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Don’t believe what your eyes are telling you.
All they show is limitation.

Look with your understanding,
find out what you already know,

and you’ll see the way to fly.

Richard Bach





Advanced Spectral and Spatial Techniques for
Hyperspectral Image Analysis and Classification

Abstract

Recent advances in sensor technology have led to an increased availability
of hyperspectral remote sensing images with high spectral and spatial resolu-
tions. These images are composed by hundreds of contiguous spectral chan-
nels, covering awide spectral rangeof frequencies, inwhich eachpixel contains
a highly detailed representation of the reflectance of the materials present on
the ground, and a better characterization in terms of geometrical detail. The
burst of informative content conveyed in the hyperspectral images permits an
improved characterization of different land coverages. In spite of that, it in-
creases significantly the complexity of the analysis, introducing a series of chal-
lenges that need to be addressed, such as the computational complexity and
resources required.

This dissertation aims at defining novel strategies for the analysis and classi-
fication of hyperspectral remote sensing images, placing the focal point on the
investigation and optimisation techniques for the extraction and integration of
spectral and spatial information. In the first part of the thesis, a thorough study
on the analysis of the spectral information contained in the hyperspectral im-
ages is presented. Though, independent component analysis (ICA) has been
widely used to address several tasks in the remote sensing field, such as feature
reduction, spectral unmixing and classification, its employment in extracting
class-discriminant information remains a research topic open to further inves-
tigation. To this extend, a profound study on the performances of different
ICA algorithms is performed, highlighting their strengths and weaknesses in
the hyperspectral image classification task. Based on this study, a novel ap-
proach for feature reduction is proposed, where the use of ICA is optimised
for the extraction of class-specific information. In the second part of the the-
sis, the spatial information is exploited by employing operators from themath-
ematical morphology framework. Morphological operators, such as attribute
profiles and their multi-channel and multi-attribute extensions, are proved to
be effective in themodelling of the spatial information, dealing, however, with
issues such as the high feature dimensionality, the high intrinsic information
redundancy and the a-priori need for parameter tuning in filtering, which are
still open. Addressing the first two issues, the reduced attribute profiles are
introduced, in this thesis, as an optimised version of the morphological at-
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tribute profiles, with the property to compress all the meaningful geometrical
information into a few features. Regarding the filter parameter tuning issue,
an innovative strategy for automatic threshold selection is proposed. Inspired
by the concept of granulometry, the proposed approach defines a novel gran-
ulometric characteristic function, which provides information on the image
decomposition according to a given measure. The approach exploits the tree
representation of an image, allowing us to avoid additional filtering steps prior
to the threshold selection, making the process computationally effective.

The outcome of this dissertation advances the state-of-the-art by proposing
novelmethodologies for accurate hyperspectral image classification, where the
results obtained by extensive experimentation on various real hyperspectral
data sets confirmed their effectiveness. Concluding the thesis, insightful and
concrete remarks to the aforementioned issues are discussed.
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Framsæknar aðferðir sem byggja á upplýsingum í rófi og
rúmi fyrir greiningu og flokkun mynda af mjög hárri vídd

Ágrip

Nýlegar framfarir í skynjaratækni hafa leitt til þess að nú er ímeiramæli en áður
hægt að afla fjarkönnunarmynda af afar hárri vídd (e. hyperspectral images)
með mikilli upplausn, bæði í rófi og rúmi (e. spectral and spatial). Myndirnar
eru samansettar af hundruðum samliggjandi rófrása sem ná yfir vítt tíðniróf
og sérhver myndeining geymir í smáatriðum upplýsingar um endurkast efna
sem eru á yfirborði jarðar auk nákvæmra upplýsinga um rúmfræðileg atriði.
Hið mikla magn upplýsinga sem geymdar eru í myndum af hárri vídd leyfa
betri framsetningu af þeim fjölbreytilegu gerðum landslags sem myndað er
með fjarkönnunartækni. Þrátt fyrir þetta, er notkun á svona gögnum flókin
í greiningu og huga þarf sérstaklega að ýmsum vandamálum, t.d. flóknari
útreikningum og öflugum vélbúnaði sem þarf til úrvinnslunnar.

Í Þessari ritgerð er leitast við setja framnýjar aðferðir til greiningar ogflokku-
nar fjarkönnunarmynda afmjöghárri vídd. Sérstök áhersla er lögð á rannsóknir
og tækni við bestun til að draga fram róf- og rúmupplýsingar og þá síðan heil-
dar upplýsingarnar. Í fyrri hluta ritgerðarinnar er kynnt ítarleg rannsókn á
greiningu rófupplýsinga í fjarkönnunarmyndum af mjög hárri vídd. Þótt óháð
þáttagreining (ICA– e. Independent Component Analysis) hafi víða verið no-
tuð til að vinna ýmis verkefni í fjarkönnun, t.d. við víddarfækkun, afblöndun
rófs og flokkun, þá er notkun ICA til að draga fram sundurgreiningarupplýsin-
gar fyrir flokkun ekki vel þekkt og er hún enn viðfangsefni rannsókna. Af þes-
sum sökum er hér gerð ítarleg rannsókn á frammistöðu nokkurra mismunandi
ICA algríma, þar sem sérstaklega eru skoðaðir bæði styrkleikar og veikleikar
algrímanna til flokkunarmynda afmjög hárri vídd. Í framhaldi af framangrein-
dri rannsókn er ný víddarfækkunaraðferð sett fram. Í þessari aðferð er notkun
ICA bestuð til að draga fram upplýsingar um einstaka flokka.

Í seinni hluta ritgerðarinnar eru rúmupplýsingar notaðar með upplýsingum
sem fást með notkun virkja stærðfræðilegrar formfræði. Formfræðilegir virk-
jar eins og auðkennaprófílar og útvíkkanir þeirra fyrir margar rásir og mörg
auðkenni hafa reynst mjög öflugir til að gera líkön sem byggja á rúmfræði-
legumupplýsingum. Hins vegar hefur reynst erfitt að leysa vandamálmeð þes-
sari aðferð, þar sem fjöldi vídda verður oft mikill, umfremd (e. redundandcy)
verður í gögnunumognauðsynlegt er að skilgreina stika fyrirfram. Í ritgerðinni
er unnið að lausn fyrstu tveggja vandamálanna.
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Víddafækkun auðkennaprófíla er kynnt sem bestuð útgáfa formfræðilegra
auðkennaprófíla með þeim eiginleika að öllum helstu flatarupplýsingum er
þjappað inn í auðkenni. Þá er ný aðferð sem byggir á sjálfvirkri þröskuldun sett
fram til að ákvarða síunarstika. Hún byggir á hugmyndinni um að nota sífellt
stækkandi gildi á síunarstikum (e. granulometry), og er skilgreint sérstakt
einkennisfall sem gefur upplýsingar umuppskiptingumyndarinnar samkvæmt
gefinni mælingu. Nýja aðferðin notast við trjáframsetningu myndarinnar og
losar okkur við viðbótarsíunarskref áður en valið á þröskuldunum fer fram. Það
að losna við síunarskrefin gerir ferlið reiknilega hagkvæmt.

Niðurstöður þessarar ritgerðar eru framlag til stöðu þekkingar á
fræðasviðinu þar sem kynntar eru nýjar aðferðir fyrir nákvæma flokkun
myndgagna af mjög hárri vídd. Niðurstöðurnar, sem fengust með um-
fangsmiklum tilraunum á margs konar raunverulegum gögnum af mjög hárri
vídd, staðfestu gildi aðferðanna. Í lok ritgerðarinnar eru dregin saman og rædd
atriði um framangreindar aðferðir og niðurstöður.
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1
Introduction

This Chapter introduces the dissertation, providing an overview on the re-
mote sensing field, focusing on the hyperspectral images and the challenges
related to their analysis. The objectives and the contributions are then de-
scribed.

1.1 Overview on Remote Sensing

The innate human desire to explore and understand the intangible pushes the
boundaries of the scientific and technical limits, and iswhatmade remote sens-
ing the field of science of today. Aristotle, in De Anima, exposes the nature of
light as a state of actual transparency in a potentially transparent medium and
thus represents the necessary condition for vision. Eighteen hundred years
after him, Leonardo da Vinci sets in detail the principles underlying the “cam-
era obscura”, while Isaac Newton, in 1666, using a prism proves that the light
could be dispersed into a spectrum of colours, and using a second prism, the
color could be re-combined into white light, giving birth to the science and
art of “drawing with light”, broadly known as “photography”. Not long after,
the first photograph in history of humanity was taken byNiepce (1827), while
Gaspard-Félix Tournachon (Nadar) took in 1858 the first aerial photograph
from a balloon from an altitude of 1,200 feet over Paris. New methods and
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technologies for sensing of the Earth’s surface going beyond the traditional
black and white aerial photograph, required a new, more comprehensive term
to be established. The term remote sensing came to fill in this gap, initially in-
troduced in 1960. Remote Sensing (RS) is the field of science that includes
all those activities necessary for the observation, acquisition and interpreta-
tion of information related to objects, events, phenomena or any other item
under investigation, without making physical contact with the object, event,
or phenomenon under investigation. Since the launch of the first satellite for
space exploration (Sputnik-1) in the late fifties, advances in the satellite tech-
nology burst, offering a multitude of spaceborne and airborne platforms with
on-board sensors able to detect a great number of heterogeneous sources of
information, for the study not only of distant celestial objects but also for the
Earth Observation (EO).

Figure 1.1: Honoré Daumier (French,

1808-1879). Nadar Élevant la Pho-

tographie à la Hauteur de l’Art, May

25, 1862. Brooklyn Museum photo-

graph, 2004.

Remote sensing systems collect data by de-
tecting the energy that is reflected from an ob-
ject or area under investigation. Considering
the electromagnetic radiation as the principal
physical carrier of information, a main differ-
entiation of remote sensing systems is based on
the typology of the source of energy exploited.
Depending on whether these systems measure
the radiation that is naturally available, or the
energy used to illuminate the target under in-
vestigation is emitted by the sensor, are defined
as passive or active, respectively. Passive sen-
sors rely on the energy provided by the Sun,
which is either reflected, or absorbed and then
re-emitted from the Earth’s surface. While the
reflected energy (e.g., visible radiation) is avail-
able onlywhen the Sun illuminates the Earth, the emitted energy (e.g., thermal
infrared radiation) can be detected at any time, as long as the amount of energy
is large enough to be recorded. Examples of the most popular passive sensors
are cameras, scanning sensors and microwave radiometers. Active sensors in-
stead, emit the energy required to illuminate the target under investigation,
and then detect the backscattered radiation. Examples of broadly used active
systems are theRAdioDetectionAndRanging (RADAR)andLightDetection
And Ranging (LiDAR). In this case, being the sensor the source of radiation,
the data acquisition can be performed at any time.
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The vast variety of available sensors, which provide data either in image or
signal formats, allows to tackle a large number of applications with remark-
able advantages. In general, each family of sensors is characterised by prop-
erties such as spatial, spectral, radiometrical and temporal resolutions, which
are strictly related to their physical implementation resultingmore or less suit-
able for a precise application. This entails the development of advanced tech-
niques for data processing and interpretation that are sensor and application
dependent. Space exploration is the RS domain that leads by far the techno-
logical advances, providing important know-howalso for theEarthmonitoring
and for its understanding as a celestial object. Another main application is re-
lated to the environmental monitoring, where remote sensing techniques are
used for studyinghumanactivities, such as urbanplanning, agriculture landus-
age, and natural phenomena, such as damage assessment due to earthquakes
or floods, eruptions, climate change (e.g. glaciers), deforestation. Protected
areas with fragile ecosystems can be studied by means of non-invasive remote
sensing-based monitoring, without carrying any risk of environmental dam-
age, replacing in this way costly field campaigns. Other important applications
includemeteorology, national security and natural resourcemanagement. The
dissemination of remote sensing data is another important topic and is strictly
connected to geographic information systems (GIS). Such platform allows re-
mote sensing data obtained by different sources to be combined in order to
make the information readily understandable to the final users.

1.2 Introduction toHyperspectral Images

Earth remote sensing includes data collection on the environment, geology,
climate, and other characteristics of the Earth by means of sensors positioned
in the air or in Earth orbit. An important distinction between the systems
broadly used to this end, refers to the coverage of electromagnetic spectrum.
Focusing on passive optical systems, the sensor acquires data as in image for-
mat, detecting a portion of the electromagnetic radiation reflected from the
Earth’s surface in a range of wavelengths that includes the visible, near-infrared
and short-wavelength infrared regions of the electromagnetic spectrum.

The sensor system, for instance the scanner, is composed by detectors that
scan the scene and store the radiance detected as a quantised sample of the
continuous data stream, forming a pixel characterised by a digital number, DN.
To createmulti-channel images that show specific portions of the EMfield, the
detected beam is split into different spectral components by inserting a system



18 1. Introduction

of spectral filters and optical components (e.g., prism, grating). For a more
detailed review on sensor systems and different typology of scanners, please
refer to [87, 91, 92]. According to the characteristics of the scanner, sensor
systems are distinguished by their different resolutions, which also define the
characteristics of the acquired images. Theminimum size of an object that the
sensor is able to distinguish from the ground represents the spatial resolution,
and depends on the altitude of the sensor and its angle of view (i.e., the an-
gle subtended by the sensor), which is defined in terms of Instantaneous Field
Of View (IFOV). In digital imaging, the resolution is limited by the pixel size.
The spectral resolution is theminimumwavelength at which the instrument is
sensitive, while the radiometric resolution is defined as the minimum energy
able to be detected by the sensing system. The intrinsic radiometric resolu-
tion of a sensor depends on the detector’s signal to noise ratio. In a digital
image, the radiometric resolution is limited by the number of discrete quan-
tisation levels used to digitise the continuous intensity value. Considering a
three-dimensional space (x, y, λ), where x and y are spatial coordinates and λ
the spectral coordinate, each pixel is the integral of the radiance in a small vol-
ume (cube). The minimum value obtained by the integral represents the ra-
diometric resolution, whereas the spatial resolution is represented by the size
of a cube in the plane (x, y). The spectral resolution is the minimum band-
width on which the measured radiation is integrated (Figure 1.2). Although
the acquisition system could detects signals with high resolutions, it counts
on various critical points due to physical constraints and instrumental limi-
tations. Indeed, the acquisition of the images is usually affected by the sen-
sor’s noise, bad pixel location and atmospheric contribution, requiring differ-
ent levels of pre-processing in order to ensure the image quality in terms of
spectral, spatial and radiometric accuracy [87] andmake the data available for
further analysis. According to criteria that include spectral range, spectral and
spatial resolutions and number of bands, the acquired images are identified
as panchromatic, multispectral and hyperspectral. Panchromatic images are
mono-channel data, which spatial resolution ismaximisedwith a consequently
minimisation of the spectral resolution. In such images, the high geometrical
detail permits objects on the ground to be represented in detail, however, the
informationof the target’s spectral characteristic results poor,meaning that ob-
jects of different nature can be represented in the same range of pixel values,
making their discrimination difficult to achieve. In multispectral images, the
augmented spectral dimension, which is represented by a few wide spectral
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The grid of pixels that constitutes a digital image is achieved by a combination of  scanning in
the cross-track direction (orthogonal to the motion of the sensor platform) and by the platform
motion along the in-track direction (Fig. 1-10) (Slater, 1980). A pixel is created whenever the sen-
sor system electronically samples the continuous data stream provided by the scanning. A line
scanner uses a single detector element to scan the entire scene. Whiskbroom scanners, such as the
Landsat TM, use several detector elements, aligned in-track, to achieve parallel scanning during
each cycle of the scan mirror. A related type of scanner is the paddlebroom, exemplified by AVHRR
and MODIS, with a two-sided mirror that rotates 360°, scanning continuously cross-track. A signif-
icant difference between paddlebroom and whiskbroom scanners is that the paddlebroom always
scans in the same direction, while the whiskbroom reverses direction for each scan. Pushbroom
scanners, such as SPOT, have a linear array of thousands of detector elements, aligned cross-track,
which scan the full width of the collected data in parallel as the platform moves. For all types of
scanners, the full cross-track angular coverage is called the Field Of View (FOV) and the corre-
sponding ground coverage is called the Ground-projected Field Of View (GFOV).9  

FIGURE 1-9.  Comparison of the spatial and spectral sampling of the Landsat TM and AVIRIS in the VNIR
spectral range. Each small rectangular box represents the spatial-spectral integration region of one image
pixel. The TM samples the spectral dimension incompletely and with relatively broad spectral bands, while
AVIRIS has relatively continuous spectral sampling over the VNIR range. AVIRIS also has a somewhat
smaller GSI (20m) compared to TM (30m). This type of volume visualization for spatial-spectral image
data is called an “image cube” (Sect. 9.9.1).

9. Also called the swath width, or sometimes, the footprint of the sensor.
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Figure 1.2: Comparison of the spatial and spectral sampling of the Landsat TM and AVIRIS in the VNIR

spectral range. Each cell represents the spatial-spectral integration region of one pixel. The sampling

of the spectral dimension operated by the Landsat TM results incomplete with relatively broad spectral

bands, while the spectral sampling in the case of AVIRIS is relatively continuous over the VNIR range

[92].

channels that cover wide portions of the electromagnetic spectrum, provides
useful information on the nature of the targets and facilitates their discrimina-
tion and classification. In hyperspectral images, the spectral resolution is fur-
ther improved, where the spectral information is maximised, providing data
characterised by hundreds of narrow and contiguous spectral-channels. Con-
sequently, each pixel can be represented as a vector in which a given value cor-
responds to the radiation at a given spectral band. The high dimensionality
of this vector intrinsically provides a finer representation of the spectral signa-
ture of the target, leading to a better discrimination among different materials
with respect tomultispectral images, which are characterised by only few spec-
tral channels (Figure 1.2). Moreover, recent technological advances in sensor
technology have led to the development of a new generation of hyperspectral
sensors able to provide images with improved spatial resolution. For instance,
an image acquired byHyperion sensors (mounted onEO-1 satellite) has a spa-
tial resolution of 30 m, while ROSIS-3 (airborne spectrometer) can provide
images with a spatial resolution of 1.7 m if the acquisition is taken at the alti-
tude of 3 km. CASI-1500 can provide a data cube of 144 spectral bands with
a spectral resolution of 1.25 m. From these few examples, we can see that the
contextual information, becomes an important source of information that can
be exploited for distinguishing different objects on the ground. Due to these
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Table 1.1: Technical characteristics of some hyperspectral sensors developed over last years [30].

Sensor Manufacturer Platform No. of Spectral Spectral
bands resolution range

Hyperion NASA GSFC Satellite 220 10nm 0.4-2.5 μm
MODIS NASA Satellite 36 40nm 0.4-14.3 μm
CHRIS Proba ESA Satellite up to 63 1.25nm 0.415-1.05 μm
AVIRIS NASA JPL Aerial 224 10nm 0.4-2.5 μm
HYDICE Naval Research Lab Aerial 210 7.6nm 0.4-2.5 μm
PROBE-1 Earth Search Science Aerial 128 12nm 0.4-2.45 μm
CASI 550 ITRES Research Ltd Aerial 288 1.9nm 0.4-1 μm
CASI 1500 ITRES Research Ltd Aerial 288 2.5nm 0.4-1.05 μm
SASI 600 ITRES Research Ltd Aerial 100 15nm 0.95-2.45 μm
TASI 600 ITRES Research Ltd Aerial 64 250nm 8-11.5 μm
HyMap Intergrated Spectronics Aerial 125 17nm 0.4-2.5 μm
ROSIS-3 DLR Aerial 115 4nm 0.43-0.85 μm
EPS-H GER Corporation Aerial 133 0.67nm 0.43-12.5 μm
EPS-A GER Corporation Aerial 31 23nm 0.43-12.5 μm
DAIS 7915 GER Corporation Aerial 79 15nm 0.43-12.3 μm
AISA Eagle Spectral Imaging Aerial 244 2.3nm 0.4-0.97 μm
AISA Eaglet Spectral Imaging Aerial 200 - 0.4-1.0 μm
AISA Hawk Spectral Imaging Aerial 320 8.5nm 0.97-2.45 μm
AISA Dual Spectral Imaging Aerial 500 2.9nm 0.4-2.45 μm
MIVIS Daedalus Aerial 102 20nm 0.43-12.7 μm
AVNIR OKSI Aerial 60 10nm 0.43-1.03 μm

properties, hyperspectral images have beenwidely exploited in different appli-
cations, ranging from forestry management, pollution detection and mineral
exploration. Table 1.1 provides a summary of the most commonly used sen-
sors usually mounted on aircraft or spacecraft, reporting the principal spectral
characteristics.

1.3 Hyperspectral Image Classification: Challenges

TheEarthObservation domain entails numerous open research issues to over-
come, ranging from thehardware technology itself to thehigher level data anal-
ysis algorithms for the remote sensing image understanding. Focusing on the
later, remote sensing image classification emerges as one of the major chal-
lenges. Image classification refers to the process of identifying the diverse ob-
jects, materials or items of interest with common properties that are grouped
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Figure 1.3: General scheme of a supervised image classification approach. Available prior information

can be used in both the classification stage and the data processing stage.

into the so-called “classes” of coverage present on the ground of the investi-
gated area of interest. Product of this process is a thematic map, where pixels
are characterised by a given label, usually represented by a colour or symbol,
used to uniquely identify the items within a class. A general scheme of image
classification is illustrated in Figure 1.3, in which available information can be
exploited in both the data processing and the classification stage. If on the one
hand the burst of informative content conveyed in hyperspectral images, rep-
resented by both high spectral and spatial resolutions, provides the base for
obtaining high accuracy in the identification of different land-covers, on the
other hand it introduces a number of challenges that need to be efficiently ad-
dressed.

First, the high dimensionality of the data causes a variety of issues in hy-
perspectral classification referred to in literature as the “curse of dimension-
ality”. The high dimensionality, which is represented by the spectral dimen-
sion, makes the analysis computationally expensive, limiting the exploitation
of traditional classification approaches, usually employed in multispectral im-
age analysis. In the context of supervised classification, in which labelled sam-
ples are used in the classification process, the ratio between the number of
available training samples (which is usually small) and the spectral dimension
(which is high), affects the generalization capability of the classifier. In general,
it has been observed that, beyond a certain point, the inclusion of additional
features, while keeping the number of training samples constant, leads to a de-
crease of both the accuracy and the generalization of the classification process.
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In the machine learning domain, this behaviour is known as the Hughes phe-
nomenon (named after Gordon F. Hughes) [54].

Second, the increase of the spatial resolution in the new generation of spec-
trometers introduces other important issues in the analysis and classification
of hyperspectral images. The high geometrical detail of the scene leads to the
presence of objects that are composed by several spatial correlated pixels, re-
sulting in an increase of the intraclass variability [13]. The aforementioned
phenomenon decreases the effectiveness of the analysis when only the spec-
tral information is considered, enforcing the need of strategies that integrate
the analysis of both spectral and contextual domains in order to maximize the
exploitation of the information combined in these images.

