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Abstract

Change detection aims at identifying possible changes in the state of an object or phe-
nomenon by jointly observing data acquired at different times over the same geographical
area. In this context, the repetitive coverage and high quality of remotely sensed images
acquired by Earth-orbiting satellites make such kind of data an ideal information source
for change detection. Among the different kinds of Earth-observation systems, here we
focus on Synthetic Aperture Radar (SAR). Differently from optical sensors, SAR is able
to regularly monitor the Earth surface independently from the presence of cloud cover or
sunlight illumination, making SAR data very attractive from an operational point of view.

A new generation of SAR systems such as TerraSAR-X, TANDEM-X and COSMO-
SkyMed, which are able to acquired data with a Very High geometrical Resolution (VHR),
has opened new attractive opportunities to study dynamic phenomena that occur on the
Earth surface. Nevertheless, the high amount of geometrical details has brought several
challenging issues related to the data analysis that should be addressed. Indeed, even
though in the literature several techniques have been developed for the automatic analysis
of multitemporal low- and medium-resolution SAR data, they are poorly effective when
dealing with VHR images. In detail, in this thesis we aim at developing advanced methods
for change detection that are able to properly exploit the characteristics of VHR SAR
images.

i) An approach to building change detection. The approach is based on a novel theo-
retical model of backscattering that describes the appearance of new or fully collapsed
buildings. The use of a fuzzy rule set allows in real scenarios an efficient and effective
detection of new/collapsed building among several other sources of changes.

ii) A change detection approach for the identification of damages in urban areas after
catastrophic events such as earthquakes or tsunami. The approach is based on two
steps: first the most damaged urban areas over a large territory are detected by ana-
lyzing high resolution stripmap SAR images. These areas drive the acquisition of new
VHR spotlight images, which are used in the second step of the approach to accurately
identify collapsed buildings.

iii) An approach for surveillance applications. The proposed strategy detects the changes
of interest over important sites such as ports and airports by performing a hierarchical
multiscale analysis of the multitemporal SAR images based on a Wavelet decomposi-
tion technique.

iv) An approach to multitemporal primitive detection. The approach, based on the Bayesian
rule for compound classification integrated in a fuzzy inference system, takes advan-
tage of the multitemporal correlation of images pairs in order to both improve the
detection of the primitives and identify the changes in their state.

For each of the above mentioned topic an analysis of the state of the art is carried
out, the limitations of existing methods are pointed out and the proposed solutions to the
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considered problems are described in details. Experimental results conducted on simulated
and real remote sensing data are provided in order to show and confirm the validity of
each of the proposed methods.

Keywords:
Remote sensing, synthetic aperture radar, very high geometrical resolution images, change
detection, surveillance, building change detection, multitemporal primitive detection,
damage assessment.
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many) at the resolution of: (a) 10 meters (simulated); and (b) 1 meter. . . 14
2.6 Main commercial SAR satellite missions and their characteristics. . . . . . 15
2.7 Block scheme of a standard unsupervised change-detection approach. . . . 17
2.8 Log-ratio image thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Probability density function estimated with the split-based approach. . . . 26

3.1 Example of backscattering mechanism for a flat roof building. . . . . . . . 33
3.2 Building scattering mechanisms for a fixed illumination source corresponding. 36
3.3 Building scattering mechanisms in multitemporal VHR SAR images. . . . . 36
3.4 Architecture of the proposed approach to building change detection. . . . . 37
3.5 Conceptual example of detection of a destroyed building. . . . . . . . . . . 40
3.6 Windows used to derive the changed building candidates. . . . . . . . . . . 41
3.7 Example of sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Example of a candidate that does not respect the equivalence of lengths. . 43
3.9 Example of a candidate that does not respect the fourth rule. . . . . . . . 44
3.10 L’Aquila (Italy) data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Zoom of the 6 buildings destroyed. . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Trento (Italy) data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.13 New large building in the Trento dataset. . . . . . . . . . . . . . . . . . . . 54

4.1 SAR modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Temporal scenario for a rapid and accurate damage detection. . . . . . . . 62
4.3 Logical flow for the detection of hot-spots using SM images (first phase). . 62
4.4 Logical flow for the detection of fully destroyed buildings using SL images

(second phase). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 L’Aquila (Italy) data set for rapid and accurate damage detection. . . . . . 66
4.6 Rapid and accurate damage detection in L’Aquila (Italy). . . . . . . . . . . 68
4.7 Zoom of the damaged buildings. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 “Calata Neghelli — Porto Nuovo”, Livorno, Italy. . . . . . . . . . . . . . . 74

ix



5.2 Conceptual flow of the proposed approach for monitoring and surveillance
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Window used by the line detector. . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Window used by the isolated scatterer detector. . . . . . . . . . . . . . . . 81
5.5 Logistic center “A. Vespucci” of Livorno (Italy) data set. . . . . . . . . . . 84
5.6 Port of Livorno (Italy) data set. . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Zoom of cargo terminal area where containers are stacked. . . . . . . . . . 87
5.8 Zoom of cargo terminal area where cars are stacked. . . . . . . . . . . . . . 88
5.9 Zoom of ships in the wet dock. . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Conceptual architecture of a general fuzzy inference system (FIS) . . . . . 95
6.2 Proposed fuzzy inference diagram for the compound detection of the prim-

itive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Example of input membership functions. . . . . . . . . . . . . . . . . . . . 100
6.4 Example of output membership function. . . . . . . . . . . . . . . . . . . . 101
6.5 Window used by the line detector. . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Simulated SAR images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7 Histogram of the two classes line and non line. . . . . . . . . . . . . . . . . 106
6.8 Missed and False alarm pixels (simulated data set). . . . . . . . . . . . . . 107
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Chapter 1

Introduction

This chapter present an overview of the research proposed in the thesis. In detail, after
introducing the problem of change detection in multitemporal very high geometrical resolu-
tion SAR images, the motivations, the objectives and the novel contributions of this thesis
are highlighted and discussed. Finally, the structure and organization of the document is
illustrated.

1.1 Introduction and Motivations of the Thesis

Remote sensing can be defined as a technology for acquiring measurements and informa-
tion about a given phenomenon without being in physical contact with it. Due to its
capability to provide information about the Earth surface through the use of passive and
active sensors mounted on airborne or space-borne platforms, this technology recived a
constantly growing interest from public and private institutions in the last decades. This
interest stems from the fact that remote sensing represents a useful source of information
in decision making for a wide range of applications [1, 2].

Due to the large amount of data to process, the extraction of useful information from
remotely sensed data requires the definition of automatic and possibly unsupervised anal-
ysis techniques. Generally speaking, a remote sensing recognition scheme, which has the
task to recognize in an automatic or semi-automatic way the physical reality of the phe-
nomenon under study, is typically based on three major phases: (i) the data collection
phase carried out by the remote sensor; (ii) the pre-processing phase, which aims at cor-
recting all the possible signal distortions; (iii) the analysis phase for the extraction of
the required information from the pre-processed remote sensing data. Regarding this last
point, several approaches may be adopted depending on the focus of the final application.
In this thesis, we focus on change detection (CD), which purpose is to identify possible
changes in the state of an object or phenomenon by jointly observing signals acquired at
different times.

CD is based on the analysis of two co-registered multitemporal remote-sensing images
acquired at different times over the same geographical area. CD has of primary impor-
tance for a large number of applications, including urban planning [3], natural resources
monitoring [4], agricultural surveys [5], natural hazard prevention and monitoring [6],
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damage assessment [7]. In this context, optical sensors have been extensively exploited
and different automatic and unsupervised change-detection methodologies have been de-
veloped. Synthetic Aperture Radar (SAR) has been less exploited than optical sensors in
the context of change detection. This is due to the fact that SAR images, being acquired
by a coherent side looking system, suffer from the presence of both an intrinsic speckle
noise and geometry distortions, which make any automatic analysis difficult. Despite
these problems, the use of SAR sensors in change detection is highly attractive from the
operational viewpoint. In fact, SAR presents the advantage over optical sensors of be-
ing independent of sunlight illumination and almost insensitive to atmospheric conditions.
This means for instance that it is capable of monitoring geographical areas regularly, even
if covered by clouds or during night time, which is not the case of passive sensors, making
it possible to ensure the data acquisition on an area of interest in advance according to
end-user requirements1 (e.g., seasonal and agricultural calendars [8, 9]) or during a crisis
event (e.g., hurricanes, floods [10]).

In the past few years, we have observed an increased availability of very high geomet-
rical resolution (VHR) SAR images. This is due to a new generation of satellites, such
as TerraSAR-X [11], TANDEM-X [12], and COSMO-SkyMed [13], which can acquire im-
ages with a nominal resolution of up to 1 meter. This was impossible with traditional
space-borne SAR systems, which are able to acquire only high and medium geometrical
resolution SAR images (i.e., with resolution ranging from 10 to 150 meters). Therefore,
the accessibility of VHR SAR images regularly acquired with satellites platforms opens
new attractive opportunities for both the scientific and the user communities. Although
the literature presents several works related to change-detection techniques applied to
high- and medium-resolution images, only few techniques have been developed in the last
years for the detection of changes in VHR data. Moreover, the techniques developed
for low- and medium-resolution images are largely insufficient to exploit in a proper way
the richness of information contained in multitemporal VHR data. In this context, we
aim at developing effective and robust unsupervised change-detection methods for VHR
multitemporal SAR images. In detail, we focus our attention on two challenging change
detection scenarios. The former is related to detection of changed buildings, either af-
ter either catastrophic events or for urban expansion analysis. The latter is related to
surveillance and monitoring problems of sites of general interest, such as ports, airports,
industrial sites, and so on for which the short repetition interval guaranteed by the 4
satellites of the CSK constellation (i.e., 24 hours) can be exploited. Nevertheless, the
combination of short repetition interval and very high geometrical resolution leads to
some challenging issues that have to be addressed. These issues are described below.

1. Differently from the low and medium resolution SAR images, in VHR data only a
small number of elementary scatterers are present inside the resolution cell and hence
more features of the investigated ground object become visible. This increases the
complexity of the electromagnetic backscattering mechanisms of the imaged objects.
For instance a building is identified in VHR SAR images considering the composition
of the backscattering contributions coming from its walls, its roof and its surrounding
ground. Hence, in order to properly detect changes in the objects present in the scene

1In practice, the availability of the data is subjected also to the number of requests that the provider has to deliver.
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it is necessary to take into account backscattering contributions from sub-objects of
the investigated object.

2. In VHR SAR images changes may present an extension that varies from the single
pixel to a relevant portion of the entire scene. Moreover, objects that are considered
homogeneous from a semantic point of view may show a signature that is inhomoge-
neous because of the scattering contributions from sub-objects that compose them.
This leads to a multiscale nature of the problem in which different scale levels are
more appropriated to detect changes with that specific scale.

3. A large set of possible changes with different semantic meaning is detectable in
multitemporal VHR SAR images. For instance it is possible to distinguish among
changes due to the anthropogenic activity or the natural disaster effects. Depending
on the application, some of these may be of interest to the end-users, whereas others
may not.

4. External factors, such as different content of water on the ground due to different
weather conditions may affect the local backscattering behaviors at the two consid-
ered dates also in absence of any change. Therefore, the same object may show
different values of backscattering even though it is not affected by a relevant change,
leading to a large amount of false alarms.

5. The very high geometrical resolution of new generation sensors and the progress
in the technology result in a higher amount of data to analyze than in the case of
previously available data. Therefore, for a proper exploitation of VHR images in real
applications related to extended areas, it is mandatory to develop effective automatic
techniques that can properly handle the huge amount of available data in addition
to the high geometric content.

All these factors make the problem of the detection of changes in VHR SAR images com-
plex. Indeed, they invalidate the usual assumption that two SAR images acquired on the
same geographical area at different times are similar to each other except for the presence
of changes occurred on the ground, which is often considered for medium-resolution SAR
images. Thus the use of standard pixel based change detection techniques [14] is not pos-
sible as they would be affected by a large amount of false alarms. Given the complexity
of the problem, also standard context-based techniques based on a local neighborhood
analysis [15] would fail to solve the problem since they are not able to properly take into
account the high geometrical detail of VHR data. To achieve change detection in VHR
SAR images the analysis between the multitemporal images should be performed at a
higher conceptual level that models the source of change from the prospective of interac-
tions with the incidence electromagnetic wave and the available prior information about
the scene.

1.2 Novel Contributions of the Thesis

On the basis of the analysis on the problems related to the automatic detection of changes
in VHR SAR images carried out in the previous section, this thesis focuses on the devel-
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opment of advanced techniques for unsupervised change detection that take into account
the peculiar properties of VHR SAR images. In greater details, the following main novel
contributions have been introduced in this work:

1. an approach to building change detection in multitemporal very high resolution SAR
images;

2. an approach to rapid and accurate damage detection in built-up areas combining
high (stripmap) and very high(spotlight) resolution SAR images;

3. a hierarchical approach to change detection in very high resolution SAR images for
surveillance applications;

4. a multitemporal detector for the extraction of primitive from very high resolution
SAR images.

In the next sub-sections the main objectives and novelties of these contributions are
described.

Building change detection in multitemporal very high resolution SAR images

Monitoring of urban areas is of great importance for several applications such as urban
planning, cadastral map updating, environmental monitoring, disaster assessment and so
on. The increasing availability of images having a resolution of a meter or less allows the
analysis of urban areas at a detail level never reached before resulting in the possibility
of detecting buildings individually. Nonetheless, the high amount of geometrical details
renders the detection of changes in buildings difficult for the reasons described in the
previous section. In this thesis we introduce a novel approach that takes advantage
from a theoretical modeling of the backscattering mechanisms of new and fully destroyed
buildings in multitemporal VHR SAR images. In detail, new and destroyed buildings
can be identified by a pattern made up of an area of both increase and decrease of
backscattering with spatial properties and alignment depending on the proprieties of
the buildings. In order to extract the changes associated with increase and decrease
of backscattering, the proposed approach makes use of a multiscale representation of the
multitemporal information allowing a detection of changes at the optimal building scale.
This information is used to identify the candidates to be changed buildings. The building
candidates are analyzed in order to properly detect the new or destroyed building by
means of four fuzzy rules. The fuzzy rules are formulated by taking into account the
proposed multitemporal changed building model. The aggregated membership resulting
from the application of the fuzzy rules makes it possible to identify the class of each
building candidate (i.e., new/destroyed building or general change with size comparable
to the building size but not related to new or destroyed building).

Rapid and accurate damage detection in built-up areas combining high (stripmap) and very
high (spotlight) resolution SAR images

Data coming from satellites equipped with SAR represent a useful tool to support decisions
for initiating effective emergency response actions after catastrophic events. In particular
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the new generation of SAR missions can perform acquisitions using two high resolution
modes called StripMap (SM) and SpotLight (SL). SM is characterized by a wide coverage
(around 1500 Km2) with a high resolution (3 to 5 m), whereas SL is characterized by
a moderate coverage (around 100 Km2) with a very high resolution (1 m). This means
that the two SAR modes are complementary to each other and can be used to perform
different duties during the emergency response phase. In this thesis we propose to analyze
the high resolution SM image to detect the urban changed areas (hot-spots) spread around
the large observed territory. This is done using a multiscale strategy based on the Wavelet
transform. Hot-spots are exploited to drive the selection of SL pre-crisis VHR SAR images
from the archive and the acquisition of new post-crisis VHR SAR images. These images
are used to perform change detection at high spatial resolution with the goal to detect
collapsed buildings. This analysis is conducted by taking advantage of the theoretical
model of new/destroyed building and the detection method illustrated in chapter 3 of
the thesis, by exploiting the Curvelet transform (instead of Wavelet) in order to better
preserve the linear details that characterize urban structures in VHR SAR images.

A hierarchical approach to change detection in very high resolution SAR images for surveil-
lance applications

The main difficulty in a surveillance scenario is that the investigated scene can include
a wide diversity of man-made structures (buildings, antennas, roads, lights, ground ve-
hicles, etc), showing various shapes and sizes, different materials (metallic, asphalt, etc.)
and varying orientations from the sensor. These wide diversity structures generate VHR
SAR images showing different high-complexity backscattering behaviors. In order to deal
with this scenario, the proposed approach identifies changed areas (hot-spots) at different
resolution levels according to a multiscale technique based on the 2-dimensional station-
ary Wavelet transform. Each hot-spot is analyzed according to its spatial position within
a specific area of interest by using the available prior information. The use of such in-
formation allows one to define the best change detectors to be used for extracting the
expected changes at detailed scale. It is worth noting that the assumption on the avail-
ability of the prior information on the usage of different areas (and thus on the expected
kinds of change) is reasonable since the method has been developed for high frequency
surveillance/monitoring of sensitive areas such as maritime ports, airports, and so on.

A novel multitemporal detector for the extraction of primitive from very high resolution
SAR images

As pointed out int the previous section external factors (e.g., different content of water
on the ground due to different weather conditions) affect the backscattering behaviour
altering the performance of object/primitive detection from an acquisition to another
acquisition even though the same SAR set-up is used. In this thesis we propose a novel
approach that exploits the multitemporal information in order to: i) perform the detection
of primitives at a given time (e.g., lines, object with specific shape); and ii) identify
the transitions in the state of primitives between two consecutive observations. This is
done by introducing a compound detection approach based on the Bayesian framework.
Nonetheless, due to the difficulty to estimate the statistical terms in an unsupervised way,

5



1.3. Structure of the Thesis

the proposed compound detection mechanism is integrated with the fuzzy logic. Fuzzy
logic is used in order to test the semantic consistency among the state of primitives at
the different temporal observations and infer the state of a primitive at a given time.
This allows the compound detection to avoid the problems of the unsupervised statistical
estimation. Even though the proposed approach is presented for primitive detection in
VHR SAR images it has general validity and can be exploited for primitive detection in
high- and medium-resolution SAR images.

1.3 Structure of the Thesis

The thesis is organized in seven chapters. The present chapter pointed out the motivations
for this research, and highlighted the objectives as well as the main novel contributions.

Chapter 2 provides the basic knowledge about the SAR systems and the state of the
art regarding the unsupervised change detection techniques for SAR images.

Chapter 3 investigates the appearance of changed buildings in multitemporal VHR
SAR imagery. From this study a novel model that describes the backscattering behavior
of the new and collapsed buildings is introduced and exploited in the developing of a
novel building change detection approach. The effectiveness of the method has been
validated on COSMO-SkyMed multitemporal spotlight images acquired in 2009 on the
city of L’Aquila (Italy) before and after the earthquake that hit the region, and TerraSAR-
X multitemporal spotlight images acquired on the urban area of the city of Trento (Italy).

Chapter 4 introduces the method for the rapid and accurate damage detection in
built-up areas combining stripmap and spotlight SAR images. In particular, the quick
identification of the hot spots after a catastrophic event is performed using stripmap
data. Meanwhile the accurate detection of individually destroyed building relies on con-
cepts presented in chapter 3. As test case of COSMOSky-Med images acquired after the
earthquake event of L’Aquila (Italy) is considered.

Chapter 5 presents a hierarchical approach to change detection in very high resolution
SAR images for surveillance applications. The method exploits both the multiscale pro-
prieties of VHR SAR images and the prior information about the site to be monitored in
order to extract the expected change. The characteristics of the method are highlighted
using two complex data-sets acquired by the COSMOSky-Med constellation over the port
and freight village in Livorno, Italy.

Chapter 6 illustrates the possibility to take advantage of the multitemporal information
in order to increase the performance of primitive detectors. This is done by introducing a
Bayesian compound detection mechanism integrated with the fuzzy logic, which avoid the
problems of the unsupervised statistical estimation. Simulated and real TerraSAR-X im-
ages acquired over the city of Lüneburg in Germany are used to evaluate the performance
of the proposed compound approach.

Finally, chapter 7 draws the conclusions of this work, and discusses future developments
for the research conducted in the framework of this thesis.

All the chapters in this dissertation are to be considered as independent to each other
and therefore result self-consistent. Readers interested to one of the above mentioned
topics can read a single chapter without the need of reading the whole dissertation.
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Chapter 2

Fundamentals on the analysis of
multitemporal SAR images

The aim of this chapter is to provide the reader with the basic knowledge about syn-
thetic aperture radars and the state of the art on unsupervised change detection for both
low/medium and very high resolution multitemporal SAR images. The chapter is divided
in three sections. In the first section the basic principles of SAR systems are reviewed.
In detail, it provides the general aspect of radar remote sensing along with the detailed
explanation of the SAR image formation. In the second section a general overview of the
framework commonly used in unsupervised change-detection for low- and medium reso-
lution SAR images is given. Moreover, for each step of the framework a survey on the
techniques presented in the literature and exploited in this thesis is reported. A final section
reviews the unsupervised techniques developed for very high resolution SAR data.

2.1 Background on SAR

SAR is an active radar system operating in the microwave region of the electromagnetic
spectrum usually between P-band (i.e., 0.25-0.5 GHz) and Ka-band (i.e., 25-40 GHz). The
inherent characteristics of SAR measurements render this sensor sensitive to dielectric and
roughness properties of the investigated natural media. The active operating mode makes
SAR independent of solar illumination allowing day and night acquisitions. Moreover, the
effects of clouds, fog, rain, smokes, etc., are mostly avoided since the sensor operates in
the microwave portion of the electromagnetic spectrum. SAR systems illuminate the
scene using a side-looking geometry (see Fig. 2.1). The antenna of the radar system is
mounted on a flying platform. Its horizontal and vertical axes are parallel and orthogonal
to the azimuth direction, respectively. The angle between nadir and the radar beam
direction is called incidence angle and it is usually denoted by θ. Such a system illuminates
the Earth surface with microwave pulses and receives the electromagnetic signal back-
scattered from the illuminated scene. The amplitude and phase of the backscattered
signal are related to the physical (e.g., geometry, roughness, dielectric proprieties) and
electrical properties (e.g., permittivity) of the imaged object. Depending on the working
frequency of the SAR, different levels of penetration can be achieved. More penetration
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of the electromagnetic pulses in media occurs for radar systems using longer wavelengths.
Besides these advantages, raw SAR acquisitions are far to be a conventional image; they
rather resemble holograms wherein the useful information is hidden. A considerably
amount of signal processing needs to be done to form the image. With the advent of digital
signal processing (DSP) techniques and powerful computational resources, however, this
is not a limiting factor for the development of SAR applications anymore. By means of
signal processing techniques that exploit the Doppler shifts of the received electromagnetic
echoes, SAR systems are able to synthesize a two-dimensional high spatial resolution
image from all the received signals as we will see in the next section.
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Figure 2.1: SAR imaging geometry.

2.1.1 Basic SAR Principles

The working principle of a Synthetic Aperture Radar (SAR) is similar to conventional
radar for surveillance: electromagnetic waves are sequentially transmitted and the backscat-
tered echoes are collected by the radar antenna. Since SAR is mounted on a moving plat-
form the consecutive time of transmission and reception translates into different positions
due to the platform movement. An appropriate coherent combination of the received
signals allows the construction of a virtual antenna aperture that is much longer than the
physical antenna length. This gives to the SAR the property of being an imaging radar.

SAR sensors commonly utilize frequency modulated pulsed waveforms for transmission,
called chirp signals. The amplitude of the transmitted waveform is constant during the
pulse time T , while the instantaneous frequency fi is varied in a linear manner over time
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Figure 2.2: Range history of a point scatterer.

t according to

fi = krt (2.1)

where kr is known as the chirp rate. The bandwidth Br of a chirp is thus given by

Br = krT (2.2)

After sending the chirp signal the SAR listens to the scattered echoes and stores the
received signals on-board. The transmission and listen procedure is repeated every PRI
seconds, where the pulse repetition interval (PRI) is the reciprocal of the pulse repetition
frequency PRF = 1/PRI. It is possible to prove that the slant-range resolution δr is
inversely proportional to the system bandwidth according to

δr =
c0

2Br

(2.3)

where c0 is the speed of light. The azimuth resolution δa is instead related to the length of
the synthetic aperture. The beamwidth Θa of an antenna of length da can be approximated
by

Θa =
λ

da
(2.4)

where λ is the wavelength. From Fig. 2.1 it can be seen that the corresponding synthetic
aperture length Lsa is given by

Lsa = Θar0 =
λr0

da
(2.5)

where r0 is the shorter approach distance. A long synthetic aperture is favorable since it
results in a narrow virtual beamwidth

Θsa =
λ

2Lsa
(2.6)
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Figure 2.3: Summary of SAR image formation processing steps.

Where the multiplication by 2 appears because of the two-way path from transmission to
reception. Moreover with a long synthetic aperture is possible to achieve a high azimuth
resolution given by

δa = r0Θsa = r0
λ

2Lsa
=
da
2

(2.7)

From (2.7) it seems that a short antenna yields a fine azimuth resolution. This appears
surprising at first. However, it becomes clear considering that radar with a shorter antenna
sees any point on the ground for a longer time. This means to have a longer virtual antenna
length and thus a higher azimuth resolution.

2.1.2 SAR Image Formation

During the interval of time corresponding to the synthetic aperture, the backscattered
energy is received from the target. The radar acquires a range line whenever it travels a
distance v ·PRI, where v is the platform speed. A range line consists of the complex echo
signal samples after being amplified, down converted to base band, digitized and stored
in memory. By exploiting the moving of the platform the received echos form a two-
dimensional data matrix of complex samples, where each element is given by quadrature
and in-phase parts of the received echo (or by real and imaginary parts). As mentioned
in the previous section and unlike optical sensors, visualizing raw SAR data does not
give any useful information on the scene. In order to extract useful information from the
raw data an articulated signal processing has to be performed. Fig. 2.3 summarizes the
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Chapter 2. Fundamentals on the analysis of multitemporal SAR images

basic SAR processing steps needed to obtain the image date. By simplifying two separate
matched filter operations along the range and azimuth dimensions are needed for such
a process. The first step is the compression of the transmitted chirp signals to a short
pulse. Instead of performing a convolution in the time domain, a multiplication in the
frequency domain is adopted due to the lower computational load. Thus, each range line
is multiplied in the frequency domain by the complex conjugate of the spectrum of the
transmitted chirp; the result is a range compressed image, which reveals only information
about the relative distance between the radar and any point on the ground. In addition,
the range matched filter frequency response typically includes an amplitude weighting to
control sidelobes in the range impulse response.

At any time t the distance between the radar moving at constant velocity v and a
point on the ground, described by its coordinates (x, y, z) = (x0, 0,∆h) is obtained by
exploiting the Pythagoras theorem

r(t) =
√
r2

0 + (vt)2 (2.8)

where t = t0 = 0 is the time when the distance is minimum, r(t0) = r0 =
√

(H −∆h)2 + x2
0

with the platform height H. In general the distance r0 is larger than vt during the illu-
mination time Till a point on the ground is observed. This allows expanding r(t) into a
Taylor series and by keeping the first two terms it is possible to write (2.8) as

r(t) =
√
r2

0 + (vt)2 ≈ r0 +
(vt)2

2r0

for vt/r0 � 1 (2.9)

Note that the quadratic approximation in (2.9) is done for the sake of simplicity. Ac-
curate SAR data processing takes into account the complete phase history without any
approximation. The range variation of a point target over time is directly related to the
azimuth phase ϕ(t) by

ϕ(t) =
−4πr(t)

λ
(2.10)

the phase variation has a parabolic behavior (the factor 4π is due to the two way range
measurement of the SAR system). The distance between the radar and any fixed point
on the ground is changing within the synthetic aperture time. This distance change is
obtained from (2.9) by subtracting the constant r0 and is given by

RCM(t) =
√
r2

0 + (vt)2 − r0 ≈
(vt)2

2r0

for vt/r0 � 1 (2.11)

RCM causes an azimuth defocusing because energy is distributed over several range cells.
This can be observed as a curvature of the range compressed responses that depends on r0.
The fact that the range migration is range-variant makes SAR focusing a two-dimensional
space-variant problem, and hence the data need to be correlated with a non-stationary
two-dimensional reference function, making the accurate correction of RCM one of the
most challenging aspect of SAR focusing. Detailed analyses and comparisons of these
processors, can be found in [16].

After the range migration correction can follow the azimuth compression. The signal
is convolved with its reference function, which is the complex conjugate of the response
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expected from a point target on the ground. Considering an elemental scatterer at range
r(t) given in (2.9), the azimuth signal can be modeled by

sa(t) = A
√
σ0 exp(iϕscatt) (2.12)

where A accounts for the dependency of the received signal on system parameters such as
transmit power and losses, and the antenna pattern weighting as a function of the azimuth
and elevation angles. The radar cross section is given by σ0 and ϕscat is the scattering
phase.

2.1.3 SAR Image Properties

As discussed in the previous section SAR images are made up by two components: am-
plitude (or intensity) and phase. Amplitude (intensity) is related to the energy of the
backscattered signal. Whereas, the phase is related to the sensor-to-target distance and
it is the key element in any interferometric measurement. In this thesis we focus the at-
tention on the amplitude (intensity) component of SAR images starting from the analysis
of the proprieties of low-medium resolution SAR images and then introducing the VHR
SAR data.

Being a coherent system, the amplitude (intensity) component of SAR images are cor-
rupted by the so-called speckle, which causes the granular appearance of SAR imagery.
Speckle is caused by the presence of several elemental scatterers within each resolution
cell with a random distribution. The coherent sum of their amplitudes and phases re-
sults in strong fluctuations of the backscattering from resolution cell to resolution cell.
Consequently, the intensity and the phase in the final image are no longer deterministic,
but follow instead an exponential and uniform distribution, respectively [17]. The total
complex reflectivity for each resolution cell is given by∑

n

√
σn · exp(iϕscatt

n ) (2.13)

where i is the number of elementary scatterers within the resolution cell. Although the
speckle is commonly referred as a form of noise, speckle is actually a physical measurement
of the resolution cell structure at sub-resolution level. It is worth noting that it cannot be
reduced by increasing the transmit signal power, since it has a multiplicative character,
i.e., its variance increases with its intensity.

The side looking geometry of SAR together with non-flat terrain causes geometric
distortions such as foreshortening, layover and shadows. In Fig. 2.4 an example of these
phenomena is given considering a mountain area. Foreshortening arises when inclined
surfaces are oriented towards the sensor. These surfaces appear shortened in SAR imagery.
Layover and shadow effects, visible as relatively bright and dark regions in SAR imagery,
arise when the inclination of the surface is larger than the incidence angle. In detail, since
in the layover area parts of the ground surface, the slope facing the sensor, and parts of the
slope turned away from the sensor are equidistant to the SAR antenna their backscattering
return to the sensor at the same time, causing a high value of backscattering. On the
other hand, shadows are areas where no backscattering is recorded at the sensor, because
they are occluded from the radar beam resulting as dark area in the image.
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Figure 2.4: Geometrical distortions in Trentino region (Italy) due to the later vision of SAR (copyright
ESA).

