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Abstract 
 

This PhD thesis focuses on the synthesis and characterization of 

multifunctional polymer-derived SiOCN ceramics. The main objective is to 

synthesize N-doped silicon oxycarbides (SiOCs), to characterize their 

structure and their properties (mainly electrical conductivity) and correlate 

them with the presence of N in the structure.  We also aim to understand 

how the architecture of the starting polymer can influence the retention of 

N into the SiOC structure. 

First, N-doped SiOC polymer precursors were synthesized via 

hydrosilylation reaction between Si-H groups present in a commercial 

polysiloxane (PHMS) and –CH=CH2 groups of three different commercial N-

containing compounds. The structural characterization of as-synthesized 

preceramic polymer precursor was investigated by FT-IR and NMR. Thermal 

degradation was studied by TGA. The results show that the architecture of 

the polymer precursors plays an important role on the pyrolythic 

transformation.  

Then, SiOCN ceramics were obtained by pyrolysis of the as-

synthesized polymer precursors in nitrogen atmosphere at various 

temperatures for 1h using a tubular furnace. Subsequently, high 

temperature structural evolution was studied using combined techniques 

such as XRD, FT-IR, NMR, Elemental analysis, and XPS.  The obtained results 

show that the type of N-containing compounds impacts on the 

crystallization behavior of the final ceramics. Elemental analysis clearly 

indicates that N is present in the SiOC matrix and the degree of N retention 

after pyrolysis is related to the type of N-containing starting compounds. 
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XPS data indicate that N-C bonds are present in the SiOC ceramic samples 

even if only N-Si bonds exist in the starting N-containing precursor. 

However, a larger fraction of N-C bonds is present in the final SiOCN 

ceramic when N atoms form bonds with sp
2
 carbon atoms in the pre-

ceramic polymer. 

We have also studied electrical and optical properties of the 

SiOCNs.  Electrical conductivity of the powdered ceramic samples was 

determined using powder-solution-composite technique. The results show 

an increase in room temperature AC conductivity of three orders of 

magnitude, from ≈10
-5

 (S/cm) to ≈10
-2

 (S/cm), with increasing pyrolysis 

temperature from 1000 to 1400 °C. Furthermore, the electrical conductivity 

of the SiOCN ceramic derived from N-C bond bearing precursor is three to 

five times higher than that of the sample derived from N-Si containing 

precursor at each pyrolysis temperature. The combined structural study by 

Raman spectroscopy and chemical analysis suggests that the increase of 

electrical conductivity with the pyrolysis temperature is due to the sp
3
-to-

sp
2
 transition of the amorphous carbon phase.  The higher conductivity of 

the amine-derived SiOCN is also discussed considering features like the 

volume % of the free-carbon phase and its possible N-doping. Fluorescence 

of the SiOCN samples treated at low temperatures, 400 and 600 °C, has 

been studied. The spectra show that the heated precursors fluoresce in the 

visible range with a dominant blue emission. Since the non-heated polymer 

precursors do not fluoresce, emitting centers must be formed during the 

polymer-to-ceramic transformation and associated with the structural 

changes. The origin of the luminescence could be originated from defects 

related to C, O and/or Si.  
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Finally, we investigated the gas sensing behavior of the SiOCNs 

pyrolyzed at low and high temperatures. Regarding the electrical gas 

sensing of the SiOCN ceramics pyrolyzed at 1400 °C, the response to two 

target gases NO2 and H2 was tested by in situ DC conductance 

measurements at operating temperatures from 200 to 550 °C. The SiOCN 

ceramics are sensitive to NO2 at temperatures below 400 °C and to H2 at 

temperatures above 400 °C.  In addition, the response observed for the 

studied SiOCN ceramics is higher than that reported in the previous studies 

for SiOC ceramic aerogels. With regard to the optical gas sensing of the 

SiOCNs obtained from the heat treatment of the polymer precursors at 400 

and 600 °C, fluorescence spectra in the presence of organic vapors such as 

acetone and hexane were recorded. The results show that these tested 

vapors quench the fluorescence of the studied SiOCN. In conclusion, the 

SiOCN ceramics can be promising materials for the gas sensing application.  
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Chapter 1 Introduction and literature 

review 

1.1 Polymer derived ceramics (PDCs) 
 

PDCs are ceramics obtained through a controlled pyrolysis 

process of polymer precursors.[1] This class of materials has gained much 

attention since several decades due to their advantages over traditional 

ceramics. For example, the characteristics of the final ceramics such as 

chemical composition, microstructure, crystallization behavior, electrical 

and optical properties can be tailored by controlling the chemistry of the 

polymer precursors and pyrolysis conditions (temperature, atmosphere, 

annealing time). Besides, PDCs can be produced without addition of 

sintering additives or flammable solvents which are usually needed for 

processing of traditional ceramics like powder technology.[1] 

In the PDC field, organosilicon-based polymers are the most 

common precursors.  A list of diverse Si-based polymer precursors is shown 

in Figure 1. By changing the atoms or/and functional groups surrounding Si, 

we can design the structure of polymer precursors in order to obtain the 

resultant ceramics with expected compositions and properties.   
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Figure 1: Main classes of Si-based polymer precursors.[1] 

 

According to the number of elements present in the final ceramic, 

PDCs are basically divided into different subcategories such as binary 

systems (Si-C, Si-N), ternary systems (Si-O-C, Si-C-N), and quaternary 

systems (Si-B-C-N, Si-B-O-C).  In addition to these common elements, other 

chemical components like Al, Ti, etc… can be possibly inserted into the 

polymer precursors. The corresponding ceramics obtained from different 

polymer precursors are shown in Figure 2. 
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Figure 2: Thermal decomposition of Si-based polymer precursors.[1] 

 

PDCs have shown exceptional properties such as high thermal 

stability, creep and oxidation resistance, and excellent chemical 

durability.[2-7] They also exhibit very interesting optical,
 

electrical and 

electrochemical
 
properties for potential functional applications.[8-10] 

PDCs have found a wide range of potential applications such as 

micro-electro-mechanical systems (MEMS) for micro actuators, catalyst 

supports for fuel reforming, and anode materials in lithium ion 

batteries.[11-15] 
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1.2 Silicon oxycarbide (SiOC) 
 

SiOC refers to a ceramic having chemical structure in which silicon 

is simultaneously bonded with carbon and oxygen atoms. The composition 

of the SiOC ceramics can be simply described as SiOxC4-x, 0≤x≤4, which 

contain all possible Si sites as a mixture of SiC4, SiCO3, SiC2O2, SiCO3 and SiO4 

units. The presence of tetrahedral units in the SiOC is supposed to be the 

reason for many of their excellent properties, compared to silicate glasses, 

such as higher glass transition temperature, higher elastic modulus and 

lower devitrification tendency.[7,16,17] 

 

1.2.1 Synthesis methods 

 
SiOCs can be produced through pyrolysis of preceramic polymer 

networks in inert atmospheres. These preceramic networks are obtained 

by: (i) sol-gel method using hybrid silicon alkoxides; (ii) hydrosilylation 

reaction using commercially available polysiloxanes; (iii) oxidation process 

of polycarbosilanes.[2,18,19] 

1.2.1.1 Sol-gel method 

 
The sol-gel process is a helpful technique to produce 

homogeneous SiOC glasses. One of the advantages of this method is that 

the synthesis might be performed at low temperatures. Carbon atoms are 

incorporated into the silica network using starting precursors of hybrid 

alkoxysilanes described as RxSi(OR’)4-x; R= H, CH3, C2H5, C3H7, C2H3, C6H5; R’ = 

CH3, C2H5. The nature of these alkyl groups, for instance, the number of 

carbon atoms, plays a key role in determining the chemical compositions 

and the properties of the resulting SiOC ceramics.[20] The precursor gels 

are obtained after hydrolysis and condensation reactions which do not 



  

8 
  

modify the carbon functional groups (R) in the starting silicon alkoxides. 

Thus, the obtained gels contain a mixture of Si-O and Si-C bonds which are 

simultaneously distributed, as shown in Figure 3.   

 

 

 

Figure 3: Structure of a preceramic polymer gel for SiOC.[20] 

 

The main reactions taking place during the hydrolysis and 

condensation of the precursor gels are displayed in Scheme 1:  
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Scheme 1: Sol-gel reaction of alkoxysilane: (1) hydrolysis, (2a and 2b) 
condensation.[21] 

 

1.2.1.2 Hydrosilylation  

 
Hydrosilylation reaction is used to cross-link polysiloxanes 

containing Si-H bonds with cross-linkers having -HC=CH2 groups. This 

reaction is achieved by either the addition of platinum-based catalyst or a 

free radical initiation technique.[19] This synthetic route allows us to easily 

tailor the structure of the preceramic precursor by changing the chemistry 

and amount of the vinyl bearing cross-linkers. The hydrosilylation 

mechanism is shown in Scheme 2.  

 

Scheme 2: Hydrosilylation reaction in the presence of Pt catalyst.[19] 
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1.2.1.3 Curing method 

 
An alternative preparation method of SiOCs is to start from 

polycarbosilanes, precursors for SiC ceramics.[22,23] The oxygen 

incorporation into SiC networks occurs during a curing process. The 

oxidation mechanisms are shown in Scheme 3. 

 

 

Scheme 3: Oxidation mechanism of a polycarbosilane.[24] 

In comparison with the sol-gel method, the polycarbosilane-derived SiOCs 

contain a lower O and a higher C content.[22] 

 

 



  

11 
  

1.2.2 Structure of SiOCs 

 
The compositions of SiOCs can be expressed as: SiCxO2(1-x) + yCfree ; 

with SiCxO2(1-x) is an amorphous network and Cfree is a free carbon phase 

generated during pyrolysis at high temperature. The values of x and y can 

be controlled by the chemistry of the preceramic precursors and the 

pyrolysis conditions, in particular temperature and atmosphere. The 

importance of these factors is discussed in the following context. 

First, the design of the precursors could lead to three different 

possibilities in the final ceramics: (i) the final ceramics without free carbon  

(y=0) are prepared using precursors containing together with Si-R (alkyl 

groups) also Si-H and Si-Si bonds;[25,26] (ii) SiOCs with a low amount of free 

carbon if Si is bonded to alkyl group such as CH3. The longer carbon chain 

the precursor has, the higher content of carbon the resulting ceramic 

contains; (iii) SiOCs with a high content of free carbon are obtained from  

precursors having unsaturated groups such as vinyl and phenyl. 

Second, the pyrolysis temperature significantly influences the 

structure of the resulting SiOCs. At temperatures below 1000 °C, 

amorphous SiOCs containing simultaneous Si-O and Si-C bonds are 

obtained. Between 1000 and 1400 °C, the amorphous network undergoes a 

phase separation resulting in the formation of nanostructural SiC-rich and 

SiO2-rich regions, as illustrated in reaction 1: 

 

SiOC  a-SiO2 + a SiC + C  (1) 

 

At temperatures above 1400 °C, the crystallization of SiC occurs 

and results in the formation of nanocrystals of SiC in the SiOC or silica 

network. At this temperature range, SiC crystallization takes place together 

with the carbothermal reactions and leads to the loss of carbon, as shown 

in the following equations: 
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SiO2(s)+ 3C(s) = SiC(s) + 2CO(g) (2) 

2SiO2(g)+ SiC(s) = 3SiO(g) + CO(g) (3) 

Third, the pyrolysis atmosphere has been shown to affect the final 

chemical composition of the SiOCs.  For examples, the pyrolysis performed 

in hydrogen leads to a reduction in the amount of free carbon compared to 

that obtained in argon atmosphere.[27] 

To have a better understanding of the unusual properties of the 

SiOCs, many structural models have been proposed. One of the very first 

structural models of amorphous SiOC glasses was proposed by Pantano et 

al.[20] According to his proposal, aromatic carbon species are either 

bonded to the oxycarbide network or embedded in the glass structure, as 

displayed in Figure 4.  

 

 

Figure 4: Schematic representation of an amorphous SiOC pyrolyzed at 800-
1000 °C.[20] 
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Later on, Scarmi et al have proposed two possible models for the 

nanostructure of the amorphous SiOCs (Figure 5).[28] As shown in Figure 

5a, nanodomains of sp
2
 carbon discontinuously distribute in the silica 

matrix. On the other hand, second model (Figure 5b) shows a cage-like 

network of sp
2
 graphene carbon in which silica domains are embedded 

together with the SiOC tetrahedra.  

 

 

Figure 5: Two possible structure models of SiOCs (a) separate nanodomains 
of sp

2
 carbon; (b) cage-like network of sp

2
 graphene carbon.[28] 

 

These models are likely to be contrary to each other. However, 

both of them are in agreement with the SAXS and NMR results in terms of 

the chemical structure.[29] In these proposed structures the mixed SiOC 

tetrahedral bonds locate at the interface between the nanodomains of sp
2 

carbon and clusters of silica. 

However, model A is not suitable for explaining several peculiar 

characteristics of the SiOCs. First, the continuous silica phase should lead to 

the formation of cristobalites at high temperature. Nevertheless, silica 

cristobalites indeed have not been observed in the SiOCs pyrolyzed even at 
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high temperatures. Second, the separate nanodomains of carbon should 

not suppress the viscosity of the silica phase that was experimentally 

observed in the SiOCs.[28] Third, by HF etching the silica phase we should 

produce C or SiC nanoparticles while it has been shown that a porous C-rich 

material is formed whose porosity matches exactly the volume of the initial 

silica phase.[30,31] In contrast with model A, model B can explain well for 

the creep and viscoelastic behavior that are ascribed to the graphene 

carbon network, and for the high crystallization resistance that are 

attributed to separate domains of silica.  

In accordance with model B, Saha et al proposed a structure in 

which the existence of nanodomains in the SiOCs is incontrovertible.[29] 

During pyrolysis, carbon is ejected to the outer surface of the silica 

tetrahedra. Till these graphene-like carbons and mixed C-Si-O-bonds form a 

continuous path, nanodomains are accordingly created. As shown in Figure 

6, the nanodomain model is constituted of clusters of silica, mixed bonds 

and graphene network. According to Saha et al, nanodomain size and the 

interdomain wall thickness (δw) can be possibly estimated.  

