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Introduction and motivation

The present work analyzes and describes a method for the direct numeri-
cal solution of the Maxwell’s equations of classical electromagnetism. This is
the FDTD (Finite-Difference Time-Domain) method, along with its imple-
mentation in an “in-house” computing code for large parallelized simulations.
Both are then applied to the modelization of photonic and plasmonic struc-
tures interacting with light. These systems are often too complex, either
geometrically and materially, in order to be mathematically tractable and an
exact analytic solution in closed form, or as a series expansion, cannot be
obtained. The only way to gain insight on their physical behavior is thus to
try to get a numerical approximated, although convergent, solution.
This is a current trend in modern physics because, apart from perturbative
methods and asymptotic analysis, which represent, where applicable, the typ-
ical instruments to deal with complex physico-mathematical problems, the
only general way to approach such problems is based on the direct approxi-
mated numerical solution of the governing equations. Today this last choice is
made possible through the enormous and widespread computational capabili-
ties offered by modern computers, in particular High Performance Computing
(HPC) done using parallel machines with a large number of CPUs working
concurrently. Computer simulations are now a sort of virtual laboratories,
which can be rapidly and costless setup to investigate various physical phe-
nomena. Thus computational physics has become a sort of third way between
the experimental and theoretical branches.
The plasmonics application of the present work concerns the scattering and
absorption analysis from single and arrayed metal nanoparticles, when sur-
face plasmons are excited by an impinging beam of light, to study the radi-
ation distribution inside a silicon substrate behind them. This has potential
applications in improving the efficiency of photovoltaic cells.
The photonics application of the present work concerns the analysis of the
optical reflectance and transmittance properties of an opal crystal. This is
a regular and ordered lattice of macroscopic particles which can stops light
propagation in certain wavelenght bands, and whose study has potential ap-
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viii INTRODUCTION AND MOTIVATION

plications in the realization of low threshold laser, optical waveguides and
sensors. For these latters, in fact, the crystal response is tuned to its struc-
ture parameters and symmetry and varies by varying them.
The present work about the FDTD method represents an enhacement of a
previous one made for my MSc Degree Thesis in Physics, which has also
now geared toward the visible and neighboring parts of the electromagnetic
spectrum. It is organized in the following fashion.
Part I provides an exposition of the basic concepts of electromagnetism which
constitute the minimum, although partial, theoretical background useful to
formulate the physics of the systems here analyzed or to be analyzed in pos-
sible further developments of the work. It summarizes Maxwell’s equations
in matter and the time domain description of temporally dispersive media.
It addresses also the plane wave representation of an electromagnetic field
distribution, mainly the far field one. The Kirchhoff formula is described and
deduced, to calculate the angular radiation distribution around a scatterer.
Gaussian beams in the paraxial approximation are also slightly treated, along
with their focalization by means of an approximated diffraction formula use-
ful for their numericall FDTD representation. Finally, a thorough descrip-
tion of planarly multilayered media is included, which can play an important
ancillary role in the homogenization procedure of a photonic crystal, as de-
scribed in Part III, but also in other optical analyses.
Part II properly concerns the FDTD numerical method description and im-
plementation. Various aspects of the method are treated which globally
contribute to a working and robust overall algorithm. Particular emphasis
is given to those arguments representing an enhancement of previous work.
These are: the analysis from existing literature of a new class of absorbing
boundary conditions, the so called Convolutional-Perfectly Matched Layer,
and their implementation; the analysis from existing literature and imple-
mentation of the Auxiliary Differential Equation Method for the inclusion
of frequency dependent electric permittivity media, according to various and
general polarization models; the description and implementation of a “plane
wave injector” for representing impinging beam of lights propagating in an
arbitrary direction, and which can be used to represent, by superposition, fo-
calized beams; the parallelization of the FDTD numerical method by means
of the Message Passing Interface (MPI) which, by using the here proposed,
suitable, user defined MPI data structures, results in a robust and scalable
code, running on massively parallel High Performance Computing Machines
like the IBM/BlueGeneQ with a core number of order 2× 105.
Finally, Part III gives the details of the specific plasmonics and photon-
ics applications made with the “in-house” developed FDTD algorithm, to
demonstrate its effectiveness. After Chapter 10, devoted to the validation
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of the FDTD code implementation against a known solution, Chapter 11
is about plasmonics, with the analytical and numerical study of single and
arrayed metal nanoparticles of different shapes and sizes, when surface plas-
mon are excited on them by a light beam. The presence of a passivating
embedding silica layer and a silicon substrate are also included. The next
Chapter 12 is about the FDTD modelization of a face-cubic centered (FCC)
opal photonic crystal sample, with a comparison between the numerical and
experimental transmittance/reflectance behavior. An homogenization proce-
dure is suggested of the lattice discontinuous crystal structure, by means of
an averaging procedure and a planarly multilayered media analysis, through
which better understand the reflecting characteristic of the crystal sample.
Finally, a procedure for the numerical reconstruction of the crystal dispersion
banded ω − k curve inside the first Brillouin zone is proposed.
Three Appendices providing details about specific arguments dealt with dur-
ing the exposition conclude the work.



x INTRODUCTION AND MOTIVATION



Part I

Some selected topics in
electromagnetism and wave

optics
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Chapter 1

Electromagnetism in matter

1.1 Maxwell’s equations in matter

The electromagnetic field inside matter is described by the Maxwell’s
equations which, using the SI unit system are:

~∇ · ~D = ρ (1.1a)

~∇ · ~B = 0 (1.1b)

~∇× ~E = −∂
~B

∂t
(1.1c)

~∇× ~H =
∂ ~D

∂t
+~j (1.1d)

where ~E is the electric field in Volt/m, ~D is the electric induction field

in Coulomb/m2, ~H is the magnetic field in Ampère/m, ~B is the magnetic
induction in Weber/m2. In Eq.n (1.1a) and Eq.n (1.1d), ρ and ~j are the
total free electric charge density in Coulomb/m3 and the total free electric
current density in Ampère/m2, respectively. Here, free means unbounded.
They have to satisfy locally the charge conservation law:

∂ρ

∂t
+ ~∇ ·~j = 0 (1.2)

i.e., to satisfy a continuity equation. Here the first order vector operator ~∇:

~∇ ≡ x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

3



4 CHAPTER 1. ELECTROMAGNETISM IN MATTER

(x̂, ŷ, ẑ are the unit vectors of the cartesian orthogonal reference frame) is
used to denote, along with the · and × algebraic formal operations in carte-
sian coordinates, the divergence (~∇·) and curl (~∇×) operators, but obviously
Eq.ns (1.1) hold in any coordinate system. To solve the Maxwell’s equations,
constitutive relations have to be specified. The most usual are:

~D(~r, t) = ε(~r) ~E(~r, t) (1.3)

~B(~r, t) = µ(~r) ~H(~r, t) (1.4)

~jcond(~r, t) = σ(~r) ~E(~r, t) (1.5)

where ε and µ are the absolute electric permittivity and magnetic perme-
ability of the media, in Farad/m and Henry/m respectively, while σ is the
electric conductivity in Siemens/m. Eq.n (1.5) implies that the total free
charge and currents are decomposed as:

ρ = ρcond + ρsource

~j = ~jcond +~jsource

and each contribution verifies independently a continuity equation like (1.2).
The source contributions refer to the impressed charges and currents from
generators. The remaining free charges and currents constitute the ohmic
contribution. Bounded charges and currents are instead taken in account
through relations (1.3) and (1.4). A first generalization of the above linear
constitutive relations is by means of a tensorial permittivity, or permeability,
or conductivity. A further one is by means of non-local temporal and spatial
linear relations. In the present work non-magnetic materials are considered
throughout, which means (without lack of generality)

µ(~r) ≡ µo = 4π × 10−7 Henry

m

everywhere, µo being the vacuum permeability. Instead, the most general
linear relation between ~D and ~E that will be considered in the present work
is a temporal, non-local, scalar one:

~D(~r, t) = εo

[
εr,∞(~r) ~E(~r, t) +

∫ +∞

−∞
G(~r, τ) ~E(~r, t− τ)dτ

]
(1.6)

where the causality principle imposes the kernel G to be zero for τ < 0,
because contributions to ~E in advance with respect to the present time cannot
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exist. When translated in the frequency domain Eq.n (1.6) becomes, being
the transform of the temporal convolution the product of the trasforms of
the convolving functions:

~D(~r, ω) = εo [εr,∞(~r) + χ(~r, ω)] ~E(~r, ω) (1.7)

where, with an abuse of notation, the same letters have been used for the
time domain electric field and its frequency domain counterpart. The general
relation between ~D and ~E is

~D = εo ~E + ~P (1.8)

where ~P is the matter polarization field in Coulomb/textm2 (in both the
time and frequency domains). By comparing (1.6) and (1.7) with εr,∞ = 1,
and (1.8), we have that the electric susceptivity χ(ω) — omitting the ~r

dependence —, which connects in the linear regime ~P to ~E: ~P = εoχ~E, is
given by the transform pair:

χ(ω) =

∫ +∞

−∞
G(t)e+iωtdt (1.9a)

G(t) =
1

2π

∫ +∞

−∞
χ(ω)e−iωtdω . (1.9b)

Note that in the present work the phase factor e−iωt has been chosen for the
temporal harmonic fields: E(t) = Re {Eωe−iωt}. On the other hand, any
multiplicative factor in the definition of the transform pair
By comparing (1.3) and (1.6) we see that the former is justified if G ≡ 0 and
only the istantaneous response is retained, corresponding to the limit ω →∞
(from which the ∞ subscript). Thus relation (1.7) in the more correct one.
It is usually rewritten by introducing the absolute complex permittivity εc
(i is the imaginary unit and the plus sign is coherent with the choice of the
sign in the time harmonic phase factor)

εc = ε′ + iε′′

Sometimes to simplify things the istantaneous conductivity response σ enters
ε′′ by inserting (1.3) and (1.5) in (1.1d) and then Fourier trasforming both
members, thus getting:

ε′′ =
σ

ω
.
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The determination of the kernel function G(t) in Eq.ns (1.9) is of relevance,
because in a time domain approach such as the one presented in this work,
the equation to be discretized is (1.6) and not (1.7).

1.2 Temporally dispersive media.

Various polarization models are used to determine the electric susceptivity
function χ(ω) and to which, through (1.9b), correspond different kernels
G(t). The latter are explicitly calculated by means of a complex contour
integration, picking up the residue contributions from the poles of χ in the
complex z plane, with ω = Re{z}. In what follows, in the present Section,
θ(t) is the unit step distribution: θ(t) = 1 if t > 0, θ(t) = 0 if t < 0. It
arises from an application of the Jordan lemma of complex analysis to the
semicircle path of integration (all the poles lie in the lower complex half
plane). It represents the mathematical expression of causality : the effect can
only follow the cause.
• Drude (or Drude-Sommerfeld) model [18]:

χDS(ω) = −
ω2

pl

ω(ω + iγ)
(1.10)

where ωpl is a plasma frequency of the free-electron gas contributing to the
conductivity of metals and γ is a damping factor (both parameters positive),
for which:

GDS(t) =
ω2

pl

γ

(
1− e−γt

)
θ(t) .

• Lorentz model [18]:

χL(ω) =
(εr,s − εr,∞)ω2

o

ω2
o − 2iωγ − ω2

(1.11)

where ωo is a resonance frequency of the bounded oscillating electrons and γ
their damping factor (ωo > γ > 0). After setting: ω̃ =

√
ω2
o − γ2, it results

that:

GL(t) =
(εr,s − εr,∞)ω2

o

ω̃
e−γt sin (ω̃t)θ(t) .

This model generalizes to a sum of N terms with different resonance frequen-
cies and damping factors like in (8.1) of Section 8.2, Chapter 8. GL(t) varies
accordingly, becoming a sum of N terms.
• Debye model:
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χD(ω) =
(εr,s − εr,∞)iγ

ω + iγ
(1.12)

is like the Drude-Sommerfeld case, but without the simple pole in the origin.
It results that:

GD(t) = γe−γtθ(t) .

• Critical Points model [48] and References 11–12 therein, is an ad hoc sus-
ceptivity of the form:

χCP (ω) = AΩ

(
eiφ

Ω− ω − iΓ
+

e−iφ

Ω + ω + iΓ

)
(1.13)

where A,Ω,Γ, φ are settable real parameters (apart φ which can have both
signs, all other parametrs are positive definite). A two points critical model,
i.e., two terms like the one above (with parameters indexed with ` = 1, 2 and
with suitable values), in conjunction with a Drude model, has been proposed
to fit accurately the complex permittivity of noble metals like gold and silver
in the wavelength range 200 ÷ 1000 nm. In [48] parameter values for alu-
minum and chromium are also given. It should be observed that the complex
permittivity fitting is constrained to expressions obeying appropriate disper-
sion relations [7,8] between their real and imaginary parts. The contribution
to GCP (t) from a single term like the one above is:

GCP (t) = 2AΩ e−Γt sin (Ω t− φ)θ(t) .

which generalizes to a sum for ` = 1, 2 plus a further GDS(t) term for the
full proposed model in [48] and References 11–12 therein.
It can be easily shown, possibly by considering the sin function as a complex
exponential and taking the imaginary part at the end of calculations that,
for all the kernels G(t) above, the time convolution (1.6), once it has been
discretized according to the FDTD method that will be described in the
Part II of the present work — see Section 8.1 of Chapter 8 and Section 6.1
of Chapter 6 — can be recursively updated, thus permitting to include, in
the ensuing numerical algorithm, temporally dispersive media.

1.3 Solution for the sphere in the field of a

plane wave

Analytical closed form solutions of electromagnetic problems are hardly
to find, except for some particular configurations. An example of an ana-
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lytical solution which is not in closed form but, however, given as a series
expansion, is that of a sphere of radius a, made of a non-magnetic material
of complex electric permittivity ε, in the electromagnetic field of an homo-
geneous, linearly polarized, monochromatic plane wave of given amplitude,
propagating along a given direction, in the vacuum (µo, εo). From a numer-
ical evaluation of the various term of the series, it is possible to sum a finite
number of them to get, to a given accuracy — within the accumulation error
due to the finite precision arithmetic of a computer —, the distribution of the
“exact” solution inside and outside the sphere. This serves for comparison
with the solution calculated by the FDTD method (or, eventually, any other
method) and for testing the effectiveness and accuracy of the latter.
By introducing a “fixed” cartesian right-handed reference frame with origin
at the center of the sphere, its positive y axis in the direction of propagation
and its z axis in the direction of the plane wave electric vector yields, after
the introduction of spherical coordinates with the colatitude angle θ mea-
sured from the positive y axis and the azimuthal angle φ measured from the
positive z axis:

x = r sin (θ) sin (φ)

y = r cos (θ)

z = r sin (θ) cos (φ) .

The unit vectors of the “moving” frame at (r, θ, φ) are êr, êθ, êφ:

êr = sin (θ) sin (φ)x̂+ cos (θ)ŷ + sin (θ) cos (φ)ẑ

êθ = cos (θ) sin (φ)x̂− sin (θ)ŷ + cos (θ) cos (φ)ẑ

êφ = cos (φ)x̂− sin (φ)ẑ

with x̂, ŷ, ẑ the fixed unit vectors. In time-free form (assuming the usual
e−iωt factor and, with an abuse of notation, using the same letters for the
time-domain and the frequency-domain variable fields vectors) the Maxwell’s
curl equations are:

~∇× ~E = iωµo ~H

~∇× ~H = −iωεc ~E
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where:

εc =

{
εo outside the sphere

ε+ iσ
ω

inside the sphere

(alternatively, inside the sphere εc could be one of the general expressions
given in the preceding Section 1.2 for dispersive media. Note that here is the
static conductivity σ to contribute the imaginary part of εc). Moreover, both
~E and ~H have to be solenoidal:

~∇ · ~E = ~∇ · ~H = 0 .

The above two curl equations can be combined to give a second order vector
wave equation for ~E (or ~H):

~∇× ~∇× ~E = ω2µoεc ~E .

Representing the vector fields by means of the êr, êθ, êφ base does not allow
to write three simple scalar wave equations (or Helmholtz equations) for each

one of the components of ~E, because those versors are not spatially constant.
In [5] it is shown that if ψ is a scalar solution of the Helmholtz equation:

(~∇2 + k2)ψ = 0

where k = kc = ω
co

√
εc/εo (a complex quantity) inside the sphere, or k = ko

(a real quantity) outside, with co the vacuum light speed. Then:

~L = ~∇ψ

~M = ~∇× (êrrψ) = ~L× ~r

~N =
1

k
~∇× ~M

(~r = rêr) are three vectorially independent solutions of the vector wave

equation. In particular ~M and ~N are solenoidal, thus they are the solutions
of interest in the present Section. They can be constructed starting from the
solutions ψ of the Helmholtz equation, which is separable in the spherical
coordinates r, θ, φ. A complete set of solutions is [5]:

ψe,om,n = zm(kr)P n
m(cosθ)f e,o(nφ)

where:
• m = 0, 1, 2, . . .;
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• n = 0, 1, . . . ,m;
• e, o superscripts stand for even or odd respectively with:

f e(nφ) = cos (nφ)

f o(nφ) = sin (nφ) ;

• P n
m(x) (0 ≤ x ≤ 1) are associated Legendre functions of the first kind;

• zm(ζ), ζ = kr, are spherical Bessel functions:

zm(ζ) =
Zm(ζ)

ζ
1
2

where Zm(ζ) are half-integer order Bessel functions. The spherical Bessel
functions are of three kinds, depending on their asymptotic behavior for
ζ → 0 and ζ → ∞ (the point at infinity because, in general, ζ is a complex
quantity).
• First kind (zm = jm(ζ)):

jm(ζ) ∼

{
ζm ζ → 0
sin(ζ−mπ

2
)

ζ
|ζ| � 1,m

• Second kind or Neumann (zm = nm(ζ)):

nm(ζ) ∼

{
1

ζm+1 ζ → 0

− cos(ζ−mπ
2

)

ζ
|ζ| � 1,m

• Third kind or Hankel (zm = h
(±)
m (ζ) = jm(ζ)± inm(ζ)):

h(±)
m (ζ) ∼ (∓i)m+1 e

±iζ

ζ
|ζ| � 1,m .

h
(±)
m (ζ) represent outgoing/ingoing traveling waves (with respect to the origin

of the coordinates).
In ψe,om,n the angular dependence is kept separated between even and odd
functions, where usually in the spherical harmonic functions they are merged
in a single imaginary exponential with m = −n, . . . , n. By inserting in
the above expressions for ~M and ~N yields the vector spherical functions,
which form a basis for expanding the solenoidal solutions of the vector wave
equation. Explicitly:
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~M e,o
m,n =

1

sin (θ)
zm(kr)P n

m(cos θ)
df e,o(nφ)

dφ
êθ+

− zm(kr)
dP n

m(cos θ)

dθ
f e,o(nφ)êφ

~N e,o
m,n =

m(m+ 1)

kr
zm(kr)P n

m(cos θ)f e,o(nφ)êr+

+
1

kr

d[rzm(kr)]

dr

dP n
m(cos θ)

dθ
f e,o(nφ)êθ+

+
1

kr sin (θ)

d[rzm(kr)]

dr

dP n
m(cos θ)

dθ

f e,o(nφ)

dφ
êφ .

for m = 0, 1, 2, . . . and n = 0, 1, . . . ,m. Now, inside the sphere the electric
field is ~Et, a “transmitted” one. Outside, it is the vectorial sum of the
incident and the “reflected” ones: ~Ei + ~Er. Similarly for ~H. The boundary
condition at the spherical interface r = a is the continuity of the tangential
field components, of both ~E and ~H:[

êr ×
(
~Ei + ~Er

)]
r=a

=
[
êr × ~Et

]
r=a[

êr ×
(
~Hi + ~Hr

)]
r=a

=
[
êr × ~Ht

]
r=a

.

The incident, monochromatic, linearly polarized plane wave with a normal-
ized amplitude is:

~Ei = ẑeikoy = ẑeikor cos (θ) =
∞∑
m=1

(
am ~M o,I

m,1 − ibm ~N
e,I
m,1

)
(see [5]) where the choice between even and odd in the expansion is suggested

by comparison of the above expressions for ~Mm and ~Nm with the dependence
of ẑ on the φ angle when it is represented in the êr, êθ, êφ basis. For the same
reason there is no sum on the n index, which is fixed at 1. The superscript I
indicates that as spherical Bessel functions are chosen those of the first kind,
which are regular at the origin. Also note that k = ko (also in ~Mm and ~Nm),
i.e., that of the vacuum. The expansion coefficients am and bm are found
using the orthogonality of the base functions and are [5]:

am = bm =
2m+ 1

m(m+ 1)
im .
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The incident magnetic field, being directed along x̂ is represented as:

~Hi = x̂
ko
ωµo

eikoy = − ko
ωµo

∞∑
m=1

(
bm ~M e,I

m,1 + iam ~N
o,I
m,1

)
this expression being again dictated by the dependence of x̂ on the φ angle
when it is represented in the êr, êθ, êφ basis. The “reflected” and “transmit-
ted” fields can be expanded by similarity with the above expressions in the
following way:

~Er =
∞∑
m=1

im
2m+ 1

m(m+ 1)

(
arm ~M o,III

m,1 − ibrm ~N
e,III
m,1

)
(1.14a)

~Hr = − ko
ωµo

∞∑
m=1

im
2m+ 1

m(m+ 1)

(
brm ~M e,III

m,1 + iarm ~N
o,III
m,1

)
(1.14b)

where the spherical Bessel functions of the third kind are used for the “re-
flected” field, because they have the correct behavior at a great distance from
the sphere and satisfy the Sommerfeld radiation condition. And for the field
inside the sphere:

~Et =
∞∑
m=1

im
2m+ 1

m(m+ 1)

(
atm

~M o,I
m,1 − ibtm ~N

e,I
m,1

)
~Ht = − kc

ωµo

∞∑
m=1

im
2m+ 1

m(m+ 1)

(
btm ~M e,I

m,1 + iatm ~N
o,I
m,1

)
.

Here the complex kc and the spherical Bessel functions of the first kind have
to be used in ~Mm and ~Nm because they are regular at the origin.
The four unknown coefficients, for each m = 1, 2, . . ., in the above expansions:
arm, brm, atm, btm, are found by imposing the boundary conditions at r = a for
Eθ, Eφ, Hθ, Hφ and equating term by term the expansions. This gives:

arm = − jm(kca)[koajm(koa)]′ − jm(koa)[kcajm(kca)]′

jm(kca)[koahm(koa)]′ − hm(koa)[kcajm(kca)]′
(1.15a)

brm = − jm(koa)[kcajm(kca)]′ − β2jm(kca)[koajm(koa)]′

hm(koa)[kcajm(kca)]′ − β2jm(kca)[koahm(koa)]′
(1.15b)

atm = −jm(koa)[koahm(koa)]′ − hm(koa)[koajm(koa)]′

hm(koa)[kcajm(kca)]′ − jm(kca)[koahm(koa)]′
(1.15c)
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btm = β
hm(koa)[koajm(koa)]′ − jm(koa)[koahm(koa)]′

hm(koa)[kcajm(kca)]′ − β2jm(kca)[koahm(koa)]′
(1.15d)

where:

β =
kc
ko

and

[kazm(ka)]′ ≡ d[ζzm(ζ)]

dζ

∣∣∣∣
ζ=ka

.

Moreover, the Hankel functions used are effectively h
(+)
m , i.e., those corre-

sponding to outgoing waves (the superscript has been omitted in the expres-
sions above for the coefficients for better readability).

A computer code to calculate numerically the fields ~Er, ~Et, ~Hr, ~Ht ( ~Ei and
~Hi, which are to be added outside the sphere to ~Er and ~Hr, do not need
to be calculated through their expansions, because are immediately known
from their imaginary exponential form ∝ eiko cos (θ)) has to be able to evaluate
the required spherical Bessel functions of complex argument and the associ-
ated Legendre functions, as well as their first derivatives. Once the eabove
expressions for the four kinds of expansion coefficients have been evaluated
at a given (angular) frequency ω, for the given sphere of radius a, with the
given ε and σ parameters and for a whole range of m = 1, . . . ,mmax indices,
they can be inserted in the above expressions for the field expansions and
by summing up the contributions from the mmax terms yields the field com-
ponents (which can eventually be transformed in the cartesian ones) values
at any chosen (r, θ, φ) point. It is expected that the more terms in the ex-
pansions (increasing mmax), the more accurate their numerically calculated
values, even if the more longer the calculations. As with other generalized
Fourier expansions, if the represented fields are sufficiently smooth, besides
the mean-square convergence, the expansions converge also in the ordinary
sense. The evaluation of special functions and their derivatives requires dedi-
cated mathematical numerical libraries to be linked to the computer code (or
the use of interpreted languages like Python, which has a dedicated module
implementing such special function but which is unavoidably much slower
than a compiled code). Alternatively, they can be calculated recursively,
exploiting the recurrence relations they satisfy, or by means of their series
expansions, as explained in [40].
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The above described analytical procedure (and the related numerical imple-
mentation) could be generalized further, within a spherically symmetric con-
text, to treat a layered sphere made of a finite number of concentric spherical
shells, each one made of a different material of given complex permittivity.
Boundary conditions would have to be imposed at each spherical interface
corresponding to the transition between different media.



Chapter 2

Spatial Fourier analysis and
far-fields

In the present Chapter the electromagnetic field vectors ~E and ~H depend
on the position but also on the (angular) frequency ω, which is not explicitly
indicated. With an abuse of notation the same symbols are used here for
frequency domain fields as were used in Chapter 1 for the time domain ones.

2.1 Plane wave spectrum representation

Once the spatial distribution ~E of the electric field has been determined
at a given angular frequency ω in a given region of a homogeneous medium
free of sources ( ~E will be in general a complex vector), one can consider a
given y = const. plane and make a two-dimensional spatial direct/inverse
Fourier transform:

~E(kx, kz; y) =
1

4π2

∫ +∞

−∞
dx

∫ +∞

−∞
dz ~E(x, y, z)e−i(kxx+kzz) (2.1a)

~E(x, y, z) =

∫ +∞

−∞
dkx

∫ +∞

−∞
dkz ~E(kx, kz; y)e+i(kxx+kzz) . (2.1b)

Both the above Fourier integrals hold separately for each vector component
of ~E and ~E. Because the left hand member of (2.1b) has to be the solution
of the scalar Helmholtz equation:(

~∇2 + k2
)
~E(~r) = ~0

15
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it is easily seen that as a consequence ~E satisfies:[
∂2

∂y2
+ (k2 − k2

x − k2
z)

]
~E(kx, kz; y) = ~0 .

Taking the initial condition at y = 0, the object plane, one has:

~E(kx, kz; y) = ~E(kx, kz; 0)e±ikyy

with

ky =
√
k2 − k2

x − k2
z ,

being k = ω/c with c the light speed in the given homogeneous medium.
Choosing for definitness the forward y direction (i.e., the plus sign in the
exponential) and Im{ky} > 0 (i.e., the positive branch of the square root) in
such a way that, for y → +∞, the field remains finite, (2.1b) can be rewritten
as:

~E(x, y, z) =

∫ +∞

−∞
dkx

∫ +∞

−∞
dkz ~E(kx, kz; 0)e+i(kxx+kyy+kzz) . (2.2)

Thus at any given image plane y = const. the field can be reconstructed if
its spectrum is known in the object plane. (2.2) is known as the angular

spectrum representation of ~E because it is an integral sum over a set of plane
waves propagating in various angularly distributed directions, weighted by
~E . However, when the independent variables are such that:

k2
x + k2

z > k2

there are evanescent non-homogeneous plane waves, decaying exponentially
with increasing y and oscillating sinusoidally in transverse directions. The
solenoidality condition must also be imposed on the spectrum ~E :

~k · ~E = 0

for it can correctly describe a solution of Maxwell’s equations. Similar con-
clusions can be applied to the magnetic spectrum ~H, which can be calculated
from ~E using the ~∇× operator.
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2.2 Far-field in the angular spectrum repre-

sentation

An important asymptotic analysis can be performed on (2.2) by means of
the stationary phase method [4,18], in evaluating the far-zone approximation

for ~E(~r) at an infinite distance from the y = 0 object plane, in the y ≥ 0
half-space. Thus, by starting from (2.2) and introducing the unit vector ŝ to
specify directions:

ŝ = (sx, sy, sz) =
(x
r
,
y

r
,
z

r

)
(r = ‖~r‖ =

√
x2 + y2 + z2), by taking the limit r →∞ one can write:

~E∞(x, y, z) = lim
kr→∞

∫∫
k2x+k2z≤k2

~E(kx, kz; 0)e+ikr( kx
k
sx+

ky
k
sy+ kz

k
sz)dkxdkz (2.3)

in which the contribution of the evanescent waves is a priori neglected because
they have an exponential vanishing decay at infinity. To calculate the limiting
behavior for kr →∞ of (2.3) — with sx, sz and sy =

√
1− s2

x − s2
z kept fixed

— it is rewritten as:

~E∞(x, y, z) = lim
κ→∞

∫∫
p2+q2≤1

~e(p, q)e+iκ(psx+msy+qsz)dp dq , (2.4)

where κ = kr and m =
√

1− p2 − q2 (p = kx
k

, q = kz
k

, m = ky
k

). One
then has to consider the stationary points of the phase function g(p, q) =
psx +msy + qsz inside the integration domain, which is the unit circle in the
pq-plane. If (p′, q′) is such a stationary point, the final asymptotic result, as
given in Subsection 3.3.4 of [4], is:

~E∞(sxr, syr, szr) ∼
2πiσ

kr
√
|∆|

~e(p′, q′)eikr(p
′sx+m′sy+q′sz) , (2.5)

where m′ =
√

1− p′2 − q′2, ∆ is the Hessian determinant of g(p, q) at (p′, q′)
and σ depends on the trace Σ of the Hessian matrix evaluated at (p′, q′):

σ =


+1 if ∆ > 0,Σ > 0

−1 if ∆ > 0,Σ < 0

−i if ∆ < 0

.