The scattering of microwaves from a surface is composed by a mix of specular and Lam-
bertian scattering, depending on the surface roughness σs with respect to the wavelength.
For a perfectly smooth (σs � λc) area the electromagnetic wave is entirely scattered in
specular direction. Hence, no backscattering is recorded by the sensor. This is the case of
the water body in Fig. 2.4. A perfectly rough surface (σs � λc) instead scatters accord-
ing to the Lambertian cosine law. For a slightly rough surface (σs < λc) the scattering
is characterized by a large specular component, and a Lambertian component with less
power scattered in all directions. The rougher the surface, the weaker are the specular
and the stronger are the Lambertian components.

Besides being dependent on the surface roughness, the scattering is also influenced by
the relative dielectric constant εr. εr is a complex number that depends on the dielectric
properties of the material and varies with respect to the material moisture content and the
SAR frequency. Materials with low εr have less reflectivity and hence a higher penetration
into the medium.

When VHR resolution images are considered the prospective is changing with respect
medium-law resolution SAR data: the images are more heterogeneous and the speckle is
not always fully developed since may happen that a small number of elementary scat-
terers are present inside the resolution cell, the geometrical distortions and the multiple
reflections are dominant effects in urban areas, and the very high resolution allows the
identification of more geometrical features of the ground objects. In order to give to the
reader an idea of the differences between medium and very high geometrical resolution
images, Fig. 2.5 shows two images acquired over an area of the city of Lüneburg (Ger-
many). Fig. 2.5a shows the SAR image with a resolution of 10 m, while Fig. 2.5b shows
the SAR image acquired at 1 m resolution. Observing the two images it is simple to
imagine the potentiality of new applications arisen from the high geometrical content of
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VHR data and the need of developing new and proper techniques for effectively manage
such data.

(a) (b)

Figure 2.5: Example of TerraSAR-X images acquired over the city of Lüneburg (Germany) at the reso-
lution of: (a) 10 meters (simulated); and (b) 1 meter.

For more detail we refer to the rich selection of publications and excellent textbooks on
the theoretic aspects of the acquisition, image formation and image understanding [16,18].

2.1.4 Overview of Spaceborne SAR Missions

Since the launch of the first spaceborne SAR (SEASAT, L-band) by the Jet Propulsion
Laboratory in 1978, several SAR missions have been operating and many are planned in
the next future [19]. Among those, notables are the ERS-1/2, the C-band twin European
Remote Sensing satellites launched by ESA in 1991 and 1995 respectively, that allowed
the demonstration of repeat-pass interferometry; J-ERS, the L-band Japanese Earth Re-
mote Sensing Satellite launched in 1992; RADARSAT-1/2, the C-band satellites launched
by the Canadian Space Agency in 1995 and 2007 respectively, now with full-polarimetric
capabilities; ALOS/PALSAR, the Japanese Phased Array L-band SAR operating since
the beginning of 2006; the SIR-C/X-SAR in 1994 and SRTM in 2000, NASA SAR systems
carried on-board of the Space Shuttle, which were able to operate in multi-polarization
and multi-frequency; ENVISAT/ASAR, launched in 2002 by ESA, which was the first
SAR satellite using an antenna able to operate in different imaging modes; the X-band
SAR TerraSAR-X and TanDEM-X launched in 2007 and 2010, respectively, by the Ger-
man Aerospace Center (DLR) and the Italian COSMO-skyMed-1/4 Constellation that
comprises four X-band SARs, launched starting from 2007 and nowadays fully opera-
tional, which are a new class of SAR satellites able to provide images with resolution of
a meter or less; Sentinel-1a, launched in 2014, which is the first of two satellites of the
ESA sentinel constellation operating in C band; ALOS-2, launched in 2014 is a L-band
full-polarimetric SAR system operated by JAXA. New SAR missions are planned in the
future: the L-band full-polarimetric SAOCOM-1/2, which launch is scheduled in 2015 by

14



Chapter 2. Fundamentals on the analysis of multitemporal SAR images

COSMO-SkyMed

TerraSAR-X / TANDEM-X

PAZ

Sentinel-1A

Sentinel-1B

Radarsat-1

Radarsat-2

ERS 1&2

ENVISAT

ALOS-1

ALOS-2

C
-b

an
d

X
-b

an
d

L-
ba

nd

4*

11

11

12

12

24

24

35

35

46

14

Time

Revisit
time

1992 20152008

R
es

ol
ut

io
n 

(f
in

es
t)

V
er

y 
H

ig
h 

(<
~

1m
)

H
ig

h 
(~

5-
10

m
)

M
ed

iu
m

 (
~

25
m

)
H

ig
h

Figure 2.6: Main commercial SAR satellite missions and their characteristics.

CONAE; Radarsat Constellation-1/2/3 scheduled for launch in 2017 by Canadian Space
Agency. In Fig. 2.6 we report the main SAR missions and their characteristics. It is
indeed expected that more than 10 SAR satellites will be launched before the end of
2020.

2.2 Unsupervised Change Detection with SAR Images

As pointed out in chapter 1, images acquired at different time over the same geographical
areas can be used in order to identify changes happened on the Earth surface. This
process, called change detection, has become of primary importance for a large number
of applications. In this section, by taking into account the proprieties of the SAR images
given in the previous section, we give a general overview of the framework commonly used
in unsupervised change-detection for low- and medium resolution SAR images.

In the literature, change detection approaches are divided in two main categories:
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supervised and unsupervised [20–22]. The former requires a priori information on the
investigated area and allows one to determine both the presence/absence and the kind
of change [23], whereas the latter does not assume availability of ground truth data and
usually identifies only the presence/absence of changes [14,20,21,24,25]. Even if the large
part of unsupervised change detection does not produce information about the nature
of the class of changes, it is often preferred in real-data applications. This is due to
the difficulties in collecting proper ground-truth information (necessary for supervised
techniques), which is a complex, time consuming and expensive process (in many cases
this process is not consistent with the application constraints).

Unsupervised change-detection techniques are based on the comparison of multitempo-
ral images and a subsequent analysis of the comparison output aim at deriving a change
detection map with possible labels “change” or “no-change”. We can give a formal defi-
nition as follows:

Definition 2.1 Let us consider two remote sensing images, X1 and X2 acquired over the
same area at different times τ1 and τ2. Let us assume that no ground-truth information
is available for the design of the change-detection algorithm. We define the unsupervised
change detection as the process aimed at generating a change-detection map that represents
changes occurred on the ground between the two considered acquisition dates.

In the literature, the most widely used unsupervised change-detection techniques for
low/medium and very high resolution multitemporal SAR images are based on a 3-step
procedure [14, 20, 21]. This framework, which is reported in Fig. 2.7 has general validity
and can be seen as the starting point for the development of the novel techniques in the
context of VHR SAR images. Unsupervised change detection steps are as follows

1. Pre-processing The aim of pre-processing is to make the two considered images as
more comparable as possible. In general, this step includes: co-registration, noise re-
duction, geometric and radiometric corrections. From the practical point of view, co-
registration and radiometric corrections are essential steps as they allow the deriva-
tion of a stable pair of images where corresponding pixels are associated to the same
position on the ground. It is worth noting that the use of noise filtering should be
carefully evaluated because it may introduce both geometrical and radiometric arti-
facts in the images. When VHR SAR images are considered, the rationale behind
the pre-processing step does not change and the same flow order can be used.

2. Comparison The comparison step aims at producing a further image where differ-
ences between the two considered acquisitions are highlighted. Different mathemati-
cal operators can be adopted to perform image comparison and multiscale strategies
can be applied; this choice gives rise to different kinds of techniques [20, 26–31].
Some of them are illustrated in the following since they are exploited in the thesis.
It is worth noting that most of these techniques were developed for low- or medium
resolution SAR images.

3. Image analysis In order to extract the change information, a proper unsupervised
image analysis technique should be adopted. Among unsupervised techniques, the
most widely used is based on the selection of decision thresholds that separates
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Figure 2.7: Block scheme of a standard unsupervised change-detection approach.

changed from unchanged pixels. The decision thresholds can be selected either with
a manual trial-and-error procedure (according to the desired trade-off between false
and missed alarms) or with automatic techniques e.g., by analyzing the statistical
distribution of the image obtained after comparison, by fixing the desired false alarm
probability [8], or following a Bayesian minimum-error decision rule [14, 24,25].

In the following each of these steps are discussed in detail introducing the state of the
art techniques that have been evaluated and exploited in some of the methods presented
in this thesis.

2.2.1 Pre-processing

The first step for properly performing change-detection is image pre-processing. This
procedure aims at generating two images that are as much similar as possible unless in
changed areas. Staring from the focused SAR images (see previous section) the pre-
processing consists in four steps:

co-registration It allows the alignment of the temporal images in order to have corre-
sponding pixels in the spatial domain associated to the same geographical position
on the ground. This requires spatial registration and potentially resampling (in cases
where pixel sizes differ) to correct for relative translational shift, rotational and scale
differences. In the literature two kinds of methods to image registration can be
found [32]: (i) semi-manual registration methods and (ii) automatic methods.

noise reduction It aims at reducing the noise in the images. In SAR images the presence
of the multiplicative speckle noise makes the task more complex. A first step to
reduce speckle is usually performed during the multi-looking, where range and/or
azimuth resolution cells are averaged. This allows a mitigation of the speckle at
the expense of spatial resolution. Beside the multi-looking many techniques have
been developed in the literature for reducing the speckle [33, 34]. Among the mono-
temporal filtering usually the adaptive despeckling procedures are exploited such as
Frost, Lee, Kuan, Gamma Map [35], [36]. Within the multitemporal filtering the
Quegan filter is the most used [34,37,38]. However, the real need for filtering should
be carefully evaluated on the basis of the specific application considered, as filtering
degrades the spatial resolution.
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geometric calibration Geocoding, Georeferencing, Geometric Calibration, and Ortho-
rectification are synonyms. All these words mean the conversion of SAR images into
a map coordinate system (e.g., cartographic reference system) in order to reduce the
distortions that are due to the ground topography. This process compensates for
the different response to illumination due to the irregular shape of the terrain. In
particular, it allows the reduction of specific geometric distortion effects like layover
and foreshortening.

radiometric calibration Calibration of the backscatter values is necessary for inter-
comparison of radar images acquired with different sensors, or data coming from
the same sensor but processed with different image formation algorithm. The ra-
diometric calibration of the SAR images is done by considering the radar equation
law. The radiometric calibration corrects: i) the scattering area. Each output pixel
is normalized for the actual illuminated area of each resolution cell, which may be
different due to varying topography; ii) the antenna gain pattern. The effects of the
variation of the antenna gain in range are corrected, taking into account topography
or a reference height and iii) the range spread loss. The received power for the range
distance changes from near to far range. It is worth recalling that in practical cases
three calibrated values are used: i) the radar brightness β0, which is the reflectivity
per unit area in slant range; ii) the backscattering coefficient σ0, which is a normal-
ized dimensionless number (usually in dB) that expresses the power per area of one
square meter. σ0 is defined with respect to the nominally horizontal plane, and in
general has a significant variation with incidence angle, wavelength, and polarization,
as well as with properties of the scattering surface itself; and iii) the γ, which is the
backscattering coefficient normalized by the cosine of the incidence angle. This is
done to correct the dependency of the backscatter from the incidence angle.

2.2.2 Comparison

The second step is the image comparison. This step aims at generating an image that
highlights the changes between the two (or more) pre-processed multitemporal SAR im-
ages. The comparison is done by exploiting pixel- or context-based change detection
operators as discussed in the following.

Pixel-based comparison

Pixel-by-pixel comparison can be performed by means of different mathematical operators.
In SAR image analysis the ratio operator demonstrated to be more effective than the
difference one, due to the multiplicative noise model commonly adopted for this kind of
data [14, 26, 36]. In the following, we describe the reasons motivating the preference of
image rationing over image differencing in SAR imagery basing on [26]. Let us define Xc

the image resulting from the comparison of the two SAR images X1 and X2 acquired at
time τi with i = 1, 2, respectively. The indexes c = D and c = R refer to the difference and
ratio images, respectively. Each pixel of the difference image is obtained in the following
way

XD = X2 −X1 (2.14)
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while pixels of the ratio image are given by:

XR =
X2

X1

(2.15)

Let us assume that pixels of the two intensity images X1 and X2 follow a Gamma distri-
bution, i.e.,

p(Xi) =
LLXL−1

i

µLi (L− 1)!
exp

(
−LXi

µi

)
, i = 1, 2. (2.16)

where µi is the mean intensity of a homogeneous region at time τi, and L is the Equivalent
Number of Looks (ENL). Another assumption is that the intensity images X1 and X2 are
supposed to be statistically independent. The purpose of this assumption (though not
entirely realistic) is to simplify the analytical derivation of the statistical models for the
difference and ratio images. Under these conditions, the distribution of the difference
image XD is given by:

p(XD) =
LL exp

(
−LXD

µ2

)
(L− 1)!(µ1 + µ2)L

L−1∑
j=0

j!(L− 1 + j)!

(L− 1− j)!
XL−1−j

D

[
µ1µ2

L(µ1 + µ2)

]j
(2.17)

In [26] the authors showed that the variance of difference image distribution increases
with the intensity level. In terms of the probability of error in detecting changes, this
means that the difference operator will produce more errors in high intensity regions of
the image than in low intensity regions. This represents an undesired effect that makes
the difference operator not suitable to the statistics of SAR data.

Similarly, it is possible to prove that the distribution of the ratio image XR can be
written as follows:

p(XR) =
(2L− 1)!(X

L

RXL−1
R )

(L− 1)!2(XR + XR)2L
(2.18)

where XR = µ2/µ1. The ratio operator shows two main advantages over the difference
operator. The first one is that the ratio image distribution depends only on the relative
change XR in average intensity between two dates and not on the intensity level of the
pixels, in contrast with the distribution of the difference image. This means that changes
will be detected in the same manner both in high and low intensity regions. The sec-
ond advantage is that the rationing allows the reduction of common multiplicative error
components, as far as these components are the same for images acquired with the same
geometry. It is worth noting that, in the literature, the ratio image is usually expressed
in a logarithmic scale. With this operation the distribution of the two classes of interest
in the ratio image can be made more symmetrical and the residual multiplicative speckle
noise can be transformed in an additive noise component. Thus the log-ratio operator
is typically preferred when dealing with SAR images and change-detection is performed
analyzing the log-ratio image XLR defined as:

XLR = log XR = log
X2

X1

= log X2 − log X1 (2.19)
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It is worth noting that for keeping the changed class on one side of the histogram of the
ratio (or log-ratio) image, a normalized ratio can be computed pixel-by-pixel as follows:

XNR = min

{
X1

X2

,
X2

X1

}
(2.20)

This operator allows all changed areas (independently of the increasing or decreasing value
of the backscattering coefficient) to play a similar role in the change-detection problem.

Context-based comparison

The context insensitive analysis based only on the values of single pixel may still suffer
from the presence of speckle. In order to address this problem in the literature some works
have been presented that take into account the context information. This is usually done
by considering the local neighborhood information of each pixel. In [15] the Mean Ratio
Detector (MRD) is implemented as the normalized local means in the neighborhood of
each pixel as follows

XMRD(i, j) = 1−min

{
µW1
µW2

,
µW2
µW1

}
(2.21)

where µW1 and µW2 are the mean values compute on a moving window over the images at
time τ1 and τ2, respectively. Even though the MRD is more robust against the speckle
noise than pixel-based techniques there is no a systematic procedure in order to select
the optimal windows size for a certain data-set. Indeed, from one hand by choosing a
small size for the moving window one gets a good sensitivity to geometrical details but
a low mitigation of the speckle noise. On the other hand by choosing a large size for the
moving window one gets a low sensitivity to geometrical details but a high mitigation of
speckle. Generally the size that gives the best trade-off between details preservation and
smoothing effect is selected after a trial-and-error procedure.

Because of the limitations in properly model the spatial-context information in possibly
complex changes, change-detection maps obtained with this technique generally does not
achieve a high overall accuracy. In order to overcome this limitation, in [39] an advanced
context-sensitive change-detection methods has been proposed. This is done by model-
ing the spatial-context information of pixels by considering multitemporal homogeneous
regions called parcels. In detail, let P(X1,X2) = {ρ1, ρ2, · · · , ρN} be the set of parcels
associated with the images X1 and X2. LetH(Z) the homogeneity predicate and Z the set
of spatial adjacent pixels involved in the evaluation of the homogeneity. The homogene-
ity predicate H(·) is defined considering different spatial, temporal, and backscattering
attributes. Let finally denote with Xi(ρs) the portion of image Xi (i = 1, 2) belonging to
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the parcel ρs. According, P(X1,X2) should satisfy the following conditions:

Pixels in ρs are connected; (2.22)
N⋃
s=1

X1(ρs) = X1 and
N⋃
s=1

X2(ρs) = X2; (2.23)

ρs ∩ ρr = ∅; (2.24)

H{X1(ρs)} = true ∧ H{X2(ρs)} = true (2.25)

H{X1(ρs) ∪X1(ρr)} = false ∨ H{X2(ρs) ∪X2(ρr)} = false, with s 6= r (2.26)

Conditions (2.22)-(2.24) guarantee that all pixels in X1 and X2 are distributed into N
connected and non-overlapping regions. Condition (2.25) determines the homogeneity
properties of the parcels in both original images (i.e. the geometrical homogeneity in the
temporal domain) and condition (2.26) expresses the maximality of each parcel (i.e., pairs
of adjacent parcels cannot be merged without relaxing the homogeneity criterion).

In conclusion, the adaptive nature of parcels allowed a notable reduction in false alarms
and an accurate location of the border of the changed area. On the other hand, the main
difficulty is represented by the definition of the homogeneity (or heterogeneity) of the
neighborhoods around pixels for the definition of the parcels. Nonetheless, this concept
will be used in chapter 5 for extracting multitemporal primitives.

Statical similarity measure for change-detection

The ratio, log-ratio and MRD assume that a change in the scene will appear as a modifi-
cation of the local mean value of the image. If the change preserves the mean value but
modifies the local texture, it will not be detected. Moreover, the speckle is different from
one image to the other (even though they are acquired at the very same area), and it can
induce a high number of false alarms in the change-detection procedure. Recently in the
literature promising statistical similarity measures such as Kullback-Leibler Divergence
(KLD) and Mutual Information (MI) have been successfully applied to highlight change
information in multitemporal images. In the following we introduce these information
similarity measurements in detail. Let pX1(x1) and pX2(x2) be the two marginal Prob-
ability Density Functions (PDF), and let pX1,X2(x1, x2) be the joint probability density
function of two random variables X1 and X2 related to the images acquired at time τ1

and τ2. The mutual information [40] is defined as

I(X1, X2) =

∫
X2

∫
X1

pX1,X2(x1, x2) log
pX1,X2(x1, x2)

pX1(x1)pX2(x2)
dx1dx2 (2.27)

mutual information determines how similar the joint distribution p(X1, X2) is to the
products of the factored marginal distribution p(X1)p(X2). Mutual information is always
positive and it is equal to zero if and only if X1 and X2 are independent.

The Kullback-Leibler divergence [41] from X2 to X1 is defined as

K(X2|X1) =

∫
log

pX1(x1)

pX2(x1)
pX1(x1) dx1 (2.28)
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The measure log
fX1

(x1)

fX2
(x1)

can be thought of as the information on x1 for the discrimination

between the hypothesis HX1 and HX2 , if hypothesis HX1 is associated with the PDF
fX1(x1) andHX2 with fX2(x1). Therefore, the KL divergenceK(X2|X1) can be understood
as the mean information for the discrimination between HX1 and HX2 per observation.
This divergence appears to be an appropriate tool to detect changes when we consider that
changes on the ground induce different shapes on the local PDF. Since the KL divergence
can be understood as the entropy of PX1 relative to PX2 , it is also called information gain.
It can easily be proven that K(X2|X1) ≥ 0; K(X2|X1) vanishes only when the two laws
are identical. K(X2|X1) can be used as a measure of the divergence from PX1 to PX2 .
This measure is not symmetric as it stands: K(X2|X1) 6= K(X1|X2), but a symmetric
version may be defined by writing

DKL(X1, X2) = DKL(X2, X1) = K(X2|X1) +K(X1|X2) (2.29)

that will be called the KL distance.
In order to estimate the KL distance or the MI, the PDFs of the two variables to be com-

pared have to be known. The estimation problem can be addressed in several ways [42].
One can use parametric approaches such as the maximum likelihood or the maximum
a posteriori estimators implemented with refined algorithm to reach the convergence of
the estimation e.g. the expectation-maximization algorithm. However, parametric ap-
proaches are applicable only if the underlying distributions are known and sufficiently
separated. In case the distributions are not known, one can try to solve the estimation
problem by using nonparametric approaches such as the kernel density estimation. The
nonparametric methods need the definition of a bandwidth or tuning parameter, which
controls both the degree of complexity and the goodness of the results. The choice of
bandwidth is thus critical. In order to avoid the errors of both parametric and nonpara-
metric approaches, an interesting method that takes into account some descriptors of the
shape of the distributions is presented in [15]. In detail, the authors proved that an ef-
fective way to model in a nonparametric way the shape of a statistical distribution is to
use the infinite Edgeworth series expansion of cumulants truncated at a given order. The
cumulants themselves do not provide such a PDF estimation directly but are necessary to
describe its shape: e.g., third-order (κ3) is linked to the symmetry (i.e., skewness), while
the fourth-order (κ4) is linked to the flatness (i.e., kurtosis). The density is then estimated
through the Edgeworth series expansion by assuming that the density to be approximated
is not too far from a Gaussian PDF. It is worth noting that, according to the results pro-
vided by the authors, the methods presents a more robust behavior with respect other
parametric indicators (i.e., Gaussian or Pearson based), even though the hypothesis that
the PDF to be approximated is Gaussian does not fit perfectly the statistical model of
SAR images. It yields an approximation of the KL divergence by Edgeworth series, trun-
cated at a given order. In [15], such an approximation was truncated to order of four and
the symmetric version of the cumulant-based KL divergence between two observations X1

and X2 has been derived as

CKLD(X1, X2) = KLEw(X1, X2) +KLEw(X2, X1) (2.30)

The results obtained with this method will be used in Chapter 5.
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Multiscale change analysis

A scale-dependent representation can be obtained by applying different methods to the
data e.g., Laplacian/Gaussian pyramid decomposition, wavelet transform, recursively up-
sampled bi-cubic filter, etc. In the SAR literature for instance, image multiresolution
representation has been applied extensively to image denoising [43], [44]. In [39] the
authors proposed a multiscale adaptive approach to change-detection in multitemporal
SAR images. This is based: (i) on a multiscale decomposition of the log-ratio image; (ii) on
a selection of the reliable scales for each pixel (i.e., the scales at which the considered pixel
can be represented without border problems) according to an adaptive analysis of its local
statistics; and (iii) on a scale-driven combination of the selected scales. In this way the
method exploits only high-resolution levels in the analysis of the expected edge (or detail)
pixels and uses low-resolution levels in the processing of pixels in homogeneous areas.
This allows the method to exhibits both a high sensitivity to geometrical details and a
high robustness to noisy speckle components in homogeneous areas.

Generally speaking, the nice propriety of multiscale strategies is that there should be
an optimal representation level for each imaged object. For example, in the multiscale
analysis at finer scale we can identify cars. At coarser scales we can identify groups of
cars or larger size objects such as buildings. At the coarse scale we can identify city
blocks. In order to properly model objects at different scales it is necessary to take into
account: i) the logical connection of the objects at the same level; and ii) the hierarchical
connection of the object represented at a generic level with the objects at the finer and
coarser scales [45]. This concept can be exploited in VHR SAR multitemporal analysis
where changes may present different optimal scales.

In the following we give the theoretical background of the Wavelet decomposition
method introduced in [39] and used in this thesis work. From XLR a set of multi-
level images XMS =

{
X0

LR, . . . ,X
n
LR, . . . ,X

N−1
LR

}
is computed, where the superscript n,

n = 0, . . . , N indicates the resolution level of images. The output at resolution level 0
corresponds to the original image, i.e., X0

LR ≡ XLR. For n ranging from 0 to N − 1,
the images are characterized by different trade-offs between spatial-detail preservation
and speckle reduction. The decomposition is based on the two-dimensional discrete sta-
tionary wavelet transform (2D-SWT). As the log operation transforms the multiplicative
residual speckle noise of the ratio image into an additive noise, SWT can be applied
to XLR without any additional processing. Moreover, differently from the DWT, SWT
avoids down-sampling the filtered signals after each convolution step. 2D-SWT applies
to the considered signal at each resolution level n appropriate level-dependent high- and
low-pass filters with impulse response hn(·) and ln(·), n = 0, 1, . . . , N − 1, respectively.
Filter impulse response depends on the selected Wavelet family and on the desired length
of filters. hn(·) and ln(·) are applied first along rows and then along columns in order
to produce N different images at the next scale. Thus, the image XLR is decomposed
into N images of the same size as the original one. In detail, the decomposition phase
produces: i) the so called approximation subband XLLn

LR , which is a lower resolution ver-
sion of image XLR, and contains low spatial frequencies both in the horizontal and the
vertical directions at resolution level n; and ii) the so called detail subbands, which are
the three high-frequency images XLHn

LR , XHLn
LR , and XHHn

LR corresponding to the three im-
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ages in horizontal, vertical, and diagonal directions at resolution level n, respectively.
Note that, superscripts LL, LH, HL, and HH specify the order in which hn(·) and ln(·),
n = 0, 1, . . . , N − 1, have been applied to obtain the considered sub-band.

Multiresolution decomposition is obtained by recursively applying the described pro-
cedure to the approximation subband XLLn

LR at each scale. Thus, the outputs at a generic
resolution level can be expressed analytically as follows:

X
LLn+1

LR (i, j) =

Qn−1∑
p=0

Qn−1∑
q=0

ln[p]ln[q]XLLn
LR (i+ p, j + q)

X
LHn+1

LR (i, j) =

Qn−1∑
p=0

Qn−1∑
q=0

ln[p]hn[q]XLLn
LR (i+ p, j + q)

X
HLn+1

LR (i, j) =

Qn−1∑
p=0

Qn−1∑
q=0

hn[p]ln[q]XLLn
LR (i+ p, j + q)

X
HHn+1

LR (i, j) =

Qn−1∑
p=0

Qn−1∑
q=0

hn[p]hn[q]XLLn
LR (i+ p, j + q) (2.31)

where Qn is the length of the wavelet filters at resolution levels n and (i, j) are the spatial
coordinates of the pixels in the image. Filter coefficients of the first decomposition step
for n = 0 depends on the selected wavelet family and on the length of the chosen wavelet
filter. According to an analysis of the literature, selected the Daubechies wavelet family
and set the filter length to 8. Dubechies of order 4 low-pass filter prototype impulse
response is given by the following coefficient set:

{0.230378, 0.714847, 0.630881, −0, 0279838,
−0.187035, 0.0308414, 0.0328830, −0.0105974} (2.32)

The finite impulse response of the high-pass filter for the decomposition step is obtained
by satisfying the properties of the quadrature mirror filters. This is done by reversing
the order of the low-pass decomposition filter coefficient and by changing the sign of the
even indexed coefficients. Finally, in order to obtain the image set XMS (where each
image contains information at a different resolution level) for each approximation sub-

band X
LLn+1

LR the inverse stationary wavelet transform (2D-ISWT) is applied n+ 1 times.

Multiscale decomposition is at the base of the proposed analysis and methods presented
in Chapters 3 and 5.

2.2.3 Image analysis

The most widely used approach to extract change information from the image Xc ob-
tained after comparison is based on histogram thresholding. This procedure allows the
discrimination between the changed and unchanged regions obtaining the so called change
detection map. In detail from the log-ratio image, which is widely used in the presented
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Figure 2.8: Log-ratio image thresholding.

work, a change detection map made up of three classes is obtained as follow

M ∈

 ξ−, if Xc < t̂−

ξu, if t̂− ≤ Xc ≤ t̂+

ξ+, if Xc > t̂+
(2.33)

where ξu represent the class of unchanged pixels, ξ+ the class of pixels that increase their
backscattering value and ξ− the class of pixels that decrease their value (see Fig. 2.8).

The derivation of appropriated thresholding values (e.g., t̂− and t̂+) may be done using
empirical strategies [46] or manual trial-and-error procedures. In detail, according to the
assumption that changed pixels are few and show values significantly different from the
unchanged ones, a reasonable solution is to label as changed those pixels that are far
from the mean of the density function associated to the image to be thresholded. A more
sophisticated technique is to select the value of the thresholds according to a desired prob-
ability of correct detection Pd (which is the probability to be over the threshold if a change
occurred) or false alarm Pfa (which is the probability to be over the threshold if no change
occurred). It has been shown that the thresholding values can be analytical defined as a
function of the true change in the radar backscattering σ0 and of the equivalent number
of looks L [26], once Pd and Pfa are fixed. The dependence on subjective and empirical
criteria represents a critical limitation of the aforementioned approaches to image thresh-
olding. An interesting alternative consists in formulating the change-detection problem
in the framework of the Bayesian decision theory in order to optimize the separation be-
tween changed and unchanged pixels in an unsupervised way. The main problem to be
solved for the application of the Bayes decision theory consists in the explicit estimation
of the statistical terms associated to the classes of change and no-change i.e., the prior
probabilities P (ξ−), P (ξ+) and P (ξu), and the probability density functions p(xc,j|ξ−),
p(xc,j|ξ+) and p(xc,j|ξu) without any ground-truth information (i.e. without any training
set). The starting point of methodologies based on the Bayesian decision theory is the
hypothesis that the statistical distributions of pixels in the analyzed image can be mod-
eled as a mixture of two densities associated with the classes of changed and unchanged
pixels, i.e.,

p(xc,j) = P (ξ−)p(xc,j|ξ−) + P (ξu)p(xc,j|ξu) + P (ξ+)p(xc,j|ξ+) (2.34)
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Figure 2.9: Probability density function estimated from the pixels of the selected splits Xs using a mixture
of three Gaussians (solid line) compared with rescaled histogram of the pixels of the selected splits Xs

(dashed line). Estimated distributions of the classes of no-change, decrease in backscattering and increase
in backscattering are reported with line marked with triangles, circles and squares, respectively.