1.4 Objectives of this Dissertation

The research work presented in this dissertation aims at investigating and
defining novel techniques for the analysis and supervised classification of re-
mote sensing hyperspectral images. In particular, the focus is on the investi-
gation and optimisation of strategies, based on the use of independent com-
ponent analysis (ICA) and morphological operators, for the extraction and
integration of both spectral and spatial information contained in hyperspec-
tral images. In recent studies, ICA proved its effectiveness in extracting useful
information to address the hyperspectral image classification task. However,
many issues related to the computational cost and how to effectively extract
class-specific information, need to be further investigated. Morphological op-
erators, such as morphological attribute profiles and their multi-channel and
multi-attribute extensions, proved to be effective inmodelling the spatial char-
acteristics. However, issues such as parameter tuning in filtering, need to be
addressed, in order to obtain a reliable and representative image decomposi-
tion. The high dimensionality of the profiles, which leads to a high intrinsic
information redundancy and thus to theHughes phenomenon, is still an open
issue.

Aiming at overcoming the aforementioned issues and limitations that affect
the analysis of hyperspectral image classification, the following objectives are
defined:

• to deeply investigate the behaviour and performance, in terms of com-
putational cost and execution time, as well as classification accuracy, of
themost widely used ICA algorithms in the remote sensing field, under
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different experimental set-ups.

• to develop a novel strategies to limit the Hughes phenomenon for hy-
perspectral image classification by exploiting ICA.

• to design an innovative technique for spatial information extraction by
using morphological attribute profiles, while addressing the informa-
tion redundancy issue.

• to move towards a fully automatic approach to the selection of filtering
parameters used for the computation of attribute profiles.

• to define a methodology that integrates both spectral and spatial infor-
mation within a classification scheme.
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1.5 Organization of theDissertation

This dissertation is organised as follows:
Part I provides an introduction to the remote sensing field and the context

in which the dissertation is developed.
Chapter 1 introduces the remote sensing field, providing a description of both
the challenges and the objectives addressed in this thesis.
Chapter 2 presents an overview of the state-of-the-art in spatial and spectral
information extraction domains. Moreover, it provides the theoretical back-
ground on independent component analysis and morphological operators.

Part II includes the strategies developed for spectral information extraction
based on the exploitation of ICA.
Chapter 3presents a thorough studyon theperformances of different indepen-
dent component analysis algorithms for the extraction of class-discriminant
information in remote sensing hyperspectral image classification.
Chapter 4 describes a novel feature reduction technique based on ICA, whose
aim is to extract subsets of class-specific independent components for the
hyperspectral image classification.

Part III presents the contributions of this dissertation on spectral-spatial
analysis for hyperspectral image classification.
Chapter 5 introduces the novel concept of reduced attribute profiles as an
optimised version of the morphological attribute profiles. This Chapter
provides a solution to both the high dimensionality and the information
redundancy issues that affect the morphological attribute profiles.
Chapter 6 presents a new methodology that combines the findings in
Chapter 4 and Chapter 5, fusing the spectral and spatial information for
hyperspectral image classification.
Chapter 7 introduces a step towards a fully automated procedure for building
the attribute profiles, presenting a novel automatic strategy for threshold
selection.

Finally, Chapter 8 concludes this dissertation remarking its most important
findings, and discussing on the most prominent future research directions.



2
Background and RelatedWork

This Chapter provides an overview on the most widely used spectral and
spatial techniques developed over the last years in pattern recognition, ma-
chine learning and image processing, for the analysis of hyperspectral im-
ages. Then, the theoretical background on both independent component
analysis and morphological operators is provided.

2.1 Introduction

Image classification in hyperspectral remote sensing images is a complex task
that employs a number of processes aiming at addressing the challenging is-
sues that emerge from the nature of the hyperspectral images. Considering
the spectral domain, each single pixel is considered as an independent entity of
information. The high dimensionality makes the analysis computationally ex-
pensive, while theHughes’ phenomenon (curse of dimensionality) [54] arises
when the ratio between the number of available training samples and the num-
ber of spectral channels is small. This affects the generalization capability of
the classifier. Most studies in the current literature address the curse of di-
mensionality issue by exploiting feature extraction and feature selection tech-
niques, aiming at decreasing the dimensionality of the feature space by retain-
ing themost useful information. Other issues arisewhen hyperspectral images

25
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with improved spatial resolution, where the scene is characterized by objects
composed by groups of pixels highly correlated, are considered. The improved
detail increases the complexity of the image, adding a certain spectral variabil-
ity to thepixels that belong to the sameobject or classThecomplexity increases
by increasing of the spatial resolution. In this context, approaches based only
the spectral information result less effective, providing classificationmapswith
high uncertainty, especially for those classes with limited number of samples.
Therefore, in order to minimise the uncertainty of the classification, the con-
textual information should be extracted and included in the analysis. In this
Chapter, an overview of the most widely used techniques for dimensionality
reduction and spatial information extraction approaches is presented, focusing
on independent component analysis and mathematical morphology, which
are the techniques that will be considered in this dissertation.

2.2 RelatedWork

2.2.1 Overview on Dimensionality Reduction Approaches

High-dimensional data sets present many mathematical challenges as well as
some opportunities, and are bound to give rise to new theoretical develop-
ments. One of the problems with high-dimensional datasets is that, in many
cases, not all themeasured variables are “important” for understanding the un-
derlying phenomena of interest. Dimensionality reduction can be seen as the
process of deriving a set of degrees of freedom, which can be used to repro-
duce most of the variability of a data set. Dimensionality reduction has a long
history as an approach to data visualisation, and for extracting key low dimen-
sional features. Apart from teaching us about the data, dimensionality reduc-
tion can lead us to bettermodels for inference. It can be divided into twomajor
components, the feature selection and the feature extraction.

In the feature selection approach, the selectionof a subset of the original fea-
ture set is usually obtained according to the evaluation of a fitness function fol-
lowed by a search strategy. A number of statistical distance measures [43, 87]
such as divergence, Bhattacharyya distance, Jeffries-Matusita ( JM) distance
and mutual information [49], are used to assess the separability and / or the
mutual dependency among class distributions based on the available training
set. Once the criterion function is chosen, a search strategy is needed in or-
der to identify the features that better fulfil the criterion function. Considering
the high spectral dimension of hyperspectral data (usually around hundreds of
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spectral channels) an exhaustive search strategy would result to be not feasible
from the computational perspective. Sub-optimal strategies are broadly used,
such as the Sequential Backward Selection (SBS) [71] and the Sequential For-
ward Selection (SFS) [107] methods. The first method performs a top-down
search where the final feature subset is built up by starting from the complete
set of features, while the secondmethod applies a bottom-up search strategy, in
which the starting point is an empty set. Both the methods are affected by the
so-called nesting effect [58, 86]. In case of SBS technique, the discarded fea-
tures cannot be selected again and added to the subset while in the case of SFS
the selected features cannot be discarded in a secondmoment. The Sequential
Forward Floating Selection (SFFS) and the Sequential Backward Floating Se-
lection (SBFS) [86] methods were proposed to overcome the nesting effect.
The steepest ascent and the fast constrained [93] algorithms, in which the fea-
ture selection problem is represented by amulti-dimensional binary space, are
effective strategies that have shownbetter results compared toSFFS technique,
even if the required computation time is slightly higher. Furthermore, heuris-
tic search algorithms based on the evolutionary concept of natural selection,
such as Genetic Algorithms (GAs) [46], are also used in several fields as well
as in hyperspectral image analysis, where multi-objective fitness function can
be used to find useful spatially invariant features for image classification [14].

Based on the task to be accomplished, i.e., compression, target detection,
identification of endmembers and classification, several feature extraction
techniques have been developed, ranging from supervised to unsupervised ap-
proaches. Supervised techniques based on discriminant analysis [43] have
been widely used for the extraction of class-discriminative feature. Discrimi-
nantAnalysis Feature Extraction (DAFE) [43] reduces the dimensionality op-
timizing the Fisher‘s ratio. The criterion of class separability is usually formu-
lated by using within-class, between-class, and mixture-scatter matrices. The
main advantage is that the approach is distribution-free. A drawback of this
method is that if the difference in the class-mean vectors is small, the features
chosen are not reliable. If one mean vector is very different from the others,
its class will eclipse the others in the computation of the between-class co-
variance matrix, making the feature extraction process less effective. Decision
Boundaries Feature Extraction (DBFE) [64], which is based on the definition
of discriminantly redundant features and discriminant informative features, is
able to predict the minimum dimension of the feature subset able to achieve
the same classification accuracy as in the original feature space and find the
necessary feature vectors. Both the DAFE and DBFE demand a large num-
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ber of training samples for a high-dimensional space, since the computation
of the class-statistical parameters is performed at full dimensionality. Con-
sidering the case of a limited number of training samples, Projection Pursuit
(PP) [59] was proposed in order to avoid the computation at full dimension-
ality, which is done in a lower-dimensional subspace. The method achieves
the dimensionality reduction by optimizing a projection index, which is the
minimum Bhattacharyya distance among the classes, taking into considera-
tion first-order and second-order statistics. Non-parametricWeighted Feature
Extraction (NWFE) [63] was proposed as a trade-off between the advantages
and limitations of theDAFEandDBFE techniques. Themethodweights every
sample to compute the local means and defines new non-parametric between-
class and within-class scatter matrices to get more features. However, these
techniques are affected by a higher computational load, making the all feature
extraction process considerably slow.

Among unsupervised approaches, which do not take advantage of prior
information, the Karhunen-Loève transform [43] (also known as Principal
Component Analysis, PCA), is one of the most widely used approach. It is
able to concentrate the most significant part of the information in a new fea-
ture space composed by few principal components. The analysis of eigenval-
ues is used to determine the significance of principal components (PCs), so
that the dimensional reduction is achieved by selecting the PCs according to
the magnitude of their eigenvalue, achieving excellent data compression [68]
and a good representation in terms of minimum mean square error. Similar
approaches are the Maximum Noise Fraction (MNF) [47] and the Noise-
Adjusted Principal Component (NAPC) [65], which aim at identifying the
projection that maximizes the signal to noise ratio. Independent Component
Analysis (ICA) [24, 56] is a well-know unsupervised source separation pro-
cess that aims at identifying a linear transformation that minimizes the statis-
tical dependence between its components by only considering the observa-
tion of their mixture signals. Non-linear versions of the aforementioned ap-
proaches obtained through kernelmethods [95], such as kernel PCA [39, 90],
kernelMNF [80] and kernel ICA [3], have also been developed and proposed
in the literature for the analysis of hyperspectral data. Such methods handle
non-linearities bymapping the data into high dimensional feature space via the
kernel function and then performing a linear analysis in that space. The main
drawback of such methods is the higher computational cost required with re-
spect to the linear versions.
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2.2.2 Overview on Spatial Information Extraction

In order to minimize the uncertainty of the classification, the information re-
lated to the spatial context needs to be included in the analysis. In the last
years, methods based on spectral and spatial analysis have been developed to
address such issue. Image segmentation, which is a procedure of partitioning
of the image into homogeneous regions, has been widely explored in hyper-
spectral image analysis for the inclusion of spatial information. Several tech-
niques can be found in the recent literature based on different strategies, for
instance, watershed [100], minimum spanning forest [101] and multinomial
logistic regression [10]. A different strategy is to employ advanced classifiers
that combine apposite kernels for the spectral and spatial information into
multi-kernel learning [102] and composite kernels [67] strategies. Such ap-
proaches, however, rely on features that are extracted ad hoc before the ker-
nel computation. Approaches based on graph theory within a statistic frame-
work, such as Markov random fields (MRFs), have also been exploited and
optimized [66, 77], since the standard definition of the neighbour system in
high-dimensional context makes the problem computationally intractable. A
simple but effective way to include spatial information is the extraction of spa-
tial features by applying filters (e.g, morphological operators, Gabor filters,
wavelets decompositions) to the spectral bands. The obtained features are
then used to enrich the input space that is used to learn the classifier. Recently,
several promising methods have been developed as part of the mathematical
morphology, which is a framework for the analysis of spatial structures based
on set theory, lattice algebra, and integral geometry. These methods have
been used in retrieving andmodelling contextual information (e.g., geometry,
shape, and edges) in particular for hyperspectral images [15, 40]. Morpho-
logical operators, such as attribute profiles (APs) [26], have been successfully
exploited in the RS domain to include the spatial information in the data anal-
ysis, in tasks such as land-cover classification [27] and change detection [35].
APs provide a multi-level decomposition of the original image, which is ob-
tained by applying a severe thinning / thickening filtering [11] on connected
regions. APs are an interesting tool as they extract contextual information ac-
cording to specific attributes, i.e., measurements that can be performed on a
connected region. APs have many advantages: a) Different attributes can be
defined, providing a variety of different image decompositions; b) Attributes
can be measurements that are not related to the geometry of the region (e.g.,
standard deviation); c)The filtering is performed on connected regions, while



30 2. Background and Related Work

the geometrical detail of the unfiltered regions is fully preserved. This high
flexibility renders the APs a powerful tool for extracting complementary spa-
tial information of the structures in the scene.

2.3 Independent Component Analysis

The high dimensionality of hyperspectral data can provide a better character-
ization of the spectral behaviour of different land-covers, however the redun-
dancy of information should be detected and discarded in order to improve
the discriminant analysis. In general, in pre-processing steps, a PCA transfor-
mation is applied to the data in order to reduce the dimensionality and obtain
a better representation of the whole dataset with a smaller signal to noise ra-
tio. Due to the nature of this orthogonal transformation, the approach results
to be not class discriminant, obtaining a new feature space in which, usually,
only the first few components are considered, neglecting possible information.
Moreover, in the case of non-Gaussian processes, as the class distributions are
in hyperspectral data, the variance may not be the quantity of interest. Based
on higher order statistics, ICA could be used as a feature extraction approach
for extracting the most representative components from hyperspectal images.

ICA is a well known unsupervised blind source separation technique, ex-
tensively used in several fields, aimed at finding statistically independent com-
ponents (ICs) by only considering the observation of mixture signals. The
problem of blind separation has been widely investigated in various field
such as biomedical signal analysis and processing, e.g., in electroencephalog-
raphy (EEG), in electrocardiography (ECG), in electromyography (EMG),
in magnetoencephalography (MEG) and in electronystagmography (ENG)
[60, 70, 82, 98, 104]. ICA-based methods are also applied to geophysical
data processing, data mining, speech enhancement, image recognition and
wireless communications [23]. During the most recent years, ICA has also
received attention in the hyperspectral remote sensing data analysis, in par-
ticular for feature reduction [106], spatial unmixing [79], and classification
[29, 32, 81, 105].

2.3.1 The Linear Mixing Model

In this section, we provide an introduction to the theoretical background on
ICA. Let us consider n mixtures of random variables x1, x2, ..., xn which are
defined as a linear combination of n random variables s1, s2, ..., sn. Themixing



2.3. Independent Component Analysis 31

model can be written as:

xi = ai,1s1 + ai,2s2 + ...+ ai,nsn i = 1, ..., n. (2.1)

In terms of random vectors, the model can be rewritten as:

x = As, (2.2)

where x = [x1, x2, ..., xn]T is the observed vector, A is the unknown mix-
ing matrix with element aij, i, j = 1, ..., n (which are real coefficients) and
s = [s1, s2, ..., sn]T is the unknown source vector. By estimating the unmixing
matrix of A, called W, the s vector that represents the independent compo-
nents (ICs) is obtained by:

s =Wx. (2.3)

The estimation of the ICA model is possible if the following assumptions and
restrictions are satisfied: 1) the sources are statistically independent; 2) the
independent components must have a non-Gaussian distribution; 3) the un-
known mixing matrix A is assumed square and full rank. Under these condi-
tions, the ICA model can be rewritten as:

y = Wx ≃ s, (2.4)

whereW ≃ A−1. The problem can be solved by estimatingW to obtain y that
represents the best possible approximation of s. Nevertheless, since W and s
are unknown in the ICA model, three ambiguities necessarily hold:

1. The variances (energies) of the independent components cannot be de-
termined. That is because any scalar multiplier in one of the sources si
could always be canceled by dividing the corresponding column ai ofA
by the same scalar.

2. For similar reasons, also the order of the independent components can-
not be ranked.

3. The sign cannot be determined. Thismeans that dark andbright regions
may have the same meaning, which is not critical in most applications.

In the remote sensing literature, many ICA algorithms based on the maxi-
mization of different criteria can be found. Among them, the most used ap-
proaches are FastICA [55], JADE [16] and Infomax [5]. A theoretical defini-
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tion of these algorithms will be provided in Chapter 3, where a detailed com-
parison among them is presented.

2.4 MorphologicalOperators

Mathematical Morphology (MM) is a well-established framework built upon
set theory, lattice algebra and integral geometry, whose operators are exploited
for the investigation of spatial features (i.e., geometry, shape, edges) of geo-
metrical structures present in an image [94, 96]. Many operators have been
presented in the literature and most of them are defined for binary and grey-
scale images. Dilation and erosion are the basic morphological operators.
They are based on a moving window (or kernel), called structuring element
(SE). Let us consider an object in the image as a connected region, which is a
flat area where the pixels have the same value. In general, dilation causes ob-
jects to dilate or grow in size, whereas erosion causes objects to shrink. The
effect of the filtering, i.e., the way objects dilate or shrink, depends upon the
choice of the SE (shape and size). By combining dilation and erosion we ob-
tain the closing and opening operators. Those operators are used to remove
objects that cannot contain the SE, while preserving objects with a similar
shape as the SE. However, a distortion of these objects that remains after the
filtering is introduced, with a consequent loss of information related to the ge-
ometrical characteristics of the objects. This issue can be solved by the intro-
ductionof closing andopeningby reconstruction, which are basedongeodesic
transformations and permit the preservation of the geometrical characteristics
of the objects that are not removed. A further advancement was made by the
introduction of morphological profiles (MP), which is a stack of filtered im-
ages obtained by a sequential application of a morphological filter by recon-
struction with the SE increasing in size at each step. In general, a single ap-
plication of a morphological operator is not enough for representing all the
objects within the scene. TheMP provides amulti-scale decomposition of the
image, which goal is to obtain a better representation of the scene by taking
into account that objects can appear at different scale. The reader is referred to
[94, 96] for a complete background on morphological operators, and to [83]
for the definition of MP. All the aforementioned operators are based on the
use of a SE,making the filtering highly dependent on the shape of the used SE.
A different approach was introduced in [11] with attribute filters, where the
morphological transformation is attribute-based, removing the constraint of
choosing a particular shape of the SE. Consequently, the effect of the filtering
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is not shape-dependent any more, whereas, it is adaptive to the considered re-
gion and its surrounding. In a similar ways as for the morphological filters, it
is possible for the attribute filters to build a multi-scale representation of the
images, i.e., morphological attribute profiles (APs) [26].

2.4.1 Attribute Filters and Tree Representations

A two-dimensional gray-scale image I, which can be defined as amapping from
the image domain E ⊆ into Z, can be fully represented as a set of connected
componentsC, defining a partition πi ofE. ThewayC is defined leads to differ-
ent partitions. If we consider a connected operator ψ, by definition it will op-
erate on I only by merging the connected components of the given set C [88].
Thus, the result of the filtering will be a new partition πψ that is coarser (i.e.,
containing less regions) than the initial one, meaning that for each pixel p ∈ E,
πI(p) ⊆ πψ(I)(p) [78,Chapter 7]. Thecoarseness of thepartition generatedby
a connected operator is determined by a parameter λ (i.e., a size-related filter
parameter). Given two instances of the same connected operator with differ-
ent filtering parameters, ψλi and ψλj , which we denote for simplicity as ψi and
ψj, respectively, there is an ordering relation between the resulting partitions:
πψi ⊆ πψj given λi ≤ λj. Among the different types of connected operators,
attribute filters (AFs) are largely diffused. AFs filter connected components in
C according to an attributeA that is computed on each component. In partic-
ular, the value of an attributeA is evaluated on each connected component in
C and this measure is compared with a reference threshold λ in a binary pred-
icate Tλ (e.g., Tλ := A ≥ λ). In general terms, if the predicate is true the
component is maintained otherwise it is removed. According to the attribute
considered, different filtering effects canbeobtained leading to a simplification
of the image. These effects are driven by characteristics such as the regions’
scale, shape or contrast. Indeed, the high flexibility of the attribute filter relies
on their capability in modelling the spatial information based on any measure
that could be computed on a connected component, ranging from measures
that are purely geometric (e.g. area, length of the perimeter, image moments,
shape factors), to textural ones (e.g. range, standard deviation, entropy), and
more.

Connectedoperators, such as attribute filter, can be implemented relying on
representations of an image as a tree (e.g., the min- and max-tree) [89], which
is a data structure that can represent each connected region as a node at differ-
ent grey-levels. Splitting the transformation process in three distinct phases,
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the tree data representation is able to increase the filtering efficiency. In the
first phase, the tree structure is created, where the connected components are
identified and the hierarchical structure between nodes is defined. In the sec-
ond phase, the criterion is evaluated at each node, preserving the nodes that
satisfy a given binary predicate T, and removing the others. The final phase
is the image restitution, where the pruned tree is converted back to the im-
age. Attribute filters are among those filters that can be easily implemented on
tree representations since they natively work on connected components (con-
versely to connected filters based on structuring elements). According to the
way the set of connected components C is defined, different tree representa-
tions of the same image and hence different filters are obtained. A max-tree
representation is obtained by considering the upper level set U(f) = {X :
X ∈ C([f ≥ λ]), λ ∈ Z}. By pruning the max-tree, an anti-extensive filter
is obtained (i.e., bright regions will be removed), thus, if the operator is also
idempotent and increasing, it leads to an opening. Analogously, amin-tree rep-
resentation and an attribute closing operator are obtained by considering the
lower level setL(f) = {X : X ∈ C([f ≤ λ]), λ ∈ Z}, in which the connected
components are defined according to a decreasing ordering relation. A differ-
ent tree representation is given by the inclusion tree (or tree of shapes) in which
the components are defined by a saturation operator that fills holes in compo-
nents. A hole in a region X ∈ C is defined as a component that is completely
surrounded byX. The inclusion tree is constructed by progressively saturating
the image starting from its regional extrema (i.e., local maxima and minima in
the image) until reaching only a single component fully covering E. The inclu-
sion tree can equivalently beobtainedbymerging theupper and the lower level
sets of an image [17]. The sequence of inclusions induced by saturation deter-
mines the components in the tree and their links defining the hierarchy. Since
the saturation operator is contrast invariant (i.e., bright and dark regions will
be treated the same), the filters operating on this tree will be self-dual (quasi
self-dual in the case of discrete images).