 

 

Figure 6: A nanodomain model of SiOCs.[29] 
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Later on, Widgeon et al have shown that silica-rich nanodomains in the 

structure of SiOCs are not only isolated but also interconnected, as 

displayed in Figure 7.[32] 

 

Figure 7: A nanoscale model of a SiOC pyrolyzed at 1100 °C: carbon 
nanodomains (dark shaded circles), C-rich SiOC region (light gray 

surrounding circles) and O-rich SiOC region (patterned matrix).[32] 

 

1.2.3 Physical properties 

 
Due to the main objective of this thesis, a review on the electrical, 

optical properties and application for gas sensing of the SiOCs will be 

discussed in the subsequent content. 

1.2.3.1 Electrical property 

 
The electrical conductivity of the SiOC ceramics varies in a wide 

range of 10
-13

 to 10
0
 (S.cm

-1
).[33-35] This large variation of the electrical 

conductivity is caused by the difference in the pyrolysis temperature, 
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microstructure and carbon content. The pyrolysis temperature could be the 

most influent factor on the electrical conductivity since the change in 

carbon content and microstructure can be considered as its consequences. 

As seen in Figure 8, at low pyrolysis temperatures between 250 and 700 °C, 

both SiOCs derived from two polysilaxanes, namely PPS and PMS, are 

insulating materials. However, increasing pyrolysis temperature leads to a 

remarkable upgrade in the electrical conductivity which is in the 

semiconducting range.  
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               (a) 

     

                 (b) 

Figure 8: In situ electrical conductivity of SiOCs (a) from 250 to 700 °C; (b) 
from 1000 to 1500 °C. SiOC ceramics derived from two polysiloxanes, 

(RSiO1.5)n with R = CH3 (PMS) and C6H5  (PPS).[34] 
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Interestingly, the influence degree of the temperature on the 

conductivity between these two precursors is unsimilar. In details, the PPS-

derived SiOCs show a slight raise of two orders of magnitude in conductivity 

with an increasing the pyrolysis from 1000 to 1500 °C. Unequally, the PMS-

derived SiOCs exhibits a remarkable increase of four orders of magnitude in 

the conductivity in this temperature range. The reason could be that the 

PPS-derived ceramics contain a higher content of carbon and also this free 

carbon phase already forms a percolation network at 1000 °C while this 

process happens at higher temperature, ~ 1400 °C, for the PMS-derived 

samples. A model proposed by Engel et al, shown in Figure 9, helps us 

understand better why the pyrolysis temperature differently influences the 

conductivity.[34] 

 

 

Figure 9: Redistribution of carbon during pyrolysis in the SiOCs derived 
from: (top) PPS, and (bottom) PMS.[34] 
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The above models show the growth of the carbon network with 

the pyrolysis temperature. However, the role of the amorphous SiOC 

microstructure on the electrical conductivity should not be underestimated 

because the amorphous SiOC network can become the main conducting 

phase depending on the pyrolysis temperature.[35] 

 

1.2.3.2 Optical property 

 
SiOC glasses are generally black because of the presence of layers 

of sp
2 

carbon atoms in their structure. Thus, optical properties of these 

materials have not gained much attention. The effort of making transparent 

SiOC ceramics has been made.[25] Photoluminescence of different 

transparent SiOC glasses, so-called stoichiometric SiOCs, obtained from a 

triethoxysilane/methyldiethoxysilane sol-gel solution (TH/DH) shows a 

broad emission centered at about 500 nm which is ascribed to the presence 

of sp
2 

carbon clusters.[36] 

In 2009, Karakuscu et al successfully prepared SiOC thin films 

from a sol-gel solution mentioned above (TH/DH) with different ratios 

between TH and DH.[8] She found that amorphous SiOC thin films pyrolyzed 

at temperatures between 800 and 1000 °C show a blue luminescence, 

originated from dangling bonds, while those pyrolyzed at higher 

temperatures (≥ 1100 °C) show a green-yellow luminescence, due to the 

coexistence of both SiC and low amount of free carbon. Moreover, Si-rich 

SiOC thin film exhibits an intense white luminescence due to the 

simultaneous presence of SiC, C, and Si. 

Recently, pyrolysis of silicon resin particles in H2 atmosphere has 

been used to produce white SiOC ceramics.[37,38] The photoluminescence 

spectra of the white SiOCs pyrolyzed in the range of 800 and 1300 °C in 
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pure H2 are shown in Figure 10. The photoluminescence is consistent with 

that obtained for the SiOC thin film. In details, SiOC powders pyrolyzed at 

800 °C show a blue emission. The increasing of the pyrolysis temperature 

results in a slight red-shift and broader emission. The origin of luminescence 

might be correlated to the oxygen-defects generated during the pyrolysis 

process. This hypothesis agrees nicely with the results recently reported by 

Nikas et al.[39] Nikas and his colleagues believe that structural defects in 

oxides such as Si-related neutral oxygen vacancies and non-bridging oxygen 

hole centers are the main luminescence emitting centers. 

 

 

Figure 10: Photoluminescence spectra of white SiOC powders pyrolyed 
between 800 and 1300 °C.[38] 

 

1.2.4 Gas sensing application 

 
The possible use of SiOC for the detection of gas was reported for 

the first time by Karakuscu et al in 2013.[40] The gas sensing behavior was 

measured based on the variation of conductance of the SiOC powders in 

the presence of various gases. They observed that highly porous SiOC 

pyrolyzed at 1400 °C can be used to detect trace of NO2 (5 ppm) at 
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temperatures below 400 °C. However, the SiOC loses its sensitivity to NO2 

at temperatures above 400 °C. On the contrary, the SiOC is sensitive to H2 

(2000 ppm) at temperatures above 400 °C and does not show any gas 

response below this temperature. Moreover, they also found that the 

studied SiOC is not sensitive to acetone and CO at any temperatures, as 

illustrated in Figure 11. However, the gas sensing mechanism is still an issue 

of debate.  

 

 

Figure 11: Gas response of a porous SiOC pyrolyzed at 1400 °C toward 
to NO2, CO, H2 and acetone.[40] 

 

1.3 SiCN 
 

SiCN ceramics are generally obtained via pyrolysis of either 

polysilazanes or polycarbodiimides. Besides these methods, SiCNs can be 

prepared using deposition techniques. In the following context, different 
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synthesis methods of the precursors, physical properties and gas sensing 

application of the SiCNs will be discussed. 

 

1.3.1 Synthesis methods  

1.3.1.1 Polysilazanes 

 
Polysilazanes, one of the most popular precursors for SiCN 

ceramics, have been prepared via ammonolysis or aminolysis reaction of 

chlorosilanes, as shown in Scheme 4.[41-44] 

 

 

Scheme 4: Ammonolysis and aminolysis of chlorosilanes.[44] 

 

Likewise SiOCs, properties of SiCN ceramics can be controlled by 

the chemistry of the substituted alkyl groups and pyrolysis conditions.  As 

seen from Scheme 4, solid by-products such as NH4Cl and H3NR’Cl are 

produced in these synthesis routes. As a result, the attained solid salts 

cause a difficulty in the separation and purification of the synthesized 

polysilazanes. To avoid this problem, dehydrocoupling reaction might be 

employed to prepare polysilazanes.[45,46] In this method, the use of a 
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transition metal as a catalyst is required. The reaction is shown in Scheme 5. 

However, handing hydridosilanes is more dangerous than chlorosilanes 

used in the ammonolysis and aminolysis reactions.  

 

 

Scheme 5: Synthesis of polycarbosilazanes by dehydrocoupling reaction.[46] 

 

1.3.1.2 Polycarbodiimides 

 
Polysilylcarbodiimides were found as precursors for SiCN 

ceramics.[47,48] They can be synthesized from chlorosilanes and 

bis(trimethylsilyl)carbodiimides in the presence of pyridine used as a 

catalyst. The reaction is shown in Scheme 6. 

 

 

Scheme 6: Carbodiimidolysis and cyanamidolysis of chlorosianes with 
bis(trimethylsilyl)carbodiimide and cyanamide.[36] 

 

In terms of the mechanism, the carbodiimidolysis is similar to the 

sol-gel reaction of alkoxysilanes. A comparison between these two synthetic 

routes is shown in Figure 12. In comparison with the 

ammonolysis/aminolysis reaction, no solid salt is produced in the 

carbodiimidolysis. 
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Figure 12: A comparison between the carbodiimidolysis and sol-gel 
reaction.[44] 

 

1.3.2 Structure of SiCNs 

 
Amorphous polysilazane-derived SiCN ceramics are constituted by 

a SiCN network and a free carbon phase.[9,49] The SiCN network contains 

tetrahedral mixed units SiCxN4-x (1≤x≤4) in which Si atoms are bonded to 

either N or C atoms.[50] A relative fraction of these mixed bonds is 

determined by the structure of the starting precursors. For example, 

methyl-bearing precursors result in the formation of an amorphous SiCN 

with a higher fraction of SiC4 units whose chemical composition lies in the 

C/SiC/Si3N4 triangle while the vinyl-containing precursors lead to an 

amorphous SiCN constituted of mainly SiN4 units whose chemical 

composition lies on the Si3N4-C tie line.[51] Ternary Si/C/N phase diagrams 

with the composition of the ceramics derived from these two precursors 
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are shown in Figure 13. At temperatures above 1438 °C, the decomposition 

process occurs according to reaction 4:  

 

Si3N4 + C  SiC + N2 (4) 

 

The final compositions of the ceramics derived from 

polyvinylsilazane and polyhidridomethylsilazane precursors, pyrolyzed at 

the temperature between 1438 and 1876 °C, could be C/SiC and SiC/Si3N4 

composites, respectively. 

 

 

Figure 13: Ternary Si/C/N phase diagram and chemical compositions of the 
SiCN ceramics derived from polyvinylsilazane (PVS) and 

polyhidridomethylsilazane (PHMS).[51] 
 

Amorphous polycarbodiimide-derived SiCN ceramics are 

composed of an amorphous Si3N4 and a carbon phase.[52,53] The presence 

of tetrahedral mixed bonds between Si and C/N is negligible.  Structural 

characterization of the amorphous SiCN at the nanoscale shows that an 

interface made of mixed bonds N-Si-C is present in the SiCN containing a 
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low carbon content (39%) while these mixed bonds disappear in the system 

with a higher content of carbon, as shown in Figure 14.[54] 

 

 

 

Figure 14: Nanodomain model of amorphous SiCNs obtained from different 
precursors: (a)Polysilesquicarbodiimide, (b) Polysilylcarbodiimide.[54] 

 
 

Mera and her colleagues also found that increasing pyrolysis 

temperature up to 1100 °C results in an amorphous SiCN without mixed 

bonds, as shown in Figure 15. 
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Figure 15: The loss of H and the mixed bonds caused by an increase of the 
pyrolysis temperature.[54] 

 

1.3.3 Physical properties 

1.3.3.1 Electrical property 

 
Electrical conductivity of SiCN strongly depends on its 

microstructure and chemical compositions which are very sensitive to the 

pyrolysis conditions, as shown in Figure 16.[9,55,56] At low temperature 

regime ranging from 1000 to 1400 °C, an increase of electrical conductivity 

is ascribed to an increase of sp
2
/sp

3
 ratio of carbon atoms. In the higher 

temperature regime between 1400 and 1600 °C, nano-crystallites of SiC are 

generated and they are responsible for the increase of electrical 

conductivity. At temperature above 1600 °C, SiCN is constituted by 

crystallites of SiC and Si3N4 in which SiC becomes the main conducting 

phase.[55] However, the identification of the conduction mechanism in 

SiCN is still controversial. Trassl and his groups believe that the conductivity 

of SiCN is correlated to the ordering degree and the amount of free carbon 

phase.[9,56] 
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Figure 16: Electrical conductivity of SiCN ceramics as a function of annealing 
time and temperature.[55] 

 

1.3.3.2 Optical property 

 
In 2008, Menapace et al reported the possible applicability of 

thermally treated polysilazanes as LEDs.[57] She pointed out that a 

commercial  poly(ureamethylvinyl)silazane heated at low temperatures 

between 200 and 600 °C exhibits photoluminescence, as shown in Figure 

17.[57] An increase of the heating temperature causes a red-shift in 

excitation and emission spectra of the materials. Also, fluorescence 

intensity depends on the treatment temperature.  The sample heated at 

500 °C is discovered to be an interesting material for LED application 

because it is transparent and shows photoluminescence in the visible range 

with a maximum blue emission.  The origin of luminescence is associated 

with the formation of dangling bonds and sp
2
 carbon formed during the 

heat treatment.   
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Figure 17: Fluorescence properties of Ceraset samples heat-treated at 
different temperatures: (a) Emission (bottom right) and excitation 
spectra (top left), (b) Photographs representing powdered Ceraset 
samples under white light, (c) Photographs representing powdered 

Ceraset samples under UV light, (d) Photographs representing Ceraset 
annealed at 500 °C under white light,(e) Photographs representing 

Ceraset annealed at 500 °C under UV light.[57] 

 

Recently, Mera and her groups have investigated the 

photoluminescence of a variety of phenyl-containing polycarbodiimides 

heated at low temperatures.[58] These studies indicate that apart from the 

free carbon, crosslinking degree of the polymers is also responsible for the 

luminescence of the treated polymers.  
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1.3.4 Gas sensing application 

 
To the best of my knowledge, no investigation on the gas sensing 

application of SiCN was reported in the literature. Recently, it has been 

discovered in our group that SiCN aerogels heated at 450 °C can be a 

promising material for the detection of organic solvents such as acetone 

and hexane.[59] It is clearly seen that the presence of organic vapors leads 

to an enhancement of the fluorescence compared to that recorded in N2 

atmosphere, as shown in Figure 18. Interestingly, fluorescence intensity is 

not influenced by water vapor. These findings suggest that the aerogel 

surface and/or the luminescence centers might have a strong hydrophobic 

character which is supposed to be correlated to the sp
2
 carbon or aromatic 

compounds.[57,58] The increase of emission intensity can be due to the 

changes in the local environment of the molecules which give fluorescence.  

