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1

I N T RO D U C T I O N

1.1 BAC K G RO U N D

Understanding human activities is a challenging research topic in the community of
computer vision, which involves techniques from different fields, for instance, im-
age/video processing, pattern recognition, machine learning, mathematics, psychol-
ogy, and cognitive science. The interest in behavior analysis has grown dramatically
in recent years, due to the increasing societal needs, such as video surveillance [1,2],
event detection [3–5], video summarization [6, 7], and video retrieval [8, 9], to name
a few. All these applications require a high-level activity analysis, which consists of
multiple atomic actions of individuals.

In fact, human activities can be analyzed at various scales. According to [10],
human activities are categorized into four different levels, hierarchically (see Figure
1), namely: gestures, actions, interactions, as well as group activities, which are
defined as follows:

Figure 1: Human activity categorization

• Gestures
Gestures are the atomic motion of body parts characterizing the elementary move-
ments of a person (e.g., raising an arm, waving a hand, and stretching a leg),
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I N T RO D U C T I O N

which are the fundamental elements to compose human actions. Examples 1 of
human gestures are shown in Figure 2. Recent works related to gesture recognition
include [11–14].

Figure 2: Examples of human gestures.

• Actions
Actions represent single-person activities that are comprised by the concatenations of
multiple gestures in specific spatial and temporal orders (e.g., walking, running, and
jumping). Recognition of single-person action has already been widely investigated.
Examples 2 of atomic human actions are shown in Figure 3.

Figure 3: Examples of human actions

• Interactions
Interactions are human activities that require two or more distinctive persons and/or
objects, which jointly interpret the event occurring in the scene. Interactions can

1 http://shivvitaladevuni.com/action_rec/action_rec_using_ballistic_
dynamics.html

2 http://www.nada.kth.se/cvap/actions/
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1.2 P RO B L E M S A N D S O L U T I O N S

be further sub-divided into human-human interactions (e.g., handshake, hug, and
fight) and human-object interactions (e.g., cooking in the kitchen, stealing luggage).
Examples of human interactions are shown in Figure 4. Related works on human
interaction analysis include [15–19].

Figure 4: Examples of human interactions

• Group Activities
Group activities are performed by a large amount of people sharing a common
objective, such as a group marching, crossing the road, and waiting in a queue. As
the number of people increases, it becomes impossible to isolate each individual’s
behavior from the crowd (due to background clutters, frequent mutual occlusions,
etc.). Examples 3 of group activities are shown in Figure 5. Related works on group
analysis include [20–24].

1.2 P RO B L E M S A N D S O L U T I O N S

This thesis focuses the attention on two specific problems related to the interaction
analysis, namely discriminative patches segmentation and two-person interaction
recognition.

1.2.1 Problem 1: discriminative patches segmentation

The motivation behind this topic is that, although videos provide more dynamic in-
formation than images, there are still large redundancies between successive frames.
Moreover, compared to the whole evolution of human behavior, only a small portion
of human activity is essential, and contributes to the classification task. Thus, it
becomes important to segment the discriminative patches from video sequences.
The potential applications include: video summarization, key-frame extraction, and
video matching. Towards this problem, we propose two approaches applied to two

3 http://wwweb.eecs.umich.edu/vision/activity-dataset.html
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I N T RO D U C T I O N

Figure 5: Examples of group activities

different application scenarios: multi-view surveillance cameras and TV shows.

• Scene 1: Multi-view surveillance cameras
In this scenario, we collect two-person interaction videos from multi-view surveil-
lance cameras, where people are observed from the lateral view and the bird-eye
view, respectively. By exploiting tracking algorithms and proxemics cues from
the bird-eye view videos, we infer the interval in which an interaction occurs, and
simultaneously segment the corresponding patch from the lateral view video.

• Scene 2: TV shows
In this scenario, we exploit the spatio-temporal interest point (STIP) detector to
capture the salient motion points in video sequences, and adopt the histogram of
oriented gradient (HOG) and histogram of oriented optical flow (HOF) to describe the
motion features in the neighborhood of each STIP. Then, we apply the non-negative
sparse coding theory and a two-stage sum-pooling+l2-normalization scheme to
generate better representations of the motion features. Finally, the discriminative
patches are extracted using the error-correcting code SVM (ECC-SVM) [25].

1.2.2 Problem 2: two-person interaction recognition

The second problem is recognizing complex human interactions in unconstrained
videos, which is still an open issue in the computer vision community. With the
term ’unconstrained’, we refer to videos collected from movies, TV shows, and
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1.3 C O N T R I B U T I O N

surveillance cameras, thus not focusing on specific acquisition strategies. This raises
multiple challenges that have to be faced, including: frequent changes of camera
viewpoint, fast body movements, and temporal structure modeling, to name a few.
With respect to this topic, we propose two different approaches:

• Interaction recognition using the self-similarity matrix (SSM)
In this approach, the motion interchange pattern (MIP) [26] is exploited to detect the
abrupt camera viewpoint changes and extract the salient points that are significant to
human motions. To deal with fast body movements, we compute the large displace-
ment optical flow (LDOF) [27] on the salient motion points per frame. The temporal
correlation of human interactions is modeled using the self-similarity matrix (SSM)
on the basis of the histogram of oriented LDOF. After extracting the SSM descriptors,
classification is achieved through the standard ’bag-of-words+SVM’ approach.

• Interaction recognition using multiple-instance-learning (MIL) framework
In this approach, we use trajectories to represent low level motion features, and
adopt the coherent filtering algorithm [28] to generate the so-called local motion
patterns. Each local motion pattern is described by the histogram of oriented LDOF.
Classification is achieved through the multiple-instance-learning (MIL) framework.

1.3 C O N T R I B U T I O N

The main contributions of this thesis are summarized as follows:

• Two different approaches to segment discriminative patches of human inter-
actions from multi-view surveillance cameras and TV shows are proposed.
The extracted video clips can preserve the perceptual meaningful portions
of human behaviors, and demonstrate better separating capabilities as well
(Chapter 3).

• A novel framework for human interaction recognition in TV shows by ex-
ploiting the self-similarity matrix (SSM) is presented, where the Motion
Interchange Pattern (MIP) is adopted for camera shot boundary detection and
salient motion point extraction (Chapter 4).

• A novel framework for human interaction recognition is introduced by analyz-
ing trajectory groups under a multiple-instance-learning perspective (Chapter
5).
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I N T RO D U C T I O N

1.4 S T RU C T U R E O F T H E T H E S I S

The rest of the thesis is organized as follows: Chapter 2 reviews the state-of-the-art
methods in the field of human activity analysis, in terms of single-action recognition,
interaction recognition, as well as the dataset survey. Chapter 3 introduces two
discriminative patch segmentation approaches, which can be applied in the contexts
of multi-view surveillance cameras and TV shows, respectively. In Chapter 4, we
propose an effective framework to recognize two-person interactions in TV shows
by exploiting the self-similarity matrix (SSM). In Chapter 5, we adopt the multiple-
instance-learning (MIL) framework for interaction recognition, which achieves the
state-of-the-art performance on the TV human interaction dataset. Conclusions and
remarks are discussed in Chapter 6.
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2

R E L AT E D W O R K

In the last two decades, considerable efforts have been spent by the research commu-
nity in human activity analysis. A thorough review of the main achievements in this
area is presented in [10, 29] and references therein.

2.1 H U M A N AC T I O N R E C O G N I T I O N

For single-person action recognition, local space-time features have been widely
adopted. Laptev [30] proposed a spatio-temporal interest point (STIP) detector
based on the 3D Harris corner function to capture significant motion patterns from
human activities. Dollár et al. [31] proposed another interest point detector by
applying the Gabor filter in the 3D space, which can detect more interest points
compared to Laptev’s work. Other interest point detection methods include Hessian
detector [32] and dense sampling. As far as the descriptor is concerned, a typical
approach is the concatenation of HOG and HOF, which has proved to be an effective
descriptor in a wide range of applications. Other interest point descriptors include
3D-HOG [33], extended SURF [32], and MoSIFT [34]. A detailed evaluation of
different interest point descriptors can be found in [35]. Differently from interest
points, the motion trajectory is another commonly used local space-time feature
for motion description. Raptis et al. [36] proposed tracklet descriptors for video
analysis and action recognition. Wang et al. [37] proposed dense trajectories to
represent motions in a video, where HOG, HOF, and MBH (motion boundary
histogram) are used to describe the motion features that surround the trajectory.
In [38], they further improved the quality of the trajectory extraction procedure by
exploiting the motion compensation. A comparative evaluation of point descriptors
and trajectory descriptors can be found in [39]. All these local space-time features
are combined with a certain encoding scheme (e.g., bag-of-words [40], sparse
coding [41, 42], Fisher descriptor [43, 44]), and classification is usually achieved
through the standard SVM. More recently, researchers have focused on modeling the
global space-time structure for action recognition. In [45], Douglas et al. considered
activity recognition as a temporal classification problem, and adopted the HMM and
CRF for categorization. In [46], Tang et al. used the latent structural SVM to model
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R E L AT E D W O R K

the global temporal structure of human activities, where each type of human activity
can be described in terms of different hidden states aligned in the temporal order.
In [47], Liang et al. modeled human actions through an ensemble of spatio-temporal
compositions, and adopted a spatio-temporal AND-OR graph to represent the latent
structure of actions.

Another interesting trend that emerges from the recent literatures is the idea of
extracting the key and dominant components of human activities. In [48], Satkin
et al. exploited the bag-of-words approach and the standard SVM to determine the
essential parts of human activities. In [49], Raptis et al. used poselets to detect key
poses of human activities. In [50], Wang et al. proposed a novel model that captures
the discriminative motions of human activities, which is known as motionlets. In [51],
Jain et al. proposed a novel activity representation based on mid-level discriminative
spatio-temporal patches, and classification is achieved by learning a discriminative
SVM classifier. In [52], Sapienza et al. adopted the multiple-instance-SVM (MI-
SVM) to capture discriminative space-time cuboids related to body movements.
In [53], they further incorporated the 3D deformable part model (DPM) into the
multiple-instance-learning framework, and developed a more flexible representation
of human activities. The advantage of this approach is that it merely exploits the
weakly-labeled videos in the training procedure, and all the discriminative body
movements are extracted automatically. In [54], Zhu et al. developed a mid-level
acton representation learned through a new max-margin multi-channel multiple-
instance learning framework. The learned actons are more compact, informative and
discriminative in the recognition task. All these approaches are motivated by the
need of defining minimal sets of patterns that capture the discriminative portion of
an activity.

2.2 H U M A N I N T E R AC T I O N R E C O G N I T I O N

Comparing to the large amount of work on single action recognition, the literature
on human interaction recognition is still limited. One possible reason lies in the
difficulty of isolating the individuals involved in the interaction, especially when
strong mutual occlusions occur. Another non-negligible aspect is the nature of the
datasets. Although there are several public interaction datasets available, they are
either restricted by the camera viewpoints [55] or are annotated using specific motion
capture devices in 3D spaces (i.e., CMU MOCAP dataset [56]). For unconstrained
environments, the UT human interaction dataset [57] and the TV human interaction
dataset [58] are representative examples collected from surveillance cameras and TV
shows, respectively. Moreover, these two datasets are not specifically designed for
the recognition task. The UT dataset is created for interaction detection, localization,
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2.2 H U M A N I N T E R AC T I O N R E C O G N I T I O N

and categorization, while the TV human interaction dataset is used for interaction
retrieval.

