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Abstract 
 

 

The increasing availability of the new generation remote sensing satellite hyperspectral images pro-

vides an important data source for Earth Observation (EO). Hyperspectral images are characterized by a 

very detailed spectral sampling (i.e., very high spectral resolution) over a wide spectral wavelength range. 

This important property makes it possible the monitoring of the land-cover dynamic and environmental 

evolution at a fine spectral scale. This also allows one to potentially detect subtle spectral variations as-

sociated with the land-cover transitions that are usually not detectable in the traditional multispectral 

images due to their poor spectral signature representation (i.e., generally sufficient for representing only 

the major changes). To fully utilize the available multitemporal hyperspectral images and their rich in-

formation content, it is necessary to develop advanced techniques for robust change detection (CD) in 

multitemporal hyperspectral images, thus to automatically discover and identify the interesting and valu-

able change information. This is the main goal of this thesis. 

In the literature, most of the CD approaches were designed for multispectral images. The effectiveness 

of these approaches, to the complex CD problems is reduced, when dealing with the hyperspectral images. 

Accordingly, the research activities carried out during this PhD study and presented in this thesis are de-

voted to the development of effective methods for multiple change detection in multitemporal hyperspec-

tral images. These methods consider the intrinsic properties of the hyperspectral data and overcome the 

drawbacks of the existing CD techniques. In particular, the following specific novel contributions are in-

troduced in this thesis: 

1) A theoretical and empirical analysis of the multiple-change detection problem in multitemporal hy-

perspectral images. Definition and discussion of concepts as the changes and of the change endmem-

bers, the hierarchical change structure and the multitemporal spectral mixture is given. 

2) A novel semi-automatic sequential technique for iteratively discovering, visualizing, and detecting 

multiple changes. Reliable change variables are adaptively generated for the representation of each 

specific considered change. Thus multiple changes are discovered and discriminated according to an 

iterative re-projection of the spectral change vectors into new compressed change representation 

domains. Moreover, a simple yet effective tool is developed allowing user to have an interaction with-

in the CD procedure. 

3) A novel partially-unsupervised hierarchical clustering technique for the separation and identification 

of multiple changes. By considering spectral variations at different processing levels, multiple change 

information is adaptively modelled and clustered according to spectral homogeneity. A manual ini-

tialization is used to drive the whole hierarchical clustering procedure; 

4) A novel automatic multitemporal spectral unmixing approach to detect multiple changes in hyper-

spectral images. A multitemporal spectral mixture model is proposed to analyse the spectral varia-

tions at sub-pixel level, thus investigating in details the spectral composition of change and no-
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change endmembers within a pixel. A patch-scheme is used in the endmembers extraction and unmix-

ing, which better considers endmember variability. 

Comprehensive qualitative and quantitative experimental results obtained on both simulated and real 

multitemporal hyperspectral images confirm the effectiveness of the proposed techniques. 

 

Keywords 

Change detection (CD), change visualization, change representation, change vector analysis, spectral un-

mixing, hyperspectral (HS) images, multiple changes, multitemporal analysis, remote sensing, hierar-

chical analysis. 
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Chapter 1  

 

 

Introduction 
 

In this chapter the basic concepts of remote sensing systems, change detection techniques, and hyperspec-

tral sensors are briefly overviewed. The considered challenging multiple change detection problem in 

multitemporal hyperspectral images is introduced by comparing with the same problem on the traditional 

multispectral images. Then, the main motivations, objectives and the novel contributions of this thesis are 

presented. Finally, the whole structure and organization of the thesis are described. 

 

1.1 Introduction to Hyperspectral Remote Sensing Systems 

Remote Sensing (RS) is a technique that can continuously observe the Earth surface using a sensor 

mounted on an aircraft or a spacecraft platform [1]. RS sensors are capable to take measure on the real 

objects or on the environmental phenomena without having a physical contact with them. This has al-

ready been widely used in different application domains (e.g., forest, agriculture, urban areas, ocean, nat-

ural disaster, etc.). Depending on the way that the signal is generated, RS can be divided into two main 

groups: active remote sensing, where the signal is emitted from the sensor (e.g., the Synthetic Aperture 

Radar (SAR) and Light Detection And Ranging (LiDAR) systems); and the passive remote sensing, 

where the portion of sunlight radiation reflected from the objects is measured by passive sensors (e.g., op-

tical sensors like photography, infrared, charge-coupled devices and radiometers). In this thesis, the focus 

is on the study of techniques for addressing the complex and challenging CD procedure in multitemporal 

hyperspectral (HS) images.  

The past few years have witnessed a huge increase in studying hyperspectral images and their applica-

tions in different fields. The hyperspectral sensors on board of air crafts (e.g., HYDICE
1
 and AVIRIS

2
) or 

spaceborne-satellites (e.g., Hyperion
3
, CHRIS

4
, HJ-1A/B

5
, IASI

6
), and the ones in the launch schedule 

(e.g., EnMAP
7
, PRISMA

8
, HISUI

9
, HyspIRI

10
) are providing more and more available hyperspectral data 

with an increased data quality. In TABLE 1-1, eight hyperspectral instruments together with their spatial 

and spectral parameters [2] are illustrated, where the EnMAP, PRISMA and HyspIRI are not yet opera-

                                                 
1
 http://rsd-www.nrl.navy.mil/hydice 

2
 http://aviris.jpl.nasa.gov 

3
 http://eo1.usgs.gov/sensors/hyperion 

4
 https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba/instruments/chris 

5
 http://www.cresda.com 

6
 http://smsc.cnes.fr/IASI 

7
 http://www.enmap.org  

8
 http://www.asi.it/en/activity/earth_observation/prisma_ 

9
 http://www.jspacesystems.or.jp/en_project_hisui 

10
http://hyspiri.jpl.nasa.gov  
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tional. Differently from the traditional multispectral (MS) sensors, hyperspectral sensors measure the so-

lar reflected radiation in a wide wavelength spectrum (e.g., from 400 nm to 2500 nm) at narrow spectral 

intervals (e.g., 1 nm-10 nm). For each pixel in hyperspectral images, a near-continuous spectral signature 

is obtained over the whole range of wavelengths thus resulting in hundreds of bands, whereas in multi-

spectral images it results in just few discrete spectral bands that cover some specific broad spectral wave-

length ranges. An illustration of the spectral signature range (covering visible light, near infrared and 

middle infrared wavelength ranges) comparison between the hyperspectral EO-1 Hyperion sensor (note 

that the uncalibrated bands [3] are not considered) and the multispectral Landsat ETM sensor is shown in 

Fig.1-1. More details can be observed on the spectral signatures recorded by the Hyperion sensor. On the 

contrary, the multispectral Landsat ETM sensor measures only few spectral wavelength ranges, thus less 

details are represented in the resulting spectral signatures. This important property results in the different 

capability of the two types of data to describe the composition of objects of interest. However, the high 

number of spectral bands results in redundant information and significant noise contributions, which 

might affect the accuracy of the obtained results. Moreover, the high dimensionality of the hyperspectral 

data also leads to an increase of the computational cost. Accordingly, the general open issues in hyper-

spectral image analysis and processing (e.g., image classification, target detection, change detection, in-

formation retrieval, etc.) include: i) design of techniques that can effectively use the rich spectral infor-

mation provided by the large number of spectral bands; ii) develop algorithms that can compress as many 

as possible redundant channels while preserving most of the valuable information; iii) design approaches 

that can be implemented in an easy yet effective way with low computational cost when exploiting the 

high-dimensional feature space.  

 

TABLE 1-1 PARAMETERS OF EIGHT HYPERSPECTRAL INSTRUMENTS [2] 

 AIRBORNE SPACEBORNE 

Parameter HYDICE AVIRIS HYPERION EnMAP PRISMA CHRIS HyspIRI IASI 

Altitude (/km) 1.6 20 705 653 614 556 626 817 

Spatial  

resolution (/m) 
0.75 20 30 30 5-30 36 60 

V:1-2km 

H:25km 

Spectral  

resolution (/nm) 
7-14 10 10 6.5-10 10 1.3-12 4-12 0.5 cm

-1
 

Coverage (µµµµm) 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5 0.4-2.5 0.4-1.0 

0.38-2.5 

and 

7.5-12 

3.62-15.5 

(645-2760 

cm
-1

) 

Number of 

bands 
210 224 220 228 238 63 217 8461 

Data cube size 

(samples×lines 

×bands) 

200×320 

×210 

512×614 

×224 

660×256 

×220 

1000×1000 

×228 

400×880 

×238 

748×748 

×63 

620×512 

×210 

765×120 

×8461 
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Fig.1-1 A comparison of the spectral signature ranges acquired by the hyperspectral EO-1 Hyperion sensor and the 

multispectral Landsat ETM sensor. 

 

An important property of hyperspectral imaging is, that the spectral signatures of different materials 

have distinct spectral shapes that can be used to discriminate among each other. For example, land-cover 

classes: three types of vegetation, man-made building, water, which are considered in one hyperspectral 

image (also termed as a hyperspectral data cube since it has an extension along the spectral dimension) 

shown in Fig.1-2. A significant difference in their spectral signatures is clearly visible in the spectral do-

main along the wavelength. Thus one can distinguish these materials according to the unique shape of 

their spectral signatures (even for three kinds of vegetation that have similar spectral signatures). Howev-

er, in the traditional multispectral imaging, such difference might reduce leading to the identification of 

only the general vegetation, man-made building and water classes. Due to the coarse spectral information 

represented by the discrete spectral bands in multispectral images, it is very difficult to identify the subtle 

classes (e.g., three vegetation classes in Fig.1-2).  

The aforementioned two correlated properties of hyperspectral images (i.e., the fine spectral sampling 

and the discriminable spectral shapes) drive the evolution of the remote sensing image processing tech-

niques from the multispectral into the hyperspectral images domain. In the early days’ remote sensing ap-

plications, the multispectral images played a primary role due to the fact that the proposed multispectral 

image analysis and processing techniques were mainly based on the spatially-distributed pattern classes, 

thus taking advantages of spatial correlation to perform various tasks [4]. However, the hyperspectral im-

agery has hundreds of contiguous spectral bands allowing one to perform a more sophisticated and com-

plex data analysis. Therefore, the target of analysis is not only those spatially distributed homogenous pat-
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terns as considered in the multispectral imagery, but also: 1) the spatially small objects which can not be 

simply visualized due to the limited extent of their spatial presence, but having a significant spectral dif-

ference that makes it possible to be separated from the background. This is the case of anomaly detection, 

man-made target detection, etc.; 2) the spectral latent variations, which only appear in some specific 

components of the spectral signature in hyperspectral images. As an extension from the multispectral im-

agery processing techniques, the hyperspectral imagery analysis should be designed considering the tradi-

tional problems in the multispectral images but also the new issues that arise due to the complex hyper-

spectral information. Usually a misconception is generated, which considers the hyperspectral images are 

just a natural extension of multispectral images due to the fact that more spectral bands are collected. This 

may lead to a wrong direction in addressing the hyperspectral problems just simply using multispectral 

processing techniques and taking advantage of the expanded spectral bands [4]. Another challenge also 

arises when considering the compression of the high-dimensional hyperspectral images into a low-

dimensional feature space while preserving sufficient spectral information that for targets discrimination. 

Thus robust compression and feature extraction techniques are required to address the considered prob-

lems in hyperspectral imagery. 

 

 

Fig.1-2 Hyperspectral data cube and examples of pixel spectral signatures associated to three land-cover materials. 



 

 5

An obvious consequence of the increasing data dimensionality (towards both the spatial and spectral 

direction) in hyperspectral images is the increase of the possible types of “targets” that can be identified. 

It can be explained by the phenomenon of Heaps’ law (in information retrieval) or Herdan’s law (in lin-

guistics), which is an empirical law that describes the number of distinct words appeared in a document 

(or set of documents) as a function of the document length [5] (see a qualitative illustration in Fig.1-3). It 

can be approximately formulated as:  

( ) ( )R D D
V L =w L

η
 (1) 

where VR is the distinct terms in a (or some) document (s) with a length of LD. w and η are two free pa-

rameters. 

 

 

Fig.1-3 Heaps’ law of vocabulary growth 

 

The similar phenomenon occurs in the hyperspectral images, where the appeared “vocabulary” can be 

related to the concepts in different hyperspectral applications, for instance they can be “classes” in classi-

fication, “changes” in change detection, “small man-made objects” in target detection and “abnormal 

changes” in anomaly change detection field. Let I×J be the size of the considered hyperspectral image, B 

be the number of spectral channels. Let p be the number of “targets of interest”. Thus an empirical law 

can be also formulated in hyperspectral images as: 

( )f
p = H I J,B×  (2) 

where and Hf (·) is the hidden function that describes the directly relation between the number of targets p 

and the dimensionality of the hyperspectral image (spatial dimension I×J and spectral dimension B). How 

to develop robust and advanced techniques to deal with the challenges of the increasing number of targets 

of interest in hyperspectral images, become a key point to guarantee an effective discovery and mining of 

the rich information in hyperspectral data. 
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Fig.1-4 Whole change-detection processing chain. 

 

1.2 Motivation of the Thesis 

For decades, Earth Observation satellites provided a unique way to observe our living planet from 

space. Thanks to the revisit property of the EO satellites, a huge amount of multitemporal images are now 

available in archives. This allows us to monitor the land surface changes in wide geographical areas ac-

cording to both long term (e.g., yearly) and short term (e.g., daily) observations. A comprehensive under-

standing of the global change is necessary for a sustainable development of human society. As one of the 

interesting subtopics in global change study, detection of anthropogenic and natural impacts on land sur-

face is essential for environmental monitoring [6]. Change detection (CD) is one of the hottest remote 

sensing application topics in the past decades, which is continuously attracting attention in the remote 

sensing community. Technically, it is the process that identifies changes occurred between two (or more) 

images over a same geographical area at different observation times [6], [7], [8], [9]. Changes that re-

flected by the variation of image properties (e.g., pixel radiance value, texture, and shape) are mainly re-

lated to the land-cover material changes on the ground, which are the relevant changes to the real applica-

tion. However, irrelevant changes may be also detected caused by some factors like variation in 

atmospheric conditions, sensor conditions, illumination difference and seasonal effects. The detection of 

the specific kinds of changes (both relevant and irrelevant changes) depends on the requirement of the re-

al applications. It is worth noting that change detection is a comprehensive procedure (see Fig.1-4) that 

requires a set of processing steps [10], including: 1) understanding of the CD problem; 2) selection of 

suitable remote sensing data; 3) accurate image pre-processing; 4) selection of suitable remote sensing 

variables; 5) design of the change detection algorithm; 6) evaluation of the CD performance. In each step, 
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effort should be devoted to drive a successful CD procedure and to result in a high CD accuracy. CD 

techniques have been widely and successfully used in several remote sensing applications (e.g., ecosys-

tem evolution, urban area study, disaster monitoring) in the past decades, especially considering the mul-

titemporal multispectral images [6], [8], [11]. Two examples of change detection applications are shown 

in Fig.1-5 (a) and (b): monitoring of the urban infrastructure (i.e., international airport) construction [12], 

and monitoring of the damaged areas in natural disaster (i.e., tsunami) [13]. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig.1-5 Examples of two change-detection applications. First column, a monitor of the construction of Shanghai 

PuDong International Airport by using bi-temporal CBERS satellite images acquired on (a) March, 7, 2005 and (b) 

May 7, 2009. (c) the obtained CD map [12]; Second column, a fast monitor “3.11” Japan earthquake-triggered tsu-

nami disaster in 2011 from HJ-1A/B satellite images acquired on (d) February 24 (before tsunami), and (e) March 

14 (3 days after tsunami), (c) the obtained CD map [13]. 

 

In general, CD techniques aim at automatically detecting changes occurred between multitemporal im-

ages. Thus by using these techniques one can gradually reduce the need for conventional field investiga-

tions in real CD applications. This is the main motivation of the CD techniques. Due to the coarse spectral 

sampling in a few discrete spectral bands and the insufficient spectral representation in multispectral im-

ages, the early stage of the development of the change detection techniques in multispectral images (CD-

MS) is mainly focused on the abrupt changes. They are land-cover class transitions that significantly af-
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fect the spectral signature (e.g., vegetation to land covers like water, built-up areas, soil). For change de-

tection in hyperspectral images (CD-HS), by taking advantage of the detailed spectral sampling, the aim 

is to detect the spatially homogenous and spectrally significant changes (at global scale) associated to the 

land-cover class transitions as in CD-MS, but also the spectrally insignificant subtle changes (at local 

scale), which are usually not detectable when employing multispectral images. These changes usually lo-

cate in a (some) portions of the whole spectral signature. In order to effectively perform CD-HS and ob-

tain highly accurate results, it is important to design advanced CD techniques that can take advantages of 

the properties of the multitemporal hyperspectral images acquired by the new generation of hyperspectral 

remote sensing satellite systems, and properly analyse and identify variations in the spectral-temporal 

domain. 

In addition to the main motivation arising by the hyperspectral data properties, some other important 

points also drive the motivation of this thesis on change detection techniques: 

From the availability of the ground truth data point of view, CD techniques can be split into two main 

groups: supervised and unsupervised. The supervised CD techniques are based on supervised classifica-

tion schemes and assume that ground truth or prior knowledge is available for the training of a classifier. 

Although supervised CD methods generally outperform the unsupervised ones in detecting land cover 

transitions with high accuracy, the process of collecting reference data for multitemporal images is time 

consuming and costly, and often unfeasible. Therefore, unsupervised CD approaches that do not rely on 

any reference sample are more attractive from the practical point of view. In this thesis, the design of the 

CD approaches is mainly in a partially-unsupervised or unsupervised fashion.  

From the application point of view, two families of the CD techniques can be identified: 1) binary 

change detection techniques or 2) multiple-change detection techniques. Binary CD aims at detecting the 

presence/absence of change without giving any information about the possible separation of multiple 

changes. Thus, all kinds of changes present are simply considered as one single general change class. For 

multiple change detection, the aim is not only to detect the changes, but also to identify different kinds of 

changes among each other. Since few literature works are devoted to solve the multiple-change detection 

problem in multitemporal hyperspectral images, this thesis focuses on this interesting but challenging top-

ic while investigating in details the model of the problem and the analysis of the changes. 

 

1.3 Objectives of the Thesis 

The high spectral resolution and narrow spectral intervals directly lead to an increase in the data di-

mensionality, as well as to the presence of redundant information in hyperspectral images. This makes the 

change analysis more complex and challenging. In reality, the existing CD approaches are mainly de-

signed for multitemporal multispectral images, which efficiency is poor when directly applied to hyper-

spectral images. In this thesis, the main objective is to define advanced CD techniques to solve the multi-

ple-change detection problem in multitemporal hyperspectral images, in order to meet the requirements of 
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practical CD-HS applications especially when the ground truth data are not available. In particular, the 

following issues are investigated in detail in the thesis:  

1) The proper definition of the multiple-change detection problem in multitemporal hyperspectral im-

ages, and the analysis of the change structure and the relation among changes; 

2) The investigation of reliable change index (or domain) for representing and analysing multiple 

changes in the high-dimensional or compressed low-dimensional feature spaces; 

3) The design of techniques for effectively discovering, visualizing, and detecting multiple changes. 

Development of a user-friendly CD tool that allows users to have an easy yet efficient implementation; 

4) The design of automatic (or semi-automatic) CD techniques for the detection and separation of mul-

tiple changes according to the clustering nature of spectral signatures; 

5) The investigation of spectral variations at sub-pixel level, thus to exploit in detail the possible kinds 

of changes inside a pixel to make better decision for change identification; 

6) The design of advanced unsupervised and automatic CD techniques which are independent from the 

availability of the ground truth data. 

 

1.4 Novel Contributions of the Thesis 

Based on the main motivation and objective of the thesis, attention is focused on the development of 

the advanced techniques for automatic change detection in multitemporal hyperspectral images. Research 

activities are mainly carried out to develop robust techniques for addressing the considered challenging 

CD-HS problem. The main contributions and novelties of the thesis are briefly reported as follows. 

 

i) A theoretical and empirical analysis of the considered CD-HS problem in the spectral difference do-

main and multitemporal spectral stacked domain 

By taking into account the intrinsic complexity of the hyperspectral data, a proper definition of the 

concept of changes in hyperspectral images is given in the spectral difference domain, which is computed 

by subtracting the multitemporal images pixel by pixel. Two kinds of changes are defined with respect to 

their levels of spectral change significance: the major changes and the subtle images. A hierarchical na-

ture of the spectral changes is observed by analysing in detail the spectral variations from coarse to fine 

processing levels, leading to a better modelling of the hidden and complex change structures. This analy-

sis is exploited in (ii) and (iii) (see below).  

Another interesting and important analysis for modelling the multiple change detection problem is pro-

posed in the multitemporal spectral stacked domain, which provides a new perspective to detect changes 

by jointly exploiting the spectral-temporal variations at subpixel level. The main advantages of working 

in the spectral stacked domain are: 1) it preserves the intrinsic properties of the spectral signatures that 

represent the real land-cover materials, which are extended along the temporal direction; 2) only the oc-

curred land-cover transitions are identified as endmembers in the mixture model, which usually are gen-
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erated and considered when implementing unmixing independently on single-time images (even do not 

exist). These are two fundamentals that support the proposed multitemporal spectral unmixing based CD 

approach described in (iv) (see below).  

 

ii) A novel semi-automatic sequential spectral change vector analysis (S
2
CVA) for discovering, represent-

ing and detecting multiple changes 

S
2
CVA is developed based on the state-of-the-art C

2
VA approach. The proposed approach aims at dis-

covering, representing and detecting multiple changes according to a sequential process that takes into ac-

count different levels of spectral change significance. The main novelties of the proposed S
2
CVA are: 1) 

it iteratively analyzes the heterogeneous change information by following a top-down structure and a se-

quential analysis. The change information in the original high dimensional feature space are adaptively 

and iteratively compressed and projected into new 2-D feature spaces, each of which is associated to a 

specific portion of the whole spectral change vectors. Thus changes can be represented, discovered and 

detected at different levels of the hierarchy; 2) at each level it adaptively exploits and represents multiple-

change information is a 2-D change representation domain by automatically selecting a reference vector 

that maximizes the measurement of data variance. 

 

iii) A novel partially-unsupervised hierarchical clustering method for multitemporal hyperspectral imag-

es change detection 

The main contributions in this work are as follows: 1) proposal of a technique for addressing the chal-

lenging multiple-change detection problem in hyperspectral images, by considering the difference of 

spectral change behaviours in the spectral difference domain at different spectral scales; and 2) proposal 

of an approach that models the detection of multiple changes in a hierarchical way, to identify the change 

information and separate different kinds of changes (major change, subtle change, and finally, change 

endmembers) according to the spectral homogeneity. By this way, the complex CD-HS problem is pro-

gressively decomposed into several specific sub-problems, focusing on each single portion of the multi-

ple-change information. This makes it possible to discover the difference among similar changes by de-

creasing the difficulty of detection. Moreover, the proposed approach is designed in a partially-

unsupervised way, where a manual initialization can be easily implemented to trigger an automatic model 

selection and clustering at each level. 

 

iv) A novel unsupervised Multitemporal Spectral Unmixing (MSU) for detecting multiple changes in hy-

perspectral images 

The proposed MSU approach is designed in a fully automatic and unsupervised way, thus is independ-

ent from the availability of prior knowledge and the manual assistance of the user in the real applications. 

The main novelties and contributions of the proposed method are as follows: 1) it provides a new perspec-
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tive to detect changes by jointly exploring the spectral-temporal variations in the multitemporal spectral 

stacked domain; 2) it proposes a multitemporal spectral unmixing framework to solve the multiple change 

detection problem, where the identification of the number of the change classes is done by identifying the 

distinct endmembers and the unique change classes, and the discrimination of changes is addressed by 

unmixing and abundances analysis; 3) it allows one to understand in details the spectral composition of a 

pixel, thus implementing CD at subpixel level, whereas to our knowledge that most of the state-of-the-art 

techniques are designed at pixel level only. By taking advantage of the endmembers extraction and spec-

tral unmixing while considering endmember variability (i.e., local endmembers strategy), the proposed 

MSU method well models the change and no-change spectral compositions inside a pixel. A more reliable 

decision is made according to the analysis of the endmember abundances associated with a given class 

with respect to a crisp decision based on the pure-pixel theory. Accordingly, more subpixel level spectral 

variations are expected to be identified, which are usually not detectable in the pixel-level-based CD 

techniques. 

 

1.5 Structure of the Thesis 

This thesis is organized in seven chapters. The present chapter gives a brief introduction on the remote 

sensing and the new generation of the hyperspectral sensors. It presents in details the motivation of the 

thesis on change-detection techniques for multitemporal hyperspectral remote sensing images. Then the 

main objectives of the thesis are introduced. The novel contributions of the thesis are given with a brief 

summary on each of them. Finally, it describes the structure of the whole thesis. 

Chapter 2 presents an intensive review of the state-of-the-art change detection techniques in multitem-

poral multispectral and hyperspectral images, respectively. Problems and challenges that arise when 

changing the perspective of CD from multispectral to hyperspectral images are analyzed and discussed in 

details. 

Chapter 3 introduces several important and novel concepts for multiple-change detection in hyperspec-

tral images. The spectral difference domain and the multitemporal spectral stacked domain are analyzed 

in details. This analysis resulted in the design of the advanced CD techniques that proposed and presented 

in the next chapters. 

