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Introduction

The investigation of real-time dynamics of charged and neutral quantum excitation propagating
through macromolecular systems is receiving growing attention due to its potentially countless
applications in nano-scale (opto-)electronics and in biophysics.

Semiconductor materials are nowadays fundamental in electronics and optoelectronics. The in-
dustrial interest is to constantly reduce the dimension of integrated circuits in order to obtain more
powerful, lighter and less power consuming microchips. Recent efforts are aimed to understand the
feasibility of organic and biological polymeric systems or aggregates as a route for boosting these
requirements and thus, becoming the new paradigm in electronics and optoelectronics.

In this contest, the strategy of studying bulk macroscopic properties is not adequate. Atomistic
approaches are essential to understand structural and transport properties of molecular electronic
devices, revealing as an important and general techniques for facing on open problems in traditional
semiconductor devices. Furthermore, as opposed to electric conduction in semiconductors, charge
transport in soft condensed matter can be significantly influenced by molecular vibrations and
by the surrounding environment. Consequently, any reliable investigation of quantum transport
through biological macromolecules has to include environmental effects.

Whether quantum mechanics is needed to understand biological processes is a question that
researchers have been asking since quantum mechanics has been founded. In his famous book
What is life?, Erwin Schrödinger firstly observed that, since our understanding of the stability and
structure of molecules is based on quantum mechanics, quantum phenomena are crucial for the
stability of living beings and for their cellular processes. Recently, some experimental evidences
have been revealed that quantum mechanics is not only fundamental to explain the properties
of molecules and of their reactions, but also that some biological phenomena rely on quantum
mechanisms to achieve functionality or to accomplish specific processes. These phenomena are
studied in a new area of research called quantum biology.

At present, the most discussed phenomenon in quantum biology is the energy transport in pho-
tosynthetic complexes, that govern the light-harvesting processes in plants. Recent experimental
works revealed long-lived coherent quantum energy transport in photosynthetic protein-pigment
complexes at room temperature. This discovery has triggered a huge activity aimed at clarifying
the interplay between quantum coherence, transfer efficiency and environment-driven noise.

In these fields, namely organic electronics and quantum biology, several models have been
developed. All of these approaches have been described in the framework of open quantum systems.

Quantum transport in biomolecules and organic materials has been extensively studied with
a phenomenological approach, in which the dynamics of the quantum excitation is described by
simple models, such as one-body Hamiltonians. In these models, the fluctuation and dissipation
generated by the molecular vibrations and by the heat bath are collectively represented by means
of an effective bosonic bath. These effective approaches provide computationally efficient tools to
investigate the general mechanisms underlying the long-range charge transport in macromolecules
and the loss of quantum coherence in macromolecules. On the other hand, the lack of chemical
detail makes it difficult to obtain quantitative predictions on quantum transport properties.

Complementary theoretical approaches have been developed which encode more information
about the chemical structure of the macromolecule. For this reason, they are in principle better
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suited to obtain quantitative predictions. These models are generally based on combining the
Schrödinger equation for the one-body wave function of the quantum excitation with molecular
dynamics simulations for the motion of the atomic nuclei. Quantum excitation dynamics in these
models can be investigated in detail through extensive numerical simulations. On the other hand,
the lack of analytic insight makes it difficult to identify the physical mechanisms involved in the
transport dynamics.

In the present thesis, we develop and apply a microscopic theoretical framework to describe
quantum transport in macromolecules, which combines chemical detail with analytic insight.

The quantum field path integral representation is adopted to describe the dynamics of the
system’s reduced density matrix. The path integral formalism is convenient because it makes it
possible to describe molecular vibrations at the classical level, and to rigorously trace out the
atomic coordinates from the density matrix in the small oscillation limit. The final result is
a microscopic field theory describing the dynamics of biomolecular open quantum systems. In
this theory, fluctuation-dissipation effects and thermal oscillations of the molecule are taken into
account through effective interaction terms, derived from first principles.

Depending on the time and space scales we are interested in, there are different ways to study
the quantum propagation by means of the effective theory mentioned above.

In the short-time and short-distance regime, we derive Feynman diagrams to perturbatively
compute the effects of the dissipative coupling between a propagating quantum excitation, heat
bath and atomic degrees of freedom.

In the long-time and long-distance regime, this problem is tackled by using the renormalization
group formalism to systematically coarse-grain the dynamics. The result is a rigorous “low-energy”
approximation of our initial microscopic field theory.

In the intermediate regime, the resummation scheme is applied to go beyong the perturbative
approach without losing microscopic details. In this particular regime, comparison between theo-
retical predictions and experimental results is feasible and of particular interest for those who want
to study long-lived coherence phenomena.

This thesis is organized as follows:

Chapter 1 gives a general overview about quantum transport in biomolecules. In particular, basic
concepts about open quantum systems are introduced. Then, applications of this framework
to the study of charge transport in organic substances and energy transfer in photosynthetic
complexes are reviewed.

Chapter 2 describes a microscopic theoretical framework for the investigation of quantum trans-
port in macromolecules, combining chemical detail with analytic insight. Firstly, the mi-
croscopic Hamiltonian for quantum transport is introduced. Secondly, the dynamics of the
whole system are described by a path-integral representation, and, through appropriate ap-
proximations, our Quantum Transport Field Theory (QTFT) is derived. The results of this
chapter have been published in Ref. [1]

Chapter 3 discusses a perturbation theory to solve the QTFT developed in Chapter 2, in short-
distance and short-time regime. Using the standard Feynman diagram technique the leading
order correction due to molecular vibrations and environmental effects is computed. As a
first illustrative application of this formalism, a simple model to describe intra-chain charge
propagation in a polymer is developed. The results of this chapter have been published in
Ref. [1]

Chapter 4 deals with the long-distance and long-time limit. The renormalization group is adopted
to systematically coarse-grain the dynamics. We show that, in this regime the transport dy-
namics reduces to a modified diffusion process. The analytic expression for the probability

2



density is derived and discussed. Finally, an illustrative application of this framework to hole
propagation in homo-DNA is given. The results of this chapter are published in Ref. [2]

Chapter 5 describes the intermediate time regimes. To this goal, a non-perturbative method
based on a Bethe-Salpeter type of resummation scheme is developed. In the Markovian limit
we recover a Lindblad quantum master equation, while in the non-Markovian case imposing
a series of approximations we find an analytic expression for the time evolution of the density
matrix. We use it to study the exciton dynamics in a dimer model. Finally, we apply this
method to simulate 2D-Photon Echo Spectroscopy experiments on a simple model of a dimer.
The results of this chapter are not yet conclusive, a few improvements are needed befor to
published them in a future article.
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Chapter 1

Quantum Transport in
Biomolecular Systems

Transport phenomena concern exchange of mass, energy or momentum between, or through, ob-
served and studied systems. In classical physics, one of the most studied cases of transport is
the diffusion process, a fundamental mechanism for several biological functions. In the quantum
world, we can study similar transport phenomena involving molecular transfer of charged or neutral
quantum excitations inside or between macromolecules [3].

In both regimes, the theoretical framework to investigate transport phenomena in biomolecules
is that of open systems, in which effects caused by the molecule-environment interaction are taken
into account. Regarding quantum transport, the coupling between the system (S) and the envi-
ronment, or reservoir (R) makes the problem challenging even for system with a few degrees of
freedom.

In section 1.1 we introduce this theoretical framework, called open quantum system (see
Fig. 1.1). There are several fields of application for this theoretical tool, ranging from quantum
optics to nuclear physics. In the following sections, we show two example systems, which could be
investigated by means of the effective theory developed in this thesis. They both have a solvent as
environment, but the kind of excitations transferred is different. In section 1.2, we present a study
of exciton energy transfer in a photosynthetic complex or polymer. We show recent experimental
observations regarding long-lived coherence study in these systems and we highlight current open
questions in this field of research. In section 1.3 we introduce the problem of studying the charge
transport in organic compounds, like DNA or polymers, focusing on two possible application of
molecular wires and Organic Thin-Film Transistor (OTFT).

Figure 1.1: An open molecular system S interacting with its environment (reservoir) R. In addition
the system may be influenced by an external field (wiggly line). Figure taken from Ref. [3]
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1.1 Biomolecules as Open Quantum Systems
Any biological system should be described as an open quantum system due to the coupling with
an uncontrollable environment, which perturbs it in a non-negligible way. However, most of the
interesting systems are too complicated to be investigated directly by microscopical quantum laws.

A possible approach to these systems consists in seeking a simpler and effective probabilistic
description, where relevant variables are governed by modified quantum laws. Environmental de-
grees of freedom are effectively taken into account by including additional dissipative and stochastic
terms in the dynamics.

1.1.1 Closed and Open Quantum System
Let us consider a physical closed system S, described by the Hermitian Hamiltonian ĤS(t), and
introduce the density matrix

ρ(t) =
∑
α

ωα|ψα(t)〉〈ψα(t)| ,

where the ωα are positive weights and the |ψα(t)〉 are normalized state vectors which evolve in
time according to Schrödinger equation, whose solution with initial condition |ψ(t0)〉 is

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 ,

where the time-evolution operator reads

Û(t, t0) = T← exp
[
− i
~

∫ t

t0

ds Ĥ(s)
]
.

In the previous equation, T← denotes the chronological time-orderer operator which orders any
product of time-dependent operators in the exponential expansion, in such a way that their time-
arguments increase form left to the right. Applying the time-evolution operator to an initial density
matrix, we can compute it at any time t

ρ(t) = Û(t, t0)ρ(t0)Û†(t, t0) ,

and differentiating the previous equation, we obtain the Liouville-Von Neumann equation

i~
d

dt
ρ(t) =

[
ĤS(t), ρ(t)

]
.

All formulas showed so far describe the dynamics of a closed system, whose evolution is unitary,
time reversible and, if the system is isolated, energy conserving.

Having briefly summarized some basic equations describing the Hamiltonian dynamics of a
closed quantum system, let us now turn to the notion of an open quantum system [4, 5].

In general terms, coupling the system S to another quantum system R called environment,
bath or reservoir, yields an open quantum system. The combination of both systems S + R is still
closed and it follows the dynamics of the following unitary Hamiltonian

Ĥ(t) = ĤS(t)⊗ 1R + 1S ⊗ ĤR(t) + Ĥint(t) ,

where ĤS(t) is the self-Hamiltonian of the open system S, ĤR(t) is the free Hamiltonian of the
reservoir R, and Ĥint(t) describes the coupling between system and environment.

Usually, the environment has infinite degrees of freedom and it is unfeasible to explicitly com-
pute the evolution of this part of the total system. The common way to investigate the interesting
dynamics of the subsystem S consists in tracing out the reservoir’s degrees of freedom,

ρS(t) = TrR [ρ(t)] ,
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ρ(t0) = ρS(t0)⊗ ρR ρ(t) = Û(t, t0)ρ(t0)Û(t0, t)
unitarity evolution

ρS(t0) ρS(t) = G(t, t0)ρS(t0)dynamical map

TrR TrR

Figure 1.2: A scheme showing the relation between the dynamical map G and the time-evolution
operator U .

obtaining the density matrix of the so called reduced system S. Due to the interaction with
the environment, the dynamics of the reduced system can no longer be represented by unitary
Hamiltonian dynamics. Therefore, we need to introduce a dynamical map G(t, t0) which returns
the time evolution for a given initial density matrix:

ρS(t) = G(t, t0)ρS(t0) .

Let us point out that, besides, the loss of unitarity, the dynamics described by G dissipates energy,
includes decoherence effects and it is no longer reversible.

1.1.2 Dynamical Maps: Master Equation, Propagating Function, and Atom-
istic Simulation

The exact computation of the dynamical map introduced in the previous section is a major chal-
lenge. Here we give a survey of common approaches employed to study the dynamics of the reduced
density matrix [6], dividing them into three general methodologies.

Master equations

Master equation approaches provide equations for the propagation of the density matrix, by tracing
out environmental degrees of freedom. These methods are usually based on the projection operator
technique [7, 8], yielding a set of integro-differential equations:

i~
d

dt
ρS(t) =

N∑
m=1

∫ t

t0

dsKm(t, s)ρS(s) .

An analytic formulation of the kernel function Km(t, s) is known only in a few cases, thus approx-
imations or numerical methods are required.

In the case of a system coupled linearly to an environment described by a set of harmonic
oscillators, accurate approaches have been developed. A recent non-perturbative method suitable
for a large range of problems is hierarchy equations of motion [9, 10]. It consists of the introduction
of auxiliary operators Φ̂k and auxiliary matrices σ~n which account for the environment effects.The
resulting master equation reads

i~
d

dt
ρS(t) =

[
ĤS, ρS

]
+

N∑
k=1

Φ̂kσ~ek(t) .

This method has been proved capable of reproducing known approximations in different regimes [12].
On the other hand, it is computationally expensive, and it scales badly with the size of the system
S and with the complexity of the reservoir.

Another promising approach for system coupled linearly with a bath, recently proposed by
Plenio and co-workers [13, 14], consists in an exact mapping of the environment onto an infinite
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−→

Figure 1.3: On the left a dimer system interacting with its surrounding environment, on the right
the mapping onto a 1D chain. Figure taken from Ref. [13].

one-dimensional chain (see Fig. 1.3). In this way, the time-adaptive density matrix renormalization
group (t-DMRG) technique can be applied to efficiently integrate the time evolution of the system-
environment dynamics. This method is suitable for any choice of temperature, environment and
system S. Furthermore, the truncation of the chain introduces a known and controllable error.

The main limitations of these two approaches are the impossibility to go beyond linear in-
teraction between the system and the environment, and to have a directly relation between the
microscopic world and the effective Hamiltonian used.

Propagating functions methods

A variety of methods are based on the propagating functions describing the time evolution of the
density matrix of the system S. Generally, the core of these approaches is to numerically solve a
formal real time path integral, combining some analytic manipulation of the action with the time
discretization yielded by Trotter decomposition [15, 16]. In this way, memory, dissipative, and
decoherence effects due to the environment are accounted for. A general time evolution described
by propagating functions reads

ρS(s′, s′′, t) =
∫ Ns∏

i=0
Ds′i

∫ Ns∏
j=0
Ds
′′

j 〈s′|e−
i
~H

eff (tNs )δt|s′Ns〉 . . . 〈s
′
1|e−

i
~H

eff (t0)δt|s′0〉

〈s′0|ρS(0)|s′′0〉 〈s′′0 |e
i
~H

eff (t0)δt|s′′1〉 . . . 〈s′′Ns |e
i
~H

eff (tNs )δt|s′′〉 I(s′, s′Ns , . . . , s
′
0; s′, s′′Ns , . . . , s

′′
0 ; ∆t) ,

In the previous formula Heff (ti) is the modified Hamiltonian at time ti and I is a functional which
takes non-Markovian effects into account. Below, we discuss two examples which are particularly
close to the approach presented in this thesis.

In the Path Integral Monte Carlo method [17, 18], the environment is integrated out by encoding
its influence on the system S in the Feynman Vernon functionals [19]. The dynamics of the reduced
density matrix ρS is obtained by performing real time Monte Carlo simulation. Unfortunately, this
technique is affected by the “dynamical sign problem”, which originates from the quantum inter-
ference between different time paths, causing a small signal-to-noise ratio in the stochastic average.
To mitigate this problem, Ankerhold used a technique suggested in Ref. [20], which exploits special
symmetries of the influence functional. This approach is accurate but computationally expensive.

A second approach based on propagating functions is the Partial Linearized Density Matrix
propagation [21, 22]. This method consists in a series of approximations that yields a mixed
classical-quantum dynamics. The whole system consists by an electronic Hamiltonian which de-
scribed quantum transport interacting with a generic environment. The quantum environmental
dynamics in path integral representation is described by reservoirs coordinate R′ and R′′, which
are transformed in mean and difference variables

R̄ = 1
2 (R′ +R′′) , Z = (R′ −R′′) .

Taking only linear terms in Z in the transformed action, a modified classical limit for the bath
is recovered. Thus, by averaging over a large number of trajectories, it is possible to study the
quantum dynamics of the reduced system S. This approach is generally applicable for arbitrary
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system-bath interactions, in particular beyond the linear interaction with the environment, and
can be readily applied to include non-Markovian effects. However, being a mean field approach,
it cannot accurately take into account the “back reaction” between the classical and the quantum
degrees of freedom.

Atomistic simulation approaches

Molecular modeling approaches are ab-initio simulations of both system and reservoir. These
techniques combine molecular dynamics simulations for the environmental dynamics with the time
integration of the Schrödinger equation, based on quantum electronic structure calculations, for
the reduced system [23, 24, 25, 26]. The open quantum system dynamics can be investigated in
great detail through extensive numerical simulations, but the main problem in these methods is
to find the correct way to describe how classical and quantum degrees of freedom interacts during
simulations.

In the following section, we present two examples in which the open quantum system theory
presented above finds its application.

1.2 Exciton Energy Transfer in Biomolecules
In the past few years, the investigation on the transport of electronic excitations across biological
systems has seen a renewed interest. The enthusiasm about quantum effects in biology [27, 28], is
motivated both by fundamental questions and by related technological perspectives, for instance
the improvement of solar cells efficiency.

The comprehension of fundamental mechanisms underlying the efficient energy transfer during
the first steps in the photosynthetic process is still an open problem. Recent theoretical and
experimental works [29, 30] suggest that quantum effects could play a crucial role for this biological
function.

1.2.1 Experimental Evidences
Photosynthesis is the biological function that provides energy for all plants and many other organ-
isms. Even in extreme conditions, when there is little sunlight, this mechanism works so efficiently
that it makes life possible [30].

Figure 1.4: Left panel: diagram of the photosynthetic apparatus of green sulfur bacteria. Sunlight
creates an excitation in this antenna that is transferred (red arrows) to the reaction center through
one of several FMO complexes. Central panel: the molecule structure of one of the FMO
pigment-protein complexes determined through X-ray diffraction. Right panel: X-ray structure
determined through X-ray diffraction. Figures taken from Ref.s [27] and [34].
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The energy of the sun, in the form of photons, is absorbed by light-harvesting antennas as an
electronic excitation. This excitation is then transported from each antenna to a reaction center
where charge separation creates more stable forms of chemical energy [31].

Researchers are particularly interested in light-harvesting apparatus of bacteria living in low-
light conditions, because these organisms need to exploit a very efficient energy transportation
mechanism in order to survive in such extreme conditions. One of the most well studied light-
harvesting apparatus is the photosynthetic complex of green-sulfur bacteria, see Fig. 1.4. This
structure includes a very large chlorosome antenna which collects any photon reaching the bac-
terium. After absorption, the energy is transferred to the reaction center through a specialized
structure called the Fenna-Matthews-Olson (FMO) complex. The FMO complex is the most in-
teresting part because of its high efficiency energy transfer, which is almost 100%. This means
that almost every photon that is absorbed is successfully transferred to the reaction center, even
though the intermediate electronic excitations are very short-lived (∼ 1 ns).

From the experimental point of view, the fundamental mechanisms underlying the efficient en-
ergy transport are investigated by ultrafast spectroscopic techniques, which make possible to study
the exciton transfer with high time resolution (∼ 10 fs). In particular, 2D-Photon Echo Spec-
troscopy (2DPE) experiment is a suitable method to investigate the quantum coherence dynamics,
i.e. the superposition of excitonic states during the energy transfer, thus if quantum effects play
some role in this process [32]. Indeed, experimental observation employing this technique showed
long-lived oscillatory features during this energy transfer in photosynthetic complexes [30, 33, 34],
which have been interpreted as quantum coherent energy transfer.

This experimental method consists in the illumination of the molecular sample by three con-
secutive ultrashort laser pulses, and in the reception of a four photon. Varying the time delays
between the four pulses, one can organize the data in a series of two 2DPE map for any difference
time delay between the second and the third pulse, called population time. In Fig.s 1.5a and 1.5d
we show two 2DPE maps. Studying diaganal and antidiagonal slice of any map, we can identify
the beating signal interpreted as long quantum coherence dynamics. In Fig.s 1.5b and 1.5e we
show the variation of the antidiagonal and diagonal slice of the 2DPE map for different time pop-
ulation, while in Fig.s 1.5c and 1.5f we show the oscillating signal in the cross peaks marked in the
respective 2DPE maps.

This experimental discovery opened a large number of questions about the exciton energy
transfer in natural and artificial light-harvesting complexes. If at physiological temperatures,
environmental thermal fluctuations are not negligible, then which is their role in the exciton energy

Figure 1.5: 2DPE spectroscopy data for cryptophyte antenna proteins. Figures taken from Ref. [34],
where firstly was reported the detection of a long-lived coherence at room temperature in light-
harvesting complex through a beating signal in a 2DPE spectroscopy experiment.
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transfer? At room temperature, it was expected that quantum coherence could survive only a few
femtoseconds in biological systems. Therefore, a reasonable question would be which is the right
time scale for quantum coherence during the energy transfer and under which conditions coherence
can survive for such a long time. Once the connection between fluctuations and energy transfer is
understood, it would be interesting to assess the conditions in which the most efficient excitation
energy transfer is realized. Finally, the most general question is whether quantum mechanics plays
an important role in the physiology of living beings.

1.2.2 Vibrations and Exciton Energy Transport
In the past few years, several theoretical papers have been written in order to answer the questions
presented above, focusing in particular on the role played by vibrations [35].

Recently, significant efforts have been devoted to numerically simulating the exciton energy
transfer in the FMO complex in different conditions of noise and disorder. The most important
and robust mechanism which has been discovered is the Environment-Assisted Quantum Transport
(ENAQT) [36, 37, 38]. This concept shows that a highly efficient transport in an open quantum
system can be obtained thanks to the interaction with a fluctuating environment. Both plots in
Fig. 1.6 show the relation between the transport efficiency in the FMO complex and the dephas-
ing rate, which is the inverse of the time it takes for the electronic excitation to lose quantum
coherence, i.e the evolution between a pure state to a mixed state. Both plots demonstrate that
optimal performances are found for an intermediate level of dephasing noise, and that three de-
phasing regimes can be defined: Anderson localization at low dephasing, ENAQT at intermediate
dephasing, and Zeno regime at high dephasing.

As firstly suggested by Anderson [39], the degree of intrinsic static disorder in a system controls1

the electronic wavefunction localization, proving that above a disordered threshold the eigenstates
of the system Hamiltonian are localized in space2. As a consequence the quantum transport in this
system is hindered, since overlapping between states is the element which makes possible coherent
transfer. Therefore, at low noise level, where the dynamics is described at full quantum level by
coherent hopping between sites, Anderson localization suppresses the quantum transport, as we
can observe in Fig. 1.6.

For larger dephasing rate, we observe that noise enhances the efficiency of the quantum trans-
1 The intrinsic static disorder is related to the variations in the excitonic energy levels of different sites and in

the hopping probability.
2 The degree of localization mainly depends on the ratio between the variation in the energies and the hopping

strength: for a small ratio the system should exhibit weak localization, while strong localization should take place
for a large ratio.

Figure 1.6: Left panel: plot of the conductivity of the FMO complex versus the overall strength
of the dephasing noise. Right panel: efficiency (blue) and transfer time (red) as a function of the
pure-dephasing rate for the FMO complex. Figures taken from Ref.s [35] and [36].
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port. A possible explanation is that the dephasing mechanism, besides destroying quantum co-
herence, delocalizes quantum states allowing the excitation to propagate through the system [36].
The dynamical noise broadens energy levels, enhancing the wave function overlap, i.e. the hop-
ping probability, between sites. An alternative interpretation is that the dephasing mechanism
suppresses the destructive interference, allowing some paths that would be enviable without the
noise [38]. The ENAQT mechanism is akin to the stochastic resonance [40], a phenomenon in
which a signal, that is normally too weak to be detected, can be enhanced by adding white noise.

On the contrary, at very high noise level the quantum transport is again suppressed. This
suppression by high dephasing can be interpreted as an example of the “watchdog effect” (i.e.
quantum Zeno effect). In this regime, the environment constantly measures the system, hindering
the quantum transport of the excitation through the FMO complex.

An extensive investigation of different regimes [41, 42, 43, 44] and of numerical solutions of
increasing accuracy [10, 23, 45] has been performed, confirming the illustrated ENAQT principle.

On the other hand, the origin and the role played by long-lived coherence as experimentally
observed are still an object of debate in the literature.

One of the open questions concerns the unambiguous determination of the nature of the
observed long-lived coherence in 2DPE spectroscopy among pure vibrational, mixed exciton-
vibrational (vibronic), or predominantly excitonic. In several papers [46, 47, 48, 49] the theoretical
tools devised for the study of the time evolution of the density matrix have been used to reproduce
2DPE experimental maps and to clarify the origin of the observed long-lived coherence. Plenio
first suggested a solution, arguing that a non-trivial spectral structure of protein fluctuations can
generate a non-equilibrium processes that leads to the spontaneous creation and sustenance of
excitonic coherence [29]. Thus, the coupling between long-lived nuclear vibrational modes and
the excitation dynamics preserves the excitation quantum coherence for a longer time than ex-
pected. This particularity is closely related to the non-Markovian property of the thermal bath
(long-memory effects) [10, 29]. Although this solution is not definitive, it remains the most valid
suggestion to explain the nature of long-lived coherence in light-harvesting complexes.

The issue about the role of quantum coherence in the excitation transfer process is more com-
plex. In several 2DPE experiments for different FMO complexes, long-lived quantum coherence
has been observed [47]. This fact seem to suggest a strong relation between long-lived coherence
and high efficiency in the excitation energy transfer. This assumption has been strongly criticized.
One of the most common observations is that coherence is created only by ultrashort laser pulses
used in the experiments, and incoherent light sources, such as the Sun, would not produce the
same effect. At present, only a few experimental and theoretical studies [51, 50] tried to elucidate
this critical point with no definitive conclusions.

Another open debate concerns the classical or quantum nature of the highly efficient excitation
transport. In Ref. [52] it is shown that a highly efficient noise-assisted energy transport can be
found also in purely classical systems. Instead, in Ref. [53] it is demonstrated that the energy
transfer in FMO complex can occur and be enhanced from non-classical fluctuations of collective
molecular motions.

1.3 Charge Transport in Organic Compounds
Organic electronics has emerged as a promising field of research and technological development.
On the applied research side, organic semiconductors promise the advent of fully flexible and cheap
electronic devices [54, 55]. Furthermore, molecular structures have the following major advantages.
A very small size (between 1 and 100 nm), enabling the reduction of the size of integrated circuits.
They also offer the chance of exploiting intermolecular interaction to form and modify structures
by nanoscale self-assembly, and the opportunity to take advantages of multiple distinct stable
geometric structures with different optical and electronic properties. On the basic research side,
theories developed from the fifties on to describe charge transport in molecular crystal proved
to be inadequate for the investigation of the majority of high mobility molecular semiconductors,
opening a new fascinating research field [56, 57]. The only similarity between organic and inorganic
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semiconductors is the the energy difference between the highest occupied levels and the lowest
unoccupied levels (the energy gap). The electronic structure, the interaction between nuclear and
electronic degrees of freedom and the role of defect states are so different in organic molecule that
new methodologies have been developed in order to investigate the mechanisms of molecular charge
transport [24, 58].

In the following sections, we focus on two specific areas of molecular electronics, namely molec-
ular wires and Organic Thin-Film Transistors (OTFT). In both examples, understanding how
molecules transport charge is fundamental to improve performances and design of new devices.
Furthermore, dynamical fluctuations are an important factor governing the charge transfer, since
they can favor or hinder the charge/hole migration.

1.3.1 Molecular Wires
Nowadays one of the challenges in organic electronics consists in building devices made of individual
molecules [59]. To achieve this goal, it will be necessary to completely control and understand the
electron transport through a molecule attached to electrodes, namely the charge transport in a
molecular wire (see Fig 1.7).

