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Abstract

The wide diffusion of multimedia contents of different type and format led

to the need of effective methods to efficiently handle such huge amount of in-

formation, opening interesting research challenges in the media community.

In particular, the definition of suitable content understanding methodolo-

gies is attracting the effort of a large number of researchers worldwide, who

proposed various tools for automatic content organization, retrieval, search,

annotation and summarization. In this thesis, we will focus on an impor-

tant concept, that is the inherent link between ”media” and the ”events”

that such media are depicting. We will present two different methodologies

related to such problem, and in particular to the automatic discovery of

event-semantics from media contents. The two methodologies address this

general problem at two different levels of abstraction. In the first approach

we will be concerned with the detection of activities and behaviors of people

from a video sequence (i.e., what a person is doing and how), while in the

second we will face the more general problem of understanding a class of

events from a set visual media (i.e., the situation and context). Both prob-

lems will be addressed trying to avoid making strong a-priori assumptions,

i.e., considering the largely unstructured and variable nature of events.

As to the first methodology, we will discuss about events related to the

behavior of a person living in a home environment. The automatic under-

standing of human activity is still an open problems in the scientific com-

munity, although several solutions have been proposed so far, and may pro-

vide important breakthroughs in many application domains such as context-

aware computing, area monitoring and surveillance, assistive technologies



for the elderly or disabled, and more. An innovative approach is presented

in this thesis, providing (i) a compact representation of human activities,

and (ii) an effective tool to reliably measure the similarity between activity

instances. In particular, the activity pattern is modeled with a signature

obtained through a symbolic abstraction of its spatio-temporal trace, allow-

ing the application of high-level reasoning through context-free grammars

for activity classification.

As far as the second methodology is concerned, we will address the problem

of identifying an event from single image. If event discovery from media is

already a complex problem, detection from a single still picture is still con-

sidered out-of-reach for current methodologies, as demonstrated by recent

results of international benchmarks in the field. In this work we will focus

on a solution that may open new perspectives in this area, by providing bet-

ter knowledge on the link between visual perception and event semantics.

In fact, what we propose is a framework that identifies image details that

allow human beings identifying an event from single image that depicts it.

These details are called ”event saliency”, and are detected by exploiting

the power of human computation through a gamification procedure. The

resulting event saliency is a map of event-related image areas containing

sufficient evidence of the underlying event, which could be used to learn the

visual essence of the event itself, to enable improved automatic discovery

techniques.

Both methodologies will be demonstrated through extensive tests using pub-

licly available datasets, as well as additional data created ad-hoc for the

specific problems under analysis.

Keywords [event detection, activity recognition, behavior analysis, anomaly

detection, context-free grammars, regular expressions, gaming, saliency]
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Introduction

Multimedia data gained an important role in recent years, thanks also

to the advances in communications, computing and storage technology.

The potential of multimedia became fundamental in improving the pro-

cesses in different fields like surveillance, wearable computing, biometrics,

and remote sensing, but also in advertising and marketing, education and

training, entertainment, medicine.

The wide diffusion of multimedia content has evidenced new require-

ments for more effective access to global information repositories. Content

analysis, indexing, and retrieval of multimedia data are one of the most

challenging and fastest growing research areas. A consequence of the in-

creasing consumer demand for multimedia information is that sophisticated

technology is needed for representing, modeling, indexing, and retrieving

multimedia data. In particular, there is the need of robust techniques to

index/retrieve and compress multimedia information, new scalable brows-

ing algorithms allowing access to very large multimedia databases, and

semantic visual interfaces integrating the above components into unified

multimedia browsing and retrieval systems.

As an example, the wide diffusion of video surveillance systems gener-

ated a huge amount of video data to be processed, with different application

spanning from security to ambient assisted living. Automatic recognition

of human activities and behaviors is still a challenging problem due to many

reasons, including limited accuracy of the data acquired by sensing devices,
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Chapter 1 Section 1.1

high variability of human behaviors, gap between visual appearance and

scene semantics.

One of the major concept shared by different multimedia analysis frame-

works is the description of events represented in such data, in order to pro-

vide information about the content of the media. In fact, whatever they are

personal experiences, such as a wedding or a birthday, or large social hap-

penings, such as a concert or a football match, events mark our lives and

memories. Moreover, event recognition is a crucial task to provide high-

level semantic description of the video content. The bag-of-words (BoW)

approach has proven to be successful for the categorization of objects and

scenes in images, but it is unable to model temporal information between

consecutive frames.

In this work we will discuss about the problem multimedia content anal-

ysis addressing in particular two sub-problems: the modeling and match-

ing of activities for human behavior understanding from video; the content

mining for social event detection from still images.

1.1 Activity modeling and matching for human be-

havior understanding from video

Being able to understand human activities and behaviors is a key feature

in the field of ambient intelligence [43, 50]. Activities can be defined as

the concatenation of atomic actions that produce voluntary human body

motion patterns of arbitrary complexity, describing what elements com-

pose an event [99]. Behaviors instead relate human activities with the

surrounding environment (people, objects, situations), inferring how and

why a certain situation is occurring [9]. A behavior can be seen as the

response of a human to the internal, external, conscious, or unconscious

stimula he receives [20]. While the recognition of activities is syntactic,
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Chapter 1 Section 1.1

as it can be typically associated to a sequence of characteristic elements,

behaviors imply a joint analysis of content and context, thus providing a

semantically richer description of the event. For example the activity of

“running” is considered a natural behavior on a soccer field, while it would

be reported as suspicious if detected inside a bank office.

Among the different approaches proposed in literature to detect activi-

ties and behaviors [26], video analysis is often preferred because of its lim-

ited cost of installation and maintenance, and lower obtrusiveness. Video

data contain a lot of significant information to infer human behaviors, in-

cluding location, posture, motion, as well as interaction with objects, other

people, and the environment [10]. In this context, motion patterns are

probably the most popular descriptor for many reasons: they are rather

easy and fast to calculate, robust, and especially, they can be captured

even in far range and from different perspectives, where posture analysis

or object detection may fail [84] [42].

The motion pattern of a moving object (often associated to its trajec-

tory) is defined as the spatio-temporal evolution of one or more feature

points extracted from the visual sequence. In particular, when tracking

humans, a convenient representation of the motion trajectory is the one

that maps the centroid of the bounding box retrieved by the tracking al-

gorithm on the ground plane, which becomes the reference system.

The research in this area has been very active in the past decades,

and very efficient detectors and tracking algorithms have been proposed

[69]. Usually, the output consists of a trajectory T , namely a raw set of

coordinates (Fig. 1.1 associated to a temporal reference for each moving

target in the scene, as recalled in (1.1), where Pi = (xi, yi) and i is a frame

counter.

T = {Pi, ti}; i = 0...I (1.1)

3



Chapter 1 Section 1.1

Figure 1.1: Examples of variability in tracks.

Although very basic, this representation makes it possible to perform

a simple yet effective low-level classification of the incoming samples by

matching them with a set of pre-stored templates [83] [95]. These ap-

proaches provide good results especially when the environment is known

and motion patterns are rather constrained, such as in vehicular traffic

monitoring. Instead, when the variety and diversity of patterns is higher,

the performance of low-level analysis drops [55], due to the increasing noise

and uncertainty in the numerical representation that hinders a reliable

matching. Human behaviors fall into this category of events, because of

their high variability and largely unconstrained nature.

In such situation, it is necessary to improve the raw samples description

by introducing a symbolic representation [85][23]. This can be achieved in

many different ways, including trajectory segmentation, down-sampling,

quantization or approximation, where the common underlying objective is

to achieve a new representation, in which symbols are more expressive and

less noisy. Furthermore, symbolic representations can be easily comple-

mented with additional attributes, including motion features (e.g., direc-

tion, speed, acceleration), and environmental information (e.g., proximity
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to key points or objects). They can be easily made invariant to transla-

tion, rotation, and scaling [69]. This makes symbolic approaches suitable

for both activity detection, where the syntax of symbol chains is consid-

ered, and behavior analysis, where additional attributes may be exploited

to interpret more sophisticated scenarios.

In this work we propose a framework for human behavior analysis in

indoor environments using Context-Free Grammars (CFGs). Activities

are modeled considering the prominent areas of the environment visited

by the subject. Compared to other existing approaches that use CFGs for

activity modeling and matching, our method provides several important

novelties. First of all, it classifies the events considering both positive and

negative samples, thus ensuring a better separation of the classes while

maintaining good generalization properties. Second, we introduce a re-

training procedure, in order to update the grammar rules in presence of

changes in the environmental setup or in the users’ habits. Finally, we

introduce the capability of dealing with concatenated or nested actions.

According to the definition provided at the beginning of the section, we

will use the term behavioral analysis not only to refer to the mere detection

of the activity performed by the individual (what), but also to consider the

semantic connotation of such activity (why and how).

1.2 Content mining for social event detection

Recent studies demonstrate that users find it easier to search and browse

media archives when they are organized according to underlying events

[108]. Many works propose the use of event models to enable efficient

media indexing and retrieval (see, e.g., [66][64][96]), and some interesting

prototypes have also appeared [1][3].

In this context, an interesting yet still open problem is how to capture
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Chapter 1 Section 1.2

the relationships between media and events: is it possible to automatically

discover events from media? What visual cues allow humans understanding

which event a media depicts? Answering these questions would open great

opportunities for improving media archiving systems by enabling faceted

search, event-media networks, event summarization, storytelling, etc. As

an example, given a photo collection a system could recognize the underly-

ing event (e.g., a wedding), cluster pictures according to the relevant event

structure (e.g., ceremony, party, cake cutting, etc.), associate appropriate

tags to each picture, select representative images for the event, and so on.

Although the scientific literature reports several interesting ideas, many

problems remain unsolved mostly due to the heterogeneity, multi-modality

and unstructured nature of the data [82]. The report on the Social Event

Detection (SED) task of the MediaEval benchmarking initiative [2] suggests

that current technologies for media event detection, although interesting

from a scientific viewpoint, are still inadequate for potential commercial

exploitation. Current research efforts are mainly focused on defining the

best possible features to describe an image, the most appropriate strategies

to learn such representations from groundtruth data, and adequate match-

ing procedures to find revealing patterns in unknown data. Little attention

has been put on understanding which are the key elements that allow a

human observer recognizing an event when looking at a set of media or

even a single picture that depicts it. The question is: would it be possible

to mimic such human comprehension mechanisms on a computer? And

especially, would it be possible to understand which distinctive patterns

enable such comprehension? In this work we introduce a new concept that

we call event saliency. Event saliency refers to the event-specific visual

contents of an image, i.e., the parts of the image that allow an observer

associating it to a given event category with high confidence. It is to be

pointed out that event saliency is a very different concept from the tra-
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Chapter 1 Section 1.2

Figure 1.2: Which is the event associated to this picture? Visual elements that allow
answering the question have been removed, making it almost impossible to guess. We
define such information event saliency, to distinguish it from the classical visual saliency.

ditional visual saliency. In fact, visual saliency typically highlights the

part of a picture that grabs users’ attention at a first glance [34]. This is

generally connected to the brightness of colors, the contrast, the position,

the prominence and, in general, the image syntax. On the contrary, event

saliency captures the picture areas that are related to the event indepen-

dently of their visual prominence, and is therefore concerned with image

semantics. Event saliency may include part of the background, a periph-

eral image area, or a small but revealing detail. The idea is illustrated in

Fig. 1.2, where the black box exactly hides the detail that would make

possible recognizing the event.

In order to demonstrate the concept of event saliency, we address the

problem of detecting it from images. To this purpose, we propose a tool to

extract event saliency maps from event-related images by exploiting crowd

intelligence through games. The ultimate goal is to generate a groundtruth

to be used for further studies, where the application of the event saliency

concept may empower existing event detection approaches or allow defining

innovative approaches.
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The choice of performing this task through gamification (i.e., the use

of game mechanics and game design techniques in non-game contexts) was

driven by the consideration that this strategy has been proven to be suc-

cessful in solving complex problems that require human intervention [104].

With respect to crowdsourcing, a well-studied gamification approach is

more engaging and entertaining, thus attracting more users with higher

commitment and less bias. In this work we show how a carefully designed

game allowed creating a significant collection of accurate event saliency

maps out of a dataset of representative images associated to a set of com-

mon events. To achieve this goal, we involved a large community of users

in an adversarial game, where the real objective (producing the maps) was

hidden.

In Ch. 3 we introduce the event saliency, as the collection of perceptual

elements contained in an image that allow humans recognizing the depicted

event. Furthermore, we propose EventMask, a GWAP conceived to detect

event saliency in event-related pictures.

1.3 Structure of the Thesis

The remainder of this work is the following. In Ch. 2 we will introduce and

detail our solution for activity modeling and matching, based on the use

of Context Free Grammars, while in Ch. 3 we will introduce and analyze

a gamification able to provide the relevant part inside an image, related to

events. Finally in Ch. 4 conclusions will follow.
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Context-Free Grammars for Activity Model-

ing and Matching

Automatic recognition of human activities and behaviors is still a chal-

lenging problem due to many reasons, including limited accuracy of the

data acquired by sensing devices, high variability of human behaviors, gap

between visual appearance and scene semantics. Symbolic approaches can

significantly simplify the analysis, turning raw data into chains of mean-

ingful patterns. This allows getting rid of most of the clutter produced

by low-level processing operations, embedding significant contextual in-

formation into the data, as well as using simple syntactic approaches to

perform the matching between incoming sequences and models. In this

context we propose a symbolic approach to learn and detect complex activ-

ities through sequences of atomic actions. Compared to previous methods

based on Context Free Grammars (CFGs), we introduce several important

novelties, such as the capability to learn actions based on both positive

and negative samples, the possibility of efficiently re-training the system

in the presence of misclassified or unrecognized events, the use of a parsing

procedure that allows correctly detecting the activities also when they are

concatenated and/or nested one with each other. Experimental validation

on three datasets with different characteristics demonstrates the robustness

of the approach in classifying complex human behaviors.