In the beginning, hierarchical models were widely adopted. Park and Aggarwal
[59, 60] adopted a hierarchical Bayesian network (BN) for two-person interaction
recognition, where the segmentation/tracking of different body parts was performed
at the low level, and the evolution of poses was estimated using a dynamic Bayesian
network (DBN). The recognition of two-person interactions was done by exploiting
semantic verbal descriptors (i.e., in ’subject + verb + object’ format) at multiple
levels: atomic motion at the low level, single-person actions at the middle level,
and human interactions at the high level. Ryoo and Aggarwal [61] used a similar
hierarchical framework. The main difference lies in the high level, where they
proposed a novel representation describing human interactions based on context-free
grammars (CFGs) that allow to formally define complex interactions in terms of
atomic body movements. Although the above hierarchical models can obtain good
classification performance in some specific scenarios, there are still many limitations:
(1) they highly rely on the accurate segmentation of human bodies; (2) they require
precise trackers; (3) people are always viewed from the lateral viewpoint, namely
the best perspective to observe the ongoing interaction. Due to these constraints, it
is often unfeasible to apply the hierarchical models into realistic scenarios. In [16],
Ryoo and Aggarwal presented a new methodology, which not only allows for human
interaction recognition, but can also detect and localize non-periodic activities.
Based on the spatio-temporal interest points proposed by Dollár et al. [31], they
designed a novel matching scheme, known as spatio-temporal relationship match, to
measure the structural similarities of point features. After introducing the temporal
predicates (such as before, after, near and far), classification was performed using
a hierarchical algorithm. In [62], Marín-Jiménez et al. provided a comprehensive
analysis on different STIP-based models for interaction recognition, where the dense
sampling of STIP proved to be the best strategy. Among the most recent works
in interaction analysis, Patron-Perez et al. [58] exploited the structured SVM for
two-person interaction recognition and localization. The tracking of body parts and
the estimation of head poses were achieved at the feature extraction step. Based on
the head orientation, local descriptors (HOG features in the local spatio-temporal
region around upper bodies) and global descriptors (the relative positions of people)
were introduced in their approach. Training and inference were implemented through
the structural learning algorithm. This model can tell, which pairs of people are
interacting in the scene among several persons, and predict the interaction category
and head orientations as well. In [17, 18], Kong et al. adopted the so-called
interactive phrases descriptors to express binary semantic motion relationships
between interacting people. These interactive phrases descriptors were considered
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R E L AT E D W O R K

as latent variables, and classification was achieved through the latent structural SVM
framework.

2.3 H U M A N I N T E R AC T I O N DATA S E T S U RV E Y

For human activity recognition, a lot of public datasets are available for research
purposes, such as: (1) constrained dataset: KTH dataset [40], Weizmann dataset [63],
etc. (2) unconstrained dataset: Hollywood2 dataset [64], HMDB [65], etc. More
detailed overview of activity datasets can be found in [66]. However, compared to
single action recognition, videos for human interaction analysis are very few. In this
thesis, we mainly exploit three different human interaction datasets. The details of
these datasets are listed below:

• UT Human Interaction Dataset

The UT human interaction dataset [57] is developed by the University of Texas,
with the aim of evaluating the algorithms for high-level two-person interaction
recognition from surveillance cameras. This dataset consists of 5 different types of
human interactions, namely, handshake, puch, push, kick, and hug.

The videos in this dataset are further divided into two subsets, where SET 1 is
recorded on a parking space with almost static background and little camera jitters,
while SET 2 is taken on a lawn during a windy day with moving background and
more camera jitters. Each type of interaction contains 10 sample videos. Examples
of the UT human interaction dataset are shown in Figure 6 .

Figure 6: Examples of interactions from the UT human interaction dataset. From
left to right: handshake, hug, kick, push, and punch.

• TV Human Interaction Dataset

The TV human interaction dataset (TVHID) [58] is developed by the visual geom-
etry group (VGG), the University of Oxford, which is used to evaluate algorithms
of two-person interaction recognition for retrieval purposes. This dataset consists
of four different types of human interactions, such as handshake, highfive, hug, and
kiss, where each type contains 50 video clips. Moreover, it also has 100 videos
that do not contain any interactions, known as negative samples. Videos in this

14



2.3 H U M A N I N T E R AC T I O N DATA S E T S U RV E Y

dataset are annotated in each frame. The ground truth is comprised by: (1) upper
body (person ID, x-coordinate and y-coordinate, scale); (2) discrete head orientation
(profile-left, profile-right, frontal-left, frontal-right and backwards); (3) interaction
label of each person. This dataset is very challenging due to frequent changes of
camera viewpoint, background clutters, multiple people in the scene, and camera
motions. Examples of the TVHI dataset are shown in Figure 7.

Figure 7: Examples of interactions from the TV human interaction dataset. From
left to right: handshake, highfive, hug, and kiss.

• UNITN Social Interaction Dataset

UNITN social interaction dataset (USID) [55] is specifically designed for surveil-
lance and people monitoring. This dataset is recorded outdoor by two different
viewpoints: one is from the lateral view, and the other one is from the bird-eye view.
For each viewpoint, it includes 4 different types of two-person interactions, namely
handshake, hug, fight, and talk. Each class contains 16 video clips, with the total
number equal to 64 video sequences. All the videos in this dataset show the complete
evolution of human interactions. Examples of the USID are shown in Figure 8.

Figure 8: Examples of interactions from the UNITN social interaction dataset. The
first row: lateral view. The second row: bird-eye view. From left to right: handshake,
hug, fight, and talk.

15





3

D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N

3.1 D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N F RO M M U LT I - V I E W S U RV E I L -
L A N C E C A M E R A S

In this section, we first introduce the visual features that exploited in the far-range
and close-range analysis, respectively, and then explain how to use the cues from the
bird-eye view camera to help the segmentation of discriminative patches from the
lateral view camera.

3.1.1 Far-range Analysis: Proxemics Cues

Sociological studies have analyzed the behavior of people in a social dimension,
defining a set of rules that are generally and unconsciously followed in normal
conditions, called proxemics [67]. In our work, proxemics cues are gathered from
the bird-eye view camera and mapped onto an homographic plane. The retrieved
information is then used to trigger the beginning and the end of an interaction, so
as to properly identify the subjects involved in the interaction, and simultaneously
discard casual or involuntary interactions.

The interaction phase between two subjects is determined using two different
energy functions (see Eq. (3.1) and (3.2)): the first one is related to the actual
distance between a pair of subjects, and the latter is proportional to the distance
between each subject’s O-space [55]. The O-space refers to the area immediately in
front of the subject, which is commonly considered as the area where the interaction
is more likely to happen.

Edij = e
−
‖kdij‖

2

2σ2wσ
2
d (3.1)

Eoij = e
−
‖koij‖

2

2σ2wσ
2
o (3.2)
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D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N

In (3.1) and (3.2), kdij is the actual distance between the two subjects, while koij
indicates the distance between the O-spaces. The parameter σw is related to the
field of view of the camera: the wider the angle of view, the smaller the interesting
interaction area. The terms σd and σo are two additional parameters related to the
proxemics space (e.g., intimate, social, and public) that allows to extend or restrict
the interaction area according to the scenario and the position of the camera.

The feature vectors at each frame t contain the energy values over a temporal
window τ:

Edi,j(t, τ) = [Edi,j(t− τ),E
d
i,j(t− τ+ 1), ...,Edi,j(t)] (3.3)

Eoi,j(t, τ) = [Eoi,j(t− τ),E
o
i,j(t− τ+ 1), ...,Eoi,j(t)] (3.4)

The feature vectors (3.3) and (3.4) are then transformed into the frequency domain
by applying the Fast Fourier Transform (FFT), thus eliminating the temporal correla-
tions. After applying PCA on the above two feature vectors, the obtained values are
then concatenated to construct a single feature for each frame. These frame-based
features are labeled as interaction or non-interaction, and then used to train a binary
classifier, which can trigger the interaction and provide the temporal interval as well.

The number of available samples N for each video is computed as (3.5):

N =

n∑
x=1

n∑
y=2,y 6=x

Frame(x,y) − τ (3.5)

where n is the number of people in the video, Frame(x,y) is the number of frames,
in which subject x and y are in the scene jointly; τ is the length of the temporal
window.

3.1.2 Close-range Analysis: Spatial-temporal Interest Points

For close-range analysis, the spatio-temporal interest points are widely adopted for
motion representation. In this part, the STIPs are extracted using the 3D Harris
corner detector from the lateral view camera. Firstly, we use a function f(x,y, t) to
represent a video and compute its linear scale-space representation L by convolution
of f with a Gaussian kernel g:

L(x,y, t,σ2l , τ
2
l ) = g(x,y, t,σ2l , τ

2
l ) ∗ f(x,y, t) (3.6)

Then, another Gaussian kernel is adopted to average the 3×3 spatial-temporal
matrix composed of first order spatial-temporal derivatives of L:

µ = g(x,y, t,σ2i , τ
2
i ) ∗

 L2x LxLy LxLt
LxLy L2y LyLt
LxLt LyLt L2t

 (3.7)
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3.1 D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N F RO M M U LT I - V I E W S U RV E I L L A N C E C A M E R A S

(a) (b) (c) (d)

Figure 9: Examples of STIP detection for different types of two-person interactions
in the USI dataset. From left to right: (a) fight, (b) hug, (c) handshake and (d) talk.

Next, a 3D Harris corner function H is constructed as:

H = det(µ) − k trace3(µ) (3.8)

We consider the positive local maxima of H as the locations of spatial-temporal
interest points. Figure 9 shows four examples of STIP detection on different types
of two-person interactions. For each STIP, HOG and HOF are computed in the
3D cuboid around its neighborhood, and represent the spatial and temporal mo-
tion features, respectively. The patch is partitioned into a grid with 3×3×2=18
spatial-temporal blocks. Moreover, 4-bin HOG descriptors and 5-bin HOF de-
scriptors are then computed for each block. The feature vector for each detected
STIP is represented by the concatenation of both descriptors with the total size of
18×4+18×5=162.

3.1.3 Patch Segmentation

The flowchart of temporal interval extraction from the lateral view camera is shown
in Figure 10. The main procedure is summarized as follows:

• Step 1: compute the feature vector of each frame discussed in 3.1.1 from the
bird-eye view camera;

• Step 2: train a binary SVM classifier as the interaction trigger;

• Step 3: use the trigger to detect and segment the interaction interval from the
lateral view camera;

3.1.4 Evaluation

In this section, we validate our segmentation approach on the USI dataset. In the
far-range analysis, we consider a temporal window τ of 128 frames. The feature
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D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N

Figure 10: Extracting the temporal interval of two-person interactions from the
lateral view camera

vectors corresponding to the distance energy and O-space energy are reduced to
80-dimensionality, respectively. Therefore, the final descriptor for each frame is
organized by concatenating the distance feature and O-space feature accordingly,
with the total dimensionality equal to 160. The interaction trigger is trained using
5 additional video clips in the USI dataset, which are not adopted for testing. An
example of the interaction trigger is shown in Figure 11.

