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Abstract

The objective of this doctoral study is to develop efficient techniques for

flow segmentation, anomaly detection, and behavior classification in crowd

scenes. Considering the complexities of occlusion, we focused our study on

gathering the motion information at a higher scale, thus not associating

it to single objects, but considering the crowd as a single entity. Firstly,

we propose methods for flow segmentation based on correlation features,

graph cut, Conditional Random Fields (CRF), enthalpy model, and particle

mutual influence model. Secondly, methods based on deviant orientation

information, Gaussian Mixture Model (GMM), and MLP neural network

combined with GoodFeaturesToTrack are proposed to detect two types of

anomalies. The first one detects deviant motion of the pedestrians com-

pared to what has been observed beforehand. The second one detects panic

situation by adopting the GMM and MLP to learn the behavior of the mo-

tion features extracted from a grid of particles and GoodFeaturesToTrack,

respectively. Finally, we propose particle-driven and hybrid appraoches to

classify the behaviors of crowd in terms of lane, arch/ring, bottleneck, block-

ing and fountainhead within a region of interest (ROI). For this purpose,

the particle-driven approach extracts and fuses spatio-temporal features to-

gether. The spatial features represent the density of neighboring particles in

the predefined proximity, whereas the temporal features represent the ren-

dering of trajectories traveled by the particles. The hybrid approach exploits

a thermal diffusion process combined with an extended variant of the social

force model (SFM).
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Chapter 1

Introduction

This chapter overviews the research field investigated in this doctoral study.

In particular, we describe crowd motion analysis techniques, focusing on

segmentation, anomalies detection, and behavior classification. The main

objectives and the novel contributions of this thesis are also presented.

Finally, we describe the organization of the thesis.

1.1 Overview

According to the report presented by Montgomery [34], more than half

of the people of the world live in populated areas. Therefore, automated

motion analysis plays an important role in pedestrian flow management

and visual surveillance systems. in terms of designing public spaces, visual

surveillance systems, and intelligent environments. Applications include

the monitoring of pedestrian flows, preventing accidents, as well as imple-

menting evacuation plans necessary in the unlikely event of a fire or in

presence of riots in urban areas. In the literature, the research has focused

on gathering the motion information at a higher scale, thus not associating

it to single objects. These approaches often require low-level features such

as multi-resolution histograms [69], spatio-temporal cuboids [23], appear-

ance or motion descriptors [4] [43] and spatio-temporal volumes [25] [6].
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1.1. OVERVIEW CHAPTER 1. INTRODUCTION

Pedestrian flow implies that the the flow can neither be considered as a

continuum, nor can its uniform behavior be verified given that individuals

are independent, which are key requirements in the existing techniques.

For instance, Ali and Shah [2] proposed a Lagrangian Coherent Structure

(LCS) approach to segment the flow using the Finite Time Lyapunov Expo-

nent (FTLE) [48], to extract the boundaries between different flow regions

in the scene. However, when the optical flow computation is not accurate

due to the lack of coherence in motion, the boundaries may be discontinu-

ous. Furthermore, the merge operation based on Lyapunov divergence is

mainly suitable for combining adjacent segments, resulting also in this case

in over-segmented regions in pedestrian flow scenes. A more recent related

work [32] proposed streaklines based on linear dynamical model. However,

streaklines are incapable to encapsulate the crowd dynamics, thus failing

to group pixels with common motion patterns. In addition, streaklines

cannot capture temporal changes, exhibiting choppy motion segmentation

in high density crowd scenes.

Moreover, automated motion analysis is also important for designing

public spaces and intelligent environments. Real environments often in-

clude road networks, pedestrian pathways, and trails. The movement of

pedestrians in the aforementioned places is a complex system to study.

However, when we consider the environment being very large, all areas

of the environment are not equally important. Therefore, a vision-based

throttle that relies on the acquired visual data would be desirable in order

to improve on the one hand the structure of the environment, for urban

design and planning, and on the other hand prevent accidents. For this

purpose, Ozturk et al. [38] detect dominant motion flows by exploiting

local and global information using SIFT features and Self-Tuning Spectral

Clustering [67]. However, SIFT features can be unreliable in represent-

ing the characteristic parts of the objects due to redundant information in

2
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the 128-dimensional descriptor [13] [64]. Moreover, the spectral clustering

approach fails to simultaneously identify clusters at different scales [35].

Automated detection of anomalous events generated by self-organization

phenomena resulting from the unlikely event of a fire or in presence of riots

in urban areas, can cause significant hindrance in the flow. This makes

necessary to provide more vigilant surveillance, possibly in lieu of, or as

an assistance to, human operators. However, there is a lack of empirical

studies of crowded scenes where besides basic motion segmentation, also

the analysis of more structured behaviors, such as the formation of lanes,

or the detection of oscillations at bottlenecks, is decisive for the safety

of people during, for example, the access to or exit from mass events, or

in situations of emergency evacuation. Congested conditions can possibly

trigger crowd disasters arising from the maximum density and irregular flow

of crowd. Moreover, the behavior of the crowd may transition from one

state of collective behavior to a qualitatively different behavior depending

on the density of crowd. Such transitions typically occur when individuals

in the crowd accumulate, propagate, or uniformly move with the flow.

1.2 Proposed Solutions

The objective of this doctoral study is to develop efficient techniques for

motion segmentation, anomalies detection, and behavior classification con-

sidering the complexities of occlusion, foreshortening, and perspective.

Given such requirements, during this doctoral research we contributed

in each application scenario proposing the following approaches :

• Motion segmentation;

In [55], we train a conditional random field (CRF) to segment the mo-

tion flow. We first position a grid of particles over the frame and track

it using the Lucas-Kanade optical flow. By tracking the particles, we

3
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extract motion patterns, which are used as a-priori information for

CRF training. Training is performed by means of the gradient as-

cent algorithm, so as to maximize the conditional likelihood. Further-

more, the parameters after training are used for CRF to segment the

crowd flow in terms of motion directions. In fact, compared to other

approaches, such as Hidden Markov Model (HMM), CRF is able to

model dense and correlated flow features of crowd since it models the

conditional probability allowing relaxation of the strong independence

assumptions made by the HMM.

For medium density scenes, we consider intra- and inter-group proper-

ties, in [54], representing motion dynamics of pedestrian scenes. Intra-

group properties, e.g. slackness and stability, denote internal coordin-

ation among members in the same group, whilst inter-group prop-

erties, e.g. distributiveness, reflect the external interaction between

members in different groups. Groups in the pedestrian flow are repres-

ented by slacked individuals lacking firmness. Therefore, we observe

that lightly packed pedestrian flows of individuals can be treated as

a constituent (block), albeit irregular and inhomogeneous at a coarse

scale. This constituent begins to correspond to a harmonic pattern,

as is the case of the continuum, at a finer scale. We also observe

that, groups of individuals are likely to exhibit an increased level of

similarity represented by block-based correlation features based on

constituents. Our goal in using correlation features for localized con-

stituents is to estimate recurrent structures in the frames, but with

the important distinction that such constituents are not expected to

fully contain a person. After analyzing the correlation features, the

min cut/max flow algorithm is exploited in order to obtain a regu-

larized representation of the motion field. The inspiration for this

algorithm comes from the observation that a pedestrian flow can be
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represented as a set of nodes of a graph, where each node corresponds

to a constituent of a video frame.

Furthermore, we present a novel method [58] for dominant motion

analysis in crowded scenes, based on corner features. For this pur-

pose, we extract the corner features from a video frame and track

them using the Lucas-Kanade optical flow. These features are then

analyzed through an enthalpy model returning a subset of features of

potential interest. Subsequently, we extract orientation information

from the corner features and train a random forest to learn the beha-

vior of the crowd, in order to detect dominant motion flows. In fact,

random forests deliver a higher level of predictive accuracy automatic-

ally, resist to overfitting, diagnose pinpoint multivariate outliers, and

exhibit invariance to monotone transformations of variables.

In [46], we detect and track moving entities in wide surveillance videos.

Considering the wide area covered by the camera, which makes the

detection and tracking of humans, as well as the classification of their

motion a complex task and resource consuming, we adopt a particle-

based approach to highlight particles of interest and group them based

on their motion properties. A cross influence matrix is computed

at the particle level identifying the relevant areas of the video, and

pruning static particles and outliers. Based on the motion features

of the particles marked as interacting with their neighbors, a learning

procedure based on an MLP neural network is implemented, in order

to create consistent groups, representing the moving entities to be

tracked over time.

• Anomaly detection;

On top of motion segmentation, we investigated an anomaly detection

strategy [54], by highlighting deviant motion of the pedestrians com-
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pared to what has been observed beforehand. Once the motion flow

is extracted from the foreground, an accumulator is constructed on

top of each block to create the pedestrian motion model, by collecting

evidence regarding the dominant directions of pedestrian motion. The

accumulator is updated at every frame, keeping up with the evolution

of the pedestrian flow. The pedestrian motion model combined with

the output of multi-label optimization and orientation information is

exploited to detect anomalies.

In [57], we detect anomaly in term of panic situation. For this purpose,

we adopt Gaussian Mixture model (GMM) to learn the behavior of

motion features extracted from a grid of particles instead of modeling

the values of all the pixels as a mixture of Gaussians. These motion

features are exploited to learn repetitive variations of crowd scenes

for GMM, which models the normal behavior distribution. If each

particle resulted from a particular behavior, a single Gaussian would

be sufficient to model the motion feature of it, while accounting for sur-

rounding noise. However, in practice, multiple surfaces often appear

in the view frustum of a particular particle. Therefore we use multiple

adaptive Gaussians to approximate this process. At each frame the

parameters of the Gaussians are updated, and the Gaussians are eval-

uated using a simple heuristic to hypothesize, which are most likely to

be part of the distribution representing the normal crowd behavior.

To consolidate the anomaly detection in term of panic situation, we

present a method [59] that adopts multi-layer perceptron (MLP) feed-

forward neural network to learn the behavior of motion features ex-

tracted from the corner features instead of considering the values of

all the pixels. The motion features are exploited to learn the abrupt

changes of crowd scenes represented by corner features, thus mod-

eling the abnormal behavior of the crowd. A single motion feature
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extracted from an arbitrary corner feature is not sufficient to model

the abnormal behavior of crowd due to surrounding noise. Therefore,

for each corner feature we extract a set of motion features to robustly

model the abnormal behavior of the crowd.

• Behavior classification;

We identify crowd behaviors in real-time using a particle-driven ap-

proach [56]. We focus on three types of behaviors, namely lanes,

arches, and bottlenecks. The method exploits a grid of particles uni-

formly distributed on the video frame, and advected over a temporal

window through optical flow tracking. Approximating the moving

particles to individuals, spatio-temporal features are extracted at the

end of the temporal window for each particle within a region of interest

(ROI). The temporal features represent the rendering of trajectories

traveled by the particles, whereas the spatial features represent the

density of neighboring particles in the predefined proximity. The two

features are fused together to model the behavior of the crowd in low

to medium density crowd. Furthermore, the feature extraction process

is computationally affordable, thus suitable to be applied in real-time

applications for behavior analysis in crowded scenes.

We also present a novel method [60] for crowd behaviors classification

within a region of interest (ROI) taking inspiration from dynamic

systems. In our method, a motion flow field is obtained from video

frames using dense optical flow technique. Then a thermal diffusion

process is exploited to turn the motion flow field into a more coher-

ent motion field. Approximating the moving particles to individuals,

their interaction forces, represented as force flow, are computed using

an extended variant of social force model (E-SFM) to obtain potential

particles of interest. Apart from capturing the effect of neighboring in-

7
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dividuals on each other, the E-SFM also takes into account the crowd

turbulence usually triggered by regions of high interactions. The ap-

proach presents significant performance irrespective of the density of

the crowd.

Table 1.1, summarizes our proposed methods covered in this section

in terms of analysis and features used for motion segmentation, anomaly

detection, and behavior classification.

1.3 Thesis Structure

The thesis is organized in 5 chapters where each Chapter begins with the

corresponding state of the art. In Chapter 2, the details of our proposed

approaches regarding pedestrian flow segmentation are presented and dis-

cussed. In Chapter 3 and Chapter 4, the details of our proposed approaches

regarding anomaly detection and behavior classification are presented and

discussed, respectively. Moreover, Chapter 5 collects some concluding re-

marks.

8
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Table 1.1: Summary of our proposed methods for motion segmentation, anomly detection

and behavior classification. Methods dealing with any of the three problems are marked

Y (Yes) in the corresponding column.

Ref.
Analysis

Features
Motion Anomaly Behavior

level segmentation detection classification

[54] Medium density

Block-based

correlation Y Y -

Graph cut

[55] High density
CRF

Y - -
Graph cut

[46] High density
Influence matrix

Y - -
MLP

[58] High density

Enthalpy

Ymeasure - -

Random forests

[57] High density GMM - Y -

[59] High density
Corner features

- Y -
MLP

[56] Medium density

Spatio-

-temporal - Y

features

[60] High density

TDP

- - Y
E-SFM

Dynamic

system

9



1.3. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

10



Chapter 2

Motion Segmentation

This chapter begins with the state of the art regarding motion segmentation

and then presents our proposed methods. In particular, the techniques

based on block-based correlation, graph cut, and conditional random fields

(CRF) are presented. Subsequently, methods for analyzing dominant flows

and tracking moving entities based on particle influence model in crowded

scenes are presented, respectively.

2.1 State of The Art

The literature in crowd motion analysis is becoming rich, and an overview

about earlier algorithms in the area and related issues are presented by

Jacques et al. [22] and Zhang et al. [68]. In fact, activity analysis and scene

understanding entail object detection, tracking and activity recognition.

These approaches, requiring low-level motion features [61], appearance fea-

tures [31], or object trajectories [52], render good performance in low to me-

dium density crowd scenes. However, for higher density scenes, the research

has focused on gathering the motion information at a higher scale, thus not

associating it to single objects, but considering the crowd as a single entity.

These approaches often require low-level features such as multi-resolution

histograms [62] [69], spatio-temporal cuboids [23], appearance or motion
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descriptors [4] [43] and spatio-temporal volumes [23] [53] [37] [6].

We divide state of the art into three categories based on the density of

the flow considered. For example, methods targeting a single individual are

under individual level analysis, methods targeting two to five individuals

are under low density flow analysis, and methods targeting more than five

individuals are grouped under the term high density flow analysis. Meth-

ods that rely on individual level analysis and low density flow analysis try

to segment individual objects or group of objects in a scene, respectively.

These methods tend to produce more accurate results in scenes with a

limited number of moving entities. In pedestrian scenes, however, clutter

and severe occlusions make the individual or group segmentation an ex-

tremely challenging task. In contrast to that, high density flow analysis

methods treat the entire scene as a single entity, and usually capable of

obtaining coarser-level information, such as the identification of the main

flow, disregarding local and finer information.

The methods proposed by Bai and Sapiro [5], Cremers and Soatto [15],

and Paragios and Deriche [40], for objects segmentation, fall under indi-

vidual level analysis. Bai and Sapiro [5] exploit geodesic transforms to en-

courage spatial regularization and contrast-sensitivity for image and video

segmentation. The method assumes given user strokes and imposes an im-

plicit connectivity prior, which forces each region to be connected to one

stroke. In the work by Cremers and Soatto [15], the optical flow constraint

is exploited to estimate a conditional probability of the spatio-temporal

intensity change. Furthermore, motion estimation and segmentation are

integrated into a functional minimization strategy based on a Bayesian

framework. A mixture model is exploited by Paragios and Deriche [40] to

represent the inter-frame difference. The mixture model comprises of two

components corresponding to the foreground and background.