2.4.2 Attribute Profiles

Let I be a digital grey-scale image andZn (n = 2, i.e., 2D images) its definition
domain. A morphological transformation, ψ, is a mapping from a subset, E, of
the imagedomain, I, to the samedefinitiondomain,E, withψ(I)→ Zn. A pro-
file Π(I) is defines as a sequential filtering performed by considering a family
of increasing criteriaT = {Tλ : λ = 0, ..., L}, withT0 = true∀C ⊆ E, where
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λ is a set of reference scalar values used in the filtering and C is a connected
region in the image. Following this definition and considering a max- and a
min-tree, the attribute opening profile, ΠγT , and the attribute closing profile,
ΠφT , can be defined as follows:

ΠγT(I) =
{
ΠγTλ : ΠγTλ = γTλ(I), ∀λ ∈ [0, ..., L]

}
(2.5)

ΠφT(I) =
{
ΠφTλ : ΠφTλ = φTλ(I), ∀λ ∈ [0, ..., L]

}
, (2.6)

where φTλ and γTλ represent a morphological attribute closing and attribute
opening, respectively. The attribute profile, Π(I), is obtained by concatenating
the opening and closing profiles as follows:

Π(I) =
{
Π−

φT(I), I,ΠγT(I)
}
, (2.7)

where I = ΠφT0 = ΠγT0 correspond to the original grey-scale I, and Π−
φT(I)

represents the ΠφT(I) in reverse order. It can be seen that the profile results in
a vector of 2L+ 1 images.

Another important operator that is extensively used in this work is the so-
called differential attribute profiles (DAP), Δ(I). It is obtained by computing
the derivative of the AP, and it shows the residual of the progressive filtering,
i.e., the connected regions that have been filtered between two adjacent levels
of the AP, and their relative grey values. The DAP can be defined as follows:

Δ(I) =
{
ΔφT(I),ΔγT(I)

}
. (2.8)

In this case, the obtained profile is represented by a vector of 2l images. A con-
cept that worth mentioning is the possibility to have non-increasing criteria,
which leads to more general definitions of opening and closing, with φTλ and
γTλ denoting the thickening and the thinning profiles, respectively.

Analogously, when considering the contrast invariant operator ρ, which is
based on the inclusion tree, the profile Πρ, named self-dual attribute profile
(SDAP) [18, 28], can be obtained:

Πρ(I) =
{
ΠρTλ : ΠρTλ = ρTλ(I), ∀λ ∈ [0, ..., L]

}
(2.9)

with ΠρT0 (I) = I.
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2.4.3 Extension to Multi-Channel and Multi-Attribute

Morphological operators are in general non-linear connected transformations
computed on an ordered set of values. This means that any their extension to
multivariate values is an ill-posed problem. The usual strategy is to apply the
operator to each channel separately and fuse or create a stack of the obtained
profiles. However, in the case of hyperspectral images, which feature space
has a high dimensionality, this strategy becomes unattainable. In [7], a mor-
phological operator was applied to a sub-space of the original data obtained by
using PCA, and only the first most informative principal components (PCs)
were considered. The concatenation of each obtained MPs resulted in a new
structure, called extended morphological profile (EMP).

Analogously, the same procedure can be adopted for the APs case [27] and
SDAP. Let I be a multi-channel data composed of r features. The extended
morphological attribute profiles (EAP) is defined as the concatenation of the
AP built on each feature f:

EAP(I) =
{
Π(f1),Π(f2), ...,Π(fr)

}
. (2.10)

A further extension, which is based on the flexibility of the AP in considering
any possible measure applicable to a connected region as criterion, is the con-
catenation of the EAPs obtained by different attributes, which results in the
definition of the extended multi-attribute profile (EMAP) [27]:

EMAP(I) =
{
EAP(I)a1 , EAP(I)a2 , ..., EAP(I)aq

}
, (2.11)

where ai represents the i-th given attribute, with i = 1, 2, ..., q. When the
EMAP is built, a multiple presence of the original feature f is included in the
profile. This is avoided by including them once only in the first EAP and not
include them at all in the later EAPs.
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3
Analysis of ICAAlgorithms

This Chapter presents a thorough study on the performances of different
Independent Component Analysis (ICA) algorithms for the extraction
of class-discriminant information in remote sensing hyperspectral image
classification. The analysis aims to address a number of important issues
regarding the use of ICA in the RS domain. Three scenarios are consid-
ered and the performances of the ICA algorithms are evaluated and com-
pared against each other, in order to reach the final goal of identifying the
most suitable approach to the analysis of hyperspectral images in super-
vised classification.

3.1 Introduction

ICA is a well known unsupervised blind source separation technique, exten-
sively used in several fields, aimed at finding statistically independent compo-
nents (ICs) by only considering the observation of mixture signals. When ap-
plied to hyperspectral data, ICA extracts the source components that generate
themixed signal measured by the sensor and the independent components re-
fer to the different classes presented in the scene. Several algorithms have been
proposed in the literature for implementing ICAbased on themaximization of
different criteria. Different algorithms provide diverse feature sets for classifi-
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cation. However, only a limited number of studies addresses the comparative
performance of these algorithms. The available studies are in most cases re-
lated to biomedical signals analysis [25, 52, 62, 103] yielding results that are
not consistent in terms of the most efficient ICA algorithm. All the review
papers in the aforementioned domain agree on the identification of the three
most prominent algorithms, that are Infomax [5], FastICA [55] and JADE
[16]. However, an in-depth comparative study that addresses simultaneously
fundamental questions on the properties and the efficiency of ICA implemen-
tations for the analysis of hyperspectral remote sensing images is still missing.

In the literature, a common approach is to apply ICA after dimensionality
reduction, which is usually carried out by PCA. This approach is applied in
[61, 81], where PCA is performed firstly and then the ICA is applied to the
most important principal components with the accumulative variance of 99%
and 98.58%, while the remaining components are discarded. In other studies
[29, 105, 108], JADE andFastICA are used to extract subsets of ICs by exploit-
ing the PCA phase implemented in the algorithms for dimensionality reduc-
tion. PCA aims to globally decorrelate the data and maximize the variance.
Themain limitation of PCA is that it is based on using the global second order
statistics for the whole image. Consequently, the sensitivity to critical classes
composed of a small number of pixels is reduced [22]. It is also well known
that the criterion for retaining a certain number of components based on the
calculation of the accumulated sum of eigenvalues is not an effective measure
in terms of class discriminant, as demonstrated in [21]. Thus, PCA should not
be used as a pre-processing tool for classification purposes [85]. Note that, ac-
cording to the studies conducted in [56], ICA results obtained after PCA are
in general not sufficient to estimate the ICs, since after the use of PCA only in-
formation on a subset of orthogonal components is available. In general, some
weak ICs may be hidden in the dimensionality reduction process. An attempt
to identify a better pre-processing approach than PCA is performed in [32],
where a Noise-adjusted Principal Components (NAPC) is used for dimen-
sionality reduction. The obtained results show that the principal components
from theNAPCcan bettermaintain the object information in the original data
than those from PCA, allowing the ICA to provide better object classification.

The aim of this work is twofold; first, the identification of an effective strat-
egy for the extraction of class-discriminant features with ICA. In the analysis
different supervised feature extraction and selection approaches to dimension-
ality reduction (DR), which are investigated as pre-processing before applying
ICA, are considered. Second, the addressing the lack in the literature of an ex-
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tended comparative study on the threemost frequently used implementations
of ICA in the broader field of signal processing: Infomax, FastICA and JADE,
aiming at assessing themost efficient and reliablemethodology to followwhen
employing the ICA technique for accurate and cost efficient classification of
hyperspectral images. Importantly the computational cost is assessed in rela-
tion to the number of samples used for the source estimation.

3.2 Independent Component Analysis (ICA)

In this work, three different implementations of ICA are investigated for fea-
ture extraction. In particular, the analysis focus on the Infomax, FastICA and
the JADE algorithms, which are briefly introduced in the next subsection. As
mentioned previously, the scope of this study is to present a complete com-
parison among the most widely used ICA algorithms in the remote sensing
field. For the sake of scientific concreteness, the exploitation of more recent
implementations of ICA that are used in the broader signal processing field
is attempted. To the best of author’s knowledge, one of the most recent im-
plementation of ICA stated to outperform FastICA is RobustICA [109]. This
method is presented in the next section. However, since the computational
cost was excessively high, the method is evaluated in only one experiment and
the results are discussed in the corresponding section.

An important issue that characterizes ICA transformation is the non prior-
itization of the ICs. Accordingly, multiple ICA applications result in differ-
ent IC sets, which are diverse both in the order of appearance and in the con-
tent, thus making a performance comparison inconsistent. This behaviour is
caused by the fact that ICA uses random vectors as initial projections. Wang
and Chang addressed this problem in [106] proposing an initialization algo-
rithm in conjunction with the virtual dimensionality (VD) [21] to generate
an appropriate set of initial projections. The algorithm was designed for Fas-
tICA. However, in order to exploit the original setup without modifying the
algorithms, the identity matrix of size n × n has been chosen as a common
initialization for the ICA transformation. It is possible that in some cases the
identitymatrix givesworse results than a random initialization in terms of con-
vergence time. The advantage in using a constant initialization is the consis-
tency of the obtained components and their ordering. In this Section, a briefly
introduction of the ICA algorithms considered in this study is provided.
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3.2.1 Infomax

Infomax [5] is based on the minimization of the mutual information between
the input and output of a neural network with non-linear units. The mutual
information of a pair of random variables x and y can be defined as:

I(x; y) = H(x)− H(x | y), (3.1)

whereH(x | y) is the conditional entropy defined as:

H(x | y) = H(x, y)− H(y). (3.2)

Considering the entropy as a measurement of uncertainty and the mutual in-
formation as a measurement of the dependency between random variables,
the matrix W is determined so that the mutual information among the com-
ponents of the transformed vector yi is minimized. The convergence is quite
slow since the inverse matrix has to be computed at each iteration.

The algorithm’s implementation used in this work is a part of the EEGLAB
package [31]. The algorithm performs ICA decomposition using the logistic
infomax ICA algorithm developed in [5] with a natural gradient feature as de-
fined by Amary, Cichocki and Yang [2]. The algorithm performs a sphering
(whitening) of the data in order to increase the convergence rate. This means
that the unmixing matrix that is processed becomes

W = weights matrix · sphere matrix. (3.3)

3.2.2 FastICA

The FastICA algorithm proposed in [55] is a very efficient and robust method
for ICA. It exploits the negentropy J, which is a measurement of non-
Gaussianity that gives a measure of the distance from normality. It is defined
as:

J(y) = H(yGaussian)− H(y), (3.4)

with y being a random vector, H(y) the entropy of y and H(yGaussian) the en-
tropy of aGaussian random vector with the covariancematrix equal to the one
of y. Negentropy is always nonnegative and is zero only in case of Gaussian
distribution. Because of the complexity of (3.4), the followingmoment-based
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approximation has been introduced [56]:

J(y) ∝ [E{(G(y)} − E{G(v)}]2 , (3.5)

where y is a standardized non-Gaussian variable, v is a standardized Gaussian
variable and G is a non-quadratic function. The learning rule for FastICA is
based on a fixed-point iteration scheme [55] that has been found to be con-
siderably faster than using gradient descent methods for solving ICA. Before
the FastICA algorithm can be applied, the input vector data should be cen-
tered and whitened. The scheme finds the maximum of the non-Gaussianity
ofwTx. The basic fixed-point iteration for the estimation and decorrelation of
one single independent component is:

wi+1 ← E{xg(wT
i x)} − E{ǵ(wT

i x)}wi

wi+1 ← wi+1 −
i∑

j=1

(wT
i+1wj)wj,

(3.6)

where g(u) is a non-quadratic function that represents the derivative of the
non-quadratic functionG in (3.5). The algorithm converges when the old and
new values of w (where w represents one row of W), point in the same di-
rection. The FastICA algorithm can be used to perform projection pursuit as
well, thus providing a general-purpose data analysis method that can be used
both in an exploratory fashion and for the estimation of independent compo-
nents (or sources). The algorithm can estimate the ICs in two different ways:
1) deflationary orthogonalization, which is shown in (3.6), 2) symmetric or-
thogonalization, which is shown in (3.7). The first approach performs orthog-
onalization using the Gram-Schmidt method, estimating the ICs one by one,
while the second approach estimates all the ICs in parallel.

In our experiments, the second approach is used mainly for two reasons:
1) to avoid the cumulative error in the estimation, and 2) to estimate the ICs
by a parallel computation, thus making the algorithm faster. In this case, the
basic fixed-point iteration in FastICA with symmetric orthogonalization is as
follows:

wi+1 ← E{xg(wT
i x)} − E{ǵ(wT

i x)}wi

W← (WWT)−
1
2W with W = (w1, · · · ,wm)

T.
(3.7)
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3.2.3 JADE

The Joint Approximate Diagonalization of Eigenmatrices ( JADE) [16] is a
widely used andparameter-free implementation of ICA. In the pre-processing,
a whitening transformation is performed on the mixtures, which makes the
original components uncorrelated and thus independent in terms of second
order statistics, and the unmixingmatrixWorthogonal. The approach exploits
the concept of cumulant tensor, which can be seen as a generalization of the
covariance matrix. Let us consider the whitened unmixing matrix W and the
cumulant tensor F(M), which is a linear symmetric operator. We can define
an eigenmatrixM such that

F(M) = λM, (3.8)

where every eigenmatrix has the formM = wnwT
n , wherewn is a rowof the un-

mixingmatrixW. Thus, knowing the eigenmatrix of the tensor, it is easy to ob-
tain the independent components. The main problem is that the eigenvalues
are not distinct, and thus, the matrices cannot be uniquely defined. Consid-
ering that F is a linear combination in the form wnwT

n , it can be observed that
the matrixW diagonalizes F(M) for anyM. This means that it is important to
choose a set of n different matricesMi that makes the matricesWF(Mi)W

T as
diagonal as possible. The diagonality can bemeasured as the sum of squares of
diagonal elements and is defined as:

JJADE(W) =
∑
i

∥diag(WF(Mi)W
T)∥2. (3.9)

One method of join approximate diagonalization of the F(Mi) is to maximize
JJADE.

3.2.4 RobustICA

RobustICA [109] is a recent method for deflationary ICA, in which the kur-
tosis is the general contrast function to be optimized. The method performs
the optimization by a computationally efficient technique based on an opti-
mal step size (adaption coefficient). The technique computes algebraically
(i.e., without iterations) the step size globally optimizing the kurtosis in the
search direction at each extracting vector update. In the derivation of the algo-
rithm, no-simplifying assumptions concerning specific type of sources (real
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or complex, circular or noncircular, sub-Gaussian or super-Gaussian) are in-
volved. Themethod presents a number of advantageswith significant practical
impact when compared to other kurtosis-based algorithms such as the original
FastICA and its variants:

• Pre-whitening is not required, so that the performance limitations it im-
poses can be avoided and the sequential extraction (deflation) can be
carried out, e.g., via linear regression.

• Sub-Gaussian or super-Gaussian sources can be extracted in the order
specified by the user if theGaussianity character of the sources is known
in advance.

• The optimal step-size technique provides some robustness to the pres-
ence of saddle points and spurious local extrema in the contrast func-
tion.

• In the experimental analysis performed in [109], the method shows a
very low computational cost measured in terms of source extraction
quality versus number of operations, even without pre-whitening.

For further details about the implementation, it is suggested referring to [109].

3.3 Design of Experiments and Investigations

The analysis presented in this Chapter aims at identifying which ICA imple-
mentation provides better results in terms of classification accuracy and com-
putational cost. This is studied in three scenarios:

• Low-dimensional space: This represents the most common scenario in
remote sensing image analysis, where ICA is exploited. In general a
small subset of features is obtainedbyperformingdimensionality reduc-
tion on a high-dimensional feature space. The ICs are then extracted by
processing the reduced subset. In the analysis the use of a number of fea-
ture extraction and feature selection methods used for dimensionality
reduction was considered. The obtained results are compared against
the general case in which PCA is exploited for feature reduction. The
goal is to analyse and compare the performance of the three ICA algo-
rithms applied to different subsets of features, identifying which pair of
ICA algorithm and feature reduction technique gives the best classifica-
tion accuracy.



46 3. Analysis of ICA Algorithms

• High-dimensional space: Theperformance of ICA is evaluated by consid-
ering the entire data set. The obtained feature space is then reduced by
selecting the most informative features by exploiting a supervised fea-
ture selection algorithm. These features are then used in classification.
The aim is to investigate the effectiveness of the ICA algorithms in ex-
tracting useful independent components directly from the original fea-
ture space, without initially projecting the data into a smaller subspace.

• Spatial down-sampling: In this scenario the ICA is applied to subsets of
image samples obtained by spatially down-sampling the original image.
The goal is to investigate how the performance of the ICA is affected by
decreasing the number of samples used for the source estimation, and
thus if it is possible to achieve classification accuracies that are similar
to those obtained by using the entire data set. The exploitation of a re-
duced spatial subset would also positively affect the computational time
of the ICA.

In the analysis, basedon the above scenarios three experiments are designed
as described below.

3.3.1 Experiment I: Low-Dimensional Space

Hyperspectral images are usually pre-processed by reducing the feature space
in order to decrease the computational cost, discard redundant information
and mitigate the noise contribution. Regarding the use of ICA for feature re-
duction, the most common strategy in remote sensing image analysis is to ap-
ply the PCA technique to the original image followed by the ICA. PCA is used
to extract the high-variance components while filtering out the low-variance
components. It is worth noting that the use of PCA is encouraged by the fact
that it is implemented in the ICA as part of the algorithm for whitening pur-
poses (see Section 3.2), where the user candecide to perform thedimensional-
ity reductionby choosing the number of components to be retained. However,
the PCA transformation provides a subset of components that after selection
does not preserve class-separability. This also affects the independent com-
ponents. In this experiment a different strategy is proposed and investigated.
The aim is to provide a reduced feature set where the class-information is pre-
served and used as input to the ICA, avoiding the use of the PCA-based reduc-
tion approach. To this purpose, considering the context of supervised classi-
fication, the dimensionality reduction is performed by exploiting three super-
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vised feature selection and extraction techniques, namely the Steepest Ascent
(SA) search algorithm (in which the Jeffries-Matusita distance is used as the
criterion function in feature selection), the Local FisherDiscriminantAnalysis
(LFDA), and theNon-parametricWeighted Feature Extraction (NWFE).The
strategy adopted in the experiment consists of three steps: a) dimensionality
reduction; b) application of the ICA to the obtained feature subset; c) evalua-
tion in terms of classification accuracy of the effectiveness of the extracted ICs
in discriminating the classes. The procedure is repeated for every ICA algo-
rithm, considering different subsets of the retained components, starting from
a minimum of 5 components up to 40 components. For simplicity, the differ-
ent strategies are referred as DR-approach-ICA, where DR-approach is one of
the feature extraction/selection techniques aforementioned (e.g., in the case
of NWFE the strategy would be NWFE-ICA). The background information
on the feature extraction and feature selection approaches that are used in this
work is provided in Section 3.4.2.

3.3.2 Experiment II: High-Dimensional Space

Experiment II aims at investigating the effectiveness of the independent com-
ponents obtained by considering the entire original hyperspectral data set,
without performing any feature reduction (which reduces both redundancy
and noise but may introduce information loss). The strategy adopted in the
experiment is defined as follows: a) ICA is applied to the entire data set and
all the components are retained; b) the most informative components are se-
lected by applying the SA feature selection algorithm; c) the effectiveness of
the subset is assessed in terms of classification accuracy. Also, in this case we
take advantage of the training samples in order to select the best independent
components. JADE’s computation load is extremely high when the dimen-
sionality of the feature space becomes large. This is due to the fact the JADE
implementation has to estimate the initial vector of n eigenmatrices whose di-
mension is n × n (see Section 3.2.3), where n is the number of the sources to
estimate. When n increases, the size of the initial projection increases as the
cube of n, requiring the availability of a significant quantity of physical mem-
ory. For these reasons, JADE is not employed in this experiment and in general
it should be avoided when a high-dimensional space is considered.
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3.3.3 Experiment III: Spatial Down-Sampling

The third experiment aims at investigating the effectiveness of the ICA in ex-
tracting informative components when applied to a down-sampled data set
(i.e., only a portion of the total number of pixels is analysed). The analysis
consists of seven sub-experiments. In the first three sub-experiments the sam-
pling rate is decreased by three different integer factors: 2, 3, 4. In the last
four sub-experiments, different sizes of training samples are considered. The
experiment has been conducted considering both scenarios 1 and 2, i.e., low-
dimensional space and high-dimensional space, respectively. However, the re-
sults obtained from the analysis of the Botswana and Hekla data sets in high-
dimensional space are very poor, especially when Infomax is used. Thus, for
this scenario, only the results obtained by using FastICA performed on the
Salinas data set are reported.

3.4 Experimental Setup

3.4.1 ICA parameter tuning

In the experimental analysis, an implementation of each ICA algorithm based
on MATLAB (© The MathWorks, Inc.) scripting language is used.

Infomax

As mentioned in the Section 3.2, the initial weight matrix is initialized as an
identity matrix. The training stops when the weight-change goes below the
predefined threshold value, which is set by default at 10−6 when n < 33 and
10−7 otherwise, or after a maximum number of ICA training steps of 512.

FastICA

Different parameters need to be tuned. The non-quadratic function g(u) is set
as tanh(au)with a = 1, which is proven a good approximation of negentropy
[56]. In order to avoid a random initialization, an identity matrix of size n× n
is given in input as initial guess. In this work, the symmetric ortogonaliza-
tion is chosen for the reasons explained in Subsection 3.2.2. The algorithm
stops when the convergence is reached, meaning that the weight-change is less
than 10−4, or when the maximum number of iterations, which is set at 1000,
is reached.
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JADE

this technique is parameter free, i.e., no tuning is needed. The only experimen-
tal parameter that can be tuned is related to the stopping criterion, which is
thresholded at 10−6 by default.

RobustICA

the method requires the tuning of few parameters. Two different approaches
of deflation are possible: 1) via ortogonalization, 2) via linear regression. In
this work deflationary ortogonalization is used. The threshold for statistical-
significant termination test is set at 10−4, while 1000 is the maximum number
of possible iterations for each extracted source.

3.4.2 Feature Reduction

This sectionprovides a briefly introduction to the feature reduction techniques
used in this work.

Steepest Ascent (SA) Feature Selection

The supervised feature selection is based on the sub-optimal Steepest Ascent
search algorithmusing as criterion function the Jeffries-Matusita distance. The
strategy is based on the search for constrained local extremes in a discrete bi-
nary space. More information can be found in [93].