The objective of this chapter is to define how to exploit a symbolic

representation of the motion patterns associated to a person moving in a

9



Chapter 2 Section 2.1

known indoor environment, in order to acquire knowledge about his/her

behavior. This information is very important in situation where there is the

need to monitor person’s activity, like in home care (e.g. fall detection), as

well as when the system should be able to rise up an alert depending on a

substantial difference in users habits, like in video-surveillance (e.g. robber

detected using abnormal behavior). We will achieve this goal by modeling

human motion patterns through Context-Free Grammars (CFGs). It will

be demonstrated that the proposed strategy allows not only to acquire

and recognize the examples provided during the training phase, but also to

generalize them, thus being able to detect instances of the activities that

have not been included in the training set.

2.1 Background

High-level reasoning based on symbolic representations of the scene under

investigation could provide effective results in behavioral analysis. Some of

the most significant approaches proposed in this context are summarized

in the following paragraphs.

A typical way of introducing higher-level interpretation is to extract fea-

tures from low-level data and feed them into a probabilistic model that can

statistically describe the event structure. The work proposed by Duong et

al. in [35] implements a strategy to learn and recognize human activities

through a Switching Hidden Semi-Markov Model. The authors propose

to adopt a two-layer representation, in which the bottom layer defines the

atomic activities through a sequence of concatenated Hidden Semi-Markov

Model; the upper layer is then used to handle the temporal structure of ac-

tivities, composing the event by means of a sequence of switching variables.

Similarly, the authors of [76] propose a variant of a Hidden Markov Model

(HMM) to exploit both the hierarchical structure and the shared seman-
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tics contained in the motion trajectories, introducing a Rao-Blackwellised

particle filter in the recognition process to achieve real-time performances.

Through this approach, the actions of a subject are learned from an un-

segmented training set.

The authors in [59] propose a scalable approach that includes two major

modules: a low-level action detector to process low-level data using a Dy-

namic Bayesian Network (DBN), and a Viterbi-based inference algorithm

used to maintain the most likely activity given the DBN status and the

output of the low-level detectors.

The main advantage of these methods is in the capability of handling the

uncertainties generated during the low-level processing. On the other hand,

as the event complexity increases, the recognition performance dramati-

cally drops, due to a combination of factors including insufficient training

data, semantic ambiguity in the model, or temporal ambiguity in com-

peting hypothesis. Although some methods for unsupervised parameter

estimation of the graphical model have been proposed (see [19]), the major

problem remains the definition of the network topology, which is usually

too complex to be learned automatically, requiring the help of human op-

erators.

Another category of approaches performs activity recognition in a sym-

bolic domain, introducing an intermediate layer between low-level feature

extraction and high-level reasoning. Low-level primitives are processed us-

ing HMM-like approaches, while high-level behavior modeling is based on

the Context-Free Grammars formalism [47]. Ivanov and Bobick [48] pro-

posed a two-stages strategy. In the first phase, candidate features for low-

level temporal domain are extracted and considered as “signatures”. As

far as the matching strategy is concerned, Stochastic Context-Free Gram-

mars (SCFG) are adopted, providing longer range temporal constraints,

disambiguating uncertain low-level detections, and allowing the inclusion
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of a-priori knowledge about the temporal structure of events.

In [67] a system is proposed to generate detailed annotations of complex

human behaviors performing the Towers of Hanoi through a parameter-

ized and manually-defined stochastic grammar. In [68] the authors also

use SCFGs to extract high-level behaviors from video sequences, in which

multiple subjects can perform different separable activities. An alternative

approach is proposed in [93]. Here, the so-called attribute grammars [56]

are employed as descriptors for features that can not be easily represented

by finite symbols.

A common drawback of the systems relying on formal grammars is in the

definition and update of the production rules. In fact, an exhaustive for-

malization and structuring of the observable activities that a person can

perform in everyday life is not practical [74]. For this reason, in [45] a com-

putational framework is proposed, able to recognize behaviors in a mini-

mally supervised manner, relying on the assumption that everyday activi-

ties can be encoded through their local event subsequences, and assuming

that this encoding is sufficient for activity discovery and classification.

Another major limitation of SCFG-based systems is that the parsing

strategy can handle only sequential relations between sub-events, being

unable to capture the parallel temporal relations that often exist in complex

events. To overcome this issue, the authors of [112] propose to derive the

terminal symbols of a SCFG from motion trajectories. In particular, they

transform them into a set of basic motion patterns (primitives) taken as

terminals for the grammar. Then, a rule induction algorithm based on the

Minimum Description Length (MDL) derives the spatio-temporal structure

of the event from the primitive stream.

In a recent work in this area [28], the authors employed an induction al-

gorithm called EMILE [6], originally used for Natural Language Processing

(NLP) applications. Here, each sentence (i.e., each symbolic sequence) is

12
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iteratively decomposed in expressions and contexts. Intuitively, given the

entire set of training sentences, the algorithm searches for frequent combi-

nations of expressions and contexts, and interprets them as a grammatical

type.

However, the main drawback of this approach is that the generalization

properties of the grammar cannot be controlled during training. The more

diverse are the examples proposed in input, the larger becomes the final

set of patterns that satisfies the grammar. In fact, part of these patterns

do not belong to the training, but arise from generalization. It is then

possible that unwanted expressions satisfy the resulting grammars .

Moreover, given two grammars generated from disjoint training sets, it

is not guaranteed that their overlap is null, implying that, due to general-

ization, it is not possible to guarantee the separation of languages. If the

grammars are used to classify the symbol strings, this means that there

will be a subset of strings that will fit multiple classes.

A very detailed overview about the literature in the field can be found in

[7]. For the sake of completeness, we report hereafter a short summary

about the most relevant benefits of CFG-based approaches in activity and

behavior modeling compared to other competing algorithms [110]:

• ability to model the hierarchical structure of events, which is difficult

to capture with graphical models such as HMM;

• ability to take into account temporal relationships, so that long-term

activities can be considered;

• capability of describing sequential features, resulting in a more efficient

representation if compared to that obtained via bag of features;

• richness in semantics;

13
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• simpler understanding compared to other knowledge driven models

based on ontology (VERL [39], VEML [75]).

2.2 Motivations

The proposed framework stems from a recent work in this area [28] and

extends it by introducing a more sophisticated learning strategy. In fact,

behavior classes are in general not well separated, especially in the case of

indoor or home monitoring, due to the high variability of human behaviors.

Fig. 2.1 provides an example, referring to two different home activities,

each one associated to an ideal model (the trajectory described by the solid

line). Dashed lines report the actual behavior of two subjects performing

the same actions in real life. It is possible to observe that these behaviors

show non-negligible spatio-temporal differences compared to the model,

leading to potential errors when using simple approaches based on the

matching with pre-stored templates.

Results have been presented in [88] [89], [90], exploiting the properties

of a Context Free Grammar originally developed for Natural Language

Processing [98]. In these cases, grammars tend to overlap, and, for a

single activity, multiple grammar rules may return a positive match. In the

current approach, instead, we define a methodology to overcome the drift

problem, by adopting a learning strategy that considers both positive and

negative examples, and introducing a re-training stage, so as to improve

the accuracy of the detection.

It will be shown that this procedure can avoid the overlapping of classes

while learning the models, allowing a better generalization, and maintain-

ing a good separation among them.

Furthermore, the proposed method is well suited to incremental learning.

In fact, it does not require the storage of the original training set, but can

14
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simply extend the knowledge of the system by feeding additional samples

validated by the user into the learning procedure. In this way, false and

missed alarms can be progressively learned in order to increase the accu-

racy of the detector, as well as adapting to changes in both environmental

conditions and users’ habits.

Finally, the proposed method allows processing the video stream in real

time, as soon as the motion patterns are available, as it behaves like a

symbolic parser [73], [11]. Thanks to the implemented parsing strategy,

the method is also able to handle complex situations that typically de-

grade the performances of traditional matching tools, such as the presence

of concatenated or nested activities, namely, when an action is partially or

totally executed within another one [36].

It is worth noting that the algorithm does not impose any specific tech-

nology for data acquisition, which can be performed though various posi-

tioning devices (video tracking, sensor networks [101], RFIDs, etc.), thus

providing a completely customizable solution for indoor monitoring.

2.3 Proposed Framework

To cope with the issues mentioned in the previous section, the proposed

method operates a significant simplification of the observed domain, as-

sociating symbols only to a limited set of points of interest in the envi-

ronment, called Hot Spots. Human actions are then described in terms

of time-ordered sequences of such symbols. The obtained sequences are

learned and recognized through Context-Free Grammars.

The most important steps of the proposed method can be summarized

in the following points:

1. pre-processing of the incoming paths and conversion into the symbolic

domain;
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2. learning of the grammar sets that encode the rules for each set of

training patterns;

3. classification of the incoming trajectories into the available rules, per-

formed through parsing;

4. update of the grammar rules according to user feedback.

In this section, after briefly introducing the CFG formalism, we will

provide a detailed description for each of the above mentioned items.

2.3.1 Context Free Grammar formalism

According to grammars theory, a set of strings over a finite set of symbols

is defined as a language. A grammar is a tool that allows specifying which

strings belong to a specific language.

A Context-Free Grammar (CFG) is defined as [72]:

G = (N, T, P, S) (2.1)

where N is a finite set of non-terminal symbols, T is a finite set of terminal

symbols (N ∩ T = 0), P is a finite grammar of the form A → u (A ∈ N

and u ∈ (N ∪ T )+), and S is the starting symbol (S ∈ N).

The set P derives a string of terminal labels w from a non-terminal

symbol A, if there is a derivation tree A→ w with root A [72]. A language

L(G) of a CFG G is the set of all strings derived from the starting symbol

S. L(G) is called ambiguous if there are two or more derivations of the

same string. In the proposed framework we will use unambiguous CFGs,

i.e., there will be a unique derivation for the considered string.
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Figure 2.1: Examples of variability in human actions for two different activities: left image
represent a sample for the action “Have a rest” and the right a sample of “Cooking”. Solid
lines indicate the reference path, while dashed lines refer to different subjects performing
that action in real-life. a, b, c, etc. represent the labels for Hot Spots.

2.3.2 Activity representation

In our approach we convert human motion patterns into temporal concate-

nations of Hot Spots that the user has visited in a given time frame. We

say that the user has visited a Hot Spot if he/she has been in the proximity

of it for a predefined temporal interval. Both proximity and visit time of

each Hot Spot are application-driven and should be defined according to

the environment and based on the user’s habits. As an example, operating

a given appliance in a kitchen may request some time; a shorter stop at

that location may therefore have a different meaning. Furthermore, older

people may need longer time to perform the same action. Similarly, more

stringent spatial requirements are necessary when moving in smaller rooms,

compared, for example, to large exhibition areas. This allows simplifying

the representation of (1.1) to a stream of symbols, each one associated to

a pair (region-index, time-stamp) as in:

T ′ = {Rj, tj}; j = 0...J (2.2)

17



Chapter 2 Section 2.3

where Rj is the index of the Hot Spot and tj is the temporal reference.

Describing the path in terms of a sequence of Hot Spots rather than sam-

pling it at fixed time intervals provides a twofold advantage: (i) it reduces

noise and outliers in the trajectory caused by limited accuracy in acqui-

sition and/or tracking, and (ii), it generates a simpler representation that

preserves the significant spatio-temporal evolution of the activity, while

making more tractable the next processing steps.

2.3.3 CFG Rules Discovery

Grammatical inference is a discipline related to a large number of fields,

including machine learning and pattern recognition. It basically consists in

feeding data into an entity, the learner, which returns a grammar capable

of explaining it [32]. If we want our grammar to learn a particular concept

associated to a given set of symbolic patterns, we should provide it as in-

put to the learner, which will return as output a set of grammar rules that

generate a language. If the input patterns are characterized by a certain

level of diversity, i.e., diverse instances of the same concept, the grammar

will learn all these possible variations, but will also provide a certain de-

gree of generalization. As an example, let us consider the following input

patterns:

• (ab);

• (abab);

• (aabb).

These patterns, can be exhaustively synthesized using the following gram-

mar rules:

Pexample1 =S → ab;S → aS;S → bb;S → SS;
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It can be easily seen that all three original strings satisfy this grammar.

For instance, also the strings (aab), (ababab), and (abbb) are part of the

language, although not present in the initial set of strings.

This problem is known in literature [28], and can be partially solved by

introducing the possibility of providing counterexamples during the train-

ing phase, by feeding the learner with both positive and negative exam-

ples, where negative examples can be used to separate the languages and

to eliminate false positives.

To achieve this goal, we use a different learning algorithm, able to: (i)

exploit both positive and negative samples as well as additional production

rules in training, and (ii) allow the incremental learning of Context-Free

Grammars.