In low density flow analysis, Cheriyadat and Radke [14], Chan and Vas-

12
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concelos [11], and Cisar and Kembhavi [29], segment groups of objects.

Cheriyadat and Radke [14] exploited low-level features using optical flow,

in order to segment or track the dominant motion in the scene. For this

purpose, trajectories are clustered based on a distance measure. Chan and

Vasconcelos [11] used a mixture of dynamic textures to fit a video sequence

and then assigned homogeneous motion regions to the mixture components.

Cisar and Kembhavi [29] perform motion segmentation without relying on

the optical flow. For this purpose, they exploit a dynamic texture model

to measure the similarity between neighboring spatio-temporal patches.

These patches are grouped by connected component analysis, resulting

into over segmentation in the presence of pedestrian flow, since patches

corresponding to individuals moving homogeneously may not be connec-

ted.

The approaches proposed by Ali and Shah [2] and Mehran et al. [32] fall

under high density flow analysis for motion segmentation. Ali and Shah [2]

proposed a Lagrangian Coherent Structure (LCS) approach to segment the

flow using the Finite Time Lyapunov Exponent (FTLE) [48], to extract the

boundaries between different flow regions in the scene. However, when the

optical flow computation is not accurate due to the lack of coherence in

motion, the boundaries may be discontinuous. Furthermore, the merge

operation based on Lyapunov divergence is mainly suitable for combining

adjacent segments, resulting also in this case in over-segmented regions in

pedestrian flow scenes. A more recent work proposed by Mehran et al. [32]

exploit streaklines. Streaklines are vector field representations of the flow

and are represented through a linear dynamical model. Streaklines [32]

cannot capture temporal changes, exhibiting choppy motion segmentation

in low-density and medium-density crowd scenes. Additionally, both ap-

proaches [2] [32] are oriented toward crowd coherency. Thus both methods

become unreliable when coherency changes with the density of crowd.

13
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2.2 CRF With Graph Cut

The method we present is modeled in three main stages namely: particle

advection, CRF inferencing, and refinement of the motion map using graph

cut. During the first stage, a grid of particles is disposed on the video frame.

Each particle represents a block of pixels of predefined size. Motion pat-

terns, defined in terms of orientation features, are extracted by tracking the

particles using the pyramidal Lucas-Kanade optical flow [66]. During this

first step, the orientation features act as a sequential data for inferencing

the CRF, resulting into a motion map. The orientations features with the

corresponding label sequence are used to learn the CRF parameters during

the training stage, and the crowd motion directions are inferred on the test

samples. In order to provide a more coherent representation of the crowd

motion in the second step, graph cut [9] is used to filter out the residual

noise.

2.2.1 Inferencing

After disposing the grid of particles over the video frame, and tracking it

by the Lucas-Kanade optical flow, the orientation features of each particle

in term of angle of motion are extracted at regular intervals of K frames.

The collected orientation features are stored to build a feature vector for

each particle. The target of this processing step is to remove and filter out

the orientation features that would be possible if considered singularly, but

that do not contribute to the identification of the crowd motion direction.

A Conditional Random Field (CRF) is a discriminative model used for

labeling sequential data. It provides the probability of a particular label

sequence, given the observation sequence. Specifically, x is our input se-

quence, consisting in N observations collected within the K frames window

(i.e. x = x1, x2, . . . , xN), containing the orientation features. Given the
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observation sequence, the CRF thus signals the most probable label in

terms of direction, inferring the output label y (y = y1, y2, . . . , yM) of the

respective crowd motion direction, and quantized in M possible values.

p (y/x; w) =
exp

∑
j wjFj(x, y)

Z(x,w)
(2.1)

In Eq. (2.1), Fj(x, y) is a feature function, which consists of the paired

mapping Fj : X ∗ Y → <. Each feature function renders the score for

any output label y in terms of its relevance to the input observation vector

x. The flow of inference process is shown in Fig. 2.1 where N represents

the total number of particles tracked. The denominator in Eq. (2.1) is a

partition function Z(x,w), which ranges over all the label set y.

Z (x,w) =
∑
y′

exp

{∑
j

wjFj(x, y
′)

}
(2.2)

Hence, the partition function acts as a normalization factor. Given

orientation features x, the corresponding label is obtained as:

ŷ = argmaxyp (y/x; w) = argmaxy
∑
j

wjFj(x, y) (2.3)

For each j, we will obtain different Fj functions, according to the para-

meter wj and the test observation sequence x. Our main contention in

obtaining the probability score for each label sequence is that it is easy to

reveal the most probable direction for each particle, which can segment the

crowd motion as the scene dynamically changes over time.

2.2.2 Training

The goal of the training stage is to identify the appropriate values for

the parameters wj, so as to maximize the conditional probability of the

training examples. For this purpose we use the stochastic gradient ascent
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Figure 2.1: CRF Inference

to maximize the conditional log-likelihood (CLL) of the set of training

examples:

∂

∂wj
log p (y/x; w) = Fj(x, y)− ∂

∂wj
logZ (x,w) (2.4)

For each wj, the partial derivative of CLL is evaluated for single training

sequences, i.e., one weight for each feature function Fj. The partial derivat-

ive with respect to wj corresponds to the i-th value of the feature function

for its true label y, minus the averaged values of the feature function for

all possible labels y. Therefore, Eq. (2.4) can be rewritten as:

∂

∂wj
log p (y/x; w) = Fj(x, y)−

∑
y′

p (y′/x; w) [Fj(x, y
′)] (2.5)

In order to maximize the conditional log-likelihood by stochastic gradi-

ent ascent, wj is updated according to Eq. (2.6) where α is the learning
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rate.

wj = wj + α(Fj(x, y)−
∑
y′

p (y′/x; w) [Fj(x, y
′)]) (2.6)

2.2.3 Sanitizing the motion map

Although the output of the CRF inference is in general quite accurate

in indicating the motion flow, it still includes a non negligible amount of

noise. In order to remove this noise and to better present the main motion

directions of the crowd flow, we exploited the α-expansion moves based

on graph cuts [9], which produce a solution within a known factor of the

global minimum of the energy function. The minimization process takes

place according to Eq. (2.7)

E (L) =
∑
pεP

Dp (Lp) +
∑

(p,q)εN

Vp,q(Lp, Lq) (2.7)

where Dp is the so-called data cost term, and Vp,q is the smooth cost

term. The α-expansion minimizes the energy function for a set of labels

under the class of smoothness term, called metric. We exploited both the

data cost term and the smooth cost terms so that the resulting labeling

fit to the data and accomplishes the desired smoothing. Fig. 2.2 presents

the effectiveness of the α-expansion moves. Further detail of this process

is provided in Section 2.3.2.

As shown in Fig. 2.2, the α-expansion moves demonstrate a very good

capability in suppressing the residual noise left by the preceding processing

stages.

2.2.4 Experimental results

In this section we present the results of our approach. Experiments are

carried out on benchmark video sequences [2] [54] [32] to thoroughly eval-
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Figure 2.2: Input frames (first column), CRF segmentation (second column), and refine-

ment using graph cut (third column).
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uate the effectiveness of our proposed approach. In Fig. 2.3, the first rows

present the snapshots of the original video sequences, while the second,

third, fourth and fifth rows show the results obtained using (i) pure optical

flow, (ii) the method in [54], (iii) streaklines approach [32], and (iv) the

proposed approach, respectively.

To neglect regions without motion, we discard small magnitude optical

flow. For the extraction of the orientation features for each particle, the

resolution of the grid is kept half of the resolution of the video frame. For

each particle, the orientation features consist of a vector of N = 4 obser-

vations, where each element of the vector corresponds to the orientation

information extracted after each K = 8 frames. The possible output direc-

tions are M = 8, one label every 45◦. When applying the graph cut, each

frame processed by the CRF is divided into blocks 2×2 pixels. Each block

is considered as a single element and scanning is carried out from top-left

to bottom-right. For each central block, the spatial neighborhood is set to

5 × 5 blocks. For the training phase, we used 800 samples. Each training

sample is selected randomly, so that the trained model reflects a relevant

and accurate representation of the training data.

We track the particles for 8 consecutive frames by using the Lucas-

Kanade optical flow. Then, the obtained tracklets are drawn according to

the selected eight possible output directions. It is evident from the seg-

mentation map, that the simple optical flow representation is not powerful

enough to segment the crowd motion. Also, when comparing with the

method presented in [54], we can notice inconsistencies in the crowd mo-

tion in Fig. 2.3, and this is evident especially in the first and third video

sequences in the first row, where the crowd is moving in semi-circle direc-

tion.

In Fig. 2.3, streaklines [32] exhibits choppy motion segmentation, whereas

our approach is more consistent. Furthermore, the approach in [54] presents
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Figure 2.3: Segmentation. Frames from video sequences (first row); pure optical flow

(second row), correlation [54](third row), streaklines [32] (fourth row), and our approach

(last row)

.
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quite unreliable results for all video sequences comparing to our approach.

We are able to outperform the three methods thanks to the CRF inference,

mainly aimed at learning the temporal evolution of the crowd motion, and

the graph cut, which consolidates the output in the spatial dimension.

2.3 Block-Based Correlation

We characterize pedestrian flow segmentation from the computer vision

point of view by considering the pedestrian flow beyond just a collection of

spatially proximate individuals, but also as a dynamic unit that exhibits

various properties. In our approach, we have selected different directions

of motion where each direction is represented by a label. We represent the

input video, foreground frame, orientation information, motion segmenta-

tion, and anomaly detection with the symbols V(t), F(t), O(t), S(t), and

A(t), respectively. The motion segmentation is obtained by operating on

the union of the correlation information with the orientation information,

as formulated in Eq. 2.8.

S(t) = B(t) ∪O(t) (2.8)

An overview of the whole processing chain is shown in Fig. 2.4. The

proposed method operates on the foreground region. Therefore, foreground

is first extracted from each input frame of the video sequence through the

Gaussian mixture model [51]. This is represented as change detection in

the first box on the left side of Fig. 2.4. We then correlate the information

of the pedestrian flow by applying a block-based correlation technique in

the spatio-temporal domain, returning the preliminary segmentation map

B(t). We also apply a multi-label optimization technique to reduce the

noise introduced in the flow output, so as to obtain a regularized rep-

resentation of the motion field, and highlighting only the most relevant
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Figure 2.4: Block diagram of the proposed approach representing the pedestrian flow

segmentation and anomaly detection. The output of the major processing stages are

indicated using symbolic notations and the output is shown in the lower part of the

figure with the help of pictures. For example, V (t), F (t), B(t), S(t), P (t), AC(t), and

A(t) represent the input video, foreground map, block-based correlation, segmentation,

pedestrian motion model, accumulator, and anomaly detection, respectively.
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orientations that characterize the pedestrian motion. However, since the

multi-label optimization might still contain a residual noise, we integrate

the orientation information of the particles, in order to consolidate the

output and provide a more consistent representation of pedestrian motion

S(t) as shown in Fig. 2.4. To this aim, we initialize a grid of particles on

the foreground region. Each particle represents the position of a pixel, and

is tracked using the pyramidal Lucas-Kanade optical flow [66]. In order to

identify only the particles that exhibit a relevant motion, we exploit a sim-

plified variant of the Social Force Model (SFM) [33]. The SFM describes

the motion of particles as if they are subject to social forces. Therefore,

the model is able to discard the noise-driven particles, as shown in Fig.

2.5. Each block may be overlapped with an arbitrary number of particles

since these particles are not directly associated with blocks. The direction

information of the particles is then integrated with the multi-label optim-

ization technique in order to provide a more consistent representation of

the pedestrian motion, as detailed in the next sections. In fact, a pedes-

trian flow can be represented as a set of nodes of a graph, where each node

corresponds to a region (block) of the video frame. Considering that the

characterization of nodes is relatively simple, we transform the problem of

pedestrian flow segmentation into a problem of graph-based optimization.

In next sections, we provide the details regarding the steps of the pro-

posed algorithm for motion segmentation, namely block-based correlation,

multi-label optimization, and simplified social force model.

2.3.1 Block-based correlation

In order to compute the correlation, the image acquired by the camera is

first divided into blocks of fixed size. For each block, correlation is com-

puted among successive frames by comparing the current block with the

8-connected blocks in the previous frame so as to find the best match that
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Figure 2.5: Noise driven particles, annotated with circles.

describes the most likely displacement across two successive time instants.

Instead of a pixel-based approach, our choice for the block-based approach

is motivated by the fact that it is robust to illumination variations and

dynamic background [44].

In order to efficiently exploit the correlation information, an accumu-

lator is implemented to store the evolution of each block over time. The

comparison of the reference block with each neighboring block in the pre-

vious frame is computed on a pixel basis, and formulated according to Eq.

(2.9):

Cblock =
∑
i,j

1

1 + |pt(i, j)− pt−1(i, j)|
(2.9)

where pt(i, j) and pt−1(i, j) represent the gray scale value of the pixel in

the reference block and in the neighboring block, at the coordinates (i, j),
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respectively. For each block, the dominant direction is stored in terms of

absolute angle as formulated in Eq. (2.10):

Ψb(θ) =
B∑

blocks=b

D∑
directions=i

[θ == i], (2.10)

Where ∀b ∈ {1, . . . , B},

∀i ∈ {1, . . . , D}

where B and D represent the number of blocks in a frame and possible

directions, respectively. The correlation information about the motion dir-

ection will be used as input for the pedestrian flow segmentation based on

graph-cut, as will be described in Section 2.3.2.

Our choice of implementing block-based correlation to extract a prelim-

inary motion map, is preferred to particle advection through optical flow (as

in [2] [32]), since the latter might not be appropriate for pedestrian scenes

where the background is by definition dynamic, and in which clutter and

complicated occlusions often occur. Moreover, optical flow techniques do

not provide accurate measures of motion. On the contrary, when observed

at block level, pixel intensities in blocks show strong correlation across

consecutive frames, thus giving the opportunity to better highlight motion

patterns in the pedestrian flow.

2.3.2 Multi-label optimization

In order to reduce the noise introduced in the flow output, we adopt a

procedure based on graph cut. The distinguishing feature of graph cut,

compared to LCS [2] and streaklines [32], is in the adoption of energy min-

imization for accurate segmentation in local regions with complex motion

patterns. In this procedure, we have followed the implementation of the
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min cut/max flow algorithm proposed by Boykov et al. in [8]. In par-

ticular, due to the segmentation problem based on orientations, we used

the α-expansion moves based on graph cuts [9]. The α-expansion moves

are formulated in terms of energy minimization process according to Eq.

(2.11), where Dp is the so-called data cost term, and Vp,q is the smooth cost

term.

E (L) =
∑
pεM

Dp (Lp) +
∑

(p,q)εN

Vp,q(Lp, Lq), (2.11)

In this process, the objective is finding the label that minimizes the

energy in Eq. (2.11). The data cost represents the appropriateness of a

label for the pixel p given the observed data, whereas the smooth cost

represents the extent to which labeling is not piecewise smooth. In Eq.

(2.11), M and N are the sets of interacting pairs of pixels denoted by p

and q, L represents the label, and Lp and Lq are the labels associated to

pixel p and pixel q, respectively.

We show the performance of the α-expansion moves with the help of

an example. Considering a sample situation with eight labels (from 0 to

7) as input, the output of the algorithm is shown in Fig. 2.6. As can be

seen, 0 and 6 are absorbed by 7 because of the short distance in terms of

minimization of the energy function.

