondary currents

As widely assumed in river morphodynamics (e.g. Colombini et al., 1987), the
2D depth-averaged model we solved does not include any three-dimensional
effect due to the curvature of the flow. However, in the case of the obstacle, we
may expect relevant impact of the secondary flow on the morphology; therefore
we need to explore in what extent this additional ingredient is affecting our
results.

The 3D effects due to the presence of secondary currents do not significantly
change the resonant point, and therefore do not affect the response in terms of
direction of the morphodynamic influence.

Nevertheless the impact of the secondary flow on the forced solution is
not negligible; indeed the analytical solution of the fully 3D model, as well
as from laboratory experiments Repetto et al. (2002), reveal that the cross-
sectional profiles are significantly influenced by the spiral flow, especially for
relatively short wavelength of the width variations. Repetto et al. (2002) also
noticed that a simplified closure of the spiral flow in the depth-averaged model
is able to capture the more relevant effects on the equilibrium hydraulic and
morphological configuration.

Following the same approach we express the transverse shear stress as

τy = τ ′y + τH (6.71)

where τ ′y is the stress computed on the basis of Eq. 6.8, whereas the additional
component due to the spiral flow can be computed (Kalkwijk and Booij, 1986;
Zolezzi and Seminara, 2001) as follows

τH = C| ~U | k3
D U

β C0
= C| ~τ | k3 C0

β
(6.72)

in which we have defined the dimensionless curvature as

C = B∗C∗ = B∗ 1

R∗
(6.73)

with R∗ indicating the local radius of curvature.
The coefficient k3 represents the ratio between bottom shear of the sec-

ondary velocity profile and the principal stress. For this reason in this section
Following Kalkwijk and Booij (1986), Zolezzi and Seminara (2001) it is possible
to estimate this coefficient as a function of the relative roughness ds.

Once the expression of τy is known, we can simply substitute the new closure
relation into Eq. 6.5, which leads to a linear system which has exactly the same
structure of Eq. 6.23, but with different coefficients. This system can be solved
by following exactly the same procedure and gives the result of figure 6.11,
where we report the map of bottom elevation for the same basic flow with
two different obstacle lengths (upper and lower panels) without (left) and with

201



6.5. Discussion

(a) “Long” obstacle (L = 10).

(b) Medium-size obstacle (L = 5).

(c) “Short” obstacle (L = 2).

Figure 6.11: Maps of bottom elevation without (left) and with (right) secondary
currents. β = 15.9, θ0 = 0.1, ds = 0.02, r = 0.5 are adopted as parameters; the first
N = 10 Fourier components have been considered.

(right) secondary currents. This comparison reveals that the impact of spiral
flow is stronger for the shorter (L = 2) obstacle, where it causes deposition on
the opposite side of the obstacle and increase of the height of the downstream
central bars. Indeed the intensity of the spiral flow, as pictured in figure 6.12,
is maximal near the obstacle apex, where the curvature induced by the bank
geometry creates a positive additional stress in the y direction.

A cross-sectional view of the effect of the secondary flow on the different
variables at x = 0 is reported in figure 6.13. As one may expect, the curva-
ture produces a decrease of the free surface height close to the obstacle. The
transverse profile of bottom elevation is less intuitive; indeed, differently from a
channel curve (which typically produce external scour and internal point bar),
the curvature is in this case highly variable in both x and y. This causes the
reinforcement of the transverse velocity V , which compensates the effect of τH .

6.5.2 The role of the boundary conditions

If the domain length is finite the steady solution is always influenced by the
conditions at the domain boundaries. Indeed in the long term both the one and
two-dimensional information have time to propagate throughout the channel
and influence the final solution.

The preconditions for studying this effect is the knowledge of how many
boundary conditions we need to specify at each (upstream and downstream)
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Figure 6.12: Intensity of the spiral flow τH/τ0 for the L = 2 obstacle of figure 6.11c.
Positive values indicates negative (left bending) curvature C and consequently positive
bottom velocities and stresses.

boundary in order to obtain a well-posed problem.

Consider the infinite-domain solution, and simply cut it at the boundaries;
this expression satisfies the problem inside the domain and correspond to well
defined boundary conditions. However this is not the general solution because
in this case there is no reason to eliminate the eigenvalues that exponentially
grow (to infinite values) as we did before (Eqs. 6.65 and 6.68) for the infinite
domain.

We can imagine the general solution with boundaries as the sum of the par-
ticular (infinite domain) and the general solution of a straight channel of finite
length. In this perspective the question about which are the proper boundary
conditions is exactly the same for a straight and for a more complex channel
geometry.

As we have seen the solution for a single, straight channel is a function
of four independent parameters for each Fourier mode and consequently four
boundary conditions must be specified in order to fix the solution. At this
point the important question is where the conditions must be specified, and in
particular how many should be fixed upstream and how many downstream.

Under sub-resonant conditions three eigenvalues are downstream-dampen
and one is upstream-damped, for any Fourier mode. For this reason if we
specify three upstream and one downstream boundary condition we obtain a
solution whose dependence on the BCs decreases with the distance from the
domain boundary.

The situation is more trickily in the super-resonant case because the first
mode m = 1 has a peculiar behaviour, with three positive eigenvalues which are
downstream-growing. This means that if we apply three upstream BCs their
influence increases exponentially in space; as far as the domain is finite this
growth is also finite, so that if we specify three upstream conditions we obtain
a solution which, from a linear point of view, is acceptable. However, when
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(a) Solutions without spiral flow.

(b) Solution with a simplified closure for secondary currents (k3 =
−0.908).

Figure 6.13: Cross sectional profiles of the solution at x = 0 for a relatively short
L = 2 obstacle. β = 15.9, θ0 = 0.01, ds = 0.02, r = 0.5 are adopted as parameters; the
first N = 10 Fourier components have been considered.
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the solution becomes relatively big, although finite, the hypothesis of small
variations which is the basis of the perturbation approach is not valid. Specif-
ically, if the domain is relatively long (and β > βR) even very small upstream
disturbances eventually grow enough to break the assumption of small pertur-
bations. The morphological response in the region where the linear model fails
can be explored thanks to the weakly non-linear approach proposed by Sem-
inara and Tubino (1992). If the the parameter ǫ = (β − βR)/βR is relatively
small we can study the spatial growth of the steady perturbation are affected
by the non-linear effects Indeed according to Seminara and Tubino (1992) for
ǫ → 0 the spatial development of the two complex conjugate solutions is not
exponential as predicted by the linear theory but is limited by the non-linear
(O(ǫ3/2)) terms which reduce the growth rate with the wave amplitude. Figure
6.17 illustrates the longitudinal variation of the amplitude (absolute value) of
the complex-conjugate solution in the super-resonant case, resulting from the
Landau-Stuart equation as derived by Seminara and Tubino (1992). Initially
the curves follow the exponential growth but, as far as the solution becomes suf-
ficiently large, the growth rates decreases and ultimately the amplitude reaches
a constant (equilibrium) value which depends on ǫ. It is worth to notice that
the x-axis of figure 6.17 represents the longitudinal coordinate multiplied by
the growth rate real(λ) which is proportional to ǫ; this mean that the distance
at with the non-linearity is felt increases as far as the aspect ratio approaches
the resonant value.

From the two-dimensional point of view there is not a preferred type of
boundary we should specify. However from the analysis of the 1D component
it is clear that we can not impose the boundary conditions in an arbitrary
way; indeed we must avoid redundant information which leaves other condi-
tion unspecified and which can violate the compatibility conditions imposed
by the conservation principles. If for example we fix U, V,D upstream and U
downstream the problem is clearly not well-posed for two reasons:

• We are not fixing any reference for the elevations; for this reason we can
add any arbitrary constant to the solution without violating the BCs,
thus obtaining, formally speaking, an infinite number of solutions.

• Imposing a different 1D component of velocity upstream and downstream
does not allow to find a balanced sediment transport.

in order to obtain a well-posed problem the following conditions must be satis-
fied:

1. one of the four variables is the bottom elevation;

2. the transverse velocity is specified at once but not more than once.

This behaviour, mathematically rather weird but physically obvious, can be
easily explained by studying the behaviour of the 1D component of the solution.
Indeed in order to fix a reference elevation one of the four BCs has to be the
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y

Figure 6.14: Bottom elevation map for the super-resonant case after imposing a
sinusoidal perturbation of the transverse velocity at the upstream boundary. L = 10,
β = 15.9, θ0 = 0.1, ds = 0.02, r = 0.5, the Meyer-Peter and Müller (1948) bedload
formula are adopted as parameters, while the amplitude of the upstream perturbation
is of 0.1 δ.

bottom elevation (or any combination of it, such as the free surface level η+D).
In addition one BC must involve V because otherwise we should impose four
conditions to the 1D solution which has only three degrees of freedom; for the
same reason the V can not be fixed simultaneously upstream and downstream
(it would lead to an undetermined 1D system in which only two 1D conditions
are fixed).

This brief and informal explanation enables to understand that if we spec-
ify three upstream and one downstream boundary conditions the problem be-
comes well-posed, in the sense that for any arbitrary boundary configuration
(expressed as functions of y) we can find an unique solution, independently of
the sub or super-resonant character of the channel (see illustration of figure
6.15).

This correspond to the number of boundary conditions needed by the time-
dependent problem, which implies that for any steady boundary configuration
the (linear) time-dependent system admits a stationary solution.

The presence of a boundary can significantly change the steady state so-
lution; for example if we impose a sinusoidal perturbation of the transverse
velocity V and a zero perturbation of the longitudinal velocity and water depth
we obtain, in the super-resonant case, a configuration in which steady alternate
bars appears also downstream the obstacle (see figure 6.14).

6.6 Conclusions

Within this work we derived an analytical solution of the steady shallow water
morphodynamic model for a local, sinusoidal obstacle placed in a straight chan-
nel with rectangular cross-section. This solution, expressed in terms of Fourier
series, is exact in the limit small amplitude obstacle (a→ 0).

The analytical approach allows to study the long-term morphological re-
sponse of a gravel-bed channel in different conditions; in particular it enables
to determine both the local effect near the obstacle region and the morpholog-
ical influence exerted on the upstream and downstream branches.

The analysis of the analytical solution confirms the importance of the reso-
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Figure 6.15: Schematic picture of the boundary conditions required by both the
steady and the time-dependent models. The arrows indicates the direction of propa-
gation of the boundary information whereas flow is from left to right. f(y) indicates a
generic function of the transverse coordinate.

Figure 6.16: Spatial development of the amplitude of the complex-conjugate solution
in super-resonant conditions according to the weakly non-linear theory of Seminara and
Tubino (1992). real(λ) represents the initial (linear growth rate); the initial amplitude
has been arbitrary fixed to 0.1, whereas the asymptotic equilibrium |Ae| depends on
the basic flow (different values are here represented by different colours).
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nance phenomenon (as defined by Blondeaux and Seminara (1985)) for deter-
mining the dominant direction of morphodynamic influence. Specifically, as also
predicted by the numerical experiments of Siviglia et al. (2013), an upstream
propagation of two-dimensional disturbances occurs under super-resonant con-
ditions, whereas only downstream influence can be observed on the narrower,
sub-resonant, case.

We have also seen that, including the secondary effects of the spiral flow,
causes a minor impact on the results in terms of the direction of morphody-
namic influence. However, especially if the obstacle is relatively short small,
the secondary currents produce a significant variation of the morphology in the
region near the obstacle.

The analytical model also enables to explore the role of the boundary condi-
tions, showing that an unique steady solution can be found once three upstream
and one downstream BCs are specified. Although this is valid in both the super
and sub resonant conditions, the influence of the boundaries can significantly
differ in the two regimes. For β > βR the effect of the upstream boundary
is growing along the channel and, if the domain is long enough, it attains an
amplitude which violates the basic assumption of small perturbation; therefore
the nonlinear effects play an important role and in particular, as predicted by
the weakly nonlinear theory of Seminara and Tubino (1992), they reduce the
growth rate and lead to a bounded solution.

Finally, from the analysis of the eigenstructure of the differential model, it is
possible to prove that the number of boundary conditions of the time-depended
linear model are the same as in the stationary case, which suggests that a steady
solution may exist for any steady boundary configuration.

6.7 Appendix: Eigenstructure of the linear, coupled,
time-dependent problem

In order to determine the solution of a differential system for a general bound-
ary configuration we must know what “general” means, and in particular how
many upstream, downstream and lateral (at the fixed walls) conditions must be
independently specified in order to have a well-posed mathematical problem.

In general this is not straightforward and requires a deep knowledge of the
theory of partial differential equations. However, for a specific class of problems,
namely the hyperbolic differential systems, the question can be addressed by
performing the well-known analysis of the (bi)characteristics (e.g. Wesseling,
2001), as already done for 1D shallow water morphodynamic model (de Vries,
1965) as well as 2D models, both fixed-bed (e.g. Abbott, 1979) and mobile-
bottom (e.g. Vriend, 1987).

The study of characteristics is important not only for what concerns the
boundary conditions, but more in general to explore the direction of prop-
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agation of the information. For example this may give some insight to the
discussion of Mosselman et al. (2006), who argued that “a deeper analysis of
the characteristics may reveal that the upstream influence is actually related to
supercritical flow” rather than the super-resonant condition.

In the present section we investigate the properties of the present two-
dimensional linear model. Specifically, we consider the linearized form of the
Eq. 6.5, which is similar to the linear system of Eq. 6.23, but with the incor-
poration of the time derivatives.

For the numerical analysis the resulting system is often treated as hyperbolic
(e.g. Siviglia et al., 2013). However, from a formal point of view, such an
assumption is not possible; indeed the effect of the gravity on the sediment
transport leads to a diffusive term in the Exner equation (e.g. Cordier et al.,
2011), and consequently to a mixed hyperbolic-parabolic system which can not
be studied using the method of the characteristics. In order to bypass this issue
we perform a little trick, changing the formulation for the gravity effect in order
to obtain an hyperbolic model. This can be done by substituting the algebraic
closure of Ikeda (1981) with a differential formulation. Specifically, we assume
that the direction of the sediment transport does not respond instantaneously
to the variation of the bottom gradient, but it adapts asymptotically to the
equilibrium value following a simple differential law

dγg
dt∗

= − 1

T ∗
s

(γg − γg,eq) (6.74)

where γg,eq is the angle assumed in the algebraic closure

γg,eq = − r√
θ0

∂η1
∂y

(6.75)

and Ts is the temporal scale of the adaptation (sometimes called relaxation
parameter). In dimensionless form Eq. 6.74 becomes

dγg
dt

= − 1

Ts
(γg − γg,eq) Ts = T ∗

s /T
∗ (6.76)

If Ts is sufficiently small the adjustment to equilibrium becomes very fast and,
in the limit Ts → 0 the original model is retrieved, in the sense described by
Nagy et al. (1994) about the convergence of the hyperbolic heat equation to
the classic diffusive model.

As one may imagine, there may be some physical reasons for choosing a
differential formulation for the non-equilibrium transport rate; however, at this
level, we can simply see the new closure as a different formation that converges
to the original algebraic curve when Ts → 0. The advantage of this approach
from the mathematical point of view is that enables to obtain a two-dimensional
hyperbolic system of five differential equations in five unknowns; if we expand

209



6.7. Appendix: Eigenstructure of the linear, coupled,

time-dependent problem

the variables in Taylor series around a known basic state (the simple uniform
flow), as in Eq. 6.20, and we assume relatively small perturbations, we obtain
a linear differential system which can be written in the following form

Tw
d~Q

dt
+Ax

1

β

d~Q

dx
+Ay

1

β

d~Q

dy
= ~S (6.77)

where ~S represents the source vector, which contains the non-differential terms.
The vector of the unknowns is defined as

~Q = [η1, U1, V1, D1, γg]
T (6.78)

with T indicating the matrix transpose.
The matrix Ax contains the coefficients of the x-derivative, which reads

Ax =













1

Fr20
1 0

1

Fr20
0

0 0 1 0 0
0 1 0 1 0

0 2ΦTβTw 0 −2CDΦTβTw −r Tw√
θ0

0 0 0 0 0













(6.79)

whereas the matrix of the y-derivatives coefficients is written as

Ay =














0 0 0 0 0
1

Fr20
0 0

1

Fr20
0

0 0 1 0 0

0 0 βTw 0 −r Tw√
θ0

−βTw
Ts

0 0 0 0














(6.80)

If we compute the eigenvalues of the matrix Ax we obtain the five roots
reported in figure 6.17a. The first one is zero, the second represents a wave
travelling with longitudinal speed (λ∗ = U∗

0 ) and the remaining three are the
classic eigenvalues of the 1D mobile-bed model (de Vries, 1965; Sieben, 1997).