The adsorbed organic solvents can solvate and dissociate the fluorescence 

compounds from the aggregated ones.[60] As a consequence, the 

intermolecular vibronic interactions which induce the nonradioactive 

relaxation process are weakened.[61] 
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Figure 18: Emission spectra of a SiCN aerogel heated at 450 °C in different 
saturated vapors.[59]  

 

 

1.4 SiOCN  
 

Ternary SiOCs and SiCNs can be doped with extra elements to 

further extend the range of their interesting functional properties. In 

particular B-doping, resulting into Si(B)OC and Si(B)CN systems, have been 

extensively reported in the literature.[62-67] Boron atoms are present 

either in the amorphous SiOC network as BC3-yOy units (0≤y≤3) or in the sp
2
 

C layers of the free C phase as substitutional BC3 units in the Si(B)OC 

ceramics.[63,64] Whereas, B atoms are present in the BNC layer in the 

Si(B)CN ceramics.[67,68] Adding B into SiCN network could form a material 

that is stable up to 2000 °C.[65]  The presence of B in the SiOC or SiCN 

matrix, however, reduces thermodynamic stability of the resulting 
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quaternary systems.[69,70] B-containing SiOCs exhibit a broader tunable 

emission in the visible range[71] and a higher electrical resistance [72], 

compared to B-free SiOCs. The presence of B, particularly in the B-C bonds, 

in the SiOC network could retard either the formation of C radicals, 

photoluminescence emitting centers, or the separation of free carbon, a 

conducting phase in the PDCs. As a consequence, the insertion of B atoms 

into the SiOC matrix significantly changes the electrical and/or optical 

properties of the corresponding PDCs. The influence of an extra element on 

the properties of the ternary PDCs is brought into question. What will 

characteristics of the SiOCs change if N is added into the network? In the 

literature, several studies focusing on the synthesis and characterization of 

SiOCN systems have been reported.[73,74] 

 SiOCN ceramics can be obtained via pyrolysis of the polymer 

precursors which are generally prepared from two main synthetic routes.  

The first method is the controlled incorporation of either N into 

polysiloxane or O into polysilazane obtained through a molecular approach. 

[73-75] This synthetic route allows us to control the chemical composition 

of the final SiOCN ceramic by the design of the chemistry of the starting 

materials.  The second method is that oxygen is incorporated into the 

polysilazane from external source such as pyrolysis atmosphere. [76,77] The 

presence of O in the resulting SiOCN ceramics is caused by the oxidation 

reaction of Si-H/Si-C bonds.[78] One of the drawbacks of this method is the 

difficulty in controlling the chemical composition of the ceramics.  

SiOCN is constituted by the mixed tetrahedral bonds between Si 

and the other elements, as shown in Scheme 7. Thermodynamic stability of 

SiOCN is shown to be dependent on the molar ratio of N and O.[79] The 

presence of both N and O in the SiOCN ceramic results in a more stable 

system compared to the ternary SiOC or SiCN ceramics evidenced by a 

lower formation enthalpy. However, this fact is not true for the SiOCN with 
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a ratio of N/O ~ 2 which shows a positive enthalpy of formation. The reason 

could be due to the formation of nanoclusters of Si2N2O in the amorphous 

matrix.   

 

 

Scheme 7: Representation of tetrahedral bonds in SiCxNyO4-x-y  
(0≤x≤x+y≤4).[76] 

 

Several properties of the SiOCN such as optical, oxidation and 

mechanical properties have been reported.[76,80,81] The SiOCN heated at 

low temperatures show an intense and a broad photoluminescence, in the 

visible range between 500 and 800 nm, which is strongly dependent on the 

composition and treated temperature.[81] According to Chollon, oxidation 

behavior of the SiOCN is governed by the C/Si and N/Si ratio. Interestingly, 

oxygen and free carbon do not play an important role on the oxidation 

mechanism.[76] On the contrary, free carbon phase is believed to be 

responsible for the low elastic modulus of the SiOCN.[80] However, all 

these studies have been done for the SiOCN obtained through uncontrolled 

incorporation of O into SiCN. Therefore, there is a need to systematically 

study the SiOCN obtained under controlled conditions.  
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Chapter 2 Experimental: Synthesis and 

Characterization Techniques 

2.1 Synthesis of SiOCN ceramics 

2.1.1 Chemicals 

 
Polyhydridomethylsiloxane (PHMS) was supplied from Alfa Aesar, 

Italy. Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 

solution in xylene (Pt-based catalyst), 2,4,6-trimethyl-2,4,6-

trivinylcyclotrisilazane (TMTVSLZ), triallylamine (TA) and 1,3,5-triallyl-1,3,5-

triazine-2,4,6(1H,3H,5H)-trione (TTT) were purchased from Sigma-Aldrich, 

Italy. All the starting materials were used as received without further 

purification. 

2.1.2 Synthesis of polymer precursors 

 
PHMS/TMTVSLZ was prepared from a mixture of PHMS and 

TMTVSLZ in the presence of Pt-based catalyst (1 wt-% with respect to 

PHMS). This reaction was carried out at room temperature for 24 h and it 

was subsequently aged at 80 °C for 7 days to form a hard gel. PHMS/TA 

precursor was synthesized via the reaction of PHMS and TA at 0 °C for 24 h 

and subsequently it was aged at 80 °C for 7 days to obtain a hard gel. 

PHMS/TTT precursor was synthesized from a mixture of PHMS and TTT in 

cyclohexane at 70 °C under reflux conditions for 24 h. After a complete 

evaporation of the solvent, the cross-linked gel was aged at 90 °C for 7 days. 

The crosslinking mechanism of these three reactions is based on the 

hydrosilylation reaction between the Si-H groups of PHMS and the -CH=CH2 

functional groups in the reactants. The molar ratio between Si-H and -

CH=CH2 was kept unchanged (2:1) in all the syntheses. The average 

molecular weight of PHMS (1900 g/mol) was used to calculate the molar 
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ratio taking into account the presence, in the polymer structure, of the two 

(CH3)3SiO terminal units. The manipulation of the reagents is performed 

under argon flow to prevent excessive interactions with air and moisture. 

All the reactions were carried out in air. The nominal compositions of the 

starting precursors are listed in Table 1. 

 

Table 1: Nominal composition of the starting precursors 

Precursor Mass  (g) Expected formula of the precursor 

PHMS/TMTVSLZ 10:6.8 Si3C5.3O1.9NH15.9 

PHMS/TA 10:3.5 Si9.5C16.2O6NH42.8 

PHMS/TTT 10:6.4 Si2.1C6.4O3NH14.2 

 

2.1.3 Pyrolysis 

 
An alumina tubular furnace was employed for the pyrolysis of the 

as-obtained gels. Fragments of the pre-ceramic polymers were placed in an 

alumina boat and were consequently inserted into the furnace for heat 

treatment. The SiOCN ceramic samples were produced by pyrolysis of the 

as-obtained gels for 1 h under flowing nitrogen (100 ml/min) at the desired 

temperature. The pyrolysis temperature was programmed with a heating 

rate of 10 °C/min and 10 °C/min cooling rate to room temperature. The 

final ceramics were then milled in an agata mortar to obtain fine powders. 
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2.2 Structural characterization 

2.2.1 FT-IR 

 
FT-IR spectra were collected on a Nicolet Avatar 330 Fourier 

transform infrared spectrometer (Thermo Electron Corporation, Waltham, 

MA) using KBr technique in transmission mode. An average of 64 scans with 

4 cm
-1 

resolution was recorded for each specimen. 

2.2.2 MAS NMR 

 
The 

13
C- and 

29
Si- MAS NMR spectra of the synthesized polymer 

precursors were collected using  an AVANCE300 Bruker 7 mm probe-head 

(Bruker, Instruments, Karlsruhe, Germany)  operating at the frequencies of 

59.62 and 75.48 MHz, respectively. All the 
29

Si single pulse NMR spectra 

were recorded using a π/2 pulse length of 2.8 µs and a recycle delay of 

300s. For the 
13

C-NMR, single pulse experiments were performed using a 

π/2 pulse length of 2.2 µs and a recycle delay of 10 s.  

The 
29

Si-NMR experiments of the ceramic samples, pyrolyzed at 

1400 °C were carried out using an AVANCE 400 Bruker 7 mm probe-

head(Bruker, Instruments, Karlsruhe, Germany)  operating at the 

frequencies of 79.49 MHz. The 
29

Si single pulse NMR spectra were recorded 

using a π/4 pulse length of 2 µs and a recycle delay of 100s.  

Polymer and ceramic samples were packed in 4 mm zirconia 

rotors which were spun at a rate of 7 and 8 kHz, respectively, under air 

flow. Q8M8, adamantine and ethanol were used as external secondary 

reference for the determination of the 
29

Si and 
13

C chemical shift. 
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2.2.3 TGA 

 
TGA of the synthesized polymers were performed on a Netzsch 

apparatus (Model STA 409, Netzsch-Geratebau GmbH, Germany). The 

samples were heated to 1500 °C at a rate of 10 °C/min in nitrogen 

atmosphere with a flux of 100 mL/min. 

2.2.4 XRD 

 
XRD spectra of powdered ceramic samples that were pyrolyzed at 

different temperatures were recorded using a diffractometer (Model D-Max 

B, Rigaku, Tokyo, Japan) operated at 40kV and 30 mA with a CuKα radiation. 

The spectra were collected in the 2θ range of 20-80, with a step of 0.05° 

every 6 s. 

2.2.5 Chemical analysis 

 
The carbon content of the powdered ceramic samples was 

determined by a carbon analyzer (Leco TC-200, Leco Corp USA).  The oxygen 

and nitrogen content were measured by an analyzer (Leco TC-436, Leco 

Corp USA). 

2.2.6 XPS 

 
XPS spectra of the powdered ceramic samples were recorded 

using a Science-ESCA 200 equipped with a hemispherical analyzer and a 

monochromatic Al Kα X-ray source. The corelines (C1s, N1s) were acquired 

at a pass energy of 150 eV. A Shirley-type background subtraction was 

applied. The spectra were fitted using a non-linear least-squares fitting 

program. The C1s core line with the main peak at 285 eV corresponding to 

amorphous carbon was used as internal reference to calibrate the spectra. 
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2.2.7 Raman   

 
Raman spectra of the ceramic powders were recorded on a micro-

Raman spectrometer (LabRAMAramis, Horiba JobinYvon, USA) by using a 

laser beam with an excitation wavelength of 532 nm.  

2.2.8 SEM 

 
The microstructure of the ceramic powders was studied using 

Jeol-JSM-5500 Scanning Electron Microscopy  

2.3 Physical characterization  

2.3.1 Impedance spectroscopy 

 
Impedance spectroscopy (AutoLab Electrochemical Potentiostat 

PGSTAT 302N) was applied to measure electrical conductivity of SiOCN 

ceramic powders. The frequency tested was in the range of 10-10
6
Hz, the 

applied voltage was 5 mV recording five experimental data points for each 

decade 

2.3.2 Fluorescence measurement 

 
Fluorescence spectra of the studied samples in air were obtained 

using spectrometer (Jasco FP6300) with a bandwidth of 5 nm, scanning rate 

of 500 nm/min. An excitation wavelength of 340 nm was used and the 

emission spectra were recorded with a CCD-detector in the wavelength 

ranging from 360 to 600 nm. 
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Chapter 3 N-doped SiOC ceramics from 

preceramic polymers: the role of the N-

containing precursor 
 

Part of this chapter has been published in:  

 

 

 

 

Van Lam Nguyen, Nadhira Bensaada Laidani, Gian Domenico Sorarù, “N-
doped SiOC ceramics from preceramic polymers: the role of the N-
containing precursor” (DOI: 10.1557/jmr.2015.44) 
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3.1 Introduction 
 

The objective of this chapter is to synthesize N-doped SiOC 

ceramics using different N-containing precursors and then to characterize 

their structure and high temperature behavior, in particular the thermal 

stability and crystallization behavior. Accordingly, the influence of the 

molecular structure of the precursors on both the nitrogen content and its 

chemical bonding nature in the final ceramics has been investigated. 

In this chapter, three different pre-ceramic polymer precursors 

for SiOCN ceramics are studied. The polymer precursors are synthesized via 

the hydrosilylation reaction between a linear polysiloxane containing Si-CH3 

and Si-H bonds, namely polyhydridomethylsiloxane, PHMS (HCH3Si-O)n, and 

vinyl-bearing organic compounds such as 2,4,6-trimethyl-2,4,6-

trivinylcyclotrisilazane (TMTVSLZ), triallylamine (TA) and 1,3,5-triallyl-1,3,5-

triazine-2,4,6(1H,3H,5H)-trione (TTT), with a constant molar ratio (2:1) of Si-

H : -CH=CH2 groups. Molecular structures of the starting materials are 

shown in Scheme 8. 

 

 
Scheme 8: Molecular structures of the starting materials. 



  

41 
  

 

It should be mentioned that N atoms in the starting materials 

exist in different chemical sites, for example in HNSi2 units (TMTVSLZ), in 

N(Csp
3
)3 (TA) and in NCsp

3
(Csp

2
)2 units (TTT). The structural characterization 

of the as-synthesized precursors was performed by FT-IR, 
13

C-NMR and 
29

Si -

NMR. Thermogravimetric analysis (TGA) was carried out to study the 

thermal stability of the synthesized polymer precursors. All the as-

synthesized polymers were pyrolyzed at different temperatures varying 

between 800 and 1500 °C leading to the formation of the corresponding 

SiOCN ceramics. The chemical composition of the SiOCN ceramics was 

analyzed by elemental analysis. Furthermore, the structural evolution 

occurring between 1000 and 1500 °C was investigated by FT-IR, XRD and 

29
Si-NMR. X-ray photoelectron spectroscopy (XPS) was employed to study 

the local chemical environment on different elements in the ceramics 

derived from PHMS/TMTVSLZ and from PHMS/TTT at 1000 °C.  