Local Fisher Discriminant Analysis (LFDA)

It is a linear supervised dimensionality reduction method. It combines the
ideas of Fisher’s Discriminant Analysis (FDA) [41] and Locality Preserv-
ing Projections (LPP) [51]: between-class separability is maximized while
within-class local structure is preserved. LFDA has an analytic form of the
embedding matrix and the solution can be easily computed just by solving a
generalized eigenvalue problem. Therefore, LFDA is scalable to large data sets
and computationally reliable. More information can be found in [99].

Nonparametric Weighted Feature Extraction (NWFE)

the NWFE algorithm [63] takes advantage of the desirable characteristics of
DAFE andNonparametric Discriminant analysis (NDA) [44], while avoiding



50 3. Analysis of ICA Algorithms

their shortcomings. DAFE is fast and easy to apply, but it is able to extract only
L−1 features, withL the number of classes. This limitation reduces the perfor-
mance particularlywhen the difference inmean values of classes is small. NDA
focuses on training samples near the required decision boundary, but it does
not perform well when either the covariance matrices of the classes are not
equal. The main idea of NWFE is to assign different weights to every sample
to compute the weighted means and to define new nonparametric between-
class and within-class scatter matrices to obtain more than L− 1 features.

Principal Component Analysis (PCA)

it is one of the most widely exploited unsupervised approaches in feature re-
duction. The basic idea of PCA is to find the linearly transformed components
that provide the maximum amount of variance possible. Usually the first few
components account for a large proportion of the total variance of data and
are used to reduce the dimensionality of the original data. However, all com-
ponents are needed to accurately reproduce the correlation coefficients within
the original image. PCA is an unsupervised technique and as such does not
include label information for the data.

3.4.3 Classification

Support vector machine

In the experimental analysis, a support vectormachine (SVM) classifier is em-
ployed for classification purposes, using aRadial Basis Function (RBF) kernel.
The algorithmexploited is the LIBSVM[20] library developed forMATLAB®.
The one-against-one multi-class strategy is used. The regularization parame-
ter C and the kernel parameter γ are estimated by exploiting a grid-search us-
ing a 10-fold cross-validation. This means that the training set is first divided
into 10 subsets of equal size, and then each subset is tested using the classi-
fier trained on the remaining 9 subsets. In order to identify the best parame-
ters, exponentially growing sequences ofC and γ are considered. In particular,
C = {10−2, 10−1, ..., 104} and γ = {2−3, 2−2, ..., 24}.

Random forest

In the experiment II, the classification results obtained by using SVMare com-
pared to the ones obtained by using Random Forest (RF) [12, 57] classifier.
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This experiment is an exploratory one, in order to validated the role of the clas-
sifier in the entire process. Having seen that, the pattern of the classifiers be-
haviours follow similar trends, without loss of generality the entire experimen-
tal design is conducted using the SVM classifier. On the contrary of SVM,
random forest does not require any parameter tuning.

3.4.4 Data Sets’ Description

The experimental analysis is carried out on three real hyperspectral data sets
characterized by different spatial and spectral resolutions. For each data set,
the training samples and the test samples are generated in such way that the
two sets results mutually exclusive (i.e., no shared samples between the two
sets).

Salinas: The data set is described in Appendix A.1. For Salinas data set,
the training set used in the experiments is made up of 15% randomly selected
samples from each class.

Hekla: The data set is described in Appendix A.2. In the case of Hekla data
set, the training set is generated by a random selection of 50 samples from each
class.

Botswana: The data set is described in see Appendix A.3. In the case of
Botswana, the training set is generated by random selection of 20% of samples
from each class.

3.5 Experimental Results andDiscussion

In this section, the results of the experiments described in Section 3.3 are pre-
sented and discussed in depth. For each experiment, the performance is re-
ported in terms of classification accuracy, kappa coefficient and the computa-
tional time required for the convergence of the ICA. The individual ICA algo-
rithms are compared and analysed using the three performancemeasures. For
a better understanding of the obtained results, the overall classification accu-
racies are given in percentage (%), while the comparison between accuracies
is given in percentage points (pp), which are simply the arithmetic difference
of two percentages.
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3.5.1 Experiment I: Low-Dimensional Space

The results of the analysis conducted in experiment I are depicted inFigure 3.1.
The taxonomy is based on the different DR approaches, showing for each of
them the behaviour of the classification accuracy for the three ICA algorithms
considering different subsets of components. Table 3.1 reports the best results
obtained by the ICA algorithms for each strategy, showing the number of re-
tained components, the overall accuracy (OA), the kappa coefficient (k) and
the computational time (CPU time).

For the Salinas data set (Figures 3.1, left column), the strategy LFDA-ICA
obtains the best classification accuracy. In this case, all the ICA algorithms per-
form similarly in terms of classification accuracy and number of components
required. JADE algorithmoutperforms the others in terms of overall accuracy,
which reaches a score of 95.48%. However, in terms of computational cost,
FastICA requires about 30% less with respect to JADE and 60% less CPU time
with respect to Infomax. NWFE-ICA appears to be the second best strategy.
In this case, JADE and FastICA provide very similar trends, obtaining as high-
estOA94.99%and95.07%, respectively, while the performance of Infomax are
strongly affected when increasing the number if ICs. All the ICA algorithms
obtain the highest accuracy with 20 components. In terms of computational
cost, JADE requires about 20% less CPU time than FastICA and about 75%
less than Infomax. In the case of the PCA-ICA strategy, the maximum accu-
racy obtained by JADE is 95.10% (25 ICs). This requires an higher CPU time
thanFastICAand Infomax, whichprovided as highestOA94.28%and94.62%,
respectively (20 ICs). However, considering the global trend, JADE provides
the best classification accuracies with respect to FastICA and Infomax. Also in
the case of SA-ICA, JADEprovides in general a better global trendwith respect
to the other two ICAs. In terms of computational time, JADE and FastICA re-
quire equal CPU time, while Infomax results to be the slowest.

Considering the results obtained for Hekla data set (see Figures 3.1, second
column), the NWFE-ICA approach achieves the best classification accuracy
compared to all the other strategies. All the three ICAs provide the best per-
formance when 5 components are retained. The obtained OAs are very close
to each other, however, in terms of computational cost, JADE requires about
60% less than FastICA andmore than 95% less than Infomax. The LFDA-ICA
strategyprovides thebestOAwhen10 components are considered, with an ac-
curacy slightly higher compared to the one obtained with the PCA-ICA. On
the other hand, considering different subsets of components, PCA-ICA shows
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Figure 3.1: Experiment I: comparison of the overall classification accuracy obtained by Infomax, Fas-

tICA and JADE for different DR strategies (SA-ICA, LFDA-ICA, NWFE-ICA, PCA-ICA) and different num-

ber of features: (left column) Salinas data set; (middle column) Hekla data set; (right column) Botswana

data set.
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a better trend than the LFDA-ICA. In terms of computational time, JADE and
FastICA require similar computational time, which is about 80% less than In-
fomax. The SA-ICA strategy provided similar (and in some cases better) re-
sults with respect to the LFDA-ICA even thought it is the approach that gave
the lowest maximum classification accuracy. Each ICA algorithm reached its
best performance with 5 components. JADE and FastICA obtained very close
results in terms of both OA and CPU time, while Infomax provided a slightly
lower OA requiring a much higher computational time.

In the analysis of the Botswana data set (Figures 3.1, third column), the
best accuracies are obtained when applying NWFE-ICA and PCA-ICA. The
former provided the highest accuracy when 10 components were considered,
where JADE and Infomax provided a slightly higher accuracy than FastICA.
However, the computational time required by JADE is about 50% less than
FastICA and 90% less than Infomax. A similar analysis can be done for both
PCA-ICA and SA-ICA strategies. LFDA-ICA approach provided the lowest
classification accuracy with respect to the other strategies. Also in this case,
the three ICA algorithms obtain very similar classification accuracies, while
the computational time required by JADE is about 50% and 60% smaller than
that required by the FastICA and the Infomax, respectively.

In general, the use of feature extraction algorithms for pre-processing
achieves higher classification accuracies than to using feature selection. The
reason might be that a better minimization of the noise contribution is
achieved when the feature extraction algorithms are employed. Considering
the best results reported in the Table 3.1 (highlighted in gray), for each data
set JADE achieved accuracies that are slightly higher than those of the other
ICA algorithms. The highest improvement was achieved in case of Botswana,
where JADE outperformed Infomax improving the OA by 1.384pp In terms
of computational time required to achieve the best classification accuracy, the
JADE’s performance is comparable to the one obtained by FastICA. Infomax
resulted in general the worst performing technique, both from the computa-
tional time and the classification accuracy points of view.

In this experiment, another technique that was recently proposed in the
neuroscience field, RobustICA [109], has been used. In [109], RobustICA
is presented and compared to the kurtosis-based FastICA, considering the de-
flationary orthogonalization (i.e., the components are extracted one by one).
The study is applied to the biomedical problem of atrial activity (AA) extrac-
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Table 3.1: Classification results obtained in Experiment I (Figure 3.1). Only the best results are reported.

Classification results obtained on the original spectral channels are given for comparison. ”No. feat.”

denotes the number of feature retained, ”OA (%)” denotes percentage overall accuracy, ”k” indicates

the kappa coefficient and ”Time” gives the computational time in seconds.

SA-ICA LFDA-ICA

Spectr. Infomax FastICA JADE Infomax FastICA JADE

Sa
lin

as

No. feat. 204 15 15 20 20 20 20
OA (%) 94.55 93.68 93.87 94.23 95.30 95.39 95.48
k 0.91 0.93 0.93 0.94 0.90 0.95 0.95
Time (s) - 12.70 7.20 7.22 17.17 7.10 10.56

H
ek
la

No. feat. 157 5 5 5 10 10 10
OA (%) 93.89 89.65 89.93 90.06 90.88 90.96 91.14
k 0.80 0.88 0.88 0.86 0.90 0.90 0.90
Time (s) - 44.71 2.38 1.62 34.90 3.40 3.95

Bo
ts
w
an
a No. feat. 145 10 10 5 15 20 15

OA (%) 93.42 93.32 93.28 93.74 90.44 91.28 91.82
k 0.93 0.93 0.93 0.93 0.90 0.91 0.91
Time (s) - 26.90 2.50 0.49 47.50 35.08 18.02

NWFE-ICA PCA-ICA

Infomax FastICA JADE Infomax FastICA JADE

Sa
lin

as

No. feat. 15 15 15 20 20 25
OA (%) 94.58 94.99 95.07 94.28 94.62 95.10
k 0.94 0.94 0.95 0.93 0.93 0.95
Time (s) 14.33 4.52 3.57 17.54 7.91 29.70

H
ek
la

No. feat. 5 5 5 10 5 10
OA (%) 94.57 94.79 94.81 90.64 90.43 91.21
k 0.94 0.94 0.94 0.89 0.89 0.90
Time (s) 26.91 1.42 0.58 32.96 1.87 3.85

Bo
ts
w
an
a No. feat. 10 10 10 10 10 10

OA (%) 94.43 94.00 94.47 93.89 93.93 94.24
k 0.94 0.94 0.94 0.93 0.94 0.94
Time (s) 42.28 9.51 3.01 39.58 4.65 4.45

tion in atrial fibrillation (AF) electrocardiograms (ECGs). In that context,
RobustICAwas claimed to bemore efficient than FastICA in providing better
sources with a lower computational cost. In [74]RobustICAwas compared to
JADE for ECG artefacts removal from Electroencephalogram (EEG) signals.
Also in this case, RobustICA was preferred than JADE. Even if the scope of
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Figure 3.2: Experiment I: comparison of the overall classification accuracy and computational cost

obtained by Infomax, FastICA, JADE and RobustICA versus the number of features, considering the

best DR strategies: (first column) LFDA-ICA for Salinas data set, (second column) NWEFE-ICA for Hekla

data set; (third column) NWFE-ICA for Botswana data set.

the study is not to exploit all the existing implementations but only the most
widely used in the remote sensing field, an exploratory experiment was car-
ried out using the aforementioned implementation. Taking into account these
results, the algorithm is tested and compared to the best cases (i.e., LFDA-
ICA for Salinas, NWFE-ICA for Hekla and Botswana). Figure 3.2 shows the
comparison between the ICA algorithms, while the best obtained results are
reported in Table 3.2 From the experimental analysis, it can be seen that in
termsof classification accuracies, the performanceofRobustICA is in linewith
the ones obtained by FastICA, Infomax and JADE approaches, providing the
best accuracy among the other ICA algorithms in case of Botswana. However,
the required computational cost is much higher, resulting in a extremely slow
computational time (especially in case of Botswana), which seems to increase
linearly with the number of extracted components. This methods have been
used in neuroscience field but never in remote sensing field. However, the na-
ture and the properties of the hyperspectral images are different from signals
analyzed in neuroscience field. Considering the obtained results and because
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Table 3.2: Classification results obtained in Experiment I considering RobustICA algorithm and the

best DR strategies (Figure 3.2). Only the best results are reported. ”No. feat.” indicates the number

of feature retained, ”OA (%)” denotes percentage overall accuracy, ”k” gives the kappa coefficient and

”Time” gives the computational time in seconds.

Infomax FastICA JADE RobustICA

Salinas: LFDA-ICA

No. feat. 20 20 20 25
OA (%) 95.30 95.39 95.48 95.35
k 0.90 0.95 0.95 0.95
Time (s) 17.17 7.10 10.56 688.74

Hekla: NWFE-ICA

No. feat. 5 5 5 10
OA (%) 94.57 94.79 94.81 94.25
k 0.94 0.94 94 0.94
Time (s) 26.91 1.42 0.58 529.01

Botswana: NWFE-ICA

No. feat. 10 10 10 15
OA (%) 94.43 94.00 94.47 94.59
k 0.94 0.94 0.94 0.94
Time (s) 42.28 9.51 3.01 1151.5

of the significant computational cost required even when feature reduction is
performed in pre-processing, the use of these techniques does not seemappro-
priate for hyperspectral images. Thus it will not be considered further in the
experimental analysis.

3.5.2 Experiment II: High-Dimensional Space

Following the design of the experiment I, also in this case the overall accu-
racies are entirely depicted in Figure 3.3, while the best results are reported
in Table 3.3. This Table shows for each chosen algorithm (in this case only
Infomax and FastICA), the number of retained components, the overall ac-
curacy (OA), the kappa coefficient (k) and the computational time, which is
the estimation cost of the ICA on the entire original data set. Both of the re-
sults obtained by using SVMandRF classifiers are reported. From the analysis
of the results obtained by using SVM, it can be noticed that FastICA outper-
forms Infomax for all the three data sets, increasing the OA by 2.164pp in the
case of Salinas and by 1.334pp in the case of Botswana. In the case of Hekla,
the results are quite similar, showing a little improvement of 0.56pp for Fas-
tICA. The kappa coefficient follows a similar trend as well. FastICA requires
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Figure 3.3: Experiment II: comparison of the overall classification accuracy obtained by Infomax and

FastICA versus the number of features by using (top row) SVM, and (bottom row) RF, for Salinas, Hekla

and Botswana data sets.

a CPU time, which is one order of magnitude less with respect to Infomax,
confirming the superiority of the fixed-point algorithm. The use of the entire
data set, without performing dimensionality reduction, assures that there is
no information loss in the process, as it may happen when any feature extrac-
tion/selection technique is used. Considering the case of Salinas, the selection
of 35 ICs provided an OA of 94.12%, which is quite close to the one obtained
in the first experiment by the SA-ICA approach (94.23%) (see in Table 3.1).
However by applying ICA to the entire data set there is no noise reduction, the
extracted components carry noise which affects the final classification results.
This becomesmore evident in the experimental results obtained for theHekla
and Botswana data sets, in which the accuracies are quite low with respect to
the ones obtained in the first experiment.

Considering the results obtained by using RF, the overall accuracies are in
general lower than the ones of SVM. However, the obtained results follow a
similar trend of the ones obtained with SVM in case of Salinas and Botswana,
whereFastICAoutperform Infomax, while in caseofHekla, Infomax is theone
that obtained the highest overall accuracy.
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Table 3.3: Classification results obtained in Experiment II. Only the best results are reported. ”No. feat.”

indicates the number of feature retained, ”OA (%)” denotes percentage overall accuracy, ”k” gives the

kappa coefficient and ”Time” gives the computational time in seconds.

SVM RF

Infomax FastICA Infomax FastICA

Salinas
No. feat. 30 35 30 40
OA (%) 91.96 94.12 90.43 91.89
k 0.91 0.93 0.89 0.91
Time(s) 2253.16 281.22 2253.16 281.22

Hekla
No. feat. 25 20 35 40
OA (%) 82.05 82.58 81.73 79.41
k 0.80 0.80 0.79 0.77
Time(s) 3694.57 2506.31 3694.57 2506.31

Botswana
No. feat. 25 20 35 35
OA (%) 85.33 86.67 83.06 84.60
k 0.84 0.86 0.82 0.83
Time(s) 3028.29 337.19 3028.29 337.19

3.5.3 Experiment III: Spatial Down-Sampling

In this experiment the performances of the ICA algorithms are investigated
and compared when a spatial down-sampling of the ICA’s input data is per-
formed. The analysis presents the results obtained by considering two scenar-
ios.

Low-dimensional space

In this experiment, the three ICA algorithms were tested on the three differ-
ent data sets taking into account only theDR-approach-ICA strategies that gave
the best results in terms of accuracies in the experiment I (see Table 3.1), i.e.,
the LFDA-ICA in case of Salinas data set, and the NWFE-ICA in the case of
both Hekla and Botswana data sets. Table 3.4 reports the number of samples
employed in the experiment. None (all samples) denotes the case in which the
entire image is considered. This coincides with the results obtained in experi-
ment I, and they are reported here for comparison. Ds2x,Ds3x,Ds4x denote a
decrease of the sampling rate of a factor 2, 3 and 4, respectively. Train 1denotes
the initial training sets, i.e., 15% of the ground truth samples in the case of Sali-
nas, 50 samples for each class in case of Hekla, and 20% of the ground truth in
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Table 3.4: Experiment III: description of the data set considered in terms of numbers of samples.

Downsampling Salinas Hekla Botswana

None (all samples) 111104 336000 377856
Ds2x 55552 168000 188928
Ds3x 37035 112000 125952
Ds4x 27776 84000 94464
Train 1 8112 600 644
Train 2 5403 480 482
Train 3 2697 360 323
Train 4 1075 120 161

case of Botswana. Train 2 denotes 10% of the ground truth in case of Salinas,
40 samples for each class in the case ofHekla, and15%of the ground truth sam-
ples in the case of Botswana. Train 3 denotes 5% of the ground truth in case of
Salinas, 30 samples for each class in the case of Hekla, and 10% of the ground
truth samples in the case of Botswana. Train 4 denotes 2% of the ground truth
in case of Salinas, 10 samples for each class in the case of Hekla, and 5% of
the ground truth samples in the case of Botswana. For an easier interpreta-
tion of the global behaviours of the ICA algorithms, the results are reported
as graphs in Figures 3.4-3.6, which show the OAs and the computational time
obtained when different down-sampling factors and training samples are con-
sidered. For a more exhaustive analysis of the effect of the reduction of the
training samples on the performance of the ICA algorithms, two different ap-
proaches are considered. The first approach takes into account a real life situa-
tion, where the same number of training samples for the classifier and the ICA
is considered, In this case, the observed variation of the classification accuracy
trend is caused of the degradation of both the ICs and the effectiveness of the
classifier. In the second approach, the number of the training samples in input
to the ICA varies, while the one in input at the classifier (which coincides with
the original training set (i.e.,Train. 1)), remains the same. Even if this strategy
is unusual, it permits us to evaluate the real effect of the reduction of the train-
ing samples on the performance of the ICA. For each of the Figures 3.4, 3.5
and3.6, the top row reports the results obtained considering the first approach,
the middle row reports the results obtained by the second approach and the
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Figure 3.4: Experiment III in low dimensional scenario: comparison of the overall classification accuracy

provided by (first column) Infomax, (second column) FastICA, (third column) JADE, for different number

of samples on Salinas data set. Top row shows the results obtained by exploiting the first approach (i.e,

the same number of training samples are given as input to both the ICA and the classifier), while the

middle row shows the ones obtained by exploiting the second approach (i.e, the number of the training

samples given as input to the ICA varies, while the one in input to the classifier remains the same). The

bottom row shows the computational time related to the first approach.

bottom row shows the log-lin plots of the computational times (plotted in log-
arithmic scale on the y-axis) for each of the sub-experiment reported in the
top row. The analysis is done for different numbers of components (plotted in
linear scale on the x-axis) retrieved each time.

Focusing on the Salinas data set, the performances of each ICA technique,
obtained by applying a down-sampling of a factor 2, are very close to the ones
obtained by using all the samples. Similarly, the computational times required
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Figure 3.5: Experiment III in low dimensional scenario: comparison of the overall classification accuracy

provided by (first column) Infomax, (second column) FastICA, (third column) JADE, for different number

of samples on Hekla data set. Top row shows the results obtained by exploiting the first approach (i.e,

the same number of training samples are given as input to both the ICA and the classifier), while the

middle row shows the ones obtained by exploiting the second approach (i.e, the number of the training

samples given as input to the ICA varies, while the one in input to the classifier remains the same). The

bottom row shows the computational time related to the first approach.

for the convergence are similar. Improvements in the overall accuracy, and es-
pecially in the computational time, are more evident when higher factors are
considered. In particular, when Infomax is used, the best OA (95.48%) is ob-
tained when the sampling rate is decreased by a factor 3 and 4. While the OAs
are quite similar, the computational times improve with respect to the case in
which all the samples are used. For example the computational time decreased
to 6.47 s by using only the training samples, achieving an OA of 95.46%. Con-
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Figure 3.6: Experiment III in low dimensional scenario: comparison of the overall classification accuracy

provided by (first column) Infomax, (second column) FastICA, (third column) JADE, for different number

of samples on Botswana data set. Top row shows the results obtained by exploiting the first approach

(i.e, the same number of training samples are given as input to both the ICA and the classifier), while the

middle row shows the ones obtained by exploiting the second approach (i.e, the number of the training

samples given as input to the ICA varies, while the one in input to the classifier remains the same). The

bottom row shows the computational time related to the first approach.

sidering FastICA, the best OA (95.43%) was achieved by applying a down-
sampling of a factor 4, while the obtained computational time was 2.31 s. For
JADE, the highest OA (95.53%) is obtained by reducing the sample rate by a
factor 3, halving the computational time (5.74 s)with respect to the casewhen
the entire data set is used (10.56 s).

Analysing the results obtained for theHekla data set, the down-sampling re-
duces the computational times. For Infomax, 6.25 s is the computational time
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Table 3.5: Classification results obtained in Experiment III considering the high dimensional scenario.

The results are related to Salinas data set by using FastICA. ”No. feat.” indicates the number of feature

retained, ”OA (%)” denotes percentage overall accuracy, ”k” gives the kappa coefficient and ”Time”

gives the computational time in seconds.