If the Exner timescale becomes relatively small, compared with the hydro-
dynamic one (low-transport conditions, figure 6.17b), one of the eigenvalues
becomes much smaller (decoupled problem), except in the region close to the
unitary Froude number.

Is it easy to prove that the the eigenvalues in the y-direction can be conve-
niently scaled in order to find the following functional dependence

λ∗4/5
√
gD∗

0

= λ4/5Fr0 = fct

(

βTw,

√

βr√
θ0

Tw√
Ts
Fr0

)

(6.81)
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(a) T ∗

w = 10−2T ∗/β. For a relatively wide range of Fr0 numbers the celerity
of the four waves has the same order of magnitude, so that the morphological
timescale is comparable with the hydrodynamic one.

(b) βT ∗

w = 10−3. In this case the morphdynamic and the hydrodynamic
problem can be considered as decoupled, except for the relevant case of
trans-critical (Fr0 ≃ 1) flow.

Figure 6.17: Eigenvalues of the hyperbolic problem in the x-direction for different
values of the hydrodynamic timescale Tw. θ0 = 0.1 are adopted as parameter; the
dashed line represent the function λ = −1 + Fr0.
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where fct indicates a generic function.

Figure 6.18 shows that one eigenvalue is zero, two are positive and the re-
maining two can be found by the symmetry of the problem across y = 0. Having
two positive and two negative eigenvalues, we need to impose two boundary con-
ditions, both on the left and on the right sides. Specifically, is rather natural,
from a physical point of view, to fix at the lateral walls the impermeability of
both the liquid and solid discharge (V1 = 0 and γg = 0).

The first panel (figure 6.18a) illustrates how, as far as Tw → 0, the eigen-
structure becomes very simple, whereas if Tw is larger a wide region with curved
lines appears. For relatively small values of Ts, the combination of parameters
on the x-axis increases and two eigenvalues become very large; this indicates
that information associated with the adaptation of the transverse slope to the
hydraulic conditions is fast, so that model tends to the “classic” one, in which
the gravitational effect on the bedload leads to a diffusive term.

From this analysis we can conclude conclude that the present time-depended
linear problem needs three upstream and only one downstream BCs. Formally
we proved this only for the hyperbolic and fully-decoupled system; however we
can imagine that similar boundary conditions may be required by the system
of Eq. 6.23, which can be obtained as a limit of the hyperbolic model for low
transport rate and fast adaptation of the bedload direction. This is consistent
with the analysis of section 6.5.2 about the boundary conditions needed to
obtain an (unique) solution of the stationary problem.

6.7.1 Appendix 2: Numerical modelling

In this section we study the problem of the obstacle through a morphodynam-
ical numerical model. This allows for investigating the role of the two main
ingredients we are missing in the analytical approach, namely the non-linearity
of the system and the temporal evolution of the solution for a given initial con-
dition. In particular the nonlinear effects are relevant when the magnitude of
the perturbation is relatively big, which may occur because of the non-small
amplitude a or because of the spontaneous growth of migrating bars.

The main purposes of the present section are the following:

1. asses which is the capability to the simple linear approach, in terms of
prediction of the long-term morphological and hydraulical configuration;

2. study the behaviour of the time-dependent solution and asses in which
condition it attains a steady state.

A secondary objective is to test of the accuracy provided by the numerical
scheme in the cases in which the analytical solution is expected to be exact.

We adopted in particular the Delft3d software in 2D mode which enables,
once a proper setting of the parameters is provided, to resolve a differential
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6.7. Appendix: Eigenstructure of the linear, coupled,

time-dependent problem

(a) βT ∗

w = 10−3

(b) βT ∗

w = 10−1

Figure 6.18: Eigenvalues of the hyperbolic problem for different hydrodynamic
timescales Tw. The dashed lines have a unitary (±1) slope.
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time-dependent problem

Figure 6.19: Rectangular mesh adopted for thw numerical simulations. Only the
obstacle region is here represented.

system which is equivalent, from a linear point of view, to the formulation we
consider for our analytical derivation.

Geometry and computational grid

We adopted a B∗ = 20 m wide channel, a sinusoidal obstacle having length
L∗ = 200 m and amplitude a∗ = 2 m, and equal upstream and downstream
channel L∗

a = L∗
b = 500 m, for a total domain length of 1200 m.

We built a rectangular mesh with 500 cells in the longitudinal direction and
50 in the transverse one, so that the average grid spacing is dx = 1.2 m and
dy = 0.4 m respectively (figure 6.19).

In addition we constructed a second mesh having similar features but de-
scribing an wider (a∗ = 8 m) obstacle which occupies 40 % of the channel
section.

Experimental setup

In order compare the analytical theory with numerical simulations it is impor-
tant to consider an identical formulation and the same closure equations and
parameters. The numerical model Delft3d allows the choice between different
transport formulas, in particular the so-called “general formula” can reproduce,
once a proper choice of the parameters is made, the Wong and Parker (2006a)
relation. Similarly a proper choice of the formulation Eq. 6.17 for the bed slope
can be obtained by selecting the Ikeda et al. (1982) option of the model, with

214



6.7. Appendix: Eigenstructure of the linear, coupled,

time-dependent problem

Parameter Symbol Value
Transport formula Wong and Parker (2006a)
Horizontal eddy viscosity νH 0m2s−1

Secondary currents parameter βc 0
Gravitational acceleration g 9.81 ms−2

Time step dt∗ 6 s
Morphological factor 5÷ 10
Transverse slope coefficient αbn 2.306
Longitudinal slope coefficient αbs 0

Table 6.1: Most important settings of the numerical model.

Parameter Symbol Value

Shield stress θ 0.080
Relative roughness ds 0.010
Slope S 0.134 %
Resonant β βR 11.24
Critical β βcr 8.00
Froude number Fr 0.53

Table 6.2: Common parameters between the different experiments.

the following coefficient

αbn =
r√
θcr

=
0.5√
0.047

= 2.306 (6.82)

For the hydraulic resistance we adopted the Manning formula (Eq. 6.10); we
selected zero horizontal viscosity and did non consider the effect of secondary
currents. Since we are here interested only in the stationary phase we do not
expect the morphological factor to play an important role; therefore we adopted
(Crosato et al., 2011) a factor 10. A summary of the parameters of the numerical
model are reported in table 6.1.

In order to investigate the response of the system under different conditions
we considered four experiments having same width, slope, Shields stress and
relative roughness (table 6.2) but a different aspect ratio, which can be obtained
by varying simultaneously the discharge the grain size as detailed in table 6.2.

The resonant values, as well as the critical aspect ratio for the development
of migrating bars (Colombini et al., 1987), do not vary because they depend only
on θ and ds (which are constant in our simulations). For this reason the values
of β obtained by varying both discharge and roughness can be easily chosen in
order to reproduce super/sub resonant conditions and super/sub critical values.
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Parameter Super Super 2 Sub Sub 2

β 12.0 15.0 10.5 7.0
D∗ [m] 0.833 0.667 0.952 1.429
d∗s [mm] 8.33 6.67 9.52 14.29

ks [m1/3s−1] 46.9 48.6 45.8 42.8

Q∗ [m3s−1] 25.13 17.98 30.70 56.40

U∗ [ms−1] 1.51 1.35 1.61 1.97

Qs∗ [ls−1] 1.286 0.920 1.571 2.887

Table 6.3: Hydraulic parameters of the different experiments.

Preliminary results

In most of the numerical simulations the interaction between the migrating bars
and the steady solution makes the analysis more complex and interesting at the
same time. However in this preliminary analysis we limit our attention to the
simple direct comparison between numerical and analytical outcomes.

This is possible for the Sub 2 experiment because in that configuration the
aspect ratio is sufficiently small to prevent formation of migrating alternate
bars (β < βcr); therefore we do not expect the growth of free bars but sim-
ply the development of the steady configuration as predicted by the analytical
derivation.

In figure 6.20 we report the comparison between analytical and numerical
solutions for a long-term simulation (40 d) in the case of a relatively small a =
2 m a bigger a = 8 m obstacle. We can notice that the morphological pattern
is qualitatively correctly reproduced, as well as the approximate height of the
steady bars and the elevation difference between the upstream and downstream
branches.

However also significant differences occur; in particular figure 6.20b shows
that even for relatively small obstacle there is a significant difference between
numerical and analytical results. In order to understand whether this is related
to the limited grid resolution, small differences in the formulation or differences
sources further investigations are needed.

The solution is rather similar for the big obstacle of figure 6.20c which
confirms the limited impact of the nonlinear effect even for relatively large
perturbation observed in Repetto et al. (2002) experiments with periodic width
variation.

6.7.2 List of symbols and acronyms

Subscripts and superscripts

0 Parameter of the basic flow;

R Referred to resonant condition;
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∗ Dimensional quantity;
F Forced component;
H Homogeneous component;
T Matrix transpose;
a Refers to the upstream channel;
b Refers to the downstream channel;
obst Refers to the central region, where the obstacle is located;

Latins

BC Boundary condition;
cosh Hyperbolic cosine;
sinh Hyperbolic sine;
d∗s [l] Sediment size;
m [−] Fourier mode;
g [lt−2] Gravitational acceleration;
i [−] Imaginary unit;
k1/2 [−] Coefficients of the obstacle solution;
k3 [−] Coefficients of the spiral flow;

ks [l1/3t−1] Gauckler-Strickler coefficient;
r [−] Coefficient of the Ikeda (1981) formula;
x∗ [l] Longitudinal coordinate;
y∗ [l] Transverse coordinate;

yB [−] Dimensionless bank position;
Am [−] Expansion of a linear function in Fourier sin series;
A [−] Matrix of coefficients of the linear system;
B [−] Matrix of known terms of the linear system;
Ax [−] Matrix of coefficients of the x-derivatives (hyperbolic system);
By [−] Matrix of coefficients of the y-derivatives (hyperbolic system);
Am [−] Expansion of a linear function in Fourier sin series;
B [−] Channel width;

Ccosh

jm [−] Coefficients of the Fourier expansion of the hyperbolic cosine;

Csinh

jm [−] Coefficients of the Fourier expansion of the hyperbolic sine;
C [−] Dimensionless Chézy coefficient;
CD [−] Variation of the Chézy coefficient with the water depth;
C∗ [l−1] Channel curvature;
D∗ [l] Water depth;
Emj [−] Longitudinal variation of the eigenvalue j of the component m;
Fr [−] Froude number;
H [l] Free surface height;
N [−] Number of Fourier modes;
~Q [−] Vector of the unknown;
Q∗ [l3t−1] Water discharge;
Qs∗ [l3t−1] Solid discharge;
R∗ [l] Radius of curvature;
S [−] Channel slope;
~S [−] Source term of the hyperbolic system;
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T ∗ [t] Exner time scale;
T ∗

w [t] Time scale of the hydrodynamics;
T ∗

s [t] Time scale of the adaptation of the bedload direction;
U∗ [lt−1] Longitudinal (along x-direction) component of velocity;
~U∗ [lt−1] Vector of dependent variables in the hyperbolic system;
V ∗ [lt−1] Transverse (along y-direction) component of velocity;

Greeks

α [rad] Bifurcation angle;
β [−] Aspect ratio;
βcr [−] Critical aspect ratio for formation of migrating alternate bars;
γg [−] Deviation of bedload transport due to the gravitational effect;
γg,eq [−] γg according to the algebraic closure Ikeda (1981);

γF
1/2 [−] Coefficients of the transverse velocity in the obstacle solution;

Γ1/2 [−] Coefficients of the forced solution;
δ [−] Amplitude of the width variation;

δF
1/2 [−] Coefficients of the water depth in the obstacle solution;

∆ [−] Relative submerged density of sediment;
∆S [−] Relative variation of channel slope;
η [−] Bottom elevation;
~̃η [−] Vector of the unknowns;
λ [−] (Complex) spatial growth;
λ∗x [lt−1] Eigenvalues of the hyperbolic system in longitudinal direction;
λ∗y [lt−1] Eigenvalues of the hyperbolic system in transverse direction;
θ [−] Shields parameter;
τ∗ [Ml−1t−2] Shear stress;
τ∗H [Ml−1t−2] Transverse shear stress due to secondary currents;

θF
1/2 [−] Coefficients of the water depth in the obstacle solution;

ξF
1/2 [−] Coefficients of the bottom elevation in the obstacle solution;

ΦF
1/2 [−] Coefficients of the longitudinal velocity in the obstacle solution;
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time-dependent problem

(a) Analytical solution

(b) Long-term result of the numerical model (a = 0.1).

(c) Long-term result of the numerical model (a = 0.4).

Figure 6.20: Steady bottom configuration of the Sub 2 experiment.
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Chapter 7

Perturbative solution of the
2D model for gravel-bed river
bifurcations

7.1 Introduction

Bifurcations are fundamental processes in the dynamics of many river systems
like alluvial fans, braided and anastomosing rivers, fluvial lowland plains and
deltas (Kleinhans et al., 2013).

Understanding the control on their morphodynamics and how they evolve
in time is therefore key to increase the present knowledge on a vast class of
fluvial systems.

Many observation in both natural and laboratory gravel-bed rivers (Mosley,
1983; Federici and Paola, 2003; Zolezzi et al., 2006) show the tendency of bi-
furcations in these systems to develop an unbalanced configuration, with one
branch carrying most of the coming discharge. Such asymmetric behaviour
can be geometrically forced, like in the presence of channel curvature or of a
slope advantage of one of the distributaries, but can arise even in symmetrical
configurations (Bertoldi and Tubino, 2007).

Despite the flow being strongly three-dimensional several properties of bi-
furcation systems have been modelled by matching a simple one-dimensional
scheme for the morphodynamics of each channel with a suitable nodal condition.
Following this approach Wang et al. (1995) proposed an empirical relation for
the partition of the sediment flux, showing how an uneven sediment and water
distribution may occur even in a symmetrical planform configuration. A more
physically-based nodal condition has been proposed by Bolla Pittaluga et al.
(2003) who introduced a simplified process description based on two rectangular
cells located just upstream the bifurcation, which mutually exchange water and
sediment flows depending on the transverse bottom gradient. This approach
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allows for including further ingredients, like the secondary flow developing in
a curved channel (Kleinhans et al., 2008). The experimental observations of
Bertoldi and Tubino (2007) confirmed the capability of the Bolla Pittaluga
et al. (2003) model to distinguish between balanced and unbalanced cases

The main limitations of the above models lie in the need to calibrate some
parameter. In the Bolla Pittaluga et al. (2003) approach this is mainly repre-
sented by the longitudinal size of the rectangular cells measuring the upstream
reach length that controls the partition of sediment and water fluxes in the
distributaries. As typical of simplified closure relations, this fundamental prob-
lem reflects a limitation in the physical description of the complex processes
masked by the calibration parameters. Moreover, analysis of the experimental
findings of Bertoldi and Tubino (2007) point out a particular intriguing find-
ing, whereby the optimal length of these cells is closely related to the distance
between the local hydraulic conditions and the so-called resonant point (Blon-
deaux and Seminara, 1985). In the 2D morphodynamics of single thread river
channels, resonance represents a fundamental theoretical condition discriminat-
ing between different models of planform evolution of meandering rivers (Sem-
inara et al., 2001; Lanzoni and Seminara, 2006; Frascati and Lanzoni, 2009;
Zolezzi et al., 2009) and setting the threshold between prevailing upstream or
downstream propagation of 2D information of morphological change (Zolezzi
and Seminara, 2001; Mosselman et al., 2006).

On the basis of such finding Bertoldi and Tubino (2007) proposed a new
interpretation of bifurcation instability founded on the theory of (Zolezzi and
Seminara, 2001), showing that the distance from the resonant conditions is
clearly correlated with the response of the bifurcation in terms of discharge
partition and secondary channels elevation. In more detail Bertoldi and Tubino
(2007) suggested that the upstream influence exerted by the bifurcation un-
der super-resonant conditions leads to the formation of a steady alternate bar
in the upstream reach, which is the primary topographic cause of flow diver-
sion towards one of the two distributaries and consequent development of an
asymmetrical configuration.