In the present case for the points where g(p, q) is stationary, one finds that:
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p′

m′
=
sx
sy
,

q′

m′
=
sz
sy

(sx, sy and sz constant) from which it follows that the solutions for the
stationary point are:

p′ = sx, q′ = sz, m′ = sy (2.6)

which also imply that g(p′, q′) = 1. The physical significance of (2.6) is
that one and only one plane wave of the entire angular spectrum contributes
to the far field at a point located in a given direction: namely the wave that
propagates in that particular direction, the effects of the other waves canceling
each other by destructive interference. Moreover, resulting Σ < 0 and

∆ =
1

s2
y

,

one has that σ = −1 and finally, from (2.5) and (2.6):

~E∞(sxr, syr, szr) = −2πiky ~E(ksx, ksz; 0)
eikr

r
. (2.7)

In getting (2.7) one has to consider that, besides being kx = ksx, ky = ksy
and kz = ksz, ~E incorporates a factor of k2 which is missing in ~e, due to the
different integration variables in (2.3) and (2.4). Inverting (2.7) emphasizing

the kx, kz and ky dependence of ~E∞(sxr, syr, szr) through sx, sz and sy and
using it in (2.2) assuming that only non-evanescent (homogeneous) waves are
present, it is possible to express a given field in terms of its far-field plane
waves [18]:

~E(x, y, z) =
ire−ikr

2π

∫∫
k2x+k2z≤k2

~E∞(kx, kz)e
+i(kxx+kyy+kzz)

1

ky
dkxdkz . (2.8)

The approximation ky ≈ k would make (2.8) an exact Fourier transform. It
is the Fourier Optics limit.

2.3 Kirchhoff formula and the near to far field

transform

The Kirchhoff integral formula is the mathematical expression of Huy-
gens’ principle, showing how a wave field on a surface Σ determines the wave
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field off the surface Σ. The sketch in Fig. 2.1 below illustrates the situation.

Figure 2.1: Kirchhoff integral formula allows to extrapolate the plane wave far field (~r ′ → ∞) from the
knowledge of the field near primary or secondary sources (grey area enclosed inside the integration surface
Σ1).

A surface Σ = Σ1 ∪ Σ2 encloses a region of space V free of sources, which
are all contained in the volume inside Σ1 (the grey area bounded by the
shaded line). The final calculations are extrapolated in the limit Σ2 → Σ∞,
a spherical surface going at infinity and centered around an arbitrary fixed
origin O inside Σ1. The asymptotic behavior of the wave field, which becomes
that of a plane wave, is analyzed along a direction exiting from O and defined
by the versor n̂′. The versor n̂ instead, indicates the outward normal to Σ.
To derive the Kirchhoff formula one can start from the Green’s function of
the scalar Helhmoltz equation in an homogeneos medium:(

~∇2 + k2
)
g(~r − ~r ′) = −δ(~r − ~r ′)

where k = ω/c (c is the light propagation velocity). The right hand side
member represent a point source at ~r ′. It is well known [2, 5, 6] that the
fundamental solution with spherical symmetry around ~r ′ for a homogeneous
unbounded medium is:

g(~r − ~r ′) =
eik‖~r−~r

′‖

4π ‖~r − ~r ′‖
where the sign in the exponential is coherent with the choice for the time
factor e−iωt and represents outgoing waves. By considering now the vector
Helmholtz equation in a source-free region, obtained from the Maxwell’s
equations (1.1) expressed in the frequency domain:

~∇× ~∇× ~E(~r)− k2 ~E(~r) = ~0 , (2.9)
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its fundamental solution (see below) in an unbounded homogeneous medium
is the dyadic Green’s function:

¯̄G(~r − ~r ′) =

[
¯̄I +

~∇′~∇′

k2

]
g(~r − ~r ′) , (2.10)

a 3 × 3 matrix generalization of a vector whose components transform like
an R3 second rank tensor and ~∇′~∇′ is the dyadic second order differential
operator:

~∇′~∇′ =
∑
α

∑
β

α̂β̂
∂2

∂x′α∂x
′
β

with α, β = x, y, z while ¯̄I is the unit dyadic:

¯̄I = x̂x̂+ ŷŷ + ẑẑ =
∑
α

∑
β

δαβα̂β̂ ,

x̂, ŷ and ẑ being the cartesian orthonormalized basis. Explicitly:

¯̄G =
∑
α

∑
β

Gαβα̂β̂

where:

Gα,β = gδαβ +
1

k2

∂2g

∂x′α∂x
′
β

. (2.11)

Due to the ~r − ~r ′ dependence of g one has that:

∂2g

∂x′α∂x
′
β

=
∂2g

∂xα∂xβ
.

Both g and ¯̄G for homogeneous unbounded media are also symmetric in the
exchange of arguments ~r, ~r ′. It can then be seen that:

~∇× ~∇× ¯̄G(~r − ~r ′)− k2 ¯̄G(~r − ~r ′) = ¯̄Iδ(~r − ~r ′) . (2.12)

In fact:

~∇× ¯̄G
def
=
∑
α

∑
β

∑
γ

∂γGαβ(γ̂ × α̂)β̂

where, as usual, α, β, γ = x, y, z. Applying again the ~∇× operator to the left
of both members of the previous expression and using (2.11), one gets (the
details are found in Appendix A):
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~∇× ~∇× ¯̄G =
∑
α

∑
β

(∂α∂βg)α̂β̂ −
∑
α

(~∇2g)α̂α̂

and the result follows easily when subtracting the k2 ¯̄G term and remem-
bering that g is the fundamental solution of the scalar Helmholtz equation.
By calculations similar to those in Appendix A, one can also see that an
alternative form of (2.10) is:

¯̄G(~r − ~r ′) =
1

k2

[
~∇× ~∇× ¯̄Ig(~r − ~r ′)− ¯̄Iδ(~r − ~r ′)

]
, (2.13)

from which it also follows that:

~∇× ¯̄G(~r − ~r ′) = ~∇× ¯̄Ig(~r − ~r ′) . (2.14)

Now, if ~F and ¯̄D are a vector and a dyadic field respectively, it can be shown
(see Appendix A) that:

~∇ · (~F × ¯̄D) = (~∇× ~F ) · ¯̄D − ~F · (~∇× ¯̄D) . (2.15)

Moreover, after pre-multiplying (2.12) by ~E(~r), post-multiplying (2.9) by ¯̄G,
subtracting the resultant equation from the first one and integrating with
respect to ~r over the volume V enclosed by Σ, one has:

~E(~r ′) =

∫
V

dV
[
~E(~r) · ~∇× ~∇× ¯̄G(~r − ~r ′)− ~∇× ~∇× ~E · ¯̄G(~r − ~r ′)

]
By means of (2.15) it can be shown that the integrand in the above equation
equals:

−~∇ ·
[
~E(~r)× ~∇× ¯̄G(~r − ~r ′) + ~∇× ~E × ¯̄G(~r − ~r ′)

]
which after consideration of the (frequency domain) Maxwell’s equation ~H =

(~∇× ~E)/iωµ and the dyadic identity: ~A · ( ~B × ¯̄D) = ( ~A× ~B) · ¯̄D, allows to
write the volume integral as the surface integral:

~E(~r ′) = −
∮

Σ

dS
[
n̂× ~E(~r) · ~∇× ¯̄G(~r − ~r ′) + iωµ n̂× ~H(~r) · ¯̄G(~r − ~r ′)

]
,

where Σ = Σ1 ∪ Σ2 is the surface bounding the volume V and n̂ is its
outward normal versor. In the above expression, the representation (2.13)
and the relation (2.14) are now used. Being ~r on S always different from ~r ′,



22 CHAPTER 2. SPATIAL FOURIER ANALYSIS AND FAR-FIELDS

the Dirac delta does not contribute at all. The last steps comprise the limit
Σ2 → ∞ with ~r ′ fixed, then the limit r′ � r. Because all field components
ψ will end up obeying the Sommerfeld radiation condition [5]:

r (
∂ψ

∂r
− ikψ)→ 0

for r → ∞, they will look like an outgoing plane wave on Σ∞ (for g this
is directly seen from its explicit expression above), thus the integrands are
o(1/r2) in this limit and the integral on Σ∞, assumed as a spherical surface
of radius r =∞ centered at O, vanishes. On the other hand. an asymptotic
expression for g when r′ � r is:

g ≈ eikr
′

4πr′
e−i

~k′·~r

where ~k′ = kn̂′. From this it follows that:

~∇g = −i~k′g .

Thus, if ~F is a fector field, one has:

~F · ~∇× ¯̄Ig = ig~k′ × ~F

and

~F · ~∇× ~∇× ¯̄Ig = ig~k′ ×
(
~k′ × ~F

)
.

By using ~F = n̂ × ~E or ~F = n̂ × ~H,one can put the surface integral in the
final form:

~E(~r ′) =
eik~r

′

4πi~r ′
~k′ ×

∮
Σ1

dSe−ik·~r
{√

µ

ε

[
n̂′ ×

(
n̂× ~H(~r)

)]
− n̂× ~E(~r)

}
.

(2.16)
This is the Kirchhoff integral formula [6], expressing the transverse radiation
field far from primary or secondary sources as a function of the angles θ, φ
from which the n̂′ versor (defining the direction of observation) depends. This
radiation amplitude formula allows to calculate the radiation pattern of given
surces after the near ~E and ~H fields have been calculated. Formula (2.16)
can be implemented in a computer code by discretizing and numerically
calculating the surface integral and by sampling the 4π solid angle around
the source with finite increments for the θ ∈ [0, π], φ ∈ [0, 2π) angles.



Chapter 3

Gaussian beams

In the present Chapter ~E and ~H denote frequency domain vector spatial
distributions in which the dependence from the (angular) frequency ω is

not explicitly indicated. With ~E(kx, kz; y), ~H(kx, kz; y) are instead denoted
the spatial Fourier transforms as introduced and described in the previous
Chapter 2. The “main” propagation direction is assumed to be the y-axis.

3.1 Paraxial approximation

Often the light wavefield in an optical system propagates along a certain
direction y while spreading only slowly in the transverse direction contained
in the xz plane. From a quantitative viewpoint this means that, if ~k =
(kx, ky, kz) is the wavevector in the field angular spectrum representation,
there is a dominance of ky over kx and kz [18]:

ky =
√
k2 − k2

x − k2
z = k

√
1− (k2

x + k2
z)

k2
≈ k − (k2

x + k2
z)

2k
(3.1)

with k = ||~k||. All this means also that in the scalar Helmholtz equation in
free space, the solutions are assumed as: ψ(x, y, z) = u(x, y, z)eikyy, and the
second derivative of u(x, y, z) along the y-axis is ignored compared to the
other second derivatives, in such a way that the paraxial Helmholtz equation
becomes [17]:

~∇2
tu+ 2ik

∂u

∂y
= 0

where ~∇2
t is the transverse Laplacian (∂2/∂x2 + ∂2/∂z2) and k = ω/c with c

the light speed in the homogeneous source free medium considered.

23
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3.2 Gaussian laser beams

To describe a laser beam in its fundamental mode, instead of directly
trying a solution of the paraxial Helmholtz equation as in [17], it will be
considered an electric field spatial gaussian distribution [18] in the y = 0
plane, the so called focal plane, given by:

~E(x′, 0, z′) = ~Eoe
−x

′2+z′2

w2
o ,

where ~Eo is a constant vector in the transverse xz plane, that will be spatially
transformed at y = 0:

~E(kx, kz; 0) =
1

4π2

∫ +∞

−∞
dx′
∫ +∞

−∞
dz′ ~Eoe

−x
′2+z′2

w2
o e−i(kxx

′+kzz′)

= ~Eo
w2
o

4π
e−(k2x+k2z)

w2
o
4

(for the evualuation of the definite integrals see Appendix B). Now, the above
espression in used as the angular spectrum in the representation (2.2) of the
frequency domain field with (3.1) as ky:

~E(x, y, z) = ~Eo
w2
o

4π
eiky

∫ +∞

−∞
dkx

∫ +∞

−∞
dkze

−(k2x+k2z)(
w2
o
4

+i y
2k

)ei(kxx+kzz) ,

which can be integrated in nearly the same manner as above (see Appendix
B) to give the final expression for the paraxial approximation of the vector
field in the frequency domain:

~E(x, y, z) = ~Eo
eiky(

1 + i 2y
kw2

o

) e− (x2+z2)

w2
o

1

1+i
2y

kw2
o . (3.2)

It should be kept in mind that (3.2) is an approximate solution which does
not obey Maxwell’s equations, even if it represents in the y = 0 plane the
most realistic achievement of a linearly polarized electromagnetic plane wave.
There are also higher order laser modes characterized by different patterns in
the focal plane ~E field distribution [18]. The approximation error inherent in
(3.1), (3.2) becomes larger the smaller the “beam waist” radius wo is, when
compared to the wavelength in the given medium.
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3.3 Focused beams

This section concerns the mathematical description of the electromagnetic
field of an optically focalized light beam propagating along a given aa′ axis.
The focalization is made by means of an aplanatic convergent lens having
aa′ as its optical axis and focal length f . The description given here is an
adapted and partially modified version from [18,41,42]. Aplanatic (= free of
spherical aberration) means that all the in-axis coming rays (from the left,
say) converge to the focus F being bended (refracted) in correspondence of
a sphere of radius f centered at F behind (to the right) the lens (Gaussian
reference sphere). See Fig. 3.1.

𝐹 

𝑓 

reference sphere 

convergent 
lens 

ray 

𝑎 𝑎′ 
𝜃 

𝑃 𝑄 

Figure 3.1: Scheme of an aplanatic convergent lens with focal length f and focus at point F . PQF is the
path of an optical ray.

PQ and QF are conjugate rays. Moreover, if the media of the half-spaces
to the left and right of the lens are denoted with the subscript 1 and 2
respectively, then energy conservation gives:√

ε1
µ1

‖ ~E1‖2dS1 =

√
ε2
µ2

‖ ~E2‖2dS2

where plane wave intensities are assumed for the PQ and QF rays. But:

dS2 =
dS1

cos (θ)

where dS1,2 are element of area centered on the ray paths PQ and QF re-
spectively and perpendicular to them (see Fig. 3.1). Thus the plane wave
amplitude of the generic converging optical ray QF , just in correspondence
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of the variable point Q on the reference sphere is, as a function of the input
field amplitude ‖ ~E1‖:

‖ ~E2‖ = ‖ ~E1‖
√
n1

n2

µ2

µ1

cos (θ) . (3.3)

In (3.3) n1,2 =
√

ε1,2
εo

µ1,2
µo

are the refractive indices of the media and usually,

being µ1,2 ≈ 1, the ratio of the magnetic permeabilities is neglected. Now,
assuming the aa′ axis coincides with the y axis of a reference frame with
origin in the focal point F , it is possible to apply equation (2.8) to calculate
the electromagnetic optically focalized near field in a region of space around
F , using (3.3) as the corresponding far field ~E∞. To this end one has to
introduce a further angle φ, besides θ, to measure the azimuthal rotation
around the aa′ axis, when the planar integration element dkxdkz is replaced
with a corresponding, more suitable, differential area element on a spherical
surface. If the θ angle is measured starting from the negative y semiaxis (to
the left of F , toward the lens) like in Fig. 3.1 — the kx, ky, kz axes coinciding
with the x, y, z ones — these planar and spherical elemental areas are related
by:

dkx dkz = cos (θ)k2 sin (θ)dθdφ

with ‖~k‖ = k and the 1
cos(θ)

factor accounting for the projection of the area

element on the kxkz plane. But, being ky = −k cos (θ), one has:

1

ky
d kxdkz = −k sin (θ)dθdφ

with which to replace in the double integration of (2.8). Replacing in it also
r with f , one gets:

~EF (~r; k) = −
√
n1

n2

ikfe−ikf

2π

∫ θmax

0

∫ 2π

0

~E2(θ, φ; k)eikû·~r cos
1
2 (θ) sin (θ) dθdφ

where:
• θmax is an aperture upper bound due to the finite size of the lens (aperture
stop in a screen and its entrance pupil, which is the image of the entrance
stop);
• û is a unit vector pointing from F in the various directions of the solid
integration angle;
• ~E2 is the plane wave field vector “at infinity”, i.e. at points on the reference
sphere. It lies in a plane perpendicular to QF . Its strength, by (3.3), depends
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on that, ~E1, of the impinging beam on the lens;
• ~r is the position vector from the focal point F to the point in space in
which ~EF is calculated.
With reference to Fig. 3.2, there is a change from a cylindrical to a spherical
geometry at the reference sphere:

𝐹 𝑎 𝑎′ 
𝜃 

𝑃 𝑄 

𝑥 

𝑦 

𝑧 

𝑛 𝜙 

𝑛 𝜌 

𝑛 𝜙 

𝑛 𝜃  

𝜙 

Figure 3.2: Reference frame and unit vectors for the electromagnetic field of a focusing aplanatic lens.

One sees that the unit vector n̂φ is unaffected while n̂ρ transforms into n̂θ.
If the angle φ is measured starting from the x axis in a clockwise sense (i.e.,
opposite with respect to the right-hand grip rule with the positive y axis as
the thumb), using a fixed basis x̂, ŷ and ẑ one has in general:

û = sin (θ) cos (φ)x̂− cos (θ)ŷ + sin (θ) sin (φ)ẑ

n̂ρ = cos (φ)x̂+ sin (φ)ẑ

n̂φ = − sin (φ)x̂+ cos (φ)ẑ

n̂θ = cos (θ) cos (φ)x̂+ sin (θ)ŷ + cos (θ) sin (φ)ẑ .

Thus it follows that:

~E2(θ, φ; k) = tte(θ)
(
~E1 · n̂φ

)
n̂φ + ttm(θ)

(
~E1 · n̂ρ

)
n̂θ

where tte and ttm are the lens transmission amplitudes for the TE (transverse
electric) and TM (transverse magnetic) polarizations respectively (see Chap-
ter 4, Section 4.1). In the present case it will be considered the case of an
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ideal lens with tte = ttm = 1 and an incident field ~E1(θ, φ; k) linearly polar-
ized along the z direction, with a separated k dependence for the amplitude.
As an example, the gaussian monochromatic field distribution of (3.2) with
the waist in correspondence of the plane of the lens, which means y = 0 in
(3.2):

~E1(θ, φ; k) = ẑ Eo(k)e
− f

2 sin2 (θ)

w2
o = ẑ Eo(k) g(θ, φ) .

In fact, x and z in (3.2) are x = f sin (θ) cos (φ) and z = f sin (θ) sin (φ)
respectively for small aperture angles. With this choice one has:

~E2(θ, φ; k) = Eo(k) g(θ, φ) [cos (φ)n̂φ + sin (φ)n̂θ] = Eo(k) g(θ, φ)~w(θ, φ) .

By denoting collectively:

~G(θ, φ) = g(θ, φ)~w(θ, φ)

and remembering that k = ω
c

where c is the phase velocity inside the medium
to the left of the lens (with subscript 2), the above double integral for the
focused optical field near F can be written, assuming for the sake of simplicity
n1 = n2 = 1, as:

~EF (~r;ω) = − iωf
2πco

∫ θmax

0

∫ 2π

0

Eo(ω)~G(θ, φ)e−i
ω
co

(f−û·~r) cos
1
2 (θ) sin (θ) dθdφ

where co is the speed of light in vacuum. Multiplying the above expres-
sion by the time phase factor e−iωt, integrating over t and remembering the
correspondence:

iω ⇐⇒ − ∂

∂t
,

it becomes possible to express the optical field in the time domain (by an
abuse of notation, the same letters for the time and frequency domain fields
are used) as:

~EF (~r, t) =
f

2πco

∫ θmax

0

∫ 2π

0

Ėo

(
t′ +

û · ~r
co

)
~G(θ, φ) cos

1
2 (θ) sin (θ) dθdφ

(3.4)
where the dot above a letter denotes time differentiation (some normalization
factors have been reabsorbed in Eo) and t′ = t − f

co
(a time shift). The
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importance of (3.4) resides in the fact it represent the focused optical field as
a superposition of plane waves propagating in the direction opposite to that
pointed by û as it scans, with its tip, the given solid angle. In fact, for each
θ and φ fixed, ~G, which gives the direction of the ~E field of the superposing
waves, is orthogonal to û. Expression (3.4) is similar to those given in [41,42]
(see also [43,44]). The function Eo(t) defines the time profile of the incident
beam in the plane of the lens.
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Chapter 4

Planarly multilayered media

4.1 Matrix method for R and T
This section is devoted to the characterization of the reflectanceR and the

transmittance T of N contiguous layers stacked along the y axis, each of finite
thickness ds (s = 1, . . . , N) and infinite extension in the xz plane, in presence
of a beam of light described by a plane electromagnetic wave impinging on
them with a given angle of incidence. The various layers are made of a
homogeneous material with a constant absolute complex permittivity εs:

εs = ε′s + iε′′s

(i is the imaginary unit and the plus sign is coherent with the choice of the
sign in the time harmonic phase factor). The complex index of refraction is:

ns = n′s + in′′s =

√
εsµs
εoµo

=

√
εs
εo
.

(s = 1, . . . N) where the last equality holds for non-magnetic (µ ≡ µo every-
where, the vacuum permeability) materials only. Also included are a semi-
infinite non-absorptive s = 0 layer with real index of refraction n0, which
extends to y = −∞, containing the incident and reflected plane waves, and
a semi-infinite s = N + 1 layer which extends to y = +∞, containing the
transmitted plane wave. We thus have an overall sequence of N + 2 media
identified by the integer s = 0, . . . , N + 1. The xy plane is assumed to be
the plane of incidence. Two cases have to be considered: TE-polarization
(or s-wave, from “senkrecht” that means perpendicular in German) with the

electric field vector ~E along the z-axis, and TM-polarization (or p-wave, from

parallel) with the magnetic field vector ~H along the z-axis.

31
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• Single interface: with a single interface only, the situation is that de-
picted in Figs 4.1 and 4.2, where on each side (s = 1 or s = 2) a general
superposition of an ingoing and an outgoing plane wave is considered. The
field amplitudes on either sides are:

TE: Es,z =
[
E(+)
s e+iks,yy + E(−)

s e−iks,yy
]
eiks,xx

TM: Hs,z = Z−1
s

[
−E(+)

s e+iks,yy + E(−)
s e−iks,yy

]
eiks,xx

(s = 1, 2; the minus sign has been introduced because the vector is entering
the plane of the sheet) and Zs is the medium characteristic impedance:

Zs =

√
µs
εs

=

√
µo
εs

𝑥 

𝑧 
𝑦 

𝜀1, 𝜇1 𝜀2, 𝜇2 

𝐸1
+ 

𝐸1
− 

𝐸2
+ 

𝐸2
− 𝒌1

+ 

𝒌1
− 

𝒌2
+ 

𝒌2
− 𝜃1 

𝜃2 

Figure 4.1: TE polarized light on a single interface between two media ( ~E points upward from the plane
of the sheet, which is the plane of incidence).

where, again, the last equality holds for non-magnetic materials only. By
using the curl operator from the Maxwell’s equations in the frequency domain
one gets for the tangential components:

TE: Hs,x =
1

iωµs
(~∇× ~Es)x =

ks,y
ωµs

[
E(+)
s e+iks,yy − E(−)

s e−iks,yy
]
eiks,xx
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𝑥 

𝑧 
𝑦 

𝜀1, 𝜇1 𝜀2, 𝜇2 

𝐻1
+ 

𝐻1
− 

𝐻2
+ 

𝐻2
− 

𝒌1
+ 

𝒌1
− 

𝒌2
+ 

𝒌2
− 

𝜃1 

𝜃2 

Figure 4.2: TM polarized light on a single interface between two media ( ~H points upward from the plane
of the sheet, which is the plane of incidence).

TM: Es,x = − 1

iωεs
(~∇× ~Hs)x =

Z−1
s ks,y
ωεs

[
E(+)
s e+iks,yy + E(−)

s e−iks,yy
]
eiks,xx .

(s = 1, 2). Here the wave vector lies in the xy plane of incidence:

~ks = x̂ks,x + ŷks,y (4.1)

and is in general a complex quantity satisfying:

~ks · ~ks =

(
ω

co
ns

)2

(4.2)

where co is the vacuum light speed. By applying the continuity condition of
the tangential z and x field components for any coordinates at the interface
plane y = 0, one gets:

k1,x = k2,x

which is the usual Snell’s law: n1 sin(θ1) = n2 sin(θ2), if both materials are
non dissipative. If the s = 2 medium is absorptive then k2,x, k2,y and the angle
θ2 are complex quantities. The ray interpretation on the s = 2 side of Figs
4.1 and 4.2 could be measleading in this case, because the transmitted wave
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is non-homogeneous with equal amplitude and equal phase planes having
different orientations. For the field amplitudes one instead gets:

TE :

[
1 1
k1,y
µ1
−k1,y

µ1

][
E

(+)
1

E
(−)
1

]
=

[
1 1
k2,y
µ2
−k2,y

µ2

] [
E

(+)
2

E
(−)
2

]
(4.3a)

TM:
1

Z1

[k1,y
ε1

k1,y
ε1

1 −1

][
E

(+)
1

E
(−)
1

]
=

1

Z2

[k2,y
ε2

k2,y
ε2

1 −1

] [
E

(+)
2

E
(−)
2

]
(4.3b)

where use has been made of matrix notation. Let us callDs (s = 1, 2) the 2×2
matrices involved in the above linear relations (4.3) (those in (4.3a) for the
TE case, those in (4.3b) for the TM case: this is left understood in all what

follows); this allows one to obtain a linear relation among E
(+)
1 , E

(−)
1 , E

(+)
2

and E
(−)
2 : [

E
(+)
1

E
(−)
1

]
= (D1)−1D2

[
E

(+)
2

E
(−)
2

]
=

[
a b
c d

][
E

(+)
2

E
(−)
2

]
from which to calculate the reflection and transmission amplitudes :

r =
E

(−)
1

E
(+)
1

=
c

a

t =
E

(+)
2

E
(+)
1

=
1

a

both calculated imposing the condition: E
(−)
2 = 0 (note that here, for TM-

polarization, the ratio of the electric field amplitudes has been considered
and not that of the magnetic ones. This choice is due to the instrumental
response, which depends on the electric field). They would give the so called
Fresnel coefficients. The single interface example serves as the building block
for a sequence of layers.
• Single layer: for N = 1 homogeneous layers (s = 0, 1, 2), the situation is
that depicted in Fig. 4.3, with a near (left) and a far (right) interface of a
single slab of thickness d1 = L.