Figure 11: An example of the trigger applied on one fight sample, where the white
line indicates absence of an interaction, and the red line indicates that an interaction
is ongoing.

In order to demonstrate that the extracted patches are more discriminative and
separable, we compare the classification performance on the original videos and the
segmented clips, respectively. Considering the limited size of the dataset, we adopt
the 64-fold leave-one-out cross-validation strategy. Classification is done using the
standard ’STIP + BoW + SVM’ scheme, and the corresponding results are listed in
Table 1. While Table 2 and 3 further illustrate the confusion matrices with respect to
the original videos and the segmented patches.

From Table 1, we can observe that the extracted temporal intervals can improve the
classification accuracy by around 3% on average, comparing to the original videos
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Table 1: USID: classification results on the original videos and the segmented
patches

# STIPs # codebook fight hug handshake talk accuracy
Original Videos 63,161 120 93.75% 81.25% 56.25% 93.75% 81.25 %
Extracted Patches 11,981 80 93.75% 93.75% 68.75% 81.25% 84.375%

Table 2: USID: confusion matrix on the original videos
fight hug handshake talk

fight 93.75% 0% 0% 0%
hug 6.25% 81.25% 43.75% 6.25%

handshake 0% 18.75% 56.25% 0%
talk 0% 0% 0% 93.75%

from the lateral view directly. The classification results for hug and handshake are
both improved. The decrease accuracy for talk is due to the lack of STIPs detected
in the sample videos, as in most cases people stand still while talking.

3.2 D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N F RO M T V S H OW S

In this section, we focus on extracting discriminative video patches in more chal-
lenging unconstrained environments, namely, TV shows.

3.2.1 Non-negative Sparse Coding of STIP Descriptors

We introduce the sparse coding algorithm used to encode the STIP descriptors.
The motivation for choosing a sparse coding strategy is twofold: (i) sparse coding
has proven to outperform classical bag-of-words schemes in terms of classification
accuracy [68]; (ii) sparse coding can also be considered a good tool when dealing
with noisy signals (see also [69] and [70]). This second property, in particular,
turns out to be quite relevant in our context. In fact, when extracting STIPs, a
non-negligible number of points are usually due to camera motions, viewpoint
changes, and background clutters. Such points can be regarded as an additional noise
source that corrupts the desired activity-related patterns. The adoption of sparse
coding helps reducing the impact of such noise, thus allowing to achieve a better
representation and consequently a more accurate classification.

In the following paragraphs we briefly summarize the fundamentals of sparse
coding and introduce the notations used in the following. Given a dictionary D =
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Table 3: USID: confusion matrix on the segmented videos
fight hug handshake talk

fight 93.75% 0% 0% 6.25%
hug 6.25% 93.75% 31.25% 0%

handshake 0% 6.25% 68.75% 12.50%
talk 0% 0% 0% 81.25%

[d1,d2, ...,dp] ∈ Rm×p, which consists of p atoms (each atom di is a column
vector), a signal y ∈ Rm can be represented in terms of a sparse linear combination
of atoms dk as follows:

y = Da+ e (3.9)

where a=[a1,a2, ...,ap]T is a coefficient vector, and e is the reconstruction error.
The sparse model needs to fulfill two conditions: (i) the number of the non-

zero elements in the coefficient vector a is small as compared to p, and (ii) the
reconstruction error e is small as compared to y, namely ‖e‖ � ‖y‖. The procedure
of computing the coefficient vector a is called sparse coding, and requires solving
an optimization problem, as follows:

a∗ = arg min
a
‖ a ‖0 s.t.

1

2
‖ y−Da ‖226 ε (3.10)

where D is an overcomplete dictionary and ‖ · ‖0 is the number of non-zero elements
in a.

As the optimal solution of Eq. (3.10) is a NP-hard problem, we can approximate
it as in Eq. (3.11):

a∗ = arg min
a

1

2
‖ y−Da ‖22 +λ ‖ a ‖1 (3.11)

where l0-norm is replaced by l1-norm, and known as Lasso [71].
The procedure of dictionary learning is called sparse modeling, and consists on

iterating two alternate optimization steps until convergence to a local minimum:
(step 1) fixed D calculate a through Eq. (3.11); (step 2) fixed a update D through
Eq. (3.12):

(D∗,A∗) = arg min
D,A

1

2
‖ Y −DA ‖2 +λ

n∑
i=1

‖ ai ‖1 (3.12)

where A=[a1, ...,an] ∈ Rp×n is a coefficient matrix related to all the n sample
signals, and ai=[ai1, ...,aip]T is the coefficient vector of the i-th training sample.
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Furthermore, we need to impose that all the elements in a are non-negative,
in order to measure the contribution of each atom in the dictionary. This can be
accomplished through the non-negative matrix factorization algorithm.

In our implementation the above technique is applied to STIP descriptors, using
the concatenated dictionary. We used Lasso to compute the coefficient vector, while
we adopted [72] and [73] for online dictionary learning, due to better computational
performance on large quantities of high-dimensional data. The procedure can then
be defined as follows: given C types of different activities, we train the specific
dictionary Di for each type of interaction, i=1,2,...,C. Then, the global dictionary
Dcon is constructed by concatenating all the class-specific dictionaries as:

Dcon = [D1,D2, ...,DC] (3.13)

Finally, we encode the STIP descriptor on the global dictionary, so that joint
motion features of different types of activities can be included in the coefficient
vectors. Assuming that the length of dictionary Di is LDi (the number of atoms in
the dictionary), then the total length of the concatenated dictionary (denoted by L) is
obtained as:

L =

C∑
i=1

LDi (3.14)

Thus, each STIP coefficient vector can be expressed by acon = [a1,a2, ...,aL]T .

3.2.2 Pooling and Normalization

After encoding all the STIP descriptors on the concatenated dictionary Dcon, pool-
ing and normalization procedures are applied to construct the feature vector for each
video. In [74], Wang et al. provided a comparative study of pooling and normal-
ization methods for action recognition. In our work, a two-stage sum-pooling and
l2-normalization [75] resulted in the configuration returning the best performance.

At the first stage, we do sum-pooling on all the coefficient vectors of STIPs in a
video:

Φ = [f1, f2, ..., fL] =
N∑
i=1

(ai
con)

T =

N∑
i=1

[ai1,a
i
2, ...,aiL] (3.15)

whereΦ is the video feature vector,N is the number of STIPs detected in a video,
ai
con is the coefficient vector of the i-th STIP descriptor, and L is the length of the

concatenated dictionary. Then, we apply the l2-normalization as follows:

Φl2 = [f
′
1, f

′
2, ..., f

′
L] =

Φ√∑L
i=1 fi

2
(3.16)
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Figure 12: Video feature construction using two-stage sum-pooling and l-2
normalization.

As Φl2 may not be discriminative enough in complicated scenarios, we do per-
class sum-pooling on the video feature vector at the second stage. Assuming that all
the class-specific dictionaries have the same length, we then define the second level
feature vector Ψ as:

Ψ = [g1,g2, ...,gC];

gk =

k∗LDk∑
i=(k−1)∗LDk+1

f
′
i;

k = 1, 2, ...,C

(3.17)

where f
′
i is the component inΦl2 , LDk is the length of the class-specific dictionary

Dk, and C is the number of activity categories. Again, we normalize Ψ using l2-
norm. The corresponding feature is denoted as Ψl2=[g

′
1,g

′
2, ...,g

′
C]. The whole

procedure of the video feature construction is depicted in Figure 12.
In order to demonstrate the discriminating power of our video feature vector, we

compare the classification accuracy obtained on the UT human interaction dataset
(set1), using the bag-of-words feature and the proposed Ψl2 , respectively. The UT
dataset contains 5 different types of two-person interactions, each of which includes
10 sample videos. The experiment is carried out through a 50-fold leave-one-out
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cross-validation strategy. At the lower level, the STIP descriptor is exploited as the
motion feature, while at the higher level, a standard SVM is adopted for classification.
The classification results are shown in Table 4 and 5. It can be seen that the proposed
two-stage sum-pooling+l2-normalization strategy provides in this case error-free
classification of the dataset, while also reducing the size of the video feature vector
to C-dimensionality.

Table 4: Confusion matrix on the UT human interaction dataset (set1) obtained
using bag-of-words features

Punch Hug Kick Push Hand Shake
Punch 50% 0% 40% 0% 10%
Hug 0% 90% 0% 10% 0%
Kick 40% 0% 50% 10% 0%
Push 20% 0% 0% 80% 0%

Hand Shake 0% 0% 0% 10% 90%

Table 5: Confusion matrix on the UT human interaction dataset (set1) obtained
using Ψl2

Punch Hug Kick Push Handshake
Punch 100% 0% 0% 0% 0%
Hug 0% 100% 0% 0% 0%
Kick 0% 0% 100% 0% 0%
Push 0% 0% 0% 100% 0%

Handshake 0% 0% 0% 0% 100%

The UT human interaction dataset is rather simple, as it is recorded in a constrained
scenario (fixed camera viewpoint, limited number of persons in the scene, ’staged’
postures). However, we are presenting it here just as a proof of effectiveness of the
chosen feature vector Ψl2 .

3.2.3 Patch Segmentation

In order to segment the discriminative patches, we first compute the feature vector
for each video Ψl2 , and then build a multi-class SVM (denoted by w) on the basis of
the obtained feature vectors. Next, we determine the category and the corresponding
confidence of each patch in a video by exploiting the trained classifier w. For a given
video withN frames, we need to compute N(N-1)/2 different patches. Among the
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patches that can be correctly classified according to the video category, we choose
the one with the highest confidence as our candidate.

The confidence of each patch can be expressed by mapping the relevant feature
vector x to the posterior probability p(y|x), where y is the video category, and the
feature vector x within a patch can be computed in the same way as we did for Ψl2 .
This mapping is achieved through the error-correcting code SVM (ECC-SVM) [25],
derived from the generalized Bradley-Terry model.

The ECC-SVM is an efficient tool in dealing with multi-classification problems.
Generally, multi-classification is solved by integrating the results from binary clas-
sifiers using different strategies including: (1) one-against-one, (2) one-against-all,
and (3) error-correcting code. In [76], the authors provided a comprehensive analysis
on the classification performance of the above three strategies, where the error-
correcting code scheme demonstrates better classification capabilities.

Error-correcting code is a general framework that aims at enhancing the gen-
eralization ability of binary classifiers. It decomposes a multi-class problem into
several binary classification tasks, and combines the results of these base classifiers
(e.g., SVMs, naive Bayes). In this paper, we adopt the ECC-SVM proposed in [25]
to generate the multi-class prediction and probability estimates. SVMs with RBF
kernel are considered as the base binary classifiers. On top of that, ’one-against-the
rest’ strategy is used as the ECC encoding scheme, as it is competitive against the
other three schemes (namely, one-against-one, dense, and sparse), while also being
computationally efficient. For each input x (patch feature vector), the confidence
(posterior) for each class is obtained by solving the Generalized Bradley-Terry mod-
els. We then choose the class that has the highest posterior as the prediction of the
patch. More details about the optimization of the Generalized Bradley-Terry models
can be found in [25].