This concept brings a fascinating theoretical legacy between bifurcation dy-
namics, mostly studied within one dimensional approaches, and the framework
of morphodynamic theories for river bars and meandering. Such legacy clearly
emerges from experimental observations but it hasn’t been given a rigorous
theoretical explanation so far.

In this work we aim at developing a theoretical explanation of the linkage
between the phenomenon of resonance in single thread channels and the dy-
namics of channel bifurcations. This is achieved by solving analytically the
depth-averaged shallow water morphodynamic model though a perturbation
approach, with reference to a bifurcating channel domain.

The solution is found by imposing a matching of the solution at the bifur-
cation node which ensures the continuity of all the variables across the three
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channels.
The proposed solution refers to the commonly investigated geometrically

symmetrical bifurcation configuration, and is initially developed with reference
to the idealised case of two parallel branches separated by a thin wall and is
afterwards extended to the more realistic case of a non-vanishing bifurcation
angle. It can be viewed as the exact analytical solution for the “free” bifurcation
problem, i.e., which doesn’t consider external forcing effects such as channel
curvature or slope advantages which are out of the scope of the present work
and can be studied using the free solution as the starting point.

7.2 Gravel bed rivers bifurcations and morphody-
namic influence

The key point of this work is to model the bifurcation dynamics in the frame-
work of 2D steady bar theory and morphodynamic influence. It is convenient
to briefly recall the fundamental theoretical background of morphodynamic in-
fluence and bifurcation dynamics which sustain the basic idea of the present
work.

7.2.1 The theory of the morphodynamic influence

Two-dimensional morphodynamic influence can be defined as the process whereby
the presence of a local persistent perturbation in channel geometry is felt down-
stream and/or upstream through a series of steady bed waves typically taking
the form of alternate bars (Zolezzi and Seminara, 2001). Theoretically this
emerges from the linear theory of non-migrating bars in straight channels with
a non-uniform boundary condition at one end of the channel, which translates
into mathematical terms the mathematical discontinuity. The phenomenon is
known since decades to occur downstream of the local perturbation (Struiksma
et al., 1985; Struiksma and Crosato, 1989) through the discovery that under
special conditions morphodynamic influence can be felt also upstream of the
geometrical perturbation is more recent (Zolezzi and Seminara, 2001). Such
phenomenon has been experimentally verified (Zolezzi et al., 2005) and numeri-
cally reproduced (Van der Meer et al., 2011; Siviglia et al., 2013), and has been
mostly associated with the effect of a local narrowing in a straight channel or
with a discontinuity in channel curvature in a stream of constant width.

A crucial parameter of this theory is the bar-forming channel aspect ratio
β, defined as the (half) width to depth ratio, and in particular the so-called
resonant value βR which can be computed as

βR = f(θ, ds) (7.1)

where f indicates a function of the Shields stress θ and ds is the relative rough-
ness.
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It’s now broadly agreed (Mosselman et al., 2006) that 2D morphodynamic
influence can occur upstream of the geometrical perturbation only if β ≥ βR
with only downstream influence occurring in the opposite case.

Though not being fully rigorous, an analogy has been suggested between
the role of the aspect ratio β in two (x, y) dimensions and the Froude number
Fr in one dimension, being βR the analogue of unity, which distinguish the
prevailing direction of propagation of information of 1D morphological change
at the reach level.

The legacy between morphodynamic influence and bifurcation dynamics
can be understood when viewing the bifurcation node as a localised persistent
perturbation located at the downstream end of the bifurcating channel and at
the upstream ends of the two downstream bifurcates.

7.2.2 Channel bifurcations: simplified modelling and morpho-
dynamic influence

Modelling of channel bifurcation morphodynamics has been proposed in the
last three decades through simplified 1D approach for each of the three dis-
tributaries, plus suitable boundary conditions to be imposed at the upstream
end of the bifurcating channel, at the downstream ends of the bifurcates and
at the bifurcation node. Namely, adopting a 1D mobile-bed model for every
channel requires to specify 2 upstream conditions at the upstream end of each
distributary and 1 condition at the downstream end of the inlet channel, for a
total of 5 nodal relations (Bolla Pittaluga et al., 2003). In addition to the con-
servation of water and sediment mass (2 conditions) many models (Wang et al.,
1995; Bolla Pittaluga et al., 2003; Miori et al., 2006) assume the conservation
of specific energy from the main channel to the two branches (2 conditions);
the fifth relation is more delicate because it needs to take into account the
complex flow field and sediment transport near the bifurcation node. The type
of these boundary conditions and the values of the involved parameter are key
to discriminate between contrasting types of bifurcation behaviours. Moreover,
the nodal condition is nearly the only opportunity of incorporating 2D infor-
mation related to water and sediment partition by the bifurcation within a 1D
modelling approach.

The first attempt to close a 1D model with a suitable nodal relation has
been proposed by Wang et al. (1995), who adopted a simple power law which
links the partition of the sediment flow with the water discharge ratio, namely

qs∗b
qs∗c

=

(
q∗b
q∗c

)k

(7.2)

where q and qs are respectively the liquid and solid specific (per unit width)
discharges in the two distributaries (referred as b and c) and the superscript
∗ indicates dimensional quantities. According to this model, a threshold k
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value of n/3 separates two drastically different bifurcation behaviours, where
n indicates the dependency of the sediment flux to the velocity (through the
power law qs ∝ Un). Indeed when k is smaller than n/3 the balanced solution
is unstable and one of the two distributaries dominates, and viceversa for k
larger than n/3.

In spite of the empirical nature of Eq. 7.2 this simple model has the ad-
vantage to show which are the conditions for which an instability arises. In
particular if the partition of solid flow is highly dependent on the discharge
ratio (high k) a slightly more elevated channel would receive less sediment that
its transport capacity, erode its bottom and return to the balanced state; on
the other hand if k is small a more elevated channel would receive almost the
same quantity of material, which can be higher than the transport capacity and
consequently would lead to an increasingly unbalanced configuration.

A more physically-based nodal condition has been proposed by Bolla Pit-
taluga et al. (2003) who introduced a simple two-cells description of the 2D
processes at the bifurcation node (see figure 7.1). This condition is based on
considering two cells of length proportional to the width of the inlet channel
by a parameter α which measures upstream reach length affected by the bi-
furcation; Bolla Pittaluga et al. (2003) assumed a uniform flow entering the
cells from upstream and have allowed three different values of the average bed
elevation in both the two cells (ηb and ηc) and in the upstream section of the
inlet channel (ηa). It is worth noting that ηb and ηc also coincide with the bed
level of the upstream end section of the two downstream bifurcates.

The key 2D information is related to the lateral sediment flux which is
allowed between the two cells and is due to the transverse flow component
related to the exchange of water between the cells and to the gravity effect
related to the lateral bed elevation gap between the two cells. Such condition
can be formalised through the following expression

qs∗y = qs∗a

[
Q∗

yD
∗
a

Q∗
aαD

∗
abc

− 2r√
θa

η∗b − η∗c
B∗

b +B∗
c

]

(7.3)

where Q represents the water flux, D the depth, B the channel width and r the
Ikeda (1981) parameter; Dabc indicates the average depth of the three branches
and Qy the exchange of water from cell c to cell b.

The analysis of this model suggests that if the aspect ratio of the inlet
channel βa is higher than a critical value βcr the balanced solution is unstable
and an uneven configuration arises. In particular such critical value is a function
of the channel-forming value of the Shields stress θa and the relative roughness
dsa of the inlet channel, namely

βcr
rα

= G(θ, ds) (7.4)

where G represent a generic function.
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Figure 7.1: Sketch of the two-cells model of Bolla Pittaluga et al. (2003). Arrows
indicate sediment fluxes across the cells boundaries.

This simple model is able to capture important bifurcation properties ob-
served both in laboratory physical models and in the field (Ferguson et al., 1992;
Zolezzi et al., 2006), and in particular the development, in the case of relatively
low Shields stress θa and large aspect ratio βa, of an unbalanced bifurcation
configuration.

The main disadvantage of this quasi-2D approach is that a nodal relation
of general validity is difficult to formulate; in particular the calibration of the
parameter α often yields rather different values (1 in Bolla Pittaluga et al.
(2003), 2.5 in Siviglia et al. (2013), 3 in Kleinhans et al. (2008), 6 in Bertoldi
and Tubino (2007)). For example in figure 7.2 we report results from the flume
experiments of Bertoldi and Tubino (2007) and from the numerical simulations
of Siviglia et al. (2013): it clearly appear that a unique curve in not able
to discriminate between stable and unstable points and consequently different
values of α must be adopted.

The clearest and perhaps most intriguing indication of the most likely con-
trolling factor of the length of the bifurcation-affected upstream channel reach
(equal to αBa ) came from the experimental analysis of Bertoldi and Tubino
(2007) who observed that the value of the parameter α which yields the best
matching with the measured discharge partition is highly correlated with the
difference between the channel-forming value of the inlet channel aspect ratio β
and its resonant threshold βR, an observation which sets the connection between
the dynamics of bifurcations and the theory of 2D morphodynamic influence.
In particular, as reported in figure 12 of Bertoldi and Tubino (2007) the op-
timal cell size α increases in near-resonant conditions; this is consistent with
the theory of the morphodynamic influence which predicts the spatial damping
of the upstream influence to vanish at the resonant point. In addition they
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Figure 7.2: Laboratory experiments Bertoldi and Tubino (2007) and numerical sim-
ulation of Siviglia et al. (2013), and theoretical curves of Bolla Pittaluga et al. (2003).
The Manning resistance law, Parker (1990) transport formula and r = 0.5 have been
adopted.

noticed that the final configuration crucially depends on the distance from the
resonant conditions; indeed the inlet step (see figures 7 and 10 of Bertoldi and
Tubino (2007) as well as the discharge ratio turns out to be well correlated with
(β − βR)/βR than to the aspect ratio itself.

More specifically, two main findings support this legacy. First, the two
typical indicators of bifurcation asymmetry show a strong correlation with the
scaled difference (β − βR)/βR, rather than with the aspect ratio itself (figures
5 and 7 of Bertoldi and Tubino (2007)). These two indicators are the discharge
ratio rQ between the downstream anabranches and the so called “inlet step”,
i.e. the normalised elevation difference between the upstream end sections of
the same anabranches (ηb − ηc)/Da. Second, the value of α that provides the
best match between model predictions and experimental observations is also
correlated with the same difference (β − βR)/βR, and shows its peak under
near-resonant conditions, i. e. when such difference almost vanishes (Figure 12
of Bertoldi and Tubino (2007)).

7.3 Formulation of the problem

The study refers to the channel configurations illustrated in Figure 3, consisting
of one upstream channel ”A” and two downstream bifurcates (”B” and ”C”)
separated by a thin wall. The channels have erodible bed, fixed and frictionless
banks and are assumed to be indefinitely long far from the bifucation node.
The width of the channel A is assumed to be twice than the width of B and C.
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(a) Planimetric view of the simple geometrical configuration. The
red line represent a thin and impermeable barrier, the dashed line
the (imaginary) boundary we defined for separating the three re-
gions called channel A,B,C.

(b) Cross-sectional view of the main
channel A and notation.

(c) Geometry and system of reference
adopted in the case of non-zero angle α.

Figure 7.3: Geometrical configuration and notation.

A two-step analysis is proposed, whereby the idealized configuration of figure
3a is initially investigated (vanishing bifurcation angle) and the more realistic
layout with bifurcates diverging by an angle 2α is successively examined.

Indeed many laboratory and fields analysis adopted values of the angle
between the distributaries (2α in the notation of figure 7.3c) ranging from 35◦ to
60◦ (Federici and Paola, 2003; Bertoldi and Tubino, 2005; Burge, 2006; Thomas
et al., 2011; Hardy et al., 2011; Bertoldi, 2012). In particular the laboratory an
numerical experiments of figure 7.2 Bertoldi and Tubino (2007); Siviglia et al.
(2013) adopted an angle of 30◦.

In Section 7.3.1 the complete two-dimensional model is formulated in dimen-
sionless form, Section 7.3.2 describes the perturbation approach used to find the
linear steady solution, which is illustrated in Section 7.3.3. The reader will note
that the linear solution in this case is obtained as the sum of a one-dimensional
and a two-dimensional component, which represents a specificity of the bifur-
cation problem that requires matching of linear solutions separately derived for
channels A, B and C having different width. Section 7.3.4 then illustrates how
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the steady linear bifurcation solution can be obtained when considering two
diverging bifurcates by an angle 2α and Section 7.3.5 reviews the fundamental
linkage between the eigenvalues of the steady linear system derived in Section
7.3.3. and the phenomenon of 2D morphodynamic influence.

7.3.1 The two-dimensional model

We adopt a cartesian system of coordinates {x∗, y∗} and we call U∗ and V ∗

the longitudinal and cross components of the velocity vector. We also define
{τ∗x , τ∗y } and {qs∗x, qs∗y} as the components of the bottom friction and the specific
solid discharge respectively. In addition we use the symbols D∗ for the water
depth, η∗ for the bottom elevation, d∗s for the grain size and t∗ for the time.

These quantities can be made dimensionless as follows







{x, y} :=
{x∗, y∗}
B∗

{U, V } :=
{U∗, V ∗}

U∗
0

{τx, τy} :=
{τ∗x , τ∗y }
ρU∗2

0

{qsx, qsy} :=
{qs∗x, qs∗y}

qs∗0

D :=
D∗

D∗
0

η :=
η∗

D∗
0

ds =
d∗s
D∗

0

t :=
t∗

T ∗

(7.5)

where ρ is the water density, B∗ is the horizontal length scale, taken to
coincide with the width of the bifurcates, U∗

0 , D
∗
0, Qs

∗
0 are the reference values

for velocity, depth and solid discharge respectively.
The morphological timescale is defined from the sediment continuity equa-

tion and reads

T ∗ :=
D∗

0B
∗(1− p)

qs∗0
(7.6)

where qs∗0 is the reference value of the unit bedload transport capacity and p
denotes the porosity of the bed material.

Assuming the morphological evolution to be much slower compared to the
hydrodynamic timescale allows to neglect the local time derivatives in the mo-
mentum equations; under this approximation the two-dimensional conservation
of x-momentum, y-momentum, water mass and sediment mass can be expressed
through the following set of partial differential equations







U
∂U

∂x
+ V

∂U

∂y
+

1

Fr20

∂

∂x
(η +D) + β

τx
D

= 0

U
∂V

∂x
+ V

∂V

∂y
+

1

Fr20

∂

∂y
(η +D) + β

τy
D

= 0

∂UD

∂x
+
∂V D

∂y
= 0

∂η

∂t
+
∂qsx
∂x

+
∂qsy
∂y

= 0

(7.7)
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where the Froude number and aspect ratio are defined as follows

Fr0 :=
U∗
0

√
gD∗

0

β := B∗/D∗
0 (7.8)

In order to close the problem we need to specify, if we consider U, V,D, η as
primitive variables, an expression for τx, τy, qsx, qsy.

This is achieved through a “local equilibrium” approximation whereby clo-
sure relation for near bed Shields stress and bedload rates can be evaluated
through uniform flow relations using the local values of the primitive variables.