Ds2x Ds3x Ds4x Training samples
(55552 samples) (37035 samples) (27776 samples) (8112 samples)

No. feat. OA (%) k OA (%) k OA (%) k OA (%) k

5 69.25 0.65 65.98 0.62 65.36 0.61 62.48 0.57
10 87.53 0.86 85.32 0.84 85.22 0.84 84.13 0.82
15 92.43 0.92 89.57 0.88 90.39 0.89 90.45 0.89
20 93.55 0.93 90.91 0.90 91.35 0.90 91.57 0.91
25 93.72 0.93 92.17 0.91 92.06 0.91 91.59 0.91
30 93.78 0.93 92.01 0.91 92.63 0.91 91.27 0.90
35 94.21 0.94 92.62 0.92 91.34 0.90 90.57 0.90
40 93.97 0.93 91.17 0.90 90.89 0.90 90.15 0.90

Time (s) 102.84 84.57 208.88 161.46

reached with a down-sampling of a factor 4, which is a much lower compared
to the 26.91 s obtained in the experiment I. While time improved, the OA re-
sulted 94.83%. The classification performances obtained by using the FastICA
remain the same for all the sub-experiments, while the computational time de-
creased from 1.42 s (obtained in the experiment I) to 0.80 s. The JADE algo-
rithm improved the computational time, which decreased from 0.58 s to 0.036
s when using only the training samples, achieving an OA of 95.00%, which is
slightly higher than the previous OA of 94.81%.

For Botswana data set, the down-sampling does not improve the perfor-
mances of JADE, which achieved a slightly lower OA (94.28 % with 15 com-
ponents) than the one obtained in the experiment I (94.47% with 10 compo-
nents), with a computational time that slightly increased to 4.1 s. A different
behaviour can be noticed for Infomax and FastICA. Both of them decreased
the computational cost, which was reduced by 77% (from 42.28 s to 9.57 s) for
Infomax, and by 50% (from 9.51 s to 4.81 s) for FastICA, without decreasing
the classification accuracies (from 94.43% to 94.51% for Infomax, and from
94.00% to 94.05% for FastICA).

Comparing the only variation in the number of training samples, it can be
seen that a decrease of the number of training samples in the first approach
(top row) strongly affects the classification accuracy. The analysis performed
by varying only the number of training samples given as input to the ICA(mid-
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dle row), keeping constant the number of the training samples in input to the
classifier, shows that the quality of the extracted ICs is not affected, providing
similar trend of classification accuracy for a different number of training sam-
ples. This result points out that a variation in the number of the training sam-
ples affects more incisively the classifier rather than the ICA performance. In
terms of computational time, decreasing the number of training samples coin-
cides in generalwith a decrease of the computational cost. This ismore evident
in the case of Infomax and FastICA, while in case of JADE the computational
cost increases with the number of retained components.

In general, it canbe stated thatwhendimensionality reduction is performed,
down-sampling as a pre-processing approach can contribute to the improve-
ment of the computational time of the ICA algorithms without decreasing the
overall classification accuracy. This finding is significant, especially when the
computational time is an important aspect of the analysis, as is the case of the
analysis of hyperspectral images.

High-dimensional space

The results reported in Table 3.5 show the performances of ICAwhen a spatial
down-sampling of the image is performed before applying ICA in the high-
dimensional space scenario are considered. The convergence capability of the
ICA is strongly affected by the decreased number of input samples when ap-
plied to the entire image, while it fails to converge when very few input sam-
ples are considered. For this reason only the results obtained by using the first
five data sets described in Table 3.4 are considered. For similar reasons, only
the results obtained by applying FastICA on Salinas data set are reported. Ta-
ble 3.5 reports the OA and the k coefficient for different subsets of features,
while the computational time is referred to the total time requested for the
extraction of all the ICs (i.e., 204 ICs). It can be seen that performing a down-
sampling of factor a 2 (meaning that half of the total number of samples are
discarded), the obtained overall classification accuracy (94.21%) is quite sim-
ilar to the one achieved by considering all the samples (94.12%, see Table 3.3),
whereas the computational time for extracting the ICs decreases by 63, 4%.
However, when the down-sampling factor increases, the performance of the
ICA decreases, i.e., the classification accuracy decreases while the required
computational time to converge increases.
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3.6 Conclusions

In this Chapter, a detailed comparison among three widely used ICA algo-
rithms (i.e., Infomax, FastICA and JADE) for hyperspectral image classifica-
tion was presented. The analysis took into account different scenarios in or-
der to compare and identify the best strategy for extracting class-discriminant
components based on the use of ICA.The ICA algorithms were tested in both
low and high dimensional spaces.

In the first scenario, ICA algorithms were tested performing dimensional-
ity reduction with alternative strategies rather than the PCA (which usually
is implemented in conjunction with the ICA algorithms and used for retain-
ing a certain number of components). Supervised feature selection/extraction
techniques have been exploited and compared to the case in which PCA is
used. The results of the analysis pointed out that the exploitation of prior infor-
mation in feature extractionmethods for dimensionality reduction allows ICA
algorithms to provide better feature sets which led to more accurate classifica-
tions. In this scenario, which is themost common in the analysis of hyperspec-
tral images, JADE was the ICA approach that provided the best performance
in terms of classification accuracy, while it provided results comparable to the
ones obtained by FastICA in terms of computational time (in many cases it
was faster). Infomax resulted in general to be the worst in terms of both com-
putational time and classification accuracy.

The second scenario was aimed at investigating the performance of ICA
when the entire data set is considered. Using the entire data set, without ap-
plying any dimensionality reduction, assures that no information is lost be-
fore performing the ICA. The analysis in this scenario showed that FastICA
outperforms Infomax both in terms of computational time and classification
accuracy. In this case, JADE could not be exploited since it requires a mas-
sive computational load when the number of estimated components becomes
high. When the entire data set is considered, there is theoretically no infor-
mation loss. However, the full set of selected components is more noisy, thus
affecting the classification results.

The third scenario showed that the reduction of the number of samples on
which applying ICA can in general improve the ICA convergence speed, with-
out decreasing the classification accuracies. The approach is more effective
in low dimensional spaces, where there are no issues with the Hughes’ phe-
nomenon, especially when the number of training samples given as input to
both the ICA algorithm and the classifier are chosen properly. Indeed, the ex-
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periments showed that SVM is more affected by a decrease of the number of
the training samples than the ICA, which can provide “good” ICs even when
few samples are exploited for the transformation. This observation becomes
very important in applications forwhich the computational time and the num-
ber of available samples are crucial aspects. Consequently, the inclusion of the
analysis of prior information in computational efficient strategies should fos-
ter the development of new ICA-basedmethodologies for the analysis of large
hyperspectral remote sensing images.
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4
Feature Reduction Based on ICA

This Chapter presents a novel feature dimensionality reduction strategy
based on ICA applied on hyperspectral images. An optimized methodol-
ogy aiming at extracting subsets of class-informative independent compo-
nents for hyperspectral supervised classification is proposed and discussed.
The selection of the most representative components is assured by the min-
imization of the reconstruction error, which is computed on the training
samples used for the supervised classification.

4.1 Introduction

The goal of the spectral analysis is to extract informative features that can be
used in the classification task. However, many studies have shown that not all
the spectral space is needed for a good representation of the image. On the
contrary, a part of the spectral space contains information that is noisy and re-
dundant. In the context of hyperspectral image classification, the analysis of
the entire spectral space is a difficult task due to several factors. One of the
main issues is related to the high computational load that is required for the
analysis of high spectral dimensionality data. Another issues is that the ra-
tio between the number of available training samples (usually low) and the
spectral dimension (usually high) is small, affecting the generalization capa-

69
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bility of the classifier [54] (this is known as the Hughes phenomenon). Fea-
ture reduction techniques are usually adopted in order to extract a sub-space
of informative features based on different criteria, while discarding all the rest.
The experimental analysis conducted in Section 3.3.1 shown that when PCA
is used prior to ICA for dimensionality reduction, it provides a sub-set of com-
ponents that, in general, does not preserve class-separability, affecting the in-
dependent components. This was also demonstrated in other studies [22, 32].
In this Chapter, an optimized feature reduction approach, which exploits the
properties of ICA aiming at extracting class-informative components for su-
pervised classification purposes, is proposed. ICA analysis is optimized to ad-
dress the supervised classification task based on the use of prior information
provided by training samples, which are available in the supervised context. In
Section 3.3.3, it was shown that the reduction of the number of samples used
as input to an ICA algorithm can, in general, improve the ICA convergence
speed, without affecting significantly the classification results. That was no-
ticed in particular in a low-dimensional scenario (i.e., dimensionality reduc-
tion was performed prior to ICA), whereas, when the dimensionality reduc-
tion was not considered, the decrease of the number of training samples used
as input to the ICA was affecting negatively the performance of the classifier.
In that case, the issue was to extract class-discriminant features by exploiting
all the training samples in a high dimensional space.

Aiming at finding an optimized approach that effectively exploits the infor-
mation extracted by ICA, in the proposed approach, the ICA is separately ap-
plied to each class in a high-dimensional space (meaning that no dimension-
ality reduction is applied prior ICA), extracting sets of ICs that are strictly de-
pendent on the training samples of each single class. The idea is to extract ICs
that are suitable to represent each specific class. After the ICA decomposition,
the reconstruction error is evaluated in order to identify the best ICs in terms
of class representation. The reconstruction error is, thus, exploited to address
the issue related to the non-prioritization of the extracted ICs, i.e., multiple ap-
plications of ICA provide different IC sets, which are diverse both in the order
of appearance and in content. The final sub-set is then optimized by apply-
ing a feature selection technique based on genetic algorithm approach. Based
on our previous study [36], FastICA resulted the technique that provided the
best performance in extracting the whole sourcematrix, requiring less compu-
tational resources with respect to JADE and Infomax. Therefore, FastICA is
chosen here as the applied ICA decomposition technique.



4.2. Proposed Technique for Feature Reduction 71

Reconstruction 
error estimation

Extraction of  l 
couple (ai ,yi

T)

.  .  .

Optimum mixing 
matrix Aopt

ICA

Reconstruction 
error estimation

Extraction of  l 
couple (ai ,yi

T)

ICA

TR class nTR class 1

Hyperspectral
 data

Supervised
classification

Optimized sub-set of  
features

Final 
classification map

Figure 4.1: General scheme of the proposed technique for feature reduction based on ICA.

4.2 Proposed Technique for Feature Reduction

In this Section, the proposed approach is presented. Figure 4.1 shows the gen-
eral scheme. LetX be the observed data, represented by am×pmatrix, withm
spectral channels and p pixels, whose elements [x1, ..., xm]

T are themixtures of
the observed data, the linear mixing model adopted for hyperspectral images
can be rewritten as:

X = AS =
m∑
i=1

aisTi , (4.1)

where A is anm × mmatrix and represents the unknown mixing matrix with
elements [a1, ..., am] andS is anm×pmatrixwhose elements are the unknown
sources [s1, ..., sm]

T. The proposed algorithm consists of the following steps:
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Yn = WnXn

Y1 = W1X1

Ycl = WclXcl

Figure 4.2: Clustering based on the training samples. A full size vector of ICs is extracted from each

cluster separately.

4.2.1 Extraction of Class-Specific ICs

n clusters representing the n classes of interest are extracted from the data set.
Each cluster Xcl, where cl = 1, ..., n, coincides with the training samples of
each class. For each of them, the unmixing matrix Wcl and the independent
components Ycl are estimated by using FastICA, as shown in Figure 4.2.

4.2.2 Evaluation of the Reconstruction Error

The reconstruction error provides a measure of the class information associ-
ated with a single component and is used to rank the extracted ICs. The es-
timation of the reconstruction error is obtained by computing the Frobenius
norm, denoted by ∥.∥2F, between the original data set and the back projection
of the obtained ICs. It is mathematically defined as follows:

Ecl = ∥Xcl − AclYcl∥2F =

∥∥∥∥∥Xcl −
m∑
i=1

aiyTi

∥∥∥∥∥
2

F

, (4.2)

with Acl = W−1
cl . Here, ai is a column vector of the mixing matrix Acl, which

represents the spectral signature related to the class, and yi is a row vector of
the estimated sourcematrix Ycl. Considering the relation in (4.2), them pairs
(ai, yi) are ranked based on their relative contribution, where high contribu-
tion means low reconstruction error. The ranking is assessed by applying the
following iterative procedure, which identifies the l-th couple that minimizes
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Algorithm 1 Algorithm for the ranking of the couples ai, yTi based on the re-
construction error.

X← Xcl
for j← 1 to l do

for i← 1 tom do
Ei = ∥X− aiyTi ∥

2
F

end for
iopt = argmini E(i)
Eopt = minE(i)
X← X− aioptyTiopt
aiopt ←∞
yiopt ←∞
idxj = iopt
E_vecj = Eopt

end for
return idx, E_vec

the reconstruction error:

idx = argmin
i
err(i) = {i | min

i

∥∥Xl − aiyTi
∥∥2
F}, (4.3)

Xl+1 ← Xl − aidxyTidx, (4.4)

with i = 1, ...,m. Here, idx represents the index of the chosen l-th couple at
the l-th iteration. Xl is initialized as equal to Xcl, and updated at each iteration
by subtracting the contribution provided by aidxyTidx identified at the previous
iteration as shown in (4.4). The procedure requires the tuning of the parame-
ter l, which represents the number of couples to retain after the ranking. The
algorithm for the computation of the reconstruction error and the l indices for
a single class is shown in Algorithm 1.

4.2.3 Identification of the Optimal Mixing Matrix

From the previous step, for each class cl, a matrix A′
cl composed of the best

elements [a1, ..., al] is defined, where l is the total number of couples re-
tained for a given class. The optimal mixing matrix is represented by Aopt =
[A′

1,A′
2, ...,A′

n]. The obtainedAopt is anm× (nl)matrix. Based on the choice
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Aopt =




a1,1 · · · a1,l1 a1,1 · · · a1,l2 · · · a1,1 · · · a1,ln
...

. . .
...

...
. . .

... · · ·
...

. . .
...

am,1 · · · am,l1 am,1 · · · am,l2 · · · am,1 · · · am,ln





class 1 class 2 class n

population

chromosome

1 … 0 1 … 1 … 0 … 1 

0 ... 1 1 … 0 … 1 … 0 

1 … 1 0 … 0 … 0 … 1 

Figure 4.3: Selection based on genetic algorithm approach applied to the Aopt.

of l, the matrix Aopt can have quite a high dimensionality. A further selec-
tion based on GAs is performed on the elements of the matrix Aopt, where a
chromosome identifies which column is selected for the transformation (see
Figure 4.3). The fitness function is evaluated on the transformation YGA =
WGAX, where YGA are the final sub-set of ICs, WGA = A−1

GA is the new un-
mixing matrix derived from the reduced version of Aopt and X is the original
observed image. In our algorithms, the computation of the unmixing matrix,
which can lead to an underdetermined system, is done by using the Moore-
Penrose pseudoinverse.

It is worth mentioning that the analysis of each class is independent of the
other. This allows the computation of the ICA and the estimation of the recon-
struction error to be performed in a parallel distributed system. In this way,
the computational time of the ICA for the entire data set is significantly de-
creased and can be approximated to be similar to the computational time of a
single class ICA. The computation in parallel fashion can be also adopted for
computing the fitness function for each population in order to optimize the
selection based on GA.

4.3 Experimental Setup

4.3.1 FastICA Tuning

FastICA is not a parameter-free approach. In our experiments, the non-
quadratic function g(u), which represents the derivative of the non-quadratic
functionG, is set as tanh(au)with a = 1. This choice provides a good approx-
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imation of negentropy, as proven in [56]. Here, symmetric orthogonalization
is chosen since in our analysis every feature extracted has the same importance
and its computation results faster (see Section 3.2.2). Other parameters are
related to the stopping criterion. The algorithm stops when the convergence
is reached, meaning that the weight change has to be less than 10−4, or the
maximum number of iterations (which is set at 1000), is reached. One more
parameter is the guess for the initial projection. In order to make the perfor-
mance comparison consistent, the identity matrix of size n × n is chosen for
initialization.

4.3.2 Genetic Algorithm Tuning

A search strategy based on GA is employed to reduce the size of Aopt by se-
lecting the most representative column vectors ai. In this study the classifica-
tion accuracy obtained by the SVM classifier with the Radial Basis Function
(RBF) kernel is considered as a fitness function to be maximized. However,
other measures could be integrated as fitness function. Since the kernel pa-
rameter estimation is computationally expensive, the estimation is performed
once for each population using 5-fold cross-validation. The selection strategy
is basedonStochasticUniversal Sampling (SUS) [4], where sigma scaling [76]
is employed in order to avoid premature convergence. The parameters of the
GA, such as crossover rate, mutation rate and population size, are determined
empirically through a set of preliminary experiments. In this work, a uniform
crossover is used, with a crossover rate of 0.80 and amutation rate of 0.01. The
length of a chromosome is computed as nl, where n is the number of classes of
a specific data set and l is the chosen number of (ai, yTi ) couples that minimize
the reconstruction error. The search criterion stops when 50 generations are
computed.

4.3.3 Classification

For classification purposes, an SVM classifier [20] is exploited considering
a Radial Basis Function (RBF) kernel. The algorithm employs the one-
against-one multi-class strategy. For the estimation of the regularization pa-
rameter, C, and the kernel parameter, γ, cross-validation based on the grid-
search approach is performed. In particular, an exponentially growing se-
quences of C and γ are considered, with C = {10−2, 10−1, ..., 104} and
γ = {2−3, 2−2, ..., 24}. Each classification result in Section 4.4 is obtained
by using a 10-fold cross-validation, i.e., that the training set is split into 10 sets,
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where 9 of them are used for training the model and the one left is used for
validation. In this way the choice of the parameters results unbiased.

4.3.4 Data Sets’ Description

The experimental analysis is carried out on four real hyperspectral data sets
characterized by different spatial and spectral resolutions. For each data set,
the training samples and the test samples are generated in such way that the
two sets results mutually exclusive (i.e., no shared samples between the two
sets).

PaviaUniversity: The data set is described in Appendix A.4. Information
about the training set used in the experiments are also provided.

Pavia Center: The data set is described in Appendix A.5. Information
about the training set used in the experiments are also provided.

Salinas: The data set is described in Appendix A.1. In case of Salinas data
set, the training set employed in the experiments is made up of 15% randomly
selected samples from each class.

Hekla: The data set is described in Appendix A.2. In case of Hekla, the
training set is generated by a random selection of 50 samples from each class.

4.4 Experimental Results andDiscussion

In this section, the feature dimensionality reduction approach based on ICA
is tested and the obtained results on the four data sets are shown. Aiming at
providing a qualitative analysis of the presented approach, the effectiveness in
extracting class-informative features is assessed in terms of classification ac-
curacies and kappa coefficients. For a better understanding of the obtained
results, the overall classification accuracies are given in percentage (%), while
the comparison between accuracies is given in percentage points (pp), which
are simply the arithmetic difference of two percentages. For each data set, the
behaviour of the proposed approach is tested for a different choice of the pa-
rameter l, which indicates the number of the retained best couples (ai, yTi ) that
minimize the reconstruction error. Theparameter l is sets as l = 1, 2, 3, 4. The
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Table 4.1: Classification of the four data sets by employing the proposed ICA-based feature reduction

approach. ”No. feat.” denotes the number of features selected based on the reconstruction error, ”No.

feat. GA” denotes the number of features after the GA selection, ”OA (%)” indicates the percentage

overall accuracies and ” k” indicates the kappa coefficients. Classification results obtained by exploiting

the original spectral bands and by using the PCA-ICA strategy are given for comparison.

Proposed approach

Spectr. PCA-ICA l = 1 l = 2 l = 3 l = 4

Pavia University
No. feat. 103 12 9 18 27 36
No. feat. GA - - 8 10 10 12
OA (%) 77.91 82.55 79.11 85.25 86.25 87.69
k 0.72 0.78 0.73 0.80 0.82 0.84

Pavia Center

No. feat. 102 8 9 18 27 36
No. feat. GA - - 6 12 17 18
OA (%) 97.35 97.86 97.98 98.17 98.57 98.50
k 0.96 0.97 0.97 0.97 0.98 0.98

Salinas

No. feat. 204 20 16 32 48 64
No. feat. GA - - 13 17 26 29
OA (%) 94.57 94.62 93.71 95.30 95.17 94.93
k 0.91 0.93 0.93 0.95 0.95 0.94

Hekla

No. feat. 157 5 12 24 36 48
No. feat. GA - - 7 12 20 26
OA (%) 93.89 90.40 91.97 94.47 96.28 96.00
k 0.91 0.88 0.91 0.93 0.95 0.95

proposed approach is then compared to the spectral case, where all the spectral
bands are used as input to the classifier, and to the common strategy based on
ICA for feature reduction (i.e., PCA is used as dimensionality reduction prior
to ICA). In the last case, the shown results represent the best case obtained
by varying the number of components retained from 2 to the total number of
available spectral channels. The numerical results are reported in Table 4.1,
while Figures 4.4 - 4.7 show the best ICA subsets extracted for each data sets.
In Figures 4.8 and 4.9, the classification maps obtained by using the proposed
approach are shown and compared to the map obtained by using the original
spectral channels and to the best case of PCA-ICA approach. By comparing
the obtained results, one can see that the proposed approach is able to provide
representative subsets. While this is less evident for Pavia Center and Salinas,
where the classes are alreadywell represented and separated in the spectral do-
main, for the Pavia University andHekla data sets, the effectiveness of the pro-
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posed approach becomes clearer. In those cases, significantly higher classifi-
cation accuracies are achieved for the proposed approach as compared to the
spectral and the common strategy cases. In particular, for PaviaUniversity, the
best classification accuracy is achievedwith l = 4, obtaining after the selection
a subset of 12 components, with a sharp improvement of 9.78 pp compared to
the spectral case, and of 5.15 pp compared to the best case of PCA-ICA (which
is obtained by extracting 12 features). In the case of Hekla, the best classifica-
tion accuracy is achieved with l = 3, obtaining after the selection a subset of
20 components. In the Hekla case, the classification accuracy is improved of
5.88 pp compared to the best case of PCA-ICA, and of 2.39 pp compared to
the spectral case. In the case of Pavia Center and Salinas, the best classification
accuracies are achieved with l = 3 and l = 2, respectively, retaining after the
selection a subset of 17 componentswith a slight improvement respect to both
the spectral case and PCA-ICA.
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Figure 4.4: Subset of ICs extracted for Pavia University.
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Figure 4.5: Subset of ICs extracted for Pavia Center.
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Figure 4.6: Subset of ICs extracted for Salinas.
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Figure 4.7: Subset of ICs extracted for Hekla.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Classification maps of Pavia University (top row) and Pavia Center (bottom row): (a)(d)

Spectral case; (b)(e) PCA-ICA; (c)(f) Proposed technique.
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(a) (b) (c)

(d) (e)

(f)

Figure 4.9: Classification maps of Salinas (top row) and Hekla (middle and bottom row): (a)(d) Spectral

case; (b)(e) PCA-ICA; (c)(f) Proposed technique.
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4.5 Conclusions

This Chapter presented a feature dimensionality reduction technique based
on ICA suitable for supervised hyperspectral image classification. The goal
of this study was to extract class-informative features where the use of ICA
was optimized for its application in a high-dimensional scenario (i.e., no di-
mensionality reduction was performed prior ICA). The reconstruction error
computed on the training samples of each single class (defined for the clas-
sification stage) was used as estimation of the class-information content. In
particular, the retrieving of class-information was assured by solving an opti-
mization problem based on the minimization of the reconstruction error of
the ICs extracted from each specific class. The searching strategy was further
optimized by employing a genetic algorithm-based approach, which led to an
additional reduction. The obtained results shows that an appropriate use of
ICA can bring prominent improvements in selecting the most representative
components from hyperspectral images, providing improved results in classi-
fication.