The segmentation of the most discriminative patch is then computed for a given
video i, as reported in Eq. (3.18):

[frame∗start, frame
∗
end] =

arg max
∀:start6end

{conf(w, videoi(framestart, frameend), ci)}
(3.18)

where, ci corresponds to the video category for the video i, and frame∗start
and frame∗end indicate the position of the discriminative patch. The function
video() computes the feature Ψl2 within the range indicated by framestart and
frameend, where we assume start6end. Given the classifier w learned from the
activity videos, the function conf() computes the posterior of a patch that can be
classified as ci. The patch that has the highest confidence is considered to be the
most discriminative portion. A more detailed description about the computation of
function conf() is shown in Algorithm 1.
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Algorithm 1: CONFIDENCE
Input: w, the i-th video, framestart and frameend, ci
Output: confidence (posterior) of the patch
Step 1: Compute the feature vector Ψl2 of a video patch indicated by
framestart and frameend ;
Step 2: Classify the video patch using the given classifier w, the prediction is
denoted as class ;
Step 3:
if (class == ci) then

return the corresponding confidence;
else

return NULL;
end

In Figure 13, we show some examples of the patch extraction procedure. We
display four different types of two-person interactions in the first column, selected
from the TVHI dataset: handshake (15th video in the dataset), highfive (33rd video),
hug (3rd video), and kiss (37th video). The second column reports the confidence
map obtained by the ECC-SVM. Each pixel in the map represents the confidence of a
specific patch, where the y-coordinate indicates the start frame, and the x-coordinate
indicates the end frame. The blank space represents the invalid patches, namely
where framestart>frameend or in case no STIP can be detected. The diagonal
specifies the confidence of each frame. The third column refers to the prediction
map of the video patches. Only the colored portion of the map represents the patches
that are correctly classified in accordance to their categories. The prediction map
can be considered as a mask. We apply the mask on the confidence map using a
logical ’and’ operation and generate the final results (see the fourth column), where
patches with the highest confidence are selected as the candidates. The last column
shows the representative frames within the discriminative patches.

3.2.4 Evaluation

In this section we will detail the procedures used for validation and the corresponding
results. At first we demonstrate the discriminating capability of the feature vector
Ψl2 on the TVHI dataset. Specifically, we highlight the contribution of pooling
and normalization at each step in the feature construction procedure (see Figure 12)
with respect to the final classification performance. Then, we verify that the patches
extracted by our approach can preserve the essential semantic meaning of human
activities by exploiting the ground truth of the TVHI dataset. Finally, we show that
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Figure 13: The patch extraction procedures of four different types of human inter-
actions : handshake, highfive, hug and kiss. From the 1st column to the 5th column:
the original video (the first frame), confidence map, category mask, the results after

’and’ operation, and the corresponding representative frames in the patches. The
sample videos are selected from the TVHI dataset.

the segmented patches are more separable than the entire videos, by validating on
the TVHI and Olympic sports datasets.

3.2.4.1 TVHI Dataset

This dataset consists of four different interactions: handshake, highfive, hug and
kiss. Each category of interactions contains 50 sample videos. The dataset is very
challenging due to a high degree of variability between videos, in terms of number
of persons in the scene, camera viewing angle, and shot changes.

First, we extract all the STIPs from the dataset, with a total number of STIPs
equal to 246,619. Each STIP is represented by the concatenation of the HOG and
HOF features, for an overall dimensionality equal to 162. Then, class-specific
dictionaries are learned on the STIP descriptors. In order to guarantee the sparsity
requirements, we set the size of each class-specific dictionary to 1,000, for a total
size of the concatenated dictionary equal to 4×1,000=4,000. For dictionary learning,
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the number of iterations is set to 1,000. The non-negative matrix factorization and
sparse coding procedure are implemented using the tool SPAMS 2.3 [77].

According to Eq. (3.9), we define the relative reconstruction error as ‖e‖/‖y‖
in l2-norm. The sparsity of each STIP coefficient vector is calculated as the value
‖a‖0 divided by the size of the concatenated dictionary. The corresponding value
represents therefore the percentage of non-zero elements in the coefficient vector.
The average relative reconstruction error and the sparsity of STIPs of different
interaction types are listed in Table 6. From Table 6, we can conclude that all the
STIPs can be reconstructed accurately by their class-specific dictionaries, while also
keeping the coefficient vectors sparse.

Table 6: Average relative reconstruction error and sparsity of STIPs from different
interaction types

STIP Number Error Sparsity
handshake 60,653 2.5895% 12.63%
highfive 36,384 1.8586% 13.14%

hug 98,841 2.7060% 12.44%
kiss 50,741 2.4009% 12.61%

• The discriminating capability of different video feature vectors

In this paragraph, we demonstrate the discriminating capability of the feature
vector at each step (see Figure 12), and emphasize the effect of per-class sum-pooling
operation, as well as the importance of l2-normalization. The discriminating power
of the features is evaluated in terms of the classification accuracy using the 200-
fold leave-one-out cross-validation strategy. For comparison, we also provide the
classification accuracy using the standard ’bag-of-words+SVM’ approach as the
baseline. The same strategy is used for evaluation. We first apply the k-means
clustering on STIP descriptors to generate the so-called visual codebook. The
size of the visual codebook ranges from 400 to 600, in steps of 50. An RBF
kernel is adopted for the SVM, where γ and C are fixed, and obtained through the
grid search. Additionally, we further compare the performance of the STIP-based
model presented in [78], which exploits different feature selection criteria, such as
information gain (IG) and knowledge gain (KG), to ’discover’ more discriminative
visual words from the codebook. The details of the procedure followed to carry out
the comparison is reported hereafter:

1. STIP + bag-of-words model (see Table 7)

2. Classification using different feature selection from the visual codebook [78]
(see Table 8)
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3. Classification using Φl2 (see Table 9)

4. Classification using Ψ (without l2-normalization, in order to show the effect
of per-class sum-pooling, see Table 10)

5. Classification usingΨl2 (in order to highlight the importance of l2-normalization,
see Table 11 )

Additionally, we further explain the feature selection strategies adopted in [78]:
since STIPs may be extracted also in areas of the video that are not representative of
the interaction (e.g., due to noise in the background, shadows, compression artifacts),
it is necessary to identify the most significant visual words contained in the codebook.
To this aim, knowledge gain (KG) is proposed as a solution to evaluate the importance
of each visual word based on the rough set theory. According to the rough set the-
ory [79], knowledge is considered as an ability to partition objects on their properties,
defined as knowledge quantity. Here, we introduce several relevant definitions below:

Definition 1 Knowledge quantity - The object domain U is divided into m
equivalence classes by a set of features P. The probability of elements in each
equivalence class is p1,p2, ...,pm. Let Wp denote the knowledge quantity of P as
Wp =W(p1,p2, ...,pm), which satisfies the following conditions:
(1) ifm = 1,Wp = 0;
(2)W(p1, ...,pi, ...,pj, ...,pm) =W(p1, ...,pj, ...,pi, ...,pm);
(3)W(p1,p2, ...,pm) =W(p1,p2 + ... + pm) +W(p2, ...,pm);
(4)W(pk,pm + pn) =W(pk,pm) +W(pk,pn);

Definition 2 Conditional knowledge quantity - Given U the object domain,
P and D the two feature sets, and vj a specific value of P, then the conditional
knowledge quantityWD|P is defined as:

WD|P =
∑
j

prob(P = vj)WD|P=vj (3.19)

Definition 3 Knowledge gain - From Eq. (3.19), the knowledge gain KG(D | P)

is defined as:
KG(D | P) =WD|P −WD (3.20)

The knowledge gain measures the amount of knowledge obtained for category
prediction by knowing the presence or absence of an item in the feature set.

Consideringm as the equivalence class, and that the cardinality of each equivalent
class is n1,n2, ...,nm, then the knowledge quantity of P can be obtained by as:

Wp =W(p1,p2, ...,pm) =
∑

16i<j6m

pi × pj (3.21)
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where pi = ni/(
∑m
i=1 ni). Given two setsC = {c1, c2, ..., cm} and T = {t1, t2, ..., tk},

where C represents the categories of human interactions and T represents the visual
words, the knowledge gain of the visual word t can be computed by Eq. (3.22),
where p(ci|t) and p(ci|t̄) indicate the information obtained for category prediction
by knowing the presence/absence of the visual word t, respectively.

KG(t) = KG(C | t) =WC|t −WC = −
∑

16i6j6m

p(ci)p(cj)

+ [p(t)
∑

16i6j6m

p(ci|t) logp(ci|t) + p(t̄)
∑

16i6j6m

p(ci|t̄) logp(ci|t̄)]
(3.22)

The knowledge gain can measure the importance of each visual word in the
codebook. After sorting all the visual words by descending order according to
their knowledge gain values, we select the items, for which the percentage of the
accumulated knowledge gain is larger than a predefined threshold. The selected
visual words will be used to construct a new feature vector for each video. These
new feature vectors are used to train a multi-class SVM for interaction classification.
As a baseline, another typical method, known as information gain is also adopted in
selecting the discriminative visual words from the visual codebook. More details
about information gain can be found in [80].

Table 7: Confusion matrix: STIP + bag-of-words model, size of codebook=550,
average accuracy=45.5%

handshake highfive hug kiss
handshake 36% 16% 22% 26%
highfive 22% 42% 14% 22%

hug 12% 10% 68% 10%
kiss 20% 18% 26% 36%

From Table 9 and Table 10, it can be seen that the average accuracy can be
improved by the per-class sum-pooling operation (from 33.5% to 46%). From Table
10 and Table 11, it can be noticed how the l2-normalization can further improve the
classification performance (from 46% to 64%). Comparing these figures with the
baseline (see Table 7), we can conclude that Ψl2 consists of a better representation
of the videos in this dataset.

As we mentioned in the previous sections, the use of dense trajectories has demon-
strated strong capabilities in performing activity recognition [37], [38]. Therefore,
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Table 8: Classification accuracy using feature selection from the visual codebook
[78]

hand-
shake

highfive hug kiss Average

Baseline 36% 42% 68% 36% 45.5%
IG 38% 50% 68% 36% 48%
KG 46% 50% 58% 48% 50.5%

Table 9: Confusion matrix: Φl2 , dim=4000, average accuracy=33.5%
handshake highfive hug kiss

handshale 18% 52% 18% 12%
highfive 10% 46% 12% 32%

hug 22% 20% 44% 14%
kiss 16% 46% 12% 26%

Table 10: Confusion matrix: Ψ (without l2-normalization), dim=4, average accu-
racy=46%

handshake highfive hug kiss
handshake 42% 26% 16% 16%
highfive 24% 42% 14% 20%

hug 20% 18% 46% 16%
kiss 16% 14% 16% 54%

Table 11: Confusion matrix: Ψl2 , dim=4, average accuracy=64%
handshake highfive hug kiss

handshake 74% 6% 4% 16%
highfive 20% 56% 10% 14%

hug 26% 16% 46% 12%
kiss 6% 10% 4% 80%
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we also compare our feature representation (Ψl2) against dense trajectories, adopt-
ing MBH as the motion feature for each trajectory. Classification performance is
evaluated using the same criterion as mentioned above. The obtained classification
results are reported in Table 12-14, using different sizes of the codebook (50, 100,
and 500, accordingly). Also in this case we can confirm the suitability of our feature
representation.