Chapter 4 presents a novel semi-automatic sequential spectral change vector analysis for discovering, 

representing and detecting multiple kinds of changes in multitemporal hyperspectral images. The pro-

posed approach provides also an easy yet effective tool for user-interaction within the CD procedure. 

Chapter 5 introduces a novel partially-supervised hierarchical clustering method for multitemporal hy-

perspectral images change detection. The proposed approach is developed following a hierarchical top-

down structure, and a manual initialization and adaptive clustering is included at each iteration to exploit 

the number of the hidden changes and to separate them. 

Chapter 6 describes a novel automatic multitemporal spectral unmixing approach to address the multi-

ple-change detection problem in hyperspectral images. The proposed approach is designed based on a 
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spectral multitemporal unmixing technique at sub-pixel level, thus is able to investigate in details the 

spectral-temporal variations within a pixel. 

Chapter 7 draws the conclusions of this thesis. The remaining open issues and further developments of 

the research activities are also discussed. 
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Chapter 2  

 

 

State-of-the-Art: Change Detection Techniques 
 

This chapter gives a comprehensive overview of change-detection techniques presented in the literatures 

for both multispectral and hyperspectral multitemporal images. Problems and challenges that may arise 

due to the change of perspective from multispectral to hyperspectral images are analyzed and discussed 

in detail.  

 

2.1 Change Detection Techniques for Multitemporal Multispectral Images 

For decades, many CD techniques have been proposed for successfully addressing the CD problem in 

multispectral optical remote sensing images. Some good reviews for these CD techniques can be found in 

[6], [7], [8], [9], [14], [15], [16], [10]. In this chapter, we focus on the overview of the techniques for the 

main change-detection step in the whole CD processing chain (i.e., Fig.1-4, Phase 3). In the rest of this 

section, an overview on the relevant literature is present. 

As mentioned in the Introduction, from the methodological point of view, CD techniques can be clus-

tered into supervised and unsupervised depending if they need ground truth data or not. Supervised CD 

methods are mainly designed based on the supervised classification schemes and require the available 

prior knowledge for training a classifier. In this context, the most popular CD approach is the Post-

Classification Comparison (PCC) [17], [18], which classifies independently two (or more) images at dif-

ferent times and then compares the pixel class label to detect changes. The main advantages of PCC is 

that the land-cover transitions are obtained (i.e., “from-to” information). However, the accuracy of the 

change-detection performance highly depends on the accuracy of the classifier. Moreover, the classifica-

tion errors on each single date image impact on the final change-detection accuracy. Another type of su-

pervised CD approaches is based on the Direct Multi-date Classification (DMC) [19], [20], [21], [22]. It 

identifies changes by simultaneously classifying the stacked multi-date images, thus a change is repre-

sented by an output class in the final classification map. The considered CD task actually is replaced by a 

classification task. However, difficulties come from the generation of comprehensive multitemporal train-

ing samples that represent the detailed land-cover transitions between the multitemporal images, which 

might highly affect the classification accuracy. In reality, it is very challenging (in some cases impossible) 

to have such fine multitemporal training samples available. In addition, another group of supervised CD 

approach is based on analysis and classification of the change index images instead of working on the 

original images (i.e., spectral channels). For example, in [23], the binary Support Vector Machine (SVM) 

was applied to the spectral difference images stacked with different extracted features to detect the land-

cover changes in the mining area; in [24], SVM was also used for solving a binary CD problem for moni-
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toring urban growth by classifying an improved change index image fused from various spectral differ-

ence images (e.g., differencing, ratioing, distance metric, similarity measure). Note that such supervised 

CD methods are mainly developed for multispectral images but also are applicable to hyperspectral imag-

es as well. However, when dealing with hyperspectral data, more attention should be devoted to define 

effective classification systems that: i) are suitable to the analysis of high-dimensional data and overcome 

the Huges phenomenon (i.e., with a fixed number of training samples, the predictive power of a classifier 

reduces as the dimensionality increases) [25], and ii) can effectively exploit informative features thus en-

hancing change detectability. Although supervised CD methods generally outperform the unsupervised 

ones in detecting land-cover transitions, the process of collecting reference data for multitemporal images 

is always time costly and often unfeasible. To overcome this drawback, some works were designed when 

a small portion of the reference samples are available [26], [27], which is called as partially-unsupervised 

or semi-supervised learning. The main idea is to start from an unsupervised procedure to create the initial 

training samples for a supervised or semi-supervised classification strategy, or to start with some availa-

ble initial samples to learn and add more informative samples in a supervised classification thus to en-

hance the CD performance. 

Despite the effectiveness and usefulness of all these supervised and semi-supervised CD approaches, 

unsupervised methods that do not rely on any ground truth data or prior knowledge are more attractive 

from the real application point of view. Unsupervised CD methods have been designed for both binary 

change detection (i.e., considers only the presence/absence of change, ignoring the possible different class 

transitions) and multiple-change detection (i.e., detects the changes, but also identifies their difference 

among each other). Binary change detection only distinguishes between change and no-change classes 

and it can not provide detailed information about the class transitions. Thus it is usually just an initial un-

derstanding of the spatial distribution of the changes on the images in a satellite observation period. From 

the methodological point of view, they can be categorized into thresholding-based and clustering-based 

techniques. The thresholding-based techniques are designed to find a proper threshold value that separates 

the change and no-change two classes on the bi-modal histogram of the magnitude image. To this end, 

some classical image segmentation approaches can be used, for example, OSTU algorithm [28], Kittler-

Illingworth (K-I) algorithm [29], and maximum entropy thresholding [30], etc. In [31], the problem of bi-

nary CD was solved automatically by modeling the statistical distribution of classes as Gaussian and in-

corporating spatial-context information, thus significantly improved the previous works that are mainly 

based on manual thresholding [32]. Statistical distributions were theoretically discussed in [33] thus to 

better model the mixture of change and no-change two classes in the magnitude domain. Clustering algo-

rithms have been also investigated and used for solving the same binary CD problem as well, for instance, 

the Principal Component Analysis (PCA) and k-means clustering were combined in [34]. In [35], Fuzzy 

c-means (FCM) and Gustafson-Kessel Clustering (GKC) algorithms were applied with two other optimi-

zation techniques, Genetic Algorithm (GA) and Simulated Annealing (SA) to further enhance the CD per-

formance. In [36], a nonlinear support vector clustering was designed for separating the change and no-
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change binary information. A fuzzy clustering algorithm with a modified Markov Random Fields (MRF) 

energy function was proposed in [37], and an unsupervised CD approaches was designed in [38] by map-

ping the difference image in the feature space and applying kernel k-means clustering. 

However, in multispectral images the multiple changes can be detected. Usually two main issues have 

to be considered simultaneously: 1) to correctly identify the number of multiple changes; 2) to effectively 

discriminate different changes among each other. In literature, many attempts based on image transfor-

mation, multivariate analysis, etc., have been done to address the multiple-change detection problem. The 

most popular approaches are for example the one proposed in [39] by applying PCA on the difference im-

age and analyzing the changes that characterized in the first few PCs. In [40], the Gramm-Schmidt (GS) 

transformation was used. In [41], the Tasselled cap transformation (KT) was applied to detect the vegeta-

tion change from Landsat TM images. In [42], an unsupervised Multivariate Alteration Detection (MAD) 

technique based on the Canonical Correlation Analysis (CCA) was used to detect the seasonal vegetation 

changes. An improved version named Iterative Reweighted MAD (IR-MAD) was proposed in [43] to 

provide more reliable output components thus emphasizing changes. However, the main disadvantages of 

the above mentioned transformation-based CD approaches is that they require a strong interaction with 

the end-users to select the most informative components thus to emphasize on the specific changes, which 

is usually time consuming and application-oriented. On the other hand, the transformation-based methods 

do not provide a clear number of changes. The number of detected changes highly depends on the select-

ed number of components and the change information represented in those components. Some changes 

might be still mixed and unidentified in a given component. Therefore, the transformation-based ap-

proaches are good at extracting features for enhancing the detection of specific kinds of changes in CD, 

but in general not suitable for detecting all the possible change classes.  

Another popular and classical method for multiple change detection is Change Vector Analysis (CVA). 

It was proposed in 1980 by Malila [44]. CVA models a change vector by a direction and a magnitude. 

Different kinds of changes can be identified by analyzing these two variables. Many works were devel-

oped based on CVA to extend its use in different applications and proposed its improved versions [45], 

[46]. In [33], Bovolo et al. proposed a framework for a formal definition to the CVA in a polar coordi-

nates. In such polar representation domain, the spectral change vectors are represented and distributed ac-

cording to their intrinsic properties and reveal the nature of changed and unchanged pixels. This work al-

so provided a solid background that for developing more advanced and accurate automatic change 

detection algorithms. However, the CVA method needs user to select 2 out of B spectral bands at each 

implementation thus to discover specific changes of interest. To overcome this limitation, a simple but 

effective method named Compressed Change Vector Analysis (C
2
VA) was recently proposed in [47]. In 

C
2
VA the considered multiple-change detection problem is represented in a magnitude-direction 2-

Dimensional polar domain generated by a lossy compression (potentially ambiguous) procedure on the 

original B-Dimensional feature space. Thus the change detection can be easily implemented without rely-

ing on any band selection, which might result in loss of change information. C
2
VA has proved to be ef-
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fective in different CD applications with multispectral images [47], [48]. Differently from the aforemen-

tioned transformation-based CD approaches, the uncompressed CVA and compressed C
2
VA provide an 

opportunity to understand the changes that represented in the selected or the whole spectral difference 

feature space. Thus the number of changes and the discrimination of different changes can be exploited 

by analyzing the corresponding representations. 

Several other works exist devoted to improve the CD result by considering the spatial information in 

the CD procedure thus reduce the “salt and pepper” noise caused by the pixel-based processing. In this 

context, two main groups of methods are reviewed. The first large group of methods jointly uses spectral-

spatial information to improve the CD performance. Spatial information extraction and representation 

techniques like spatial neighborhood features [49], Gabor filters [50], Markov Random Fields (MRFs) 

[31], Morphological Attribute Profiles (MAPs) [51], fusion of textures, edges and others spatial features 

[52], etc. were developed in the literature. The proper and effective use of the extracted spatial features is 

the key point to ensure a good CD result. Another group is the object-oriented CD approaches, which 

usually designed based on the image segmentation and change object analysis. For instance, in [53] CD 

approaches were proposed based on object/neighborhood correlation image analysis and image segmenta-

tion techniques. A statistical object-based method was designed based on segmentation, image differenc-

ing and stochastic analysis of the multispectral signals [54]. A parcel-based context-sensitive technique 

was investigated to improve the pixel-based CD performance in [55], where a multilevel CVA was ap-

plied. In [56], an object-oriented CD algorithm was developed by analyzing the abnormal statistical prop-

erties of the segmented objects in ArcGIS. Either the spatial feature based or the object-oriented methods 

are proven to be effective in obtaining more spatially homogenous CD result, reducing a lot of the detec-

tion errors, especially the commission errors. 

Other works also focus on the improving of the CD results by using different new techniques that take 

advantages of the developments in the machine learning and pattern recognition society. For example, in 

[57] an approach was proposed for binary CD by using the optimized computation algorithm (i.e., genetic 

algorithm). In [12], multiple difference index images were combined to construct better change variables 

for binary CD using different ensemble learning schemes. In [58], different levels of data fusion ap-

proaches were analyzed, and a sequential fusion based CD procedure were proposed to utilize information 

from multi-sensor images over the same geographical area. In [52], fusion strategies for multiple features 

(e.g., texture, shape, edge) extracted from the original images were developed to improve the CD result 

which usually only rely on the spectral information; A Slow Feature Analysis (SFA) algorithm was pro-

posed for multispectral images change detection in [59], which can extract the most temporally invariant 

components from the multitemporal data to construct a new feature space for separating the change and 

no-change. A clustering approach based on a semi-nonnegative matrix factorization (semi-NMF) was 

proposed in [60], which proven to be simple in computation yet effective in identifying meaningful 

changes. A sparse hierarchical clustering approach was proposed in [61]. Discriminative change features 

were generated by stacking bitemporal multi-scale center-symmetric local binary pattern features. Then a 
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tree-structured dictionary was built and the sparse reconstruction error was used to model the changes. 

Despite these proposed CD techniques have shown their advantages in different specific cases in litera-

ture works, the effectiveness and applicability of these approaches strongly depends on the considered da-

ta sets and the complexity of the real CD tasks. In general, it is difficult to find a unified approach that 

suitable for all CD cases. 

 

2.2 Change Detection Techniques for Multitemporal Hyperspectral Images 

Change detection techniques in multispectral images have been exhaustively investigated in the past 

few decades. However, there are relatively few works on CD in hyperspectral images, rarely are for solv-

ing the multiple-change detection problem. These works can be divided into three main categories includ-

ing: 1) transformation based methods; 2) spectrum analysis based methods, and 3) other techniques.  

In the first category, cross covariance (chronochrome) and Covariance-Equalisation (CE) are two mul-

tivariate statistical techniques, which detect differences between linear combination of the spectral bands 

(i.e., subtracting feature vectors in the transformed feature space) from the two acquisitions. They have 

been applied in CD in [62], [63]; In [64], three iterative clustering methods: class-conditional CE (QCE), 

bitemporal QCE and Wavelength Dependent Segmentation (WDS), were applied to detect man-made 

changes in VNIR and TIR hyperspectral images. It proved that the use of a spatially adaptive detector 

greatly enhance the CD performance for both target detection and false alarm reduction. Another popular 

transform-based method represents the images in a feature space, where the change information is con-

centrated in few components. This reduces the data dimensionality and noise, and focuses on the compo-

nents that are related to the specific changes of interest. In this context, Multivariate Alteration Detection 

(MAD) method was introduced in [42] to solve a vegetation CD problem by using multitemporal hyper-

spectral images in an unsupervised way. Then it was extended to an iterative reweighted version (IR-

MAD) [43] to provide more reliable output components and thus better emphasizes and detects changes. 

In [65], two kernel versions of Maximum Autocorrelation Factor (MAF) analysis and Minimum Noise 

Fraction (MNF) analysis were introduced for CD. The experimental results showed that the kernel 

MAF/MNF performed better than its linear version and the kernel PCA. A Temporal-Principal Compo-

nent Analysis (T-PCA) was proposed in [66], which exploits the variances in PCs after transforming the 

combined multitemporal images. Thus the no-change and change information is associated with the first  

and second group of PCs, respectively. Another variation of PCA named sparse PCA was also investigat-

ed recently in [67] for addressing the CD problem, and the result showed that three wavelength regions 

were important for CD, which might be also useful for the potential feature selection. In [68], Independ-

ent Component Analysis (ICA) was applied with the Uniform Feature Design (UFD) strategy in a hierar-

chically framework to investigate the specific vegetation changes. In [69], a spatio-temporal ICA (stICA) 

was designed for extracting the spatio-temporal patterns from different hyperspectral sensors or from dif-

ferent acquisition conditions and dates. It is worth noting that the transformed-based methods require a 

strong interaction with the end-users to select the most informative components thus to emphasize on spe-
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cific changes. This step is usually time-consuming, especially when the number of changes is large in the 

hyperspectral case. Therefore, it is not suitable to detect all possible change classes. Moreover, transfor-

mation based approaches are not able to provide a reliable number of changes, which limited the use of 

these methods in the real CD-HS applications.  

The spectrum analysis based CD methods take advantage of the detailed spectral signature in hyper-

spectral images. On the one hand, the distance and similarity measurements are used to detect the differ-

ence between the considered pixel spectral signatures of images acquired at two times (e.g., Spectral An-

gle Measure (SAM), Spectral Information Divergence (SID) and Spectral Correlation Measure (SCM) 

[70], [71], [72]. On the other hand, CD techniques were designed based on the spectral properties of the 

hyperspectral images. In [73], a linear mixture model was proposed for analyzing the endmembers and 

abundances estimated from each single-time image to address a binary CD problem. In [74], a simple but 

effective relative radiometric normalization method was analyzed and two automatic approaches for CD-

HS after normalization were introduced. A novel multi-spectro-temporal analysis approach was proposed 

in [75] based on 3-D spectral modeling and multi-linear algebra, thus to model the temporal variation of 

the reflectance response as a function of time period and wavelength. In [76], a subspace-based CD meth-

od was designed when knowing the undesired land-cover type spectral signature as a prior knowledge. 

The subspace distance was computed to determine whether the target was anomalous with respect to the 

background subspace. Those anomalous pixels were then considered as changes.  

Other works have been also developed to explore the CD-HS problem from different perspectives. A 

CD approach based on tensor-factorization and PCA was proposed in [77], which analyzed the concate-

nated multitemporal hyperspectral image as a 3-Dimensional tensor cube. A model-based methods by 

formulating the CD as a statistical hypothesis test was presented in [78], and its application to Airborne 

VNIR/SWIR hyperspectral images was discussed in [79]. An unsupervised approach was developed in 

[80] to achieve slight change extraction and detection in hyperspectral images, which also exploits the 

statistical inner connection among the multitemporal image sequence. A semi-supervised CD method was 

proposed in [81] by designing a new distance metric learning framework for CD in noisy conditions. 

Moreover, there are also some other works focusing on the external factors that affect the CD perfor-

mance, which include limiting image parallax errors [82], vegetation and illumination variation [83], and 

diurnal and seasonal variations [84]. These factors may introduce errors into the CD process and thus de-

crease the detection accuracy, which should be limited as much as possible in real CD-HS applications.  

 

2.3 Problems and Challenges 

Due to the intrinsic properties of the hyperspectral data, the CD problem becomes more complex and 

challenging thus efficiency of the exist methods (especially the one designed for multispectral images) is 

reduced. The main challenges are analyzed and summarized as follows:  
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a) High dimensionality of hyperspectral images. It involves challenges in data handling, including stor-

age volume and computing bottle necks, which are actually common problems for all hyperspectral 

data processing tasks (i.e., classification, change detection, target recognition). In CD-HS, the main 

difficulty is to effectively extract the change information from the high dimensional feature space, 

which makes the changes more implicit and less separable. Techniques that developed for multispec-

tral images, like the standard CVA or C
2
VA [33], [44], [47], may fail to give a proper change repre-

sentation and effective change identification, thus degrade their performance and decrease the CD ac-

curacy. This is mainly due to the ambiguity that generated by the compressed representation, and also 

to the potentially critical situation when too many changes are present. Moreover, difficulty also 

comes from the high computational cost for change representation and identification in the high di-

mensional feature space, which may limit the use of many CD techniques. 

b) Rich but complex spectral variation information. The fine spectral sampling in hyperspectral images 

leads to many possible subtle changes usually undetectable in multispectral case. However, subtle 

changes are highly difficult to be identified, as they follow a complex structure in the high-

dimensional feature space. Variations can be characterized in a specific part of the whole spectrum 

thus are not easy to be identified from a global point of view. The existing CD-HS methods try to ex-

tract all changes directly from the original data space or from a transformed feature space relying only 

on a single level analysis, which increases the difficulties of identifying multiple-change classes and 

thus affects the detection accuracy. Moreover, most of the existing unsupervised CD methods that di-

rectly compare and analyze the difference of pixel radiance values, ignoring the rich near-continuous 

spectrum information that is the peculiar property of hyperspectral images, might be ineffective to de-

tect the subtle spectral variations. 

c) Redundant information. The spectral information of the adjacent bands in hyperspectral images results 

in a non-negligible redundancy. However, when the spectral resolution increases, a reduction of the 

signal-to-noise ratio (SNR) of the spectral signal is obtained [85]. Thus information represented in a 

single hyperspectral band becomes more sparse and implicit, which may degrade the discriminability 

of a detector. 

d) Most of CD-HS approaches present in the literature focus on either binary CD (e.g., [73], [74], [77], 

[80], [81]) or the detection of specific changes (e.g., [42], [64], [65], [68], [70], [76], [78]). There are 

few methods that address the challenging problem of detecting multiple changes simultaneously 

(which can be very important especially when unexpected changes occur on the ground). Moreover, 

some methods still rely solely on the change magnitude information [42], [43], [68], neglecting the 

very interesting change direction information (and thus the whole spectrum signature) for distinguish-

ing different kinds of changes. Although the transformation-based methods (e.g., MAD, IR-MAD, 

TPCA, kernel MAF/MNF, ICA) allow one to detect multiple changes, the application of transfor-

mation directly to the complex hyperspectral data results in: 1) a high computational cost; 2) a diffi-

cult manual interpretation of all the transformed components thus select the ones related to the chang-
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es of interest; and 3) a qualitative and ambiguous description of change classes, especially for the sub-

tle and latent changes. Therefore, the identification of the number of multiple changes and the dis-

crimination among them from the transformed components are still open issues. 
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Chapter 3  

 

 

Proposed Concepts for Change Detection in Hyperspectral Images 
 

In this chapter, some proposed new concepts for multiple-change detection in multitemporal hyperspec-

tral images are presented. First of all, an analysis of the spectral difference domain is provided. By tak-

ing into account the intrinsic complexity of the hyperspectral data, some concepts associated to the multi-

ple-changes are given from the perspective of pixel spectral signature in order to formalize the 

considered CD problem. Then, a multitemporal spectral stacked domain is introduced and analyzed. A 

multitemporal spectral mixture model is defined to investigate in detail the spectral composition of the 

change and no-change classes within a pixel. Thus the considered multiple-change detection problem can 

be solved by the proposed multitemporal spectral unmixing technique. 

 

3.1 Analysis of the Spectral Difference Domain 

The aim of this section is to investigate the spectral difference domain and its role in addressing the 

multiple-change detection problem in hyperspectral images. It is necessary to identify the class transitions 

having discriminable spectral behaviors either globally or locally in the spectrum of multitemporal hyper-

spectral images. Based on the pure pixel assumption that assumes a pixel contains only a kind of material 

substance inside, a Spectral Change Vector (SCV) in the spectral difference domain is assumed to associ-

ate to a given land-cover class transition. Then the discriminable SCVs are defined here as change 

endmembers. The clusters of the change endmembers are analogous to the change classes that we are de-

tecting in the multitemporal images. 

Note that the very high spectral resolution in hyperspectral images makes it possible to detect many 

differences in the spectral signatures of pixels acquired in a scene of interest. Such differences may occur 

at different spectral resolution levels. In order to conduct an effective CD-HS, it is important to under-

stand and model the concept of “change” in the multitemporal hyperspectral images and its relationship 

with the concept of change endmembers.  

In the change detection research, the most popular change index image is the spectral difference image 

XD (or named SCVs in a B-Dimensional spectral difference domain XD). Numerous works have been done 

by analyzing the difference image XD to detect changes [6], [12], [31], [33], [47], [86]. Let X1 and X2 be 

two co-registered hyperspectral images having a size of I×J acquired over the same geographical area at 

                                                 
Parts of contents in this chapter are taken from:  

Book Chapter: submitted to Springer EARSeL Book 'Multitemporal Remote Sensing: Method and Applications'. Chapter title: 

“Change Detection in Multitemporal Hyperspectral Images”. Authors: L.Bruzzone, S.Liu, F.Bovolo, P.Du. 

Journal Paper: submitted to IEEE Transactions on Geoscience and Remote Sensing. Title: “Unsupervised Multitemporal Spec-

tral Unmixing for Detecting Land-Cover Transitions in Hyperspectral Images”. Authors: S.Liu, L.Bruzzone, F.Bovolo, P.Du. 
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times t1 and t2, respectively. Let x1(i, j) and x2(i, j) be the pixels with spatial position (i, j) (1 ≤ i ≤ I, 1≤ j ≤ 

J) in X1 and X2, respectively. To analyze the behaviors of spectral differences between the two images, let 

us compute the hyperspectral difference image XD (and thus the SCVs associated with each pixel) by sub-

tracting bitemporal images from each other pixel by pixel [33].  

2 1
-

D
=X X X  (3) 

In XD, each pixel is characterized by a SCV that shows as many elements as the spectral channels in the 

original hyperspectral images. Each element assumes values that depend on whether a change occurred or 

not for a specific wavelength, and on the kinds of changes. Therefore, SCV signatures that are related to 

the land-cover class transitions in XD are used to formalize the considered CD problem. 

Let Ω = {Ωn, Ωc} be the set of all classes in XD, where Ωn  is the set of no-change class and 

{ }
1 2
, ,...,

Kc c c cω ω ωΩ =  is the set of the K possible change classes. Note that since we are not interest in 

distinguishing different kinds of no-change in Ωn, thus Ωn is considered as one general no-change class 

ωn, n nωΩ ≈ . So the considered multiple-change detection problem can be defined as to detect all changed 

pixels (Ωc) in Ω = {ωn, Ωc}, and to separate them into multiple change classes{ }
1 2
, ,...,

Kc c cω ω ω . 

 

 

Fig.3-1 Example of the SCV signatures associated to three change classes in the spectral difference domain XD. 