Part of this Chapter is published in:
N. Falco, L. Bruzzone, and J. A. Benediktsson. An ICA based approach to hyperspectral

image feature reduction. InGeoscience and Remote Sensing Symposium, 2014. IGARSS 2014.
IEEE International, pages 3470–3473. IEEE, July 2014. ISBN 978-1-4799-5775-0. doi:
10.1109/IGARSS.2014.6947229 [37].

N. Falco, J. A. Benediktsson, and L. Bruzzone. Spectral and Spatial Classification of Hy-
perspectral Images Based on ICA andReducedMorphological Attribute Profiles. Geoscience
and Remote Sensing, IEEE Transactions on, 2015. (accepted) [38].
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5
Reduced Attribute Profiles for the

Analysis of Spatial Information

ThisChapter presents an optimized version of themorphological attribute
profiles, namely reduced attribute profiles, focusing on addressing the issue
related to the high dimensionality, which leads to an highly intrinsic infor-
mation redundancy, for a better representation of the spatial information.

5.1 Introduction

The new generation of hyperspectral sensors are able to provide images with
an improved spatial resolution. The spatial context information, which is rep-
resented by the neighbourhood pixel system, becomes an important informa-
tion source for distinguishing different objects on the ground. However, the
exploitation of this information source increases the complexity of the clas-
sification process. Recent improvements in mathematical morphology have
provided new techniques, such as Attribute Profiles (APs) [26], able to ex-
tract contextual information of the investigated regions at different scale-level.
APs are an extension of Morphological Profiles (MPs), developed by Pesaresi
and Benediktsson [83], made up by concatenating the results obtained by ap-
plying more severe attribute filters, which operate on connected regions that

89
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compose the image. The concatenation of APs gives Extended Attribute Pro-
files (EAPs) [27]. The high flexibility of APs and EAPs in extracting different
information from the regions made them a powerful tool for modelling the
spatial information in remote sensing images. However, one of themain draw-
backs of these techniques is the need to select the optimal range of values re-
lated to the family of criteria adopted by each filter step, making it difficult to
identify if prior knowledge of the investigated area is not available. This fact in-
duces another important issue that is related to the high dimensionality of the
profiles. In order to be able to characterize all the regions in the scene, the val-
ues used as threshold should cover a wide range. Depending on the scene, this
can result in very long profiles in which the geometrical information related
to several regions become redundant. The high dimensionality of an AP leads
to a large number of features, which increases even more when Extended At-
tribute Profiles (EAPs) and Extended Multi-Attribute Profiles (EMAPs) [27]
are considered, resulting in the Hughes phenomenon.

In this work, a novel strategy for extracting spatial information from hyper-
spectral images based on Differential Attribute Profiles (DAPs) is proposed,
whichwas shown tobe suitable in extracting andcharacterizing structuresboth
inVHR image analysis [26] and in change detection [35]. ADAP is computed
as the derivative of the AP, showing at each level the residual between two ad-
jacent levels of the AP. From the analysis of the multilevel behaviour of the
DAP, it is possible to extract geometrical features corresponding to the struc-
tureswithin the scene at different scales. Such information is used to compress
the APs in few features, obtaining the reduced attribute profiles (rAPs). The aim
of this work is to exploit the potential of theAPs in the classification task, while
decreasing both the high dimensionality and the redundancy that affects the
original APs.

5.2 Proposed Reduced Attribute Profiles

Aiming atminimizing the intraclass variability due to the increase in geometri-
cal detail [13] and the uncertainty of the classification, the information related
to the spatial context needs to be included in the analysis. In this study, mathe-
maticalmorphology-based techniques are used for the extraction of the spatial
information. According to Section 2.4.3, it is easy to understand that EAPs and
EMAPs provide a rich multi-level description of the scene. However, the di-
mensionality of the feature space increases whenEAP is considered as input to
a classification stage. The situation is evenmore challengingwhen an EMAP is
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considered. Another important issue is related to the relevant presence of re-
dundant information within the AP, which can be seen from the high sparsity
that characterizes the DAP. This is due to the way in which the profile is built.
Regions that are not considered in the filtering are preserved at each scale and
the same information is propagated along the profile.

Inspired by research made on Differential Morphological Profile (DMPs)
in [1, 83], where the DMPs were used for the definition of segmentation tech-
niques, an optimized version of the AP representation is here presented. By
exploits the most informative geometrical features extracted by the DAPs, the
issue related to the redundancy that affects the APs can be addressed. The pro-
posed solution aims at fusing the information contained in the AP by identi-
fying the best level of representation for each region present in the scene. This
is possible by analysing the DAP and by using the corresponding AP’s values
in order to compress the AP into two single features, one for each thickening
and thinning profile. The following steps describe the proposed technique re-
lated to a single attribute case, while Figure 5.1 shows the general scheme of
the method.

5.2.1 Attribute Profiles and Region Extraction

The first step is to obtain the AP for each single feature. The critical phase in
building the AP is the choice of the λ values that are used as references for the
filtering phase. An optimal choice of the range values is the one that provides
a proper representation of the regions present in the scene, which is highly
scene and attribute dependent, and it is usually based on prior information of
the scene. This issue is considered in Chapter 7. The proposed method relies
on the analysis of the regions that are filtered at each level of the AP. Aiming at
extracting those regions, the DAP is exploited. TheDAP is obtained by differ-
entiating the AP (see Section 2.4.2), representing the residual of the AP, where
each level of the DAP shows the regions that have been filtered between two
adjacent levels of the AP, in terms of grey-level values. This characteristic al-
lows the identification of connected regions related to each grey-value of the
DAP, with the advantage of preserving the geometrical shape without any loss
in terms of detail. From this step, thinning (closing) and thickening (open-
ing) profiles are analysed separately due to the different information that they
provide.
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Figure 5.1: General scheme of the procedure to obtain the reduce AP.

5.2.2 Identification of the Representative Levels

This step aims at finding the level where a given connected region is well rep-
resented in terms of homogeneity. Let us consider the case of an increasing
attribute, where the size of the filtered regions increases when the criterion
value λ increases. As general behaviour, a given region grows starting from the
first level, where fewpixels are considered, and increases in size at each filtering
step bymergingwith the surrounding regions, reaching, after a certain number
ofmorphological transformations, the level inwhich the structuralmeaning of
the region is partially or totally lost. In order to identify that level, a homogene-
ity measure, which is computed on the connected region taking into account
the original image pixel values, is defined and analysed along the profile. For
a given connected region C, the homogeneity measure H is computed as fol-
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lows:
H(C) = P(C)× S(C), (5.1)

where P(·) is the size in pixels of the connected region and S(·) is the standard
deviation computed on the pixels within the connected region considering the
original values. The joint use of the two parameters ensures that a region se-
lected as meaningful will be as spectrally homogeneous and large as possible.
Consequently, the goal is to identify the level where the homogeneity of a con-
nected region changes drastically, and consider as the meaningful level Lm the
one the precedes this effect. This is obtained by searching for those two adja-
cent levels, whose difference inH(C) intensity is maximum:

Lm(C) = argmax
L
{H(CL+1)− H(CL)} (5.2)

with CL and CL+1 defined as follows:

CL : {p | p ∈ C at level L} (5.3)

CL+1 : {p | p ∈ C at level L+ 1} (5.4)

where CL ⊆ CL+1. This implies that CL+1 could be the result of the merging
of more connected regions, which are compared to the CL+1 separately. Fig-
ure 5.2 shows three examples of possible behaviours of a homogeneitymeasure
computed for an increasing criterion (e.g., the diagonal of the bounding box that
encloses a given region). Considering the non-hierarchical nature of the DAP,
the levels that have zero values for a given region are not considered in the anal-
ysis since, at those levels of theAP, the region is not affectedby the filtering (see
Figure 5.2 where squares indicate the considered levels and circles indicate the
meaningful levels). The computation of Lm is based on the assumption that
H(C) is monotone increasing (after discarding the zero-value levels). When
non-increasing attributes are considered, the initial assumption does not hold.
To overcome this issue, the H profile computed for each extracted region is
sorted in terms of size of regions in such a way the newH profile has a similar
behaviour to the one of an increasing criterion. After this, the procedure illus-
trated above canbe applied to themodifiedH. This solution allows the analysis
of the homogeneity to be performed without losing the information provided
by the attribute, which is intrinsic in the shape of the extracted regions.
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Figure 5.2: Examples of homogeneity measure H(C) for an increasing criterion (e.g., diagonal of the

bounding box) computed on a given region C (left column) considering 20 filtering values. The levels

with zero intensity are not considered in the analysis since the region under investigation is not affected

by the filtering. The circles indicate the levels Lm that are chosen (right column), and precede the

maximum change in terms of H intensity.
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5.2.3 Fusion of the Attribute Profiles

In this step, the geometrical information contained in each profile (i.e., thin-
ning and thickening of the AP), is fused into two images, whose connected
regions Cs are associated to the values of the AP at the scale level denoted by
Lm. The reduced AP, is thus defined as:

rΠ(I) =
{
rΠφT(I), I, rΠγT(I)

}
. (5.5)

The obtained feature space has a size of three feature types that combine
the most informative geometrical information, according to the homogeneity
measure.

5.2.4 Extension to Multi-Channel and Multi-Attribute

The rAP is directly extracted from the original AP, resulting affected by the
same limitations when multi-channel data are considered. The extension to
hyperspectral data analysis is obtained by applying the morphological analy-
sis to a subset of features identified by applying feature dimensionality reduc-
tion techniques. The same concepts of multi-channel and multi-attribute in-
troduced for APs [27] can be applied to the rAP, obtaining the reduced EAP
(rEAP) and the reduced EMAP (rEMAP). In this case, the dimension of the
future space of a rEAP is calculated as (r3), where r corresponds to the num-
ber of features processed in the analysis. For the rEMAP, the feature space size
corresponds to (2rq + r), with q the number of the considered attributes. It
is worth noting that the feature space size does not depend on the number of
filtering thresholds L, as it is for the original EMAP, which size corresponds to
(2Lrq+ r). This gives the possibility, if necessary, to increase the range of fam-
ily criteria,T, for a better identification of the regions that compose the scenes
(which leads to amore representative decompositionof the image)without in-
curring a consequent increasing the final dimension of the final feature space.

Figure 5.3 shows an example of the pipeline to obtain a single reduced AP,
where in a) the attribute profile is built considering a set of L thresholds λ;
b) the differential attribute profile is derived; c) for each connected region C,
theH(C) is evaluated and themaximum change identified, giving the level Lm
represented by the map of levels; d) the reduced attribute profile is obtained
by mapping the original profile into a single feature (i.e., one for closing and
one for opening), according to the map of levels. When the concatenation



96 5. Reduced Attribute Profiles

 

 

Mapping

Attribute Profile (AP)

Differential Attribute Profile (DAP)

Level Maps

Reduced Attribute Profile (rAP)

Thickening Profile Thinning Profile

......a

b

c

d

Figure 5.3: Pipeline of the processing required to obtain a reduced AP. a) the attribute profile is built

considering a set of L thresholds λ; b) the differential attribute profile is derived; c) for each connected

region C, the H(C) is evaluated and the maximum change identified, giving the level Lm represented

by the map of levels; d) the reduced attribute profile is obtained by mapping the original profile into a

single feature (i.e., one for closing and one for opening), according to the map of levels.
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of different rEAPs lead to a high-dimensional vector, a fusion process [29] is
preferable. The evaluation of the multi-attribute information is performed by
fusing the outcome of the classification obtained by each single rEAP. More
specifically, the fusion strategy considered in this work assigns a pixel to a class
according to themajority voting strategy. However, in the case of a tie in votes
for two or more class labels, majority voting cannot be exploited. In this case,
for each class label for which a tie is observed, the average class-accuracy ob-
tained by the classifiers in agreement on the same class label is computed and
considered for comparison. The final decision is made according to the classi-
fiers that obtained the highest averaged classification accuracy.

5.3 Experimental Setup

Aiming at comparing the classification performance of the proposed optimiza-
tion to the original AP, the work presented in [29] is considered as state-of-
the-art. Therefore, the experimental setup used in this work correspond to the
one in [29]. The experimental analysis is performed considering the data set
of Pavia University (described in Appendix A.4). According to [29], dimen-
sionality reduction is performed by PCA, retaining the first four components
that contain more than 99% of the total variance.

In this dissertation, four attribute are considered as measures for modelling
the contextual information:

area This is an increasing attribute thatmodels the scale according to the car-
dinality of the considered regions. For this attribute, the following set
of thresholds is considered: λa = [100, 500, 1000, 5000].

diagonal of the bounding box This is an increasing attribute and it models the
extension of the region. For this attribute, the following set of thresh-
olds is considered: λd = [10, 25, 50, 100].

moment of inertia[53] This is an non-increasing attribute. It is represented by
the first moment of Hu and represents a measure of the elongation of a
region, which is independent on the scale andorientationof the regions.
For this attribute, the following set of thresholds is considered: λi =
[0.2, 0.3, 0.4, 0.5].

standard deviation This is an increasing attribute. It models the homogeneity
of the regions, taking into account the gray-level values of their pixels. It
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Table 5.1: Comparison between the classification performance of the original EAPs and reduced EAPs

for the Pavia University data set. For each attribute, the Table reports the percentage overall accura-

cies ”OA(%)”, and the kappa coefficients ”k. Classification results obtained by employing the original

spectral bands and by using the four PCs exploited to built the EAP and rEAP are given for comparison.

Original EAPs

Spectr. PCA EAPa EAPd EAPs EAPi EMAP

No. feat. 103 4 36 36 36 36 132
OA (%) 77.91 72.88 90.00 85.42 86.56 69.80 77.81
k 0.72 0.65 0.87 0.81 0.82 0.63 71.08

Reduced EAPs - (proposed approach)

Spectr. PCA rEAPa rEAPd rEAPs rEAPi rEMAP

No. feat. 103 4 12 12 12 12 36
OA (%) 77.91 72.88 88.44 87.20 85.01 80.59 90.95
k 0.72 0.65 0.86 0.84 0.81 0.78 0.88

does not rely on the scale or shape of the regions as the other previous
attributes. For this attribute, the following set of thresholds is consid-
ered: λs = [20, 30, 40, 50].

5.3.1 Classification

For classification purposes an SVM classifier [20] was exploited considering a
Radial Basis Function (RBF) kernel. The algorithm employs the one-against-
onemulti-class strategy. For the estimation of the regularization parameter,C,
and the kernel parameter, γ, a 10-fold cross-validation based on the grid-search
approach is performed considering an exponentially growing sequences of C
and γ, where C = {10−2, 10−1, ..., 104} and γ = {2−3, 2−2, ..., 24}.

5.4 Experimental Results andDiscussion

Table 5.1 shows the results obtained by using the proposed approach and the
original APs. The best results based on the comparison between the two tech-
niques (i.e., AP versus rAP) are reported in bold. In particular, the classifica-
tion performance obtained by the rEAPs is consistent with the state-of-the-
art, obtaining similar classification accuracies in case of the area, diagonal of
the bounding box and standard deviation attributes. However, in the case of
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the inertia, the rEAPs provides an improvement of 10.79 pp with respect to
the original EPAs. Following the same strategy as in [29], the EMAP and
rEMAP are obtained by concatenating all the EAPs and rEAPs, respectively,
to obtain a unique vector of features. Also in this case, the reduced version of
the EMAP outperforms the original EMAPwith an improvement of 13.14 pp.
One can notices the increase of the Hughes’ effect when the original EMAP is
used, whereas, in the case of rEMAP the multi-attribute information is better
exploited as demonstrated by the classification accuracies. It is worth noting
that, rEAPs and rEMAPs required only 12 and 36 features (three time less than
the original EAPs and EMAPs), respectively, to provide results comparable to
state-of-the-art accuracies.

5.5 Conclusions

In this Chapter, a novel strategy for extracting spatial information from hy-
perspectral images based on the analysis of the morphological DAPs has been
proposed. The approach presented in this work aimed at reducing both the
dimensionality and the redundancy by extracting the most informative spa-
tial information from an AP. This has been done by analysing the multi-scale
behaviour of the DAP, which permits us to extract geometrical features corre-
sponding to the structures within the scene at different scales. The proposed
approach consisted in two stages. The first stage was to characterize all the
regions with a homogeneity measure and use this measure for identifying the
levelLm of scale that best represents a given region. The second stepwas to fuse
the geometrical information of the extracted regions into a single map consid-
ering their level Lm previously identified. The proposed method reduces the
dimensionality of the AP to a space composed by three feature types, two re-
lated to the reduced thickening and thinning profile and one to the original
single tone image. The experimental analysis, which has been carried out on
an hyperspectral image on the area of the University of Pavia, in Italy, shows
the effectiveness and the potentialities of the proposed strategy. By applying
our the method to the four extracted principal components, the obtained re-
duced EAPs were characterized by a feature space of just 12 features, which
gave remarkably better classification accuracies when compared to both the
PCA and the whole data set, showing the importance of including spatial fea-
tures in the analysis. In the comparison with the original EAPs, which were
composed by 36 features, the presented approach provided classification accu-
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racies consistent to the state of the art while achieved up to 10% improvement
for the inertia attribute case, employing three times less of features. This ap-
proach permits the compression of themost informative geometrical informa-
tion, according to the measure of homogeneity, taking into consideration the
multi-scale transformation performed by the AP.The final reduced AP is char-
acterized by a feature space that accounts for three features types, the reduced
thickening and thinning profiles and the original image. Thus, the dimension
of the feature space of the reduced EAP is calculated as (n ∗ 3), where n is the
number of the components used in the analysis. The low dimensionality of
the produced feature set gives the possibility to the user to enhance the feature
space with additional features that provide complementary class-discriminant
information, which could be useful for the final classification.

Part of this Chapter is published in:
N. Falco, J. A. Benediktsson, and L. Bruzzone. Extraction of spatial features in hyperspec-

tral images based on the analysis of differential attribute profiles. In L. Bruzzone, editor, Re-
mote Sensing, volume 8892, page 88920O. International Society for Optics and Photonics,
Oct. 2013. doi: 10.1117/12.2029199 [33].

N. Falco, J. A. Benediktsson, and L. Bruzzone. Spectral and Spatial Classification of Hy-
perspectral Images Based on ICA andReducedMorphological Attribute Profiles. Geoscience
and Remote Sensing, IEEE Transactions on, 2015. (accepted) [38].
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Classification maps obtained for Pavia University by exploiting: (a) PCA (4 comp.); (b) rEAPa;

(c) rEAPd; (d) rEAPs; (e) rEAPi; (f) rEMAP.





6
Spectral and Spatial

Information Integration

This Chapter presents a new technique that combines spectral and spatial
information for supervised hyperspectral image classification. The feature
reduction based on independent component analysis introduced in Chap-
ter 4 is the main core of the spectral analysis, where the exploitation of
prior information coupled to the evaluation of the reconstruction error as-
sures the identification of the best class-informative subset of independent
components. Reduced Attribute Profiles (rAPs), introduced in Chapter 5
and designed to address the issues of information redundancy that affects
the commonmorphological APs, are then employed for the modelling and
fusion of the contextual information.

6.1 Introduction

In this Chapter, the previous works presented in Chapter 4 and in 5 are ex-
tended, proposing a novel method to supervised classification based on both
spectral and spatial information analysis. Considering themost recent studies,
where APs are exploited, the spectral analysis is usually relegated to the iden-
tification of few PCA components, which are then exploited for building the

103
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APs, EAPs and EMAPs, while supervised feature extraction techniques (e.g.,
DBFE, NWFE) are eventually employed in order to reduce the dimension-
ality of such huge vectors. Indeed, when a large range of filtering thresholds
is considered, the dimension of the feature space of the obtained profile in-
creases resulting in a very large number of features and, thus, in the Hughes
phenomenon. In the literature, the issuewas investigated by consideringmany
approaches. In [6], the high dimensionality of the morphological profiles was
reduced by exploiting feature extraction and feature selection techniques prior
to classification, which is a strategy that has also been widely exploited in re-
cent studies [8, 45, 72] on spectral-spatial classification using attribute pro-
files, where a chain composedbydifferent feature extraction approacheswhere
used to extract the final subset . A compact representation of the morpholog-
ical profiles, called Morphological Characteristic (MC), was obtained in [83]
by analysing the Differential Morphological Profile (DMP) to identify if the
underlying region of each pixel is darker or brighter than its surroundings. In
[84], an extension of theMCwas presented, where the characteristics of scale,
saliency, and level of the DMP are identified by a 3-D index for each pixel in
the image. A strategy based on a sparse classifier and SUnSAL (Sparse Unmix-
ing by variable Splitting andAugmentedLagrangian) [9] for the analysis of the
entire EMAP, was presented in [97].

In this study, the spectral analysis becomes a fundamental part, which aims
at extracting the optimal subset of class-informative features. To this purpose,
the feature reduction technique based on ICA, introduced in Chapter 4. In
the approach, the analysis is performed for each specific class, where the se-
lection of the most representative components relies on the minimization of
the reconstruction error computed on the training samples employed for the
supervised classification. The spatial analysis is then performed by extracting
spatial features based on mathematical morphology. To this purpose, the re-
duced APs (rAPs), introduced in Chapter 5, are obtained by evaluating the
contextual information for each connected region by identifying the best level
of representation, according to a homogeneous measure. Such analysis per-
mits the contextual information to be preserved, and at the same time, to ad-
dress the dimensionality issue, which leads to a highly intrinsic information
redundancy. Figure 6.1 shows the general schema of the proposed technique.
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Figure 6.1: General scheme of the proposed technique for spectral and spatial information integration

for supervised classification.



106 6. Spectral and Spatial Information Integration

Table 6.1: Family of increasing criteria employed in Experiments 1 and 2 for each attribute. The number

of thresholds is indicated in brackets.