For the first grammar generation our algorithm receives in input a la-

beled set of positive and negative samples, and builds a grammar P such

that all the strings labeled as positive, and no string labeled as negative, can

be derived from P . Given a set of behaviors to be classified bj, j = 1, ..., J ,

and a set of observed behavioral patterns tk, k = 1, ..., K, K � J , we

create J clusters Ij such that:

Ij = IPS
j ∪ INS

j (2.3)

where IPS
j = [tk : tk ∈ bj]; INS

j = [tk : tk /∈ bj] are the positive and

negative samples of the j-th behavior as classified by a supervisor. The

grammar generation produces therefore a set of J grammars Pj, such that

each grammar will fulfill IPS
j and not INS

j .

The procedure described above for grammar generation allows sharply

reducing the overlap of the generated languages. However, it does not

guarantee that all strings resulting from the language (and not included in

the training set) belong to a unique language. In such situation the pattern

is not classified and will be possibly used for the re-training procedure.
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At any point of the operation of the classifier, when a certain number of

patterns t∗k have been stored, for which the classification was not successful

(either satisfying more than one grammar or none of them), the user may

decide to run a re-training. In this case, the supervisor is again requested

to manually classify the critical samples. Then, a new set of clusters I∗j is

produced, and a new set of grammars P ∗j is generated based on I∗j . It is

to be observed that the re-training starts from the previous grammars Pj

and processes the new samples only. Therefore the updated grammars P ∗j
will respect the rule Pj ∈ P ∗j .

In summary, the key features of the proposed system, as compared to other

grammar-based behavior learning tools, are:

• CFGs are generated from positive and negative samples (possibility

to limit grammar generalization and overlap);

• incremental learning of CFGs (possibility to easily do re-training,

adding false positives and missed alarms in the training set as soon as

an expert recognizes them).

The learning process described so far is illustrated by the following ex-

ample, where we represent the positive and negative samples by the unit

clauses of the form ps(w) and ns(w), where w is a string represented by an

atom or a list of atoms [72]. The terminal symbols in the list are restricted

to atoms other than p, q, r, ...z, which are used for non-terminal symbols.

The symbol S is the starting symbol and the generated grammar is an

unambiguous CFG in extended Chomsky normal form.

Let us consider two sets of positive samples only:

Set1 =ps(ab); ps(aa); ps(abab); ps(aabb); ps(ababab); ps(aababb); ps(aaab); ps(abaabb);
ps(aabbabab); ps(aabbaabbab); ps(aabaabbabb);

Set2 =ps(ba); ps(aaa); ps(abb); ps(abba)
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Figure 2.2: Intersection between languages L1 = L(P1) and L2 = L(P2) generated by
positive samples only.

Our algorithm, according to the description provided in the previous

paragraphs, generates the following grammars:

P1 = S → aa;S → ab;S → Sa;S → Sb;S → bS
P2 = S → aa;S → aS;S → ba;S → bb;S → bS

As can be seen in Fig. 2.2, the two grammar rules P1 and P2 gener-

ate two languages such that L1 ∩ L2 6= 0 and, in particular, some of the

training samples belong to both languages. By introducing the use of neg-

ative samples, we can overcome this situation, forcing the separation of the

training samples. To this purpose we built Set′1 containing Set1 as positive

samples and Set2 as negative, and viceversa for Set′2.

The new grammar rules P ′1 and P ′2 have been derived accordingly.

Still, we are not sure that the intersection between the two new lan-

guages L′1 and L′2 is empty. For example the new atom (aaaa) satisfies

both grammars, thus resulting in an ambiguity (Fig. 2.3). To cope with
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Set′1 =ps(aa); ps(ab); ps(abab); ps(aabb); ps(ababab); ps(aababb); ps(aaab); ps(abaabb);
ps(aabbabab); ps(aabbaabbab); ps(aabaabbabb);
ns(ba);ns(aaa);ns(abb);ns(abba)

Set′2 =ps(ba); ps(aaa); ps(abb); ps(abba);
ns(aa);ns(ab);ns(abab);ns(aabb);ns(ababab);ns(aababb);ns(aaab);ns(abaabb);
ns(aabbabab);ns(aabbaabbab);ns(aabaabbabb);

P ′
1 = p→ aS; p→ bS;S → aa;S → ab;S → ap;S → bb;S → bp

P ′
2 = p→ aa; p→ bb;S → ap;S → ba;S → Sa

this, we apply the update procedure described above. The misclassifica-

tion of the atom (aaaa) will be considered initially as an error. In a second

stage, it will be prompted to an evaluator that classifies it. The grammars

are updated accordingly. Adding (aaaa) as a positive sample of Set2, will

lead, for example, a the new set of rules.

P ′′
1 = p→ bS; q → aS;S → aa;S → ab;S → ap;S → qb;S → qp

P ′′
2 = p→ aa; p→ bb; p→ ab;S → ba;S → Sa

2.3.4 Parsing the CFG

An appropriate parsing procedure has been defined in order to check the

compliance of the input strings with the generated grammar P . The parser

receives in input the symbols corresponding to the Hot Spots visited by the

person in the monitored environment. Symbols are progressively stored in

a buffer, which initial length is equal to the maximum length (K) of the

grammar words used in the learning stage. The parser reads the symbols

in the buffer, calculating all possible combinations, without repetition, of

the considered string, until they reach the minimum possible dimension.

The number of combinations Nk to be considered for a string of length

1 ≤ k ≤ K can be computed as:

Nk =

(
K

k

)
=

K!

k!(K − k)!
(2.4)
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In this way, we ensure that in presence of complex actions, the parser

is able to detect also nested and concatenated subsequences, which are

removed from the input pattern as soon as they are associated to an action.

Then, the parsing can proceed on the remaining symbols in the stack.

When an activity is detected, the associated symbols are removed from

the buffer, new symbols are added to the parsing string until the buffer is

filled, and the process iterates.

The symbols remaining in the buffer can represent either actions that

have not been learned by the system (for instance, a new or a rare behavior)

or anomalous patterns, possibly generated by noise. They can be signaled

as errors or anomalies, or can be stored for successive learning phases (e.g.,

personalizing on a given user’s behavior).

The update procedure is needed to maintain a coherent model for the

learned activities, given that potential modifications in terms of scene ar-

rangements or users’ habits may occur.
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Figure 2.4: Activity spotting examples: (a) 2 consecutive sequences; (b) hierarchy between
two activities; (c) two nested activities with noisy symbols; (d) two overlapping activities
with noisy symbols.

For a better understanding of the parsing procedure we present a test

to demonstrate the capability of the parsing strategy in spotting known

activity patterns from a continuous event stream. In particular, we show

how the proposed engine can recognize activities also in a concatenated

and nested form. To this aim, we randomly selected some activity in-

stances from our database and composed them in different configurations,

as shown in Fig. 2.4. Activity 1 (Act. 1 in the figure) is represented by the

string (ibgb) and Activity 2 by (iaga). Noise is represented by the symbol

(k) and represent an outlier in the sequence of Hot Spots. We consider the

following situations: consecutive activities (a); nested activities (b); con-

secutive activities with noise (c); and overlapping (interleaved) activities

in presence of noise (d). From the top: (i) the ground truth for the activ-

24



Chapter 2 Section 2.4

ity stream with the corresponding sequence of hot spots; (ii) the signaled

activities; and (iii) detected noise patterns. As can be seen from the figure,

and thanks to the parsing strategy, the system is able to disclose chunks

of activities even if the incoming data stream is corrupted by noise.

2.4 Datasets for Human behavior analysis

Given that the proposed method uses the motion trajectory just to detect

the proximity of the subject to the hot-spots identified in the environment,

in principle any sensor providing such information is viable for our pur-

poses. Examples of devices that can provide the requested information

include video cameras, but also active and passive RFIDs, WSNs, acoustic

sensors, etc. Adopting any combination of such sensors would also make it

possible to provide more reliable estimates, reducing problems caused by

occlusions, presence of multiple subjects, and so on.

In our experimental validation we have considered three different datasets,

based on different sensor systems and application scenarios.

The first dataset, known as the “Ubicomp dataset” [101], is considered

a benchmark in the area. It is composed by a set of action-related data

collected by 14 state-change sensors installed in a home environment where

a single person lives. Data have been acquired over 28 days, and annota-

tion has been manually provided by the person living in the environment,

distinguishing among seven activities (see Table 2.2), chosen on the basis

of the so-called Katz ADL index [53]. The outcome of this process is a

set of 2120 sensor events with 245 activity instances. Results presented

in [101] and [100] use standard probabilistic graphical models for action

recognition, in particular Hidden Markov Models and Conditional Ran-

dom Fields, thus allowing comparison with state of art action recognition

methodologies.
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The second and third datasets have been build in our research labs,

using the facilities available in two domains: assisted living and video-

surveillance. Both datasets use visual information to track the subjects

and extract the positioning information. The former refers to the “Home

Dataset” and has been collected in a realistic domestic environment de-

signed for testing ambient-assisted-living technologies (Fig. 2.5). The

dataset includes a total of 81 trajectories equally divided into 3 classes:

A) Cooking, B) Eating, C) Taking a break, and executed by 9 volunteers

performing the same activity for 3 times in slightly different ways.

The latter, called “Office Dataset”, has been recorded in an office environ-

ment, using multiple cameras (Fig. 2.6). The dataset includes 120 paths

divided into 4 classes: A) Arrival, B) WorkTime, C) Have a break, D)

Print.

Similarly to the previous one, it has been performed by 10 volunteers

doing the same activity for 3 times in slightly different ways.

In both cases, the video streams have been processed by a motion tracker

to extract the top-view trajectories of the moving subjects.

2.5 A Context-Free Grammar behavior analysis tool

In this section we present and discuss the results obtained by our method

on the datasets described in Section 2.4.

Considering that the tracker is out of the scope of this work, the exper-

imental validation only concerns the behavior analysis module.

In the following sub-sections we present first the results achieved on the

Ubicomp dataset, introducing a comparison of our methodology with most

of the common state of art learning strategies in the field; then, we present

the results on the two visual datasets, where additional tests are proposed

to show the specific features of the proposed method.
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Figure 2.5: Top: map of the home environment and camera positions. Hot Spots are
provided with the corresponding legend; Bottom: views of the environment from the two
installed cameras (Cam1 left, Cam2 right).
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Figure 2.6: Top: map of the office environment and camera positions. Hot Spots are
provided with the corresponding legend; Bottom: views of the environment from the two
installed cameras (Cam1 left, Cam2 right).
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2.5.1 Ubicomp dataset

In order to make it suitable to be fed into our framework, we had first to

characterize each activity as a sequence of sensor events.

To this purpose, we mapped the 14 sensors assigning an identifier to

each of them (Fig. 2.7) according to the indication in Table 2.1, so that

each action is described by the sequence of sensor events generated within

the action time-slot.

As an example, we report hereafter the sequence of sensor events for the

action “Sleeping”, according to the notation used in our framework:

SetSleeping = ps(nn); ps(nnn); ps(bnni); ps(nninnn);
ps(nncbbn); ps(bnccnc); ps(bnnibnn);
ps(innccnn); ps(bncicnn); ps(cnnccnn);
ps(bnncicnn); ps(nnncicnn); ps(nnnncicnn);
ps(nnccnccnin); ps(nncnincicn);
ps(nnncicnncicnn); ps(bnncicinncnicn);
ps(nnbnncibbiciiicbn);
ps(nbccbnnnbnbbbbibbbnncicncnncnn);

Starting from this description, using as positive samples the strings for

the considered action and as negative samples the ones of all the other

actions, we can generate the set of grammars required to classify each ac-

tion. As an example, we show in the following the grammar for the action

“Sleeping”:

PSleeping = S → bn;S → bS;S → cn S → cS;S → iS;
S → nc;S → ni;S → nn;S → nS

To make the results comparable to the ones presented in [101] and [100],

we adopted the “leave one day out” validation proposed by the authors.

According to this rule, we have separated the test and training sets using
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Figure 2.7: Ubicomp dataset. Map of the considered environment, with sensor labels.

Table 2.1: Sensor remapping.

Position Letter assigned
Microwave a
Hall-Toilet door b
Hall-Bathroom door c
Cups cupboard d
Fridge e
Plates cupboard f
Frontdoor g
Dishwasher h
ToiletFlush i
Freezer j
Pans Cupboard k
Washingmachine l
Croceries Cupboard m
Hall-Bedroom door n
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for testing one full day of sensor readings and for training the remaining

days. We have iterated this process so that each of the days contained in

the dataset has been considered for testing.