Input Output

7 7 7 7 7 7 7 7 7 7

7 0 0 0 7 7 7 7 7 7

3 3 0 6 6 2 2 7 7 7

2 2 1 1 1 2 2 1 1 1

5 5 5 5 5 5 5 5 5 5

Figure 2.6: Application of α-expansion.
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In our implementation, we exploited both the data cost term and the

smooth cost term so that the resulting labeling fits the data and accom-

plishes the desired smoothing. Each block is labeled in the frame according

to the angle information, meaning that each label represents a different mo-

tion direction. Without loss of generality, and similarly to other approaches

proposed in literature, we have selected W = 8 different directions quant-

ized with a step of 45 degrees. However, any arbitrary number of elements

can be chosen. The data cost assigns different weights to each motion

direction extracted by block correlation according to the distance between

them. The higher the distance, the higher the data cost. The angle is then

compared with the 8 angles of our label set, searching in a neighborhood

window of 5x5 blocks.

Given W labels we calculate the minimum distance R between labels as

in Eq. (2.12).

R =
360

W
(2.12)

The data cost is then computed for each node according to Eq. (2.13).

D (θl) = min

(∣∣∣∣θlR − θ

R

∣∣∣∣ , N − ∣∣∣∣θlR − θ

R

∣∣∣∣) . (2.13)

In Eq. (2.13), θl is the angle (motion direction) in our label set, and θ

is the current angle computed as discussed in Section 2.3.1. The angle θ is

then compared with all the angles in the label set and the one minimizing

the energy function (Eq. (2.11)) is chosen. Furthermore, the smooth cost

term is calculated according to Eq. (2.14).

V (θl, θl−1) = | (θl − θl−1) | (2.14)

The inspiration for this algorithm comes from the observation that ped-

estrian motion in a local region is generally simple and can be closely

resembled using a graph-based optimization method. Furthermore, the
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energy minimization of graph cut is an effective way to fuse similar motion

regions, thus limiting the effect of over-segmentation in pedestrian flows.

Compared to the state of the art works presented by Ali and Shah [2] and

Mehran et al. [32], this representation introduces some important benefits.

For example, FTLE [2] identifies LCS as ridges in the pedestrian scenes.

These ridges correspond to the boundaries segmenting the flow. All the

particles within each region are considered as showing the same behavior.

Following a similar paradigm, streaklines [32] are defined as the loci of

particles that have earlier passed through a prescribed point. Streaklines

are clustered on the basis of their similarity, to identify segments of the

video with similar motion. However, both the boundaries of LCS [2] and

streaklines [32] are delineated to combine adjacent segments of the dense

scene, often resulting in over segmentation of pedestrian flows.

2.3.3 Simplified social force model

Although the α-expansion approach results in a very coherent represent-

ation of the major directions reflecting the pedestrian motion behavior,

some noise may still be persistent in the segmentation map. In order to

consolidate the α-expansion output, we introduced an additional source

of information, by initializing a grid of particles on the foreground map.

Particles are uniformly spread over the video and tracked over a fixed tem-

poral window using the Lucas-Kanade optical flow technique. However,

some of these particles are noisy. Therefore, we exploit the Social Force

Model [33], which describes the behavior of the pedestrians based on mo-

tion dynamics resulting from the interaction of individuals. This model

reflects that an individual keeps a certain distance to other individuals

and borders, avoids obstacles and intends to achieve the desired velocity

of motion. In this context, the motion of particles is described as if they

are subject to social forces, thus providing a mechanism to discard noise-
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(a) (b)

Figure 2.7: Movement of the particles from right to left (a) result of the α-expansion is

shown (b) since particles are moving in the same direction.

driven particles, because they do not satisfy these requirements. Therefore,

a set of potential particles are extracted by exploiting a simplified variant

of the Social Force Model (SFM) [33], which measures the internal motiv-

ations of the individual particle to perform certain movements, and take

into account the influence of the other particle surrounding it.

According to the SFM, the velocity of each particle k with mass mk

obeys to Eq. (2.15).

mk
dvk
dt

= SFk = SFp,k + SFint,k (2.15)

where SFk is a combination of the personal desire force SFp,k and the

interaction force term SFint,k. Considering that each particle in the SFM

is treated as an individual in the pedestrian flow, it is assumed that each

particle pursues certain goals. Therefore, the personal force of a particle is

formulated according to Eq. (2.16).

SFp,k =
1

λ
|vpk − vk| (2.16)
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where λ is the relaxation parameter, vpk is the desired velocity, and vk is the

actual velocity of the particle. The desired velocity vpk is calculated using

the Euclidean distance where the initial position and final position of the

particle k are considered. The actual velocity vk represents the average

velocity calculated over T observations in a fixed temporal window.

The interaction force SFint,k consists of the repulsive force SFrep (to en-

sure a certain distance between particles) and an environment force SFenv,

to avoid obstacles. In our case, however, we seek to extract potential

particles associated to pedestrian motion instead of detecting panic beha-

viors of the dense crowd [33]. Therefore, we formulate the interaction force

SFint,k of a particle k according to Eq. (2.17).

SFint,k = 〈vk〉 (2.17)

where 〈vk〉 is the average velocity calculated over a fixed spatio-temporal

window. The size of the spatial window for the neighboring particles is

currently set to 3× 3. Further details of the SFM are not in the interest of

this paper and can be found in relevant citations in [19] [20] [33] for a more

comprehensive discussion. To this end, the simplified social force model

can be summarized as in Eq. (2.18):

mk
dvk
dt

= SFk =
1

λ
|vpk − vk|+ 〈vk〉. (2.18)

In our model we set both the relaxation parameter λ and mass mk of a

particle k to 1 since all particles can be assumed of the same size.

According to the output of the simplified SFM, the output returned by

the α-expansion is accepted only if a number of particles (defined a priori)

is moving in the same direction as shown in Fig. 2.7, or otherwise the

incoming block maintains the previous orientation. In fact, driving a set

of potential particles, validated by the simplified SFM, can contribute to a

30



CHAPTER 2. MOTION SEGMENTATION 2.3. BLOCK-BASED CORRELATION

(a) (b)

Figure 2.8: Segmentation output before (a) and after (b) particle advection representing

significant improvement in the performance.

considerable improvement to the pedestrian flow segmentation, as can be

seen in Fig. 2.8.

2.3.4 Experimental results

To validate the performance of our approach, we have conducted the exper-

iments on benchmark datasets such as PETS2009 [42] and UCSD [30]. We

have also tested the method on video sequences from our UCD dataset [54].

In the PETS2009 dataset, people are moving from bottom right to left and

left to bottom right in the video sequences S1 and S2, and video sequences

S3 and S4, respectively. The UCSD dataset is acquired with a stationary

camera overlooking pedestrian walkways. The video sequences contain the

circulation of pedestrians, bikers, skaters, small carts, and people walking

across a walkway or in the grass that surrounds it. In the UCSD dataset,

the majority of people are moving from left to right in the video sequences

S5, S6, S7, and S8. Our UCD dataset contains four video sequences (S10

to S13) representing flows of students moving outdoor across two buildings.

The duration of our dataset is long enough to collect evidence over time
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Table 2.1: Summary of the video sequences, in terms of average number of objects, frames

per second, number of frames, and resolution, from the UCD dataset.

Video sequences Avg. objects FPS No. of frames Resolution

S10 15.93 29 1422

320x240
S11 9.37 29 870

S12 5.02 29 1067

S13 5.17 29 933

for both flow segmentation and anomaly detection, as compared to other

benchmark datasets lasting only a few seconds. The details of the video

sequences are reported in Table 2.1. To evaluate the motion segmentation

performance of our approach, we compared it with the state of the art

recently proposed by Ali and Shah [2] and Mehran et al. [32].

Fig. 2.9 shows the results of the flow segmentation, where video frames

are overlaid by colored regions resulting from the segmentation. The

column (a) presents the sample frames taken from the original video se-

quences, while the central columns (b) to (d) illustrate the results obtained

using the Lagrangian method presented by Ali and Shah [2], the streak-

lines method presented by Mehran et al. [32], and the proposed approach,

respectively. It is worth noting that the reference approaches [2] [32] in

column (b) and (c) , and our method in column (d), use different colors for

labeling, therefore results should be interpreted in terms of the segmenta-

tion quality, regardless of the color used for visualization. For conciseness

reasons only two video sequences from each of the three datasets are depic-

ted in Fig. 2.9. The first two rows show the results for two video sequences

taken from PETS2009 [42], where people are moving from the bottom right

corner to left, and left to bottom right, respectively. The third and fourth
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Figure 2.9: Pedestrian flow segmentation. A selection of the results are reported in

the figure. The first two rows show the performance on the PETS2009 dataset, and the

central and last two rows report the testing on the UCSD and UCD sequences, respectively.

Input frames are shown in column (a), Lagrangian approach [2] in column (b); Streaklines

approach [32] in column (c); Our approach in column (d).
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Figure 2.10: Accumulating motion segmentation. Three frames from two different se-

quences in the PETS2009 dataset are shown in the first two rows, UCSD dataset in middle

two rows, and UCD dataset in last two rows (columns (a) to (c)); the accumulated results

of our approach are shown in column (d).

.
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Table 2.2: Quantitative comparison of the reference methods and the proposed method

against the ground truth in pedestrian flow segmentation regarding PETS2009, UCSD,

and UCD datasets, respectively. The F-scores for individual video sequences, the average

F-score for each datasets, and the average F-scores for all the dataset are provided. The

F-scores are shown in bold letters where we outperform the reference methods.

Dataset Seq. No. Lagrangian [2] Streaklines [32] Our method

PETS2009

S1 0.21 0.38 0.54

S2 0.20 0.44 0.52

S3 0.55 0.48 0.58

S4 0.12 0.52 0.53

Average 0.27 0.45 0.54

UCSD

S5 0.30 0.41 0.47

S6 0.27 0.31 0.39

S7 0.30 0.37 0.42

S8 0.23 0.34 0.44

S9 0.43 0.40 0.41

Average 0.30 0.36 0.42

UCD

S10 0.20 0.31 0.48

S11 0.29 0.30 0.42

S12 0.31 0.28 0.27

S13 0.23 0.28 0.42

Average 0.25 0.29 0.39

Average 0.28 0.37 0.45

35



2.3. BLOCK-BASED CORRELATION CHAPTER 2. MOTION SEGMENTATION

rows show the results of two video sequences taken from the UCSD data-

set [30], where people are mainly moving from left to right. Furthermore,

the last two rows show the results obtained for two video sequences taken

from our UCD dataset. The scene refers to a continuous flow of people

moving from bottom left to right and right to left, respectively.

As can be seen in Fig. 2.9, both the Lagrangian approach [2] and the

streaklines [32] exhibit irregular motion segmentation, especially for the

first two video sequences, whereas our approach is spatially and temporally

consistent, as well as more accurate. The Lagrangian method [2] tends to

segment the motion also when the boundaries in the optical flow field are

not salient. The streaklines approach [32], instead, is mainly based on

spatial correlation with a frailly temporal component, which turns out to

be a discriminant factor. Moreover, streaklines [32] create stilted time lag

and cannot detect local spatial changes, hence leaving spatial crevices in

flow and abrupt transitions between frames (column (c) in the last two rows

of Fig. 2.9). Furthermore, the Lagrangian method [2] can not cope with

video sequences where the pedestrian motion is occurring concurrently in

different directions. This can be seen in the third and fourth rows, column

(b), of Fig. 2.9. Our approach in the column (d) shows that the obtained

results are visually consistent with the pedestrian flow. Fig. 2.10 reports

the accumulated results obtained using the proposed approach.

For quantitative analysis, the F-score is calculated for each method. Re-

garding motion segmentation, the segmentation masks are annotated for

the reference methods [2] [32] and our proposed method. These segment-

ation masks are compared against the ground truth mask. For calculating

the F-score, we annotated each tenth frame of a video sequence, in order to

save time and resources. According to our approach, the pedestrian flow is

segmented in eight possible directions. To this end, we initialize a grid of

particles and advect them over a temporal window. Quantitative results
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Figure 2.11: Explanation of ground truth calculation. Input frame and ground truth

mask in column (a); Lagrangian results [2] and segmentation mask in column (b); Streak-

lines results [32] and segmentation mask in column (c); the proposed method and the

corresponding segmentation mask in column (d).

.

for flow segmentation are presented in Table 2.2 for each dataset, where

the performance evaluation is carried out by comparing our results against

the collected ground truth. It is worth noting that most of the datasets

do not come with an associated ground truth, as far as the flow segment-

ation is concerned, and mostly qualitative evaluation is used to validate

the approaches. However, in order to further demonstrate the validity of

our approach, we have collected the ground truth by manually annotating

individuals in each video in the pedestrian scene using the RATSNAKE

annotation tool [21]. For instance, the ground truth for a video frame, from

the PETS2009 dataset, is annotated in the column (a) of Fig. 2.11. The

same annotation tool is used to generate the binary masks for the reference

methods and the proposed method (column (b) to (d)).

Comparing to reference methods [2] [32], the superior performance of

our method is demonstrated in Table 2.2. This difference in perform-
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ance is mainly due to the fact that the Lagrangian approach [2] is more

oriented towards coherence in pedestrian flow; as the density of the pedes-

trian changes over time in a video sequence, the coherence changes as well,

making the results less reliable. Similarly, our approach also outperforms

the streaklines [32] (fourth column). Significant achievement in the average

performance of the the proposed approach can be seen in the last row of

Table 2.2.

Sensitivity Analysis

Our method is associated with a few parameters. Therefore we have used

different parameter configurations, listed in Table 2.3, for all the tests, in

order to demonstrate the robustness of our approach. These configurations

are encoded in the experiments based on three sets of block sizes: 2x2, 4x4,

and 8x8. For block size equal to 2x2, we have used different temporal win-

dows and thresholds ranging from 5 to 15 and from 10 to 20, respectively.

In order to investigate the performance of our approach by changing block

sizes to 4x4 and 8x8, different thresholds are combined with the temporal

window equal to 10. In Tables 2.4, results of our method based on fifteen

configurations (C1 to C15) are shown, along with average results for each

dataset and the average results for all datasets.

As can be seen the change in the F-score is negligible from configura-

tion C1 to configuration C9 for video sequences in all datasets. However,

significant performance decline can be noticed from configuration C9 to

configuration C10 for most of the video sequences. For instance, the F-

score for video sequence S3 from PETS2009 dataset gravitate from 0.58

to 0.31. The same decline can be noticed for video sequences S8 and S9,

and S11 and S12 from UCSD and UCD datasets, respectively. In fact,

the performance of our method does not change significantly by changing

other parameters except the block size. We also plotted the average along
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Table 2.3: Configuration set for sensitivity analysis for our method.

Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Threshold 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

Temporal window 5 10 15 10

Block size 2x2 4x4 8x8

with standard deviation for each configuration in column (a) of Fig. 2.12.

The plot represents consistent variations from the averages for most of the

configurations.