 

After a comprehensive analysis on the spectral difference domain XD, three important observations are 

utilized in investigating the considered multiple change detection task: 1) pixels that associated to a given 

change class have the same (or very similar) signatures of their SCVs thus are clustered together in XD 

domain (see an example in Fig.3-1); 2) the magnitude of the SCVs drives the separation of the changed 
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and the unchanged pixels; 3) the spectral shape of SCVs drives the discrimination of different kinds of 

changes. Generally speaking, a pixel can belong to the class of changed pixels in Ωc or the one of un-

changed pixels ωn according to the magnitude of its SCV [33]. Fig.3-2 (a) gives a qualitative example of 

the expected behavior of the magnitude histogram of XD. Unchanged pixels show a SCV magnitude close 

to zero (blue mode in Fig.3-2.a). The SCV signatures of such pixels have all spectral components close to 

the null vector (see the blue SCV signature in Fig.3-2.b). Changed pixels show high magnitude values 

(red mode in Fig.3-2.a), and their SCV signatures show one or more components that are far from the null 

vector. It is worth noting that in the 1-Dimensional magnitude domain usually different changes contrib-

ute to a single class Ωc, since they are highly mixed and cannot be separated according to the magnitude 

values (see Fig.3-2.a). A finer analysis of SCV behaviors points out that Ωc may include contributions 

from several change classes (see red and green signatures associated in Fig.3-2.b) depending on how the 

specific kinds of changes impacted on the spectral signatures. SCVs can be preliminary separated into 

major changes. Major changes mainly depend on the land-cover class transitions and have a large spectral 

difference with respect to no-change class and among each other. Usually, major changes can be easily 

and directly identified since they significantly affect a large portion of the spectrum of hyperspectral im-

ages. In many cases they can be also detected from multispectral images. As shown in Fig.3-2 (c), each 

major change (i.e., C1 and C2) produces statistically significant different spectra compared with each other 

and with the class of unchanged pixels. Within each major change, it is possible to detect other clusters of 

pixels having significant statistical differences in some parts of the spectrum. Such clusters are defined 

here as subtle changes. Subtle changes have SCVs similar to a major change, but differ from it in small 

portions of the spectrum. In Fig.3-2 (c), subtle changes C1,1 (in purple) and C1,2 (in orange) belong to the 

same major change C1 (in red), whereas C2,1 (in magenta) and C2,2 (in sea green) belong to C2 (in green). 

In other words subtle changes show SCVs statistically different from each other in some components of 

the spectrum, but are quite similar to those of the associated major change. Subtle changes can be there-

fore detected only if a fine sampling of the spectral signature is available as it happens in hyperspectral 

images. If the sampling is poor as in the case of multispectral images, they cannot be detected. 

 

  

(a) (b) (c) 

Fig.3-2 Qualitative illustration of (a) the statistical distribution of the magnitude of SCVs (h(ρ)); the sample spectra 

on SCVs of (b) major changes; (c) subtle changes (solid line) within the given major changes (dotted line) that de-

fined in the spectral difference domain XD. 
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According to the above discussion, { }c 1 2, ,...C CΩ =  is the set of major changes, i.e., changes that affect 

a large part of the spectrum and that have statistical properties significantly different from each other. 

Each major change may include subtle changes (i.e., { }1 1,1 1,2, ,...C C C=  and { }2 2,1 2,2, ,...C C C= ) whereas 

others may not (i.e., 
3C = ∅ ). By iterating the process it is possible to state that each subtle change can be 

further split until it is not possible to detect spectrally statistical inhomogeneity. Each major or subtle 

change that cannot be split anymore is defined as a change endmember
1
 in Ωe={e1, e2,…,eK} that associ-

ated to a given change class in { }
1 2
, , ,

Kc c c c
ω ω ωΩ = K . Accordingly, all pixels belong to a specific change 

endmember have the same (or very similar) spectral behaviors in the SCV domain and thus can be clus-

tered into the same group. Thus the problem that we need to address is related to the identification and 

separation of change classes in { }
1 2
, , ,

Kc c cω ω ωK  (thus the endmembers in Ωe={e1, e2,…,eK}) from each 

other and from unchanged pixels in ωn. We assume that the considered images are all radiometric correct-

ed, thus change endmembers are only related to the application and to the end-users. Note that the exter-

nal factors (e.g., illumination conditions, seasonal effects) might have impacts on the detected change 

endmembers (causing differences) but almost of them will not be identified as one of those changes due 

to the low change magnitude. 

 

3.2 Analysis of the Spectral Stacked Domain 

Let consider a pair of bitemporal images. Under the pure spectrum assumption, pixels are spatially ho-

mogenous and thus contain only one land-cover material at each date (i.e., pixel level CD in Fig.3-3). 

Thus only change or no-change cases may occur according to a crisp decision strategy. However, by ana-

lyzing the bi-temporal CD problem from the perspective of mixed spectra assumption, a pixel may be as-

sociated with several possible situations of class mixtures and transitions (see Fig.3-3), thus more com-

plex situations may occur. The spectral mixture can occur only on a single date image (i.e., X1 or X2) or 

on both of them, leading to the following four possible situations (see Fig.3-3, subpixel level CD): 1) the 

pixel is pure in both X1 and X2; 2) the pixel is pure in X1 but mixed in X2; 3) the pixel is mixed in X1 but 

pure in X2; and 4) the pixel is mixed in both X1 and X2. The final crisp decision is made by assigning the 

change or no-change label depending on the majority of the material composition and its temporal behav-

iour (see Fig.3-3). If the majority is associated to different materials at the two dates, the pixel tends to be 

changed, whereas it tends to be unchanged when majority is associated to the same material in the two 

images. Thus an effective investigation at the subpixel level may point out potential spectral variations 

within a pixel that are usually not detectable at the pixel level. This helps to better understand the spectral 

                                                 
1 
Note that the definition of change endmember is in concept different from the definition of endmembers in spectral 

unmixing. In the latter case, endmembers are the spectral signatures of pure classes that result combined in mixed 

pixels due to the limited spatial resolution of the acquisition sensor. 
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mixture phenomenon and its effects on CD. The proposed change formulation and representation is based 

on this spectral mixture analysis. 

The most popular change index when dealing with optical passive sensors is the B-Dimensional differ-

ence image XD computed by subtracting the multitemporal images pixel-by-pixel [31], [86], [87], [88], 

(see (1) in Section 3.1). It is worth noting that the pixel spectrum in the spectral difference domain XD has 

changed its physical meaning into the land-cover transitions rather than the original land-cover materials. 

Thus it is more complex and difficult to identify a suitable spectral mixture model (either linear or nonlin-

ear) for XD. Moreover, in the XD domain different kinds of no-changes might result in very similar spec-

tral signatures (i.e., having components all close to the null vector), leading to the failure of the unmixing 

procedure, especially in identifying the distinct no-change endmembers. These intrinsic properties limit 

the effectiveness of the analysis of spectral mixture in XD. In this thesis, we change our perspective from 

the traditional B-Dimensional difference domain XD (see Fig.3-4.a) into the 2B-Dimensional multitem-

poral domain represented by XS (see Fig.3-4.b), which is a stacked feature space based on the considered 

multitemporal images, i.e.,  

[ ]1 2,S =X X X  (4) 

 

 

Fig.3-3 Possible change situations of a single pixel in the bi-temporal images based on the pure spectrum and mixed 

spectrum assumptions. 
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(a) (b) 

Fig.3-4 Illustration of the CD-HS problem in: (a) the B-Dimensional difference domain XD, and (b) the 2B-

Dimensional multitemporal (stacked) domain XS. 

 

The multitemporal domain XS has been used for CD purposes in the literature. Two main approaches 

can be identified: the supervised Direct Multi-date Classification (DMC) [19], [20] and the unsupervised 

stacked feature transformation [66], [89], [90], [91]. The former identifies changes by simultaneously 

classifying the stacked multi-date images, thus a land-cover transition is represented by an output class in 

the final classification map. Accordingly, the considered CD task is actually replaced by a supervised 

classification task. However, the generation of a comprehensive multitemporal training set that represents 

all the detailed land-cover transitions makes this supervised approach difficult to use in real applications. 

Sub-optimal solution to the classification problem can be implemented by using compound classification 

strategies [92]. The latter is implemented based on the multi-date data transformation (e.g., Temporal-

Principal Components Analysis (T-PCA) [66], [89], Multi-date Kauth-Thomas (MKT) [90], Multi-date 

Graham-Schimidt (MGS) [91]), where a careful analysis and selection is required to find the transformed 

components related to the change classes of interest. Usually this step is manual and thus time consuming. 

Unlike the literature works, a spectral mixture model is used in this thesis in the multitemporal domain 

XS to solve the considered multiple-change detection problem. The main advantages of working in the 

multitemporal domain XS are: i) it preserves the intrinsic properties of the spectral signatures that repre-

sent the real land-cover materials, which are extended along the temporal direction; and ii) only the oc-

curred land-cover transitions are identified as endmembers in the mixture model, i.e., those that do not ex-

ist between the images are not considered. Thus a given spectral signature in XS is defined as a mixture of 

the pure multitemporal endmembers (MT-EMs) associated to a specific kind of change or no-change 

class. A single spectral mixture is approximated in XS combined from two independent mixtures in X1 and 

X2. If we consider a linear mixture model (LMM), it can be described as: 

[ ]1 2 1 1 1 2 2 2, ,S S S SX X X A E N A E N A E N = = + + ≈ + ∑ ∑ ∑  (5) 

where ES is the matrix of the multitemporal endmember set, AS is the corresponding abundance matrix, 

and NS represents the noise matrix. E1 and E2, A1 and A2, and N1 and N2 are the endmembers, abundances, 
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and noise matrices in t1 and t2 image mixture models, respectively. Note that differently from the spectral 

signatures in XD, in the XS domain both different change classes and different no-change classes have dis-

criminative spectral signatures among each other. This allows one to analyze in details the contribution of 

different change and no-change classes to the spectral composition of the pixels. 

Illustrative examples of the spectral signatures of two change classes and two no-change classes in the 

XS domain are shown in Fig.3-5 (a) and (b), respectively. The spectral signatures of the change classes 

have different spectral shapes in the two components associated to X1 and X2 (see Fig.3-5.a), whereas two 

components of the spectral signatures are almost the same for the no-change classes (see Fig.3-5.b). 

Moreover, different change and no-change classes have distinct spectral signatures in the multitemporal 

domain of XS (see Fig.3-5 a and b).  

 

  

(a) (b) 

Fig.3-5 Examples of spectral signatures in the multitemporal domain XS: (a) change and (b) no-change classes. 
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Chapter 4  

 

 

A Novel Sequential Spectral Change Vector Analysis for Discover-

ing and Detecting Multiple Changes in Multitemporal Hyperspec-

tral Images 

 

This chapter presents an effective semi-automatic method for discovering and detecting multiple changes 

(i.e., different kinds of changes) in multitemporal hyperspectral images. Differently from the state-of-the-

art techniques, the proposed method is designed to be sensitive to the small spectral variations that can 

be identified in hyperspectral images but usually are not detectable in multispectral images. The method 

is based on the proposed Sequential Spectral Change Vector Analysis (S
2
CVA), which exploits an itera-

tive hierarchical scheme that at each iteration discovers and identifies a subset of changes. The proposed 

approach is developed in an interactive and semi-automatic fashion that allows one to investigate in de-

tail the structure of changes hidden in the variations of the spectral signatures according to a systematic 

top-down procedure. The proposed approach has been tested on three hyperspectral data sets including 

both simulated and real multitemporal images showing multiple-change detection problems. Experi-

mental results confirmed the effectiveness of the proposed method. 

 

4.1 Introduction 

For decades, Earth Observation satellites have provided a unique way to observe our living planet from 

space. Thanks to the revisit property of EO satellites, a huge amount of multitemporal images is now 

available in archives. This allows us to monitor the land surface changes in wide geographical areas ac-

cording to both long term (e.g., yearly) and short term (e.g., daily) observations. The detection and under-

standing of changes occurred in the multitemporal images is essential for studying the global change, the 

environmental evolution and the anthropic phenomena [6]. 

For the unsupervised multiple-change detection techniques, Transformation-based techniques like Iter-

atively Reweighted Multivariate Alteration Detection (IR-MAD) [43], Temporal-Principal Components 

Analysis (T-PCA) [66], etc., were proposed and proven to be effective in the literature. We recall the 

Compressed Change Vector Analysis (C
2
VA) approach recently presented in the literature [47], which 

was developed based on the polar Change Vector Analysis (CVA) [33], [44]. Unlike CVA, the C
2
VA al-

lows a visualization and detection of multiple changes by considering all the available spectral channels 

within a 2-Dimensional representation. Thus C
2
VA method theoretically allows one to detect all possible 

change classes occurred between the considered images, without neglecting any spectral band or working 
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on their selection. Despite the C
2
VA representation exploits a lossy compression of the information, it has 

proven to be successful in addressing multiple-change detection problems in multispectral images [47], 

[48]. 

The growing availability of hyperspectral data brings the remote sensing into a high spectral resolution 

era. Hyperspectral sensors take images having a very high spectral resolution (e.g., 10 nm) over a wide 

spectral range (e.g., 400 nm-2500 nm). In change detection, this important property allows one to poten-

tially detect small spectral variations that are usually not detectable in multispectral images due to the 

poor spectral representation (i.e., generally sufficient for representing only the major abrupt changes) 

[93]. Accordingly, robust CD techniques should be developed to take full advantage of the rich spectral 

information contained in hyperspectral data, and to effectively identify the multiple-change information. 

In this chapter we focus on the problem of representation and analysis of multiple-change information in 

hyperspectral images. 

Despite the successful definition of a large number of effective CD techniques for multispectral imag-

es, these techniques reduce their efficiency when hyperspectral images are considered mainly due to: 1) 

the high-dimensionality of the feature space; 2) the presence of noisy channels and redundant infor-

mation; 3) the increase of computational cost; 4) the increase of the possible number of changes; and 5) 

the high complexity of the change representation and identification process. In particular, the last two 

items may strongly affect the effectiveness of CD methods, like the C
2
VA, because it might be highly dif-

ficult (in some cases impossible) to: i) identify successfully all the existing change clusters and thus the 

correct number of changes; and ii) model and extract each single change class. Therefore, more advanced 

and sophisticated approaches should be designed to properly handle the challenging issues in multitem-

poral hyperspectral images. Recently, we proposed an unsupervised hierarchical spectral change vector 

analysis (HSCVA) method that addresses the considered problem via a hierarchical clustering procedure 

[86]. At each level of the processing, automatic clustering is applied based on the principal components to 

estimate the number of changes and to discriminate them in different clusters. Although the usefulness of 

HSCVA has been proven in real CD-HS cases, HSCVA does not allow an explicit, detailed and interac-

tive analysis of the changes in the spectral signatures of multitemporal images.  

In this chapter, the multiple-change detection problem in hyperspectral images is analyzed from the 

spectral signature point of view. The limitations that result in the degradation of performance when C
2
VA 

is applied to hyperspectral images are studied. A novel Sequential Spectral Change Vector Analysis 

(S
2
CVA) approach is proposed, which: 1) discovers and analyzes the multiple changes at different spec-

tral levels through a top-down hierarchical architecture; 2) at each level provides a visualization of multi-

ple changes in a 2-Dimensional representation domain; 3) is designed in a sequential, interactive and 

semi-automatic fashion. In detail, the proposed approach addresses the CD problem as follows. First, a 

binary CD step is applied to hyperspectral multitemporal images to extract in a conservative way the 

changed pixels from the whole difference image. Then the attention is focused only on the changed pix-

els, and a novel adaptive 2-Dimensional change representation is proposed to visualize the possible dif-
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ferent changes. Changes are separated between each other according to an interactive change identifica-

tion scheme. Then the process moves to the next level and iterates on each of the identified changes until 

convergence is reached. Finally, the change-detection map is generated by merging the detected change 

classes derived at each level of the hierarchy. Note that at each step of the hierarchical processing, the 

proposed technique emphasizes a specific portion of the change information in the whole Spectral Change 

Vector (SCV) feature space. This is accomplished by adaptively generating proper change variables for 

the 2-Dimensional change representation. The proposed S
2
CVA approach is validated on three data sets 

including: 1) simulated bi-temporal images based on an AVIRIS hyperspectral image; 2) real bi-temporal 

hyperspectral images acquired by the Hyperion sensor onboard of EO-1 satellite; and 3) simulated bi-

temporal images based on a hyperspectral camera image. Experimental results confirm the effectiveness 

of the proposed method for addressing the multiple-change detection problem in multitemporal hyper-

spectral images. 

The rest of the chapter is organized as follows. Section 4.2 reviews the C
2
VA approach and discusses 

some important issues and challenges when transferring the CD perspective from multispectral to hyper-

spectral cases. The proposed sequential CD technique (i.e., S
2
CVA) is described in Section 4.3. Section 

4.4 introduces the used hyperspectral data sets. Section 4.5 reports and analyzes the obtained experi-

mental results. Finally, Section 4.6 draws the conclusion of this chapter. 

 

4.2 Multiple-Change Detection by C
2
VA in Multi/Hyper-spectral Images 

4.2.1 Standard C
2
VA 

In the standard C
2
VA method, a compressed change representation in a 2-Dimensional polar domain is 

defined by two change variables, i.e. the magnitude ρ and the direction α [47] : 

( )
2
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B
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=
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= =

  
=       

∑ ∑X X  (7) 

where 
b

DX  is the b-th (b=1,…,B) component of XD and B is the number of spectral channels of the con-

sidered images (i.e., the dimensionality of SCVs). The magnitude ρ is defined based on the popular Eu-

clidean distance [93]. It measures the total contribution of spectral change brightness, whereas it is not 

sensitive to the shape of spectral vectors. The angle distance α is measured by the Spectral Angle Dis-

tance (SAD) [94], which is widely used in several hyperspectral application fields for material identifica-

tion, classification, etc. [94], [95], [96]. SAD measures the similarity between two given spectral signa-

tures, especially focusing on the shape of the spectrum. More details about the two distance metrics are 

given in Appendix A. 
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Variables ρ and α define a 2-Dimensional polar coordinate domain D [47] as: 

[ ]{ }max[0, ] and 0,ρ ρ α π= ∈ ∈D  (8) 

where ρmax is the maximum value of ρ. All the SCVs in XD can be represented in a 2-Dimensional semi-

circle scattergram (see Fig.4-1). This scattergram allows one to easily visualize multidimensional change 

information in a 2-Dimensional feature space. However, the compression from a B-Dimensional space 

into a 2-Dimensional space results in a loss of information and thus in ambiguity on the detection of dif-

ferent kinds of changes. 

In the C
2
VA framework, the multiple-change detection problem is addressed according to two steps 

[47]: 

1) Set threshold Tρ along  ρ variable to divide the whole semicircle of the C
2
VA representation domain 

into two parts, i.e., SCn and SAc (see Fig.4-1), which are related to the unchanged (ωn) and changed (Ωc) 

SCVs, respectively: 

{ }, 0 and 0nSC Tρρ α ρ α π= ≤ < ≤ ≤  (9) 

{ }max, and 0cSA Tρρ α ρ ρ α π= ≤ ≤ ≤ ≤  (10) 

2) Separate multiple-change classes (
1
,...,

Kc cω ω ) along the direction α by analyzing the semiannulus SAc. 

Multiple angular thresholds Tα,k (k=1,…,K-1) can be defined to find K annular sectors (each correspond-

ing to a change) inside SAc: 

{ }max , , +1, andk k kS T T Tρ α αρ α ρ ρ α= ≤ < ≤ ≤  (11) 

where 0 ≤ Tα,k ＜ Tα,k+1 ≤ π. 

Note that thresholds Tρ and Tα can be detected manually or automatically according to one of the vari-

ous methods proposed in the literature [31], [92], [97], [35]. 

 

 

Fig.4-1 Compressed Change Vector Analysis (C
2
VA) for representing multiple-changes in the 2-D polar domain 

[47].  
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4.2.2 Problems and Challenges When Applying C
2
VA to CD-HS Cases 

C
2
VA has proven to be effective when dealing with the multispectral images [6], [47] , [48]. Due to the 

rough spectral resolution of multispectral images, the direction variable α is generally effective to repre-

sent the relatively few abrupt changes that are visible in multispectral data and does not suffer too much 

of the loss of information associated with the compressed representation. However, in the CD-HS case the 

finer spectral resolution results in a high number of changes that can be detected [86]. Thus the com-

pressed representation of many spectral channels in one variable α leads to a high probability of ambigu-

ous description of changes, which may result in highly overlapped clusters in the C
2
VA representation. 

In multitemporal hyperspectral images, as we defined in Chapter 3, we can distinguish between two 

kinds of hierarchically related changes: 1) major changes, which have a significant spectral difference 

with respect to both the no-change class and the other change classes; 2) subtle changes, whose SCVs are 

similar to those of an associated major change, but statistically significantly differ from each other in 

some portions of the spectrum. When subtle changes inside a major change are present, due to a high sim-

ilarity among their SCVs, the α variable defined on the basis of a fixed unit reference vector R = [1 B

,…,1 B ] (as the one derived in (7), [47]) is likely to be ineffective for their discrimination. To over-

come this drawback, a robust definition to the reference vector R (and thus the change variable α) should 

be designed. This definition should optimize the separation of changes and provide a meaningful change 

visualization in a hierarchical and adaptive way, thus to properly represent and discover as many changes 

present in the hyperspectral images as possible. 

Accordingly, let use recall that the angle distance α between SCVs in XD and a generic reference vector 

R is defined as: 

( ) ( ) ( ) [ ]
2 2

1 1 1

arccos , 0,
B B B

b b b b

D D

b b b

R Rα α π
= = =

  
= ∈      

∑ ∑ ∑X X  (12) 

where R
b
 is the b-th component of the reference vector R. Due to the fact that α is invariant to the multi-

plicative scaling, the reference R in [47] actually can be extended to any constant vector R = [a,…,a], 

where a > 0 and a ∈ ℜ. More details can be found in Appendix A. 

 

4.3 Proposed Approach 

Inspired by the aforementioned analysis and discussion on C
2
VA, we are motivated to find a reliable 

solution to the problem of discovering, representing and discriminating different spectral changes in hy-

perspectral images. The idea is to start from the C
2
VA developed for multispectral images, and to over-

come its drawbacks when applied to hyperspectral images. To this end, a novel Sequential Spectral 

Change Vector Analysis (S
2
CVA) is proposed. Differently from the standard C

2
VA, the proposed S

2
CVA 

is designed to be sensitive to the small changes in spectral signature behaviors, which are usually not de-
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tectable in multispectral images. Instead of having just a one shot processing as in the standard C
2
VA 

(due to the measurement based on the fixed reference vector), the proposed S
2
CVA allows an adaptive 

definition of the reference vector. The whole S
2
CVA framework is designed in an iterative fashion. A 

novel unsupervised 2-Dimensional Adaptive Spectral Change Vector Representation (ASCVR) technique 

and a fast change identification scheme are designed aiming at better representing and discovering the 

possible multiple changes at each analysis level. This results in a sequence of 2-Dimensional representa-

tion scattergrams that can be obtained to model the multiple changes at different levels of the hierarchy 

taking into account the global and local spectral variations. Homogenous scattering clusters observed 

from a change representation scattergram at a given level are discriminated among each other and then 

are investigated individually in the next level. Note that the proposed S
2
CVA is developed as a semi-

automatic technique, which consists of: i) an adaptive change representation that permits to discover the 

multiple changes, and ii) a manual (interactive) change identification. The block scheme of the proposed 

CD approach is illustrated in Fig.4-2. 

 

 

Fig.4-2 Block scheme of the proposed CD approach based on S
2
CVA. 

 

At the beginning, all SCVs in XD belong to the same class Ω. Once the binary CD result is obtained in 

level L0, let P0 be the cluster representing SCVs associated with the general change cluster Ωc extracted to 

initialize the whole sequential analysis. Note that in L0, the binary CD is done as in the standard C
2
VA 

method, where only the magnitude variable ρ is analyzed according to a proper thresholding technique 

(e.g., by using the EM algorithm in the framework of the Bayesian decision theory [31], [47]). In the next 

levels, let Ph,j be the j-th (j = 1,…,Jh) change cluster observed at the h-th (h=1,…,H) level Lh of the 

S
2
CVA hierarchy, where Jh is the maximum number of change clusters at level h, and H is the total num-

ber of levels in the hierarchy. In the next subsections, firstly we define the ASCVR technique and then 

describe its use in the framework of the hierarchical analysis associated with the proposed S
2
CVA. 

 

4.3.1 Proposed 2-D Adaptive Spectral Change Vector Representation (ASCVR) 

Similarly to C
2
VA, the proposed ASCVR technique is designed in a 2-Dimensional feature space. The 

main reason for using a 2-Dimensional rather than a high dimensional (e.g., B-Dimensional) feature space 

is that in this way it is easy to visualize the change clusters and their numbers. Instead of using a fixed 

reference vector R as in C
2
VA [47], the proposed ASCVR is designed to adaptively define the most suit-
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able reference vector R for analyzing the multiple changes at each considered hierarchical level. The se-

lection of R and the change representation are directly derived based on the statistic distribution of the in-

put SCVs. Thus the proposed ASCVR is totally unsupervised. 