The magnitude of the bottom friction can be estimated by considering the
Chèzy formula and the direction of the velocity vector, which leads to

{τx, τy} = {U, V }|
~U |
C2

(7.9)

where the dimensionless Chèzy coefficient can be estimated as (Engelund and
Fredsoe, 1982) or, alternatively, by adopting the Manning formula, namely

C = 6 + 2.5 log

(
D

2.5 ds

)

C =
1

n
√
g

(
D

ds

) 1

6

(7.10)

As typical of gravel-bed bifurcations we assume bedload as the dominant
model of sediment transport; bedload rate therefore reads

|~qs|∗ = Φ(θ)
√

g∆ d∗3s (7.11)

where the Shields parameter θ is defined as

θ =
τ∗

ρg∆ d∗s
= Fr20

|~τ |
∆ ds

(7.12)

The dimensionless bedload rate can be consequently expressed as

|~qs| = Φ(θ)

Φ0
(7.13)

where we compute Φ(θ) using the bedload formula of Parker (1990).
The bedload rate vector is assumed to deviate from the local velocity vector

γq by a correction γg (Ikeda, 1981; Talmon et al., 1995) due to the bottom
gradient in the direction normal to the velocity, namely

γq = tan

(
V

U

)

γg = − r√
θ

∂η

∂n̂q
(7.14)

The dimensionless bedload discharge is finally given by

{qsx, qsy} =
Φ(θ)

Φ0
{cos (γq + γg), sin (γq + γg)} (7.15)
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7.3.2 Perturbation approach

The governing mathematical model we obtain is formed by a system of four
non-linear partial differential equations in two space dimensions (Eq. 7.7) whose
initial-boundary problem can be fully solved only through numerical approxi-
mation.

Nevertheless under the hypothesis of relatively small perturbations with
respect to a known basic solution it is possible to linearize the problem; this
enables, for some particular geometrical and boundary configurations, to obtain
an analytical solution, which has the main advantage of allowing to easily detect
the main controlling parameters and efficiently explore the system behaviour
within a broad range of controlling factors.

Referring to the basic straight channel of width 2B∗ solution is usually taken
as the uniform flow that would occur on a flat-bottom sloping channel, and has
constant values of depth D0 and velocity U0, namely

{η, U, V,D} = {η0 = −S0βx, U0, 0, D0} (7.16)

where S0 is the longitudinal slope.
A perturbation solution of Eq. 7.7 is obtained by expanding the four un-

knowns (η, U, V,D) around the basic state as follows






η = −S0βx+ ǫ η1(x, y, t) +O(ǫ2)

U = U0 + ǫ U1(x, y, t) +O(ǫ2)

V = V0 + ǫ V1(x, y, t) +O(ǫ2)

D = D0 + ǫ D1(x, y, t) +O(ǫ2)

(7.17)

where the small parameter ǫ measures the order of magnitude of the pertur-
bations and O(ǫ2) indicates quadratic and higher order terms as far as the
perturbations are sufficiently small to ensure that the non-linear effects are
weak.

The scaling parameters U∗
0 , D

∗
0 can be conveniently selected in order to

obtain
{η0, U0, V0, D0} = {−S0βx, 1, 0, 1} (7.18)

while a proper choice of the scaling flux Φ0 gives, without any loss of generality

qs0 =
Φ(θ0)

Φ0
= 1 (7.19)

Substituting this expansion into Eq. 7.7 we obtain the following uniform
flow relations

θ0 =
S0
∆ds

Fr20 = S0 C
2
0 (7.20)

where C0 is the Chézy coefficient of the uniform flow. This relations allow for
an univocal definition of the basic flow once that three independent parameters
(typically β, θ0, ds) are fixed.
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7.3.3 The steady linear solution

The complete linear solution for the free bifurcation requires to separately solve
the 2D linear morphodynamic problem for each of the three separate channels
A,B,C and then match them through suitable nodal conditions. Matching the
solutions for the three channels also implies that every solution is obtained
referring to the same cartesian coordinate system (x, y) displayed in figure 7.3.
This means that the origin of the y-axis is located on the centerline of channel
A, on the right bank of channel B and on the left bank of channel C.

In this section we derive the steady linear solution for the channel B ; this
is analogous to Colombini et al. (1987), except for a different choice of the
width (2B∗ in that case). Obtaining the solution for channels A and C is
straightforward and only requires to shift the location of the streamwise axis x
with respect to the lateral channel boundaries (see Sections 7.4.1 and 7.4.2 for
more details).

The linear approximation of the system of Eq. 7.7, at the order O(ǫ), reads







∂U1

∂x
+

1

Fr20

∂(D1 + η1)

∂x
+

β

C2
0

[2 U1 −D1 (1 + 2 CD)] = 0

∂V1
∂x

+
1

Fr20

∂(D1 + η1)

∂y
+

β

C2
0

V1 = 0

∂D1

∂x
+
∂U1

∂x
+
∂V1
∂y

= 0

∂η1
∂t

+
∂V1
∂y

− r

β
√
θ0

∂2η1
∂y2

+ 2ΦT
∂U1

∂x
− 2ΦTCD

∂D1

∂x
= 0

(7.21)

where ΦT and CD account for the dependence of bedload and flow resistance
on Shields stress and depth respectively, and read

ΦT :=
θ0
Φ0

∂Φ

∂θ
|θ=θ0 CD :=

D0

C0

∂C

∂D
|D=D0

(7.22)

which represent how bedload and flow resistance depends on Shields stress and
depth respectively.

The first order linear system of Eq. 7.21 can be solved by Fourier analyzing
the unknowns in the transverse (y) direction, thus obtaining a cascade of partial
differential problems in the independent variables (x, t) for each Fourier mode
m. The linearity of Eq 7.21 allows to solve the differential problem for each
m separately, which also reduce to ordinary differential problems when the
steady solution is of interest, like in our case. Without loss of generality, the
assumption of semi-infinite length of each channel that are only bounded at
their node end enables to assume a periodic structure of the unknowns also in
the streamwise direction x.
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The Fourier expansion has the following structure

{η1, U1, D1} = {η̂m, Ûm, D̂m} cos (mπy) exp(λmx+ ωt)

V1 = V̂m sin (mπy) exp(λmx+ ωt)
(7.23)

where λm is the (complex) wavenumber, ω the (complex) frequency

and
(

η̂m, Ûm, V̂m, D̂m

)

are complex constants.

It is worth to notice that, being m an integer number, Eq. 7.23 automat-
ically satisfies the condition of zero water and sediment flux across the lateral
walls, namely

V1 = 0
∂η1
∂y

= 0 @ y = {0, 1} (7.24)

On substituting Eq. 7.23 into Eq. 7.21 we obtain an homogeneous alge-
braic linear system, which admits a nontrivial solution provided the following
solvability condition holds

fm(ω, λm, β, ds, θ0) = 0 (7.25)

for given ω and uniform flow parameters {β, ds, θ0}, fm is a 4th order poly-
nomium in λ which admits four eigenvalues λmj (j = 1, . . . , 4) that are the key
to explain the phenomenon of morphodynamic influence (see section 7.3.5).

Differently from the classical solution of steady bars in straight channels
(e.g. Struiksma and Crosato, 1989; Seminara and Tubino, 1992) in the case of
the bifurcation problem the solution of Eq. 7.23 has to be obtained as the sum
of a 1D ((η1, U1, D1)

1D: transverse mode m = 0) and a 2D ((η1, U1, D1)
2D:

transverse modes m ≥ 1) linear steady solutions.

The steady 1D solution can not be straightforwardly derived by fixingm = 0
and ω = 0 in Eq. 7.23; indeed as detailed in appendix 7.9.2 a singularity appears
for ω → 0. However we can easily solve the problem by considering the water
and sediment continuity (third and forth lines of Eq. 7.21), which imply that
any steady solution is uniform, namely

U1 = const D1 = const (7.26)

Substituting these value into the x-momentum equation (first line of Eq. 7.21)
and remembering Eq. 7.20 gives

η1 = −β S1 x+ η̃0 S1 = S0
[
2 U1 −D1 (1 + 2 CD)

]
(7.27)

where the integration constant η̃0 indicates an uniform variation of the bottom
elevation whereas S1 represents a variation of the bed slope. An unique solution
can therefore be determined once that the three constants D̃0, D̃0, η̃0 are fixed.
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7.3. Formulation of the problem

In order to make the variation of the discharge and slope explicit we prefer to
adopt Q̃0, S1, which gives

{η1, U1, D1}1D = η̃0 {1, 0, 0}
︸ ︷︷ ︸

Uniform η perturbation

+ Q̃0 {0, γ1, γ2}
︸ ︷︷ ︸

Discharge perturbation

+ S1 {−βx, γ3,−γ3}
︸ ︷︷ ︸

Slope variation

(7.28)
where η̃0, S1, Q̃0 are independent parameters and the coefficients γ1, γ2, γ3 are
defined in appendix 7.9.2 (Eqs. 7.88 and 7.88).

The 1D solution of Eq. 7.28 is a constant value in the transverse direction
and physically expresses the lowest-order (m = 0) channel response felt by a
variation in the flow discharge (term proportional to Q̃0) or and adjustment of
the slope (term proportional to S1) or by a uniform variation of the bottom
elevation η̃0.

In the case of the 2D solution (m ≥ 1), for each wavenumber λmj the fol-
lowing relation between the amplitudes (and phases) of the different dependent
variables can be determined

{η̂mj , Ûmj , V̂mj , D̂mj} = η̃mj{1, φmj , δmj , ξmj} j = 1..4 (7.29)

where η̃mj is an arbitrary (complex) constant and the coefficients φ, δ, ξ depends
on the basic flow.

In this way for each Fourier mode m we obtain four solutions of the form
given by Eq. 7.23 each one proportional to η̃mj ; due to the linearity of the
problem the complete 2D steady solution is obtained by simply adding the
solution for each mode m, namely

{η1, U1, D1} = cos(mπy)

4∑

j=1

η̃mj{1, φmj , ξmj}Emj

V1 = sin(mπy)
4∑

j=1

η̃mjδmj Emj

(7.30)

where we have defined

Emj = exp (λmjx+ ωt) (7.31)

The complete linear steady solution for a straight channel can be expressed
by simply summing the two dimensional 7.30 and one-dimensional 7.28 com-
ponents. Specifically, considering a finite sum of the first N Fourier modes the
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solution reads

{η1, U1, D1} = {η1, U1, D1}1D + {η1, U1, D1}2D

=

N−1∑

m=1





4∑

j=1

η̃mj{1, φmj , ξmj}Emj



+

+ η̃0{1, 0, 0}+ Q̃0 {0, γ1, γ2}+ S1{−βx, γ3,−γ3}

V 2D
1 =

N−1∑

m=1





4∑

j=1

η̃mjδmj Emj





(7.32)

A fundamental property of the obtained linear solution, representing the key
mathematical ingredient that links the ”free” bifurcation stability with mor-
phodynamic influence, is the number of degrees of freedom for the solution in
each channel, in other words the number of complex constants that can be
chosen arbitrarily. The solution of Eq. 7.32, which refers to the left down-
stream bifurcate (channel B) represents a linear combination of the following
3 + 4N − 4 = 4N − 1 parameters

η̃1, Q̃0, S1 3 parameters
η̃m1, η̃m2, η̃m3 ∀m = 1..N − 1 4N − 4 parameters

(7.33)

As we pointed out before in a semi-infinite channel only a subset of these com-
ponents is acceptable with the condition of a bounded solution.

7.3.4 Linear solution for the small-angle divergent bifurcation

Let us consider a bifurcation with an angle 2α between the two distributaries,
each of them having the same width B∗.

We model the effect of the angle α as producing a perturbation of the basic
uniform flow that can be expanded the Taylor series in the parameter α, namely







η = −S0βx+ α η1(x, y) +O(α2)

U = U0 + α U1(x, y) +O(α2)

V = V0 + α V1(x, y) +O(α2)

D = D0 + α D1(x, y) +O(α2)

(7.34)

Under the hypothesis of relatively small angle only linear terms O(α) are re-
tained.

Referring to figure 7.3c), and considering a rotated coordinate system in
channels B and C, a linear problem is obtained for each of the three channels,
which is formally identical to the one solved in the previous section.

The main differences compared to the bifurcation with vanishing angle
lies in the matching condition that contains in this case a symmetric forcing
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term which leads to a well defined symmetric solution for the four variables
η1, U1, V1, D1 which depends on the basic flow only. It is worth to notice that
because of the symmetry this solution does not affect the water and sediment
distribution, which remains perfectly balanced.

Eq. 7.34 represents only the particular solution of the problem forced by
the bifurcation angle and it vanishes for α = 0. The linearity of the problem
allows to construct a general solution as the sum of the forced O(α) symmetric
component and the free O(ǫ), anti-symmetric part.

7.3.5 Morphodynamic influence and its relation to the eigen-
values of the linear system

According to the theory of (Zolezzi and Seminara, 2001) the sign of real(λ1j)
(spatial growth rate of each solution) plays a key role in determining the dom-
inant direction of morphological influence. This result can be explored by con-
sidering the first (m = 1) transverse mode only: for this reason we will omit,
for the sake of notation compactness, the index m.

Figure 6.3 illustrates the dependency of the four eigenvalues λ1j (j = 1, . . . , 4)
for the 2D steady (ω = 0) solution on the channel aspect ratio β. Specifically,
the left panel shows that the sign of the two complex conjugate eigenvalues
real(λ2, λ3) changes with the aspect ratio β; the point at which they vanish
is called (after Blondeaux and Seminara (1985)) resonance aspect ratio and
identified with the symbol βR.

On the basis of the channel aspect ratio with respect to this particular values
two cases can be identified:

• super-resonant (β > βR); in this case real(λj) > 0 for three eigenvalues
(j = 2, 3, 4) and the upstream influence is dominant;

• sub-resonant (β < βR): only one the eigenvalue λ4 is positive and the
dominant influence occurs downstream;

In order to understand the connection between resonance and upstream
influence we can consider a semi-infinity rectangular channel extending to −∞
(left part of figure 6.4); if we look for bounded (i.e. limited) solutions having the
form of Eq. 7.23 we must reject the solutions associated with the eigenvalues
λj < 0 which are exponentially growing in the upstream (negative x) direction.

Under super-resonant conditions three independent solution are acceptable,
included the two associated with the two complex conjugate eigenvalues λ2 and
λ3 which, having a smaller real part, lead to a relatively small damping rate;
this means that any perturbation can influence the morphodynamics relatively
far upstream..

On the other hand, under sub-resonant conditions, the only acceptable solu-
tion which correspond is rapidly damping because is associated with a relatively
large eigenvalue real(λ4); consequently only a marginal, local upstream influ-
ence occurs.
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7.4. Free steady solution for a channel bifurcation

Completely opposite is the behaviour of the semi-infinite channel which
extends towards +∞ (right side of figure 6.4): in this case the downstream in-
fluence is possible under sub-resonant conditions (when the two small, negative
λ2 and λ3 are acceptable), whereas if β > βR, the only possible solution (as-
sociated with λ1) is rapidly damping, thus producing only a short and limited
downstream influence.

The solution plotted in figure 6.3 represents the first (m = 1) Fourier mode
only; however it is easy to prove that the eigenvalues for the higher modes
correspond simply to the λ for the first mode in a channel having an aspect
ratio reduced by a factor m. More precisely the following relation between
different modes holds

fm(ω, λmj , β, ds, θ0) = f1(ω, λ1jm,β/m, ds, θ0) (7.35)

so that, once f1 is known, the entire set of eigenvalues (including those relative
to m > 1) can be determined.

According to Eq. 7.35 if β < 2βR there are three negative eigenvalues for
all m > 1; this means that for the higher modes m ≥ 2 there are always three
linearly independent solutions in the downstream infinite channel and one in
the upstream infinite channel (see figure 6.4).

7.4 Free steady solution for a channel bifurcation

Once the solution for a single semi-infinite channel is known we can move to-
wards the more complex case of the bifurcation composed with three straight,
semi-infinite channels which join together at the bifurcation node, as illustrated
in figure 7.3a.

This section starts by considering the zero-angle bifurcation, whereas the
more general case of symmetrically divergent distributaries is studied in the
following.

Similarly to the solution for a localised channel curve (Zolezzi and Seminara,
2001) or for an obstacle in a straight channel (Chapter 7 of the present thesis),
the solution for the domain which represents a bifurcation, can be determined
by imposing the matching of the four primary variables across the three different
channels. However, with respect to the previous works we just mentioned, the
procedure to derive a solution for the bifurcating channel shows importance
differences both from a formal and a substantial point of view, namely:

• In the case of Zolezzi and Seminara (2001) (or the present Chapter 7 ), the
formation of the steady bars pattern is due to the forcing effect exerted
by the curve (obstacle) itself; consequently the solution of the linear prob-
lem is fixed by the intensity of the geometrical perturbation (curvature
or obstacle width respectively). For the zero-angle bifurcation no forcing
effects occurs, but the steady configuration we can determine is the result
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of a instability which arises under certain (namely super-resonant) condi-
tions as a free response of the system. From a linear point of view, any
multiplication of the solution with a (complex) constant furnish again a
solution of the problem; therefore in cases where not forcing effects exist
the amplitude (and phase) of the final solution remains undetermined.