Table 12: Confusion matrix: dense trajectory + bag-of-words model, size of code-
book=50, average accuracy=53%

handshake highfive hug kiss
handshake 32% 16% 30% 22%
highfive 10% 72% 14% 4%

hug 8% 2% 74% 16%
kiss 12% 6% 48% 34%

Table 13: Confusion matrix: dense trajectory + bag-of-words model, size of code-
book=100, average accuracy=56.5%

handshake highfive hug kiss
handshake 38% 10% 38% 14%
highfive 8% 72% 16% 4%

hug 0% 4% 84% 12%
kiss 16% 6% 46% 32%

Table 14: Confusion matrix: dense trajectory + bag-of-words model, size of code-
book=500, average accuracy=53.5%

handshake highfive hug kiss
handshake 38% 14% 36% 12%
highfive 6% 74% 10% 10%

hug 2% 4% 76% 18%
kiss 8% 12% 54% 26%

• Perceptual relevance of the extracted patches

In this section, we first demonstrate that the discriminative patches extracted by
our approach can preserve the core part of human activities, i.e., the portion of the
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video that contains the most significant pattern of the action from a perceptual point
of view. Then, we show that the patches are more separable compared to the original
videos.

After extracting the patches, whose length is clearly shorter than the original video
(please refer to Table 15), we aim at verifying that the obtained patch is accurate
enough in representing the corresponding human activity. To do so, and to provide
a quantitative analysis, we exploit the ground truth file of the TVHI dataset. The
ground truth provides the temporal interval for every ongoing interaction. We then
compare the patches with the ground truth for each video in terms of the precision
rate and recall rate, defined as follows:

Table 15: Average length (in frame) of different types of discriminative patches
Average Length handshake highfive hug kiss

Patch 14.72 6.48 12.62 15.52
Original Video 77.48 48 120.66 100.30

precision =
Ninteraction
Lpatch

recall =
Ninteraction
Lgroundtruth

(3.23)

where Ninteraction is the total number of frames labeled as ’interaction’ within
the patch. Lpatch represents the length of the patch, and Lgroundtruth indicates the
duration of the interaction provided by the ground truth. A detailed illustration is
presented in Figure 14.

We compute the average precision and recall rates for each interaction category,
and the results are shown in Table 16. From Table 16, we can find that, on average,
around half of the frames (51.47%) in the patches fall within the interaction interval,
while these frames only occupy a small portion (around 21.64%) of the whole
activity.

For completeness, we report some sample images from different interaction
patches in Figure 15. These patches are segmented automatically from the first 8
sample videos of each type, and the central frame of the patch is displayed. From
Figure 15, we can see that most of the video patches can capture the significant
elements of the corresponding human interaction, by only using nearly 15% of the
original length (see Table 15). As expected, the patches within the same category
exhibit similar motion patterns, while the irrelevant portions of the original videos
are filtered out.

We present now two other examples of the discriminative patches in Figure 16 and
17, respectively. We have selected the 10-th handshake video and 12-th hug video in

34



3.2 D I S C R I M I NAT I V E PAT C H S E G M E N TAT I O N F RO M T V S H OW S

Figure 14: Illustration of precision/recall rate for a given video clip. The green
rectangle represents the discriminative patch extracted by our approach. Lgroundtruth
indicates the period that a certain interaction is ongoing. The remaining frames are
labeled as ’no-interaction’.

Table 16: Average precision rate (AP) and recall rate (AR) of the patches with
respect to each category.

AP AR
handshake 51.38% 19.99%
highfive 35.31% 24.25%

hug 58.95% 16.42%
kiss 60.24% 25.90%

Average 51.47% 21.64%

Figure 15: Examples of the discriminative patches extracted by our approach. From
the top row to the bottom: handshake, highfive, hug, and kiss. For conciseness only
the central frame of the patch is displayed.
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the TVHI dataset. The discriminative portions are highlighted using blue bounding
boxes. We can notice how the frames that do not contain relevant information for
the activity of interest are discarded, thus limiting the duration of the patch to only
a small portion of the original videos, while still preserving the distinct motion
patterns of the corresponding activities.

In order to verify that the extracted patches are more separable compared to the
original videos, we repeat the 200-fold leave-one-out cross-validation strategy on
these patches. The results are shown in Table 17. Comparing with the figures
presented in Table 11, it is possible to appreciate the better separability of the
patches.

Figure 16: An example of the discriminative patch segmented from the 10-th hand-
shake video in the TVHI dataset.

Figure 17: An example of the discriminative patch segmented from the 12-th hug
video in the TVHI dataset.

It is worth noting that the proposed method focuses on the segmentation of the
most significant temporal frames of a given action. We demonstrate that we are
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Table 17: Confusion matrix: classification results on the extracted patches, average
accuracy=68.5%

handshake highfive hug kiss
handshake 64% 16% 2% 18%
highfive 10% 58% 20% 12%

hug 16% 4% 74% 6%
kiss 12% 10% 0% 78%

able to do this with good results in terms of precision rate. Notwithstanding this,
sometimes the segmented pattern does not contain the entire action, as can be noticed
by the value of the recall rate. In fact, in most cases, this does not impact negatively
on the classification accuracy, which instead greatly benefits of the patch extraction.
However, for a small number of samples, this is not true. One of these specific cases
is the handshake. Observing this class we can infer that the drop in performance is
due to the similarity of this action with the motion patterns of highfive, where most
of the misclassified samples are transferred.

3.2.4.2 Olympic Sports Dataset

In this section, we validate our method on another challenging context, namely the
Olympic sports dataset [81]. This dataset includes 16 different categories of sports.
We extract the discriminative patches from the training set, which contains 650
videos in total. We set the dimensionality of each class-specific dictionary to 1,000,
leading to a total size of the concatenated dictionary equal to 16,000.

As the average duration of the videos in this dataset is longer compared to the
TVHI dataset, we add the constraint that the minimum duration of the patch should
be at least 30 frames, in order to incorporate enough motion information. The
average lengths of the original videos and the discriminative patches are reported in
Table 18.

We compute the classification accuracy on the original videos and the corre-
sponding patches through a 650-fold leave-one-out cross-validation strategy. The
corresponding classification results are shown in Table 19.

The results in Table 18 confirm that also in this case the average length of the
discriminative patches (68.52 frames) is only 18.4% of the original video length. As
shown in Table 19, the classification performance in most of the sport categories
increases, and for some classes it improves significantly. Only the accuracy of
javelin-throw and shot-put reports a decrease.
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Table 18: Olympic Sports Dataset: The average length of the original videos and
patches (in frame)

Sport Type Original Videoes Patches
1. basketball-layup 193.65 55.15

2. bowling 335.85 76.44
3. clean-and-jerk 820.5 82.16
4. discus-throw 312.93 50.88

5. diving-platfrom-10m 339.71 53.79
6. diving-springboard-3m 397.53 85.05

7. hammer-throw 416.82 49.08
8. high-jump 292.05 95.71

9. javelin-throw 256.10 74.76
10. long-jump 360.48 61.03
11. pole-vault 358.09 107.97
12. shot-put 271.30 45.15
13. snatch 485.10 48.03

14. tennis-serve 420.13 77.31
15. triple-jump 496.24 64.53

16. vault 209.02 69.26
Average 372.84 68.52

Table 19: Olympic Sports Dataset: classification results on the original videos and
the patches.

Sport Type Original Videoes Patches
1. basketball-layup 92.50% 97.5%

2. bowling 97.56% 100%
3. clean-and-jerk 100% 100%
4. discus-throw 90.38% 94.23%

5. diving-platfrom-10m 97.92% 100%
6. diving-springboard-3m 84.21% 97.37%

7. hammer-throw 89.47% 100%
8. high-jump 80.35% 94.64%

9. javelin-throw 90.48% 85.71%
10. long-jump 92.50% 95%
11. pole-vault 68.75% 96.88%
12. shot-put 96.23% 94.34%
13. snatch 100% 100%

14. tennis-serve 87.50% 87.50%
15. triple-jump 76.47% 88.24%

16. vault 93.47% 97.83%
Average Accuracy 89.68% 95.58%
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In this chapter, we focus on recognizing complex human interactions in TV shows
by exploiting the self-similarity matrix (SSM). The challenging problems we need
to deal with in this scenario include: (1) frequent changes of camera viewpoint; (2)
multiple people moving in the scene; (3) fast body movements, and (4) videos of
short durations that often do not capture sufficient contextual information.

In our framework, we exploit the motion interchange pattern (MIP) [26] to detect
the abrupt changes of camera viewpoint, so as to filter out the frames that hinder the
feature extraction procedure. For multiple people moving in the scene, we use the
bounding boxes around human upper bodies to identify persons who are involved
in the interactions. In order to deal with fast body movements, we adopt the large-
displacement optical flow (LDOF) [27] to estimate the motion information for each
pixel (i.e., velocity, direction). Since the traditional tools (e.g., HMM, CRF) are not
suitable for modeling the temporal structure of human activities in very short clips,
we use the self-similarity matrix (SSM) based on the histogram of oriented LDOF
per frame to model the temporal correlation of human interactions. Moreover, we
focus on the region of interest (ROI) that covers the interacting people in each frame,
with the purpose of highlighting the role of motion features in the classification task.
Examples of the ROI are presented in Figure 18.

Figure 18: Examples of ROI. The green bounding boxes indicate human upper
bodies, while the red bounding boxes are the interest regions. All the ROI are
provided by [58].
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The overall procedure of our approach is presented in Figure 19, and the details
are further discussed in the following paragraphs.

Figure 19: The proposed framework.

4.1 S H OT B O U N DA RY D E T E C T I O N

Videos in TV shows always contain frequent changes of camera viewpoint, known
as shot boundary. These boundaries exert side-effects in the feature extraction
procedure. In this part, we introduce a novel approach that exploits the motion
interchange pattern (MIP) for shot boundary detection.

4.1.1 Motion interchange pattern

The MIP is first used for measuring the similarity between two activity videos. For
each pixel p(x,y, t) in a video, the MIP encodes the pixel using 8 strings, each of
which consists of 8 trinary bits. Thus, the MIP descriptor of pixel p, denoted by
S(p), is comprised by 8×8=64 bits.

For each bit in S(p), the encoding scheme computes the compatibilities of a local
3×3 patch centered at p in the current frame with respect to two different patches
(denoted as i and j, respectively) located in the previous and next frames. The eight
possible locations of patches in each of the previous and next frame are shown in
Figure 20. The center of the patch in the current frame is denoted as (0,0). The eight
possible locations corresponding to the central pixel location in each of the previous
and next frame can be defined as: (4,0), (-3,3), (0,4), (3,3), (4,0), (3,-3), (0,-4), and
(-3,-3). The angle between patch i and j is denoted as α = 0◦, 45◦, 90◦,..., 315◦.
When considering all the combinations of i and j, the encoding scheme generates
a 64-bit descriptor S(p), each bit of which, denoted as Si,j(p), corresponds to a
different combination of i and j.