The proposed ASCVR is defined by the change magnitude ρ (which is the same as defined in C
2
VA 

(6)) and the compressed change direction α (which represents the spectral angle distance between a given 

SCV in XD and a reference vector R (12)). Different values of angle distance measure indicate different 

kinds of changes. At different levels of the proposed hierarchical analysis, for each specific portion of the 

SCV feature space associated with the considered change cluster, a new reference vector R is defined. In 

greater details, the first eigenvector that corresponds to the maximum eigenvalue of the data covariance 

matrix of the SCVs associated to the considered cluster j at level h (i.e., Ph,j) is adopted as the reference 

vector. The selection of the first eigenvector is due to the fact that a 2-Dimensional change representation 

is desired, which preserves as much as possible the spectral variations of the considered SCVs in a low-

dimensional feature space that can be easily managed. In the proposed ASCVR, this vector shows a direc-

tion that maximizes the variance of the measurement on α, thus resulting in an adaptive and effective rep-

resentation of the hidden change patterns in the considered SCVs. For a considered generic cluster Ph,j in 

the hierarchy, the procedure for adaptively defining the reference vector Rh,j is as follows. Let us consider 

the covariance matrix ΓΓΓΓh,j of xh,j (denoted as the SCVs in Ph,j): 

, , , , , ,cov( ) ( [ ])( [ ])T

h j h j h j h j h j h jE E EΓ x x x x x = = − −   (13) 

where ,[ ]h jE x  is the expectation of xh,j and ΓΓΓΓh,j is the B×B dimensional covariance matrix that represents 

xh,j by means of the eigenvectors and eigenvalues, which are calculated according to (14): 

, , ,h, j h j h j h jΓ V V W⋅ = ⋅  (14) 

Wh,j is a diagonal matrix where the eigenvalues are sorted in descending order (i.e., 

1 2

, ,2 ,... B

h j h h jλ λ λ> > > ) in the diagonal. The magnitude of eigenvalues reflects the amount of data variance 

that is captured by the corresponding eigenvectors. Let 
1 2

, , , ,, ,..., B

h j h j h j h jV V V V =    be the matrix of eigen-

vectors. The reference vector Rh,j for computing αh,j in (12) is selected as the first eigenvector 
1

,h jV  that 

corresponds to the largest eigenvalue
1

,h jλ : 

1

21

,

,

h, j h j

B h j
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R V
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 

M
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Accordingly, the two change variables (i.e., magnitude ρh,j, direction αh,j) for the SCVs of the cluster 

Ph,j are defined as follows: 
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The resulted 2-Dimensional representation domain Dh,j is defined as: 

[ ]{ }max

, , , ,[0, ] 0,h j h j h j h jandD ρ ρ α π= ∈ ∈  (17) 

where max

,h jρ  is the maximum change magnitude value of ρh,j. 

Note that the use of the first eigenvector does not guarantee the maximum discriminability in all cases, 

but this is an effective choice for an adaptive 2-D visualization of the latent change information. An alter-

native way that mathematically approximates to the use of first eigenvector is by using the Singular Value 

Decomposition (SVD) [87]. SVD is an orthogonal linear transformation that is able to capture the under-

lying variance of the data. This important property makes SVD effective in wide applications like data 

compression, feature extraction, etc., especially it is very useful for dimensionality reduction of the high-

dimensional data and providing meaningful data visualization [98]. More details for the extracting of the 

reference vector R by SVD are given in the Appendix B. 

 

4.3.2 Proposed Sequential Spectral Change Vector Analysis (S
2
CVA) 

The intrinsic adaptive characteristic of the proposed ASCVR can be exploited to represent either the 

whole or a portion of the SCV space. Accordingly, the challenging CD-HS problem can be addressed hi-

erarchically by the proposed Sequential Spectral Change Vector Analysis (S
2
CVA). The main idea is that 

a sequence of ASCVR scattergrams can be obtained for representing SCVs in different specific spectral 

levels, thus SCVs that are associated with different change classes can be gradually separated following 

the sequential analysis. The block scheme of the proposed S
2
CVA method is shown in Fig.4-3. 

 

Fig.4-3 Block scheme of the proposed S
2
CVA step. 
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The process begins at the initial level L0 of the hierarchy, where P0 is the initial change cluster obtained 

by thresholding the ρ variable. Then the sequential technique focuses on the P0 (i.e., SCVs that belong to 

Ωc) in order to discover and identify the possible kinds of changes. At level L1, if more than one homoge-

nous clusters P1,1, P1,2,…, 
11,JP  is observed, changes need to be discriminated and separated among each 

other. Then the procedure moves to the next level L2, focusing on each single cluster in {P1,1, P1,2,…, 
11,JP

} to continue the iterative change analysis by re-projecting the SCVs of each cluster in its corresponding 

new ASCVR domain. Thus this is to explore if more possible changes at this level of representation can 

be discovered. The ASCVR scheme defined in the Section 4.3.1 is used for each considered change clus-

ter, thus the corresponding 2-Dimensional change representations D1,j are built by automatically updating 

the references R1,j (and thus α1,j) according to the SCVs x1,j in P1,j (j=1,…,J1). By considering the intrinsic 

properties of SCVs that SCVs belong to a given change class have homogenous behaviors on the change 

variables, thus a single cluster are expected to be observed on their representation domain. On the contra-

ry, different clusters that can be discriminated in the ASCVR scattergram indicate possible different kinds 

of changes. A manual procedure is applied interactively by the user. For each observed change cluster, a 

discrimination boundary is manually defined, which is structured as a polygon in the software prototype 

we implemented. Note that boundaries are selected independently for each observed change cluster. At a 

given level of S
2
CVA the homogeneity is evaluated manually. The convergence is reached when only a 

single homogenous change cluster is observed in the scattergram. The cluster is finally associated to a 

change class in { }
1 2
, ,...,

Kc c cω ω ω  and the SCVs of that change class are reversely mapped into the image 

space to generate the CD map. The whole CD procedure is completed when each representation of the 

considered specific portion of SCVs in the hierarchy achieves convergence. The whole S
2
CVA hierarchy 

can be modeled as a tree-structure (see the example in Fig.4-4). The final multiple-change detection map 

is the union of all the detected change classes { }
1 2
, ,...,

Kc c cω ω ω  and the extracted no-change class ωn (i.e., 

the union of all the leaf nodes in the tree). It is worth noting that by following the proposed sequential 

analysis, the original global change representation and optimization problem is decomposed into several 

local sub-problems at different levels. Thus many potential changes can be detected hierarchically taking 

into account different levels of spectral change significance. 

The proposed S
2
CVA method allows the user to have effective interactions with the change representa-

tion and discovery (in the 2-Dimensional representation domain), and the change extraction (in the origi-

nal image domain). At the end of the process the obtained hierarchical tree completely describes major 

and subtle changes present in the considered hyperspectral multitemporal images and their parental rela-

tions. 
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Fig.4-4 Example of the obtained three-level hierarchical tree by the proposed CD method based on S

2
CVA, where 

seven of the leaf nodes are detected as change classes and one as the no-change class. 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Fig.4-5 The AVIRIS Salinas data set and the reference ground truth data. Row 1: The land-cover classes in the Sa-

linas scene. Row 2: Photographs taken at the site during data collection [99], including (a) Brocoli_green_weeds_1; 

(b) Brocoli_green_weeds_2; (c) Fallow; (d) Fallow_rough_smooth; (e) Stubble; (f) Celery; (g) 

Soil_vineyard_develop; (h) Corn_senesced_green_weeds; (i) Lettuce_romaine_5_weeks; (j) Let-

tuce_romaine_6_weeks; (k) Lettuce_romaine_7_weeks; (l) Vineyard_untrained. 
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4.4 Data Set Description and Design of Experiments 

4.4.1 Description of Data Sets 

Data Set 1: Simulated Hyperspectral Remote Sensing Data Set 

The first data set is made up of a real single-time hyperspectral image acquired by the AVIRIS sensor 

in 1998 over Salinas Valley, California. This image was downloaded from the website of computational 

intelligence group from the Basque University (UPV/EHU) [100]. The original image contains 224 con-

tiguous spectral bands with wavelength from 400 nm to 2500 nm. The image is characterized by a spatial 

resolution of 3.7 m and a spectral resolution of 10 nm and has a size of 512×217 pixels. This data set 

was originally used for testing a hyperspectral image classification task with the available ground truth 

that has 16 classes mainly including vegetation, bare soil, and vineyard (see Fig.4-5). In the pre-

processing phase, 20 water absorption bands (i.e., bands 108-112, 154-167 and 224) were discarded thus 

obtaining 204 bands for our experiments. By taking advantage of the available ground truth data, we sim-

ulated and generated the changed image (considered as X2) based on the original image (considered as X1) 

according to the following steps: i) 15 tiles (i.e., regions) were extracted from the original image X1 (see 

Fig.4-6.a), which cover different land-cover classes. ii) The extracted tiles were inserted in different areas 

on X1 by replacing the spectral vectors over all bands. The same operation was done for all tiles to simu-

late an image (X2) with eight different change classes. iii) A small constant bias value was applied to X2 to 

simulate a stationary difference in light condition. iv) White Gaussian noise was added to X2 by setting an 

SNR equal to 10 dB. The reason for testing with the simulated data is that all the details can be quantita-

tively investigated in a controlled environment. False color composites of X1 and X2 are shown in Fig.4-6 

(a) and (b), respectively. The reference map is reported in Fig.4-6 (c). Detailed class transitions are listed 

in TABLE 4-1 with the corresponding number of samples in each simulated change class. 

 

TABLE 4-1 SIMULATED CHANGES IN SALINAS DATA SET AND THE CORRESPONDING NUMBER OF 

SAMPLES 

Change class  Simulated changes (from X1 to X2) Samples (Number of pixels) 

ωC
1
 Brocoli_green_weeds_1 → Corn_senesced_green_weeds 534 

ωC
2
 Brocoli_green_weeds_2 → Vinyard_untrained 878 

ωC
3
 Fallow_smooth → Celery 1149 

ωC
4
 Celery → Fallow_smooth 1163 

ωC
5
 Grapes_untrained → Brocoli_green_weeds_2 1402 

ωC
6
 Soil_vinyard_develop → Grapes_untrained 2347 

ωC
7
 Lettuce_romaine_5wk → Brocoli_green_weeds_1 420 

ωC
8
 Vinyard_untrained → Soil_vinyard_develop 1812 

ωn No-change 101399 
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(a) (b) (c)  

Fig.4-6 False color composite (Bands: R: 40, G: 30, B: 20) of (a) the real hyperspectral image acquired by the AVI-

RIS sensor in Salinas scenario (X1) and (b) the simulated changed image (X2) computed with an additive white 

Gaussian noise; (c) the change reference map (eight changes in different colors, and no-change class in white color). 

 

 
(a) (b) (c)  

Fig.4-7 False color composite (R: 710 nm; G: 620 nm; B: 510 nm) of (a) the hyperspectral image acquired by the 

Nuance FX hyperspectral camera (X1) and (b) simulated image with changes (X2). (c) Change reference map (ten 

changes in different colors, no-change class in white color). 

 

Data Set 2: Simulated Hyperspectral Camera Data Set 

The second data set is taken from a real-world database of hyperspectral images, which includes imag-

es acquired by a commercial hyperspectral camera (Nuance FX, CRI Inc.) [101]. With an integrated liq-

uid crystal tunable filter, the camera acquires hyperspectral images by sequentially tuning the filter 

through a series of 31 narrow wavelength bands. The bandwidth is approximately 10nm in a wavelength 

range from 420nm to 720nm, covering mainly the visible spectrum region. The selected image is an out-

door scene in the Harvard University with a size of 1392×1040 pixels (see Fig.4-7.a). Based on the origi-

nal image (X1), eight tiles were extracted over all the spectral bands and inserted into disjoint areas on a 

copy of X1. Thus a synthetic image (X2) was generated, which includes ten change classes. A small con-

stant bias value was applied to X2 and white Gaussian noise was added to X2 with an SNR value equal to 

20dB. The false color composite of images X1 and X2 are shown in Fig.4-7 (a) and (b), respectively. 

Fig.4-7 (c) presents the change reference map. Note that changes were simulated considering either a ma-
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terial transitions or different illumination conditions for the same material. Thus subtle changes were in-

troduced, and the complexity of the considered problem increased. 

 

   
(a) (b) (c) 

Fig.4-8 Real bi-temporal Hyperion images acquired on an agricultural scenario. False color composite (wavelength: 

R: 650.67nm, G: 548.92nm, B: 447.17nm) of the images acquired in (a) 2004 (X1) and (b) 2007 (X2). (c) Composite 

of three SCV channels (R: 1729.70nm, G: 1023.40nm, B: 752.43nm). 

 

Data Set 3: Real Hyperion Remote Sensing Satellite Data Set 

The third data set is made up of a pair of real bi-temporal hyperspectral remote sensing images ac-

quired by the Hyperion sensor mounted onboard the EO-1 satellite on May 1, 2004 (X1) and May 8, 2007 

(X2), respectively. Images were downloaded from the U.S. Geological Survey (USGS) website [102]. The 

study area is an agricultural land of Hermiston city in Umatilla County, Oregon, United States. The se-

lected area, which has a size of 211×396 pixels, is a subset of the original whole image. The original im-

ages contain 242 spectral channels, whose wavelength range is from 350nm to 2580nm. The images are 

characterized by a spectral resolution of 10nm and a spatial resolution of 30m. After the pre-processing 

phase (e.g., uncalibrated and noisiest bands removal, bad stripes repairing, atmospheric corrections, co-

registration, etc.), 159 pre-processed bands (i.e., bands: 8-57, 82-119, 131-164, 182-184, 187-220) were 

used for testing the proposed CD approach. For more details on the data set and the pre-processing opera-

tions readers are referred to [86]. Fig.4-8 (a) and (b) show a false color composite of the two images. The 

changes occurred in the considered images include land-cover transitions between crops, bare soil, water, 

variations in soil moisture and in the water content of vegetation. For example, the circular fields (see 

Fig.4-8) change their spectral signatures mainly due to the effect of the agricultural irrigation system. In 

this case no ground truth data are available. Thus validation of the results was done in a qualitative way 

by a detailed visual comparison. Fig.4-8 (c) presents a false color composition of XD by using three se-

lected channels. Different colors represent the possible kinds of changes, whereas the gray areas indicate 
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the unchanged pixels. In this work we are interested in detecting all kinds of changes affecting the spec-

tral signatures. Note that he false color composition only shows the presence of changes in the considered 

wavelengths (i.e., R: 1729.70nm, G: 1023.40nm, B: 752.43nm). Changes that do not affect these wave-

lengths are not visible in Fig.4-8. 

 

4.4.2 Design of Experiments 

The proposed S
2
CVA approach was compared with other literature multiple change detection methods. 

First, the proposed S
2
CVA and the standard C

2
VA [47] representations were visually compared. Then 

change detection results were discussed through both a qualitative and a quantitative analysis based on the 

change reference map. The following techniques were considered for comparison: 1) standard automatic 

thresholding in the C
2
VA feature space (C

2
VA_T) [47]; 2) manual (interactive) change identification in 

the C
2
VA feature space (C

2
VA_M); 3) k-means clustering on the whole changed SCVs (k-means_SCVs); 

4) proposed S
2
CVA approach using manual (interactive) change identification at each level of the repre-

sentation (S
2
CVA_M). For the k-means_SCVs, the results are given as the average over 20 random ini-

tializations of the k-means algorithm. It worth noting that advantages were given to the k-means cluster-

ing by fixing the number of clusters (i.e., changes) as being known a priori (i.e., in the simulated cases the 

K is given as the number of the simulated changes, in the real data set K is given as the output of the pro-

posed S
2
CVA_M). EM algorithm was used in the framework of the Bayesian decision theory for estimat-

ing the thresholds in the C
2
VA_T [47]. 

 

4.5 Experimental Results 

4.5.1 Simulated Hyperspectral Remote Sensing Data Set 

Fig.4-9 (a) shows the scattergram of all SCVs in the standard C
2
VA feature space. In the binary CD 

step, threshold Tρ was automatically estimated and resulted equal to 1.929 (see the red semicircle in 

Fig.4-9.a). Six change clusters can be observed from the C
2
VA representation (despite eight were ex-

pected). The manual discrimination boundaries based on polygons were defined to separate them among 

each other and to extract the SCVs that correspond to each single cluster (see Fig.4-9.a, where the dis-

crimination boundaries are defined in yellow polygons). From a comparison with the reference map, it 

was found that the correspondences among the six detected change clusters and the eight reference 

change classes are: 
6Cω , 

2Cω , 
1 7C Cω ω∪ , 

3 4C Cω ω∪ , 
5Cω  and 

8Cω . Therefore, two clusters include dif-

ferent classes in the C
2
VA representation. Moreover, some overlapped clusters (e.g., area between 

2Cω  

and 
6Cω , and the one between 

5Cω  and 
8Cω  in Fig.4-9.a) in the C

2
VA representation cause detection er-

rors, thus reducing the overall accuracy. If we separate the clusters with the discrimination boundaries re-

ported in Fig.4-9 (a), the obtained CD map is shown in Fig.4-11 (b), where the detected six changes ap-

pear in different colors. 
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(a) C
2
VA-Ω (b) S

2
CVA-Ω (c) D1,1 

(d) D1,2 (e) D1,3 (f) D1,4 

(g) D1,5 (h) D1,6 (i) D2,1 

(j) D2,2 (k) D2,3 (l) D2,4 

 

Fig.4-9 Change representation obtained by: (a) C
2
VA_M; (b)-(l) proposed S

2
CVA_M. The sequence of ASCVR 

scattergrams represents changes at different levels of the S
2
CVA hierarchy. Binary CD decision threshold is defined 

as red semicircle, whereas discrimination boundaries as yellow polygons. The final detected change classes are 

those obtaining a single homogenous cluster in their corresponding representation scattergrams (simulated hyper-

spectral remote sensing data set). 

 

The same CD-HS task was addressed by using the proposed S
2
CVA_M approach. We implemented it 

starting from the initial input Ω in L0. The same threshold Tρ estimated for C
2
VA was used to separate Ωc 

and ωn (see the red semicircle in Fig.4-9.b). Six clusters inside of the general Ωc class (P0) were manually 

identified and separated into P1,1, …, P1,6 according to the defined discrimination boundaries in Fig.4-9 

(b). Then the processing moved into the next level (i.e., L1) and focused on each identified cluster P1,1, …, 

P1,6 to investigate the spectral homogeneity and further explore the possible presence of multiple changes 

in the re-projection in ASCVR scattergram. Reference vectors R1,j (i.e., α1,j, j=1,…,6) were automatically 

derived for each considered specific cluster, thus generating a 2-D representation for each of them. The 

corresponding six represented scattergrams D1,1-D1,6 are illustrated in Fig.4-9 from (c) to (h). It is easy to 
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see that four out of six clusters (i.e., P1,1, P1,2, P1,5, P1,6) resulted in single homogenous classes in their cor-

responding representation domains (see Fig.4-9.c-d, g-h). These homogenous clusters were associated to 

different detected change classes. The two discriminable clusters observed in the representation of P1,3 

and in P1,4 (i.e., Fig.4-9.e and f, respectively) were further analyzed and separated in the next level L2, 

where both of them appeared as a single homogenous cluster on the corresponding ASCVR scattergram 

D2,1-D2,4 (see Fig.4-9. i-l). Therefore, all eight change classes were successfully detected according to the 

proposed sequential analysis (four identified at level L1 and four at level L2). 

The obtained hierarchal tree of the considered CD-HS problem is shown in Fig.4-10. The correspond-

ences among the identified clusters and the reference change classes are as follows: L0: Ω = {ωn, Ωc (P0)}; 

L1: 
11,1 CP ω= , 

41,2 C
P ω= , { }

2 81,3 ,C CP ω ω= , { }
5 61,4 ,C CP ω ω= , 

31,5 CP ω=  and 
71,6 CP ω= ; L2:

22,1 CP ω= , 

82,2 CP ω= , 
52,3 CP ω=  and 

62,4 CP ω= . 

 

 

Fig.4-10 Three-level hierarchical tree obtained by the proposed S
2
CVA_M method. Nodes highlighted in dotted rec-

tangles are the final detected changes (simulated hyperspectral remote sensing data set). 

 

From the qualitative comparison of the change representation between the proposed S
2
CVA_M ap-

proach and the C
2
VA_M method, we can observe that: 

1) The proposed ASCVR resulted in an improved change representation. Higher class separability 

among the change clusters can be found at the initial level of the representation (Fig.4-9.b) than in C
2
VA 

one (Fig.4-9.a). The inter-class distances among change clusters are larger, thus making it easier to dis-

cover the clusters associated with different changes and to define the discrimination boundaries. On the 

contrary in the C
2
VA the change clusters are more compressed and overlapped (see Fig.4-9.a). This con-

firms the usefulness of choosing the maximum eigenvector as the adaptive reference vector. 

2) The proposed S
2
CVA_M method improves the change detectability. The hierarchical and adaptive 

scheme (i.e., use of adaptive reference vectors) for constructing spectral change variables allows one to 

discover and visualize more subtle spectral changes within the major change clusters detected at the first 

level L1 of the hierarchy. A fixed reference vector like in the C
2
VA does not permit to investigate the la-

tent spectral variations at different spectral detail levels, thus in most of the cases only the major changes 

are identified. 
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3) The proposed S
2
CVA_M results in a better change modeling. As discussed in Section III, the com-

plexity of CD-HS problem reduces the effectiveness of the single level processing of C
2
VA_M. As shown 

in Fig.4-9 (a), the C
2
VA representation does not distinguish some change classes. The proposed CD ap-

proach addresses the CD-HS problem by following a sequential fashion, thus it better considers the intrin-

sic hierarchical structure of changes in hyperspectral images. 

 

TABLE 4-2 NUMBER OF DETECTED KINDS OF CHANGE, ACCURACY AND ERROR INDICES OB-

TAINED BY THE CONSIDERED METHODS (SIMULATED HYPERSPECTRAL REMOTE SENSING DATA 

SET). 

CD Methods 
Number of detected  

kinds of change 
OA (%) Kappa 

Total errors 

(Number of pixels) 

C
2
VA_T 5 - - - 

C
2
VA_M 6 - - - 

k-means_SCVs 8 98.77 0.9256 1371 

Proposed S
2
CVA_M 8 99.99 0.9996 7 

 

 
(a) (b) (c) (d) (e)  

Fig.4-11 CD maps obtained by (a) C
2
VA_T; (b) C

2
VA_M; (c) k-means_SCVs; (d) proposed S

2
CVA_M. (e) change 

reference map. Different changes are in different colors, and the no-change class is in white (simulated hyperspectral 

remote sensing data set). 

 

The qualitative and quantitative comparisons of the CD results obtained by the other considered refer-

ence methods are shown in Fig.4-11 and TABLE 4-2 (where accuracy indices include the Overall Accu-

racy (OA), Kappa Coefficient (Kappa) and the number of mislabeled samples computed according to the 

available reference map), respectively. The qualitative analysis was conducted only on the methods re-

sulting in the correct number of changes (i.e., K=8). The highlighted dotted circles in Fig.4-11 point out 

the main omission/commission errors occurred in each of the considered method. From the analysis of the 

quantitative CD results, we can observe that the C
2
VA-based method did not detect all the changes due to 

the low class discriminability in the compressed change representation (see Fig.4-9.a). Only five and six 

changes were detected by using thresholding (i.e., C
2
VA_T) and interactive analysis (i.e., C

2
VA_M), re-
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spectively. Mixed changes and some false alarms are highlighted in Fig.4-11 (a) and (b). Although the k-

means_SCVs was applied by providing as input the real number of changes (i.e., K=8), it resulted in a 

higher number of errors (i.e., 1371 pixels, mainly are commission errors, see Fig.4-11.c) than the pro-

posed S
2
CVA_M. The proposed S

2
CVA_M approach achieved a very good CD result (see Fig.4-11.d, 

generated according to the sequence of scattergrams and the defined discrimination boundaries in 

Fig.4-9.b-l), resulting in the highest OA and Kappa values (i.e., 99.99% and 0.9996, respectively) with 

only 7 pixels of errors. 

In addition, a detailed analysis of time taken from the proposed S
2
CVA_M approach has been conduct-

ed. In the experiments we used Matlab R2013a on an Intel i5-2400 quad-core 3.10 GHz PC with 4 GB of 

RAM. Time consumption has been evaluated considering the time required for: i) obtaining the initial bi-

nary change-detection step (only for the root node); ii) running the 2-D ASCVR; iii) identifying changes 

(here the time for manual cluster separation is provided by an estimation based on an average of multiple 

users’ trials). In this data set, the proposed S
2
CVA required in total 166.96 seconds (less than 3 minutes) 

to complete the hierarchy, where the binary CD step took 31.59 seconds and the user interaction required 

around 120 seconds. For each of the nodes, the processing time (i.e., sum of the ASCVR and change iden-

tification) is in the range of [0.94, 2.05] seconds. Therefore, the computation cost is very low. 

 

 

Fig.4-12 Summary of the computational time taken by the proposed technique (in second) on the Salinas simulated 

hyperspectral data set. 

 

4.5.2 Simulated Hyperspectral Camera Data Set 

The same reference CD methods considered in the previous case were also applied to this data set. Tρ 

for binary CD step was equal to 0.278. The C
2
VA and S

2
CVA representations are shown in Fig.4-13 (a) 

and (b)-(o), respectively, where the interactive change identification was done by the defined boundaries 

(see Fig.4-13). In this case the reference change map is also available due to the simulation procedure, so 
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a fully quantitative evaluation was done by comparing the results obtained by the considered CD methods 

as in the previous experiment. The numeric results are shown in TABLE 4-3. 

 

   

(a) C
2
VA-Ω (b) S

2
CVA-Ω (c) D1,1 

   

(d) D1,2 (e) D1,3 (f) D1,4 

   

(g) D1,5 (h) D1,6 (i) D1,7 

   

(j) D2,1 (k) D2,2 (l) D2,3 

   

(m) D2,4 (n) D3,1 (o) D3,1 

 

Fig.4-13 Change representation obtained by: (a) the C
2
VA_M; (b)-(o) the proposed S

2
CVA_M. The sequence of 

ASCVR scattergrams represents changes at different levels of the S
2
CVA hierarchy. Binary CD decision threshold 

is defined as red semicircle, whereas discrimination boundaries as yellow polygons. The final detected change clas-

ses are those obtaining a single homogenous cluster in their corresponding representation scattergrams (simulated 

hyperspectral camera data set). 
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TABLE 4-3 NUMBER OF DETECTED KINDS OF CHANGE, DETECTION ACCURACY AND ERROR INDI-

CES OBTAINED BY THE CONSIDERED METHODS (SIMULATED HYPERSPECTRAL CAMERA DATA 

SET). 