2.4 Enthalpy Model

The method we propose, for dominant motion analysis, consists of three

main processing blocks namely: corner features extraction, corner features

snipping with an enthalpy model, and random forest inferencing. During

the first stage, corner features are extracted from a video frame. Motion

patterns, defined in terms of velocity magnitudes, are extracted by tracking

the particles using the pyramidal Lucas-Kanade optical flow [66]. In our

approach we assume that each corner feature corresponds to an entity

and has reactive forces upon other corner features surrounding it. Under

this hypothesis, each feature can be classified not only on the basis of

its own motion characteristics, but also in relation to the context, in this

case provided by its neighbors. Therefore, we incorporate an enthalpy

model from thermodynamics to identify potential features of interest only,

since the emergent motion patterns in crowd dynamics have dynamical

and physical interpretations in thermodynamics. During the last stage,

39



2.4. ENTHALPY MODEL CHAPTER 2. MOTION SEGMENTATION

Table 2.4: Quantitative analysis for our method based on different parameter configura-

tions is provided in pedestrian flow segmentation regarding PETS2009, UCSD, and UCD

datasets, respectively. The F-scores for individual video sequences, the average F-score

for each dataset, and the average F-scores for all the datasets are provided.

Dataset Seq. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

PETS2009

S1 .54 .54 .54 .45 .54 .54 .54 .54 .54 .52 .51 .51 .48 .47 .48

S2 .53 .52 .53 .52 .52 .52 .51 .50 .51 .48 .48 .48 .41 .41 .42

S3 .57 .58 .57 .57 .57 .57 .58 .58 .58 .31 .29 .29 .34 .35 .38

S4 .52 .53 .51 .51 .51 .49 .50 .50 .49 .45 .45 .42 .46 .49 .49

Average .54 .54 .53 .51 .53 .53 .53 .53 .53 .44 .43 .42 .42 .43 .44

UCSD

S5 .45 .47 .48 .49 .47 .48 .46 .46 .44 .43 .43 .43 .29 .29 .34

S6 .38 .39 .38 .38 .38 .37 .37 .37 .37 .31 .31 .32 .27 .28 .29

S7 .42 .42 .42 .42 .44 .42 .41 .41 .40 .40 .38 .37 .32 .34 .36

S8 .43 .44 .43 .42 .39 .39 .42 .42 .42 .35 .35 .36 .29 .29 .27

S9 .41 .41 .41 .41 .38 .42 .38 .39 .41 .33 .33 .36 .39 .37 .37

Average .41 .42 .42 .42 .41 .41 .40 .41 .40 .36 .36 .36 .31 .31 .32

UCD

S10 .48 .48 .48 .48 .48 .48 .48 .47 .48 .45 .45 .45 .38 .39 .38

S11 .42 .42 .42 .42 .42 .42 .42 .42 .41 .36 .35 .33 .25 .27 .31

S12 .27 .27 .26 .26 .26 .26 .26 .26 .25 .20 .20 .19 .23 .23 .29

S13 .42 .42 .42 .42 .42 .42 .42 .42 .41 .40 .40 .39 .27 .27 .28

Average .39 .39 .39 .39 .39 .39 .39 .39 .38 .35 .35 .34 .28 .29 .31

Average .44 .45 .45 .44 .44 .44 .44 .44 .43 .38 .37 .37 .33 .34 .35

the orientation features of the corner features act as input data to the

random forest, so as to infer the dominant flows. The orientation features
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(a)

Figure 2.12: Results of the pedestrian flow segmentation with respect to different config-

urations. Each ’o’ symbol presents the average calculated over all video sequences of three

datasets. Standard deviations are also plotted representing variations from the averages.

and the corresponding label sequence are used to learn the random forest

parameters during the training stage, and the dominant flows are inferred

on the test samples.

2.4.1 Corner features extraction

We selected corners as the main feature to analyze, since they represent

peculiar elements in the scene and can be easily tracked in dense crowded

scenes, leading to better consistency and accuracy in tracking, especially

in scenes representing complex motion. The corner features are extracted

from the video frame as shown in Fig. 2.13. To detect them, the function

formulated in Eq. (2.19) is maximized.

E (u, v) ≈
∑
xy

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (2.19)

In Eq. (2.19), w(x, y) is the window at position (x, y), I(x, y) is the
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Figure 2.13: Corner features initialization. Frame from an irregular crowd video sequence

(Left); the same frame with corner features driven (Right).

.

intensity at (x, y), and I(x+u, y+v) is the intensity at the moved window

(x + u, y + v). The function in Eq. (2.19) can be reformulated as in Eq.

(2.20).

E (u, v) ≈
[
u v

]
M

[
u

v

]
(2.20)

Where u is the displacement of the window w along x, and v is the dis-

placement of the window w along y. The score R for a corner feature can

be determined from the eigenvalues of the matrix M as formulated in Eq.

(2.21).

R = λ1λ2 − k(λ1 + λ2) (2.21)

In the equation, k is a free parameter. A window with the greatest R

is considered as a corner feature.
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2.4.2 Enthalpy model

The objective of this processing stage is to isolate and filter out the corner

features that do not contribute to the identification of the dominant crowd

flow detection. Motion information, defined in terms of velocity mag-

nitudes, is extracted at regular intervals of K frames by tracking the corner

features using the Lucas-Kanade optical flow [66].

The motion patterns observed in a crowded scene can be well modeled

through a common thermodynamic measure, the enthalpy. Compared to

the entropy model, which measures the disorder of a process, the enthalpy

is a measure of the total energy of a thermodynamic system.

In thermodynamics, the enthalpy of a system with respect to temper-

ature T and pressure P is formulated in Eq. (2.22).

dH =

(
∂H

∂T

)
P

dT +

(
∂H

∂P

)
T

dp (2.22)

In a thermodynamic system, energy is measured with respect to some

reference energy. Therefore, the internal energy U is calculated as a vari-

ation in U , instead of an absolute value as formulated in Eq. (2.23).

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV (2.23)

It is worth mentioning that, compared to a thermodynamic system, the

crowd dynamics represents a homogeneous system, which is clearly inde-

pendent from the temperature. We consider the crowd as a continuum,

simultaneously being able to capture motion properties of each corner fea-

ture at the individual level. It allows us to treat corner features as con-

stituents (subpopulations) of the large crowd, each having its own motion

properties. We thus have the possibility to examine the interactive be-

haviour between subpopulations, in the spatial neighborhood, which have
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distinct characteristics represented by the enthalpy model as formulated in

Eq. (2.24).

H = U + pV (2.24)

Here, U is the internal energy, p is the pressure, and V is the volume

of the system. We exploit the kinetic energy in terms of internal energy,

since we are only interested in motile corner features. Pressure is defined

as p = Force/Area and Force is F = mass ∗ acceleration. For accel-

eration, we calculate the average velocity 〈v〉 in the spatial neighborhood

over time, whereas the area A is the total number of corner features in

the spatial neighborhood. Mass and volume of each corner feature may be

associated with its contribution in the corresponding subpopulation, in the

spatial neighborhood. However, we set them to 1 in our case to maintain

consistency. Our enthalpy model is thus formulated in Eq. (2.25).

H =
1

2
mv2 +

(
∂〈v〉
∂t

)(
1

A

)
(2.25)

Figure 2.14: Interaction flow. The extracted corner features (left column); the same frame

with the interaction flow overlayed (right column).

.

After evoking the relevant corner features using the enthalpy model, as

44



CHAPTER 2. MOTION SEGMENTATION 2.4. ENTHALPY MODEL

depicted in Fig. 2.14, the orientation information of each corner feature in

terms of angle of motion is extracted at regular intervals of K frames. We

have selected 8 different directions quantized with a step of 45 degrees as

depicted in Fig. 2.15, where R, TR, T, TL, L, BL, B, and BR stand for

right, top right, top, top left, left, bottom left, bottom, and bottom right,

respectively. The collected orientation features are stored to construct

a feature vector for each corner feature. The feature vector is fed to the

random forest classifier as an input (details are provided below) that in turn

signals the corresponding label for the direction. To this end, a tracklet is

drawn from the initial position to the final position of the corner feature

where each pixel in the tracklet is assigned the same label. An example of

a tracklet is shown in Fig. 2.16.

2.4.3 Random forest

A random forest [10] is a classifier consisting of a set of tree-structured clas-

sifiers {h(x, Θk), k = 1,.....K} where the {Θk} are independent identically

distributed random vectors and each tree casts a unit vote for the most

popular class at input x. Given an ensemble of classifiers h1(x), h2(x), . .

. ,hK(x), the margin function for the random forest over the input vector

x and the label y is formulated in Eq. (2.26).

mg(x, y) = avKI(hkx = y)−

maxj 6=yavkI(hk(x) = j)
(2.26)

In Eq. (2.26), I(·) is the indicator function. The margin measures the

extent to which the average number of votes at an input x for the right

class y exceeds the average vote for any other class. The larger the margin,

the higher the confidence in the classification. The generalization error is

given by Eq. (2.27).
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Figure 2.15: Orientation-based dominant crowd flows detection. We analyze the crowd

flows in eight possible directions according to the annotations on the left.

Figure 2.16: Example. The top four frames show the motion of a corner feature to the

right side of the image, while the bottom frame shows the computed tracklet.

.

PE = Px,y(mg(xy) < 0) (2.27)

Where the subscripts x, y indicate that the probability is over the x and

y space. When the number of trees increases, the generalization error PE

converges as in Eq. (2.28) for all the parameters Θ1......ΘK .

Px,y(PΘ(h(x,Θ) = y)−

maxj 6=yPΘ(h(x,Θ) = j) < 0)
(2.28)
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This means that random forests do not overfit as more trees are added,

but produce a limiting value of the generalization error. A random forest

specifies a particular label, given the observation sequence. Specifically,

x is our input sequence, consisting in N observations collected within the

K frames window (i.e. x = x1, x2, . . . , xN), containing the orientation

features. Given the observation sequence, the random forest signals the

most probable label in terms of direction, inferring the output label ym

(ym = y1, y2, . . . , yM) of the respective crowd motion direction.

During training, all the trees exploit the same parameters but on differ-

ent training sets. These sets are generated from the original training set

using the bootstrap procedure: for each training set, the same number of

vectors are selected randomly as in the original set. Moreover, the vectors

are chosen with replacement, meaning that some vectors will occur more

than once and some will be absent. Only a random subset of variables are

used to find the best split at each node of each trained tree. With each

node a new subset is engendered. However, its size is fixed for all the nodes

and all the trees.

2.4.4 Experimental results

The experiments are carried out on video sequences from benchmark data-

sets such as UCF [2] and UCD [54]. The video sequences in the UCF

dataset are originally taken from Getty-Images, Photo-Search and Google

Video. To test the generalization properties of our proposed method, we

crawled two video sequences from YouTube (shown in the last two columns

of Fig. 2.17.). For each corner feature, the orientation features consist of

a vector of N = 4 observations, where each element of the vector corres-

ponds to the orientation information extracted after every K = 8 frames.

The possible output directions are M = 8, one label every 45◦. We do

not consider corner features with with small motion magnitudes. To eval-
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uate the performance of our proposed method, we compared it the optical

flow (as a baseline method), as well as the segmentation methods proposed

by [54] and [55] in Table 2.5. The first column renders the original video

sequences, while columns (2 - 6) present the ground truth, and the results

obtained using the optical flow, the method proposed in [54], the method

proposed in [55], and our proposed method, respectively.

Table 2.5: Comparison of our approach with the reference approaches in dominant crowd

flows detection. The first column presents the original video sequences and the second

column shows the ground truth in terms of four dominant directions and the number

of people moving in each dominant direction, respectively. Columns {3-6} present the

reference approaches and the proposed approach.

No. Ground truth Optical flow ICPRw[18] ICIP[19] Proposed

1

TL-R-TR-L 1 0 2 4

80-54-24-19 25.76-18.33-8.07-21.41 7.75-79.68-0-11.91 43.81-18.88-11.64-16.53 52.38-15.3-13.19-12.26

2

R-L-TR-T/B 1 2 4 2

40-35-15-12/12 17.74-17.82-15-17.86/6 46-13.4-1.89-4/11 41.64-29.78-8-5/3.63 45.87-33-2.98-3/5.23

3

R-BR-L-B 2 4 4 4

70-34-28-15 34.66-20.40-21.82-6.97 62.50-27.99-5.66-2.53 48.5-27.76-20.4-1.57 43.87-29.66-24.63-1.09

4

R-BR-TL-TR 2 2 2 4

100-60-57-29 32.48-7.17-8.86-9.81 47.59-26.23-2.87-8.51 52.26-21.58-7.43-11.38 73.78-13.1-5.9-2.65

5

R-L-TL-TR 0 2 2 2

39-34-5-1 25.16-25.26-4.36-5.60 65.5-11.36-0-0 43.62-40.52-0.73-5.11 46.69-45.31-0.17-0.76

6

R-TR-L 1 1 3 3

37-30-2 32.56-9.88-17.78 100-0-0-0 77.37-17.44-3.3 85.62-11.25-2.37

7

B-TL-BL-T 1 2 2 4

58-42-9-5 17.97-24.33-3.44-26.47 13.73-3.72-9.34-1.79 43.43-44.4-4.85-1.39 45.83-37.13-8.66-1.37

8

R-T-L-B 1 2 4 4

71-46-31-12 19.5-26.14-20.37-8.7 37.54-22.5-4.83-7.67 41.31-35.84-14.51-1.31 45.35-33.62-14.69-0.99

In our experiments, the ground truth consists of the number of individu-

als moving in each direction. By examining the ground truth, we identify
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Table 2.6: Quantitative comparison of the reference approaches and the proposed ap-

proach with the ground truth in terms of accuracies. The first column shows a total

number of 31 dominant directions, while other columns present number of correctly de-

tected dominant directions along with percent accuracies by the reference approaches and

the proposed approach.

Total
Optical flow ICPRw[18] ICIP[19] Proposed

Correct Accuracy Correct Accuracy Correct Accuracy Correct Accuracy

31 9 29.03% 15 48.38% 23 74.19% 27 87.09%

that a significant number of people is moving only in four possible direc-

tions instead of all eight directions. Therefore, we perform analysis only

in four directions, where most of the people are moving, for the purpose of

evaluation. For instance, the ground truth, TL-R-TR-L, for the first video

sequence shows that most of the people i.e. 80 are moving in the top-

left direction, while 54 people moving in the right direction stood second.

There are 24 people moving in the top-right direction and 19 people moving

in the left direction. To compare against the ground truth, orientation in-

formation is collected at each temporal window and accumulated over time

for each video sequence for the reference approaches and the proposed ap-

proach. To further elaborate, frames from video sequences are shown in the

first row and the orientation information are annotated with different colors

for the sake of visualization in the second row of Fig. 2.17, from the pro-

posed method. In Table 2.5, the number of correctly identified directions

along with orientation information in terms of percentages are provided for

the reference approaches and the proposed approach. For the first video

sequence, the pure optical flow collects 25.76% orientation information in

the top-left direction, while 18.33% in the right direction, 8.07% in the top-

right direction, and 21.41% in the left direction, respectively. Therefore,

the pure optical flow correctly identifies one dominant direction, since the

orientation information collected only in the top-left direction corresponds
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Figure 2.17: Orientation information. Input frames from video sequences (first row);

Orientation information annotated with different colors (second row), where each color is

associated with a specific direction.

.

with the ground truth in terms of highest numbers in the same positions.