The field phases inside the (each, when N > 1) slab is assumed as indicated in
Fig. 4.3. By applying at the left and right interfaces of the middle s = 1 layer
relations like (4.3), but also with the insertion of the matrix P1 connecting
the amplitudes at the two interfaces (the choice of signs is coherent with that
in the time harmonic phase factor):
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𝑦 
0 𝐿 

0 1 2 

𝐸1 𝑦 = 𝐸1
(+)

𝑒+𝑖𝑘1,𝑦(𝑦−𝐿) 
                                + 

                  𝐸1
(−)

𝑒−𝑖𝑘1,𝑦(𝑦−𝐿) 

𝐸0 𝑦 = 𝐸0
(+)

𝑒+𝑖𝑘0,𝑦𝑦 
                                + 

                    𝐸0
(−)

𝑒−𝑖𝑘0,𝑦𝑦 

𝐸2 𝑦 = 𝐸2
(+)

𝑒+𝑖𝑘2,𝑦(𝑦−𝐿) 
                                + 

                    𝐸2
(−)

𝑒−𝑖𝑘2,𝑦(𝑦−𝐿) 

Figure 4.3: Single (N = 1) layer with two interfaces. The electric field expressions are for the TE case.
For the TM case Zs factors should appear. The phase factors are the same for both the TE and the TM
cases.

[
E

(+)
1

E
(−)
1

]
left

= P1

[
E

(+)
1

E
(−)
1

]
right

=

[
e−ik1,yL 0

0 e+ik1,yL

][
E

(+)
1

E
(−)
1

]
right

,

one gets after matrix inversion:[
E

(+)
0

E
(−)
0

]
= (D0)−1 {D1P1 (D1)−1}D2

[
E

(+)
2

E
(−)
2

]
.

The use of the propagation matrix P1 amounts to assume the right interfaces
as the phase reference planes inside each layer (finite or semi-infinite), with
the exception of the last one, in which the left interface plane (obviously) is
the phase reference (see again the field expressions in Fig. 4.3).
• Multilayer: from the previous example a pattern emerges, because the
above relation can be in a straightforward manner generalized to N layers,
by iterating N times the product of the matrices in the curly braces:[

E
(+)
0

E
(−)
0

]
= (D0)−1 ∆DN+1

[
E

(+)
N+1

E
(−)
N+1

]
where:

∆ =
N∏
k=1

{
DkPk (Dk)

−1} .
The calculation of the overall matrix S for a stack of N layers plus the initial
and final media:

S = (D0)−1 ∆DN+1 (4.4)
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is well suitable for implementation on a computer after specification of:
1) the electric and magnetic (possibly complex) parameters εs, µs of the
various N layers at a given angular frequency ω;
2) their thicknesses ds;
3) the angle of incidence θ0 of the incoming plane wave in medium s =
0, being assumed to be non-absorptive, which allows, through the chain of
equalities (the generalization of the one already seen for the N = 1 case):

ks,x = ks+1,x (s = 1, . . . , N) , (4.5)

to calculate the (complex) angle θs in each layer and thus the elements of Ds

and its inverse. In fact from (4.1) and (4.2) one has:

ks,x =
ω

co
(n′s + in′′s) sin(θs)

ks,y =
ω

co
(n′s + in′′s) cos(θs)

and by (4.5), for each s = 1, . . . , N + 1:

sin(θs) =
n′0

n′s + in′′s
sin(θ0)

cos(θs) =
√

1− sin2(θs) .

From these it follows that:

cos(θs) =

√
1− n′20 (n′2s − n′′2s )

(n′2s + n′′2s )2
sin2(θ0) + i

2n′sn
′′
sn
′2
0

(n′2s + n′′2s )2
sin2(θ0) .

By putting also:

cos(θs) = qse
iγs

qs and γs real with qs > 0, one has:

cos2(θs) = q2
se

2iγs = q2
s cos(2γs) + iq2

s sin(2γs)

and thus by squaring the previous expression for cos(θs) and equating with
the above expression one gets:

q2
s cos(2γs) = 1− n′20 (n′2s − n′′2s )

(n′2s + n′′2s )2
sin2(θ0)
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q2
s sin(2γs) =

2n′sn
′′
sn
′2
0

(n′2s + n′′2s )2
sin2(θ0)

from which qs and γs can be calculated as functions of θ0, n′0, n′s and n′′s .
From these expressions, those for Us ≡ Re {(n′s + in′′s) cos(θs)} = co

ω
Re {ks,y}

and Vs ≡ Im {ks,y} can be obtained:

Us = n′sqs cos(γs)− n′′sqs sin(γs)

Vs =
ω

co
[n′sqs sin(γs) + n′′sqs cos(γs)] .

The reflectance R and transmittance T can be calculated by means of the
RMS power flux Pu, along the u axis, from the real part of the complex
Poyinting vector:

Pu =
1

2
Re
{(

~E × ~H∗
)
· û
}

where u = x, y, z. If dtot =
∑N

s=1 ds is the total thickness of the multilyer,
which starts at y = 0, and

~k′s = x̂ks,x − ŷks,y ,
the fields are (for non-magnetic materials):

TE-polarization)

~Einc = ẑE
(+)
0 ei(k0,xx+k0,yy)

~Hinc =
1

ωµo
~k0 × ~Einc

~Erefl = ẑrE
(+)
0 ei(k0,xx−k0,yy)

~Hrefl =
1

ωµo
~k′0 × ~Erefl

~Etr = ẑtE
(+)
0 ei[kN+1,xx+kN+1,y(y−dtot)]

~Htr =
1

ωµo
~k0 × ~Etr

TM-polarization)
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~Einc = − 1

ωε0
~k0 × ~Hinc

~Hinc = −ẑ 1

Z0

E
(+)
0 ei(k0,xx+k0,yy)

~Erefl = − 1

ωε0
~k′0 × ~Hrefl

~Hrefl = ẑ
1

Z0

rE
(+)
0 ei(k0,xx−k0,yy)

~Etr = − 1

ωεN+1

~kN+1 × ~Htr

~Htr = −ẑ 1

ZN+1

tE
(+)
0 ei[kN+1,xx+kN+1,y(y−dtot)] .

Taking account that, by (4.5), k0,x is real (the s = 0 medium is non-

absorptive), that ~A × ( ~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B), and by defining
ξ as the distance (ξ ≥ 0) from the interface at y = dtot, one can get the
following power fluxes at y = 0 (incident and reflected) and at y = dtot
(transmitted) for non-magnetic materials:

Pinc,x =
|E(+)

0 |2

2coµo
n′0 sin(θ0)

Pinc,y =
|E(+)

0 |2

2coµo
n′0 cos(θ0)

Prefl,x =
|r|2|E(+)

0 |2

2coµo
n′0 sin(θ0)

Prefl,y = −|r|
2|E(+)

0 |2

2coµo
n′0 cos(θ0)

Ptr,x =
|t|2|E(+)

0 |2

2coµo
n′0 sin(θ0)e−2Im{kN+1,y}ξ

Ptr,y =
|t|2|E(+)

0 |2

2coµo

co
ω
Re {kN+1,y} e−2Im{kN+1,y}ξ .

The multilayer reflectance R and transmittance T are thus given by:



4.2. ~E AND ~H FIELD DISTRIBUTIONS 39

R = |r|2

T = |t|2 UN+1

n′0 cos(θ0)
e−2VN+1ξ .

As can be seen, if ξ 6= 0 and the final medium s = N + 1 is dissipative or in
the multilayer (s = 1, . . . , N) there is some dissipation and the incidence is
not normal, there will be some extra absorption. If θ0 = 0 (normal incidence)
there is no difference between the TE and TM polarization. In any case the
overall matrix (4.4) has to be calculated:

S =

s1,1 s1,2

s2,1 s2,2


and the reflection and trasmission complex amplitudes evaluated:

r =
s2,1

s1,1

t =
1

s1,1

.

4.2 ~E and ~H field distributions

Once the reflection and transmission amplitudes r, t have been calculated,
the fields inside each layer can recursively be found by applying N times the
relations (4.3a) or (4.3b), implying the Ds matrices, starting for example
from the left with:

E
(+)
0 arbitrary

E
(−)
0 = rE

(+)
0

which correspond to a field in the initial, s = 0, semi-infinite medium given
by:

TE: E0,z = E
(+)
0

[
e+ik0,yy + re−ik0,yy

]
eik0,xx

TM: H0,z = Z−1
0 E

(+)
0

[
−e+ik0,yy + re−ik0,yy

]
eik0,xx

which hold for:
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y ≤ 0 .

Proceeding recursively one has for the field inside the s-th layer, in terms of
the amplitudes of the (s− 1)-th medium:[

E
(+)
s

E
(−)
s

]
= (DsPs)

−1Ds−1

[
E

(+)
s−1

E
(−)
s−1

]

which correspond to a field:

TE: Es,z =
[
E(+)
s e+iks,y(y−ys) + E(+)

s e−iks,y(y−ys)
]
eiks,xx

TM: Hs,z = Z−1
s

[
−E(+)

s e+iks,y(y−ys) + E(−)
s e−iks,y(y−ys)

]
eiks,xx

where:

ys =
s∑
`=1

d`

with yN = dtot, the total thickness and:

ys−1 ≤ y ≤ ys .

In the final, s = N + 1, semi-infinite medium the field is:

TE: EN+1,z = tE
(+)
0 e+iks,y(y−dtot)eikN+1,xx

TM: HN+1,z = −Z−1
N+1tE

(+)
0 e+iks,y(y−dtot)eikN+1,xx

with

y ≥ dtot .

The missing fields can be calculated through (~∇ × ẑEs,z)/iωµs for the TE

case and −(~∇× ẑHs,z)/iωεs for the TM case, s = 0, . . . , N + 1.
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4.3 The inverse transmittance problem

As a proposal, the implemented matrix algorithm previously described
for evaluating R, T of a multilayer system, could be applied for the inverse
problem of determining the refractive index of an unknown material on a
given region of the visible spectrum, from measured values of the transmit-
tance T in that range of wavelenghts for a slab fabricated with that material.
For sake of definiteness, a trilayer system is considered like the one depicted
in Fig. 4.4:

Figure 4.4: Schematic of the measurement....

on which a light beam impinges and from which the experimental transmit-
tance is reported. It is a trilayer . Sellmeier [] formula:

n(λ) =

√
1 +

H1λ2

λ2 +K2
1

+
H2λ2

λ2 +K2
2

+
H3λ2

λ2 +K2
3

One thus has the analytical transmittance of the trilayer as a scalar-valued
function:

T = T (d,H1, K1, H2, K2, H3, K3|λ)

depending nonlinearly from 7 variables and containing also 8 more parame-
ters which are the wavelength λ (explicitly indicated in the expression above),
the seven parameters Hsilica

i , Ksilica
i (i = 1, 2, 3) of the Sellmeier formula for

the silica and the thickness of the silica substrate dsilica, which are fixed.
By considering M wavelength values λr (r = 1, . . . ,M) on a given range
λmin ≤ λ ≤ λmax, ordered in increasing values and maybe evenly distribuited:

λr = λmin + (r − 1)

(
λmax − λmin
M − 1

)
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one can then consider the vector-valued function (written as a column vector): T (d,H1, K1, H2, K2, H3, K3|λ1)
...

T (d,H1, K1, H2, K2, H3, K3|λM)

 ,

where every element is the T function calculated at a given λr. By making
M transmittance measures T measr at the corresponding wavelengths, one can
construct the vector-valued function:

~F (~p) =

 f1(~p)
...

fM(~p)

 =

 T (d,H1, K1, H2, K2, H3, K3|λ1)− T meas1
...

T (d,H1, K1, H2, K2, H3, K3|λM)− T measM

 ,

where the vector variable ~p ∈ R7 indicates collectively the variables:

d,H1, K1, H2, K2, H3, K3 .

These latter ones will be determined by minimization of the so called residual
norm, i.e. the scalar valued function:

φ(~p) =
M∑
r=1

f 2
r (~p) ≡ ||~F (~p)||22 ,

which is a nonlinear least squares problem [1], whose solution is the inverse
transmittance problem solution. For ~p ∗ to be a minimum of φ(~p) it must

necessarily be: ~∇φ(~p ∗) = ~0, where ~∇φ(~p is the gradient of φ(~p). To find
~p ∗ starting from a suitable near point one can use a second order Taylor
approximation around a generic point ~p o:

φ(~p o + ∆~p) ≈ ~∇φ(~p o) + ¯̄H(φ(~p o))∆~p

where ¯̄H(φ(~p o)) is the Hessian 7× 7 matrix of φ(~p):

¯̄H(φ(~p)) =

[
∂2φ(~p)

∂pi∂pj

]
i, j = 1, . . . , 7 at ~p o. By requiring the left hand member in the above expan-
sion to be ~0, one gets the linear system:

¯̄H(φ(~p o))∆~p = −~∇φ(~p o) (4.6)
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to be solved for the correction ∆~p which, when calculated iteratively, should
bring an initial guess ~p o toward ~p ∗ (Newton method for minimizing φ(~p), [1]).
The gradient of φ(~p), as a column 7× 1 vector, can be written as:

~∇φ(~p) = 2 ¯̄J T (~p)~F (~p)

where ¯̄J(~p) is the Jacobian M × 7 matrix of ~F (~p):

¯̄J(~p) =

[
∂fr(~p)

∂ps

]
,

with r = 1, . . . ,M row index and s = 1, . . . , 7 column index, and where T
means matrix transposition. The Hessian matrix can instead be written as:

¯̄H(φ(~p) = 2 ¯̄J T (~p) ¯̄J(~p) + 2
M∑
r=1

fr(~p)
¯̄H(fr(~p)) .

In the Gauss-Newton method [1] the term containing the sum is ignored
because if the point ~p is approaching the optimal point ~p ∗ the fr(~p) will be
small. Thus (4.6) becomes:

¯̄J T (~p) ¯̄J(~p)∆~p = − ¯̄J T (~p)~F (~p) (4.7)

which provides a formula for solving for successive update steps ∆~p starting
from an initial guess ~p o. The iteration are stopped when two consecutive
corrections differ in the || ||2 Euclidean norm of R7 by a small quantity. The
7×7 coefficient matrix in (4.7) is symmetric and positive semidefinite. Some
methods, like the Levenberg-Marquardt method, use a positive parameter to
make that matrix positive definite thus allowing the use of suitable factor-
ization methods to efficiently solve the system for the model update steps
∆~p [1]. It should be noted that, as in the present case, due to the complexity

of the component functions fr(~p) of ~F (~p), the derivatives in the Jacobian
matrix are not calculated analytically but numerically by finite differencing.

4.4 Continuously varying refractive index

The R, T spectral behavior of a medium with a refractive index profile
n(y), varying unidimensionally as a function of y (although not strictly as a
continuous function), can be analyzed with arbitrary accuracy by means of
a stacked sequence of sufficiently thin layers, in such a way of approximating
the n(y) function by a piecewise constant function.
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Part II

Implementation of the FDTD
numerical method
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Chapter 5

Discretizing the Maxwell’s
equations

The Finite-Difference Time-Domain method (or simply FDTD method)
determines numerically the solution starting directly from the Maxwell’s
equations in the time domain (1.1), from which the method’s name. More
precisely, only the curl equations (1.1c) and (1.1c) are considered, because
they govern the evolutive dynamics of the electromagnetic field, the remain-
ing divergence equations (1.1a) and (1.1b) merely representing a constraint

for the solution. In fact, it can be shown that, by applying the ~∇· operator
to both members of the curl equations, the divergence equations are obeyed
at any successive instant of time if they so are at the initial time:

~∇ ·
(
~∇× ~E

)
= −~∇ · ∂

~B

∂t
⇒ ~∇ · ~B = const.

~∇ ·
(
~∇× ~H

)
= ~∇ · ∂

~D

∂t
+ ~∇ ·~j ⇒ ~∇ · ~D − ρ = const.

because the divergence of the curl of a vector field vanishes and the space
and time derivatives have been exchanged. Moreover, in the second, the
validity of the continuity equation (local charge conservation) (1.2) has been
assumed. The initial condition in the application of the algorithm is one
with ~E ≡ ~0, ~H ≡ ~0 and ρ ≡ 0, for which the above expressions hold true
with both constants equal to zero. The two curl equations constitute an
hyperbolic linear system of evolutive first order partial differential equations:

∂

∂t

[
~E
~H

]
=

[
Ax

∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
+ B

] [
~E
~H

]
+

[
~j/ε
~0

]
47
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for the six dimensional unknown vector of the electromagnetic field compo-
nents (here written as a column vector), where:

Aα =

[
O Gα/ε

Gα/µ O

]
α = x, y, z are 6× 6 block matrices with:

Gx =

0 0 0
0 0 −1
0 1 0


Gy =

 0 0 1
0 0 0
−1 0 0


Gz =

0 −1 0
1 0 0
0 0 0


3× 3 matrices, with O the 3× 3 null matrix and

B =

[
σ
ε
I O

O O

]
with I the 3× 3 identity matrix. The coefficient matrices Aα, B depend on
the position, being typically piecewise constant function of ~r. Technically
the above linear PDEs system is hyperbolic because [19] the matrix:

P = P (ξx, ξy, ξz) = ξxAx + ξyAy + ξzAz ,

with ξα ∈ R (α = x, y, z), is diagonalizable at each point (~r, t) of the space-
time domain and the eigenvalues are real with the norms of the diagonalizing
matrix Ω and Ω−1 uniformly bounded with respect to ξx, ξy, ξz (strictly hy-
perbolic if all the eigenvalues are distinct). From the mathematical physics
viewpoint, it constitutes an Initial Boundary Value Problem (IBVP) whose
solution can generally be found, as a matter of fact, only numerically.

5.1 Time-domain bulk algorithm

The time-domain bulk algorithm concerns the above hyperbolic system
posed in the whole of R3, i.e., without any particular boundary condition
imposed on the solution, except that the field components go sufficiently
fast to zero when r → ∞ (i.e., a pure Initial Value Problem). Whichever
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the electromagnetic problem at hand, to become numerically tractable it
needs to be formulated using discrete degrees of freedom for the governing
equations. To this end, after considering a time interval [0, T ], the space-time
slice R3 × [0, T ] is sampled at integer multiples of the steps δx, δy, δz and
δt. The solution will be calculated only at this sampling points. The actual
distribution of these points follows that of Yee [14] and, for what concerns
the space R3, can most effectively be thought as obtained from a unit cell
(not necessarily cubic) like the one depicted in Fig. 5.1:

Figure 5.1: A cubic Yee unit cell for ~E (red) and ~H (blue) components sampling in R3.

by iterating it along the coordinate axes. In Fig. 5.1 the red arrows stand
for the ~E components and the blue arrows stand for the ~H ones: there is a
suitable half space-step shifting among the various components. To get an
image of what happens with contiguous Yee cells one can refer to Fig. 5.2.

Figure 5.2: A cubic Yee cell with his three far faces made by the contiguous successive cells along the x,
y and z axes.
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The idea behind such a spatial distribution of sampling points is that to
be a “curl conformal” one, with each component of the ~E or ~H vector dis-
cretely surrounded by the components of the dual field (respectively, ~H or
~E), circulating around it in a perpendicular plane, like in Fig. 5.3:

Figure 5.3: The z component of ~E surrounded by four circulating x and y components of ~H.

This distribution allows to write finite difference expressions approximating
the partial derivatives in the curl equations (the first order PDEs system
above) with second order of accuracy. To get second order of accuracy also
in the finite difference expression for the time derivative, a similar trick of
half time-step shifting is used for the sampling points along the time t-axis
for ~E and ~H, in accordance with Fig. 5.4:

Figure 5.4: Scheme of the time axis ~E and ~H sampling point distribution. Superscripts denote time
instants in δt units.

For a less cumbersome notation it is convenient — after having identified
each Yee cell with the triple (i, j, k) expressing the position of its vertex in
δx, δy, δz units in a given reference frame Oxyz — to refer each component
of the electric or magnetic fields to the cell to which they belong, leaving
implicit the actual position inside it:
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• halfway the corresponding edges for ~E,
• in the middle of the perpendicular faces for ~H
(both the three edges and the three faces have in common that cell vertex).
The space dependence of the electric field components by means of cell indices
thus becomes:

Ex ((i+ 1/2)δx, jδy, kδz, nδt) =⇒ En
x (i, j, k)

Ey (iδx, (j + 1/2)δy, kδz, nδt) =⇒ En
y (i, j, k)

Ez (iδx, jδy, (k + 1/2)δz, nδt) =⇒ En
z (i, j, k) ,

and similarly for the magnetic field components:

Hx (iδx, (j + 1/2)δy, (k + 1/2)δz, (n+ 1/2)δt) =⇒ H
n+ 1

2
x (i, j, k)

Hy ((i+ 1/2)δx, jδy, (k + 1/2)δz, (n+ 1/2)δt) =⇒ H
n+ 1

2
y (i, j, k)

Hz ((i+ 1/2)δx, (j + 1/2)δy, kδz, (n+ 1/2)δt) =⇒ H
n+ 1

2
z (i, j, k) .

This choice makes easier also the actual implementation of the algorithm
code. The time dependence instead, is denoted with a superscript. Hence-
forth, without lack of generality, it is assumed that only non-magnetic ma-
terials are considered, which means µ = µo everywhere.
The first equation of the PDEs system corresponding to the Maxwell’s curl
equations is:

∂Ex
∂t

=
1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
− σ

ε
Ex −

1

ε
jx

and by writing finite-differences for the derivatives using the space-time sam-
pling points just described it becomes:

En+1
x (i, j, k)− En

x (i, j, k)

δt
= . . .

. . .
1

εx(i, j, k)

[
H
n+ 1

2
z (i, j, k)−Hn+ 1

2
z (i, j − 1, k)

δy
− . . .
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. . .
H
n+ 1

2
y (i, j, k)−Hn+ 1

2
y (i, j, k − 1)

δz

]
− . . .

. . .
σx(i, j, k)

εx(i, j, k)

[
En+1
x (i, j, k) + En

x (i, j, k)

2

]
− 1

εx(i, j, k)
j
n+ 1

2
x (i, j, k) .

About this finite-difference expression one should note:
• Taking into account the effective spatial positioning of the ~E and ~H compo-
nents inside the Yee cell to which the indices i, j, k refer, there is a coherent
spatial centering among the various terms in the equation (thanks to the suit-
able half space-steps shifts), even because the current density ~j components

are assumed to be sampled in the same locations as the ~E components. Be-
cause ~j represents an impressed current density, its spatial distribution and
time behavior are known in advance.
• There is a coherent time centering among the various terms, thanks to
the half time-step shift between ~E and ~H, and if ~j is temporally sampled
like the magnetic field. Also, to coherently center the term corresponding to
the ohmic current σ ~E, an arithmetic mean between ~En and ~En+1 has been
introduced.
• ε and σ appear with a component subscript, but that does not mean they
are tensors. It means the points of the space grid are assigned to the vari-
ous media using a per component criterion. It could well be that, due to its
geometric characteristics and the δx, δy, δz sizes, the boundary between two

different media is such that the actual sampling points for ~E in a Yee cell fall
on different sides. In any case, it is clear that the material structure — the
variability of the coefficients in the first order PDEs system — is realized by
means of the discrete variability of ε and σ on the space grid, according to
an approximation of given continuous distributions in the model.
• By applying Taylor series expansion for multivariate functions of x, y, z
and t variables, one can easily see that all terms in both members of the
finite-difference equation are approximations of the corresponding ones in
the analytic continuous equation, the residual terms neglected being o(δ2

y)
or o(δ2

z) or o(δ2
t ). That is, by appropriately staggering in space and time

the sampling point for the components of the electric and magnetic fields, a
second order accuracy is achieved.
The third equation of the PDEs system is:

∂Hx

∂t
=

1

µo

(
∂Ey
∂z
− ∂Ez

∂y

)
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and by writing finite-differences for the derivatives using the space-time sam-
pling points just described it becomes:

H
n+ 1

2
x (i, j, k)−Hn− 1

2
x (i, j, k)

δt
=

1

µo

[
En
y (i, j, k + 1)− En

y (i, j, k)

δz
− . . .

. . .
En
z (i, j + 1, k)− En

z (i, j, k)

δy

]
,

to which the same observations as in the preceding case, mutatis mutandis,
applies. In particular, second order accuracy — residual terms are o(δ2

y) or
o(δ2

z) or o(δ2
t ) — continues to apply. As above, spatial indices i, j, k refer to

Yee cells.
A similar pattern can be repeated for the remaining equations for ~E and
~H components, with the same characteristics. By resolving the difference
equations for ~Hn+ 1

2 and ~En+1, one gets a consistent, second order accurate,
explicit scheme by means of which to update, at each space location, first
the preexisting ~H values, then the preexisting ~E ones in an iterative, time
marching way, thus tracking the time evolution of the electromagnetic fields,
starting from an initial configuration (which is usually an ~H = ~E = ~0 config-
uration). The excitation of the system is “injected” by means of the current
density ~j or by generating an electromagnetic plane wave impinging on a
target by means of the so called total field/scattered field method, which will
be described in a next Chapter.
Below are reported the FDTD updating equations for the field components
of the magnetic field:

H
n+ 1

2
x (i, j, k) = H

n− 1
2

x (i, j, k) +
δt
µo

[
En
y (i, j, k + 1)− En

y (i, j, k)

δz
−

En
z (i, j + 1, k)− En

z (i, j, k)

δy

] (5.1a)

H
n+ 1

2
y (i, j, k) = H

n− 1
2

y (i, j, k) +
δt
µo

[
En
z (i+ 1, j, k)− En

z (i, j, k)

δx
−

En
x (i, j, k + 1)− En

x (i, j, k)

δz

] (5.1b)
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H
n+ 1

2
z (i, j, k) = H

n− 1
2

z (i, j, k) +
δt
µo

[
En
x (i, j + 1, k)− En

x (i, j, k)

δy
−

En
y (i+ 1, j, k)− En

y (i, j, k)

δx

] (5.1c)

and of the electric field:

En+1
x (i, j, k) =Px(i, j, k)En

x (i, j, k)+

Qx(i, j, k)

[
H
n+ 1

2
z (i, j, k)− En+ 1

2
z (i, j − 1, k)

δy
−

H
n+ 1

2
y (i, j, k)−Hn+ 1

2
y (i, j, k − 1)

δz

] (5.2a)

En+1
y (i, j, k) =Py(i, j, k)En

y (i, j, k)+

Qy(i, j, k)

[
H
n+ 1

2
x (i, j, k)− En+ 1

2
x (i, j, k − 1)

δz
−

H
n+ 1

2
z (i, j, k)−Hn+ 1

2
z (i− 1, j, k)

δx

] (5.2b)

En+1
z (i, j, k) =Pz(i, j, k)En

z (i, j, k)+

Qz(i, j, k)

[
H
n+ 1

2
y (i, j, k)− En+ 1

2
y (i− 1, j, k)

δx
−

H
n+ 1

2
x (i, j, k)−Hn+ 1

2
x (i, j − 1, k)

δy

] (5.2c)

where, for the x components:

Px(i, j, k) =
1− δtσx(i,j,k)

2εx(i,j,k)

1 + δtσx(i,j,k)
2εx(i,j,k)

Qx(i, j, k) =

δt
εx(i,j,k)

1 + δtσx(i,j,k)
2εx(i,j,k)
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and similar for the y and z components. If a material behaves as a perfect
conductor, having σ −→ ∞, it is easily seen that P −→ 1 while Q −→ 0
and so (5.2) do not really update the ~E field values (and consequently also

neither the ~H ones). By starting from an initial zero condition, that means
the electric and magnetic fields will remain zero inside the spatial region oc-
cupied by a perfect conductor, which is the correct behavior.
An important matter is that of the imposition of the correct inner bound-
ary conditions at the transition between two different media. The continuity
condition of the tangential components of ~E and ~H to a surface element is
directly enforced by the curl equations themselves — from which the conti-
nuity conditions are derived analytically — in the limit δx, δy, δz −→ 0, in
presence of well behaved solutions (no singularities). So the correct solution
is assured if the FDTD algorithm converges.
The computational complexity of the FDTD bulk algorithm — the number
of floating point operations (Flops) it requires — is very favorable compared
to other numerical mathods like the Method of Moments or the Finite Ele-
ment Method, because it does not require any linear system solution, being
it completely explicit, with each field component updated by means of its
first neighbors. Such complexity is O(N), where N is the number of Yee
cells used in the model (N = Nx ×Ny ×Nz, the Yee cell numbers along the
coordinate axes). It grows only linearly with the size of the model, one of
the lowest growth rates attainable.
The finite difference equations (5.1), (5.2) represent the algorithm for the
electromagnetic field values updating inside the computational volume. When
supplemented with an algorithm, described later in Chapter 6, for the com-
putational volume truncation (the boundary conditions in the CPML layer),
with a further algorithm for the plane wave inclusion, described later in
Chapter 7, and the one for the frequency domain analysis described in the
next Section, it becomes a complete algorithm for the numerical solution of
the Maxwell’s equations, the FDTD method, described diagrammatically in
Fig. 5.5.