• Due to different width of the main and secondary branches, a different
representation of the Fourier modes is needed. From a formal point of
view, this slight difference makes the matching much more complicate;
indeed we do not have a straightforward correspondence of each Fourier
mode, but the expansion of the single component in the main channel
induces an infinite number of modes in the distributaries. Consequently,
the Fourier components can not be treated independently but must be
solved together through an unique linear system which leads to a N -
modes approximation of the exact solution.

Firstly, it is worth to consider that the linear solution can be decomposed,
without any loss of generality, in symmetric and in and anti-symmetric compo-
nents, where in the previous the functions are even in y (except for V which is
odd), namely

{ηsym(y), U sym(y), Dsym(y)} = {ηsym(−y), U sym(−y), Dsym(−y)}
V sym(y) = −V sym(−y)

(7.36)

which indicates a solution mirrored across the x-axis. The remaining anti-
symmetric part satisfy the property

{ηasym(y), Uasym(y), Dasym(y)} = −{ηasym(−y), Uasym(−y), Dasym(−y)}
V asym(y) = V asym(−y)

(7.37)
and represent a solution which changes sign across the main channel axis.

Finding the symmetric part of the solution is quite easy at this point; indeed
the result we would obtain by considering the three channels and imposing the
matching, can be also obtained, in a more straightforward way, by following a
simple physical argument. Indeed if we consider the general symmetric solution,
which is composed by a sum of all the even modes of Eq. 7.32, we can notice
that it does not include any flux of water, sediment and momentum across
the symmetry axes. Therefore solution will not be affected by the presence of
any frictionless barrier at the channel axes; consequently the symmetric com-
ponent for the zero-angle bifurcation correspond to the solution for a straight
channel (of width B∗) formed by the left half of channel A and the channel B.
Specifically, the only possible steady solution is the basic unperturbed flow (as
predicted by Zolezzi and Seminara, 2001)), whereas if we seek for migrating
disturbances we expect to find the migrating central bars predicted by Colom-
bini et al. (1987). These migrating bars arises when β is larger than 2βcr, which
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is in any case higher than the resonance value; this symmetric disturbance will
not affect the balance of the bifurcation because, due to the symmetry, induce
an even partition of the discharge between the distributaries. The solution in
the remaining part of the domain (right half of channel A and channel C) can
be determined by symmetry (Eq. 7.36).

Conversely, the presence of an anti-symmetric component can produces a
non-balanced discharge ratio as well as an inlet step between secondary branches
which has been observed in laboratory scale bifurcations even in the case of a
symmetrical geometrical configuration. The behaviour of the anti-symmetric
part is more tricky because the odd Fourier modes for a single channel are not
a solution of the problem any more. Aim of this section is to prove that in some
conditions an anti-symmetric solution exists.

In the following derivation we assume that β < 2βR; this is the case of most
study cases reported in the literature Bolla Pittaluga et al. (2003); Miori et al.
(2006); Bertoldi and Tubino (2007); Kleinhans et al. (2008); this implies that
the secondary channels A and B, having half of the main channel width, are
always in sub-resonant condition.

7.4.1 Solution for the downstream branches

The solution of the secondary channel can be directly obtained from the result
of Eq. 7.32; however we must consider that, as described in section 7.3.5, in a
semi infinite-channel not all the components are compatible. Specifically, since
we assumed that the distributaries are always in sub-resonant conditions, we
must exclude, from all the 2D modes, the 4th positive eigenvalue (see figure
6.4).

A similar consideration must be applied to the 1D component; indeed any
change of the slope S1 produce a variation of the bottom level which becomes
infinite when x→ ∞, and is therefore not acceptable. In order to better under-
stand, from a physical point of view, why this component must be rejected, we
can imagine a channel with finite length, whose downstream boundary condi-
tion is, for example, a fixed water surface elevation; as far as the perturbation of
this boundary condition is finite, the slope variation decreases with the channel
length Lb and eventually becomes negligible (S1 = 0) for Lb → ∞.

Following these considerations we can express the solution for the (semi-
infinite) secondary branches as

{ηb1, U b
1 , D

b
1} =

N−1∑

m=1





3∑

j=1

η̃bmj{1, φbmj , ξ
b
mj}Eb

mj



+ η̃b0{1, 0, 0}Eb
0j + Q̃b

0 {0, γb1, γb2}

V b
1 =

N−1∑

m=1





3∑

j=1

η̃bmjδ
b
mj E

b
mj





(7.38)
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This solution is a combination of 3N − 1 linearly independent components,
whose individual amplitude is defined by the following parameters

{
Q̃b

0, η̃
b
0 2 param

η̃bm1, η̃
b
m2, η̃

b
m3 ∀m = 1..N − 1 3N − 3 param

(7.39)

which represents the degrees of freedom of the solution for the distributaries.

7.4.2 Solution for the main channel

In order to determine the solution for the main channel we must firstly notice
that, being the channel of width 2B∗ and the system of reference placed at the
channel centre (instead than on the left bank), it is not possible to express the
solution in the form of Eq. 7.32, because a translation and scaling of the y axis
with respect to the previous results is needed.

The solution can be simplified by considering the symmetry, which enables
to exclude all the even modes and the 1D component.

Differently from the distributaries, the main channel may be either super
or in sub-resonant; therefore the number of linearly independent solutions for
the first Fourier mode depends on the aspect ratio with respect to βR, and a
different expression of general solution arises. For this reason the two cases and
will be tackled separately in the two following sections.

Sub-resonant case

As mentioned in section 7.3.1, under sub-resonant conditions only the j = 4
solution is compatible with the semi-infinite length of the channel, regardless
the mode m.

For this reason, we can write the general, anti-symmetric solution as the
following linear combination of the N , independent components η̃m4

{ηa1 , Ua
1 , D

a
1} =η̃a04{1, φa04, ξa04} sin

(πy

2

)

Ea
04

︸ ︷︷ ︸

First mode

+

N−1∑

i=1

η̃ai4{1, φai4, ξai4} sin
(nπy

2

)

Ea
i4

︸ ︷︷ ︸

Higher modes

V a
1 =η̃a04δ

a
04 cos

(πy

2

)

Ea
04

︸ ︷︷ ︸

First mode

+

N−1∑

i=1

η̃ai4δ
a
i4 cos

(nπy

2

)

Ea
i4

︸ ︷︷ ︸

Higher modes

n := 2i+ 1

(7.40)
whereN indicates the number of Fourier modes taken into account. Notice that,
in comparison with Eq. 7.32, each individual component has half periodicity
(nπ/2) (because of the double width) and sin and cos are exchanged (because
of the translation of the system of reference).

The number of independent parameters (η̃m4) in this case equals N .
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Super-resonant case

For β > βR the first (i = 1) harmonic admits three linearly independent solu-
tions compatible with the semi-infinite domain length.

For this reason the general N -modes solution has two more degrees of free-
dom compared with Eq. 7.40, and can be written as
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1 , D

a
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)
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Higher modes

V a
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︸ ︷︷ ︸

First mode

+
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η̃ai4δ
a
i4 cos

(nπy

2

)

Ea
i1

︸ ︷︷ ︸

Higher modes

n := 2i+ 1

(7.41)
which, if compared with the sub-resonant case, shows two additional degrees of
freedom η̃02 and η̃03, for a total of N + 2 independent components.

7.4.3 The matching procedure

The general N -modes solution we derived for each channel is a combination of
many linearly independent components whose amplitude can be independently
chosen. Among this wide spectrum of possibilities, we are now interested in the
solutions which satisfy not only the differential problem within each channel,
but also the matching condition across the boundary between inlet channel and
distributaries.

As we have seen in the previous sections, the general solution in the sec-
ondary channel B is a linear function of 3N − 1 independent parameters, while
in the main channel A is a combination of N or N + 2 parameters in sub and
super-resonant conditions respectively (see table 7.1).

Channel A Channel A Total
i = 0 i ≥ 1 m = 0 m ≥ 1

Sub-resonant β < βR 1 N − 1 2 3N 4N− 1
Super-resonant β > βR 3 N − 1 2 3N 4N+ 1

Table 7.1: Number of degrees of freedom (linearly independent solutions) for each
channel, under sub and super-resonant conditions.

As matching conditions we impose that the N -modes expansion of the main
channel solution at x = 0 is equal, within the range y ∈ (0, 1), to the solution
at x = 0 if the channel B. This condition can be ensured by expanding V a in
Fourier sine series and the other three variables in cosine series.

Due to the different width of the channels the procedure is not as straight-
forward as it may appear: for example if we expand the function sin(πy/2) in
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7.4. Free steady solution for a channel bifurcation

Figure 7.4: Morphodynamic influence in the different branches when the main channel
is in super-resonant conditions. Because upstream and downstream influence can occur
simultaneously, the bifurcation node acts like a control section and can lead to an
unbalanced solution.
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the interval y ∈ (0, 1) we do not obtain a single component but the following
expression

sin (nπy/2) ≃
N−1∑

m=0

Cmi cos (mπy) (7.42)

Considering the matching of the four primitive variables η, U , V , D we obtain,
as detailed in section 7.9.1, a set of 4N− 1 matching conditions, which can be
expressed as an homogeneous system of linearly independent equations.

For β < βR the number of equations equals the number of unknowns, and
consequently the only solution is the banal one, which correspond to vanishing
perturbation (uniform flow).

The situation is different in the super-resonant configuration, because two
more degrees of freedom exist; therefore the system of equation admits ∞2

solution or, in other words, an unique solution once two complex constants are
independently fixed. In practice, since from a physical point of view only the
real component of the solution is meaningless, all the possible solutions can be
obtained by varying a single complex constant A regardless the value of the
second constant, which can be set to zero without any loss of generality.

7.4.4 Solution for the small-angle bifurcation

If the distributaries are divergent we expect that a non-banal solution arises
independently of the channel condition, included the sub-resonant regime. If
the angle α is relatively small the problem can be treated in a linear way, so that
a general solution can be obtained by simply summing the free part we derived
above with the forced part due to the channels divergence. The presence of an
angle does not affect the result in terms of bifurcation instability but simply
adds a symmetric component proportional to α.

It is worth to notice that, because of the symmetrical geometry, we can
seek for a solution for the upper half of the domain and then simply mirror it
(following Eq. 7.36) with respect to the symmetry axes xa = 0. For this reason
if we insert a thin wall at y = 0 we do not affect the solution; therefore we can
consider the channel A to have width B∗, ranging from y = 0 to y = B∗.

As we mentioned before we adopt for each of the two branches a different
system of cartesian coordinates, as reported in figure 7.3c. In the rotated co-
ordinate system the Eq. 7.34 solution at the order O(α) for each channel is
formally identical to the one at O(ǫ) we derived in section 7.3.3; consequently
the N mode solution of channel B can be expressed as in Eq. 7.38 (without the
1D component) whereas for the channel A we have only the eigenvalue j = 4
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(figure 6.4, sub-resonant case)

{ηa1 , Ua
1 , D

a
1} =

N∑

m=1

{η̂amj , Û
a
mj , D̂

a
mj} cos (mπy) Em4

V a
1 =

N∑

m=1

V̂ a
m sin (mπy) Em4

(7.43)

In this framework the effect of the variation in the channel direction is felt
in the matching conditions; indeed at the bifurcation node (x = 0) we must
in this case ensure the matching of depth, bottom elevation and of the depth-
averaged velocity vector. Due to the different systems of reference adopted for
the two branches this can not be simply ensured by imposing the matching of
the component U and V .

Indeed the components of the velocity vector V can be expressed in the two
systems of references as

V = {Ua, V a} = {U b, V b} (7.44)

where the rotated components satisfy the following relation
{

Ua = U b cos(α)− V b sin(α)

V a = U b sin(α) + V b cos(α)
(7.45)

If we substitute Eq. 7.34 into Eq. 7.45 and, under the hypothesis of rela-
tively small angles α, we neglect the higher order term we obtain

{

Ua
1 (0, y

a) = U b
1(0, y

b) +O(α2)

V a
1 (0, y

a) = V b
1 (0, y

b) + U0 +O(α2)
(7.46)

The term U0 represent a forcing effect which appears because of the small
deviation of the basic flow direction. This effect produces an inhomogeneity
of the boundary condition, so that the uniform flow is not a solution of the
differential problem any more.

Substituting Eqs. 7.43 and 7.38 into Eq. 7.46, expanding the constant term
U0 in Fourier cosine series and neglecting the higher order terms we obtain

N∑

m=0

{ηam, U
a
m, D

a
m} cos (mπy) =
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m=0

{ηbm, U
b
m, D

b
m} cos (mπy)
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m=0

V
a
m sin (mπy) =

N∑

m=0

V
b
m sin (mπy) + U0

N∑

m=1

Bm sin (mπy)

(7.47)

where the overbar indicates the sum of the amplitude of each independent
solution of each mode m (one upstream and three downstream) as defined in
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section 7.9.1; the Fourier expansion coefficients can be computed as

Bm := 2

∫ 1

0
sin(mπy) =

{

4/(mπ) if m is odd

0 if m is even
(7.48)

It is easy to see that the equation set (7.47) is satisfied if each term of the sums
satisfy the two equations, namely if ∀m the following relation holds

{ηam, U
a
m, D

a
m} = {ηbm, U

b
m, D

b
m}

V
a
m = V

b
m + U0 Bm

(7.49)

where, according to our formulation, U0 = 1.
The solution of this problem is much simpler than for the free, anti-symmetric

case; indeed now each Fourier component does not interact with the other and
can be computed separately.

Specifically, for each mode m we have a set of four matching conditions (Eq.
7.49) and the four unknowns η̃am1, η̃

b
m2, η̃

b
m3, η̃

a
m4. The solution of the resulting

4×4 linear system is banal (equal to zero) for the even modes (no forcing effect)
and easy to determine for the odd m components.

7.5 Results

This section shows the most relevant outcomes of the present work. First of all,
we will consider the simple possible approximation formed by the first (N =
1) Fourier approximation, which allows for better understanding the reason
why a non-balanced steady solution can be found only under super-resonant
conditions. We will then analyse the more complete (N ≫ 1) solution and,
finally, we will compare the analytical results with previous laboratory and
numerical outcomes.

7.5.1 Example: first N = 1 approximation

As a first approximation, we can solve the problem by considering only a single
Fourier component; in this case the flow in the secondary branches is treated
with a 1D model, whereas in the main channel only the first harmonic is ac-
counted (sinusoidal variation of the variables in y). The matching condition is
therefore very simple, and requires that the integral values of η, U , D at the
bifurcation node are the same in (half) channel A and in channel B; equiva-
lently we could say that we are imposing the conservation of the liquid and solid
fluxes, as well as the energy, between the (half) inlet channel and the secondary
branches.

The analysis of the previous section suggests that in the sub-resonant bi-
furcations the only possible steady solution is the trivial one, which correspond
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7.5. Results

Figure 7.5: Solution at x = 0 in super-resonant conditions according to the firstN = 1
approximation. Continuous line: main channel; dashed line: secondary channels. The
parameters of the basic flow are ds = 0.05, θ = 0.08, r = 0.5; the aspect ratio is β = 16.

to the uniform flow. In order to better understand the reason of this behaviour
we can consider the only possible steady solution in the main channel, given by
the component with eigenvalue λ4, which represents simply as sin(πy/2) (cos
for the transverse velocity V ) function, exponentially growing in x. In order to
ensure the matching the correspondent 1D solution in the secondary channels
should satisfy the three matching conditions described above. If we impose
two of them, for example conservation of energy and liquid discharge, and we
compute the (1D) response of the downstream branches we obtain a transport
capacity which is different from the sediment flux arriving from upstream; for
this reason such a configuration can not be sustained and no non-banal steady
solutions exist.

Things are remarkably different under super-resonant conditions; indeed
the solution of the main channel has two more degrees of freedom, so that we
can linearly combine the two possible, linearly independent, solutions for the
channel A in order to satisfy at the same time the three matching conditions.
Figure 7.5 shows the result at the bifurcation node x = 0; we can see that
the matching of η, U , D is ensured, which implies the conservation of energy,
sediment flux and water discharge simultaneously.