Comparing our results with the reference approaches, we notice that our

approach performs better or equally for most of the video sequences. In

particular, our approach outperforms the reference approaches in video se-

quences, one, four, and seven, where it correctly identifies all four dominant

flows. In Table 2.6, the number of correctly identified dominant directions

along with the percent accuracies are presented by the reference approaches

and the proposed approach, respectively. The first column presents the

total number of dominant directions for all video sequences. The evidence

for the significant performance of our approach over the reference methods

lies in the fact that on the one hand the corner features combined with the

enthalpy measure, highlights characteristic areas in the crowd, and on the

other hand the random forest presents significant predictive performance

to identify dominant flows.
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2.5 Entity Grouping

Detectors and trackers are likely to fail in severe occlusions when the num-

ber of moving subjects in the scene increase. Therefore, more generic ap-

proaches based on the motion flow, commonly exists in the crowded scenes,

can be exploited in such scenarios. These approaches ignore the notion of

person, however, it is still possible to estimate, for example, the density

of people, and the aggregation points in the monitored environment. This

turns out to be an efficient pre-processing step for any further and more

detailed analysis. Our approach [46] considers each particle as a single

entity where each particle represents the position of a pixel. In our work,

particles are generated through the GoodFeaturesToTrack algorithm, and

tracked by the Lucas-Kanade optical flow. Each particle is characterized by

its own motion properties and its influence over the neighboring particles.

Therefore, we exploit particle mutual influence model to extract potential

particles of interest and filter out rest of the particles. Regarding my con-

tribution, I extract features from the potential particles and feed them into

a MLP neural network to form coherent groups of entities sharing similar

motion properties.

2.5.1 Mutual influence

The first step of our proposed approach relies on particles dynamic prop-

erties. Each particle corresponds to an entity and has attractive and re-

pulsive forces upon other particles surrounding it. Under this hypothesis,

each particle can be classified on the basis of its own and its neighbors

motion characteristics. The influence among particles can be expressed by

a stochastic matrix called influence matrix as proposed by Pan et al. [39].

This stage prunes the particles marked as alone and considers just the

grouped particles relevant for further processing. Fig. 2.18 shows the ex-
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tracted particles of interest annotated in red.

Figure 2.18: An example of particle initialization (left) and after pruning (right).

2.5.2 Feature extraction

The objective of the features extraction process is to identify low-level

information relative to the particles interaction. Features are extracted

only for the particles obtained from the mutual influence model.

In our approach we have selected the average distance among the particles

and their density as two representative elements to infer the interaction

among particles. In fact, proximity, which is partially exploited also in the

influence model measures the instantaneous relationship among neighbor-

ing entities. At the same time, the higher the density of the particles, the

higher the chance for them to interact.

For both features, orientation is used as a prior, meaning that particles

are considered in the same group, only if their relative offset in terms of

direction of motion fall in a predefined range. In Fig. 2.19 (a), a set of

synthetic entities are shown where a reference entity, annotated in blue, is

grouped with the neighboring entities annotated in red. On the contrary,

two entites are not included in the same group since their orientations do
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not conform to the orientation of the reference entity. Moreover, a reference

entity annotated in yellow and neighboring entities annotated in red are

shown in Fig. 2.19 (b). These entities constitute a group, as shown in (c),

according to the compliance in terms of density and mutual distances with

the reference entity.

2.5.3 Classification

In order to weight the features we have selected for entity grouping, we

have trained an MLP neural network described in detail in Section 3.4.2.

To combine the particles from the preceding stage of the mutual influence

model, the average distance of a reference particle with its neighbors is ac-

cumulated and averaged. A particle is only considered for grouping with a

reference particle if its relative orientation is compliant with the orientation

of a reference particle. The density and average distance of the reference

particle are fed as an input to the MLP.

(a) (b) (c)

Figure 2.19: Entities grouping. Synthetic example of moving entities (a), moving entit-

ies obtained from the particles mutual influence model (b) and grouping implemented

according to the motion and density features (c).
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In Fig. 2.20, the tracked groups of entities are depicted. Two groups,

annotated in cyan (left) and yellow (right) respectively, are zoomed and

shown in the third row. Initially, entities are pruned with the particles

mutual influence model and propagated over a predefined temporal window

to associate them in groups in accodance with the features. At the same

time, these groups are then mapped to a new set of pruned entities, with

mutual influence model, which are then tracked over the same temporal

window and the re-association process is repeated over time.

2.5.4 Experimental results

For the experiments, we consider the UCLA [3] and the BIWI [41] datasets.

The UCLA dataset presents human activities including walking, talking,

riding-skateboard, riding-bike and driving car. We consider only the ETH

sequence from the BIWI dataset because of the exclusive presence of ped-

estrians. For the influence model, the length of the time window is set to

45 frames. The neural network has been configured considering one input

layer, two hidden layers and one output layer. The input layer consists

of two neurons, each hidden layer consists of three neurons, and a single

neuron is allocated to the output layer. To extract the input features, the

relative orientation with a reference particle is set to ±30 degrees. Fur-

thermore, the distance threshold from the reference particle is set to 80

pixels. For the purpose of training, we exploited 1000 training samples,

where each sample is a vector of two observations consisting of average

distance and density of particles. These parameters are kept constant for

both sequences to demonstrate the capability of generalization.

The obtained results are depicted in Fig. 2.21. The first image (a)

shows an example of the method applied on the UCLA dataset, where we

can notice a very clear group composition, especially for zones A, D and

E. In zone B the number of particles is not dense as in the previous cases,
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but still grouping is possible since the distance and density features of the

entities are sufficient for the neural network. In zone F, two groups have

been detected instead of a single one; this can be ascribed to the severe

shadowing, in which the pedestrian is located where, in fact, features of the

entities are mainly segmented into two groups. The quality of the results

is also depicted in (b) by the ETH sequence, where the groups are well

defined (zones A, B, and C). However, in this case a few mistakes are also

present (zone D). This is most probably connected to the limited resolution

and the compression artifacts. The UCLA dataset have much better results

in terms of grouping not only because of the resolution but also because

the bird eye view is less accentuated and the illumination conditions are

considerably better.
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(a)

(b)

Figure 2.20: Input frame (a), entities grouping with the zoom on two sample groups (b).
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(a)

(b)

Figure 2.21: Particle influence and entity grouping. Results obtained on the UCLA

dataset (a) and on the BIWI dataset (b). For visibility, labels are super-imposed on the

original frame and the corresponding grouped entities are zoomed in lower row.
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Chapter 3

Anomaly Detection

This chapter presents state of the art regarding anomaly detection and

then presents our proposed methods. In particular, the techniques based

on deviant orientation information, Gaussian mixture model, and corner

features are presented.

3.1 State of The Art

Most of the methods for anomaly detection fall under the category of high

density flow analysis. Anomaly detection is applicable in a variety of do-

mains, including intrusion detection, traffic monitoring, and behavior ana-

lysis. Krausz and Bauckhage [24] detect anomaly in terms of stampede.

For this purpose, they analyzed video footages from the Loveparade mu-

sic festival in Duisburg, Germany. They exploit the dense optical flow to

compute the two dimensional histograms of motion magnitude and motion

direction of the flow vectors. Then a Non-Negative Matrix Factorization,

proposed by Lee and Seung [27], is applied to decompose the histograms,

so as to extract motion patterns that can highlight congestions and stam-

pedes. Mahadevan et al. [30], Seidenari et al. [47], and Bertini et al. [7]

detect anomalies in terms of circulation of non-pedestrian entities in the

scene, by considering the variations of objects appearance to infer abnor-
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mality information (e.g. the appearance of a biker is different from the

appearance of a pedestrian). For this purpose, temporal normalcy and spa-

tial normalcy are exploited by Mahadevan et al. [30]. Temporal normalcy

is modeled with a mixture of dynamic textures whereas spatial normalcy

is modeled through a discriminant saliency detector. Seidenari et al. [47]

and Bertini et al. [7] exploit a non-parametric approach based on local

spatio-temporal features to detect and localize anomalies. Ullah et al. [57],

Mehran et al. [33], and Cui et al. [16] detect abnormal events in terms of

escape panics. For this purpose, the social force model (SFM), proposed

by Helbing and Molnar [20], is exploited by Mehran et al. [33]. After the

superposition of a fixed grid of particles on each frame, the SFM is used

to estimate the interaction forces associated to the pedestrian behavior.

After that, a bag of words method and a Latent Dirichlet Allocation are

exploited to discriminate between normal and abnormal frames, localiz-

ing the abnormal areas as those representing the highest force magnitude.

Cui et al. [16] use spatio-temporal interest points, proposed by Laptev et

al. [26], to detect the behavior of the pedestrians. For each interest point,

an energy potential is calculated based on the positions and velocities of

its neighbor points.

3.2 Deviant Information

Here the anomaly is based on the segmentation information obtained in

the Section 2.3. Once the motion flow is extracted from the foreground, an

accumulator AC(t) is constructed on top of each block, in order to create

the pedestrian motion model (represented by P (t) on the right side of Fig.

2.4), by collecting evidence regarding the dominant directions of pedestrian

motion. The accumulator is updated at every frame, keeping up with

the evolution of the pedestrian flow. The pedestrian motion model P (t)
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combined with the output of multi-label optimization S(t) and orientation

information O(t) is exploited to detect anomalies A(t), annotated in white

as shown in Fig. 2.4. The union of motion segmentation and orientation

subject to pedestrian motion model, represented by P(t), allows retrieving

the presence of anomalies as formulated in Eq. 3.1.

A(t) = {S(t) ∪O(t)}
∣∣∣∣
P (t)

(3.1)

To further elaborate the anomaly detection, we can create a histogram

using the motion segmentation model described in Section 2.3.2, which,

updated on a frame basis and computed on a block basis, represents the

frequency (occurrence) of each of the selected directions (D) in each block,

as formulated in Eq. (3.2).

Hm,b(θ) =
F∑

frames=m

B∑
blocks=b

D∑
directions=i

[θ == i], (3.2)

Where ∀m ∈ {1, . . . , F},

∀b ∈ {1, . . . , B},

∀i ∈ {1, . . . , D}

where F, B, and D represent the number of frames, the number of blocks

in each frame, and the number of possible directions, respectively. The

magnitudes of the histogram are compared against a threshold (T0) to

determine the most representative directions of the motion for the specific

block, thus creating the reference motion model P: people moving in these

directions will neither be signaled nor identified as anomalies as shown in

Fig. 3.1. The first row in Fig. 3.1, represents people moving from left to

right while the second row represents people moving from bottom right to

top left.
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Figure 3.1: Most representative orientations of motion for two video sequences for the

assessment of the pedestrian motion model P. Orientations are numbered from 1 to 8, on

horizontal axes, representing the angle from 0 to 360 at steps of 45 degrees. Vertical axes

represent orientation information accumulated over time.
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To further elaborate, the anomaly is detected through a two-step pro-

cedure. During the operation of the algorithm, the deviant direction in-

formation is accumulated over a temporal window as formulated in Eq.

(3.3). The consistency of the accumulated information is then evaluated

by comparing it with the motion of the particles in the area. If this con-

dition is verified and the accumulator exceeds a predefined threshold, the

anomaly is signaled.

∀i, P (i) =

{
1 if H(i) > T0

0 otherwise
(3.3)

3.2.1 Experimental results

To validate the performance of our approach, we have conducted the exper-

iments on benchmark datasets such as PETS2009 [42] and UCSD [30] and

our UCD [54]. To evaluate the anomaly detection performance of our ap-

proach, we compare it against two baseline methods i.e. SIFT features [28]

and GoodFeaturesToTrack [49]. We extract these features and advect them

over a temporal window, using the same optical flow technique [66] to main-

tain consistency with our method, to collect orientation information. The

orientation information is exploited to build the pedestrian motion model

initially and we identify the daviant motion information later. For this

purpose, the same procedure is followed as we did for our method. For

quantitative analysis, the F-score is calculated for each method.

In order to detect the anomaly, the threshold T is calculated over a

temporal window. For anomaly detection, the histogram is updated on

a block-by-block basis in the segmentation stage (consisting of the initial

50% of the video frames in these experiments) to determine the dominant

motion directions of the pedestrian flow. Then, a threshold T0 is applied

to highlight only the most evident events. Considering that all the three
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datasets only exhibit one main direction of motion for each video segment,

we have merged two video sequences, so as to simulate people walking in

different directions. For this purpose, we generated all possible combina-

tions of video sequences in each dataset to validate the robustness of our

approach. The results for the anomaly detection are shown in Fig. 3.2

for two video sequences from each dataset. Column (a) depicts a sample

of the original frames and column (b) highlights the detected anomalies

(annotated in white) on top of the pedestrian motion model.

Quantitative results for anomaly detection are presented in Table 3.1.

The performance evaluation is carried out by comparing our results against

two baseline methods, SIFT features [28] and GoodFeaturesToTrack [49].

To identify dominant directions of motion, pedestrian motion model has

been built. The anomaly is signaled in the scene when people or objects

start moving differently from the pedestrian motion model. For this pur-

pose, we calculate the F-score, provided in Table 3.1, for the basline meth-

ods and our method. The significant performance increase over the two

baseline methods is evident in most of the video sequences. It is worth

noting that the F-score for all video sequences in UCSD dataset are the

same for both the baseline methods. In fact, similar motion patterns are

exhibited over the same number of frames in these video sequences. Both

the baseline methods are failed to detect anomalies in the video sequences

of UCD dataset (except S10-S12 and S11-S13 video sequences in case of

SIFT). These methods cannot collect enough evidence over time, due to the

unstable motion of the extracted features, in term of orientation inform-

ation to signal anomalies. We also provided the average F-score for each

dataset and the average F-score for all the datasets for the baseline meth-

ods and our method. Quantitative results demonstrate that the proposed

approach is robust enough to detect anomalies.
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Figure 3.2: Anomaly detection. Input frames from two video sequences are provided from

the datasets: PETS2009 (first two rows), UCSD (middle two rows), and UCD (last two

rows) in column (a), whereas detected anomalies are shown in column (b).
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Table 3.1: Comparison of our method with the baseline methods.

Dataset Seq. No SIFT G.F.T Our method

PETS2009

S1-S2 0.66 0.66 0.95
S1-S3 0.78 0.71 0.68
S1-S4 0.68 0.66 0.87
S2-S1 0 0 0.97
S2-S3 0.66 0 0.89
S2-S4 0.66 0 0.84
S3-S1 0.75 0.70 0.95
S3-S2 0.70 0.66 0.90
S3-S4 0.66 0.66 0.80
S4-S1 0 0 0.97
S4-S2 0 0 0.90
S4-S3 0 0 0.97

Average 0.46 0.33 0.89

UCSD

S5-S6 0.66 0.66 0.96
S5-S7 0 0 0.96
S5-S8 0.66 0.66 0.96
S5-S9 0.66 0.66 0.93
S6-S5 0.66 0.66 0.96
S6-S7 0.66 0.66 0.97
S6-S8 0.66 0.66 0.97
S6-S9 0.66 0.66 0.97
S7-S5 0.66 0.66 0.96
S7-S6 0.66 0.66 0.97
S7-S8 0.66 0.66 0.97
S7-S9 0.66 0.66 0.90
S8-S5 0.66 0.66 0.96
S8-S6 0.66 0.66 0.97
S8-S7 0.66 0.66 0.97
S8-S9 0.66 0.66 0.97
S9-S5 0.66 0.66 0.96
S9-S6 0.66 0.66 0.97
S9-S7 0.66 0.66 0.97
S9-S8 0.66 0.66 0.97

Average 0.62 0.62 0.96

UCD

S10-S11 0 0 0.81
S10-S12 0.58 0 0.77
S10-S13 0 0 0.84
S11-S10 0 0 0.99
S11-S12 0 0 0.84
S11-S13 0.66 0 0.78
S12-S10 0 0 1.00
S12-S11 0 0 0.77
S12-S13 0 0 0.64
S13-S10 0 0 0.99
S13-S11 0 0 0.82
S13-S12 0 0 0.75

Average 0.1 0 0.83

Average 0.43 0.37 0.90
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Sensitivity Analysis

For the anomaly detection, we have used different parameter configura-

tions, listed in Table 2.3, for all the tests, in order to demonstrate the

robustness of our approach. Quantitative results for these configurations

are presented in Tables 3.2. The average F-score for each dataset and

the average F-scores for all datasets associated with each configuration are

reported. The improvement in performance can be noticed from configura-

tion C1 to Configuration C15 in cases of averages for each dataset and the

averages for all datasets. The performance of our method, regarding anom-

aly detection, does not change significantly by changing other parameters

except the block size. To conclude, quantitative results demonstrate that

the proposed approach is robust enough to detect anomalous occurrences

in video sequences.