5.2 Stability

The stability of the bulk algorithm is strictly connected with the con-
vergence of the FDTD method. In fact, even if the proposed (5.1)- (5.2)
scheme is consistent (with second order accuracy), its numerical solution
will not necessarily converge to the solution of the linear PDEs system of
the Maxwell’s curl equations. Convergence means that, ∀t fixed in [0, T ], if
δt → 0 and simultaneously n → ∞ in such a way that nδt = t finite, the
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H 

Figure 5.5: Flowchart of the FDTD algorithm.
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numerical solution ~Enum, ~Hnum will tend in norm to the true solution ~E, ~H
if also δx, δy, δz → 0 with δt. The Lax equivalence theorem [20] states that, if
the time evolutive IVP is well posed and the finite difference approximation
is consistent, stability is the necessary and sufficient condition for conver-
gence. Stability on the other hand, means that the round-off errors due to
the necessarily finite accuracy of every computer, have a controlled growth
rate in passing from each time level to the next. In this way they will not
accumulate — because of the large number of repetitive operations that are
involved — during the time marching algorithm. Otherwise, they eventually
overwhelm the approximate numerical solution thus making it useless. For
the scheme (5.1)- (5.2), the Courant-Friedrichs-Lewy stability condition [13]
holds:

δtcmax ≤
1√

1
δ2x

+ 1
δ2y

+ 1
δ2z

, (5.3)

where c is the phase velocity in a given medium and:

cmax =
1

√
µoεmin

with εmin the smallest electric permittivity (the real part) of the various
media involved in the model. Its derivation is found in Appendix C. When,
as described in the next Section, frequency domain analyses are performed,
the condition (5.3) should be obeyed in the whole spectral frequency interval
considered.

5.3 Frequency domain analysis

Despite the FDTD method works in the time-domain, it is possible to
perform frequency-domain analyses of the resulting field distributions corre-
sponding to steady harmonic states of a given angular frequency ω = 2πf .
A direct way to make this would be the use of current density sources vary-
ing time-harmonically, or the use of an harmonic plane wave impinging on
a target. After a smooth onset (to avoid abrupt changes generating high
frequency noise), the excitation signals could effectively start to oscillate si-
nusoidally with the given frequency. The excitation will propagate inside the
physical system and, after a transient interval, all of its parts will oscillate
harmonically at the same frequency with a given amplitude ~A and phase
φ depending on position (limiting amplitude and limiting absorption prin-
ciples). The amplitude determination would require a routine for holding
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the local maximum value at every space location, and the phase determina-
tion the local delay — mapped on the [0, 2π] interval — measurement with
respect to some reference points. That just described is the so called contin-
uous wave FDTD method (CW-FDTD). A different more efficient approach
in the present work is the pulsed FDTD method. It consists in the use of
a finite time duration signal as the current density sources or as the profile
of a plane wave pulse impinging on a target. The system response will also
be concentrated in a finite interval because the excitation is turned off after
a while. It is thus possible to perform a frequency analysis of the generic
field components at each space location by in-line updating, starting from
the first time iteration, its Discrete Fourier Transform (DFT) G, with time
step δt, approximating the continuous Fourier integral:

G(~r;ω) ∝
∫ +∞

−∞
g(~r, t)eiωtdt⇒ G(i, j, k;ω) ∝

+∞∑
n=−∞

gn(i, j, k)eiωnδt .

Actually, only a finite number of terms will contribute to the sum above,
because for n < 0 or n greater than a certain nmax, all components gn(i, j, k)
in the grid are zero. Thus there is no truncation error in the DFT (although
there is a less important discretization error due to the time sampling). The
angular frequency resolution ∆ω of this procedure can be estimated by con-
sidering that, to avoid aliasing:

ω n δt ≈ 2π ,

from which n ≈ 2π/ωδt. By differentiating with respect of ω and n the above
expression, after solving for ∆ω, introducing the value for n just obtained,
remembering that ∆n ≈ 1 and neglecting an unimportant change of sign,
one gets:

∆ω ≈ ω2δt
2π

.

G is a complex phasor bearing information about both the amplitude and
the phase of a field component (electric or magnetic) at each spatial grid
location i, j, k.
The pulsed FDTD method allows a simultaneous multifrequency analysis
with a single run of the FDTD program code. It suffices to have RAM
enough to memorize at each spatial location the DFTs for all the frequencies
considered. With the CW-FDTD method one would be obliged to make a
run for each one of the frequencies analyzed. This is of importance with large
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simulations, which take a lot of execution time each.
Examples of finite duration signals (compact pulses) used in the present work
are [28,29]:

S(t) =

{
An
[
1− cos

(
2πt
T

)]n
if 0 ≤ t ≤ T

0 elsewhere
(5.4)

with n = 1, 2, 3 and where An is a normalization factor. Graphs of the pulses
and their Fourier transforms are given in Fig. 5.6 and Fig. 5.7:
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Figure 5.6: Graphs of pulses (5.4) with n = 1 (solid line), n = 2 (dotted line) and n = 3 (dashed line).
Normalized heights.
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Figure 5.7: Amplitude spectra of the pulses (5.4).

Further examples are given by [28,29]:
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S(t) =

{
Ansin

(
πt
T

) [
1− cos

(
πt
T

)]n
if 0 ≤ t ≤ 2T

0 elsewhere
(5.5)

with n = 1, 2 and, again, where An is a normalization factor. Graphs of the
pulses and their Fourier transforms are given in Fig. 5.8 and Fig. 5.9:
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Figure 5.8: Graphs of pulses (5.5) with n = 1 (solid line) and n = 2 (dashed line). Normalized heights.
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Figure 5.9: Amplitude spectra of the pulses (5.5).

The second example (5.5), a signal with zero mean value, and thus with an
amplitude spectrum going to 0 for ω → 0 (see Fig. 5.9), could effectively
be more suitable if current density sources were present, because it does not
produce a permanent electric charge separation at the ends of the current
element itself after it has ceased. The first signal pulse (5.4) would indeed
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produce an electric dipole inside the spatial computational domain (with
a charge separation of δx or δy or δz, depending on the orientation of the
current element) whose static field would remain as the trailing part of a
transitory onset after the pulse (5.4) has ceased (and contrary to common
sense, because a time domain algorithm is eventually not retained to be able
to reproduce the static behavior for time independent systems and boundary
conditions) [30].
From the above examples and the Indetermination Principle for the Fourier
transform: ∆ω∆t ≈ 2π, it is seen that the pulse duration T has to be fixed
well above the maximum frequency one wants to analyze by means of the
DFT, because T determines the bandwidth of the exciting signal, beyond
which the single frequency amplitude content becomes smaller and smaller,
and potentially overwhelmed by numerical noise. Once T has been chosen
and δt has been fixed according to (5.3), one has the minimum number of
FDTD iterations that have to be performed by the code. Effectively the
overall number of FDTD iterations has to guarantee enough time for the pulse
sollecitation to reach any point inside the spatial grid and to act there for
its entire duration. As a rule of thumb, one can evaluate the time employed
by the leading edge of the pulse to cover a distance equal to a diagonal
of the spatial computational domain, to double it (for a front back to front
passagge) and then to add T . In evaluating the time to cover a given distance,
the minimum (estimated) phase velocity determined by the media inside the
target should be used.
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Chapter 6

Absorbing boundary conditions

Due to the limited computational resources, only a finite amount of mem-
ory (RAM) can be allocated for the ~E and ~H fields values of the spatial com-
putational grid described in Chapter 5. In other words, the bulk algorithm
represented by the updating finite-difference equations (5.1) and (5.2) can-
not be applied over the entire spatial grid domain, because the components’
interlacing, due to their staggering according to the Yee sampling, would re-
quire increasingly distant values which are not at all available. Thus, if the
computational domain must have a finite spatial extent, it means that at its
outer surface suitable boundary conditions must be applied to the tangential
field components, to truncate in some way the bulk algorithm. The action
of such boundary conditions has to be the one of isolating the convex mod-
eled system, entirely enclosed in the computational domain, from any outer
influence. This substantially means: to prevent any outgoing radiation, gen-
erated by the interaction of the sources with the system, from being scattered
back in the computational domain, in such a way that the modeled volume
can be ideally considered of infinite extent. For this reason in the literature
they are known as Absorbing Boundary Conditions (ABC), although in the
past they were also called Radiation Boundary Conditions (RBC). Differ-
ent analytical approaches were used to implement them [21–25]. Nowadays,
the most recent trend [34] about the FDTD spatial grid truncation makes
use of an external layer, acting as a lossy, anisotropic, dispersive material,
interfaced at the outer surface of the computational domain. This layer is
able to perfectly match the transmission characteristics of the computational
volume inner media, thus absorbing any outgoing plane waves without the
generation, at the interface, of the corresponding reflected ones. This kind of
boundary conditions for the FDTD spatial mesh truncation are described in
the next Section. From a mathematical/numerical point of view the Absorb-
ing Boundary Conditions have to guarantee the well-posedness of the PDEs
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problem, i.e., do not alter the stability assured by (5.3). In the past this
required an in deep analysis [26, 27]. In the present work the well-posedness
of the ABCs implemented is assumed on a physical ground.

6.1 Convolutional-Perfectly Matched Layer

To get a physical insight about the way in which a perfectly matched
layer (PML) operates, it is useful to consider a one-dimensional propagation
source free problem (of the type described in Chapter 4). A plane interface is
considered between two media. The one on the left (identified by a subscript
1) is a perfect dielectric with absolute parameters ε1 and µ1. The one on the
right (identified by a subscript 2) is a lossy electric and magnetic material
with absolute parameters ε2, µ2 and the conductivities σe2 and σm2 . These
conductivities, measured in Ω−1/m and Ω/m respectively, describe losses due
to ohmic currents. The magnetic one being formally introduced by duality
of the electric case:

~∇× ~E = −µ∂
~H

∂t
− σm ~H (6.1a)

~∇× ~H = ε
∂ ~E

∂t
+ σe ~E . (6.1b)

After passing to the frequency domain by means of the usual temporal imag-
inary complex exponential e−iωt, one has that the lossy material to the right
is characterizable by means of a complex electric permittivity and a complex
magnetic permeability (here denoted by the subscript c for distinguishing
between real and complex ones):

εc2 = ε2 + i
σe2
ω

µc2 = µ2 + i
σm2
ω
.

After calculating the reflectance R for the normal incidence of a plane wave,
by calculations similar to the ones described in Chapter 4, one has:

R =
ηc2 − η1

ηc2 + η1

where:

η1 =

√
µ1

ε1
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ηc2 =

√√√√√µ2

(
1 + i

σm2
ωµ2

)
ε2

(
1 + i

σe2
ωε2

) .

One thus sees that, by chosing the perfect matching conditions:

µ2

µ1

=
ε2
ε1

and
σm2
µ1

=
σe2
ε1

(6.2)

there results, for all ω:

ηc2 = η1

and, as a consequence, R = 0 identically, i.e., no reflection at all for any fre-
quency. Thus, a sufficiently thick lossy electric and magnetic material could
act as a perfect absorber because, after the wave has passed through the in-
terface without generating any reflection, it will enter the lossy medium being
exponentially damped to a negligible amplitude (and further attenuated if it
propagates back toward the lossless region). Unfortunately, such a perfect
matching is not attainable when oblique incidence is considered, because an
angular dependence appears which prevents the vanishing of the reflectance
R at the various outgoing directions. For an arbitrary angle of incidence one
has to consider an anisotropic material in a three-dimensional setting [32].
In the frequency domain (e−iωt) the Maxwell’s curl equations become:

~∇× ~E = iω ¯̄µ · ~H − ¯̄σm · ~H

~∇× ~H = −iω ¯̄ε · ~H + ¯̄σe · ~E
where ~E and ~H depend on the position ~r and the angular frequency ω. Here
the double overbar denotes a tensor written as a dyadic (see also Section 2.3
and Appendix A), which justifies the dot product · for the action (from the
left) of the tensor on a field vector (which returns a vector). By considering
diagonal tensors only, and with complex components, the full set of Maxwell’s
equations (including those with the divergences) can be rewritten as (with a
further abuse of notation regarding the tensors):

~∇ · ¯̄ε · ~E = 0

~∇ · ¯̄µ · ~H = 0

~∇× ~E = iω ¯̄µ · ~H
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~∇× ~H = −iω ¯̄ε · ~H

where:

¯̄ε =

εx + iσ
e
x

ω
0 0

0 εy + i
σey
ω

0

0 0 εz + iσ
e
z

ω


and

¯̄µ =

µx + iσ
m
x

ω
0 0

0 µy + i
σmy
ω

0

0 0 µz + iσ
m
z

ω

 .

By choosing from the outset the perfect matching between the anisotropic
material and the free space, as suggested by the one-dimensional case above
(with the material with index 1 being the free space):

¯̄µ

µo
=

¯̄ε

εo
, (6.3)

one can write:

¯̄ε = εo
¯̄Λ

¯̄µ = µo
¯̄Λ

with

¯̄Λ =

a 0 0
0 b 0
0 0 c

 ,

where a, b, c are complex numbers. By inserting these expressions in the
Maxwell’s equations, and trying the usual “ansatz” for plane waves:

~E = ~Eei~k·~r

~H = ~Hei~k·~r

with ~E , ~H and ~k constant vectors, one gets:

~k · ¯̄Λ · ~E = 0 = ~k · ¯̄Λ · ~H
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~k × ~E = ωµo
¯̄Λ · ~H

~k × ~H = −ωεo ¯̄Λ · ~E .
By considering the following transformation to new vectors ~E ′, ~H′, ~k′:

~E ′ = ¯̄Λ1/2 · ~E

~H′ = ¯̄Λ1/2 · ~H

~k′ =
1√
abc

¯̄Λ1/2 · ~k

where:

¯̄Λ1/2 =

√a 0 0

0
√
b 0

0 0
√
c


(being ¯̄Λ diagonal), it is possible to discard the occurence of the tensor (care
must be paid with the vector product × and the ¯̄Λ tensor: they cannot be
simply interchanged):

~k′ · ~E ′ = 0 = ~k′ · ~H′

~k′ × ~E ′ = ωµo ~H′

~k′ × ~H′ = −ωεo~E ′ .
It follows that:

~k′ · ~k′ = ω2εoµo = k2
o

like in free space. However, by expressing ~k′ as a function of the original ~k
one gets:

k2
x

bc
+
k2
y

ac
+
k2
z

ab
= k2

o .

Thus, after introducing a spherical coordinate system with colatitude θ mea-
sured from the positive y-semiaxis (which represents the propagation direc-
tion) and the azimuthal angle φ measured from the positive x-semiaxis, the
solution is:
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kx = ko
√
bc sin θ cosφ

ky = ko
√
ac cos θ

kz = ko
√
ab sin θ sinφ .

If a plane wave is now impinging from the free space on an interface with
such an anisotropic material, assuming the xy-plane as the plane of incidence
(φ = 0) and the xz-plane as the interface between the two media, for a TE

wave ( ~E along the z-axis normal to the plane of incidence) one has:

~Einc = ẑ E eiko(x sin θinc+y cos θinc)

~Erefl = ẑ rte E eiko(x sin θrefl−y cos θrefl)

~Etr = ẑ tte E eiko(x
√
bc sin θtr+y

√
ac cos θtr)

where in the transmitted field, the wave vector is as has been calculated
above. The magnetic field can be deduced from the ~∇× ~E Maxwell’s equation
(including ¯̄Λ in the anisotropic half-space):

~Hinc =

√
εo
µo
E (x̂ cos θinc − ŷ sin θinc) e

iko(x sin θinc+y cos θinc)

~Hrefl = −
√
εo
µo
rte E (x̂ cos θrefl + ŷ sin θrefl) e

iko(x sin θrefl−y cos θrefl)

~Htr =

√
εo
µo
tte E

(
x̂

√
c

a
cos θtr − ŷ

√
c

b
sin θtr

)
eiko(x

√
bc sin θtr+y

√
ac cos θtr) .

By applying the phase matching conditions along the x-axis (the transverse
direction) one gets:

sin θinc = sin θrefl and sin θinc =
√
bc sin θtr ,

while for the reflection amplitude rte, by equating the transverse components
of ~E and ~H on both sides:
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rte =
cos θinc −

√
c
a

cos θtr

cos θinc +
√

c
a

cos θtr
.

A similar calculation for the TM case ( ~H along the z-axis normal to the plane
of incidence) would result simply in a change of sign (but now rtm would be
a ratio of magnetic field amplitudes):

rtm =

√
c
a

cos θtr − cos θinc

cos θinc +
√

c
a

cos θtr

with obviously the same phase matching conditions. Thus, by choosing bc =
1, which implies θinc = θrefl = θtr, and c

a
= 1, it results: rte = rtm = 0,

i.e., there are no reflected waves irrespective of the direction of incidence.
Summarizing:

a =
1

b
= c (6.4)

in ¯̄Λ as the further condition, together with (6.3), for getting perfect match
between two half-spaces, one of which being the free space [32]. By putting:
a = c = α + iβ (β > 0), one sees that the imaginary part β contributes
to σex,y,z and σmx,y,z and directly determines the exponential decay rate of the
transmitted wave along the positive y direction (because Im{

√
ac} = β,

which is the reason to choose it strictly positive).
Another approach in the same vein, but more geometrically oriented, is

the one using stretched coordinates [33]. It consists in adopting two different

forms of a modified ~∇ operator (in the frequency domain):

~∇e = x̂
1

ex

∂

∂x
+ ŷ

1

ey

∂

∂y
+ ẑ

1

ez

∂

∂z

~∇h = x̂
1

hx

∂

∂x
+ ŷ

1

hy

∂

∂y
+ ẑ

1

hz

∂

∂z

where eα and hα (α = x, y, z) are, possibly complex, functions of ω but not
of the position for a given homogeneous material. Maxwell’s equations are
rewritten using the ~∇e and ~∇h operators in a source free medium:

~∇e × ~E = iω µ ~H

~∇h × ~H = −iω ε ~E
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~∇h · ε ~E = 0

~∇e · µ ~H = 0

(the last pair being a consequence of the first pair). With the usual “ansatz”

for plane wave solutions in a homogeneous medium: ~E = ~Eei~k·~r and ~H =
~Hei~k·~r, with ~k = x̂kx + ŷky + ẑkz (~E and ~H being constant vectors), from the
curl equations it follows that:

~ke × ~E = ωµ ~H (6.5)

~kh × ~H = −ωε~E (6.6)

where:

~ke = x̂
kx
ex

+ ŷ
ky
ey

+ ẑ
kz
ez

(6.7)

~kh = x̂
kx
hx

+ ŷ
ky
hy

+ ẑ
kz
hz
. (6.8)

Left multiplying (6.6) by ~ke:

~ke × ~kh × ~H = −ω2µε ~H = ~kh(~ke · ~H)− ~H(~ke · ~kh) ,

where use has made of the BAC−CAB identity for the triple vector product.
Taking account that, from (6.5), ~ke · ~H = 0, one gets the constraint:

ω2µε = ~ke · ~kh =
1

exhx
k2
x +

1

eyhy
k2
y +

1

ezhz
k2
z ,

which, after considering the same spherical coordinate system previously in-
troduced, is satisfied if:

kx = ω
√
µε
√
exhx sin θ cosφ

ky = ω
√
µε
√
eyhy cos θ

kz = ω
√
µε
√
ezhz sin θ sinφ .

Then with an interface, represented by the plane y = 0, between two media
identified by the subscripts 1, for the y < 0 half-space and 2, one can write
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for the TE case ( ~E = E û with û a unit vector in the transverse direction, i.e.
contained in the xz plane) of a plane wave propagating along the positive y
axis:

~E1 = E ûei~kinc·~r + rteE ûei~krefl·~r

~E2 = tteE ûei~ktr·~r

for the electric field on either side and, from (6.5):

~H1 = E
~ke,inc × û
ωµ1

ei
~kinc·~r + rteE

~ke,refl × û
ωµ1

ei
~krefl·~r

~H2 = tteE
~ke,tr × û
ωµ2

ei
~ktr·~r

for the magnetic one. Here rte and tte are the reflection and transmission
electric field amplitudes in the TE case. In the above expressions for the
fields, ~ke,inc, ~ke,refl, ~ke,tr are the corresponding ~kinc, ~krefl, ~ktr in the complex
exponentials (in the phases) but “corrected” according to (6.7). Obviously
all these wave vectors have an y component along the impinging direction.
Moreover, it is:

(~krefl)y = −(~kinc)y

and

(~krefl)x = (~kinc)x (~krefl)z = (~kinc)z

for phase matching and, consequently, similar relations for ~ke,inc and ~ke,refl.

By equating the tangential components of ~E and ~H on either side of the
interface (a continuity condition following from the “modified” ~∇e and ~∇h

curl equations in the usual manner) and using now media subscripts 1 and 2
instead of the inc, refl and tr subscripts, one gets:

ω
√
ε1µ1

√
ex,1hx,1 sin θ1 cosφ1 = ω

√
ε2µ2

√
ex,2hx,2 sin θ2 cosφ2

ω
√
ε1µ1

√
ez,1hz,1 sin θ1 sinφ1 = ω

√
ε2µ2

√
ez,2hz,2 sin θ2 sinφ2

(they correspond to kx,1 = kx,2 and kz,1 = kz,2 in the field phases) for fur-
ther phase matching, which allows one to cancel out from each term the
exponential factors, and:
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1 + rte = tte

√
ε1
µ1

√
hy,1
ey,1

cos θ1(1− rte) = tte
√
ε2
µ2

√
hy,2
ey,2

cos θ2

which, when solved for rte give:

rte =

√
ε1
µ1

√
hy,1
ey,1

cos θ1 −
√

ε2
µ2

√
hy,2
ey,2

cos θ2√
ε1
µ1

√
hy,1
ey,1

cos θ1 +
√

ε2
µ2

√
hy,2
ey,2

cos θ2

.

If one considers the TM case ( ~H = Hû with û a unit vector in the transverse
direction, i.e. contained in the xz plane) and uses (6.6) and (6.8), for the
magnetic field reflection amplitude rtm would get:

rtm =

√
µ1
ε1

√
ey,1
hy,1

cos θ1 −
√

µ2
ε2

√
ey,2
hy,2

cos θ2√
µ1
ε1

√
ey,1
hy,1

cos θ1 +
√

µ2
ε2

√
ey,2
hy,2

cos θ2

.

Now, if there is a perfect match expressed by the choices:

ex = hx ey = hy ez = hz ,

µ1

µ2

=
ε1
ε2

(already seen) and:

ex,1 = ex,2 ez,1 = ez,2 ,

one has θ1 = θ2 and φ1 = φ2 from the phase matching conditions but then,
also, rte = rtm = 0 identically, whatever is the angular frequency ω and
irrespectively from the angle of incidence. The remaining degree of freedom
is the choice:

ey,2 = hy,2 = sy(ω) (6.9)

with sy(ω) a complex valued function of ω, in such a way to have attenua-
tion in the y direction for a wave coming from the non-absorptive medium 1
(ey,1 = hy,1 = 1) and impinging on medium 2.

The preceding analysis allows the theoretical realization of a perfectly
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matched medium, able to absorb plane waves originating from a conven-
tional material and propagating along a given coordinate direction, without
generating reflection at the interface. One can then think to layers of such a
medium terminating an FDTD computational volume at his six faces, thus
forming well suited and effective material Absorbing Boundary Conditions
by means of which truncate the FDTD spatial grid. They are examples of a
Perfectly Matched Layer (PML), as it is referred to in literature. The step
further consists in traslating the above formulation from the frequency to
the time domain, in such a way it can be useful for FDTD numerical pur-
poses. To this end the time domain Maxwell’s equations (1.1c) and (1.1d)
are now reconsidered in the light of the stretched coordinate formalism for a
PML medium, assuming that in a three dimensional FDTD model, perfect
matching and absorption are required for all the three cartesian directions x,
y and z. It is considered a single form of the stretched ~∇s operator which,
according with the choice (6.9), but in view of the fact it must absorb along
all the three cartesian directions, will be written as:

~∇s = x̂
1

sx

∂

∂x
+ ŷ

1

sy

∂

∂y
+ ẑ

1

sz

∂

∂z
.

where [34,35]

sr(ω) = κr +
σr

αr − iωεo
(6.10)

for r = x, y, z. Here κr, αr, σr are real parameters (αr and σr strictly positive
and having units of Ω−1m−1, κr ≥ 1 and adimensional). Their significance
is purely geometrical in the context of the stretched coordinate formulation,
but obviously the functional form of sr with respect to the angular frequency
ω is physically suggested by the fact it enters in the wavenumber expression
for the complex phase of the wave, and has thus to determine an ampli-
tude attenuation like any other conventional material having a dissipation
σ. The novelty is that by means of the streched coordinate formulation it
is now possible to avoid any reflections. The form of sr(ω) is also suggested
by comparing it with the entries in the expression for ¯̄ε previously given for
the tensorial formulation of a PML medium. Also, the fact that sr(ω) is
strictly connected with the constitutive parameters of a material requires, by
causality, that its real and imaginary parts be coupled by Kramers-Kronig
dispersion relations, as is emphasized in [36]. Moreover, complex conjuga-
tion of sr(ω) has to amount to a change of sign of ω: s∗r(ω) = sr(−ω).
These requests contribute to limit the arbitrariness in the choice of the func-
tional form of sr(ω). The main variation in (6.10) is the introduction of the
term αr in the denominator: it is an off the origin pole shifting [36] into
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the lower-half complex plane to avoid the singularity at low frequencies, a
circumstance which could hurt the low (ideally null) reflectance of a PML
layer, as reported in literature [34]. By keeping in mind that the product of
s−1
r (ω) with the spatial derivative of a field component depending on ~r and

ω, as results when the operator ~∇s× is applied to a vector field in Maxwell’s
curl equations translates, in the time domain, in the temporal convolution
between the inverse Fourier transform F−1 of s−1

r (ω), here denoted as s̃r(t),
with the same spatial derivative of the field component as a function of ~r and
t (i.e., of the inverse Fourier transform of that field component). To evaluate
s̃r(t) one should observe that:

lim
ω→∞

s−1
r (ω) =

1

κr
,

thus s̃r(t) cannot be evaluated by means of a conventional Fourier integral.
However, in distributional sense:

F−1

(
1

κr

)
(t) ∝ δ(t)

κr

where δ(t) is the Dirac delta function. By removing the singularity one can
then write:

F−1

(
s−1
r (ω)− 1

κr

)
=

σr
iεoκ2

r

∫ +∞

−∞

e−iωt

ω + i
εo

(
σr
κr

+ αr

) dω ,
in which a choice has been made for the normalization factor in the di-
rect/inverse Fourier transform pair (it is set to unity). The integral can be
evaluated by means of a complex plane contour integral, on a path consisting
of a straight line and a semicircle. The integrand has a simple pole lying in
the lower half plane (with the choice made above for σr, κr and αr). If t > 0
the path can be closed from below (the semicircle is in the lower complex
half plane) encircling the pole and traversed clockwise. If t < 0 the path can
be closed from above and oriented couterclockwise, but the integrand, being
analytic in that region, gives no contribution at all. Thus:

s̃r(t) =
2πδ(t)

κr
− 2πσr
εoκ2

r

θ(t) e−
1
εo

(σrκr +αr)t =
2πδ(t)

κr
+ ζr(t) (6.11)

where θ(t) is the unit step distribution and r = x, y, z. The Maxwell’s equa-
tions (6.1) for the PML medium are now written for the x components as:

−µ∂Hx

∂t
− σm = s̃y ∗

∂Ez
∂y
− s̃z ∗

∂Ey
∂z
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ε
∂Ex
∂t

+ σe = s̃y ∗
∂Hz

∂y
− s̃z ∗

∂Hy

∂z

and similar for the y and z components. Here a ∗ b means temporal convolu-
tion of two functions of time t:

(a ∗ b)(t) =
1

2π

∫ +∞

−∞
a(t− τ)b(τ)dτ =

1

2π

∫ +∞

−∞
a(τ)b(t− τ)dτ

where the appearance of the 1
2π

factor is consequent to the choice for the
normalization factor in the direct/inverse transform pair made above, in such
a way that F(a ∗ b)(ω) = F(a)F(b) with unity as the normalization factor
in each direct Fourier transform (from t to ω). By using (6.11) one gets:

−µ∂Hx

∂t
− σm =

(
1

κy

∂Ez
∂y
− 1

κz

∂Ey
∂z

)
+

(
ζy ∗

∂Ez
∂y
− ζz ∗

∂Ey
∂z

)
(6.12a)

ε
∂Ex
∂t

+ σe =

(
1

κy

∂Hz

∂y
− 1

κz

∂Hy

∂z

)
+

(
ζy ∗

∂Hz

∂y
− ζz ∗

∂Hy

∂z

)
(6.12b)

and similar for the y and z components. To be able to write explicit update
finite differences expressions for ~E and ~H, the convolutions are evaluated
discretely following a recursive-convolution approach already used in [37], [38]
for the FDTD description of temporal dispersive media. The discretized
version of the convolution of ζr with the generic spatial derivative ∂

∂r
of a

generic field component Fs, which could be of ~E or of ~H (a subscript e or h

will be also attached later to ψr to distinguish them), is written as (indicating
only the indexed time dependence and not the spatial ones):

ψr(n) =
1

2π

∫ +∞

−∞
ζr(τ)

∂Fs
∂r

(n− τ)dτ =
1

2π

∫ nδt

0

ζr(τ)
∂Fs
∂r

(n− τ)dτ = . . .