In the literature, explicit estimation of class statistical parameters has been addressed
with the Expectation-Maximization (EM) algorithm which is an iterative approach to
maximum-likelihood (ML) estimation for incomplete data problems [47]. The iterative
equations that characterize the EM algorithm are different according to the statistical
model adopted for the distributions of the change and no-change classes. The more
suitable statistical model varies according to the kind of data to be analyzed. Examples of
distribution successfully used for log-ratio image are the Generalized Gaussian distribution
and the Gaussian distribution [48]. Once the statistical parameters are computed, pixel-
based or context-based decision rules can be applied. In the former group, we find: the
Bayes rule for minimum error, the Bayes rule for minimum cost, the Neyman-Pearson
criterion, etc. [42]. In the latter group, we find the contextual Bayes rule for minimum
error formulated in the Markov Random Field (MRF) framework [49,50].

Statistical parameters estimation under hypothesis in (2.34) may be also performed
adopting an implicit approach [14, 24]. As for the EM algorithm, the mathematical for-
mulation changes according to the statistical model adopted for the change and no-change
class distribution. As an example, we mention here the well-known Kittler and Illingworth
(KI) thresholding technique which can be used under both the Gaussian and the Gener-
alized Gaussian assumption for the statistical distributions of the change and no-change
classes. Despite its simplicity (the change-detection map is computed in a one-step pro-
cedure), the KI technique produces satisfactory change-detection results.

In the analysis of large multitemporal images, which is the case of VHR SAR images
as discussed in chapter 1, it is possible that the population of changed pixels is in sharp
minority in the full Xc. This may affect the accuracy of the threshold selection technique.
The authors in [25] presented a method that addresses this issues. In detail, the method
divides the considered image into sub-images of a given size (splits) and performs the
threshold selection considering only the splits that present the highest probabilities to
contain changed pixels. This selection allows the definition of a subset of pixels in which
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the class of change shows a higher prior probability than in the whole image. Xc is split
into a set of S sub-images of a user-defined size. The choice of the split size SR × SA
is driven by the average extension of the expected changes. Once the sizes SR and SA
are defined, the splits are identified and selected according to their probability to contain
a significant amount of changed pixels. The selection is done according to the value of
the variance σ2

s , s = 1, . . . , S, computed on the pixels of each split. This is a reasonable
index for predicting the presence of changes in the log-ratio image since the residual
multiplicative noise of the ratio image becomes additive due to the log operator. The
desired set PS of splits with the highest probabilities to contain changes is defined by
selecting the splits that satisfy the following inequality:

σ2
s ≥ σ̄2 +Bσσ2 , s = 1, . . . , S (2.35)

where σ̄2 denotes the average variance of splits, σσ2 is the standard deviation of the
variance of splits, and B > 0 is a constant. High values of B results in the selection of
only those splits with high variance (i.e., the ones with the highest probability to contain
changes); vice-versa, low values of B results in the selection of more splits. The split-
based selection allows defining a subset of pixels Xs = {Xc|Xc ∈ PS} in which the classes
of change show a higher prior probability than in the whole image. Consequently, the
statistical estimation of the parameters related to the three probability density functions
associated with no-change, increase, and decrease of backscattering between the two dates
(i.e., ξu, ξ

+, ξ−), can be correctly derived and used to separate the three classes using the
methods described before.

Fig. 2.9 depicts an example of the gaussian mixture probability density function (pdf)
estimated from Xs, which are extracted from real SAR data. As one can notice the three
modes associated to three classes ξu, ξ

+, ξ− are discernible by means of two thresholds t̂+

and t̂−. Here the thresholding method described in [48] is adopted and the Bayes decision
rule for minimum error is applied to separate the 3 classes. To this end a statistical model
for class distributions is required together with an approach for class statistical parameters
estimation. The Gaussian model and the well-known Expectation-Maximization (EM)
algorithm [47] are employed to derive Mopt.

Split-based analysis is at the base of the proposed analysis and methods presented in
Chapters 3 and 5.

2.3 Unsupervised change-detection techniques for multitempo-
ral VHR SAR images

Even though the techniques developed for low- and medium-resolution data are not always
effective on VHR images, the framework presented in the previous section for unsupervised
change detection remains valid and has been used as starting point to develop novel
methodologies able to properly deal with VHR SAR data. Indeed during this research
work, in the literature some methods have been published [38, 51–54] that tackle the
problem of unsupervised change detection in VHR SAR images. In the following a brief
description of these works is reported.
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In [51] the authors presents a method called MIMOSA (Method for generalIzed Means
Ordered Series Analysis) that exploit a new comparison mechanism based on the analysis
of the scatterplot of the two images to investigate. In detail, a statistical model is used to
predict the area of the scatterplot corresponding to changes, which is then isolated and
used to derive the final change detection map. This representation allows the detection
of changes with a low false alarm rate and with a good preservation of the geometrical
details. The method, which has been applied in the context of monitoring/surveillance
problems, points out all the changes despite some may be not of interest for the final user.
The method has been integrated in a framework for the analysis of long time series which
requires a low computational low rendering the operational use of the system possible.

In [52] the scatterplot of two SAR images is considered as base for the comparison step.
In detail, the mean-shift algorithm is applied to the scatterplot of the amplitude levels
in the two images to find the modes of the bivariate distribution. If some of the founded
modes lay outside the main diagonal of the scatterplot they are associated to changes.
This representation allows a better discrimination capability with respect the classical
comparison method (i.e., log-ratio and KL divergence) even though a certain amount of
changes has to be present in a scene in order to be effective.

The authors in [53] proposed a comparison method based on Markov random field
hyperparameters. In detail, the hyperparameter maps are estimated starting from the real
and imaginary part of the multitemporal SAR images. Their similarity is then measured
using the two-sample Kolmogorov–Smirnov (KS) statistical test. The maximum distance
calculated by the two-sample KS test provides the change map. The method is able
to effectively discriminating the changes producing a low false alarm rate. This at the
expense of the geometrical details, which are not always well preserved in the final change
detection map.

The authors in [54] exploit the Curvelet transformation in order to preserve structural
details while filtering the noise. In detail, the image comparison is performed in the
Curvelet coefficient domain of the two multitemporal images. A soft thresholding of the
compared Curvelet coefficients allows the derivation of the change detection map in the
image domain. The approach, which takes advantage of the Curvelet transformation,
has demonstrated its effectiveness in detecting structural changes related to man-made
environments.

In [38] a two-step multitemporal nonlocal means denoising in presented. The method
is able to detect the changes by means of a similarity measurement performed among
patches. In detail, the similarity between patches is calculated considering both the
generalized likelihood ratio and the KL divergence. This allows in real scenarios to obtain
a reduction of the false alarm rate.

Even though these techniques have been successfully applied to VHR multitemporal
images they do not solve all the problems presented in chapter 1. Filling this gap on the
state of the art is one of the main objectives of the presented thesis.
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Chapter 3

Building change detection in
multitemporal SAR images

The increasing availability of very high resolution (VHR) images regularly acquired over
urban areas opens new attractive opportunities for monitoring human settlements at the
level of individual buildings. This chapter1 presents a novel approach to building change
detection in multitemporal VHR Synthetic Aperture Radar (SAR) images. The proposed
approach is based on two concepts: i) the extraction of information on changes associated
with increase and decrease of backscattering at the optimal building scale; and ii) the
exploitation of the expected backscattering properties of buildings to detect either new or
fully demolished buildings. Each detected change is associated with a grade of reliability.
The approach is validated on a) COSMO-SkyMed multitemporal spotlight images acquired
in 2009 on the city of L’Aquila (Italy) before and after the earthquake that hit the region,
and b) TerraSAR-X multitemporal spotlight images acquired on the urban area of the city
of Trento (Italy). Results demonstrate that the proposed approach allows an accurate
identification of new and demolished buildings while presents a low false alarm rate and
a high reliability.

3.1 Introduction

Monitoring of urban areas is of great importance for several applications such as urban
planning, cadastral map updating, environmental monitoring, disaster assessment and so
on. The uncensored synoptic view and the repeat-pass nature of satellites render them an
ideal platform from where acquiring information about human settlements. Nonetheless,
the huge amount of data acquired from the satellite sensors requires the development
of automatic algorithms that can process the data and extract the desired information
without any manual processing or ground truth information. As discussed in the intro-
duction chapter of this thesis, in the last decades a new generation of satellite sensors
has been operated, which can regularly acquire very high geometrical resolution (VHR)
images i.e., images having a resolution of a meter or less. The increasing availability of

1Part of this chapter appears in:
[55] C. Marin, F. Bovolo, and L. Bruzzone, “Building Change Detection in Multitemporal Very High Resolution SAR

Images,” in Geoscience and Remote Sensing, IEEE Transactions on,, v. 51, n. 4 part I (2013), p. 2042-2054.
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3.1. Introduction

such data allows the analysis of urban areas at a detail level never reached before resulting
in the possibility of detecting buildings individually. In this context, several automatic
techniques for the study of urban areas have been developed by exploiting both active
Synthetic Aperture Radar (SAR) and passive sensors [30,56–59]. Between these two tech-
nologies, the use of SAR systems for addressing the problem of monitoring urban area
changes is very attractive from an operational point of view since, different from optical
sensors, SAR is independent from the sun illumination and it is relatively insensitive to
atmospheric weather conditions. This makes it possible to plan either the acquisition of
data in advance (e.g., according to end-user requirements without unpredictable inter-
vention of atmospheric effects) and to ensure data availability during crisis events (e.g.,
floods, earthquakes). Nowadays several SAR missions are operating that can acquire
regularly VHR SAR images. Among them we recall TerraSAR-X, Tandem-X and the
COSMO-SkyMed constellation. Data acquired from these missions can be exploited to
detect changes in urban areas at the level of each single building. Nevertheless, the com-
bination of high resolution and multitemporal analysis leads to some challenging issues
that should be addressed as pointed out in chapter 1.

VHR SAR images are more heterogeneous than high or medium resolution data [60,61].
Objects that are considered homogeneous from a semantic point of view (e.g., buildings)
show a signature that is inhomogeneous at high spatial resolution because of the scattering
contributions from sub-objects (e.g., facade and roof in a building). Furthermore, on the
one hand the side-looking illumination required by SAR systems leads to phenomena such
as layover, shadow and multi-path signals [62, 63], which are very pronounced in urban
areas. On the other hand, the appearance of a ground object depends on radar system
parameters (i.e., wavelength, polarization, pulse length, incidence angle, look direction,
etc.), surface feature properties (e.g., dielectric constant) and environmental variables
(e.g., ground water content) [64]. On top of these aspects, SAR images are corrupted by
speckle noise.

All these factors, propagated to the multitemporal analysis, make the problem of the
detection of changes complex. Due to the high resolution a large set of possible changes
with different semantic meaning and scale are detectable in multitemporal VHR SAR
images. In general, each change may be associated with the cause of the change itself [22]
and may present an extension that varies from the single pixel to a relevant portion
of the entire scene. For instance it is possible to distinguish among changes due to
the anthropogenic activity, the phenological evolution of the vegetation and the natural
disasters. Depending on the application, some of these may be of interest to the end-users,
whereas others may not [65]. In addition, external factors, such as different content of
water on the ground due to different weather conditions may affect the local backscattering
behaviors at two dates also in absence of any other change. Therefore, the same object
may show different value of backscattering even though it is not affected by a relevant
change. This invalidates the assumption that two SAR images acquired on the same
geographical area at different times are similar to each other except for the presence
of changes occurred on the ground, which is often considered for high- and medium-
resolution SAR images. Thus the use of standard pixel based change detection (CD)
techniques is not applicable as they would be affected by a large amount of false alarms.
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Chapter 3. Building change detection in multitemporal SAR images

Given the complexity of the problem, also standard context-based techniques based on
a local neighborhood analysis would fail to solve the problem since they are not able to
properly take into account the high geometrical detail of VHR data. To achieve CD in
VHR SAR images the comparison between the multitemporal images should be performed
at a higher conceptual level that models the source of change from the prospective of
interactions with the incidence electromagnetic wave.

Numerous studies have been recently presented in the literature that deal with the
problems of recognition of changes in urban areas using VHR SAR images [6, 31, 66–76].
In detail, [6,31,66–73] are focused on the detection of earthquake damages, [74] is focused
on the building databases updating, and [75] addresses the detection of changes due to
the urban evolution. The strategies that are exploited in these papers include post-
event supervised analysis [67, 68, 71–73], joint use of optical and SAR data [6, 66], joint
use of LiDAR and SAR data [75], unsupervised detection of damages at the level of
aggregated blocks [31, 69] or GIS polygons [70]. Despite the great interest, the only
work that addresses the problem of building change detection using multitemporal VHR
SAR data in an unsupervised way is presented in [76]. In detail, the authors present an
approach to the detection of damaged structures in urban areas from VHR SAR images,
which is based on the multitemporal detection of double-bounce line generated by the
multiple backscattering between the wall of the building and the ground. If a double-
bounce line appears (disappears) between two acquisitions a new (destroyed) building is
recognized. The method uses only one of the salient feature used for detecting a building.
This partial modeling of the source of change may generate a relevant number of missed
alarms. Furthermore, the double-bounce line of a building alone is not a reliable feature
for the identification of buildings because in several cases it may be not visible [77].

In this chapter, we propose a novel approach to building change detection in VHR SAR
images that: i) is unsupervised; ii) extends the studies on the backscattering properties of
buildings presented in the literature for single date images [78–84] to bi-temporal images;
iii) takes advantage of the multitemporal correlation between images; iv) considers the
intrinsic multiscale nature of objects present in VHR images; and v) is flexible. In greater
detail, the approach is based on two concepts: i) the extraction of information on changes
associated with increase and decrease of backscattering at the optimal building scale;
and ii) the exploitation of the expected backscattering properties of buildings to detect
new and fully demolished buildings with their grade of reliability. The effectiveness of
the proposed approach is demonstrated in experiments carried out on two data-sets: the
former is acquired by COSMO-SkyMed satellites over L’Aquila, Italy, which was heavily
damaged during the 2009 earthquake. The latter is acquired by TerraSAR-X and Tandem-
X over the city of Trento, Italy and it represents the urban evolution of the city from 2011
to 2013.

This chapter is organized into five sections. Section 3.2 presents and reviews the
fundamentals of the backscattering mechanism of buildings in monotemporal images.
Moreover it proposes an analysis of this mechanism for bi-temporal SAR images. This
introduces the concept used in the proposed approach. The proposed approach to building
change detection is described in Section 3.3. Section 3.4 presents the data set and show
the experimental results. Section 3.5 draws the conclusions of the work.
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3.2 Fundamentals on the Building Backscattering Mechanism

In this section we analyze the backscattering mechanisms with respect to the variation of
the acquisition geometry when isolated buildings with rectangular layout are sensed by
VHR SAR (Section 3.2.1). This analysis is used to interpret multitemporal VHR SAR
images in order to study and model the effects associated with new/demolished building
(Section 3.2.2). This study gives the base for the development of the proposed approach.

3.2.1 Building Backscattering Mechanisms in Single Detected VHR SAR
Images

SAR is an active system that measures the backscatter of a transmitted signal in the
microwaves portion of the spectrum. The backscattering value is mainly determined by
the geometry of acquisition, the dielectric and geometric properties of the target, and the
transmission configuration of the antenna [18, 64]. In the literature several works have
been presented that analyzed the scattering mechanism for different building models in
order to derive their appearance in SAR images [6, 80, 86]. These analyses make use of
the geometrical optics (ray theory) approximation in order to model the electromagnetic
scattering. This has the power to be intuitive and geometrically accurate even though the
electromagnetic interactions and the transmission configurations of the antenna are not
taken into account. In geometrical optics the wave propagation is described by rays, which
are modeled as lines perpendicular to the wavefronts, that may be reflected, absorbed or
split at the interface between two media. By knowing the geometry of acquisition of
the SAR system and by exploiting trigonometric functions it is possible to simulate the
appearance of a building in VHR SAR images [6, 80,86].

Let us consider an isolated flat-roof building with dimensions w1×w2×h illuminated by
a SAR sensor that is moving along the azimuth direction and is illuminating the building
from the left (Fig. 3.1a). Let us consider a building model that does not take into account
the building features such as windows, eaves, ridges, railings and so on. This is equivalent
to analyze the image at the scale level comparable with the building, and it allows us to
derive the appearance of a building without losing generality. The acquisition geometry of
a SAR system (Fig. 3.1a) is characterized by two parameters: the incidence angle θ (i.e.,
the angle defined by the incident radar beam and the normal to the intercepting surface)
that is generally included between 20◦ to 55◦, and the aspect angle 0◦ ≤ φ < 90◦ (i.e., the
angle between the azimuth direction and the orientation of an object in the horizontal
plane). For the sake of argument, let us first assume that the SAR sensor illuminates
the section A-A (light blue area in Fig. 3.1a) of the building from a fixed position in
the azimuth. Fig. 3.1b shows in a qualitative way the amplitude of the backscattering
projected in ground range and slant range of A-A. Following [6] the main contributions
that can be identified are: the return a from the ground, the double bounce effect b caused
by the dihedral reflector formed by the building wall and the ground, the backscattering
c from the front wall, the returns d from the building roof and the shadow area e (see
Fig. 3.1b). As one can observe the contributions from the ground, the wall and the roof
are summed up into an area in front of the building (a + c + d), which appears brighter
than each of these contributions taken singularly because of their superposition. This
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Figure 3.1: Example of backscattering mechanism for a flat roof building. (a) Simplified model of a flat
roof building oriented with a given aspect angle φ. The SAR sensor is moving on the left of the building.
Theoretical scattering model for a given incidence angle θ in the case the sensor is illuminating: (b) only
the section A-A of the building from a fixed position in the azimuth (the backscattering is reported in
both slant and ground range); (c) the whole extension of the building (the backscattering is in slant range
geometry). Different gray levels represent different amplitudes. Example of: (d) a real flat-roof building
in Trento (Italy) acquired at 1 m resolution by TerraSAR-X in slant range (SAR illumination is from the
left); (e) the same building in an optical image [85].
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phenomenon, called layover, occurs when SAR sensors are imaging a surface with a slope
steeper than the incidence angle θ, such as the wall of a building. It is worth noting that
the length of the layover, the roof contribution and the shadow depends on the width (w)
and the height (h) of the section A-A, and the incidence angle θ.

In order to derive the appearance of the whole building in a VHR SAR image it is
necessary to perform the aforementioned analysis for all the sections parallel to A-A that
form the building. Nevertheless, as the width of each parallel section changes, the length
of each mentioned contribution changes accordingly. Three cases can be observed on the
basis of the relationship between the width w of the section A-A and the limit value wb
defined as [78,86]:

wb =
h

tan θ
(3.1)

where h and θ are the height and the incidence angle of the building, respectively. Fig 3.1a
shows the case in which w > wb. As the width of the section w decreases, the layover
and shadow result larger whereas the backscattering from the roof will be absorbed in the
layover. This behavior is valid up to the limit condition w = wb for which the whole roof
contribution is sensed in the layover area before the double-bounce. In the case w < wb
two contributions to layover areas can be distinguished: one due to the ground, the front
wall and the roof (a+ c+ d), and one due to the backscattering from the ground and the
front wall of the building (a+ c). Fig. 3.1c shows the radar building footprint2 generated
from the building of Fig. 3.1a. It is a convex polygon made up of: i) a bright L-shaped
region due to the layover; ii) a dark L-shaped region due to the shadow; iii) a bright
L-shaped line due to the double bounce; iv) a rectangular region due to the direct return
from the roof; and v) two bright triangular regions due to the layover of only ground and
wall (a+c). It is worth noting that, since in the acquisition phase the radar is moving, the
shadow casted by a ground object is moving as well resulting in a blurring of the border of
the shadow [87,88] (see the dotted area in Fig 3.1c). By comparing Fig. 3.1c and Fig. 3.1d
it is possible to observe that the geometrical optics approximation can effectively describe
the real behavior of scattering in VHR SAR images.

The same building may appear differently in SAR images according to the value of
the aspect angle φ. When φ is approaching the limit values φ = 0◦ and φ = 90◦ the
layover, the double bounce and the shadow change by approaching a rectangular shape.
A special attention has to be given to the double bounce line with respect to the variation
of φ [62, 63]. In [77] an empirical study on the relationship between the strength of the
double bounce and the aspect angle highlighted that the double-bounce contribution drops
off significantly if the aspect angle increases from φ = 0◦ up to 10◦, whereas it decays
moderately for higher angles. θ also affects the appearance of a building in VHR SAR
images. By reverting Eq. (3.1), it is possible to derive a limit value θb that is equivalent
to wb. Nonetheless, in urban areas the choice of θ can be critical for two reasons: i)
the value of backscattering is related to θ i.e., small value of θ generates higher value
of backscattering and vice-versa; and ii) a large value of θ generates long shadow areas
and small layover areas, and vice-versa. Thus, the backscatter has a dependence on the
incidence angle, and there is potential for choosing optimum configurations for different

2Differently from [83] here with the term footprint we always refer to the radar footprint of a building.
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applications.
The same analysis described in this section for flat-roof building can be conducted for

other building models e.g., gable-roof buildings [6]. The outcomes of such a study can be
summarized as follows: the footprint of any type of isolated buildings with a rectangular
base is given by a specific convex pattern made up of a bright area (due to layover and
double bounce effects) followed by a dark area (due to the shadow effect). These features
may have different thickness, shape and internal variability of backscattering on the basis
of the considered building structure and material. Nevertheless they will systematically
arise when SAR systems are sensing an isolated building with an adequate resolution.

3.2.2 Building Backscattering Mechanisms in Multitemporal VHR SAR Im-
ages

The aim of this section is to analyze the behavior of the radar backscattering in multi-
temporal images when a building changes by taking into account the single data analysis
carried out in the previous section. This analysis introduces the basic concept on which
the proposed approach is based. In order to properly illustrate the problem, let us focus
on a building that fully disappears between two acquisitions. Let us assume to sample
this situation acquiring one image when: i) the building is standing; and ii) the building
is totally dismissed. Let us assume to use a VHR SAR system configured with the same
geometrical parameters (i.e., same incidence angle θ and same azimuth path) for the two
acquisitions. As in Section 3.2.1, let us start the analysis by comparing the backscatter-
ing considering the illumination source fixed at a given point along the azimuth direction
corresponding to section A-A (Fig. 1.a) in the case the building is present. The backscat-
tering profile obtained for the standing building is reported in Fig. 3.2a. As one can notice,
the backscattering behavior is the same as the one obtained in the previous section and
reported in Fig. 3.1b. Whereas for the case of totally dismissed building, by assuming bare
ground as depicted in Fig. 3.2b, the value of backscattering is approximately constant.
By comparing Fig. 3.2a and Fig. 3.2b one can observe that the region with a high value of
backscattering due to the layover a+c+d, the double bounce b, and the roof contribution
d decreases its value when the building disappears, whereas the region hidden by the
shadow e becomes visible to the line-of-sight of the radar and therefore increases its value
(the dashed line in Fig. 3.2a represents the envelope of backscattering of bare ground). In
other words, in the case of a new building we are likely to observe a structured pattern
made up of two regions having increase and decrease of the backscattering oriented from
near-to-the-far-range. Vice-versa if we consider the case in which a building disappears
between two acquisitions, we expect that a structured pattern made up of two regions
having decrease and increase in the backscattering values arises in near-to-the-far-range
(the dashed line in Fig. 3.2b represents the envelope of the backscattering amplitude of a
building).

This specific multitemporal behavior obtained when the illumination source is fixed at
a given position in azimuth can be used to retrieve the appearance of new/demolished
buildings in multitemporal VHR SAR images by repeating the same analysis for all the
sections parallel to A-A that form the scene. The obtained new/destroyed radar building
footprint is made up of a pattern included in a convex polygon. The pattern includes two
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Figure 3.2: Building scattering mechanisms for a fixed illumination source corresponding to: (a) a section
of a building; (b) bare ground. The comparison of Figures (a) and (b) describes the multitemporal
scattering mechanism in the case (a) a new building is built up (the envelope of backscattering of bare soil
is reported for comparison in dotted line); and (b) a building is dismissed (the envelope of backscattering
of the building in (a) is reported in dotted line).

regions that can be classified as: i) area of increase of the value of backscattering and,
ii) area of decrease in the value of backscattering. The order of appearance of these two
regions along the near-to-far-range direction defines if the pattern is due to new buildings
(see Fig. 3.3a) i.e., the increase area (in this work depicted conventionally in magenta)
is closer to the sensor than the area of decrease (in this work depicted conventionally in
green), or demolished building (see Fig. 3.3b) i.e., the decrease area is closer to the sensor
than the increase area.
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Figure 3.3: Building scattering mechanisms in multitemporal VHR SAR images (illumination source on
the left). Idealized map highlighting decrease and increase in the value of backscattering (unchanged
pixels are in white) obtained in the case of (a) new and (b) fully demolished building.

By taking into account the analysis done in section 3.2.1 on the radar signature of a
general isolated building it is possible to derive the appearance of the radar footprint of
any type of newly built up or destroyed buildings in VHR SAR multitemporal images. In
detail, the change radar building footprint can be identified checking: i) the presence of
both the regions of increase and decrease in backscattering; ii) the proportion between the
areas (in pixels) of the regions of increase and decrease in backscattering. The proportion
depends on the incidence angle of the acquisition; iii) the equality between the lengths
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Figure 3.4: Architecture of the proposed approach to building change detection.

of the regions of increase and decrease in backscattering in the azimuth direction; iv) the
alignment of the regions of increase and decrease in backscattering with respect to the
range direction i.e., the barycenters of the two regions lay on the line with the range (As
the regions in the model are not regularized the barycenters were calculated by means
of the geometric decomposition method). The order of appearance of the two regions of
increase and decrease in backscattering value determines if the changed radar building
footprint is due to a new or a destroyed building.

It is worth noting that the regions of change may have different thickness, shape and
variability of backscattering change on the basis of the considered building structure and
acquisition geometry. Despite this variability, the pattern will systematically arise when
SAR systems are sensing an isolated building with an adequate resolution [89]. Hence,
a method for the detection of the changed building based on this concept results to be
robust to both the noise and the uncertainty (i.e., the impossibly of modeling the reality
precisely as described in Section 3.3.4) of multitemporal VHR SAR data.

3.3 Proposed Building Change Detection Approach

Let us consider two amplitude VHR SAR images X1 and X2 of size I × J acquired
with the same incidence angle on the same geographical area at different times τ1 and
τ2, respectively. Let Ω = {ωu,Ωc} be the set of classes of changes to be identified:
ωu represents the class of pixels having unchanged backscattering value, whereas Ωc =
{ωc1, ωc2, . . . , ωcK} is a meta-class that gathers all the K possible classes (kinds) of change
that may arise on the ground. One of the most critical issues dealing with this kind of
scenario is related to the presence of many kinds of changes on the ground. Nevertheless
in this work we are interested to investigate an urban area with the goal to only detect
changed buildings. In detail, we consider K = 4 classes of change: i) fully destroyed
buildings (ωc1); ii) new buildings (ωc2); iii) changes that have a size comparable to a
building but do not present the typical pattern of full new/demolished buildings (ωc3);
iv) all the other changes that do not show a size comparable to a building and are therefore
not related to changed buildings (ωc4). In order to achieve this classification we introduce
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an approach made up of two stages: i) identification of the areas affected by changes
in the backscattering at the scale of buildings; and ii) exploitation of the backscattering
models presented in Section 3.2.2 in order to detect the classes Ωc = {ωc1, ωc2, . . . , ωc4}.
Each stage of the proposed method is explained in detail in the next subsections. Fig. 3.4
shows the block scheme of the proposed approach.

3.3.1 Detection of Backscattering Changes at Building Scale

As described in Section 3.2.2, under the hypothesis of using a SAR sensor with a resolu-
tion comparable to the building size, the signature of isolated new/demolished buildings
in multitemporal data is given by a pattern made up of increase and decrease of backscat-
tering regions. The first stage of the proposed approach is thus devoted to extracting the
areas that present whether a significant increase or decrease in the backscattering value.
Nonetheless, at a resolution of a meter or less the small objects that form the buildings
such as windowsills, or rain drains are visible. This results in an inhomogeneous signa-
ture of the building, which may affect also the appearance of new/destroyed buildings
in multitemporal images rendering the regions of increase and decrease far from being
homogeneous. Therefore, an optimum scale level for representing buildings, and not sub-
parts of them, has to be derived from the VHR images and used to identify the regions
of increase and decrease of backscattering. Working at the scale level of buildings has the
additional advantages of: i) reducing the impact on the detection of small changes and
thus reducing the false alarm rate; ii) making it possible a mitigation of the speckle effect
on the detection.

In order to work at the scale of a building we propose to build a multiscale represen-
tation of the multitemporal information made up of N scale level. The (N − 1)th = opt
resolution level, which represents the optimum scale level, is select according to the min-
imum size of the building in the investigated scene. For n ranging from 0 to N − 1, the
images are characterized by resolution that is degraded approximately by a factor of 2n.
Therefore, as expected by decreasing the resolution, small changes tend to disappear and
only changes of a given size are fully preserved. More details on this strategy are given
in chapter 2.2.2.

Once the optimum scale level (opt) has been selected, a change detection (CD) map
Mopt is derived from Xopt

LR according to an unsupervised thresholding procedure. Mopt

presents three classes: i) no-change (ξu); ii) increase (ξ+); and iii) decrease (ξ−) of
backscattering. As the analysis of large urban areas with VHR SAR sensors leads to
the generation of large multitemporal images it is possible that the population of changed
pixels is in sharp minority in the full Mopt. This may affect the accuracy of the threshold
selection technique. In order to address this issues we adopt the thresholding method
presented in chapter 2.2.3. This method divides the considered image into sub-images of
a given size (splits) and performs the threshold selection considering only the splits that
present the highest probabilities to contain changed pixels. This selection allows the def-
inition of a subset of pixels in which the class of change shows a higher prior probability
than in the whole image. For our purpose, Xopt

LR is split into a set of S sub-images of a
user-defined size. The choice of the split size SR × SA is driven by the average exten-
sion of the expected changes. Since we are considering changes related to buildings, we
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Chapter 3. Building change detection in multitemporal SAR images

can determine SR and SA taking into account the average size of the radar footprint of
the changed buildings in the considered radar image. This information can be inferred
by considering the actual average size of the buildings i.e., w1, w2 and h (see Fig. 3.1a)
in the considered area and converting it into SAR geometry by applying the following
equations3 [86]:

SR = X + Y ={
w1 sin θ + h

cos θ
, if θ ≥ tan−1( h

w1
)

h cos θ + (w1 + h
tan−1 θ

) sin θ Otherwise.
(3.2)

SA = w2 (3.3)

Where X is the length of the return from the building (i.e., the sum of the lengths of
contributions (a + c + d), b and d of Fig. 2.a) and Y the length of the shadow (i.e.,
the length of contribution e in Fig. 2a). Consequently, the statistical estimation of the
parameters related to the three probability density functions associated with no-change,
increase, and decrease of backscattering between the two dates (i.e., ξu, ξ

+, ξ−), can be
correctly derived and used to separate the three classes.