Table 2.2: Confusion Matrix using the proposed framework on the “Ubicomp dataset”.
The values are percentages

Leaving Toilet. Shower. Sleeping Breakfast Dinner Drink N.C.
Leaving 87.88 9.09 0.00 0.00 0.00 0.00 0.00 3.03

Toilet. 1.77 89.38 0.00 1.77 0.00 0.00 4.42 2.65
Shower. 0.00 4.55 95.45 0.00 0.00 0.00 0.00 0.00
Sleeping 4.76 0.00 4.76 80.95 0.00 0.00 0.00 9.52

Breakfast 0.00 0.00 0.00 0.00 89.47 0.00 5.26 5.26
Dinner 0.00 11.11 0.00 0.00 0.00 33.33 11.11 44.44
Drink 0.00 11.11 5.56 0.00 0.00 0.00 72.22 11.11

The obtained averaged results are presented in Table 2.2. Comparing

the above results with the ones shown in [101], it is possible to observe that

our framework provides a similar accuracy in classifying the actions “Leav-

ing”, “Toileting”, “Showering”, “Sleeping” and achieves better results for

the actions “Breakfast”, and “Drink”. The action “Dinner”, instead, shows

a limited accuracy, mostly due to the fact that it has the lowest number of

occurrences, thus resulting in a very limited training set for rules genera-

tion. Besides this very appreciable result, we have also to stress that the

proposed method presents the advantage of real-time operation and very

low hardware requirements, since the run-time process only consists of a

simple symbolic parsing. Moreover in Table 2.3 we compare our frame-

work to the results shown in [100], where the same authors propose a set

of measures considering different action recognition models that can be

taken as a benchmark for new action recognition algorithms. In particular

Precision and Recall are presented along with F-Measure and Accuracy

(please see [100] for the corresponding definitions). The models considered

in the work span from a “Naive Bayes” approach to Hidden Markov Mod-
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els (HMM), Hidden Semi-Markov Models (HSMM), Conditional Random

Fields (CRF). For comparison purposes our approach is reported as the

last one.

Table 2.3: Comparison of obtained results respect [100].

Model Precision Recall F-Measure Accuracy
Naive Bayes 67.3± 17.2 64.8± 14.6 65.8± 15.5 95.3± 2.8

HMM 54.6± 17.0 69.5± 12.7 60.8± 14.9 89.5± 8.4
HSMM 60.2± 15.4 73.8± 12.5 66.0± 13.7 91.0± 7.2

CRF 66.2± 15.8 65.8± 14.0 65.9± 14.6 96.4± 2.4
Our Framework 89.9± 10.9 78.3± 19.6 83.7± 14.0 85.5± 11.8

As can be seen, the proposed framework obtained significant improve-

ments in terms of Precision, Recall and F-Measure. The accuracy is still

high, although slightly lower compared to the other models. This is mainly

due to the fact that our approach produces some unrecognized actions,

which limit the accuracy parameter. This fact can be partially recovered

by the re-training procedure, as will be shown in the next paragraphs.

2.5.2 Home environment

As far as the “Home Dataset” is concerned, we first randomly divide each

set of examples in the in 2 parts, a training and a test set, each one con-

taining one half of the samples provided for each behavior. Based on the

training set we generate 3 grammars, one for each action. Then, we apply

the grammar to classify the test set. In order to cross-validate the results,

every experiment is repeated 10 times with different random partitions,

and the classification results are averaged. Cross-validation is applied to

all the tests reported in the following.

In the first test we consider positive samples only in the grammar gen-

eration. Results are reported in Table 2.4.

From the confusion matrix we can observe that part of the patterns are
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Table 2.4: Classification accuracy using positive samples only.

In/Out A B C Unknown
A 0.54 0.15 0 0.31
B 0.08 0.54 0 0.38
C 0 0.15 0.62 0.23

misclassified and about one third of the patterns are classified as unknown,

meaning that they are not recognized as valid patterns by the parser. In

the second experiment we introduce negative samples in the grammar gen-

eration, where for each class, the positive samples are the same as above,

while the negative ones consist of the training of the other classes. Con-

sequently, each of the 3 grammars is generated from 14 positive and 28

negative examples. Results are reported in Table 2.5.

Table 2.5: Classification accuracy considering positive and negative samples.

In/Out A B C Unknown
A 0.69 0 0 0.31
B 0 0.62 0 0.38
C 0 0 0.77 0.23

It can be observed that negative samples allow a better discrimination,

i.e., removing the overlap among the three classes, as clearly shown by

the new confusion matrix. On the contrary, the number of unrecognized

samples remains unchanged, as the negative samples just restrict the region

associated to each class.

In order to improve the detection of unrecognized samples, incremental

learning can be used. For this test, the dataset is divided into 3 subsets

of 9 instances each. We generate the grammars from the first subset using

positive and negative samples (9 and 18, respectively). Then, we classify

the second subset, and we select the faulty patterns (misclassified + non
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recognized samples). These patterns are then used as additional training

samples to update the grammars according to the proposed re-training

procedure. Finally, the last subset is used for testing. The average results

obtained after the first and second learning stage are reported in Tables

2.6 and 2.7, respectively.

Table 2.6: Average classification accuracy after one learning stage.

In/Out A B C Unknown
A 0.63 0 0 0.37
B 0 0.55 0 0.45
C 0 0 0.55 0.45

Table 2.7: Average classification accuracy after re-training.

In/Out A B C Unknown
A 0.74 0 0 0.26
B 0 0.69 0 0.31
C 0 0 0.67 0.33

Comparing the two tables one can observe that the performance con-

siderably improves after re-training, leading to an average 70% of correct

classification. It is also to be noted that the last result is better than the

one shown in Table 2.5, although the total number of samples presented to

the grammar generation tools is slightly lower on average. In fact, in the

former, one half of the samples were used for training (14 per class), while

in the latter, the average number was 13 (9 initial + 4 in re-training).

2.5.3 Office environment

The experiments for this last dataset have been performed in the same way

as for the previous case. In this case we have 4 behavior classes and 30

samples per class. The first test is performed using 15 patterns per class
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for training, based on positive samples only. The test was performed on

the remaining 15 samples per class. The confusion matrix is reported in

Table 2.8.

Table 2.8: Classification accuracy using positive samples only.

In/Out A B C D Unknown
A 0.46 0.07 0 0 0.47
B 0 0.40 0 0.13 0.47
C 0 0 0.53 0 0.47
D 0.07 0 0 0.40 0.53

Also in this case, we tested the grammar generation tool adding negative

examples, thus using 15 positive and 45 negative samples per class. Results

are reported in Table 2.9.

Table 2.9: Classification accuracy considering positive and negative samples.

In/Out A B C D Unknown
A 0.53 0 0 0 0.47
B 0 0.53 0 0 0.47
C 0 0 0.53 0 0.47
D 0 0 0 0.47 0.53

Finally, re-training is simulated splitting the dataset in 3 equal parts (10

samples per class), and using the first subset for initial grammar generation,

the second subset for the first test and the re-training, and the last subset

for final test. The intermediate and final results are reported in Table 2.10

and Table 2.11, respectively.

It can be observed that the figures are consistent with what has been

presented in the previous case, with a slightly larger performance gap be-

tween the first test (single training, positive samples only) to the final one

(after re-training).
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Table 2.10: Average classification accuracy after one learning stage.

In/Out A B C D Unknown
A 0.55 0 0 0 0.45
B 0 0.50 0 0 0.50
C 0 0 0.48 0 0.52
D 0 0 0 0.58 0.42

Table 2.11: Average classification accuracy after re-training.

In/Out A B C D Unknown
A 0.73 0 0 0 0.27
B 0 0.71 0 0 0.29
C 0 0 0.82 0 0.18
D 0 0 0 0.78 0.22

2.6 Real time behavior analysis in compressed do-

main

In the context of human behavior analysis applied to a real scenario, an

innovative solution based on a real time analysis of video with application

in the field of fall detection for elderly care is presented in the following

paragraph. The system performs anomaly detection and proposes the au-

tomatic reconfiguration of the camera network for better monitoring of the

ongoing event. The developed framework is tested on a publicly available

dataset and has also been deployed and evaluated in a real environment.

Algorithms for fall detection operate in many cases in the pixel domain,

whereas most of the surveillance cameras only provide the video in the

compressed domain. In order for these algorithms to be applied, the video

has to be decoded, introducing an additional processing layer. Further-

more, most algorithms are not operating in real time, barely reaching 20-

25 frames per second on a PC-based platform, which hampers the ability
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of their deployment in real scenarios. In order to respond to this need,

especially in case of elderly care, it is necessary to develop low-complexity

algorithms, which can be deployed directly in the DSP (Digital Signal

Processor) onboard of the camera and possibly in the compressed domain,

thus dropping the need for decoding. In this work we present an algorithm

which completely operates in the compressed H.264 [109] domain and that

requires a negligible complexity, hence it can be deployed on DSP (or simi-

lar) processor. Fall detection and reconfiguration is achieved by proposing

a generic entropy measure derived using the distribution of the motion field

extracted from the compressed video bit stream [57].

2.6.1 Evaluation

In order to demonstrate the utility and robustness of the algorithm, we

first evaluate the performance of the fall detection algorithm by testing it

against the reference fall detection dataset published by the University of

Montreal [8], widely used to validate algorithms in this field.

To show the reconfiguration capability, we deployed a set up in a real

environment and observe its performance during the occurrence of fall. To

this extent we used two cameras “Sony SNC-EP521 indoor”, day/night,

with PTZ. These IP cameras are equipped with a 36x optical zoom allowing

operators to cover large, open areas and zoom in for detailed close-up shots.

Panning can span from 0 to 340 degrees, with max 105 degrees tilt, and

their configuration can change using built in network commands. The

cameras have been installed in our Department facility, and falling events

have been recorded thanks to the collaboration of volunteers.

Fall detection

Since the algorithm operates in the compressed domain, we had to convert

all the videos in the dataset [8] into the H.264 format using the JM H.264
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reference encoder [46], at the frame rate of 25 frames per second. The

thresholds necessary for a proper operation of the algorithm are learned

for each camera and are maintained constant for that particular camera

for all scenarios. Fall is defined as an event lasting 5-10 seconds, starting

from the momentary stop by the subject just before the fall and ending

with a motion less layover of the subject. The total number of correct fall

detections, as compared to the ground truth, are deemed as true positives

(TP), while false detections are termed as false positives (FP). Finally,

true falls which have been skipped by the detector are termed as false

negatives (FN ). The results obtained for the video dataset are given in

Table 2.12 in terms of Precision, Recall and F-Measure. A comparison with

respect to the state of the art techniques is provided in 2.13. As can be

seen, the fall detection algorithm performs reasonably well especially given

the fact that it operates in real time. The algorithm fails to detect the

falls, when the subject is very far away from the camera and subsequently

the motion entropy generated by the subject is very low. In such scenario

noise becomes dominant thereby causing false detections. Another scenario

where the algorithm fails is in case of actions, which correspond to bending

down on the floor etc. However, since we also took into consideration the

momentary fall entropy, just after the fall most of such false detections

have been resolved.

Table 2.12: Performance of the algorithm on the dataset [8].

Precision Recall F-Measure

0.89 0.86 0.88

Table 2.13: Comparison to the state of the art approaches described in[37].

Our method K-NN C4.5 SVM Bayes Feng et. all

Sensitivity 0.86 0.75 0.85 0.95 0.80 0.98
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Comparison

Our algorithm completely operates in the compressed domain. Hence it

has the advantage of being very light in terms of computational and mem-

ory requirements. Nevertheless it compares very well with the other pixel

domain state of the art fall detection methods as we can see from the table

2.12. Our method also provides a significant improvement with respect to

other compressed domain methods like [25]. Most of these methods rely

on the segmentation of moving object and the trajectory of its centroid,

and also include other features like velocity of centroid. Present algorithm

also uses these aspects, but it turns out to be more robust as it also ex-

ploits the motion disorder as one of the factors to determine fall detection.

Furthermore, the compressed domain method presented in [25] uses AC

and DC coefficients along with motion vectors to achieve object segmenta-

tion, which are heavily dependent on the quantization parameter used for

encoding the video bit stream. The proposed method, instead is entirely

based on motion vectors, which are independent with respect to changes in

QP. In terms of complexity our solution offers the lowest complexity of all

compressed domain methods as it operates at the level of 32 × 32 blocks,

and the number of operations required for processing one frame are 5.2K,

16K, 48K, 106K computations for CIF, VGA, HD, full HD resolutions,

respectively.

Reconfiguration

In case of real evaluation the video stream obtained from the camera has a

resolution of 720×576 pixels and a frame rate of 25 frames per second. The

H.264 bit stream obtained from the camera is encoded in the baseline pro-

file. In order to access the Network Abstraction Layer (NAL) packets from

the camera we have used the functions available in the ffmpeg library[79].

Fall detection and moving object segmentation are implemented using the
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Figure 2.8: Fall detection and subsequent reconfiguration of the camera for better view.

motion vectors extracted from the H.264 (JM 18.6 version) decoder [46].

In order to control the camera automatically the curl library functions [78]

are adopted. The whole set up is implemented on an Intel i5 processor,

3.10 GHz.

Fall detection and subsequent reconfiguration is shown in Fig. 2.8. As

we can see from the images, fall of the person occurs towards the end of

the image in one of the frames. However, camera instantly reconfigures to

bring back the view of the fallen person. This shows that the algorithm

works in real time and is robust enough to work in tricky illumination

conditions.

40



Event identification using Games With a Pur-

pose

The concept of “event” emerged in the last years as a key feature to effi-

ciently index and retrieve media. Several approaches have been proposed

to analyze the relationship between events and related media, enable event

discovery, perform event-based media tagging, indexing, and retrieval. De-

spite the outstanding work done by several researchers in this area, a major

problem that still remains open is how to infer the inherent link between

visual concepts and events. In particular, the possibility of understanding

which perceptual elements allow a human recognizing the event depicted

by an image, would for sure open new directions in event media discovery.