 

3.2 Experimental 
 

The polymer precursors were synthesized as reported in chapter 

2. The ceramic samples were obtained through pyrolysis at 800, 1000, 1200, 

1400 and 1500 °C. 
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3. 3 Results and discussion 

3.3.1 Characterization of the pre-ceramic polymer 

precursors 

3.3.1.1 FT-IR 

 

 

Figure 19: FT-IR spectra of the pre-ceramic polymer precursors (a) 
PHMS/TMTVSLZ, (b) PHMS/TA, and (c) PHMS/TTT. The FT-IR spectra of the 

PHMS and the N-containing compounds are also shown. 
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The FT-IR spectra of the as-synthesized pre-ceramic polymer 

precursors and the corresponding precursors (PHMS and N-containing 

compounds) are shown in Figure 19 and the main absorption bands of the 

spectra are listed in Table 2. In the case of the PHMS/TMTVSLZ precursor 

(Figure 19a), the FT-IR spectrum shows the presence of Si-O (1090 cm
-1

), Si-

N (922 cm
-1

), Si-C (770 cm
-1

), and N-H (3405 cm
-1

) peaks confirming the 

combination of the polysiloxane and the silazane units in the starting 

materials. In the PHMS/TA precursor (Figure 19b), the simultaneous 

presence of Si-C, Si-O and N-C (1141 cm
-1

) peaks shows the combination 

between PHMS and TA. For the PHMS/TTT precursor (Figure 19c), the 

spectrum shows absorptions of Si-O, C=O (1697 cm
-1

) and N-C (1109 cm
-1

) 

peaks due to the incorporation of TTT into the polysiloxane matrix. In all the 

FT-IR spectra, the disappearance of vinyl groups (H-Csp
2 

peak at 3053 cm
-1 

and C=C peak at 1596 cm
-1

) and a considerable decrease in the intensity of 

Si-H peak at 2168 cm
-1 

suggest the occurrence of the hydrosilylation 

reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

44 
  

Table 2: Main FT-IR absorptions of the three as-synthesized polymer 
precursors. 

Wavenumber (cm
-1

)     Assignments [73,82] 

3394    ν N –H  (stretching) 

3076 , 3007                                       ν C sp
2
–H (stretching) 

2975 , 2900                                                                        ν Csp
3
–H (stretching) 

2160    ν Si–H (stretching) 

1690                                       ν C=O (stretching) 

1643 , 1591                                                                          ν C=C (stretching) 

1405    δ C–H (CH3  deformation) 

1253    δ C –H (Si-CH3 deformation) 

1134, 1105                                      ν C–N (stretching) 

1080    ν Si–O–Si (stretching) 

922    ν Si–N–Si (stretching) 

765    δ Si–C (deformation) 
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3.3.1.2 NMR 

 

 
             (a) 
 

 
            (b) 
 

Figure 20: (a) 
13

C- and (b) 
29

Si-NMR spectra of the PHMS/TMTVSLZ 
precursor. 
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Figure 20 shows the spectra recorded on the PHMS/TMTVSLZ 

sample. The 
13

C-NMR spectrum (Figure 20a) shows the peaks at ~ 0 ppm, 

due to the CH3 groups in the starting PHMS and TMTVSLZ, and the peaks at 

133.1 and 139.9 ppm, due to residual vinyl groups in the TMTVSLZ. More 

importantly, carbon atoms belonging to the CH2 groups of the new Si-CH2-

CH2-Si bridge formed through the hydrosilylation reactions give rise to the 

peak at δ =9 ppm with a shoulder at δ = 9.5 ppm.[50,83] 

The 
29

Si-NMR spectrum (Figure 20b) shows the peaks due to the Si 

sites in the precursors at the chemical shifts of -35.8 ppm (O2SiCH) and 10.7 

ppm (C3SiO).[84] The spectrum also contains two new peaks at the chemical 

shifts of δ= -17.9 ppm and δ= -1.6 ppm which can be assigned to SiO2C2 [84] 

and Si(Csp
3
)2N2, respectively.[50,85] These two new peaks result from the 

hydrosilylation reaction that was previously revealed by the 
13

C-NMR 

spectrum. 
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            (a) 

 
            (b) 
 

Figure 21: (a) 
13

C- and (b) 
29

Si-NMR spectra of the PHMS/TA precursor. 
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Figure 21 shows the spectra recorded on the PHMS/TA sample. 

The 
13

C-NMR spectrum (Figure 21a) shows the peaks at the chemical shifts 

of -2.4 ppm and 1.9 ppm which are characteristics of the CH3 units in the 

starting precursors.[84] The spectrum also displays the peaks at 117.6 and 

137.4 ppm, corresponding to the residual vinyl groups in the TA. Especially, 

the spectrum shows three methylene carbon signals (δ = 15.2; 21.5 and 

57.3 ppm) which suggest the formation of the Si-C-C-C-N bridge via the 

hydrosilylation reaction.[83,86] The 
29

Si-NMR spectrum (Figure 21b) shows 

the Si units in the starting precursor at the chemical shifts of -35.6 ppm 

(O2SiCH) and 10.1 ppm (C3SiO). The spectrum also indicates two Si signals 

which belong to SiO2C2 units (δ= -19.2 ppm) and SiO3C units (δ=-64.9 

ppm).[84] The presence of SiO3C units results from the hydrolysis of Si-H 

bonds with the moisture from the atmosphere.  
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             (a) 
 

 
             (b) 
 

Figure 22: (a) 
13

C- and (b) 
29

Si-NMR spectra of the PHMS/TTT precursor. 

 

 

 



  

50 
  

Figure 22 shows the spectra recorded on the PHMS/TTT sample. 

The 
13

C-NMR spectrum (Figure 22a) shows the peak at 149.5 ppm due to 

the C=O bonds, the peaks at 132.7 and 119.4 ppm due to the vinyl groups 

and the peak at 2.4 ppm due to CH3 units which are retained from the 

precursor.[87] Besides, the spectrum displays three peaks at the chemical 

shifts of δ = 14.9; 21.57 and 45.9 ppm which are indicative of the three new 

methylene carbons formed through the hydrosilylation reaction. The 
29

Si- 

NMR spectrum (Figure 22b) shows not only the Si peaks in the precursor, -

36.2 ppm (O2SiCH) and 10.4 ppm (C3SiO) but also the new SiO2C2 units at 

the chemical shift of δ = -19.4 ppm. The 
29

Si-NMR data are consistent with 

the 
13

C-NMR data confirming the occurrence of the hydrosilylation reaction. 

It should be pointed out here that the 
13

C-NMR spectra of all the 

three as-synthesized precursors show residual vinyl groups because of 

steric hindrance resulting in an incomplete hydrosilylation reaction.  
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3.3.1.3 TGA 

 

 

Figure 23: (a) TGA of the three pre-ceramic polymer precursors in nitrogen, 
and (b) FT-IR of the PHMS/TTT precursor pyrolyzed at 400 and 600 °C.  

 

The TG curves shown in Figure 23a clearly indicate that ceramic 

yield depends on the structure of the pre-ceramic polymer precursors. The 

PHMS/TMTVSLZ gel exhibits not only the highest ceramic yield (79 %) but 

also the highest onset degradation temperature (400 °C). It can be due to 

high thermal stability of the Si-C, Si-O and Si-N bonds in the cross-linked 

polymer. The PHMS/TA gel shows a slightly less ceramic yield (76 %), and 

the weight loss process starts at about 120 °C, at which the evaporation of 

some low molecular weight molecules can take place. The PHMS/TTT gel 

shows the lowest ceramic yield (60 %) but the onset temperature for the 

degradation process is found to be at about 280 °C. The major difference in 

the mass loss pathway of these polymer precursors occurs between 400 
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and 600 °C. In detail, about 12 % of mass loss was recorded for the first two 

precursors, PHMS/TMTVSLZ and PHMS/TA, from 400 to 600 °C. In contrast, 

a significant mass loss of 32% was observed for the PHMS/TTT precursor in 

this temperature range. A possible explanation for this high mass loss could 

be the elimination of the heavy CO groups from the TTT precursor. This 

hypothesis is supported by the FT-IR analysis shown in Figure 23b where 

C=O peak was vanished by increasing temperature from 400 to 600 °C while 

the Si-CH3 moieties belonging to the siloxane chain are still present up to 

600 °C. Two new PHMS/TTT precursors were synthesized with a ratio 

between Si-H and C=C of 1:1 and 1:2. It means that the amount of C=O 

groups in the synthesized precursors consequently increases. The TGA 

results of the three PHMS/TTT precursors containing different amount of 

C=O are shown in Figure 24. The results clearly indicate that an increase in 

C=O amount results in a decrease in ceramic yield, from 60% to 38 % for the 

precursor with ratio of Si-H/C=O = 1:1, 1:2, respectively. Moreover, the 

main weight loss occurs at the temperature between 400 and 600 °C. These 

findings suggests that the evolution of the C=O strongly influence on the 

ceramic yield of the PHMS/TTT precursor. 
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Figure 24: TGA of the PHMS/TTT polymer precursors synthesized from 
PHMS and TTT with different molar ratios between Si-H and C=C. The molar 

ratio between C=O and C=C in the TTT is equal to 1. 
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3.3.2 Characterization of the SiOCN ceramics 

3.3.2.1 Elemental analysis 

 

Table 3: Elemental analysis of the SiOCN samples pyrolyzed at 800 °C. 

Sample O 
(wt %) 

C 
(wt %) 

N 
(wt %) 

Si 
(wt %) 

N/Si 
(atomic 
ratio) 

N/Si† 
(atomic 
ratio) 

O/Si 
(atomic 
ratio) 

O/Si† 
(atomic 
ratio) 

PHMS/TMTVSLZ_800 20.8 21.7 4.8 52.7 0.18 0.33 0.69 0.63 

PHMS/TA_800 30.4 16.9 0.5 52.2 0.02 0.11 1.02 0.63 

PHMS/TTT_800 33.3 21.2 3.0 42.5 0.14 0.48 1.37 1.43 

† N/Si atomic ratio in the starting precursor as obtained from the nominal 
chemical formula reported in Table 1.  
† O/Si atomic ratio in the starting precursor as obtained from the nominal 
chemical formula reported in Table 1.  

 

Chemical analysis of O, C, and N has been performed on the 

samples pyrolyzed at 800 °C. The results are reported in Table 3. Assuming 

that the H is a minor component and therefore its content can be safely 

disregarded, then the Si content is calculated as a difference to 100 wt%. 

The comparison of the experimental N/Si atomic ratio values measured for 

the ceramic samples with the corresponding values of the starting 

precursors can be taken as an indication of the ability of the polymer 

precursor to retain N during pyrolysis. Accordingly, in the case of the 

PHMS/TMTVSLZ-derived sample, N is retained in large amount, ~ 54%, 

compared to the calculated content in the initial precursor. The reason 

could be due to the stability of Si-N bonds in the precursor. On the other 

hand, the SiOCN sample derived from the PHMS/TA contains very low N, ~ 

18%, with respect to the initial amount calculated for the precursor. The 

low thermal stability of N-Csp
3
 bonds in the TA can be a reason for the 
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release of nitrogen. Another possible explanation for the low residual 

content of N in the PHMS/TA –derived ceramic is related to the oxygen 

content in the precursor. Essentially, N and O atoms are bonded to Si atoms 

in the ceramic structure. The number of Si atoms in the ceramics is the 

same as in the precursors because the loss of Si during pyrolysis can be 

safely neglected.  Therefore, an increase in the O content in the ceramic, 

shown in Table 3, would induce a decrease in the residual amount of N. 

Interestingly, the PMHS/TTT-derived sample still retains ~ 30% of N content 

compared to its precursor. The stability of the bonding between N and two 

Csp
2
 in the precursor could be a possible explanation for the better 

capability of retaining nitrogen in the pyrolyzed sample compared to the 

PHMS/TA precursor.[88] 
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3.3.2.2 XRD 

 

 
Figure 25: XRD patterns of the SiOCN ceramics derived from (a) 

PHMS/TMTVSLZ, (b) PHMS/TA, and (c) PHMS/TTT. 

 

Crystallization tendency of the studied ceramics was investigated 

by XRD analysis. The XRD patterns of SiOCN ceramics pyrolyzed at 1200, 

1400 and 1500 °C are shown in Figure 25. All the ceramic samples pyrolyzed 

at 1200 °C are X-ray amorphous. At 1400 °C, the PHMS/TTT -derived 
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ceramic is still X-ray amorphous while the PHMS/TMTVSLZ and PHMS/TA-

derived samples show broad diffraction peaks indicating the onset of the 

crystallization process. At 1500 °C, all the ceramic samples show crystallinity 

evidenced by broad diffraction peaks at 2θ = 35.7; 60.4 and 72.6 °. These 

peaks are characteristic of nanocrystalline β-SiC. According to Scherrer 

equation, the average crystallite size for β-SiC is calculated to be in the 

range of 3 - 5 nm. 

The X-ray diffraction study shows the following differences among 

the three samples: (i) for the PHMS/TA and PHMS/TTT compositions, a 

broad halo at 2θ = 22° which is clearly visible in the diffraction patterns 

which is assigned to the amorphous silica-based network; (ii) at 1500 °C, the 

intensity of the diffraction peaks of the PHMS/TMTVSLZ and PHMS/TA-

derived ceramics are higher than that of the ceramic derived from 

PHMS/TTT. This last experimental result indicates that the TTT-derived 

SiOCN amorphous ceramic is more resistant toward β-SiC crystallization 

than the other two systems; (iii) the crystallization of Si3N4, is not observed 

for the studied ceramics.  
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3.3.2.3 FT-IR and 29Si-NMR 

 

 

 

Figure 26: FT-IR spectra of the ceramics pyrolyzed at 1000, 1200, 1400 and 
1500 °C: (a) PHMS / TMTVSLZ, (b) PHMS/TA, and (c) PHMS/TTT. 

 
In order to better understand the phase separation and the SiC 

crystallization occurring within the ceramics at high temperature, FT-IR 

spectra of all the studied ceramics pyrolyzed at 1000, 1200, 1400 and 1500 

°C were recorded and are shown in Figure 26.  The spectrum of the 

PHMS/TMTVLZ pyrolyzed at 1000 °C (Figure 26a) shows very broad peaks 



  

59 
  

which could be assigned to the coexistence of Si-O, Si-N and Si-C bonds.[72] 

At 1200 °C, the peaks due to Si-O and Si-C bonds become more distinct 

while the intensity of the Si-N absorption peak at ca 920 cm
-1 

decreases 

suggesting that a phase separation process of the amorphous ceramic 

network starts at this temperature. From 1200 up to 1500 °C, the FT-IR 

spectra do not show any significant modification of the ceramic structure. 