CD Methods 
Number of detected  

kinds of change 
OA (%) Kappa 

Total errors 

(number of pixels) 

C
2
VA_T 4 - - - 

C
2
VA_M 7 - - - 

k-means_SCVs 10 98.09 0.8949 12791 

S
2
CVA_M 10 99.94 0.9964 801 

 

From the results in TABLE 4-3, we can observe that: 

1) The C
2
VA_M separated and detected more changes (i.e., K=7) than the C

2
VA_T (i.e., K=4). How-

ever, both of them recognized less changes than the correct one (i.e., K=10) due to the poor change repre-

sentation in C
2
VA using the fixed unit reference vector. 

2) The proposed S
2
CVA_M detected correctly all the ten changes, and achieved the highest OA (i.e., 

99.94%) and Kappa (i.e., 0.9964). In this case the top-down procedure resulted in the four-level hierar-

chical tree as shown in Fig.4-14. Moreover, a fast and simple change identification was done interactively 

by using the proposed S
2
CVA_M approach. 

3) The proposed S
2
CVA_M modeled better the hierarchical nature of the changes in hyperspectral im-

ages thus reduced the detection errors. Note that also in this case the k-means_SCVs method was not able 

to correctly detect all changes even if it received as input the correct number of changes (i.e., K=10). 

The same computation-cost evaluation was conducted as for the previous data set. The proposed 

S
2
CVA_M took 437.13 seconds (less than 8 minutes), where the binary step and manual interaction re-

quired 317.13 and 120 seconds, respectively. For each node, the processing cost is in the range of [4.72, 

11.62] seconds. Thus, despite this data set has a large size (i.e., 1392×1040×31), the proposed S
2
CVA_M 

still resulted in a low computation cost. 

 

 

Fig.4-14 Four-level hierarchical tree obtained by the proposed S
2
CVA_M method. The nodes highlighted in dotted 

rectangles are the final detected changes (simulated hyperspectral camera data set). 
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Fig.4-15 Summary of the computational time taken by the proposed technique (in second) on the simulated hyper-

spectral camera data set. 

 

4.5.3 Real Hyperion Remote Sensing Satellite Data Set 

Both the standard C
2
VA and the proposed S

2
CVA methods were applied to the considered images. The 

representation obtained by the C
2
VA is shown in Fig.4-16 (a). The binary CD step was conducted on the 

magnitude ρ  computed from all 159 spectral channels. The threshold Tρ for separating the Ωc and ωn was 

estimated automatically [31] and was equal to 1.219 (see Fig.4-16.a, where Tρ is represented as a red sem-

icircle). Change identification was conducted, where the boundaries were interactively defined as yellow 

polygons. Five different change classes (see Fig.4-16.a) were detected. For the S
2
CVA, the whole change 

structure and the sequence of ASCVR scattergrams obtained are illustrated in Fig.4-16 from (b) to (r), 

where each figure corresponds to a specific change cluster that is represented in a given level of the 

S
2
CVA hierarchy. In the initial level of the sequential analysis (i.e., L0), the binary CD step was per-

formed as in the C
2
VA (see Fig.4-16.b). Then the SCVs of the Ωc class (P0) were analyzed to discover 

other change classes and discrimination boundaries were defined for each of the scattering cluster in the 

representation domain (see Fig.4-16.b, D1,1-D1,5). The S
2
CVA process iterated until convergence was 

reached in each level of the hierarchy. Eleven kinds of change were detected by using the proposed 

S
2
CVA method. The hierarchical tree is described in Fig.4-17. The obtained tree has four levels with 

nineteen nodes. Eleven of them correspond to the detected change classes and one to the no-change class. 

By analyzing the results shown in Fig.4-16 and Fig.4-17, we can observe that: 

1) The C
2
VA representation (i.e., Fig.4-16.a) results in changes that are overlapped to each other and 

their discrimination is almost impossible. A smaller number of change classes is identified by C
2
VA_M 

(i.e., K=5, see Fig.4-16.a, cluster Y1-Y5) than by the proposed S
2
CVA_M approach (i.e., K=11). 
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(a) C
2
VA-Ω (b) S

2
CVA-Ω (c) D1,1 

   

(d) D1,2 (e) D1,3 (f) D1,4 

   

(g) D1,5 (h) D2,1 (i) D2,2 

   

(j) D2,3 (k) D2,4 (l) D2,5 

   

(m) D2,6 (n) D2,7 (o) D2,8 

   

(p) D2,9 (q) D3,1 (r) D3,2 

 
Fig.4-16 Change representations obtained by: (a) C

2
VA_M; (b)-(r) the proposed S

2
CVA_M approach. A sequence 

of ASCVR scattergrams represents changes at different levels of the S
2
CVA hierarchy. Binary CD threshold (i.e., Tρ) 

is defined as red semicircle, whereas discrimination boundaries are defined as yellow polygons. The final detected 

change classes are those obtaining single homogenous cluster in their corresponding scattergrams (real hyperspectral 

Hyperion remote sensing data set). 



 

 51 

 

Fig.4-17 Four-level hierarchical tree obtained by proposed S
2
CVA_M method. Eleven change classes were identi-

fied and highlighted in dotted rectangles (real Hyperion remote sensing data set). 

 

2) The proposed S
2
CVA_M method successfully addressed the considered CD-HS problem by decom-

posing it into several sub-problems. The multiple-change information was modeled and represented 

through seventeen ASCVR scattergrams. The sequence is automatically defined by investigating the in-

ner-cluster spectral homogeneity at different levels. Note that changes merged in low level representa-

tions become visible and separable in higher levels, thus allowing us to detect different kinds of changes 

in a hierarchical way, whose structure is described by the hierarchy tree in Fig.4-17. 

3) The proposed unsupervised ASCVR approach properly discovers and represents changes by taking 

advantages of the specific SCVs for defining the reference vectors thus for computing the change varia-

bles. For each considered change cluster at a given level, the homogeneity is evaluated according to the 

represented 2-Dimensional scattergram, where a pure change results in a single homogenous scattering 

cluster. For example, D1,3 represents two discriminable clusters in cluster P1,3, whereas D1,4 represents on-

ly one cluster in P1,4, which indicates a higher homogeneity of the latter. 

It is worth noting that the proposed method allows users to control the detection level, which is a very 

flexible property in real applications. If the aim is to identify more detailed subtle-change information, the 

process can go deeper down the hierarchy (i.e., detection of subtle changes that have slightly different re-

alizations on their SCVs from the spectral behaviors of an associated change in the previous level [86]). 

In the proposed S
2
CVA hierarchy, a change class is detected when it is associated with one homogenous 

cluster in its ASCVR representation (e.g., Fig.4-16.f, h-n, p-r). Sometime small changes (e.g., less than 10 

pixels) might be discovered in the representation. For example, in Fig.4-16 (k), (n), (p) there are some 

SCVs that are isolated from the main (lager) change clusters. These kinds of clusters can be relevant to 

some applications whereas they can be irrelevant to others. Thus the user can decide to stop the analysis 

at higher levels in the hierarchy where those changes are not separated yet. In our experiments, we fol-

lowed this strategy and did not separate them. 

The final CD maps generated by the proposed S
2
CVA_M and the considered reference methods are 

shown in Fig.4-19 (a)-(d). Different change classes appear in different colors and the no-change class is in 

white. The number of the detected changes in each method is listed in TABLE 4-4. Note that also in this 
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case advantages were given to k-means_SCVs method providing as input the number of changes (i.e., 

K=11) obtained by the proposed S
2
CVA_M. The performances of the considered methods were analyzed 

in a qualitative way by a detailed visual comparison.  

 

TABLE 4-4 NUMBER OF DETECTED KINDS OF CHANGE IN THE CONSIDERED METHODS (REAL HY-

PERION REMOTE SENSING DATA SET). 

CD Methods Number of detected kinds of change 

C
2
VA_T 5 

C
2
VA_M 5 

k-means_SCVs 11 

S
2
CVA_M 11 

 

As we can see from Fig.4-19 and TABLE 4-4, the two C
2
VA-based methods (i.e., C

2
VA_T and 

C
2
VA_M) resulted in a small number of changes (i.e., K=5), which correspond to the major change clas-

ses. These changes show significant differences in spectral signatures in the SCV domain. However, 

many subtle changes are not visible and thus not detectable due to the compressed representation in C
2
VA 

by using a fixed unit reference vector. The C
2
VA_M considered better the distribution of changes 

(Fig.4-16.a) thus resulting in a more reliable CD output than the C
2
VA_T (see Fig.4-19.b than 

Fig.4-19.a). By using the iterative analysis of the proposed S
2
CVA method, more subtle changes became 

visible and detectable (see Fig.4-19.f) according to a systematic top-down procedure. These subtle change 

classes were not detectable by the C
2
VA-based methods (see Fig.4-19.a-b).  

The two C
2
VA-based approaches detected fewer changes than the S

2
CVA_M. Some latent changes are 

still mixed in some detected clusters, which cannot be discriminated and separated by using C
2
VA (see 

Fig.4-19.a and b). The S
2
CVA_M provided more convincing results than the k-means_SCVs. This can be 

observed in Fig.4-19.d, where more homogenous change classes are present in the change-detection map. 

On the contrary, the k-means_SCVs resulted in more fragments in the detected changes (see Fig.4-19.c). 

It is worth noting that the complex structure of the problem makes the use of clustering (which solves an 

ill-posed problem) less reliable than that of a user-manual decision. In the S
2
CVA_M users can control 

the decomposition into different levels, and the whole change representation and identification process. 

From the computation-cost point of view, the proposed S
2
CVA_M resulted in a very fast and efficient 

implementation. In this data set, S
2
CVA_M took in total 177.99 seconds (less than 3 minutes) to evaluate 

the four-level hierarchy for the change discovery, representation and detection. In greater details, the bi-

nary CD step took 24.80 seconds, and the user interaction required around 120 seconds. 
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Fig.4-18 Summary of the computational time taken by the proposed technique (in second) on the real Hyperion hy-

perspectral data set. 

 

 
(a) (b) (c) (d)  

Fig.4-19 Change-detection maps obtained by (a) C
2
VA_T; (b) C

2
VA_M; (c) k-means_SCVs; (d) S

2
CVA_M (ac-

cording to the discrimination boundaries defined in Fig.4-16. (b)-(e), (g) and (o)). Different changes are in different 

colors, and the no-change class is in white color (real hyperspectral Hyperion remote sensing data set). 

 

4.6 Discussion and Conclusions 

In this chapter, a novel sequential spectral change vector analysis (S
2
CVA) approach has been pro-

posed in order to address the challenging multiple-change detection problem in multitemporal hyperspec-

tral images. Developed on the basis of the C
2
VA state-of-the-art method, the proposed approach aims at 

discovering, representing and detecting multiple changes according to a sequential process that takes into 

account different levels of spectral change significance. The main novelties of the proposed S
2
CVA are: 

1) It iteratively analyzes the heterogeneous change information by following a top-down structure and a 

sequential analysis. Thus changes can be represented, discovered and detected at different levels of the 

hierarchy. 2) At each level it adaptively exploits the proposed ASCVR to represent changes by using a 
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reference vector automatically and adaptively defined. Experimental results obtained on both simulated 

and real multitemporal hyperspectral images confirmed the effectiveness of the proposed approach. 

Based on the theoretical analysis and the empirical experimental results we can also conclude that: 

1) The proposed S
2
CVA method extends the use of C

2
VA to hyperspectral images where a large num-

ber of major and subtle changes may be present in the high dimensional data. Changes are discovered and 

separated according to their intrinsic spectral behaviors in SCVs, which are represented by a hierarchical 

tree. The computational complexity of the proposed S
2
CVA method is very low (in all our experiments 

few minutes were required for the entire processing on a standard PC). It is worth noting that, despite the 

total processing time depends on the hierarchical tree size, any additional node requires in average few 

seconds. Thus the iterative nature on the process does not represent a critical limitation in real applica-

tions. Note that the proposed method can also be used for addressing the CD-MS problem. In this case we 

expect that the hierarchy results in fewer levels. 

2) Unlike the standard C
2
VA, the proposed ASCVR method adaptively and automatically changes the 

reference vectors according to the SCVs of the specific changes that are analyzed. Therefore, although the 

compression from the B-Dimensional to the 2-Dimensional feature space introduces an unavoidable loss 

of information, the sequential analysis gradually recovers in the hierarchy the information loss at first lev-

els, resulting in complete change representations and in satisfactory change-detection maps. 

3) The proposed change identification approach allows us to directly extract the change information in 

the ASCVR domain of interest of the user, thus providing an easy but efficient way to address the change 

discovery and separation problem in complex problems with hyperspectral images.  

An apparent limitation of the proposed method is that it results in a semi-automatic implementation 

(changes are detected via interaction with the user), which does not allow a completely automatic detec-

tion of changes. However, we would like to point out that the main goal of the proposed approach is to 

have an effective top-down procedure that supports the user in discovering and analyzing changes 

through an interactive process. This is very important for addressing CD problems with hyperspectral im-

ages. 

Future developments of this work will be focused on: 1) study of other change representation variables 

aimed to further enhance the change representation; and 2) joint use of the spatial-spectral multiresolution 

information to reduce the misregistration effect. 
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Chapter 5  

 

 

A Novel Hierarchical Clustering Method for Change Detection in 

Hyperspectral Images 
 

Multitemporal hyperspectral images provide very detailed spectral information that directly relates to 

land surface composition. This results in the potential detection of more spectral changes than those visi-

ble in the traditional multispectral images. However, the process of automatically extracting changes 

from hyperspectral images is very complex. This chapter addresses the multiple-change detection prob-

lem in multitemporal hyperspectral remote sensing images by analyzing the complexity of this task. A 

novel partially-unsupervised hierarchical change-detection approach is presented, which aims to identify 

the possible changes occurred between a pair of hyperspectral images based on a designed hierarchical 

spectral change clustering. Changes having discriminable spectral behaviors in hyperspectral images are 

identified hierarchically by following a top-down structure. A manual initialization is used to trigger the 

clustering, whereas the clustering itself is totally unsupervised. Experimental results obtained on simulat-

ed and real bi-temporal images confirm the validity of the proposed hierarchical change detection ap-

proach. 

 

5.1 Introduction 

In this chapter we focus the attention on effective clustering methods that exploit the difference image 

XD. The difference image (computed by subtracting pixel by pixel in spectral channels) carries multiple 

change information. Thus the behavior of SCV signatures in the hyperspectral difference domain XD re-

sults in a fine modeling of different kinds of changes, which is not possible with multispectral images. To 

better understand this concept, let us consider a vegetated field affected by land-cover changes. On the 

one hand, multispectral images can highlight strong changes, which are class transitions that significantly 

affect the spectral signature (e.g., vegetation to land covers like water, built-up areas, soil). However 

within such strong changes, other changes may be observed that correspond to slightly different realiza-

tions of the strong change itself. In a given vegetation change class there might be more change contribu-

tions due to different factors (e.g., difference on the vegetation growth status, density, water content). 

These kinds of changes show small spectral differences with respect to those of the strong change they are 

associated with. Such differences are usually localized in specific parts of the spectrum, which are usually 

difficult to be recognized from the rough spectral representation in typical of multispectral images. On the 

                                                 
This chapter is published on IEEE Transaction on Geoscience and Remote Sensing, Vol. 53, no. 1, 2015, pp. 244-260. Title: “Hi-

erarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images”. Authors: S. Liu, L.Bruzzone, F. Bovolo, 

P.Du. 
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other hand, these subtle changes become detectable in hyperspectral images due to the detailed represen-

tation of the spectral signatures. Moreover, if calibrated data are available, it is possible to obtain the ex-

plicit semantic meaning of the class transition (“from-to”) for a change by matching the spectral signature 

of each single date with the standard reference spectra in spectral libraries. However, in the reality, refer-

ence samples are often not available. Therefore, the design of effective unsupervised CD methods that are 

independent from ground truth data availability is highly attractive in real applications. 

In this chapter, a hierarchical partially-unsupervised CD approach is present that is suitable to identify 

different kinds of changes between two hyperspectral images [86]. The developed CD method: 1) ad-

dresses the problem of multiple-change detection; 2) makes adequate use of the detailed spectral infor-

mation in hyperspectral data; and 3) is partially-unsupervised. 

The outline of this chapter is as follows. The proposed CD method based on the hierarchical clustering 

is described in detail in Section 5.2. The used remote sensing data sets and the experimental setup are in-

troduced in Section 5.3. The experimental results are shown and discussed in Section 5.4. Finally, Section 

5.5 draws the conclusion. 

 

5.2 Proposed Approach 

Based on the discussion, definitions and assumptions presented in Chapter 3, Section 3.1, the aim of 

the proposed approach is to detect the change endmembers in Ωe={e1, e2,…,eK} that each of them associ-

ated to a given change class in { }
1 2
, , ,

Kc c c c
ω ω ωΩ = K . We propose a novel hierarchical CD method for 

detecting changes in hyperspectral images and separating them into different change endmembers. The 

proposed method mainly consists of three steps: a) pseudo-binary change detection to initialize the pro-

cess and extract general changes; b) change endmember detection based on hierarchical spectral change 

analysis; and c) generation of the CD map by merging endmember clusters. The block scheme of the pro-

posed approach is illustrated in Fig.5-1. 

 

 

Fig.5-1 Block scheme of the proposed change-detection approach to multitemporal hyperspectral images. 
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5.2.1 Pseudo-Binary Change Detection 

This step is based on the analysis of the magnitude of SCVs according to traditional binary CD tech-

niques. However it is referred as pseudo-binary because the output has three classes. After separating the 

change (Ωc) and no-change (ωn) classes (thus no-change endmember en is straightforward), an uncertainty 

buffer class (Ωu) is defined. The class of changes (Ωc) is used to initialize the root node of a tree structure 

for change representation. 

From XD the magnitude and the direction of SCVs can be extracted. In the first step of the proposed 

method we are only interested in distinguishing Ωc from ωn. Thus only the magnitude ρ is considered as 

defined in (6). Thus the whole B-Dimensional change information is compressed into a 1-Dimensional 

feature. The rationale behind this choice is: 1) to simplify and avoid any feature selection procedure; 2) to 

exploit the contribution of all portions of the spectrum. If noisy bands are detected in the pre-processing 

(e.g., due to atmosphere absorption) they can be neglected. 

Changed and unchanged pixels are separated into two groups according to a threshold value Tρ com-

puted on the magnitude variable. The Bayesian decision theory is applied to find this threshold [31]. The 

Expectation Maximization (EM) algorithm is used for estimating the class statistical parameters (i.e., the 

class prior probabilities, the mean values and variances) in an unsupervised way [31], [103]. Note that 

change and no-change classes are assumed to be Gaussian distributed, and multiple changes are approxi-

mated as one single change class (Ωc) in the magnitude domain to focus only on the general change in-

formation. This approach has been widely used in binary CD with multispectral images and demonstrated 

to be a good approximation in hyperspectral images [6], [33], [47]. The approximation is acceptable as 

this is only a preliminary step. 

In order to reduce the effect of possible thresholding errors and obtain conservative results that do not 

propagate significant errors in the next steps, a margin δ is set on the threshold computed on the histo-

gram h(ρ) of the magnitude ρ (see Fig.5-2) and three classes are defined. The three classes are: 1) class of 

uncertain pixels (Ωu), on which it is not possible to take a reliable decision at this level of the processing. 

These pixels will be analyzed and reclassified according to the generated endmembers; 2) class of 

changed pixels (Ωc), which includes pixels having a high probability to be changed, but without any in-

formation on their kind. The problem of the multiple changes identification will be addressed in the next 

step by the proposed hierarchical spectral change analysis method; 3) class of no-changed pixels (ωn), 

which only contains pixels having a high probability to be unchanged. These pixels are treated as a pure 

no-change class endmember due to their low magnitude. Thus for a given SCV x(i, j) in XD (1 ≤ i ≤ I, 1≤ j 

≤ J), a label is assigned according to the following rule: 

, ( , )

( , ) , ( , )

, ( , )

c

u

n

if i j T

i j if T i j T

if i j T

ρ

ρ ρ

ρ

ρ

δ ρ

ω ρ δ

Ω ≥


∈ Ω − ≤ <
 < −

x  (18) 

where ρ(i,j) is the SCV magnitude of the considered x(i, j). Fig.5-2 illustrates the flowchart of the pseudo-
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binary CD step. 

 

Fig.5-2 Block scheme of the pseudo-binary change-detection step used for initializing the tree structure. 

 

5.2.2 Hierarchical Spectral Change Vector Analysis (HSCVA) 

Let us focus on the classes of changed (i.e., Ωc) and uncertain (i.e., Ωu) pixels obtained in the previous 

step for identifying the change endmembers. The problem can be addressed by using clustering methods 

to automatically find the different change classes. However, the problem of multiple-class separation in 

hyperspectral images is much more difficult than in multispectral images. This is due to the following is-

sues: 1) the high spectral resolution makes the spectrum more sensitive to changes, thus a high number of 

changes might be detected; and 2) subtle changes within major changes are always difficult to be identi-

fied directly from Ωc. These problems decrease the detectability of all the hierarchy of changes directly 

from the data in one shot, and limit the effectiveness of clustering methods. 

To overcome the mentioned problems, we propose a solution based on the idea of decomposing the 

original complex problem into sub-problems by a Hierarchical Spectral Change Vector Analysis 

(HSCVA) (see Fig.5-3 for a qualitative example of hierarchy). The hierarchical structure is modeled by a 

tree of changes defined to drive the analysis. Let Ld be a generic level in the tree structure with d = 0, 

1,…, D-1. The depth of the tree is D (e.g., D=4 in Fig.5-3). The main idea is to start from the root node in 

the top level (i.e., L0 that represents the general change class Ωc identified in the pseudo-binary CD step) 

and gradually separate different kinds of change into child nodes by selectively exploiting the spectral in-

formation. At the first level (i.e., L1) of the tree the priority is given to identify the major changes that ac-

cording to the definition of Chapter 3, Section 1 have significant spectral difference from each other. 

Within each child node, subtle changes (if any) are detected and separated. This process is iterated until 

all change endmembers (i.e., leaves of the tree) are found.  
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Fig.5-3 Example of the proposed hierarchical tree for the detection of change endmembers with tree depth D=4 and 

eight identified leaves. 

 

Let us consider the root node that contains all the changed pixels without any distinction about their 

kind. To model the spectral homogeneity of Ωc, a similarity measure based on the Spectral Angle Dis-

tance (SAD) [104] is used. The SAD ϑ is computed between each x(i,j) in Ωc, and a reference spectral 

signature 
cΩS  calculated as the average of all the x(i,j) in Ωc, i.e., 
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where ( )b
i, jx  and 

c

b

Ω
S  are the b-th component in x(i,j) and 

cΩS , respectively. For each x(i,j), the smaller 

( ( ), )i, jϑ Ωc
x S , the higher the similarity with the reference spectrum and vice versa. For a pure change 

endmember we expect that all SCVs have very similar spectral behaviors, thus resulting in a small stand-

ard deviation of the similarity measure. Thus to verify the homogeneity of Ωc we compare the standard 

deviation value 
c

ϑσ
Ω

 of ( ( ), )i, jϑ Ωc
x S  with a predefined threshold value Tσ. If 

c
ϑσ

Ω
 is smaller than Tσ, 

the change class is considered as being homogeneous and a change endmember is detected. Accordingly, 

the process is in convergence and the tree only has a single node. Otherwise the change class is consid-

ered as being inhomogeneous and likely to contain more than one kind of change. Therefore the hierar-

chical decomposition starts.  

To distinguish major changes in Ωc the Principal Component Analysis (PCA) and clustering algorithm 

are used. However, any other transformation technique can be considered. Note that PCA is applied only 

to the SCVs belonging to Ωc. In this way we optimize the representation of the changes. Then the cluster-

ing algorithm is applied to the subset of transformed Principal Components (PCs) that includes more than 

95% of change information to reject the noise and redundant information. This choice also reduces the 

computational complexity. Let Q be the image with selected M (M < B) PCs and let Q(i,j) be the vector 
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characterizing spatial position (i,j) in Q, Q(i,j)∈Q. An effective clustering technique should be used to 

correctly identify the major change classes inside Ωc. The following issues need to be addressed: 1) iden-

tification of the number of major changes; 2) definition of a strategy for modeling and clustering the 

change information. 

In order to address the above two issues, the adaptive x-means algorithm is used to automatically find 

an optimal number of major changes and generate reliable clustering results in an unsupervised frame-

work [105], [106]. Differently from the popular k-means method, x-means adaptively searches on a range 

of k values and finds the best clustering model according to the Bayesian Information Criterion (BIC) 

[105]. The BIC identifies an adequate tradeoff between simplicity of the model (number of parameters) 

and quality of fit. It analyzes the maximum likelihood-based models of a given data distribution. We 

adopt the algorithm proposed in [106], which is an expansion of the original x-means, and modified it in 

order to satisfy our requirements. A given range G = [k0, k0+t] is first defined to initialize the x-means. 

This is the only input parameter to the algorithm. k0 denotes the lower bound for the number of major 

changes k, and t is a constant value to control the upper bound. Then M-Dimensional PCs of Ωc are given 

as input to the x-means clustering and the method is initialized by applying conventional k-means with k 

= k0. We assume that all kinds of change approximately follow the Gaussian distribution.  