In this work we introduce the concept of Event Saliency to define the above

event-revealing perceptual elements, and we propose an original method to

detect it by exploiting crowd knowledge through gamification. We propose

an adversarial game with a hidden purpose, where users are engaged in

two competitive roles: on one side they should mask a photo collection to

prevent the competitors recognizing the related event; on the other side

they should discover events masked by other players. A set of rules and an

adequate score system avoid cheating and force players to focus on details

that really matter, thus allowing the accurate detection of event-related

contents in media. A suitable algorithm composes the masks produced

by different players on the same media, taking into account the results of

the game. The final result is a saliency map that, differently from the
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traditional concept of saliency, does not focus on perceptual prominence

but rather on event-related semantics of media. Results of EventMask are

collected in a publicly available dataset which can be exploited for further

research in this domain. In this chapter we will introduce the analysis of

images, and in particular we will address the problem of content mining

for social event detection, starting from the information coming from an-

other multimedia content respect to the previous section, i.e. galleries of

still images. The objective is to provide a framework able to create the

necessary groundtruth to automaticaly classify a single image respect to

the represented event.

3.1 Background

In this section we review the state of the art in two areas that are strictly

connected to our work: event-based media analysis and gamification for

media analysis. A specific sub-section is dedicated to each of these aspects.

3.1.1 Event-based media analysis

Events provide a rich source of contextual information that can be exploited

to address a number of different tasks in multimedia signal processing and

analysis. Since the pioneering work of Ramesh Jain [108], many researchers

have investigated the relationships between events and associated media,

to solve problems like event discovery, automated media event cluster-

ing and summarization, event-based media retrieval and event networks.

For a thorough review on the subject please look at [62] and references

thereby. These researches prove that events provide a rich contextual in-

formation, which can be exploited to achieve better media indexing and

retrieval. Also, media contain important traces of the underlying events

that can be exploited for classification purposes. For instance, in [31] a
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photo collection is clustered based on the implicit event structures and the

emerging event fingerprints are extracted to eventually discover the type

of the related event. [41] proposes a similar idea but with the ambitious

objective of determining the event on the basis of a single media item,

using a visual concept vector. In practice, event classes are learned with a

Mixture Subclass Discriminant Analysis and a nearest neighbor criterion

is used to associate the media to an event class. The main problem with

the above method, as well as with other approaches that use visual in-

formation only, is the dependency on visual concept detectors, which still

perform poorly. Multi-concept detection can partially solve this problem

by finding evidence of a high-level concept, e.g., an event, from the joint

presence of multiple visual concepts even with low individual accuracy. In

this case, the joint weak detection of multiple related concepts reinforces

the higher-level classification [97].

Another common solution is to use additional data, whenever available,

to complement visual information. Several works attempt to exploit image

annotations and tags to collect information about time, spatial coordinates,

keywords in a multimodal analysis framework. For instance, in [60] events

are detected from photo collections by analyzing user-supplied tags. In

[29] event taxonomies are automatically extracted from annotated media,

while personal photo galleries are organized via event clustering techniques

in [64] and [27]. Wider information is elaborated in [86], by focusing on

the domain of pictures and extracting event and place semantics from tags

assigned to Flickr photos. In [80] a set of pictures is used to produce

two image similarity graphs, one using visual features and the other using

textual features, and then combine them in a single hybrid similarity graph.

A number of features including time, location and textual information are

exploited in [14], to face this issue as an unsupervised clustering problem.

In [15] the same authors designed a two-step method to first cluster a
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Twitter stream and then perform event vs. non-event clustering. Event

detection in social media (e.g., Facebook and Twitter) is also studied in

[16] and [54].

Also social ties can be considered an important source of information.

A new concept of social interaction is defined in [107], where social affinity

is computed via a random-walk on a social interaction graph to determine

similarity between two pictures. In [38] the authors propose to use the

social information produced by users in the form of tags, titles and photo

descriptions for classifying photos in event categories. In [21] various in-

formations (e.g., time, location, textual and visual features) are combined

within a framework that incorporates external data sources from datasets

and online web services. In [61], the authors exploit geo-tagging informa-

tion retrieved from online sources to determine the bounding box for a set

of venues, while using time information to determine the set of events that

can be compared to those occurred at the examined venue. In [82] a mul-

timodal clustering approach is proposed, which predicts the same cluster

relationship by exploiting pairwise similarities for all different modalities

and achieving supervised fusion of the heterogeneous features. The social

event detection is transformed into a watershed-based image segmenta-

tion in [30] and [77], where visual and non-visual information are jointly

exploited. A fully automated system for event recognition from an im-

age gallery has been recently proposed in [111], by exploiting metadata

information. In [22] authors identify, retrieve and classify photos in col-

laborative web photo collections associated with social events, by using

contextual cues and spatio-temporal constraints.

In recent years, the importance of event-based media analysis and so-

cial media in general has been witnessed by the large participation of the

research community to international challenges proposed around the event

detection tasks by TRECVID [4] and MediaEval [2], which made also avail-
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able to the research community various annotated datasets, suitable for

training, testing and comparing different methodologies.

With special reference to the area of event media analysis, the main con-

tribution of this paper is in the definition of the concept of event saliency,

as a way to bring some light on the perception mechanisms that allow hu-

man beings understanding events when looking at representative images.

In particular, what we aim to do is to highlight on an image the revealing

visual contents with respect to the underlying event. It is easy to imagine

how this result could open new directions in the framework of the above

referenced event media analysis techniques, making it possible to focus

the attention on important visual concepts and their relationships, while

getting rid of irrelevant visual information that may mislead the analysis.

3.1.2 Gamification in media analysis

Human computing is becoming a common solution to face complex or ex-

tensive problems, where traditional computer-based approaches fail. Crowd-

sourcing is an interesting solution in this domain, based on fragmenting a

task into a large number of sub-tasks and involving large communities of

workers to solve every micro-task for a relatively small individual reward.

Although very interesting in many respects, current crowdsourcing tech-

nologies suffer a number of problems. In particular, it is widely accepted

that crowdsourced tasks have to be rather simple and fast to perform, there

should be no dependency on each other, and there’s a risk connected to

the reliability of the work performed. This implies a careful design of the

tasks and not all the problems are suitable to be defined in an appropriate

way.

More recently, gamification emerged as an alternative modality of crowd-

based problem solution. Luis von Ahn coined the term Games With A

Purpose (GWAP) [104] to define a particular type of crowdsourced game
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that is fun and engaging, and includes a task that can only be completed

by humans. Many different game mechanisms comply with the above char-

acteristics. A first class is based on output agreement, where users have

to collaborate to reach a consensus. An example is the ESP Game for

collaborative labeling of images [103], where players try to label a given

image while playing in pairs: the goal of the game is to agree on as many

tags as possible that describe the given image; the two players that con-

vene on the maximum number of keywords win. The hidden goal in this

case is to tag images according to the content, for further use in image

storage and retrieval. A second class is based on input agreement. An ex-

ample is TagATune [58], where players are given inputs and are prompted

to produce descriptive outputs, so that their partners can asses whether

their inputs are the same or different. Another example is WhoKnows?

[106], a game whose purpose is to detect inconsistencies in Linked Data

and score properties to rank them for sophisticated semantic-search sce-

narios. A third class of GWAPs introduces the so called inversion problem,

where the problem is posed indirectly through a “double negation” crite-

rion. Peekaboom [105] is a nice example of this type of games, aimed at

supporting the creation of metadata associated to visual objects contained

in images. It is played in couples in an adversarial way: the first player

is given an image and a keyword related to it, and progressively reveals

the image part related to the keyword until the other player guesses the

object. Recently, a game called Bubbles [33] has been proposed for select-

ing discriminative features for fine-grained categorization, where users can

reveal small circular areas of blurred pictures to inspect details and guess

the represented subject.

Still pictures are not the only target of media analysis gamification. Ya-

hoo’s Video Tag Game [102] evolves previous approaches for collaborative

tagging by introducing the time variable. Users are not trying to tag the
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video as a whole, but different fragments of it, building a larger and richer

set of metadata for that video content. In the context of event recognition

in videos, a very recent work [18] proposes the new concept of minimally

needed evidence to predict the presence or absence of an event in a video,

which allowed improving event retrieval performance on two challenging

datasets released under TRECVID [52][51]. Notice that video saliency is

in general quite different from image saliency, since motion patterns tend

to assume a prominent role in the perception.

InfoGarden [63] is a casual game, transforming document tagging into

an activity like weeding a garden and protecting plants from gophers, de-

signed to extend the willingness to maintain personal archives by enhancing

the experience of personal archive management. Games used for the eval-

uation and curation of the underlying data are effectively incentives-driven

tools, as discussed in [94], employing ease of use, fun and competition as

incentives for users to perform what would otherwise be an unrewarding

and demanding manual tasks. An overview about the application of game

mechanics in information retrieval can be found in [40].

The social dimension is also very important in games. Social gaming

[5] has been one of the emerging trends in the last years, attracting both

research and industrial efforts. As an example, the evolution of social

networks such as Facebook or Twitter has introduced content generation as

a mainstream concept, forcing users to continuously produce and consume

contents. Geopositioning games, such as Foursquare1, Gowalla2, Buzzd3

or Facebook Places4 encourage users to do check-ins indicating where they

are, and thus letting the system extract information about their location,

top visited places, typical routes. Collabio [17] is a Facebook application

1http://foursquare.com/
2http://gowalla.com/
3http://www.buzzd.com/
4http://www.facebook.com/places/
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that allows friends to tag each other with descriptive terms through a game.

In GuessWho [44] users enter knowledge about their peers to enrich the

organizational social network: each player is prompted with the name of

a person and is asked to provide either names of people who are related

to that person or tags that describe him/her. CityExplorer [65] combines

social gaming with geospatial data gathering to set particular location of

places and landmarks. Pirates! [12] encourages users to collaborate in the

mapping process of WiFi networks available in the surroundings. Recently,

a gamification approach that moves away from thinking of gamification as

an “additive” process towards a more “holistic” paradigm was proposed

in [49]. In this context, a novel definition was proposed that addresses

gamification as a complete system in itself, positioning it as the process of

adding an actionable layer of context.

For what concerns gamification, this work introduces a novel adversarial

game concept, which allows obtaining cross-validated event saliency maps

by combining the results of several users playing in different roles on the

same images. Several interesting strategies have been considered into the

game, from the ”target inversion”, to the introduction of negative scores

originated by inter-user competition, to the timing of the game. The com-

bined effect of such mechanisms was to ensure accurate completion of the

hidden task, avoiding cheating and bias, and incentivizing users to keep on

playing. Besides the specific application of the game in the event saliency

context, we believe that EventMask could provide significant clues on how

to design a game with a hidden purpose to gain knowledge about complex

analysis tasks in multimedia.
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3.2 Event Saliency

Let us consider the image in panel (c) of Fig. 3.1, which shows the same

photo of Fig. 1.2 covered with a different mask. It is now rather easy

to understand which event it depicts. In fact, a revealing element (the

typical birthday pie with the candles) is now clearly visible. Moreover,

this visual element suggests a number of additional information that in

some way disclose also the covered parts. For instance, we can assume

(a) (b)

(c)

Figure 3.1: Comparison between event saliency and visual saliency. Panel (a) represents
the reference image; panel (b) has the same image where event salient areas are covered
by a mask, resulting in a not intuitive association of the image to a specific event; panel
(c) shows a second version of the masked image, where visual salient areas are covered:
despite this, details crucial for the event recognition are still visible.
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that the baby is a girl, because of the color of the candles, and that it is

her second birthday. Incidentally, the mask used in this example has been

obtained with a well-known saliency detector [71][70], thus underlining the

low relatedness of visual saliency with event semantics. If we are able

to cover all the image areas that are revealing the event and only those,

so that the concealed image cannot be anymore associated to the correct

event while minimizing the coverage, we have defined what we call an event

saliency map. The event saliency is largely independent of the color and

contrast of the relevant visual elements, and can be made of any number of

disjoint elements, with arbitrary shape and in any position over the image.

In fact, revealing information can be hidden everywhere in the picture: in

the background, in a small detail, or even in a low contrast or blurred

area. For this reason, it is difficult to imagine automatic techniques able

to extract it from a picture with the currently available technologies. On

the contrary, the ability of human beings at recognizing events even from

a small detail is incredibly high. For this reason we decided to use human

interaction to gain knowledge about this complex problem. It is important

however to notice that the overall purpose of the proposed method is not

to directly involve people in event detection, while to learn from people

the event semantics contained in visual media, i.e., what really matters in

images to detect the subjacent event. In this sense, our method provides as

output a groundtruth that can be used as a basis to implement better event

detection and event-based image classification algorithms, or to improve

existing ones.

3.2.1 EventMask

Among the various possibilities of involving people in this task, we decided

to use gamification for various reasons. With respect to expert-based ap-

proaches, gamification provides the possibility of involving large numbers

50



Chapter 3 Section 3.2

of users, thus covering cultural, personal and social diversities, and pre-

venting biases due to the expert’s individual experience. With respect

to crowdsourcing-based approaches, we reduce cheating by exploiting the

intrinsic incentive of game playing, and we have the possibility of better

hiding the real purpose of the task, thus avoiding biases.