A simplified picture of electron transport through molecular wires consists in a combination of
a strongly distance-dependent tunneling mechanism and a weakly distance-dependent incoherent
transport [60].
In the tunneling mechanism, during the transfer, no electrons or holes ever actually reside on the
molecular wire, i.e. molecular orbitals are used solely as a coupling medium to connect donors and
acceptors. The relation between the length of the molecular wire and the tunneling rate [61] is
exponential:

Wtun = νtun e
−β rDA ,

where k0 is the pre-exponential frequency factor for the tunneling transitions between neighboring
sites and β is the falloff parameter. Therefore, in the case of a long molecular bridge this mechanism
becomes inefficient.

Figure 1.7: Examples of molecular transport junctions: (a) a linear chain of saturated C-C bonds,
(b) a donor-bridge-acceptor, (c) a molecular quantum dot system, (d) a macromolecule, like a
protein or a DNA chain. The top panels depict molecules with various localized, low-energy
molecular orbitals (colored dots) bridging two electrodes L (left) and R (right). In the middle
panels, the black lines are unperturbed electronic energy levels; the red lines indicate energy levels
under an applied field. The bottom panels depict representative molecular structures. Figure taken
from Ref. [54].
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Figure 1.8: Left panel: experimental (triangles and circles) and theoretical (solid line) results for
the relative rate of hole transfer in between guanine-cytosine (GC) base pairs on DNA oligomers [54,
61]. Right panel: Electrical current for a DNA chain both in vacuum (without solvent) and
including the solvent [56, 62].

On the contrary, the incoherent charge transfer involves thermal activated jump between molecular
orbitals along the wire. The simplest assumption to describe the hopping rate is the Arrhenius
law,

Whop = νtherm e
−

∆
kBT ,

where νtherm is the pre-exponential frequency factor for the thermally activated release of a hole
temporarily localized on a molecular orbital, ∆ is the energy gap, kB is the Boltzmann constant,
and T is the temperature.

Exponential decay in the conductance with increasing distance has been directly seen in DNA
molecules folded into hairpin shapes, and the transition to incoherent hopping has been seen in
measurements of the efficiency of hole transfer along the molecule. In Fig. 1.8 we observe the
transition from tunneling to the thermally activated mechanism.

In last years, some works focused on the treatment of dynamical effects in the charge trans-
port along molecular wires by building in information from quantum chemical calculations and
Molecular Dynamics [24, 25, 62]. This hybrid approach consists in the computation of the charge
transfer parameters along nanosecond Molecular Dynamics trajectories, including solvation effects
by means of a Quantum Mechanics/Molecular Mechanics (QM/MM) coupling scheme. In Fig. 1.8
we show one of the main results of this approach, consisting in the considerable enhancement of
the current upon inclusion of solvent molecular fluctuations.

1.3.2 Organic Thin-Film Transistors
OTFTs are Metal-Insulator-Semiconductor Field-Effect Transistors (MISFET) in which the semi-
conductor is a conjugated organic material (see Fig. 1.9). In these devices, the semiconductor is
separated from the metal electrode by a thin insulating layer (the gate dielectric, G). Whenever
a voltage difference between the gate dielectric and the semiconductor is applied a thin sheet of
mobile electronic charges is created in the semiconductor in the proximity of the interface. With
two metal contacts attached to the semiconductor (the source contact, S, and the drain contact,
D), the electric current flowing through the transistor can therefore be chosen in a wide range,
simply by adjusting the gate voltage. Both for organic and inorganic MISFETs, the transistor per-
formance mainly depends on the charge carrier mobility, µ, on the current modulation (or on/off
ratio, Ion/Ioff ) and on the stability after a prolonged exposure to ambient conditions of the I −V
characteristic [63, 64].

Among the features listed above, the field effect mobility, or charge mobility, is the macroscopic
key quantity that characterizes the charge transport in semiconductors. The room temperature
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Figure 1.9: Left panel: typical OTFT device structure. Right panel: I − V characteristic of a
typical OTFT. Figure taken from Ref.s [66] and [68].

charge mobility of the most conductive organic semiconductor is a few tens of cm2V−1s−1 [65],
while the value for silicon is an order of magnitude larger. As a consequence of this upper limit on
the mobility that can be achieve with organic molecules, OTFTs cannot rival the performance of
MISFETs based on inorganic semiconductors. However, OTFTs can be competitive candidates for
thin-film transistor alternative applications requiring large area coverage, structural flexibility, low
temperature processing, and especially low cost production [63]. Additionally, the use of OTFT as
a sensor device has been considered [66, 67].

Most of the theoretical studies on charge transport in organic semiconductors are focused on
reproducing the experimental measured charge mobilities for different molecules and polymers.
An operative definition for the charge mobility is the following. In the absence of any external
potential, the charge transport can be modeled as a purely diffusive motion [55], described by the
simple equation

〈x2〉 = nDt ,

where 〈x2〉 is the mean-square displacement of the charge, D represents the diffusion coefficient, t is
the time, and n denotes an integer number equal to 2, 4, or 6 for one-, two-, and three-dimensional
(1D, 2D, and 3D) systems respectively. Thus charge mobility is related to the diffusion coefficient
via the Einstein-Smoluchowski equation:

µ = eD

kBT
, (1.1)

where kB is the Boltzmann constant and e the electron charge. Upon applying an external electric
field of amplitude E, the motion of the charge acquires a drift velocity v. The mobility can be thus
alternatively defined as

µ = v

E
. (1.2)

Eq.s (1.1) and (1.2) are the relations which are needde in order to evaluate the charge mobility by
dynamic simulations or time of flight experiments, respectively.

Charge carrier mobilities are influenced by many factors, including molecular packing, disorder,
presence of impurities, temperature, electric field, charge carrier density, size/molecular weight,
and pressure [55]. Among these aspects, disorder is the most studied in the literature by means of
simplified models [69, 70, 71, 72] or ab-initio simulations [73, 74, 75].

We distinguish between two different kinds of disorder in organic semiconductors: static disorder
or dynamic disorder [76]. Generally, disordered materials are described by random electronic
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Figure 1.10: Left panel: scheme of the model used to describe the charge transport in organic
semiconductors and example of time evolution of the probability density in the model considered
in Ref. [69]. Central panel: plot of the temperature averaged squared displacement versus
time. Right panel: temperature dependence of the charge carrier mobility for the model system
introduced in Ref. [69]. Figures taken from Ref. [69].

Hamiltonians, depending on the molecular configuration. In the case that the evolution of the
molecule is much slower than the dynamics of the charge carrier, the latter effectively experiences
a static landscape. This is considered the static disorder case, which leads to statically localized
states. The inverse time scale limit, when the electronic disorder evolves faster than the charge
dynamics, is the definition of the dynamic disorder caused by nuclear motions.

The transport of charge carriers through static disordered materials is typically modeled by
using charge carrier hopping theories. These approaches are based on the evaluation of the rate
of charge transfer between localized states and on the computation of the density of states. Given
these two information, the charge transport features are obtained as a function of the applied
voltage, temperature and gate bias by solving a master equation as follows,

∂

∂t
Pi(t) = −

∑
j 6=i

WjiPi(t) [1− Pj(t)] +
∑
j 6=i

WijPj(t) [1− Pi(t)]

where Pi(t) is the probability that site i is occupied by a carrier at time t and Wij is the transition
rate between sites.

To capture the physics of charge transport in the presence of dynamic disorder, a solution
proposed by Troisi is to use a one dimensional semiclassical model [69]. This model consists
of a tight-binding electronic Hamiltonian, in which the coupling between nearest neighbors is
modulated by nuclear displacements (see Fig. 1.10). The time evolution of the charge carrier
follows the ordinary Schrödinger equation, whereas the nuclear dynamics can be described by the
Newton equation,

mü = −Kuj −
∂

∂uj
〈ψ(t)|Hel|ψ(t)〉 ,

where uj represents the molecular configuration, m is the mass of a site, K is a spring constant,
and the last term represents the force caused by the presence of a charge (〈ψ(t)|Hel|ψ(t)〉 is the
electronic energy). The results obtained in Ref. [69], reported in Fig. 1.10, are in good agreement
with measured charge mobility in molecular crystals.

Partially ordered organic semiconductors form an important class of systems where neither the
static nor the dynamic disorder limit is strictly valid. The charge transport behavior observed
in these systems is complicated by the presence of nuclear modes with a very broad range of
timescales. To deal with this intermediate regime, both methods can be extended. In the first case,
the parameters of the master equation needs to be updated along the time evolution, simultaneously
solving the nuclear dynamics and the charge evolution. On the other hand, the semiclassical model
can be extended by adding the effect of a random force R(k)(t) and a friction coefficient γ(k) to
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Figure 1.11: Left panel: the diffusivity of the charge in the model presented with different char-
acteristic frequencies and friction coefficients. A transition is observed between dynamic disorder
(high mobility/molecular crystals) and static disorder (low mobility/polymers). Right panel:
the phase diagram of the transition between static and dynamic disorders. Figures taken from
Ref.s [76] and [77].

the deterministic Newton equation,

m(k)ü(k) = −m(k)(ω(k))2u
(k)
j −m

(k)γ(k)u̇
(k)
j +R(k)(t)− ∂

∂u
(k)
j

〈ψ(t)|Hel|ψ(t)〉 ,

where u(k)
j represents the k-th nuclear mode with mass m(k) and frequency ω(k). An interesting

property of this model is that by varying γ it describes the transition from the dynamic (γ → 0) to
the static disorder (γ →∞) [77]. This transition is evident in the falling of the diffusion coefficient
as γ increases, with a point of inflexion indicating the onset of static localization (see Fig. 1.11).
While this model provides a good qualitative description of the charge transfer mechanism, it is
inadequate to describe large devices or to investigate possible bottlenecks of the charge dynamics:
for this purpose a more microscopic description is required.
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Chapter 2

Dynamics of Electronic
Excitations in Macromolecules

In this chapter, we introduce our approach to study quantum transport in macromolecules, based
on the coherent path integral representation of the density matrix evolution. This formalism is
convenient because it allows us to deal with the dynamics of the atomic nuclei at the classical level,
while keeping a fully quantum description of the dynamics of the electronic excitations.
We show how, using this formalism, it is possible to obtain a system of equations of motion which
couple the quantum electronic dynamics and the nuclear mechanics. Otherwise, by integrating out
the atomic nuclei dynamics we derive an effective theory which is defined in terms of electronic
excitations only [1].

2.1 Microscopic Hamiltonian for Quantum Transport
An entirely ab-initio approach to quantum transport in macromolecules requires solving the time-
dependent Schroedinger equation for all nuclei and all electrons in the molecule and in the solvent.
The extremely high computational cost limits such ab-initio description to very small systems,
consisting of a few atoms. Solving the quantum transport process in macromolecules To reduce
the computational complexity of the problem we adopt a standard simplified framework, consisting
of two main approximations:

• the electronic problem is coarse-grained at the tight-binding approximation level,

• the dynamics in the absence of quantum excitations is described by the lowest
Born-Oppenheimer energy surface.

In such an approach, the molecule is first partitioned into several fragments, hereby labeled by
an index m. This partition of the molecule must be defined in such a way that the electron density
is significantly more delocalized within each molecular fragment than over different fragments [80].
Then, the so-called frontier orbitals |φm〉 are calculated by solving the Schrödinger equation for a
reduced portion of the molecule, centered at the fragment m. The system’s wave function is then
obtained by diagonalizing the Hamiltonian projected onto the space of the frontier orbitals |φm〉.

For example, in studying electronic hole transport in DNA, the molecular fragments can be
chosen to coincide with the base-pairs and their Highest Occupied Molecular Orbitals (HOMOs)
can be obtained by solving the Schrödinger equation for an isolated pair [81]. The propagation
of the charge carriers through the molecule is then modeled as the hopping of holes between
neighboring base-pairs. In general, it is convenient to choose the dimensionality of the molecular
fragment index m according to the topology of the system under consideration. In Fig. 2.1 we
show a practical example of coarse-grained model applied on a conjugate polymer.
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Figure 2.1: Labeling of molecular fragments in molecules with different topology. In linear poly-
mers, the fragments among which the charge hops form an effective one-dimensional system (left
panel). In branched polymers, a two dimensional representation may be introduced in order to
account for propagation along the side chains (center panel). In polymer assemblies a third index
may be used to label the different molecules (right panel).

In our approach of modeling the quantum propagation through an open macromolecular system,
we consider three coupled sub-systems: the quantum excitation propagating through the molecule,
the molecule, and the surrounding environment. Therefore, the dynamics of the entire system is
modeled by the following quantum Hamiltonian:

Ĥ = ĤTB + ĤM + ĤB + ĤMB . (2.1)

In the following, we will introduce and comment any terms of this equation.

2.1.1 Quantum Excitation Hamiltonian
In Eq. (2.1), quantum transport is described by ĤMC , which is a tight-binding Hamiltonian for
the quantum excitation that reads

ĤTB =
Nfrag∑
m,n

fmn [Q] â†mân. (2.2)

In this definition the discrete vectors m, n label the different fractional molecular orbitals. The
set of all atomic nuclear coordinates is collectively represented by the configuration space vector
Q,

Q(t) ≡ (q1, . . . , q3N ) = (r1
x(t), r1

y(t), r1
z(t); . . . ; rNx (t), rNy (t), rNz (t)).

where ri = (rix, riy, riz) are the Cartesian coordinates of the i−th atom. The â†m (âm) operators
create (annihilate) a quantum state at the molecular fragment m. For sake of definiteness, in this
chapter we shall focus on the propagation of fermionic excitations, which are relevant for studying
charge transport1. The generalization to bosons is straightforward. Correspondingly, the creation
and annihilation operators are assumed to obey the anti-commutation relations

{âm, ân′} = {â†m, â†n} = 0, {âm, â
†
n} = δlm .

Depending on the specific molecular system, it may be necessary to include also the coupling be-
tween different molecular orbitals. This can be done by introducing additional creation-annihilation
operators, i.e. different types of excited states for each orbital.

1In particular we consider electron holes in HOMOs, which are relevant for many molecular charge transfer
phenomena.
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The quantity fmn[Q] is commonly split in two: the hopping matrix elements Tmn[Q] and on-site
energies em[Q]:

fmn [Q] ≡ Tmn [Q] (1− δmn) + en [Q] δmn. (2.3)

The parameters Tmn and em are obtained from the fragment orbitals |φm〉 and |φn〉, and they
depend parametrically on the configuration vector Q. These quantities are defined by

Tmn [Q] ≡ 〈φm|Ĥel.|φn〉, (2.4)
em [Q] ≡ 〈φm|Ĥel.|φm〉, (2.5)

where Ĥel is the electronic Hamiltonian (for example, the Kohn-Sham Hamiltonian of density
functional theory). In literature, we can find several methods to compute the parametric value of
em and Tmn, depending on which transport phenomena we are studying. In the case of charge
transport along biomolecules, one of the most used is a DFT-scheme which has been developed by
Elstner et al. [82]. To study energy excitation transfer, we can compute Eq.s (2.4) and (2.5) follow-
ing the collective electronic oscillator procedure developed by Mukamel [83, 84] or the theoretical
framework proposed by Troisi [85].

Finally, we stress that the transfer matrix elements fmn depend on the molecular configuration
Q. This dependence means that the dynamics of the atomic coordinates and that of the quantum
fermions are coupled.

2.1.2 Macromolecule and Solvent Hamiltonian
The Hamiltonian ĤM in Eq. (2.1) governs the conformational dynamics of the atomic nuclei in the
absence of quantum excitations and reads

ĤM ≡
P̂ 2

2M + V̂ [Q] , (2.6)

where the P is the momentum canonically conjugated to the configuration vector Q. V [Q] is the
molecular potential energy, evaluated in the Born-Oppenheimer approximation. This includes the
interaction between the different atoms within the molecule and possibly with the external fields.
We stress that the potential energy V [Q] in Eq. (2.6) depends only on the molecular configuration.
This is equivalent to taking the adiabatic limit for the dynamics, and to assume that the location
of the quantum excitation does not alter in a significant way the interaction between the atomic
nuclei.2 Notice that, for sake of notational simplicity, in the definition (2.6) we are assuming that
all atoms have the same mass M . The generalization to different atomic masses is straightforward
and will not be discussed here.

The part of the Hamiltonian ĤB + ĤMB describes the coupling of the molecule with a thermal
heat bath in the Leggett-Caldeira model [86], i.e. through an infinite set of harmonic-oscillators
coupled to each atomic coordinate:

ĤB =
3N∑
α=1

∞∑
j=1

(
π̂2
j

2µj
+ 1

2µjω
2
j x̂

2
j

)
, (2.7)

ĤMB =
3N∑
α=1

∞∑
j=1

(
−cj x̂j q̂α +

c2j
2µjω2

j

q̂2
α

)
. (2.8)

X = (x1, x2, . . .) and Π = (π1, π2, . . .) are the harmonic oscillator coordinates and momenta, µj
and ωj denote their masses and frequencies and cj are the couplings between atomic and heat bath

2 In some case of interest, the validity of this approximation has been questioned and corrections to the adiabatic
regime have been proposed. However, in this thesis we shall not deal with these complications.
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variables. The last term in Eq. (2.8) is a standard counter-term introduced to compensate the
renormalization of the molecular potential energy which occurs when the heat bath variables are
traced out [87]. This elimination consists in a Gaussin integral over the heat bath variables that
interacting linearly with the molecule cre
Even thought it’s simplicity, a reservoir composed of harmonic oscillator with linear coupling is
rather general and often provides an appropriate description of a realistic environment. Indeed,
the model introduce in Eq.s (2.8) and (2.7) has widely been used to model dissipation, both to
describe quantum phenomena, like quantum tunneling [88], and to describe classical dynamics, like
Langevin’s equation [89]. In addition, as we shall see, this model allows us to recover the standard
Langevin equation, for the classical dynamics of atomic nuclei

The Hamiltonian in Eq. (2.1) define a closed quantum system. In the next section, we introduce
the path integral representation for the density matrix evolution.

2.2 Path Integral Representation of Quantum-Diffusive Dy-
namics

Let us define the reduced density matrix which describe the quantum transport through a macro-
molecule as

ρij = Tr[ | i 〉〈 j | ρ̂(t) ]
Tr ρ̂(t) = Tr[| i 〉〈 j | e− i

~ Ĥt ρ̂(0) e i~ Ĥt]
Tr ρ̂(0) , (2.9)

which depends only on the quantum excitation’s degrees of freedom. As introduced in Section 1.1,
all the molecular and heat-bath degrees of freedom will be traced out, obtaining an QTFT including
fluctuation-dissipation effects. In Eq. (2.9), ρ̂(0) is the initial density matrix, which is taken to be
in the factorized form

ρ̂(0) = ρ0 ⊗ e
− 1
KBT

ĤM ⊗ e
− 1
KBT

ĤB . (2.10)

where ρ0 =
∑

ij ρ
0
ij | i 〉〈 j |. Equation (2.10) corresponds to assuming that, at the initial time, the

molecular degrees of freedom and the heat bath degrees of freedom can be considered separately
equilibrated at the same temperature. Hence, the normalization factor at the denominator reads

Tr ρ̂(0) = ZM (β) × ZB(β) ,

where ZM and ZB are the quantum partition functions for the molecule and heat bath degrees of
freedom.

Let us now derive a path integral expression for numerator in eq. (2.9). We begin by noting that
the conformational dynamics of the atomic nuclei in the molecule can be reasonably well described
in the classical limit. In contrast, the hopping of the quantum excitations from molecular site to
molecular site requires a fully quantum description. In view of this important difference, we choose
to adopt the standard first-quantized representation for the dynamics of the atomic coordinates
and for the harmonic oscillators in the heat bath, while we use a second-quantized representation
of the quantum excitation dynamics (see Appendix A.1).
This choice is motivated because the field-theoretic description for the quantum excitation allows
to obtain a simpler final representation of the reduced density matrix. Moreover, the coordinate
representation for the atomic degrees of freedom is most convenient in order to take the classical
limit.

The path integral representation of the reduced density matrix (2.9) is obtained by performing
the Trotter decomposition of the forward- and backward- time evolution operators e−iĤt and eiĤt

and of the imaginary-time evolution operators e−
1

KBT
ĤM which appear in Eq.s (2.9) and (2.10). In
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Figure 2.2: Boundary conditions of the molecular configurations (and heat bath state) paths defined
on the Keldysh contour appearing in the path integral (2.11) and (2.16).

practice, each time evolution is split in a series of n infinitesimal intervals, then at every discrete
time ti the following completeness identity is introduced

1 =
∫
dQ

∫
dX

∫ Nfrag∏
k=1

dφkdφ
∗
k

2πi

 e−
∑

l=1
φlφ
∗
l |Q,X,Φ〉 〈Q,X,Φ| ,

where the states |Q,X,Φ〉 collect the set of all coherent states (constructed from the annihilation
operators associated to each molecular fragment, âk), the set of the eigenstates of the molecular
coordinate operator Q̂ and the set of eigenstates of the heat bath generalized coordinate operator
X̂. Then, at each step we use the Trotter expansion,

eε
∑

k
Ak =

∏
k

e−εAk + o
(
ε2
)
,

and finally we perform the continuum limit n→∞ (details in Ref. [90]). After this manipulation
and assuming an initial condition ρ0 = |ki〉〈ki|3, the reduced density matrix in Eq. (2.9) in path
integral form reads

ρij(t) = 1
Tr [ρ̂(0)]

∫
dXf

∫
dXi

∫
dX̄

∫ Xi

X̄

DX̃e−SB [X̃]
∫
dQf

∫
dQi

∫
dQ̄

∫ Qi

Q̄

DQ̃e−SE [Q̃]

∫ Xf

Xi

DX
′
∫ Qf

Qi

DQ
′
∫
Dφ

′
Dφ

′∗ φ
′

i(t)φ
′∗
ki(0) e−φ

′∗
m(0)φ

′
m(0) e

i
~

(
SMC [Q

′
,φ
′
,φ
′∗]+SMB [Q′,X′]

)
∫ Xf

X̄

DX
′′
∫ Q̄

Qf

DQ′′
∫
Dφ′′Dφ

′′∗φ
′′

ki(0)φ
′′∗
j (t) e−φ

′′∗
m (t)φ

′′
m(t) e

− i
~

(
SMC [Q

′′
,φ
′′
,φ
′′∗]+SMB [Q

′′
,X
′′

]
)
.

(2.11)

In this equation, φ′l(t) and φ
′′

l (t) are the Grassmann quantum fields associated to the coherent
states propagating forward and backwards in time respectively4. In the path integral (2.11),
the Q′(t), Q′′(t) (and X ′(t), X ′′(t)) variables represent the configuration of the molecule (and
respectively the heat bath state) propagating forward and backwards in time, while the Q̃(t) (and
X̃(t)) variables are associated with the evolution of the same molecule (and of the heat bath state)
along the imaginary-time direction. All these paths can be collectively represented by a path
variable integrated along the so-called Keldysh contour (see Fig. 2.2).

3 This condition could be relaxed, summing linearly contribution to any initial condition.
4 As usual, the path integral (2.11) is defined over Grassmann fields or complex fields, depending on whether

propagating excitation is a fermion or a boson.
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The action functionals appearing at the exponents in Eq. 2.11 read

SMC [Q,φ, φ∗] =
∫ t

0
dt′
{
MQ̇(t′)2

2 − V [Q(t′)] + φ∗l (t′)
(
i~

∂

∂t′
δlm − flm[Q(t′)]

)
φm(t′)

}
, (2.12)

SB [X] =
∫ β

0
dτ

∑
j

(
µj ẋj(τ)2

2 + 1
2µjω

2
jx

2
j (τ)

) , (2.13)

SE [X] =
∫ β

0
dτ

{(
MQ̇(τ)2

2 + V [Q(t′)]
)}

, (2.14)

SMB [X,Q] =
∫ t

0
dt′

∑
j

µj
2

(
ẋ2
j (t′)− ω2

jx
2
j (t′)

)
+
∑
α j

(
cjxj(t′)qα(t′)−

c2j
2µjω2

j

q2
α(t′)

) .

(2.15)

Let us point out that, throughout this thesis we shall adopt Einstein’s notation and implicitly
assume the summation over all bold repeated indexes, except for the initial exciton position ki
which is held fixed.

2.2.1 Feynman-Vernon Functional
We note that the path integrals over the harmonic oscillator variables X in Eq. (2.11) are Gaussian.
Therefore, the path integral X can be carried out analytically [87], and we obtain

ρij(t) = 1
Tr [ρ̂(0)]

∫
dQf

∫
dQi

∫
dQ̄

∫ Qi

Q̄

DQ̃e−SE [Q̃]
∫ Qf

Qi

DQ
′
∫ Q̄

Qf

DQ′′∫
Dφ

′
Dφ

′∗e−φ
′∗
m(0)φ

′
m(0)

∫
Dφ′′Dφ

′′∗e−φ
′′∗
m (t)φ

′′
m(t)

(
φ
′

i(t)φ
′∗
ki(0) φ

′′

ki(0)φ
′′∗
j (t)

)
× e−ΦFV [Q′,Q′′] e

i
~ SMC [Q

′
,φ
′
,φ
′∗]− i

~SMC [Q
′′
,φ
′′
,φ
′′∗] , (2.16)

where functionals which appear at the exponent are defined in Eq.s (2.14) and (2.12), while
ΦFV [Q′, Q] is the so-called Feynman-Vernon influence functional [19], which describes the fluc-
tuation and dissipation induced by the coupling with the heat-bath and reads:

ΦFV [Q′, Q′′] = 1
~

∫ t

0
dt′
∫ t′

0
dt′′
{

[Q′(t′)−Q′′(t′)] [B(t′ − t′′)Q′(t′′)− B∗(t′ − t′′)Q′′(t′′)]
}

+ i
µ̄

2~

∫ t

0
dt′
[
Q′

2(t′)−Q′′2(t′)
]
,

µ̄ =
∑
j

c2j
mjω2

j


B(t) is a two-point correlation function which encodes the physics of the coupling of the molecular
coordinates with the heat-bath and reads:

B(t) =
∫
dω

π
J(ω)

[
coth

(
ω~

2kBT

)
cos(ωt)− i sin(ωt)

]
,

where J(ω) is the spectral density, that is defined by

J(ω) = π

2
∑
n

c2n
µnωn

δ(ω − ωn) .

We note that time scales at which thermal oscillations are damped and memory effects are rele-
vant can be tuned by varying the frequencies of the virtual harmonic oscillators in Eq. (2.8) and
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equivalently in the spectral density J(ω). In particular, here we consider the so-called Ohmic bath
limit, in which the B(t) reduces to

B(t)→ Lohm(t) = 2kBTMγ

~
δ(t) + i Mγ

2
d

dt
δ(t) ,

which consists in assuming a memoryless damping kernel. Indeed, it is well known that, in the
classical limit for the molecular motion, this choice for L(t) leads to a Langevin dynamics with
friction coefficient γ (see e.g. Ref. [87]). Hence, Eq. (2.16) represents a quantum generalization
of the stochastic dynamics of the molecule, which includes also the time-evolution of the quantum
state described by the tight-binding Hamiltonian (2.2).

2.3 Classical Molecular Dynamics Limit
A reasonable approximation to simplify the problem consists in taking the classical limit for the
dynamics of the molecular atomic coordinates. This limit is motivated by the final aim of the
model to describe quantum transport in Macromolecule at room temperature, i.e. we assume that
we don’t need to include quantum effects in the macromolecular dynamics.

2.3.1 Semiclassical Variables
In order to recover the classical limit, we perform the following change of variable, i.e. we express
the path integral (2.16) in a form in which forward and backward molecular paths Q′(t) and Q′′(t)
are replaced by their average and difference, respectively:

R(t) = 1
2

(
Q
′
(t) +Q

′′
(t)
)
, y(t) = Q

′
(t)−Q

′′
(t) .