· · · = 1

2π

n−1∑
k=0

∫ (k+1)δt

kδt

ζr(τ)
∂Fs
∂r

(n− τ)dτ

(no sum implied on α) where the second equality follows from causality —
the step function in (6.11) — and the fact that before t = 0 all field compo-
nents are zero, while the third equality in the second line follows from the
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additive property of the integral. Here δt means the time step in the FDTD
discretization. According to the dicrete nature of the fields sampling, the spa-
tial derivative ∂

∂r
under the integral is assumed constant on any subinterval

of span δt, which means:

ψr(n) =
1

2π

n−1∑
k=0

∫ (k+1)δt

kδt

ζr(τ)
∂Fs
∂r

(n− τ)dτ =
n−1∑
k=0

Zr(k)
∂Fs
∂r

(n− k)

where

Zr(k) =
1

2π

∫ (k+1)δt

kδt

ζr(τ)dτ

and where, in view of (6.11), the last integral can be calculated explicitly in
closed form:

Zr(k) =
σr

[
e−

1
εo

(σrκr +αr)δt − 1
]

κr(αrκr + σr)
e−

1
εo

(σrκr +αr)k δt = Zr e−
1
εo

(σrκr +αr)k δt

from which it follows immediately that:

Zr(k + 1) = Zr(k) e−
1
εo

(σrκr +αr)δt = Zr(k) br . (6.13)

Now, to calculate the convolution ψr(n) it is no necessary to save in memory
the past evolution history of the (spatial derivatives of the) field components,
because it can be updated dynamically by a simple recursion relation, due
to the fact that:

ψr(n) =
n−1∑
k=0

Zr(k)
∂Fs
∂r

(n− k) =
n−1∑
k=1

Zr(k)
∂Fs
∂r

(n− k) + Zr
∂Fs
∂r

(n) ,

from which it follows, by the index change k = `+ 1, that:

ψr(n) =
n−2∑
`=0

Zr(`+ 1)
∂Fs
∂r

(n− 1− `) + Zr
∂Fs
∂r

(n)

but, by means of (6.13), the sum can be put in such a way that:

ψr(n) = brψr(n− 1) + Zr
∂Fs
∂r

(n) . (6.14)
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In view of (6.14), to modelize a PML medium one needs to allocate extra
memory for the ψr quantities, which are then simply updatable, at each
space location, using the pre-existing values of ψr themselves and those of the
electromagnetic field. The FDTD discretization of (6.12) is thus as follows:

H
n+ 1

2
x (i, j, k) =Ph,x(i, j, k)H

n− 1
2

x (i, j, k) +

Qh,x(i, j, k)

[
En
y (i, j, k + 1)− En

y (i, j, k)

κz(i, j, k) δz
−

En
z (i, j + 1, k)− En

z (i, j, k)

κy(i, j, k) δy
+

ψnh,z(i, j, k)− ψnh,y(i, j, k)
]

(6.15a)

ψnh,z = bz(i, j, k)ψn−1
h,z + Zz(i, j, k)

[
En
y (i, j, k + 1)− En

y (i, j, k)

δz

]
(6.15b)

ψnh,y = by(i, j, k)ψn−1
h,y + Zy(i, j, k)

[
En
z (i, j + 1, k)− En

z (i, j, k)

δy

]
(6.15c)

with similar expressions for the H
n+ 1

2
y and H

n+ 1
2

z components, and:

En+1
x (i, j, k) =Pe,x(i, j, k)En

x (i, j, k) +

Qe,x(i, j, k)

[
H
n+ 1

2
z (i, j, k)−Hn+ 1

2
z (i, j − 1, k)

κy(i, j, k) δy
−

H
n+ 1

2
y (i, j, k)−Hn+ 1

2
y (i, j, k − 1)

κz(i, j, k) δz
+

ψ
n+ 1

2
e,y (i, j, k)− ψn+ 1

2
e,z (i, j, k)

]

(6.16a)
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ψ
n+ 1

2
e,y =by(i, j, k)ψ

n− 1
2

e,y +

Zy(i, j, k)

[
H
n+ 1

2
z (i, j, k)−Hn+ 1

2
z (i, j − 1, k)

δy

] (6.16b)

ψ
n+ 1

2
e,z =bz(i, j, k)ψ

n− 1
2

e,z +

Zz(i, j, k)

[
H
n+ 1

2
y (i, j, k)− En+ 1

2
y (i, j, k − 1)

δz

] (6.16c)

with similar expressions for the En+1
y and En+1

z components. It should be
remembered that in (6.15) and (6.16) the indices i, j and k address the

Yee cell and that inside the cell the x, y and z components of ~E and ~H
are distributed with some half cell’s edge shifts according to Figs. 5.1 and
5.2. In the above finite-difference expressions also the coefficients br, Zr and
κr bring a spatial dependence because inside the PML medium they vary
with the position in a manner specified below. Moreover for the P and Q
coefficients:

Ph,x(i, j, k) =
1− δtσhx(i,j,k)

2µo

1 + δtσhx(i,j,k)
2µo

Qh,x(i, j, k) =

δt
µo

1 + δtσhx(i,j,k)
2µo

Pe,x(i, j, k) =
1− δtσex(i,j,k)

2ε′

1 + δtσex(i,j,k)
2ε′

Qe,x(i, j, k) =
δt
ε′

1 + δtσex(i,j,k)
2ε′

.

In the above expressions the magnetic permeability of the PML medium is
taken as constant and equal to the vacuum value (non-magnetic materials).
The electric permittivity is also taken as the constant ε′, but accordingly to
the matching condition (6.2) it should be equal to the value of the electric
permittivity of the nearby material inside the computational volume which it
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terminates. Any inhomogeneities in the outer shell of the embedding medium
in the computational volume could be accounted for by varying ε′ in the
PML medium accordingly. Obviously σmr , which is introduced for symmetry
considerations after the introduction of the extra absorption due to σer , must
satisfy the perfect matching condition (6.2): σerµo/ε

′. They typically are both
chosen equal to 0, because the absorption is handled by the σr parameter
in (6.11). In fact, the parameters σr, κr and αr (r = x, y, z) of (6.11) vary
depending on the position along a direction perpendicular to the layer, on a
segment of length equal to the layer thickness. To make clear this situation,
one has to keep in mind that, if the computational volume V is made of Nx,
Ny and Nz Yee cells along the x, y and z coordinate axes, then its edges are
Lx = Nxδx, Ly = Nyδy and Lz = Nzδz respectively, where δx, δy and δz are
the space-step sizes (the edges of the Yee cells). One then considers a volume
V ′ of sides L′x = ∆x + Lx + ∆x, L

′
y = ∆y + Ly + ∆y and L′z = ∆z + Lz + ∆z

containing V , centered in it. Viewed V and V ′as point sets, one can think
at the set complement V ′ \ V , which is precisely the PML boundary layer:
a shell enclosing the computational volume. Its thickness measured in Yee
cells is ∆x/δx along x, ∆y/δy along y and ∆z/δz along z. A two-dimensional
schematic is shown in Fig. 6.1:

Figure 6.1: Two-dimensional schematic view of the PML boundary layer, with thickness ∆, surrounding
the FDTD computational volume.

The PML boundary layer is formed of 6 terminating slabs, of thicknesses
∆x,y,z, which are partially overlapped in correspondence of the parallelepiped
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edges and vertices as is suggested by Fig. 6.2:

Figure 6.2: Overlap of terminating PML boundary slabs around the FDTD computational volume.

The slabs can be paired along each coordinate direction r = x, y, z, and the
above parameters vary inside them with respect to a generic coordinate ξ,
along that direction, in the interval [0,∆r]. According to [39], the laws of
variation are empirically chosen to be:

αr(ξ) = αr,max

(
∆r − ξ

∆r

)tα
σr(ξ) = σr,max

(
ξ

∆r

)t
κr(ξ) = 1 +

(
ξ

∆r

)t
(κr,max − 1)

(r = x, y, z) which hold in the increasing coordinate direction: for the coupled
opposite slab these behaviors are mirrored about ξ = 0. It can be seen that
σr and κr are chosen in such a way to have a smooth onset, but αr in (6.11)
has a decreasing value toward 0. Typically [39]:

κr,max = 5
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αr,max = 0.05

t = 3

tα = 1

while

σr,max =
0.8(t+ 1)

Zoδr
√
µrelεrel

with Zo the vacuum impedance (≈ 377 Ω). It is reported in [34, 36, 39] that
the αr parameter in (6.11) governs the absorption of the evanescent fields. It
results, from the variability direction of these parameters, which is the one
corresponding to the pairing direction of the PML slabs, that the convolu-
tional formalism above described applies only on the electromagnetic field
components in the PML medium which are orthogonal to that direction. In
fact they exhibit a coefficient variability, in their finite-difference expressions,
which corresponds to that direction.
The algorithm described in this section is called Convolutional PML (CPML),
and has very good performances in the FDTD computational volume trun-
cation.

6.2 Periodic boundary conditions

Periodic boundary conditions (PBC) are not, properly said, absorbing
boundary conditions. However, they can be used in conjunction with ab-
sorbing boundary conditions, like the CPML ones just described, to simulate
an infinite periodic extension along a given coordinate direction. If this is
the case, for example, of the ξ axis (ξ = x, y, z), then along that direction the
CPML algorithm is excluded and the tangential electric field components at
the two outer surfaces perpendicular to it, at ` = 0 and ` = Nξ (` an in-
dex on ξ with Nξ Yee cells), are calculated simply by equating them to the
immediate interior ones of the other side, according to the scheme in Fig.
6.3:
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𝝃 


 

0 1 𝑁𝜉 − 1 𝑁𝜉 

Figure 6.3: Scheme for the tangential electric field completion at periodic boundaries.

For systems whose structure is a periodic extension along one or two perpen-
dicular directions of a given unit, one or two dimensional, “cell”, PBCs allows
a substantial saving of computational resources. Obviously in the periodic
symmetry of the system has to be included also the incident field distribu-
tion. If this is not periodic along the direction/s considered, the PBC cannot
be applied.



Chapter 7

Linearly polarized plane wave
excitation

In simulations for optical applications, one has to model almost invariably
a given material system (the target) and a beam of light interacting with it
(primary field). In a time-domain approach as the one used in the present
work, causality requires to consider the process in which a pulse or a wave
train traveling in vacuum (air), with a wavefront moving toward the target
and a trailing perturbation, impinges on it. The target’s optical properties
are then deduced by analyzing the superposition of the primary field with
the secondary one, that is the one produced by interaction of the impinging
beam with the target itself. It is thus of importance to be able to “inject” a
traveling pulse or traveling wave train on the numerical Yee grid previously
described in Chapter 5. The simpler space-time dependence of a traveling,
linearly polarized, electromagnetic field propagating in vacuum in the direc-
tion defined by the unit vector û, is that of a plane pulse or of a harmonic
plane wave:

~E(~r, t) = v̂f

(
t− [~r − ~r ′] · û

co

)
(7.1a)

~H(~r, t) =
1

Zo
(û× v̂)f

(
t− [~r − ~r ′] · û

co

)
(7.1b)

where v̂ is a unit vector perpendicular to û: û · v̂ = 0 (the polarization
direction), co is the light speed in vacuum, Zo =

√
µo/εo is the vacuum

characteristic impedance, (~r − ~r ′) · û = 0 is the equation defining a plane in
R3 passing through ~r ′ and normal to ~u. One could say that it is the starting
plane of the wave: all other constant phase plane are parallel to it and on
the side indicated by ~u. To this end f has to be a sufficiently well behaved
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causal function: f(t) = 0 if t < 0. One has a plane pulse if f is like S
in (5.4) or (5.5) of Chapter 5. If f is a sinusoid restricted to the positive
time axis one has a harmonic plane wave. In any case (7.1) are solutions of
the Maxwell’s equations in a source free region of space and can be used as
the primary electromagnetic field, i.e. the light impinging beam. Although
there is no need to include the sources producing the plane waves, the real
effectiveness of (7.1) stands in the possibility they offer to specify the primary
field on a surface completely surrounding the target, without any impractical
specification of the field as a three-dimensional distribution at t = 0 (as in
a pure Initial Value Problem). Instead, by specifying the field on a surface
for t > 0, is equivalent to impose a time varying boundary condition with
zero initial data. This way of proceeding produces the correct primary field
without altering the well posedness of the PDE problem because:
• if the space-time dependence in (7.1) is used, the data for the primary field
are specified on the correct characteristics curves of the PDE system;
• the boundary conditions for the primary field are specified in a “soft” way,
i.e. using the superposition principle, not by fixing the values in (7.1) at the
surface locations (see below for a more detailed explanation). In this way
the secondary field is free to pass through this boundary surface without
conflicts with its characteristic directions which are not known and depend
on the structure of the target.
A two dimensional schematic view of the plane wave “injection” is given in
Fig. 7.1:

Figure 7.1: Two dimensional view of the FDTD system excitation with an impinging light beam.

Including the impinging light beam in the manner just described, produces
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two regions in the spatial computational domain spanning Nx, Ny and Nz

Yee cells along the x, y and z axes respectively: an inner region in which the
total field (TF) is found (a superposition of the incident and scattered fields,
in a mix which however cannot be resolved in the two single constituents),
and an outer shell (the light grey area in Fig. 7.1) in which only the scattered
field (SF) is present. This two regions have a surface in common referred to
as S below: it is represented by the dashed rectangle in Fig. 7.1. At the
outer surface S ′ of this latter region of space (the solid line rectangle in Fig.
7.1) begins, not shown in the figure, the region corresponding to the CPML
boundary conditions, used to simulate an infinite spatial extent around the
target. The CMPL region constitutes an extra outer shell extending further
the spatial computational domain comprising the NxNyNz Yee cells.

7.1 Propagation along a coordinate axis

If the y coordinate axis is chosen as the propagation direction of the
initial impinging beam, then û = ŷ in (7.1) and the concerned independent
variables are t and y. The TF/SF surface S is chosen to be inflated with
respect to S ′ of an equal number of Yee cells on both sides, in such a way to
make space for the scattered field (SF) region leaving centered the total field
(TF) one. The “soft” way of including the excitation consists in:

• correcting, after each upadating FDTD iteration, all the ~E tangential fields
on S, which are considered to be total field, by adding to them a contribution
as if, to the relevant ~H field components in the finite-difference equations
(5.2), the incident term (7.1b) has been added a posteriori.

• correcting, after each upadating FDTD iteration, all the ~H tangential fields
just outside S by half cell edge size, which are considered to be scattered
field, by subtracting to them a contribution as if, to the relevant ~E field
components in the finite-difference equations (5.1), the incident term (7.1a)
has been subtracted a posteriori.
From a programming code point of view, the corrections are made for all the
tangential field components on, or just outside, S at each FDTD iteration,
but the propagation delay in the argument of (7.1) determines if and where
the correction term will be effectively included, and in a coherent way with
the propagation of the traveling exciting signal.
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7.2 Propagation along arbitrary directions

If û in (7.1) is an arbitrary unit vector, the procedure for including the
linearly polarized plane wave is substantially the same as above, with the
difference that is less a priori evident which are the tangential field compo-
nents affected by the correction and which are the cartesian components to
which add/subtract the incident field contributions (7.1). It is convenient

to introduce a rotated orthogonal reference frame for û, ~E and ~H and then,
after transforming to the fixed reference frame of the spatial computational
grid, to calculate scalar products to identify which are the components on S
to be affected by the corrections and the amplitude of the correction, which
depends on the projection on S itself. This procedure is computationally
more cumbersome than that for the propagation along a coordinate axis,
because it requires a larger number of mathematical operations to be per-
formed by the code. Again, as in the preceding case, the propagation delay
in the argument of (7.1) determines if and where the correction term will
be effectively included, and in a coherent way with the propagation of the
traveling exciting signal. In this case the equal phase planes are in general
not parallel to the coordinate planes.



Chapter 8

Algorithm modification for
dispersive materials

The present Chapter concerns with the possibility of including, in the
FDTD algorithm, material media exhibiting temporal dispersion. This means
a temporal non-locality between ~D and ~E, as previously described in Section
1.2 of Chapter 1, resulting in a still linear one: a time convolution, but no
more simply multiplicative relation between the two fields in the time do-
main — it will be simply multiplicative, in general, in the frequency domain
— and in the complex electric permittivity ε dependence on the (angular)
frequency. The importance of achieving this possibility is connected to the
multifrequency analysis with a single FDTD run described previously in Sec-
tion 5.3: in the time domain one cannot work with ε(ω) in a tabular form
and only if she/he is able to correctly track this temporal non-locality it will
make sense the update and memorization, at every FDTD time iteration, of
a Discrete Fourier Transform (DFT) variable at several different values of ω.

The details of the generalized macroscopic linear relation between ~D and ~E,
the kernel of the time convolution, will depend on the physical polarization
mechanism assumed to hold for a given material.

8.1 Recursive convolution

This approach to the FDTD description of dispersive materials is based
on a representation of the integral in the time convolution relating ~D and ~E
[...] as a discrete sum, consistently with the temporal sampling at a time step
δt and once the specific functional form of the kernels has been calculated. In
[37,38] it is demonstrated that for these kernels, corresponding [...], the time
convolution can be updated without memorizing the whole field evolution
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history from the beginning of the simulation, but that it can be recursively
updated with a minimal amount of supplementary memory. Because this
recursive convolution method is very similar to the one used to update the
absorbing layer in the CPML boundary conditions described in Chapter 6,
it will not described further here.

8.2 Auxiliary differential equation

Another approach to the FDTD description of dispersive media is by
means of a finite difference version of a suitable auxiliary differential equation,
coupled with the usual finite difference espressions of the Maxwell’s curl
equations. This has to be done at every spatial location for the electric field
components of the Yee grid belonging to a dispersive material. From a fairly
general form for the relative complex electric permittivity in the (angular)
frequency domain (for a time-harmonic factor e−iωt) [45, 46]:

εr(ω) = εr,∞ +
N∑
`=1

a`,0 − i a`,1 ω
b`,0 − i b`,1 ω − b`,2 ω2

= εr,∞ + χ(ω) (8.1)

(i is the imaginary unit) where contributions from N terms have been con-
sidered and εr,∞ is from a Dirac delta contribution in the time convolution,
i.e. an instantaneous response of the material. It could be referred to as a
“static” contribution if one means it is the only contribution when dispersion
is completely neglected by discarding the sum term in (8.1). Otherwise it
actually correponds to the ω → ∞ limit of εr(ω), which is not the static
limit. The real parameters a`,0, a`,0, b`,0, b`,1, b`,2 for ` = 1, . . . , N are chosen
to fit the experimental tabulated data in the frequency range of interest, or
they can be determined theoretically on the base of a model for the material
response. They should also properly normalized in such a way that:

N∑
`=1

a`,0
b`,0

= εr,s − εr,∞

where εr,s is the true static (ω = 0) relative electric permittivity.
Expression (8.1) encompasses several polarization behavior models (see Sec-
tion 1.2):
• Debye: by setting a`,1 = b`,2 = 0, for ` = 1, . . . , N ;
• Drude: by setting a`,1 = b`,0 = 0, for ` = 1, . . . , N ;
• Lorentz: by setting a`,1 = 0, for ` = 1, . . . , N ;
• Critical Points: as such, (8.1) corresponds to an N Critical Points model.
From the general relation, in which usually εr,∞ = 1, see (1.8):
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~D = εoεr,∞ ~E + ~P ,

and the assumed linear multiplicative constitutive relation between the po-
larization vector ~P (whose units are Coulomb/m2 or dipole moment per unit

volume) and ~E, through the electric susceptivity χ(ω), remembering that, in
general:

~∇ · ~P = −ρpol

where ρpol is the electric volume density of the polarization charge, and con-
sidering its continuity equation (in the frequency domain with the correspon-
dence −iω ⇔ ∂

∂t
):

~∇ ·~jpol − iωρpol = 0

where ~jpol is the polarization current density vector, one has:

~jpol = −iω ~P = −iωχ(ω) ~E

i.e., the time derivative of ~P . If the above definition for ~D is time derived to
use it in the right hand side of (1.1d) Maxwell’s curl equation, one obtains
(in the time domain):

~∇× ~H = εoεr,∞
∂ ~E

∂t
+ σ ~E +

N∑
`=1

~j` (8.2)

where the last sum term on the right represents precisely ~jpol (in the time
domain). Also, in the last equation the static conductivity term has been
retained, but the free current source term has been omitted (external free
sources are not included inside dispersive media). Now, in the frequency
domain:

~j` = −i ω εo
a`,0 − i a`,1 ω

b`,0 − i b`,1 ω − b`,2 ω2
~E

(` = 1, . . . , N) and there is the need to get a time domain expression for ~j`, or
at least for its sampled values, to be used in the discretized version of (8.2).
To this end, the above expression is simply rewritten, after multiplication of
both members by the denominator in the right one, as:

b`,0 + b`,1(−iω)~j` + b`,2(−iω)2~j` = a`,0εo(−iω) ~E + a`,1εo(−iω)2 ~E
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(` = 1, . . . , N) and, with the usual identification −iω ⇔ ∂
∂t

, which also

implies −ω2 ⇔ ∂2

∂t2
, this becomes the auxiliary differential equation:

b`,0~j` + b`,1
∂~j`
∂t

+ b`,2
∂2~j`
∂t2

= a`,0εo
∂ ~E

∂t
+ a`,1εo

∂2 ~E

∂t2

` = 1, . . . , N . By spatially and temporally sampling ~j` like ~E and approxi-
mating the first time derivatives as:

∂~j`
∂t
≈
~j n+1
` −~j n−1

`

2δt

∂ ~E

∂t
≈

~E n+1 − ~E n−1

2δt
,

and the second time derivatives as:

∂2~j`
∂t2
≈
~j n+1
` − 2~j n` +~j n−1

`

δ2
t

∂2 ~E

∂t2
≈

~E n+1 − 2 ~E n + ~E n−1

δ2
t

,

inserting in the above auxiliary differential equation and solving for ~j n+1
` ,

one obtains:

~j n+1
` = α`~j

n
` + β`~j

n−1
` + P` ~E

n+1 +Q`
~E n +R`

~E n−1 (8.3)

where:

α` =
b`,2 − b`,0 δ2

t

b`,2 + b`,1 δt
(8.4a)

β` =
b`,1 δt − b`,2
b`,2 + b`,1 δt

(8.4b)

P` =
a`,0 δt + 2a`,1
b`,2 + b`,1 δt

εo (8.4c)

Q` = − 4a`,1
b`,2 + b`,1 δt

εo (8.4d)

R` = −2a`,1 − a`,0 δt
b`,2 + b`,1 δt

εo . (8.4e)

Discretizing (8.2) gives:
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[
~∇× ~H

]n+ 1
2

= εoεr,∞
~E n+1 − ~E n

δt
+ σ

~E n + ~E n+1

2
+

N∑
`=1

~j
n+ 1

2
`

in which ~j
n+ 1

2
` is calculated by inserting the time average of (8.3):

~j
n+ 1

2
` =

~j n` +~j n+1
`

2
=

1 + α`
2

~j n` +
β`
2
~j n−1
` +

P`
2
~E n+1 +

Q`

2
~E n +

R`

2
~E n−1 ,

from which the updated value of ~E is:

~E n+1 =C1
~E n + C2

~E n−1

+ C3

{[
~∇× ~H

]n+ 1
2

+
1

2

N∑
`=1

[
(1 + α`)~j

n
` + β`~j

n−1
`

]} (8.5)

where:

C1 =
2εoεr,∞ − δt

(
σ +

∑N
`=1 Q`

)
2εoεr,∞ + δt

(
σ +

∑N
`=1 P`

) (8.6a)

C2 = − δt
∑N

`=1R`

2εoεr,∞ + δt

(
σ +

∑N
`=1 P`

) (8.6b)

C3 = − 2δt

2εoεr,∞ + δt

(
σ +

∑N
`=1 P`

) . (8.6c)

Thus for dispersive media the FDTD algorithm is as follows [45]:

• update ~E n+1 using (8.5) with (8.6), from ~E n, ~H n+ 1
2 , ~j n` and ~j n−1

` (` =
1, . . . , N);

• update ~j n+1
` (` = 1, . . . , N) using (8.3) with (8.4), using also the ~E n+1 just

computed;
• update ~H n+ 3

2 the standard FDTD algorithm (5.1) using ~H n+ 1
2 and the

~E n+1 just computed.
The standard FDTD algorithm modified in such a way to include temporal
dispersive materials requires extra memory allocation to store the ~j n` , ~j n−1

`

(` = 1, . . . , N) and ~E n−1 components on the spatial grid. Moreover, a larger
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number of floating point operations must be performed, for each FDTD time
iteration, to get the updated electric field values, which implies longer simu-
lation running times. However, the modified FDTD algorithm is restricted to
the spatial grid points of the whole computational volume corresponding to
the regions occupied by dispersive media. The multiterm ` index variability
in (8.1) makes possible to use different polarization models simultaneously
for a given material, to better fit the dispersion curve of its complex electric
permittivity in the frequency range of interest. In [46] is used an approach
substantially equivalent to the one just described, but using directly the po-
larization vectors ~P` in place of the polarization currents. In [47] are deduced
exact stability criteria for these algorithms.



Chapter 9

FDTD algorithm parallelization

When the system, the interaction with light of which has to be studied,
is a large one or the level of details required asks for very small δx, δy,
δz space steps sizes, the computations will need huge amounts of memory
(RAM), which increases linearly with the total number of Yee cells allocated:
Ncells = Nx ×Ny ×Nz, according to (1 byte = 8 bit):

Nbytes = Ncells [4 + (1 + nfreqs)6η] (9.1)

where nfreqs is the number of frequencies one wants to analyze in a single
run of the FDTD code (as previously described in a devoted Section about
frequency domain analysis in Chapter 5) and η = 4 or 8, depending on
the choice for the floating point variables precision, respectively “single” or
“double”. Double precision is generally used, to minimize round-off error
accumulation during the FDTD iterations cycles. Also, the execution time
of the FDTD code increases linearly with Ncells, because the number of op-
erations in the code scales ∝ Ncells. When the computationl burden, i.e.
the memory request and the execution time, becomes exceedingly high, one
has to resort to High Performance Computing (HPC) machines, like the one
depicted in Fig. 9.1:

Figure 9.1: An HPC machine for large parallel computations.

which make allowable and can handle all the memory required. Basically
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they are an ensemble of multicore CPUs (Central Processing Units), inter-
connected through an high speed dedicated network for data exchange among
them: the multicomputer MIMD (Multiple Instruction Multiple Data) ar-
chitecture. Each CPU is mounted on a board with a given amount of RAM
memory. The memory in a board can be accessed by its CPUs more quickly
than that on different boards, which instead has to be accessed through the
communication network, whose speed is a critical factor. Many of the calcu-
lations for the present work have been executed on a IBM-BlueGene with a
total of 163,840 cores. To take advantage of such computational capabilities,
parallel computation has to be used, which means that the instructions and
data constituting the code have to be suitably rearranged in such a way that
many instructions are executed as concurrently, but in general not indepen-
dently, processes by the different CPU cores on smaller parts of the data —
in the present case the ~E and ~H on the spatial grid. This implies also a
decrease in the execution time of the overall code. Theoretically, the smaller
the parts of data processed by each core and the shorter should be the execu-
tion times, with a linear scaling. This is not exactly true, however, because
the communication through the connecting network has is own costs in term
of latency and transmission time. Thus there is an optimal size of the data
subdivision among different cores which is the most effective for computa-
tional speed-up. One of the most powerful tools for code parallelization is
by using the Message Passage Interface (MPI) [10–12], a library of routines
implementing various functionalities for point-to-point or collective commu-
nication among processes. Each process corresponds, in the MPI paradigm,
to a subdivision unit of the whole data set and the correlated subset of code
instructions, and runs on a distinct physical CPU core.