40



4.1 S H OT B O U N DA RY D E T E C T I O N

Figure 20: An example of the motion interchange pattern.

The compatibility of two local patches is measured through the sum of squared
differences (SSD) score. Each Si,j(p) is computed according to Eq. (4.1), where the
threshold θ is set to 1296 empirically according to [26].

Si,j(p) =


+1; if SSDi − SSDj > θ

0; if |SSDj − SSDi| 6 θ

−1; if SSDi − SSDj < −θ

(4.1)

A value of ’-1’ indicates that the previous patch i is more similar to the patch in
the current frame, while ’+1’ indicates that the patch j in the next frame is more
likely to be the candidate. A value of ’0’ indicates that both are compatible.

4.1.2 One-class SVM for shot boundary detection

In our work, we only consider the direction α=0 ◦ when computing the MIP for each
pixel, thus generating a 8-bit indicator, which is similar to the local trinary pattern
(LTP). The indicator consists of ’-1’, ’0’, and ’+1’ bits. We separate the indicator into
the positive portion (comprised by the ’+1’ bits) and the negative portion (comprised
by the ’-1’ bits). We compute the number of non-zero bits for each pixel, and then
build a 9-dimensional histogram with the range of [0,8] for each frame. On the other
hand, we subtract the number of ’+1’ bits and the number of ’-1’ bits for each pixel,
and generate a 17-dimensional histogram for each frame, ranging from -8 to 8. The
concatenation of these two histograms is considered as the feature vector for each
frame, which is fed to the shot boundary detector in the next step.
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We category the video frames into 3 different types, namely the regular frame,
the end of the previous viewpoint, and the start of the next viewpoint, which are
denoted as regular-frame, end-frame, and start-frame, accordingly. The end-frame
and start-frame have distinct visual patterns in the MIP map, while the frames
within the same viewpoint do not exhibit a evident pattern (see Figure 21 and 22,
respectively). In Figure 21, the 1st and 3rd rows demonstrate two shot boundaries
in the video sequences. The 2nd and 4th rows show the corresponding MIP feature
map for each frame. The blue-color frame corresponds to the end-frame, while the
red-color frame corresponds to the start-frame. The shot boundary consists of one
end-frame and one start-frame aligned in the temporal order. Figure 22 demonstrates
the regular frames within a video, which does not contain any shot changes.

Figure 21: The typical pattern of the shot boundary.

As the shot boundary frames only occupy a small portion of the video length,
we use the one-class SVM for detection. The one-class SVM [82, 83] is a type of
classifier, which aims at describing the distribution of data from a specific category.
It is widely adopted in the case when the training samples are unbalanced, like
outlier detection, fault diagnosis, etc.

In our work, we adopt the one-class SVM proposed by [83], known as SVDD.
This algorithm creates a spherical boundary that surrounds the data in the feature
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Figure 22: Examples of regular frames. The clips are collectd from a scenario with
a static background.

space by minimizing the volume of the hypersphere. The resulting hypersphere is
determined by the center a and the radius R, where a is a linear combination of the
support vectors, and R indicates the distance from the center to the boundary. The
volume of the hypersphere can be measured in R2. In order to deal with the problem
of over-fitting, slack variables ξi and the penalty term C are introduced to create a
soft margin, which endures that some distances from data points xi to the center a
can be larger than R. The optimization formulation is summarized as:

min
R,a,ξi

‖R2‖+C
n∑
i=1

ξi

s.t. i = 1, 2, ...,n

‖xi − a‖2 6 R2 + ξi
ξi > 0

(4.2)

The formulation can be solved using the dual format by introducing the Lagrange
multipliers and Gaussian kernel function. For each sample z in the test set, it can be
accepted when:

n∑
i=1

αiexp(
−‖z− xi‖2

σ2
) > −

1

2
R2 +CR (4.3)

where xi is the support vector, αi is the Lagrange multipliers, CR only depends on
the support vectors. More details about the SVDD algorithm can be found in [83].

In our application, we design two types of one-class SVM, C1 and C2, corre-
sponding to the end-frame and start-frame, respectively. Most of the regular frames
can be viewed as outliers. The indicator of each frame i in a video (denoted as
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indicator[i]) is computed as in Eq. (4.4). The salient pattern of the shot boundary
is detected as two successive indicators (namely ’-1’ and ’+1’) appeared in a video
sequence. Figure 23 shows an example of the shot boundary detection on the 30-th
video of kiss in the TVHI dataset, which contains 5 shot boundaries in a short period.
The blue bars represent the end-frame of each viewpoint, and the red bars represent
the start-frame of the next viewpoint. The green axis represents the regular-frames
within each viewpoint. The shot boundaries appear at frame 14, 50, 95, 132, and
148, accordingly.

indicator[i] =


−1 if C1(i) = 1,C2(i) 6= 1
+1 if C1(i) 6= 1,C2(i) = 1
0 if C1(i) 6= 1,C2(i) 6= 1

(4.4)

Figure 23: Examples of the shot boundary detection.

4.1.3 Evaluation on the shot boundary detector

We evaluate the performance of our detector on the TVHI dataset. The number of
shot boundaries contained in each category are listed as follows: handshake (34),
highfive (21), hug (60), and kiss (24). We use the tool [84] to compute the motion
interchange pattern. The frame gap is set to 1 for generating the MIP frame by frame.
For the one-class SVM, we adopt the SVDD tool provided by [85].
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4.1.3.1 Example 1: Shot boundary detection on the TVHI dataset

In this section, we detect the shot boundaries using supervised learning. The dataset is
separated into training and test parts. The training set is comprised by handshake and
highfive samples, while the test set consists of hug and kiss videos. The performance
of our detector can be evaluated in terms of: the number of false positive (FP)
samples, the number of false negative (FN) samples, precision rate, and recall rate.
For the one-class SVM, RBF kernel is selected. C and γ are the essential parameters
that control the performance of the classifier. C belongs to [1/n,1], where n is the
number of training samples. In this part, we set C=1 and γ=0.8.

The detection results are shown in Table 20. Although there are some frames
being mis-labeled as end-frame or start-frame, the shot boundary detection is still
very accurate when considering the salient pattern that consists of the end-frame and
start-frame aligned in the temporal order. For completion, we switch between the
training and test sets, the corresponding detection results are listed in Table 21.

Table 20: Shot boundary detection results on hug and kiss using handshake and
highfive for training

FP FN Precision Recall
hug 0 1 100% 98.3%
kiss 3 1 88.4% 95.8%

Table 21: Shot boundary detection results on handshake and highfive using hug and
kiss for training

FP FN Precision Recall
handshake 2 3 93.9% 91.1%
highfive 0 5 100% 85.3%

To further validate our approach, we test the performance of our detector in
terms of the following configuration. Group1: handshake for training and the rest
for testing; Group2: handshake and highfive for training, hug and kiss for testing;
Group3: handshake, highfive and hug for training, kiss for testing. We compute the
overall FP, FN, precision rate, and recall rate on the test sets, and the corresponding
results are presented in Table 22.

4.1.3.2 Example 2: Illumination change detection

Apart of the shot boundary detection, we also find some special patterns that are
different from the shot boundary, but not caused by the abrupt changes of viewpoint,
like illumination changes. The related examples are shown in Figure 24 and 25,
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Table 22: Boundary detection results through the one-class SVM
FP FN Precision Recall

Group 1 2 6 98.0% 94.3%
Group 2 3 2 96.5% 97.6%
Group 3 3 1 88.5% 95.8%

where the illumination changes are caused by the drop of the pendant lamp and the
flashlight of the camera, respectively. As there are not enough sample frames of
illumination changes in the TVHI dataset, we merely give some warmings when
these abnormal patterns come out.

Figure 24: Examples of illumination changes caused by the sudden drop of the
pendant lamp.

Figure 25: Examples of illumination changes caused by the flashlight of the camera.

4.2 F E AT U R E C O N S T RU C T I O N

4.2.1 Frame-based feature vector

Although the ROI that covers the two interacting people can highlight the region
where an interaction is ongoing, it is inevitable that a certain number of pixels within
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the ROI is irrelevant to the behavior that we are interested in. Thus, we build a
motion mask that can capture the salient pixels corresponding to distinct motions,
automatically. First, we compute the MIP indicator for each pixel, and then calculate
the number of non-zero bits in the MIP indicator. If the number of non-zero bits
is larger than the thresohld ε, we consider the corresponding pixel to be the salient
motion point. On the contrary, when the number of non-zero bits is less than ε, it
suggests that the corresponding pixel does not change significantly. We set ε = 4 in
our implementation.

Next, we build the feature vector for each frame based on the salient motion
points. As fast motion and gradual camera movements are very common phenomena
in TV shows, we adopt the large-displacement optical flow (LDOF) to estimate
the motion information for salient pixels. The LDOF is a particular model to
estimate the dense optical flow field within successive frames that contain pixels
with large displacements (e.g., fast movements of hand in handshake or highfive). In
addition to the intensity and gradient constancy, the LDOF also integrates descriptor
matching into the coarse-to-fine variational optical flow framework. Details about
the implementation of LDOF can be found in [27].

We present examples of the motion mask and LDOF in Figure 26 and 27. Figure
26 demonstrates the 10-th kiss video in the TVHI dataset. The 1st row displays frame
118, 121, 124, 127, and 130 accordingly, from the original videos. The 2nd row
is the motion mask, where the white pixels indicate the salient motion points. The
3rd row is the illustrations of LDOF on the salient motion points. Different colors
represent diverse orientations, while the intensity of color represents the magnitude
of the optical flow. Figure 27 shows the video of the 20-th handshake in the TVHI
dataset, where frame 50, 52, 58, 59, and 65 are shown, accordingly.

The orientation and magnitude of the location x in the optical flow field is com-
puted as in Eq. (4.5), where u(x) and v(x) correspond to the velocity components
in horizontal and vertical directions, respectively:

θ = tan−1(v(x)/u(x))

mag =
√
u(x)2 + v(x)2

(4.5)

We build a 30-bin (as suggested in [87]) histogram of the oriented LDOF (denoted
as HO-LDOF) on the basis of salient pixels, where each bin covers 12 degrees. Each
salient pixel is assigned to the bin corresponding to its optical flow orientation, and
weighted by the magnitude. The obtained histogram is normalized using l2 norm, to
generate the feature vector for each frame.
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Figure 26: Examples of the motion mask and LDOF on kiss.

Figure 27: Examples of the motion mask and LDOF on handshake.
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4.2.2 Video-based feature vector

We exploit the self-similarity matrix (SSM) to model the temporal correlation of
human interactions. SSM descriptors have proved to be stable features under different
viewpoints for the same action performing by diverse people [88].

For a sequence of images I = {I1, I2, ..., IT }, a SSM of I is a square symmetric
matrix of size T×T :

[
eij
]
i,j=1,2,...,T =


0 e12 e13 · · · e1T
e21 0 e23 · · · e2T
e31 e32 0 · · · e3T

...
...