The path R(t) coincides with the diagonal elements of the molecular density matrix, in coordinate
space, and is therefore called quasiclassical path. On the contrary, y(t) path corresponds to off-
diagonal terms, which describe quantum and thermal fluctuations. After change of variable, the
Eq. (2.16) reads

ρij(t) ≡
1

Tr [ρ̂(0)]

∫
Dφ

′
Dφ

′∗φ
′

i(t)φ
′∗
ki(0) e−φ

′∗
m(0)φ

′
m(0) eiS0[φ

′
,φ
′∗]∫

Dφ
′′
Dφ

′′∗ φ
′′

ki(0)φ
′′∗
j (t) e−φ

′′∗
m (t)φ

′′
m(t) e−iS0[φ

′′
,φ
′′∗]

×
∫
dQf

∫
dQ̄

∫
dQi

∫ Qi

Q̄

DQ̃e−SE [Q̃]
∫ Qf

1
2 (Qi+Q̄)

DR
∫ 0

Qi−Q̄
Dy eiΦ

′
FV [R,y] e

i
~W[R,y,φ

′∗,φ
′
,φ
′′∗,φ

′′
], (2.17)

where the functionals at the exponent are defined as

S0[φ, φ∗] =
∫ t

0
dt′φ∗n(t′)

[
i
∂

∂t′
δnm

]
φm(t′) , (2.18)

W[R, y, φ
′∗, φ

′
, φ
′′∗, φ

′′
] =

∫ t

0
dt′
{
MṘ · ẏ − V

[
R+ y

2

]
+ V

[
R− y

2

]
−
(
fnm

[
R+ y

2

]
φ
′∗
n φ
′

m − fnm

[
R− y

2

]
φ
′′∗
n φ

′′

m

)}
, (2.19)

Φ
′

FV [R, y] =
∫ t

0
dt′
{
MγKBT

~2 y2(t′) + iMγ

~
Ṙ · y

}
. (2.20)

In the path integral representation (2.17), the time evolution of the quantum excitation-molecule
system in contact with a dissipative heat bath follows directly from the quantum Hamiltonian de-
fined in Eq. (2.1), without any further approximation. In particular, the molecule’s conformational
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dynamics and the quantum excitation propagation are described at the fully quantum level. In
addition, there is no restriction either on the strength of the coupling between the molecular vi-
brations and the quantum excitation, nor on the amplitude of the conformational changes which
the molecule can undergo within the time interval t.

Clearly, computing such a path integral is a formidable task and further approximations are
needed. In section 2.3.2, we discuss the classical limit for the dynamics of the molecular atomic
coordinates. In section 2.4, we apply the saddle-point approximation to Eq. (2.17) in order to
derive a set of coupled equations, which describe the quantum and stochastic evolution at mean
field level of the reduced density matrix ρij and the molecular configuration R. In section 2.5, we
go beyond mean field approximation, integrating out exactly both integral paths over y and R, in
the small oscillation limit, obtaining the formulation of an QTFT.

2.3.2 Onsager-Machlup Functional
In the absence of the quantum charge, from the path integral representation (2.17) we can obtain
the Onsager-Machlup path integral representation of the Langevin dynamics of the molecule in its
heat bath. To prove this, let us provisorily drop all the coherent field.

To this end, let us point out that the saddle-point equations which are derived by functionally
differentiating the exponent in Eq. (16) with respect to R, y, φ′, φ′′ lead to the condition y(t) =
0 for all t (see derivation in Appendix A.2). Following the discussion in Ref. [87], we impose
the classical limit on the molecular motion by assuming that the path y(t) remains close to its
saddle-point configuration (hence represents a small fluctuation) and by imposing the boundary-
condition y(0) = 0. Expanding the functionals in the exponent to quadratic order in y, the resulting
expression reads

1
ZM (β)

∫
dQf

∫
dQi

∫ Qi

Qi

DQ̃e−SE [Q̃]Pt(Qf |Q0) = 1 ,

where

Pt(Qf |Q0) =
∫ Qf

Q0

DR
∫
Dy e−

i
~

∫ t
0
dt′
[
y(t′)·(MR̈(t′)+MγṘ(t′)+ ∂

∂rV [R(t′)]) − i kBTMγ

~ y2(t
′
)
]
,

which corresponds to the conditional probability to reach a configuration Qf after a time t starting
from a configuration Q0. Performing the Gaussian integration over y, the path integral Pt reduces
to

Pt(Qf |Q0) =
∫ Qf

Qi

DR e−SOM [R] ,

where SOM [R] is the Onsager-Machlup functional [91], which assigns a statistical weight to the
stochastic trajectories in the Langevin dynamics by5:

SOM [R] = β

4Mγ

∫ t

0
dt′

[
MR̈+ ∂

∂R
V (R) +MγṘ

]2
.

Finally, we take the saddle-point approximation for the path integral DQ̃, which corresponds to
taking the classical limit also for the partition function of the initial molecular configuration. The
result is∫

dQf

∫
dQi

e−βV [Qi]

ZM [β]

∫ Qf

Qi

DR e−SOM [R] =
∫
dQf

∫
dQi Pt(Qf , Qi) ρ0(0) = 1 ,

where ρ0(Qi) = e−βV [Qi]

ZM [β] is the initial distribution of molecular configurations. We recognize that
this is the normalization condition on the solution of the Fokker-Planck equation, expressed in
path integral form [92, 93] and it is the starting point of the so-called dominant-reaction pathway
approach to investigate the long-time dynamics of macromolecules [94, 95].

5See Appendix A.3 for the derivation of the functional SOM from the Langevin dynamics.
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2.4 Quantum and Stochastic Equations of Motion
In this section, in order to derive a set of mean-field equations both for the molecular dynamics
and the quantum transport, we return to consider the complete path integral in Eq. (2.17).

The derivation consists in estimating the path integral over the coherent field in the lowest order
saddle-point approximation, while the integral over the molecular coordinate y is computed beyond
mean field level, i.e. including effects of leading-order around the saddle-point solution y(t) = 0
(as we showed in the previous section). All the detailed calculation are shown in Appendix A.2
and A.3. The final set of quantum and stochastic differential equation is the following [78]:

M d2

dt2Rα = −Mγ d
dtRα −

∂
∂Rα

(
V [R] + Tr[ρ̂ f̂ [R]]

)
+ ηα(t)

d
dt ρ̂ = − i

~

[
f̂ [R], ρ̂

]
,

(2.21)

where f̂lm[R] = flm[R] corresponds to the transfer integral in Eq. (2.3), and ηα(t) is the usual
white delta-correlated Gaussian noise of the Langevin dynamics,

〈ηα(t) · ηβ(0)〉 = 6kBT
Mγ

δαβ δ(t).

Since the motion of the molecular degrees of freedom is stochastic, the quantum excitation prob-
ability density at different times is obtained from the average over many independent trajectories,
which may turn out to be a computationally challenging procedure.

2.5 Quantum Transport Field Theory for the Reduced Den-
sity Matrix

In this section we derive the most important result of this thesis, an effective theory approach
to describe the quantum transport in macromolecule. To this end, we return to the path integral
expression in Eq. (2.17), in which no approximations have been introduced, and we integrate out the
molecular coordinate y and R, in the limit of small oscillation around the mechanical equilibrium
for R path, and around the classical limit for the variable y (see section 2.3).

The final result is a rigorous effective theory, which is formulated exclusively in terms of the
degrees of freedom associated to the quantum excitation and is fully consistent with the fluctuation-
dissipation relationship. This way, one does not need to perform MD simulations, and average over
multiple realization of the dynamics.

2.5.1 Small Oscillation Limit
Let us note that the quantum transport dynamics is in general much faster than the characteristic
time scales for major conformational transitions of macromolecular systems (typically ranging
from few nanoseconds to many seconds or even larger). Hence, during the time intervals which
are relevant for quantum propagation phenomena, the molecule can be assumed to follow at most
only small oscillations around the mechanical equilibrium configuration Q0, which is defined as
the global minimum of the molecular potential energy V (Q). In this small-oscillation limit, it is
convenient to introduce the atomic displacement variables

δr(t) = R(t)−Q0 ,

and regard both the δr(t) and y(t) as small quantities of the same order. In the expansion of the
W functional in Eq. (2.19) up to quadratic order in δr and y we obtain a term

V
[
R− y

2

]
− V

[
R+ y

2

]
= 1

2Hij
(
δr − y

2

)
i

(
δr − y

2

)
j
− 1

2Hij
(
δr + y

2

)
i

(
δr + y

2

)
j

= δriyjHij + . . . ,
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where Hij ≡ ∂2

∂Qi∂Qj
V (Q)|Q=Q0 is the Hessian matrix of the potential energy at the point of

mechanical equilibrium.
A small deviation from the equilibrium configurationQ0 generates a small change in the hopping

matrix elements and in the on-site energies which define the tight-binding Hamiltonian (2.2). To
the leading-order in the Taylor expansion in powers of δr and y we have:

fnm

[
r − y

2

]
= f0

nm + f inm

(
δri −

yi
2

)
+ . . . ,

fnm

[
r + y

2

]
= f0

nm + f inm

(
δri + yi

2

)
+ . . . ,

where f0
nm ≡ fnm(Q0) and f inm ≡ ∂

∂Qi fnm(Q)|Q=Q0 are the tight-binding parameters, and respec-
tively their derivatives, evaluated on mechanical equilibrium configuration.

In the small oscillation regime, the path integral over y is of Gaussian type and can be performed
analytically

ρij(t) ≡
1

Tr [ρ̂(0)]

∫
Dφ

′
Dφ

′∗φ
′

i(t)φ
′∗
ki(0) e−φ

′∗
m(0)φ

′
m(0) eiS0[φ

′
,φ
′∗]∫

Dφ
′′
Dφ

′′∗ φ
′′

ki(0)φ
′′∗
j (t) e−φ

′′∗
m (t)φ

′′
m(t) e−iS0[φ

′′
,φ
′′∗]

×
∫
Dδr e i~S[δr,φ

′∗,φ
′
,φ
′′∗,φ

′′
]e−

β
2 δri(0)Hijδrj(0), (2.22)

where the functional integral over δr(t) is unrestricted also at time 0 and time t and the S functional
reads

S[δr, φ
′∗, φ

′
, φ
′′∗, φ

′′
] = i ~β

4Mγ

∫ t

0
dt′

[
Mδr̈i +Hijδrj +Mγδṙi + 1

2f
i
nm(φ

′∗
n φ
′

m + φ
′′∗
n φ

′′

m)
]2

+
∫ t

0
dt′

(
f0

nm + f inmδri
)

(φ
′∗
n φ
′

m − φ
′′∗
n φ

′′

m). (2.23)

In order to compute the Gaussian integration over δr too, it is convenient to introduce the dif-
ferential operator L̂ and its Hermitian conjugate L̂†, which depend on the molecular coordinate
indexes i, j:[

L̂
]
ij

= M
(
∂2
t′ + γ∂t′

)
δij +Hij ,

[
L̂†
]
ij

= M
(
∂2
t′ − γ∂t′

)
δij +Hij .

Note that, in L̂ and L†, the time-derivatives are defined to act on the right. Using such operators,
the functional in Eq. (2.23) can be rewritten as

S[δr, φ′, φ
′∗, φ′′, φ

′′∗] = i ~β
4Mγ

∫ t

0
dt′ δri(t′)[L̂† · L̂]ij δrj(t′)

+ i ~β
4Mγ

∫ t

0
dt′ f inm (φ

′∗
n (t′)φ

′

m(t′) + φ
′′∗
n (t′)φ

′′

m(t′)) [L̂]ij δrj(t′)

+ i ~β
16γM

∫ t

0
dt′ f inm (φ

′∗
n (t′)φ

′

m(t′) + φ
′′∗
n (t′)φ

′′

m(t′)) (φ
′∗
l (t′)φ

′

h(t′) + φ
′′∗
l (t′)φ

′′

h(t′)) f ilh.

−
∫ t

0
dt′ f inm (φ

′∗
n (t′)φ

′

m(t′)− φ
′′∗
n (t′)φ

′′

m(t′)) δri(t′)

−
∫ t

0
dt′ f0

nm (φ
′∗
n (t′)φ

′

m(t′)− φ
′′∗
n (t′)φ

′′

m(t′)) . (2.24)

We note that, in Eq. (2.24) the first term corresponds to the Onsager-Machlup action introduced
in section 2.3 and the last term describes the quantum transport of our quantum excitation in
absence of coupling with the molecular dynamics, while the other terms correspond to interaction
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terms. Furthermore, we observe that the second and third of them vanish in the classical limit
~β → 0.

The path integral (2.22) describes the coupled dynamics of the nuclear coordinates and of the
quantum excitation in the molecule. It is instructive to first consider this density matrix time
evolution in the limit in which the couplings between the quantum excitation and the molecular
degrees of freedom are completely neglected. In this case, the path integral factorizes as

ρij(t)'
[
G>0 (i, t|ki) ·G>†0 (j, t|ki)

]{ 1
ZM (β)

∫
Dδr e−

β
4Mγ

∫ t
0
dτ(Mδr̈−γδṙ+Hijδrj)2

e−
β
2 δri(0)Hijδrj(0)

}
=
[
G>0 (i, t|ki) ·G>†0 (j, t|ki)

]
. (2.25)

In this equation,

G>0 (n, t|ki) ≡ 〈n| e−iĤ0t |ki, 〉, with Ĥ0 ≡ flm(Q0) â†l âm ,

is the Green’s function defined by the tight-binding Hamiltonian Ĥ0 , which is evaluated keeping
the molecule “frozen” in its minimum-energy configuration Q0.

2.5.2 Quantum Transport Field Theory
A major simplification which follows from the small oscillation approximations is that the integral
over the small displacement of the molecular coordinates from their equilibrium position δr can
be performed analytically. The result is an QTFT with non-instantaneous interactions between
quantum excitations:

ρij(t) = 1
Tr [ρ̂(0)]

∫
Dφ

′
Dφ

′∗φ
′

i(t)φ
′∗
ki(0) e−φ

′∗
m(0)φ

′
m(0)

∫
Dφ

′′
Dφ

′′∗φ
′′

ki(0)φ
′′∗
j (t) e−φ

′′∗
m (t)φ

′′
m(t)

× e
i
~S0[φ

′
,φ
′∗]− i

~S0[φ
′′
,φ
′′∗] e

i
~SI[φ

′∗,φ
′
,φ
′′∗,φ

′′
], (2.26)

where unperturbed S0 and interaction SI action read

S0[φ, φ∗] =
∫ t

0
dt′φ∗n(t′)

[
i~

∂

∂t′
δnm − f0

nm

]
φm(t′) , (2.27)

SI[φ′, φ
′∗, φ′′, φ

′′∗] = 1
4

∫ t

0
dt′dt′′

(
φ
′∗
k φ
′

l + φ
′′∗
k φ

′′

l

)
(t′) f iklVij(t′ − t′′)f jmn

(
φ
′∗
mφ

′

n − φ
′′∗
m φ

′′

n

)
(t′′)

+ i Mγ

β~

∫ t

0
dt′dt′′

(
φ
′∗
k φ
′

l − φ
′′∗
k φ

′′

l

)
(t′) f ikl∆ij(t′ − t′′)f jmn

(
φ
′∗
mφ

′

n − φ
′′∗
m φ

′′

n

)
(t′′)

(2.28)

Let us point out that, performing the Gaussian integral over δr in Eq. (2.22) we consider the
mean-field value of the surface term δr(0) in the Boltzmann average. In this way, we can neglect
the average over the Boltzmann distribution in our calculated. 6.

In Eq. (2.28), ∆ij(t′ − t′′), and Vij(t − t′) are respectively the Green’s functions of the [L̂†L̂]
operator and the sum of the Green’s functions of the L̂ and L̂† operators. In order to explicitly
compute them, it is convenient to transform to the normal mode basis, in which the Hessian of the
potential energy at the minimum energy configuration Q0 is diagonal:

U†ks HsjUji = δki M Ω2
k .

6 An exact calculation that take in account also the Boltzmann average over the initial condition δr is not
straightforward, since it needs to switch to discrete path integral representation [93, 96], or to average over differente
initial conditions.
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In this equation, Ωk denotes the frequency of the k-th normal mode. In this basis, the expressions
of the vibron propagators ∆ij(t′− t′′) and Vij(t− t′) read (see the derivation in the Appendix A.4)

∆ij(t) = e−
1
2γ |t|

2 M2 Ω2
k

U†ik Ukj ak(t) , (2.29)

Vij(t) = 2 e− 1
2γ |t|

M ωk0
U†ik Ukj bk(t) , (2.30)

where ωk0 =
√
|4Ω2

k − γ2| and

ak(t) =


sin
( 1

2ω
k
0 |t|

)
ωk0

+
cos
( 1

2ω
k
0 |t|

)
γ

if 2Ωk ≥ γ ,

sinh
( 1

2ω
k
0 |t|

)
ωk0

+
cosh

( 1
2ω

k
0 |t|

)
γ

if 2Ωk < γ ,

(2.31)

bk(t) =
{

sin
( 1

2ω
k
0 |t|

)
if 2Ωk ≥ γ ,

sinh
( 1

2ω
k
0 |t|

)
if 2Ωk < γ .

(2.32)

It is useful to consider the asymptotic expressions for the Green’s functions in the limit γ � 2Ωk,
which corresponds to the over-damping regime:

∆ij(t) = e−
Ω2
k
γ |t|

2 M2 γ Ω2
k

U†ik Ukj ,

Vij(t) = 1
M γ

(
1 + 2Ω2

k

γ

) (
e−

2Ω2
k
γ |t| − e−γ|t| e

2Ω2
k

γ2 |t|
)
U†ik Ukj .

In the opposite under-damped regime (γ � Ωk) the asymptotic expression for the propagators is:

∆ij(t) = e−
γ
2 |t|

2 M2 γ Ω2
k

cos (Ωk|t|) U†ik Ukj ,

Vij(t) = e−
γ
2 |t|

2 M Ωk
sin (Ωk|t|) U†ik Ukj .

Eq. (2.26) is one of the central results of this work. It shows that the reduced density matrix
ρij(t) for the dissipative dynamics of a quantum excitation can be written in a form which is
formally analogue to a 4-point correlation function, in an effective zero-temperature quantum field
theory. This analogy is quite remarkable, since our theory describes an open system and is fully
consistent with the fluctuation-dissipation relation. Therefore, we can adopt several quantum field
theory techniques developed to evaluate directly the reduced density matrix and the expectation
values of operators.

In the next chapter we show that, for a sufficiently short time interval, the evolution of the
reduced density matrix can be obtained even analytically, by relying on a simple diagrammatic
perturbative technique. In section 4, we analyze the opposite long-time and long-distance regime
using the renormalization group formalism. Finally, in section 5 we adopt the resummation tech-
nique in order to formalize a non-perturbative scheme, obtaining a Bethe-Salpether equation for
the time-evolution of the density matrix.
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Chapter 3

Quantum Propagation at
Short-Distance and Short-Time

Phenomena of quantum transport along short-distance and for short-time can be studied ana-
lytically by means of the field theory derived in the previous chapter, adopting the perturbation
diagrammatic scheme. In this chapter we illustrate this approach computing the relevant leading-
order Feynman diagrams of our QTFT, and presenting a simple application to the charge transport
along a conjugate polymer [1].

3.1 Perturbation Theory and Feynman Diagrams
3.1.1 Dirac-Like Notation
The symmetric structure of the exponent in the path integral representation of the reduced density
matrix ρij(t) between forward, φ′ , and backward field, φ′′ , suggests the collection of all coherent
field degrees of freedom into a single 2-component Grassmann field ψ defined as:

ψn ≡
(
φ
′

n
φ
′′

n

)
. (3.1)

Similarly, we collect all conjugate fields into ψ†n ≡
(
φ
′∗
n , φ

′′∗
n

)
. In view of the formal analogy with

a Dirac theory in two-dimension, it is convenient to introduce also the following 2 × 2 matrices,
which define the projection onto the upper and lower component of the doublet and the interchange
between them:

γ0 =
(

1 0
0 −1

)
, γ+ =

(
1 0
0 0

)
,

γ− =
(

0 0
0 1

)
, γ5 =

(
0 1
1 0

)
.

(3.2)

In addition, we change variables in the integration over the ψ† field by means of the substitution

ψ̄n(t) ≡ ψ†n(t) γ0 . (3.3)

Using the notation defined in Eq.s (3.1), (3.2) and (3.3), the reduced density matrix in Eq. (2.26)
is written as:

ρij(t) = −1
Tr [ρ̂(0)]

∫
Dψ̄ Dψ e−L1(t,0) (ψ̄j(t) γ−γ5 ψi(t) ψ̄ki(0) γ+γ5 ψki(0)

)
× e

i
~S0[ψ̄,ψ] e

i
~SI[ψ̄,ψ], (3.4)
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where the term1

S0[ψ̄, ψ] =
∫ t

0
dt′ ψ̄m

(
i~ ∂t′δmn − f0

mn
)
ψn , (3.5)

corresponds to Eq. (2.27) in the new variables, and it describes the quantum propagation of the
charge in the absence of any coupling with the molecular dynamics. In this Dirac-like notation,
the interaction action in Eq. (2.28) reads

SI[ψ̄, ψ] = 1
4

∫ t

0
dt′dt′′

(
ψ̄k(t′) γ0 f

i
kl ψl(t′)

)
Vij(t′ − t′′)

(
ψ̄m(t′′) f jmn ψn(t′′)

)
+ i Mγ

β~

∫ t

0
dt′dt′′

(
ψ̄k(t′) f ikl ψl(t′)

)
∆ij(t′ − t′′)

(
ψ̄m(t′′) f jmn ψn(t′′)

)
, (3.6)

where ∆ and V are the non-local interaction terms derived in the previous chapter. The surface
term L1(t, 0) follows from the over completeness of the coherent-field basis, and reads

L1(t, 0) =
(
ψ̄m(0) γ0 γ+ ψm(0) + ψ̄m(t) γ0 γ− ψm(t)

)
, (3.7)

Some comments on Eq. (3.4) are in order. Firstly, we note that the overall minus sign appearing
in front of the integral is a consequence of the Fermi statistics and ensures the overall positivity of
the probability density. Secondly, we observe that, while the path integral (2.22) is defined over
forward- and backward- propagating fields, the path integral Eq. (3.4) contains only the integration
in the forward time direction. Indeed, the backward-propagating fields have been replaced by lower-
components of the doublet field, hence they can be formally interpreted as anti-matter degrees of
freedom propagating forward in time. This analogy can be useful to derive perturbative calculation
and to adopt non-perturbative quantum field theory technique.

3.1.2 Short-time Regime
Let us now evaluate the reduced density matrix ρij(t) in the short-time regime by means of pertur-
bation theory. This method derives by performing a Taylor expansion of the exponents in Eq. (3.4)
in powers of the interaction terms

V1 = −Mγ

β~2

∫ t

0
dt′
∫ t

0
dt′′ ψ̄m(t′) f imn ψn(t′) ∆ij(t′ − t′′) ψ̄k(t′′) f jkl ψl(t′′) ,

V2 = i

4~

∫ t

0
dt′
∫ t

0
dt′′ ψ̄m(t′) γ0f

i
mn ψn(t′) Vij(t′ − t′′) ψ̄k(t′′) f jkl ψl(t′′) .

The reduced density matrix is then written as

ρij(t) =
∞∑
i

ρ
(i)
ij (t) , (3.8)

where ρ(0)
ij (t) corresponds to the unperturbed reduced density matrix, which neglects all the cou-

plings between the quantum excitation, the heat bath and the vibronic modes,

ρ
(0)
ij (t) = −1

Z(0)

∫
Dψ̄ Dψ e−L1(t,0) (ψ̄j(t) γ−γ5 ψi(t) ψ̄ki(0) γ+γ5 ψki(0)

)
e
i
~S0[ψ̄,ψ] . (3.9)

Its normalization factor Z(0) can be written in path integral form as:

Z(0) =
∫
Dψ̄ Dψ e−L1(t,0)

∑
n

(
ψ̄n(t) γ−γ5 ψn(t) ψ̄ki(0) γ+γ5 ψki(0)

)
e
i
~S0[ψ̄,ψ] . (3.10)

1 Throughout this thesis we shall adopt Einstein’s notation and implicitly assume the summation over all bold
repeated indexes, except for the initial exciton position ki which is held fixed.
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ki

ki j

i

Figure 3.1: The diagram corresponding to the unperturbed contribution to reduced density matrix
evolution ρij(t), with initial condition ρ(0) = |ki〉〈ki|.

The leading-order perturbative correction in the series (3.8) reads

ρ
(1)
ij (t) = −1

Z(0) + Z(1)

∫
Dψ̄ Dψ e−L1(t,0) (ψ̄j(t) γ−γ5 ψi(t) ψ̄ki(0) γ+γ5 ψki(0)

)
× (V1 + V2) e

i
~S0[ψ̄,ψ] , (3.11)

where the corresponding leading-order correction to the normalization factor is

Z(1) =
∫
Dψ̄ Dψ e−L1(t,0)

∑
n

(
ψ̄n(t) γ−γ5 ψn(t) ψ̄ki(0) γ+γ5 ψki(0)

)
× (V1 + V2) e

i
~S0[ψ̄,ψ] . (3.12)

Eq.s (3.9), (3.10), (3.11) and (3.12) correspond to correlation functions in the free limit for the
effective Dirac-like quantum field theory. According to Wick’s theorem, these Green’s functions
can be evaluated by considering the sum of all possible contractions between the ψ and ψ̄ fields
and replacing each contraction with time-ordered Feynman propagator:

ψi(t′′) ψ̄j(t′)→ G0
ij(t′′ − t′) = V †is e

− i
~ f

0
s (t′′−t′) Vsj [ γ+θ(t′′ − t′)− γ−θ(t′ − t′′) ] , (3.13)

where the matrix elements Vij define the unitary transformation which diagonalizes the hopping
matrix f0

ij, while f0
s are the corresponding eigenvalues2.

From the zero-th order diagram shown in Fig. 3.1 we readily re-obtain the unperturbed reduced
density matrix ρ(0)

ij (t) described in Eq. (2.25)

ρ
(0)
ij (t) = −G0

iki
(t)G0

kij(−t) = V †in e
− i

~ f
0
nt Vnki V

†
kis e

i
~ f

0
s t Vsj =

[
G>0 (i, t|ki) ·G>†0 (j, t|ki)

]
.

The Wick contractions are most conveniently defined and computed using a diagrammatic
technique, i.e. by applying the Feynman rules shown in Fig. 3.2. Just like in the standard quantum
field theory, we can prove that the corrections to the normalization factor Z(1) exactly cancel out
with the contribution of disconnected diagrams, order-by-order in perturbation theory.