9.1 Domain decomposition

The parallelization strategy for the FDTD code — i.e., the task and data
subdivision of the whole algorithm described in the preceding Chapters —
adopted in the present work, consists in the decomposition of the whole spa-
tial grid, including the outer PML shell for the boundary truncation, into
disjoint subdomains (blocks of data) as suggested by Fig. 9.2 where the
subdomains are parallelepipeds due to the rectangular cartesian coordinates
used to formulate the algorithm itself. A partial accomplishment of this task
has been already obtained by the author of the present work, and coau-
thors, in [31]. Each block comprises many Yee cells (like the ones in Figs
5.1 and 5.2) and the FDTD iterations for each such subdomain are executed
on a distinct CPU core. The single subdomain is uniquely identified with
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an ordering integer number and with the same number will be identified the
process executing it. A subdomain can also be alternatively identified with
a triple of integers giving its position with respect to the cartesian axes.
Between the two numbering systems there is a one-to-one correspondence.
The whole algorithm proceeds with many processes allocating the memory
for ~E and ~H for their own part of the total grid. The processes then run
concurrently each one performing the cycle of FDTD iterations for the time
evolution of the fields inside their own part of the spatial grid (proper com-
putation). Although concurrently, the processes cannot run independently,
because a synchronization among them is necessary for a coherent and con-
sistent solution for ~E and ~H on the whole grid. Such a synchronization is
obtained by exchanging, among the various processes, the tangential ~E and
~H components to the exterior surface of the subdomains, at the beginning
of each FDTD iteration (communication). By fixing, taken from the outside
(ultimately, from the exterior PML shell), the tangential components of the
electric and magnetic fields on the outer surface of a grid block guarantees, at
each time step, the univocity of the solution inside it. Obviously one process
needs to exchange data only with the processes executing blocks which are,
topologically, first neighbors of the one considered. See Fig. 9.3. Such a
way of operating the parallelization is affordable due the scaling law ∝

√
N

of the data on a surface (communication), with respect to those in a bulk
(proper calculation), which scale ∝ N (in N is the number of cells in the
subdomain). In any case a high speed connecting network is required for
good performances. Fig. 9.4 gives a schematic example of the exchange of
tangential ~E and ~H data on an outer surface in common to two neighboring
subdomains running on two distinct MPI processes (CPU cores).

Yee FDTD cell 

x 

y 

z 

x 

y 

z 

𝛿𝑥 
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𝛿𝑧 

Ez 

Ex 

Ey 

Hz 
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Figure 9.2: Domain decomposition into subdomains (blocks), of the whole FDTD spatial grid for parallel
computation of the algorithm. Each block comprises many Yee cells.
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Figure 9.3: In FDTD parallel computation, a subdomain (yellow) process needs to communicate with its
six first neighbors (see text).

up down

ρ ρ +1

tangential E tangential H

π+ π−

message passing data

Figure 9.4: Scheme in one dimension of the exchange of the electric and magnetic tangential data between
two neighboring processes identified by the two consecutive numbers ρ and ρ+ 1 (see text).

These are identified with the two consecutive integer numbers ρ and ρ + 1.
The scheme shown is one dimensional, describing the exchange along a single
coordinate axis direction. It should be thought as applied to all the six
faces of the block in Fig. 9.3. It should also be noted that the electric and
magnetic tangential components are exchanged in opposite directions with
respect to the process ordering along a given coordinate axis. This is required
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by the bulk FDTD algorithm, because to calculate the outer tangential ~E
components of ρ one needs the tangential ~H components which are half
space step further outside, and thus come from the neighbor process ρ + 1.
To calculate instead the tangential ~H components which are half space step
inward from the outer surface of ρ+1, one needs the tangential ~E components
which are exactly on its outer surface and which come from ρ. The data point-
to-point exchange operations like this one are best performed by means of the
MPI function Sendrecv(...) [10–12], which allows the correct matching of
the sending and receiving instruction pairs on the two sides. If a Send(...)

MPI command is not matched to a corresponding Recv(...) command and
vice versa, the program will stall without producing any results. This is a
common deadlock occuring in parallel programming which one must be aware
of. Another bottleneck, potentially able to greatly slow down the execution of
the parallel FDTD code is when the amounts of computation of the various
processes are unbalanced, typically because the whole spatial grid is not
evenly decomposed into subdomains. If this is the case, it becomes hard
to get any synchronization of the processes at any FDTD iteration, because
inherently some of them will be occupied in calculations while others would be
ready for the communication phase, having finished the computations inside
their subdomains. To avoid such an irregular pacing of the code, a good
balancing of the amount of work among processors has to be preventively
assured.

9.2 Suitable MPI data structures

For a correct and efficient MPI parallel programming of the FDTD algo-
rithm, great importance have the data structures, allocated by each process
to contain the electric and magnetic field components values of the corre-
sponding subdomain, and the way in which they are addressed on the outer
subdomain surface when they are exchanged among topologically contiguous
processes. A particular concern is that of allocating three-dimensional arrays
with the assurance that all the elements occupy a single contiguos memory
area. In this way slices can be extracted from the array perpendicularly to
each one of the three mutually orthogonal axes according to a predefined
pattern and safely communicated to different processes using the previously
mentioned MPI routines. These routines require a starting data address
and a buffer size and necessarily must operate on data occupying contiguous
memory locations or extracted from a contiguous memory area according to
the predefined pattern. Thus, in the present work, a three-dimensional array
p[·][·][·] is allocated with the following instructions (C++ code):
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int dim2 = ny*nz;

int dim3 = nx*ny*nz;

double ***p;

p = new double** [nx];

for (i = 0; i < nx; ++i) p[i] = new double* [ny];

p[0][0] = new double [dim3]; // (*)

for (i = 0; i < nx; ++i)

{

shift1 = i*dim2;

for (j = 0; j < ny; ++j)

{

shift2 = j*nz;

if (i != 0 || j != 0) p[i][j] = p[0][0] + shift1 + shift2;

}

}

where nx, ny, nz are the sizes of the three-dimensional array. With this
dynamic allocation, the data are stored ordering them along the k-axis first,
then along the j-axis and finally along the i-axis. The “linear” indexing
being:

` = (i− 1)nynz + (j − 1)nz + k

with i = 1, . . . , nx, j = 1, . . . , ny, k = 1, . . . , nz and ` = 1, . . . , nxnyny. The
memory area containing all the nxnyny stored values starts at the address of
p[0][0][0] (see the code line marked with (*): the new command guaran-
tees a single contiguous memory area, but multiple call of the new command
could generate multiple areas which are not contiguous and do not form a
single uncut memory segment). The other new calls in the above code sample,
simply allocate pointers which are then shifted to point to the appropriate
address, starting from p[0][0][0], according to the chosen data ordering
(last line of code).
Once a suitable “container” for the field component values of a spatial grid
subdomain has been defined according to the above structure, ij-, ik-, jk-
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slices can easily be extracted from it by defining extra MPI datatypes using
the Create vector(...) MPI routine [10–12], with the appropriate count,
blocklength and stride parameters, which specify the regular pattern on
the base of which to select the data from the array.
• For an ij-slice one has:
count = nx*ny, blocklength = 1 and stride = nz.
• For an ik-slice one has:
count = nx, blocklength = nz and stride = ny*nz.
• For a jk-slice one has:
count = ny*nz, blocklength = 1 and stride = 1.

The meaning of the parameters is as follows: blocklength specifies how
many old datatypes (here double) in the array the new datatype contains;
count specifies how many pieces of length blocklength the new datatype
contains; stride specifies the “distance”, in old datatype elements, between
two consecutive elements in the new datatype. For example, a stride = 1

means that in the array the data are consecutive. Using these new datatypes
in the Sendrecv(...) MPI functions it is an easy matter to communicate
data among processes in an efficient and ordered way, thus minimizing the
latency time costs caused by multiple unnecessary calls to them.
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Part III

Applications of the FDTD
method
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Chapter 10

Validation of the implemented
FDTD method

10.1 Field inside and scattered off a sphere

To validate the in-house computer code produced for the present work,
and implementing the FDTD algorithm as described in the previous Part
II, a comparison test is made here between the results obtained numerically
for a sphere of given radius impinged by an electromagnetic, linearly polar-
ized plane wave and the analytical solution for the same system, as given
in Section 1.3 of Part I. Even the analytical solution has to be evaluated
numerically, after implementation of the physico-mathematical special func-
tions required for the solution. Because such analytical solution is in the form
of a series expansion, many terms of this are calculated and summed up, to
ensure good convergence of the data serving as the comparison reference.
More than 30 terms of the expansion have been considered.

𝑅 

Figure 10.1: 2D scheme of a linearly polarized e.m. traveling plane wave impinging on a sphere.

According to the scheme of Fig. 10.1, a dielectric sphere of relative electric
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permittivity εr = 4 and radius R = 4.5 cm is considered in the electromag-
netic field of a linearly polarized monochromatic plane wave of frequency
ν = 2.5 GHz (corresponding to a vacuum wavelength λ ∼= 12 cm), imping-
ing on it. The resulting FDTD and analytical field distributions of the field
component in the polarization direction (normalized to the incident one), are
shown in Fig. 10.2 along the propagation axis, passing through the sphere’s
center, which is located at 26 cm.

Figure 10.2: Compared field distributions along the sphere’s axis. The sphere’s center is at 26 cm (see
text).

in which it is apparent a fairly good agreement. Another comparison test
is made on a gold sphere with radius R = 96 nm for which the spectral
extinction and absorption coefficients are calculated. The absorption and
scattering coefficients are here defined, at any given frequency (or vacuum
wavelength) as the power absorbed (and dissipated into heat) or scattered in
all directions (i.e., in the whole solid angle around it) by the sphere, normal-
ized to the incident power. This latter is the intensity of the incident plane
wave (Watt/m2) times the geometrical cross section A = πR2 of the sphere
itself. The extinction coefficient is the sum of the scattering and absorption
coefficients. Practically, these coefficients are pure numbers expressing the
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effective cross section measured in units of the geometric one, for scattering
or absorption. The comparison graphs are shown in Fig. 10.3:

analytic 

analytic 

Figure 10.3: Extinction and absorption coefficients for an Au sphere with radius R = 96 nm.

which shows a good agreement between the expected and numerically calcu-
lated values over the 300 ÷ 1100 vacuum wavelength range. The scattering
and extinction coefficients Qscatt and Qext respectively, can be directly cal-
culated analytically by means of the solution expansion coefficients (1.15a)
and (1.15b), given previously in Section 1.3, according to [5]:

Qscatt(λ) =
1

2

(
λ

πR

)2 ∞∑
m=1

(2m+ 1)
[
|arm(λ)|2 + |brm(λ)|2

]
(10.1a)

Qext(λ) =
1

2

(
λ

πR

)2

Re

{
∞∑
m=1

(2m+ 1) [arm(λ) + brm(λ)]

}
(10.1b)

at any given frequency. The corresponding Qnum.
scatt and Qnum.

abs = Qnum.
ext −Qnum.

scatt

values, as obtained from the numerical FDTD simulation, and compared with
the “exact” ones in Fig. 10.3, are evaluated through the integration of the real
part of the complex Poynting vector on a parallelepiped surface completely
enclosing the metallic sphere. For Qnum.

abs the integration surface is wholly
inside the total field region (see Fig. 7.1). For Qnum.

scatt the parallelepiped
surface is contained in the outer shell in which only the scattered field is
calculated. For this evaluation it is important the “injection mechanism”
for the plane wave excitation described in Chapter 7. The scattered near
field can be transformed in the true scattered radiation field by means of the
Kirchhoff integral formula (2.16) described early. The power fluxes obtained
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by the two field distributions coincide, because reactive components in the
scattered near field do not contribute to the real part of the Poynting sur-
face integral. However, equation (2.16) allows the detailed calculation of the
scattered radiation amplitude at any direction of the solid angle around the
sphere and could equally well used for an arbitrary shaped scatterer.
The FDTD calculations for the gold sphere have been performed implement-
ing the algorithm for dispersive materials described in Chapter 8 and by using
a Drude-Sommerfeld + double Critical Points model as given early in equa-
tions (1.7), (1.10) and (1.13). The parameters used inside those expression
are found in [48]:

εr,∞ = 1.1431

ωpl = 1.3202× 1016 rad/sec

γ = 1.0805× 1016 rad/sec

A1 = 0.26698

φ1 = −1.2371

Ω1 = 3.8711× 1015 rad/sec

Γ1 = 4.4642× 1014 rad/sec

A2 = 3.0834

φ2 = −1.0968

Ω2 = 4.1684× 1015 rad/sec

Γ2 = 2.3555× 1015 rad/sec .

For silver they are instead [48]:

εr,∞ = 15.833

ωpl = 1.3861× 1016 rad/sec

γ = 4.5841× 1013 rad/sec

A1 = 1.0171

φ1 = −0.93935

Ω1 = 6.6327× 1015 rad/sec

Γ1 = 1.6666× 1015 rad/sec

A2 = 15.797

φ2 = 1.8087

Ω2 = 9.2726× 1017 rad/sec

Γ2 = 2.3716× 1017 rad/sec
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and are used for the simulation from which Fig. 10.4 is extracted. It is a
snapshot from the time evolution of a plane wave pulse, like the one repre-
sented by the solid line in Fig. 5.6, impinging on an Ag sphere with R = 60
nm. The color map represents the module of the resulting electric field with
the pulse, propagating from left to right, just past the sphere. On this latter
it is apparent a dipolar charge separation on the “downwind” hemisphere.
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Figure 10.4: Color map snapshot of the resulting electric field after a plane wave pulse has impinged,
from lefto to right, on an Ag sphere of radius R = 60 nm. The pulse is just past the sphere.

The simulation in Fig. 10.4 has been performed with Yee cell step sizes
δx = δy = δz = 0.25 nm, with a computational volume with an overall
number of 1200× 1200× 1200 cells.

10.2 Scalability of the parallelized code

An important aspect of the code parallelization, as has been explained in
Chapter 9, and particularly in Section 9.1, is its ability to mantain constant
performances for an increasingly finer decomposition of the spatial compu-
tational volume. This means an increasing speed-up (i.e., a lesser execution
time) with the number of MPI processes launched for the code execution
(which is paid with a greater computational resources allocation, i.e., con-
stant performances). However, a finely grained decomposition, the so called
granularity, implies a lot of MPI process communication, which take place at
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the expense of the bulk calculations inside any given spatial subdomain. This
penalizes the overall speed-up and constitutes an upper saturation limit pre-
venting from an ideal linear increase. Fig. 10.5, which reports the scalability
analysis of the FDTD code for the present work, as applied to the electromag-
netic field calculation for the metal sphere of the previous Section, illustrates
this behavior. The code runs on a BlueGene/Q supercomputer, where each
node comprises 16 cores, in a 1.6 GHz PowerPC based CPU (PowerPC A2),
and has a 16 GB of shared memory. The total node number is 2048.

1024 2048 4096 8192 16384 32768

#cores

1024

2048

4096

8192

16384

32768

S
p
ee
d
−
u
p

nr=16⇒np=#cores

nr=32⇒np=2 ·#cores
nr=64⇒np=4 ·#cores
linear

64 128 256 512 1024 2048
#nodes

Figure 10.5: Scalability of the FDTD code: graph of the speed-up as a function of the MPI process number
and core number. The unit of execution time is the one taken by a 1024 MPI processes simulation. Green
and blue lines refer to 2 and 4 MPI processes per core respectively.

Usually an MPI process is executed on a distinct physical processor (core).
This corresponds to the red line in Fig. 10.5 but, due to multithreading, each
physical core can be overloaded with 2 or 4 distinct MPI processes, and these
situation correspond to the green and blue lines in the Figure. To be noted
is that this solution can, initially, outperform the linear speed-up increase.
Another important aspect of the code parallelization is load balancing, which
means that the number of floating point operations in the time unit per-
formed by each MPI process should be equally distributed among them.
Otherwise there is an inefficient use of the computational resources, which
reflects in some processes staying idle, waiting for others to complete their
task. To achieve load balancing the various spatial subdomains should be of
equal size, but this could not suffice for a fine tuned balancing, because there
can be an inherent diversity in the number of floating point operations due,
for example, to Yee cells belonging to the outer absorbing layer of to disper-
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sive materials, with respect to those belonging to conventional materials.
Summarizing, one can say that in general, for a given model under study,
there will be an optimal MPI process number and a related decomposition
which assure the maximum efficiency. To pretend to increase at all costs that
number means unavoidably a computational resources waste.
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Chapter 11

Plasmonics applications

In the present Chapter the analytical results for the sphere, and the nu-
merical FDTD simulations for different, non analytically solvable, shapes,
are used to study and compare among them the scattering and absorption
coefficients of small metal objects [49]. Different types of metal and different
shapes and sizes are considered. From the electromagnetic point of view,
the metal properties determining the response to light are included via a
Drude-Sommerfeld + double Critical Points model [48], expressed quanti-
tatively by equations (1.7), (1.10) and (1.13) of Chapter 1. This amounts
to a classical description for the excitation of the so called Surface Plasmon
(SP) modes supported by particles, i.e., metal free electron surface-charge
oscillation resonances, occuring at well defined frequencies (vacuum wave-
lengths). A resonance condition occurs typically when the real part of the
metal complex permittivity εc becomes negative, thus determining an almost
zero condition of the denominator in the expression for the electric field or
related quantities [18,50].
The exploitation of SP resonances has been thought as a promising tool to
enhance the efficiency of photovoltaic cells, through the presence of metal
nanostructures in front or in the bulk of the cell themselves [51]. Typically,
the light energy conversion in electricty should be enhanced by a far-field
effect extending the optical path of the rays within the cell, according to the
scheme of Fig. 11.1:
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Figure 11.1: Optical path extension by scattering off nanoparticles in solar cells.

thus increasing the probability of charge carrier pairs production by each
photon. Other proposed enhancement mechanisms through metal nanopar-
ticles, but here not considered, are the near-field effect locally enhancing the
energy conversion, or the creation of energy-rich charged carriers which are
then transferred to the solar cell.

11.1 Scattering from spherical nanoparticles.

Analytical case.

The present Section will directly take advantage of the analytical expres-
sions (10.1) for the spectral coefficients of an isolated metallic sphere in a
homogeneous non-absorptive medium. Considering more than ten terms in
the series expansions gives accurate enough results, well beyond a simple
dipole approximation which is valid, as pointed out in [52], if 2πr/λ � 1
where r is the sphere radius. Metals considered in this Section are gold
(Au), silver (Ag), aluminum (Al) and copper (Cu). The parameter values to
be used in (1.10) and (1.13) for Au and Ag were already given previously.
For Al they are, from [48]:
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εr,∞ = 1.0000

ωpl = 2.0598× 1016 rad/sec

γ = 2.2876× 1014 rad/sec

A1 = 5.2306

φ1 = −0.51202

Ω1 = 2.2694× 1015 rad/sec

Γ1 = 3.2867× 1014 rad/sec

A2 = 5.2704

φ2 = 0.42503

Ω2 = 2.4668× 1015 rad/sec

Γ2 = 1.7731× 1015 rad/sec

Here they are simply used to calculate the complex electric permittivity εc to
be inserted in (10.1). Data for εc of Cu are got, for each frequency (vacuum
wavelength) considered, from [53]. See also [54]. Furthermore, three sphere
radiuses are considered: 50, 100, 150 nm. Finally, three non-absorptive em-
bedding media are also taken into account: air, silica (SiO2) and silicon ni-
tride (Si3N4). Their purely real and constant permittivities are: 1, 2.34, 4.08
respectively. The different embedding media could reflect the presence of a di-
electric passivating layer in the solar cell. The scattering coefficient Qscatt(λ)
results in the range 200÷ 1100 nm are given in Fig. 11.2 below, as obtained
from (10.1a) [49].
As stems out from the Figure, Qscatt has an averaged value of Q∗scatt ≈ 3÷ 4
over the wavelength range, which implies a circular cross section area of ra-
dius r

√
Q∗scatt. In an arrayed system of spherical particles they should thus

stay at a typical distance d > 2r
√
Q∗scatt to avoid effective areas overlapping

and consequent cooperative scattering effects. Such a constraint is compati-
ble with a suggested surface coverage of 30% found in [55] (surface coverage
means the percentage of the unit surface area filled with particles), because
with the lower bound for the mutual distance given above, it results a re-
quired surface coverage of about π/4Q∗scatt ≈ 0.26. This value also allows to
limit the scattering and absorption analyses to a single isolated sphere. The
absorption coefficient Qabs(λ) results in the range 200 ÷ 1100 nm are given
in Fig. 11.3 below, as obtained by subtracting (10.1a) from (10.1b) [49].
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Figure 11.2: Scattering coefficient Qscatt for an isolated sphere as a function of the wavelength λ. Top
row : air embedded; middle row : SiO2 embedded; bottom row : Si3N4 embedded. Left column: r = 50
nm; central column: 100 nm; right column: 150 nm. Blue line: Ag; red dotted line: Au; yellow dashed
line: Al; green dash-dotted line: Cu.

Figure 11.3: Absorption coefficient Qabs for an isolated sphere as a function of the wavelength λ. Top
row : air embedded; middle row : SiO2 embedded; bottom row : Si3N4 embedded. Left column: r = 50
nm; central column: 100 nm; right column: 150 nm. Blue line: Ag; red dotted line: Au; yellow dashed
line: Al; green dash-dotted line: Cu.
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For the purposes at hand the scattering contributions should dominate over
the absorption ones, thus a good parameter is the albedo α, defined as:

α(λ) = 100
Qscatt(λ)

Qabs(λ) +Qscatt(λ)
= 100

Qscatt(λ)

Qext(λ)
.

It is shown in Fig. 11.4 below:

Figure 11.4: Albedo α for an isolated sphere as a function of the wavelength λ. Top row : Ag; second
row : Au; third row : Al; last row : Cu. Left column: air embedded; central column: SiO2 embedded; right
column: Si3N4 embedded. Blue line: r = 50 nm; red dotted line: r = 100 nm; yellow dashed line: r = 150
nm.

To the spectral parameters just considered can be given a more comprehen-
sive meaning if they are averaged over the whole wavelength range, weighting
them with the spectral intensity of the solar light I(λ), the standard AM1.5G
spectrum intensity [56]:
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< Qs >=

∫
I(λ)Qs(λ) dλ∫
I(λ) dλ

where s stands for ext, scatt, abs and the integration in the present case has
been numerically performed, with a trapezoidal formula, from 300 to 1100
nm. Such averaged values allow a quicker comparison when metal type, size
and embedding medium are varied. Another figure of merit is the fraction
of the total scattered power which is effectively scattered forward, because
if the nanoparticles are placed on the front surface of a solar cell, one wants
this radiation to be concentrated in the direction of the substrate. Thus it
can be defined as:

fsubs =

∫ 2π

0

∫ π/2
0

~Pscatt · ûr sin (θ) dθ dφ∫ 2π

0

∫ π
0
~Pscatt · ûr sin (θ) dθ dφ

where ~Pscatt is the real part of the complex Poynting vector for the scattered
field off the sphere, which can be calculated using the series expansions (1.14),
with the expansion coefficients (1.15a) and (1.15b), which are also used in
(10.1). ûr is the radial unit vector and the spherical coordinate system is
chosen is such a way that the half solid angle considered in the numerator
of the expression above is the one pointing in the same direction of the
impinging light beam. Also for fsubs could be considered the averaged value
< fsubs > with the weight function I(λ) as above.

Figure 11.5: Fraction of forward scattered off sphere light as a function of the wavelength λ. Top row :
air embedded; second row : SiO2 embedded; third row : Si3N4 embedded. Left column: r = 50 nm; central
column: r = 100 nm; right column: r = 150 nm. Blue line: Ag; red dotted line: Au; yellow dashed line:
Al; green dash-dotted line: Cu.
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• As can be seen from Fig. 11.2, the scattering in air is better for r = 150
nm, but with SiO2 or Si3N4 emebeddings, a radius value toward r = 100
nm performs better. Larger spheres exhibit more than one resonance peak,
meaninig multipolar excitation, with high Qscatt values spread on a larger
part of the spectrum. From Fig. 11.2 one can see that the presence of an
external dielectric medium increases the scattering at long wavelengths, but
by reducing the maximum value and widening the profile as a function of λ.
This is due to the dielectric polarization which partially screens the metal
surface charges thus weakening the restoring force among them. Ag is by far
the best scatterer, followed by Al, Au and Cu. The considerations above are
condensed in Tab. 11.1 for the averaged < Qscatt > values over the range
300÷ 1100 nm.

r = 50 nm

Ag Au Al Cu

air 0.98 0.49 0.60 0.41
SiO2 2.19 1.74 1.70 1.40
Si3N4 2.82 2.45 2.28 2.12

r = 100 nm

Ag Au Al Cu

air 2.80 2.44 2.27 2.10
SiO2 3.20 2.85 2.55 2.72
Si3N4 3.09 2.76 2.48 2.74

r = 150 nm

Ag Au Al Cu

air 3.21 2.84 2.56 2.71
SiO2 3.03 2.72 2.47 2.69
Si3N4 2.95 2.67 2.42 2.63

Table 11.1: Averaged scattering coefficients < Qscatt > for metal spheres emebedded in different media.

• For what concerns absorption, Fig. 11.3 points out that it is reduced
by an increasing of the size and/or the relative permittivity of the external
dielectric, with Cu and Al less affected by this rule. In particular, Ag and Al
are very poor absorbers, with a high albedo. It is maximum, in general, for
r = 150 nm and/or for Si3N4 embedding, as results from Fig. 11.4. Au and
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Cu absorb more light, especially at the peak of the solar spectrum between
400 and 500 nm, as can be seen from Fig. 11.3. This circumstance is a
drawback for photovolatic applications.
• Regarding the angular distribution of the scattered radiation, Fig. 11.5
shows that shorter wavelengths are forward scatterd more than the longer
ones. Also, as is well known, spheres with larger size tend to scatter more in
the forward direction. From Fig. 11.5 one can see that the same behavior
is noted when the relative electric permittivity of the embedding medium is
increased, due to the excitation of higher order multipoles, which reemitt in
the forward direction more than a dipole. The graphs of Fig. 11.5 are almost
the same for different materials, although Al is less efficient than the other
metals.

11.2 Scattering from nonspherical nanoparti-

cles. FDTD case.

In the present Section, Al isolated nanoparticles embedded in air and of
different sizes and shapes are considered for an FDTD numerical analysis
akin to the one of the previous Section. In particular, ellipsoidal particles
with a total height of h = 100 (minor axis) and h = 300 nm (major axis),
both with a circular projection of radius r = 100 nm in a plane normal to
the incident radiation are studied, but also an hemispherical particle with
r = h = 100 nm and cylindrical particles of height h = 100, 200, 300 nm
with a circular base of radius r = 100 nm are simulated. Fig. 11.6 shows
intensity color maps of the electric field as obtained by means of the FDTD
calculations, done with with a lattice of 120 × Ny × 120 cubic Yee cells of
edge size δx = δy = δz = 2 nm and with a varying number of cells along the
y-axis, the beam propagation direction: Ny = 120, 160, 216 to accomodate
the different particles.