EventMask is designed as a GWAP where the real purpose of the game

is disjoint from the apparent goal, and hidden to the players. In the game

each user can play multiple roles, without the need of another user on-line,

thus resulting in more simple usage and easier user engagement. The game

is competitive, in the sense that each player has to compete off-line with

others to both increase their score and cut the scores of the competitors.

This provides also the reward mechanism, which incentivizes using the

game. Another characteristic of EventMask is that it is formulated as an

inversion problem: we do not ask people to do what we expect as a result of

the game, but to negate the contrary. In the specific context of EventMask,

this means that we never ask a player to highlight what is important for

him/her to recognize an event, but rather to conceal it to other people,

so that they cannot recognize the event itself. This is very important for

two reasons: (i) it prevents users’ bias due to their personal experience (if

I have to indicate what is important for me, I will probably focus on a

limited number of details that I believe are the most significant due to my

own experience of that event); and (ii) it obliges a user to detect all the

revealing details (if I have to hide an event, I will proceed initially with

prominent details, but after covering those, I will focus the attention of the

remaining parts, thus discovering additional traces, until all the revealing

details are covered).

The following sections provide the description of the game mechanics

and of the processing applied to the data generated by the players. This

includes the description of the overall structure of the game, the players
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roles and rules, the scoring system, and the production of results. It is im-

portant to point out that all these mechanisms have been carefully defined

in order to stimulate fair and correct playing, avoid cheating, introduce

mutual control to avoid external moderation, reveal the performance and

reputation of players, motivate users.

Game Mechanics

The basic idea of the game is simple. EventMask is an adversarial game,

in which users are alternately engaged into two competitive roles: masking

and discovery. In the masking role the user is presented a random image

related to an event, and is requested to hide (cover with uniform color

using a simple painting tool) the minimum part of it that makes the event

unrecognizable. An honest player will correctly hide the event, while leav-

ing the highest possible area of the image visible (see example in Fig. 3.2).

In discovery role, the user is presented an image masked by another player,

randomly selected among the images he never masked, and is requested to

classify it into an event class chosen from a list. The list contains a set of

event labels much larger than the set of events represented in the dataset

and showing some degree of similarity, so as to make difficult to “guess”

an event just based, e.g., on the environment or the background informa-

tion. An honest player will select the correct class if some significant clue

remained in the masked image, or will return a “no-choice”.

Each player can act in either role as much as he wants, but in order to

guarantee enough data for the discovery role, the possibility of playing as

discoverer is bounded by the number of previously masked images for that

player. Players may gain points when acting in both roles, to incentivize

them playing honestly and performing well in each of the two tasks.

While discovery is rather straightforward, masking implies more com-
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Figure 3.2: Screenshot of the application showing an example of masking procedure.
Images are prompted to players and they should hide with a tool the most relevant parts
related to the event corresponding to that photo.

plex reasoning. A good player will try covering the lowest possible area to

maximize the score (see section 3.2.1), but sometimes this will imply leav-

ing some revealing traces in the shape and position of the masked area.

These aspects are further elaborated in the results section.

Access to the game is provided via web at this URL:

http://mmlab.science.unitn.it/eventmask

Scoring system

A critical aspect of gamification is how to reward the players for their

performance, while at the same time preventing cheating. In EventMask

this is achieved thanks to a well conceived scoring system. The assignment

of points is performed in such a way to incentivize honest playing, while

rewarding top performances.

Points are assigned when playing both in masking and discovery roles.
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In masking role, a provisional score is assigned to the player according to

the percentage of the image area left uncovered. In this sense, covering the

whole image will result in a zero score, while leaving it completely visible

gives maximum score. In the first case, the user is sure that the image

will be unrecognizable, but it will get no reward out of this. In the second

case, the image will be recognized almost for sure by every discoverer,

then the player did a bad job, but the provisional score is maximum. The

masking score should then be adjusted by some verification mechanism to

avoid cheating. This mechanism is provided by discovery. A discoverer

is presented a masked image: if he can recognize the event, the score of

the masking player for that image is halved, while he is assigned points

proportionally to the masked area. In the above example, a player that

left the image completely visible will rapidly lose all the points earned.

Also discovery role may lead to some abnormal behaviors. The typical

case is guessing. In order to discourage guessing, players loose points for

giving incorrect classification of events. Accordingly, when the event is

difficult to recognize with sufficient confidence, it is left open the possibility

to skip it, with no point loss. The joint rewarding mechanism between

masking and discovery guarantees that players cannot gain points with

incorrect behaviors, and they ensure by themselves the validation of the

results by playing competitively in both roles (discoverers act as evaluators

of the work carried out by maskers). Points rules are summarized in Table

3.1.

Finally, a global score system is provided to recognize the reputation of

the various users, prompting it in home page, so that the result is publicly

available to the community of players, thus motivating people to improve

their performance (see example in Fig. 3.2).

It is to be pointed out that, besides providing a score system for the

players, the above rules allow validating the quality of the masks generated
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Table 3.1: Game scoring

Role Scoring rules
Masker Gains AI provisional points for

each image I, where AI = 100 −
CI and CI is proportional to the
covered areas.
Looses AI/2 points when a Dis-
coverer is able to detect the event
represented beside the presence of
the mask generated.

Discoverer Gains AI points with a success-
ful recognition of the event con-
nected to an image I.
Looses AI points for each wrong
guess on image I.
Do not loose any point if he de-
cide to pass the turn.

by the users. All this information is fundamental to build the final event

saliency maps, as explained in the following section.

3.2.2 Event-saliency map generation

Although the game is designed to incentivize effective playing, event saliency

detection is not trivial even for humans. Users can forget important parts,

roughly segment objects, in particular at their boundaries, and sometimes

cheat. Since however users act independently of each other, we can imagine

that such behaviors will be largely uncorrelated, while the peak of corre-

lation will be concentrated on the really salient areas. Accordingly, to

achieve the final map, we fuse the masks produced by different players on

the same input image, each one validated by multiple discoverers. In the

following we explain how such fusion process is achieved.

The input information is made of the various masks and their relevant

scores, as generated by discoverers. The ideal output is made of all the
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image segments that are sufficient to discover the event, and only those.

It is to be pointed out that a mask that was never discovered not nec-

essarily is a good map, as it may be over-complete. At the same time,

two complementary masks that individually failed with all discoverers may

jointly produce a good map. For this reason a simple weighted sum is

not an effective fusion strategy. The proposed composition algorithm is a

mix of Boolean and weighting rules that keeps into account all the above

considerations.

We start from a set of binary masks M I
j associated to the image I, one

for each masking player j, defined as follows:

M I
j (n,m) =

{
1 if pixel (n,m) is masked

0 otherwise
(3.1)

Then, based on the results of discovery, we substitute the zeros of each

mask with a value proportional to the average number of times the event

was recognized for that mask. The rational behind this operation is that,

if the event was recognized, the unmasked pixels should contain some evi-

dence of it. At the end of this process, each binary mask M I
j is transformed

into a real-valued mask M̂ I
j , as follows:

M̂ I
j (n,m) =


P/T if M I

j (n,m) = 0 AND event reco-

gnized by P out of T discoverers

1 if M I
j (n,m) = 1

(3.2)

Finally, we intersect all the weighted masks associated to image I by

applying a pixel-wise product. For a binary image this will have the effect

of a AND operation, with the result of achieving an intersection, i.e., the

minimum set of points for which there is agreement among users. Since the

modified masks are no more binary, the product operation is not exactly a
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(a) P/T = 0.80

(b) P/T = 0.40

(c) P/T = 0

(d)

Figure 3.3: Example of event saliency map generation. Masked images are represented
along with the corresponding result on the global map, according to the procedure of
weighting and fusion described in Equations (2) and (3), respectively. Panel (a) shows an
example of starting masked image (left) with the first generated map (right), panel (b)
shows the second mask considered (left) with the corresponding result on the global map
(right), panel (c) reports an example (taken among those generated) of “art” mask (left)
and its reduced influence on the map (right), and panel (d) shows the original image (left)
with the final event saliency map (right).
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AND, but nevertheless tends to sharply decrease the values in the presence

of areas with values near to zero in at least one weighted mask.

The product operation also allows making the saliency map evolve in

time as soon as new validated masks are made available by the game, by

simply multiplying the current map times the incoming modified mask

(and normalizing with respect to the number of masks). The final event

saliency map is therefore defined as follows:

M̄ I = (
∏
j

M̂ I
j )1/j (3.3)

Fig. 3.3 shows step-by-step the creation of an event saliency map asso-

ciated to the test image already presented in Figures 1 and 2. Panel (a)

left shows the masked image provided by the first player. Here, an impor-

tant detail is still visible, i.e., part of a cake. This important detail leaded

many players to correctly guess the event (P/T = 0.80). The resulting

weighted map M̂ I
j (n,m) reported on panel (a) right, shows a full black

region corresponding to the mask, and a dark gray region in the remaining

area, related to the presence of important details in an unknown region

outside the mask. Panel (b) left is the outcome of a mask created with

care: the cake is fully covered and the candles are concealed as well. For

this reason only a couple of players were able to discover the event rep-

resented, thus leading to a lighter value of the background (P/T = 0.40).

The right side of panel (b) shows the combination of this map with the

previous one. Since users are playing, it may happen that sometimes a

player simply wants to make a joke, thus producing some funny results

(see, e.g., the mask in panel (c) left) as well as some anomalous masks to

create false leads or simply cheating. The example demonstrates (panel (c)

right) that our methodology is resilient, as the combination of the weight-

ing procedure and the mask fusion procedure allows removing the effect
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of malicious inputs, even for a very low number of players. In fact these

are largely incoherent among different players, and they are filtered out by

the mask composition procedure. The fusion of all the masks, according

to Equation (3.3), results in a event saliency map highlighting the most

informative regions inside the considered image (both reported in panel

(d), right and left, respectively).

3.3 Results

In this section we present a set of results generated during a series of game

sessions launched within different communities, involving several hundred

people. The main gaming sessions were organized within our labs, involv-

ing more than 300 volunteers in different stages, selected among Master and

PhD students in different disciplines, not involved in specific activities re-

lated to image retrieval (to avoid bias). Further sessions where organized at

various conferences and research workshops [92], including the Show&Tell

demo session at IEEE ICASSP 2014 [91]. The objective of these tests was

to demonstrate that the proposed game-based approach can provide new

insights on event saliency, which can be used as a basis for further stud-

ies in content-based event detection from media. In particular, we aim at

demonstrating (i) that the concept of event-saliency exists and it is dif-

ferent for the classical visual saliency, and (ii) that the EventMask game

is properly designed to produce effective event-saliency maps. Moreover,

the extensive use of the game made it possible to generate a dataset of

event-saliency annotated images which are made available to the research

community.
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3.3.1 Datasets and Experiments

In this section we introduce the results achieved on a set of images taken

from two publicly available image datasets. The complete event-saliency

set produced by our work was also made available to the research commu-

nity.5 In the following we will show a set of selected examples for visual

evaluation, to allow perceiving the meaningfulness of event saliency and

comparing it to traditional visual saliency.

As far as the datasets are concerned, the system has been tested using

two different sets of event-related images. The former is a dataset related to

large-scale social events, and includes a selection of photos extracted from

the “MediaEval SED competition” [87], referred to the following event

types:

• Concert

• Conference

• Exhibition

• Fashion

• Protest

• Sport

• Theater - Dance

The latter consists of a set of images collected from the “EiMM Dataset”

[64], which encompasses events related to the personal sphere, and in par-

ticular the following categories:

• Concert
5The EventMask dataset, with all original images, their corresponding event saliency maps, and

visual objects associated to the 15 event types, is available, after registering and playing, at the URL:
http://mmlab.science.unitn.it/EventMaskDataset
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• Graduation

• Meeting - Conference

• Mountaintrip

• Pic Nic

• Sea Holiday

• Ski Holiday

• Wedding

For both datasets we randomly selected 35 images per each event category,

for a total of 525 images.

Every user was asked to play in both masking and discovery roles. Dur-

ing each session a player masked on average 25 images and discovered more

than 100 images, with a return rate of 76%. When designing a game with

a purpose, one should not forget that the primary incentive for user is en-

gagement (being the objective of game supplier hidden). In our case, we

pointed on the adversarial nature of the game, and in some sessions we

also proposed some symbolic prizes for winners. The reaction was surpris-

ingly positive, with most involved users continuing the game (70%) well

beyond the minimum requested time (average time spent 15 minutes per

session). Furthermore, they involved additional users in the game, although

we did not pursue any viral mechanism. This promising trend indicates

that GWAPs can provide a significant alternative to crowdsourcing to in-

volve humans in multimedia-related computational tasks. The final maps

have been generated considering to have at least 10 masks per each image

and at least 5 validations for each mask. These numbers where defined by

analyzing the progressive composition of the map, which resulted almost

steady when 7 or more user masks have been processed. In this way each
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image has been seen by users at least 60 times, for a total of more than

30,000 image elaborations made by the crowd to process the entire dataset.