The different types of diagrams which contribute to ρ(1)
ij (t) are shown in Fig. 3.3. We note that

the first two of such diagrams contain a self-energy-type correction to one of the propagators. The
third diagram contains the interaction of forward and backward propagating quantum excitations
and we called it crossing-type diagram. Finally, the last diagram is a tad-pole. After collecting
all terms, we obtain the following expression for the first-oder correction to the reduced density

2 The corresponding propagators for the fields φ′ and φ′′ are

φ
′
i(t
′′) φ

′∗
j (t′) = θ(t′′ − t′) V †is e

− i~ f0
s (t′′−t′) Vsj , φ

′′
i (t′′) φ

′′∗
j (t′) = θ(t′ − t′′) V †is e

− i~ f0
s (t′′−t′) Vsj .
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G0
ij(t

′′ − t′) −Mγ
βh̄2 f i

mn ∆ij(t
′ − t′′) f j

m′n′
i
2h̄ f j

m′n′ γ0 Vji(t
′′ − t′) f i

mn

t′ t′′ t′ t′′t′ t′′
m′

n′

mm′

i
n

m

nn′
j ii jj

Figure 3.2: Feynman rules for the QTFT for charge propagation in the macromolecule. On the
left panel, we show the quantum excitation Feynman propagator, on the center panel the effective
interaction V1, and on the right panel the effective interaction V2.

matrix evolution:

ρ
(1)
ij (t) = 4Mγ

β~2 Re
[ ∫ t

0
dτdτ ′G0

iq′(t− τ ′)f
j
q′s′∆ji(τ ′ − τ)G0

s′s(τ ′ − τ)f isqG
0
qki

(τ)G0
kij(−t)

]
+ 2

~
Im
[ ∫ t

0
dτdτ ′G0

iq′(t− τ ′)f
j
q′s′Vji(τ ′ − τ)G0

s′s(τ ′ − τ)f isqG
0
qki

(τ)G0
kij(−t)

]
+ 2

~
Im
[ ∫ t

0
dτdτ ′G0

iq(t− τ)f is′s′Vij(τ ′ − τ)f jqsG
0
ski

(τ)G0
kij(−t)

]
+ 2Mγ

β~2

∫ t

0
dτdτ ′ G0

is(t− τ)f isqG
0
qki

(τ)∆ji (τ ′ − τ)G0
kis′(−τ

′)f js′q′G0
q′j(τ ′ − t) . (3.14)

The first two lines are the contributions due to the self-energy-type diagrams, the third is derived
from the tad-pole diagram, and the last line is derived from the crossing-type diagram. Further
details of this calculation are provided in Appendix B.1.

We conclude this section by discussing the regimes in which we expect the perturbative ex-
pansion to be applicable. To this end, we introduce the explicit expressions for G0

ij, ∆ij , and Vij
into Eq. (3.14), take the short time limit t� 1/Ωk, t� 1/γ, and consider for simplicity only the
over-damped and under-damped asymptotic expressions for the Green’s functions.

In the in the over-damped regime, we find the conditions of validity

2 f i 2
qs t

2

β M Ω2
k ~2 � 1 (from the V1-type interaction) ,

4 f i 2
qs t

2

M γ ~
� 1 (from the V2-type interaction) .

i

ki ki

jj

kiki

i

kiki

i

ki

j

ki

i j

Figure 3.3: The diagrams involved in the leading-order correction to the reduced density matrix.
The first two diagrams from the left-hand-side are called self-energy-type. The third diagram
is called crossing-type and the last is a tad-pole diagram. Similar diagrams exist for self-energy
and tad-pole diagrams, in which the vibron propagators are coupled with the quantum excitation
propagator on the left.
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In the under-damped regime, the conditions of validity of the perturbative expansion are

2 f i 2
qs t

2

β M Ω2
k ~2 � 1 (from the V1-type interaction) ,

2 f i 2
qs t

2

M Ωk ~
� 1 (from the V2-type interaction) .

We note that in both the under-damped and over-damped regimes the perturbative approach is
only valid at short times. This is completely expected, because the long-time and long-distance
propagation necessarily involves multiple scattering of the quantum excitation with the heat bath
and molecular vibrations, hence require a non-perturbative treatment. By plugging order of mag-
nitude estimates of the normal-mode frequencies (Ωk ∼ 10−3 fs−1), the gradient of the hopping
matrix elements (f i ∼ 10−2 eV Å−1), and the viscosity (γ = 0.1 fs−1) we find that, at room
temperature and in the over-damped limit, the V1-type interaction is several orders of magnitude
larger than the V2-type, hence determines the range of validity of the perturbative expansion. On
the other hand, in the opposite under-damped limit, the driving interaction is V2-type.

3.2 Charge Propagation through a Conjugate Polymer
Let us now illustrate the perturbative approach developed in the previous sections by investigating
the intra-chain propagation of electron holes through the backbone of a poly(3-alkylthiophene)
(P3HT) polymer. Quasi-crystalline materials made of inter-digited PH3T polymers have received
much attention, in connection with the possibility of realizing nanoscale organic transistors [66, 97,
98]. The atomistic three-dimensional structure of a PH3T molecule is shown in the upper panel of
Fig. 3.4.

Here, we are only interested in providing a qualitative description of the charge propagation
in such systems, leaving a more sophisticated quantitative description to future works. Our main
goal is to estimate the order of magnitude of the range of times and distances over which the
perturbative approach is applicable. Secondly, for validation purposes we are interested in com-
paring the reduced quantum density matrix evolution obtained by analytic perturbative expansion
in Eq. (3.14) and by the integration of the quantum and stochastic equations of motion (2.21).
Finally, we investigate how the different effective interactions which appear in Eq. (3.4) affect the
dynamics and in particular quantum decoherence and recoherence phenomena.

✓

Figure 3.4: Upper panel: three-dimensional structure of a P3HT polymer. Lower panel: the
coarse-grained representation corresponding to our effective model.
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3.2.1 Coarse-Grained Model for P3HT Dynamics
In order to address these points, we adopt a simple coarse-grained representation of the molecule
in which side-chain degrees of freedom are not taken explicitly into account. Furthermore, the
molecular potential energy function is assumed to effectively depend only on the dihedral angles
formed by neighboring aromatic rings. Hence, the molecular configuration is specified by the set
of dihedral angles Θ = (θ1, . . . , θN ), and the chain is mapped into an effective one-dimensional
system consisting of N plaquettes which can rotate around their symmetry axis, as sketched in the
lower-right panel of Fig. 3.4.

The potential energy of a molecular configuration is approximated with sum of only neigh-
bors interaction terms, each of which depends on the relative dihedral angle of two consecutive
monomers,

U(Θ) =
∑
i

u(θi − θi+1) .

We have obtained the pair-wise interaction energy u(θi − θi+1) as a function of the relative angle
θ = θi − θi+1 from DFT-TB electronic structure calculations, using the DFTB+ package [99].
The results are shown in the left panel of Fig. 3.5. We point out that the mechanical equilibrium
configuration is achieved when aromatic rings in different residues form a relative dihedral angle
of (−1)i θ0, where θ0 = 20o and i is the monomer index.

The conformational dynamics is therefore described by the Hamiltonian:

HM = 1
2I

N∑
i=1

p2
i + U(Θ) ,

where I is the momentum of inertia of the monomers (including the contribution from the atoms
in the side-chain) and pi = Iθ̇i is the canonical momentum conjugated to the θi generalized
coordinate.

At room temperature, this system performs only small thermal oscillations around the mini-
mum energy configuration. Hence, we can perform a small-angle expansion, leading to the simple
harmonic form:

HM '
1
2I

N∑
i=1

p2
i +

N−1∑
i=1

κ

2 (θi+1 − θi + (−1)iθ0)2 + κ

2 θ
2
1 + κ

2 θ
2
N . (3.15)

The last two terms follow from assuming that the first and last monomers in the chain are bond
to external non-conducting leads which tend to align them horizontally.

The momentum of inertia I can be calculated directly from the three-dimensional structure of
the chain and affects the frequencies of the chain’s normal modes of oscillations,

ω2 ∼ κ

I
.

In the systems which are of technological and experimental interest, P3HT polymers are embedded
in organic frameworks. In such a configuration, the chain exchanges energy with neighboring
molecules, which play the role of a heat bath. In addition, the steric interaction with neighbors
generates strong constraints on the chain dynamics and in particular affects the amplitude and
frequencies of thermal oscillations. In order to account for this effect, we consider an effective model
in which the spring constant κ which appears in the molecular potential energy function U(Θ) is
artificially rescaled in such a way that the typical square fluctuations of the dihedral angles around
their equilibrium values, 〈∆θ2〉MD = 1

N

∑
i〈((θi+1−θi+(−1)i θ0)2〉MD matches the value obtained

from classical molecular dynamics simulations for a system of inter-digited PH3T polymers [100]:

κ→ κeff , and 〈∆θ2〉MD '
kB T

κeff
.
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e0 [eV ] T0 [eV ] T1 [eV ] θ0 [deg] γ
[
fs−1] κ [eV ] κeff [eV ] T [oK] I

[
uma Å2]

5.4 0.4 0.06 20 0.1 0.13 0.20 300 3400

Table 3.1: Parameters of the coarse-grained model which describes intra-chain hole propagation in
P3HT polymers. The PH3T chain investigated in the simulations consists of 9 monomers.

The hopping matrix elements Tii+1 between neighboring monomers and the on-site energies
ei as a function of the chain’s configurations have also been obtained by DFT-TB calculations.
In analogy with molecular energy calculations, the transition matrix elements Tii+1 have been
computed assuming that they effectively depend only on the relative angles, |θi+1 − θi|. For sake
of simplicity, we have taken the on-site energies εi to be constant and equal to the value at the
mechanical equilibrium configuration. This choice can be motivated by the observation made by
different groups (see e.g. Ref. [81]) that fluctuations of the on-site energies have a much smaller
effect on the electric conduction than fluctuations of the transfer matrix elements. The results for
Tii+1(θi+1 − θi), in the vicinity of the equilibrium configuration θ0 are reported in the right panel
of Fig. 3.5. By assuming a linear approximation, Eq. (2.3) takes the form

fmn (θi) = f0
mn + f1

mn ( |θm − θn| − θ0) ,

where

f0
mn = T0 (1− δmn)− e0 δmn

f1
mn = T1 (1− δmn) .

Finally, the viscosity parameter γ may be determined from MD simulations by computing the
velocity autocorrelation function. On the other hand, we have observed that the results of the
perturbative calculation depend very weakly on the this parameter. Hence, for sake of simplicity,
here we assume a reasonable value γ = 0.1 fs−1.

The numerical values of the parameters of this coarse grained model are summarized in Table
3.1. The equilibrium configuration can be chosen to be:

θi =
{

0 if i odd,
θ0 if i even.

Figure 3.5: Left panel: DTP-B calculation of the molecular potential energy of two consecutive
monomers as a function of the difference of dihedral angles. The mechanical equilibrium is retained
at an angle si, which in this case is ' 20o. In general si = ±θ0 for i odd (even), with θ0 = 20o.
Right panel: DFT-TB calculation of the transfer integrals Ti+1,i as a function of the difference
in the dihedral angles (θi+1− θi), in the proximity of the mechanical equilibrium configuration θ0.
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Figure 3.6: Time evolution of the charge density at the right endpoint of the chain, assuming that
a hole is initially created at the left end of the chain. The solid line represents the unperturbed
prediction, the dashed line includes the effects of the coupling with the molecular vibration and
the heat bath to leading-order in perturbation theory.

The hole propagator G0
lm(t) is constructed by diagonalizing the f̂0 matrix, defined in Eq. (3.16).

Its n-th eigenvector reads

φn(j) =
√

2
N + 1 sin

[
n π

(N + 1) j
]
.

The corresponding eigenvalue is

En = −e0 − 2T0 cos(kn) ,

where kn is the wave-vector

kn = πn

(N + 1) , n = 1, 2, . . . , N .

Hence, the hole Feynman propagator is given by

G0
kf ,ki

(t) =
2(N+1)∑
n=1

φ∗n(kf ) φn(ki) e−iEnt (γ+θ(t)− γ−θ(−t)) .

With the present set of model parameters, we find that the friction coefficient γ is significantly
larger than the typical frequencies of normal models, i.e. γ � Ωk. Hence, we can use the over-
damped limit for the vibronic propagators.

3.2.2 Time Evolution of the Conditional Probability
We assume that the hole is initially created at the left end of the chain, i.e. the initial reduced
density matrix is ρ̂(0) = |1〉〈1|. The first quantity that we study is the hole density at the opposite
end of the chain, i.e. last the diagonal element of the reduced density matrix

Pt(N |1) = ρNN (t) , where N = 9.

In Fig. 3.6 we show the results of our leading-order perturbative calculation based on Eq. (3.14)
of the conditional probability to observe the quantum excitation at the end of the chain as a function
of the time interval t.
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Figure 3.7: Perturbative calculation of the different contribution to the ratio R(t) which quantifies
the decoherence effects in hole propagation. The dot-dashed line is the unperturbed result, which
remains coherent at all times. The solid line is the result including the leading order correction.
Dotted and dashed lines correspond to the contribution of self-energy-type and crossing-type,
respectively. For this model, the tad-pole-type contribution is identically zero.

Some comments on these results are in order. First of all, we notice the existence of three
peaks in the charge density, at times t ∼ 10, 20, 40 ps. These corresponds to integer multiples of
the time interval it takes the hole to run along the entire chain. Next, we note that the scattering
of the holes with the molecular normal modes and with the heat bath slows down the charge
propagation, as expected. This is evident from the fact that the probability of observing the hole
at the right end-point of the chain as a function of time is reduced once the perturbative corrections
are included. Correspondingly, the times at which the hole rebounds to the right end-point of the
chain are delayed by the interactions. We recall that the norm of the conditional probability is
conserved even after perturbative corrections. Hence, the reduction of the charge density at the
end-point of the chain implies that the scattering distributes the charge density in the central
region of the chain.

We observe that the correction to the conditional probability starts to be of the same order of
the unperturbed prediction starting from time intervals of the order of ∼ 40 fs. Beyond this time
scale, the perturbative approach breaks down and we have to resort to non-perturbative approaches
in which many Feynman diagrams are resummed.

3.2.3 Quantifying the Loss of Quantum Coherence
We have seen that analytic perturbative calculations break down beyond a few tens of fs, hence
do not represent a useful tool to investigate the long-time long-distance dynamics of hole propa-
gation. On the other hand, they provide a valuable tool to gain analytic insight into the physical
mechanisms which drive decoherence and re-coherence during hole propagation across the chain.

As measure of the degree of quantum coherence in the dynamics of an open system, we consider
the ratio [101, 102]:

R(t) = Trρ2(t)
Trρ(t) .

In Appendix B.2 we show that this ratio is identically equal 1 for pure states (corresponding to
fully coherent propagation), and that it is smaller than 1 for mixed states.
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Figure 3.8: Time evolution of the charge probability density at the right end-point of the chain as-
suming that the hole is initially created at the left-end of the chain. We compare non-perturbative
numerical calculation obtained by integrating the Eq.s (2.21) (solid line) and the analytic pertur-
bative calculations (dotted line). The shaded area represents the statistical uncertainty on the
non-perturbative calculation.

In Fig. 3.7 we compare this ratio for the model under consideration in the limit of unperturbed
propagation and including the leading-order scattering with the molecular vibrations and with the
heat bath. We see that the interaction with the environment suppresses the quantum coherence
on time scales which are of the order of 10 fs.

It is interesting to compare the contribution to R(t) coming from the different Feynman dia-
grams shown in Fig. 3.3. We find that the quantum decoherence is driven by the crossing-type
diagram shown in figure 3.3, which tends to correlate the field components associated to propaga-
tion forward and backwards in time. On the other hand, the so-called self-type diagrams act in
the opposite direction, slowing down the overall rate of quantum decoherence.

The identification on the diagram which drives the quenching of R(t) with time offers a scheme
to study how the chemical and mechanical properties of the macromolecule affect the quantum
decoherence of the propagating excitation. Indeed, by varying the parameters of the QTFT (namely
the spectrum of normal modes ωk entering in the vibron propagators and unperturbed tight-binding
matrix elements f0

lm and their gradient f ilm, which enter the effective interaction vertexes) and
computing the corresponding relative weight of the cross-type diagram, we may in principle identify
what properties of the macromolecular system are most effective in suppressing (or enhancing) the
quantum coherent transport. This information may be useful e.g. in the context of the study
of exciton propagation in photosynthetic complexes, which have been found to display quantum
coherent dynamics over surprisingly long time intervals [33, 34].

3.2.4 Comparison between the Perturbative Estimate and the Result of
Integrating the Quantum/Stochastic Equations of Motion

The perturbative approach developed in the previous sections allows to analytically compute the
charge density, in the range of time intervals 0 < t . 50 fs. It is interesting to compare the
perturbative calculation with the results of non-perturbative numerical simulations, obtained by
averaging over many independent solutions of the set of quantum/stochastic equations of motion
defined in Eq. (2.21) and derived in Ref. [78]. On the one hand, this provides a non-trivial test for
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the perturbative scheme developed in this work. On the other hand, it offers an estimate of the
statistical accuracy which is needed in order to resolve the effects of the interactions on the charge
propagation dynamics in non-perturbative numerical simulations.

In Fig. 3.8 we present the difference between the interacting and the free conditional probabil-
ities Pt(N |1)− P (0)

t (N |1), evaluated in the perturbative and non-perturbative methods (we recall
that N = 9). The shaded area represents the statistical error in numerical simulations, which is
estimated from the variance calculated from 10000 independent trajectories. Accumulating this
statistics required about 6 Central Processor Units (CPU) hours of simulation on a regular desktop.
By contrast, the perturbative estimates took about a minute on the same machine.

We find that the two approaches are quantitatively consistent with one another, even at time
scales of the order of 50 fs. Beyond such a time scale the perturbative approach becomes unreliable
and the comparison is meaningless.

It is important to emphasize that these two methods are based on different approximations.
In particular, the algorithm defined by Eq.s (2.21) was obtained by neglecting the fluctuations
of the coherent fields around their functional saddle-point solution. At such a saddle-point, the
forward- and backward- propagating fields are identical, φ′(t) = φ′′(t) (see Appendix A.2). The
leading-order perturbative estimate goes beyond such a saddle-point condition and accounts for
independent quadratic fluctuations on φ′(t) and on φ′′(t). The relatively good agreement between
the two calculation schemes at short times can be used as an argument in favor of the accuracy of
the saddle-point approximation used in the non-perturbative approach.
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Chapter 4

Quantum Propagation at
Long-Distance and Long-Time

In the previous chapter we observed that perturbative approach breaks down in long-time regime,
and typically becomes inapplicable after 50-100 fs. Therefore, to investigate quantum transport
over larger distance and longer time intervals in this formalism we need to apply a fully non-
perturbative approach.
In this chapter, we investigate the quantum propagation through a macromolecule in the limit
in which the quantum excitation travels for a long time and covers distances which are large
compared to its de Broglie’s thermal wavelength λB . To this aim, we use the Renormalization
Group (RG) formalism to systematically coarse-grain the dynamics. The final result is a rigorous
“low-resolution” approximation of our original microscopic QTFT which is much simpler and it
admits an analytic solution [2].

This chapter is organized as follows. In the first section we review the Effective Field Theory
(EFT) formalism and the RG scheme, which allows us to construct rigorous low-energy approxi-
mations to physical theories. In section 4.2, we apply the EFT framework to derive our systematic
approximation of the microscopic QTFT, yielding the same dynamics in the large-distance and
long-time regimes. In section 4.3 we derive the analytic expression for the probability density,
while we discuss the renormalization of the EFT. Finally section 4.4 is devoted to an illustrative
application of this framework, investigating the hole propagation in a homo-DNA chain.

4.1 Effective Field Theory Formalism and Renormalization
Group Scheme

The internal dynamics of macromolecules is characterized by a multitude of time-scales, which are
spread over many orders of magnitude. Conformational transitions typically occur beyond the ns
time scale, hence are clearly decoupled from the local thermal vibrations and the solvent-induced
dissipative relaxation times, which occur at the ps scale. The hopping of quantum excitations
across nearby molecular orbitals and the loss of quantum coherence crucially depend on the specific
chemical structure of the molecule, but typically range from a few fs to fractions of ps.

The existence of relatively large gaps between the different characteristic time scales in macro-
molecules naturally suggests we should apply RG methods to device rigorous “low-energy” de-
scriptions of the dynamics. In particular, the EFT formalism (for a pedagogical introduction see
e.g. Ref.s [103, 104] ) provides a very practical implementation of the RG scheme, which is both
rigorous and systematically improvable. Despite these features, to date there have been only a few
applications of this framework to quantum transport problems [105, 106] and to conformational
dynamics in macromolecules [107, 108, 109].
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d

UV + IR Physics IR Physics

R

Figure 4.1: A schematic representation of scale separation between UV and IR Physics. On the
left panel we represent a microscopic description, for example any dot can symbolize a charge
point. On the right panel, we coarse grain the left configuration assuming R� d. The length d
is the characteristic size of the agglomerate and R is the IR physics scale which we are interested.
Any microscopic details smaller than d is incorporate in the multi-pole coefficient.

The main idea underlying the EFT approach is the familiar observation that an experimental
probe with a given wave-length λ is insensitive to the details of the physics associated to length
scales � λ and time intervals � λ/v (where v is the velocity of propagation of the probe). This
fact can be exploited to build in a rigorous way predictive physical theories in which only the
degrees of freedom that can be resolved by the probe’s wavelength are treated explicitly, while all
the ultraviolet (UV) effects (i.e. the physics which is not resolved by the probe) are treated at the
implicit level, through a set of local interactions and effective parameters.

A familiar example of this type of approach is the multi-pole expansion in classical electro-
dynamics: the soft components of the classical radiation generated by an arbitrarily complicated
current source J(r, t) of size d and characteristic time τ can be replaced by the radiation generated
by a sum of point-like multipole currents di, mi, Dij , . . . Thus, to compute the vector field A
at long-distance R � d, and averaging the signal over long-time (T � τ , i.e for low frequency
ν � 1/τ), we have the following multi-pole expansion [110]

A(R, t) = 1
c

∫
d3rJ(r, t−R/c)

R
→ A(R, t) ' ḋ

cR
+ ṁ× n

cR
+ D̈ijnj

6c2R + o

(
d

R

)
+ o (ντ) ,

where n is the normal vector between the source and the space point where we compute A. In such
an expansion, the multipole coefficients implicitly account for the UV physics, which is associated
to short distances, of the order of d, and high frequency, of the order of 1/τ . The result is that
we need only a finite number of multipole terms to reproduce to any arbitrary (but finite) level of
accuracy the electro-magnetic radiation at distances � d, and frequency � 1/τ .
In the following, we shall refer to the physics at length scales much larger than the UV cutoff
length-scale as the IR sector of the dynamics. In Fig. 4.1, we show a schematic representation of
separation of scales between UV and IR physics.

In the context of quantum theories, the EFT scheme is implemented in four steps:

1. We introduce the cut-off scale λ, which defines the separation between the IR physics one is
interested in, and the UV physics to be treated implicitly.
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2. The most general possible description of the IR dynamics is derived by analyzing the structure
and symmetries of the underlying (more) microscopic theory.

3. A so-called power-counting scheme is introduced in order to identify which coupling terms in
the effective field theory dominate in the IR limit. Typically, in the field theory formalism,
the last step leads to retaining only operators with the lowest number of time and space
derivatives of the fields or of the wave-function.

4. Through the renormalization procedure, the effective coefficients are determined by matching
against experiments or more microscopic calculations, and the dependence on the cut-off is
replaced by a (typically much weaker) dependence on the renormalization scale.

It is important to emphasize that in EFTs there are no UV divergences, because the cut-off
specifies the level of resolution of the theory. Hence the theory is kept finite at all times. However,
the short-distance physics which is excluded by the finite cut-off is not simply neglected. Instead,
it is accounted for by means of local effective vertexes, called the counter-terms, which enter
in the low-energy effective action. These vertexes parametrize the effects of very short-distance
interactions on the long-distance dynamics.

The effectiveness of the EFT scheme depends crucially on the size of the gap separating the
IR and the UV physics. The smaller the gap, the larger the number of effective interactions and
parameters that have to be introduced in the EFT to reach the desired accuracy. In the absence
of a decoupling between IR and UV scales, the dynamics of the EFT depends on infinitely many
effective interactions and parameters, hence loses its predictive power.

In this chapter, we exploit the separations in the length and time scales characterizing the
internal dynamics of macromolecular systems to build an EFT for dissipative quantum transport
in the large-distance and long-time regime. In particular, we restrict our attention to systems in
which quantum excitations can propagate over distances much larger than the size of the indivi-
dual molecular orbitals and we consider time intervals much longer than those characterizing the
damping of local thermal conformational oscillations of the macromolecule. Hence, our typical UV
cutoff length scale is of the order of the nm and the typical UV time scale is of the order of a few
fractions of ps.

In the next section, we apply the EFT framework to construct a rigorous low-energy approxi-
mation of this theory, and then discuss its implications in different time regimes.

4.2 Effective Field Theory for Dissipative Quantum Trans-
port

We are interested in constructing an EFT which describes the same IR dynamics of the microscopic
theory defined in the previous chapter, at a much lower level of spatial and temporal resolution.
In particular, we focus on macromolecular systems for which the quantum excitation can cover
distances which are long compared to those at which the molecular three-dimensional structure
is resolved. In Fourier space, this implies that the corresponding coherent fields have only soft
momentum components. Consequently, the effective interaction terms with a larger and larger
number of spatial derivatives are increasingly irrelevant. Similarly, since thermal oscillations are
damped by the coupling with the heat-bath, in order to investigate the long-time regime, the terms
with higher number of time derivatives can be dropped.

4.2.1 Long-time and Long-distance Limit
Let us now define the action functional of the effective field theory. We begin by analyzing the
kinetic term and we first consider the case in which the hopping of the excitations between molecular
orbitals which are spatially neighboring. In this case, the hopping matrix in the microscopic theory
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defined in Eq. (2.27) takes the simple form

fnm(Q) =
∑
î

τnm(Q)(δm(n+î) + δm(n−î))− e
0
n(Q) δnm .

where the sum runs over the unit vectors î pointing to the nearest neighbor sites from the site
m. Due to the low spatial resolution, in the corresponding effective field theory we can replace
the discrete site indexes m,n with continuous variables x,y, i.e. to introduce continuous complex
fields

φn(t)→ φ(x, t), φ∗n(t)→ φ∗(x, t) ,

or in the more compact dirac-like notation introduced in section 3.1.1

ψn(t)→ ψ(x, t), ψ̄n(t)→ ψ∗(x, t) .

In the continuum limit, the matrices f0
mn and f inm become differential operators1

f0
mn → f0(x,y) ≡ δ(x− y)

[
ε(x)−

~2 µ−1
ij (x)
2 ∂i∂j

]
,

fanm → fa(x,y) ≡ δ(x− y)
[
εa(x)−

~2µa−1
ij (x)
2 ∂i∂j

]
.

Notice that µij(x) can be interpreted as a position dependent effective mass tensor. With the
notation defined above, the free component of the action functional S0 in Eq. (3.5) is written as

S0[ψ̄, ψ] '
∫ t

0
dt′
∫
dx ψ̄(x, t′)

(
i~∂t − ε(x) + ~2

2 µ
−1
ij (x)∂i∂j

)
ψ(x, t′). (4.1)

It is immediate to verify that accounting for non-nearest neighbor hopping leads to higher derivative
terms. According to our power-counting scheme, such terms are irrelevant in the IR limit and can
be ignored.

Let us now analyze the interaction terms in Eq. (2.28). The Green’s functions ∆ab(t − t′)
and Vab(t − t′) are evaluated explicity in Eq.s (2.29) and (2.30), where they are shown to decay
exponentially at time-scales of the order of the inverse collision rate t ∼ 1/γ. Since we are focusing
in time intervals t� 1/γ, they can be replaced by

∆ab(t− t′) ' d
(0)
ab δ(t− t

′) + d
(1)
ab i~

d

dt
δ(t− t′) + . . . , (4.2)

Vab(t− t′) ' v
(0)
ab δ(t− t

′) + v
(1)
ab i~

d

dt
δ(t− t′) + . . . (4.3)

Corrections to these terms are irrelevant, as they involve higher time-derivatives. The effective
interaction in Eq. (3.6) becomes

SI[ψ̄, ψ] ' 1
4

∫ t

0
dt′ dt′′

∫
dx dy{

ψ̄(x, t′)γ0f
a(x,y)ψ(y, t′)

[(
v

(0)
ab − iv

(1)
ab

d

dt′

)
δ(t′ − t′′)

]
ψ̄(x, t′′)f b(x,y)ψ(y, t′′)

}
+ iMγ

β~

∫
dt′ dt′′

∫
dx dy{

ψ̄(x, t′)fa(x,y)ψ(y, t′)
[(
d

(0)
ab − id

(1)
ab

d

dt′

)
δ(t′t′′)

]
ψ̄(x, t′′)f b(x,y)ψ(y, t′′)

}
. (4.4)

1 The discrete second order derivative can be represent as ∂2
xf(x) = f(x+h)−2f(x)+f(x−h)

h2
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The combination D = 1/(βMγ) yields the diffusion coefficient of the atoms in their surrounding
heat-bath.