7.5.2 The complete solution

The approximate solution we presented above satisfies the conservation of mass
and momentum at the bifurcation node; however if we want a more accurate
matching we need to increase the number of modes adopted to describe the
solution.

In figure 7.6 we report the bed elevation η, obtained with N = 50 modes,
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in both the super and sub-resonant case. If β < βR only the banal, uniform
solution is possible; conversely super-resonant conditions lead to a steady con-
figuration, where the formation of an alternate bar pattern upstream the bi-
furcation forces an asymmetrical discharge partition and produces an elevation
difference (called inlet-step) between the distributaries.

As pointed out before, the non-banal, β > βR solution is not unique, because
all the dependent variables are proportional to a complex constant A which can
be arbitrary chosen; in particular the module |A| define the amplitude of the
solution, whereas the argument arg(A) defines the phase of the stationary bars
which develops upstream (and consequently the “shape” of the solution).

Figure 7.6: Example of bottom elevation obtained by considering N = 50 modes.
Upper panel: super-resonant (β = 15) solution; lower panel: sub-resonant solution.
ds = 0.05, θ = 0.1, r = 0.5, β = 0.015 are adopted as parameters, which leads to
βR = 11.3.

7.5.3 Comparison with numerical results and laboratory exper-
iments

As discussed above, the laboratory experiments of Bertoldi and Tubino (2007)
reveal a strong correlation between the distance from the resonance point and
the bifurcation unbalancing.

Besides these laboratory results, in this section we also analyse the recent
numerical outcomes of Siviglia et al. (2013), obtained by solving, in a nonlinear
and fully-coupled way, the two-dimensional, shallow water morphodynamical
model. Specifically, they consider a bifurcation with angle of 30◦ between the
1.3 B∗-wide branches and they chose the basic flow parameters reported in
table 7.2. The authors assessed the “stable” or “unstable” character of the
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Parameters range Bertoldi and Tubino (2007) Siviglia et al. (2013)
β 4.9÷ 26.3 3.5÷ 24
θ 0.042÷ 0.099 0.06÷ 0.20
ds 0.017÷ 0.092 0.015÷ 0.043

Table 7.2: Range of the dimensionless parameters of the basic flow within the lab-
oratory and numerical experiments of Bertoldi and Tubino (2007) and Siviglia et al.
(2013) respectively.

bifurcation by monitoring the temporal evolution of the discharge partition
between the distributaries.

Before looking at the results, it is worth to recall the definition of the dis-
charge ratio which, at the first order of approximation, gives

rQ =
Qb

Qc
=

1 + ǫ Qb
1 +O(ǫ2)

1− ǫ Qb
1 +O(ǫ2)

= 1 + 2 ǫQb
1 +O(ǫ2) rQ1 = 2Qb

1 (7.50)

For each numerical and laboratory experiment, we computed the reso-
nance point; in addition we classified the Bertoldi and Tubino (2007) runs
on the basis of the discharge ratio (considering “stable” the experiments having
rQ > 0.8÷ 0.9). The results of figure 7.7 confirms that the aspect ratio relative
to the resonance point, is correlated with the bifurcation stability; indeed most
of the stable points lie in the sub-resonant region, whereas the unstable cases
are located in the super-resonant domain. Within the range of explored exper-
imental conditions this outcome is, as predicted by the theory, independent of
both the Shields stress and the relative roughness.

7.5.4 The small-angle bifurcation

As we noticed in section 7.4.4, the bifurcation divergence induces a symmetric
component of the solution which, under the hypothesis of relatively small angle
can be analytically determined.

We have also seen that the linearity of the problem at the first order of
approximation enables to express the general solution as a sum of the forced
component (due to the angle) and the free component (instability of the straight
bifurcation). In this section we will consider only the forced, symmetric part;
however we must keep in mind that, under super-resonant conditions, an addi-
tional steady solution due to the bifurcation instability arises.

In figure 7.9b we report the resulting maps for the different quantities.
As one may expect, a scour develops at the bifurcation mouths, whereas a
deposition occurs at the external sides; in addition a steady bar, with internal
scour and external deposition, develops at a distance of few widths from the
bifurcation. Conversely, within the inlet channel only a local effect appears,
without any upstream propagation of steady disturbances; this is consistent
with the result of Eq. 6.10, which shows that an aspect ratio larger than twice
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Figure 7.7: Stability of flume and laboratory bifurcation (Bertoldi and Tubino, 2007;
Siviglia et al., 2013) and distance between the aspect ratio β and the resonant value βR,
for different values of the Shields stress. The green, dashed line indicates the resonant
conditions.

Figure 7.8: Discharge ratio and inlet step of (Bertoldi and Tubino, 2007) and inlet
step computed from the analytical model correspondent to the measured rQ.
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the resonant value β > 2βR is needed for the upstream propagation of steady
symmetric (i.e. central) bars.

This result is from a formal point of view, an exact solution of the 2D model
in the limit for small α → 0 angle. Despite its simplicity, the analytical model
is able to reproduce some features observed in the solution of more complicate
fully nonlinear and three-dimensional numerical models.

Indeed the result of figure 7.9b is in agreement with the numerical simu-
lations of Edmonds and Slingerland (2008), who solved the 3D shallow water
model with a k-ǫ closure for the turbulent flow. In particular we can recognise
the following common features:

• small super-elevation of the water surface at the bifurcation node associ-
ated with a depression near the external bank;

• significant deposition at the bifurcation with a scour on the other side;

• deposition of an alternate bar in the distributaries, with negligible effect
on the free-surface level;

• limited extension of the upstream influence.

From a quantitative point of view it is worth to notice that, despite the
relatively large angle adopted in the numerical simulations, the linear model is
able to capture the intensity of the scour at the bifurcation vertex. Also length
and position of the alternate bar in the distributaries are correctly reproduced,
whereas the height is evidently underestimated by the analytical solution; this
is probably because we are neglecting the secondary currents: indeed if we
account for the spiral flow using a simplified algebraic closure (see appendix
7.9.3) we obtain the result of figure 7.9, where we can notice the increase of
the alternate bar height in the distributaries, and better agreement with the
numerical outcomes.

The simple analytical approach allows for investigating the mechanisms pro-
ducing this configuration; for example the development of a mid channel bar,
observed at the node of river bifurcations (e.g. Burge, 2006; Edmonds and
Slingerland, 2008) can be interpreted as follows: the channel deviation pro-
duces a transverse velocity V and consequently a divergence of the flow close
to the bifurcation vertex which, because of water mass continuity, causes a de-
crease of the velocity U (i.e. Hardy et al., 2011); this induces a decrease of the
longitudinal bedload which, in order to maintain equilibrium, must be compen-
sated by a (positive) transverse sediment flux. This flux can be sustained either
by a positive V or by a negative bed gradient; due to the strong nonlinearity of
the qs(U) relation the first is term is not sufficient, so that deposition occurs
until the lateral bed gradient is large enough to ensure equilibrium.

On the other side, close to the outer bank the flow converges, causing an
increase of the longitudinal velocity and ultimately a local scour.
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(a) Free surface level (η1 +D1)α. Contours interval is 0.02 m.

(b) Bottom elevation η1α. Contours interval is 0.33 m

Figure 7.9: Analytical solution for the diverging bifurcation. Elevations are expressed
in [m]; θ0 = 1.3, ds = 2.52 · 10−5, β = 16, r = 0.5, C0 = 12.5, B∗ = 40 m, α = 27.5◦

are adopted as parameter, the first N = 10 harmonics have been considered. The angle
adopted for these maps is not to scale.
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Figure 7.10: Water surface and bottom elevation in a symmetric bifurcation, accord-
ing to the numerical depth-averaged model of Edmonds and Slingerland (2008). The
angle between distributaries is 2α = 55◦. β ≃ 16, C ≃ 12.5, θ ≃ 1.3, ds = 2.5 · 10−5

are the parameters of the main channel flow.
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7.6 Discussion

The linear analysis we propose is based on a fully two-dimensional model; for
this reason, with respect to the existing theoretical models, it provides a more
complete description of the mechanisms governing the bifurcation morphody-
namics. Therefore, the present model does not require the introduction of a
nodal point relation as simplified closure of the 2D processes, and consequently
does not need the calibration of any ad-hoc parameter. Indeed the more rel-
evant parameter of the 2D model, namely the Ikeda r coefficient, has a clear
physical meaning and can be estimated on the basis of both direct and indirect
(e.g. alternate bar length) observations. This is not the case for the Bolla Pit-
taluga et al. (2003) model; indeed the additional parameter α, despite having
a well-defined physical meaning, depends (in an unknown way) on the channel
conditions so that its calibration is needed.

The 2D formulation also allows for exploring the role of other effects, namely
secondary currents, channel curvature and secondary channel angles, as well as
the interaction between migrating bars and the bifurcation node. Nevertheless,
being based on a merely linear approach the present theory does not allow to de-
termine amplitude and phase of the super-resonant solution and, consequently
the inlet step and the discharge ratio.

The solution we presented, being restricted to steady case, does not enable
to explore the possible temporally varying solutions. However a very similar
approach can be followed to study solutions which oscillates through time; the
result reveals that, even under sub-resonant conditions, non-banal solutions can
be found if β > βcr, where the latter indicates the critical aspect ratio for the
formation of alternating bars (Colombini et al., 1987). This solution shows an
oscillating discharge ratio due to the migration of the alternate bars in the main
channel, similarly to what observed in the laboratory experiments of Bertoldi
et al. (2009c).

Some discussion is needed about the role of the three-dimensional effect,
which are not accounted in our formulation. In the case of the straight channel
we do not expect, due to the relatively small curvature of the flow, a strong effect
of the secondary current on the bifurcation instability; indeed a linear analysis
with a simplified closure for the secondary currents shows only a small variation
of the resonant point (figure 7.12). Consequently the capability of the inlet
channel to exert an upstream influence is poorly affected by the presence of a
bifurcation angle. For a diverging bifurcation the role of the secondary currents
is expected to be important, at least in determining the local morphology at the
bifurcation node (figure 7.13 and in the distributaries, whereas the 3D effects
appears to be limited in the main channel, as confirmed by the laboratory
observations of Thomas et al. (2011).

As we have seen above, the presence of an angle between the secondary
branches does not change the distribution of the flow; however it produces a
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symmetrical morphological configuration which can be often observed in gravel-
bed river bifurcations and enabled to explore the mechanism which leads to the
observed scour and deposition pattern. Similarly, any symmetric perturbation,
such an even variation of the slope of the distributaries or an equal variation of
the downstream boundary condition (in the case of finite length distributaries),
does not affect neither the equal partition of the flow in sub-resonant condi-
tions nor the instability which arises when β > βR. For example if we set an
equal perturbation of the water level at the downstream boundaries, or we fix
the same stage-discharge curve in channels B and C, or, more in general, any
relation that does not advantage one of the two distributaries (such a perfectly
symmetrical confluence) we do not expect, according to our analytical model,
any modification of the discharge ratio.

On the other hand, if the geometrical configuration or the boundary con-
ditions are asymmetrical an unbalanced morphology and an unequal discharge
develops even in the stable, sub-resonant regime. For example a curvature of
the main channel can force more water and sediment to flow into the outer
channel; similarly if one of the tributaries is steeper or if it has a different
boundary conditions it induces an asymmetry of the problem and consequently
an unbalanced discharge ratio (e.g. Kleinhans et al., 2008).

On the basis of these considerations, we claim that a clear distinction should
be made between the unbalanced configuration resulting from a free instability
and the unbalance solution which is driven by an “external” forcing such as a
slope advantage or a channel curvature.

The hypothesis of fixed banks, which is equivalent to assume that the
timescale of the lateral variations is much higher than the timescale of the bed
evolution, is often not fulfilled in braided rivers. For this reason Miori et al.
(2006) included the effect of the bank erosion in the two-cells model, showing
the tendency of a gravel bed river bifurcation to eventually reach an unbalanced
flow distribution. In the perspective of the present theory a similar conclusion
comes from Zolezzi et al. (2009), who observed the tendency of gravel bed rivers
at low Shield stresses to behave super-resonantly.

7.7 Conclusions

Within this work we have solved analytically the shallow-water mobile-bed 2D
model for a geometrically symmetrical bifurcation. In particular, under the
hypothesis of small variations with respect to the basic configuration, we found
a solution which: a) is valid within each of the three branches; b) satisfies
suitable matching conditions which ensure the continuity of all the variables
across the channels.

The analytical model shows that a non-banal, steady solution can be found
if, and only if, the main channel belongs to super-resonant conditions (as defined
by Blondeaux and Seminara, 1985). This result provides a rigorous theoretical
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explanation to the observations of Bertoldi and Tubino (2007) who noticed,
on the basis of laboratory, a connection between the bifurcation dynamics and
the theory of the morphodynamic influence proposed by Zolezzi and Seminara
(2001).

An additional support to this theory comes from the numerical results of
Siviglia et al. (2013), whose observations about bifurcation stability can be
correctly interpreted in term of morphodynamic influence.

The solution we have derived refers to a simple, non-diverging bifurcation
formed by a a thin barrier which separates the two distributaries. However,
the introduction of an angle between the secondary branches does not change
the result in terms of bifurcation stability. Indeed, for relatively small angles
we can derive again an analytical solution, which enables to reproduce the
scour/deposition pattern predicted by fully-nonlinear numerical models and
frequently observed in natural bifurcations. Such an analytical approach pro-
vides a deeper understanding of the fundamental mechanisms which drive the
morphodynamic response of the diffluence.

The present model enables to clearly distinguish between the instability due
to the free morphodynamic response and the effect driven by ”external“ forcing
effects, such as the presence of a slope advantage between the distributaries
or a curvature of the main channel, which both may result in an unbalanced
bifurcation.

Overall, our work provides a more comprehensive analysis of the physical
processes with respect to the pre-existing quasi-2D models. Specifically, it also
provides a prediction of the threshold for the occurrence of unbalanced config-
uration which does not require an empirical estimate of the model coefficients.
Indeed it enables to bypass the estimation of the coefficient α (Bolla Pittaluga
et al., 2003), which has been observed to significantly vary depending on the
experimental conditions, and for which no empirical nor theoretical expressions
exist.

7.8 List of symbols and acronyms

Subscripts

0 Parameter of the basic flow;

R Resonant conditions;

Superscripts

∗ Dimensional quantity;

Latins

ds [l] Sediment size;
C [−] Dimensionless Chézy coefficient;
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cD [−] Variation of the Chézy coefficient with the water depth;
p [−] Porosity of the bed material;
r [−] Coefficient of the Ikeda (1981) formula;
g [lt−2] Gravity acceleration;
qs∗x [l2t−1] Solid discharge per unit width in longitudinal direction;
qs∗y [l2t−1] Solid discharge per unit width in transverse direction;
t∗ [t] Time;
x∗ [l] Longitudinal coordinate;
y∗ [l] Transverse coordinate;
A [−] Matrix of coefficients of the linear system;
B∗ [l] Width (or half width) of the channel;
Bm [−] Expansion of a constant value in Fourier sin series;

Cmi [−] mth coeff. of the Fourier expansion of the channel A ith component;

CV
mi [−] Cmi for the transverse velocity V ;

D [−] Water depth;
Emj [−] Longitudinal variation of the eigenvalue j of the component m;
Fr [−] Froude number;
N [−] Number of Fourier modes considered;
S [−] Channel slope;
T ∗ [t] Time scale;
U∗ [t−1] Longitudinal (x) component of velocity;
V ∗ [t−1] Transverse (y) component of velocity;

Greeks

α [rad] Bifurcation angle;
β [−] Aspect ratio;
γ0 [−] Ratio between velocity and depth uniform perturbations;
γq [−] Angle between the velocity vector and the x axis;
γg [−] Deviation of the bedload transport due to the gravitational effect;
∆ [−] Relative submerged density of sediment;
ǫ [−] Order of magnitude of the perturbation;
η∗ [l] Bottom elevation;
~̃η [−] Vector of the unknown;
λ [−] (Complex) spatial growth;
ρ [Ml−3] Water density;
Φ [−] Dimensionless solid discharge (Einstein scaling);
ΦT [−] Variation of the solid discharge with the Shields stress;
θ [−] Shields parameter;
ω [−] (Complex) temporal growth rate;
τ∗x [Ml−1t−2] Shear stress in longitudinal direction;
τ∗x [Ml−1t−2] Shear stress in transverse direction;
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7.9 Appendixes

7.9.1 The matching procedure

In section 7.4 we claimed that, in order to ensure the matching of the four
dependent variable at the bifurcation node, we need to impose 4N − 1 match-
ing conditions, where N is the number of Fourier modes adopted for the ap-
proximate representation of the solution in both the main and the secondary
channels.