... . . . ...
eT1 eT2 eT3 · · · 0

 (4.6)

where eij is the distance between a certain low-level feature extracted in frame Ii
and Ij, respectively. The exact structure of this matrix depends on the feature and
the distance measure used for computing the entries eij. In this section, we use the
Euclidean distance and frame-based feature discussed in Section 4.2.1 to construct
the self-similarity matrix. An example of SSMs is shown in Figure 28.

Kiss

HOG

Motion Mask 
+ 

HO-LDOF (1st)

Figure 28: Example of kiss. SSMs obtained using the HOG information (2nd row)
and the proposed method (3rd row).

Once SSMs have been computed, the same strategy described in [88] is adopted
for calculating local descriptors at multiple temporal scales. For each SSM diagonal
point, three local descriptors are computed corresponding to three different diameters
of the log-polar domain (namely, 28, 42 and 56 frames in diameter). After extracting
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the SSM descriptors, classification is done through the ’bag-of-words+SVM’ strategy.
Moreover, different encoding schemes (apart of the bag-of-words representation)
can also be applied on the SSM descriptors to generate the feature vector for each
video. The comparison of diverse encoding strategies will be discussed in Section
4.3.

In addition to the stabilities mentioned above, another advantage of using SSM
is the suitability of modeling the temporal correlation of human activities in short
video clips. Although the traditional models, such as HMM and CRF, have already
been applied to human behavior understanding, several constraints still need to be
satisfied. For example, the videos should cover the whole evolution of a certain
activity, which implies that the model has to contain all the hidden states and the
possible transitions among different states. However, this is not always verified in
the TVHI dataset, where some videos only include the very essential portion of
the interaction, while others also include many frames that are not related to the
ongoing interaction. Moreover, how to fix the number of hidden states is still an
open issue, and it is usually determined using cross-validation or defined by prior
knowledge. The adoption of SSM can cope with these limitations to some degree,
for instance, even when a few parts of a behavior are missing in a video, the SSM
can still preserve a certain portion of distinct visual patterns.

4.3 E VA L UAT I O N

Dataset: The TVHI dataset is used to validate this approach.
Comparison methods: We adopt the standard STIP approach as the baseline. More-
over, we also compute the self-similarity matrices on the basis of other frame-based
features in the region of interest: (1) HOG; (2) HOF based on the Farneback’s optical
flow [89] (denoted as ’Dense HOF’); (3) HO-LDOF in the whole region of interest
without salient motion point detection (denoted as ’Dense HO-LDOF’). Specifically,
we compare both the 1st and 2nd order optical flow when computing the HO-LDOF.
The 1st order optical flow highlights the variations in a frame, whereas, the 2nd order
optical flow emphasizes the motion boundaries as discussed in [37].
Setup: We randomly split the dataset into training and test sets 10 times, where each
category contains 25 videos for training and the rest for testing. Negative samples
that do not contain any kind of interaction are not considered in the classification task.
The average classification accuracy of different frame-based features are presented
in Figure 29. The last two items are the results of our approach, where we adopt the
motion mask to select the salient motion points in the region of interest, and compute
the histogram of oriented LDOF in terms of 1st order and 2nd order, respectively.
Results: From Figure 29, we can conclude: (1) By combining SSM descriptors
with the bag-of-words representation, both HOG and dense HOF achieve better
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Figure 29: The average classification accuracy using different frame-based features.

results compared to the standard STIP method; (2) The performance of dense HOF
is worse than HOG and dense HO-LDOF(1st order), as the estimation of optical flow
is not accurate in unconstrained videos that contain fast motion and gradual camera
movements; (3) The performance of 2nd order HO-LDOF is worse than 1st order
HO-LDOF, but still better than the STIP feature; (4) Motion mask allows extracting
better salient motion points, and further improves the classification performance.

Next, we compare our method with the recent work presented in [62], which
exploits different STIP-based models for interaction recognition. The split of the
dataset adopts the standard training/test partitions as suggested in [58]. The classifi-
cation performance is measured in terms of the average precision rate (AP) as listed
in Table 23.

Table 23: Comparison of different STIP-based models and our method for human
interaction recognition

Method AP

Harris3D STIP + k-means 0.3551

Dense STIP + k-means 0.3923

Dense STIP + Random Dictionary 0.3859

Dense STIP + Compressed Dictionary 0.3854

Dense STIP + Class-specific Dictionary 0.3689

Our approach 0.4833
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Finally, we combine the SSM descriptor with different encoding strategies. The
classification results are presented in Table 24, where the Fisher encoding scheme
achieves the best performance. The corresponding confusion matrix of using the
Fisher encoding is presented in Figure 30, where handshake and hug achieve the
best classification accuracy. For highfive, a large portion (30%) is mis-classified as
handshake. This is because some patterns of hand movements are shared. Kiss is
confused with hug to a great extent (37%), which is due to the fact that in many
videos, hug is only a sub-pattern of kiss, thus making it difficult to separate them
properly.

Table 24: Comparison of different encoding strategies using the frame-based feature
of ’Motion mask + LDOF (1st order)’

Encoding Method Average accuracy
Bag-of-words (BOW) 48.1%

Kernel Codebook (KCB) 49.0%
Fisher Encoding (FK) 50.1%

Locality constrained linear coding (LLC) 49.6%

0.57

0.30

0.09

0.12

0.17

0.47

0.07

0.10

0.08

0.09

0.56

0.37

0.18

0.14

0.28

0.41

H
andshake

H
ighfive

H
ug

Kiss

Handshake

Highfive

Hug

Kiss

Figure 30: Confusion matrix on the TVHI dataset based on ’Motion Mask+HO-
LDOF (1st order)’ using the Fisher encoding scheme.
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I N T E R AC T I O N R E C O G N I T I O N T H RO U G H
M U LT I P L E - I N S TA N C E - L E A R N I N G A P P ROAC H

In this chapter, we propose a new framework to recognize human interactions in
realistic scenarios. At the low level, we extract trajectories to represent human
motion. Then, the coherent filtering algorithm [28] is exploited to cluster the
trajectories into different groups, which named as local motion patterns. These
local motion patterns don’t exhibit regular shapes like cuboid, cylinder, sphere.
Instead, they are more closely related to fluid or manifold, and may correspond
to perceptual meaningful body movements, for instance, raising arms, shaking
hands, and stretching legs, etc. Each local motion pattern consists of many different
trajectories that have the same or similar motion trend. For simplicity, we only
take the central point (can be viewed as a ’particle’) along each trajectory as its
representation (see Figure 31), thus the local motion pattern can be considered as
an ensemble of particles. We compute the histogram of the large displacement
optical flow [27] (denoted as HO-LDOF) on these particles as the group motion
feature. Therefore, each video contains a variety of different local motion patterns
represented by HO-LDOF.

For categorization, the multiple-instance-learning (MIL) is exploited in our work.
MIL is a supervised learning framework that deals with uncertainty of instance
labels, where training data is available as bags of instances with labels only for
the bags. Instance labels in a bag remain unknown, and might be inferred during
the learning procedure. A positive bag must contain at least one instance that
labeled as ’positive’, while instances in a negative bag are altogether labeled as
’negative’. In our application, we adopt the citation-KNN (C-KNN) [90], which
is a typical MIL algorithm for human interaction recognition. Each video can be
viewed as a ’bag’, and the local motion patterns are considered to be its ’instances’.
Classification is done through the one-against-one manner, where we train n(n-1)/2
binary classifiers using C-KNN (n indicates the total number of interaction classes).
The final decision is determined by majority voting. We validate our approach on
two human interaction benchmarks, namely, the TV human interaction dataset and
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Figure 31: Trajectory representation: the blue curves represent trajectories taken
from the same group, while the red dots represent the central points of trajectories
along the time axis.

the UT human interaction dataset. Details are further introduced in the experimental
section.

To summarize, the main contributions of this work are: (1) we adopt the coher-
ent filtering to cluster trajectories, thus generating perceptual meaningful motion
patterns, which is known as local motion patterns; (2) we create an efficient fea-
ture representation for the local motion pattern, and adopt MIL for recognition,
which greatly improve the classification performance. The proposed framework is
presented in Figure 32.

Figure 32: The proposed framework

5.1 T R A J E C T O RY E X T R AC T I O N

Typical strategies for trajectory extraction include: (1) KLT tracklets, and (2) dense
trajectories. In Figure 33 and 34, we visualize the differences between the above two
methods when extracting trajectories from the same video. It can be seen clearly that
dense trajectories allow for a better motion representation, which can reveal distinct
perceptual patterns, while the KLT tracklets are more ’noisy’, exhibiting irregular
trajectories.
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Figure 33: Examples of trajectory extraction: handshake video.

Figure 34: Examples of trajectory extraction: highfive video.
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5.2 L O C A L M OT I O N PAT T E R N S

The total number of trajectories extracted in a video varies depending on its length
and contents, usually ranging from several hundreds to several thousands on the
standard activity benchmarks.

The traditional way of using trajectories for activity recognition follows the
’motion descriptors + bag-of-words’ scheme. For example, in the dense trajectory
based method, the motion boundary histogram (MBH) is first computed for each
trajectory. Then, the k-means clustering is applied on all the MBH descriptors
in the training set, thus generating a so-called visual codebook comprised by the
cluster centers. Next, each video is represented using a normalized feature vector by
quantizing its MBH descriptors onto the codebook. Finally, the standard SVM is
adopted for classification.

However, there are some weak points in the above strategy: (1) the k-means
clustering is a very coarse representation of signals, thus losing a lot of essential
information when constructing the visual codebook; (2) for a given video, quantizing
is a global operation, which can not preserve the local motion characteristics, as for
instance, the temporal order of body movements; (3) not all the trajectory descriptors
are useful in the classification task. Some irrelevant trajectories can be viewed as
’outliers’ in building the visual codebook.

Due to the limitations mentioned above, we propose a new strategy to recognize
human interactions. First, we adopt the coherent filtering (CF) algorithm to generate
the trajectory clusters, in which trajectories with the joint or similar motion trend
are grouped. This operation helps getting rid of the side-effects of non-relevant
trajectories.

The coherent filtering is first proposed in [28] with the aim of coherent motion
detection in noisy time-series data, such as crowd analysis in public spaces. The local
spatio-temporal relationship of individuals (particles) in coherent motion follows
two key properties, known as Coherent Neighbor Invariance: (1) invariance of
spatio-temporal relationships, and (2) invariance of velocity correlations. Based on
the Coherent Neighbor Invariance, the coherent filtering finds the invariant neighbors
and pairwise connections of particles, thus generating the coherent motion clusters.
Finally, these clusters are associated and updated over successive frames.

Examples of trajectory grouping using the coherent filtering are shown in Figure
35, where videos from the TVHI dataset are used for display (from top to bottom:
handshake, highfive, hug, and kiss). The colored particles correspond to trajectory
centers shown in Figure 31. Particles with the same color fall into the same group,
and exhibit a similar motion trend.

We named the trajectory clusters as local motion patterns. Usually, local motion
patterns may correspond to some perceptual meaningful body movements, such
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Figure 35: Examples of trajectory grouping using the coherent filtering.

as stretching arms or shaking hands. We demonstrate the dynamic evolution of
trajectory groups of human interactions in Figure 36 and 37, respectively.