During the discovering phase, we prompted the users with different

events, allowing them to select their guess within a list. This list has been

designed in order to avoid trivial solutions, thus, we included all categories

available in either dataset plus additional classes not present in the data

and partially overlapped from the visual viewpoint. As an example, in a

“Skiholiday” picture it is possible to cover person and equipment, but prob-

ably not snow and winter mountains, which occupy a significant portion of

the image. The presence in the list of other events connected to the winter

mountain context like “Avalanche” prevents easy guessing. Moreover, the

class “Unknown-Pass” was added to allow users refusing to choose. For

the sake of completeness we report hereafter the list of additional events

that are available for the discoverer role:

• Birthday

• Halloween

• Baptism

• Funeral

• CityTour

• CarAccident

• Avalanche

• Unknown-Pass

After collecting and validating the user masks, the information was

passed to the procedure described in section III.C, to construct the event

saliency maps of the relevant images. In Figures 3.4 and 3.5 we present
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some representative results. The first column shows the original images,

the second contains the event saliency maps, and the third shows the tradi-

tional visual saliency, calculated by the technique in [70]. In saliency maps,

darker gray levels are associated to higher saliency (i.e., details masked by

the majority of successful players for event saliency, and areas with greater

perceptual impact in traditional saliency), while lighter grey levels refer to

progressively less important areas.

(a) Concert

(b) Conference

(c) Protest

(d) Sport

original images event saliency maps
visual saliency

maps [70]

Figure 3.4: Results on MediaEval SED dataset [87].
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The first set (Fig. 3.4) is related to the MediaEval dataset. It is in-

teresting to notice that in most cases the event saliency covers a smaller

area with respect to the visual saliency, focusing on the visual concepts

that contain the highest amount of information in an event perspective.

Such details may appear in any part of the images (see, e.g., image (b))

while visual saliency is typically in the center, they are not necessarily big,

bright colored or high-contrast. Most often, significant event-related de-

tails are not concerned with people (who instead are visually attractive)

but to objects or the environment. This is the case for example of images

(a) and (c) where objects such as the microphone or the panels carried

by people clearly reveal the nature of the depicted events. Only seldom

visual and event saliency present a similar distribution, and this typically

happens when the attention of the photographer is attracted by a subject

strongly related to the event. This is the case for instance of image (d),

where the background is rather irrelevant, while the foreground is both

visually attractive and event-related. In this case the overlap between the

two maps is significantly high. The second set of images confirms the above

considerations also when applying the proposed approach to another type

of events, more related to the personal dimension. Results are reported

in Fig. 3.5 again referring to a subset of representative images distributed

across the different classes. Again, event saliency is mostly concentrated

on the details of the images, like in pictures (a), (b), and (e), with clear

difference with respect to visual saliency, mostly connected to the fore-

ground. In particular in image (a) we have a situation where the event

(Meeting-Conference) is mostly revealed by the presence of badges on the

persons, so we have a very compact representation of the event, described

by that particular visual concept. A similar situation holds in image (e),

where the spouse in the background represents the only distinctive element

of the event (Wedding) on that picture.
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Sometimes photos contain event-related details that are not in the fore-

ground. This is the case of image (b) where the background of the image

results more informative in a event-related perspective, since it contains

the only hint about the nature of the event (Mountain Trip).

(a) Meeting

(b) Mountaintrip

(c) Sea Holiday

(d) Ski Holiday

(e) Wedding

original images event saliency maps
visual saliency

maps [70]

Figure 3.5: Results on EiMM dataset [64].
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The most surprising case is the one depicted in image (c), where event

and visual maps are almost complementary, as the event-revealing compo-

nent is the sand and see area in the background, while the visual attention

is attracted by the colored group of people in the foreground. Also in this

dataset, it may happen that visual and event saliency show a good overlap

(see, e.g., image (d)) when the main subject is also representative of the

event.

3.3.2 Assessment of the Event-Saliency Maps

In order to assess the results of the game-based event-saliency detector, we

introduce here two steps of analysis. First, we evaluate the performance of

players by analyzing the users’ masks and their relationships with the final

map. Then, we evaluate the significance of the saliency maps obtained at

the output of the process.

Concerning the first assessment, three parameters have been defined

that put into relation the individual users’ masks with each other and with

the final one, as follows:

R(M I
j ) =

card
(
M I

j ∩ M̄ I
)

card
(
M̄ I
) (3.4)

P (M I
j ) =

card
(
M I

j ∩ M̄ I
)

card
(
M̄ I

j

) (3.5)

D(M I
j ,M

I
k ) =

card
(
M I

j ∪M I
k −M I

j ∩M I
k

)
card

(
M I

j ∪M I
k

) (3.6)

where card denotes the number of non-null elements in the mask (after

binarization), R is the recall of j-th user on I-th image, measured as the

percent coverage of the final mask; P is the corresponding precision, i.e.,

the percentage of pixels of the user mask that belong to the final map; and
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Table 3.2: Event-saliency individual users’ masks evaluation

Average Standard dev
Recall 56 12

Precision 78 17
Diversity 36 37

D represents the users’ diversity, calculated as the number of non-matching

points between two different user masks, normalized over the total covered

area. Table 3.2 reports the average R, P , D values obtained over all users

and images in the datasets, as well as their respective standard deviations.

It is worth noticing that the average user covers something more than

half final map. This means that users tend to disregard some salient details.

The average precision however is significant, meaning that users in general

focus on important parts.

The third parameter shows that, although the single user is not fully

reliable, the crowd provides complementary information, which can be ex-

ploited to achieve a reliable final result. As a matter of fact, the compo-

sition method proposed in our work gets rid of the over-concealed areas,

while maintaining the minimum evidence agreed among all users.

This is also demonstrated by a further experiment performed with real

users. The objective of this test was to understand if the areas covered by

the map are really the ones that contain all the event-related information.

To this purpose, we prepared a photo collection where each image in the

dataset was covered with the corresponding binarized event-saliency mask.

The images where then presented to a panel of volunteers including more

than 100 people, never involved in the game before. Each user had to

guess the event represented in each masked image, choosing among a list

and without any penalty for the errors. The user had also the possibility to
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(a) Concert w = 0.33 (b) Conference w = 0.16 (c) Exibition w = 0.0

(d) Fashion w = 0.0 (e) Protest w = 0.5 (f) Sport w = 0.16

(g) SeaHoliday w = 0.16 (h) SkiHoliday w = 0.83 (i) Wedding w = 0.16

Figure 3.6: Example of masked images, using the binary event saliency map superimposed
on the original images, considering the same events represented in Figures 3.4 and 3.5. w
represent the percentage of recognition of the event during the evaluation carried out.

mark the image as unknown. Each image was shown to at least 10 different

volunteers.

The average result achieved on the whole dataset was of 71% failure

in recognizing the event, with about 46% faulty detections. As a counter-

test, the same images were successively shown to the same users unmasked,

obtaining in that case a percentage of failure of 10%. Fig. 3.6 reports some

examples referred to the images shown in Figures 3.4 and 3.5, along with

the percentage of successful recognition of the event by the users, displayed

by w in a range from 0 to 1.

It is clear that for some particular images it is much more difficult to hide

the event. For instance, in image (h) the background is so particular that it
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Table 3.3: Event-saliency maps evaluation: average percentage of event recognition on
masked images for each event class.

MediaEval SED dataset [87] EiMM dataset [64]
Concert ŵ = 0.16 Concert ŵ = 0.16

Conference ŵ = 0.14 Graduation ŵ = 0.14
Exibition ŵ = 0.16 Meeting - Conference ŵ = 0.12
Fashion ŵ = 0.14 Mountaintrip ŵ = 0.83
Protest ŵ = 0.33 Pic Nic ŵ = 0.57
Sport ŵ = 0.14 Sea Holiday ŵ = 0.14

Theater - Dance ŵ = 0.33 Ski Holiday ŵ = 0.86
Wedding ŵ = 0.14

is rather easy to guess the relevant event category, even if some important

details are covered. Of course, a larger variety of events associated to the

same environment (e.g., different types of winter sports) would make the

background much less informative. Other particular situations are those

in which the shape of the mask results very similar to the shape of the

covered object, thus providing some hint to guess the event. This is the

case for example of image (f), where it is rather easy to understand that

the concealed object is a motorbike, exploiting the capability of our brain

to auto-complete shapes, connecting them to known objects [81]. Although

these considerations may be interesting to reveal some characteristics of our

cognition system, it is to be pointed out that, even in the above particular

situations, the masks represent anyhow the most significant event-related

contents of the image, thus making possible to use the relevant information

to learn more about the distinguishing visual characteristics of media with

respect to the underlying events.

In this respect, the few images that cannot be masked effectively by any

player can be considered as a special class where the whole image (thus,

probably, the environment) is representative enough to detect the correct

event, which is a precious information anyway. In Table 3.3 the average
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percentage ŵ of event recognition achieved per each event is shown.

3.3.3 Discussion

The concept of event-saliency introduced by this work could provide a

powerful source of information to improve the performance of a number of

different applications, including image classification, event discovery from

media, event-subevent characterization, automatic annotation, ontology

definition, media framing/refocusing, summarization and storytelling. Al-

though it is out of the scope of this work producing a thorough analysis

of such envisaged applications, we would like to briefly introduce a couple

of additional experiments that we conducted (i) to verify if event saliency

detection can be potentially performed in an automatic way; and (ii) to

test its potential in the framework of a very open problem such as event

discovery from single images. Both experiments have been carried out by

exploiting state of the art technologies for visual content description and

matching, and in particular exploiting the well-known SURF descriptors

[13], which provide fast and robust local feature detection, widely adopted

in object detection, as well as image classification and retrieval [51].

In the first test, the goal was to use the knowledge acquired with our

game to extend the event-saliency annotation to new images. To this

purpose, we iteratively took out an image from the set, and removed the

relevant data from the dataset. Then, we learned the remaining visual

concepts and matched them to the current picture. Every detected concept

was then used to create a heat-map, with a heat level proportional to the

confidence of the detection. Finally, the resulting heat map was binarized

and compared to the groundtruth (the saliency map produced by the game)

in terms of precision and recall, as defined above. Table 3.4 presents the

average results achieved over the datasets. It is possible to observe that the

average recall value (67%) is just slightly better than the one of the average
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Sea Holiday

Concert

original images event saliency maps
automatically

generated maps

Figure 3.7: Examples of automatically generated maps compared with the relevant results
produced with EventMask.

player of the game, while the precision is much worse (60%). Moreover, the

standard deviation of these estimates is rather high. This confirms that

the generation of accurate event-saliency maps is a non-trivial issue, which

would require adequate tools able to tackle with the semantic nature of the

problem. Fig. 3.7 shows two examples of automatically generated maps,

compared with the relevant maps produced by the game.

In the second test, we wanted to verify if the use of event-saliency in-

formation could influence the behavior of an event detector. The cascade

of SURF descriptors or their many variances and bag-of-visual concepts

(BoW), followed by statistical classification, is considered a de-facto stan-

dard in image retrieval [10]. In our tests we performed event classifica-

tion from single image using this classical approach. The key points were

extracted using SURF with a minimum Hessian equal to 800 and then

collected into a massive matrix and clustered by a K-Means algorithm,

setting k=20. BoW creates an histogram that describes the image and a

codebook: the relevant histogram-label pairs are used to train an SVM

with RBF kernel for the final classification [24]. The training of the clas-
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Table 3.4: Comparison between automatically generated maps and event-saliency maps
produced by the game

Average Standard dev
Recall 67 24

Precision 60 30

Table 3.5: Percentage accuracy of event-detection from single image

MediaEval SED dataset EiMM dataset
Complete images 31.15 38.80

Event-saliency areas 45.95 41.54
Non event-saliency areas 29.52 20.20

sifier was performed on 3 different settings of the event-saliency dataset:

(A) the complete set of whole images; (B) the event-saliency areas only;

(C) the non event-saliency areas only. Then, we selected a new set of

images containing 105 new images for each event class (corresponding to

three times the dimension of the training set), extracted from the original

datasets (MediaEval SED and EiMM, respectively), and applied the three

trained event classifiers to such new set. The performance was then mea-

sured in terms of average accuracy. Table 3.5 shows the results obtained

for the two datasets. It is possible to observe that the results achieved by

the classifier trained with salient objects only is much better in the first

dataset and comparable in the second dataset with those related to the

whole images. It is also interesting to notice that the training performed

on the background only (whole image with salient part removed) produces

the worst results in both datasets, with a strong performance loss on the

EiMM dataset. This is a further proof that event-saliency contains sig-

nificant evidence of the event-related information contained in the image.

Clearly, more sophisticated uses of the saliency information can be thought

and remain an open problem for future research.
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Conclusions

In this thesis we presented two different methodologies related to the prob-

lem of multimedia content analysis, and in particular to the automatic

discovery of event-semantics from media contents. The two methodologies

addressed this general problem at two different levels of abstraction. The

first approach was related to the detection of activities and behaviors of

people from a video sequence, identifying what a person is doing and how,

while in the second faced the more general problem of understanding a class

of events from a set visual media, considering the situation and context.

Both problems have been addressed trying to avoid making strong a-priori

assumptions, exploiting the largely unstructured and variable nature of

events.

As for the first methodology is concerned, we have proposed a frame-

work for human behavior analysis in a known scenario based on context-free

grammars. The algorithm takes as input a set of sample trajectories asso-

ciated to the activities to be detected, represents them in a symbolic form

according to the sequences of hot spots visited during the action, and gen-

erates a corresponding set of grammars describing the relevant behaviors.