In Fig. 3.5 an illustrative example that depicts the detection process of the proposed
approach is reported for the case of a demolished building. This example will be used in
the chapter to better illustrate the proposed approach. As one can notice, in this example
the CD map Mopt reported in Fig. 3.5a verifies the assumptions defined for the model
presented in Section 3.2.1: i) the detected regions of increase or decrease in backscatter-
ing at the building scale are homogeneous; and ii) the change detection map presents a
reduced number of changes smaller than the size of buildings i.e., changes that are not
related to changed buildings (ωc4) are filtered out. From Mopt it is possible to identify the
building radar footprints by locating the pattern of increase and decrease of backscatter-
ing (building candidates) and by evaluating the matching between the properties of the
building candidates with respect to the properties of new and destroyed building models
described in Section 3.2.2. This task is preformed by the building detection stage of the
proposed approach and it will be described in detail in the following section.

3.3.2 Building Change Detection

This stage of the proposed approach represents the most novel contribution of this work
and it is devoted to the detection of demolished building (ωc1), new buildings (ωc2),
changes that have a size comparable to a building but do not present the typical pattern
of full new/demolished buildings (ωc3) and all the other changes that do not show a size
comparable to a building and are therefore not related to changed buildings (ωc4). To
this end a procedure based on two steps is developed. First the areas of change candidate
to be associate to one of the classes ωc1, ωc3 or ωc3 (changed building candidate) are
detected among all the backscattering changes highlighted in Mopt. The set of changed
building candidates is denoted by Γ = {γ1, γ2, . . . , γH}. Then the matching between

3Eq. (3.2) and Eq. (3.3) hold assuming flat-roof buildings with rectangular layout and SAR images in slant range
geometry.
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Figure 3.5: Conceptual example of detection of a destroyed building (illumination source on the left).
(a) Mopt. The pixels associated to the classes of backscattering decrease (ξ−) and increase (ξ+) are
reported in green and magenta, respectively. The idealized dismissed radar building footprint is drawn
in dashed line; (b) in gray the bounding box of changed building candidate γh containing the regions
of change δ1, δ2, . . . , δ8 that form the candidate; (c) illustration of the parameters SI , SD, lI , lD and α,
which are evaluated by the fuzzy rules described in Table 3.1 in order to check the matching between the
candidate and the expected pattern; (d) identified demolished radar building footprint (red continuous-
line) compared with the actual radar footprint (gray dashed-line).

the expected backscattering behavior of changed buildings (presented in Section 3.2.2)
and the characteristics of the changed building candidates is evaluated. This is done
by considering the physical properties and the relation of the regions of change inside
each candidate i.e., ∆ = {δ1, δ2, . . . , δK}. In order to properly model the uncertainty
inherent in the process (that can be due for example to cluttered objects placed in front
of buildings) fuzzy theory is used [90]. Fig. 3.5b-d illustrates the process of the proposed
building change detection stage for the case of a demolished building. In the following
each step is described in detail.

The first step of the change detection phase aims at detecting the set of changed
building candidates Γ = {γ1, γ2, . . . , γH}. Ideally each changed building in Mopt is made
up of regions of both increase and decrease in backscattering, whose total extension is
comparable with the expected size of buildings. One simple and effective approach to
identify the changed building candidates γ1, . . . , γH is to use a sliding window algorithm
for each pixel in the image. Pixels within a window around it are taken and used to
compute the detector output. In this work, the window is moved in Mopt from left
to the right by one pixel and the number of changed pixels (labeled both as increase
ξ+ or decrease ξ−) is counted. The process is repeated over 5 moving windows: four
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Chapter 3. Building change detection in multitemporal SAR images

Figure 3.6: Windows used to derive the changed building candidates.

rectangular moving window showing different directions and a square window having the
same area of the rectangular ones. This choice allows us to properly capture the most
of the building orientations. The detector output is given by the window that results in
the maximum value. The 5 windows are depicted in Fig. 3.6. The size of the windows
z1×z2 is chosen according to the minimum size of the buildings in the considered scene in
order to minimize missed alarms. Hence, let Mopt

Wβ
i,j

= {Mopt|Mopt ⊂Wβ
i,j} be the set of

pixels of Mopt included in the windows Wβ
i,j centered at the pixel (i, j), with β = 1, . . . , 5

indicating the different windows. Let C be the image with size I×J that reports for each
pixel Ci,j an index of the size of the changes. Ci,j is computed as the maximum on the
five windows as follows:

Ci,j = arg max
β∈1,2,...,5

{∣∣∣∣Mopt

Wβ
i,j

∈ ξ+ ∨Mopt

Wβ
i,j

∈ ξ−
∣∣∣∣}

∀ i = 1, . . . , I; j = 1, . . . , J. (3.4)

where |·| indicates the cardinality of a set. The obtained index image C exhibits relatively
high values when the sliding window contains a large amount of changes oriented in the
same direction of the moving window. C exhibits relatively low values when the sliding
window contains small changes and when the windows does not match the orientation of
the change. Therefore, it is possible to detect the changed areas that can be associated in
terms of size to the expected radar footprint of changed buildings by selecting the areas
of C exceeding a certain threshold TC , thus obtaining the image C̄ as follows:

C̄ ∈

{
1, if C ≥ TC
0, otherwise.

(3.5)

TC is selected according to the expected minimum size of buildings z1 × z2 in the in-
vestigated scene. The map C̄ represents the areas containing changes with size com-
parable or bigger than the minimum building size and therefore they belong to one of
the classes ωc1, ωc2, ωc3. As one can notice, the pixels belonging to ωc4 are implicitly
identified in this operation. From the map C̄ the set of changed building candidates
Γ = {γ1, γ2, . . . , γH} is extracted by calculating the connected components considering
a 8-connected neighborhood. This is done by means of a flood-fill algorithm [91]. Each
candidate γh (h = 1, . . . , H) contains a subset of regions ∆ = {δ1, δ2, . . . , δK} labeled as
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Figure 3.7: Example of sigmoid function µr(r) defined according to (3.6). The slope of the sigmoid
is tuned by the parameter ai. bi defines instead the center of the sigmoid i.e., µr(bi) = 0.5. In the
represented case ai = 15 and bi = 0.5.

ξu, ξ
+ or ξ−. The information associated to the kind of change is derived considering Mopt

in the areas delimited by the region γh. Fig. 3.5b shows an example of candidate γh that
contains δk (k = 1, . . . , 8) regions for the case of a demolished building. In general the
number of regions, k may vary from 1 to K depending on the size and proximity of the
changes. For the sake of clarity, in the next step of the building change detection proce-
dure we assume that only two regions belonging to increase (i.e., δ+ = δk ∈ ξ+) or decrease
i.e., (δ− = δk ∈ ξ−) occur inside a candidate. If more than 2 regions are present, all the
combinations among the regions of increase and decrease are automatically analyzed by
the proposed approach and the most reliable(s) selected.

In order to properly classify each changed building candidate according to the classes
ωc1, ωc2, and ωc3, the physical characteristics and the spatial arrangement of the pattern
formed by the regions δk (h = 1, . . . , K) have to match with the four characteristics of the
models of new or dismissed building discussed in Section 3.2.2. The matching is tested
exploiting four fuzzy rules called here: completeness, proportionality of areas, equivalence
of lengths and alignment. These rules aim at associating a grade of membership to
the changed building candidate for each of specific performed test. On the basis of the
aggregate membership the final classification decision is taken. In the following each rule
is presented in detail.

Completeness

A pair of regions of increase and decrease is strictly needed to identify a new (ωc2) or
destroyed building (ωc1). The first rule evaluates the simultaneous presence of δ+ and δ−

inside the candidate γh. This is done by means of a crisp membership function µp that
takes value 0 or 1 (µp(p) = {0, 1}) depending on whether regions of increase and decrease
are simultaneously present µp(p) = 1 or not µp(p) = 0.
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Chapter 3. Building change detection in multitemporal SAR images

Proportionality of Areas

This rule aims at verifying that the area δ+ is not prevailing with respect to the area
of δ−, and vice-versa. The mathematical modeling of this rule depends on the parame-
ters of acquisition and the size of the building as discussed in Section 3.2.1. It can be
effectively represented by a sigmoid membership function that evaluates the attribute
rs = min{sI/sD, sD/sI}, where sI and sD indicate the areas of δ+ i.e. SI = |δ+| and δ−

i.e., SD = |δ−|, respectively. In general, a sigmoid function is defined as follows:

µr(r) =
1

1 + e−ai(r−bi)
(3.6)

The constant ai tunes the slope of function and the constant bi locates the center of the
function. Eq. 3.6 returns values in [0,1]. Fig. 6.3a shows an example of sigmoid function.
In accordance with the model it is expected that the smaller is rs the smaller is the
membership grade of the candidate hence for this rule ai = a1 > 0 and bi = b1 > 0.

Equivalence of Lengths

This rule aims at checking that the lengths of the regions δ+ and δ− in the azimuth
direction are equivalent. This is done by identifying the extrema of the regions δ+ and
δ−. To test the reliability of a candidate with respect to this criterion, the attribute
rl = min{lI/lD, lD/lI} (where lI and lD are the lengths in azimuth direction of δ+ and
δ−, respectively) is used in the sigmoid membership function defined in eq. (3.6) with
parameters ai = a2 > 0 and ai = b2 > 0. Since the farther is rl from 1 the smaller
is the membership grade of the candidate to be associated to a new/destroyed building,
the slope of the sigmoid is steep and the center moved toward 1. Fig. 3.5.c illustrates
an example of correct alignment between δ+ and δ−, whereas Fig. 3.8c depicts a case in
which this rule is not satisfied.
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SI SD
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a

Figure 3.8: Example of a candidate γh that does not respect the equivalence of lengths. (a) Mopt. The
pixels associated to backscattering decrease (ξ−) and increase (ξ+) classes are reported in green and
magenta, respectively. (b) In gray the changed building candidate γh containing the regions δ1 and δ2,
which form the candidate; (c) Analysis of psychical properties and relations of the regions δ+ and δ−.

Alignment

This rule is devoted to test the alignment of the entire pattern increase/decrease (which is
made up of regions δ+ and δ−) with respect to the range direction. The alignment of the
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3.3. Proposed Building Change Detection Approach

centroids of the regions of increase and decrease are considered, which are expected to lay
on the same line. In detail, the absolute value of the angle α defined as the angle included
by the line that connects the centroids of the regions δ+ and δ− and the SAR range
direction is used in the equation of the sigmoid eq. (3.6). α ranges from [−π/2, π/2). As
expected, by imposing ai = a3 < 0 the larger is |α| the smaller is the membership grade
of the candidate to be associated to a new/destroyed building. Fig. 3.5c illustrates an
example of correct orientation of the pattern increase/decrease, whereas Fig. 3.8c depicts
a case in which this rule is not satisfied.
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Figure 3.9: Example of a candidate γh that does not respect the fourth rule. (a) Mopt. The pixels
associated to backscattering decrease (ξ−) and increase (ξ+) classes are reported in green and magenta,
respectively. (b) In gray the changed building candidate γh containing the regions δ1 and δ2, which form
the candidate; (c) Analysis of psychical properties and relations of the regions δ+ and δ−.

A summary reporting the description of each rule, the parameters and membership
functions used to represent the rules is reported in Table 3.1.

The final decision on the label of the candidate is done according to the aggregated
membership grade M, which is calculated by combining the 4 membership functions.
Among the fuzzy aggregation methods presented in the literature in this work the Larsen
product implication [92] is used i.e.,

M = µpµrsµrlµα (3.7)

In this way we apply a conservative rule for which one small value among the individual
membership grades yields the final result to be small regardless of the other values (other
rules can be selected [90]). The candidates that present a value of M greater than a
user-defined threshold TM are selected as fully demolished (ωc1) or new buildings (ωc2)
considering the order of appearance of the pair increased/decreased with respect to the
range direction as described in Sec. 3.2.2. The others are classified as ωc3 (i.e., they are
not fully demolished or new buildings). It is worth noting that TM will be a small value
since the algebraic product of value smaller than 0 result in value smaller than the factors
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Table 3.1: Fuzzy rules used to classify γh as new building (ωc1), demolished buildings (ωc2) or change
comparable to the size of a building but not related to fully new/demolished buildings (ωc3).

Rule Parameter Membership Function

1. Presence of both regions δ+ and δ− (completeness) p µp(p) = {0, 1}
2. Proportionality of areas of δ+ and δ− (proportion-
ality of the areas)

rs = min
(
sI
sD
, sDsI

)
µrs(rs) = 1

1+e−a1(rs−b1)

3. Equivalence of the lengths of δ+ and δ− along the
azimuth direction (equivalence of the lengths)

rl = min
(
lI
lD
, lDlI

)
µrl(rl) = 1

1+e−a2(rl−b2)

4. Alignment of the barycenters of the regions δ+ and
δ− (alignment)

|α| µ|α|(|α|) = 1
1+e−a3(|α|−b3)

in (3.7). Nonetheless, the value of M obtained for each of these classes is representing a
grade of reliability of the detection that can be used by the final users.

For each changed building candidate recognized as new or demolished building the
8-extrema points (i.e., from top-left to bottom-right) of both the regions δ+ and δ− are
calculated and used to find the smallest convex polygon that contains the two regions
i.e., the convex hull (see Fig. 3.5d). The computation of the convex hull is done using
the Quickhull algorithm [93]. This allows the generation of an envelope of a new or
dismissed building footprint as much as similar to the ideal expected one. Once the
building footprint candidate is classified as new or demolished building, reverting the
equations (3.2) and (3.3) it is possible to estimate the actual size of the building affected
by the change, which is expressed in terms of w1[m]× w2[m]× h[m] (see Fig. 3.1a).

3.3.3 Selection of the Parameters

In this section the role of the parameters used in the proposed approach is discussed in
detail. The parameters can be divided into 3 groups: the first two groups are related
to the building size and the third to the fuzzy rules. The first group includes SR and
SA, which represent the size of the split used for the automatic thresholding procedure
of the log-ratio image at the optimal building scale. As discussed in the chapter, the
split size is selected according to the average size of building in the considered area. It is
worth noting that the split-based thresholding approach has demonstrated to be tolerant
to relative large variations of the selected split size with respect to the expect average
size of buildings (see Sec. 4.4). The second group of parameters includes N − 1, z1, z2

and TC are related to the minimum size of the buildings in the investigated site. In
general, the minimum size of buildings is driven by the typology of urban area (industrial
or residential) and the zone of the world under analysis (e.g., typically buildings in US
metropolis are larger than buildings in European towns). Nonetheless, by selecting large
values of N−1, z1, z2 and TC building candidates with size smaller than the chosen values
can be excluded from the analysis. The third group of parameters is associated to the
membership functions of the fuzzy rules. In detail the center of the sigmoids (regulated
by b1, b2, b3) represents the boundary situation that has half membership with respect to
the theoretical model described in Section 3.2.2, while the slope (regulated by a1, a2, a3)
represents the flexibility of the rule to cope with clutter and noise. In the considered case
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the centers are fixed from the model, whereas the slope can be chosen considering real
situations e.g., urban density.

On the basis of this analysis and of our experimental results we can conclude that the
tuning of the parameters to give as input to the proposed approach requires very basic
prior information and is not critical.

3.3.4 Critical Analysis

It is worth noting that, as discussed in Section 3.2 the appearance of a building in VHR
SAR imagery can vary with respect to the model of the building. For instance, in the case
discussed in Section 3.2.1 the area of the regions of increase and decrease of backscattering
are similar to each other. This is not always the case as it depends on both the size of the
building and the incidence angle θ used for the acquisition. Moreover, objects placed in
front of the building, such as trees or other buildings, or the high urban building density
results in the occlusion of neighboring of the building facade and the corner reflector
so that the double bounce and the layover might not be visible for the full extent of
the building front wall. As a consequence, important primitives that identify a building
may be partially not visible reducing the validity of the aforementioned conditions. This
challenging situation is taken into account in the proposed method by using the fuzzy
theory. Moreover, note that the comparison of multitemporal images according to the
log-ratio operator also mitigates the negative effects of possible occlusions common to
both images. Accordingly, the proposed approach is expected to be more robust to non
ideal conditions than methods based on the separate detection of buildings in single data
images. Thus the proposed approach is robust against false and missed alarms as it will
be discussed in the experimental results section.

As a matter of fact, the multitemporal analysis becomes complex if we consider the case
of building partially damaged or under construction. In these cases the backscattering
characteristics are dependent on the specific kind and the extension of the change. In [6,
94, 95] it was proven that not all kinds of building damages are discernible in meter
resolution SAR imagery. This is valid also in the case of partially built buildings. At
present this is still an open topic that will be further investigated as future development
of this work.

3.4 Data Sets Description and Experimental Results

In order to assess the effectiveness of the proposed approach, different experiments were
carried out on two data sets. The first one is related to the 2009 L’Aquila earthquake
occurred in the region of Abruzzo, in central Italy. The second one documents the urban
evolution of the city of Trento, in north Italy, between 2011 and 2013.

3.4.1 2009 L’Aquila Earthquake: Detection of Destroyed Buildings

The first data set is made up of two spotlight mode X-band CSK 1-look amplitude images
processed according to the standard processing level 1C (Geo-coded ellipsoid corrected,
1m resolution, 0.5m×0.5m pixel spacing). They were acquired in HH-polarization on
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(e) (f)

Figure 3.10: L’Aquila (Italy) data set: (a) optical image. (September 4, 2006 [85]); and (b)
RGB multitemporal composition of spotlight COSMOSky-Med images (R:09/12/2009, G:04/05/2009,
B:09/12/2009). The images are geo-projected according to the reference ellipsoid. Actual range and the
azimuth directions are reported in white arrows. (c) Change detection map Mopt obtained at the level
N − 1 = 3. (d) Map showing the index of the size of changes C. (e) Changed building map overlapped
to the RGB multitemporal composition of CSK data. (f) Cadastral map of the area (destroyed buildings
are reported in red).

April 5, 2009 and on September 12, 2009, over the city of L’Aquila (42◦21′N 13◦24′E) in
ascending orbit with 57-58 degree incidence angle. On April 6, 2009, an earthquake of 6.3
Moment Magnitude Scale (MMS) struck central Italy with its epicentre near L’Aquila.

A test site of 1024 × 1024 pixels of the full spotlight scene was selected in the city of
L’Aquila in order to test quantitatively the proposed method. Fig. 4.6a shows the optical
image corresponding to the area of interest. Fig. 4.6b shows a false color composition of the
two CSK images (red channel:09/12/2009, green channel:04/05/2009, blue:09/12/2009)
in which pixels with an increase in the value of backscattering appears in magenta tone,
pixels with a decrease in the value of backscattering appear in green tone and unchanged
pixel in gray-scale. From the cadestrial map of the considered site 200 buildings were
counted and 6 of them were identified as totally collapsed because of the earthquake.
This information was derived by analyzing a couple of orthophotos with a resolution of
about 20 cm acquired April 8, 2009 and October, 2009 [96]. It is worth noting that a
relevant number of changes are present between the two acquisitions. Some of those are
not relevant from the application viewpoint because they are due to the activities occurred
after the earthquake (e.g., shoring up of damaged structures or deployment of emergency
services). This increases the complexity of the problem of building change detection.

As described in the methodological part, the first step of the proposed approach is the
calculation of the log-ratio image XLR. It was computed from the two calibrated and
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Table 3.2: Performance of the proposed approach for L’Aquila Dataset in terms of number of detected
destroyed buildings and missed destroyed buildings. The total number of buildings present in the site is
also reported in the table.

Total Number of
Buildings

Number of Destroyed
Buildings (reference)

Detected Destroyed
Buildings (ωc1)

Missed Destroyed

200 6 7 0

co-registered CSK images. In detail, the co-registration was performed with sub-pixel
accuracy and the radar brightness calibration was applied in order to render the two
images comparable. From XLR the set XMS =

{
X0

LR, . . . ,X
n
LR, . . . ,X

N−1
LR

}
was computed

by applying sequentially the 2D-SWT and the 2D-ISWT with an 8-length Daubechies
filter. The level (N − 1)th = 3rd, which gives a resolution of approximately 8 meters,
was selected as the optimum one. This allows to observe radar footprints of buildings as
small as 8 by 8 meters, which is compatible with the minimum size of building footprints
in the considered scene. X3

LR was thresholded according to the unsupervised split-based
procedure described in section 3.3.1. The split size was calculated starting from the
average building size, which was estimated to be w1 × w2 × h = 25 × 20 × 15 m3. By
substituting these values in eq. (3.2) SSR was obtained to be equal to 49.50 m in slant-
range geometry. Since the CSK images are ground-projected, SSR was projected in ground
range considering the reference incidence angle i.e., 58 degree obtaining in this way SGR =
58.36 m. From the calculation and taking into account a pixel spacing in range of 0.5 m,
SR results to be equal to 120 pixels. By applying eq. (3.3) and considering a pixel spacing
in azimuth of 0.5 m, SA was estimated to be equal to 40 pixels. It is worth noting that
the split-based thresholding technique has a relative high tolerance to the selection of the
values of SR and SA. This was proven by a sensitivity analysis in which SA was ranged
from 20 to 60 pixels and SR from 80 to 170 pixels. Despite the large range (about ±1/3
of the optimal selected size) the error on the estimation of the thresholds is small. That
is of 0.054 in average with a peak value of 0.14 for t̂−, and of 0.045 in average with a peak
value of 0.15 for t̂+. Moreover, in all the cases the generated maps did not present any
critical behavior and resulted in a very similar final detection of changed buildings.

The obtained CD map Mopt highlighting the three classes ξu, ξ
+, ξ− is reported in

Fig. 4.6c. The detector described by (3.4) was then applied to Mopt in order to obtain
the image C. With regard to the considered scene, it is expected that the minimum size
of building footprint is 40×20 pixels. Therefore, the set of 5 windows reported in Fig. 3.6
were set to size z1 × z2 = 40 × 20 pixels in order to derive C (see Fig. 4.6d). A set of
changed areas Γ = {γ1, . . . , γ49} compatible with building footprint changes was derived
by threhsolding C with TC = 160 (which corresponds to 20% of maximum value of C) and
by applying a flood-fill algorithm. It is worth noting that both the window size and the
threshold value were selected according to minimum size of buildings in the considered
area in order to limit the missed alarms. Each of the candidate areas was analyzed in
order to detect the changed buildings. To this end the four fuzzy rules were automatically
evaluated for each candidate γh, (h = 1, . . . , 49). Finally, for each building candidate that
presents an aggregated membership TM greater than 0.125 the radar building footprint
was approximated by the convex-hull containing the candidate. It is worth noting that
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TM was selected in order to minimize the missed alarms. This is done by taking into
account the definition of the membership functions and the aggregation strategy (i.e.,
algebraic product). In the present experiment µrs = µrl = µα = 0.5 were selected as limit
case, which results in an aggregate membership function M = 0.125. Fig. 4.6e shows the
final result. In the specific case, all the reconstructed radar building footprints have an
aggregate membership function greater than 0.615. Table 4.1a reports the settings of the
parameters used for the dataset of L’Aquila.

(a) (b)

(c) (d)

(e)

Figure 3.11: (a)-(d) Zoom of the 6 buildings destroyed and correctly detected by the proposed method [97].
See Fig. 4.6f for the correspondence of the buildings on the map. (e) Zoom of the orthophotos on the
building wrongly detected as destroyed. As one can notice building was totally demolished after the
earthquake.

By comparing the changed building map with the false color composition of the mul-
titemporal images (Fig. 4.6e) one can notice that the proposed approach can effectively
detect the backscattering changes associated to disappeared buildings as described in
Section 3.2.2, which patterns present a decrease and increase of backscattering oriented
near-to-far-range (see Fig. 4.6e). From a quantitative point of view, Table 4.2 reports
the number of total buildings present in the scene and the total number of demolished
radar building footprints correctly detected and missed by the proposed approach. Even
though the dataset presents a relevant number of changes in the backscattering value,
none of the actual demolished buildings (see Figg. 4.7a-d) was miss-detected and only one
building was wrongly identified as destroyed (see Fig. 4.7.e). As a matter of fact, from the
orthophotos and the optical images [85] acquired after the CSK acquisition of September
2009, it was observed that this building was seriously damaged from the earthquake and
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(a) (b)

(c) (d)
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(e)

Figure 3.12: Trento (Italy) data set: (a) optical image (2011 [85]); and (b) RGB multitemporal composi-
tion of spotlight TerraSAR-X and TanDEM-X images (R:03/04/2013, G:21/01/2011, B:03/04/2013). (c)
Change detection map Mopt obtained at the level N − 1 = 3. (d) Map showing the index of the size of
changes C. (e) Changed building map overlapped to the RGB multitemporal composition of CSK data.

demolished by the authorities after the acquisition. Fig. 4.6f shows the position of the
destroyed buildings in the cadestrial map obtained by transforming the geometry of SAR
images to the geo-referenced cadastral map. The analysis confirms the high accuracy of
the proposed technique. It is worth noting that the detected demolished buildings has
different aspect angle φ. Moreover, even though the density of buildings in the considered
site is high, the proposed approach can effectively discriminate between demolished and
standing buildings. This points out the high robustness of the proposed technique to
the possible deviations from the adopted ideal model of changes. A similar analysis has
been performed for changes that are not associated with buildings, i.e., ωc3 (yellow areas
in Fig. 4.6d). The orthophotos point out that these changes are not associated to fully
destroyed buildings, but to the post earthquake activities e.g., emergency housing units
or to partially damaged buildings. This confirms the effectiveness of the proposed method
also in the detection of general changes.

3.4.2 Trento Data Set: Detection of New Buildings

The second data set is made up of two high resolution spotlight single look slant range
complex images acquired by TerraSAR-X and TanDEM-X with resolution 0.58 m in range
by 1.1 m in azimuth (0.454 by 0.855 meters of pixel spacing) in X-band HH-polarization.
The images have been taken on January 21, 2011 and April 3, 2013 over the city of Trento
(46◦04′N 11◦07′E), with a perpendicular baseline of 489.29 m in ascending orbit with 53◦

incidence angle. The selected test site is a section (1024×1024 pixels) of the full scene
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where the department of engineering and computer science of the University of Trento
and the Fondazione Bruno Kessler (FBK) are represented. Fig. 3.12a shows the optical
image corresponding to the same area [85]. Fig. 3.12b shows a false color composition
of the two images (R:03/04/2013, G:21/01/2011, B:03/04/2013) in which pixels with an
increase in the value of backscattering appear in magenta tone, pixels with a decrease in
the value of backscattering appear in green tone and unchanged pixel in gray-scale. From
a ground field survey it is know that three new buildings were built up in the considered
site. Moreover, several buildings were subject to restoration works. As one can notice,
in this data-set the size of the changed buildings is not homogeneous: we have a large
building (still partially under construction during the second acquisition) in the center
left of the image, a medium size building in the left part of the image and a small building
in the center of the image. Therefore, we aim to test the robustness of the proposed
approach to this heterogeneous condition.

Table 3.3: Performance of the proposed approach for Trento Dataset in terms of number of detected new
buildings and missed new buildings. The total number of buildings present in the site is also reported in
the table.

Total Number of
Buildings

Number of New
Buildings (reference)

Detected New
Buildings (ωc2)

Missed New Buildings

187 3 3 0

In order to apply the proposed method the two VHR SAR images were calibrated
(radar brightness) and coregistered (with sub-pixel accuracy) and the log-ratio image
XLR calculated. In the considered city, it is expected that the smallest radar footprint of
a building is about 20 by 10 meters. Considering the proposed multiscale approach the
resolution of Xopt

LR is approximately given by 1.1 · 2(N−1) in the worst case i.e., in azimuth.
Therefore the level (N − 1)th = 3rd, which gives a resolution of 8.8 m is suitable for the
purpose. The automatic split-based thresholding approach was applied to X3

LR in order
to derived Mopt. The split size was calculated starting from the average building size,
which was estimated to be w1 × w2 × h = 30× 80× 13 m3. By substituting these values
in eq. (3.2) SR was obtained to be equal to 45.56 m in slant-range geometry. By taking
into account the pixel spacing in range of 0.454 m SR results to be equal to about 100
pixels. By applying eq. (3.3) and considering a pixel spacing in azimuth of 0.855 m,
SA was estimated to be equal to about 90 pixels. Fig. 3.12c shows the CD map Mopt

generated with the split-based thresholding method from X3
LR. As done for the dataset

of L’Aquila a sensitivity analysis was performed. By ranging SR and SA from 60 to 120
the error on the estimation of the thresholds is small. That is of 0.058 in average with a
peak of 0.14 for t̂−, and of 0.041 in average with a peak of 0.1 for t̂+. In all the cases the
generated maps did not present any critical behavior and resulted in a very similar final
detection of changed buildings. The index image C (Fig. 3.12d) was derived by applying
the set of filters described by (3.4) to Mopt with size z1 × z2 = 20 × 10 pixels selected
according to the expected minimum radar building footprint size. C was thresholded and
25 candidates were detected. They were analyzed in order to discriminate the appropriate
class of change by testing the proposed fuzzy rules. Table 4.1b reports the settings of the
parameters used for the dataset of Trento.
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Figure 3.13: New large building in the Trento dataset: some month before the 2011 TerraSAR-X ac-
quisition (on the left) and on the same day of the second acquisition (on the right). As one can notice
the building is still under construction during the second acquisition with several materials and vehicles
present in the building site.

Table 3.4: Parameters used in the experiments carried out on: a) L’Aquila dataset; and b) Trento dataset.

Parameter Value

N − 1 3

SR 120 pixels

SA 40 pixels

z1 40 pixels

z2 20 pixels

TC 160 pixels

a1, b1 10, 0.3

a2, b2 10, 0.5

a3, b3 −10, π
3

TM > 0.125

(a)

Parameter Value

N − 1 3

SR 100 pixels

SA 90 pixels

z1 20 pixels

z2 10 pixels

TC 40 pixels

a1, b1 10, 0.3

a2, b2 10, 0.5

a3, b3 −10, π
3

TM > 0.125

(b)

As one can observe from the changed building map (Fig. 3.12e) the proposed approach
allows the detection of the building footprint of the three new buildings. The aggregated
membership values for all buildings is always grater than 0.74. In detail, for the small and
the medium size buildings the reconstructed building footprints result to be accurate. The
footprint for the large building in the center left of the image was reconstructed considering
the several regions of increase and decrease in backscattering that arise because of both
the complexity of the structure of the building (i.e., a inner court and three front wings)
and the construction works, which were still in progress during the second TerraSAR-
X acquisition (see Fig. 3.13a). As consequence the reconstructed footprint results to be
divided in different parts. Nevertheless, the building footprint is completely detected even
if in this case we are far from the ideal reference condition of the considered model.