Experiment 1 Experiment 2

Area [100, 500, 1000, 5000] (4) [500 : 500 : 5000] (10)
Std. dev. [20, 30, 40, 50] (4) [20 : 5 : 50] (7)
Diagonal [100, 200, 400, 600] (4) [50 : 50 : 600] (12)
Inertia [0.2, 0.3, 0.4, 0.5] (4) [0.2 : 0.05 : 0.5] (7)

6.2 Design of Experiments and Investigations

In these experiments, the ICA-based scheme is employed for the extraction of
class-representative components, which are then used for building the rAPs.
In particular, the feature subsets that provided the best classification accuracy
in Chapter 4 are used as input for building the rAPs. This gives the possibility
for further comparison between the spectral based approach and the spectral
and spatial based approach.

In the analysis, four attributes are considered for themodelling of the spatial
information, such as area (a), diagonal of the bounding box (d), standard devia-
tion (s) and moment of inertia (i). The proposed method is based on a region
extraction process, where a better filtering of the scene would lead to the ex-
traction of regions that would not be identified otherwise. In order to test the
performances on different ranges of thresholds, two experiments are set up,
where two families of increasing criteria are considered. Experiment 1 exploits
the set of values that is usually employed in the literature, while in Experiment
2, the number of thresholds is increased, giving a thicker image decomposi-
tion. Table 6.1 shows the rage of thresholds used for building the profiles. It is
important to note that an increase of the number of thresholds does not cause
an increase of the dimension of the feature space of the rAPs, and thus, of the
rEAPs.

6.3 Experimental Setup

For the experimental setup related to the ICA-based approach for feature di-
mensionality reduction, which includes FastICA and GA tuning, please refer
too Section 4.3.
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6.3.1 Classification

An SVM classifier [20] with a Radial Basis Function (RBF) kernel is ex-
ploited for classification purposes. The algorithm employs the one-against-
one multi-class strategy. For the estimation of the regularization parameter,
C, and the kernel parameter, γ, 10-fold cross-validation based on the grid-
search approach is performed. In particular, an exponentially growing se-
quences of C and γ are considered, with C = {10−2, 10−1, ..., 104} and
γ = {2−3, 2−2, ..., 24}.

6.3.2 Data Sets’ Description

The analysis is carried out on the IC subsets obtained by the four real hyper-
spectral data sets used inChapter 4. For each data set, the training samples and
the test samples are generated in suchway that the two sets resultsmutually ex-
clusive (i.e., no shared samples between the two sets).

PaviaUniversity: The data set is described in Appendix A.4. Information
about the training set used in the experiments are also provided.

Pavia Center: The data set is described in Appendix A.5. Information
about the training set used in the experiments are also provided.

Salinas: The data set is described in Appendix A.1. In case of Salinas data
set, the training set employed in the experiments is made up of 15% randomly
selected samples from each class.

Hekla: The data set is described in Appendix A.2. In case of Hekla, the
training set is generated by a random selection of 50 samples from each class.

6.4 Experimental Results andDiscussion

This section presents the experimental results of the proposed technique for
the integration of spectral and spatial information for classification obtained
on the four data sets. Table 6.2 reports all the classification results obtained in
Experiments 1 and 2 for each data set, while Figures 6.2 - 6.5 show the classifi-
cationmaps of the best cases (represented in bold inTable 6.2). The results ob-
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Table 6.2: Classification results obtained by exploiting the proposed technique for spectral and spatial

classification. For each data set, the Table reports the percentage overall accuracies ”OA(%)” and the

kappa coefficients ”k” obtained in Experiments 1 and 2 for each attribute. The number of features

exploited are given in parentheses.

Pavia University (12 ICs + 24 spatial features)

Experiment 1 Experiment 2

rEAPa rEAPd rEAPs rEAPi rEAPa rEAPd rEAPs rEAPi

OA (%) 94.05 94.90 87.50 83.36 95.60 95.92 89.56 84.03
k 0.92 0.93 0.84 0.78 0.94 0.94 0.86 0.79

Pavia Center (17 ICs + 34 spatial features)

Experiment 1 Experiment 2

rEAPa rEAPd rEAPs rEAPi rEAPa rEAPd rEAPs rEAPi

OA (%) 99.11 99.12 98.69 97.83 99.12 99.08 97.79 98.22
k 0.99 0.99 0.98 0.97 0.99 0.99 0.97 0.97

Salinas (17 ICs + 34 spatial features)

Experiment 1 Experiment 2

rEAPa rEAPd rEAPs rEAPi rEAPa rEAPd rEAPs rEAPi

OA (%) 99.14 97.17 95.43 89.19 99.51 97.62 95.47 90.59
k 0.99 0.97 0.95 0.88 0.99 0.97 0.95 0.89

Hekla (20 ICs + 40 spatial features)

Experiment 1 Experiment 2

rEAPa rEAPd rEAPs rEAPi rEAPa rEAPd rEAPs rEAPi

OA (%) 98.61 98.76 97.27 90.34 98.87 99.14 97.84 95.16
k 0.98 0.99 0.97 0.89 0.99 0.99 0.98 0.94

tained in Experiments 1 and 2 confirms the fact that the inclusion of spatial in-
formation provides a general improvement in the classification accuracieswith
respect to the case where only spectral information (i.e., the ICs) is considered
(see Table 4.1, Section 4.4). In particular, in the case of Pavia University data
set, the rEAPs are built starting from the 12 ICs selected by applying the ICA-
based feature reduction approach, obtaining profiles that include 36 features.
In this case, the attributes area and diagonal provided the best results obtain-
ing a maximum improvement of 8.23 pp. In the case of the Pavia Center data
set, the rEAPs are built on 17 ICs obtaining a final vector of 51 features. From
the analysis, it can be seen that a good classification accuracy can be achieved
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Table 6.3: Classification results obtained by exploiting the rEMAPs for Experiment 1 and 2. ”OA (%)”

denotes the percentage overall accuracies and ” k” indicates the kappa coefficients.

Pavia University Pavia Center Salinas Hekla

Experiment 1 OA (%) 94.59 99.28 98.73 98.78
k 0.93 0.99 0.98 0.99

Experiment 2 OA (%) 96.28 99.11 98.95 99.08
k 0.95 0.99 0.99 0.99

by exploiting the spectral information (see the spectral case in Table 4.1, Sec-
tion 4.4). However, a slight improvement can be obtained by employing spa-
tial information. Also in this case, the attributes area and diagonal provided
the best accuracies. In the case of the Salinas data set, as for the Pavia Center
case, the rEAPs are composed by 51 features including 17 ICs. In this case, the
attribute area obtained the best classification accuracy with an improvement
of 4 pp with respect to the only spectral case. In case of the Hekla data set, 20
ICs were extracted, which are used to build 60-feature rEAPs. In this case, the
attributes area and diagonal and standard deviation provided an improvement
with respect to the spectral case. The best classification accuracy was obtained
by using the attribute diagonal giving an increase of 3 pp. The attributes area
and diagonal are the ones that provided better classification accuracies, while
inertia resulted in a worse classification accuracy. This is probably due to the
fact that the identification of a proper range of thresholds is not trivial, espe-
cially for non-increasing criteria, where this is less intuitive with respect to the
increasing criteria. Such issue is considered in the next Chapter, and it will
be considered in our future research to provide an automatic approach that
would be independent of the attribute and the image considered. By compar-
ing the results obtained in Experiments 1 and 2, one can see that a larger range
of thresholds leads in general to more representative rEAPs. Table 6.2 shows
in bold the best classification accuracies based on the comparison between the
two cases (i.e., Experiment 1 versus Experiment 2).

A further experiment is based on the fusion of the information provided
by each rEAP to obtained the rEMAP. The strategy adopted for the multi-
attribute analysis is based on the fusion of the classification results obtained
by the rEAPs (see Section 5.2.4). This choice is justified by the fact that this
solution is more robust than using a unique stack of features, while the dimen-
sionality of the problem remains low with a consequently advantage in terms
of computational cost. In general, the employment of the fusion strategy pro-
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vides classification results (Table 6.3) that are quantitatively and qualitatively
similar, and in some cases better, than the best case obtained by employing a
single rEAP.This is also proved by the classificationmaps of the rEMAPs (Fig-
ures 6.2e, 6.3e, 6.4e and 6.5e) where each class is spatially better represented
(i.e., less noisy) with respect to the single rEAP case.

The results obtained in this study by exploiting spectral, spatial information
and their combination, can be compared to the ones obtained in other recent
works [8, 45, 72, 73], where the use of attribute profiles were exploited and
combinedwith supervised feature extraction techniques in order to reduce the
final dimensionof theprofile anddiscard the redundant information. Inpartic-
ular, the proposed technique for spectral and spatial analysis outperformed the
approaches presented in [72, 73] in terms of accuracies. Here, the Pavia Uni-
versity data set was used for testing by exploiting the attributes standard devia-
tion and area. Furthermore, supervised feature extraction techniqueswere em-
ployed to both provide the initial feature subset and reduce the final dimension
of the profile space. The proposed method outperforms also the approaches
considered in [45] for the Pavia Center data set. In particular, by comparing
the results obtained in the presented study, one can see that by employing the
presented ICA-based approach we are able to reach higher overall accuracy
with respect to the spectral-spatial case in [45]. In particular, the rEMAP is
able to achieve a higher accuracy than for the case in [45] in which supervised
feature extraction techniques are exploited for dimensionality reduction of the
final profile. In the case of the PaviaUniversity data set, the proposed approach
obtained higher accuracies compared to the case in which the original AP are
used, while it provided very close (and in some cases higher) accuracies to the
cases in which feature extraction techniques are exploited. In terms of accu-
racies, the proposed approach outperforms also the strategy adopted in [8]
considering the case in which standard training set is exploited for the classifi-
cation. The reason for such comparison is to prove the effectiveness of both the
ICA-based approach in extracting class-informative features and the reduced
APs inproviding subsets of spatial features inwhich the redundant information
is discarded. Moreover, the comparison proves that by optimizing the infor-
mation extraction, the inclusion of additional process steps in the classification
chain, such as themultiple use of supervised feature extraction techniques, can
be avoided.
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6.5 Conclusions

In this Chapter, a novel technique for spectral and spatial supervised classifi-
cation of hyperspectral images is presented. The technique aims at optimizing
the usage of ICA in class-informative feature extraction, while minimizing the
disadvantages in the use of APs and its extensions (i.e., EAPs and EMAPs),
such as the information redundancy, which limits the classification capabil-
ities. In particular, class-informative features were extracted by exploiting a
novel dimensionality reduction strategy based on ICA, where the use of ICA
was optimized for its application in a high-dimensional scenario (i.e., no di-
mensionality reduction was performed prior ICA). The retrieving of class-
informationwas assuredby solving anoptimizationproblembasedon themin-
imizationof the reconstruction error of the ICs extracted for each specific class.
The reconstruction error, computed on the training samples defined for the
classification stage, was used as estimation of the class-information content
and exploited to rank the extracted ICs. The spatial information was, then, ex-
tracted from the identified subset of ICs by employing the reduced Attribute
Profiles (rAPs). The rAP is an optimized version of the well known morpho-
logical morphological Attribute Profiles (APs). In rAP the geometrical infor-
mation related to the filtered regions are adaptively selected based on a homo-
geneous measure. The extraction is based on the multi-level analysis of DAP,
which shows filtered regions between adjacent levels of the AP. By using this
approach, it was possible to fuse the geometrical information into few features.
The method was tested on four real hyperspectral images, which were differ-
ent in spectral / spatial resolutions and content. The obtained results showed
the effectiveness of the proposed technique in extracting spectral and spatial
features providing higher or similar accuracies when compared to state of the
art.

Part of this Chapter is going to appear in:
N. Falco, J. A. Benediktsson, and L. Bruzzone. Spectral and Spatial Classification of Hy-

perspectral Images Based on ICA andReducedMorphological Attribute Profiles. Geoscience
and Remote Sensing, IEEE Transactions on, 2015. (accepted) [38].
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(a) (b) (c)

(d) (e)

Figure 6.2: Classification maps of Pavia University: (a) rEAPa; (b) rEAPd; (c) rEAPs; (d) rEAPi; (e) rEMAP.
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(a) (b) (c)

(d) (e)

Figure 6.3: Classification maps of Pavia Center: (a)rEAPa; (b) rEAPd; (c) rEAPs; (d) rEAPi; (e) rEMAP.
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(a) (b) (c)

(d) (e)

Figure 6.4: Classification maps of Salinas: (a) rEAPa; (b) rEAPd; (c) rEAPs; (d) rEAPi; (e) rEMAP.
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(a) (b)

(c) (d)

(e)

Figure 6.5: Classification maps of Hekla: (a) rEAPa; (b) rEAPd; (c) rEAPs; (d) rEAPi; (e) rEMAP.





7
AutomaticThreshold Selection for

Profiles of Attribute Filters

This Chapter proposes a novel technique for the automatic selection of the
filters’ parameter, aiming at addressing the issue related to the choice of a
proper set of filtering thresholds used to build representative attribute pro-
files. The technique is based on the concept of granulometric characteristic
function, which provides information on the image decomposition accord-
ing to a given measure, and exploits the tree representation of an image,
which allows us to avoid filtering steps usually required prior the threshold
selection, making the process computationally effective.

7.1 Introduction

Profiles obtained by the sequential application of morphological attribute fil-
ters are very powerful and flexible operators, able to richly extract informa-
tion on the spatial arrangement and characteristics of the objects in a scene.
However, the imagedecomposition relies on the selectionof thresholds, which
should be tuned in order to provide a profile that is both representative (i.e., it
contains salient structures in the image) and non-redundant (i.e., objects are
present only in one or few levels of the profile). The selection of an appropriate
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range of thresholds remains one of the main open issues. In the literature, few
attemptshavebeendone to solve the issue related to the selectionof the thresh-
old values. The common approach is based on field-knowledge of the scene,
where the values are manually selected by a visual analysis of the scene under
consideration [35]. In [69] the set of thresholdwas derived after a preliminary
classification and clustering of the input image, while, in [73], considering a
supervised classification scenario, the thresholds for the specific attribute of
standard deviation were based on statistics of the available training samples.
In [42] the filter thresholds were chosen based on the analysis of a granulo-
metric curve (i.e., a curve related to the size distribution of the structures in
the image [96]). In particular, the thresholds selected are those whose granu-
lometric curvebest approximates theoneobtainedby considering a large set of
thresholds. The main drawback that all the aforementioned approaches have
is the need of computing a large number of filtering steps (potentially with all
possible thresholds) in order to be able to identify those thresholds that are
significant. Consequently the computational cost and the memory to store an
unidentified number of filtered images need to be considered.

In this work, a novel strategy for the automatic selection of the thresholds
based on the concept of granulometric characteristic functions (GCFs) is pro-
posed. The GCF can be seen as an extension of the concept of granulome-
try. Considering a series of morphological opening operations, a granulomet-
ric curve is computed as the sum of the pixel values of each image result of an
opening versus the threshold reference [96]. By duality, an anti-granulometric
curve is derived by the closing operator. Here, a GCF is defined as a mea-
sure that is computed on the tree representation of the input image, showing
the evolution of a characteristic measure for increasing values of the thresh-
olds (i.e., increasingly coarser filters). In this framework, different measures
(e.g., related to the gray-levels, number of pixels, etc.) can be considered, lead-
ing to the definition of different GCFs. The proposed technique exploits the
tree representation of an image; in particular, for gray-scale images, the corre-
sponding tree representation provides useful a-priori information (i.e., prior
to the filtering) related to the actual range of the attribute values. Due to this,
the computation of the GCF can be performed directly from the tree, without
requiring any filtering of the analysed image. Aiming at showing the flexibility
of the proposed approach based on the analysis of GCFs, three measures for
computing the GCF are considered for testing. Similarly to [42], in the pro-
posed approach, the set of selected thresholds correspond to the one that best
approximates theGCF computed on the full set of thresholds. By approximat-



7.2. Proposed AutomaticThreshold Selection 119

All the possible thresholds are considered
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Figure 7.1: General scheme for the proposed automatic threshold selection technique.

ing theGCF curve, it is assumed that the distribution of a givenmeasure along
the profile can be extracted and approximated by using the subset of selected
thresholds. In [42], such a strategy was applied on a conventional granulome-
try curve, requiring to explicitly filter the images accordingly with an initial set
of thresholds, which was manually defined prior to the filtering. The advan-
tages of the proposed approach are that the initial range corresponds to the set
of the all possible thresholds, thus it does not require any initial selection, and
the GCF curve is derived from the tree structure, without involving any filter-
ing step. To identify the thresholds to build the profiles, the method employs
a piecewise linear regressionmodel [75]. The approach is tested on Pavia data
set, considering three different tree representations, min-, max- and inclusion
trees.

7.2 Proposed Automatic Threshold Selection

Theproposed technique is based on descriptive functions computed on a pro-
file, namely granulometric characteristic functions (GCFs), which extract the
trend of a given property that characterize the effect of the image decompo-
sition along the tree. The selection of representative thresholds relies on the
approximation of the GCFs aiming at preserving the distribution in order to
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extract those thresholds that provide a significant change in the effect of the
filtering. Figure 7.1 shows the general schema of the proposed technique.

7.2.1 Measure and Granulometric Characteristic Function

A granulometric characteristic function (GCF) is defined as a function returning
a measureMwhich is computed on a profile:

GCF(Πψ(f)) = {M(ψi)}
L
i=1. (7.1)

Thus, ifM : f→ R, GCF(Πψ(f)) leads to L scalar values (one for each image
in the profile). GCF is inspired by the granulometry curve; in spite of this, it
can be extended to other characteristics, additionally to the sum of gray-levels
(as it is conventionally considered in the granulometry). As standard granulo-
metric curves show the interaction of the size of the image structures with the
filters when the filter parameter varies, so GCFs provide information on the
effect of subsequent filtering with respect to some characteristics of the image.
In this work, the definitions of three measures and the relative GCFs are pro-
posed:

Sum of gray-level values As for the conventional granulometry, thismeasure
provides information related to the effect of the filtering with respect to
the changes in terms of gray-levels that are produced in the image.

GCFval(Πψ(f)) =
{∑∣∣f− ψi(f)

∣∣}L

i=1
. (7.2)

Number of changed pixels Another possible measure is the number of pix-
els that change gray-value at different filtering. In this case, the GCF is
sensitive to changes in the spatial extent of the regions rather than in
gray-levels.

GCFpix(Πψ(f)) =
{
card[f(p) ̸= ψi(f)(p)], ∀p ∈ E

}L
i=1 , (7.3)

with card[·] the cardinality of a set.

Number of changed regions This GCF shows the number of connected
components that are affected by each filter and it is a topological mea-
sure invariant to the spatial extent and gray-level variations induced by
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the filterings.

GCFreg(Πψ(f)) =
{
card[C(f)]− card[C(ψi(f))]

}L
i=1 . (7.4)

According to the definitions reported above, theGCFs aremonotonic increas-
ing functions, since themeasures that are considered increase for progressively
coarser filters. Clearly, other measures can be considered for the definition of
different GCFs, if the interest lies in investigating the effects of the filtering
with respect to other image characteristics.

7.2.2 Threshold Selection

The problem to address is the selection, among the set Λ̄ = {λi}Li=1 of all
possible values of λs, of a subset Λ̂ = {λ̂i}L̂i=1 with L̂ ≪ L. The full set Λ̄ is
extremely scene dependent and can potentially be very large,making the prob-
lemof selecting the subset Λ̂more complicated to realize since the full set is not
readily accessible. A possible strategy for the selection relies on the computa-
tion of a profile by considering a relatively large number of λs (considering all
of them in real scenarios is impractical) andprune theprofile by selecting some
of filtered images and related filter parameters so defining Λ̂. However, such
an approach is limited by the need of generating the filtered images in order to
perform the selection and by the lack of guarantee that all possible threshold
are considered for selection. The method exploits the GCFs, defined in Sec-
tion 7.2.1, in order to select those values λs that lead to “significant” changes in
the effect of the filters (as measured by the considered GCF).This approach is
not new since considering the granulometric curve for estimating values of λ
that generate salient filtering images has been already proposed in [42]. How-
ever, this work take advantage of the exploitation of the tree representation of
the image (augmented with the values of the attributes for each node) prior
to any filtering. In particular, each node, which maps a region of spatially con-
nected pixels in the image, gives information related to the value of attributes,
gray-level and number of pixels. This allows us to know all possible values of λ
(i.e., to know exactly the full set Λ̄) and compute theGCFs before any filtering.
Similarly to [42], in the proposed approach, the set Λ̂ of the selected thresh-
olds correspond to the one that best approximates the GCF computed on the
Λ̄ thresholds. The main assumption is that by approximating the GCF curve,
the distribution of the measureM that underlies the GCF can be extracted
and approximated by using the selected L̂ thresholds. The approximation of
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the GCF curve is achieved by means of piecewise linear regression [75], in
which the independent variable (i.e., the chosen measure) is partitioned into
intervals and approximated with separate line segments that fit each interval.
The boundaries between the segments are identified by breakpoints, for which
projections over the x-axis correspond to the set of selected thresholds Λ̂. The
automatic selection of the thresholds relies on the analysis of the reconstruc-
tion error computedbetween theGCFobtainedbyconsidering all thepossible
threshold values and the approximation of the GCF.

7.3 Experimental Setup

The experimental analysis is performed on the first principal component ex-
tracted from Pavia University. In particular, the min-, max- and inclusion trees
representations are computed on the PC and used to derive the three GCFs.
Here, the attribute area is considered for building the attribute and self-dual at-
tribute profiles. However, according to the definition of the GCF, the method
can be computed considering any attribute. The set of thresholds for the at-
tribute area is composed of L = 2076, L = 1963 and L = 2508 unique
values for the min-tree, the max-tree and the inclusion tree, respectively.

7.4 Experimental Results andDiscussion

In the proposed approach, the number of segments used for the approxima-
tion are identified by minimizing the reconstruction error (i.e., the mean ab-
solute error, MAE) between the GCF and its approximation. Due to the na-
ture of the employed regressionmodel, the first and the last breakpoints corre-
spond to the first threshold (i.e., equal to 0, resulting in the original input im-
age) and to the last threshold (resulting in all pixels having the same gray-scale
value), respectively, which do not provide useful information. For this reason,
these two breakpoints are discarded. Accordingly, the number of thresholds
equals to the number of segments minus one. An example of reconstruction
error estimation, computed for all the tree representations, is shown in Fig-
ure 7.2. There, the reconstruction error has been computed for L̂ = 1, . . . , 15
segments. Considering the obtained trend of the reconstruction errors, the
attribute closing profile, the attribute opening profiles and the self-dual at-
tribute profile are built by using the first 4 selected thresholds for each GCF,
i.e., considering the first 5 segments. Figure 7.3 shows the regression analy-
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sis performed to approximate the three derived GCFs. In the figure, the red
circles represent the real GCFs (computed with all the thresholds in Λ̄), the
green line denotes the approximation based on 5 segments, and the black cir-
cles identify the breakpoints (i.e., the Λ̂). One can see that the breakpoints
are different from one to another GCF, providing different sets Λ̂ of thresh-
olds, meaning that a different measure has a different distribution along the
profile. Figures 7.4 - 7.12 show the attribute closing, the attribute opening and
the self-dual attribute profiles, obtained by selecting the 4 thresholds, which
correspond to the breakpoints without the extremities. From the obtained re-
sults, it is possible to notice how the considered GCFs are able to model the
contextual information according to the chosenmeasures, while the proposed
approach for threshold selection is able to identify those λs values that better
characterize themain changes (i.e., changes in slope) in the the distribution of
the original GCFs.