We also plotted the averages along with standard deviations for all

datasets corresponding to each configuration in Fig. 3.3, where consist-

ent variations from averages can be noticed from C1 to C12. However, the

variations from averages are reduced in cases of C13 to C15, arising due to

the change in the block size.

3.3 Gaussian Mixture Model

We propose an approach for anomaly detection in term of panic situation.

For this purpose, we adopt GMM to learn the behavior of motion features

extracted from the particles instead of modeling the values of all the pixels

as a mixture of Gaussians. These motion features are exploited to learn

repetitive variations of crowd scenes for GMM, which models the normal

behavior distribution. If each particle resulted from a particular behavior, a

single Gaussian would be sufficient to model the motion feature of it, while

accounting for surrounding noise. However, in practice, multiple surfaces
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Table 3.2: Quantitative analysis for our method based on different configurations is

provided in anomaly detection regarding PETS2009, UCSD, and UCD datasets, respect-

ively. The average F-score for each dataset and the average F-scores for all the datasets

are provided.

Dataset C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

PETS2009-Average .75 .76 .69 .76 .77 .71 .84 .84 .83 .88 .87 .79 .89 .93 .93

UCSD - Average .89 .93 .72 .93 .95 .79 .89 .91 .79 .96 .96 .95 .96 .96 .96

UCD - Average .65 .60 .60 .66 .69 .63 .69 .71 .84 .74 .69 .65 .83 .79 .77

Average .79 .78 .68 .81 .81 .68 .82 .84 .73 .88 .86 .83 .90 .90 .90

often appear in the view frustum of a particular particle. Therefore we

use multiple adaptive Gaussians to approximate this process. At each

frame the parameters of the Gaussians are updated, and the Gaussians are

evaluated using a simple heuristic to hypothesize, which are most likely to

be part of the distribution representing the normal crowd behavior.

3.3.1 Extracting motion features

As discussed before, the GMM is adopted to learn the behaviour of motion

features extracted from the particles, therefore, a grid of particles is dis-

posed on the video frame, which is repeatedly initialized over a temporal

window of a video sequence as shown in Fig. 3.4.

Motion features, defined in terms of velocity magnitudes, are extracted

by tracking the particles using the pyramidal Lucas-Kanade optical flow

[66]. We do not consider the particles having motion features with low

magnitudes.
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(a)

Figure 3.3: Results of the pedestrian flow segmentation (a) and anomaly detection (b) with

respect to different configurations. Each ’o’ symbol presents the average calculated over

all video sequences of three datasets. Standard deviations are also plotted representing

variations from the averages.

3.3.2 Crowd model

Our crowd model deals robustly with repetitive motions of scene elements

arising from crowd dynamics. According to the GMM framework, every

new motion feature is checked against the existing distributions for that

particle, and incorporated into the distribution if a match is found, or,

otherwise, forms a new distribution indicating a new cluster. This forms

the basis of our adaptive model.

At any time t , what we know is the history of the motion features (in

term of velocity magnitude v) of a particle at location (i, j)′s:

Hvelocity (i, j, n) = {v0, v1, ......., vt} (3.4)

For each particle at location (i, j) , the crowd model at time t stores K

Gaussian distributions, along with their weights wtK,t. This is called the

Gaussian mixture Ω(i, j, t), which can be represented by the set as:
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Figure 3.4: Particles initialization. Frame from video sequence (Left); frame from video

sequence with particles driven (Right).

.

Ω (i, j, t) = {wt0,t.G0, wt1,t.G1, ......., wtk,t.Gk} (3.5)

where GK = N(µ, σ) are normal distributions for K = {0 , ...... , k}.
The crowd model (Cm) at time t, can be represented by an m×n matrix

of Gaussian mixtures Ω(i, j, t), where 0 ≤ i ≤ m and 0 ≤ j ≤ n.
Ω(0, 0, t) . . . . . . Ω(m, 0, t)

... . . . ...

... . . . ...

Ω(0, n, t) . . . . . . Ω(m,n, t)


At time t = 0, we start with the empty crowd model where Gaussian

mixtures are Ω(i, j, 0) = {wt0,0 . G0 , ...... , wtk,0 . Gk}, wt0,0 = wt1,0 =

wtk,0 = 0, and G0 = G1 = Gk = N(0 ,0). Since, we use more than a

single Gaussian for each particle, therefore, each Gaussian is assigned an

individual weight. A weight wt is a value that indicates how often the

motion feature has occurred for the particle, in the past. A new motion

feature observed is given a low weight, whereas, a motion feature that

occurs frequently gradually attains a high weight.
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Based on the persistence and the variance of each Gaussian distribu-

tion, we determine which Gaussians can be associated to the crowd model.

Consider a particle p at location (i, j) at time t = t0 where v(p) is its mo-

tion feature, the following criteria is evaluated for any distribution in the

Gaussian mixtures:

∃Gm(µ, σ) 3 |v(p)− µ| ≤ nσ (3.6)

where Gm ε Ω(i, j, t0) and 0 ≤ m ≤ k. If the condition is satisfied,

then the weight, the mean and the variance are updated for the matched

distribution Gm as:

wtm,T = (1− α).wtm,T−1 + α (3.7)

µT = (1− ρ).µT−1 + ρ.v(p) (3.8)

σ2
T = (1− ρ).σ2

T−1 + ρ.(v(p)− µT )2 (3.9)

where α is the weight-learning rate, and ρ is the mean/variance-learning

rate. The weight-learning rate is the rate at which new motion features of

a particle should be incorporated into the existing model. To this end, a

low weight-learning rate means that the new motion feature will be incor-

porated slowly into the model. For the unmatched distributions Gn, where

n 6= m, the weight is updated but mean and variance remain unchanged.

wtn,T = (1− α).wtn,T−1 (3.10)

µT = µT−1 (3.11)

σ2
T = σ2

T−1 (3.12)
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Furthermore, for a particle we consider that there is no matching dis-

tribution which is evaluated according to following criteria:

∀Gn(µ, σ)εΩ(i, j, T ) 3 |v(p)− µ|>nσ (3.13)

If the condition is satisfied, then the least probable distribution i.e. with

the minimum wt
σ ratio is replaced with a new distribtution with the mean

set to v(p) and a high variance.

First, the Gaussians are ordered by the value of wt
σ . This value increases

both as a distribution gains more evidence and as the variance decreases.

After re-calculating the parameters of the mixture, it is sufficient to sort

from the matched distribution towards the most probable normal crowd

distribution, because only the relative value of matched models will have

changed. This ordering of the model is a list, where the most likely normal

behavior distributions remain on top and the less probable ephemeral nor-

mal crowd distributions lean towards the bottom and are finally replaced

by new distributions. Then, the first C distributions are chosen as the

crowd model satisfying the condition as:

C = argminc

(
c∑

k=1

wtk>Th

)
(3.14)

where Th is a measure of the minimum portion of the data that should

be accounted for by the crowd model. This takes the best distributions

until a certain portion, Th, of the recent data has been accounted for. If a

small value for Th is chosen, the crowd model is usually unimodal. If Th is

higher, a multi-modal distribution caused by crowd dynamics (e.g. people

walking, and people chatting etc.) results in more than one modality being

included in the crowd model.
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3.3.3 Experimental results

We evaluate the performance of our method on both UMN [1] as well as our

own UCD [54] datasets. The UMN dataset consists of four video sequences

acquired in both indoor and outdoor scenes. All these sequences represent

an escape panic scenario and hence, they start with the normal behavior

frames followed by the abnormal situation. Normal scene is identified as

crowd walking while abnormal situation is identified as sudden change in

terms of crowd running in random directions.

As we adopt GMM to follow the behavior of motion features extracted

from the particles, a grid of particles is overlayed on the video frame, which

is repeatedly initialized after 3 frames. Motion features are extracted in

terms of velocity magnitudes by tracking the particles using the pyramidal

Lucas-Kanade optical flow [66]. For extracting the motion features, the

particle density (i.e. the number of particles) is kept constant at 12.5% of

the number of pixels i.e. a particle every 8x8 pixels.

Fig. 3.5 shows the normal and abnormal crowd behavior frames from

the UMN dataset in the top row and bottom row, respectively. The people

in the video sequences in the top row walk in random directions. In the

third and last columns in the top row, there are few red circles, which is the

result of noise arising from illumination and light changes. In the bottom

row, people starts running resulting in an anomaly as represented by red

circles. The red circles identify particles not fitting in the GMM crowd

model, thus shown as anomolous.

Similarly, Fig. 3.6 demonstates the results obtained on our UCD data-

set. Frames from video sequences where crowd show normal behavior are

shown in the top row while the bottom row shows examples where part of

the crowd shows an anomalous behavior. In the first and second columns,

three students are running from left to right and right to left, respectively,
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Figure 3.5: Anomaly detection in UMN dataset. Frames taken from four video sequences

representing normal behavior of crowd (first row); frames taken from four video sequences

representing abnormal behavior of crowd (second row).

.

in the mid of the crowd. Also the behavior is identified as anomalous by

particles annotated in red. In the third column, a student is running from

the bottom left corner to the top right corner and is identified as anomolous

as well since deviating from the learned crowd model. Furthermore, four

students running from left to right are successfully identified as anomolous

in the last column.

3.4 GoodFeatureToTrack and MLP

To consolidate the anomaly detection in term of panic situation, we adopt

multi-layer perceptron (MLP) feed-forward neural network to learn the

behavior of motion features extracted from the corner features [49] instead

of considering the values of all the pixels. The motion features are exploited

to learn the abrupt changes of crowd scenes represented by corner features,

thus modeling the abnormal behavior of the crowd. A single motion feature

extracted from an arbitrary corner feature is not sufficient to model the
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Figure 3.6: Anomaly detection in our UCD dataset. Frames taken from four video se-

quences representing normal behavior of crowd (first row); frames taken from four video

sequences representing abnormal behavior of crowd (second row).

.

abnormal behavior of crowd due to surrounding noise. Therefore, for each

corner feature we extract a set of motion features to robustly model the

abnormal behavior of the crowd.

3.4.1 Extracting features

The MLP neural network is adopted to learn the motion features, in terms

of velocity magnitudes of the corner features. In our approach, we selected

corner features, since they represent dominant motion parts in the scene.

Therefore, the consistency and accuracy in tracking are higher in crowd

scenes representing complex motion. These corner features are extracted

from the video frame as shown in Fig. 3.7. Motion information, defined in

terms of velocity magnitudes, are extracted at regular intervals of K frames

by tracking the corner features using the pyramidal Lucas-Kanade optical

flow. The collected motion features are stored to construct a feature vector

for each particle as formulated in Eq. (3.15).
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Vp = {v1.......vN} (3.15)

The objective of this processing stage is to filter out the motion features

that do not contribute to the identification of the crowd anomaly detection.

We do not consider the corner features having motion information with low

magnitudes.

Figure 3.7: Corner features initialization. Frame from a UCD video sequence where

students are walking from left to right (Left column); the same frame from UCD video

sequence with corner features driven (Right column)

.

3.4.2 MLP neural network

In order to properly weight the motion features, we have trained an MLP

neural network. The motivation for exploiting MLP is in its substantial

ability, through backpropagation, to resist to noise, and the dexterity to

generalize. The motion properties, extracted from the corner features, are

fed as an input to the MLP.

The output y is obtained by propagating the motion features as an input

vector through the hidden layers, as shown in Eq. (3.16), where y0 is an

input vector.
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y0 W 1,b1−−−→ y1 W 2,b2−−−→ .....
WL,bL−−−→ yL (3.16)

In MLP networks, there are L + 1 layers of neurons, and L layers of

weights. During the training stage, the weights W and biases b are updated

so that the actual output yL becomes closer to the desired output d. For

this purpose, a cost function is defined as in Eq. (3.17).

E(W, b) =
1

2

nl∑
i=1

(di − yLi )2 (3.17)

The cost function measures the squared error between the desired and

actual output vectors and the backpropagation is gradient descent on the

cost function in Eq. (3.17). Therefore, during the training stage, weights

and biases updated. The backpropagation algorithm begins with the for-

ward pass where the input vector y0 is converted into output yL. The

difference between the desired output d and the actual output yL is com-

puted to estimate the error. During the backward pass, the estimated error

at the output units is propagated backwards through the entire network.

The weights and biases are updated using the results of the forward and

backward passes. The learned weights and biases from the training stage

are used to predict the corner features associated with the abnormal crowd

behavior from the input motion information during testing.

3.4.3 Experimental results

For the purpose of performance evaluation, we carred out experiments on

both UMN [1] and our own UCD [54] datasets. The neural network we

exploited in our approach consists of one input layer, two hidden layers

and one output layer. The input layer consists of three neurons, each hid-

den layer consists of three neurons, and a single neuron is allocated to the
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output layer. We adopt an MLP neural network to understand the beha-

vior of motion features extracted from the corner features. These corner

features are tracked by the Lucas-Kanade optical flow, and the motion

features of each particle in term of velocity magnitude are extracted. For

each particle, the motion features consist of a vector of N = 3 observations,

where each element of the vector corresponds to the motion information

extracted every K = 5 frames.

Fig. 3.8 shows the normal and abnormal crowd behaviors frames from

the UMN dataset in the top two rows and bottom two rows, respectively.

The crowd in the video sequences in the top two rows walk in random

directions. The first row demonstrates the results of our approach described

in Section 3.3 and the second row demonstrates the results of our approach

in Section 3.4. In the top row, there are a few red circles, representing the

noise susceptibility of the method 3.3 comparing to the method in Section

3.4 in the second row. In the bottom two rows, the crowd starts running

resulting in an anomaly as represented by red circles. The red circles are

more pronounced in the method in Section 3.4 as compared to the method

in Section 3.3 in the third row.

Similarly, Fig. 3.9 shows the results obtained on our UCD dataset.

Frames from video sequences where crowd shows normal behavior are

shown in the top two rows, while the bottom two rows show examples

where only part of the crowd shows an anomalous behavior. The first

and third rows represent results from the method in Section 3.3 where the

second and last rows represent results from the method in Section 3.4.

There are a few red circles in the first column of the first row denoting

again the noise susceptibility of the method in Section 3.3. In the first and

last columns (bottom two rows), four students are running from left to

right and right to left, respectively, in the mid of the crowd. In the second

column of bottom two rows, a student is running from bottom left to top
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Figure 3.8: Anomaly detection in UMN dataset. Frames taken from four video sequences

representing normal behavior of crowd for the reference method and our proposed method

(first and second rows, respectively); frames taken from four video sequences representing

abnormal behavior of crowd for the reference method and our proposed method (third

and fourth rows, respectively).
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right. Furthermore, four students are running from left to right in the third

column. Also in these cases, the behaviors are identified as anomalous, by

the particles annotated in red. However, the annotation in term of red

circles is consolidated in case of the method in Section 3.4 comparing to

the method in Section 3.3, representing the robustness of the method in

Section 3.4.
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Figure 3.9: Anomaly detection in our UCD dataset. Frames taken from four video se-

quences representing normal behavior of crowd for the reference method and our proposed

method (first and second rows, respectively); frames taken from four video sequences rep-

resenting abnormal behavior of crowd for the reference method and our proposed method

(third and fourth rows, respectively).
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Chapter 4

Behavior Classification

This chapter presents state of the art and our proposed methods regard-

ing behavior classification. In particular, particle-driven and hybrid ap-

proaches are presented.