The scalar and tensor fields ε(x), µij(x) appearing in Eq. (4.1) encode the information about the
conformational and electronic structure of the molecule in the neighborhood of point x, while the
uniform tensors v(k)

ab and d(k)
ab (with k = 0, 1) in Eq. (4.4) parametrize the fluctuation-dissipation

effects arising from the coupling of the molecule with its heat-bath.
The effective action (4.4) does not yet define our EFT. Indeed, so far, we have only performed

a continuous formulation of the original microscopic theory. On the other hand, we have not yet
exploited the decoupling of UV and IR length-scales and taken the large-distance limit.

To derive the effective couplings in the EFT, let us consider the Fourier transformation of the
space-dependent scalar and tensor parameters in Eq. (4.4) (in the following we focus on ε(x) for
sake of definiteness):

ε(p) = ε0 δ(p) + δε(p) . (4.5)

We notice that ε0 is the Fourier component which corresponds to a uniform field2. We recall that
the parameter fields are assumed to vary over length scales which are much shorter than those over
which the quantum excitation’s density changes. In Fourier space, this implies that ε(p) has only
hard components

δε(p) ' 0, for |p| . 1/λ , (4.6)

while the field ψ(p) has only soft Fourier components,

ψ(p) ' 0, for |p| & 1/λ . (4.7)

Due to such a decoupling, all the short-distance local fluctuations of the parameter fields average
away: ∫

dx ε(x)ψ̄(x, t)ψ(x, t) ' ε0

∫
dx ψ̄(x, t)ψ(x, t) ,

since ∫
dx δε(x)ψ̄(x, t)ψ(x, t) =

∫
dp
2π

∫
dq
2π ψ̄(p)δε(q)ψ(−(p + q), t) ' 0 .

In addition, all coupling terms in Eq. (4.4) which include spatial derivatives of the fields are
irrelevant in the large distance limit, hence can be neglected. Similarly, for the effective mass
tensor field, one has

µij(x) ' mij . (4.8)

In conclusion, to the lowest-order in our power-counting scheme, the path integral which rep-
resents the conditional probability for a quantum excitation to be created in a point x and to be
found in y, after a time interval t, reduces to

P (y, t|x, 0) = −1
N

∫
Dψ̄Dψ n(y, t) n(x, 0) e−L1+ i

~S
eff
0 [ψ̄,ψ]+ i

~S
eff
int [ψ̄,ψ] , (4.9)

where

n(x, τ) = ψ̄(x, τ) γ0γ5 ψ(x, τ) =
(
φ
′∗(x, τ)φ

′′
(x, τ) + φ

′′∗(x, τ)φ
′
(x, τ)

)
, (4.10)

which specifies the initial or the final position of the quantum excitation in the path integral (4.9).
This term contains both creation and annihilation of a quantum excitation, hence in quantum field
it corresponds to the density operators.

2 In order to go beyond the uniform parameter approximation, we can add derivative terms to Eq. (4.5), i.e.
εn pn.
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In Eq. (4.9), the normalization of the probability, the surface term which arise from the over
completeness of the coherent states, and the effective actions read, respectively,

N '
∫
Dψ̄Dψ n(x, 0) e−L1+ i

~S
eff
0 [ψ̄,ψ] e

i
~S

eff
int [ψ̄,ψ] , (4.11)

L1[ψ̄, ψ] =
∫
dx ψ̄(x, 0)γ0γ−ψ(x, 0) + ψ̄(x, t)γ0γ+ψ(x, t) , (4.12)

Seff0 [ψ̄, ψ] =
∫ t

0
dt′
∫
dx ψ̄(x, t′)

[
i~∂t′ − ε0 + ~2

2 m
−1
ij ∂i∂j

]
ψ(x, t′) , (4.13)

and

Seffint [ψ̄, ψ] =
∫ t

0
dt′
∫
dx
[
ψ̄ψ
(
A0
v − ~A1

vi∂t′
)
ψ̄γ0ψ + i

D~β2 ψ̄ψ
(
A0
d − ~A1

di∂t′
)
ψ̄ψ
]
. (4.14)

A0
v, A

1
v, A

0
d and A1

d are real effective coupling constants. It is important to emphasize that the
couplings of low-energy effective field theories may depend in general on the heat-bath tempera-
ture [111].

It is important to emphasize that the effective action defined so far only describes the long-time
and large-distance dynamics of the excitations. Indeed, the short-distance and short-time physics
has been quenched, by introducing the cut-offs on the length and time scales and by neglecting
the high derivative terms in the effective action.

In general, completely neglecting the high-frequency modes represents a very crude approx-
imation, since the short-distance physics does have an influence on the long-distance dynamics.
The crucial point to make is that, at a low-resolution power, the long-distance dynamics becomes
insensitive to the details of the short-distance physics, which can be therefore encoded by means
of local effective interactions.

These physical ideas are implemented by the renormalization procedure. In practice, one adds
to the effective action in Eq. (4.9) the most general set of local effective vertexes compatible with
the symmetry of the underlying microscopic theory and in retains only the terms among them
which display the least number of derivatives and fields (see e.g. the discussion in [103]).

However, in our specific case, the inclusion of additional terms is in fact redundant. Indeed, we
observe that the effective Lagrangian in Eq. (4.9) already contains all possible local effective cou-
plings with the least number of derivatives and fields. Hence, to lowest-order, the renormalization
procedure simply amounts to rescaling the corresponding effective parameters A0

v, A
1
v, A

0
d and A1

d.
We observe that Eq. (4.9) corresponds to the time evolution of the diagonal elements of the

reduced density matrix defined in Eq. (2.9). Let us point out that in this chapter we ignore the
off-diagonal elements in the density matrix. This choice is motivated by the long-time regime,
which assure us that the system is decorrelated in this limit.

Let us summarize what we have obtained so far. We have shown that, in the large-distance and
long-time limit, the probability density for the quantum excitations can be formally mapped into a
vacuum-to-vacuum two-point function in a relativistic-like quantum field theory with local 4-field
interactions. Note that our theory contains an imaginary coupling constant, which breaks unitarity
and describes the dissipation generated by the coupling with the damped molecular oscillations.

4.2.2 Effective Stochastic Description
In the asymptotic long-time regime, the large number of collisions with the molecular vibrations
and with the environment depletes the quantum coherence. As a result, the emergent dynamics of
the quantum excitation is diffusive and quasi-classical. In order to investigate the quasi-classical
limit it is convenient to switch to the first-quantization formalism and represent the time-dependent
probability (4.9) using the coordinate representation path integral.

To this end, it is important to recall that the position eigenstates of the EFT do not coincide
with those of a microscopic theory. Indeed, in the EFT, each point X is indistinguishable from
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those which lie in a neighborhood of the size of the probe’s resolution power, λ. Most generally,
the position eigenstates in the EFT, |R〉λ are defined as

|R〉λ ≡
∫
dX Ψλ(X−R) |X〉 ,

where |X〉 denote the position eigenstates of the microscopic theory. The wave function Ψλ(X−R)
is determined by the normalization condition,

λ〈R′|R〉λ =
∫
dXΨλ(X−R) Ψ∗λ(X−R′) = δλ(R′ −R) ,

where δλ(R′ −R) is some smeared representation of the δ-function, of width λ. In particular, in
the following, we adopt a Gaussian smearing (in three dimensions)

δλ(R −R′) ≡
√

det[m]
(

1
2π λ2 Tr[m]

)3/2
e
−

(Ri−R
′
i
)mij(Rj−R

′
j
)

2 λ2 Tr[m] . (4.15)

With this choice, the effective wave-function Ψλ(X) reads:

Ψλ(X) =
√

det[m]
(

1
π λ2 Tr[m]

)3/2
e
−
XimijXj

λ2 Tr[m] .

Notice that this regularization choice corresponds to approximating the local delocalization with an
harmonic oscillator wave-function and takes into account for the tensor structure of the effective
mass. However, the specific short-distance structure of this wave function is irrelevant for the
long-distance dynamics.

Denoting with X[τ ] and Y[τ ] the paths in coordinate space of quantum excitation described
by the coherent fields φ′ and φ′′ , respectively, the probability density in Eq. (4.9) can be written
as

P (y, t|x, 0) =
∫ y

x
DX

∫ y

x
DY e

i
~S0[X] e−

i
~S0[Y] e

i
~ (I[X,Y]+J[X,Y]) , (4.16)

where the quantum propagation in absence of interaction is described by the free action

S0 [X] =
∫ t

0
dτ

1
2 Ẋimij Ẋj .

The action S0 corresponds to kinetic terms.
Furthermore, the functionals I[X,Y] and J [X,Y] originate from translating into the first quantized
representation the field-theoretic functional Seffint appearing in Eq. (4.14). In Appendix C.1.1, we
derive them explicitly and we obtain J = 0 and I = I1 + I2 + I3, with

I1 = I2 = it

β2D~

√
detm

(4Trm λ2π)3/2 A0
d ,

I3 = −
√

det[m]
β2D~ (4πTr[m]λ2)3/2

∫ t

0
dT

(
i2A0

d −
~A1

d mij

2Tr[m]λ2 (Y −X)i(Ẏ + Ẋ)j
)
e
−(X−Y )imij(X−Y )j

4 Tr[m]λ2 .

Similarly to the transformation apply in section 2.3.2, we perform the following change of
variables in the path integral:

R(τ) = 1
2

(
X(τ) + Y(τ)

)
, Q(τ) = X(τ)−Y(τ) .

In addition, for reasons which will become clear soon, it is convenient to introduce the following
tensor combination:

Γ0
ij = A1

d

√
det[m]

16Dβ2(Tr[m])5/2 λ5
√
π3

mij .
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After these replacements, the path integral in Eq. (4.16) reads

P (y, t|x, 0) = e
−4t

λ2 Tr[Γ0]A0
d

~2βA1
d

∫ y

x
DR

∫ 0

0
DQ e

∫ t
0
dT

{
i
~mijṘiQ̇j+

(
4λ2Tr[Γ0]A0

d
~2βA1

d

−
iΓ0
ij
~ QiṘj

)
e
−
mijQjQi

4Tr[m] λ2

}
.

(4.17)

We now observe that, by expanding the exponent in the last equation to O(Q2) we obtain:

P (y, t|x, 0) =
∫ y

x
DR

∫ 0

0
DQ e

∫ t
0
dT

{
i
~ mijṘiQ̇j−

ΓijA
0
d

~2βA1
d

QjQi−
iΓ0
ij
~ QiṘj

}
.

Performing the Gaussian functional integration over Q one obtains (neglecting as usual any overall
multiplication constant)

Pcl.(y, t|x, 0) =
∫ y

x
DR e

− β
2
4

∫ t
0
dT(milR̈l+Γ0

ilṘl)D0
ij (mjkR̈k+Γ0

jkṘk) . (4.18)

where we have introduced the tensor

D0
ij ≡

1
β

(
A1
d

βA0
d

)
Γ0−1
ij . (4.19)

We now recognize that Eq. (4.18) has the same structure of the Onsager-Machlup functional
integral representation [91] of the solution of a Fokker-Planck equation with an anisotropic viscosity
tensor Γ0

ij and diffusion tensor D0
ij . The request that the system should ultimately reach a thermal

equilibrium with the surrounding heat-bath implies the fluctuation-dissipation relationship,

D0
ij = 1

β
Γ0−1
ij . (4.20)

This condition determines a relationship between the effective parameters, A1
d = β A0

d. The friction
tensor Γ0

ij has to be determined by matching of the predictions of our EFT against the quantum
excitation’s, either measured experimentally [112] or computed theoretically using a (more) mi-
croscopic model [113]. This renormalization procedure will be illustrated in detail in section 4.3.

Let us now return to the full path integral (4.17) in order to determine the quantum corrections
to Eq. (4.18). For sake of simplicity, in the rest of this chapter we focus in the high-friction limit,
in which the dynamics is over-damped. In addition, without loss of generality, we can assume that
the friction tensor Γ0

ij is diagonal, and we introduce the inner product notation

A ·B ≡ g0
ij AiBj ,

where g0
ij is a diagonal metric tensor defined as

Γ0
ij = 1

βD0
g0
ij ,

and D0 has the dimension of a diffusion constant. Dropping the inertial term, the path integral
(4.17) reduces to

P (y, t|x, 0) =
∫ y

x
DR

∫ 0

0
DQ e

−
∫ t

0
dT

{
Q2

~2D0β2 + iQ·Ṙ
~βD0

}
e

∫ t
0
dT

{(
4λ2

~2D0β2−
iQ·Ṙ
~βD0

)
V (Q)+ iQ·Ṙ

~βD0
Q2

4λ2

}
.(4.21)

where

V (Q) = e−
Q2

4λ2 − 1 + Q2

4λ2 . (4.22)
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The probability distribution (4.21) can be cast in the following convenient form,

P (y, t|x, 0) =
∫ y

x
DR e−Seff [Ṙ] , (4.23)

where the effective “action” functional Seff is defined as

e−Seff [Ṙ] ≡
∫ 0

0
DQ e

−
∫ t

0
dT

{
Q2

~2D0β2 + iQ·Ṙ
~βD0

}
e

∫ t
0
dT
(

4λ2
~2D0β2−

iQ·Ṙ
~βD0

)
V (Q)+ iQ·Ṙ

~βD0
Q2

4λ2 . (4.24)

We emphasize that, at this level, no approximation has been made on the path integral (4.9), we
have only switch it to the first quantization formalism. Hence, Eq. (4.23) represents the full real-
time dynamics of the quantum excitation in our EFT, to leading-order in the momentum-frequency
power counting scheme.

4.2.3 Computing the Quantum Effective Functional
In general, the effective action Seff [Ṙ] which enters Eq. (4.24) is a non-local functional of the path
R(τ) and such a non-locality reflects the quantum delocalization of the excitation’s wave-function.
However, we shall now show that, in the limit of low-spatial resolution, the effective action Seff
can be systematically represented as an expansion in local functionals. In this regime, the quantum
dynamics of our EFT can be described as a modified diffusion process.

To derive this result, we begin by recalling that in a thermal heat-bath the amplitude of
quantum fluctuations are of the order of the De Broglie’s thermal wave-length

λB ≡ ~

√
β

2πµ0
, (4.25)

where µ0 = 1
3Tr [mij ] is an effective mass scale for the quantum excitation.

If the cut-off scale λ is chosen in such a way that λ� λB , we have

ξ = λB
λ
� 1 and |Q|

λ
∼ ξ . (4.26)

Hence, ξ provides a small expansion parameter which enables us to evaluate the effective action Seff
within a systematic perturbation theory. We note that, in order to obtain the O(ξ2) expression, it
is sufficient to expand the exponent in the second line of Eq. (4.24) to order in Q4, since all higher-
order terms lead to corrections which are of order O(ξ4). After discretization of the time interval
t in Nt steps, the path integral factorizes as a product of Nt moments of Gaussian distribution, in
the form: ∫

dQk exp
[
i
(Rk+1 −Rk)
D0
√

2πβµ0
· Qk

λB
− ∆t

2βD0µ0π

Q2
k

λ2
B

]
×
(

1− i(Rk+1 −Rk) ·Qk

4βD0
√

2πµ0β λB

Q2
k

λ2 + ∆t Q2

16βD0µ0π λ2
B

Q2

λ2

)
, (4.27)

where Qk ≡ Q(tk). The incremental time interval ∆t ≡ t/Nt plays the role of a regularization
cut-off and is the time analog of the distance regularization cut-off λ. We recall that, in the EFT
framework, both ∆t and λ are kept finite at all stages of the calculation. The result of the Gaussian
integral (4.27) can be written in the form

N e−
(Rk+1−Rk)2

4D0∆t e
βµ0π
16∆t3

ξ2
(

5∆t(Rk+1−Rk)2−3
(Rk+1−Rk)4

4D0

)
,

where N is an irrelevant constant factor. Multiplying all the Nt terms and restoring the continuum
notation, we obtain

Seff '
∫ t

0
dT

[
Ṙ2

4Db
0
− ξ2 (Cb2 Ṙ2 − Cb4 Ṙ4)] , (4.28)
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where the coefficients of the correction terms order O(ξ2) are

Cb2 ≡ 5βµ0π

16 ∆t , Cb4 ≡
3βµ0π

64Db
0
. (4.29)

In Eq.s (4.28) and (4.29), we have added the superscript “b” to emphasize that Db
0, Cb2 and Cb4 are

bare effective constants.
Summarizing, up to corrections of order O

(
λB
λ

)4, the quantum excitotion’s probability density
can be approximated as

P (y, t|x, 0) '
∫ y

x
DR e

−
∫ t

0
dT

[
1

4Db0
Ṙ2−ξ2(Cb2 Ṙ2−Cb4 Ṙ4)

]
. (4.30)

The path integral (4.30) describes the propagation of the quantum excitation as a modified
diffusion process, where the quantum effects are approximated with an accuracy of order ξ2, and
represents one of the main results of this thesis.

We emphasize that, in deriving our long-distance expression for the path integral, we have
truncated two independent expansions: (i) we have retained only the lowest terms in the spatial-
and time- derivative expansion of all the fields in section 4.2.1 and (ii) we have kept only the
leading-order terms in the expansion in ξ2 of the first quantized path integral (4.21). Furthermore,
unlike in relativistic EFT, the cut-offs defining the time and spatial resolutions are not directly
related. Clearly, the existence of multiple expansions and cut-offs offers several alternatives for
the power-counting schemes. A systematic analysis of all these possibilities is quite involved and
goes beyond the scope of this thesis. Here, we limit ourselves to note that by simply retaining
the next order in Q2 in the expansion of the function V (Q) in Eq. (4.22) and then truncating the
resulting effective action to order ξ4 one may miss some important contributions, if the fields vary
sufficiently rapidly in time and space. Indeed, additional first-quantized operators at order in ξ4

may generated by expanding the field operators in Eq.s (4.2) through (4.8) to include terms with
higher number of space and time derivatives.

In section 4.4, we present an application of this framework to investigate hole transport in a
long DNA molecule. We find that the lowest-order analytic effective theory gives results which are
essentially indistinguishable from those obtained from numerical simulations in a more microscopic
model. This finding suggests that, in practice, the inclusion of ξ4 terms may not be crucial in order
to achieve an accurate description of the long-distance long-time physics in realistic macromolecular
systems.

Finally, we observe that, even though the expansion in ξ2 generates terms with increasing
powers of ~2, the EFT expansion is not conceptually equivalent to the semi-classical approximation
[114, 115, 116, 117]. Indeed, the EFT approach is defined in terms of external cut-off scales, which
set the resolution power of the theory and are chosen a priori.

4.3 Solution of the Path Integral and Renormalization
The effective theory defined in Eq. (4.30) explicitly depends on the cut-off scales ∆t and λ and
needs to be renormalized. This can be done by introducing appropriate counter-terms into the
effective action and matching the prediction of the effective theory against experiment or more
microscopic calculations, at some time-scale t∗. Through such a renormalization procedure, the
power-law dependence of the effective coefficients on the cut-offs ∆t and λ is removed and is
replaced by a much weaker dependence on the renormalization scale t∗.

To implement this program, let us consider for sake of simplicity the simple case of isotropic
diffusion (i.e. g0

ij = δij). The same procedure can be straightforwardly applied to the general case
of anisotropic diffusion, by repeating the same analysis component-by-component.
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After introducing the renormalizing counter-terms, the path integral (4.30) is modified as fol-
lows:

P (y, t|x, 0) '
∫ y

x
DR e−Seff [Ṙ]+ξ2(Q2 Ṙ2+Q4 Ṙ4) , (4.31)

where Q2 and Q4 are insofar unknown coefficients. To order ξ2 the renormalized expression for
the effective action then reads

S̄eff =
∫ t

0
dT

[
Ṙ2

4Dren
+ CrenṘ4

]
,

where Dren, and Cren are the renormalized coefficients. In the following, we show how they can
be determined up to O

(
ξ2) accuracy.

To this end, we first analytically compute the path integral given in Eq. (4.31) to leading-order
in a perturbative expansion in ξ2 (see derivation in Appendix C.2). We obtain

P (y, t|x, 0) ' P0(y, t|x, 0;Db
0)
[
1 + ξ2(Cb2 +Q2) ·

(
(x− y)2

t
− 6Db

0

)
−ξ2(Cb4 −Q4)

(
(x− y)4

t3
− ∆t− t

∆t
20Db

0(x− y)2

t2
+ ∆t− 2t

∆t
60Db 2

0
t

)]
,

(4.32)

where

P0(y, t|x, 0;Db
0) = e

−1
4tDb0

(y−x)2

2
√
tDb

0π
, (4.33)

is the unperturbed expression. To implement the renormalization, we choose to match the predic-
tion of the two lowest moments of this distribution, against the results of experiment or microscopic
simulations at some time-scale t∗:

〈∆R2(t∗)〉exp ≡ 〈∆R̄2(t∗)〉 = 6Drent
∗ , (4.34)

〈∆R4(t∗)〉exp ≡ 〈∆R̄4(t∗)〉 = 60D2
rent

∗2 − Crent∗ , (4.35)

where ∆R = (y− x) and

Dren = D0

[
1 + 4ξ2D0

(
Cb2 +Q2 −

20D0

∆t
(
Cb4 −Q4

) )]
+ o

(
ξ4) , (4.36)

Cren = 1920ξ2D4
0
(
Cb4 −Q4

)
+ o

(
ξ4) , (4.37)

are the renormalized constants, which are finite combinations of bare effective coefficients and
counter-terms. Their numerical value is expected to run weakly with the matching time scale t∗.

An important observation to make is that the mean-square displacement 〈∆R2(t)〉 retains its
linear dependence on time t (Einstein’s law), even when quantum corrections are taken into account.
In contrast, quantum corrections do affect the time dependence of 〈∆R4(t)〉, by introducing a linear
term, which is absent in the classical diffusion limit.

Thus, the renormalized probability density including the leading-order quantum corrections
reads:

P̄ (y, t|x, 0) ' P0(y, t|x, 0;Dren)
[
1− Cren

(
(y− x)4

t3Dren
− 20(y− x)2

t2
+ 60Dren

t

)]
. (4.38)

We emphasize that the ξ2 expansion does not break down in the long-time limit. This can been
seen directly from the expression (4.38), which shows that the perturbative corrections decay with
time faster than the unperturbed term. In particular, the quantum excitation’s dynamics reduces
to the (unperturbed) classical over-damped diffusion, in the asymptotic long-time limit, implying
that the stochastic collisions contribute to quench the quantum effects.
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As a final remark of this section, we stress that effective theories are non-renormalizable. This
means that, in order to compute the transition probability P (y, t|x, 0), and any observables, at
O(ξ4) accuracy, one needs to define a next-to-leading order effective action which includes addi-
tional operators and related counter-terms.

4.4 Hole transport in a Long Homo-DNA Molecular Wire
For illustration purposes, in this section we apply the effective theory developed above to investigate
the dynamics of inelastic hole propagation along a long homo-DNA molecule, which is regarded
as an infinite molecular wire. To this end we first define a microscopic theory and then match the
corresponding effective theory at a given time scale t∗ to define the renormalized parameters and
finally use the effective theory to study the long-time and large-distance dynamics.

We consider a very simple discrete model for the DNA conformational dynamics introduced
in Ref. [118], in which the molecules vibration are effectively represented by the one-dimensional
harmonic chain:

V (Q) =
N∑
n=1

κ

2 (xi − xi−1 − a0)2
.

In this equation xi denotes the position of the i−th base pair, while κ=0.85 eV/Å2 is the spring
constant, while a0 = 3.4 Å is the equilibrium distance between two neighboring bases. In natural
units (in which ~ = c = 1) the mass of each base pare is M = 2.44 1011 eV.

The transfer integrals at the equilibrium position flm(Q0) and its derivatives falm(Q0), entering
Eq. (2.3), have been fixed in order to match the main features of the statistical distribution of
transfer matrix elements for a homo-base DNA, computed microscopically in Ref. [25] from DFT-
B electronic-structure calculations performed on snapshot of atomistic MD trajectories. Namely,
we have set

f0
lm = 〈tlm〉 ≡ t0

(
δl(m−1) + δl(m+1)

)
− e0δlm ,

falm = σlm
√
βκ ≡ t′

(
δl(m−1) + δl(m+1)

)
,

where 〈tlm〉 and σlm denote the average and the variance of the distribution reported in Ref. [25],
leading to

e0 = 4.5 eV, t0 = 0.03 eV, t′ = 0.15 eV/Å.
The system’s temperature was set to T = 300K and numerical simulations were performed on a
200-base pair molecule.

We have studied the time-evolution of the probability density of an electronic hole, initially
prepared at the center of the molecule, using the algorithm introduced in section 2.4, in which the
stochastic conformational dynamics of the molecular wire is coupled to the quantum dynamics of
the electronic hole.

The formalism presented in the previous sections can be used to define a low-resolution per-
turbative effective theory for this molecular wire. In Fig. 4.2, we show the matching between
the numerical simulations and analytic calculations in such an effective theory for the observables
〈∆R2(t)〉 and 〈∆R4(t)〉, fitted at the time scale t∗ = 10 ps (represented by a dot on the simulation
curves). We note that the two approaches give consistent results. In particular, the inclusion of
order ξ2 corrections is necessary to reproduce the time-evolution of the 〈R4(t)〉 moment. At times

t∗ [ps] 1 5 7.5 10 12.5 15
Dren[Å2

/ps]× 102 3,6 ± 0.2 3.0 ± 0.1 2.95 ± 0.05 2,90 ± 0.04 2.87 ± 0.04 2.85 ± 0.03
Cren[Å4

/ps]× 106 -1.3 ± 0.1 -2.7 ± 0.3 -3.1 ± 0.3 -3.2 ± 0.4 -3.2 ± 0.4 -3.1 ± 0.4

Table 4.1: Renormalized coefficient in Eq.s (4.34) and (4.35) fitted at different time scales t∗.
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Figure 4.2: Time dependence of 〈∆R2(t)〉 (left panel) and 〈∆R4(t)〉 (right panel), in the microscopic
model (red line) and in our effective theory (solid black line). The dashed line in the right panel
represents the prediction of a purely diffusive model (zero-th order contribution in ξ2 expansion)
and the black circles represent the matching point (i.e. the renormalization time scale is t∗ = 10 ps).
The predictions in the microscopic model have been obtained in 200-base pair long molecule, by
averaging over 800 different trajectories generated using the algorithm discussed in section. 2.4.
Beyond 15 fs these result become affected by fine-size effects.

larger than 15 ps finite size effects begin to affect the numerical simulations, and the microscopic
model cannot be used to investigate the long distance propagation.

In Table 4.1 we compare different values of the renormalized coefficient Dren and Cren corre-
sponding to different renormalization time scales t∗. We observe that the effective parameters run
only weakly with the renormalization scale t∗, as expected.
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Chapter 5

Quantum Propagation at
Intermediate time and distance

In this section we are concerned with quantum transport over time intervals too long for the
perturbative approach to be applicable, yet too short for the diffusive approximation to hold. This
regime is the most relevant for the analysis of several experiments on quantum transport through
macromolecules, in particular for 2DPE experiments.

In this chapter we develop a non-perturbative method based on a resummation scheme which
provides the time evolution of the density matrix We show that in the Markovian limit we recover
a Lindblad quantum master equation. In order to deal with the non-Markovian case we introduce
a series of approximations, thanks to which we are able to analytically solve the quantum transport
dynamics. Then, we apply this result to evaluate the exciton energy transfer in a simple model of
a molecular dimer. Finally, we briefly review the theoretical framework to investigate the 2DPE
experiments, applying it to the dimer model as an illustrative example.