 The FT-IR spectra (Figure 26b) of the PHMS/TA derived ceramics 

show, similarly to the TMTVLZ-derived samples, two main components due 

to Si-O and Si-C bonds. The main difference of this system with the other 

two is the absence of the Si-N related absorption around 920 cm
-1

. This 

finding is in good agreement with the chemical analysis, which indicates 

that N is present in a very low amount (0.5 wt%) for this composition. 

The FT-IR spectra of the PHMS/TTT-derived ceramics in Fig 26c 

show that increasing pyrolysis temperature does not result in a remarkable 

structural modification. The absorption band due to Si-C peaks appears as a 

very small and broad peak in all the spectra. It is due to the fact that the 

PHMS/TTT-derived ceramics remain amorphous structure up to 1400 °C and 

show low crystallinity of SiC even at 1500 °C. 
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Figure 27: 
29

Si-NMR spectra of the ceramic samples pyrolyzed at 1400 °C. 

 

The XRD patterns indicate that the major difference in the 

structure among the studied ceramics occurs at the pyrolysis temperature 

of 1400 °C.  To have more supportive information for this observation, 
29

Si-

NMR characterization was performed for all the ceramics obtained at 1400 

°C (Figure 27). The NMR spectra show for all the three systems the presence 

of two main peaks at ca -15 and -108 ppm, which are assigned to SiC4 and 

SiO4 units, respectively. This result shows that the phase separation of the 

amorphous SiOCN network into SiC-rich and SiO2-rich domains has already 

taken place at this temperature in all the three studied systems. The 

PHMS/TMTVSLZ-derived ceramic shows a quite defined peaks at δ = -16.9 

ppm (SiC4) and at -108.4 ppm (SiO4). SiN4 units, which should give rise to a 

component at -48 ppm cannot be clearly seen. For the TA- and TTT-derived 

SiOCN systems, the silica peak at -108.4 ppm is also well defined. On the 

other hand, the SiC4 resonance becomes less intense and broadens for the 

TA- and TTT- derived systems. Indeed, the intensity ratio between SiC4 and 

SiO4 peaks is higher than 1 for the PHMS/TMTVSLZ and drops below 1 for 

the other two samples. This result is in good agreement with the XRD and 
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the FT-IR analyses.  Particularly, the contribution of the SiO4 units in the 

ceramic sample derived from the PHMS/TTT precursor is dominant. This is 

expected because the PHMS/TTT-derived ceramic remains amorphous at 

1400 °C and the silicon carbide crystallization is not yet complete. 

Repeatedly, the 
29

Si-NMR spectra show a coincidence with the XRD data.  
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3.3.2.4 XPS 

 

 
Figure 28: N1s and C1s XPS spectra of the ceramics pyrolyzed at 1000 °C 

from (a) PHMS/TMTVSLZ, and (b) PHMS/TTT. 
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To understand the chemical nature, in particular the chemical 

environment surrounding N atoms, XPS measurements were carried out for 

the two ceramic samples displaying the maximum N content, namely 

PHMS/TMTVSLZ and PHMS/TTT. The N1s and C1s XPS spectra recorded on 

the studied samples are shown in Figure 28. 

For the N1s core level in the XPS spectrum of the PHMS/TMTVSLZ 

system, on the left side of Figure 28a, the dominant peak at 397 eV is due to 

N-Si bonds.[89] Interestingly, besides the major peak the N1s XPS spectrum 

shows another shoulder at higher binding energy (400.5 eV) which can be 

assigned to N-Csp
2
 bonds. [89,90] It means that N atoms are mainly bonded 

to silicon atoms but also a smaller amount of nitrogen atoms form bonds 

with sp
2
 carbon atoms of the free carbon phase. Whether these N-C bonds 

are part of the sp
2
 carbon planes of the free carbon phase or form the 

interface between the free C and the amorphous SiOCN network is 

however, at present, not clear.  

The C1s XPS spectrum of the same PHMS/TMTVSLZ sample, on 

the right side of Figure 28a, shows different chemical bonds for the C atoms 

with a broad range of binding energy between 282 to 290 eV. The main 

peak at 284.7 eV is assigned to C-C bonds in graphite or amorphous 

carbon.[89,91] The presence of the free carbon phase in these two studied 

samples was previously reported by the means of Raman and elemental 

analysis which are shown in the next chapter of this thesis. In the same 

spectrum, two shoulders are also present: at 283.5 eV, due to C-Si bonds 

and at 286.7 eV, due to Csp
2
-N bonds, in agreement with the information 

obtained from the N1s XPS spectrum of the same sample. The peak at 289.1 

eV is tentatively attributed to CO type bonds.[89,91] 

The N1s XPS spectrum recorded for the sample derived from 

PHMS/TTT, on the left side of Figure 28b, reveals two different chemical 

bonds of N atoms. The main peak at 398.3 eV can be assigned to N-Csp
3
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bonds or mixed N-Csp
3
/N-Csp

2
 in pyridine-like structure.[89,90] In addition, 

the minor peak at higher binding energy (400.8 eV) which is previously 

assigned to N-Csp
2
 bonds also presents in the N1s XPS spectrum.  However, 

it seems unrealistic to have only N-C bonds at such a high temperature 

(1000 °C). We propose that the higher binding energy of N atoms observed 

in this case in the N1s XPS spectrum compared to the PHMS/TMTVSLZ 

sample could be due to an increased proportion of N-C bonds which  exist 

together with the N-Si bonds.[54]
 
Since the starting precursor does not 

contain N-Si bonds, they must have formed during the polymer-to-ceramic 

transformation. It is also worth noticing that N atoms exist in different 

chemical bonding environments in the two precursors, i.e. as HNSi2 in the 

PHMS/TMTVSLZ- and (Csp
3
)N(Csp

2
)2 bonds in the PHMS/TTT. This 

difference seems to be maintained in the final ceramics: indeed, the SiOCN 

obtained from the PHMS/TTT precursor shows more N-C bonds compared 

to the PHMS/TMTVSLZ one. The C1s XPS spectrum recorded for the same 

sample, on the right side of Figure 28b, shows the formation of similar 

chemical bonds of C atoms as in the PHMS/TVTMSLZ sample. The presence 

of N in the SiOC matrix would impact on several functional properties such 

as electrical and optical properties. For example, the electrical conductivity 

of the PHMS/TTT-derived ceramics having a higher fraction of N-C bonds is 

higher than the values obtained for the samples derived from 

PHMS/TMTVSLZ at the same pyrolysis temperature. 
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3.4 Conclusions 
 

SiOCN ceramics were successfully synthesized via polymer 

pyrolysis starting from different nitrogen-containing pre-ceramic polymers. 

It was found that the structure of the polymer precursors influences the 

thermal stability, with respect to thermal degradation, crystallization 

tendency of the ceramics and structural rearrangement at high 

temperature. Interestingly, we found that the nitrogen content and the 

chemical nature of the N atoms in the SiOCN ceramic samples can be 

controlled by the architecture of the as-synthesized precursors. In 

particular, we found that:  

 
1) the ability to retain N after pyrolysis depends on the 

type of bonds that N forms in the polymer precursor and follows the 

sequence N-Si > N-Csp
2
 > N-Csp

3
;  

 
2) Irrespectively from the type of polymer precursor, N-C 

bonds are present in the final ceramics, however, if in the pre-ceramic 

polymer N is bonded to silicon the Si-N bonds are retained to a large extent 

in the pyrolysis product while if N, in the pre-ceramic polymer, bonds with 

sp
2
 carbon atoms forming N-Csp

2
 bonds then a higher amount of N-C bonds 

are present in the SiOCN ceramic material.  
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Chapter 4 Physical properties and gas 

sensing behavior  
 

 

Part of this chapter has been published in: 

Van Lam Nguyen, Caterina Zanella, Paolo Bettotti, and Gian Domenico 

Sorarù, “Electrical conductivity of SiOCN by the powder solution composite 

technique” J. Am. Ceram. Soc., 97 [8] 2525-2530 (2014)  
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4.1 Electrical property 

4.1.1 Introduction 

 
In the literature, electrical conductivity of the SiOC and SiCN 

ceramics is usually measured on small bulk components. However, it is not 

easy to process a crack-free monolithic PDC and a method to study the 

electrical properties based on powder samples would be much more 

suitable for these materials. According to Wang et al.[92] and Lu et al.[93] 

powders can be pressed and their bulk conductivity can be measured. A 

problem of this method is associated with the contact resistance between 

the particles, which leads to a high uncertainty in the measurements.[94] 

Recently, Ingram et al. proposed for the first time a method, named 

“Powder-Solution-Composite” (PSC) technique, in which the impedance 

spectroscopy was used to measure both the conductivity of a slurry, formed 

by mixing the studied ceramic powders and the electrolyte, and the 

conductivity of the electrolyte alone.[95] Then the electrical conductivity of 

the investigated ceramic powders was obtained by plotting the conductivity 

of the composite vs the electrolyte. The PSC method lowers the error in 

measuring electrical conductivity of the ceramic powders compared to the 

previously reported powder methods because grain boundary effect is 

negligible.
 

This method has been used to measure the electrical 

conductivity of different ceramic powders such as Ag2V4O11, Ag4V2O6F2, 

CeAgOS, BiCuOS and ZnO nanowires.[96-98] The results obtained using this 

method were comparable with the bulk conductivity of the same materials 

measured by conventional methods, for example four-point or two-point 

probe measurements.  
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In this work, the electrical conductivity of SiOCN ceramic powders 

derived from the PHMS/TMTVSLZ and PHMS/TTT is characterized by using 

PSC method. To the best of our knowledge, PSC method is applied here for 

the first time to study the electrical behavior of the ceramics in PDC field. 

The influence of the pyrolysis temperature as well as of the chemical 

composition of the SiOCN ceramics on their electrical conductivity is also 

presented. Unlike other works [99,100] in which the oxygen content was 

not controlled and came mostly from contamination of the polymer or 

during the processing steps, in the present study the oxygen was 

deliberately introduced into the systems from a polysiloxane.  

 

4.1.2 Experimental  

4.1.2.1 Synthesis of the ceramic powders 

 
Two polymer precursors, PHMS/TMTVSLZ and PHMS/TTT, were 

synthesized as reported in chapter 2. The as-obtained cured precursors 

were pyrolyzed at temperatures between 1000 and 1400 °C. These two 

samples contain quite significant amount of N in the final ceramics. After 

pyrolysis, the samples were milled to obtain very fine powders for the 

electrical conductivity measurements.  

4.1.2.2 Electrical conductivity measurements 

 
 Electrical conductivity was measured applying the PSC method. 

Impedance spectroscopy was applied on a slurry with different electrolyte 

conductivity prepared by mixing the SiOCN powders and an electrolyte. As 

electrolyte, an aqueous solution of Na2SO4 was chosen in order to have a 

non aggressive electrolyte (especially for the stainless steel electrodes). 

First Na2SO4 solutions with different concentrations (from 10
-5

 to 0.5 M) 
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were prepared. Subsequently, 20 µl of these solutions was mixed with the 

ceramic powders to form a composite slurry. Volume fraction of the 

powders was kept constant (0.75) for all measurements. The slurries were 

placed into a polyethylene tube (4.76 mm of internal diameter and 20 mm 

long), shown in Figure 29, and then carefully pressed by two stainless steel 

ending plugs whose ending surface were polished to mirror finish. Inner 

spacing between two electrodes was about 2 mm and represented the 

electrochemical cell with two electrodes geometry where the composite 

slurry was placed. The electrical impedance spectroscopy of the slurries was 

measured by connecting the two stainless steel electrodes to the 

potentiostat. 

 

 

 

Figure 29: An apparatus for the electrical conductivity measurement. 

 

 

 

 

 

 

 

 

 

 



  

70 
  

4.1.3 Results and discussion 
 
Table 4: Chemical compositions of the ceramic samples pyrolyzed at 1000, 
1200 and 1400 °C. The uncertainty of the measurements is reported as the 
standard deviation. At least 5 different measurements were done for each 
sample. 

Sample Temp. 
(°C) 

Sia 
(wt %) 

O 
(wt %) 

C 
(wt %) 

N 
(wt %) 

Empirical 
formula 

Free Cb 
(Vol %) 

Amorphous 
SiOCN matrix 

(Vol%) 

PHMS/TTT 1000 43.8 
± 2.3 

27.8 
± 0.8 

24.7 
± 1.4 

3.7 
± 0.1 

SiO1.12C1.32N0.17 21 ± 2 
 

79 ± 2 

 1200 41.9 
± 1.0 

31.5 
± 0.3 

23.0 
± 0.6 

3.6 
± 0.1 

SiO1.32C1.28N0.17 21 ± 2 
 

79 ± 2 

 1400 42.4 
± 0.6 

31.5 
± 0.4 

22.5 
± 0.2 

3.6 
± 0.0 

SiO1.30C1.24N0.17 20 ± 2 
 
 

80 ± 2 

PHMS/TMTVSLZ 1000 51.1 
± 1.2 

19.2 
± 0.5 

23.6 
± 0.6 

6.1 
± 0.1 

SiO0.66C1.08N0.24 14 ± 1 86 ± 1 

 1200 51.4 
± 1.1 

19.6 
± 0.4 

23.0 
± 0.6 

6.0 
± 0.1 

SiO0.67C1.05N0.23 14 ± 1 86 ± 1 

 1400 49.3 
± 0.5 

20.1 
± 0.3 

24.0 
± 0.1 

6.6 
± 0.1 

SiO0.72C1.14N0.27 16 ± 2 84 ± 2 

a
Uncertainty of the Si content is calculated as the sum of all the 

uncertainties in O, C and N contents. 
b
Free C volume is calculated based on the lower and upper limits of  density 

values of the SiOCN amorphous matrix. 
 