Activity detection is then performed in real time. The major contribu-

tions of the proposed approach, as compared to other symbolic approaches

for activity recognition, consists first in the possibility of using both posi-

tive and negative samples, thus allowing better discrimination capabilities;

second, the ability to easily perform a re-training procedure to adapt to
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changes in the environment and to achieve better personalization; finally,

we have included the capability of effectively dealing with both concate-

nated and nested actions. The algorithm has been validated in different

experimental scenarios, both using visual data and positioning sensors, tar-

geted at monitoring daily activities of people in different environments and

compared with state of the art recognition models.

The second methodology proposed has been devoted to the study of

events in still images. We introduced the concept of event saliency, defin-

ing it as the set of visual concepts that are able to reveal the nature of

an event from a set of related media, as opposed to visual saliency, tra-

ditionally connected to perceptual prominence. We have explained the

importance of such concept from the viewpoint of event-based media anal-

ysis methodologies, which could provide powerful tools for media indexing,

retrieval, clustering, and summarization. Furthermore, we have defined

a strategy, based on gamification, to extract reliable event saliency maps

from images by exploiting human interaction. Extensive tests performed

with a mixed user population of several hundred individuals playing on two

datasets, showed the potential of the proposed approach in building a rep-

resentative grouhdtruth on a significant set of personal and social events.

Moreover, we provided a tool to interact with the system allowing users

to add new event categories and related images to the developed frame-

work, thus extending the EventMask dataset and resulting event-saliency

groundtruth. The results of such process can be exploited to gain knowl-

edge about the inherent link between visual concepts and events, thus

supporting automatic learning systems for concept recognition and media

event detection.
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[26] A. A. Climent-Pérez, P. Flórez-Revuelta, and F. Chaaraoui. A

review on vision techniques applied to human behaviour analy-

sis for ambient-assisted living. Expert Systems with Applications,

39(12):10873–10888, 2012.

[27] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox. Temporal event

clustering for digital photo collections. ACM Transactions on Multi-

media Computing Communications and Applications, 1(3):269–288,

2005.

[28] M. Daldoss, N. Piotto, N. Conci, and F. G. B. De Natale. Activ-

ity detection using regular expressions. Lecture Notes in Electrical

Engineering, 158:91–106, 2013.

[29] M. S. Dao, G. Boato, and F. G. B. De Natale. Discovering inherent

event taxonomies from social media collections. In Proceedings of

the ACM International Conference on Multimedia Retrieval, pages

48:1–48:8, 2012.

[30] M. S. Dao, G. Boato, F. G. B. De Natale, and T. V. Nguyen. Jointly

exploiting visual and non-visual information for event-related social

78



Bibliography

media retrieval. In Proceedings of the ACM International Conference

on Multimedia Retrieval, pages 159–166, 2013.

[31] M. S. Dao, D. T. Dang-Nguyen, and F. G. B. De Natale. Robust

event discovery from photo collections using signature image bases

(sibs). Multimedia Tools and Applications, 70(1):1–29, 2012.

[32] C. De La Higuera. A bibliographical study of grammatical inference.

Pattern recognition, 38(9):1332–1348, 2005.

[33] J. Deng, J. Krause, and L. Fei-Fei. Fine-grained crowdsourcing for

fine-grained recognition. In Proceedings of IEEE International Con-

ference on Computer Vision and Pattern Recognition, pages 580–587,

2013.

[34] K. Duncan and S. Sarkar. Saliency in images and video: a brief

survey. IET Computer Vision, 6(6):514–523, 2012.

[35] T. V. Duong, H. Bui, D. Q. Phung, and S. Venkatesh. Activity recog-

nition and abnormality detection with the switching Hidden Semi-

Markov Model. In Proceedings of the IEEE International Conference

on Computer Vision and Pattern Recognition, volume 1, pages 838–

845, 2005.

[36] K. Eunju, S. Helal, and D. Cook. Human activity recognition and

pattern discovery. IEEE Pervasive Computing, 9(1):48–53, 2010.

[37] W. Feng, . Liu, and M. Zhu. Fall detection for elderly person care

in a vision-based home surveillance environment using a monocular

camera. Signal, Image and Video Processing, pages 1–10, 2014.

[38] C. S. Firan, M. Georgescu, W. Nejdl, and R. Paiu. Bringing order to

your photos: Event-driven classification of flickr images based on so-

79



Bibliography

cial knowledge. In Proceedings of the ACM International Conference

on Information and Knowledge Management, pages 189–198, 2010.

[39] A. R. J. Francois, R. Nevatia, J. Hobbs, R. C. Bolles, and J. R. Smith.

VERL: an ontology framework for representing and annotating video

events. IEEE Multimedia, 12(4):76 – 86, 2005.

[40] L. Galli, P. Fraternali, and A. Bozzon. On the application of game

mechanics in information retrieval. In Proceedings of the ACM Inter-

national Workshop on Gamification for Information Retrieval, pages

7–11, 2014.

[41] N. Gkalelis, V. Mezaris, and I. Kompatsiaris. High-level event detec-

tion in video exploiting discriminant concepts. In Proceedings of the

IEEE International Workshop on Content-Based Multimedia Index-

ing, pages 85–90, 2011.

[42] M. I. Gonzalez Duarte and S. Chacon Murguia. An adaptive neural-

fuzzy approach for object detection in dynamic backgrounds for

surveillance systems. IEEE Transactions on Industrial Electronics,

59(8):3286–3298, 2012.

[43] D. Gowsikhaa, S. Abirami, and R. Baskaran. Automated human

behavior analysis from surveillance videos: a survey. Artificial Intel-

ligence Review, 42(4):747–765, 2014.

[44] I. Guy, A. Perer, T. Daniel, O. Greenshpan, and I. Turbahn. Guess

who?: enriching the social graph through a crowdsourcing game. In

Proceedings of the ACM SIGCHI Conference on Human Factors in

Computing Systems, pages 1373–1382, 2011.

80



Bibliography

[45] R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and C. Isbell.

A novel sequence representation for unsupervised analysis of human

activities. Journal of Artificial Intelligence, 173(14):1221–1244, 2009.

[46] HHI. H.264 reference decoder from heinrich hertz institute, January

2014. http://iphome.hhi.de/suehring/tml/.

[47] B. Hu, W. Wang, and H. Jin. Human interaction recognition based on

transformation of spatial semantics. IEEE Signal Processing Letters,

19(3):139–142, 2012.

[48] Y. A. Ivanov and A. Bobick. Recognition of visual activities and

interactions by stochastic parsing. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 22(8):852–872, 2000.

[49] M. Jacobs. Gamification: Moving from addition to creation. In

Proceedings of the ACM CHI Workshop on Designing Gamification:

Creating Gameful and Playful Experiences, 2013.

[50] A. Jaimes and N. Sebe. Multimodal humancomputer interaction: A

survey. Computer Vision and Image Understanding, 108(12):116 –

134, 2007.

[51] Y. G. Jiang, S. Bhattacharya, S. F. Chang, and M. Shah. High-level

event recognition in unconstrained videos. International Journal of

Multimedia Information Retrieval, 2(2):73–101, 2013.

[52] Y. G. Jiang, X. Zeng, G. Ye, S. Bhattacharya, D. Ellis, M. Shah, and

S. F. Chang. Columbia-ucf trecvid2010 multimedia event detection:

Combining multiple modalities, contextual concepts, and temporal

matching. In Proceedings of NIST TRECVID Workshop, 2010.

81



Bibliography

[53] S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz. Progress in

development of the index of ADL. The Gerontologist, 10(1):20–30,

1970.

[54] W. Kazufumi, O. Masanao, O. Makoto, and O. Rikio. Jasmine: A

real-time local-event detection system based on geolocation infor-

mation propagated to microblogs. In Proceedings of the ACM In-

ternational Conference on Information and Knowledge Management,

pages 2541–2544, 2011.

[55] K. M. Kitani, Y. Sato, and A. Sugimoto. Recovering the basic struc-

ture of human activities from a video-based symbol string. In Pro-

ceedings of the IEEE Workshop on Motion and Video Computing,

pages 9–9, 2007.

[56] D. E. Knuth. Semantics of context-free languages. Theory of Com-

puting Systems, 2(2):127–145, 1968.

[57] K. R. Konda, A. Rosani, N. Conci, and F. G. B. De Natale. Smart

camera reconfiguration in assistend home environments for elderly

care. In Proceedings of the European Conference on Computer Vision,

page To appear, 2015.

[58] E. Law and L. von Ahn. Input-agreement: A new mechanism for col-

lecting data using human computation games. In Proceedings of the

ACM SIGCHI Conference on Human Factors in Computing Systems,

pages 1197–1206, 2009.

[59] B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, con-

textual and ordering constraints for recognizing complex activities

in video. In Proceedings of the IEEE International Conference on

Computer Vision and Pattern Recognition, pages 1–8, 2007.

82



Bibliography

[60] C. Ling and R. Abhishek. Event detection from flickr data through

wavelet-based spatial analysis. In Proceedings of the ACM Conference

on Information and Knowledge Management, pages 523–532, 2009.

[61] X. Liu, R. Troncy, and B. Huet. Using social media to identify events.

In Proceedings of the ACM SIGMM International Workshop on Social

Media, pages 3–8, 2011.

[62] Z. Ma, Y. Yang, N. Sebe, and A.G. Hauptmann. Knowledge adap-

tation with partially shared features for event detection using few

exemplars. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(9):1789–1802, 2014.

[63] C. Maltzahn, A. Jhala, M. Mateas, and J. Whitehead. Gamifica-

tion of private digital data archive management. In Proceedings of

the ACM International Workshop on Gamification for Information

Retrieval, pages 33–37, 2014.

[64] R. Mattivi, G. Boato, and F. G. B. De Natale. Event-based media

organization and indexing. Infocommunications Journal, 3(3):9–18,

2011.

[65] S. Matyas, C. Matyas, C. Schlieder, P. Kiefer, H. Mitarai, and M. Ka-

mata. Designing location-based mobile games with a purpose: col-

lecting geospatial data with CityExplorer. In Proceedings of the ACM

International Conference on Advances in Computer Entertainment

Technology, pages 244–247, 2008.

[66] V. Mezaris, A. Scherp, R. Jain, and M. S. Kankanhalli. Real-life

events in multimedia: detection, representation, retrieval, and appli-

cations. Multimedia Tools and Applications, 70(1):1–6, 2013.

83



Bibliography

[67] D. Minnen, I. Essa, and T. Starner. Expectation grammars: leverag-

ing high-level expectations for activity recognition. In Proceedings of

the IEEE International Conference on Computer Vision and Pattern

Recognition, volume 2, pages 626–632, 2003.

[68] D. Moore and I. Essa. Recognizing multitasked activities using

stochastic context-free grammar. In Proceedings of AAAI Confer-

ence, pages 770–776, 2001.

[69] B. T. Morris and M. M. Trivedi. A survey of vision-based trajectory

learning and analysis for surveillance. IEEE Transactions on Circuits

and Systems for Video Technology, 18(8):1114 –1127, 2008.

[70] O. Muratov, G. Boato, and F. G. B. De Natale. Diversification of

visual media retrieval results using saliency detection. In Proceedings

of IS&T/SPIE Electronic Imaging, pages 86670I–86670I, 2013.

[71] O. Muratov, P. Zontone, G. Boato, and F. G. B. De Natale. A

segment-based image saliency detection. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing,

pages 1217–1220, 2011.

[72] K. Nakamura. Incremental learning of context free grammars by

bridging rule generation and search for semi-optimum rule sets. In

Grammatical Inference: Algorithms and Applications, volume 4201

of Lecture Notes in Computer Science, pages 72–83. 2006.

[73] K. Nakamura and M. Matsumoto. Incremental learning of context

free grammars. In Grammatical Inference: Algorithms and Appli-

cations, volume 2484 of Lecture Notes in Computer Science, pages

174–184. 2002.

84



Bibliography

[74] F. Nater, T. Tommasi, H. Grabner, L. Van Gool, and B. Caputo.

Transferring activities: Updating human behavior analysis. In Pro-

ceedings of the IEEE International Conference on Computer Vision

Workshops, pages 1737–1744, 2011.

[75] R. Nevatia, T. Zhao, and S. Hongeng. Hierarchical language-based

representation of events in video streams. In Proceedings of the IEEE

International Conference on Computer Vision and Pattern Recogni-

tion Workshop, volume 4, page 39, june 2003.

[76] N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. Bui. Learning and

detecting activities from movement trajectories using the hierarchical

Hidden Markov Models. In Proceedings of the IEEE International

Conference on Computer Vision and Pattern Recognition, pages 955–

960, 2005.

[77] T. V. Nguyen, M. S. Dao, R. Mattivi, and F. G. B. De Natale. Event

detection from social media: User-centric parallel split-n-merge and

composite kernel. In Proceedings of the Workshop on Social Events

in Web Multimedia - ACM International Conference on Multimedia

Retrieval, 2014.

[78] Open Source. Open source multiple contributions. Command line tool

for transferring data with url syntax, 2014. http://curl.haxx.se/.

[79] Open Source. Open source multiple contributions. Trans stan-

dard multimedia framework for media manipulation., 2014.

http://www.ffmpeg.org/.

[80] S. Papadopoulos, C. Zigkolis, Y. Kompatsiaris, and A. Vakali.

Cluster-based landmark and event detection for tagged photo col-

lections. IEEE MultiMedia, 18(1):52–63, 2011.

85



Bibliography

[81] L. Pessoa, E. Thompson, and A. Noë. Finding out about filling-in: A
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