5.1 Resummation of Diagrams
In quantum field theory, a common way to go beyond perturbative approaches consists in resum-
ming only specific subclasses of diagrams. This technique consists in expressing a sum of infinite
correction terms in a compact way. The basic idea is the resumattion of the geometric series:

S =
∞∑
i=0

xi = 1 + x

∞∑
i=0

xi = 1 + xS ⇒ S = 1
1− x .

In our study, the identity corresponds to a known propagator G0 and the variable x is replaced
by one-particle irreducible diagrams Σ, representing the interactions with the environment. This
approach is general, given that it can be applied both to the dressing of exciton propagator forward
or backward in time, and to the non-perturbative evoluation of the time evolution of the density
matrix. Using the resummation of the geometric series we obtain,

G = G0

∞∑
i=0

(ΣG0)i = G0 +G0 Σ G0

∞∑
i=0

(ΣG0)i = G0 +G0 Σ G ⇒ G = G0

1−G0 Σ .

In the next section, we show how to use this method to study the evolution of our open
quantum system. In order to compute the density matrix evolution, we need to perform two
resummations. The first step consists in the non-perturbative evoluation of the forward, Gf , and
backward propagators, Gb, separately. These calculations are presented in subsection 5.1.1. Next,
we used such dressed propagators in the resummation of the so-called ladder diagrams, in which
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Figure 5.1: Diagramatic representation of Dyson’s Equation (5.2) for the forward Green’s func-
tion. The single line is the unperturbed Green’s function Gf0

ij , instead the double line represents
the corrected propagator Gfij. Difference between forward and backward resummation consist in
opposite sign in the imaginary corrections .

forward-and backward-propagaging excitations exchange vibrons. These calculations are shown in
subsection 5.1.2.

5.1.1 Dressing the Exciton Propagator
As we derived in Chapter 3, effective interaction terms in Eq. (2.28) describe an exchange of vibrons
along the forward (or backward) evolution. At the perturbative level, this kind of corrections are
included in the so called self-diagrams. In order to include non-perturbative corrections, we consider
the infinite sum1

Gkf ki(t) = G0
kf ki

(t) +
∫
dτdτ ′G0

kiq(t− τ)Σqq′(τ − τ ′)G0
q′ki

(τ ′)

+
∫
dτdτ ′dτ ′′dτ ′′′G0

kiq(t− τ)Σqq′(τ − τ ′)G0
q′s(τ ′ − τ ′′)Σ0

ss′(τ ′′ − τ ′′′)G0
s′ki

(τ ′′′) + . . .

where Σ is the self-energy which follows from a single-vibron excange (see details in Appendix
D.1). A considerable disadvantage of working in time representation (as opposed to frequency
representation) is the presence of several convolution integrals. Upon moving to frequency space
by means of the Fourier transformation, all convolutions are replaced by products. Thus, the
previous series reads

Gkf ki(ω) = G0
kf ki

(ω) + G0
kiq(ω) Σqq′(ω) G0

q′ki
(ω) +

+ G0
kiq(ω) Σqq′(ω) G0

q′s(ω) Σss′(ω) G0
s′ki

(ω) + . . .
(5.1)

As showed above, we collect one interaction term and we recognize the same infinite series. The
results are the following Dyson’s equations for the full forward and backward propagators

Gfkf ki
(ω) = Gf0

kf ki
(ω) + Gf0

kf q′(ω) Σfq′q(ω) Gfqki
(ω) , (5.2)

Gbkikf
(ω) = Gb0kikf

(ω) + Gb0kiq′(ω) Σbq′q(ω) Gbqkf
(ω) , (5.3)

where Gf(b)
nm represents the non-perturbative forward (backward) Green’s function. In Fig. 5.1 we

diagrammatically represent the two previous equations. Eq.s (5.2) and (5.3) can be solved, and
the solutions read

Gfkf ki
(ω) = iV †kf n

[
δnm

(
ω − ε0n + i0+)+ i Σ̃fnm(ω)

]−1
Vmki , (5.4)

Gbkikf
(ω) = − iV †kin

[
δnm

(
ω − ε0n − i0+)+ i Σ̃bnm(ω)

]−1
Vmkf , (5.5)

where the matrix elements Vin define the unitary transformation which diagonalize the tight-
binding Hamiltonian H0, i.e. they represent the change of basis between the base of sites and the
base of eigestates of the tight-binding hamiltonian, ε0n are the corresponding eigenvalues (energy
levels of H0), and Σ̃ is the self-energy expressed in the basis of the eigenstates of H0.

1 Let us point out that, throughout this thesis we shall adopt Einstein’s notation and implicitly assume the
summation over all bold repeated indexes, except for the initial and final exciton position ki and kf which is held
fixed.

58



. . .+ + +ν ν ′

ω′

ω′ − ω

ν

ω′ + ν
ω′ ω′ + ν ω′ + ν + ν ′

ω′

ω′ − ω ω′ − ω + ν ω′ − ω ω′ − ω + ν ω′ − ω + ν + ν ′

Figure 5.2: Diagramatic representation of the Ladder expansion in Eq. (5.7) for the dynamical
map G.

5.1.2 Ladder Expansion for the Density Matrix Evolution
To predict any physical observable in an open quantum system we need to know the density matrix.
In Chapter 3, we demonstrate that without any interaction between the forward and backward
propagators, the density matrix at time t starting from the initial ρ0

kl reads

ρij(t) = Gfik(t) ρ0
kl G

b
lj(−t) ,

thus the quantum Liouvillian operator, or dynamical map G0
ij kl (t),2 describing the density matrix

time evolution is the product of them,

G0
ij kl (t) = Gfik(t) Gblj(−t) .

We notice that in G0
ij kl the first pair of indices corresponds to the final indices of the density

matrix ρij(t), whereas the second pair corresponds to the initial of ones, ρ0
kl. In frequency space,

the product between the forward and backward propagators becomes a convolution,

G0
ij kl (ω) ≡

∫
dω

2π

′
Gfik(ω′) Gblj(ω′ − ω) . (5.6)

In order to include fluctuation-dissipation effects in the dynamical map G, we apply the ladder
expansion, which consists in resumming only contributions due to the exchange of a single vibron
between the forward and backward propagators (cross-interaction diagrams introduced in Chap-
ter 3). In Fig. 5.2 we diagrammatically represent the infinite series that we need to compute, which
reads

G(ω) =
∫
dω′

2π

{
Gfik(ω′) Gblj(ω′ − ω) +

∫
dν

2π Gfik(ω′)Gblj(ω′ − ω)∆(ν)Gfik(ω′ + ν)Gblj(ω′ − ω + ν) +

+
∫
dνdν′

(2π)2 G
f
ik(ω′)Gblj(ω′ − ω)∆(ν)Gfik(ω′ + ν)Gblj(ω′ − ω + ν)∆(ν′)×

× Gfik(ω′ + ν + ν′)Gblj(ω′ − ω + ν + ν′) + . . .
}
.

(5.7)

The main difference with the previous series in Eq. (5.1) is the impossibility to perform a direct
resummation. The reason is that it is not possible identify the non-perturbative quantum Liouvil-
lian operator G on the right side of Eq. (5.7). In order to work around this problem, we introduce
the quantity Γ related to the quantum Liouvillian operator by the following definition

Gij kl (ω) ≡
∫
dω1

2π

∫
dω2

2π Γij kl (ω1, ω1 − ω;ω2, ω2 − ω) . (5.8)

2 The quantum Liouvillian operator has been introduced in eq (1.1).

59



Figure 5.3: Diagramatic representation of Bethe Salpeter Equation (5.9) for the Γ function.

Replacing this definition in Eq. (5.7) and after some manipulation, we can follow the same
resummation procedure used above (see Appendix D.2). Hence, we can write down the following
equation, similar to the Bethe-Salpeter equation, for the quantities Γ:

Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) = Gfik(ω1) Gblj(ω1 − ω)δ (ω1 − ω2)

+
∫
dν

2π Gfin(ω1) Gbmj(ω1 − ω) ∆nm qs (ν) Γqs kl (ω1 + ν, ω1 + ν − ω;ω2, ω2 − ω)
(5.9)

In Fig. 5.3, we diagramatically show the resummation of the cross-interaction. Due to the presence
of the integral convolution, the resolution of this equation is only possible numerically, hence
additional approximations are needed in order to obtain a simpler equation.

In the following, we introduce the Markovian approximation for the ∆(ν) interaction recovering
a Lindblad equation, and we discuss its limitation. Then, we relax the Markovian approximation
and we find a simpler formulation of Eq. (5.9).

5.1.3 Markovian Limit: Lindblad Equation
The dynamics of quantum excitations propagating in macromolecules is shaped by three main char-
acteristic time scales: τS is the time scale at which the quantum excitations propagate through the
system, τv is the time scale associated to the periods of the important conformational oscillations
(i.e. the inverse of the most relevant normal mode frequencies Ω) and τE is the time scale at which
such vibrations are damped by dissipation.

Suppose we are interested in studying quantum energy transport over very long time scales
so that: τS � τE , τv. In this case we can adopt the so called Markovian limit, which consists in
neglecting all memory effects. It is well known that, in this limit, we expect the density matrix to
obey a Lindblad equation. In the QTFT framework, the Markovian condition is implemented by
taking the small frequency expansion of the vibron propagator, which is equivalent to reduce the
QTFT to a Fermi-like theory with only contact interactions:

∆nm qs(t) ' dnm qs δ(t) ⇒ ∆nm qs(ν) ' 2π dnm qs .

In frequency space this approximation corresponds to replace vibronic Green’s function ∆ whit
the constant dnm qs in Eq. (5.9), obtaining

Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) = Gfik(ω1) Gblj(ω1 − ω)δ (ω1 − ω2)

+
∫
dν

2π G
f
in(ω1) Gbmj(ω1 − ω) dnm qs Γqs kl (ω1 + ν, ω1 + ν − ω;ω2, ω2 − ω) ,

In order to compute the quantum Liouvillian operators G(ω), we integrate the last formula over
the variables ω1 and ω2

3:

Gij kl (ω) = G0
ij kl(ω) + G0

ij nm(ω) dnm qs Gqs kl (ω) , (5.10)

3 Shifting the integral variable ν → ν′ = ν + ω1, we can factorize the unperturbed G0 and the non-perturbative
G dynamical maps
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where G0 is the unperturbed dynamical map defined in Eq. (5.6). Expressing the last equation for
G in the energy level basis and neglecting the matrices Σ, we find the following analytic solution
for the dynamical map:

Gij kl (t) =
∫
dω

2π e
−iωt i

[
(ω − εi + εj) δik δlj + i dij kl

]−1
. (5.11)

In Appendix D.3 we show that this is precisely the expression for the quantum liuvillian operator
which corresponds to the Lindblad equation, which is the most general type of Markovian and time-
homogeneous master equation describing non-unitarity time evolution of the density matrix. This
approximation confirm that our resummation describes the correct quantum transport dynamics
in the limit of long time, i.e. for time longer than τE ∼ 1 ps.

We emphasize, however, that the Markovian approximation may not provide a very accu-
rate description of the quantum transport dynamics, since typically the time scales associated to
quantum transport are comparable or even smaller than those associated to the vibrations and
damping. Consequenlty, in the following we proposed a way to compute dynamical maps beyond
the Markovian limit.

5.1.4 Beyond Markovian Limit: Resonant Approximation
In order to go beyond the Markovian limit showed above, we analyze the vibron Green’s function
∆(ν), showing its resonant behavior around a frequency. The exchange of vibrons is described by
the non-instantaneous interaction ∆(ν), that reads

∆nm qs(ν) = f inqUin∆n(ν)U†njf jsm , (5.12)

where the U and U† are the unitary matrix that diagonalize the Hessian of the molecular potetial
energy V (Q) at mechanical equilibrium, and ∆n is the vibronic two-point function related to the
normal frequencies Ωn (see Appendix A.4)

∆n(ν) = 4γ
Mβ

1
(ν2 − Ω2

n)2 + γ2ν2 . (5.13)
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Figure 5.4: Two point correlation function for a vibron exchange, ∆n(ν), for different normal
frequencies. The full line correspond to the case 2Ω2

n < γ2 (Ωn = 0.04 eV), the dashed line
show the case (1 +

√
2)γ2 > 2Ω2

n ≥ γ2 (Ωn = 0.1 eV), and the dash-dot line represent the case
2Ω2

n ≥ (1 +
√

2)γ2 (Ωn = 0.2 eV). In the plot we used γ = 0.1 eV, M = 100 uma, T = 300 K.
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In Fig. 5.4, we point out the resonant behaviour of ∆n. We observe that this function is peaked
around a value ν̄, which depends on the ratio between γ and Ωn. Due to this property we apply
the following approximation:

∆n (ν) ' ∆n(ν̄n) δ(ν − ν̄n) ∆νn ,

that we call resonant approximation, which consist in imposing that only the resonant frequency
ν̄ is exchanged. The quantity ∆ν in the last equation is the full width at half maximum.
Studying Eq. (5.13), we can identify three characteristic behaviors:

• CASE I: there is only one peak in ν̄n = 0, when

2Ω2
n < γ2

• CASE II: there are two peaks in ν̄n = ±
√

2Ω2
n−γ2

2 , and the minimum in ν = 0 is higher than
the half maximum, when

(1 +
√

2)γ2 > 2Ω2
n ≥ γ2

• CASE III: there are two well separate peaks in ν̄n = ±
√

2Ω2
n−γ2

2 , when

2Ω2
n ≥ (1 +

√
2)γ2

In the three different cases we have a different formulation for the full width at half maximum of
the peaks

∆νn =


√

2
√
−γ2 + 2Ω2

n +
√
γ4 − 4γ2Ω2

n + 8Ω4
n '

√
8Ω2

n

γ
CASE I

2
√
−(γ2/2) + Ω2

n + 1/2
√
−γ4 + 4γ2Ω2

n ' 2Ωn CASE II

2
√
−γ2 + 2Ω2

n −
√

2γ4 − 8γ2Ω2
n + 4Ω4

n ' γ CASE III

and three different maximum

∆n(ν̄n) =



4γ
Mβ

1
Ω4
n

CASE I

4
Mβ

1
γ (4Ω2

n − γ2) CASE II

4
Mβ

1
γ (4Ω2

n − γ2) CASE III

Adopting the resonant approximation for the ∆ interaction in Eq. (5.9), and performing the
integral over ν, we obtain

Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) = Gfi k(ω1) Gbj l(ω1 − ω)δ (ω1 − ω2)

+
∑
n

Gfi n(ω1) Gbj m(ω1 − ω) ∆̄n
nm qs Γqs kl (ω1 + ν̄n, ω1 − ω + ν̄n;ω2, ω2 − ω) (5.14)

where ∆̄n represents the resonant contribution due to exchanges between the forward and backward
propagation of the vibron at frequency Ωn, and it reads

∆̄n
nm qs = f inqUin [∆νn ∆n(ν̄n)]U†njf jms . (5.15)

Let us point out that on the right-side in Eq. (5.14) every Γ function is multiplied by forward
Gf , and backward Gb, exciton propagators. From Eq.s (5.4) and (5.5), we observe that these
quantities are peaked around the energy level εn, which is order of magnitude bigger than any
frequency shift (εi � ν̄n). Accordingly, we neglect the small frequency shift in the Γ functions

62



in Eq. (5.14), because both arguments are the same of the peaked Green’s functions Gf and Gb.
Therefore Eq. (5.14) after some manipulation becomes[

δij qs −Gfi n(ω1) Gbj m(ω1 − ω)∆̄nm qs

]
Γqs kl (ω1, ω1 − ω; ω2, ω2 − ω) =

=Gfi k(ω1) Gbj l(ω1 − ω)δ (ω1 − ω2) ,
(5.16)

where the matrix ∆̄ collects all the cross-interaction effects, ∆̄ =
∑
n ∆̄n. After some manipula-

tion4, we find the following solution for the Γ function

Γqs kl (ω1, ω1 − ω; ω2, ω2 − ω) =

=
[
1−Gf (ω1) Gb(ω1 − ω) ∆̄

]−1
qs ij G

f
i k(ω1) Gbj l(ω1 − ω)δ (ω1 − ω2) .

By replacing it in Eq. (5.8), we obtain a final formula for the quantum Liouvillian operator

Gnm kl (ω) =
∫
dω′

2π
[
Gf −1(ω′) Gb −1(ω′ − ω) − ∆̄

]−1
nm kl . (5.17)

Hence, the density matrix at time t reads

ρij(t) =
∫
dω

2π e−iωt
∫
dω′

2π
[
Gf −1(ω′) Gb −1(ω′ − ω) − ∆̄

]−1
nm kl ρ

0
kl . (5.18)

The expression (5.18) is quite general, but the integral is not analytically solvable. Even
numerical integration is challenging due to the strongly oscillatory behavior of the integrand,
consequently the numerical computation of the dynamical map in Eq. (5.18) is beyond the objective
of this thesis. However, in order to gain some partial insight, we discuss two physical limits: first
we recover the dephasing behaviour of Eq. (5.18) imposing the ∆-matrix to zero and assuming
constant the self-energy, Σ(ω) ' Σ0; then, we neglect the off-diagonal terms of the ∆-matrix
diagonals and the self-energy obtaining dissipation effects.

We begin, by introducing explicitly the forward and backward Green’s functions in Eq. (5.17)
and expressing the quantum Liouvillian in the energy level basis:

G̃ns mt (ω) =
∫
dω′

2π VslVni
[
Gf −1(ω′) Gb −1(ω′ − ω) − ∆̄

]−1
ij kl V

†
kmV

†
jt =∫

dω′

2π

[ (
δnm

(
ω′− ε0n + i0+)+ iΣ̃fnm(ω′)

) (
δst
(
ω′− ω − ε0s − i0+)+ iΣ̃bst(ω′ − ω)

)
− ˜̄∆nt ms

]−1
,

(5.19)

where the cross-interaction matrix is expressed in the energy levels basis and reads
˜̄∆nt ms = Vnpf

i
pqV

†
qm

[
Uin∆νn∆n(ν̄n)U†nj

]
Vsvf

j
vwV

†
wt . (5.20)

Imposing ˜̄∆ = 0 is equivalent to ignore the interaction between forward and backward prop-
agators, while assuming that the self-energy is approximated to a constant means adopting the
Markovian limit, namely ignoring memory effects during quantum transports. In order to perform
analytically the integral in Eq. (5.19), we consider only diagonal terms of Σ obtaining the following
dynamical map

G̃ns mt (t) =
∫
dω

2π e
−iωt i

[ (
ω − ε0n + ε0s

)
+ iΣ̃(0)f

n + iΣ̃(0)b
s

]−1
δnmδst , (5.21)

4 In particular, we use the property of the inverse of a matrix product [A B]−1 = B−1A−1. We exploit this rules
in Eq. (5.16) in this way:[

1−Gf (ω′) Gb(ω′ − ω) ∆̄
]−1

nm ij
=

[
Gf (ω′) Gb(ω′ − ω)

(
Gf −1(ω′) Gb −1(ω′ − ω)− ∆̄

)]−1
nm ij

=
[
Gf −1(ω′) Gb −1(ω′ − ω)− ∆̄

]−1
nm kl

[
Gf (ω′) Gb(ω′ − ω)

]−1
kl ij

.
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Figure 5.5: The full line represent the Bessel function K0(t) and the dashed line the difference
between Bessel function and Struvel function Y0(t)−H0(t)) in Eq. (5.23).

where the self-energy plays the role of the dephasing terms. Indeed, the last equation corresponds
to a Lindblad equation with only dephasing terms Dij ij (see Appendix D.3). In this physical limit
we have recovered the dephasing behaviour of our dynamical map (5.18), derived in the resonant
approximation.

The second physical limit consists in a strong approximation which allows us to solve analyti-
cally the dynamical map and to show dissipative effects included in Eq. (5.18). In the next section,
we will discuss the limitation of this approximation in an illustrative example.
We prove that we are able to analytically derive the quantum Liouvillian operator Gnm kl (ω) when-
ever it is possible to neglect the off-diagonal terms of the matrix ∆̄ in Eq. (5.15) in the energy level
basis. This condition is equivalent to suppose that the gradients of the hopping matrix elements
is almost diagonal in the energy level basis, namely

f̃nnm ≡ Vnpf
i
pqV

†
qmUin ≈ δnm fnm . (5.22)

In order to interpret this strong approximation, we write down the hopping matrix in the energy
level basis f̃nm(Q), depending on the molecular configuration Q:

f̃nm(Q) = εn δnm δ(Q−Q0) + f̃nnm (Q−Q0)n + . . . ,

where Q0 is the mechanical equilibrium configuration and εn is the nth-energy level. The diagonal
values of f̃nnm represent the variation of the energy levels, while the off-diagonal terms the coupling
between them due to the nth-vibrational mode around Q0. Hence, the approximation in Eq. (5.22)
means that the relevant vibrational modes are coupled strongly to the energy levels and weakly to
the coupling between different energy levels5.

In this diagonal limit it is convenient to get rid of unnecessary indexes6, by introducing the
notation

gns(ω) ≡ G̃ns ns(ω) .

As shown in Appendix D.1 the elements of the self-energy are peaked functions, and the maxim
is smaller in comparison to the molecular energy levels, |Σ| � ε0. Hence, a second approximation

5 Another interpretation of this approximation is that the molecular eigenfunctions are insensible on the inter-
action with the environment, i.e. the matrices which diagonalize the hopping matrix Vnm weakly depend on the
configuration:

εn(Q)δnm = Vnp(Q)f i
pq(Q)V †qm(Q) ' Vnp(Q0)f i

pq(Q)V †qm(Q0) .
Thus the main effect of the fluctuation is the variation of the energy levels εn.

6We consider only the diagonal elements, namely the elements where n = m and s = t in Eq. (5.19).
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consists in neglecting the self-energy corrections in Eq. (5.19). In absence of these contributions
the quantum Liouvillian operator becomes

gns(ω)=
∫
dω′

2π

[
ω′− 1

2(1− Γns(ω)θΓ(ω)) (ε0n + ω)− 1
2(1 + Γns(ω)θΓ(ω)) ε0s + i0+Γns(ω)θΓ(ω)

]−1

[
ω′− 1

2(1 + Γns(ω)θΓ(ω)) (ε0n + ω)− 1
2(1− Γns(ω)θΓ(ω)) ε0s − i0+Γns(ω)θΓ(ω)

]−1
.

where we have introduced the following quantities

Γ(ω) =

√√√√∣∣∣∣∣1 + 4 ˜̄∆ns ns

(ε0s − ε0n + ω)2

∣∣∣∣∣
θΓ(ω) =

{
i if 4 ˜̄∆ns ns + (ε0s − ε0n + ω)2 < 0
1 elsewhere

After integration over ω′ the full propagator for diagonal elements reads

gns(ω) = 1
Γ(ω) (ω − ε0s + ε0n + 2i0+) ×

{
sign(ε0s − ε0n + ω) if 4 ˜̄∆ns ns + (ε0s − ε0n + ω)2 < 0 ,

i elsewhere.

In this particular case we are able to come back in time domain by means of the inverse Fourier
transformation. Thus, the quantum Liouvillian time operator reads

gns(t) = e−i(ε
0
s−ε

0
n)t


1
πK0

(
t 2 ˜̄∆1/2

ns ns

)
if 4 ˜̄∆ns ns > 0 ,

−1
2 Y0

(
t 2| ˜̄∆ns ns|1/2

)
− 1

2H0

(
t 2| ˜̄∆ns ns|1/2

)
elsewhere.

(5.23)

where K0 and Y0 are Bessel functions of the first kind (modified and non-modified), and H0 is
the modified Struvel function. These functions are represented in Fig. 5.5. Therefore, the density
matrix in the energy level basis at time t reads7

ρns(t) = gns(t)
Tr[ρ(t)] ρ

0
ns . (5.24)

In the next section, we briefly show an application of these equations in studying the excitation en-
ergy transport in a dimer, showing that this physical limit include dissipative effects. Furthermore,
we prove a posteriori that this approximation consists in an effective low temperature limit.

5.2 Excitation Energy Transfer in a Dimer Model
In order assess the validity of our approximations, we apply the analytic quantum Liouvillian
operator computed above to a dimer model. In the study of quantum transport, the two-site
system is the simplest model representing the energy transfer process from a donor to an acceptor.
To this end, we first introduce a simple model of two chromophores, and then predict the density
matrix evolution. Finally, we discuss the goodness of our approximations.

5.2.1 Dimer Model
Inspired by recent theoretical papers [46, 47, 49] aimed to study the long-lived coherence in 2DPE
spectroscopy experiments (see Section 1.2), we consider an exitonically coupled dimer, consisting

7 The normalization factor on the denominator derives from Eq. (2.9), and it guarantees the trace conservation
along the time evolution.
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e0 [eV ] ∆e [eV ] t0 [eV ] Ω [eV ] γ
[
fs−1] r0

[
Å
]

T [oK] M [uma]
1.4 0.2 0.1 0.01 0.1 7 300 100

Table 5.1: Parameters of the two-states model which describes exciton energy transport between
two chromophores.

of two sites (chromophore 1 and 2), interacting via an electrostatic dipole-dipole interaction. The
excitonic dimer Hamiltonian can be expressed as

HS = e1[r] a†1a1 + e2[r] a†2a2 + t[r]
(
a†1a2 + a†2a1

)
(5.25)

where e1[r] and e2[r] are the on-site energies defined in Eq. (2.5), t[r] is the hopping coefficient
introduced in Eq. (2.4), and r is the distance between the two sites. We model the molecular
vibrations with an harmonic oscillator between the two sites. Therefore, the molecular dynamics
is described by the following Hamiltonian:

HM = 1
2M p2

r + 1
2MΩ2(r − r0)2 ,

where M is the effective mass of the system, pr the canonical momentum conjugated to the r
coordinate, and r0 correspond to the equilibrium distance [119]. In the case of neutral molecules,
the interaction between different chromophores is dominated by their dipole-dipole interaction

V12 ∼
1
r3

(
µ1 · µ2 − 3/r2 µ1 · r µ2 · r

)
,

where µi is the transition dipole moment of chromophore i. As a consequence, we assume the
following dependence by the distance r of the tight-binding parameters:

en[r] =
(
e0 ± ∆e

2

)
r3
0
r3 → e1[r0] = −3 e0 (1 + n∆e) 1

r0
,

t[r] = t0
r3
0
r3 → t1[r0] = −3 t0 1

r0
,

where ∆e is the energy gap between the site, and e0 t0 are the values of the parameters entering
the tight-binding Hamiltonian, at the equilibrium configuration. The numerical values of the
parameters of this dimer model are summarized in Table 5.1.

5.2.2 Time Evolution of the Density Matrix
In order to compute the dynamics of an exciton in the dimer by means of the quantum Liouvillian
operator in Eq. (5.23), we need to evaluate the diagonal elements of the ∆-matrix defined in
Eq. (5.20). Replacing the expressions for the full width at half maximum ∆ν, and the maximum
∆(ν̄), Eq. (5.20) becomes

˜̄∆ns ns = 4
√

8
MβΩ2 f̃ inn f̃ jss .

The mean square displacement for an harmonic oscillator is 〈(r− r0)2〉 = 1/(MβΩ2). Replacing it
into the previous equation, we find the following relation

˜̄∆ns ns ∝ 〈(r − r0)2〉 .

Hence, a wide thermal fluctuations in the distance (r − r0) induces large dissipation effects in the
energy-transfer dynamics
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Figure 5.6: Time evolution of the probability to find the excitation at site 1 (line blue), and site 2
(line red). We notice that this probability reach the thermal equilibrium, the dashed line represent
the probability calculated from the Boltzmann distribution.

We assume that at time t = 0 the exciton is localized on the site with greater on-site energy,
in our model is the chromophore 1, ρ(0) = |1〉〈1| . In Fig. 5.6 we show the time evolution of the
probability to find the exciton at the different sites.