7.5 Conclusions

In this Chapter, a novel technique for the automatic selection of thresholds
basedon anewconcept of granulometric characteristic functions, is presented.
Granulometric characteristic functions are derived from the hierarchical rep-
resentations of the image, and computed considering a measure of interest.
By exploiting the tree (i.e., min-, max-, inclusion- trees) representations, filter-
ing steps prior the selection of the threshold set become unnecessary, making
the approach computational efficient. Three GCFs are defined based on dif-
ferent measures, such as, the sum of the gray-level values (i.e., based on the
conventional granulometry), the number of changed pixels and the number
of changed regions. In addition to the standard granulometry, which is related
to the volume (sum of the gray values) of variations, GCFs derived from the
other measures show the effects of the decomposition in terms of spatial ex-
tent (i.e., how large are the areas that got changed). At this point, a piecewise
linear regression model is employed to approximate the GCF. An algorithm
identifies the number and position of the breakpoints thatminimise the recon-
struction error of the GCF, providing the best approximation of the GCF.The
meaningful thresholds are then derived from the obtained breakpoints. The
effectiveness of the proposed approach is assessed by a qualitative analysis of
the obtained APs and SDAPs built on Pavia University data set. According to
the chosen attribute (i.e., area) and measures, the obtained image decomposi-
tions present effectivemulti-level characterizations of the original input scene,
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providing profiles that are representative of and non redundant. The selection
of thresholds that provides similar information is avoided due to the charac-
teristic of the regression model, which inserts a breakpoint where the curve
presents a change in slope, which corresponds to a significant change in the
image decomposition.

Part of this Chapter is submitted in:
G. Cavallaro, N. Falco, M. Dalla Mura, L. Bruzzone, and J. A. Benediktsson. Automatic

Threshold Selection for Profiles of Attribute Filters Based on Granulometric Characteristic
Functions. In Proc. of 12th International Symposium on Mathematical Morphology (ISMM
2015), 2015. (accepted) [19].
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Figure 7.2: Evaluation of the reconstruction error computed for the estimation of the GCFs derived

by min-tree (top line), max-tree (middle line) and inclusion tree (bottom line) for Pavia University. The

GCFval is denoted in green, the GCFpix is denoted in red, and the GCFreg is denoted in blue.
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Figure 7.3: GCFs derived by (a) min-tree, (b) max-tree and (c) inclusion tree. For each GCF (red cir-

cles), the estimated curve (green line) and the breakpoints (black circles), which are used to derive the

thresholds, are shown.
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Figure 7.4: Πφ computed on Pavia based on GCFval. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).

Figure 7.5: Πφ computed on Pavia based on GCFpix. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).
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Figure 7.6: Πφ computed on Pavia based on GCFreg. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).

Figure 7.7: Πγ computed on Pavia based on GCFval. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).
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Figure 7.8: Πγ computed on Pavia based on GCFpix. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).

Figure 7.9: Πγ computed on Pavia based on GCFreg. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).
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Figure 7.10: Πρ computed on Pavia based on GCFval. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).

Figure 7.11: Πρ computed on Pavia based on GCFpix. Thresholds’ value is increasing from left to

right, with the first column coinciding with ψT0 (i.e., the original image).
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Figure 7.12: Πρ computed on Pavia based on GCFreg. Thresholds’ value is increasing from left to right,

with the first column coinciding with ψT0 (i.e., the original image).





8
Conclusions

This Chapter concludes the thesis presenting a general discussion on the
work and the obtained results, reviewing the main contributions. Finally,
promising directions for future work developments are presented.

The latest advances in the remote sensing field have contributed signifi-
cantly at the broad availability of high quality hyperspectral image data. Ac-
cordingly, the development of efficient and robust algorithms for the analy-
sis of these data is a very important topics in the remote sensing field. Cou-
pling the high spectral resolution to an increasing spatial resolutionof the latest
sensors, hyperspectral images are unarguably congruous for classification and
land-covermapping. The classification problem, aiming at detecting and iden-
tifying the different land-covers that characterize a given geographical area of
interest, is a complex process that involves different procedureswhose aim is to
extract and analyse all the useful spectral and spatial information that hyper-
spectral images contain. This thesis aimed at developing methodologies for
classification of hyperspectral images that accurately detect and identify the
various types of land-covers.

133
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8.1 Contribution of this Dissertation

A first step (see Chapter 3) towards this direction is performed by means of a
detailed comparison among the three most broadly used ICA algorithms for
hyperspectral image classification, i.e., Infomax, FastICA and JADE.This is an
essential step in order to acquire profound insights on the exact assumptions
and trade-offs that each implementation encompasses aswell as the advantages
on the hyperspectral image analysis. The results pointed out that the exploita-
tion of prior information in feature extraction approaches used for dimension-
ality reduction prior to ICA, allows the extraction of better sets of independent
components, leading tomore accurate classifications. Infomax resulted in gen-
eral to be the worst in terms of both computational time and classification ac-
curacy. JADE was the implementation with the best performance in terms of
classification accuracy, while in terms of computational time it is comparable
to the ones obtained by FastICA being in many cases faster. Similarly, when
scaling up to higher dimensionality and without applying any dimensionality
reduction prior to ICA, ensuring in this way the preservation of information,
FastICAoutperformed Infomax, inboth computational time andclassification
accuracy. JADE, on the contrary, required a massive computational load and
thus is not adequate for this type of analysis. Information lossless schemas
imply full consideration of the data, resulting thus more noisy and negatively
affecting the classification accuracy. InChapter 3, ICAperformanceswere also
tested against the number of input samples. This pointed out that decreasing
the number of input samples increases significantly the convergence speed,
while maintaining the classification accuracies. The approach was more effec-
tive in lower dimensionality spaces, where Hughes’ phenomenon is not criti-
cal. Unlike supervised classification algorithms (i.e., SVM), ICAwas proven to
be negligibly affected by the reduction of the input sample size and could still
provide “good” ICs evenwhen few sampleswere exploited. This observation is
of essential importance in applications, for which the computational time and
the number of available samples are crucial issues.

Based on the previous findings, in Chapter 4, a novel ICA-based feature re-
duction approach was specially designed to retrieve class-informative features
in a high-dimensionality scenario, i.e., where no prior dimensionality reduc-
tion is applied. The selection of the ICs subset was decided upon the mini-
mization of a criterion function based on the reconstruction error measured
for the ICs extracted from each specific class. A genetic algorithm based ap-
proach was employed for the selection of the final subset. The results obtained
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confirm that an appropriate use of ICA can bring prominent improvements in
selecting the most representative components, leading to significantly higher
classification accuracies, while maintaining the computational cost and time
of the ICA extraction low. In particular, the application of the ICA on the en-
tire Salinas and the Hekla data sets (see Table 3.3), where the ICs were se-
lected by employing the SA feature selection approach, resulted in poor clas-
sification OAs, 91.96% and 82.05%, respectively; while, considering feature
reduction step prior to ICA (see Table 3.1) the OAs were 95.48% and 94.81%,
respectively. The proposed schema obtained slightly higher OAs (95.30% and
96.28%, respectively). However, it introduced an automatic approach that non
only isolates the most informative features without any supervision, but also
identifies the optimum number of the components to keep (see Table 4.1).

Having analysed the exploitation of the spectral information that hyper-
spectral images can provide, the analysis was extended to the spatial infor-
mation domain. The first step toward this direction was the definition of a
novel strategy for extracting spatial information based on a optimized version
of attribute profiles (AP) (presented in Chapter 5), aimed at reducing both
the dimensionality and the redundancy of the information that characterises
the AP. The algorithm considered, built upon multi-scale analysis of the DAP
behaviour, resulted in the extraction of geometrical features that correspond
to meaningful structures in the scene at different scales. According to homo-
geneity criteria, the original AP was compressed, fusing the most informative
geometrical information into few features. The emerged reduced AP’s feature
space accounts for three features types, the reduced thickening and thinning
profiles aswell as the original image. Compared against to the original APs, the
reducedAPs achieved comparable or higher classification accuracies, while us-
ing only few features (i.e., in the presented case was one third of the number
of feature of the original AP). It is worth noting that, in contrast to the original
AP, the number of thresholds used in the filtering process does not affect the
final number of features that compose the reduced AP. This property brings
important advantages in the cases of multi-attribute and multi-channel anal-
ysis, where the use of reduced EAPs and reduced EMAPs for modelling the
spatial context limits the Hughes phenomenon.

In Chapter 6, the aforementioned findings from Chapters 4 and 5, were ex-
plored for defining a methodology which takes advantage of the utmost of the
available information fusing both spectral and spatial features in the classifica-
tion task. The most representative features, as identified by the feature selec-
tion approach based on ICA (Chapter 4), were processed by a spatial analysis
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algorithm. A sharp improvement of the classification accuracies with respect
to the spectral features used alone and most importantly against the current
state-of-the-art approacheswas achieved. Moreover, compared to the spectral-
spatial approaches based on AP and proposed in the state-of-the-art, the ob-
tained results proved that the inclusion of additional process steps in the clas-
sification chain, such as the multiple use of supervised feature extraction tech-
niques, can be avoidedwhen an optimization of the extraction of both spectral
and spatial information is performed.

In Chapter 7, the issue related to the selection of the optimum range of fil-
tering thresholds that provides representative and non redundant profiles, was
address by presenting an automatic selection approach. The algorithm was
based on the new concept of granulometric characteristic functions, derived
from hierarchical representations of the image, and computed considering a
measure of interest. In contrast with the current state-of-the-art, the presented
approach exploits the tree, i.e., min-,max-, inclusion tree representations of the
image, permitting to identify the complete rangeof available thresholds and se-
quentially to select a subset without applying any filtering. This breakthrough
methodology advances the level of independence of the algorithm,making the
approach high computational and memory efficient. these properties that are
very important when large images are considered in the analysis.

8.2 Future ResearchDevelopments

In this dissertation, innovative methodologies are presented, which signif-
icantly improve the state-of-the-art in analysing and extracting information
from hyperspectral images. These methodologies considered both spectral
and spatial information, focusing on supervised image classification. The ex-
periments carried out, pointed out on a series of potential improvements that
are promising directions for future research.

• Part II: a)The proposed feature dimensionality strategy, based on ICA
could be improved by defining an automatic estimation of the param-
eter l, which represents the number of ICs to be retained. The choice
of l should not necessarily be the same for each class. This improve-
mentwould allows us to obtain a fully automatic and parameter-free ap-
proach. b)Theexploitationof thegenetic algorithmscouldbe improved
in terms of computational efficiency, if a different fitness function (e.g.,
Jeffries-Matusita distance) is evaluated, replacing the SVM classifier
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that increases the computational load due to the cross-validation proce-
dure. c) Considering the advances in parallel computing, kernel-based
feature extraction (e.g., kernel ICA) implementations, which require
high computational effort, could also be investigated.

• Part III: a) The employment of an automatic threshold selection strat-
egy in the spectral-spatial classification approach, is a straight forward
step in order to make the entire procedure fully automatic. This would
provide the context necessary for the validation of the proposed tech-
nique in providing informative profiles to address the hyperspectral im-
age classification task. b)The tree structures (i.e., min-, max- and inclu-
sion trees) have proven their efficiency in implementing attribute oper-
ators, avoiding any filtering step. Such a strategy should be included in
the extraction of the reduced AP, in order to further decrease the com-
putational cost. Moreover, the new defined granulometric characteris-
tic curves and homogeneity measures could be jointly used for a better
characterisation of each connected component. c) Even if in this dis-
sertation, we focused on the support vector machine classifier, different
classifiers could be investigated aswell. In particular, strategies based on
multiple classifiers, whose effectiveness is proven in termsof both stabil-
ity and performance with respect to the conventional classifiers, could
be integrated in the proposed spectral-spatial classification to improve
the stability of the classification accuracy.





A
Data Sets Description

ThisAppendix gives a brief introduction to the hyperspectral data sets used
in the experimental analysis and to the sensors used for their acquisition.
The descriptions of the classes of interest, the training and the test sets, used
for the accuracy assessment, are also provided.

A.1 Salinas Valley, California (Salinas)

Salinas1 data set has been acquired over Salinas Valley, California, in 1998. The
acquisition has been done by using the AVIRIS sensor (see Appendix A.6.1).
The original data set is composed of 224 bands with a spectral range between
0.43μmand2.5μm. The imagehas a sizeof 512×217pixelswith a spatial reso-
lution of 3.7m. In this study, the corrected data set is considered by discarding
the 20 water absorption bands: [108-112], [154-167], 224. The ground refer-
ence data contains 16 classes of interest (described in Table A.1). A false color
composition of the data set and the reference map are shown in Figures A.1a
and A.1b, respectively.

1Available on-line through the Grupo de Inteligencia Computacional from the Basque
University (EPV/EHU): http://www.ehu.es/ccwintco/index.php?title=Home.
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(a) (b)

Figure A.1: Salinas data set description: (a) false color image; (b) reference map.

Table A.1: Classes and numbers of training / test samples for Salinas data set.

Salinas Data Set

No. Class Training Test

1 Broccoli green weeds 1 301 1708
2 Broccoli green weeds 2 558 3168
3 Fallow 296 1680
4 Fallow rough plow 209 1185
5 Fallow smooth 401 2277
6 Stubble 593 3366
7 Celery 536 3043
8 Grapes untrained 1690 9581
9 Soil vineyard develop 930 5273
10 Corn senesced green weeds 491 2787
11 Lettuce romaine 4 weeks 160 908
12 Lettuce romaine 5 weeks 289 1638
13 Lettuce romaine 6 weeks 137 779
14 Lettuce romaine 7 weeks 160 910
15 Vineyard untrained 1090 6178
16 Vineyard vertical trellis 271 1536
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(a) (b)

Figure A.2: Hekla data set description: (a) false color image; (b) reference map.

Table A.2: Classes and numbers of training / test samples for Hekla data set.

Hekla Data Set

No. Class Training Test

1 Andesite lava moss cover 50 973
2 Scoria 50 500
3 Hyperclatite formation 50 634
4 Andesite lava 1980 III 50 1446
5 Rhyolite 50 354
6 Andesite lava 1980 I 50 658
7 Andesite lava 1991 II 50 360
8 Andesite lava 1991 I 50 2689
9 Firn and glacier ice 50 408
10 Andesite lava 1970 50 292
11 Lava with Tephra and Scoria 50 650
12 Snow 50 663

A.2 Hekla volcano, Iceland (Hekla)

Hekla2 data set was collected in June 17, 1991 on the active Hekla volcano,
which is located in south-central Iceland, by the AVIRIS sensor. Due to the
failure of the near-infrared spectrometer (spectrometer 4) during the data ac-
quisition, 64 channels appearedblank. Afterdiscarding thenoisy and theblank
channels, the final data set included 157 spectral channels. The image has di-
mensions of 600× 560 pixels with a geometric resolution of 20 m. It shows
mainly lava flows from different eruptions and older hyaloclastites (formed

2Available from the University of Iceland upon request.
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(a)

(b)

Figure A.3: Botswana data set description: (a) false color image; (b) reference map.

during subglacial eruptions). The ground reference data contains 12 classes
of interests, which are described in Table A.2. Figures A.2a and A.2b show a
false color composition of the image and the reference map, respectively.

A.3 OkavangoDelta, Botswana (Botswana)

Botswana3 data set was collected over the Okavango Delta, Botswana, in May
31, 2001 by theHyperion sensor (see Appendix A.6.2). The acquired image is
characterized by 242 bands covering the 0.4-2.5 μm portion of the spectrum
with a spectral resolution of 10 nm. Uncalibrated and noisy bands that cover
water absorption features were removed, and the remaining 145 bands were
included as candidate features: [10-55], [82-97], [102-119], [134-164], [187-
220]. The image shows an area of 256× 1476 pixels with a spatial resolution
of 30 m. The ground reference data represent 14 land cover types in seasonal
swamps, occasional swamps, and drier woodlands located in the distal portion
of theDelta. The data set and the referencemap are shown in Figures A.3a and
A.3b, respectively, while Table A.3 provides information related to the classes.
More information about the data set can be found in [50].

3Available on-line through the Center for Space Research at the University of Texas at
Austin http://www.csr.utexas.edu/hyperspectral/codes.html.

http://www.csr.utexas.edu/hyperspectral/codes.html
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Table A.3: Classes and numbers of training / test samples for Botswana data set.

Botswana Data Set

No. Class Training Test

1 Water 54 216
2 Hippo grass 20 81
3 Floodplain grasses1 50 201
4 Floodplain grasses2 43 172
5 Reeds1 53 216
6 Riparian 53 216
7 Firescar2 51 208
8 Island interior 40 163
9 Acacia woodlands 62 252
10 Acacia shrubland 49 199
11 Acacia grasslands 61 244
12 Short mopane 36 145
13 Mixed mopane 53 215
14 Exposed soil 19 76

A.4 Pavia, university area, Italy (Pavia University)

Pavia University4 data set was acquired by the optical airborne sensor ROSIS-
03 (see Appendix A.6.3) over the university area of the city of Pavia, Italy. The
image is composedby103 spectral channelswith a spectral rangebetween0.43
μm and 0.86 μm. The image shows an area of 610× 340 pixels with a spatial
resolution of 1.3 m per pixel. In the data set, nine classes of interest are con-
sidered, namely: Asphalt, meadow, gravel, trees, metal sheets,bare soil, bitu-
men, self-blocking bricks and shadows. The data set and the referencemap are
shown in Figure A.4a and A.4b, respectively, while the class information are
reported in Table A.4.

4Provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing
Laboratory, University of Pavia.
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(a) (b) (c)

Figure A.4: Pavia University data set description: (a) true color image; (b) reference map; (c) training

samples.

Table A.4: Classes and numbers of training / test samples for Pavia University data sets.

Pavia University

No. Class Training Test

1 Asphalt 548 6631
2 Meadow 540 18646
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
16 Bare soil 532 5029
7 Bitumen 375 1330
8 Self-blocking bricks 514 3682
9 Shadows 231 947

A.5 Pavia, central area, Italy (Pavia Center)

PaviaCenter5, as for the previous data set, was acquired by theROSIS-3 sensor
during a flight campaign over Pavia. In this case, the data set is composed by
102 spectral bands, with a scene of 1096× 715 pixels. Nine classes of interest

5Provided by Prof. Paolo Gamba from the Telecommunications and Remote Sensing
Laboratory, University of Pavia.
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(a) (b) (c)

Figure A.5: Pavia Center data set description: (a) true color image; (b) reference map; (c) training

samples.

Table A.5: Classes and numbers of training / test samples for Pavia Center data sets.

Pavia Center

No. Class Training Test

1 Water 824 65147
2 Trees 820 6778
3 Meadow 824 2266
4 Self-blocking bricks 808 1891
5 Bare soil 820 5764
6 Asphalt 816 8432
7 Bitumen 808 6479
8 Tiles 1260 41566
9 Shadows 476 2387

are considered, namely: Water, trees, meadow, self-blocking bricks, bare soil,
asphalt, bitumen, tiles and shadows. the data set and the related referencemap
are shown in Figure A.5a and A.5b, respectively, while the class information is
reported in Table A.5.
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A.6 Hyperspectral Sensors

A.6.1 AVIRIS

TheAVIRIS (Airborne Visible/Infrared Imaging Spectrometer)6 [48] was de-
veloped by NASA Jet Propulsion Laboratory ( JPL), providing images since
1987. The sensor system, composed of four spectrometers, measures a por-
tion of the solar reflectance spectrum that covers the wavelength span from
0.4 μm to 2.5 μm, through 224 contiguous spectral channels with 10 nm in-
tervals. The image acquisition is performed from areal platforms that can fly
at different altitudes, which determine the pixel size and swath width of the
acquired image.

A.6.2 Hyperion

Hyperion7 is a one of the three primary instruments on board EO-1 NASA’s
spacecraft, which has been launched in 2000. The sensor acquires images com-
posed by 220 spectral channels, covering a wavelength span from 0.4 μm to 2.5
μmwith a spectral resolution of 10 nm. Themaximumacquired area per image
is of 7.5 km by 100 km with a spatial resolution of 30 m.

A.6.3 ROSIS-03

The ROSIS-03 (Reflective Optics System Imaging Spectrometer)8 was devel-
oped jointly by Daimler-Chrysler Aerospace AG, the GKSS Research Centre
and theGermanAerospace Center, DLR.The sensor has been lunched for the
first time in 1992 and operates from areal platforms. The sensor covers a por-
tion of the reflectance spectrum from 0.43 μm to 0.86 μm, providing an image
cube with 115 spectral channels with a spectral interval of 4 nm. The spatial
resolution varies with the flying altitude. With an altitude of 3 km the pixel
size is 1.7× 1.7 m2.

6http://aviris.jpl.nasa.gov/aviris
7http://eo1.usgs.gov/sensors/hyperion
8messtec.dlr.de/link-80-en



B
Accuracy Assessment

This Appendix provides the notions of overall accuracy and kappa coeffi-
cient, used in this dissertation for the accuracy assessment.

In this dissertation, the accuracy assessment is basedon the analysis of the con-
fusion matrix computed on the classification results. From the confusion ma-
trix useful parameters that indicate how good the obtained classification is are
derived. The parameters that are used are the overall accuracy and the kappa
coefficient.

Overall Accuracy (OA) The overall accuracy (OA) represents the num-
ber (or percentage) of pixels that are correctly classified. Considering a total
of C classes, the OA is mathematically defined as the ratio between the total
number of corrected pixels for each class, Ni (which are summed along the
major diagonal), divided by the total number of referenced pixels that are be-
ing tested, T:

OA =

∑C
i Ni

T
. (B.1)

KappaCoefficient (k) Thekappa coefficient (or kappa statistic) provides
a measure of overall classification quality by comparing the agreement against
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the one expected by chance. It is mathematically defined as follows:

k =
mo − mc

1− mc
, (B.2)

where mo represents the proportion of correct agreement in the test set, and
mc is the proportion of agreement that is expected by chance. The possible
values range from +1 (perfect agreement) via 0 (no agreement above that
expected by chance) to -1 (complete disagreement).
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