 
 

Results of the chemical analysis are reported in Table 4. There is 

no significant modification in chemical composition from 1000 to 1400 °C in 

all the investigated samples. The PHMS/TTT-derived SiOCN ceramics display 

a higher oxygen content and a lower nitrogen content compared to the 

PHMS/TMTVSLZ-derived one. The empirical formula of the ceramics is 

presented as SiOxCyNz. We can express the composition SiOxCyNz as a 

mixture of (x/2) mol SiO2, (z/4) mol Si3N4, (1- x/2 -3z/4) mol SiC and (y-1+x/2 

+3z/4) mol C. The weight fraction of the free carbon is therefore equal to (y-

1+x/2 +3z/4)*12/(28.1 + x * 16 + y * 12 + z * 14) and the corresponding 
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weight fraction of the amorphous SiOCN network can be estimated as 

difference to 100%. From these values the volume fraction of the two 

constituents is obtained assuming a density of 2 g/cm
3
 for the free-carbon 

phase and 2.5 g/cm
3
 for the amorphous SiOCN network

1 
(Note that the 

typical density values for the SiOCN ceramics are in the range 2 - 2.5 g/cm
3
).

 

[1]
 
Assuming a value of 2.0 g/cm

3
 for the SiOCN network the vol% of the 

free-carbon phase decreases to ~ 19% and ~ 13% for the PHMS/TTT and 

PHMS/TMTVSLZ systems, respectively).  
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Figure 30: Experimental Nyquist plots for (a) 10
-4

 M Na2SO4 plain solution 
(squares) and 10

-4
M Na2SO4 + PHMS/TMTVSLZ_1000 composite (circles), (b) 

5x10
-5

 M Na2SO4 plain solution (squares) and 5x10
-5

 M Na2SO4 + 
PHMS/TMTVSLZ_1000 composite (circles). The composite resistance used 

for analysis is indicated with an arrow. 
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Figure 30a shows the Nyquist plots (imaginary impedance vs. real 

impedance) for the 10
-4

 M Na2SO4 plain solution and the composite formed 

by mixing the plain solution with 0.75 volume fraction of the ceramic 

powders, obtained through pyrolysis of the PHMS/TMTVSLZ precursor 

polymer at 1000 °C (PHMS/TMTVSLZ_1000). Frequency markers, 

representing log10 of frequency, are included in the Nyquist plots. As seen 

from Figure 30a, the Nyquist plot of the plain solution is formed by two 

components including the electrodes and the solution. The value of plain 

solution resistance can be obtained by using an equivalent circuit of 

(RsCs)(ReCe), where s corresponds to the solution and e corresponds to the 

electrodes
 
or taking the intersection of the spectra with the real axis, which 

is comparable with the four-point DC resistance of the solution.[97]
 
The 

electrodes correspond to a large arc extending to low frequency (on the 

right, above 61106 Ω) and the solution corresponds to an arc at high 

frequency (on the left, below 61106 Ω). Figure 30a shows that the arc shifts 

to higher resistance values when the composite slurry is placed in the 

electrochemical cell instead of the plain solution. Since the powders are less 

conductive compared to the solution the composite shows a higher 

resistance. The cusp resistance, indicated with an arrow in Figure 30a, is 

considered as the composite resistance.[95,96] 

Figure 30b shows the Nyquist plots for the 10
-5

 M Na2SO4 plain 

solution and the corresponding composite, (10
-5

 M Na2SO4+ 75 Vol% 

PHMS/TMTVSLZ_1000). In this case, the cusp resistance of the composite is 

lower than the solution’s one. It means that the powders are more 

conductive than the solution. Therefore, we can conclude that the electrical 

conductivity of the PHMS/TMTVSLZ_1000 powders is between the 

conductivity of the plain solutions with concentration of 10
-4

 and 10
-5

 M. 

 



  

74 
  

It should be mentioned here that the size, size distribution and 

shape of the powders influence their contribution to the overall 

conductivity behavior of the system.[95-97] Therefore, in order to evaluate 

the conductivity of the studied powders, it is important to choose the 

appropriate model for analyzing the relation between the powders, the 

electrolyte and the composite. The SEM observations allow to exclude the 

possibility that the powders have a needle-like or a platelet-like morphology 

and show a roughly three-dimensional shape of PHMS/TMTVSLZ_1000 

ceramic powders, as shown in Figure 31.  

 

 

Figure 31: SEM image of the PHMS/TMTVSLZ_1000 powders. 
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In addition, their size varies in a broad range from hundreds of nm 

to a few tenths of µm. Therefore, the Bruggeman equation
 
is chosen to 

model the conductivity of the system.[101] 

 

     

  
   

        
            

 

Where    is the conductivity ratio between the slurry and the 

plain solution (σc/σs),       is the conductivity ratio between the particles 

and the solution (σp/σs), and   is the volume fraction of the ceramic powder 

which is estimated by 

 

   
   

        
          

 

Where   is the weight of the powders,    is the density of the 

powders,   is the radius of the tube used for the measurement and    is the 

interelectrode spacing. 

The electrical conductivity of the ceramic powders can be 

calculated from equation (1) if the conductivity of the slurry and of the plain 

solution is known. However, a large error in calculation of σp is unavoidable 

because of individual error in determining both   and   . In order to 

minimize this error, a number of experiments with a wide range of the 

solution conductivities were carried out. This is the basis of the PSC 

method. 
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Figure 32: Experimental results of the PHMS/TMTVSLZ_ 1000 ceramic 
powders (circles), simulated (triangles) and plain solution (squares). The 

crossover point shows the powder conductivity. 

 

Figure 32 shows that the simulated model fits well with the 

experimental data. The electrical conductivity of the PHMS/TMTVSLZ_1000 

powders was determined to be equal to 1.35x 10
-5

 S/cm.  

Experimental errors in the PSC method result from uncertainty in 

measuring interelectrode spacing and in reading the resistance values in the 

Nyquist plot. It should be mentioned that the influence of the volume 

fraction of the powders can be ignored if the conductivity of the powders is 

closed to the conductivity of the solution.[95] According to Ingram et al.
 
a 

value of 20 % was considered as a typical error in an individual 

measurement. Based on this estimation, the upper and lower limits of the 

experimental data were calculated.  To evaluate uncertainty of the 

experimental results, the fitting procedure using equation (1) was repeated 

for the upper and lower limits of the conductivity.  Consequently, 
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conductivity of the PHMS/TMTVSLZ_1000 powder with uncertainty is (1.35 

± 0.15) x 10
-5

 S/cm. 

In order to measure the electrical conductivity of the other 

samples the same experimental procedures and data analyses were 

applied. The electrical conductivities of all the studied samples are shown in 

Table 5. 

 

Table 5: Electrical conductivity of the ceramic powders, pyrolyzed from 
1000 to 1400 °C. 

Pyrolysis temperature (°C) Conductivity (S/cm) 

 PHMS/TMTVSLZ                       PHMS/TTT 

1000  (1.35 ± 0.15) x 10
-5                       

(4.46 ± 0.51) x 10
-5

 

1100 (7.81 ± 0.89) x 10
-5

                (1.19 ± 0.16) x 10
-4

 

1200  (7.61 ± 1.30) x 10
-4                       

(4.57 ± 0.68) x 10
-3

 

1300 (1.39 ± 0.34) x 10
-3                        

(8.66 ± 0.89) x 10
-3

 

1400  (5.44 ± 0.87) x 10
-3                         

(1.43 ± 0.22) x 10
-2

 

 

 

The studied SiOCN ceramics show conductivities in the range 10
-5

-

10
-2

 S/cm which are typical values of semiconducting materials. The 

electrical conductivity of each powdered ceramic sample increases by 3 

orders of magnitude with increasing pyrolysis temperature from 1000 to 

1400 °C. The results obtained by the PSC method, as shown in Table 6, are 

comparable with the values reported in literature. 
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Table 6: Literature values for the electrical conductivity of SiOC, SiCN, and 
SiOCN ceramics pyrolyzed at 1400 °C. 

PDC system Sample Conductivity at RT 
(S/cm) 

Measurement method Ref. 
 
 

SiOCN Powders ≈ 5 x 10
-3

 – 1,5 x 10
-2

 PSC technique This work 

SiCN Powders ≈ 5 x 10
-3

 Microwave  conductivity [9] 

SiOC Bulk ≈ 4 x 10
-3

 Four points* [74] 

SiOCN Bulk ≈ 9 x 10
-2

 Four points [55] 

SiCNH Bulk ≈ 10
-1

 Impedance spectroscopy [78] 

SiCN Fragments ≈ 10
-1

 Four points [76] 

 

 

In order to correlate the measured conductivity with the structure 

of the studied samples, Raman spectra were employed to characterize the 

free-carbon phase of the SiOCN ceramics (Figure 33).  
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                (a) 

 

 

                 (b) 

Figure 33: Raman spectra of the SiOCN ceramics pyrolyzed at 1000, 1200, 
and 1400 °C: (a) PHMS/TTT, and (b) PHMS/TMTVSLZ.   
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The Raman spectra show the appearance of the D band (1350  

cm
-1

) and the G (1600 cm
-1

) band, which are typical for disordered graphitic-

like carbon.[102] The peak intensity ratio I(D)/I(G) and full width half 

maximum (FWHM) of the D and G peaks are listed in Table 7.   

 

Table 7: Variation of I(D)/I(G) ratio and FWHM line widths of the D and G 
peaks with pyrolysis temperature. 

Sample Pyrolysis 
temperature 

(°C) 

D peak 
position 

(cm
-1

) 

G peak 
position 

(cm
-1

) 

I(D)/I(G) FWHM of 
D peak 
(cm

-1
) 

FWHM of 
G peak 
(cm

-1
) 

PHMS/TTT 1000 1322.2 1594.3 0.99 294.5 267.9 

 1200 1338.0 1596.4 1.09 255.9 175.9 

 1400 1352.8 1599.6 1.59 77.7 78.8 

PHMS/TMTVSLZ 1000 1335.9 1579.6 0.97 296.1 229.9 

 1200 1341.2 1594.3 1.11 260.6 174.7 

 1400 1352.8 1606.9 1.31 117.0 70.0 

 

 

The ratio of I(D)/I(G)increases and the line widths of both the D 

and G bands decrease with increasing pyrolysis temperature. These 

observations indicate an increase in degree of ordering or in number of 

crystallites of the carbon phase.[56] Moreover, in the low temperature 

spectra (1000 and 1200 °C) the D band shows a shoulder around 1200 cm
-1 

which can be assumed as an indication of the presence of sp
3
 C atoms in the 

sp
2
 C structure of the graphene layers.[103,104] This shoulder can be seen 

up to 1200 °C but it is drastically reduced (or even totally absent) in the 

1400 °C spectra suggesting that the carbon phase evolves, with the 

pyrolysis temperature, from an “amorphous carbon” structure toward a 

more “nanocrystalline graphite” structure. 
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In the PDC field, the electronic behavior of the ceramics is still a 

matter of debate: one theory suggests that the conductivity is controlled by 

the free-carbon phase, either forming a percolating network [56] or through 

a particle-matrix-particle pathway assisted by the “field concentration 

effect [105] while the second hypothesis points toward a key role of the 

amorphous silicon oxycarbonitride network.[99] Following the “free-

carbon” model an enhancement of sp
3
-sp

2
 transformation or an increase in 

the ordering degree of the free-carbon phase during pyrolysis at 

temperatures above 1000 °C lowers the energetic barrier for the charge 

carrier transport leading to an increase in electrical conductivity. The 

activation energy for sp
3
-sp

2
 conversion in amorphous carbon is about 3.5 ± 

0.9 eV.[106,107] A similar value, 3.3 eV, can be calculated from the 

conductivity of an amorphous carbon material.[104] In order to verify if the 

increase in conductivity with the pyrolysis temperature measured in our 

samples could be related to the sp
3
-sp

2
 conversion in the amorphous 

carbon phase suggested by the Raman study, we have plotted the 

conductivity in an Arrhenius diagram (Figure 34). The apparent activation 

energy is approximately 2.7 and 3.0 eV for the PHMS/TMTVSLZ and 

PHMS/TTT-derived SiOCN ceramics, respectively. 
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Figure 34: Arrhenius plots of electrical conductivity of the studied SiOCN 

ceramics. 

 

Although these values are close to the lower limit still they 

support the idea that the conductivity increase is related to the sp
3
-sp

2
 

transition of the amorphous carbon phase. A possible reason for the lower 

activation energy is that, contrary to most of the studies reported in the 

literature, the carbon structures in our samples are part of a more complex 

amorphous silicon oxycarbonitride network and sp
3
 C atoms can share 

bonds with C, Si, N atoms, with residual H atoms,[54] or can just be present 

as sp
3
 C radicals.[108]

 
Moreover, the covalent Si-O-C-N network and the 

free-carbon phase can be subjected to high stresses, as it was shown for a 

ternary Si-B-O-C system, leading to strained bonds which could provide an 

extra driving force for the sp
3
-sp

2
 transformation.[30] 

The electrical conductivity of the TTT-derived SiOCN is three to 

five times higher than that of the TMTVSLZ-derived ceramic at each 

pyrolysis temperature (Table 5).The difference in the conductivity values 

between the two studied systems can be discussed based on the chemical 

composition of the SiOCN ceramics and on the amount of the free-carbon 



  

83 
  

phase reported in Table 4. The PHMS/TMTVSLZ system has a volume 

percentage of free carbon slightly lower than the PHMS/TTT system. 

However, in both cases, the volume fraction of Cfree is higher than the 

percolation threshold. Indeed, for these systems the percolating phase is 

constituted by graphitic-like lamellae few nm thick and the critical 

percolating volume is well below 10%.[56] Therefore, for both SiOCN 

ceramics the electronic conductivity is provided by the percolating Cfree 

network. In this case, the model for the electronic conductivity of a 

composite material formed by a low conducting matrix and a high 

conductivity percolating phase
 

indicates a little dependence of the 

conductivity from the vol% of the percolating phase which could be the 

reason why the PHMS/TTT-derived SiOCN has only a slightly higher 

conductivity compared to the PHMS/TMTVSLZ-derived SiOCN.[109] 

Another hypothesis to explain the different conductivity of the 

two materials takes into account the possibility of a different conductivity 

of the percolating carbon-based phase. The difference between the two 

SiOCN systems lies in the different compounds used to introduce the 

nitrogen in the precursor: for the PHMS/TMTVSLZ system trimethyl-trivinyl-

cyclosilazane, nitrogen is bonded to two silicon atoms and one hydrogen 

atom to form NSi3 while for the PHMS/TTT composition nitrogen is 

introduced via triallyl-triazine-trione, in which only N-C bonds are present in 

CN3 units. In the previous chapter, the XPS study showed N atoms is bonded 

to both Csp
2
 and Csp

3
 atoms in the TTT-derived ceramic sample while a 

small amount of N is bonded to Csp
2
 in the ceramic derived from TMTVSLZ.   