Table 3.3 reports the total number of buildings present in the scene and the number
of new buildings detected and missed by the proposed approach. Even though the size
of the new buildings present in the scene is not homogeneous, none of the actual new
buildings were missed from the detection and only one building was wrongly identified
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as destroyed with a relatively low membership of 0.39. As a matter of fact, from the
ground field survey it is known that this building was completely renovated between
the two acquisitions. Thus the building footprint really changed in the considered time
interval. As for L’Aquila dataset, the proposed approach can effectively discriminate
between demolished and standing buildings despite the high density of buildings in the
area. A further analysis has been performed on changes that are not associated to fully
destroyed or new buildings to buildings i.e., ωc3 (yellow areas in Fig. 3.12e), which result to
be buildings partially renovated. This confirms the effectiveness of the proposed method
in the detection of changes in buildings.

3.5 Conclusion

In this chapter an approach to building CD in multitemporal VHR SAR images has been
proposed that detects changes by distinguishing between new and demolished buildings.
The approach is based on two concepts: i) the extraction of information on changes
associated with increase and decrease of backscattering at the optimal building scale; and
ii) the exploitation of the expected backscattering properties of buildings to detect either
new and fully demolished buildings with their grade of reliability.

The method takes advantage of the theoretical modeling of the backscattering mech-
anisms in multitemporal VHR SAR images. From this modeling new and destroyed
buildings can be identified by a pattern made up of an area of both increase and decrease
of backscattering with specific spatial properties and a specific alignment. In order to
extract the changes associated with increase and decrease of backscattering, the proposed
approach makes use of a multiscale representation of the multitemporal information. This
allows a detection of changes at the optimal building scale. This means that the changes
smaller than the selected building scale are rejected while the changes related to building
size are made homogeneous. This information is used to identify the candidates to be
changed buildings. The building candidates are analyzed in order to properly detect the
new or destroyed building by means of four fuzzy rules. The fuzzy rules are formulated
by taking into account the ideal backscattering mechanisms that arise when a building
appears or disappears between two acquisitions. The aggregated membership resulting
from the application of the fuzzy rules makes it possible to identify the class of each
building candidate (i.e., new/destroyed building or general change with size comparable
to the building size but not related to new or destroyed building). Moreover, the mem-
bership value gives an indication of the reliability of the detected class. The proposed
approach requires the tuning of some parameters that depend on the approximated size
of the buildings in the investigated area. This is a prior information usually available and
easy to include in the processing. It is worth remarking that after this tuning the method
is completely automatic.

The proposed approach was tested on two VHR SAR dataset acquired by two different
X-band systems i.e., COSMOSky-Med and TerraSAR-X/Tandem-X. The first dataset
is related to the earthquake of L’Aquila (Italy) in 2009. Here the changes are mainly
associated to demolished buildings. The second data set is related to a condition of
urban expansion with the construction of new buildings in the city of Trento (Italy). In
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both cases the proposed method demonstrated to be effective in detecting both new and
demolished buildings with a high accuracy. In detail, only two buildings were misclassified
over 387 present in the two datasets with no missed detection. This was possible also
because of the high robustness of the proposed method to deviations from the ideal model
considered for changes. This robustness is due to both the use of adequate fuzzy rules and
the intrinsic reliability obtained when working on the comparison of two images rather
than on the modeling of building on each image.

As future development of this work, we plan to improve the building detector by
better modeling the geometrical behaviors of building primitives. Moreover, we plan
to investigate the possibility to discriminate among several building construction stages
and/or building damage levels.
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Chapter 4

Rapid and accurate damage
detection in built-up areas using
SAR images

In the last years Earth Observation (EO) has been proven to be a reliable tool to support
the operations after crisis events such as earthquakes and floods. In this context, the use of
SAR systems is very attractive from an operational point of view since, differently from op-
tical sensors, SAR is independent from the sun illumination and it is relatively insensitive
to atmospheric weather conditions. This makes possible to ensure data availability during
crisis events. Since 2008 a new generation of SAR missions has been daily acquiring and
archiving images of the Earth surface with a short repetition interval and a high geometric
resolution. This allows the analysis of damages caused from earthquakes on urban areas
in an effective way. SAR systems on-board of these missions are able to acquire images
with variable geometrical resolution and swath. By increasing the resolution the maximum
ground coverage guaranteed (swath) decreases accordingly. In this chapter1 we propose to
exploit and combine the acquisition modes offered by commercial SAR sensors in order
to: i) quickly and automatically identify the areas severely affected by the earthquake (i.e.,
hot-spots) by analyzing images of large areas using data characterized by a high geometri-
cal resolution (3-5 m); and ii) accurately detect collapsed buildings inside each hot-spot by
acquiring and analyzing images of small areas using data with very high geometrical res-
olution (1 m). Experimental results obtained on COSMO-SkyMed multitemporal images
acquired in 2009 on the city of L’Aquila (Italy) before and after the earthquake that hit
the region demonstrate the effectiveness of the proposed approach.

4.1 Introduction

Earthquakes have struck cities around the globe causing injury, loss of life and damage
to human settlement since the ancient times. In the last years large earthquakes have

1Part of this chapter appears in:
[22] L. Bruzzone, C. Marin, F. Bovolo, “Damage Detection in Built-up Areas Using SAR Images.” in Beer M.,

Patelli E., Kougioumtzoglou I., Au I. (Ed.) Encyclopedia of Earthquake Engineering: SpringerReference
(www.springerreference.com). Springer-Verlag Berlin Heidelberg, 2013.
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been reported globally affecting wide geographical areas and a relevant number of peo-
ple. A remarkable example was the 2011 Tohoku earthquake with moment magnitude
scale (MMS) of 9.0. The earthquake caused 15,884 deaths, 6,147 injured, and 2,636
people missing across twenty prefectures, as well as 129,316 buildings totally collapsed,
263,845 buildings half collapsed, and 725,760 buildings partially damaged [98]. The earth-
quake triggered tsunami waves that caused the nuclear accidents at three reactors in the
Fukushima Daiichi Nuclear Power Plant complex, and the associated evacuation zones
affecting hundreds of thousands of residents [98]. Moreover, the earthquake and tsunami
also caused extensive and severe structural damage in north-eastern Japan, including
heavy damage to roads and railways as well as fires in many areas, and a dam collapse.
The World Bank has estimated economic damage of US 210 billion, making it the costliest
natural disaster in the world history [98]. Another relevant example is the 2009 L’Aquila
earthquake (Italy) with 6.3 MMS. The earthquake caused damages to a relevant number
of medieval buildings in the city of L’Aquila: several buildings collapsed, about 300 people
died and about 1500 people were injured making this event the deadliest earthquake to
hit Italy since 1980. The list of earthquakes and their damages occurred globally can be
continued. Indeed, according to the United Stated Geological Survey [99] records, the
frequency of such catastrophic events is high: 332 earthquake with a MMS 7 or higher
have been reported in the last 20 years.

In order to understand and possibly mitigate the impact of such events on the citizenry,
several governmental initiatives and research activities have been carried out in the past
(e.g., the international charter on space and major disasters [100], UNOSAT [101], or the
geohazard supersites and natural laboratories [102]) to tackle each of the phases of such
events. In detail a catastrophic event can be partitioned in three characteristic phases: 1)
before the event in which a system of risk assessment for early warning is essential; 2) the
moment the event occurs in which a disaster-alerting systems is the main priority; and 3)
after the event in which a emergency response with impact assessment has to be initiate.

Focusing on the third phase, among all the possible damages caused by natural dis-
asters, the building damages contribute mostly to the casualties [7]. Nonetheless, the
identification of struck built-up areas may be particularly complex because of both the
possible large extension of the affected region and the difficulties to access remote vil-
lages. In this scenario Earth Observation (EO) data acquired by remote-sensing satellites
represent a useful tool to support decisions of civil protection authorities after the event.
Indeed, satellites equipped with optical or synthetic aperture radar (SAR) sensors can
monitor large regions in a quick, synoptic and uncensored manner. In particular, SAR
systems presents the advantage over optical sensors to be independent from sun illumina-
tion and to be relatively insensitive to atmospheric weather conditions. This ensures the
data availability during the crisis event even though the site affected by the crisis event
is covered by clouds or if the satellite is passing during night.

As we discussed in the introduction chapter of this thesis, since 2008 a new generation
of SAR missions (i.e., TerraSAR-X, TanDEM-X and COSMO-SkyMed) have regularly ac-
quired data over Earth. These systems can perform acquisitions using two high resolution
modes called StripMap (SM) and SpotLight (SL). SM is characterized by a wide coverage
(around 1500 Km2) with a high resolution (3 to 5 m), whereas SL is characterized by a
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moderate coverage (around 100 Km2) with a very high resolution (1 m). This means that
the two SAR modes are complementary to each other and can be used for performing
different duties during the emergency response phase. SM mode can be used for identify-
ing the blocks of the city more hit by the earthquake whereas the SL images can be used
to identify detailed information about collapsed buildings. It is worth noting that, these
SAR missions are daily populating a huge archive of multitemporal. This archive can be
employed to detect changes in the state of an object or phenomenon by jointly observing
the data acquired at different times over the same geographical area. Nonetheless, SAR
images with a resolution ranging from the 5 m (referred in this work as high resolution
images) of the SM images up to 1 m (referred in this work as very high resolution images)
of the SL images are more heterogeneous than old generation sensor images, which have
resolution generally ranging from 10 to 30m [60, 61]. In high resolution (HR) and very
high resolution (VHR) images objects that are considered homogeneous from a semantic
point of view (e.g., buildings) show a signature that is inhomogeneous at high spatial
resolution because of the scattering contributions from sub-objects (e.g., facade and roof
in a building). Furthermore, on the one hand the side-looking illumination required by
SAR systems leads to phenomena such as layover, shadow and multi-path signals [62,63],
which are very marked in urban areas. On the other hand, the appearance of a ground
object depends on radar system parameters (i.e., wavelength, polarization, pulse length,
incidence angle, look direction, etc.), surface feature proprieties (e.g., dielectric constant)
and environmental variables (e.g., ground water content) [64]. On top of these aspects,
SAR images are corrupted by speckle noise.

All these factors, within the context of the multitemporal analysis, make the problem
of the detection of changes complex because of the issues presented in chapter 1. Indeed
they invalidate the assumption considered for medium-resolution SAR images that two
images acquired on the same geographical area at different times are similar to each other
except for the presence of changes occurred on the ground. Thus the use of standard pixel
and context-based techniques would fail to solve the problem since they are not able to
properly take into account the high geometrical detail.

Numerous studies have been recently presented in the literature that deal with the
problem of recognition of changes in urban areas using HR and VHR SAR images [6, 31,
66–76]. In detail, [6,31,66–73] are focused on the detection of earthquake damages, [74] is
focused on the building databases updating, and [75] addresses the detection of changes
due to the urban evolution. The strategies that are exploited in these works include
post-event supervised analysis [67, 68, 71–73], joint use of optical and SAR data [6, 66],
joint use of LiDAR and SAR data [75], unsupervised detection of damages at the level of
aggregated blocks [31,69] or GIS polygons [70]. Despite the great interest, the only work
that addresses the problem of building change detection using multitemporal VHR SAR
data in an unsupervised way is presented in [76].

In this work we present an approach that exploits the characteristics of the two comple-
mentary acquisition modes (i.e., stripmap and spotlight) to: i) quickly and automatically
identifies the areas severely affected by a catastrophic event (i.e., hot-spots), such as an
earthquake by analyzing images characterized by a large coverage and a medium to high
geometrical resolution; and ii) analyzes images characterized by very high geometrical res-
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olution acquired over hot-spots in order to detect collapsed buildings. The effectiveness
of the proposed approach are demonstrated in experimental results obtained on COSMO-
SkyMed multitemporal images acquired in 2009 on the city of L’Aquila (Italy) before and
after the earthquake that hit the region.

This chapter is organized into five sections. Section 4.2 reviews the main operational
modes of SAR systems. The proposed approach to building change detection is described
in Section 4.3. Section 4.4 presents the data set and shows the experimental results.
Section 4.5 draws the conclusions of the work.

4.2 Synthetic Aperture Radar modes

As we discussed in the introduction of this thesis SAR is an active radar system operating
in the microwave region of the electromagnetic spectrum generally between P-band (i.e.,
0.1-0.39 GHz) and Ka-band (i.e., 26-40 GHz). SAR systems illuminate the scene using
a side-looking geometry. The antenna of the radar system is mounted on a flying plat-
form. Its horizontal and vertical axes are parallel and orthogonal to the azimuth direction,
respectively. The angle between nadir and the radar beam direction is called incidence
angle and it is usually denoted by θ. Such a system illuminates the Earth surface with mi-
crowave pulses and receives the electromagnetic signal back-scattered from the illuminated
scene. By means of signal processing techniques that exploit the Doppler shifts of the
received electromagnetic echoes, SAR systems are able to synthesize a two-dimensional
high spatial resolution image from all the received signals.

Regarding the plane perpendicular to the flight direction, two reference systems are
usually used to define the position of a point. These are the slant range and the ground
range. The slant range is the direction identified by the conjunction between a point
target and the SAR system. The ground range is the projection of the slant range on
the ground (corresponding to the across-track direction of the RS case). Therefore, the
ground range resolution δgr depends on the incidence angle and on the surface topography.

Figure 4.1: SAR modes. The reported parameters are refereed to TerraSAR-X imaging modes.

Several sensor operation modes for acquiring SAR data were developed in the past. The
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most common modes which are implemented in space-borne SAR missions are StripMap
(SM) and SpotLight (SL). In the SM (see Fig. 4.1 left side) the radar antenna points along
a fixed direction with respect to the flight path. As the platform moves the resulting
image covers a strip of the ground surface. The extension of the imaged area in azimuth
direction is limited only by the power and free memory available on-board of the satellite,
whereas the resolution in range direction is constrained by half of the actual antenna
length. Generally speaking for the new SAR generation the standard coverage is of about
1500 Km2 with a resolution that varies between 1.5 to 5 m in ground range and about
3 m in azimuth depending on the platform and acquisition parameters. In the SL mode
(see Fig. 4.1 right side) the azimuth resolution is improved by increasing the length of
the synthetic antenna. This is done by steering the antenna beam so that to illuminate
the same area on the ground during the acquisition. Nonetheless, the improvement in
the azimuth resolution is at the expense of the spatial coverage. The standard coverage
is in fact of about 100 Km2 (instead of 1500 Km2) with a resolution that varies between
1 to 3.5 m (instead of 1.5 to 5 m) in ground range and 1 m (instead of 3 m) in azimuth
depending on the platform.

4.3 Proposed Approach to Damage Detection

Let us assume to analyze two HR amplitude SAR images I1 and I2 acquired in Strip-Map
mode before (pre-event) and after the event (post-event) respectively, which have the
same incidence angle and centered over the epicenter of the event. The goal is to detect
the areas severely damaged by the event (i.e., hot-spots) in order to quickly organize the
rescue operations. The most critical issue for the identification of the damages is related
to the presence of many possible kinds of changes on the ground. A single site may
include many kinds of change that show significantly different characteristics in terms of
size, shape and semantic meaning. Note that not all the changes are associated to the
built-up site and thus they are not relevant for the rescue operation. The analysis of
SM image allows the detection of large portions of changed areas. Here we refer them as
hot-spots. The obtained hot-spots are then exploited to drive the selection of a pre-crisis
VHR SAR X1

1, . . . ,X
Q
1 and the acquisition of post-crisis VHR SAR images X1

2, . . . ,X
Q
2

taken with the same incidence angle. Note that the acquisition of the post crisis images
X1

2, . . . ,X
Q
2 should be scheduled on the basis of the detected hot-spots. These images

are used to perform change detection at high spatial resolution with the goal to detect
collapsed buildings with a high level of detail.

Hence, the proposed approach is made up of two main phases: i) a coarse detection
of the areas of change (hot-spots); and ii) a fine detection of the fully collapsed buildings
inside each hot-spot. Fig. 4.2 shows the block schemes of the two phases of the proposed
approach. Each phase of the method is explained in detail in the next subsections.

4.3.1 Detection of Damages (Hot-Spots)

The first phase of the proposed approach is devoted to rapidly analyze a large scene and
detect the changes due to the crisis event (see Fig. 4.3). This is done by comparing pre- and
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Figure 4.2: Temporal scenario for a rapid and accurate damage detection.

post-event SAR images I1 and I2 acquired in SM mode and by identifying the areas that
present either a significant increase or decrease in the backscattering value as described in
chapter 2.2.2. In detail, this is done by the log operator i.e., ILR = log I2

I1
= log I2− log I1.

Given the nature of the HR images, the application of this strategy will result in a high
number of false alarms. Several works have been presented in the literature in order
to overcome this problem and identify the changes due to crisis events [7, 25, 69]. In
this chapter a pixel-by-pixel comparison followed by a Wavelet de-noising procedure is
used in order to mitigate the effect of speckle [39]. In detail, a two-dimensional discrete
stationary Wavelet transform (2D-SWT) is applied recursively N + 1 times to the log-
ratio image. The de-noised image Ifil

LR is obtained by applying the inverse two-dimensional
discrete stationary Wavelet transform (2D-ISWT) considering only the N + 1 sub-bands
of approximation. From Ifil

LR it is possible to isolate the areas affected by a significant
backscattering change and that present an extension equal or larger than the resolution
of the selected Wavelet level N+1. Therefore, in order to detect the hot-spots the selected
level has to be comparable to the scale of aggregated buildings or city blocks size.

SM SAR t1
image

SM SAR t2
image

DETECTION OF HOT-SPOTS
AT AGGREGATE BUILDING SCALE

Thresholding

Split-based
analysis

Comparison by 
log-ratio

Denoising
Coordinates for the 
Acquisition of SL

VHR Images

Geo
Database

Detection of Fully Destoyed
Buildings with SL Images

(Phase 2)

Figure 4.3: Logical flow for the detection of hot-spots using SM images (first phase).
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As the analysis of SAR images acquired in SM mode involves the processing of large
multitemporal images it is possible that the population of changed pixels is in sharp
minority when considering Ifil

LR. This may affect the accuracy of the adopted automatic
threshold selection technique. In order to address this issue, we use the split-based thresh-
olding method presented in chapter 2.2.3. It is worth noting that the obtained change
detection map MSM does not report any information about the source of the changes.
Indeed the changes may be associated to the crisis event as well to other source of change
such as phenological changes. By exploiting prior information (e.g., cadastral map) and
focusing on changes related to build up areas, the hot-spots possibly related to the crisis
event that are in urban areas can be isolated. Nevertheless, among these changes some
may be more critical than others. The severity of the change can be inferred considering
the prior information available to civil protection or exploiting the intensity and texture
information of the SAR images as proposed in [7, 69]. Once the most relevant hot-spots
are detected, an algorithm for solving the “packing problem” of acquiring the minimum
number of SL acquisitions X1

2, . . . ,X
Q
2 by covering the highest number of critical hot-spots

can be applied. Under the assumption the pre-event X1
1, . . . ,X

Q
1 images have been already

acquired, when a crisis occurs the acquisition of X1
2, . . . ,X

Q
2 can be effectively planned (if

not already done) by the outcome of this phase.

4.3.2 Detection of Fully Collapsed Buildings

The aim of the second phase is to detect collapsed buildings considering X1
1, . . . ,X

Q
1

and X1
2, . . . ,X

Q
2 identified in the previous phase. This is done by extending the method

presented in chapter 3, which takes explicitly into account the backscattering mechanism
of changed buildings in SAR images. In detail, we set the proposed approach for this
specif task in order to produce a map made up of 3 classes: i) fully destroyed buildings
(ωc1); ii) changes that have a size comparable to a building but do not present the typical
pattern of full new/demolished buildings (ωc2); iii) all the other changes that do not show
a size comparable to a building and are therefore not related to changed buildings (ωc3).
For the sake of notation, and without any loss of validity in the following we assume that
Q = 1 and thus that critical hot-spots can be fully covered by means of a single couple
of images X1 and X2 acquired with the same incidence angle2 on the same geographical
area at different times t1 and t2, respectively.

As depicted in Fig. 4.4 the proposed method firstly detect the backscattering changes
at the level of building i.e., the level that better represents buildings and not sub-parts
of them. Differently from our original work, this representation is derived according to a
Curvelet transform [103]. Curvelet is a generalization of the concept of Wavelet that allows
the representation of an image at different scales and different angles. Curvelets are an
appropriate basis for representing images which are smooth apart from singularities along
smooth curves. The Curvelet transform is applied to the log-ratio image XLR derived from
X1 and X2 and the coefficients are selected according to a hard thresholding rule [103].
In this way Curvelets results sensitive to structural changes due to anthropogenic changes
or damages in human made structures. The residual Curvelet coefficients are used to

2It is worth noting that the incidence angle can be different from the incidence angle of SM images.
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Figure 4.4: Logical flow for the detection of fully destroyed buildings using SL images (second phase).

reconstruct the filtered version of the log-ratio image by means of an inverse Curvelet
transform. According to the proposed method, is used to extract the areas of changes
related to increase or decrease in the value of backscattering. This is done by applying a
thresholding procedure as describe in chapter 2.2.3. The obtained map MSL is employed
to identify the candidate to be changed building. A changed building candidate is an area
of change that has size equal or larger than the minimum size of the building present in
the investigated site. The candidates are derived by counting the changed pixels inside a
set of moving windows, with size equal to the minimum size of the buildings present in
the scene and covering the most of the possible building orientations.

Once the candidates are identified the proposed method associates the proper class of
change ωc1, ωc2 and ωc3 to each candidate. This is done by evaluating five fuzzy rules.
These rules have been derived by considering the expected backscattering mechanisms of
changed building. Each rule returns a grade of membership of the candidate to one specific
expected propriety related to the physical characteristics and the spatial arrangement
of the candidate with respect to the model of destroyed building. The rules aim at
verifying: i) the presence of both increase and decrease of backscattering contributions
inside the candidate; ii) the grade of membership of the building candidate area, in terms
of number of pixels, covered by the regions of increase and decrease of backscattering;
iii) the orientation of the pattern increase-decrease; and iv) the alignment of the region
of increase with respect to the region of decrease in backscattering; v) the overall size of
the radar footprint w.r.t. the size of the areas of increase and decrease of backscattering.
If the aggregate membership of the five fuzzy rules exceed a certain threshold TM, the
estimated convex-hull of each candidate is reported in the final change detection map as
result of the detection. We refer the reader to chapter 3 for more details on this part of
the method.

4.4 Data Set Description and Experimental Results

On April 6, 2009 an earthquake of 6.3 Moment Magnitude Scale (MMS) struck central
Italy with its epicenter near L’Aquila (42◦21′N 13◦24′E). The earthquake caused damages
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to a relevant number of buildings in the city of L’Aquila: several buildings collapsed and
about 1500 people were injured and about 300 people died, making this event the deadliest
earthquake to hit Italy since the 1980 Irpinia earthquake.

At the time of the earthquake no SM images were available on the area of the event.
Nonetheless, two SL (1-look, 0.5m×0.5m pixel spacing, X-band) amplitude images (X1

and X2) acquired in HH-polarization in ascending orbit with 57-58 degree incidence angle
and processed according to the standard processing level 1C (Geo-coded ellipsoid cor-
rected) acquired on April 5, 2009 and April 21, 2009, respectively. This is due to the
fact that the COSMO-Skymed constellation was operational for few years at the time and
that only 2 out of the 4 satellites were fully operational. Therefore, the COSMO-Skymed
archive was just started to be populated with images. In order to assess the effectiveness
of the proposed method the SL images were used to generate a couple of images with a
degraded resolution (pixel spacing of 2.5 m) that can be assimilated to SM images (I1

and I2). This was done by using a nearest neighbor interpolation without multilooking
operations, and thus obtaining in images with size 5000 × 5000. In the following, we
refer to these images as SM images. Moreover, in order to be consistent with the real
relationship between the size of SM and SL images, in the following we considered SL
images with size 5 times smaller than the obtained SM images i.e., 5000× 5000.

Fig. 4.5a shows the map of the area covered by the two SM images. Fig. 4.5b shows

(a)
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(b) (c)

Figure 4.5: L’Aquila: (a) Map of the area covered by the SM COSMOSky-Med images (Google). (b)
RGB multitemporal composition of SM COSMOSky-Med images (red channel:21/04/2009, green chan-
nel:04/05/2009, blue:21/04/2009). (c) Hot-spots map MSM. In red and blue the most damaged regions.
The size of these regions corresponds to the coverage guarantee by SL images.

a false color composition of the two SM images (red channel:21/04/2009, green chan-
nel:05/04/2009, blue:21/04/2009) in which pixels with an increase in the value of backscat-
tering appears in magenta tone, pixels with a decrease in the value of backscattering ap-
pear in green tone and unchanged pixel in gray-scale. It is worth noting that a relevant
number of changes are present between the two acquisitions (see Fig. 4.5b). This increases
the complexity of the detection of collapsed buildings.

In order to apply the proposed method the two SM images were calibrated and coreg-
istered (with sub-pixel accuracy) and the log-ratio image ILR calculated. ILR was filtered
by applying recursively a 2D-SWT transformation and reconstructing considering only
the low-pass information at the 4th level. From Ifil

LR the hot-spots of changes were derived
by applying the split-based thresholding. The size of splits SSM

R × SSM
A = 64 × 64 pixels

(corresponding to 160 × 160 m2 on the ground) were selected according to average size
of expected changes in the test site. The obtained map is reported in Fig. 4.5c. From
MSM and the cadestrial map Q = 4 areas with extension comparable to SL images were
selected to be further analyzed in order to detect the presence of collapsed buildings.
Among these areas we selected a representative case (red box in Fig. 4.5c) to be used
in the following in order to effectively illustrate how the proposed method for the detec-
tion of collapsed buildings works. Indeed, the considered area present a relevant number
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of collapsed buildings, differently from the other areas that present changes due to the
construction of refugees camps.

As described in the methodological part, the proposed approach for the identification
of collapsed buildings firstly calculates the log-ratio image XLR. This was computed
from the two calibrated and co-registered CSK SL images X1 and X2. In detail, the co-
registration was performed with sub-pixel accuracy and the radar brightness calibration
was applied in order to render the two images comparable. From XLR the set XMS =

(a)

(b) (c)
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(d) (e)

(f)

Figure 4.6: L’Aquila (Italy) data set: (a) orthophoto acquired few days after the earthquake on April 2009
(Geoportale Abruzzo); and (b) RGB multitemporal composition of spotlight COSMOSky-Med images
(R:21/04/2009, G:05/04/2009, B:21/04/2009). The images are geo-projected according to the reference
ellipsoid. Actual range and the azimuth directions are reported in white arrows. (c) Change detection
map MSL obtained after the curvelet de-noising. (d) Map showing the index of the size of changes C. (e)
Changed building map overlapped to the RGB multitemporal composition of CSK data. (f) Cadastral
map of the area (destroyed buildings are reported in red).

{
X0

LR, . . . ,X
n
LR, . . . ,X

N−1
LR

}
was computed by applying sequentially the 2D-SWT and the
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Table 4.1: Parameters used in the experiments carried out on L’Aquila dataset.

Parameter Value

N − 1 3

SR 120 pixels

SA 40 pixels

z1 40 pixels

z2 20 pixels

TC 160 pixels

a1, b1 10, 0.3

a2, b2 10, 0.5

a3, b3 −10, π
3

TM > 0.125

2D-ISWT with an 8-length Daubechies filter. The level (N − 1)th = 3rd, which gives a
resolution of approximately 8 meters, was selected as the optimum one. This allows to
observe radar footprints of buildings as small as 8 by 8 meters, which is compatible with
the minimum size of building footprints in the considered scene. X3

LR was thresholded
according to the unsupervised split-based procedure described in section 4.3.1. The split
size was calculated starting from the average building size, which was estimated to be
w1×w2×h = 25×20×15 m3. By substituting these values in eq. (3.2) SSR was obtained
to be equal to 49.50 m in slant-range geometry. Since the CSK images are ground-
projected, SSR was projected in ground range considering the reference incidence angle
i.e., 58 degree obtaining in this way SGR = 58.36 m. From the calculation and taking
into account a pixel spacing in range of 0.5 m, SR results to be equal to 120 pixels. By
applying eq. (3.3) and considering a pixel spacing in azimuth of 0.5 m, SA was estimated
to be equal to 40 pixels. It is worth noting that the split-based thresholding technique has
a relative high tolerance to the selection of the values of SR and SA. This was proven by
a sensitivity analysis in which SA was ranged from 20 to 60 pixels and SR from 80 to 170
pixels. Despite the large range (about ±1/3 of the optimal selected size) the error on the
estimation of the thresholds is small. Moreover, in all the cases the generated maps did
not present any critical behavior and resulted in a very similar final detection of changed
buildings. The obtained CD map Mopt highlighting the three classes ξu, ξ

+, ξ− is reported
in Fig. 4.6c. The detector described by (3.4) was then applied to Mopt in order to obtain
the image C. With regard to the considered scene, it is expected that the minimum size
of building footprint is 40×20 pixels. Therefore, the set of 5 windows reported in Fig. 3.6
were set to size z1 × z2 = 40 × 20 pixels in order to derive C (see Fig. 4.6d). A set of
changed areas Γ = {γ1, . . . , γ38} compatible with building footprint changes was derived
by threhsolding C with TC = 160 (which corresponds to 20% of maximum value of C) and
by applying a flood-fill algorithm. It is worth noting that both the window size and the
threshold value were selected according to minimum size of buildings in the considered
area in order to limit the missed alarms. Each of the candidate areas was analyzed in
order to detect the changed buildings. To this end the four fuzzy rules were automatically
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evaluated for each candidate γh, (h = 1, . . . , 38). Finally, for each building candidate that
presents an aggregated membership TM greater than 0.125 the radar building footprint
was approximated by the convex-hull containing the candidate. It is worth noting that
TM was selected in order to minimize the missed alarms. This is done by taking into
account the definition of the membership functions and the aggregation strategy (i.e.,
algebraic product). In the present experiment µrs = µrl = µα = 0.5 were selected as limit
case, which results in an aggregate membership function M = 0.125. Fig. 4.6e shows the
final result. In the specific case, all the reconstructed radar building footprints have an
aggregate membership function greater than 0.615. Table 4.1a reports the settings of the
parameters used for the dataset of L’Aquila.

(a) (b)

(c)

(d)

Figure 4.7: (a)-(d) Zoom of the 6 buildings destroyed and correctly detected by the proposed method
(Bing Maps, Microsoft Corporation). See Fig. 4.6f for the correspondence of the buildings on the map.
As one can notice building was totally demolished after the earthquake.