4.1 State of The Art

The State of the art we present it this section also fall under the category

of high density flow analysis. Rodrigues et al. [45] propose a tracking

approach by minimizing an energy function to jointly optimize the estim-

ates of the density and locations of individual people in the crowd. Ge et

al. [18] detect small groups of people traveling together in the crowd. A

hierarchical clustering algorithm is exploited by considering a generalized,

symmetric Hausdorff distance defined with respect to pairwise proximity

and velocity. However, these approaches require training and multiple tar-

get tracking. The method proposed by Solmaz et al. [50] classifies crowd

behaviors, in terms of lane, rings/arches, bottleneck, fountainhead, and

blocking, using time integration of the dynamical system defined by the

optical flow. However, this approach results sometimes in significant errors

arising from its inability to deal with crowd dynamics in low to medium

density crowd scenes. Furthermore, the approach works offline due to com-
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putational overheads, thus making it inapplicable to real-time applications.

4.2 A particle-driven approach

In our work, we address the problem of crowd behavior analysis by pro-

posing an approach based on temporal features and spatial features, which

does not require neither tracking nor training. The temporal features rep-

resent particles trajectories over a fixed interval of time whereas the spatial

features represent density of particles in the predefined proximity. Unlike

the method in [50], our approach works online, since both features are com-

putationally affordable. We dispose a grid of particles over the video frame

and advect them over a fixed time window using the optical flow technique.

We subsequently collect spatio-temporal features related to particles mov-

ing within a predefined region of interest.

Figure 4.1: Crowd behaviors. Crowd individuals moving in straight directions repres-

enting lanes (first column); individuals moving in curved directions representing rings

(middle column); individuals from different points accumulating at single location repres-

enting bottleneck (last column).

4.2.1 Crowd behaviors

The crowd behaviors identification is carried out starting from a manual

selection of the region of interest (ROI), and extracting the spatio-temporal

features associated to the particles inside the ROI. To this aim, a grid of

particles is initialized on the first video frame, and tracked over a fixed

interval of time using the pyramidal Lucas-Kanade optical flow [66]. Our
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approach is targeted at the identification of three major crowd behaviors

as listed below as:

Lane. In crowd situations, lanes formation take place when individuals

are uniformly moving in undeviating and straight directions. In lanes,

individuals move with comparable speed and direction of motion, so as to

avoid collisions with their neighbors.

Ring/Arch. Motion in the ring (or arch) is characterized by a curved

or circular direction. Ring/arch formations take place in typical scenes

such as traffic or pedestrian flowing, when following road paths or when

avoiding obstacles.

Bottleneck. It encompasses the presence of a narrow passage, through

which crowd individuals from many places intersect. The bottleneck rep-

resents the condition where many individuals try to go through an exit, in

ordinary situations (as entrance gates in crowded places) or in presence of

potentially dangerous events, such as a panic situation.

One sample scenario for each of the mentioned behaviors is shown in

Fig. 4.1.

4.2.2 Particle advection

We dispose a grid of particles over the first frame of the video sequence.

Each particle is associated with a spatial position on the image plane as

formulated in Eq. 4.1.

P (t) =

 x1(t) y1(t)
...

...

xN(t) yN(t)

 (4.1)

P is a function representing the state of the grid of particles, where

xi(t) and yi(t) represent the coordinates of the i-th (i = {1 . . . N}) particle

at each time instant. Particles are initially positioned so as to be equally
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spaced one from the other, and are then advected over a temporal window

on a frame-by-frame basis using the Lucas-Kanade optical flow as formu-

lated in Eq. 4.2, where OF stands for optical flow.

∀i ∈ {1, . . . , n}, F (pi(t+ 1)) = OF (F (pi(t)) (4.2)

Considering the definition of the ROI, in which we would like to analyze

the crowd behavior, only the particles located within the ROI are advected.

Our motivation for manual ROI selection comes from the observation that

in most videos only a limited portion of the observable space is typically

of interest, especially in traffic scenes (lanes, parking lots) and surveillance

videos.

We compute the optical flow on a frame by frame basis and the particles

are exalted according to the optical flow. At the end of particles advection,

the particle paths are highlighted, discarding those particles with low mo-

tion. Additionally, we apply a Gaussain filter to the highlighted path, to

consolidate the motion map. The workflow of ROI selection and path high-

lighting is shown in Fig. 4.2, where the ROI annotated in green is drawn

manually for both the proposed method and the reference method [50].

4.2.3 Behaviors identification

In the context of behavior identification under complex crowded scenes,

the analysis of the spatio-temporal features, and the definition of the met-

rics to distinguish among different behaviors, are key elements to obtain

reliable results. Given the impossibility of tracking single entities moving

in the video, the analysis of the optical flow has demonstrated to be a very

good baseline to start. The features we have considered are defined pair-

wise for each particle and include a spatio-temporal component related to

the particles position and motion, jointly with the density information of
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(a) (b)

(c) (d)

Figure 4.2: ROI selection. Drawing a region of interest (a); A grid of particles disposed

over the video frame (b); Particle advection (c); Highlighted paths of particles.
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the surrounding particles. The spatio-temporal features represent the tra-

jectories traveled by the particles. However, trajectories may significantly

vary also in the same scenario due to illumination changes, resulting into

noisy paths. In Fig. 4.4, an example of a particle advection is shown. This

is a representative particle showing the accumulative behavior of particles

in a ROI. The first column denotes noise-free advection of the particle

from the initial to the final location (annotated in green) representing the

lane/bottleneck behavior of crowd. However, the same behavior is repres-

ented by noisy advection of the particle, as shown in the middle column.

The third column represents the ring behavior of a crowd as the particle

is advected in the curved shape.

Figure 4.3: Densities of particles at the end of particle advection. Density of particles

in the proximity remains the same as before representing lane or arch (left); density of

particles increased in the proximity representing bottleneck (right).

In order to compensate this problem, first we accumulate the particles

trajectories at the end of the advection phase as formulated in Eq. 4.3:

∀i ∈ {1, . . . , n}, T1 =

∫ final

Initial

F (pi(t))dt (4.3)

where each particle trajectory is computed in terms of distance from initial

to final location (locations are annotated with red circles in Fig. 4.4).
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Figure 4.4: Particle advection. Crowd individuals moving in straight directions repres-

enting lane or bottleneck (first column); Individuals moving in a noisy straight direction

representing lane or bottleneck (middle column); Individuals moving in curved direction

representing ring (last column).

The same procedure is subsequently repeated to accumulate the particles

trajectories. However, each particle trajectory results as the concatenation

of trajectories calculated over K consecutive frames as formulated in Eq.

4.4.

∀i ∈ {1, . . . , n}, T2 =

∫ final

Initial

∫ K

k=1

F (pi(t))dt (4.4)

In order to identify the category of behaviors, we calculate the non-

trivial magnitude of noise as in Eq. 4.5.

I = |T1− T2| (4.5)

Hence, we can infer either of the two categories of behaviors from the

temporal features as formulated in Eq. 4.6.

Behavior =


L or B if I ≈ Th

A or B if I � Th

(4.6)

For the sake of simplicity, lane, arch, and bottleneck are represented by

L, A, and B respectively. In Eq. 4.6, Th is set to 5 determined empirically.

The temporal features, all alone, cannot distinguish among the three

crowd behaviors, and the particle density information in a predefined neigh-
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borhood is also exploited. To this aim, the identification process comprises

of two stages:

• Temporal features are collected at the end of particle advection to

identify lane/bottleneck or arch/bottleneck;

• Spatial features are collected to identify the particular behavior.

Primarily, inference from the spatial features combined with the tem-

poral features is interpreted in two stages. In the first stage, the density

of particles (i.e. number of particles) within a circle with radius r, is com-

puted before the particle advection as in Eq. 4.7:

S1 =
n∑
i=1

pi(t) (4.7)

where n is the number of particles. In the second stage, the same process

is repeated after the particle advection to compute S2. For instance, the

density of the particles is almost the same at the end of particle advection

in the first column of Fig. 4.3, hence representing the lane or arch behavior

of crowd. Furthermore, the density of the particles increased at the end of

advection in the second column representing the bottleneck.

Subsequently, we calculate a ratio between S1 and S2 as in Eq. 4.8

Ra = S1/S2 (4.8)

The behavior is determined by fusing the two features pairwise as in Eq.

4.9.

Behavior =



L if I ≈ Th and Thh > Ra > Thl

A if I � Th and Thh > Ra > Thl

B if Ra ≤ Thl

(4.9)
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Where Thh = 1 + ε and Thl = 1 − ε. The ε represents the stability

of particles spatially. This stability is associated with the movement of

individuals in the video sequences. Therefore, the choice of these values is

empirical and we set it to 0.75 and 0.5 for videos with normal motion and

swift motion, respectively.

An example applied to a video displaying a lane is shown in Fig. 4.5,

where army is parading on a thoroughfare.

Figure 4.5: Lane. Drawing region of interest manually (first column); Density of particles

converged at the end of particle advection (second column).

4.2.4 Experimental results

To validate the performance of our approach, we have conducted the exper-

iments on a set of 22 crowd video sequences extracted from PETS2009 [42],

UCSD [30], and our own UCD datasets. We have also considered video se-

quences from [50]. All video sequences extracted from the aforementioned

datasets consist of low to medium density crowds. For the extraction of

the spatio-temporal features for each particle, the resolution of the grid

is set to one sixteenth of the resolution of the video frame. Additionally,

each video sequence is partitioned into segments of fixed-length, set at 160
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frames (about 6 seconds depending on the frame rate). However, move-

ment of individuals in 6 video sequence is very swift, representing strong

transitions between consecutive frames. Therefore, these video sequences

are partitioned into segments of 60 frames each instead. There numbers are

determined empirically as shown in Fig. 4.6 and Fig. 4.7, where different

thresholds for all video sequences from 60 to 200 are tested at a step size

of 20 frames. We noticed that for video sequences with normal motion of

individuals, the performance improvement is significant in terms of beha-

viors detection when the segment size is set to 160 frames. Similarly, the

performance achievement is significant with 60 frames for video sequences

with swift motion of individuals.

Figure 4.6: Crowd sequences with normal motion. The first and the third video sequences

represent traffic flow and the middle one represents marathon flow. The threshold set to

160 correctly detects the behaviors.

The qualitative results are divided into two categories of video sequences.

Fig. 4.8 refers to video sequences consisting of pedestrian flows, while Fig.

4.9 reports the results obtained from video sequences consisting of mara-

thon and traffic scenes. In both figures, first columns present the samples

frames taken from the original video sequences, middle columns illustrate

the density of particles after applying the Gaussian filtering at the end

of particle advection, and last columns present peak extraction. For each

particle, a two-dimensional Gaussian filter, with variance 1 and size 11 x
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Figure 4.7: Crowd sequences with swift motion. The first video sequence represents

the traffic flow and the second video sequence represents the gathering of people from

different directions. The third video sequence represents crowd of people entering a gate.

The threshold set to 60 correctly detects the behaviors.

11, is applied to reduce noise and engender a consistent density map at the

end of particle advection. To extract the peak, a blob detector is applied

and the centroid of the blob is recognized as a peak.

In Fig. 4.8, for conciseness reasons only two video sequences from

PETS2009 dataset are depicted in the top two rows, one video sequence

from UCSD dataset is depicted in the third row, and one video sequence

from UCD dataset is depicted in the last row. The analysis of the extrac-

ted peaks from all the video sequences show lane behaviors as the crowd

inside any ROI follows a straight path in an arbitrary direction. The video

sequences depicted in Fig. 4.9 are taken from [50]. The analysis of the ex-

tracted peak for both the video sequences in the first row and the second

row represent bottlenecks. All the fishes and vehicles converge to a single

location in both video sequences. The third and the fourth rows represent

arch behaviors, respectively.

To evaluate the performance of our approach, we compared it with the

method recently proposed by [50]. The comparison of the obtained beha-

vior detection results is shown in Table 4.1, where the second column rep-

resents the ground truth in terms of total number of occurrences associated

with each behavior in the first column. The third and the fourth columns
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Figure 4.8: Crowd behaviors. Drawing region of interest manually (first column); Dens-

ity map of particles converging at the end of particle advection (middle column); Peak

extraction (last column).
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Figure 4.9: Crowd behaviors. Drawing region of interest manually (first column); Dens-

ity map of particles converging at the end of particle advection (middle column); Peak

extraction (last column).
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Table 4.1: Comparison of our method with the reference method in behavior detection.

Behaviors Total Our method Ref. method Improvement

Lane 15 15 13 13.3%

Arch/Ring 9 2 1 11.1%

Bottleneck 6 5 4 16.6%

represent the number of accurately detected behaviors by the proposed

method and the reference method, respectively. The last column shows

the improvement, in term of percentage, that our approach brings over the

reference approach [50].

All experiments were conducted on an Intel(R) Core(TM) i5-2400 3.10

GHz machine with 4GB of RAM. The proposed approach executes at ap-

proximately 29 frames per second. Considering the low computational

complexity of the proposed approach enables it for real-time surveillance

and monitoring applications.

4.3 A hybrid approach

We described in detail each stage of our proposed method based on the

representation of a dynamic system. The crowd behaviors are classified in

terms of lane, arch/ring, bottleneck, blocking, and fountainhead in the ROI

selected manually. For this purpose, a motion flow field is extracted from

video frames using the Farnback optical flow technique [17]. We then ex-

ploit thermal diffusion process [12] [63] that fuses both motion correlation

among particles and motion trends of individual particles, thus transform-

ing the input motion field into a more accurate coherent motion field. Each

particle represents the position of a pixel in the video frame. Furthermore,

we introduce an extended variant of social force model [65] to isolate and

filter out the particles that do not contribute in the classification process.
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Unlike the conventional Social Force Model [20] [19], the Extended variant

also captures the turbulent dynamics arising from high interactions.

4.3.1 Thermal diffusion process

It describes that the energy of the particles propagate to their neighbor-

hoods spontanously. Therefore, we exploit it to find a coherent motion

flow as formulated in Eq. (4.10).

∂DP,l

∂l
= γ2

P

(
∂2DP,l

∂x2
+
∂2DP,l

∂y2

)
+ VP (4.10)

where DP,l = (Dx
P,l,D

y
P,l) is the accumulated thermal energy diffused

from the neighboring particles for a particle P = (px, py) for l seconds.

VP = (vxP , v
y
P ) is the motion vector of the particle P and γP is a constant.

The first term in Eq. (4.10) boosts the spatial correlation among particles.