In this section we derive step-by-step the number and the expression of these
matching conditions we need to impose in order to ensure the continuity of the
solution across the boundaries between the main and the secondary branches.

Because the dependent variable {η, U, D} share the same transverse struc-
ture we can, for the sake of notation simplicity, develop the matching for only
one quantity and repeat the procedure for the two remaining variables.

Specifically, with reference to the longitudinal velocity U the sub-resonant
solution in the main channel (Eq. 7.40) evaluated at the bifurcation node
(x = 0) can be written as

Ua
1 (0, y) =

N−1∑

i=0

Ûa
i4 sin (nπy/2) =

N−1∑

i=0

U
a
i sin (nπy/2) n := 2i+ 1 (7.51)

Similarly, for the distributaries we can write the longitudinal velocity at x = 0
as (Eq. 7.38)

U b
1(0, y) =

N−1∑

m=1





3∑

j=1

Û b
mj



 cos (mπy) + Û01 + Ũ0

=
N−1∑

m=0

U
b
m cos (mπy)

(7.52)

where the symbols U
a
m and U

b
m (sum of the Fourier coefficients for each mode)

are introduced for the sake of notation simplicity.
These two functions are different, so that it is not possible to obtain an exact

matching with a finite number of Fourier modes N ; however we can impose the
expansion Ua

1 in a Fourier series (in the interval y ∈ [0, 1]) to be equal to U b
1 .

This condition can be ensured as follows: first of all let us consider a single
component i of the main channel velocity (Eq. 7.51); we will than repeat
the same procedure for all the N -components of the Ua

1 . If we the take the
single component of Eq. 7.51 in the interval y ∈ [0, 1] and we expand it in a
N -components Fourier cosine series we obtain

U
a
i sin (nπy/2) ≃

N−1∑

m=0

U
b
mi cos (mπy) (7.53)
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where the coefficients can be found through the following integral

U b
mi = 2 U

a
i

∫ 1

0
sin (nπy/2) cos (mπy) dy m ≥ 1 (7.54)

= U
a
i

∫ 1

0
sin (nπy/2) dy m = 0 (7.55)

Solving these integrals we can express Eq. 7.53 in the compact form U
b
mi =

U
a
iCmi where the expansion coefficients are given by

Cmi :=
4 n

(n2 − 4m2)π
m ≥ 1 (7.56)

:=
2

n π
m = 0 (7.57)

In the example of figure 7.11 we can observe how the expansion of the sine
function (Eq. 7.53) is composed; in particular we can notice that with N = 1
only the average value on the range y ∈ [0, 1] is captured, whereas for N = 2 a
better description is obtained and for N = 8 it becomes difficult to distinguish
between the original function and the Fourier approximation; despite that an
exact matching would be ensured only with infinite N . As we pointed out
before the solution on the other side (channel C) is not particularly interesting,
because exactly the same except for the reversed sign (anti-symmetric solution,
Eq. 7.37).

If we perform the expansion of Eq. 7.53 for each Fourier mode i we can
approximate Eq. 7.51 as follows

Ua
1 (0, y) =

N−1∑

i=0

U
a
i sin (nπy/2) ≃

N−1∑

m=0

[
N−1∑

i=0

U
a
iCmi

]

cos (mπy) (7.58)

The term at the right hand side exactly equals the velocity in the secondary
channel (Eq. 7.52) if the following relation holds ∀m ∈ [0, N − 1]

U
b
m =

N−1∑

i=0

U
a
i Cmi (7.59)

which completes the derivation of the matching conditions for the variable U .
Similarly, if we repeat the same procedure for the bottom elevation and the

water depth we obtain

ηbm =
N−1∑

i=0

ηai Cmi D
b
m =

N−1∑

i=0

D
a
i Cmi (7.60)

The matching procedure is slightly different for the transverse velocity V ,
which has a different structure in both the main and the secondary channels.
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Indeed the the transverse velocity in the main channel at the bifurcation node
is represented as a series of cosines, namely

V a(0, y) =
N−1∑

i=0





4∑

j=2

V̂ a
ij



 cos (nπy/2) =
N−1∑

i=0

V
a
i cos (nπy/2) n = 2i+ 1

(7.61)
in which we have introduced the symbol V

a
i to have a lighter notation.

In the secondary channel the velocity V is represented as a sum of sines,
namely

V b(0, y) =
N−1∑

m=1

V̂ b
m1 sin (mπy) =

N−1∑

m=1

V
b
m sin (mπy) (7.62)

where m starts from 1 because the sine series expansion does not contain any
continuous component.

Following the same procedure as for the variable U we consider the generic
component i of Eq. 7.61 and we expand it in N − 1 sines within the interval
y ∈ (0, 1), namely

V
a
i cos (nπy/2) =

N−1∑

m=1

V
b
mi sin (mπy) (7.63)

where the Fourier coefficients can be found by solving the integral

V
b
mi = 2 V

a
i

∫ 1

0
cos (nπy/2) sin (mπy) dy = V

a
i C

V
mi (7.64)

The previous integral can be analytically solved, giving the following expression
for the matching coefficients

CV
mi := − 8m

(n2 − 4m2)π
m ≥ 1 (7.65)

(7.66)

Consequently the matching of transverse velocity is ensured if

V
b
m =

N−1∑

i=0

V
a
i C

V
mi ∀ m ∈ [1, N − 1] (7.67)

which complete the last set of matching conditions.
Summarising, the nodal conditions on the four variables (Eqs. ??, 7.60 and

7.60, can be re-written as follows

{ηbm, U
b
m, D

b
m} =

N−1∑

i=0

Cmi {ηai , U
a
i , D

a
i } ∀ m ∈ [1, N − 1] (7.68)
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which represents the set of 4N − 1 matching conditions.

The values of {η̂m, Ûm, D̂m, V̂m} in all the channels are not independent but
are a linear combination of η̃mi. For example for the secondary channel the
following quantities can be freely fixed (see Eq. ??)

η̃b01, D̃0

η̃bmj j = 1, 2, 3 m = 1, .., N − 1
(7.69)

If also the main channel is narrower than the resonant threshold β < β0
only one eigenvalue for each mode is compatible with the upstream boundary
condition; for this reason, as clear from Eq, 7.40, it is possible to fix only the
following quantities

η̃ai4 i = 1, .., N (7.70)

and we can write a 4N − 1× 4N − 1 homogeneous linear system of the form

A~̃η = 0 (7.71)

where the vector of unknowns is composed as

~̃η =






























η̃b01
D̃b

0

η̃b11
η̃b12
η̃b13
· · ·
· · ·
η̃bM1

η̃bM2

η̃bM3

η̃a04
η̃a14
· · ·
· · ·
η̃aM4






























(7.72)
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and the matrix of coefficients can be written as

A =











































1 0 0 0 0 · · · 0 0 0 −C00 −C01 · · · −C0M

φb

01 γ0 0 0 0 · · · 0 0 0 −C00φ
a

14 −C01φ
a

14 · · · −C0Mφa

M4

ξb01 1 0 0 0 · · · 0 0 0 −C00ξ
a

14 −C01ξ
a

14 · · · −C0MξaM4

0 0 1 1 1 · · · 0 0 0 −C10 −C11 · · · −C1M

0 0 φb

11 φb

12 φb

13 · · · 0 0 0 −C10φ
a

14 −C11φ
a

14 · · · −C1Mφa

M4

0 0 δb11 δb12 δb13 · · · 0 0 0 −CV

10δ
a

14 −CV

11δ
a

14 · · · −CV

1MδaM4

0 0 ξb11 ξb12 ξb13 · · · 0 0 0 −C10ξ
a

14 −C11ξ
a

14 · · · −C1MξaM4

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 1 1 1 −CM0 −CM1 · · · −CMM

0 0 0 0 0 · · · φb

M1 φb

M2 φb

M3 −CM1φ
a

14 −CM2φ
a

24 · · · −CMMφa

M4

0 0 0 0 0 · · · δvM1 δbM2 δbM3 −CM1δ
a

14 −CM2δ
a

24 · · · −CMMδaM4

0 0 0 0 0 · · · ξbM1 ξbM2 ξbM3 −CM1ξ
a

14 −CM2ξ
a

24 · · · −CMMξaM4











































(7.73)

where for notational compactness we have defined M := N − 1.

The trivial solution of the homogeneous system is simply a zero vector,
which represent a uniform flow in the whole domain. By looking at the structure
of the matrix it is easy to see that the determinant of the matrix can vanish
only if the eigenvalues of each single mode in channel B.

By looking at the structure of the matrix A it is easy to see that it has a
full rank; indeed it is not possible to express any row as a linear combination
of the others as far as the coefficients φ, δ, ξ are linearly independent. For this
reason the determinant of the matrix is never zero and there are not non-banal
solutions which satisfies the nodal matching conditions.

If the system had been not homogeneous the solution of the linear system
would not be zero; this is the case of we adopt a similar approach to model a
bifurcation in which a forcing effect due to small variations of the geometry or
of the boundary conditions exist (i.e. small-angle bifurcation of section 7.4.4).
From a physical point of view this mean (as we expect) that in a more complex
configuration the simple uniform flow is never a solution of the problem.

Now let us consider a bifurcation whose main channel is in super-resonant
conditions. In this case for the first mode (i = 1) we have two more linearly
independent solutions Channel a and consequently two more unknowns which
lead to a linear system with a kernel of dimension two (or loosely speaking to
∞2 solutions).

This suggest us that in this conditions an unbalanced configuration even in
this very simple configuration is possible. Nevertheless the linear theory does
not allow us to determine a single solution but an infinite number of possibilities
characterised by different values of amplitude and phase.

7.9.2 Stationary 1D solutions

This section focuses on: a) the derivation of the time-dependent, 1D (m = 0)
solution of the linear system of Eq. 7.21 b) solution of the steady problem as a
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(a) Expansion of the first (n = 1) mode (b) Expansion of the second (n = 3) mode.

Figure 7.11: Example of the expansion of the first two modes in channel A as sum
of N modes in the secondary channels.

limit, for slow time variations, of the previous time-dependent result.
As in the 2D problem, we can start by seeking solutions having the form of

Eq. 7.23, for the particular case m = 0, namely

{η1, U1, D1} = {η̂0j , Û0j , D̂0j} exp(λ0x+ ωt)

V1 = 0
(7.74)

Substituting this expression into the linear system (Eq. 7.21), three linearly
independent solutions can be found. Two of them can be written (analogously
to the four 2D solution of Eq. 7.75) as follows

{η1, U1, D1} = η̃0j{1, φ0j , ξ0j} j = 1, 2 (7.75)

where η̃0j are independent parameters, φ0j depend on the the basic flow through
θ0 and ds and φ0j = ξ0j .

Hoever, at this point, a difference with the 2D (m ≥ 1) arises. Indeed
for m = 0 the third eigenvalue is zero (λ0 = 0), thus representing an uniform
perturbation. The corresponding solution represents a variation in time of
the discharge without any perturbation bed elevation; therefore it can not be
written in the form of Eq. 7.75, which would need infinite coefficients φ0j and
ξ0j , but can be expressed as

{η1, U1, D1} = Q̃0 {0, γ1, γ2} exp(ωt) (7.76)
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where γ1, γ2 are the variations of velocity and depth due to a unitary pertur-
bation of discharge and are defined as

γ1 :=
1 + 2 CD

3 + 2 CD
γ2 :=

2

3 + 2 CD
(7.77)

The meaning of the parameter Q̃0 is clear if we compute the discharge ,
which from a linear level, is given by

Q1 = U1 +D1 = Q̃0 exp(ωt) (7.78)

By summing the three linearly independent components (Eq. 7.75 and Eq.
7.76) we obtain the full expression of the 1D, time-dependent solution, namely

{η1, U1, D1} =

2∑

j=1

η̃0j{1, φ0j , ξ0j}E0j + Q̃0 {0, γ1, γ2} exp(ωt) (7.79)

where η̃0j and Q̃0 are three independent parameters.

Once the time-dependent problem has been solved we can move to the
second step of this section: the derivation of the steady, 1D solution. Obtaining
the steady solution as a limit for small temporal variations of Eq. 7.79, is
more tricky than for the 2D problem. Indeed the limit for ω → 0 we have
λ01 = λ02 = 0 and both the two solutions of Eq. 7.75 becomes identical,
namely

{η1, U1, D1} = η̃0j{1, 0, 0} j = 1, 2 (7.80)

which represents a banal uniform variation of the bottom elevation without any
perturbation on the hydrodynamics. Since two identical solution arises, only
two independent components remain and one of the three degrees of freedom is
lost.

In order to maintain the third solution during the limit process we must to
re-scale the problem when we approach ω = 0, which is possible because the
linearity of the solution allows the multiplication by an arbitrary scaling factor.

Specifically, if we choose opposite coefficients η̃02 = −η̃01 and we consider
the sum of the two solutions of Eq 7.80 we obtain, in the limit ω → 0, a
zero solution (see Eq. 7.80). However if we magnify the amplitude of the two
components as follows

η̃01 = −η̃02 =
A

λ01
(7.81)

(where A is an arbitrary constant) and we substitute Eq. 7.81 into the sum of
the two solutions of Eq. 7.74 we obtain

η1 =
A

λ01
[exp(λ01x)− exp(λ02x)] (7.82)
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In the limit ω → 0 it is possible to prove that λ02 ≃ −λ01 → 0, so that the
limit of Eq. 7.82 becomes

η1 = 2Ax (7.83)

The latter solution simply represents a perturbation of the slope S1, given by

S1 = −2A

β
(7.84)

which directly links the slope perturbation S1 and the constant A.
The water depth can be found , on the basis of Eq. 7.79 and Eq. 7.81, as

follows

D1 = η̃01 φ01 + η̃02 φ02 =
A

λ01
(φ01 − φ02) (7.85)

It is easy to prove that the coefficients φ becomes, in the ω → 0 limit

φ01 = −φ02 = − λ01
θ0∆dsβ (3 + 2 CD)

(7.86)

and consequently, from Eq. 7.84 we have, remembering the definition of 7.20,
the following expression

D1 = η1φ01 = − S1
S0 (3 + 2 CD)

= −γ3S1 (7.87)

which simply represent the linear uniform flow relation between slope and depth
in the case of a fixed discharge Q1 = D1+U1 = 0. The coefficient γ3 represents
the impact on depth and velocity of a variation of slope and is defined as

γ3 :=
1

S0

1

3 + 2 CD
(7.88)

Summarising, the third steady solution reads

{η1, U1, D1} = S1{−βx, γ3,−γ3} (7.89)

which, if combined with the other two (obtained straightforwardly as the limit
ω → 0 of Eq. 7.79) leads to the general, steady, 1D solution of Eq. 7.28.

7.9.3 The role of the secondary currents

The depth-averaged model we adopted so far, does not include any three-
dimensional effect due to secondary currents. This assumption is common to
most analytical studies of river morphodynamics, included the bifurcation mod-
els of Bolla Pittaluga et al. (2003); Miori et al. (2006).

Nonetheless, it is evident that in some bifurcation configurations, especially
for relatively large angles between the branches or when a channel curvature
occurs, the spiral flow can affect the local morphology, and as well as the flow
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repartition between the distributaries (e.g. Bulle, 1926). For this reason Klein-
hans et al. (2008) proposed an extension of the Bolla Pittaluga et al. (2003)
model which takes into account the effects of secondary circulations induced by
the main channel curvature.

In this section we aim at studying the impact of secondary currents on the
instability of bifurcation. This can be achieved by including the spiral flow in
the 2D scheme through a simplified approach.