Accordingly, a higher doping level of N into the free carbon phase presents 

in the TTT-derived sample compared to the TMTVSLZ-derived one. 

Moreover, N-doped amorphous carbon promotes the sp
3
 – sp

2
 transition 

which also leads to an increase in conductivity.[110] These facts are 
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reasonable explanation for a higher conductivity of the SiOCN ceramic 

derived from TTT compared to TMTVSLZ. 

To further understand the role of the N-doped carbon phase, the 

PHMS/TTT precursor containing a higher content of N was synthesized from 

a mixture of PHMS and TTT with a Si-H/C=C ratio of 1:2, instead of 2:1 as for 

the precursor mentioned in the previous chapters. The N content in this as-

obtained precursor (PHMS/TTT_1:2) is estimated to be 12.2 wt %. The 

synthesized precursor was pyrolyzed at 1000, 1200 and 1400 °C. It is 

expected that resulting ceramics contain a higher content of N. On the 

assumption that the N content in the corresponding ceramic is as half as in 

the precursor, as seen in the elemental analysis result for the PHMS/TTT 

_2:1 sample. The calculated N content in the PHMS/TTT_1:2–derived 

ceramics is summarized in Table 8. 

 

Table 8:  The calculated N content in the ceramics derived from the 
PHMS/TTT_1:2. 

PHMS/TTT (Si-H/C=C) Precursor 1000 1200 1400 

    2:1 (experimental data) 6.6 3.7 3.6 3.6 

    1:2 (calculated data) 12.1 6.8 6.8 6.8 

  

The electrical conductivity was measured for the obtained 

ceramic powders. At each pyrolysis temperature, the conductivity of the 

PHMS/TTT_1:2-derived SiOCN ceramic is higher than that obtained for the 

one derived from the PHMS/TTT_2:1. The values of the electrical 

conductivity are shown in Table 9. 
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Table 9: Electrical conductivity of the ceramics derived from the 
PHMS/TTT_1:2. The values obtained for the PHMS/TTT_2:1-derived samples 
are also listed. 

Pyrolysis temperature 

(°C) 

PHMS/TTT 

(Si-H/C=C  is 2:1) 

PHMS/TTT 

(Si-H/C=C is 1:2) 

1000 (1.35 ± 0.15) x 10
-5

 3.63 x 10
-2

 

1200 (7.61 ± 1.30) x 10
-4

 6.30 x 10
-2

 

1400 (5.44 ± 0.87) x 10
-3

 1.82 x 10
-1

 

 

 

One possible explanation for the higher electrical conductivity of 

the PHMS/TTT_1:2 –derived ceramics is because of their higher carbon 

content. However, this reason is unlikely because the carbon content in 

both ceramics derived from the PHMS/TTT_1:2 or PHMS/TTT_2:1 is higher 

than the threshold concentration. The higher conductivity of the ceramic 

samples derived from the PHMS/TTT_1:2 is probably related to a higher 

intrinsic conductivity of the percolating carbon phase which contains a 

higher N concentration.  To understand further, elemental analysis and XPS 

can be employed to determine the amount of N in these ceramics, 

particularly in the free carbon phase. 

 

 

4.1.4 Conclusions 

 
The electrical conductivity of the SiOCN ceramic powders derived 

from two pre-ceramic polymer precursors was measured for the first time 

using the PSC technique. The conductivity values obtained in our study are 

comparable with those previously reported in the literature using more 

conventional electrical measurements. These results suggest that the PSC 



  

86 
  

technique can indeed be applied to study the electrical properties of 

polymer-derived ceramics, especially of those systems for which it is 

impossible to obtain bulk samples. 

The results show that the electrical conductivity of the SiOCN 

ceramics increased by 3 orders of magnitude with increasing pyrolysis 

temperature from 1000 to 1400 °C.  The apparent activation energy for this 

process, estimated from an Arrhenius plot of the conductivity vs the 

pyrolysis temperature, is 2.7 -3.0 eV, close to the activation energy reported 

in the literature for the sp
3
-sp

2
 transition of amorphous carbon. From the 

chemical analysis results the presence of a percolating free-carbon phase 

has been assumed. The Raman study suggested the presence of sp
3
 C atoms 

in the amorphous carbon phase, particularly at the lower pyrolysis 

temperatures (1000 and 1200 °C). Taken all together these data suggest 

that the increase in conductivity with the pyrolysis temperature is due to 

the sp
3
-sp

2
 transition occurring in the percolating free-carbon phase of the 

SiOCN ceramics. The higher conductivity of the PHMS/TTT-derived SiOCN 

compared to the PHMS/TMTVSLZ-derived ceramic could be assigned either 

to the slightly higher amount of free carbon in the former material or to an 

intrinsic higher conductivity of the percolating carbon network due to 

partial retention of N-C bonds with the formation of a N-doped carbon 

phase.  The importance of N-C bonds to the electrical conductivity is quite 

significant. The increasing of the N content in the precursor results in the 

corresponding ceramics with a higher conductivity. 

 

 

 

 

 



  

87 
  

4.2 Optical property 

4.2.1 Introduction 
 

Heat treated SiOCNs synthesized from the reaction between a 

siloxane and a silazane exhibit luminescence in the visible range of 500-800 

nm.[81] Ferraioli et al found that emission intensity of these SiOCNs is 

sensitive to the heating temperature. On the contrary, emission wavelength 

is not dependent on the treatment temperature. Interestingly, Ferraioli 

discovered that photoluminescence energy is higher than that of 

absorption. Based on these findings, the authors suggested that 

photoluminescence in the SiOCNs is due to mixed bond SiOCN tetrahedra 

whereas the absorption is related to the graphene network. However, this 

hypothesis is still questionable because it cannot explain the fact that if the 

origin of luminescence is induced by only the tetrahedral bonds why the 

sample heated at 400 °C does not show luminescence even though a 

structural modification of the SiOCN network already occurred.  As 

mentioned in Chapter 1, the dangling bonds and the crosslinking degree of 

the polymers are thought to be responsible for the luminescence of the 

similar SiCN systems. Nevertheless, it may be not relevant to correlate the 

emitting centers in the SiCN and SiOCN systems because the presence of O 

in the SiCN matrix obviously increases the complexity of the system. For 

example, it is possible to have oxygen-related defects in the SiOCNs that 

could contribute to the luminescence properties. 

The aim of the present work is to study fluorescence properties of 

the two series, PHMS/TMTVSLZ and PHMS/TTT. In addition, the influence of 

the treatment temperature and the role of the precursor structure on the 

fluorescence are also discussed. The relation between fluorescence and 

structural rearrangement in the precursor during heating is studied by FTIR. 
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4.2.2 Experimental 
 

Fragments of the synthesized polymer precursors, 

PHMS/TMTVSLZ and PHMS/TTT, were heated at 400 and 600 °C.  The 

obtained samples and the polymer precursors were ground to obtain fine 

powders. Then, they were casted on a double-sided carbon tape that was 

used to avoid the fluorescence arisen from the substrate. The excitation 

and emission spectra were recorded.  

4.2.3 Results and discussion 
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             (a) 
 

 

   (b) 
 

Figure 35:  Fluorescence spectra of the PHMS/TMTVSLZ precursor and those 
heated at 400 and 600 °C: (a) excitation, and (b) emission. 
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The fluorescence excitation and emission spectra of the 

PHMS/TMTVSLZ polymer precursor and the samples heated at 400 and 600 

°C are shown in Figure 35. The maximum excitation and emission 

wavelengths are reported in Table 10. 

 
Table 10: Maximum excitation and emission wavelengths of the 
PHMS/TMTVSLZ precursor and the samples heated at 400 and 600 °C. 

Sample Excitation wavelength (nm) Emission wavelength (nm) 

PHMS/TMTVSLZ polymer 305 390 

PHMS/TMTVSLZ _400 °C 305 390 

PHMS/TMTVSLZ _600  °C 370 465 

 

The PHMS/TMTVSLZ precursor and the sample heated at 400 °C 

(PHMS/TMTVSLZ_400) show similar excitation and emission spectra. Their 

excitation spectra exhibit three excitation peaks at 305 nm, 330 nm, and 

450 nm. Their emission spectra are composed of two emission peaks at 390 

nm, and 600 nm. As shown in Figure 35, the excitation and emission spectra 

of the polymer precursor and the PHMS/TMTVSLZ_400 show a very low 

intensity. On the contrary, the sample heated at 600 °C 

(PHMS/TMTVSLZ_600) shows an intense fluorescence. Its excitation 

spectrum presents three excitation peaks at 290 nm, 330 nm, and 370 nm. 

The emission spectrum of this sample shows a single broad emission peak 

at 465 nm. The emission spectra of the PHMS/TMTVSLZ_600 at different 

excitation wavelengths are shown in Figure 36. The results show similar 

emission spectra at different excitation wavelengths. It seems that the 

PHMS/TMTVSLZ_600 sample contains only type of fluorescence emitting 

specie that gives emission at 465 nm. 
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Figure 36:  Emission spectra of the PHMS/TMTVSLZ_600 at different 
excitation wavelengths. 

 

Obviously, the fluorescence emitting center in the 

PHMS/TMTVSLZ_600 sample is different from those present in the 

precursor and in the PHMS/TMTVSLZ_400. Since there is no emitting center 

present in the polymer precursor, the origin of the weak fluorescence can 

be caused from impurities present in the commercial products.[57] These 

impurities remain until up to 400 °C and lead to the same behavior of 

fluorescence.  However, the increase of the treatment temperature to 600 

°C results in a structural modification of the precursor. The structural 

alteration occurring between 400 and 600 °C consequently leads to the 

formation of new fluorescence centers.  The FT-IR spectra of the polymer 

precursor and the heat treated samples are shown in Figure 37. 
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Figure 37:  FT-IR spectra of the PHMS/TMTVSLZ precursor and those heated 
at 400 and 600 °C. 

 

 

The results show that the FT-IR spectrum of the 

PHMS/TMTVSLZ_400 shows a reduction in intensity of the bands related to 

N-H, Si-H and C-H. The FT-IR spectrum of the PHMS/TMTVSLZ_600 shows 

the disappearance of the band corresponding to Si-NH-Si. This fact could 

indicate that the transamination and dehydrocoupling reactions complete 

between 400 and 600 °C, as shown in Scheme 9. 
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Scheme 9: (a) Transamination, and (b) dehydrocoupling reactions.  

 
 
 

Due to the structural complexity of the SiOCN, it is a challenge to 

assign the origin of the fluorescence. In the literature, emitting centers are 

supposed to be arisen from the mixed tetrahedral bonds Si-O-C-N,[81] 

dangling bonds such as carbon radical,[57] oxygen-related defects,[39,111] 

and  hydrogen-related species.[112] 

 

 

 

 

 

 

 

 

 

 

 
 

 

(a) 

(b) 
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              (a) 

 

               (b) 
 

Figure 38:  Fluorescence spectra of the PHMS/TTT precursor and those 
heated at 400 and 600 °C: (a) excitation and (b) emission. 

 
 



  

95 
  

 

The fluorescence excitation and emission spectra of the 

PHMS/TTT polymer precursor and the samples heated at 400 and 600 °C 

are shown in Figure 38. The maximum excitation and emission wavelengths 

are reported in Table 11. 

 

Table 11: Maximum excitation and emission wavelengths of the PHMS/TTT 
precursor and the samples heated at 400 and 600 °C. 

Sample Excitation wavelength (nm) Emission wavelength (nm) 

PHMS/TTT polymer 310 400 

PHMS/TTT_400 °C 290 490 

PHMS/TTT_600 °C - - 

 

 

The excitation spectrum of the polymer precursor exhibits three 

peaks at 310 nm, 333 nm, and 448 nm. The emission spectra are composed 

of two peaks at 400 nm and 600 nm.   The sample heated at 400 °C 

(PHMS/TTT_400) shows a maximum excitation peak at 288 nm and other 

peaks at lower energies at 333 nm, 370 nm, and 407 nm.  The emission 

spectrum of this sample is composed of a maximum emission peak at 490 

nm and another possible emissions peak at 550-570 nm. The difference 

between the emission spectra of the PHMS/TTT polymer precursor and the 

PHMS/TTT_400 suggests that fluorescence emitting centers in the 

PHMS/TTT_400 are formed at temperatures below 400 °C. Similarly to the 

PHMS/TMTVSLZ, the origin of the weak fluorescence of the PHMS/TTT 

polymer precursor is supposed to be attributed to the impurities present in 

the commercial products. The assignment of the fluorescence centers 

present in the PHMS/TTT_400 is not easy. If the fluorescence arises from 

the Si-O-C network, it seem to be unlikely because there is no difference in 

the FT-IR spectra recorded for the precursor and the PHMS/TTT_400, as 
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shown in Figure 40. A similarity in the shape and the range of the emission 

spectra between the PHMS/TTT_400 and PHMS/TMTVSLZ_600 suggest that 

these samples probably contain the same emitting species.  There is only a 

slight difference in maximum emission wavelength between the 

PHMS/TTT_400 and PHMS/TMTVSLZ_600.  The excitation energy used for 

recording the emission spectra is 3.6 eV. The emission energies are 2.5 and 

2.6 eV, for the PHMS/TTT_400 and the PHMS/TMTVSLZ_600, respectively. 

Photoluminescence has been widely studied for the systems containing Si, 

O, and C such as C-doped silica, SiC/SiO2 and SiOC.[112-115] To have an idea 

about the emitting centers in the two heated SiOCNs above, the emission 

energy is compared with the values obtained for similar systems reported in 

the literature.  For example, the excitation and emission energy band gap of 

the SiO2:C layer have been shown in Figure 39.[114] The authors found that 

the emitting centers in this system are related to carbon. These values of 

band gap are close to those found in our study.  