By comparing the changed building map with the false color composition of the mul-
titemporal images (Fig. 4.6e) one can notice that the proposed approach can effectively
detect the backscattering changes associated to disappeared buildings as described in
Section 3.2.2, which patterns present a decrease and increase in backscattering oriented
near-to-far-range (see Fig. 4.6e). From a quantitative point of view, Table 4.2 reports
the number of radar building footprints of demolished building detected by the proposed
approach. Even though the dataset presents a relevant number of changes in the backscat-
tering value, none of the actual demolished buildings (see Figg. 4.7.a-d) was miss-detected
and one of the building was wrongly identified as totally destroyed (see Fig. 4.7.e) even
though it was half collapsed on itself.

Fig. 4.6f shows the positions of the destroyed buildings in the cadestrial map obtained
by transforming the geometry of SAR images to the geo-referenced cadastral map. It is
worth noting that differently from the results obtain in chapter 3, the building denoted
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Table 4.2: Performance of the proposed approach for L’Aquila Dataset in terms of number of detected
destroyed buildings, missed alarms and false alarms.

Total Number of Buildings Detected Destroyed (ωc1) Missed Destroyed False Destroyed

200 6 0 1

with the letter e in Fig. 4.6f, was demolished by the authorities after the acquisition of the
21th of April (considered in this chapter) but before the acquisition of 12th September
(used in chapter 3). The analysis confirms the high accuracy of the proposed technique.

4.5 Conclusions

In this chapter an approach for the rapid and accurate detection of damages in build-
up areas after a catastrophic event using SAR data has been presented. SAR systems
on-board of new generation SAR missions are able to acquire images with a geometrical
resolution that varies form 5 meters up to 1 meter using two different operational modes
called StripMap and SpotLight. By increasing the resolution the maximum ground cover-
age guaranteed decrease accordingly. In this chapter we have proposed to jointly exploit
these two acquisition modes in order to: i) quickly identify the areas severely affected by
the crisis event (i.e., hot-spots) by analyzing large areas using data characterized by a
high geometrical resolution (3-5 m); and ii) accurately detect collapsed buildings inside
each hot-spot by analyzing small areas using data with very high geometrical resolution
(1 m).

In the first phase of the proposed approach the hot-spots, which are areas with both
a significant increase or decrease in the backscattering value are detected from the SM
images. Since the goal during this phase is to quickly identify the areas severely affected
by the crisis event and not perform detection at a fine resolution, a comparison between
the SM images with a log-ratio operator and a de-noising operation based on the Wavelet
transformation was applied in order to obtained the hot-spots. By exploiting the available
prior information about the scene i.e., cadastral maps it was possible to define the regions
to be further analysed in order to detect the collapsed buildings.

The analysis at the level of single building is conducted in the second phase of the
proposed approach by taking advantage of the theoretical model of new/destroyed building
and the detection method illustrated in chapter 3 of the presented thesis but exploiting
the curvelet transform in order to better preserve the linear details that characterize urban
structures in VHR SAR images.

The proposed approach was tested using SAR data related to the earthquake of
L’Aquila (Italy) in 2009 acquired by COSMOSky-Med constellation. The proposed method
demonstrated to be effective in detecting all the demolished buildings with a high accu-
racy. In detail, only one buildings was misclassified over 200 present in the two datasets
with no missed detection. This was possible because the high robustness of the proposed
method to deviations from the ideal model considered for changed buildings. This robust-
ness is due to both the use of adequate fuzzy rules and the intrinsic reliability obtained
when working on the comparison of two images rather than on the modeling of building
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in each image.
As future development of this work, we plan to test the proposed approach considering

SAR dataset related to other earthquakes. Moreover, we plan to engineer the proposed
approach to be compliant with the cogent requirements of real emergency scenarios.
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Chapter 5

A hierarchical approach to change
detection in multitemporal SAR
images for surveillance applications

The availability of Very High Resolution (VHR) Synthetic Aperture Radar (SAR) images,
which can be acquired by satellites over the same geographical area with short repetition
interval, makes the development of effective unsupervised change-detection techniques very
important. This chapter1 proposes a hierarchical approach to change detection in VHR
SAR images for addressing surveillance applications, where VHR data are acquired with
high temporal resolution (e.g., one image every few days). The proposed approach is based
on two concepts: i) exploitation of a multiscale technique for a preliminary detection of
areas containing changes in backscattering at different scales (hot-spots); and ii) explicit
modeling of the semantic meaning of changes by using both the intrinsic SAR image
properties (e.g., acquisition geometry and scattering mechanisms) and the available prior
information. In order to illustrate the effectiveness of the proposed approach, a problem
of freight traffic surveillance is addressed considering two data sets. Each of them is
made up of a pair of multitemporal VHR SAR images acquired by the COSMO-SkyMed
constellation in spotlight mode. Each data set defines a complex change-detection problem
due to both the presence of a variety of changes on the ground and the complexity of object
backscattering. Experimental results point out the effectiveness of the proposed approach.

5.1 Introduction

The availability of very high geometrical and temporal resolution images makes it possible
to address new challenging problems that were behind the possibilities of remote sensing
before. Here we concentrate the attention on surveillance of sites of interest, such as
maritime ports, airports, logistic centers, industrial areas and so on. As described in
the chapter 1, the combination of short repetition interval and very high geometrical

1Part of this chapter appears in:
[65] F. Bovolo, M. Marin and L. Bruzzone, “A hierarchical approach to change detection in very high resolution sar

images for surveillance applications,” in Geoscience and Remote Sensing, IEEE Transactions on,, vol. 51, no.
4, pp. 20422054, April 2013.
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(a) (b)

Figure 5.1: “Calata Neghelli — Porto Nuovo”, Livorno, Italy. (a) Aerial image of the terminal show-
ing warehouses, containers, forklifts, trucks, etc. c©Microsoft Corporation c©NAVTEQ — 2011. (b)
RGB multitemporal composition of spotlight COSMO-SkyMed images (R:04/24/2010, G:04/23/2010,
B:04/24/2010).

resolution leads to some challenging issues that should be addressed. In this chapter
we focus the attention on the problem of freights surveillance. In order to introduce
the problem, the case of a maritime port is considered in the following. This will allow
a detailed description of the issues associated with this kind of problem. Nonetheless,
the method is general and can be used also in other applications. Ports are complex
systems often developed over wide surface. They are made up of several terminals used
to properly handle cargoes passing through them [104–106]. In such a scenario, one of
the main problems is the management of the large movement of goods for increasing the
productivity of the port [104, 107]. In order to monitor the port operations and define
new effective strategies for decreasing the handling time (and thus the overall cost of
port management) surveillance activities should be carried out. A synoptic spatial view
of a port can be obtained by analyzing available charts. However, given the large area
to be monitored and its dynamic behaviours, it is desirable to exploit multitemporal
space-borne sensor acquisitions.

In order to illustrate the scenario described above, let us consider a zone of the seaport
of Livorno (Italy), and an aerial image taken over it (see Figure 5.1a). The main objects
in the scene (i.e., buildings, containers, cargo ships, etc.) have dimensions in the order of
some meters. Thus 1 meter resolution SAR images (e.g., acquired by COSMO-Skymed
and TerraSAR-X/TanDEM-X) are a very important information source for addressing
this problem. Dealing with VHR SAR images become very complex when multitemporal
data are considered. Let us consider for example Figure 5.1b which was acquired on the
same geographical area of Figure 5.1a. In this image, which is a false color composition of
two VHR SAR images acquired at only one-day distance (i.e., April 23rd and April 24th
2010, respectively), changes due to a backscattering decrease appear in green, whereas the
ones due to backscattering increase appear in magenta; unchanged pixels appear in gray
levels. As one can notice, there is a large number of changes. However most of them are
false alarms with respect to the goal of the detection container movements. This depends
on the fact that many changes occurred in the backscattering are either related to the
different conditions on the ground (an heavy rain occurred between the two acquisitions)
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or to changes that are not related to the scenario under analysis.

Thus there is a need of distinguishing changes relevant from non-relevant changes.
In order to accomplish this task we can exploit the prior information available in the
considered problem. In the considered case of maritime ports, zones that differ because of
their operational purpose can be identified. In detail it is possible to distinguish loading
zones, storage tanks zones, docking facilities and so on. For each of these zones one can
expect specific changes depending on the typical operations carried out. As an example,
one can expect movements of containers in the container terminal, which are not expected
in the chemical terminal. This means that, given the expected kind of change(s), for each
zone it is possible to envisage the most suitable primitive(s) to enhance relevant changes
and reduce the effects of non-relevant ones. These primitives may differ zone by zone. In
order to render the detection of the expected change(s) more robust, it is possible to drive
this procedure according to a preliminary identification of the areas affected by changes
in backscattering (hot-spot) based on a multiscale analysis of the images. Large changed
areas at a coarse scale are identified (hot-spots). According to them one can guess the
expected kind of change. If hot-spots are localized in the car terminal, the change can be
associated with the movement of cars. Therefore, we can extract primitives for detecting
cars in the identified hot-spots on the two images in order to generate a change-detection
map of car movements. A similar analysis can be carried out in order to describe any
kind of change in maritime ports and extended to other sites of interest such as airports,
industrial areas, logistic centers and so on.

In the literature few unsupervised approaches to change detection in VHR SAR images
have been presented that exploit the semantic meaning of the backscattering changes in
order to effectively separate the changes of interest from those that are not interesting
[6, 10]. However, they do not take explicitly into account the multiscale proprieties of
the expected changes. As we saw in chapter 2 some works have been presented in the
literature that use multiscale strategies [15, 39, 108]. Despite their nice property of being
multiscale, these methods do not model the change in backscattering of complex objects
and are not able to exploit the semantic meaning of changes in backscattering (i.e., each
kind of change is treated in the same way) since they were proposed for data having
resolution in the range 10-30 meters. Therefore, they mainly address change-detection
problems showing a single kind of change and are not optimized for separating multiple
changes.

In order to overcome the limitations of state-of-the-art methods, in this work we pro-
pose a hierarchical approach to change detection in VHR multitemporal SAR images,
which is based on two concepts: i) exploitation of a multiscale technique for a preliminary
detection of areas containing changes in backscattering at different scales (hot-spots); and
ii) explicit modeling of the semantic meaning of changes by using both the intrinsic SAR
image properties (e.g., acquisition geometry and scattering mechanisms) and the avail-
able prior information. Due to the mentioned properties and the specific requirements
on the availability of prior information, the proposed method is particularly suitable for
surveillance and monitoring applications.

Two data sets, each made up of a pair of VHR CSK SAR images acquired in spotlight
mode, were considered in the validation of the proposed approach. For both of them a
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Figure 5.2: Conceptual flow of the proposed approach for monitoring and surveillance applications.

priori knowledge is available on the investigated scenario. The first data set was acquired
over the freight village “A. Vespucci”, Livorno (Italy). Changes that occurred on the
ground are mainly due to a single reason: movements of cargo (i.e., only one kind of
change is present). The second data set was acquired over the port of the city of Livorno
(Italy). This scenario is much more complex and between the two acquisitions several
kinds of changes occurred on the ground. Changes are mainly due to cargo ship, truck and
cargo movements. Moreover non interesting changes were observed due to the variation in
the water content of the ground due to heavy rain between the two acquisitions. Results
obtained on both data sets confirmed the effectiveness of the proposed approach.

The rest of the chapter is organized into four sections. Section 5.2 describes the pro-
posed approach to change detection. Section 5.3 presents the data sets, illustrates the
tuning of the proposed method on the considered application, and shows the experimental
results. Section 5.4 draws the conclusions of this work.

5.2 Proposed Hierarchical Approach to Change Detection

Let us consider two amplitude VHR SAR images X1 and X2 acquired on the same ge-
ographical area at different times τ1 and τ2, respectively. Let us assume that the area
of interest is associated to a surveillance problem, i.e., it is an airport, a port, a logistic
center or an industrial area, and that the goal is to detect changes for monitoring commer-
cial traffic. The most critical issue dealing with this kind of applications is related to the
presence of many possible kinds of changes on the ground. A single test site may include
many kinds of change that show significantly different characteristics in terms of size,
shape and semantic meaning. Nevertheless, these kinds of change may exhibit similarities
in the backscattering values even though they have a different semantic meaning. Here
we propose to deal with this problem by exploiting all the available prior information
about the scene. Given the considered kind of application, it is reasonable to assume that
prior information about the test site is available, such as the position of buildings, docks,
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landing strips, or the usage of specific zones (e.g., loading zones, storage tanks areas,
docking facilities). The kind of available information depends on each specific problem.

Under this assumption we introduce an approach made up of three stages: i) a hi-
erarchical multiscale representation of the multitemporal information; ii) a preliminary
identification of the areas affected by changes in backscattering (hot-spots); and iii) a
scale-driven detection of the changes, which uses the prior information. Figure 5.2 shows
the block scheme of the proposed approach.

5.2.1 Hierarchical Multiscale Representation of Multitemporal Information

In order to detect hot-spots and to reduce the noise impact, a multilevel representation of
the multitemporal information is computed. The representation is achieved according to
a wavelet-based procedure [39]. Here the multiscale representation is used to derive the
hot-spots rather than to directly detect changes. The detected hot-spots will drive the
next steps of the proposed method (see Sec. 5.2.3).

The multiscale representation is obtained as described in chapter 2.2.2. Differences in
backscattering are highlighted by means of the log-ratio image XLR i.e., XLR = log X2/X1.
As we saw in chapter 2.2.2 this is the most common operator for highlighting changes in
multitemporal SAR data. Indeed, the ratio operator is used in order to reduce the effects
of speckle in the resulting image, and log operator is used to transform the residual multi-
plicative noise (which is expected to be high in portions of the ratio image associated with
changed areas on the ground) in an additive noise component. XLR includes information
about changes associated to both increase and decrease of backscattering. Unchanged
pixels assume values close to zero, whereas positive and negative changes assume pos-
itive and negative values far from zero, respectively. Nevertheless, no information can
be retrieved from XLR about the semantic label of such changes. From XLR a set of
multilevel images XMS =

{
X0

LR, . . . ,X
n
LR, . . . ,X

N−1
LR

}
is computed, where the superscript

n, n = 0, . . . , N indicates the resolution level of images. The output at resolution level 0
corresponds to the original image, i.e., X0

LR ≡ XLR. For n ranging from 0 to N − 1, the
images are characterized by different trade-offs between spatial-detail preservation and
speckle reduction.

5.2.2 Scale-Dependent Preliminary Detection of Changes in Backscattering
(Hot-Spots)

Once all the resolution levels have been brought back to the image domain, for each
element Xn

LR (n = 0, 1, . . . , N − 1) of the set XMS, a CD map is computed according
to the split-based unsupervised thresholding approach proposed in 2.2.3. This approach
was adopted since it can effectively detect changes in images of large size even when
the prior probability of the class of change is small. This is due to the ability of the
method to analyze only the sub-parts of the images that have the highest probabilities
to contain changed pixels. In greater detail, each image Xn

LR is automatically split into
a set of S sub-images Xn,s

LR, s = 1, . . . , S of user defined size. The choice of the split size
depends on the extension of the expected changes, and thus on the level n considered.
Nevertheless, a minimum size should be guaranteed so that the estimation of statistical
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parameters is reliable. At each resolution level the defined pixel sub-set is used to compute
the change-detection map. Here the thresholding method described in [48] is adopted.
Each sub-set of pixels is modeled as a sum of 3 probability density functions associated
to no-change, positive change, and negative change classes. Under this assumption, the
Bayes decision rule for minimum error is applied to separate the 3 classes. To this end
a statistical model for class distributions is required together with an approach for class
statistical parameters estimation. Following [48], the generalized-Gaussian model and
the well known Expectation-Maximization (EM) algorithm [47] were employed. In this
way, a CD map that shows three different classes is obtained at each resolution level n
(n = 0, . . . , N − 1). The generated CD maps exhibit different trade-offs between details
preservation and homogeneity i.e., the higher is n the larger and more homogeneous are
the detected areas of change and viceversa (see Figure 5.6). Since these maps partially
share changed areas, in order not to process the same changed areas multiple times at
different resolution levels, a cancellation is performed. Starting from the coarsest level
(n = N−1) and moving toward the finest one (n = 0), from each level n (n = 0, . . . , N−1)
changed areas that were detected (and therefore processed) at coarser levels m, m =
n+1, . . . , N−1, are removed. The result is a set ofMCD =

{
M0

CD, . . . ,M
n
CD, . . . ,M

N−1
CD

}
change-detection maps complementary to each other. Thus each map in MCD contains
a set of complementary changed areas Cnh , (h = 1, . . . , Hn). In the following we will
refer to these areas as hot-spots. It is worth noting, that differently from [25] these
change-detection maps are not the final result of the proposed approach, they will be
instead used to drive the detection of changes at finest scale during the next stage of the
proposed approach.

5.2.3 Scale-Driven Detection of Changes Based on Prior Knowledge

In the last stage, changes of interest are extracted with their semantic meaning. This is
done by taking advantage of the prior knowledge about the considered application, which
is mainly associated to the typical usage of zones to be controlled and of the detected
hot-spots. Thus the scene can be divided into different zones of interest in which different
kinds of change are expected. Each expected change can be modeled and extracted by
using specific features and change detectors that take into account the radiometric and
geometric properties of these expected changes. The spatial context can also be taken
into account. Which kind of features and change detectors should be involved in the
process depends on the specific considered application. Feature extraction (and thus
change detection) is performed by only considering hot spots Cnh , (h = 1, . . . , Hn) inMCD

defined in the previous stage. Starting from the lowest resolution level n = N − 1, and
on the basis of the position of hot-spots within the zones of interest, the strategy for the
detection of the specific expected changes is applied. Once all the Cnh are analyzed, a
finer scale is considered. This iterative process stops at the resolution level most suitable
to properly detect the expected kinds of change. It is worth noting that one can expect
to consider only few scales associated with the effects of expected hot-spots of change.
The final change-detection map is built by combining in a single map the results achieved
within the different hot-spots. In the following, examples of possible features and feature-
dependent change detectors are presented, which are inspired by a problem of freight
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Figure 5.3: Window used by the line detector.

traffic surveillance. Despite features and change detectors may be applied to different
hot-spots Cnh , in our notation we will omit this dependency in order to keep the notation
as simple as possible.

Let us consider the example of Livorno maritime port surveillance described in Sec-
tion 2.1 (see Figure 5.1a). In this scenario the main changes that characterize the cargo
area of a commercial port are due to: 1) container movements; 2) cars movements; and
3) cargo ships movements. In the following they will be analyzed in more detail presenting
their properties, the features and the change detectors more suitable to identify them.

Detection of Changes Associated with Movement of Containers

Shipping containers are reusable transport and storage metal units for moving products
and raw materials between locations. They are made in different size according to ISO
6346 standard for containers. Common lengths are 20 and 40 feet. In addition, they
are produced in two heights: “standard” (8.6 feet) and “high” (9.6 feet). Given the
geometry, a single isolated container may be identified exploiting the strong response
coming from the dihedral reflector, generated by the wall of the container and the ground
where it sets down, which results in a double bounce effect that involves bright lines in
SAR images. It is worth noting that the double-bounce Radar Cross Section (RCS) may
depend on radar parameters (i.e., frequency and polarization), container parameters (e.g.,
shape, material), geometry parameters (i.e., incidence angle and container aspect angle
i.e., the angle between the container wall facing the sensor and the azimuth direction), and
background parameters (e.g., ground type, weather conditions). As presented in [77], the
strength of the double-bounce varies as the aspect angle and background parameters vary
according to a non-liner relation that can be empirically derived. These parameters have
to be taken into account during the phase of detection. Thus, a container can be detected
by extracting its double-bounce effect generated by the long side of the container, i.e., a
bright line with a predefined minimum dimension of 20 feet with respect to the aspect
angle.

In the proposed technique the extraction of bright lines is carried out on each single-
date image by means of the line detector proposed by Tupin et al. in [109] but modified in
order to extract the bright lines instead of the dark ones. This detector was successfully
used in [110] for the detection of the bright lines associated with the presence of a building
considering VHR TerraSAR-X images. It consists of the fusion of two-line detectors,
namely D1 and D2, which are based on the geometry reported in Figure 6.5 considering
16 different directions. In greater detail, the response of D1 is the minimum response of
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a ratio edge detector applied to both sides of the central linear structure of Figure 6.5:

rL = min(r
(1,2)
E , r

(1,3)
E ) (5.1)

where superscript 1 denotes the central region, superscripts 2 and 3 the two lateral regions,

and r
(t,c)
E , with (t, c) ∈ {(1, 2), (1, 3)}, is defined as follows:

r
(t,c)
E =

{
1−min

(
µt
µc
, µc
µt

)
if µ1 ≥ µ2, µ3

0 Otherwise.
(5.2)

where µt is the empirical mean of the region t = 1 havingMt = ω×ωt pixels with amplitude
Atp, i.e., µt = ( 1

Mt
)
∑

p∈tA
t
p. The same definition is applied to µc (with c = 2, 3) i.e.,

µc = ( 1
Mc

)
∑

p∈cA
c
p. The response of D2 is the minimum response of the cross-correlation

edge detector applied to both sides of the central linear structure of Figure 6.5:

ρ = min(ρ(1,2), ρ(1,3)) (5.3)

where subscript 1 denotes the central region, subscripts 2 and 3 the two lateral regions,
and ρ2

(t,c) with (t, c) ∈ {(1, 2), (1, 3)} is defined as follows:

ρ2
(t,c) =


1

1+(Mt+Mc)
MtLCV2

tCR2
(t,c)

+ntLCV2
c

MtMc(CR(t,c)−1)2

if µ1 ≥ µ2, µ3

0 Otherwise.

(5.4)

where Mt = ω × ωt and Mc = ω × ωc are the number of pixels, CR(t,c) = µt/µc is the
empirical contrast, LCVt and LCVc are the local coefficient of variation for regions t = 1
and c = 2, 3, respectively. The results of the two detectors, D1 and D2, are finally merged
for each direction, by using an associative symmetrical sum Σ(rL, ρ) as follows:

Σ(rL, ρ) =
rLρ

1− rL − ρ+ 2rLρ
, with rL, ρ ∈ [0, 1] (5.5)

A line is detected when Σ(rL, ρ) is higher than the decision threshold Σ(rL, ρ)min. The
threshold can be identified manually or automatically, and its application results in a map
of detected lines. Nevertheless, when VHR SAR data are considered, the hypothesis of
fully developed speckle is not anymore satisfied. Thus the statistical properties of speckle
studied for medium and low resolution SAR images cannot be used to automatically de-
rive thresholds with a constant false alarm ratio as was done in [109]. In this work a fixed
threshold equal to 0.7 has given a good detection of the linear bright features.

Once the containers are identified in X1 and X2 by means of their double-bounce
response, they can be compared in order to detect possible changes. The comparison can
be carried out according to the ratio of the means or to statistical similarity measures (e.g.,
Kullback-Leibler divergence, Mutual Information). In this chapter we use the Kullback-
Leibler (KL) divergence. In detail we use the KL approximation given by the Edgeworth
series expansion of cumulats truncated at a given order described in chapter 2.2.2. The
obtained KL distance is then thresholded in order to identify changes in each analyzed
double-bounce line of containers.
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Figure 5.4: Window used by the isolated scatterer detector.

It is worth noting that, containers are normally stored together in large numbers and
they may be piled up in stacks forming densely packed clusters with height, orientation
and size. Even thought, the container clusters can be viewed as a problem where each
element has similar characteristics, the dense packing and large variation in stacking
configuration make it difficult the detection of single containers. Indeed, due to both the
occlusion problems and different orientations of containers relative to the radar antenna
(i.e., different aspect angles) the appearance of containers is not always the same, and
a detailed quantitative information of the number of containers may be difficult or even
impossible to extract. Nevertheless, a further processing of close double-bounce lines
based on the method presented in [111] can mitigate the ambiguity on possible staking
configurations of containers.

Detection of Changes Associated with Movement of Cars

Cars are often one of the freights handled by ports. In order to detect cars in SAR
images it is necessary to identify their radar cross section. As described in [112] and
like for the RCS of double-bounce lines, RCS of cars may depend on radar parameters
(i.e., frequency and polarization), car parameters (e.g., model, shape, material), geometry
parameters (i.e., incidence angle and car aspect angle), and background parameters (e.g.,
ground type, weather conditions). In [112] it was shown that there is a high probability of
detection of cars if they are in front, lateral or back view with respect to the sensor. Such
orientations produce a large RCS registered in the SAR image. Given their dimension and
assuming front or back orientation, cars can be modeled as isolated scatterers with a given
size. This is not true anymore if the cars are in lateral view with respect to the sensor.
The extraction of isolated scatterers for the detection of vehicles is performed by means
of the single-data detector proposed by Lopes et al. in [35]. Because the SAR impulse
response is generally a separable function of range and azimuth directions, the main part
of the point target response, i.e., the main lobe and the first side lobe, is spread on a
neighborhood similar to a cross. Figure 5.4 shows the geometry of the isolated scatterer
detector proposed in [35]. On the basis of this geometry, let us denote with subscript 1
the inner region and with subscript 2 the outer region, and let Ap be the amplitude of
pixel, so that the radiometric empirical mean µΩ of a given region Ω having MΩ pixels is
µΩ = ( 1

MΩ
)
∑

p∈Ω Ap. The response of the detector is defined as:

rPT = 1−min

(
µ1

µ2

,
µ2

µ1

)
(5.6)

Thus, a pixel is considered as belonging to an isolated scatterer when its response rPT

is higher than a manually or automatically chosen threshold rPT min. This detector can
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be applied directly to the images X1 and X2 and the two results compared in order to
detect the changes. Given the small number of samples that make up a car signature,
statistical comparison methods like similarity measures (e.g., Kullback-Leibler divergence
or Mutual Information) are not suitable. We perform the comparison of the isolated scat-
terers extracted as described before through a logical XOR operator. Then we associate a
change in a car with regions with a predefined minimum size resulting for the XOR oper-
ation. Nevertheless, other techniques that operate in the multitemporal data extracting
differential features can be applied to the detection of changes in cars.

Detection of Changes Associated with Movement of Cargo Ships

Cargo ships are one of the main vectors for the transportation of goods in a port. They
are categorized according to the task they have to accomplish (e.g., container ships or
tankers) and they can exhibit different size and shape. Nevertheless, due to the expected
large size, changes associated with their positions can be detected using coarser levels of
the multiresolution representation. Since cargo ships float in docks, changes due to cargo
ships movements are often in between the ones associated to the natural movement of the
water surface. Thus to remove this undesired effect the normalized ratio of means can
be used. This is because changes in water backscattering do not strongly affect the mean
value as the appearance/disappearance of ships do [113]. Hence, the normalized ratio of
means of the images X1 and X2, computed inside the hot-spots Cnh present in the wet
dock, can be used. It is worth noting that other indicators could have been used to detect
the movement of ships. Nevertheless, in order to maintain the computation load low, the
hot-spots identified in the second step of the proposed approach were used. This image
is the one used for hot-spots detection in the second step of the proposed approach. Let
Aτp be the amplitude of pixel at time τ = τ1, τ2, so that the radiometric empirical mean

µτCnh of a given hot-spot Cnh , h = 1, . . . , HN having M τ
Cnh

pixels is µτCnh = ( 1
Mτ
Cn
h

)
∑

p∈Cnh
Aτp.

The response of the detector is defined as:

r = 1−min

(
µτ1Cnh
µτ2Cnh

,
µτ2Cnh
µτ1Cnh

)
(5.7)

In this work we choose to only consider low resolution levels since we are interested only
in detecting cargo ships movements. More detailed information about the cargo ships
(e.g., the kind of ship) could be retrieved by processing higher resolution levels (e.g.,
analyzing the histogram of the ship at the finest scale and comparing it with a database
of ship histograms). However this kind of analysis is out of the aim of this work. As
a final remark, it is worth noting that using low resolution levels the results suffer of a
smoothing effect due to the low-pass filter applied during the multiscale decomposition.
This may lead to under/over estimation of the size of the change and thus of the size of
the appeared/disappeared ship.

5.2.4 Parallel Processing Architecture

Given the nature of the problem, the requirements that have to be fulfilled from the
computational viewpoint are two: i) the analysis has to be performed in near-real time;
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and ii) the scene can be associated to a large area. These two constrains are in contrast:
increasing the area of the scene increases the computational burden and thus the overall
time required to process the data. In order to face this problem, we developed the proposed
approach in such a way as to be run on a computer cluster infrastructure. To this end, we
defined a parallelization strategy based on the concept divide et impera. The main idea is
that the same job can be performed by K different nodes on a small subset of the scene.
The maximum speedup achievable using this strategy will depend on both the portion
of code that can be parallelized (i.e., Amdahl’s law [114]), and the computation resource
available (taking into account the law of diminishing returns).

In greater detail, the proposed approach can be divided into two computational load
phases. In the first phase the entire scene has to be analyzed in order to derive the
multiscale representation of the changes in backscattering (see Sec. 5.2.1 and Sec. 5.2.2).
This phase generates a computational burden that is proportional to the size of the
multitemporal images. Thus the concept of divide et impera can be applied as follows.
First, the VHR SAR images are split into tiles of a given size. In order to avoid borders
problem (i.e., to detect changes located at the borders between two tiles) every tile overlaps
with its neighbors. Second, the tiles are distributed among the computational nodes,
which independently execute the multiscale decomposition and the detection of hot-spots.

In the second phase (Sec. 5.2.3), the change detectors are applied to the hot-spots
found in the previous step of the proposed approach. It is worth noting that the selection
of the more suitable detector is driven from the prior information available about the
scene to be analyzed. Therefore, the computational load of this phase will depend on
their extension and on the kind of change to be detected (i.e., on the complexity of the
detector).

The results for each tile are finally merged in the full size change-detection map.

5.3 Data Description and Experimental Results

To assess the effectiveness of the proposed approach, experiments were carried out on
two different data sets both describing a problem of freight traffic surveillance. The first
data set represents a problem of monitoring of the movement of cars and it is related to
the logistic center “A. Vespucci”, Livorno (Italy), whereas the second data set represents
a complex maritime port scene where different kinds of transport operations are carried
out, and it is related to the port of Livorno (Italy).