Some comments on this result are in order. First of all, we notice the transfer between the site
with greater on-site energy to the site with lower energy, as expected. We explain this transport
phenomena as a energy dissipation effect, proving that the quantum Liouvillian operator described
by Eq. (5.18) include also dissipative effects. Next, we note that the oscillator behavior is damped
at 200 fs, when the population ratio reaches an equilibrium value [120]. Finally we observe that
the density matrix for this dimer model reaches the thermal equilibrium. In Fig. (5.6), we find an
agreement between the long-time equilibrium described by the dynamical map computed in the
previous section and value computed from the Boltzmann distribution, 〈i|e−βH0 |i〉.

However, we realized that in case β∆e . 1 this agreement is lost. To find the origin of this
discrepancy we study the asymptotic behavior of the density matrix evolution in the energy basis.
The Bessel function K0(t) for large time t has the following exponential decaying behavior,

K0(x) ∼
√

π

2x e−x .

Replacing it in Eq. (5.24), the density matrix in the localized site basis for longer time reads

ρij(t) = e−1/2
√

∆ijt

e−1/2
√

∆1t + e−1/2
√

∆2t

t→∞−−−→
{

1 if ∆ij = ∆2
0 elsewhere ,

where ∆1 > ∆2 are the diagonal elements of the ∆-matrix. In other words, the final state of the
dynamics is the pure eigenstate with the lowest energy level (and the lowest ∆ elements), where
the whole dynamics condensate. This behavior is physical only in the low temperature regime
β∆e� 1, when the gap energy is big enough to force the exciton to migrate in the lower energy.
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5.3 Two-Dimensional Photon Echo Spectroscopy
In this section we describe how to compute the 2DPE Spectroscopy signal in the joint perturbative
and impulsive limit [121, 122, 123], in order to establish a more direct connection between theo-
retical predictions and experimental observations. Furthermore, we show an illustrative example
based on the dimer model presented above.

The 2DPE Spectroscopy is a non-linear optical spectroscopy technique, consisting in the illu-
mination of the sample by three consecutive ultrashort laser pulses, and in the reception of a four
photon. The first τ1 and third τ3 time intervals are related to the absorption and emission spectra
by means of Fourier transformation, while the delay time between the second and the third impulse
corresponds to the population time τ2, corresponding to the evolution time t of the density matrix.
Therefore varying τ2 we can experimentally investigate the time evolution of our system. Indeed,
the result of 2DPE spectroscopy experiments is usually presented as a series of 2DPE maps for
different τ2, where on the axis we find the frequencies dependency obtained by means of a Fourier
transformation with respect to the time delays τ1 and τ3 (see Fig. 5.7).

In the following we introduce the semiclassical treatment, which is often used to described
non-linear spectroscopic experiments.

5.3.1 Semiclassical Theory in 2D-Photon Echo Experiments
This methodology has been developed primarily by Mukamel and coworkers [121], while in order
to review it we follow the Ref. [123].

In the semiclassical method, the light is treated classically, while the sample under investigation
is treated quantum mechanically. In this contest, the interaction between the laser pulses and the
system is described by a dipolar coupling of the form

Hint = E(r, t) · µ ,

where the operator µ denotes the transition dipole moment operator of the system, and E is the
total electric field describing the three incoming pulses. The total electric field is described by the
superpositions of three classical wave packets,

E(r, t) =
3∑
i=1

εiE
0
i (t− t0i ) sin

(
ω(t− t0i ) + kir

)
,

Figure 5.7: Left panel: schematic representation of the 2D-Photon Echo experiment, and the
pulse-timing sequence. Right panel: example of a 2D Echo map for a dimer. Figure taken from
Ref. [123]
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where i denotes the ith-laser pulse, εi is the respective polarization vector, and E0
i (t) represents

the i-th pulse shape. The time variables t0i indicate the moment when each pulse interacts with
the sample.

The fourth electric signal measured is proportional to the non-linear polarization P (t), which
is a macroscopic collective dipole moment per unit volume and can be written as the expectation
value of the transition dipole moment operator

P (t) = 〈µ〉 = tr [µρ(t)] , (5.26)

where ρ(t) is the density matrix of the sample system at time t. When this polarization is measured
under low laser intensity, the light-matter interaction can be evaluated perturbatively and the
dominant term comes from the third order contribution, which can be formally expressed as

P (3)(t) =
∫ ∞

0
dt3

∫ ∞
0

dt2

∫ ∞
0

dt1 R
(3) (t, t3, t2, t1)E(t3)E(t2)E(t1) , (5.27)

where R(3) is the third-order response function, which in the theoretical framework introduced in
this thesis reads

R(3) (t, t3, t2, t1) =
(
−i
~

)3
〈µ(t)µ(t3)µ(t2)µ(t1)〉 =

=
∫
dφ′tdφ

′∗
t dφ

′′
t dφ

′′∗
t e−φ

′∗
t φ
′
t−φ

′′∗
t φ′′t

∫
dφ′0dφ

′∗
0 dφ′′0dφ

′′∗
0 e−φ

′∗
0 φ
′
0−φ

′′∗
0 φ′′0 〈φ′0|ρ0|φ′′0〉(

−i
~

)3∫
D[φ′, φ

′∗, φ′′, φ
′′∗] µ(t)µ(t3)µ(t2)µ(t1) eφ

′∗
t φ
′
t+φ

′′∗
0 φ′′0 e

i
~ S[φ′,φ

′∗,φ′′,φ
′′∗] .

(5.28)

In the previous equation, the quantum field φ′n and φ′′n corresponds to the coherent states propa-
gating forward and backward in time respectively, which have been introduced in Chapter 2. The
integrals over dφ0 represent the basis change from site basis |i〉, to coherence state basis |φ〉 for the
initial density matrix ρ0, while the integrals over φt represent the trace operations in Eq. (5.26)
(see Appendix A.1). We observe that the dipole moment expresses in terms of the coherent fields
φ
′ and φ′′ is written as follow

µ(t) =
∑

n
µn (φ′∗n (t) + φ′n(t) + φ′′∗n (t) + φ′′n(t)) , (5.29)

where µn is the dipole moment associated to the nth-site. The number of field combinations in
Eq. (5.28) is 44 = 256, but only some terms are relevant. In order to simplify Eq. (5.28) and reduce
the number of correlation functions, we adopt the following approximations:

• the semi-impulsive limit for the electronic field, Ei(t) ≈ E0δ(t− t0i ) sin(ωt− ki · r);

• we assume that the system initially is in the ground state, ρ0 = |0〉〈0|;

• we adopt the Rotating Wave Approximation (RWA), consisting in neglecting the quickly
oscillating frequency terms under the time integral in Eq. (5.28). This approximation is
reliable when the carrier frequency of the pulses ω is comparable to the transition energies
in the molecule ∆e. Therefore, in Eq. (5.28) the frequency of the terms fast oscillating is
the sum of ω + ∆e, while the term that are taken into account they slowly oscillate with
frequency ω −∆e.

Adopting the change of the time variables t1, t2, and t3 into τ ′1 = t− t1− t2− t3, τ ′2 = t− t2− t3,
and τ ′3 = t−t3 and performing the integrations over the new variables in Eq. (5.27), the third-order
polarization becomes

P (3)(τ3, τ2, τ1) = θ(τ3)θ(τ2)θ(τ1) R(3) (τ3, τ2, τ1) E3(t03)E2(t02)E1(t01) ,

69



where τi is the time interval between the i-th and the following pulse. The quantity R(3) is
commonly written as the sum of four terms

R(3) (τ3, τ2, τ1) = R1 (τ3, τ2, τ1) +R2 (τ3, τ2, τ1) +R3 (τ3, τ2, τ1) +R4 (τ3, τ2, τ1) + c.c. (5.30)

With these assumptions, we distinguish among 2D-Photon Echo signals measured in different
spatial direction, where the final wave-vector ks depends on the relative sign between the incoming
pulses8,

ks = ±k1 ± k2 ± k3 . (5.31)

Due to the RWA approximation, the choice of the wave vector sign selects only one component of
the dipole moment in Eq. (5.29). In the following we list the three spatial direction ks which can
be measured by experiments:

• The case of ks = −k1 +k2 +k3 is known as rephasing experiment, and it is the most studied.
In this spatial direction, the third-order response function involves three contributions:

R−++
2 (τ1, τ2, τ3) = −µn3 µn2 µn1〈µ(τ1 + τ2 + τ3)φ′′∗n3

(τ1 + τ2)φ′∗n2
(τ1)φ′′n1

(0)〉 ,
R−++

3 (τ3, τ2, τ1) = −µn3 µn2 µn1〈µ(τ1 + τ2 + τ3)φ′∗n3
(τ1 + τ2)φ′′∗n2

(τ1)φ′′n1
(0)〉 ,

R−++
4 (τ3, τ2, τ1) = µn3 µn2 µn1 〈µ(τ1 + τ2 + τ3)φ′∗n3

(τ1 + τ2)φ′∗n2
(τ1)φ′′n1

(0)〉 .

• The case of ks = k1−k2+k3 is known as non-rephasing experiment. In this spatial direction,
the third-order response function involves three contributions:

R+−+
1 (τ3, τ2, τ1) = µn3 µn2 µn1 〈µ(τ1 + τ2 + τ3)φ′∗n3

(τ1 + τ2)φ′n2
(τ1)φ′∗n1

(0)〉 ,
R+−+

2 (τ3, τ2, τ1) = −µn3 µn2 µn1〈µ(τ1 + τ2 + τ3)φ′∗n3
(τ1 + τ2)φ′′n2

(τ1)φ′∗n1
(0)〉 ,

R+−+
4 (τ3, τ2, τ1) = µn3 µn2 µn1 〈µ(τ1 + τ2 + τ3)φ′′∗n3

(τ1 + τ2)φ′′n2
(τ1)φ′∗n1

(0)〉 ,

• The case of ks = k1 +k2−k3 is known as two-quantum experiment. In this spatial direction,
the third-order response function involves two contributions:

R++−
1 (τ3, τ2, τ1) = µn3 µn2 µn1 〈µ(τ1 + τ2 + τ3)φ′n3

(τ1 + τ2)φ′∗n2
(τ1)φ′∗n1

(0)〉 ,
R++−

3 (τ3, τ2, τ1) = −µn3 µn2 µn1〈µ(τ1 + τ2 + τ3)φ′′n3
(τ1 + τ2)φ′∗n2

(τ1)φ′∗n1
(0)〉 .

8Eq. (5.31) derives from the momentum conservation.

Figure 5.8: Double Feynman diagrams for rephasing 2D-Photon Echo experiment. Dotted line
represent the ground state, Single line represents the forward or backward propagation of a coherent
field, and double line represents the evolution of two electric excitations. The wiggly line represent
the incoming laser pulse interacting with the system, and the dashed line the vibron propagator
interacting between the forward and backward quantum evolution.
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Figure 5.9: Left panel: 2DEP map at τ2 for the model dimer. Right panel: time evolution
of the four peaks. The full lines correspond to diagonal peaks (in red (ω1, ω3) = (−1.54, 1.54)
eV and in blue (ω1, ω3) = (−1.26, 1.26) eV), the dashed lines represent off-diagonal peaks (in red
(ω1, ω3) = (−1.26, 1.54) eV and in blue ω1 = ω3 = (−1.54, 1.26) eV)

A further approximation consists in separating the quantum dynamics between the initial time
t0 = 0 and t in three distinct time evolution of the density matrix, i.e. the expectation value in
the previous equation is a product of three different correlation functions. In case of the rephasing
experiment the three components of the third-order response function become

R−++
2 (τ1, τ2, τ3) =− µn4µn3µn2µn1 〈φ′′n1

(0)φ′′∗k (τ1)〉 × 〈φ′′k(τ1)φ′′∗n3
(τ1 + τ2)φ′∗n2

(τ1)φ′m(τ1 + τ2)〉×
× 〈φ′∗m(τ1 + τ2)φ′n4

(τ1 + τ2 + τ3)〉 ,
R−++

3 (τ1, τ2, τ3) =− µn4µn3µn2µn1 〈φ′′n1
(0)φ′′∗n2

(τ1)〉 × 〈φ′∗n3
(τ1 + τ2)φ′n4

(τ1 + τ2 + τ3)〉 ,
R−++

4 (τ1, τ2, τ3) = µn4µn3µn2µn1 〈φ′′n1
(0)φ′′∗k (τ1)〉 × 〈φ′′k(τ1)φ′′∗m (τ1 + τ2)φ′∗n2

(τ1)φ′s(τ1 + τ2)〉×
× 〈φ′′m(τ1 + τ2)φ′′∗n4

(τ1 + τ2 + τ3)φ′∗s (τ1 + τ2)φ′′n4
(τ1 + τ2 + τ3)φ′∗n3

(τ1 + τ2)φ′′n4
(τ1 + τ2 + τ3)〉 .

In Fiq. 5.8 we show the relative double Feynman diagrams. For the following we would like to note
that it will be advantageous to evaluate the expressions of the third-order response function not
in τ1 and τ3 but in frequency domain by carrying out the Fourier transformation.

5.3.2 Dimer Model Dynamics in 2D Electronic Spectra
Let us now illustrate the theoretical framework to describe 2DPE spectroscopy introduced above
by applying it to the dimer model showed in section 5.2. Even though we need a more accurate
solution of Eq. (5.18) to compare our theoretical predictions to experimental results, we stress that
our QTFT formalism could be applied to simulate non-linear spectroscopy experiments. To this
aim we show this illustrative example.

In Fig. 5.9 we show the 2DEP map at τ2 = 0, where we can distinguish four peaks, and the time
evolution of them, on the right panel. The off-diagonal peaks show the typical coherence beating
behavior, which is damped after ∼ 50 fs. All the peaks reach an equilibrium value, as it has been
observed in the time evolution. In the simulation we used the following values for the site dipolar
momentum µ1 = 2 and µ2 = 1 9.

We observe that in order to compare theoretical prediction and experimental data we should
average over different configuration, varying the dipolar momentums µi, the onsite energies ei and
the hopping coefficient t, reproducing the intrinsic static disorder of the system.

9We assume that the laser polarization of the successive pulses is independent of i.
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Conclusion

In this thesis, we have developed a formalism to describe quantum transport in macromolecular
systems at room temperature. We used a path integral approach, which allows us to deal with
the dynamics of the atomic nuclei at the classical level, while keeping a fully quantum description
of the dynamics of the electronic excitations. The resultant Quantum Transport Field Theory
(QTFT) has been studied in three different time regimes, by means of different techniques used in
quantum field theory.

A first important advantage of our QTFT formalism is that it makes it possible to describe real-
time dynamics in an open quantum system by computing a vacuum-to-vacuum Green’s functions,
in a closed system at zero-temperature.

A second important feature of our theory is that the tight-binding parameters can be ob-
tained directly from microscopic ab-initio calculations. The information about the configuration-
dependent electronic structure of the molecule is implicitly encoded in the parameters appearing
in the QTFT. These are determined once and for all by means of quantum-chemistry calculations.

In short-time and short-distance regime, the mapping of the quantum transport dynamics
on four-point correlation functions has proved useful. Indeed, it immediately yields the Feynman
rules needed to perturbatively compute the corrections to the density matrix due to the interaction
between the propagating excitation, the nuclear motion and the heat bath degrees of freedom.

For illustration purposes, we developed a coarse-grained model and applied this formalism
to investigate the intra-chain propagation of holes in a conjugate polymer. We found that the
propagation can be perturbatively describe up to about 40-50 fs. Beyond that time scale, non-
perturbative approaches are required. An alternative non-perturbative approach consists in directly
integrating the quantum and stochastic equation of motions which follow from a functional saddle-
point approximation. The comparison with the analytic perturbative calculations has shown that
the underlying saddle-point approximation is quite robust. However, a large number of trajectories
seems to be necessary in order to resolve the small effects of the interaction with the heat bath
and with the vibronic modes.

The possibility of performing analytic calculations opens the door to a detailed investigation of
the effects generating quantum decoherence in molecular systems coupled to a heat bath. In the
studied example, we have identified a specific Feynman diagram which dominates the dissipation
of the quantum coherence, and correlates forward and backward propagating fields.

In order to study the long-time and large-distance regime, we systematically coarse-grained the
dynamics using the RG formalism. Starting from the microscopic QTFT, we developed a rigorous
“low-energy” effective description of the dissipative quantum propagation in the limit in which the
quantum excitation travels for a long time and covers distances which are large compared to its de
Broglie’s thermal wavelength (λB). The RG provides a rigorous framework to vary the degree of
space- and time- resolution, thereby gaining access the mesoscopic regime.

We set the spatial and time resolution powers of our EFT, introducing the length cut-off scale
λ and the time scale ∆t, respectively. Afterwards, we analytically computed the evolution of the
probability density, by writing down a perturbative expansion in the small parameter ξ2 = λ2

B/λ
2.

Our final results show that, in the asymptotically long-time and long-distance regime, the emerging
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dynamics of the quantum excitation reduces to a classical diffusion process. At intermediate times,
such a diffusive dynamics is modified by quantum corrections.

The advantage of this coarse-grained approach is that the resulting “low-resolution” EFT is
much simpler than the corresponding microscopic QTFT and it is analytically solvable. We illus-
trated our formalism by studying hole propagation in a long homo-DNA molecular wire. Com-
parison with numerical simulations show that, even at the leading-order level, the effective theory
yields very accurate predictions.

In the intermediate regime, we applied the resummation scheme to develop a non-perturbative
approach which retains microscopic details. Firstly, we apply the diagrams resummation scheme
on the computation of forward and backward time evolution Green’s functions. Then we derive
a Bethe-Salpeter like equation for the quantum Liouvillian operator. We showed that in the
Markovian limit we are able to recover a Lindblad quantum master equation.

In the non-Markovian case we discuss two different physical limits, in which we recover the
dephasing and dissipative nature of our quantum Liovillian operator and we find an analytic
expression for the time evolution of the density matrix. For illustrative purpose, we applied it to
study the exciton dynamics in a dimer model. We find that this solution is able to reproduce the
exciton transfer from donor to acceptor. However it is clear that the approximations used to derive
these equations are too drastic and in particular the diagonal limit for the tensor expressing the
exciton-vibron coupling. Indeed the resulting excitons dissipate all the energy and at long time
only the lowest energy is populated.

We review the semiclassical method to study 2DEP spectroscopy experiment, applying our
QTFT formalism to describe this experimental problem. Finally, we illustrate the feasibility to
predict 2DPE Spectroscopy experiments on a simple model of a dimer.

Even if there was a considerable improvement in the accuracy going from the perturbation ap-
proach to the resummation technique introduced in this thesis, the development of new techniques
and the refinement of the proposed non-perturbative approaches are needed in order to retain
theoretical predictions that can be compared to experimental data. Since the coherent-state path
integral is affected by a dynamical sign problem, Monte Carlo approaches would be challenging.
An alternative non-perturbative approach not requiring stochastic averages could be provided by
a self-consistent saddle-point approximation of our microscopic EFT.

Finally, we conclude that this framework can be used to tackle a variety of problems involving
quantum transport, ranging from exciton transfer in natural or artificial photosynthetic complexes
to charge transfer in biological or organic polymers, or organic transistors. It would be interesting
to apply this EFT to study the decoherence mechanism in the FMO complex, or to more general
open quantum systems. The role and the physical interpretation of diagrams in perturbation
theory in different systems is still an open question. A further direction could be the development
of our EFT formalism to compute the electric current induced by external electric fields, in order
to directly investigate the I−V characteristic of organic thin-film transistors and molecular wires.
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Appendix A

Details on Chapter 2

A.1 Coherent Path integral representation
In this thesis we used the coherent quantum field path integral representation to describe the
quantum transport through a macromolecule. In this Appendix we briefly review some general
features of the coherent states, focusing on the formulation of coherent path integrals [124, 125].

Coherent states are a basis of of a many-particle Hilbert space, defined as the eigenstates of
the annihilation or creation operators

am|Φ〉 = φm|Φ〉 , or 〈Φ|a†m = φ∗m〈Φ| ,
where φm and φ∗m are the corresponding complex eigenvalues, and each elements of Φ = (φ1, . . . , φN )
represents the coherent state related to the annihilation of an excitation on the m-site.
By this definition, we can demonstrate the following properties: this definition is equivalent,

|Φ〉 = e
∑

m
φma

†
m |0〉 , or 〈Φ| = 〈0|e

∑
m
φmam ,

they satisfy this relation of overcompletness,∫ ∏
m

dφm dφ∗m
2πi e−

∑
m
φmφ

∗
m |Φ〉〈Φ| = 1 ,

and these adjoint relations are valid,

a†m|Φ〉 = − ∂

∂φm
|Φ〉 , and 〈Φ|am = 〈Φ| ∂

∂φm
.

In this thesis we express the reduced density matrix ρij in the site or energy level basis. Here,
we show how switch from a complete basis, such as the site basis, to the coherent state basis and
viceversa. A generally density matrix formulated in the coherent state basis, reads

〈φ′t|ρ(t)|φ′′t 〉 =
∫
dµ(φ′0)dµ(φ′′0)〈φ′0|ρ(t)|φ′′0〉∫
D[φ′, φ

′∗, φ′′, φ
′′∗] eφ

′∗
t φ
′
t+φ

′′∗
0 φ′′0 e

i
~S[φ′,φ

′∗,φ′′,φ
′′∗]

where the integration measure over initial coherent states is defined dµ(φ) =
∏
i e
−φ∗i φidφ∗i dφi. The

relations between the coherent basis and the site basis used through this thesis are the following:

ρij = 〈0|ai ρ a
†
j |0〉 =

∫
dµ(φ′)dµ(φ′′)〈0|ai|φ′〉〈φ′|ρ|φ′′〉〈φ′′|a†j |0〉

=
∫
dµ(φ′)dµ(φ′′) φ′φ′′∗ 〈φ′|ρ|φ′′〉 ,

〈φ′|ρ|φ′′〉 =
∑

ij

〈φ′|i〉〈i|ρ|j〉〈j|φ′′〉 =
∑

ij

〈φ′|a†i |0〉ρij〈0|aj|φ′′〉 =
∑

ij

φ′∗φ′′ρij
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A.2 Saddle-point Approximation
In sections 2.3 and 2.4 we used the estimation of the path integral (2.17) at mean field level, to
derive the classical limit for the molecular dynamics and to derive a set of coupled equations which
describe quantum evolution influenced by molecular dynamics. In this Appendix we perform this
approximation following Ref.s [78] and [87] .
To implement the saddle-point approximation we introduce this obvious sum-rule:

1 =
∑
kf

ρkfkf (t) ∀ t , (A.1)

which tell us that the probability to observe the quantum excitation everywhere is one1. In order
to analyse at mean field level the evolution of the reduced density matrix, we need to introduce a
set of tensor fields ρ′lm(t),ρ′′lm(t), σ′lm(t) and σ′′lm(t) into the path integral in Eq. (A.1). Exploiting
the functional generalization of the following Dirac property

1 =
∫
Dρ
′
δ
(
ρ
′

lm − φ
′∗
l φ
′

m

)
=
∫
Dσ

′
Dρ
′
e
i
~

∫ t
0
dt′σ

′
lm

(
ρ′lm−φ

′∗
l φ
′
m

)
,

1 =
∫
Dρ
′′
δ
(
ρ
′′

lm − φ
′′∗
l φ

′′

m

)
=
∫
Dσ

′′
Dρ
′′
e
− i

~

∫ t
0
dt′σ

′′
lm

(
ρ
′′
lm−φ

′′∗
l φ

′′
m

)
.

we obtain the new expression for the sum-rule (A.1)

1 =
∫
Dρ
′
Dρ
′′
Dσ

′
Dσ

′′
∫
Q0

DR
∫ 0

0
Dy e i~F [R,y,ρ

′
,ρ
′′
,σ
′
,σ
′′

] e
log
(∑

kf
gfkf

[σ′]gbkf [σ′′]
)
, (A.2)

where the functional F is defined by

F [R, y, ρ
′
, ρ
′′
, σ
′
, σ
′′
] =

∫ t

0
dt′
{
σ
′

lmρ
′

lm − σ
′

lmρ
′′

lm +MṘẏ − V [R+ y/2] + V [R− y/2]−(
flm [R+ y/2] ρ

′

lm − flm [r − y/2] ρ
′′

lm

)
+ i

(
MγKBT

~
y2(t′) + iMγ Ṙ · y

)}
,

and gfkf and gbkf are the following two point correlation functions:

gfkf [σ
′
] = 〈0|φ

′

kf (t)φ
′∗
ki(0)|0〉 =

∫
Dφ

′
Dφ

′∗ φ
′

kf (t)φ
′∗
ki(0) e−φ

′∗
m(0)φ

′
m(0) e

i
~S[φ′∗,φ′,σ

′
],

gbkf [σ
′′
] = 〈0|φ

′′

ki(0)φ
′′∗
kf (t)|0〉 =

∫
Dφ

′′
Dφ

′′∗φ
′′

ki(0)φ
′′∗
kf (t) e−φ

′′∗
m (t)φ

′′
m(t) e−

i
~SMF [φ

′′
,φ
′′∗,σ

′′
] ,

which correspond to the forward propagator gf and backward propagator gb of a system described
by this new σ-dependent action

SMF [φ∗, φ, σ] =
∫
dt′φ∗l (t′)

(
i~

∂

∂t′
δlm − σlm(t′)

)
φm(t′)

We note that, until now we have not introduced any approximation, indeed path integral in
Eq. (A.2) is still an exact representation of the sum-rule.
In general, the saddle-point solution consists in finding the path ψ̄ that minimize the action S, i.e.∫

Dψ e
i
~S[ψ] −→ δS[ψ̄]

δψ
= 0 .

In our case we implement this approximation by imposing the stationarity of the exponents, in
Eq. (A.1), with respect to the tensor fields σ′lm, σ′′lm, ρ′lm and ρ′′lm and with respect to the molecular
paths y and R.

1 We have not introduce in the model (2.1) any operator that model sink or source behavior related to the
quantity transported. Therefore, this model conserves the number of “particles”
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• Imposing the stationarity with respect to the R(t′) and y(t′) path leads to the equations

Mÿ −Mγẏ + 2 ∂
∂y

(
V
[
R+ y

2

]
+ V

[
R− y

2

]
+ flm

[
R+ y

2

]
ρ
′

lm + flm

[
R− y

2

]
ρ
′′

lm

)
= 0

MR̈+MγṘ+ 1
2
∂

∂R

(
V
[
R+ y

2

]
+ V

[
R− y

2

]
+ flm

[
R+ y

2

]
ρ
′

lm + flm

[
R− y

2

]
ρ
′′

lm

)
= i

Mγ

~β
y

We remember that in Eq. (A.2) we have the further border constraint y(0) = y(t) = 0.
Therefore, the saddle-point solution for the fluctuations path y is

y(t′) = 0 ∀t′ .

• Imposing the stationarity with respect to the density tensor fields ρ′lm(t′) and ρ′′lm(t′), and
to the conjugate fields σ′lm(t′) and σ′′lm(t′), leads to the equations

σ
′

lm(t′) = flm

[
R(t′) + y(t′)

2

]
, σ

′′

lm(t′) = flm

[
R(t′)− y(t′)

2

]
, and

ρ
′

lm(t′) = 〈0|φ
′

kf (t)φ
′∗
l (t′)φ

′

m(t′)φ
′∗
ki(0)|0〉 =∑

kf g
b[σ′′]∑

kf g
f [σ′]gb[σ′′]

∫
Dφ

′
Dφ

′∗
[
φ
′

kf (t)φ
′∗
l (t′)φ

′

m(t′)φ
′∗
ki(0)

]
e−φ

′∗
m(0)φ

′
m(0)e

i
~SMF [φ

′
,φ
′′∗,σ

′
],

ρ
′′

lm(t′) = 〈0|φ
′′

ki(0)φ
′′∗
l (t′)φ

′′

m(t′)φ
′′∗
kf (t)|0〉 =∑

kf g
f [σ′]∑

kf g
f [σ′]gb[σ′′]

∫
Dφ

′′
Dφ

′′∗
[
φ
′′

ki(0)φ
′′∗
l (t′)φ

′′

m(t′)φ
′′∗
kf (t)

]
e−φ

′′∗
m (t)φ

′′
m(t)e−

i
~SMF [φ

′′
,φ
′′∗,σ

′′
] ,

This set of saddle-point equation for the tensor fields is satisfied by imposing the following
identities

σ
′

lm(t′) = σ
′′

lm(t′) = flm[R(t′)] , ρ
′

lm(t′) = ρ
′′

lm(t′) = ρlm(t′) .