 

Figure 39: Schematic diagram of levels and transitions for the 
photoluminescence of the SiO2/C layer.[114] 
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A slight difference in emission energy of the PHMS/TMTVSLZ_600 

and the PHMS/TTT_400 could be ascribed to either the carbon 

concentration or the carbon-related defect levels present in these samples. 

The carbon content or the defect levels are shown to impact the energy 

band gap and therefore impact the photoluminescence of the SiOC or C-

doped SiO2 systems, as shown in Figure 39.[113,116] However, the treated 

samples at low temperatures contain all the Si-C, Si-O, Si-H bonds. It should 

not be ignored the role of the defects related to H, O, and Si. In order to 

characterize the type of defects present in the sample, electron 

paramagnetic resonance spectroscopy can be employed.  

 The PHMS/TTT precursor heated at 600 °C does not fluoresce due 

to the presence of free carbon phase which leads to the formation of black 

material. The presence of sp
2
 carbon in this sample is verified by the FT-IR 

spectrum (Figure 40a) with the absorption bands at 1631 cm
-1

 and 1409 cm
-

1.
 It is consistent with the Raman spectrum (Figure 40b) showing two weak 

peaks at 1390 cm
-1

 and 1605 cm
-1

.  
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(a) 

 

(b) 
 

 
Figure 40: (a) FT-IR spectra of the PHMS/TTT precursor and those heated at 

400 and 600 °C, (b) Raman spectrum of the PHMS/TTT heated at 600 °C. 
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4.2.4 Conclusions 
 

The PHMS/TMTVSLZ_600 and the PHMS/TTT_400 show 

fluorescence in the visible range with emission peaks at 465 and 490 nm, 

respectively.  The emitting centers in these samples are formed during the 

heat treatment. Depending on the structure of the precursors, the 

temperature to have maximum fluorescence is different. The origin of the 

emitting centers is supposed to be related to the carbon defects. In order to 

have better understanding of the emitting C-related centers, electron 

paramagnetic resonance spectroscopy can be employed to characterize the 

type of dangling bonds present in these samples.  

 

4.3 Gas sensing behavior 

4.3.1 Electrical gas sensing  

 
The samples used for the electrical gas sensing measurements are 

the SiOCN ceramics obtained through pyrolysis of the PHMS/TMTVSLZ and 

PHMS/TTT at 1400 °C. The experimental details of the gas sensing 

measurement have been reported in the previous study carried out by 

Karakuscu et al.[40] The samples have been prepared using ball milling for 

3h. The  obtained fine powders were diluted in ethanol and consequently 

drop casted on an alumina substrate with the dimension of 2 mm x 2 mm x 

0,25 mm. Platinum electrical contacts were placed one side of the substrate 

while a platinum heater was placed on the other side. In situ DC 

conductance was recorded at operating temperatures from 200 °C to 550 °C 

under synthetic air. The measurements were performed in a flow cell 

thermostated at 20 °C with a constant gas flow rate of 300 mL/min.  In our 

study, two different target gases, NO2 (5 ppm) and H2 (500 ppm) have been 



  

100 
  

employed for the gas sensing test.  The sensor response has been 

calculated as follows: 

 

  
     

  
  

where G0 and Gf are the steady-state conductance values measured under 

air and the target gas, respectively. The sample was heated at a rate of 

1°C/min. 
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                            (a) 

 

                             (b) 

Figure 41:  Dynamic response exhibited by SiOCN sensors to: (a) 500 ppm H2 
at a fixed working temperature of 450 °C, and (b) 5 ppm NO2 at room 

temperature. 
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Figure 41 shows the gas response of the two ceramic samples 

toward H2 of 5 ppm concentration and toward NO2 of 500 ppm 

concentration, at the working temperature of 450 °C and room 

temperature, respectively. Figure 41a displays the capability of the material 

to detect H2 at high temperature of 450 °C. Both of the SiOCN samples show 

a fast response to H2. Conductance of the samples reaches to maximum 

values after 5s. The sensitivity to H2 of the PHMS/TTT is higher than the 

PHMS/TMTVSLZ. Both of the samples show a reversible sensing behavior 

and the conductance returns to the original values with a recovery time of 

5s.   

Figure 41b displays the capability of the material to detect NO2 at 

room temperature. Both of the SiOCN samples are sensitive to NO2. 

Unlikely H2, slower response time is observed in NO2. Conductance of the 

PHMS/TTT reaches to the highest value after 50s whereas the conductance 

increases to only 50% of the total increase for the PHMS/TMTVSLZ in the 

same time. These two samples show a reversible sensing behavior to NO2. 

Similarly, the sensitivity to NO2 of the PHMS/TTT is higher than the 

PHMS/TMTVSLZ.  
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Figure 42:  Gas response of the studied SiOCNs toward to NO2 (filled dot) 
and H2 (unfilled dot). The results are compared to those reported for the 

SiOC aerogels in the literature. 

 

The gas response of the SiOCN to H2 and NO2 at different 

temperatures between room temperature and 550 °C is shown in Figure 42. 

Besides, the sensitivity of the SiOCNs is compared with that of SiOC aerogels 

reported in the literature. The gas response to NO2 is the highest at room 

temperature and it reduces with increasing working temperature.  At 450 

°C, both samples are no longer sensitive to NO2. On the contrary, the 

SiOCNs start to give response to the presence of H2 at this temperature. The 

sensitivity to H2 increases with increasing working temperature and reaches 

to the highest gas response at 550 °C. Interestingly, the studied SiOCNs are 

more sensitive to both NO2 and H2 at each measured temperature 
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compared to the SiOC aerogels.  There are two questions arisen from these 

observations:  

 
1) Why does conductance increase under the gas exposure, 

both of NO2 and H2? 

 

2) Why does the sensitivity to NO2 decrease with working 

temperature while it happens in the opposite way for H2? 

 

Since NO2 is an electron-withdrawing molecule, the electron 

charge transfer is likely to occur from the SiOCN to NO2. As a consequence, 

the hole concentration increases in the SiOCN. Taken into account the fact 

that conductance of the SiOCN increases upon the NO2 exposure, SiOCN 

ceramics have p-type conductivity. As can be seen from Figure 42, the 

presence of H2, a reducing gas, also leads to an increase in conductance of 

the samples. It may imply that these SiOCNs have n-type conductivity. Both 

p and n-type conducting behaviors are present in the SiOCNs. This result is 

in agreement with those reported in the previous studies in which it is 

believed the charge carriers in the SiOCNs can be either electrons or holes. 

[99] Another point can be seen from Figure 42 that conversion of p-type to 

n-type conductivity in the SiOCNs occurs at 450 °C. The conducting 

mechanism can be originated from different constituents that can be a 

dominant conducting phase at appropriate temperatures.  
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4.3.2 Optical gas sensing 

 
The PHMS/TMTVSLZ_600 and PHMS/TTT_400 were used for the 

optical gas sensing study. The experimental procedures are as follows: first, 

the analysis chamber was purged by a flow of N2 for 5 min. After that, 

emission spectrum was recorded. Then, the analysis chamber was fluxed by 

a flow of N2 that was saturated with tested vapor through means of a glass 

bubbler filled with liquid solvent for 5 min. Subsequently, the emission 

spectrum in the tested vapor was recorded. In our study, two different 

categories of vapors including polar and non-polar organic molecules were 

used. All the experiments were carried out at atmospheric pressure and at 

room temperature. Experimental setup used for the gas sensing study is 

shown in Figure 43. 

 

 

Figure 43:  Experimental setup used for the gas sensing measurement 
(Courtesy of Prof. Alberto Quaranta, University of Trento, Italy). 
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             (a) 

 

               (b) 

Figure 44:  Emission spectra of the PHMS/TMTVSLZ_600: (a) in N2 and in 
acetone saturated vapor, (b) in N2 and in hexane saturated vapor. 
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Figure 44 show the fluorescence of the PHMS/TMTVSLZ_600 in N2 

atmosphere and in a mixture of N2 and organic vapors, acetone and hexane.  

Adsorption of the organic vapors results in a decrease of fluorescence 

intensity. The quenching effect of acetone, a polar solvent, is higher than 

hexane, non-polar solvent. In both cases, emission wavelength does not 

change upon the exposure to vapors.  

Fluorescence quenching mechanism in the SiOCNs is difficult to 

determine because of the complexity of their structure. Several processes 

such as energy transfer, charge transfer, molecular rearrangements, 

ground-state complex formation and so forth can be responsible for the 

quenching effect. However, the studied solvents including acetone and 

hexane have no accessible energy that must be necessary for the electron 

or charge transfer. It is unlikely that there are reactions between hexane or 

acetone with the heated SiOCNs. Therefore, formation of a complex 

between solvent and samples can be excluded. Taken into account the fact 

that emission wavelength remains unchanged, the quenching could be 

related to dipole moment of the solvent [117,118] or nonradiative traps 

caused by strain that is induced from the adsorption of organic solvents at 

the surface.[119,120] Although many studies have been published to clarify 

the photoluminescence quenching by the organic solvent, the mechanism is 

still a debate.  

Similar measurements have been performed for the 

PHMS/TTT_400 sample. The results are shown in Figure 45. In this case, the 

presence of acetone results in a quenching effect with a smaller efficiency 

compared to the PHMS/TMTVSLZ.  The exposure to hexane does not cause 

a decrease in fluorescence intensity. Probably, the interaction between the 

organic molecules and the surface of the sample is weaker.  
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             (a) 

 

              (b) 

Figure 45:  Emission spectra of the PHMS/TTT_400 sample: (a) in N2 and in 
acetone saturated vapor, (b) in N2 and in hexane saturated vapor. 
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Chapter 5 Conclusions and outlook 

5.1 Conclusions 
 

The following conclusions can be drawn from this PhD thesis:  

 

1. Synthesis of the polymer preceramic precursors. 

 N-doped SiOC polymer precursors were synthesized via the 

hydrosilylation reaction between Si-H groups in a commercial polysiloxane 

(PHMS) and the –CH=CH2 groups in three different commercial N-containing 

compounds. FT-IR and NMR data confirm the successful occurrence of the 

synthesis.  

 

2. Role of the precursor on the properties of the resulting 

SiOCNs 

The structure of the polymer precursors influences the thermal 

stability, with respect to thermal degradation, crystallization tendency of 

the ceramics and structural rearrangement at high temperature. The 

nitrogen content and the chemical nature of the N atoms in the SiOCN 

ceramic samples can be controlled by the architecture of the as-synthesized 

precursors. In particular, we found that:  

The ability to retain N after pyrolysis depends on the type of 

bonds that N forms in the polymer precursor and follows the sequence N-Si 

> N-Csp
2
 > N-Csp

3
;  

 N atoms are bonded to Si and C atom in the final ceramics. The 

amount of N-C bonds is dependent on the structure of the precursors. For 

example, the PHMS/TMTSLZ precursor in which N is bonded to silicon, a 

very small amount of N-C bonds is present in the resulting ceramics. 
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Meanwhile, the PHMS/TTT precursor in which N is bonded to C atoms, N-

Csp
2
 bonds are retained in a large extent in the final ceramics.  

 

3. Electrical and optical properties 

The electrical conductivity of the SiOCN ceramics increases by 3 

orders of magnitude with increasing pyrolysis temperature from 1000 to 

1400 °C.  The apparent activation energy for this process, estimated from 

an Arrhenius plot of the conductivity vs the pyrolysis temperature, is 2.7 -

3.0 eV, close to the activation energy reported in the literature for the sp
3
-

sp
2
 transition of amorphous carbon. The increase in conductivity with the 

pyrolysis temperature is due to the sp
3
-sp

2
 transition occurring in the 

percolating free-carbon phase of the SiOCN ceramics.  

The higher conductivity of the PHMS/TTT-derived SiOCN 

compared to the PHMS/TMTVSLZ-derived ceramic could be assigned either 

to a slightly higher amount of free carbon in the former material or to an 

intrinsic higher conductivity of the percolating carbon network due to 

partial retention of N-C bonds with the formation of a N-doped carbon 

phase.  

The heated precursors fluoresce in the visible range with a 

dominant blue emission. Since the non-heated polymer precursors do not 

fluoresce, emitting centers must be generated during the polymer-to-

ceramic transformation and they are associated with the structural 

changes. The origin of the luminescence could be due to C-related defects 

or/and Si-related defects.  
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4. Gas sensing application 

 
Regarding electrical gas sensing, the SiOCN ceramics pyrolyzed at 

1400 °C are sensitive to NO2 at temperatures below 450 °C and to H2 at 

temperatures above 450 °C.  The sensing behavior is reversible for both 

samples derived from the PHMS/TMTVSLZ and PHMS/TTT. The SiOCN 

ceramics show a faster response and a smaller recovery time when they 

were exposed to H2 than NO2. The SiOCNs have both n-type and p-type 

conductivity. The sensing mechanism is probably arisen from different 

components present in the ceramics, particularly the free carbon phase. In 

addition, the response observed for the studied SiOCN ceramics is higher 

than that reported in the previous studies for SiOC ceramic aerogels.  

With regard to the optical gas sensing, organic vapors such as 

acetone and hexane can quench the fluorescence of the precursors heated 

at low temperatures, PHMS/TMTVSLZ_600 and PHMS/TTT_400. In 

conclusion, SiOCNs can be promising materials for the gas sensing 

application.  

 

5.2 Outlook 
 

The structural analysis of the SiOCN ceramic samples shows the 

presence of N-C bonds in the final ceramics. In order to have better 

characterization of the chemical structure of these ceramics, particularly 

the N atoms, 
15

N-NMR should be employed.  Moreover, the mechanism of 

remaining N in the PHMS/TTT-derived ceramic should be investigated.   

The electrical conductivity of SiOCN powders at room 

temperature was reported. It will be interesting to have more information 

about conducting mechanism in these studied materials by performing the 

measurements at different working temperatures.   
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Concerning fluorescence of the samples heated at low 

temperatures, more investigation should be done to determine emitting 

centers present in these materials. For example, electron paramagnetic 

resonance spectroscopy could be a helpful tool for the study of defects.  

For the electrical gas sensing application, the sensing mechanism 

is still not clear.  The measurement can be performed at different 

concentrations of target gases, different exposure times to study the how 

these gases influence the conductance of the materials.  In addition, in situ 

structural characterization during the gas sensing test should be performed. 
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