5.3.1 Logistic Center “A. Vespucci”: Cars Handling Surveillance

The first data set is made up of two spotlight mode (1m×1m resolution, with 0.5m×0.5m
pixel spacing, X-band) CSK R© 1-look amplitude images. They were acquired in HH-
polarization on the 4th and 20th May 2011, on the freight village “‘A. Vespucci” in
ascending orbit with 23–24 degree incidence angle. The logistic center (43◦36’14” N,
10◦23’39” E) was set up in order to allow the exchange among the different modes of
transportation (i.e., rail and truck) in such a way as to facilitate the traffic of freights to
the final destination. One of the main kinds of freight handled by the center are cars.
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(a) (b)

(c) (d)

Figure 5.5: Logistic center “A. Vespucci” of Livorno (Italy) data set: (a) optical image — GeoEye, Tele
Atlas — c©Google — 2011; (b) RGB multitemporal composition of spotlight COSMOSky-Med images
(R:20/05/2011, G:04/05/2011, B:20/04/2011) c©ASI — Agenzia Spaziale Italiana — 2011. All Rights
Reserved; (c) thresholding of X4

LR; and (d) the proposed technique. New cars appear in magenta, and
removed once are in green color.

Available prior information about the site tells us where car parking lots are positioned
and how they are oriented. Thus, a test site of 883 × 693 pixels of the full scene was
selected in which all the cars face the sensor.

In order to apply the proposed method, the log-ratio image XLR was computed from the
two calibrated and co-registered CSK R© images. The co-registration was performed with
sub-pixel accuracy. From XLR, the setMCD =

{
M0

CD, . . . ,M
n
CD, . . . ,M

N−1
CD

}
, with N = 5

resolution levels, was computed by applying firstly the 2D-SWT and the 2D-ISWT with
an 8-length Daubechies filter. The impulse response of low-pass decomposition Daubechies
filter of order 4 is given by the following coefficient set:

{−0.0105974, 0.0328830, 0.0308414,−0.187035,−0.0279838, 0.630881, 0.714847, 0.230378.}

The finite impulse response of the high-pass filter for the decomposition step can be
computed by satisfying the properties of the quadrature mirror filters. From the mul-
tiresolution image representation, the complementary set of hot-spots Cnh , (h = 1, . . . , Hn)
have been extracted according to the unsupervised split-based method described in Sec-
tion 5.2.2. In particular, we set the value of B equal to 3. This value gives for the
considered data set the better trade-off between selecting high variance splits and suffi-
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Table 5.1: Quantitative parameters associated with changed areas retrieved with the proposed approach
in the logistic center “A. Vespucci”.

Parameter Retreived Reference

# of added cars 440 302

# of removed cars 928 808

cient number of samples. Since from the available prior information the expected change
in this scene is related only to the movement of cars, for each hot-spot Cnh found at the
levels n equal to 4 and 3, isolated scatterers are detected in X1 and X2 using the detector
with response given by (5.6), with ωc = 3, ωin = 5 and ωout = 11. Isolated scatterers
obtained for each image are compared according to the logical XOR operator in order
to detect differences between them: i.e., appeared or disappeared cars. Considering the
spatial resolution of the CSK R© images, this feature may result in more than one scatterer
for each vehicle. Therefore, a slight overestimation of the number of cars is expected.

Since no ground truth is available for the scene considered, the CD map obtained
with the proposed method was compared from a qualitative point of view with: (a)
an RGB multitemporal false color composition; (b) the change-detection map obtained
by standard pixel-based thresholding of XLR (i.e., M0

CD) and (c) the change-detection
map obtained by thresholding X4

LR (i.e., M4
CD). As expected, the change-detection map

obtained with a standard pixel-based thresholding of XLR is affected by a high number of
false alarms due to noisy components. The change-detection map obtained by thresholding
X4

LR (Figure 5.5c) is less affected by isolated errors but it shows poor geometrical details.
At this resolution level, cars cannot be counted. Differently, the proposed approach
(Figure 5.5d) results in a change-detection map with a lower impact of false alarms, while
at the same time it preserves changes associated to single cars. Quantitatively, we can
automatically count 440 new cars and 928 cars removed from the logistic center (green
and magenta colors in Figure 5.5d, respectively), whereas a visual inspection on X1 and
X2 resulted in 302 new cars and 808 removed (see Table 5.1). This operation was not
possible considering the CD map obtained with standard pixel-based thresholding of XLR.

5.3.2 Port of Livorno Data Set: Port Surveillance

The second data set is made up of two spotlight mode CSK R© images acquired on the port
of Livorno (Italy). The port of Livorno is one of the largest Italian commercial seaports
with an annual traffic capacity of around 50 million tonnes of cargo [105]. It is located
on the Tyrrhenian Sea in the north-western part of Tuscany (43◦32’6” N, 10◦17’8” E).
The two spotlight CSK R© 1-look amplitude images (1m×1m resolution, with 0.5m×0.5m
pixel spacing, X-band) were acquired in VV-polarization the 23rd and 24th April 2010
in descending orbit with 25–26 degree incidence angle. The selected test site is a section
(2880×1920 pixels) of the full scene. Fig. 6.9a shows the optical image corresponding to
the same area taken from Google Maps. This is a GeoEye RGB true color composition.
Fig. 5.6b shows a false color composition of the two CSK R© images. The available prior
information about the scene is associated to the presence of three zones (see Figure 5.6):
i) the cargo terminal (red region); ii) the car terminal (yellow region); and iii) the wet dock
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(a)

(b) (c)

Figure 5.6: Port of Livorno (Italy) data set: (a) optical image — GeoEye, Tele Atlas — c©Google —
2011; and (b) RGB multitemporal composition of spotlight COSMOSky-Med images (R:04/24/2010,
G:04/23/2010, B:04/24/2010) c©ASI — Agenzia Spaziale Italiana — 2010. All Rights Reserved. (c)
CD map obtained with the proposed technique. Pixels that experience an increasing in the value of
backscattering are in magenta, pixels that experience a decreasing in the value of backscattering are in
green color. Legend for the zones: yellow: container terminal; blue: dock; red: car terminal.
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(a) (b)

Figure 5.7: Zoom of cargo terminal area where containers are stacked (red box in left bottom part of
Figure 5.6). (a) RGB composition of spotlight COSMO-SkyMed images; and (b) CD map obtained with
the proposed method (new containers appear in magenta, removed ones appear in green).

(blue region). In the three mentioned zones we expect different kinds of changes relevant
from the application point of view and associated to the movement of: i) containers in
the container terminal; ii) cars in car terminals; and iii) cargo ships in the wet dock part.
Moreover, we know from meteorological data that between the two acquisition dates a
strong storm with wind and rain hit the port. Thus, we expect changes non relevant from
the application viewpoint related to the presence of residual water in the scene.

To apply the proposed method, the setMCD =
{
M0

CD, . . . ,M
n
CD, . . . ,M

N−1
CD ,

}
, N = 5,

was obtained following the same procedure used for the first data set (see Section 5.3.1).
Then, using the available prior information the problem was addressed considering the
three zones that make up the port.

Table 5.2: Quantitative parameters associated with changed area retrieved with the proposed approach
in the port of Livorno data set.

Parameter Retreived Reference

Length of cargo ships
Ship1: 117m Ship1: 116m

Ship2: 85m Ship2: 74m

# of cars in the cargo terminal 284 249

In greater detail, the expected changes for each of the three zones were extracted as
follows.

Detection of Changes Associated with Movement of Containers in the Container Terminal

for each hot-spot Cnh found at the level n = 4, 3, bright lines are detected in X1 and
X2 using the detector with response given by (5.5), with parameters ω = 4, ω1 = 2,
and ω2 = ω3 = 4. For each detected bright line in X1 and X2, the CKLD distance was
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computed according to (2.30). The CKLD was then thresholded to detect the changes
in bright lines location. This allows one to detect the movement of a single container
or a stack of containers. An example of container detection is given in Figure5.7 (new
containers appear in magenta, removed once in green). As mentioned in Section 5.2.3,
containers are often stacked on each other, thus the detection of changes associated with
movement of containers cannot fully solved only on the basis of the analysis of bright lines
and other issues should be considered. For example, the relation between closed bright
lines has to be taken into account [111]. As a matter of fact, a specific analysis should be
carried out which is out of the goal of this work.

(a) (b) (c) (d)

Figure 5.8: Zoom of cargo terminal area where cars are stacked (red box in the center of Figure 5.6).
(a) RGB multiteporal composition of spotlight COSMO-SkyMed images. CD maps obtained by: (b)
standard pixel-based thresholding of XLR; (c) thresholding of X4

LR; and (d) the proposed technique.

Detection of Changes Associated with Movement of Cars in the Car Terminal

the same procedure used in the first data set was used here. From the qualitative point
of view the results involve the same considerations derived for the logistic center and
presented in Section 5.3.1 (see Figure 5.8). From a quantitative analysis, 284 new cars
were automatically detected, whereas a visual inspection on X2 resulted in 249 new cars.

(a) (b)

Figure 5.9: Zoom of ships in the wet dock (red box in the top of Figure 5.6). (a) RGB composition of
spotlight COSMO-SkyMed images; and (b) CD map obtained with the proposed method.
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Detection of Changes Associated with Movement of Cargo Ships in the Wet Dock

due to the expected size of cargo ships, this kind of change was detected using only the
information in X4

LR. Hence, once the hot-spots C4
h was derived, to distinguish between

changes due to the cargo ship movements from the ones associated to the backscattering
of water surface, the normalized ratio of mean values in C4

h was used. Among the C4
h

(h = 1, . . . , 166) hot-spots, two were identified as being compatible with ship movement
(see Figure5.9). The two areas have a length of 234 and 170 pixels that, given the
pixel spacing and the aspect angle of about 6 degree, correspond to 117 m and 85 m,
respectively. The two values were compared with the actual length of the two ships anchor
in dock, namely, the oil tanker Capraia and the asphalt/bitumen tanker Bitflower [115]
(see Tab. 5.2). The difference between the estimated and true measures is mainly due
to the smoothing effect of the multilevel decomposition. Finally, it is worth noting the
two changes detected in the bottom part of the dock. Observing the two original images
acquired on April 23rd and April 24th, we can suppose that two cargo ships were docked
in the same berth at the two times. In such a situation, the change-detection method can
only model the difference between the place of the two cargo ships. However, it cannot
trace them back to a simultaneous appearance/disappearance of ships. This is because
the frequency of this event, in the Shannon sense, is not in agreement with the sampling
frequency of 1 day given by the multitemporal series.

Computational Considerations

It is worth finally mention that the large test scene was processed using a cluster composed
by AMD R© Opteron

TM
6172 processors with 4 GB of RAM per CPU. The image was

divided in tiles of 1024 × 1024 pixel, with an overlap of 32 pixels. The total number
of tiles was 12, and each tile was processed by one CPU. The cluster was used also to
speed up the feature extraction phase that was done in parallel. Thus, the peak load
of the cluster was of 36 CPUs running simultaneously. The total processing time was
about 15 minutes, which fulfil the requirement of near-real time processing necessary for
surveillance applications, even when large size scene are considered.

5.4 Discussion and Conclusion

In this chapter an approach to change detection in multitemporal VHR SAR images
for surveillance applications has been proposed. The approach takes advantage of three
concepts: i) the use of multiscale representation for a preliminary detection of areas
showing significant changes in backscattering between the two images (hot spots); ii) the
exploitation of prior information about typical usage of zones of interest in the area under
control; and iii) the definition of features and change detectors optimized for an effective
detection of specific changes in each zone of interest.

The method identifies hot spots at different resolution levels according to the mul-
tiscale information extracted by using the 2-dimensional stationary Wavelet transform.
Each hot spot is then analyzed according to its spatial position within a specific area of
interest by using the available prior information. The use of such information allows one
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to define the most proper features and change detectors to be used for extracting the
expected changes at detailed scale. It is worth noting that the assumption on the avail-
ability of the prior information on the usage of different areas (and thus on the expected
kinds of change) is reasonable since the method has been developed for high frequency
surveillance/monitoring of sensitive areas such as maritime ports, airports, etc.

The approach, which after an initial setup is completely automatic, was tested on two
VHR CSK spotlight data sets that show different levels of complexity. The first data set
is fairly simple and is related to the freight village “A. Vespucci”, Livorno (Italy). Here
changes are only associated to the movement of cars in the stocking lots. The second
data set is complex and is related to the maritime port of Livorno (Italy). Changes due
to car, container and ship movements are present. In both cases the proposed method
demonstrated to be effective in detecting all the expected kinds of change with a high
accuracy. In detail, concerning the complex data set of the maritime port of Livorno, the
final change-detection map models with a high geometrical precision both small changes,
such as those associated to car movements (which can be automatically counted) and
large changes due to cargo ship movements. This is possible because of the hierarchical
extraction of hot spots of change and of the specific definition on the basis of the available
prior information of feature extraction techniques and change detectors. Indeed, since
feature extraction is driven by prior knowledge, the proposed method can effectively
detect changes with significantly different properties in terms of shape, modeling and
size.

Due to the hierarchical processing and to the implementation on a multi-core cluster we
also achieved good performance in terms of computational time. The method converged
in 15 minutes on an image of around 55× 106 pixels running on a cluster architecture.

As a final remark it is important to note that, despite the method has been illustrated
on a specific application, it has general validity and can be applied to the surveillance and
monitoring of many scenarios.

As future developments of this work we plan to extend the experimental analysis to
long time series of images in order to further validate the proposed approach in differ-
ent conditions toward a possible pre-operational implementation. Moreover, we plan to
increase the variety of change detectors currently considered to make it possible the anal-
ysis of other scenarios. In particular, we are currently studying the problem of monitoring
airport areas.
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Chapter 6

A multitemporal detector for the
extraction of primitives from SAR
images

The availability of Very High Resolution (VHR) Synthetic Aperture Radar (SAR) images
regularly acquired by satellites since 2008 has opened new opportunities to study dynamic
processes at the resolution of individual objects. At metric resolution objects result inho-
mogeneous and thus can be identified only by detecting all the primitives that make up
them. In this context the development of effective multitemporal primitive detectors be-
comes very important. Indeed, an efficient combination of the temporal information can
both improve the detection of stable primitives and point out the changed primitives. This
chapter1 presents a novel approach to multitemporal detection of primitives in VHR SAR
images that exploits the multitemporal information in order to: i) perform the detection
of primitives at a given time; and ii) identify the transitions in the state of primitives
between two consecutive observations. This is done by using a compound approach to the
detection integrated with the fuzzy logic. Fuzzy logic is used in order to test the semantic
consistency among the state of primitives at the different temporal observations and infer
the state of a primitive at a given time. The performance of the multitemporal detector is
evaluated on a time series of both simulated and real TerraSAR-X images acquired over
the city of Lüneburg in Germany. Experimental results confirm the effectiveness of the
proposed approach.

6.1 Introduction

The recent advent of new Synthetic Aperture Radar (SAR) systems, such as TerraSAR-X,
TanDEM-X and COSMO-SkyMed (CSK), makes multitemporal data regularly available
over the same geographical area with a very high geometrical resolution (VHR). This has
opened new opportunities for the analysis of dynamic processes at the resolution of single
objects. As in the analysis of low and medium resolution images, some objects may be

1Part of this chapter appears in:
[55] C. Marin, F. Bovolo, and L. Bruzzone, “A Novel Multitemporal Detector for the Extraction of Primitive from

Very High Resolution SAR Images,” in Geoscience and Remote Sensing, IEEE Transactions on,, submitted.
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directly detected as a single primitive [65]. Nevertheless, in general the high amount of
geometrical details present in a VHR SAR image changes completely the perspective of
SAR data analysis: objects that are considered homogeneous from a semantic point of
view, such as buildings, show a signature that is inhomogeneous at high spatial resolution
because of the scattering contributions from sub-objects that make up them. For instance
a building signature is made up of: i) a layover area (due to the backscattering contribu-
tions coming from the ground, the vertical wall and the roof of the building); ii) a double
bounce line (generated by the multiple scattering mechanisms between the ground and
the vertical wall); and iii) a shadow area (generated by the occlusion of the sensor due to
the building itself) [6,80,86]. Hence in order to properly exploit the amount of geometrical
resolution present in the images it is necessary to take into account the backscattering
contributions from sub-parts of the investigated object. This can be done by extracting
the low-level primitives, which are associated with the sub-parts of an object, and com-
bining them together in order to perform a reliable detection and reconstruction of the
object.

There are mainly two factors that modify the performance of object/primitive de-
tection when VHR SAR data with same acquisition parameters are considered: i) the
speckle noise; and ii) the environmental conditions during the acquisition. Both these
factors vary from acquisition to acquisition and contribute to alter the performance of
the detector. In this context, the object/primitive detection may take advantage of the
use of multitemporal information. This is a concept that has been already investigated
in the context of speckle filtering. In detail, in [37] (which is based on [116]) the authors
propose to linearly combine the temporal samples of the multitemporal series so that the
output variance is minimal and the mean is preserved. In [117] the homomorphic filtering
approach is combined with a discrete cosine transform applied to the logarithmic trans-
formation of the time series allowing a filtering of the noise in the frequency domain. The
approach presented in [118] detects homogeneous regions in a 3-D neighborhood of the
stacked images which are then filtered using the Kuan filter. These three multitemporal
speckle filtering techniques were reviewed and compared in [34]. Few works have been
presented for solving the primitive detection problem in SAR images by considering the
multitemporal information. In [119] an approach to the detection of roads using multi-
temporal SAR data has been presented. The approach firstly detects the roads, which are
defined as dark linear primitives, independently on each of the images; then it combines
the results by applying a fusion technique. Several fusion techniques have been tested
leading to the conclusion that there is not a unique optimal fusion technique. The choice
of the technique depends on the tolerance of the user to missed and false alarms.

Most of the multi-temporal approaches to both speckle filtering and primitive detection
do not explicitly take into account the possibility that pixels completely change over time.
Thus, pixels having the same spatial coordinates in the time series are involved in the de-
specking or detection process. This is a valid procedure for the cases of stable objects (i.e.,
objects that do not change over time). Whereas it leads to significant errors when unstable
objects are present (i.e., objects that have a state transition over time). On the other hand
in the literature several works have been presented that investigate the possibility to detect
changes between pairs of multitemporal SAR images. These works aim at identifying
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the areas of the images associated with a change in the intensity between two different
observations acquired on the same geographical area. The change detection concept has
been used recently in [120], where the authors propose a multitemporal filtering approach
that makes use of a change detection technique. In detail, the method determines the
changed and unchanged pixels by means of an exhaustive cross test based on the coefficient
of variation. On the basis of this information an adaptive spatio-temporal filtering is
performed such that a temporal mean is calculated if at a given time a pixel is unchanged
and no filtering is performed if the pixel is changed. Nevertheless, the approach is limited
to filtering and does not consider the detection of primitives.

In this chapter we propose an approach to multitemporal detection of primitives in
VHR SAR images that exploits the multitemporal information in order to: i) perform
the detection of primitives at a given time; and ii) identify the transitions in the state of
primitives between consecutive observations (i.e., detect changes). The approach requires
the definition of two main parts: one is the design of the detectors that extract primi-
tives/objects at a single time (monotemporal information); the other is the strategy to
implement to fully benefit from the multitemporal information. In this work we assume
the use of any of the primitive detectors available in the literature and we focus on the def-
inition of a methodology for the effective exploitation of the multitemporal information.
This is achieved by proposing a novel compound approach to the detection integrated
with the fuzzy logic. In detail, the compound approach is derived in the framework of
multitemporal Bayesian decision rule for minimum error. This rule was introduced in the
cascade formulation in [121] and in the compound formulation in [122], for addressing
problems related to multitemporal image classification. Differently from these two works,
this chapter aims at deriving an unsupervised formulation for the compound detection
of primitives in multitemporal VHR SAR images. This is done by using the fuzzy logic,
which results to be robust against the intrinsic uncertainty of the information sources and
does not require any parametric model of the data distributions. The proposed compound
detection analyzes the semantic consistency among the state of primitives at the different
temporal observations and infers the state of a primitive at a given time. Even though
here the proposed approach is presented for primitive detection in VHR SAR images, it
has general validity and can be exploited for primitive detection in high- and medium-
resolution SAR images. The method, which after an initial setup driven by the nature of
primitive to be detected is totally automatic, has been validated on both simulated and
real TerraSAR-X multitemporal scenarios. The obtained results highlight the effectiveness
of the proposed approach.

The rest of the chapter is organized as follows. Section 6.2 introduces the proposed
approach to compound detection of primitives. Section 6.3 describes how the compound
approach is integrated in the proposed fuzzy inference system in order to cope with the
problems of the probability estimation. Section 6.4 presents the experimental results on
both simulated SAR images and challenging real scenarios of urban multitemporal bright
line detection. Finally, section 6.5 draws the conclusion and points out the future works.
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6.2 Proposed Bayesian Compound Detection Approach

Let us consider two intensity VHR SAR images X1 and X2 acquired with the same
parameters on the same geographical area at different times. Let xτ,j be the j − th pixel
of the feature that describe an object (or primitive) at the time τ , with τ = {1, 2}.
Examples of primitives may be lines, regions with specific statistical proprieties, etc. In
this work we only consider a single primitive. Let Ω = {ωp, ωnp} be the set of possible
semantic classes at time τ associated to the considered primitive. The two classes, ωp and
ωnp, correspond to the presence and the absence of the considered primitive, respectively.
In the framework of the Bayesian rule for minimum error the compound detection problem
can be defined by identifying the best (in terms of Bayesian decision theory) pair of classes
to be assigned to each pair of features (x1,j, x2,j) by considering the temporal dependency
between them as follows [122]:

(x1,j, x2,j) ∈ (ωn, ωm) if ωm, ωn = arg max
ωi∈Ω,ωk∈Ω

{P (ωi, ωk|x1,j, x2,j)} (6.1)

where P (ωi, ωk|x1,j, x2,j) is the joint posterior probability of the class pair (ωi, ωk) given the
pair of features (x1,j, x2,j). The estimation of the statistical quantities involved in (6.1) is
a complex task due to the difficulty of properly modeling the multitemporal dependence
in an unsupervised manner. Here, according to the literature [5, 121, 122], we assume
class-conditional independence in the time domain to simplify the estimation of the joint
conditional posterior probabilities. Under this assumption, (6.1) can be rewritten as:

(x1,j, x2,j) ∈ (ωn, ωm) if ωm, ωn = arg max
ωi∈Ω,ωk∈Ω

{p(x1,j|ωi)p(x2,j|ωk)P (ωi, ωk)} (6.2)

where p(x1,j|ωi) and p(x2,j|ωk) are the single-time class-conditional probability density
functions representing the presence or absence of a primitive given features xτ,j, and
P (ωi, ωk) is the joint prior probability of having class ωi at time τ = 1 (i.e., x1,j ∈ ωi)
and ωk at time τ = 2 (i.e., x2,j ∈ ωk). It is worth noting that two types of detection
are achieved by (6.2): i) the detection of the temporal transition of each pair of pixels
(x1,j, x2,j) from the class ωi to ωk with (ωi, ωk) ∈ Ω; and ii) the primitive detection on
each of the two images xτ,j, which is done by exploiting the information contained in both
the images X1 and X2. In order to perform such compound primitive detection all the
terms involved in equation (6.2) must be estimated. In the following the estimation of the
class-conditional probability density function and the joint conditional prior probabilities
using unsupervised statistical estimators are discussed.

The single-time class-conditional probability density functions are estimated from the
probability density functions (PDF) associated to each feature xτ,j. In detail, by denoting
with p(xτ,j) the PDFs associated to xτ,j we can write:

p(xτ,j) = Pτ (ωp)p(xτ,j|ωp) + Pτ (ωnp)p(xτ,j|ωnp) (6.3)

where Pτ (ωp) and Pτ (ωnp) denote the a-priori probabilities associated to the presence
and absence of a primitive at time τ . Thus by solving the mixture-estimation problem
described in (6.3) it is possible to derive the single-time class-conditional probability
density functions needed for the compound detection in (6.2).
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Figure 6.1: Conceptual architecture of a general fuzzy inference system (FIS)

The joint prior probabilities are related to the transitions of the state of the primitives
from time τ = 1 to τ = 2. As there are two classes per time i.e., ωp and ωnp, and
two time instances to be considered, four class transitions are possible: the absence of
class transitions (ωp, ωp) and (ωnp, ωnp), the transition from primitive to non-primitive
(ωp, ωnp), and the transition from non-primitive to primitive (ωnp, ωp). Depending on the
nature of the primitive taken into account, these transitions can be described considering
an arbitrary index of change xc,j. By focusing on the detection of a bright primitive i.e.,
whose presence is defined by a bright return, and using the filtered version of the log-ratio
operator at a the optimal resolution scale that represent the investigated primitive [65],
the transitions (ωp, ωp) and (ωnp, ωnp) are represented by no-change i.e., xc,j ∈ ξu, the
transition (ωnp, ωp) is represented by an increase in the value of backscattering i.e., xc,j ∈
ξ+, and the transition (ωp, ωnp) is represented by a decrease in the value of backscattering
i.e., xc,j ∈ ξ−. Therefore the joint prior probabilities of (6.2) are related to the conditional
probability density functions of each of the semantic situations p(xc,j|ξu), p(xc,j|ξ+) and
p(xc,j|ξ−) through the distribution of p(xc,j)

p(xc,j) = P (ξ−)p(xc,j|ξ−) + P (ξu)p(xc,j|ξu) + P (ξ+)p(xc,j|ξ+) (6.4)

The estimation of the mixtures (6.3) and (6.4) can be addressed in different ways [42].
Nonetheless, parametric and nonparametric approaches to estimation may fail at identi-
fying the conditional probability density functions within a reasonable error bound if the
right assumptions are not verified. Therefore, in order to cope with the uncertainty of the
information sources in a more flexible way in the next section the compound detection
approach is developed in the framework of the fuzzy logic.

6.3 Proposed Compound Detector based on a Fuzzy Inference
System

The Bayesian formulation of the multitemporal primitive detection described in the pre-
vious section requires a robust statistical estimation process. However, the use of either
parametric or nonparametric estimators may be affected by approximated models and
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thus generate unreliable results. Motivated by the robustness of fuzzy theory to cope
with uncertain information sources, we propose to design a fuzzy inference system (FIS)
that implements the compound detection mechanism presented in the previous section.
Fuzzy logic has been effectively applied to a wide variety of both classical engineering
problems such as automotive systems [123–125], and also to remote sensing problems
such as classification [126–128]. Its success is mainly due to the fact that fuzzy logic is
tolerant to imprecise data, is flexible, and is conceptually easy to be understood. The
fuzzy theory was introduced by Zadeh in [90] and provides the framework that can be used
to convert expert knowledge into an automatic inference strategy. The most commonly
used fuzzy inference technique is the so-called Mamdani method [129]. Fuzzy Inference
System (FIS) can be seen as a non-linear mapper between inputs and outputs. The map-
ping is accomplished by a set of fuzzy rules, called fuzzy conditional statements, which
are a set of IF-THEN rules defined by the knowledge available about the problem to be
solved. In detail, a fuzzy conditional statement assumes the form “IF a set of conditions
are satisfied THEN a set of consequences can be inferred”. The if-part of the rule is called
antecedent or premise, while the then-part is called the consequence or conclusion. In this
statement, antecedents and consequences assume fuzzy values by means of membership
functions (MFs), which provide a convenient way for expressing the domain knowledge.
The basic structure of the proposed FIS consists of four conceptual components: i) a
fuzzification interface, which transforms crisp inputs into fuzzy inputs (this block is not
always present as in the presented case); ii) a fuzzy inference logic, which performs the
inference procedure; iii) a defuzzification interface, which converts the conclusions of the
inference mechanism into crisp outputs; and iv) a knowledge base, which defines the fuzzy
rules and the MFs to be applied in order to perform the inference. The architecture of a
fuzzy inference system is shown in Fig. 6.1.

The starting point for building a FIS is the definition of the fuzzy rule set. In this
chapter we propose to translate the Bayesian compound detection strategy described in
section 6.2 into fuzzy conditional statements in order to control the output of a FIS. The
inputs of the FIS, which correspond to the statistical variables related to x1,j, x2,j and xc,j
in the Bayesian compound formulation, are called linguistic variables in fuzzy jargon [123]
and are denoted with x̃1,j, x̃2,j and x̃c,j. In detail, x̃1,j and x̃2,j, which are defined in
the universe of discourse U , are characterized by the term set T(·) = {ω̃p, ω̃np}, where
ω̃p = “primitive” and ω̃np = “non-primitive”. Whereas x̃c,j, defined in the universe of

discourse T , is characterized by the term set T(·) = {ξ̃u, ξ̃+, ξ̃−} where ξ̃u = “no-change”,

ξ̃− = “decrease in backscattering” and ξ̃+ = “increase in backscattering”. By calling z̃c,j
the output of the compound inference system, defined in the universe of discourse V , the
Bayesian rule for compound detection can be expressed as a set of fuzzy conditional rules
as follows

R1 : if x̃1,j is ω̃p and x̃2,j is ω̃p and x̃c,j is ξ̃u then z̃c,j is (ω̃p, ω̃p).

R2 : if x̃1,j is ω̃np and x̃2,j is ω̃np and x̃c,j is ξ̃u then z̃c,j is (ω̃np, ω̃np).

R3 : if x̃1,j is ω̃p and x̃2,j is ω̃np and x̃c,j is ξ̃− then z̃c,j is (ω̃p, ω̃np).

R4 : if x̃1,j is ω̃np and x̃2,j is ω̃p and x̃c,j is ξ̃+ then z̃c,j is (ω̃np, ω̃p). (6.5)
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where the output term set is T(·) = {(ω̃p, ω̃p), (ω̃p, ω̃np), (ω̃np, ω̃p), (ω̃np, ω̃np)}. It is worth
noting that each of these rules is expressed in natural language. For example, the first
rule can be read as: “if the primitive feature x̃1,j calculated at time τ = 1 is a primitive
and if the primitive feature x̃2,j calculated at time τ = 2 is primitive and the index of
change between the two observations x̃c,j is no change then the pair of pixels (x̃1,j, x̃2,j) is
associated to the detection of the pair (primitive, primitive)”. The same is valid for the
others rules in (6.5).

The four rules do not cover all the possible situations. Indeed having 2 inputs with
2 possible states and 1 input with 3 possible states results in 22 · 3 = 12 possible rules.
Nonetheless the rules expressed before are the only four likely rules that one can infer.
Indeed situations such as for example “if the primitive feature x̃1,j calculated at time
τ = 1 is not a primitive and if the primitive feature x̃2,j calculated at time τ = 2 is
not a primitive and the index of change between the two observations x̃c,j is increase
in backscattering” cannot have a logical output. Nonetheless, as we will see later in the
chapter these situations will result in an output value equal to zero, which can be managed
accordingly.