For a given class 
kc

ω , let Qk be the pixel data of PCs, whose probability density function f(·) can be 

written as: 

( ) ( )
1/2/2 11

, (2 ) exp ( )
2

t

kΘ Q Q µ Q µπ
−− − 

= × − − −  

M

k k k k k k kf Γ Γ  (20) 

The BIC value of each generated cluster is then compared with the joint BIC value of its split into two 

clusters, and the clusters associated with the smaller value are selected (the smaller BIC value the better 

fitting is). The BIC value for 
kc

ω  is computed according to the following equation: 

ˆBIC( ) 2log ; 2 logΘ Qω ω = − ∈ + k kc f k k c kL M n  (21) 

where ˆ ˆˆ ,Θ µ =  k k kΓ  is the maximum likelihood estimate of the M-dimensional normal distribution. µµµµk 

and ΓΓΓΓk denotes the M-dimensional means vector and the M×M dimensional covariance matrix, respective-

ly. nk is number of pixels in Qk. 2M is the number of free parameters. The likelihood function Lf is built as 

( ) ( )⋅ ⋅∏fL = f . 

The joint BIC of 
1k

c
ω  and 

2kc
ω  can be also computed in a similar way: 

2

ˆBIC( , ) 2log ; 4 logΘ Q ω ′ ′= − ∈ + k k k1
c c f k k c kω ω L M n  (22) 

where 
2

ˆ ˆ ˆ,Θ Θ Θ ′ =  1k k k
 is the maximum likelihood estimate of the considered two M-dimensional normal 

distributions, and 1
ˆ ( )kΘ  and 2

ˆ( )kΘ  represent the individual distribution parameters for 
1k

c
ω  and 

2kc
ω , re-
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spectively. In this case, the total number of parameters is 4M. ′
fL  is the likelihood function from the joint 

probability density function. 

An additional merging operation is applied if necessary to ensure that the final output number of clus-

ters is within the defined range G [106]. After applying the x-means clustering, the final output includes: 

1) the optimal number k’ of major changes; 2) the detected major changes in Ωc (i.e., the level L1 of the 

hierarchical tree structure). The adopted x-means method for identifying the hidden change classes inside 

of Ωc are described in TABLE 5-1. Note that BIC is just one of the choices for the optimal model selec-

tion. However, it is a reliable criterion especially for normal distributions. Other test criteria, such as 

Akaike Information Criterion (AIC) and Minimum Description Length (MDL) may also be used [107], 

[108]. 

 

TABLE 5-1 X-MEANS ALGORITHM FOR THE AUTOMATICAL CHANGE CLUSTERING. 

Inputs: M-dimensional PCs of the data in Ωc, a given range G = [k0, k0+t] 

Step 1: apply the conventional k-means with the initial k=k0 to obtain k0 classes: 
1 0

, ...,
kc cω ω ; 

Step 2: apply the operations from Step 3 to Step 5 to all class 
kcω , k = 1, 2,…, k0; 

Step 3: for a given class 
kcω , divide it into two (

1kc
ω and

2kc
ω ) by k-means with k equal to 2; 

Step 4: calculate the BIC value for both BIC( )
kc

ω  and 
1 2

BIC( , )
k kc c

ω ω ; 

Step 5: compare the BIC values of the above two models, and make the decision of division according 

to the following rules: 

If 
1 2

BIC( ) BIC( , )
k k kc c c

ω ω ω> , the division is continued. Let 
1k kc c

ω ω← , push the data related to 

2kc
ω onto the stack. Return to Step 3; 

If 
1 2

( ) ( , )
k k kc c c

BIC BICω ω ω≤ , there is no division for class 
kc

ω . Extract the stacked data, re-

turn to Step 3. If the stack is empty, then move to Step 6. 

Step 6: update all the classes and stop the iteration, thus temporary kt classes are obtained; 

Step 7: make decision for merging operation: 

If kt ≤  k0+t, move to the Step 9; 

If kt > k0+t, move to the next merging step. 

Step 8: sort all the 
kc

ω according to the amount of data in an ascending order, update the subscript as α 

and β (α,β =1,…, kt).  

while kt > k0+t,
 

Apply the BIC as a round robin to cα
ω  and merge cα

ω  and cβ
ω , where α β≠ and β α> . 

If BIC( ) BIC( , )
c c cα α β

ω ω ω> , merge cα
ω into cβ

ω  

Else do not merge. 

Update kt 

(Note that any cα
ω  and cβ

ω  is restricted to be used only one time.) 

Step 9: update all the classes with k’=kt. 

Outputs: 1) the optimal number of classes k’; 2) clustering results, in which each pixel within the input 

PCs of Ωc belongs to a specific class 
kcω , k = 1, 2,…, k’. 
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To define a reliable range G for the clustering process, the initial number of classes should be identi-

fied, which is the lower bound k0 (k0 ≥2) in the x-means. k0 should be small enough to include the mini-

mum number of change classes that can be directly recognized. To perform a reliable choice of this pa-

rameter, we applied a method based on the analysis of the compressed change direction representation 

proposed in [47]. Instead of directly computing the angular distance in the original feature space, we 

computed it on the selected M-dimensional PCs of Ωc as follows: 

2

1 1

1
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where ( ( , ))Qϕ i j  is the compressed change direction of Q(i,j), and ( , )m
Q i j  is the m-th component of 

vector Q(i,j). In this way we emphasize in the direction variable only the possible changes associated with 

Ωc. The first PCs can properly model the changes that we are looking for. Thus the modes of the obtained 

distribution on the compressed change direction ( ( , ))Qϕ i j  can be recognized as the initial number k0 of 

major changes existing in Ωc (see Fig.5-4). The upper bound of the range G is defined by adding a small 

integer value t to k0. t is in the order of few units and takes into account the intrinsic uncertainty of defin-

ing k0 by analyzing ( ( , ))Qϕ i j . 

 

 

Fig.5-4 Example of definition of the initial cluster number (k0) based on analyzing of the compressed change direc-

tion. 

 

Once the major change classes in Ωc have been recognized and separated by using the adopted cluster-

ing algorithm, the root node splits into different child nodes at L1 in the tree. Each node corresponds to 

one major change class (i.e., 
1 2C C, , ...ω ω ). For each major change 

1 2C C, , ...ω ω  the spectral homogeneity of 

SCVs is tested according to (4). As an example let us consider the first child node associated to class 
1Cω

. The SAD of 
1Cω  is computed as 

1

( ( ), )i,j
c

x Sωϑ  for each x(i,j) ∈ 
1Cω . If for a given node convergence is 

not reached (e.g., in our example it means that the standard deviation of 
1

( ( ), )i,j
c

x Sωϑ  is larger than a 

given threshold) then all the above operations (i.e., PCA, x-means, stop criterion evaluation) are iterated 

by considering only the SCVs of pixels xi in the considered node (e.g., 
1Cω  in our example). Once all the 
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nodes at L1 are processed, the algorithm moves to the next level. The hierarchical decomposition is ap-

plied to each node in every level of the tree until the convergence is reached for all of them (see Fig.5-5). 

This happens when all the nodes satisfy the homogeneous condition in (4). The last node of each branch 

is a leaf node and corresponds to one change endmember in Ωe={e1, e2,…,eK}. Note that at convergence 

change endmembers can appear at different levels of the tree. The block scheme of this step is shown in 

Fig.5-5. 

 

5.2.3 Generation of the Change-Detection Map by Endmember Clusters Merging 

After identifying K change endmembers Ωe ={e1, e2,…,eK}, the pixels in the uncertain class Ωu derived 

in the first step of pseudo-binary CD are considered. These pixels are assigned to one of the change 

endmembers or to the no-change class on the basis of spectral similarity. SAD (see (4)) is computed be-

tween the SCV x(i,j) (x(i,j) ∈∈∈∈ Ωu) and the reference spectra 
eS

ε
 (i.e., the average spectrum of each de-

tected change endmember in Ωe and of the no-change endmember en). Then x(i,j) is assigned to the class 

with the minimum distance value, i.e., 

{ }
{ }

,

( , ) argmin ( ( , ), )
e ne e

i j i j ex x S
ε

ε

ϑ
∈ Ω

∈  (24) 

where ( ( , ), )i j ex S
ε

ϑ  denotes the SAD distance between x(i,j) (x(i,j) ∈∈∈∈ Ωu) and a given reference spec-

trum 
eS

ε
. The final CD map is generated by merging the results obtained in the three sets of changed, 

uncertain and unchanged pixels (see in Fig.5-1). 

 

 

Fig.5-5 Block scheme of the HSCVA step in the proposed change-detection approach. 
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5.3 Data Set Description and Design of Experiments 

5.3.1 Description of Data Sets 

Data Set 1: Simulated Hyperspectral Camera Data Set 

The first data set is the same as introduced in Chapter 4, Section 4.4.1 that acquired by a commercial 

hyperspectral camera (Nuance FX, CRI Inc.) [101] (see Fig.5-6.a). Ten change classes were simulated. 

Note that in this case, the same simulation setup was conducted three times by varying the position of 

tiles, thus generating three simulated multitemporal datasets. Each one is composed of X1 and one among 

the three simulated X2. Fig.5-6 (b) shows one of the simulated images, and Fig.5-6 (c) presents the corre-

sponding change reference map, which includes ten change endmembers. The performance indices for 

this data will be presented as the average values over the three simulated data sets. 

 

    

(a) (b) (c)  

Fig.5-6 False color composite (R: 710nm; G: 620nm; B: 510nm) of (a) the hyperspectral image acquired by the Nu-

ance FX hyperspectral camera (X1); (b) one of the simulated image (X2) with changes; (c) Reference map (ten 

changes in different colors, no-change class in white color). 

 

Data Set 2: Hyperion satellite images of an irrigated agricultural area 

The second data set is the same as introduced in Chapter 4, Section 4.4.3 that acquired by the Hyperion 

sensor mounted onboard the EO-1 satellite on May 1st, 2004 (i.e., X1, see Fig.5-7.a) and May 8th, 2007 

(i.e., X2, see Fig.5-7.b). The study area covers an irrigated agricultural land of Hermiston city in Umatilla 

County, Oregon, United States. Land-cover changes include the transitions among the crops, soil, water 

and other land-cover types. The changes occurred in the crop land are mainly due to the vegetation water 

content that affected the irrigation condition in the field (see the circles on the image, which correspond to 

the radius of the irrigation system), and to the difference of the crop growth situation. Fig.5-7 (c) repre-

sents a false color composite of spectral channels in XD. Different colors indicate possible kinds of change 

classes, whereas gray areas represent the unchanged pixels. The same change class can be described dif-

ferently in different wavelengths (e.g., see Fig.5-7 (d) and (e) where the same kind of change is highlight-

ed in orange and green circles and has different behaviors in bands 30 and 40 of XD). Accordingly the two 

examples given in Fig.5-7 do not fully describe the complexity of the problem. 
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(a) (b) (c) (d) (e) 

Fig.5-7 Hyperion images acquired on an irrigated agricultural area. False color composite (R: 650.67nm, G: 

548.92nm, B: 447.17nm) of the original images acquired in (a) 2004 (X1) and (b) 2007 (X2); (c) composite three 

SCVs channels (R: 1729.70nm, G: 1023.40nm, B: 752.43nm); single SCVs channel of (d) band 30 (650.67nm) and 

(e) band 40 (752.43nm). 

 

 
(a) (b) (c) (d) (e) 

Fig.5-8 Hyperion images acquired on a wetland area in China. False color composite (R: 752.43nm, G: 650.67nm, B: 

548.92nm) of the original images acquired in (a) 2006 (X1) and (b) 2007 (X2); (c) composite of SCVs channels 

(RGB: 1729.70nm, 752.43nm, 650.67nm); selected SCVs channels: (d) band 52 (874.52nm) and (e) band 158 

(1729.70nm). 

 

Data Set 3: Hyperion images of wetland agricultural area 

Another pair of bi-temporal Hyperion hyperspectral images with a size of 252×526 pixels, acquired on 

May 3, 2006 (X1) and April 23, 2007 (X2) in a wetland agricultural area in Yancheng, Jiangsu province, 

China, was used in the experiments. After applying the same pre-processing used for the previous data 

set, 132 bands were selected: 13-53, 83-96, 101-118, 135-164, 188-199 and 202-218. Also for this dataset 

we do not have any available ground truth. False color composite images of the bi-temporal data are 

shown in Fig.5-8 (a) and (b). In this scenario, the land-cover classes mainly include the agricultural 

cropland, seafood farm ponds, and offshore shoals vegetation (e.g., spartina alterniflora, suaeda and reed). 

During the study period, the actual land-cover changes included transitions among vegetation (most were 

in the crop field), water area, seafood farm ponds and some buildings. Fig.5-8 (c) shows a false color 
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composite image of XD, and Fig.5-8 (d) and (e) present some selected channels of XD. Similarly as before, 

the false color composition does not fully describe the complex CD problem. However, it gives an idea 

about where the changes occurred. 

 

5.3.2 Design of Experiments 

The proposed CD approach has been applied to the three hyperspectral data sets. For the synthetic bi-

temporal hyperspectral images, the same procedure was conducted on three simulated data sets. In this 

case, the first step of pseudo-binary CD was neglected as the general change class Ωc is explicitly defined 

by the change simulation step. Thus we directly focused on the pixels in Ωc and tried to identify different 

change endmembers inside it. Performance is assessed quantitatively on the three reference maps. The fi-

nal performance indices are given as the average accuracy over the three simulated datasets. For the two 

Hyperion hyperspectral remote sensing data sets, the proposed method was applied starting from the 

pseudo-binary CD step and the three clusters (Ωc, Ωu and ωn) where generated. The value δ was set such 

that the Ωu class includes 25% of the pixels in ωn. After obtaining the general change class Ωc, Tσ was set 

to drive the decomposition of the root node and to build the hierarchical tree for change endmember de-

tection. Tσ is a user dependent parameter and controls the level of spectral homogeneity of the detected 

change endmembers. The smaller the threshold value Tσ, the higher the homogeneity level is and thus the 

number of change endmembers, and viceversa. In practical applications, the threshold should be selected 

taking into account the desired sensitivity to subtle changes. In our experiments trials were carried out 

with different values of Tσ, achieving different trade-offs in terms of endmember homogeneity. 

After the initialization of Ωc (i.e., root node of the tree), the identification of multiple change endmem-

bers was done by using the proposed HSCVA step. The initial number of k0 was defined based on the 

compressed change direction method described in Section 5.2.2, and t was set equal to 3 to define the up-

per bound of U. The final CD map was obtained when all change endmembers were generated and the 

pixels in Ωu were assigned to one of them or to the unchanged endmember. The results obtained by the 

proposed method were compared with the ones obtained by the popular unsupervised k-means and fuzzy 

C-means (FCM) clustering methods. The two reference methods were applied to the subset of PCs select-

ed by the proposed method for the root node, i.e., the ones that contain most of the information for Ωc. 

The class number k of k-means and FCM was fixed on the basis of the proposed method outcome. In this 

way, we give clear advantage to the reference techniques that have not the intrinsic capability to estimate 

the number of expected change endmembers. This choice implicitly penalizes the proposed method. To 

reduce the uncertainty due to the random initialization in the reference methods, we ran them 200 times. 

The final accuracy was calculated as the average over 200 trials.  

To evaluate the CD results both quantitative and qualitative assessments were carried out for each of 

the three considered datasets. For the synthetic data set, the quantitative assessment was based on the CD 

accuracy (i.e., endmember accuracy and kappa accuracy) and error indices obtained according to the ref-
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erence maps. In addition, the average endmember distance has been computed to assess the average 

endmember separability. To this end, pair-wise Bhattacharyya distance was computed among all the pairs 

of change endmembers. For two generic detected change endmembers eα and eβ (α, β ∈ [1, K] and α ≠  

β), the Bhattacharyya distance Bα, β is calculated as follows: 

( )1

, 1 21 2
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α β α β α β
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where µµµµα and µµµµ β  denote the mean vectors, ΓΓΓΓ α and ΓΓΓΓ β represent the covariance matrices of change 

endmembers α and β, respectively. The higher distance the better the class separability, and viceversa. 

The average pairwise Bhattacharyya distance computed on all pairs of change endmembers gives indica-

tion of the overall class separability. In the following we will refer to it as multi-class Bhattacharyya dis-

tance.  

The CD results were also analyzed qualitatively by comparing: 1) the obtained CD maps; 2) the 2-D 

scatterplots of change endmembers in the feature space (i.e., the first PC versus the second PC on Ωc); 3) 

the spectral signatures of all the detected change endmembers in XD with the ones obtained with reference 

techniques. 

 

5.4 Experimental Results 

5.4.1 Simulated Hyperspectral Data Set 

For the simulated data, experimental results were obtained by fixing the value of Tσ to 0.05 for all the 

three image pairs. The average kappa accuracy (κ) and the average multi-class Bhattacharyya distance ob-

tained by the three considered methods are shown in TABLE 5-2. As one can see, the proposed method 

obtained both the highest kappa accuracy and the highest average Bhattacharyya distance.  

 

TABLE 5-2 AVERAGE KAPPA ACCURACY AND MULTI-CLASS BHATTACHARYYA DISTANCE OB-

TAINED BY THE THREE CONSIDERED METHODS ON THE SIMULATED DATA SETS. 

Method Average κ 
Average multi-class 

Bhattacharyya distance 

PCA k-means 0.9772±0.0007 5.28 

PCA FCM 0.9002±0.0012 5.03 

Proposed method 0.9930±0.0009 5.91 
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(a) (b) (c) (d) 

Fig.5-9 CD results obtained on the simulated hyperspectral data set. Results provided by: (a) the proposed method, 

(b) k-means, and (c) FCM, (d) ground truth. From up to down, each row represents: (1) CD maps (or reference map); 

(2) 2-D scatterplots of change classes in the feature space; (3) SCV signatures of detected changes; (4) a subset from 

results in (1). 

 

Let us now analyze one of the three simulated cases in greater detail (see Section 5.3.1, Fig.5-6 .b). In 

this case, the complete tree has a structure with 3 levels and 14 nodes, where 10 of them are leaf nodes 

identified as change endmembers. The CD maps obtained by the proposed method and the reference ones 

are shown in the first row of Fig.5-9. Fig.5-9 (a)-(c) reports the results of the proposed method, the refer-

ence k-means and FCM, respectively. Fig.5-9 (d) shows the reference map. Each color corresponds to a 

specific detected change endmember, whereas the unchanged pixels are in white. In the second row, 2-D 

scatterplots of the detected change classes are shown in the feature space of first two PCs extracted from 

pixels in Ωc. The spectral behaviors of the change endmembers in the SCV domain are presented in row 

3. Tiles extracted from the whole CD maps are illustrated and further compared in row 4. Accuracies and 

error indices obtained according to the reference data are summarized in TABLE 5-3. 
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TABLE 5-3 KAPPA ACCURACY, NUMBER OF DETECTION ERRORS AND MULTI-CLASS 

BHATTACHARYYA DISTANCE OBTAINED BY THREE CONSIDERED METHODS ON ONE OF THE 

SIMULATED DATA SETS. 

Method 

Endmember accuracy (%) 

κ 

Tot. 

errors 

(pixel) 

Multi-class 

Bhattacharyya 

distance e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

PCA  

k-means 
100.00 99.97 88.56 100.00 99.99 91.37 39.34 98.15 100.00 97.42 0.9770 1367 5.49 

PCA 

FCM 
99.77 57.30 0.00 100.00 97.10 97.20 0.00 97.92 100.00 94.30 0.9007 2218 4.93 

Proposed 

method 
100.00 99.93 92.10 100.00 100.00 99.94 86.60 99.46 100.00 99.07 0.9933 650 6.22 

 

As we can see from Fig.5-9, the proposed method detected the expected changes on this simulated data 

set accurately. In particular, it identified properly the change classes in a hierarchical way, and it was not 

affected by the problem on minority classes. The subtle changes with small amount of pixels (e.g., change 

of letters and their edges) were also detected in a precise way (see row 4 in Fig.5-9). On the contrary, de-

spite the conventional k-means and FCM received as input the true number of change endmembers, their 

results were less accurate. This demonstrates the advantages of using the hierarchical analysis structure. A 

visual comparison of scatterplots confirms the better results produced by the proposed method with re-

spect to the other techniques. The two reference methods obtained in overall good performances, but 

showed a higher error rate for some change endmembers (e.g., e6 is confused with e7 in k-means; and e3 

with e4 in FCM). By comparing the SCV signatures of changes detected by the three methods (Fig.5-9 

row 3 (a)-(c)) with the one of reference change map (Fig.5-9 row 3 (d)), we can observe: 1) higher simi-

larity between results of the proposed method and the reference spectra; and 2) different kinds of change 

(i.e., change endmembers) have discriminable spectral behaviors in the SCV domain (see row 3 (a) in 

Fig.5-9), thus indicating the effectiveness of the proposed method in separating change information. The 

reference techniques detected some wrong change endmembers. For example, in the result of the FCM 

there are two couples of change endmembers with very similar spectral signatures. The first couple is rep-

resented by red and purple signatures, and the second is given by green and sienna signatures in Fig.5-9 

(c) row 3. These changes were wrongly detected by the FCM method even by fixing the correct number 

of input classes. 

The above analysis is confirmed by the numerical results in TABLE 5-3. We can observe that: 1) the 

proposed hierarchical method outperformed reference approaches in terms of Kappa accuracy and num-

ber of errors. The Kappa accuracy is the highest among the three (i.e., 0.9933 compared to 0.9770 for k-

means and 0.9007 for FCM). The total error of the proposed method (i.e., 650 pixels) is significantly 

smaller than the ones of reference methods (i.e., 1367 pixels for k-means and 2218 pixels for FCM); 2) on 

each single change endmember, the two reference approaches resulted in significant errors (both omission 

and commission), whereas the proposed method exhibits the highest accuracy. This further confirms the 

difficulty of the reference methods to directly identify endmembers; 3) the multi-class Bhattacharyya dis-

tance values indicate that the proposed approach achieves the highest class separability (i.e., 6.22) with 

respect to the two clustering methods (i.e., 5.49 in k-means and 4.93 in FCM, respectively). 
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(a) (b) (c) 

Fig.5-10 CD results obtained on the real Hyperion hyperspectral images on an agricultural area. Results provided by 

(a) the proposed method, (b) the k-means, and (c) the FCM. From row 1 to row 3: (1) change-detection maps; (2) 2-

D scatterplots of all change classes in the feature space by using the first two PCs computed on pixels in Ωc; (3) 

spectra of the detected changes in the SCV domain. The legend only applies to the proposed method results. 

 

5.4.2 Hyperion Satellite Images of an Irrigated Agricultural Area 

In this case the threshold Tσ was set to 0.13. The proposed method detected 15 change endmembers as 

leaf nodes in the hierarchical tree, which includes 4 levels and 20 nodes. Fig.5-10 illustrates CD results 

obtained by (a) the proposed hierarchical method, (b) the k-means, and (c) the FCM. From row 1 to row 3 

the figure shows the CD maps, the 2-D scatterplots in the two-dimensional feature space (i.e., the first two 

PCs extracted from pixels in Ωc), and the SCV signatures of all the detected changes, respectively. For the 

proposed hierarchical approach the 15 change endmembers are represented with different colors, whereas 

the no-change pixels are in white. For the two reference methods, the change clusters are also shown in 

different colors, but it is not possible to establish a direct correspondence among the legend given for the 

proposed method in Fig.5-10, and the colors used for the reference methods. Also in this case the number 
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of clusters for the k-means and the FCM was fixed on the basis of the result produced by the proposed 

technique. 

The proposed hierarchical CD approach obtained satisfactory results detecting change endmembers 

(validated by the detailed photointerpretation) and separating them according to the defined spectral ho-

mogeneity level. In greater detail, we can observe that: 1) The proposed method detected change 

endmembers according to the hierarchical analysis. On the contrary, the other two reference methods (that 

identify all the changes in a single step) ignore the intrinsic hierarchy of the change information in hyper-

spectral images. This increased the change detection errors (see also Fig.5-10 row 1, where the proposed 

method detects changes with a higher homogeneity than the two reference methods). 2) All the consid-

ered methods are able to discriminate multiple changes, but with different performance on the change 

separability of change endmembers. The multi-class Bhattacharyya distance values were 4.12 (proposed 

method), 3.78 (k-means) and 3.65 (FCM). The proposed method obtained the highest separability among 

all the detected change endmembers. 3) The generated spectra of change endmembers point out the dif-

ferences of the SCV signatures, which illustrate the change separability of the different methods. 

 

5.4.3 Hyperion Images of a Wetland Agricultural Area 

On the third data set we carried out the same experiments as for the previous one. The threshold Tσ was 

set to 0.15. The hierarchical tree structure consisted of 5 levels with 27 nodes, where 17 change endmem-

bers were detected according to 17 leaf nodes. As we can see from the CD results, in this case the pro-

posed method also obtained satisfactory results. A qualitative analysis points out that the change 

endmembers were properly detected (see Fig.5-11). The multi-class Bhattacharyya distances for the three 

methods were 3.89 (proposed method), 3.49 (k-means) and 3.30 (FCM). Also in this case, the proposed 

hierarchical method achieved the highest multi-class separability, whereas the k-means and FCM resulted 

in a lower separability, despite the two reference methods are driven by the number of endmembers au-

tomatically detected by the proposed method.  