Figure 11.6: Color maps of the electric field intensity inside and surrounding Al ellipsoid, hemisphere
and cylinder, all of height h = 100 nm. Radiation is propagating from the top to the bottom sides of the
figures. The field is linearly polarized in the direction normal to the page. Colors are in logarithmic scale
of intensity, normalized to a reference value of 1 V/m. The maps refer to a vacuum wavelenghth of 500
nm.
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Fig. 11.7 below compares Qscatt, Qabs and the albedo α for the different
shapes and sizes to the “reference” sphere with r = 100 nm, at the various
wavelengths:

Figure 11.7: Scattering coefficients (left), absorption coefficients (middle) and albedo (right) as functions
of the wavelength for an aluminum nanoparticle. First row, blue line: ellipsoid with h = 300 nm; red
dotted line: ellipsoid with h = 100 nm; yellow dashed line: hemisphere with r = 100 nm; green dash-dotted
line: sphere with r = 100 nm. Second row, blue line:cylinder with h = 300 nm; red dotted line: cylinder
with h = 200 nm; yellow dashed line: cylinder with h = 100 nm; green dash-dotted line: sphere with
r = 100 nm. All particles embedded in air.

while Tab. 11.2 below shows the averaged values of the scattering and ab-
sorption coefficients over the 300÷ 1100 nm range.

h (nm) < Qscatt > < Qabs >

Cylinders 100 2.98 0.30
200 3.29 0.41
300 3.57 0.53

Ellipsoids 100 2.00 0.20
300 1.75 0.35

Hemisphere 100 1.81 0.22
Sphere 200 2.27 0.24

Table 11.2: Averaged scattering and absorption coefficients < Qscatt > and < Qabs > for metal nanopar-
ticles of different shapes ans sizes emebedded in air.

Spheroidal shapes (including the hemisphere) have similar behaviors. Aban-
doning the purely spherical shape exhibits a shift of the scattering peaks,
while increasing the height increases the absorption. On the other hand
cylinders, independently from their height, have increased scattering and ab-
sorption with respect to the sphere, both at each single wavelength λ and
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as integrated values, even if the albedo resembles closely that of the sphere.
Cylinders thus seem to be a better choice as scatterer.
A numerical implementation of the Kirchhoff integral formula (2.16) is also
used to calculate the integral in the definition of fsubs(λ), using a radia-
tion amplitude distribution sampled at steps of 1◦. The resulting graphs are
shown in Fig. 11.8 below:

Figure 11.8: Fraction of light forward scattered off nanoparticles as a function of the wavelength λ. Left
blue line: ellipsoid with h = 300 nm; red dotted line: ellipsoid with h = 100 nm; yellow dashed line:
hemisphere with r = 100 nm; green dash-dotted line: sphere with r = 100 nm. Right blue line: cylinder
with h = 300 nm; red dotted line: cylinder with h = 200 nm; yellow dashed line: cylinder with h = 100
nm; green dash-dotted line: sphere with r = 100 nm. All particles in air.

while the integrated or averaged values over the 300 ÷ 1100 nm range are
given in Tab. 11.3:

h (nm) < fsubs >

Cylinders 100 0.49
200 0.50
300 0.49

Ellipsoids 100 0.49
300 0.42

Hemisphere 100 0.50
Sphere 200 0.45

Table 11.3: Averaged fraction of light forward scattered off nanoparticles.

As can be seen from Fig. 11.8, cylinders and spheroids are less performing
than the sphere at shorter wavelengths, but they tend to perform better at
the longer ones. If the averaged values are considered, Tab. 11.3 indicates
that the sphere is outperformed by all other shapes, excluding the ellipsoid
with h = 300 nm.
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11.3 Arrayed particles on a silicon substrate.

In this Section the numerical FDTD analysis is used for the optical charac-
terization of an array system of hemispherical silver (Ag) particles embedded
in a SiO2 (silica) layer, and then deposited on a silicon (Si) substrate. This
study is made in view of the possible enhancement in solar cells efficiency,
by exploiting surface plasmonic effects in the nanoparticles to increase the
overall fraction of light reaching the active part of the photovolatic device.
The presence of a silica coating with a typical thickness of 100 nm on top of
crystalline silicon wafers is common for anti-reflection purposes (ARC), but
also to passivate the Si surface and reduce electron-hole recombination. In
the present Section an hybryd ARC is proposed because, as has been seen
in previous Sections 11.1 and 11.2, an higher dielectric constant environment
enhances the forward scattering off the nanoparticles and simultaneously
they are mechanically and chemically protected and, furthermore, they are
not in contact with the silicon surface, thus preventing an increase in surface
carrier recombination. The numerical FDTD simulations are here aimed to
compare in a systematic way the transmission properties of the proposed
hybrid ARC with that of the standard silica coating and with configurations
were the metal Ag hemisferical nanoparticles are placed on bare silicon or
above the dielectric layer. Various parameters are considered in the simula-
tions: the size of the hemispherical particles (radius), the surface coverage
and the thickness of the dielectric layer above the nanoparticles. Below them
there is always a silica bed as a separation from the Si surface. The silica
coating is also assumed conformal, as suggested by Fig. 11.9:

Figure 11.9: Schematic of the plasmonic Ag hemisphere (light blue) embeddeding in the 100 nm thick
SiO2 layer (blue), on top of a crystalline Si wafer (brown). On the left of embedding is vacuum (dark
blue).

and presenting bumps in correspondence of the hemispherical particles. The
profile in Fig. 11.9 is believed to be more realistic than a simpler flat one or
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with other curvatures. The arraying of the Ag particles is FDTD simulated
by means of periodic boundary conditions (PBC) as previously explained in
Chapter 6 (Section 6.2) and the transverse dimensions along the coordinate
axes to which the PCB are applied are chosen as a function of the surface
coverage. Along the impinging light beam propagation direction, CPML
boundary conditions are applied (Section 6.1), one side being in free space,
the other just at the bottom of Si substrate which, as a consequence of the
absorbing layer behavior, can be considered very large (theoretically infinite).
For the present Section are also available experimental measurements of re-
flectivity, obtained by means of a photo spectrometer coupled with an inte-
grating sphere (Varian Cary 5000). The measurements were made on pro-
duced samples with hybrid coating. The fabrication process is schematically
described in Fig. 11.10 below:

Figure 11.10: Schematic representation of the fabrication procedure of the photovoltaic cell with the
embedded Ag nanoparticles in the SiO2. In the inset also a Scanning Electron Micrograph (SEM) picture
of the produced test samples.

The ensamble of Ag nanoparticles is obtained through the intermediate depo-
sition of an Ag precursor layer of thickness 15 nm or 20 nm and subsequent
annealing. As can be appreciated from the SEM micrograph inset in Fig.
11.10, the particle distribution is irregular, mainly for what concerns the
particle shapes and sizes. The simulations on the other hand assume mono-
sized particles regularly arrayed and with a well defined shape, and these
differences should be taken into account when the simulated and measured
data results are compared. Both, the fabrication of the photovoltaic cell
and the reflectivity measurement were performed at MNF, the Micro-Nano
characterization and fabrication Facility of Fondazione Bruno Kessler (FBK),
Centre for Materials and Microsystems (CMM).
The optical properties of crystallyne silicon, i.e., its angular frequency de-
pendent relative complex permittivity, are described according to [45]:
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εr(ω) = εr,∞ +
2∑
`=1

∆` (Ω2
` − iΓ` ω)

Ω2
` − 2iγ` ω − ω2

(11.1)

where i is the imaginary unit, which is amenable to the expression (8.1)
given in Chapter 8, and which is included in the FDTD algorithm as there
described. The choice (11.1), with the following values for its parameters [45]:

εr,∞ = 1

∆1 = 8.93

∆2 = 1.855

Ω1 = 3.42× (2πco × 106) rad/sec

Ω2 = 2.72× (2πco × 106) rad/sec

Γ1 = 0.087× (2πco × 106) rad/sec

Γ2 = 2.678× (2πco × 106) rad/sec

γ1 = 0.425× (2πco × 106) rad/sec

γ2 = 0.123× (2πco × 106) rad/sec

where co is the speed of light in vacuum, is justified by an improved fitting
with the experimental data for both the visible and near ultraviolet ranges.
It can be seen from the following Fig. 11.11:

Figure 11.11: Real (left) and imaginary (right) parts of Si relative complex permittivity according to
(11.1) with the above parameters [45], on the 300 ÷ 1000 nm wavelength range. In the right graph the
vertical axis has a logarithmic scale.

that below 400 nm Si exhibits a quick increase of its dielectric constant and
some non-negligible absorption.
In Fig. 11.12 it is shown a comparison among experimental, analytical and
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FDTD simulated reflectance of a standard pure silica ARC layer (100 nm
thick)on top a silicon wafer:

Figure 11.12: Comparison among experimental, analytical and FDTD numerical spectral reflectances for
a 100 nm thick SiO2 homogeneous antireflecting coating (ARC) layer on top of a 300 µm thick Si wafer.

in which it is apparent a fairly good agreement. The analytical one is ob-
tained by means of the calculations explained in the Chapter on planarly
multilayered media (Chapter 4, Section 4.1). In the analytical and in the
FDTD calculations, the Si relative electric permittivity of Eq. (11.1) has
been used. In particular, in the FDTD ones, the formalism for dispersive
materials as described in Chapter 8, Section 8.2, is used. The small devia-
tion in the experimental curve at about 1050 nm is ascribable to additional
back-reflection due to the finite thickness of the Si substrate. It should be
also pointed out that FDTD results for this configuration do not require a
full 3D simulation, but only an 1D one.
Fig. 11.13 shows the experimental reflectance spectra for various hybrid lay-
ers as compared with the standard ARC made with silica alone and 100 nm
thick used as reference. The first number before the slash sign in the leg-
end indicates the thickness of the precursor Ag layer before its annealing,
and the subsequent numbers (after the slash sign) are the thicknesses of the
silica layers deposited before and after the Ag annealing. The effect of the
nanoparticles is to decrease the reflectivity in a wavelength region below 450
nm and to increse it at higher wavelengths, the effect of the 20-80 configura-
tion being sligthly more pronounced than that of the 10-90. The plasmonic
reflectance is peaked around 350 nm.
Fig. 11.14 compares the spectral reflectance experimental results for a precur-
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sor layer 20 nm thick, with the FDTD simulated ones for various monosized
particles radii and a coverage η = 25%. The simulated spectra for mono-
sized particles are significantly more structured than the experimental ones,
and it appears like if these latter could be understood as superpositions of
size-distributed Ag nanoparticles (as is indeed the actual situation).

Figure 11.13: Experimentally measured spectral reflectances from a 100 nm thick SiO2 layer on top of a
300 µm thick Si wafer (dotted curve), along with several configurations of plasmonic Ag particle arrays
embedded in the silica layer as indicated in the legend (see also text).

Figure 11.14: Measured and simulated spectral reflectances from Ag plasmonic particle arrays embedded
in a SiO2 layer in the 10-90 (left panel) and 20-80 configurations. Experimentally measured curves (dotted)
refer to samples prepared via deposition of a 20 nm thick Ag layer. Simulated curves are calculated for a
coverage η = 25% and for an hemisphere radius r = 110 nm (continuous), r = 130 nm (dashed) and 150
nm (dash-dotted).
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Figure 11.15: Averaged FDTD calculated reflectance for an array of Ag emebedded particles as compared
with the measure one. Configuration is 20-80 and with an assumed coverage η = 25%.

Fig. 11.15 shows an averaged calculated reflectance spectrum obtained from
the FDTD reflectance values, after an averaging procedure. The weights of
the averaging were extracted from a discrete population distribution of the
Ag particle sizes. These sizes were evaluated at FBK-MNF by means of a
dedicated software, which fitted the particle images analyzing SEM pictures
from the fabrication process. The Figure is aimed to demonstrate that a
distribution of particles of different sizes gives an undifferentiated spectrum
contasting with the typical ones of monosized particles, which are character-
ized by typical resonance peaks.
The previous comparisons with experimental data involved reflectance spec-
tra because the measurements could only be obtained by detecting the re-
flected power. In what follows instead, a series of transmittance spectra
comparisons of FDTD simulation results with the standard silica ARC, as-
sumed as reference response curve, are reported. The transmitted power in
the FDTD simulations is calculated by integrating the Poynting vector on a
surface just beneath the silica/silicon interface, a few FDTD unit cells apart
from it. The spectral data are corrected by the calculated absorption in the
thin slab between the silica/silicon interface and the integration plane. In
fact, when the behavior of the standard ARC without particles is calculated,
such absorption values are recorded. These are then subtracted from the
absorbed ones and added to the trasmitted ones, when the behavior of the
Ag nanoparticles is evaluated.
Fig. 11.16 shows the transmittance for monosized hemispherical particles of
radius r = 150 nm and for a 10-90 configuration, parameterized with a vary-
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ing coverage η. It results that, starting from η = 20%, two peaks appears,
the higher at 800 nm and which does not shift with η, the other moving
from 600 nm to 500 nm as the coverage increases. A dip between the peaks
becomes more and more pronounced as η increases. An interesting window
opens, from 730 nm to 960 nm, in which the transmittance is higher than
that of the standard ARC. Its positioning on the wavelength range is however
not so well suited with respect to the solar intensity distribution spectrum.

Figure 11.16: Simulated spectral transmittances for an array of hemispherical monosized Ag particles
of radius r = 150 nm, embedded in a SiO2 layer in the 10-90 configuration, at different coverages. Also
shown the transmittance of the ARC alone (black dashed).

The next graphs in Fig. 11.17, in which the parameterizazion involves the
particle size and its distance from the silica/silicon interface (with η = 25%),
confirm that for a radius r = 130 nm or greater, and with the smaller sep-
aration from the interface of 10 nm, the plasmonic hybrid ARC is able to
outperform the standard ARC in the restricted range 730 ÷ 960 nm, even
if its broadband performance remains still worse than that of a standard
ARC. In Fig. 11.18 spectral FDTD calculated transmittances are shown for
a broader set of particle sizes and for both 10-90 and 20-80 configurations,
with coverage η = 25%, as compared with the standard ARC. Superimposed
to the graphs there is also the solar AM1.5G spectrum.
In Fig. 11.19 spectral simulated transmittances for an increasing thickness
of the covering silica layer above the hemispherical Ag particles, which are
held at 10 nm from the silica/silicon interface. With 10-0 is indicated a con-
figuration in which there is only the Ag particles supporting silica layer 10
nm thick, but nothing covering them. In this configuration the spectrum
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exhibits only a single peak, at around 580 nm for r = 150 nm and at around
510 nm for r = 130 nm, while particles embedding lead to the appearence of
two maxima.

Figure 11.17: Simulated spectral transmittances for an array of hemispherical monosized Ag particles at
a coverage of η = 25%, in the 10-90 configuration and with different radii (left panel), and at different
positions inside the SiO2 layer (right panel). On both panels the transmittance of the ARC alone is shown
(black dashed).

Figure 11.18: Simulated spectral transmittances for an array of hemispherical monosized Ag particles at
a coverage of η = 25%, in both the 10-90 and 20-80 configurations, with different radii. The transmittance
of the standard ARC is shown (black dashed) along with the AM1.5G solar spectrum.
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Figure 11.19: Simulated spectral transmittances for an array of hemispherical monosized Ag particles
at a coverage of η = 25%, for radii r = 150 nm (left panel) and r = 130 nm (right panel), at different
overall thicknesses of the embedding SiO2 layer, all in a 10-X configuration. Also shown the spectral
transmittances of the ARC alone (black dashed).

In Fig. 11.20 spectral simulated transmittance with an without embedding
are diretly compared. In the right panel, for the r = 130 nm case it is also
shown the transmittance spectrum for the 100-0 configuration, i.e., a single
supporting layer 100 nm thick with no covering.

Figure 11.20: Simulated spectral transmittances for an array of hemispherical monosized Ag particles at
a coverage of η = 25%, for radii r = 150 nm (left panel) and r = 130 nm (right panel), where the particles
are simply supported by, or embedded within, the SiO2 layer. Also shown the spectral transmittances of
the ARC alone (black dashed).
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In Fig. 11.21 are reported averaged weighted trasmittances on the wavelength
range 200÷ 1100 nm, where as weighting function is used the AM1.5G solar
spectrum intensity, as functions of the coverage and the over-oxide thickness
(under-oxide is always 10 nm). In Fig. 11.22 as functions of the hemisphere
radius (η = 25%).

Figure 11.21: Simulated averaged transmittances weighted with the AM1.5G solar spectrum, as functions
of the surface coverage (left panel) and of the over-oxide thickness grown on top of the Ag hemispherical
particles (right panel).

Figure 11.22: Simulated averaged transmittances weighted with the AM1.5G solar spectrum, as functions
of the hemisphere radius.

It can be seen that the weighted transmittance decreases monotonically with
incresing coverage, and with two characteristic rates (two slopes are appre-
ciable in the left panel). This could be the clue that with a reduced free space
among the Ag particles, cooperative effects between them can intervene. On
the other hand, as a function of the oxide thickness grown on top of the Ag
particles, transmittance goes through a maximum.
Finally, in Fig. 11.23 are shown some color maps of the electric field calcu-
lated for the array of Ag embedded nanoparticles with r = 150 nm (20-80
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configuration and a coverage η = 25%) at various frequencies — expressed
as vacuum wavelengths — of the impinging monochromatic light. The view
is a lateral one.

Figure 11.23: A sequence of electric field module maps corresponding to the vacuum wavelengths of 200
nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm and 1000 nm (from top to bottom and from left
to right) of the incident monochromatic light. Lateral view. Field values normalized to the incident ones.

Figure 11.24: A sequence of electric field module maps corresponding to the vacuum wavelengths of 200
nm, 300 nm, 400 nm, 700 nm (from left to right) of the incident monochromatic light. Front view. The
chromatic scale is the same as above. Field values normalized to the incident ones.

In Fig. 11.24 the view is a frontal one, corresponding to an observer watching
in the direction of the impinging light beam. In both the electric field strength
is normalized to that of the incident field.
As a concluding remark, in any case the broadband performances of the
standard silica ARC remain unbeaten. The hybrid plasmonic ARC does seem
to be useful in specific and selective applications, for example in sensoristic
ones, within a restricted window of the overall 200 ÷ 1100 nm wavelength
range.
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Chapter 12

Photonics application to an
opal crystal

One of the main applications of the in-house FDTD code developed for the
present work is in studying an opal photonic crystal interacting with a beam
of light in the wavelength range of 400÷750 nm (1 nm = 10−9 m). Photonic
crystals [16] are the optical analogue of atomic or molecular crystals studied
quantum mechanically in solid state physics, but with these microscopic con-
stituents replaced by macroscopic media with differing electric permittivities.
Their characteristic dimensions have to be comparable with the wavelength
of the light. In common, both types of crystal have an ordered, periodic and
symmetrical structure. In the case of the photonic crystals, instead of the
force potential acting on the electrons, it is the electric permittivity function
ε(~r) which exhibits translational and rotatational symmetries according to
the underlying ordered structure. Because of the many similarities between
the governing equations, the resulting Schrödinger wavefunction for electrons
and the electromagnetic field inside the crystal give raise to similar physi-
cal phenomenologies. The most typical one is the existence of photonic band
gaps preventing light from propagating with certain frequencies along certain
directions. In particular, a complete photonic band gap stops the propaga-
tion of electromagnetic waves with any polarization in any direction. Such
characteritics of photonic crystals make them useful for optical control and
manipulation in analogy on how metallic waveguides and cavities control mi-
crowave propagation or confinement. To accomplish such tasks in the best
way the dissipation of a photonic crystal has to be as low as possible, i.e. ε
has to be, almost ideally, purely real (no imaginary part).

133
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12.1 Eigenvalue problem and the band struc-

ture

From the theoretical point of view, the interaction of the light electromag-
netic field with a photonic crystal amounts to the solution of the following
eigenvalue problem:

~∇×
[

1

ε(~r)
~∇× ~H(~r)

]
=

(
ω

co

)2

~H(~r) (12.1)

(co = 1√
µoεo

, the speed of light in vacuum) with the further constraint:

~∇ · ~H(~r) = 0 .

Equation (12.1) is obtained by eliminiting ~E from the two curl equations
(1.1c) and (1.1d) after a Fourier transform from the time domain to the
frequency domain. Here as usual, but with an abuse of notation, the same
letters ~E and ~H are used for a field variable as a function of time t or as
a function of (angular) frequency ω. The time harmonic factor is e−iωt. In
(12.1) the eigenvalue is (ω/co)

2, while the left member is a vector, differential,

second order operator Θ̂ applied to the corresponding eigensolution ~H(~r). In
Θ̂, ε cannot moved further to the left due to its spatial dependence which
reflects, first of all, the periodic crystal structure:

ε(~r + `~a1 +m~a2 + n~a3) = ε(~r)

where `,m, n ∈ Z = {0,±1,±2, . . .} and ~a1, ~a2 and ~a3 are the primitive lattice
vectors which span the elementary unit cell, whose tiling in R3 defines such
underlying periodic structure. Θ̂ results to be an Hermitian operator with
respect to a standard inner product for the solution space (but with a scalar
dot product replacing the usual simple product between functions, which
are now vector functions). If from (1.1c) and (1.1d) an equation for ~E were
deduced, instead of (12.1), the resulting eigenproblem would be a generalized
one (with operators on both sides of the equation) and, moreover, trying to
convert it to an ordinary eigenproblem would return an operator in the left
member which would be no longer Hermitian. After having determined the
eigensolution of (12.1), the corresponding electric field ~E is found by applying
to it the curl operator.
The eigenvalues (ω/co)

2 are degenerate because, as stated by the Bloch-
Floquet theorem [9,16], the proper eigensolutions of (12.1) can be expressed
as the superposition of Bloch modes :
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~H~k(~r) = ei
~k·~r ~u~k(~r)

where ~u~k(~r) is a periodic function on the lattice:

~u~k(~r + `~a1 +m~a2 + n~a3) = ~u~k(~r)

(`,m, n = 0,±1,±2, . . .) and ~k is a vector ranging continuously, not in the
whole dual k-space, but only in the (first) Brillouin zone. In fact in the
k-space of (12.1) there is a reciprocal lattice defined by the reciprocal base
vectors:

~b1 = 2π
~a2 × ~a3

~a1 · (~a2 × ~a3)

~b1 = 2π
~a3 × ~a1

~a1 · (~a2 × ~a3)

~b1 = 2π
~a1 × ~a2

~a1 · (~a2 × ~a3)

satisfying

~ai ·~bj = 2πδij ,

which define a reciprocal unit cell. Labelling the Bloch modes with ~k outside
this reciprocal unit cell means redudancy. The first Brillouin zone is a finite
volume region in the k-space around the origin such that one cannot get from
one point of such volume to another by adding to the first any vector of the
form:

`′~b1 +m′~b2 + n′~b3

with `′,m′, n′ ∈ Z. This zone contains all the essential ~k values: picking
values outside it implies only the mere addition of an integer multiple of
2π to the imaginary exponential. The eigenproblem for ~u~k(~r) is found by
inserting the Bloch mode in (12.1):

(i~k + ~∇)× 1

ε(~r)
(i~k + ~∇)× ~u~k(~r) =

(
ω(~k)

co

)2

~u~k(~r)

which has to be solved, for every ~k fixed in the first Brillouin zone, with
~r bounded in the unit cell defined by ~a1, ~a2 and ~a3. Due to this spatial
domain bounding, the resulting spectrum of (angular) frequency eigenvalues
is a discrete one, with an ordered sequence:
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ω0(~k), ω1(~k), ω2(~k), . . . . (12.2)

which determines the band structure of the photonic crystal. If for two con-
secutive frequencies, ωn and ωn+1, it happens that a discontinuity is present
between this two values at the boundary of the first Brillouin zone along a
given ~k direction, then a band gap has opened and electromagnetic radiation
is not propagated in that direction, because it is not supported by the crystal
material distribution.
In the time domain, the most general solution of the Maxwell’s equations
inside the crystal, considered as having infinite extension, is found by super-
posing Bloch modes:

~H(~r, t) =
∞∑
n=0

∫
U

A(~k)ei(
~k·~r−ωn(~k)t)~u~k(~r) d3~k

where A is an amplitude function determined by the initial conditions and
U denotes the first Brillouin zone.

12.2 The FCC opal photonic crystal

For a face-centered cubic (FCC) crystal, the underlying spatial periodic
structure is that resulting from the corner points of cubic cells of edge size
d, but also with extra sites at the center of the faces. More precisely, the
primitive lattice vectors, expressed in the usual base x̂, ŷ, ẑ of a standard
orthogonal cartesian reference frame are:

~a1 =
d

2
(x̂+ ŷ)

~a2 =
d

2
(ẑ + x̂)

~a3 =
d

2
(ŷ + ẑ) .

The FCC opal photonic crystal considered here, see [57,58], is a self-assembled
structure of polystyrene dielectric spheres with their centers occupying the
spatial locations defined by linear combinations of the above lattice vectors
with integer coefficients:

~r`,m,n = `~a1 +m~a2 + n~a3
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(`,m, n = 0,±1,±2, . . .). Pictorially, an example of the resulting structure
is the one depicted in Fig. 12.1:

Figure 12.1: Example of an FCC lattice whose reticular positions are occupied by spherical objects.

The first Brillouin zone of this FCC lattice is represented by the truncated
(regular) octahedron of Fig. 12.2:

Figure 12.2: Truncated octahedron representing the first Brillouin zone of the FCC crystal lattice. The
frame axes correspond to the x, y and z components of ~k and should be better labelled as kx, ky and kz .

in which Γ is the origin of the k-space and K,L, U,W,X denote typical points
on its boundary, while ∆,Λ,Σ denote typical paths inside it. If:
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β =
2π

d
,

then the position vectors of such points are (using an orthonormal basis in
the k-space):

Γ ≡ (0, 0, 0)

K ≡ (
3

4
β,

3

4
β, 0)

L ≡ (
1

2
β,

1

2
β,

1

2
β)

U ≡ (
1

4
β, β,

1

4
β)

X ≡ (0, β, 0)

W ≡ (
1

2
β, β, 0) .

The radius R of the assembled spheres is estimated to be R = 118. nm,
with a “thermodinamically resulting” FCC spacing of d = 333.75 nm, which
corresponds to the maximal filling factor, the ratio of the void to the filled
space, of 0.74.

Figure 12.3: Scanning Electron Micrograph (SEM) image of a sample of the opal photonic crystal [57,58].

Polystyrene is a dielectric material with an assumed constant relative electric
permittivity εr = 2.4 on the given wavelength range without any dissipation,
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i.e., with electric conductivity σ = 0 Siemens/m (1 Siemens = 1 Ω−1). A
microscopic view of the sample is given in Fig. 12.3.
Effectively, the crystal sample considered here is made of a stacked sequence
of (1, 1, 1) reticular planes, where Miller indices notation [16] is used to denote
them. When this sample is optically analyzed, a beam of light impinges
orthogonally onto this system of planes. Referring to Fig. 12.2 this direction
corresponds, in the k-space, to the Λ path joining the origin Γ with the point
L. To get more insight about the disposition of such (1, 1, 1) planes with
respect to the FCC lattice, one can refer to Fig. 12.4:

(1,1,1) 

(2,2,2) 

(3,3,3) 

𝑥 

𝑦 

𝑧 
𝑑 = edge of the cubic supercell 

𝑑

3
= distance between two consecutive planes 

Figure 12.4: Figure showing how (1, 1, 1) planes stems out from the FCC periodic structure.

The FCC structure wieved from the Λ direction is such that the stacked
planes, the distance between each pair of them being D = d√

3
, form a re-

cursive sequence ABCABC . . ., and on each plane the lattice sites lie at the
vertices of equilateral triangles of side length b = d√

2
. See Fig. 12.5:
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Back to front view 
𝑧 

𝑥 
𝑏 

ℎ 

𝑏 =
𝑑

2
 

ℎ =
3

2
𝑏 

ℎ/3 
2ℎ/3 

Figure 12.5: Sectional view showing the relative displacements among the three triangular tilings in the
stacked A (red), B (yellow) and C (green) planes, as seen by the impinging light beam.

In passing from a A plane to the B and then to the C planes of the recursive
sequence, the triangular tilings are shifted one with respect to the other as
indicated by Fig. 12.5.