We then use the histogram of large-displacement optical flow (HO-LDOF) as the
feature vector for each local motion pattern, in order to deal with the problem of
fast body movements in realistic scenarios, thus each video can be expressed by a
collection of local motion patterns that described by HO-LDOF.

5.3 C I TAT I O N - K N N F O R I N T E R AC T I O N R E C O G N I T I O N

Considering the limitation of the k-means clustering, we adopt the multiple-instance-
learning strategy for classification. In this case, local motion patterns are no longer
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Figure 36: Example 1. Evolution of trajectory group, handshake video.

Figure 37: Example 2. Evolution of trajectory group, highfive video.

used to generate the visual codebook. Alternatively, we consider each video as a
’bag’, in which each local motion pattern is treated as a ’instance’.

After generating the local motion patterns in videos, we adopt the so-called
’citation-KNN’ (C-KNN) algorithm for classification. C-KNN is a specific nearest
neighborhood algorithm that deals with multiple instance learning problems. It
predicts the label of an unlabeled bag based on the nearest neighborhood approach.
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Instead of using the traditional Euclidean distance, the algorithm defines a new
bag-level metric that measures the distance between two different bags using the
minimum Hausdorff distance, which is denoted as Dist(A,B) in (5.1):

Dist(A,B) = min
∀ai∈A,∀bj∈B

(dist(ai,bj)) (5.1)

where A and B represent two different bags, ai and bj are the instances from their
corresponding bags, and dist(ai,bj) measures the Euclidean distance between ai
and bj. It can be seen from (5.1) that Dist(A,B) is the shortest distance between
any pair of instances taken from their respective bags.

After defining the distance between bags, the citation approach is adopted for
classification. For a given bag M, the algorithm considers not only the bags in its
neighborhood (known as ’references’), but also the bags that viewM as their neigh-
bors (known as ’citers’). After calculating the summation of R-nearest references
and C-nearest citers in terms of positive bags (denoted as ’P’) and negative bags
(denoted as ’N’), respectively, the label of bagM can be determined as: positive (if
P>N), negative otherwise.

We exploit the one-against-one strategy to deal with the multi-classes problem,
where we collect the results from all the binary classifiers and make the final decision
using majority voting.

5.4 E VA L UAT I O N

In this section, we validate our approach on two standard human interaction bench-
marks, namely: the TV human interaction dataset and the UT human interaction
dataset. Considering the limited number of sample videos in these two datasets,
we use the leave-one-out cross-validation strategy to evaluate the classification per-
formance. For C-KNN, we adopt the implementation proposed in [91] to train the
binary classifiers.

5.4.1 TV Human Interaction Dataset

The TVHI dataset consists of four different types of human interactions, namely
handshake, highfive, hug, and kiss, where each class contains 50 video clips. We
first compare our approach with the standard STIP-based and dense trajectory based
approaches, respectively. For STIP-based method, spatio-temporal interest points are
captured using the detector proposed in [30], where each interest point is described
using the concatenation of histogram of gradient (HOG) and histogram of oriented
optical flow (HOF), with the dimensionality of the feature vector equal to 72+90=162
in total. For dense trajectory based method, we adopt the MBH descriptor as the
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motion feature for each trajectory, with the dimensionality equal to 96×2=192.
Then, the standard bag-of-words scheme is used for classification. We compare our
approach with several baseline results in Table 25.

Table 25: Comparison with STIP and dense trajectory based methods
Motion Representation Descriptor Codebook Accuracy

STIP HOG+HOF size=500 45.5 %
Dense Trajectory MBH size=50 53.0 %
Dense Trajectory MBH size=100 56.5 %
Dense Trajectory MBH size=500 53.5 %

Local Motion Pattern
(KLT tracklets)

HO-LDOF N/A 68.5 %

Local Motion Pattern
(dense trajectories)

HO-LDOF N/A 71.5 %

Secondly, we compare the multiple-instance-learning strategy with the bag-of-
words scheme. Here, we use dense trajectories to generate the local motion patterns.
Then, the HO-LDOF is quantized into 18 bins, in which each bin covers 20 degrees.
We apply the k-means clustering on the local motion pattern descriptors (namely,
HO-LDOF) to construct the codebook, and use the standard SVM for classification
as the baseline. For comparison, we regard each local motion pattern as the ’instance’
in a video, and then adopt the C-KNN for classification. The results are shown in
Table 26, from where we can conclude that the MIL algorithm outperforms the
bag-of-words scheme significantly.

Table 26: Comparison using different classification strategies
Trajectory Type Dense trajectory Dense trajectory

Local Motion Pattern Descriptor HO-LDOF HO-LDOF
Classification Scheme BoW+SVM C-KNN

Average Accuracy 49.5% 71.5 %

Finally, we compare the classification performance using different low level
motion representation, namely, KLT tracklets and dense trajectories, respectively.
Specifically, we set a threshold T to control the selection of trajectory groups. In
case a group contains a limited number of trajectories (less than T ), it will not be
considered in the classification. The final results are reported in Table 27 and 28,
respectively. From these two tables we can observe that: (1) on the TVHI dataset,
dense trajectories are slightly better in the classification as compared to the KLT
tracklets, no matter how the threshold T is set; (2) increasing T , the classification

60



5.4 E VA L UAT I O N

performance decreases, which implies that even groups containing only a few tra-
jectories contribute to the classification task. Additionally, it is worth pointing out
that although dense trajectories can achieve better classification performance, KLT
tracklets run much faster when extracting trajectories, requiring to find a trade-off
between speed and accuracy in realistic applications.

Table 27: Average accuracy using our approach on the TVHI dataset (KLT tracklets)
HandShake HighFive Hug Kiss Accuracy

KLT, T=20 66% 66% 60% 66% 64.5%
KLT, T=1 74% 72% 60% 66% 68.0%

Table 28: Average accuracy using our approach on the TVHI dataset (dense
trajectories)

HandShake HighFive Hug Kiss Accuracy
Dense, T=20 66% 72% 60% 62% 65.0%
Dense, T=1 78% 70% 58% 80% 71.5%

5.4.2 UT Human Interaction Dataset

The UT dataset is designed for recognizing high-level two-person interactions from
surveillance cameras. The videos in this dataset are further divided into two subsets,
where videos in SET 1 are taken on a parking area with almost static background
and little camera jitters, while videos in SET 2 are taken on a lawn in a windy
day with moving background and more camera jitters. In SET 1, only a pair of
people interacts, while SET 2 is more challenging due to multiple people moving
in the scenes and background clutters. This dataset consists of 5 different types of
human interactions, namely, handshake, punch, push, kick, and hug, each of which
contains 10 sample videos in each subset. Moreover, the videos are recorded under
a constrained condition with fixed camera viewpoint, moderate people scale, and
staged interactions. We validate our approach on this dataset using dense trajectories
and set the threshold T=1 (which has already proved to be a better strategy on the
TVHI dataset). We compare our approach with the STIP-based approach and the
structural learning methods proposed in [58]. The results are presented in Table 29
and 30, respectively.

From Table 29 and 30 we can find: (1) on this constrained dataset, our method is
comparable with the STIP-based approach. We are slightly worse on SET 1 (76% VS
82%), but much better on SET 2 (78% VS 66%), which suggests that our method is
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Table 29: Average accuracy on SET 1. (∗) indicates that the low level features (i.e.,
upper bodies, head poses) in the corresponding approach are annotated manually.

Punch Hug Kick Push Handshake Accuracy
STIP-based approach 80 % 90% 90% 80% 80% 82.0%

Structural learning
using local context (∗)

60 % 50% 50% 100% 90% 70.0%

Structural learning
using full strcuture (∗) 60 % 100% 80% 80% 100% 84.0%

Our approach 90 % 50% 80% 80% 80% 76.0%

Table 30: Average accuracy on SET 2. (∗) indicates that the low level features (i.e.,
upper bodies, head poses) in the corresponding approach are annotated manually.

Punch Hug Kick Push Handshake Accuracy
STIP-based approach 70 % 80% 60% 40% 80% 66.0%

Structural learning
using local context (∗)

10 % 100% 50% 90% 80% 66.0%

Structural learning
using full structure (∗) 70 % 90% 90% 90% 90% 86.0%

Our approach 100 % 50% 90% 70% 80% 78.0%

more suitable for the realistic scenarios; (2) compared to the structural learning based
approaches, we are better than the structural learning that incorporates local context
information (in [58], the ’local context information’ is represented by computing the
HOG descriptors in the regions of interest that surrounds upper bodies). Structural
learning using full structure information (in [58], the ’full structure’ refers to head
poses, local context information, and global context information, such as ’far’, ’near’,
’adjacent’, and ’overlap’) always performs better than our approach, exceeding our
results around 8% in both subsets. However, the full structure information is not
always that straightforward to obtain in very challenging scenarios, which often
involves complicated trackers, people detectors, and accurate object segmentation.
This severely constrains the applicability of their method. In contrast, our approach
does not rely on any body detector, pose estimator, etc., thus it can be applied in
more realistic environments.
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In this work, two open issues in human interaction analysis are studied, namely: (1)
discriminative patch segmentation, and (2) two-person interaction classification.

For discriminative patch segmentation, two different approaches are proposed with
respect to different application scenarios: (1) videos from surveillance cameras, and
(2) videos from TV shows. The patches extracted by our approaches demonstrate
better discriminating capability as compared to the original videos, while preserving
the perceptual meaningful portion of human activities as well.

For interaction recognition, we adopt two different approaches. The first one
exploits the motion interchange pattern to capture salient motion points in a video,
and then uses the SSM descriptors for classification. This method can analyze
human interactions in the wild, which allows for camera motion and changes of
viewpoint in unconstrained environments. The adoption of the self-similarity matrix
can handle the temporal correlation modeling in short duration videos that do not
capture sufficient contextual information. The second solution adopts trajectories as
motion features. After clustering the trajectories into perceptual meaningful groups,
classification is achieved using the C-KNN algorithm, which is a typical multiple-
instance-learning approach. The good classification performance is obtained due to:
(1) the efficient motion representation, namely the histogram of oriented LDOF, and
(2) the adequate selection of classifiers.

For the future work, we will first apply the discriminative patch segmentation algo-
rithms to the area of video summarization. Then, for interaction recognition, we will
focus on modeling the interaction dynamics for two-person interaction recognition.
Currently, we adopt a novel joint Schatten p-norm model, which considers human
interaction as an interactive behavior that comprised by two independent individuals
communicating with each other. This model can learn the joint interactive patterns
between the two interacting persons and the distinctive interactive patterns with
respective to each individual, simultaneously. The preliminary results of this method
have shown better performance as compared to the approach proposed in Chapter 4.
Regarding the MIL, we prepare to apply the current approach to large-scale datasets
(i.e., Hollywood2 dataset, HMDB). The main issue we need to consider is to reduce

63



C O N C L U S I O N

the number of trajectory groups in long video clips, as the complexity of the C-KNN
algorithm is high. One possible solution is applying the unsupervised clustering
algorithms to the trajectory groups (represented by HO-LDOF) in a video, and using
the clustering centers as the representative local motion patterns. In this way, each
video can be described using a limited number of typical local motion patterns, thus
speeding up the classification procedure.
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