 

5.5 Discussion and Conclusions 

This chapter analyzed and discussed the change-detection problem in multitemporal hyperspectral im-

ages. A novel hierarchical spectral change analysis approach has been proposed to detect and identify 

multiple-change information in a partially-unsupervised way. Accordingly, the change endmembers are 

detected hierarchically by analyzing the spectral properties in the spectral difference domain XD. Moreo-

ver, the proposed hierarchical analysis can identify the discriminable spectral change endmembers from 

coarse to fine level leading to a better model, whereas the reference methods are based on a single step of 

processing only. Since in the CD-HS case, the number of change endmembers is usually high, those 

methods are generally not able to correctly identify all of them. Satisfactory results obtained on both the 

simulated and real multitemporal hyperspectral remote sensing images confirmed the effectiveness of the 

proposed CD method. 
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 (a) (b) (c) 

Fig.5-11 CD results obtained on the real Hyperion images on a coastal wetland agricultural area in China. Results 

provided by (a) the proposed method, (b) the k-means, and (c) the FCM. From row 1 to row 3: (1) CD maps; (2) 2-D 

scatterplots of all change classes in feature space by using first two PCs computed on pixels in Ωc; (3) SCV spectra 

of the detected changes (17 changes in different colors, no-change class in white). The legend only applies to the 

proposed method results. 

 

The main contributions of this chapter are as follows: 1) proposal of a technique for addressing the 

challenging CD-HS problem, by considering the difference of spectral change behaviors in the spectral 

difference domain XD at different spectral detail scales; and 2) proposal of an approach that models the 

detection of multiple changes in a hierarchical way, to identify the change information and separate dif-

ferent kinds of changes (major change, subtle change and finally change endmembers) according to their 

spectral difference. In this way, we progressively decompose the complex problem into several specific 

sub-problems, focusing on each single portion of the multiple-change information. This makes it possible 

to discover the difference among similar changes by decreasing the difficulty of detection. Moreover, the 

proposed approach is designed in a partially-unsupervised way, which just requires a manual initialization 
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for the clustering, thus it fits most of actual applications, for which often the ground truth is not available. 

A minor limitation of the proposed method consists in the use of CVA for the pseudo binary CD step. 

By computing the magnitude of SCVs, small portions of the change information might be lost after com-

pression, thus causing missed alarms in the final CD map. Although a proper setting of margin δ may lim-

it this problem, the high dimensionality of hyperspectral data may still produce errors. Another issue to 

consider is the tuning of the threshold value (i.e., Tσ), which impacts on the final number of the output 

change endmembers. Tσ should be fixed in order to tune the sensitivity of the method according to the 

end-user requirements. This can be done considering the fact that Tσ has a clear physical meaning with 

respect to the sensitivity of the method. Although additional investigations should be done to define a 

possible automatic technique for the detection of the optimal threshold, we point out that the selection of 

Tσ is more simple and reliable than the selection of the number of endmembers in standard clustering 

methods. 

As future development of this work, the robustness of the proposed method will be tested on the avail-

able multitemporal hyperspectral images showing differences in illumination conditions and no real 

change. Moreover, we plan to: i) consider in the proposed technique also the spatial information in order 

to increase the robustness and the accuracy of the CD results; ii) define a reliable automatic technique for 

the detection of the above mentioned threshold; iii) define alternative methods for the identification of 

change endmembers; iv) investigate the CD-HS problem on data sets for which an exhaustive ground 

truth is available. 
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Chapter 6  

 

 

A Novel Unsupervised Multitemporal Spectral Unmixing for Detect-

ing Multiple Changes in Hyperspectral Images 

 

This chapter presents a novel unsupervised multitemporal spectral unmixing (MSU) approach to address 

the challenging multiple-change detection problem in bi-temporal hyperspectral images. Differently from 

the state-of-the-art methods that are mainly designed at pixel level, the proposed technique investigates 

the spectral-temporal variations at subpixel level. The considered CD problem is analyzed in a multitem-

poral domain, where a bitemporal spectral mixture model is defined to analyse the spectral composition 

within a pixel. Distinct multitemporal endmembers (MT-EMs) are extracted according to an automatic 

technique. Then a change analysis strategy is designed to distinguish the change and no-change MT-EMs. 

An endmember grouping scheme is applied to the changed MT-EMs to detect the unique change classes. 

Finally, the considered multiple-change detection problem is solved by analysing the abundances of the 

change and no-change classes and their contribution to each pixel. The proposed approach has been val-

idated on both simulated and real multitemporal hyperspectral datasets presenting multiple changes. Ex-

perimental results confirmed the effectiveness of the proposed method. 

 

6.1 Introduction 

By taking advantage of the detailed spectral information in hyperspectral images, subtle changes 

(which are not visible when employing multispectral images) associated to the land-cover transitions are 

expected to be detected. Thus it is important to develop effective CD techniques that fully exploit the fine 

spectral variations in hyperspectral images to address new applications. However, due to the intrinsic 

properties of hyperspectral data, this task is highly challenging [86]. Examples of such properties are the 

high-dimensionality of the feature space, the information redundancy, the noise, and the presence of many 

possible change classes.  

Only few literature papers can be found focusing on the topic of multitemporal CD-HS and even less 

that deal with the detection of multiple changes [42], [43], [86], [87]. Despite the usefulness of these ap-

proaches, they are all developed based on the assumption that each pixel in the considered images con-

tains only one kind of land-cover material (pure-pixel theory). Accordingly, the final CD result associates 

a pixel only with a single specific kind of land-cover transition (i.e., vegetation to water, soil to building, 

etc.). However, given the geometrical resolution of hyperspectral images, mixed pixels are a common 

phenomenon that occurs in most of the cases. This phenomenon consists in a mixture of the light scatter-
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Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images”. Authors: S.Liu, L.Bruzzone, F.Bovolo, P.Du. 



Chapter 6. A Novel Multitemporal Spectral Unmixing Approach for Hyper-spectral Images Change De-

tection 

76 

 

ing of more than one distinct substance located in the area on the ground covered by one pixel [109], 

[110], [111]. This mixture usually is caused either by the limited spatial resolution of the sensors included 

different targets in a single pixel or by the combination of the distinct materials into a homogeneous mix-

ture [109], [110]. To solve this mixture problem, spectral unmixing techniques were developed aiming to 

detect the materials (termed endmembers) in the mixed pixels and to estimate their corresponding frac-

tions (termed abundances). Thus the hyperspectral unmixing is actually an inverse problem. Despite sin-

gle image unmixing has been widely investigated in the literature [104], [109], [110], [111], multitem-

poral unmixing has not been considered extensively. Land-cover material transitions within a single pixel 

are almost ignored in the available CD methods. The impact is a higher number of CD errors due to the 

spectral sensitivity of the hyperspectral data and to the poor investigation of the subpixel level spectral 

variations that is typical of state-of-the-art pixel-level CD methods. Therefore, it is necessary to consider 

the spectral mixture nature in the CD-HS studies and to develop advanced techniques for detecting and 

analyzing the subpixel level spectral changes. 

Multitemporal unmixing (MU) has been only partially investigated to address the endmembers variabil-

ity issue in order to increase the representativity of the extracted endmembers, thus improving either the 

land-cover classification or specific change monitoring (e.g., cropland, invasive species, forest, etc.) 

[112], [113], [114]. For CD, Du et al. [73] proposed a linear mixture model for analyzing the endmembers 

and abundances estimated from each single time image to address only a binary CD problem. Recently, a 

subpixel level CD approach was developed to investigate the multiple composition evidence within pix-

els, thus to increase the binary CD accuracy. However, it was designed in a supervised framework under 

the assumption that endmember samples are available [115]. No literature work can be found that address 

the challenging multiple-change detection problem in multitemporal hyperspectral images from the spec-

tral unmixing point of view with unsupervised techniques. 

In this chapter, a novel CD approach is proposed that is suitable and effective for detecting multiple 

change classes in hyperspectral images through the analysis of multitemporal spectral mixtures. To this 

end, a novel multitemporal spectral unmixing (MSU) technique is proposed. The proposed technique con-

siders the spectral signatures in the multitemporal domain (i.e., stacked feature space), and identifies the 

different “multitemporal endmembers (MT-EMs)” associated to the change and no-changed classes. To 

overcome challenging issues like the high spectral variability and the insensitivity to the small size 

change classes, a patch scheme is adopted. Distinct MT-EMs are extracted from each patch of the images 

at the local level. Then their abundances are estimated at global level. Change analysis and endmember 

grouping are conducted to find unique change classes, thus generating the final change-detection map 

based on the abundance combination. The proposed MSU approach is validated on both simulated and 

real bi-temporal hyperspectral images. The experimental results confirm the effectiveness of the proposed 

method in performing multiple-change detection in multitemporal hyperspectral images. 

The rest of the chapter is organized as follows. Section 6.2 illustrates the proposed MSU method in de-

tails. Section 6.3 describes the hyperspectral data sets and introduced the design of the experiments. The 
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experimental results are analyzed and discussed in Section 6.4. Section 6.5 draws the conclusion of this 

work. 

 

6.2 Proposed Approach 

The considered CD problem can be formalized as to assign to each pixel in XS a class label in Ω = {Ωc , 

ωn}, where Ωc is the set of the K possible change classes { }
1 2
, , ,

Kc c c cω ω ωΩ = K  and ωn is the no-change 

class. To this aim, we propose a novel automatic and unsupervised multitemporal spectral unmixing 

(MSU) approach that is suitable to analyze the spectral signature mixture among the change and no-

change MT-EMs in XS, and thus to detect the multiple-change classes. The overall architecture of the 

proposed CD approach is illustrated in Fig.6-1. It mainly consists of four steps: 1) multitemporal images 

stacking and image patch generation; 2) multitemporal spectral unmixing; 3) change analysis; 4) abun-

dance combination and CD map generation. More details on each step are given in the following sub-

sections. 

 

 

Fig.6-1 Architecture of the proposed CD approach based on multitemporal spectral unmixing. 

 

6.2.1 Stacking of Multitemporal Images and Image-Patch Generation 

In this step, the two B-Dimensional hyperspectral images X1 and X2 are stacked into a 2B-Dimensional 

image XS, whose spectral signatures (i.e., pixel vectors) include two components corresponding to X1 and 

X2, respectively (see Fig.3-4). The next steps are all performed in the XS domain. Then the XS image is di-



Chapter 6. A Novel Multitemporal Spectral Unmixing Approach for Hyper-spectral Images Change De-

tection 

78 

 

vided in a given number of sub-images called patches. Two reasons drive the use of a patch-based 

scheme. First of all, a higher number of MT-EMs can be detected in the stacked domain XS than in the 

original single-date image domains (i.e., X1 or X2). Due to the fact that both change and no-change classes 

have discriminable spectral behaviors in XS, if P1 and P2 endmembers are identified in X1 and X2, respec-

tively, theoretically a number of Ps ≤ P1×P2 possible MT-EMs might be identified in XS. Therefore, it is 

very difficult to correctly identify all of them directly from the whole XS feature space, especially for 

those small change classes defined only at a local level. The second reason is related to the endmembers 

variability in hyperspectral images [116], [117]. Due to both the land-cover spectral properties and varia-

ble external factors (e.g., atmospheric conditions, illumination, seasonal effects), spectral signatures that 

belong to the same material may vary within a hyperspectral image [117]. To overcome this drawback 

and identify discriminable endmembers in single hyperspectral images, several works have been present-

ed in the literature that take into account the spectral variability. They can be mainly divided into two cat-

egories that consider endmembers either as sets (bundles) or as statistical distributions [117]. In this chap-

ter, we use the “local endmembers” strategy introduced in [114], which belongs to the former group. It 

considers the spectral variability effects while identifying endmembers and performing unmixing. By fol-

lowing this idea, in our case the whole XS image is divided into some regularly shaped subsets (patches) 

(see Fig.6-1). Let XS,z be the z-th patch of XS (z=1,…,Z), where Z is the defined number of patches. Note 

that Z is defined depending on the size of the image and the significance of the occurred change targets in 

the scene. Endmembers identification is performed on each patch. Due to the fact that the spectral classes 

are more uniform at the local level than at the global level, a large number of endmembers can be identi-

fied. Moreover, the patch-scheme better considers the small spectral variations and the material composi-

tions generated in the local patches than a global-scheme. 

 

6.2.2. Multitemporal Spectral Unmixing (MSU) 

For each patch XS,z (z =1,…, Z), MT-EMs are identified by one of the standard unmixing methods de-

veloped for single-date image. As an output we obtain: 1) The estimated number Ps,z of the MT-EMs; 2) 

The identified distinct MT-EMs ES,z according to Ps,z. 

The number of MT-EMs Ps,z is estimated automatically. Several algorithms can be found in the litera-

ture designed for this task. For example, we mention the Harsanyi-Farrand-Chang (HFC) algorithm [118], 

the noise whitened version of HFC (NWHFC) [119], the Hyperspectral Signal Identification by Minimum 

Error (HySIME) method [120], and the recently proposed Eigenvalue Likelihood Maximization (ELM) 

algorithm [121]. Note that any endmember number estimation and endmember extraction algorithms can 

be used within the proposed framework. The selection of an effective algorithm can ensure the quality of 

the extraction result, which depends on the considered data scenario and the specific applications. In our 

analysis, after several empirical trials, the ELM algorithm is selected as it proved to be accurate and sta-

ble. ELM is designed based on an empirical observation of the distribution of the differences of the ei-
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genvalues from the correlation and the covariance matrices [121], which is totally parameter free and easy 

to be implemented. Then the popular Vertex Component Analysis (VCA) method [122] is used for ex-

tracting the Ps,z MT-EMs ES,z. VCA is selected as the endmembers are the vertices of a simplex, and the 

affine transformation of a simplex is also a simplex, thus new endmembers can be determined sequential-

ly [122]. 

After extracting MT-EMs in each patch, an endmember pool U is built, which is the union of all the 

MT-EM sets extracted from Z patches, i.e., 1 2S, S, S,Z
= ∪ ∪ ∪U E E EK . Let Ps be the total number of 

MT-EMs in U, ,

1

Z

s s z

z

P P
=

=∑ . Note that U represents all the distinct MT-EMs extracted at a local scale de-

fined by patches. All Ps endmembers in U are used in the unmixing model at the global scale. The linear 

mixture model (LMM) is considered, which assumes a pixel is the result of a linear combination of 

endmember signatures weighted with their abundances [110]. LMM has been intensively investigated in 

the literature [109], [110], [111], [117]. However, as mentioned in Section II, the original LMM is built 

based on the single-date images, whereas here a multitemporal (stacked) domain is considered. Thus an 

approximation is made for a given pixel xs(i,j) (1 ≤ i ≤ I, 1≤ j ≤ J) in XS that its spectrum xs(i,j) follows a 

linear mixture of a unique changed or unchanged MT-EMs, which is modeled as: 

1

( , ) ( , ) ( , ) ( , )
sP

p p

p

i j a i j i j i j
=

= +∑sx e n  (26) 

where ep is the spectral signature of the p-th (p=1,…, Ps) endmember in XS, ap denotes the corresponding 

fractional abundance (which is the percentage of ep within the considered pixel), and n is the noise vector. 

AS and U are the set of ap and ep (p=1,…, Ps) for all pixels in XS, respectively.  

Based on the extracted endmember pool U, unmixing is conducted to estimate the abundances AS of all 

MT-EMs in U by solving the following non-negative constrained least squares problem: 

2
arg min

S

S S S= −
A

A X UA%  

subject to: AS ≥ 0 

(27) 

where AS ≥ 0 is the imposed abundance nonnegative constraint (ANC). 

 

6.2.3. Change Analysis 

U includes all local MT-EMs that either belong to the set of change classes Ωc or to the set of no-

change classes Ωn. Thus U can be divided into two subsets U = {Uc, Un}, where Uc and Un indicates the 

endmember pool for Ωc and Ωn, respectively. Note that in this work we are only interested in distinguish-

ing and identifying the K unique change classes { }
1 2
, , ,

Kc c cω ω ωK  in Uc, whereas we consider the Ωn in 

Un as one general no-change class ωn, n nωΩ ≈ . Let Ps,c and Ps,n be the number of endmembers in Uc and 

Un, respectively, and Ps=Ps,c+Ps,n. The change analysis aims to separate two classes of MT-EMs (i.e., Uc 
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and Un) and to identify the unique change classes in Uc. To this end, the magnitude of the spectral differ-

ence (see Fig.3-5, two components in the extracted MT-EMs associated to X1 and X2, respectively) is ana-

lyzed according to change vector analysis: 

( )
2

, ,

1
p

B

p B b p b

b

e eρ +
=

= −∑e  (28) 

where ep,b is the b-th stacked channel of the p-th (p = 1,…, Ps) endmember in U. A given ep is classified 

either into Uc or Un depending on its magnitude value, which can be higher or lower than Tρ. The thresh-

old Tρ can be estimated manually or automatically based on the histogram of the magnitude variable ρ 

calculated on XD as [92], [31], [86], [88]: 

( )
2

1

X
B

D,b

b

ρ
=

= ∑  (29) 

where XD,b is the b-th (b=1,…,B) component of XD. This can be done by using one of the techniques pro-

posed in the literature [31], [88].  

Since the MT-EMs in Uc are extracted from different patches representing the spatial distribution of 

different change targets on the images, a grouping step is required to cluster the MT-EMs that represent 

the same change class while showing its spectral variability. The final MT-EM groups contain the unique 

change classes represented at a global level. For the endmember grouping, we adopted an iterative 

scheme that was designed based on the Spectral Angle Mapper (SAM) [114]. Instead of using SAM, in 

this work we selected the spectral measurement proposed in [123], which considers both the spectral 

shape information by SAM and the stochastic behavior of the spectra by spectral information divergence 

(SID). Let eα and eβ be two given MT-EMs in Uc. Let r = (r1, r2, …, r2B)
T
 be the probability vector of eα= 

(eα,1,eα,2,…,eα,2B)
T
 with 

2

, ,1

B

b b bb
r e eα α=

= ∑ , and m = (m1, m2, …, m2B)
T
 for eβ with 

2

, ,1

B

b b bb
m e eβ β=

= ∑ . 

The SID measure is defined as [95]: 

2 2

1 1

SID( , ) log( / ) log( / )
B B

b b b b b b

b b

r r m m m rα β
= =

= +∑ ∑e e  (30) 

and the SAM is defined as: 

2 2 2
1 2 2

, , , ,

1 1 1

SAM( , ) cos ( ) ( )
B B B

b b b b

b b b

e e e eα β α β α β
−

= = =

 
=  

  
∑ ∑ ∑e e  (31) 

So the SID-SAM combined spectral measure ϑ is defined as [123]: 

( , ) SID( , ) sin SAM( , )e e e e e eα β α β α βθ  = ⋅    (32) 

where sin(·) is the trigonometric sine function. 

The MT-EM grouping starts from a random initialization, where the first class 
1cω
 
is randomly as-

signed to an endmember in Uc. The SID-SAM measure θ is then computed between it and each of the re-
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maining endmembers in Uc. If the value of θ is smaller than a given threshold Tθ, the considered 

endmember is clustered into 
1cω . Then the grouping procedure continues for the second class 

2cω  on 

those endmembers without a label. The iteration terminates when all endmembers have a label. Note that 

the defined threshold Tθ controls the similarity between endmembers required for the grouping. This is 

the only user-defined parameter in the proposed technique. Finally, the endmember grouping results in K 

unique kinds of changed MT-EMs { }
1 2
, , ,

Kc c c
ω ω ωK . By considering also the no-change class ωn, in total 

we have K'=K+1 classes of MT-EMs in XS. 

 

6.2.4. Abundance Combination and Final Change-Detection Map Generation 

Based on the endmembers grouping result, the abundances of local MT-EMs that belong to a given 

class are summed together, thus generating the final abundance for that class. Let ωε be a given class in 

Ω ={ }
1 2
, , , ,

Kc c c n
ω ω ω ωK . The final abundance map ,S εA  of the class ωε for all pixels in XS is computed 

as: 

, ,

p

S S pε

ε

ω
ω∈

=∑
e

A A  
(33) 

where AS,p is the abundance map of a given MT-EM ep in U, and p εω∈e , p =1,…, Ps. 

Thus the considered multiple-change detection problem can be solved by assigning the final class label 

of a pixel xs (i, j) (1 ≤ i ≤ I, 1≤ j ≤ J) in XS to the class ωε having the maximum abundance value: 

( )( , ) arg max ( , )sx i j a i j
ε

ε

ω
ω ∈Ω

∈  (34) 

where ( , )a i j
εω  is the abundance value of class ωε in pixel xs(i,j). Note that anyway the derived abundance 

maps can be considered as sub-pixel change-detection results. 

 

6.3 Data Set Description and Design of Experiments 

Data Set 1: Simulated hyperspectral remote sensing data set 

The first data set is made up of a hyperspectral image acquired by the AVIRIS sensor in 1998 on Salin-

as valley, California. The original image has 224 contiguous spectral bands with wavelength from 400nm 

to 2500nm, characterized by a spatial resolution of 3.7m and a spectral resolution of 10nm. Ground truth 

data are available that contain 16 material classes (e.g., vegetation, bare soil, and vineyard), thus usually 

this data set is used for hyperspectral image classification. A subset was selected on the whole image hav-

ing a size of 217×97 pixels. In the pre-processing, 20 water absorption bands (i.e., bands 108-112, 154-

167 and 224) were discarded, obtaining 204 bands for our experiments. Taking advantage of the available 

ground truth, we simulated an image (considered as X2) based on the original image (considered as X1). In 
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order to obtain a realistic simulated image, ten tiles were extracted from X1 (see Fig.6-2.a) and inserted 

back in different areas on X1 by replacing the whole spectral vectors. Thus X2 was generated with eight 

simulated change classes (see Fig.6-2.b). A small constant bias value was applied to X2 to simulate a sta-

tionary radiometric change. White Gaussian noise was added to X2 with different levels of Signal-to-noise 

ratio (SNR) values (i.e., SNR=10, 20, 30, 40 dB). Thus, we obtained four image pairs built by X1 and one 

out of the four simulated X2. False color composites of X1 and one of the simulated X2 (i.e., SNR=20) are 

shown in Fig.6-2 (a) and (b), respectively. Fig.6-2 (c) is the reference change map. Detailed simulated 

land-cover transitions are listed in TABLE 4-1, which provides the number of samples for each simulated 

change class. Note that we did not simulate mixture at single pixel level but we used this data set for as-

sessing the effectiveness of the proposed method when a large number of changes are present in noisy 

images. 

 

  
(a) (b) 

  
(c) 

Fig.6-2 False color composites (Bands: R: 40, G: 30, B: 20) of (a) the hyperspectral image acquired by the AVIRIS 

sensor in Salinas scenario (X1) and (b) the simulated changed image (X2) computed with an additive white Gaussian 

noise (SNR=20 dB). (c) Change reference map (eight changes in different colors, and no-change class in white col-

or). 

 

TABLE 6-1 SIMULATED CHANGE CLASSES AND RELATED NUMBER OF SAMPLES (SALINAS DATA 

SET) 

Change class  Simulated changes (from X1 to X2) Samples (Number of pixels) 

ωC1 Celery → Vinyard_untrained 388 

ωC2 Fallow_smooth → Vinyard_untrained 160 

ωC3 Celery → Stubble 468 

ωC4 Stubble → Celery 550 

ωC5 Fallow_smooth → Stubble 154 

ωC6 Vinyard_untrained → Celery 108 

ωC7 Vinyard_untrained → Fallow_smooth 108 

ωC8 Fallow_rough_plow → Fallow_smooth 35 

ωn No-change 19078 



 

 83 

Data Set 2: Real Hyperion hyperspectral remote sensing data set 

This data set is made up of a pair of real bi-temporal hyperspectral remote sensing images acquired by 

the Hyperion sensor mounted onboard the EO-1 satellite on May 1, 2004 (X1) and May 8, 2007 (X2). The 

study area is an agricultural irrigated land of Umatilla County, Oregon, United States, which has a size of 

180×225 pixels. The Hyperion image has a wavelength range from 350nm to 2580nm, characterized by a 

spectral resolution of 10nm and a spatial resolution of 30m. After the pre-processing phase (i.e., bad 

stripes repairing, uncalibrated and noisiest bands removal, atmospheric correction, co-registration), 159 

bands (i.e., bands: 8-57, 82-119, 131-164, 182-184, 187-220) out of the original 242 bands were used for 

the considered CD task. Occurred changes in this scenario mainly include the land-cover transitions be-

tween crops, bare soil, variations in soil moisture and water content of vegetation. Note that no ground 

truth data are available for this data set, thus the detailed validation of the results was done qualitatively 

through a careful visual analysis. Fig.6-3 (a) and (b) show the false color composite of the X1 and X2 im-

ages, respectively. Fig.6-3 (c) presents a false color composite of three bands in XD, thus possible change 

classes are shown in different colors whereas the gray pixels indicate the no-change background. 

 

   
(a) (b) (c) 

Fig.6-3 Bi-temporal Hyperion images acquired on an agricultural irrigated scenario. False color composite (wave-

length: R: 650.67nm, G: 548.92nm, B: 447.17nm) images acquired in: (a) 2004 (X1), (b) 2007 (X2), and (c) compo-

site of three XD channels (wavelength: R: 823.65nm, G: 721.90nm, B: 620.15nm). 