Figure 12.6: Experimental transmittance of a FCC crystal sample made of stacked (1, 1, 1) planes.
Thickness t ≈ mm. Normal incidence.
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When on a macroscopic sample slab of such an opal photonic crystal, of thick-
ness t ≈ 1 mm, impinges normally a light beam, the laboratory measured
transmittance is the one shown in Fig. 12.6 [57]. Clearly, there is a band
gap near 550 nm due to the particular structure of the crystal which, acting
as a Bragg reflector [9], prevents light propagation. This effect is a purely
classical one and can be reproduced by an FDTD numerical modelization
of the type described in Part II of the present work and which is described
schematically in Fig. 12.7:

Incident	
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Total	
  field	
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  field	
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  boundary	
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  boundary	
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y	
  

Figure 12.7: 2D schematic of the FCC opal photonic crystal FDTD modeling.

The computational domain truncation is got by means of CPML absorbing
boundary conditions, described in Section 6.1. However, these are applied
only to the upstream and downstream external faces, with respect of the
impinging beam propagation direction along the y axis. Periodic boundary
conditions (PCB), described in Section 6.2, are applied on the surfaces with
normals perpendicular to the beam propagation direction, i.e., the outer xy
and yz planes, to simulate an ideal crystal slab of infinite lateral extension.
They consist in reinjecting the field values in a wraparound fashion. To this
end, the interacting crystal structure has to be represented in a consistent
manner: the part left out at one side must be mirrored at the other opposite
side [59]. In Fig. 12.8:
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Figure 12.8: Lateral xy (top), horizontal yz (bottom-left) and front xz (bottom-right) sections of the
FCC lattice as modeled in the FDTD code.

are shown sectional views depicting how the polystyrene spheres are packed
in the stack of (1, 1, 1) planes along the y axis, to recreate the FCC lattice of
particles, as they result after the model structure generation of the FDTD
code has been applied. The numerical simulations used cubic Yee cells of
edge size δx,y,z = 2 nm, with a total of X × Y × Z Yee cells along the x,
y and z axes respectively, which took x seconds for x iterations on x par-
allel MPI processes of a BlueGene/Q supercomputer. A pulse like the ones
of Fig. 5.6 was “injected” as described in Section 7.1, but with no lateral
and ending guiding surfaces, starting from the xz surface corresponding to
the vertical dashed line of Fig. 12.7. Behind that surface only the reflected
field is present. In that region, if sufficiently far from the crystal slab, re-
flectance is evaluated by integrating the real part of the normal component
of the complex Poynting vector. The transmittance is similarly evaluated
by considering downstream planes beyond the crystal slab in the total field
region (incident plus transmitted ones). The FDTD numerically calculated
reflectance/transmittance result for a stack of 20 (1, 1, 1) planes is given in
Fig. 12.9 [60]; the transmittance T and reflectance R curves in the graph
are calculated independently, by integrating the calculated Poynting vector
upstream in the scattered field region and downstream in front of the slab
respectively, and not by using the relationship R+ T = 1, which holds with-
out absorption. It is apparent a bandgap that opens around 540 nm. In
Fig. 12.10 it is shown the FDTD numerically calculated transmittance T
result for a stack of 100 (1, 1, 1) planes, as compared with the experimentally
measured curve already shown un Fig. 12.6 [60].
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Figure 12.9: Reflectance and transmittance of an FDTD numerical FCC opal photonic crystal made of 20
(1, 1, 1) stacked planes, independently calculated to test the R + T = 1 relationship validity, for inherent
coherence of the numerical model probing.
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Figure 12.10: Transmittance of an FDTD numerical FCC opal photonic crystal made of 100 (1, 1, 1)
stacked planes, as compared with the one of a real macroscopic crystal sample having the same structure.

There is a fairly good agreement in determining the band gap near 550 nm,
demonstrating the effectiveness of the numerical FDTD modeling in describ-
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ing the physical behavior of such photonic structures. One should keep in
mind that R and T are evaluated at a discrete set of (angular) frequencies
of analysis, after the fields for the power flux evaluation on the given sur-
faces, by means of the Poynting vector, have been Fourier transformed (by
means of a DFT) from the time domain ones in the course of the simula-
tions. Outside the band gap, the numerical reflectance and transmittance
exhibit realistic oscillations which do not compare in the experimental curve,
due to a smoothing process introduced by the measuring instrument. Should
the frequency resolution be increased, and up to the resolution limitation
exposed in Section 5.3, these oscillations would appear more pronounced.
The color maps that follows show the electric field distribution inside the
crystal sample, with 20 stacked (1, 1, 1) planes, in correspondence of given
planes parallel to the coordinate ones, extracted from the computational vol-
ume bulk at the three vacuum wavelengths of 500 nm, 550 nm and 600 nm
respectively [60]. The incident field is linearly polarized along the z axis, i.e.,
normal to the plane of figures in Fig. 12.11 but along the vertical axis in Fig.
12.12:
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Figure 12.11: Normalized DFT module of ~E on a xy plane inside the crystal sample at 500 nm (top), 550
nm (middle) and 600 nm (bottom).
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Figure 12.12: Normalized DFT module of ~E on a yz plane inside the crystal sample at 500 nm (top), 550
nm (middle) and 600 nm (bottom).

as can be noted, and coherently with the transmittance band gap, the 550
nm field has much less penetration inside the crystal than wavelengths out-
side the band gap do. This is an evidence that, at the band gap frequency,
multiple reflections from the (1, 1, 1) lattice planes sum up with phase co-
herency in such a way to prevent any electromagnetic energy transport down
the crystal along the propagation y axis.
Earlier simulations [59] made without the use of the periodic boundary condi-
tions, but considering a finite crystal sample in all the three directions, gave
less clear results than those above, due to edge effects of the finite sample
and to the low dielectric contrast of the spheres. In particular, the bandgap
was reproduced with a very small depth and to get a well indented trans-
mittance spectrum a lot of (1, 1, 1) lattice planes would have to be stacked
in the numerical model, similarly to what happens in the experimental sit-
uation in which a macroscopic crystal sample is used. Actually, it is likely
that secondary irradiation from the lateral sample surfaces bends the planar
wavefronts thus preventing a full Bragg destructive interference in the for-
ward direction. However, increasing the number of modeled reticular planes
requires a lot of computational resources which can be spared through the
use of the periodic boundary conditions. In any case, with this setup using a
finite crystal sample, there is evidence of the band gap presence by analyzing
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the scattered far field radiation in the solid angle around the crystal tar-
get by means of a numerical implementation the Kirchhoff integral formula
explained in Section 2.3, and which uses the numerically FDTD calculated
near electric and magnetic field values around the crystal. Examples of such
numerically calculated radiation angular distribution are given in Fig. 12.13:

Figure 12.13: .

The trasmittance in this case is evaluated as:

T = 1− Pr
P i

where Pr is the total radiated power and Pi is the power incident of the
crystal target of finite sizes, for a beam cross section grater than that of the
sample.
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12.3 Multilayer equivalence: homogenization

The discontinuous system of stacked (1, 1, 1) planes above described, each
one consisting in a triangular tiling of spherical dielectric particles, can ul-
timately be reduced, by an heuristic procedure here described, to a mate-
rial having an electric permittivity varying, in a periodic fashion, only in
the y impinging direction. This material can be thought as a finely peri-
odic layered medium with a step (or staircase) ε function, whose transmit-
tance/reflectance properties can be analyzed by means of the techniques ex-
posed in Chapter 4. An array of small thickness, homogeneous, stacked slabs
can give raise to high reflectance as the result of the in-phase superposition
of a large number of weak reflections. This resonances would correspond to
band gaps (forbidden bands) in the crystal for which the Bloch modes become
evanescent and do not propagate down the crystal itself. The light energy is
thus totally reflected and the array becomes a Bragg reflector. The heuristic
homogenization procedure is illustrated schematically by Fig. 12.14:

𝑦 𝑎𝑥𝑖𝑠 

Figure 12.14: 2D schematic view of the homogenization procedure with the probing plane (blue) shifting
perpendicularly to the stacked system of (1, 1, 1) planes. Also shown is the pencil of perpendicular lines
intercepting the system of dielectric spheres.

A sliding probing plane is moved discretely along the crystal longitudinal y
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axis (which is also the beam propagation axis). At each position, the inter-
sections of that plane with the system of spheres of which the crystal is made
are determined. A pencil of straight lines is projected along the y axis. The
starting points of these lines are uniformly distributed in the xz plane normal
to the y axis. The points of intersections of the lines with the probing plane
are also determined. To those points which also belong to the intersections
with the spheres, a polystyrene ε value is assigned. To those which do not
belong, a free space ε is assigned. An averaging procedure of such points is
made for the whole probing plane at that specific y position, which allows
to define an ε(y) function value. By moving the plane at different positions
along the y axis, a profile of the refracrive index n =

√
εavg/εo is obtained

like the one shown in Fig. 12.15:

Figure 12.15: Refractive index of an FCC opal crystal sample after homogenization.

This homogenization has been got by sampling with 8000 points the longitu-
dinal y axis of a 3000 nm length crystal made of 15 stacked (1, 1, 1) planes.
This corresponds to a sampling step δy = 0.36721 nm. It is apparent a peri-
odically repeating pattern, made of three successive big peaks (including the
two intermediate small peaks) plus a nearby small peak. They correspond to
the ABC sequence of reticular (1, 1, 1) planes. This repeating pattern occu-
pies 1574 consecutive sampling points along the y axis. To get the averaged
value at each y in the graph, a pencil of 600 × 600 straight lines uniformly
distributed over an area corresponding to about 5 × 5 dielectric spheres in
the xz plane has been considered. One recognizes that, when the sampling is
made finer and finer, the profile reaches a limit pattern and no longer changes
from a certain sampling refinement onward. Then a sequence of 1574 con-
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secutive slabs of thickness 0.36721 nm each, repeated 100 times, has been
considered as a periodic multilayered medium. To this system, the trans-
mittance matrix method of Chapter 4 has been applied over the wavelength
range 400÷ 800 nm. The matrix method of Chapter 4 is an exact analytical
approach that generalizes the single interface Fresnel’s coefficients concept.
It is implemented in a computer code because it is applied for calculating
a spectrum of a very large number of nearby slabs. The resulting T is as
shown in Fig. 12.16:

Figure 12.16: .

which is in fairly good accordance with both the experiment and the FDTD
numerical method: see Fig. 12.10. It also predicts a narrower band gap at a
frequency corresponding to the vacuum wavelength of about 790 nm. which
is outside the wavelength range considered so far. The graph in Fig. 12.16
is also more detailed in describing the oscillations outside the band gaps,
because it is based on a exact analytical calculation.
The homogenization procedure here described is very promising in offering an
insight into the crystal transmittance/reflectance behavior, before starting
any large FDTD simulations which only, in any case, can give an in deep
analysis of the electromagnetic field inside and near the crystal itself. One of
the major further advancements of this homogenization procedure, would be
one able to deduce the tensorial character of the averaged ε, when applied to
opal crystals including particles with less symmetry than the spherical ones
of the present case.
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12.4 Dispersion band structure reconstruc-

tion

By a post-processing phase, once an FDTD simulation has been per-
formed on an opal crystal sample of given structure — in the present case,
the FCC one — and the DFT complex electric field data inside the crystal
are allowable at a discrete set of (angular) frequency values, it is possible

to proceed at a crystal band structure (12.2) reconstruction, for ~k ranging
in its first Brillouin zone, like the one depicted in Fig. 12.2. In the present
case only the ~k values belonging to the Λ path will be analyzed [60] which,
corresponding to the direction of incidence of the primary field of the beam of
light, will label the modes most easily excited inside the crystal bulk. First of
all, a multilayer analysis like the one described in the previous Section 12.3,
allows to identify the band gaps at a glance from the transmittance spec-
trum. Then, for each discrete angular frequency FDTD analyzed, below and
above the band gap, the corresponding spatial distributions of the electric
DFT data are subjected to a spatial Fourier transform, using:

∫∫∫
Ẽz(~r;ω)e−i

~k·~r d3~r ≈
∑
m,n,p

Ẽz(m,n, p;ω)e−i
~k·~rm,n,p

where ~rm,n,p denotes discrete Yee FDTD grid positions and ˜ denotes fre-
quency transformed field values. In the present case only the z component
along the direction of polarization of the incident field has been considered,
although components along other cartesian axes are also excited within the
crystal, but with considerable less intensity. In the above expression k = ‖~k‖
ranges discretely from 0 to

√
3β (two times the length of the ΓL segment

in Fig. 12.2). As a vector, ~k is kept fixed in the ŷ direction, bacause the
crystal is already rotated in such a way tha Γ coincides with the y beam
propagation axis. propagation. The necessarily finite integration domain is
positioned at the center of the crystal sample, embracing some FCC unit cells
along the beam propagation direction, but with the boundaries well apart
from those of the sample, to avoid contributions from unwanted reflected
components. This implies some negligible truncation errors in the tails of
the calculated spectra. The integration domain may instead be extended
along the directions perpendicular to the faces at which periodic boundary
conditions are imposed, until they are meet, without any truncation effects.
The Bloch mode supported for a given angular frequency ω is identified from
the corresponding k-spectrum as a dominant peak, see Fig. 12.17:



12.4. DISPERSION BAND STRUCTURE RECONSTRUCTION 151

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
rb

it
ra

ry
 U

n
it

s
 

k [normalized] 

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
rb

it
ra

ry
 U

n
it

s
 

k [normalized] 

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
rb

it
ra

ry
 U

n
it

s
 

k [normalized] 

Figure 12.17: Examples of numerically calculated spatial spectra for ω = 2πc/λ, with λ = 400 nm (left),
540 nm (middle) and 700 nm (right). Normalization of the horizontal axis is k√

3β
.

which is a normalization independent operation. What we are really inter-
ested in is not the peak height, but the k value of the peak occurrence. Such
peak detection has been made finer by fitting the points around the identi-
fied peak through a spline interpolation, to better localize the value at the
maximum. By comparing the relative height of the peaks allows us also to
recognize the bandgap along the abscissas k-axis, because a non-propagating
mode has a lower amplitude spectrum, compared with those of the propa-
gating ones. On the other hand, the (angular) frequency ω occurrence of
the bandgap is also already known from the transmittance curve, like the
ones in Fig. 12.9 or Fig. 12.10. There, the abscissas are labelled as vacuum
wavelengths for more practical insight, but actually correspond univocally to
frequency domain data: ω = 2πc/λ. Fig. 12.18:
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Figure 12.18: Numerical spatial amplitude spatial spectra of Ẽz(~r;ω) for ω = 2πc/λ, with λ = 700 nm
(left curve), 540 nm (middle curve) and 400 nm (right curve). Normalization of the horizontal axis is
k√
3β

.

shows together the graphs of the previous one. Note that, as expected, at
the angular frequency corresponding to λ = 540 nm (the middle graph), i.e.
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the frequency of the first bandgap (see Fig. 12.9), the magnitude of the peak
is less than one half the magnitudes of the other peaks (left and right graphs
in the figure) which correspond to fully propagated modes.
One eventually ends up with a sequence of (k, ω) pairs which, when graphed,
allows the quantitative reconstruction of the dipersion curve searched for.
That in Fig. 12.19 is for a stack of 20 reticular (1, 1, 1) planes, in a sequence
ABCABC . . .. The k and ω axes of the graph are normalized: the horizontal
one corresponds to k/β

√
3 values, the vertical one to ωd/2πc values. To

get the second branch of the curve above the first bandgap (the so called
“air-line”), the relevant k data obtained by means of the spatial Fourier
transforms have been mirrored in the vertical line through the value kbg =
0.499β corresponding to the first bandgap. It is apparent from the figure
that the slope flattens at the interval extrema on the k-axis — except at the
origin — as expected. The four dots standing at the most right position in
the graph of Fig. 12.19 correspond to the bandgap and should be neglected.
The width of the bandgap here corresponds to that of Fig. 12.9.
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Figure 12.19: Quantitative reconstruction of the dispersion curve of an opal FCC photonic crystal.

The behavior of the curve toward the origin is, from a linear regression anal-
ysis, that of a straight line with zero intercept. The slope of the straight
line allows to calculate the effective refractive index of the crystal. One gets
a numerically predicted value of neff = 1.393; the experimental value of
neff = 1.436 reported by [58] and that of neff = 1.427 from geometric mean
consideration in effective medium approximation there cited are in fairly good
accordance with ours.
That described is a general procedure, usable for different packing geome-
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tries and which may be also extended to the higher branches of the disper-
sion curve and for the entire Brilluoin zone. One major difficulty with this
generalization is to achieve the suitable orientation of the impinging beam
according to the direction in the k-space of the crystal which one wants to
analyze, in such a way to get a “maximal excitation” of the involved Bloch
modes. To this end it is clear that, instead to rotate the crystal, it is better
to give a general propagation direction to the beam of light, as described in
Section 7.2. Nonetheless, it remains open the problem of what are the pe-
riodic boundary conditions to be used in this case of non normal incidence,
because an unknown phase difference will arise on the opposite outer faces
of the computational volume.
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Appendix A

Some dyadics calculations

All greek letters used as indices in the sums that follows take the values
x, y and z. For a dyad ~a~b, the vector product from the left with the vector
~c is:

~c× (~a~b)
def
= (~c× ~a)~b

(multiplying from the right would produce a different result). From this
definition follows the one for the curl of a dyadic given in Chapter 2 and
below reproduced:

~∇× ¯̄G =
∑
α

∑
β

∑
γ

∂γGαβ(γ̂ × α̂)β̂ .

By introducing the Levi-Civita antisymmetric symbol:

εαβγ =


+1 if (α, β, γ) = (x, y, z), (y, z, x), (z, x, y)

−1 if (α, β, γ) = (z, y, x), (x, z, y), (y, x, z)

0 if α = β or β = γ or γ = α

,

one can write the above expression like:

~∇× ¯̄G =
∑
α

∑
β

∑
γ

∑
τ

(∂γGαβ)ετγα τ̂ β̂ .

Taking the curl again:

~∇× ~∇× ¯̄G =
∑
α

∑
β

∑
γ

∑
τ

∑
σ

(∂σ∂γGαβ)ετγα (σ̂ × τ̂)β̂

or:
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~∇× ~∇× ¯̄G =
∑
α

∑
β

∑
γ

∑
τ

∑
σ

∑
ρ

(∂σ∂γGαβ)ετγα ερστ ρ̂β̂ .

But: ∑
τ

ετγα ερστ =
∑
τ

ετγα ετρσ = δγρδασ − δγσδαρ .

After insertion in the expression for ~∇× ~∇× ¯̄G there remains:

~∇× ~∇× ¯̄G =
∑
α

∑
β

[(∑
γ

∂α∂γGβγ

)
−

(∑
γ

∂2
γGαβ

)]
α̂β̂

where use has also been made of the symmetry Gγ,β = Gβ,γ. Remembering

the expression for the components of ¯̄G in terms of g given in Chapter 2 one
eventually gets:

~∇× ~∇× ¯̄G =
∑
α

∑
β

(∂α∂βg)α̂β̂ −
∑
α

(∑
γ

∂2
γg

)
α̂α̂

which is the searched result because the first term simplifies with the ~∇′~∇′
part in the k2 ¯̄G term, while g is the fundamental solution of the scalar
Helmholtz equation.

To demonstrate the dyadic divergence identity (2.15) it suffices to con-

sider a dyad ~A~B in place of the dyadic ¯̄D, because the general case is a linear
combination of dyads:

~∇ ·
(
~F × ~A~B

)
= ~∇ ·

[(
~F × ~A

)
~B
]

=
[
~∇ ·
(
~F × ~A

)]
~B =

=
(
~A · ~∇× ~F − ~F · ~∇× ~A

)
~B =

(
~∇× ~F

)
· ~A~B − ~F · ~∇×

(
~A~B
)

because an operator acting from the left on a dyad acts only on the left
vector. By replacing back ~A~B with ¯̄D one has (2.15).



Appendix B

Some Gaussian integrals

The starting point is represented by the classical definite integral:∫ +∞

−∞
e−αx

2

dx = 2

∫ +∞

0

e−αx
2

dx =

√
π

α
(B.1)

which holds for a real α > 0. This integral can be analytically continued for
α ∈ C (the integrand still being an even function of x) with Re{α} > 0, by
considering the analytic function:

e−αz
2

in the complex z-plane. Writing α in polar form:

α = |α|eiθ

with −π
2
< θ < π

2
one can consider the contour integration in the complex

plane along the right triangular path with a vertex at the origin, a cathetus
made of the interval [0, ξ] of the real axis, the hypothenuse made of the
half-line:

z = te−i
θ
2

with the parameter t ≥ 0, from which:

dz = e−i
θ
2 dt ,

and by taking the remaining cathetus, which closes the path, as a vertical
segment parallel to the imaginary axis. By letting ξ → +∞, this latter side
contributes nothing to the integral because there is an exponentially damping
factor with ξ and, having the integrand no singularities in the region enclosed
by the path, the searched analytical continuation result follows.
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A further generalization of (B.1) is the inclusion of a term linear in the
variable of integration in the exponential:∫ +∞

−∞
e−αx

2+iβx dx =

√
π

α
e−

β2

4α (B.2)

with α, β ∈ C and Re{α} > 0. The above result follows after completing
the square and shifting the origin of the x axis. One eventually is led to the
integral: ∫ +∞

−∞
e−α(x−iκ)2 dx

where κ is a real parameter. By integrating e−αz
2

on a rectangular path
with horizontal sides going from −∞ to +∞, one on the real axis and the
other passing through the iκ point of the imaginary axis, being vanishing the
contribution from the two vertical sides, one sees tha the value of the above
integral is the same as (B.1), thus confirming the result in (B.2).



Appendix C

Stability condition for the
FDTD method

The stability criterion for the completely explicit FDTD bulk algorithm
described in Chapter 5 is deduced here — following [40] — for an homo-
geneous nonabsorptive (σ = 0) source free medium of infinite extent with
absolute parameters ε, µ and light speed c = 1/

√
εµ. By introducing the

temporally sampled composite field (with n the temporal index):

~F n(~r) =

[
~En(~r)
~Hn+ 1

2 (~r)

]
,

where account is taken of the half time step sampling shift between the
electric and magnetic fields and by considering the inverse space Fourier
transform (by an abuse of notation the same letters are used to denote the

~r-domain or ~k-domain field variables):

~F n(~r) ∝
∫

~F n(~k)ei
~k·~rd3~k ,

the time level transition corresponding to the finite-difference expressions
(5.1), (5.2) can be written compactly in matrix form as:

~F n+1(~k) =

[
Î δt

µ
Â

− δt
µ
Â Î − δ2t

εµ
Â2

]
~F n(~k) = Ĝ(~k)~F n(~k) .

Ĝ(~k) is a 6× 6 matrix operator containing as 3× 3 submatrices the identity
Î and:
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Â(~k) =

 0 −2i sin (kzδz/2)
δz

2i sin (kyδy/2)

δy

2i sin (kzδz/2)
δz

0 −2i sin (kxδx/2)
δx

−2i sin (kyδy/2)

δy
2i sin (kxδx/2)

δx
0


where ~k = (kx, ky, kz) and δx, δy and δz are the FDTD grid space steps. Ĝ is
the amplification or transition operator. Its norm has to be less than unity
to prevent, by successive iterations, any fluctuation in the numerical solution
to exponentially grow unbounded, thus overwhelming the true solution. By
using the spectral norm of Ĝ one is led to the eigenvalues of the matrix,
which are 1 and:

λ± = 1− a2

2
± a

2

√
a2 − 4

where

a =
2δt√
εµ

√
sin2 (kxδx/2)

δ2
x

+
sin2 (kyδy/2)

δ2
y

+
sin2 (kzδz/2)

δ2
z

,

all with double multiplicity. For the spectral radius to be not more than
unity, it must be a2 ≤ 4, which happens if:

δt√
µε
≤ 1√

1
δ2x

+ 1
δ2y

+ 1
δ2z

,

which is the Courant-Friedrichs-Lewy (CFL) stability condition. It is cus-
tomarily to take δx, δy, δz equal to a common value δ. In this case the
stability is:

δt ≤
δ

c
√

3
.

If there are more media with different phase velocities one has to use cmax in
the upper bound limit for δt, i.e. the more cogent one. This condition holds
even if there are absorptive media (as it is as is directly demonstrated in [40]).
This can be heuristically understood because absorption means damping of
the field values, which is a further favorable circumstance to control the
growth of the unwanted solution fluctuations due to finite precision.



Conclusions

The work here presented concerned the study and implementation of an
“in-house” three-dimensional FDTD (Finite-Difference Time-Domain) paral-
lelized code, having good robustness and scalability. It is based on the direct
numerical solution of the Maxwell’s equations in the time-domain, for the
classical electromagnetic analysis of complex plasmonic and photonic struc-
tures interacting with light. A frequency analysis is performed by means
of a discrete Fourier transform made inline on the time-domain data. Its
reliability has been tested against the known analytic solution for the scat-
tering off a sphere having a complex electric permittivity. The present work
starts on the ground of a previous one for the MSc Degree Thesis in Physics.
New accomplishments of this work are: the implementation of a new class of
boundary conditions for the FDTD truncation of the computational domain;
the implementation of a method to describe temporally dispersive media (the
theoretical basis of both these arguments are found in literature); the imple-
mentation of a “plane wave injector” with arbitrary propagation direction
allowing also, by means of superposition and a suitable diffraction integral,
the numerical representation of focused gaussian beams for a more realistic
description of the impinging light; the parallelization of the FDTD code us-
ing the Message Passing Interface (MPI) which, by suitably proposed used
defined MPI data structures give the code good scalability allowing it to run
efficiently on large High Performance Computing (HPC) machines with hun-
dreds of thousands of calculating cores. To demonstrate its effectiveness and
versatility, the developed FDTD code has been applied to the scattering and
absorption analysis of nanoparticles made of different metals and of different
shapes and sizes, either isolated or arrayed, emebedded in a passivating silica
layer and in front of a silicon substrate. This study as potential photovoltaic
applications for the possible improvement of their efficiency in collecting and
converting the solar light. The same FDTD code has also been applied to the
study of an opal photonic crystal, being able to reproduce the experimental
spectral reflectance/transmittance properties, in particular the band gaps.
The analysis of photonic crystals finds applications in low threshold laser,
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optical waveguides and sensor design. For the latters, the optical properties
are connected to the crystal structure and symmetry, and vary varying its
geometry. It is important thus to have availability of the electromagnetic
field distribution inside the crystal at the various wavelengths as obtained
with the FDTD code. This knowledge allows the proposal for a procedure by
means of which to reconstruct the banded ω−k dispersion curve of the crys-
tal, based on a spatial Fourier transform of those field data. In the present
work it is also described a general method for reflectance/transmittance cal-
culations, at an arbitrary angle of incidence and with both TE and TM
polarizations, of a stacked system of an arbitrary number of dielectric (with
complex permittivity) layers of given thickness. This method, based on a
matrix espression of the transmitted and reflected amplitudes at the various
interfaces, is used in a proposed homogenization procedure of the photonic
crystal, in which its discontinuous structure is averaged to get an equivalent
unidimensional multilayer system with identical optical properties.
Further developments of the material in the present work and which would
be extremely useful when implemented are:
The analysis of the field distribution of a photonic crystal when illuminated
at an arbitrary direction of incidence of the impinging beam of light. This
requires a knowledge of the phase factor between opposite crystal faces when
Periodic Boundary Conditions (PBCs) are applied, and would allow the ex-

citation of modes of arbitrary wave vector ~k inside it, thus permitting the
generalization of the banded ω − k reconstruction procedure in the whole
of the first Brillouin zone of the crystal, without limiting it to a particular
direction. If the direction of incidence cannot be varied (or equivalently, but
with more difficulty, rotating the crystal sample) the relevant Bloch modes
inside the crystal are hard to excite with presumably large errors in the iper-
surface reconstruction.
The extension of the homogenization procedure to lattices or macroparticle
shapes with different symmetries than the cubic or spherical ones. These
generalizations could be described with stacked dielectric layers having a
tensorial electric permittivity, perhaps only along directions perpedicular to
propagation direction.
The analysis of completely or partially disordered colloidal photonic struc-
tures (photonic glasses) by simulating a completely random distribution of
macroparticles, each with a size roughly comparable with the incident wave-
lengths and with an eventual homogenized description.
Finally, a big challenge could be the coupling of the electromagnetic FDTD
code with an atomic or molecular system (inside the crystal) quantisti-
cally described through the numerical implementation of Time Dependent
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Schrödinger Equation, giving raise to a semi-classical description of a dopant
in laser gain media.
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