Two important consequence of this approximation are that forward and backward evolution
in time are the same, and that the tensor field ρlm coincides with the reduced density matrix,

ρlm(t) = 〈ψ(t)|a†l am|ψ(t)〉

where the quantum state |ψ(t)〉 is defined by

|ψ(t)〉 ≡ T e
− i

~

∫ t
0
dτ{flm[R(τ)]a†l am} |ki〉 .

Finally, we note that the molecular path R is solution of the following deterministic differential
equation

MR̈(t′) +MγṘ(t′) + ∂

∂R

(
V [R(t′)] + flm [R(t′)] ρ

′

lm(t′)
)

= 0 , (A.3)

with initial condition R(0) = Q0. Only going beyond saddle-point approximation in the variable
y, i.e. taking in account fluctuations around the minimal action path y = 0, we are able to include
thermal noise, obtaining the classical Langevin equation (see Ref. [87]).
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A.3 Derivation of Onsager-Machlup functional
In section 2.3 we introduce the Onsager-Machlup action, observing that it corresponds to the
statistical weight to the stochastic trajectories in the Langevin dynamics. Here, we review the cor-
responding path integral formulation of the classical Langevin dynamics. Starting from Langevin
equation we derive the conditional probability to reach a configuration Qf after a time t in the
form of a Feynman path integral in Eq. (A.10), that Adib proved to be an equivalent formulation
of the Onsager-Machlup action [127].

Let us introduce the over-damped Langevin equation[126]:

q̇α = − 1
Mγ

∂

∂qα
V (Q) + η(t), (α = 1, . . . , Np) , (A.4)

where γ is the friction coefficient, V (Q) is the potential energy function entering in Eq. (2.6) and
η(t) is delta-correlated Gaussian noise, satisfying the fluctuation-dissipation relationship:

〈ηα(t′) · ηβ(t)〉 = 6kBT
Mγ

δαβ δ(t− t′) (α, β = 1, . . . , Np) . (A.5)

Note that in the original Langevin equation there is a mass term Mq̈. However, for macro-
molecular systems this term is damped at a time scale 10−13 s, which much smaller than the time
scale associated to local conformational changes.

The stochastic differential Eq. (A.4) generates a time dependent probability distribution P (Q, t)
which obeys the well-known Smoluchowski equation:

∂

∂t
P (Q, t) = kBT

Mγ
∇
[
∇P (Q, t) + 1

kBT
∇V (Q)P (Q, t)

]
. (A.6)

By performing the formal substitution

P (Q, t) = e
− 1

2kBT
V (Q) Ψ(Q, t) ,

the Smoluchowski Eq. (A.6) can be recast in the form of an imaginary time Schrödinger equation:

− ∂

∂t
Ψ(Q, t) = Ĥeff Ψ(Q, t) ,

where

Ĥeff = −kBT
Mγ
∇̂2 + V̂eff (Q) , (A.7)

is an effective Hamiltonian operator and

Veff (Q) = 1
4kBTMγ

(
(∇V (Q))2 − 2kBT∇2V (Q)

)
. (A.8)

The conditional probability P (Qf , t|Q0) to find the system at the configuration Qf at time
t, provided it was prepared in the configuration Q0 at time t = 0 is the Green’s function of
the Smoluchowski equation, and can be related to the imaginary time propagator of the effective
“quantum” Hamiltonian (A.7):

Pt(Qf |Q0) = e
− 1

2kBT
(V (Q)−V (Q0)) 〈Qf |e−tHeff |Q0〉 . (A.9)

Using such a connection, it is immediate to obtain an expression of the conditional probability
(A.9) in the form of a Feynman path integral

Pt(Qf |Q0) = e
−
V (Qf )−V (Q0)

2kBT

∫ Qf

Q0

Dr e−Seff [r], (A.10)
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where

Seff [r] =
∫ t

0
dt′

(
Mγ

ṙ2

4kBT
+ Veff [r]

)
, (A.11)

is called the effective action. The conditional probability Pt(Qf |Q0) is sometimes written also in
the following equivalent form:

Pt(Qf |Q0) =
∫ Qf

Q0

Dr e−SOM [r] , (A.12)

where SOM [r] is the so-called the Onsager-Machlup functional,

SOM [r] =
∫ t

0
dt′

Mγ

4kBT

(
ṙ + 1

Mγ
∇V (r)

)2
, (A.13)

Proving the equivalence between the expressions (A.10) and (A.12) is not straightforward, since it
involves elements of stochastic calculus [127, 108].

A.4 Details on the vibronic Green’s functions structure
In performing the path integral over the δr and y variables, we exploit the standard result for
Gaussian functional integrals:∫

Dφ exp
[
−
∫ t

0
dt′dt′′ φi(t′)Aij(t′ − t′′)φj(t′′) +

∫ t

0
dt′Bi(t′)φi(t′) + C

]
=√

π

detAij
exp

[
1
4

∫ t

0
dt′dt′′ Bi(t′)A−1

ij (t′ − t′′)Bj(t′′) + C

] (A.14)

The vibronic two-point functions ∆ij(t′ − t′′) and Vij(t − t′), which enter in Eq. (2.26) are
contracted from the Green’s functions of the L̂†L̂, L̂ and L̂† operators:

∆ij(t) ≡
[
L̂†L̂

]−1
(t) =

[ (
M∂2

t δij + γM∂tδij +Hij
) (
M∂2

t δij − γM∂tδij +Hij
) ]−1

,

Vij(t) ≡
[
L̂†
]−1

(t) +
[
L̂
]−1

(t) =
[
M
(
∂2
t + γ∂t

)
δij +Hij

]−1+
[
M
(
∂2
t − γ∂t

)
δij +Hij

]−1
.

In order to compute them it is convenient to consider the Fourier transform to frequency space.
We also transform into the normal mode basis, by applying the unitary transformation Û which
diagonalizes the Hessian operators. We obtain:

∆̃ij(ω) = 1
M2U

†
in

[ (
ω2 − iγω − Ωn

) (
ω2 + iγω − Ωn

) ]−1
Unj , (A.15)

Ṽij(ω) = −1
M
U†in

[ (
ω2 − iγω − Ωn

)−1 +
(
ω2 + iγω − Ωn

)−1
]
Unj , (A.16)

where Hij is the Hessian, and Ωn are the corresponding normal modes. The expressions (2.29) and
(2.30) for ∆ij(t) and Vij(t) are obtained by Fourier transforming back to the time representation,
taking the continuum limit for the Fourier sum.
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Appendix B

Details on Chapter 3

B.1 Details on the perturbative calculations
The following traces enter the derivation of the perturbative estimate (3.14):

tr [γ−γ5γ+γ5] = 1 ,
−tr [γ−γ0] = tr [γ+γ0] = 1 ,

−tr [γ−γ0γ−γ5γ+γ5] = tr [γ−γ5γ+γ0γ+γ5] = 1 ,
tr [γ−γ5γ+γ0γ+γ0γ+γ5] = tr [γ+γ5γ−γ0γ−γ0γ−γ5] = 1 ,

In this thesis we did not introduce spin components for the fermionic excitations, because they are
unnecessary for our purposes. We notice that an alternative definition is proposed in Ref. [1], in
which the spin components are introduced.

B.2 Quantifying Quantum Decoherence
In this appendix we review the proof that the ratio

R(t) = Tr[ρ̂2(t)]/Tr[ρ̂(t)] ,

provides a measurement of the degree of decoherence of the system.
We first consider a pure state, denoted by the vector |χ〉, and we represent the corresponding

density operator with ρ̂ = |χ〉〈χ|, so that Tr[ρ̂] = 〈χ|χ〉.
The operator ρ̂2 reads ρ̂2 = |χ〉〈χ|χ〉〈χ|, while its trace is

Tr[ρ̂2] = 〈χ|χ〉 = (Tr[ρ̂])2,

hence R(t) = 1. For a mixed state, there is no single state vector describing the system, and
R(t) < 1.
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Appendix C

Details on Chapter 4

C.1 From Second to First quantization formalism

In section 4.2.2, we have shown that the probability density for the quantum excitation at a given
time t can be written in the following form

P (y, t|x, 0) =
∫ y

x
DX

∫ y

x
DY e

i
~S0[X]e−

i
~S0[Y] e

i
~ (I[X,Y]+J[X,Y]), (C.1)

where X[τ ] and Y[τ ] denote paths in coordinate space of quantum excitation described by the
coherent fields φ′ and φ

′′ . This path integral formulation is originated by the translation into
the first quantized formalism the field representation in Eq. (4.9). In this appendix, we explicitly
derive the functionals I[X,Y] and J [X,Y].

C.1.1 Derivation of the I and J functionals

In order to switch to the first-quantized formalism the field-theoretic function Seffint , in Eq. (4.14),
we have to perform the following replacement:

φ
′∗(x, t)φ

′
(x, t)→ δλ (x−X(t)) ,

φ
′′∗(x, t)φ

′′
(x, t)→ δλ (x−Y(t)) ,

(C.2)

where X[τ ] and Y[τ ] are the paths in coordinate space of quantum excitation described by the
coherent fields φ′ and φ′′ , respectively. In Eq. (C.2), we denote with δλ the smeared representation
of the δ-function, which is defined in Eq. (4.15).

J [X,Y] functional

The functional J follows from the Hermitian term in Eq. (4.14):

SJ ≡
∫
dt′′
∫
dt′
∫
dz
{
ψ̄(z, t′)ψ(z, t′)

[
A0
vδ(t′ − t′′)− i~A1

d

d

d(t′ − t′′)

]
ψ̄(z, t′′) γ0 ψ(z, t′′)

}
=
∫
dT

∫
dτ

∫
dz
{
ψ̄(z, T + τ

2 )ψ(z, T + τ

2 )
[
A0
vδ(τ)− i~A1

v

d

dτ
δ(τ)

]
ψ̄(z, T − τ

2 )γ0ψ(z, T − τ

2 )
}
.
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After expanding the ψ and ψ̄ fields into their components1 φ
′
, φ
′′ , we obtain two symmetric terms,

SJ = SJ1 − SJ2 , where

SJ1 =
∫
dT

∫
dτ

∫
dz φ

′∗(z, T + τ

2 )φ
′
(z, T + τ

2 )
[
A0
vδ(τ)− i~A1

v

d

dτ
δ(τ)

]
φ
′∗(z, T − τ

2 )φ
′
(z, T − τ

2 ) ,

SJ2 =
∫
dT

∫
dτ

∫
dz φ

′′∗(z, T + τ

2 )φ
′′
(z, T + τ

2 )
[
A0
vδ(τ)− i~A1

v

d

dτ
δ(τ)

]
φ
′′∗(z, T − τ

2 )φ
′′
(z, T − τ

2 ) .

In first quantization representation, applying replacement in Eq. (C.2), they translate into

SJ1 → J1 =
∫
dT

∫
dτ

∫
dz
{
δλ

(
z−X(T + τ

2 )
)[
A0
vδ(τ)− i~A1

v

d

dτ
δ(τ)

]
δλ

(
z−X(T − τ

2 )
)}

,

SJ2 → J2 =
∫
dT

∫
dτ

∫
dz
{
δλ

(
z−Y(T + τ

2 )
)[
A0
vδ(τ)− i~A1

v

d

dτ
δ(τ)

]
δλ

(
z−Y(T − τ

2 )
)}

.

So that SJ → J = J1 − J2.
It is immediate to check that the terms proportional to A1

v vanish identically, while the terms
proportional to A0

d cancel out in the difference between J1 and J2. Hence, J = 0. This result is
expected, indeed the interaction terms in the functional SJ do not couple forward- and backward-
propagating excitations, hence only contribute to the dressing of the one-body propagator (see
discussion in section 3.1).

I[X,Y] functional

The dissipative character of the effective theory comes from the non-Hermitian term in the func-
tional (4.14),

SI ≡
i

β2D~

∫
dT

∫
dτ

∫
dz
{
ψ̄(z, t′)ψ(z, t′)

[(
A0
d − i~A1

d

d

d(t′ − t′′)

)
δ(t′ − t′′)

]
ψ̄(z, t′′)ψ(z, t′′)

}
= i

β2D~

∫
dT

∫
dτ

∫
dz ψ̄(z, T + τ

2 )ψ(z, T + τ

2 )
[
A0
dδ(τ)− i~A1

d

d

dτ
δ(τ)

]
ψ̄(z, T − τ

2 )ψ(z, T − τ

2 ) .

After expanding the ψ and ψ̄ fields into their components φ′ and φ′′ , we obtain:

SI = i

β2D~
(SI1 + SI2 − 2SI3) ,

where

SI1 =
∫
dT

∫
dτ

∫
dz φ

′∗(z, T + τ

2 )φ
′
(z, T + τ

2 )
[
A0
dδ(τ)− i~A1

d

d

dτ
δ(τ)

]
φ
′∗(z, T − τ

2 )φ
′
(z, T − τ

2 ) ,

SI2 =
∫
dT

∫
dτ

∫
dz φ

′′∗(z, T + τ

2 )φ
′′
(z, T + τ

2 )
[
A0
dδ(τ)− i~A1

d

d

dτ
δ(τ)

]
φ
′′∗(z, T − τ

2 )φ
′′
(z, T − τ

2 ) ,

SI3 =
∫
dT

∫
dτ

∫
dz φ

′∗(z, T + τ

2 )φ
′
(z, T + τ

2 )
[
A0
dδ(τ)− i~A1

d

d

dτ
δ(τ)

]
φ
′′∗(z, T − τ

2 )φ
′′
(z, T − τ

2 ) ,

Let’s begin by analyzing the SI1 part. In first quantization representation it translates as

i

β2D~
SI1 → I1 = iA0

d

β2D~

∫ t

0
dT

∫
dz δλ(X− z) δλ(X− z)

− A1
d

β2D

∫ t

0
dT

∫
dτ

∫
dz δ(τ) d

dτ

[
δλ

(
z−X(T + τ

2 )
)
δλ

(
z−X(T − τ

2 )
)]

.

1 We recall that ψ̄(x, t) = (φ′∗(x, t),−φ′′∗(x, t)) and ψ(x, t) = (φ′ (x, t), φ′′ (x, t))
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The term proportional to A1
d vanishes identically, while the term proportional to A0

d is independent
on the paths and reads (setting to d = 3 the number of spatial dimensions)

I1 = i

β2D~

√
det[m]

(4Tr[m] λ2π)3/2 A0
d t .

Clearly, by symmetry, we find that SI2 → I2 = I1.
Let us now consider the cross-term SI3 , which couples forward and backward propagating paths.

Translating into the first quantization form, we obtain
−2i
β2D~

SI3 → I3 = −2iA0
d

β2D~

∫ t

0
dT

∫
dz δλ(z−X(T ))δλ(z−Y(T ))

+ 2A1
d

β2D

∫ t

0
dT

∫
dτ

∫
dzδ(τ) d

dτ

[
δλ(z−X(T + τ

2 )) δλ(z−Y(T − τ

2 ))
]

After writing explicitly the smeared representation of the δ-function and evaluating the correspond-
ing Gaussian integrals we find:

I3 = −
√

det[m]
β2D~(4πTr[m]λ2)3/2

∫ t

0
dT e

−mij(X−Y )i(X−Y )j
4 Tr[m]λ2

(
i2A0

d −
~A1

d

2Tr[m]λ2 mij(Y −X)i(Ẏ + Ẋ)j
)

C.2 Perturbative calculation of the exciton probability den-
sity

In this appendix we provide some details on the perturbative calculation of the density P (x, t|xi)
to order ξ2, which has been introduced in section 4.3.

As a first step, we expand the path integral in Eq. (4.30) to order ξ2

P1(y, t|x, 0) =
∫ y

x DR e−S0−ξ2S1∫
dy
∫ y

x DR e−S0−ξ2S1
'

∫ y
x DR (1− ξ2S1)e−S0∫

dy
∫ y

x DR (1− ξ2S1)e−S0

' P0(y, t|x, 0)− ξ2∆P1(y, t|x, 0) ,

where the classical probability density reads

P0(y, t|x, 0) =
∫ y

x DR e−S0∫
dy
∫ y

x DR e−S0
, (C.3)

and the leading-order quantum corrections read

∆P1(y, t|x, 0) =
∫ y

x DR S1e
−S0∫

dy
∫ y

x DR e−S0
− P0(y, t|x, 0)

∫
dy
∫ y

x DR S1e
−S0∫

dy
∫ y

x DR e−S0
. (C.4)

We recall that in the previous equations S0 =
∫ t

0 dτ
1

4Db0
Ṙ2 is the free diffusion action, while

S1 =
∫ t

0 dτ (Cb4 Ṙ4 − Cb2 Ṙ2) are the quantum correction derived in section 4.2.3. To perform
integrals in Eq.s (C.3) and (C.4), we discretize the time interval [0, t] in N slices, obtaining the
following discrete actions

S0 '
N∑
i=1

1
4Db

2

∆R2
i

∆t , S1 '
N∑
i=1

(
Cb4

∆R4
i

∆t3 − C
b
2

∆R2
i

∆t

)
,

where ∆Ri = Ri −Ri−1. The resulting integrals are∫ y

x
DR e−S0 → PN0 =

∫ RN=y

R0=x

N−1∏
i=1

dRi e
− 1

4Db2

∑N

i=1

∆R2
i

∆t
, (C.5)

∫ y

x
DR S1e

−S0 → PN1 =
∫ RN=y

R0=x

N−1∏
i=1

dRi

N∑
i=1

(
Cb4

∆R4
i

∆t3 − C
b
2

∆R2
i

∆t

)
e
− 1

4Db2

∑N

i=1

∆R2
i

∆t
. (C.6)
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To perform these discrete path integrals, we compute integrals slice by slice. This iteration can be
evaluated analytically, thanks to the following property of the Gaussian integral:∫

dRi e
− (Ri−Ri−1)2

4Db2 ∆t e
− (Ri+1−Ri)2

4Db2 ∆t = e
− (Ri+1−Ri−1)2

4Db2 (2∆t)

(
4Db

2π dt

2

)3/2

.

Applying the last formula to compute PN0 in Eq. (C.5), we obtain

PN0 = e
− (y−x)2

4Db2 (N∆t)

(
4Db

2π dt

N

)3/2(N−1)

,

and taking the continuous limit N →∞ with Ndt = t we derive the result written in Eq. (4.33).
Analog procedure has been followed to compute the discrete path integral PN1 , and derive the

quantum leading-order corrections of diffusive time evolution in Eq. (4.32).
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Appendix D

Details of Chapter 5

D.1 One-particle self-energy corrections

In the Dyson’s Equation derived in section 5.1.1, we introduced the one-particle self-energy Σ.
This quantity takes into account the effects due to an exchange of a vibron along the quantum
evolution of a quantum fields φ′(′′). In Fig. D we show the Feynman diagram corresponding this
loop correction. In the time domain the forward and backward self-energies read

Σforwqq′ (τ, τ ′) = −f lq′s′
(

2Mγ

β~2 ∆lh(τ ′ − τ) G(0)+
s′s (τ)− i

2~V
1
lh(τ ′ − τ) G(0)+

s′s (τ)
)
fhsq ,

Σbackqq′ (τ, τ ′) = −f lq′s′
(

2Mγ

β~2 ∆lh(τ − τ ′) G(0)−
s′s (τ) + i

2~V
2
lh(τ − τ ′) G(0)−

s′s (τ)
)
fhsq .

where the ∆ and V are the vibronic Green’s function described in Appendix A.4, G(0)+ and G(0)−

are the forward and backward unperturbed Green’s functions introduced in Sec. 3.1.2.
In Sec. 5.1.1 we switch on the frequency space by means of a Fourier transformation. In frequency
space, the one-particle self-energies Σ are described by a loop integral that we are able to compute.
The expression for the forward self-energy is

Σforwq′q (ω) = f lq′s′

[∫
dν

(
−2Mγ

β~2 ∆̃lh(ν)− i

2~ Ṽ
1
lh(ν)

)
Gforws′s (ω − ν)

]
fhsq ,

= f lq′s′ U
†
lnV

†
s′m

(
i(ε0m − ω) + γ + i

2β~Ω2
n

βMΩ2
n~2(Ω2

n − (ε0m − ω)(ε0m − iγ − ω))

)
VmsUnh f

h
sq , (D.1)

Figure D.1: Diagrammatic representation of Self energy contributions, which enter in Dyson’s
Equation (5.2) and are computed in Appendix D.1. The single line is the unperturbed Green’s
function Gf0

i j, the dashed lines represent the two effective interaction terms, ∆ij and Vij , introduced
in section 3.1.
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Figure D.2: Absolute value of the real (full line) and imaginary (dashed lines, red forward and
blue backward) part of the Self-energy functions in Eq.s (D.1) and (D.2). In the plot we used
ε0m = 1.4 eV, Ωn = 0.001 eV, γ = 0.1 eV, M = 100 uma, and T = 300 K.

while the similar formular for the backward case reads

Σbackq′q (ω) =
∫
dν

(
−2Mγ

β~2 ∆̃lh(ν) + i

2~ Ṽ
2
lh(ν)

)
f lq′s′ G

back
s′s (ω − ν) fhsq ,

= f lq′s′ U
†
lnV

†
s′m

(
i(ε0m − ω)− γ + i

2β~Ω2
n

βMΩ2
n~2(Ω2

n − (ε0m − ω)(ε0m + iγ − ω))

)
VmsUnh f

h
sq . (D.2)

In Fig. D.2 we show the self-energy absolute values in function of the frequencies ω. We notice
that these quantity are peaked around the corresponding energy level ε0m, and the maximum is
small in comparison to the energy levels (max[Σ(ω)]/ε0 ∼ 10−2).

D.2 Derivation of Bethe-Salpeter like Equation for Γ

In section D.2, we derived the self-consist Eq. (5.9) for the function Γ. Here, we show the detailed
derivation.

Replacing the definition of Γ in Eq. (5.8) in the Ladder expansion (5.7), we obtain

∫
dω1dω2 Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) =

∫
dω1

{
Gfik(ω1) Gblj(ω1 − ω)

+
∫
dν Gfik(ω1)Gblj(ω1 − ω)∆(ν)Gfik(ω1 + ν)Gblj(ω1 − ω + ν)

+
∫
dνdν′Gfik(ω1)Gblj(ω1 − ω)∆(ν)Gfik(ω1 + ν)Gblj(ω1 − ω + ν)∆(ν′)×

× Gfik(ω1 + ν + ν′)Gblj(ω1 − ω + ν + ν′) + . . .
}
.

(D.3)

On the right side we introduce a second integral identifying the final frequency ω2 by means of
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dirac deltas,∫
dω1dω2 Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) =

∫
dω1dω2

{
Gfik(ω1) Gblj(ω1 − ω)δ(ω1 − ω2)

+
∫
dν Gfik(ω1)Gblj(ω1 − ω)∆(ν)Gfik(ω1 + ν)Gblj(ω1 − ω + ν)δ(ω1 + ν − ω2)

+
∫
dνdν′Gfik(ω1)Gblj(ω1 − ω)∆(ν)Gfik(ω1 + ν)Gblj(ω1 − ω + ν)∆(ν′)×

× Gfik(ω1 + ν + ν′)Gblj(ω1 − ω + ν + ν′)δ(ω1 + ν + ν′ − ω2) + . . .
}
.

(D.4)

Then, we collect the interaction term Gfik(ω1)Gblj(ω1 − ω)∆(ν):∫
dω1dω2 Γij kl (ω1, ω1 − ω; ω2, ω2 − ω) =

∫
dω1dω2

{
Gfik(ω1) Gblj(ω1 − ω)δ(ω1 − ω2)

+
∫
dν Gfik(ω1)Gblj(ω1 − ω)∆(ν)

[
Gfik(ω1 + ν)Gblj(ω1 − ω + ν)δ(ω1 + ν − ω2)

+
∫
dν′Gfik(ω1 + ν)Gblj(ω1 − ω + ν)∆(ν′)Gfik(ω1 + ν + ν′)Gblj(ω1 − ω + ν + ν′)×

× δ(ω1 + ν + ν′ − ω2) + . . .
]}

.

(D.5)

Finally, imposing the equivalence between the integrands and identifying the Γ function on the
right we obtain Eq. (5.9).

D.3 Lindblad Equation
The most general Markovian and time-homogeneous master equation used to study open quantum
system is the Lindblad equation, which reads

d

dt
ρnm(t) = −i [H, ρ(t)]nm −Dnm ijρij(t) ,

(D.6)

where Dnm ij is the Redfield tensor which includes the relaxation dynamics [32, 128]. In a simplied
manner we can distinguish between four different contribution of the tensor D: (i) Dii kk terms
describe the incoherent transfer population between i and k quantum states; (ii) Dij ij terms
describes the dephasing of the |i〉〈j| coherence; (iii) Dij kl off-diagonal terms are associated to the
coherent motion of the quantum state; (iii) Dii kl terms describes the coupling between populations
and coherence.

Defining ρij(t) = Gij tu(t)ρ0
tu and replacing it in the previous equation, we have the following

equation for the corresponding quantum Liouvillian operator

d

dt
Gnm tu(t) = −iHniδjmGij tu(t) + iHjmδniGij tu(t)−Dnm ijGij tu(t) .

Solving this differential, we obtain that time quantum Liouvillian operator for a Lindblad equation
reads

Gnm ij(t) =
∫
dω

2π e
−iωt i

[
ωδniδjm −Hniδjm +Hjmδni + iDnm ij

]−1
.

Moving to the energy level basis, where Hab = εaδab, we obtain

Gnm ij(t) =
∫
dω

2π e
−iωt i

[
(ω − εn + εm) δniδjm + iDnm ij

]−1
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Sono grato a Fernando e Alessia per essermi stati particolarmente vicini negli ultimi giorni della
stesura della tesi come due adorabili “genitori”. Non posso immaginare Trento senza l’appuntamento
del sabato mattina con Bea, caffè, chiacchiere e puntatina al mercato contadino. Due inseparabili
compagni di avvunture, cene, e feste sono stati Manuel e Paolo. Trento sarebbe stata un’altra
città se non avessi conosciuto Eleonora, Alessia, Mostarda, Gemma, Roberta, Irena, Nicolò, Luisa
ed Elena. Ultimo ma non il meno importante il fratello Giuseppe con cui ho condiviso letti,
disavventure e caffè serali.

Sono grato a mammà e papà, che in questi tre lunghi anni mi hanno sostenuto e mi sono stati
vicini nei momenti più difficili, ed anche la mia sorellina Mara, che tutti fa disperare ma a cui tutti
vogliano bene.

In questi anni ci sono stati anche amici lontani che però mi sono stati vicini: Eugenio che
puntualmente ogni Natale è passato a trovarmi, Sandro e Silvia che invece sono stati la mia meta
di villeggiatura estiva in questi 3 anni, e Giulia che nei momenti più difficili è sempre stata presente
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telematicamente. Concludo con Баба Яrа una persona che si è aggiunta solo ultimamente alle
persone che meritano di essere citate in questi ringraziamenti ma che nonostante questo ha è letto
più della metà delle formule incomprensibili di questa tesi.
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