 

6.4 Experimental Results 

6.4.1 Simulated Hyperspectral Data Set 

Let us analyze in detail the experimental results obtained by the proposed MSU approach applied to 

one simulated image pair (associated with SNR=20dB). First, we generated XS, and divided it into four 

regular patches XS,1-XS,4 (Z=4), see Fig.6-4. In each patch, the number of MT-EMs was estimated by us-

ing the ELM algorithm. The VCA was implemented to extract MT-EMs. Thus U was obtained as the un-

ion of all MT-EMs from all patches (see Fig.6-4). The abundances AS were then calculated according to 

(27). Tρ was automatically estimated on the magnitude variable ρ [31] and was set equal to 0.82 to sepa-
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rate Uc and Un. Tϑ (which is the only manually defined parameter) was set equal to 0.01 for controlling 

endmember grouping in Uc. MT-EM abundances were summed into the final abundances of change and 

no-change classes based on the grouping results to generate the final change detection map (33), (34). 

From Fig.6-4 we can see that the MSU approach extracted all simulated MT-EMs (i.e., Ps=35) from the 

four divided patches, representing very well the distinct endmembers (including both the change and no-

change classes) in the considered local patches. After change analysis, all the simulated change targets 

were identified correctly having at least one hit MT-EM on each of them. Even the small size change 

classes were detected successfully. The endmember grouping resulted in eight unique change classes, 

which is the correct number of the simulated changes. The spectral signatures of the detected MT-EMs 

(associated with the detected eight change classes and the no-change class) are shown in Fig.6-5, and the 

corresponding abundances of each class are illustrated in Fig.6-6 (a)-(j). 

 

Ps,n=24 Ps,c=11 Ps=35 

 

 

Fig.6-4 Extracted MT-EMs by the proposed MSU approach on the simulated data set with SNR=20dB. From left to 

right, up to down the four patches XS,1 (Ps,1=10), XS,2 (Ps,2=8), XS,3 (Ps,3=9) and XS,4 (Ps,4=8) are shown. 

 

From Fig.6-5 and Fig.6-6, we can observe that: 1) The detected eight change classes have unique spec-

tral signatures in the XS domain that are discriminable among each other. The two components of MT-EM 

spectra have different shapes, indicating the change nature of the endmembers, whereas the no-change 

class has similar spectral shapes in two components; 2) MT-EMs identified from spatial different regions 

in XS but grouped into a same class (e.g., see MT-EMs in change class 3, class 4 and class 6) show slight 

differences in their spectra thus confirming the endmember spectral variability. Their abundances are 

summed into the corresponding grouped class rather than being used to represent a class independently, 

thus to better describe the related unique change class present in the global scene; 3) the abundance maps 

show a good unmixing and separation result among different classes (see Fig.6-6.a-i), where the detected 

eight change targets and the no-change background shows a clear contrast of their abundances (with re-

spect to the represented colors). Thus the considered multiple change detection problem was successfully 

solved by estimating the percentage of class substances in the subpixel level. 
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CD maps obtained by the proposed MSU approach on the four simulated hyperspectral data sets are 

shown in Fig.6-7. From a qualitative analysis of the CD maps, we can observe that the proposed MSU 

technique achieved good detection results under different noise levels. All eight change classes were suc-

cessfully detected in all cases but the one with the highest noise level, where the small ωC8 was not de-

tected (see Fig.6-7, SNR=10dB). This is due to the fact that as expected the significance of small changes 

decreases when increasing the noise levels, thus a 4-patch division is not sufficient to detect all of them. 

In this case, a smaller patch scale is required to reach the optimal detection scale. 

 

 
Fig.6-5 Spectral signatures of the MT-EMs extracted by the proposed MSU approach on the simulated data set 

(SNR=20 dB), where eight unique change classes (in different colors) are identified, and the no-change class 

endmembers are in black. Endmembers that belong to the same class represent the variability in the image. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 
Fig.6-6 Final class abundances on the simulated data set (SNR=20dB), where (a)-(h) are the abundances of eight 

change classes, and (i) of the no-change class. 
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A detailed quantitative analysis was carried out by comparing the experimental results obtained by the 

proposed subpixel-level MSU approach with those yielded by three pixel-level CD-HS methods: 1) the 

hierarchical spectral change vector analysis (HSCVA) [86], 2) the sequential spectral change vector anal-

ysis (S
2
CVA) [87], and 3) the unsupervised k-means clustering applied to the changed spectral change 

vectors. Experiments were carried out on the four simulated image pairs with different SNR values (i.e., 

10-40 dB). Note that in the case of SNR=10dB the 8-patch (Z=8) scheme was used in the MSU approach, 

thus obtaining the detection of all eight change classes. Advantage was given to the k-means by giving as 

input the known number of classes (i.e., K=8), whereas for the other methods this number was estimated 

in the CD process. The final result of k-means was generated by the average of 100 trails in order to re-

duce the uncertainty of random initialization. 

 

SNR Change-Detection Maps 

 

10 dB 

 

20 dB 

 

30 dB 

 

40 dB 

 

Fig.6-7 Change-detection maps obtained by the MSU approach on different simulated hyperspectral data sets (with 

SNR=10, 20, 30, 40 dB). Different change classes are in different colors, and the no-change class is in white color. 
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The numerical results are given in TABLE 6-2, where accuracy indices including the Overall Accuracy 

(OA), the Kappa Coefficient (Kappa) and the number of detection errors were computed according to the 

available reference map. Note that all the considered methods detected the correct number of changes 

(i.e., K=8). From TABLE 6-2, one can see that the two state-of-the-art hierarchical methods achieved 

good results in all four cases, which obtained the highest OA and Kappa values. The systematic top-down 

structure in the hierarchical analysis gradually recovers and models the hidden change information in the 

data set, thus resulting in more accurate results when compared with the proposed one-step processing 

[86], [87]. However, it is worth noting that: 1) both HSCVA and S
2
CVA methods are designed in a semi-

automatic fashion (i.e., an initialization for model selection in HSCVA [86] and a user interaction for 

change identification in S
2
CVA [87] are required, respectively); 2) Effort is required to search for the hi-

erarchical structure, which increases the implementation complexity and the time cost. For example, for 

the simulated data set with SNR=20dB, to successfully detect all eight change classes, both methods re-

sulted in a three-level hierarchy with more than twelve nodes. On the contrary, the proposed automatic 

MSU method obtained only slightly worst CD result compared with the two state-of-the-art semi-

automatic techniques without exploiting a hierarchical structure. Note that although the reference k-means 

algorithm was applied using the known number of classes, it resulted in a significantly higher number of 

errors than the other three methods (see TABLE 6-2). This indicates the difficulty of the CD-HS problem 

to be solved when applying the clustering methods directly to the high-dimensional hyperspectral images. 

 

TABLE 6-2 CHANGE DETECTION ACCURACY AND ERROR INDICES OBTAINED BY THE CONSID-

ERED METHODS (DIFFERENT SIMULATED HYPERSPECTRAL DATA SETS). 

SNR Method 
Unsupervised and  

Automatic Detection?  OA (%) Kappa Errors (pixel) 

10 dB 

HSCVA No 99.69 0.9829 64 

S
2
CVA No 99.74 0.9856 54 

k-means No 98.32 0.8988 353 

MSU (Z=8) Yes 99.54 0.9749 96 

20 dB 

 

HSCVA No 99.99 0.9995 2 

S
2
CVA No 99.98 0.9989 4 

k-means No 99.47 0.9702   111 

MSU (Z=4) Yes 99.96 0.9978 8 

30 dB 

 

HSCVA No 99.99 0.9997 1 

S
2
CVA No 99.98 0.9989 4 

k-means No 99.66 0.9811   71 

MSU (Z=4) Yes 99.98 0.9989 4 

40 dB 

HSCVA No 99.99 0.9997 1 

S
2
CVA No 99.98 0.9989 4 

k-means No 99.78 0.9880   45 

MSU (Z=4) Yes 99.99 0.9992 3 
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6.4.2 Real Hyperion Remote Sensing Satellite Data Set 

Experiments were carried out by using the proposed MSU approach and the three pixel-level reference 

methods (i.e., HSCVA, S
2
CVA, k-means) as in the previous case. XS was divided into four regular patch-

es (Z=4) (see Fig.6-8). The ELM algorithm was applied to each local patch to identify the number of MT-

EMs (i.e., Fig.6-8 Ps,1-Ps,4). A total of 42 MT-EMs were identified, which consider the local spectral dis-

tinct endmembers thus better describing the spectral composition in the whole scene. The VCA was used 

to extract local MT-EMs in each patch. All the extracted MT-EMs are shown in Fig.6-8. The abundances 

AS were calculated according to (26) and (27). The change analysis was done by automatically estimating 

the Tρ equal to 1.486 to separate U into Uc and Un. The only parameter to be manually selected for the 

MT-EM grouping in Uc was defined as Tϑ =0.01. Seven unique change classes were thus detected. The 

final class abundances were then summed and compared in each pixel of XS to define the final change de-

tection map according to (33) and (34). 

 

Ps,n=26 Ps,c=16 Ps=42 

 

 

Fig.6-8 MT-EMs extracted by the proposed MSU approach on the real bitemporal Hyperion data set. From left to 

right, up to down the four split patches of XS,1 (Ps,1=12), XS,2 (Ps,2=7), XS,3 (Ps,3=13) and XS,4 (Ps,4=10) are shown. 

 

The spectral signatures of the extracted MT-EMs by MSU are illustrated in Fig.6-9, including seven 

change classes in different colors and the no-change class in black. Their corresponding abundances are 

shown in Fig.6-10 (a)-(h). We can observe that: 1) different or similar spectral shapes in two components 

of the MT-EM spectrum indicate the presence of the change classes and the no-change class in the XS 

domain, respectively. The MT-EMs of the detected change classes have discriminable and unique spectral 

signatures among each other (See Fig.6-9 change classes 1-7); 2) an endmember set rather than a single 

endmember was used to represent a detected change class, thus the occurred change targets were de-
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scribed via unmixing by also considering the endmember variability (see Fig.6-9 change classes 1-3, 5-7); 

3) we are not interested in distinguishing MT-EMs of different no-change classes among each other in Un. 

However, as an important and non-negligible source of endmembers in the defined mixture model in XS, 

they were considered in the unmixing process, and their abundances were summed into the final no-

change class ωn. A good estimation of the no-change background can be seen in Fig.6-10 (h), which is 

well separated from the other change classes; 4) the abundances of change classes (see Fig.6-10 a-g) con-

firm the accurate representations of the unique changes and a discrimination among them. From the 

abundance maps, one can easily observe the spatial distribution of different change classes in the scene 

and investigate in detail their composition within a pixel, thus better understanding and solving the con-

sidered CD problem at subpixel level. Note that the circle patterns identified in the change class 7 in 

Fig.6-10 (g) might be associated to the misregistration errors of roads that surround the agricultural irri-

gated fields. Visual analysis on the Google maps [124] tells us that those roads have an average width be-

tween 6m to 10m (see the screenshots of google maps shown in Fig.6-11), which is less than half pixel on 

the Hyperion images whose spatial resolution is 30m. Despite in the pre-processing step the residual val-

ue of co-registration is limited within 0.5 pixel, the co-registration errors may still contribute to the defini-

tion of change endmembers and thus change classes. However, these classes can be associated with noise 

in a post-processing analysis, and possibly used for the optimization of the co-registration process [125]. 

 

 

Fig.6-9 Spectral signatures of MT-EMs extracted by the proposed MSU approach on the real bi-temporal Hyperion 

remote sensing data set. Seven unique change classes are identified and shown in different colors, while the no-

change MT-EMs are in black. Endmembers that belong to the same class represent the variability in the image. 



Chapter 6. A Novel Multitemporal Spectral Unmixing Approach for Hyper-spectral Images Change De-

tection 

90 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Fig.6-10 Final class abundances obtained by MSU on the real bi-temporal Hyperion data set: (a)-(g) show the seven 

change classes and (h) the no-change class. 

 

 

 

 

Fig.6-11 Circle roads that surround the agricultural irrigated fields observed from Google Maps [124] 

Average width: 10m 

Average width: 6m 
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 (a) (b) (c) 

    
 (d) (e) (f) 

Fig.6-12 Change-detection maps obtained by: (a) HSCVA [86] (K=6); (b) S2CVA [87] (K=7); (c) k-means (K=7) 

and (f) the proposed MSU (K=7) on the real bitemporal Hyperion data set. Different changes are in different colors 

and the no-change class is in white color. Two reference false color composites of XD are provided for visual com-

parison in: (d) wavelength: R: 823.65nm, G: 721.90nm, B: 620.15nm; (e) R: 1729.7nm, G: 752.43nm, B: 548.92nm. 

 

Change-detection maps obtained by the considered approaches are shown in Fig.6-12 (a)-(d). The two 

reference hierarchical methods detected six and seven kinds of changes, respectively. The proposed MSU 

detected K=7 change classes as S
2
CVA. It can be clearly seen that change targets were better recognized 

in the result of MSU (highlighted in Fig.6-12.d) than in those of the two hierarchical methods (see 

Fig.6-12 a and b) and the k-means (see Fig.6-12.c). Comparing to the reference false color composite of 

XD bands in Fig.6-12 (e) and (f), one can observe that the changes highlighted in Fig.6-12.d (especially 

the change class ωC3
 in green color) were detected more accurately. Accordingly, the multitemporal spec-

tral mixture model used by the proposed MSU approach investigating in details the spectral composition 

of a pixel in XS, avoids the propagation of errors due to the crisp modeling of change analysis accom-

plished by the reference methods. Despite an advantage was given to the k-means method providing as 

input the same class number obtained by MSU (i.e., K=7), more fragments are present in the detected 

change map (see Fig.6-12.c). It is important to note that the proposed MSU approach was implemented in 

an automatic and unsupervised way. However, it detected successfully the multiple change classes and 

resulted in comparable (slightly better) CD results than the other techniques without any manual opera-

tion as those required in the two semi-automatic reference methods. 
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6.5 Discussion and Conclusions 

In this chapter, a novel multitemporal spectral unmixing (MSU) approach has been proposed to address 

the challenging multiple change detection problem in multitemporal hyperspectral images. The proposed 

method is designed in an automatic and unsupervised way, thus is independent from the availability of 

prior knowledge and the manual assistance of the user in the real applications. The main novelties and 

contributions of the proposed method are as follows: 1) it provides a new perspective to detect changes by 

jointly exploring the spectral-temporal variations in XS (i.e., spectral stacked domain); 2) it proposes a 

multitemporal spectral unmixing framework to solve the multiple change detection problem, where the 

identification of the number of change classes is done by identifying the distinct endmembers and the 

unique change classes, and the discrimination of changes is addressed by unmixing and abundances anal-

ysis; 3) it allows one to understand in details the spectral composition of a pixel, thus implementing CD at 

subpixel level. Experimental results obtained on both simulated and real hyperspectral images confirmed 

the effectiveness of the proposed MSU approach. 

From the theoretical analysis and the practical experimental results, we can conclude that:  

1) By taking advantage of the endmembers extraction and spectral unmixing while considering 

endmember variability (i.e., local endmembers strategy), the proposed method models well the change 

and no-change spectral compositions inside of a pixel. A more reliable decision is made according to the 

analysis of the endmember abundances associated with a given class with respect to a crisp decision 

based on the pure-pixel theory. Accordingly, more subpixel level spectral variations are expected to be 

identified, which are usually not detectable in the pixel-level-based state-of-the-art techniques. 

2) The proposed method is automatic and unsupervised, thus allowing a fast and efficient CD without 

requiring any manual assistance of the users. Note that other endmember extraction techniques or unmix-

ing models can be easily adopted within the proposed MSU approach.  

Future developments of this work will include: 1) a joint analysis of the spatial-spectral-temporal in-

formation and the related impact on the proposed method; and 2) the extension of the proposed approach 

to the hyper-temporal (i.e., time series) domain. 
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Chapter 7  

 

 

Conclusions 
 

This chapter draws the conclusion of the research activities carried out in this thesis. It also summarizes 

and discusses the results. Finally, the future developments are described. 

 

In this thesis, the interesting but challenging multiple-change detection problem in multitemporal hy-

perspectral images is comprehensively analyzed. Advanced techniques for automatic change detection in 

hyperspectral images have been developed. We: 1) intensively reviewed the literature on CD techniques 

in multitemporal multispectral and hyperspectral images; 2) analyzed the problems and challenges when 

dealing with CD on hyperspectral images; 3) proposed novel concepts for modelling the considered CD 

problem in the spectral difference domain and the multitemporal spectral stacked domain; 4) developed a 

semi-automatic technique for iteratively discovering, representing and detecting multiple changes; 5) pro-

posed a partially-unsupervised hierarchical clustering approach to identify multiple changes; 6) proposed 

an automatic multitemporal spectral unmixing technique for multiple change detection. 

A comprehensive overview of the state-of-the-art change-detection techniques is presented for both 

multitemporal multispectral and hyperspectral images. Limitations and challenges of the literature tech-

niques have been analyzed and discussed. Then a qualitative and theoretical analysis of the relevant con-

cepts in two change representation domains has been presented. It provides an empirical but solid analysis 

for the formulization of the CD-HS task, which leads to the proposal of corresponding solutions in the 

thesis. 

In the spectral difference domain, by taking into account the intrinsic complexity of the hyperspectral 

data, the concepts of “major change” and “subtle change” have been defined from the perspective of pixel 

spectral behaviours, along with a deep analysis of their structures. This resulted in the definition of a hier-

archical modelling of the considered complex CD-HS problem. Based on this analysis, we proposed two 

novel solutions. 

The first solution is a novel sequential spectral change vector analysis (S
2
CVA) method developed for 

discovering and detecting multiple changes (i.e., different kinds of changes) in multitemporal hyperspec-

tral images. The proposed method is designed to be sensitive to the small spectral variations that can be 

identified in hyperspectral images but usually are not detectable in multispectral images. The proposed 

method exploits an iterative hierarchical scheme that at each iteration discovers and identifies a subset of 

changes. Developed on the state-of-the-art C
2
VA representation, the proposed Adaptive Spectral Change 

Vector Representation (ASCVR) method adaptively and automatically changes the reference vectors ac-

cording to the SCVs associated to the specific changes that are analyzed. Therefore, although the com-

pression from the B-Dimensional to the 2-Dimensional feature space introduces an unavoidable loss of 
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information, the sequential analysis gradually recovers in the hierarchy the information loss at first levels, 

resulting in a complete change representation and in a satisfactory change-detection map. The proposed 

approach is developed in an interactive and semi-automatic fashion, which allows one to study in detail 

the structure of changes hidden in the variations of the spectral signatures according to a top-down proce-

dure. Despite the iterative nature, the computational complexity of the proposed method is very low. Few 

minutes were required for the entire processing on a standard PC for all the experimental data sets. In 

general, the total processing time depends on the size of the images and also on the depth of the hierar-

chical tree (the complexity of the changes present in the data). Experimental results obtained on three hy-

perspectral data sets confirmed the effectiveness of the proposed method. 

The second solution is a novel hierarchical spectral change clustering approach, which aims to identify 

the possible changes occurred between a pair of hyperspectral images. Changes having discriminable 

spectral behaviors in hyperspectral images are identified hierarchically by considering coarse to fine spec-

tral change significance in different levels. This leads to a better model of the complex structure of 

changes in the hyperspectral images, which is usually ignored by the state-of-the-art techniques based on 

a single level analysis. In particular, the proposed approach models the detection of multiple changes ac-

cording to an iterative clustering, thus the separation of multiple change information (i.e., major changes, 

subtle changes and finally change endmembers) is carried out according to the difference of their SCVs 

represented in the spectral difference domain. In this way, we progressively decompose the complex 

problem into several specific sub-problems, and focus on each single portion of the multiple-change in-

formation highlighted in a given detection level. This makes it possible to effectively discover the differ-

ence among similar changes by decreasing the complexity of detection. Moreover, the proposed approach 

is designed in a partially-unsupervised fashion, thus it fits most of actual applications, for which often the 

ground truth data are not available. Satisfactory experimental results obtained on simulated and real bi-

temporal images confirm the validity of the proposed approach with higher change-detection overall ac-

curacy and higher multi-class separability measurement. 

In the multitemporal spectral stacked domain, a multitemporal spectral mixture model has been defined 

to formalize the same CD problem from the point of view of spectral composition within a pixel. A novel 

multitemporal spectral unmixing (MSU) approach has been proposed for addressing the challenging mul-

tiple-change detection problem in bi-temporal hyperspectral images. Differently from the state-of-the-art 

methods that are mainly designed at pixel level, the proposed approach investigates in detail the spectral-

spatial-temporal variations at subpixel level. The considered CD problem is analyzed in a multitemporal 

spectral stacked domain, where a bitemporal spectral mixture model is defined to formalize and analyze 

the spectral composition within a pixel. Different distinct multitemporal endmembers (MT-EMs) are ex-

tracted according to an automatic unmixing technique. Then a change analysis strategy is designed to dis-

tinguish the change and no-change MT-EMs. An endmember grouping scheme is applied to the changed 

MT-EMs to detect the unique change classes present in the scene. Finally, the considered multiple-change 

detection problem is solved by analyzing the abundances of the change and no-change classes and their 
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contribution to each pixel. In this way, a more reliable decision is made according to the analysis of the 

endmember abundances associated to a given class rather than a crisp decision based on the pure-pixel 

theory. Thus more spectral variations are expected to be identified at subpixel level, which are usually not 

detectable in the pixel-based literature techniques. The proposed technique is designed in an automatic 

and unsupervised way, thus is independent from the prior knowledge and the manual assistance of the us-

er in the real applications. The proposed approach has been validated on both simulated and real mul-

titemporal hyperspectral datasets presenting multiple changes. Experimental results confirmed the effec-

tiveness of the proposed method. 

In order to continue but extend the research activities carried out in this thesis, some remaining open is-

sues and interesting topics will be considered as future developments: 1) study of effective change varia-

bles constructed from the high-dimensionality feature space to enhance the performance of change repre-

sentation and discovery in a low-dimensionality compressed feature space; 2) analysis on the joint use of 

the spatial-spectral-temporal information to increase the robustness and the accuracy of the proposed 

techniques; 3) design of advanced semi-automatic/fully-automatic techniques for real change detection 

applications; 4) extension of the proposed approaches to the analysis of time series hyperspectral images. 
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Appendix A 

 

In this appendix, the mathematical definitions of Euclidean distance ∆  and Spectral angle distance ϑ  

two metrics are recalled. Let X and Y be two vectors in a B-dimensional space. The two distance metrics 

are defined as follows: 

1
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b b
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TABLE A-1 PROPERTIES OF EUCLIDEAN DISTANCE AND SPECTRAL ANGLE DISTANCE [94] 

Metric Euclidean distance Spectral angle distance 

Value 0 ≤ ∆  0
2

π
ϑ≤ ≤  

Invariance Rotational Multiplicative scaling 

Additivity Yes No 

Monotonicity Yes No 

 

The properties of two distance metrics are summarized in TABLE A-1. In particular, it is important to 

note that spectral angle distance is invariant to the multiplicative scaling (37). Therefore, according to this 

property, the reference vector R for computing α in C
2
VA is not only limited to a unit vector R = [1 B

,…,1 B ], it can be extended to any constant vector R = [a,…,a], where a > 0 and a ∈ ℜ.  
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(37) 

where a, b∈ ℜ. 

However, the selection of a specific vector R that points out the major variations present in the high-

dimensional feature space (i.e., in our case are the multiple changes) is the key issue, which can result in a 

reliable compressed change representation in a 2-Dimensional polar domain. 
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Appendix B 

 

 

As an alternative technique, Singular Value Decomposition (SVD) is also suitable to help extract a ref-

erence vector R, which used for building a reasonable and effective representation of the hidden change 

patterns in Ω. From the mathematical point of view, SVD is a factorization approach that decomposes the 

matrix xh,j (i.e., SCVs in the considered cluster Ph,j, cluster j at level h of the hierarchy) into a product of 

three matrices: 

( ), , , ,

s s s

h j h j h j h j

∗

=x U D V  (38) 

where two unitary matrices ,

s

h jU  and ,

s

h jV  represent sets of ‘left’ and ‘right’ orthonormal bases, respec-

tively. ( ),

s

h j

∗

V  denotes the conjugate transpose of the unitary matrix ,

s

h jV . ,

s

h jD  is a diagonal matrix where 

the singular values are sorted in a descending order (i.e., ,1 ,2

, , ...s s

h j h jλ λ> > ) in the diagonal: 
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The singular values are all non-negative. Their magnitudes indicate the importance of the correspond-

ing bases (i.e., vectors in ,

s

h jU  and ,

s

h jV ). Thus singular values can reflect the amount of data variance cap-

tured by the bases. In particular, the first vector ,1

,

s

h jV  (corresponding to the biggest singular value ,1

,

s

h jλ ) in 

matrix ,

s

h jV  shows a reference direction that maximizes the variance of the measurement on αh,j. 
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The SVD in general has a more generalize ability due to the fact that it can be applied to non-square 

matrix, whereas the eigenvalue decomposition can be only applied to certain classes of square matrices. 

However, two decompositions are still related. Given a SVD of xh,j (see (38)), the following two relations 

hold: 
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The right-hand formulations describe the eigenvalue decomposition of the left-hand ones, thus one can 

observe that: 

1) Columns in ,

s

h jV  (right-singular vectors) are eigenvectors of , ,h j h j

∗x x ; 

2) Columns in ,

s

h jU  (left-singular vectors) are eigenvectors of , ,h j h j

∗x x ; 

3) Non-zero elements of ,

s

h jD  (non-zero singular values) are the square roots of the non-zero eigenval-

ues of , ,h j h j

∗x x  or , ,h j h j

∗x x . 