Zolezzi and Seminara (2001) proposed an extension of the Kalkwijk and
de Vriend (1980) flow decomposition which enables to determine, in a simpli-
fied way, the structure of the spiral flow on the basis of the local conditions
(depth,velocity and curvature), as well as their longitudinal derivatives (con-
vection and shoaling effects). This approach, originally developed by taking
into account only the curvature of the channel, Zolezzi and Seminara (2001)
can be extended to model the secondary flow induced by the streamline curva-
ture (Luchi et al., 2011). According to this formulation, the three dimensional
flow produces additional terms in the depth-averaged model of Eq. 7.21; specif-
ically, from a linear point of view (weak curvature), three terms appears on the
left hand side of the longitudinal and transverse momentum and in the Exner
equations (fα, gα, hα respectively). These coefficients can be obtained by lin-
earizing the expressions reported by Luchi et al. (2011), which leads, at the first
order of approximation O(ǫ), to the following formulas







hC = k0
C0

β

∂C1
∂y

+ k1
C2
0

β2
∂C′

1

∂y

mC = k0
C0

β
C′
1 + k1

C2
0

β2
∂C′

1

∂x
+ k3

1

C0
C1 + k4

1

β
C′
1

nC = k3
C0

β

∂C1
∂y

+ k4
C2
0

β2
∂C′

1

∂y

(7.90)

where s is the curvilinear coordinate along the streamline and C is the dimen-
sionless curvature (positive for right bends), defined as

C =
C∗

B∗
= −∂α

∂s
(7.91)

with α representing the angle of the velocity vector, which can be expanded as
follows

α = tan−1

(
V

U

)

= ǫ V1 +O(ǫ2) (7.92)

thus allowing to express the curvature as

C = ǫ C1 +O(ǫ2) C1 = −∂V1
∂x

(7.93)

The derivative of the curvature (at the linear level) is given by

C′
1 =

∂C1
∂x

(7.94)
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Figure 7.12: Resonant aspect ratio as a function of the relative roughness and the
Shields stress (for r = 0.5) with and without secondary currents (dashed and continuous
lines respectively). The Parker (1990) transport formula has been adopted.

The coefficients ki are graphically reported, as a function of the relative
roughness ds, in Zolezzi and Seminara (2001) or can be determined by solving
few integrals as indicated by the same paper.

The solution of the linear system Eq. 7.21 for a straight channel for a single
Fourier mode can again be written as in Eq. 7.23. However including the terms
hC ,mC ,nC we obtain two more eigenvalues arise; this is because the ordinary
differential system in x, which is obtained after substituting the transverse
structure (see Zolezzi and Seminara, 2001), can be written as a first order
linear system of six equations (7.21 plus 7.93 and 7.94) in the six dependent
variables η1, U1, V1, D1, C1, C′

1.

The effect of such a closure on the resonance point can be seen in figure
7.12, where we can notice that the spiral flow induce only a minor impact (of
the order of −5 %) on the resonant point. We can therefore conclude that, in
terms of direction of dominant morphodynamic influence, the secondary effects
are relatively small, thus producing weak impact on the bifurcation instability.

This result provide a support of the theory of Zolezzi and Seminara (2001)
which does not include in the formulation any effect related on the streamline
curvature so that does not consider, in a straight channel, any secondary effect.

The weak impact observed on the capability of the channel to propagate up-
stream the morphological influence, does not imply that the three-dimensional
circulations do not play any role in the bifurcation morphodynamics; indeed the
local solution, near the bifurcation node, can be significantly affected, especially
if an angle between the main channel and the distributaries occurs.
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Figure 7.13: Bottom elevation η1α of a diverging bifurcation similar to figure 7.9 but
taking into account the secondary current.The colour scale is in [m] and the contours
interval is 0.33 m.

A further simplification in modelling the secondary flow can be obtained
by neglecting the non-local (convection and shoaling) effects, namely the terms
dependent on the spatial derivatives (Kalkwijk and de Vriend, 1980; Kalkwijk
and Booij, 1986), as often assumed in several both numerical and analytical
2D models (e.g. Crosato et al., 2011). In this way we obtain a differential
system in which the terms depending on the curvature derivatives disappear
(k0 = k1 = k4 = 0) and only the terms proportional to k3 remains. This linear
system does not need the definition of the new dependent variables C1 and C′

1;
therefore as in the original (without secondary currents) model, there are only
four eigenvalues, so that an identical procedure can be found to develop the
analytical solution for the bifurcation.

Once again no significant impact on the instability (resonant) point can be
found. However, if compute the forced solution in a diverging bifurcation (figure
7.13), we can find a relevant different of the solution in the distributaries with
respect to the original 2D result reported in figure 7.9b.
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Chapter 8

Conclusions

The present section summarises the conclusions presented in each chapter, in
order to give the reader a general overview of the main results of the research
with reference to the research questions formulated at the beginning of the
manuscript.

Chapter 2 provides the first insight into the morphodynamical changes
observed in a natural gravel bed river, the Rees (New Zealand), and their
connection with sediment transport.

Specifically, we have firstly seen that the reach-scale erosion and deposition
volumes depend on both magnitude and duration of the flood. Scour and
fill volumes displaced during different floods appear to be mainly related to
an increase of the active area rather than of the average depth of the scour
or deposition sites. Similarly the frequency distribution of elevation changes
appears to be largely independent of the flow magnitude.

Quantitative analysis of the size of the deposition and scour patches, based
on an automated algorithm, reveals a strong dependence of the reach-averaged
length on the intensity of the driving event. In particular, the small flow pulses
produce much smaller areas of scour and fill than those associated with much
large floods.

On the basis of the analysis above, we have proposed a new method to es-
timate the transport rate once the erosion and deposition volumes are known.
Observations suggest that the average size of these patches may be represen-
tative of the path length, namely the average travel distance of the displaced
particles as defined by Ashmore and Church (1998). When tested against the
result of numerical simulations, such a method seems able to capture the vari-
ations of the reach-averaged bedload between the different flood events.

The transport rate estimate, based on the above method, is also relatively
robust with respect to the compensation effect due to subsequent scour and
refill, which causes underestimation of the scour/deposition volumes.

Within the subsequent Chapter 3, we tackle the problem of the regime
morphodynamics attained by a braided network at the laboratory scale subject
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to constant water and sediment supply.

Quantification of the morphological state requires the definition of suitable
metrics; for this reason we have introduced an indicator of the reach-averaged
braided morphology which represents the portion of braidplain lying below a
given elevation, where the elevation is calculated with respect to the deepest
point of each individual cross-section. This indicator is expressed as a curve
which can be taken as representative of the reach-averaged geometry; we there-
fore named Average section an equivalent compact section having exactly the
same width-depth curve.

The reach-scale geometry of a braided network is expected to respond to the
external controlling conditions, identified through dimensional analysis. Specif-
ically, if the bed material is well-sorted and the effect of vegetation is not
accounted for, the regime morphology depends only on slope, discharge and
confinement width. The role of these parameters is assessed though flume ex-
periment, which enable to study the simplest case of constant (through time)
and homogeneous (along the flume) conditions. Specifically, we have analysed
an existing dataset of 58 experiments carried out at the hydraulic laboratory of
the Trento’s University and we have complemented the data with morphological
data from three natural braided rivers: the Rees (New Zealand), the Sunwapta
(Canada) and the Tagliamento (Italy).

Correlation between the channels depth and the flume slope occurs in the
laboratory experiments, whereas the shape of the Average section, represented
by the exponent α of the fitting power-law, is significantly impacted by the
degree of confinement and ranges from α > 2 (indicating the Y-shape typical of
braided morphology) to α < 0.5 (representative of the U-shape characteristics
of single-thread channels).

The reach-scale indicator can be adopted in order to account for the spatial
distribution of the Shields stress, which is recognised to be a crucial ingredient
for the estimation of the solid discharge in a braided network. Numerical hydro-
dynamic simulations suggest that the proposed procedure is able to capture the
shear stress variability; furthermore a comparison based on the set of labora-
tory experiments with different discharges, sediment size, slope and confinement
width confirms the capability of the simple method to approximately predict
the average sediment transport rate within a wide range of morphological con-
ditions, from the nearly single-thread alternate bars pattern to fully-developed
braided networks.

This method allows for a very simple investigation of the at-a-station re-
sponse of the network to varying discharge. Indeed, assuming a power-law
interpolation of the width-depth curves we can compute analytically the bed-
load and active width and analyse the connection between average geometry
the at-a-station response.

The first step to understand the response to changing discharge is developed
in Chapter 4. Within this part we tackle, for the first time, the question of
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understanding the effect of the discharge unsteadiness on sediment transport
rate in braided networks. We have studied the problem using a laboratory-scale
physical model, which enables to control the water discharge and to measure
the sediment transport at the flume outlet.

It is well-known that in a braided network the transport rate at a given sec-
tion (as the flume outlet) shows a great variability even in experiments with con-
stant controlling conditions. If the discharge is varying, an additional problem
arises as we need to distinguish between the response of the mean bedload and
the stochastic component. This is because the timescale of the hydrologically-
driven flow variations is short if compared with the timescale of the internally
generated fluctuations, so that a simple filter does not allow to remove this
“noise” without hiding the effect of the unsteady flow.

In order to overcome this issue we have adopted a novel methodology in the
analysis of braided networks at the laboratory scale, based on a statistical ap-
proach; specifically, we have repeated several time the same simple hydrograph
in order to determine a mean response of the system. The ensemble mean con-
tains much less variability and, if the number of repetitions is sufficiently large,
is expected to depend on the external controls, namely the shape, the intensity
and the duration of the flow hydrograph.

The flume observations reveal a different response depending on the degree
of confinement of the braided network. In the experiments where the flow is
confined, the instantaneous response to increasing discharge exceeds the equilib-
rium transport rate (overshooting), whereas a decrease of the flow is associated
with a strong decrease of the transport, which falls below the long-term equi-
librium (undershooting). This short-term response is followed by a phase of
gradual adaptation towards the long-term equilibrium conditions.

The response to changing flow is significantly different for the experiments
with wider, relatively unconfined braided networks, when the transport rate
due to the flow unsteadiness seems to rapidly adapt to the new equilibrium
conditions.

A possible interpretation of this behaviour comes from the analysis of the
morphological newtwork response to the varying flow, measured through distri-
butions of elevation at the reach scale. For relatively confined braided networks,
such a distribution changes significantly with the discharge. Since these changes
are not instantaneous but needs time to fully develop, there is a transitory phase
when transport rate is different from the long-term equilibrium value.

This is not the case for relatively free braided networks, which does not
show any significant variation of bed elevation distributions throughout the
run; this suggest the absence of relevant morphological adjustment to the new
flow conditions. Consequently the effect of unsteadiness on the transport is
weak and not detectable in our observations, and therefore do not undergo any
significant morphological adjustment to the new conditions.

Within the present work the limited number of experiments does not en-
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able to quantify how the magnitude of the overshooting effect and the temporal
scale of the adaptation to equilibrium conditions depend on the discharge and
the confinement rate. In addition our analysis is limited to well-sorted sedi-
ment and to very simplified, artificial hydrographs. For these reasons further
investigations is needed.

The following Chapter 5 investigates the response of a braided network to
changes of the sediment supply.

The laboratory experiments we performed reveal that after changes in the
sediment feed rate a disequilibrium of the morphology occurs in the upper part
of the flume. This is evident, for instance, after a reduction of the sand supply,
which leads to the transition from the braided pattern to single-single thread in
the upstream part of the flume. However, this is only a temporary effect and,
in the long term, a fully braided pattern is recovered.

Experimental observations suggest that the sediment transport rate can be
assumed to be in instantaneous equilibrium with the reach-scale slope (and
discharge) provided the incision/aggradation rate is sufficiently slow. If this is
the case the evolution of the one-dimensional, longitudinal bed level profile can
be modelled as a simple diffusive process.

Such simple formulation, which was extensively adopted, with variable suc-
cess, in previous studies of single-thread rivers, seems to be more appropriate
for steep and shallow channels typical of gravel-bed braided networks than for
deep, low gradient currents.

The introduction of a more complete formulation enables to investigate the
potential effect of the local non-equilibrium of the braided morphology on the
evolution of the bed profiles; our analysis shows that the diffusive model is valid
in the limit of slow variation of the bed level elevation.

A direct outcome of this simple model is that, as common to all the diffu-
sive processes (for example heat or mass diffusion), the temporal scale of the
evolution of bed level profiles, T , is proportional to the square of the length
scale L and therefore differs from the temporal scale of the local morphological
evolution TE .

The last part of the manuscript focus on the morphodynamic influence
exerted by a localised obstacle and the connection of such theory with the
stability of bifurcations, which are fundamental processes in the braided river
morphodynamics.

In Chapter 6 we derive an analytical solution of the steady shallow water
morphodynamic model for a local, sinusoidal obstacle placed in a straight chan-
nel with rectangular cross-section. This solution, expressed in terms of Fourier
series, is formally exact in the limit of small amplitude obstacle.

The analytical approach allows for studying the long-term morphological
response of a gravel-bed channel in different conditions; indeed it enables to
determine both the local effect near the obstacle region and the morphological
influence exerted on the upstream and downstream branches.
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The resonant aspect ratio βR (Blondeaux and Seminara, 1985), which de-
pends on the relative roughness and on the Shield stress, has revealed to be
crucial for determining the dominant (upstream or downstream) direction of
morphodynamic influence (Zolezzi and Seminara, 2001).

Our result confirms the importance of the resonance point for the case of
a localised obstacle. Specifically, as also predicted by numerical experiments
(Siviglia et al., 2013), an upstream propagation of two-dimensional disturbances
occurs only under super-resonant conditions (i.e. β > βR), whereas only down-
stream influence can be observed in the narrower, sub-resonant, case.

We have also seen that, including the secondary effects of the spiral flow
causes a minor impact on the results in terms of the direction of morphody-
namic influence. However, if the length of the obstacle is relatively small, the
secondary currents produce a significant variation of the morphology in the
region near the obstacle.

The analytical model also enables to explore the role of the boundary condi-
tions, showing that an unique steady solution can be found once three upstream
and one downstream conditions are specified.

The above results are the starting point for understanding the analysis pre-
sented in Chapter 7 where we tackle the problem of bifurcation stability.

We have solved analytically the shallow-water, mobile-bed 2D model for the
case of a geometrically symmetrical bifurcation. Under the hypothesis of small
variations with respect to the basic configuration, we have found a solution
which is valid within each of the three branches which joins at the bifurcation,
but also satisfies suitable matching conditions which ensure the continuity of
all the variables across the three channels.

The analytical model shows that non-trivial steady solution can be found if,
and only if, the main channel belongs to super-resonant conditions. This result
provides a rigorous theoretical explanation to the observations of Bertoldi and
Tubino (2007), who noticed, on the basis of laboratory outcomes, a connec-
tion between the bifurcation dynamics and the theory of the morphodynamic
influence proposed by Zolezzi and Seminara (2001).

An additional support to this theory comes from the numerical results of
Siviglia et al. (2013), whose observations about bifurcation stability can be
correctly interpreted in term of morphodynamic influence.

The solution we have derived by refers to a simple, non-diverging bifurca-
tion formed by a a thin barrier which separates the two distributaries. How-
ever, the introduction of an angle between the secondary branches does not
change the result in terms of bifurcation stability. Indeed, for relatively small
angles we can derive again an analytical solution, which enables to reproduce
the scour/deposition pattern predicted by fully-nonlinear numerical models and
frequently observed in natural bifurcations. Such an analytical approach pro-
vides a deeper understanding of the fundamental mechanisms which drive the
morphodynamic response of the diffluence.
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Figure 8.1: Braided reach of the River Rakaia (New Zealand, 43◦34′ S, 171◦45′ E);
from Google Earth, Digital Globe (2014). Flow is from left to right.

The present model enables to clearly distinguish between the instability due
to the free morphodynamic response and the effect driven by ”external“ forcing
effects, such as the presence of a slope advantage between the distributaries
or a curvature of the main channel, which both may result in an unbalanced
bifurcation.

Overall, our work provides a comprehensive analysis the physical processes
involved in the bifurcation morphodynamics with respect to the pre-existing
quasi-2D models. Specifically, it also provides a prediction of the threshold for
the occurrence of unbalanced configuration which does not require an empirical
estimate of the model coefficients.
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