The second term VP is an external force added on the particle to affect

its diffusion behavior while preserving the original motion patterns at the

same time. Without the second term, Eq. (4.10) can be solved by:

DP,l =
1

wh

∑
S∈I,S 6=P

EP,l(S) (4.11)

where I is the set of all particles in the predefined spatial window K,

w and h are the width and height of the window. Eq. (4.11) states that

the diffused thermal energy is the summation from all the neighboring

particles encoding the correlation among them. The individual thermal

energy EP,t(S) = (Ex
P,l(S), Ey

P,l(S)) is diffused from the neighbor particle

S = (sx, sy) to the particle P located in the center of the window K, after

l seconds as:

Eβ
P,l(S) = Nβ

S .e
−γP
l ||P−S||

2

(4.12)

where β ∈ (x, y), NS = (nxS, n
y
S) is the current motion pattern for the
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neighbor particle S and it is initialized by NS = VS. ||P − S|| is the dis-

tance between particles P and S. In this paper, we fix l to be 1 to eliminate

its effect. When Vp in Eq. (4.10) is non-zero, it is difficult to get the exact

solution for (4.10). Therefore, an additional term e−γP |VS .(P−S)| is intro-

duced to approximate the influence of VS where γP is a force propagation

factor. In order to prevent unrelated particles from accepting too much en-

ergy from S, we restrict that only highly correlated particles will propagate

energies to each other. The final individual thermal energy from S to P

is formulated in Eq. (4.13).

Eβ
P,l(S) =


Nβ
S × e−γP ‖P−S‖

2

× if cos(VP , VS) ≥ θc

e−αm|VS .(P−S)|,

0, otherwise

(4.13)

where VP and VS are the input motion vectors of the current particle

P and the neighbor particle S, and cos(VP ,VS) is the similarity measure

conditioning that the particle P will not accept energy from S if their

input motion vectors are not coherent subject to the threshold θc. The

first term in Eq. (4.13) preserves the motion pattern of the energy source.

The second term considers the spatial correlation between the source and

central particles and the third term guarantees that particles along the

motion direction of the heat source receives more thermal energies. An

example of TDP is depicted in Fig. 4.10.

4.3.2 Extended social force model

The motion of particles is described as if they are subject to social forces.

Social forces are a measure for the internal motivations of the individual

particle to perform certain movements, and take into account the influence

of the other particle surrounding it. Therefore, the force concept turns into

a model based on plausible interactions among particles. According to this
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Figure 4.10: TDP. The original frame (first column); the motion flow field (second column)

and the coherent motion flow field (third column) after applying TDP.

model the velocity of each particle k with mass mk obeys to Eq. (4.14),

where Fa represents the acceleration force, expressed into two major parts,

namely the personal force Fp and the repulsive force Frep, respectively, as

in Eq. (4.15).

mk
dvk
dt

= Fa (4.14)

Fa = Fp + Frep (4.15)

Here, Fp represents the attempt of a particle to seek certain goal and

destination. Therefore, it is plausible to consider that each particle has a

desired velocity vpk as in Eq. (4.16).

Fp =
1

τ
(vpk − vk) (4.16)

However, for each portion of the video, the crowd motion is resembled

by the movement of a particle, where current velocity vk differs from the

desired velocity. Therefore, the desired personal velocity is replaced with

vqk as in Eq. (4.17), where pk is a panic parameter. If a particle k exhibits
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an individualistic action then pk decreases. Consequently, the personal

force Fp is given in Eq. (4.18).

vqk = (1− pk)vpk + pkvk (4.17)

Fp =
1

τ
(vqk − vk) (4.18)

The repulsive force Frep represents both the attempt of particle k to

keep a certain safety distance from other particles, and the desire to gain

more space in very crowded situations.

Frep = vkexp(
−Savg
D0

+
D1

Savg
) (4.19)

In Eq. (4.19) Savg represents the average distance of particle k from

its neighboring particles over a fixed spatial window. It is reasonable to

model particles such that they keep small distances from the surrounding

particles, to which they are related or attracted to, and keep far distances

from discomforting particles. Therefore, when Savg is very small, particles

are squeezed and the repulsive force will increase significantly, reflecting

the strong reactions of those located in areas of high interactions. Overall,

the Extended Social Force Model can be summarized as in Eq. (4.20),

where τ is the relaxation parameter and n, D0 and D1 are constants.

mk
dvk
dt

=
1

τ
(vpk − vk) + vkexp[

−Savg
D0

+ (
D1

Savg
)n] (4.20)

However, although parameters vary individually, and in order to avoid

model artifacts, we chose fixed values for τ , n, D0, and D1 empirically,

so as to achieve better calibration and stronger robustness, and excluding

irregular outflows because of parameters variations. Since all particles are

of the same sizes, therefore we set mk = 1. Fig. 4.11 depicts a frame from

a video sequence (a) where the particles of interest are annotated in yellow
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within the ROI (b). Further illustration of the Social Force Model and the

Extended variant is not in the interest of this paper, therefore readers are

referred to [65] [20] [19] for comprehensive details.

(a) (b)

Figure 4.11: Extended social force model. The original frame from a video sequence (a);

the potential particles are annotated in yellow (b).

.

4.3.3 Dynamic system

A dynamical system describes how a point in a space depends on time.

According to [50], the behavior of particles in the crowd scene can be

formulated by this system. Therefore, the coherent motion flow field can

be treated as a continous dynamic system as formulated in Eq. (4.21).

Ψ̇ = F (Ψ) (4.21)

where Ψ(t) = [x(t), y(t)]T and F (Ψ) = [u(Ψ), v(Ψ)]T represent the po-

sition and velocity of each particle, respectively. In general, a dynamic

system is represented by a differential equation that can be approximated

by using infinite series to identify a particular behaviour of the crowd.

Therefore, we expand the taylor series around the critical point Ψ̇ as for-

mulated in Eq. (4.22).
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F (
∗
Ψ +δ) = F (

∗
Ψ) + JF (

∗
Ψ)δ +

1

2
HF (

∗
Ψ)δ2 + O (4.22)

where F (
∗
Ψ) = 0 and δ(t) = Ψ−

∗
Ψ is a small agitation away from

∗
Ψ.

In Eq. (4.22), JF (Ψ̇) and HF (Ψ̇) are the Jacobian and Hessian matrices,

respectively. A critical point of F (
∗
Ψ) is a point where the rank of the Jac-

obian matrix is not maximal. Jacobian matrix is the linear approximation

of the function F near the point Ψ and Hessian Matrix is the second order

derivative near the critical point
∗
Ψ that characterizes the local curvature of

F . The Hessian matrix contains worthy information consolidating the dy-

namic system to detect the behavior accurately. In particular, the Hessian

matrix renders useful information regarding video sequences containing

high interactions and swift motions. Therefore, unlike [50] that exploits

the Jacobian matrix only, we fuse both matrices together. We replace

the off-diognal elements of Hessian matrix with ∂2u
∂y2 and ∂2v

∂x2 since we are

interested only in the second order derivative in the same plane.

JH =

(
∂u
∂x + ∂2u

∂x2
∂u
∂y + ∂2u

∂y2

∂v
∂x + ∂2v

∂x2
∂v
∂y + ∂2v

∂y2

)
(4.23)

We calculate the trace and determinant from Eq. (4.23) for each particle

in the ROI and accumulate them according to [50] to identify the behavior

of crowd.

4.3.4 Experimental results

To validate the performance of our approach, we have conducted the ex-

periments on a set of 50 video sequences from benchmark dataset [50] and

our UCD dataset [54]. These video sequences exhibit 14 lane, 15 arch/ring,

7 bottleneck, 5 blocking, and 9 fountainhead behaviors. To evaluate the

performance of our approach, we compared it with the method recently
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Figure 4.12: Crowd behaviors. Lanes are annotated in red (first column), arches/rings are

annotated in green (second column), bottlenecks are annotated in brown (third column),

blockings are annotated in yellow (fourth column), and fountainheads are annotated in

blue (last column).

proposed by [50]. The ROI is selected manually for both the reference

method [50] and the proposed method to maintain consistency in the eval-

uation process. For quantitative analysis the average F-score for each beha-

vior is calculated for the reference [50] and proposed method. The F-score

reaches its best score at 1 and worst score at 0.

Two sample frames for two video sequences for each behavior within the

ROI is depicted in Fig. 4.12. The first column presents lanes annotated

in red, the second column presents arches/rings annotated in green, the

third column presents bottlenecks annotated in brown, the fourth column

presents blockings annotated in yellow, and the last column presents the

fountainheads annotated in blue, respectively.

The comparison of the obtained behavior detection results is shown in

Table 4.2, where the second and third columns represent the average F-

scores calculated over all video sequences for each behavior for the reference

method [50] and the proposed method, respectively. We outperform the

reference method [50] in four behaviors: namely arch, bottleneck, blocking
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and fountainhead. However, we do not perform better than the reference

method [50] in detecting the lane behavior. Hence, the quantitative res-

ults demonstrate that the proposed approach is robust enough to detect

four crowd behaviors except lane comparing against the state of the art

technique [50].

Table 4.2: Comparison of our method with the reference method in behavior detection.

The average F-scores for each behavior is presented below for the reference method and

the proposed method, respectively.

Behaviors Ref. method [50] Our method

Lane 0.625 0.415

Arch/Ring 0.698 0.941

Bottleneck 0.118 0.686

Blocking 0.048 0.107

Fountainhead 0.183 0.440
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Conclusion

According to the report by the United Nations [36], the urban population

of the world has grown rapidly since 1950, from 746 million to 3.9 billion in

2014. This trend urges to define automatic tools to analyze crowd scenes

for people safety. Therefore, in this doctoral study, we developed tech-

niques dealing with pedestrian flows commonly exist in urban areas. For

this purpose, we proposed flow segmentation method based on block-based

correlation and α-expansion based on graph cut. On top of the segmen-

tion map, we investigated an anomaly detection strategy, by highlighting

deviant motion of the pedestrians compared to what has been observed be-

forehand. We also proposed an approach for segmenting motion in crowded

scenes using CRF. For this purpose, we extracted the orientation features

by exploiting the optical flow evaluated on a set of particles uniformly dis-

tributed on the image plane. The orientation features are used as a-priori

to train the CRF.

Moreover, we proposed a method to detect dominant flows in crowd

videos. The approach, comprising of three stages, extracts first corner fea-

tures from a video frame, and then exploits the enthalpy model to analyze

the corner features based on their motion properties. Orientation inform-

ation is then extracted from the corner features and exploited to train
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a random forest. Dominant crowd flows are successively obtained in the

testing stage. We also proposed an approach for detecting and tracking

moving entities in surveillance videos based on the cross influence matrix

and MLP neural netwok.

Considering the importance of anomalies, in term of panic situations, in

crowded scenes, we proposed an approach using Gaussian mixture model.

We demonstrated the capability of our approach in capturing the crowd

dynamics by disposing a grid of particles over the video frame. The mo-

tion features of the particles adopt the GMM to learn the behavior of the

crowd. The GMM model for anomaly detection is updated at each frame,

in order to absorb the variations of the crowded scene arising from changes

of scene context and crowd dynamics over time. To come up with improved

performance for anomaly detection, we proposed another approach using

corner features and an MLP feed-forward neural network. We demon-

strated the capability of our approach in capturing the crowd dynamics

by extracting corner features of a video frame. These corner features are

exalted over time using the optical flow technique. The motion information

of the corner features adopt the MLP neural network to learn the beha-

vior of the crowd. The main advantage of the proposed method is that it

considers crowd as a single entity, thus it does not require the tracking of

individuals. This further justifies the applicability of our scheme for real

time applications. The corner features for anomaly detection are extrac-

ted over a fixed temporal window, in order to make a vector of motion

magnitudes, consisting of three observations, for each corner feature.

For behavior classification in low to medium density crowd, we proposed

a particle-driven approach based on the initialization of a grid of particles

uniformly distributed on the image plane. These particles are advected

over a temporal window using the optical flow technique. We obtain the

spatio-temporal features for these particles, which are combined pairwise to
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identify the behavior of crowd within a region of interest. Additionally, we

presented another approach for behavior classification irrespective of the

density of the crowd based on the representation of a dynamic system. For

this purpose, we find the motion flow field using the optical flow technique.

Then a thermal diffusion process is applied to find a more coherent motion

flow field. Subsequently, an extented social force model is exploited to

filter out irrelevant particles. Then a matrix, formed by fusing Jacobian

and Hessian matrices , is exploited to identify crowd behaviors within a

region of interest selected manually.

Experimental results on video sequences from benchmark datasets as

well as our own dataset, demonstrated that our proposed methods outper-

form other state of the art techniques in motion segmentation and behavior

classification.

The future work should consider the problem of fusing the proposed

approaches together, since each proposed approach can be applied in dif-

ferent situations. To this end, more features should be investigated to

enable the proposed methods in the anomaly detection section to cope

with other types of anomalies e.g., the presence of non-pedestrian entities

in the crowded scenes.

107





Bibliography

[1] mha.cs.umn.edu/movies/crowd-activity-all.avi. UMN dataset.

[2] S. Ali and M. Shah. A lagrangian particle dynamics approach for crowd

flow segmentation and stability analysis. In International conference

on computer vision and pattern recognition, IEEE CVPR, pages 1–6,

2007.

[3] M. R. Amer, D. Xie, M. Zhao, S. Todorovic, and S. C. Zhu. Cost-

sensitive top-down/bottom-up inference for multiscale activity recog-

nition. In European conference on computer vision, Springer ECCV,

2012.

[4] E.L. Andrade, S. Blunsden, and R.B. Fisher. Modelling crowd scenes

for event detection. In International Conference on pattern recognition,

IEEE ICPR, pages 175–178, 2006.

[5] X. Bai and G. Sapiro. A geodesic framework for fast interactive image

and video segmentation and matting. In International conference on

computer vision. IEEE ICCV, pages 1–8, 2007.

[6] A. Basharat, Y. Zhai, and M. Shah. Content based video matching

using spatiotemporal volumes. Computer vision and image under-

standing, Elsevier CVIU, 110(3):360–377, 2008.

[7] M. Bertini, A. Del Bimbo, and L. Seidenari. Multi-scale and real-

time non-parametric approach for anomaly detection and localization.

109



BIBLIOGRAPHY BIBLIOGRAPHY

Computer vision and image understanding, Elsevier CVIU, pages 320–

329, 2012.

[8] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max-flow algorithms for energy minimization in vision. Trans-

actions on pattern analysis and machine intelligence, IEEE PAMI,

26(9):1124–1137, 2004.

[9] Y. Boykov, O. Vekser, and R. Zabi. Fast approximate energy minim-

ization via graph cuts. Transactions on pattern analysis and machine

intelligence, IEEE PAMI, 23(11):1222–1239, 2001.

[10] L. Breiman. Random forests. Machine learning, Springer, 45(1):5–32,

2001.

[11] A.B. Chan and N. Vasconcelos. Modeling, clustering, and segmenting

video with mixtures of dynamic textures. Transactions on pattern

analysis and machine intelligence, IEEE PAMI, 30(5):909–926, 2008.

[12] S. Chapman and F.W. Dootson. A note on thermal diffusion. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 33(195):248–253, 1917.

[13] W. Chen, Y. Zhao, W. Xie, and N. Sang. An improved sift algorithm

for image feature-matching. In International conference on multimedia

technology, IEEE ICMT, pages 197–200, 2011.

[14] A.M. Cheriyadat and R.J. Radke. Detecting dominant motions in

dense crowds. Journal of Selected Topics in Signal Processing, IEEE

JSTSP, 2(4):568–581, 2008.

[15] D. Cremers and S. Soatto. Motion competition: A variational ap-

proach to piecewise parametric motion segmentation. International

journal of computer vision, Springer IJCV, 62(3):249–265, 2005.

110



BIBLIOGRAPHY BIBLIOGRAPHY

[16] X. Cui, Q. Liu, M. Gao, and D.N. Metaxas. Abnormal detection using

interaction energy potentials. In International conference on computer

vision and pattern recognition, IEEE CVPR, pages 3161–3167, 2011.
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