The fuzzy rules introduced by (6.5) are a linguistic description of the proposed com-
pound primitive detection. Their interpretation is performed by the fuzzy inference logic
unit (see yellow block of Fig. 6.1). This requires four steps, which are exemplified in
Fig. 6.2: (A) the fuzzy quantification of inputs, (B) the aggregation of the antecedents,
(C) the implication from the antecedents to the consequences, and (D) the combination
of the consequences across the rules. These steps are described in detail in the following
subsection together with the defuzzification interface (E). For sake of notation each rule
of (6.5) is recall in its canonical form for each step. Specifically, let l be the number of
rules with l = 1, 2, 3, 4. The rule-base (6.5) can be expressed in the canonical form as:

R(l) : if x1 is Al1 and x2 is Al2 and x3 is Al3 then z is Bl (6.6)

where x = x1, x2, x3, defined in Ui, and Ali, with i = 1, 2, 3, are the input linguistic
variables and values, respectively. y, defined in V , and Bl are output linguistic variables
and values, respectively. As one can notice all the rules in (6.5) can be obtained by
substituting the inputs and outputs variables and values with the appropriate terms.

6.3.1 Fuzzy Quantification of Inputs

The first step of the fuzzy inference logic is the quantification of the input linguistic
variables and their uncertainty. This is done by using membership functions (MFs). In
Fig. 6.2, which represents the proposed fuzzy inference diagram for the compound detec-
tion of the primitive, each of the linguistic variables x̃1,j, x̃2,j and x̃c,j is evaluated by MFs

in order to quantify its possibility to assume a linguistic value among ω̃p, ω̃np, ξ̃
+, ξ̃− and

ξ̃u. The choice of grades of membership is based on the available information (knowledge
base) of the system and is described using different functions with different shapes. For
example, if the statement “x̃1,j is ω̃p” is considered, it is possible to say that for certain
values of the domain U , x̃1,j is surly primitive whereas for other it is surly non-primitive.
This is quantified by using a sigmoid function that maps in a continuous manner and with
a given slope the grade of membership of the values of x̃1,j to the linguistic value ω̃p. In
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Figure 6.2: Proposed fuzzy inference diagram for the compound detection of the primitive.

detail, by taking into account the canonical form (6.6), a sigmoid function that maps the
grade of membership of linguist variable xi to a linguistic value Ali is defined as:

µAli(xi) =
1

1 + exp[−ali(xi − bli)]
(6.7)

where the constant ali tunes the slope of the function and the constant bli locates the center
of the function. Depending on the sign of the parameter ali, the sigmoid membership
function is open to the right or to the left. This allows us to describe complementary
logic concepts such as xi is “primitive” and xi is “non-primitive”. The domain of the MF
coincides with the universe of discourse of the linguistic variables and the codomain is
defined in the range [0, 1]. Following the same rationale, in this work the sigmoid function

is used to describe the membership of x̃τ,j to ω̃p and ω̃np, and the membership of x̃c,j to ξ̃+

and ξ̃−. Examples of sigmoid MFs for ω̃p, ω̃np are depicted in Fig. 6.3a, whereas sigmoid

MFs for ξ̃−, ξ̃+ are depicted in Fig. 6.3b. These MFs allow the definition of the linguistic
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values in the rule set (6.5) as fuzzy sets as follows

ω̃p =
{
x̃τ,j, µω̃p(x̃τ,j)|x̃τ,j ∈ U

}
(6.8)

ω̃np =
{
x̃τ,j, µω̃np(x̃τ,j)|x̃τ,j ∈ U

}
(6.9)

ξ̃+ =
{
x̃c,j, µξ̃+(x̃c,j)|x̃c,j ∈ T

}
(6.10)

ξ̃− =
{
x̃c,j, µξ̃−(x̃c,j)|x̃c,j ∈ T

}
(6.11)

In order to map the membership of x̃c,j to ξ̃u a generalized bell-shaped function is used.
This because the log-ratio operator concentrate the unchanged values of x̃c,j around the
zero. The generalized bell-shaped membership function is defined as:

µAli(xi) =
1

1 +
∣∣∣xi−eli

cli

∣∣∣2dli (6.12)

where the parameter eli locates the center of the curve, cli is the spread of the MF and dli
its shape. An example of generalized bell-shaped MF for ω̃u is given in Fig. 6.3b. This
MF allows the definition of ξ̃u as follows:

ξ̃u =
{
x̃c,j, µξ̃u(x̃c,j)|x̃c,j ∈ T

}
(6.13)

One can notice that the correct choice of the MFs plays a fundamental role. In particular,
if an input is disturbed by noise, the associated MF should be sufficiently wide to reduce
the sensitivity to noise. For all the MFs used in this work the spread of the MFs is
defined by the parameters ali and cli, which tune the sensitivity to noise of the system.
Moreover, since a FIS should always be able to infer a proper value for every possible
value of the inputs, the union of the supports of the MFs of a given rule has to cover
the entire universe of discourse of the input linguistic variables. This is guaranteed by
choosing the element xi = xci at which µAli(x

c
i) = 0.5, called crossover point, as the

intersection point between MFs representing different linguistic values (see Fig. 6.3). In
the extreme case two dominant rules are activated by an equal belief of 0.5. This has
the effect to create a relationship between the parameters of the MFs that cover a given
universe of discourse. Therefore, for the considered MFs, five parameters have to be
tuned by the users. For shake of notation we call with a and b the parameters related
to the monotemporal information, and with c, d and e the parameters related to the
multitemporal information.

6.3.2 Connection of the Inputs

The second step is the connection of the input MFs for each fuzzy rule (see Fig. 6.2).
The interaction is derived by applying fuzzy logic operators. If we consider the canonical
IF-THEN rule defined in (6.6), the fuzzy AND between the inputs is a fuzzy set in the
space U1 × U2 × U3 with a MF defined as follows [123]:

µlA(x) = µAl1∩Al2∩Al3(x1, x2, x3) = t
[
µAl1(x1), µAl2(x2), µAl3(x3)

]
(6.14)
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Figure 6.3: Example of membership functions for inputs a) xτ,j and b) xc,j . In detail: a) sigmoid MFs
with parameters ali = 20 and bli = 0.35 for primitive (ω̃p) and parameters ali = −20 and bli = 0.35 for non-
primitive (ω̃np); b) generalized bell MF with parameters cli = 0.4, dli = 15 and eli = 0 for the unchanged

pixels (ξ̃u), sigmoid MF with parameters ali = 15 and bli = 0.8 for the increase in the backscattering
(ξ̃+), and sigmoid MF with parameters ali = −15 and bli = 0.8 for the decrease in the backscattering
(ξ̃−). As one can notice some of the parameters are the same (or the opposite) resulting in a total of five
parameters to be tuned.

where t is any t-norm operator [125], with t : [0, 1] × [0, 1] → [0, 1]. In this work we use
the algebraic product as t-norm, which is defined as follows

µlA(x) = µAl1∩Al2∩Al3(x1, x2, x3) = µAl1(x1)µAl2(x2)µAl3(x3) =
3∏
i=1

µAli(xi) (6.15)

Another common t-norm operator is the minimum. Nonetheless, the product preserves the
contribution of each input variable and maintains a similarity with the original Bayesian
framework. Thus the antecedents are reduced to a single value included between [0, 1].
From this value it is possible to interpret the consequences of each fuzzy IF-THEN rule.

6.3.3 Implications

Once the antecedents are reduced it is necessary to evaluate for each rule how much this
aggregated value is close to the consequence. For instance, if the first rule R1 depicted
in Fig. 6.2 is considered, the FIS has to evaluate how much the aggregated value of 0.5
represents the output zc,j is (ω̃p, ω̃p). This is done by means of the so called Generalized
Modus Ponens (GMP) reasoning. GMP is formulated for the proposed FIS using the
fuzzy theory as follows [124]

µB′l(z) = sup
x∈U

t[µA′l(x), µAl→Bl(x, z)] (6.16)

Eq. (6.16) says that given two fuzzy propositions: i) x is A′l and ii) if x is Al then z is Bl,
it is possible to infer a new proposition: z is B′l such that closer the A′l to Al, the closer
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Figure 6.4: Example of triangular membership function with parameters f = 0, h = 1 and g = 1
(primitive) and parameters f = 0, h = 1 and g = 0 (non-primitive).

the B′l to Bl. Thus, in order to infer the implication i) the output linguistic variables
have to be described by MFs; and ii) the implication methods has to be defined. In this
work we use triangular functions to describe in a linear way the grade of memberships
between ω̃p, ω̃np and the output linguistic variables. Generally speaking a triangular curve
that maps the grade of membership of the linguistic variable z, defined in the universe of
discourse V , to a linguistic value B, is defined as

µlB(z) =


0, z < f l

z−f l
gl−f l , f l ≤ z < gl

hl−z
hl−f l , gl ≤ z < hl

0, z ≥ hl

(6.17)

or more compactly by

µlB(z) = max

(
min

(
z − f l

g − f l
,
hl − z
hl − f l

)
, 0

)
(6.18)

The parameters f l and hl locate the feet of the triangle and the parameter gl locates the
peak. For the considered problem these parameters can be set such that the maximum
degree of membership for primitive and non-primitive is in 1 and 0, respectively, and the
cross-over point is in 0.5 (see Fig. 6.4).

The implication method is defined exploiting fuzzy logic operators. By using different
operators it is possible to obtain different results [124]. Considering crisp input and using
the minimum implication (6.16) reduces to

µB′l(y) = min [µAl(x
∗), µBl(y)] (6.19)

where x∗ is some point in U . This means that if the antecedent is only partially true, then
the output fuzzy set is truncated according. In the example of Fig. 6.2 one can notice
that the implication clips the output MF in accordance with the considered antecedents
values.
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At this point the decision about the pair of classes can be taken by selecting the rule
that gives the highest grade of membership (R1 in the case reported in Fig. 6.2). If all
the rules return a grade of membership equal to zero (or lower than a given threshold
Tmin defined by the user), the result is not reliable and has to be rejected and treated
accordingly. In addition, the FIS gives the possibility to infer the value zτ,j in the domain
of the monotemporal primitive features at a given time τ , which takes into account the
multitemporal information. This is done in the steps described in the following.

6.3.4 Aggregation of Outputs

Since the fuzzy base defined by (6.5) consists of four rules, all the consequences have
to be aggregated in order to infer the combined implication. As the rules are a set of
independent conditional statements, the union of the fuzzy consequences can be used

µB′(z) =
4⋃
l=1

µB′l(z) = s [µB1(z), · · · , µBM (z)] (6.20)

where s is any s-norm operator [125]. In this work, inspired by the Bayesian formula-
tion, the maximum operator to infer the aggregated implication for the multitemporal
classification is taken into account. In detail, the maximum combination is defined as

µB′(z) =
4∑
l=1

µBl(z) (6.21)

The result of the combination of each rule is used in the next step in order to find the crisp
value that represents the feature value at a given time τ considering the multitemporal
information.

6.3.5 Defuzzification

The aim of this step is to map each aggregate output MFs into the space of the feature
that describe the primitive (see the red block in Fig. 6.2). The best procedure to do this
can vary from case to case. Several strategies have been described in the literature [125].
In this work the mean of maximum (MoM) method is used for the defuzzification of the
fuzzy compound detector. Conceptually, the MoM defuzzifier chooses the value z∗ as the
mean point in which µB′(z) reaches its maximum values as depicted in Fig. 6.2. With
refer to the canonical form for each rule the MoM is calculated as follows. Let us define
m as the set of points at which µB′(z) achieves its maximum:

m(B′) = {z ∈ V|µB′(z) = sup
z∈V

µB′(z)} (6.22)

From m(B′) the MoM defuzzified value z∗ can be derived as

z∗ =

∫
m(B′)

z dz∫
m(B′)

dz
(6.23)

102



Chapter 6. A multitemporal detector for the extraction of primitives from SAR images

Table 6.1: Algorithm of the proposed FIS.

Initialization: define cross-over points and domains of the input MFs;

foreach pixels of the multitemporal images do
foreach rule Rl do

Aggregate the antecedents according to µlA(x) =
∏3
i=1 µAli(xi) (6.15);

Imply the conclusions according to µB′l(z) = min [µAl(x
∗), µBl(z)] (6.16);

end
if arg maxl µB′l > 0 then

Assign the class pair (ωlk, ω
l
k) to the pair of features (x1,j , x2,j);

end

Combine the M fuzzy rules according to µB′(z) =
∑4
l=1 µBl(z) (6.21);

Infer the crisp output z∗ =

∫
m(B′) z dz∫
m(B′) dz

(6.23) for each output zτ,j ;

end

The inferred crisp value can be used in all the applications that use the primitive features
such as the classification. In table 6.1 the algorithm that implements the proposed FIS is
reported.

6.4 Experimental Results

In this section we illustrate the performance of the proposed approach to primitive detec-
tion in multitemporal SAR images. In order to assess the effectiveness of the proposed
approach, experiments were carried out on both a series of simulated SAR images and
a series of real multitemporal TerraSAR-X images acquired over the city of Lüneburg,
Germany during one year.

6.4.1 Design of Experiments and System Setup

Figure 6.5: Window used by the line detector.

In this sub-section we introduce the primitive detector used in the experiments. Note
that the proposed multitemporal detector approach is general and can be used with any
detectors. The considered primitives are bright linear primitives. Bright lines are com-
mon primitives especially when urban areas are illuminated by a SAR sensor with an
adequate resolution. They are generated by multiple reflections of the electromagnetic
waves with the structured objects on the ground [130]. Several line detectors have been
used to identify bright lines such as the Tupin detector [131], the Steger detector [132],
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the morphological detector [119], and the Hough transform [133]. All these detectors are
defined for a monotemporal SAR image. In this work bright lines are extracted using
the line detector proposed in [131]. This is a consolidated approach that has been used
in the literature for applications that range from road detection to building detection.
The detector consists of the fusion of two statistical and geometrical line detectors, which
are applied using a sliding window procedure. For the sake of simplicity, in this work
we consider only one of these two detectors, namely the ratio line detector. Its response
is the minimum response of the ratio edge detector, firstly described in [134], applied to
both sides of a central linear structure

rL = min(r
(1,2)
E , r

(1,3)
E ) (6.24)

where the superscript 1 denotes the central region, superscripts 2 and 3 the two lateral

regions (see Fig. 6.5), and r
(t,u)
E , with (t, u) ∈ {(1, 2), (1, 3)}, is constructed in order to

extract only bright edge as follows

r
(t,u)
E =

{
1−min

(
σt
σu
, σu
σt

)
if σ1 ≥ σ2, σ3

0 Otherwise.
(6.25)

where σt is the empirical mean of the region t = 1 having Wt = w × wt pixels with
amplitude Atp, i.e., σt = ( 1

Wt
)
∑

p∈tA
t
p. The same definition is applied to σu (with u = 2, 3)

i.e., σu = ( 1
Wu

)
∑

p∈uA
u
p . In order to detect bright lines with different directions the central

linear structure is rotating in 16 different directions over the central pixel and the best
response retained. The response of the line detector is high when the detector falls across
to a line with a width comparable to the width of the central structure, whereas it is small
when the detector encounters smooth areas.

(a) (b)

Figure 6.6: Simulated SAR images. (a) and (b) are the multitemporal images used to represent the sce-
nario of mixed stable and unstable primitives. The sequence of images is corrupted by timely independent
speckle noise.

The results are analyzed considering stable primitives (which may slightly vary because
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of speckle or different acquisition conditions) and unstable primitives (which change their
state). The results of the proposed method are compared with those obtained by the
bright line detector applied at each observation independently. Moreover, the performance
obtained after applying the multitemporal filtering in its recursive form introduced in [37]
is shown for both the proposed method and the ratio line detector.

6.4.2 Simulated Data Set

In order to assess the performance of the proposed approach a set of simulated images has
been created. A series of τ = 1, . . . , 14 images with size 400×400 representing bright lines
on black background has been generated. In detail, it represents a scenario where 16 new
lines are disappearing/appearing at each new observation in an interleaved manner. The
lines have a length that varies from 62 to 190 pixels and a width included in a range of
2 to 4 pixels. These images, which ideally represent the backscattering coefficient στ , are
corrupted by speckle noise. In the case of spotlight VHR SAR acquisitions the assumption
of distributed scatterer is not verified and therefore the fully developed speckle model may
be not valid [135]. Nonetheless, as no accepted speckle statistical models are available for
VHR SAR images, in first approximation we corrupt all the images with multiplicative
spatially uncorrelated speckle noise under the hypothesis of fully developed speckle. In
detail the intensity image Xτ has been related to the underlying backscattering coefficient
στ as [17]

Xτ = στnτ (6.26)

with nτ being a single-independent random variable whose probability density function
(PDF) for an L-looks intensity data is described as

P (nτ ) =
LLnL−1

τ

Γ(L)
exp(−Lnτ ) (6.27)

Examples of images obtained with L = 1 are reported in Fig. 6.6. It is worth noting that
in this simulation speckle varies randomly so each realization represents a scene that has
identical statistic but different detail structure.

In order to apply the proposed FIS for multitemporal detection of primitives at time τ ,
the bright line detector described in the previous section has been used. The window size
was set with length of 10 pixels and width of the central structure of 3 pixels. The index
of change has been derived using the second level of the log-ratio Wavelet decomposition
as described in section 6.2. The obtained image X2

LR has a resolution comparable to the
size of the bright lines to be detected. Hence changes smaller than this resolution tends to
disappear and only changes of a given size are fully preserved, allowing a better detection
of the changed bright lines.

Fig. 6.7a reports the mean histogram for the pixels of line and non-line in the simulated
images. As one can notice, the distribution of the class ωp cannot be parametrized using
standard statistical models since it is a mixture of different contributions due to the
different contrasts measured by the ratio line detector inside the sliding windows [131].
Also nonparametric density estimators may fail if the distribution is not continuous or
the bandwidth parameter is not selected in a proper way. As described in Sec. 6.11d, in
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Figure 6.7: Histogram of the two classes line (solid blue) and non line (dashed green) considering the
labeled pixels of all the 14 images (simulated data set).

order to evaluate the presence or absence of a line, the proposed FIS needs the definition
of the cross-over point a and slope b. For a fixed value of b, the missed alarms decrease
by decreasing the value of a, while the false alarms increase. Vice-versa by increasing
the value of the a the false alarms decrease, while the missed alarms increase. Therefore,
as for the definition of the threshold of the bright line detector presented in [131], the
crossover point a may be deducted as a compromise between false alarm and a minimum
detectable contrast of the lines. Nonetheless, the slopes b of the MFs, which define the
flexibility to cope with uncertain situations, define a new grade of freedom making the
selection less strict. Indeed by assign a small value to b the missed alarms are reduced,
while the false alarms increase, and vice-versa. A comprehensive test confirms that the
values a = 0.35 and b = 20 lead to the minimum error for the considered data set. By
analyzing Fig. 6.7a it is possible to localize the intersection point between the histograms
of the two classes at the value of 0.35. By selecting a value of 20 the support of the
MFs are equal to [0, 0.5] for the non-line and [0.2, 1] for the line, in accordance with the
histogram reported in Fig. 6.7a.

Fig. 6.7b reports the histogram of the classes unchanged (ξu), increase (ξ+) and decrease
(ξ−) of backscattering for X2

LR. As demonstrated in [55], by exploiting a split-based
thresholding technique the, it is possible to derive the two points of intersection among
the three distributions i.e., ±0.4. These points are used as cross-over points a and c for
the two sigmoidal MFs defined by (6.7) and the generalized bell MF defined by (6.12).
Whereas, the slopes b and d of these MFs were defined equal to 15 defining a support
for ξu of [−0.5, 0.5], for ξ+ of [0.5,+∞] and for ξ− of [−0.5,−∞]. A comprehensive test
confirm that these are the best values in terms of reduction of the overall error.

Performance on the Detection of Primitives at a Given Time

In the first battery of experiments the accuracy of the primitive detection at a given time is
evaluated. For each primitive detection method, the best threshold at each time τ has been
computed considering the Receiver Operating Characteristic (ROC). The average number
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Figure 6.8: Number of Missed and False alarm pixels for: a) Ratio line detector applied independently
to each time; b) proposed multitemporal detector applied considering two consecutive times; c) Ratio
line detector after the recursive application of the temporal de-speckling proposed in [37]; d) Proposed
multitemporal detector applied considering two consecutive times after the multitemporal de-speckling
proposed in [37]. Average results are reported in solid lines (simulated data set).

of missed and false alarm pixels for the 14 observations are reported in Table 6.2. From
the comparison of these results it is possible to derive different observations. First, the
proposed method performs better than the ratio bright line detector applied independently
to each image obtaining a reduction of the overall error of 2252 pixels. Moreover, from
the comparison of Figg. 6.8(a) and (b) one can notice that the proposed approach is more
stable than the bright line detector applied at each single date. This because the proposed
method exploits the temporal information in addition to the monotemporal information.

Table 6.2: Average False Alarms, Missed Alarms and Overall Errors for the Bright Line Detection. Results
Obtained without De-Speckling (No Despeck) and with De-Speckling (Despeck) Are Given (Simulated
Data Set).

Missed Alarms False Alarms Overall Errors
Approach No despeck Despeck No despeck Despeck No despeck Despeck
Mono-temporal Bright
Line Detection

7444 5189 2494 2393 9938 7582

Proposed Approach 4933 4109 2316 2049 7249 6158
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Finally we can observe that the pre-processing using a multitemporal de-speckling filter
can improve the detection. It is interesting to note that the overall error of the proposed
method without pre-processing is lower than the overall error obtained by applying the
bright line detectors independently after the multitemporal de-speckling (i.e., 7515 against
7249 pixels).

Performance on the Detection in the Transitions of Primitive State

The capability of the proposed method to identify the transitions of the state of primitives
is evaluated by calculating the confusion matrix. In this matrix the true transitions are
given on the columns and the estimated transitions detected by the proposed approach
on the rows. The terms on the diagonal of the matrix report the correctly recognized
transitions while the other terms give the errors. Average results for the 14 images are
reported in Table 6.3.In detail, Table 6.3.a reports the confusion matrix obtained by the
post-detection comparison and Table 6.3.b the confusion matrix obtained by the proposed
method. In both cases no pre-processing was performed in the experiments. The proposed
method produces good results i.e., an overall accuracy of 93.05% and a Kappa coefficient of
0.8015, which are higher than the accuracies obtained with the post-detection comparison
i.e., 89.95% and 0.7179. It is possible to note that the main source of confusion for the
method is given by the transitions (ω̃p, ω̃np) and (ω̃np, ω̃p). This is explained by the fact
that the exploited index of change performs as a trade-off between geometrical detail
preservation and speckle filtering. Since we used a resolution for the index close to the
size of the lines the errors are localized along the border pixels of the lines.

Table 6.3: Confusion Matrix of Primitives State Transitions Obtained by: (a) the Post-Detection Com-
parison; and (b) the Proposed Method (Simulated Data Set).

True Transitions
(ωp, ωp) (ωp, ωnp) (ωnp, ωp) (ωnp, ωnp)

Estimated Transitions

(ωp, ωp) 13157 59 50 670
(ωp, ωnp) 1902 4507 15 2237
(ωnp, ωp) 1893 18 3865 2199
(ωnp, ωnp) 3152 1478 1265 112105

Overall Accuracy 89.95
Kappa 0.7179

(a)

True Transitions
(ωp, ωp) (ωp, ωnp) (ωnp, ωp) (ωnp, ωnp)

Estimated Transitions

(ωp, ωp) 14633 14 41 514
(ωp, ωnp) 1072 4748 15 1150
(ωnp, ωp) 1069 8 4772 1143
(ωnp, ωnp) 2212 725 708 113209

Overall Accuracy 93.05
Kappa 0.8015

(b)
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(a) (b)

Figure 6.9: Lüneburg data-set: (a) optical image [85]; and (b) mean intensity of the 14 images. Viewing
direction from the left.

6.4.3 Real Data-Set: Lüneburg

A stack of 14 high resolution spotlight 300-MHz TerraSAR-X data of the town of Lüneburg,
situated in Lower Saxony, Germany has been considered in order to evaluate the proposed
method. The images were acquired between December 2010 and September 2011 with an
almost constant revisiting time of 22 days (see Fig. 6.10). The parameters are the same
for all the acquisitions with a nominal incidence angle of 41 degree, a HH polarization
and a nominal resolution of 0.6 m in slant range and 1.1 m in the azimuth direction. All
the acquisitions have been taken at around 5:30 AM Coordinated Universal Time (UTC).
The weather conditions were variable from snow, to rain and dry. Fig. 6.9b shows the
mean intensity of the 14 images for the considered portion of the full scene made up of
2048× 2048 pixels. Fig. 6.9a shows an optical image of the same area.

Dec−10 Jan−11 Feb−11 Mar−11 Apr−11 May−11 Jun−11 Jul−11 Aug−11 Sep−11 Oct−11

Figure 6.10: Temporal distribution of the TerraSAR-X data acquired on Lüneburg, Germany.

In this scene, bright lines are mainly generated by the multiple reflections of the elec-
tromagnetic waves with the several corners present in the structured home-made objects.
As one can notice bright lines have different length and width. In order to extract all of
them the ratio line detector should be applied with different values for width and length.
In this work we report the results of the extraction of lines with a minimum length of 10
pixels and a width of 3 pixels (similar results have been obtained for different ratio line
detector parameters). Some of these lines are stable and present a contrast that renders
them easily detectable by the line ratio detector. Others have a contrast that is variable.
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Figure 6.11: Number of Missed and False alarm pixels for: a) Ratio line detector applied independently
to each time; b) Proposed multitemporal detector applied considering two consecutive times; c) Ratio
line detector after the recursive application of the temporal de-speckling proposed in [37]; d) Proposed
multitemporal detector applied considering two consecutive times after the multitemporal de-speckling
proposed in [37]. Average results are reported in solid lines (real data-set).

This behavior is probably due to the different weather conditions. Some others bright
lines change between the different acquisitions. This is the case of the water treatment
plant in the upper part of the image. Here a skimmer arm is rotating inside each of the
four circular clarifier basins generating a line that changes positions acquisition to acqui-
sition. This is a very good test target for the proposed approach. Due to the temporal
de-correlation, we expect that speckle affects differently each acquisition. In the follow-
ing the performance of the proposed approach are analyzed quantitatively by considering
a reference map generated by photo-interpretation. The five parameters needed for the
proper working of the proposed FIS have been set in order to reduce the missed and false
alarms. Due to the similarity with the simulated data set illustrated in the previous sec-
tion only the slopes have been modified in order to better cope with the more uncertain
source of information and set to 8.
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Table 6.4: Average False Alarms, Missed Alarms and Overall Errors for the Bright line detection. Results
Obtained without De-Speckling (No Despeck) and with De-Speckling (Despeck) Are Given (Real data-
set).

Missed Alarms False Alarms Overall Errors
Approach No despeck Despeck No despeck Despeck No despeck Despeck
Mono-temporal Bright
Line Detection

609 456 127 105 736 561

Proposed Approach 390 292 92 83 482 375

Performance on the Detection of Primitives at a Given Time

As done for the simulated data set, the best threshold at each time τ has been firstly
computed considering the Receiver Operating Characteristic (ROC) for the two methods.
The average numbers of missed and false alarm pixels for the 14 observations are reported
in Table 6.4. From the comparison of these results it is possible to confirm the observation
done in the previous section. First the proposed method performs better than the ratio
bright line detector applied independently to each observation (the overall error is halve)
and it is more stable (see Fig. 6.11(a) and (b)). Moreover, the pre-processing using a
multitemporal filtering improves also in this case the detection. The outcomes of this
experiment confirm the results obtained on the simulated data set.

Table 6.5: Confusion Matrix of Primitives State Transitions Obtained by: (a) the Post-Detection Com-
parison; and (b) the Proposed Method (Real Data-Set).

True Transitions

(ωp, ωp) (ωp, ωnp) (ωnp, ωp) (ωnp, ωnp)

Estimated Transitions

(ωp, ωp) 5014 110 108 10

(ωp, ωnp) 398 255 0 93

(ωnp, ωp) 291 0 261 89

(ωnp, ωnp) 348 0 1 5283

Overall Accuracy 88.19

Kappa 0.7964

(a)

True Transitions

(ωp, ωp) (ωp, ωnp) (ωnp, ωp) (ωnp, ωnp)

Estimated Transitions

(ωp, ωp) 5546 103 153 56

(ωp, ωnp) 126 262 0 41

(ωnp, ωp) 126 0 216 57

(ωnp, ωnp) 253 0 1 5321

Overall Accuracy 92.52

Kappa 0.8664

(b)

111



6.5. Conclusion

Performance on the Detection in the Transitions of Primitive State

Also in this case the capability of the proposed method to identify the transitions of the
state of primitives is evaluated by calculating the confusion matrix. Average results for
the 14 observations are given in Table 6.5. In detail, Table 6.5.a reports the confusion
matrix obtained by the post-detection comparison and Table 6.5.b the confusion matrix
obtained by the proposed method. In both cases no pre-processing was performed. As
one can notice, the proposed method obtained an overall accuracy 4.33% higher than the
post-detection comparison i.e., 92.52% against 88.19% and a Kappa coefficient of 0.86
against 0.79. This confirms the validity of the proposed compound detector also on this
last case.

6.5 Conclusion

In this chapter a novel approach to multitemporal detection of primitives in VHR SAR
images has been presented. The approach exploits the multitemporal information in order
to: i) perform the detection of primitives at a given time; and ii) identify the transitions in
the state of primitives between two consecutive observations. This is done by introducing
a compound detection approach based on the Bayesian framework. Due to the difficulty
to estimate the statistical terms involved in the decision rule in an unsupervised and
parametric way, the proposed compound detection mechanism is integrated with the fuzzy
logic. Fuzzy logic is used in order to test the semantic consistency among the state of
primitives at the different temporal observations and infer the state of a primitive at a
given time. This allows the compound detection to avoid the problems of the unsupervised
statistical estimation. Note that, even though the proposed approach is presented for
primitive detection in VHR SAR images it has general validity and can be exploited for
primitive detection in high- and medium-resolution SAR images.

The effectiveness of the proposed approach has been illustrated on both simulated and
real VHR TerraSAR-X images by using a detector for bright line identification. When
compared to the independent application of the detector at each single time image, the
proposed method exhibited significantly higher accuracy and a better stability on both
data sets. In the context of the detection of primitive transitions, the proposed method
has been compared with the results obtained by a post-detection technique, showing a
higher accuracy in both the considered data sets.

With regards to the computation load, the only time consuming step is the derivation of
the primitive response using the considered bright line detector. It takes around 5 minutes
to elaborate a portion of 4 million pixels of a TerraSAR-X image using a computer with
4GB RAM and four 3.10 GHz CPUs. The time necessary for the inference process is in
the order of 55 seconds rendering the overall computational demand reasonable.

As a future development we are investigating an extension of the proposed approach
to the analysis of long time series of images. This is particularly important given the
forthcoming availability of long image time series acquired by SAR satellite systems (e.g.,
the ESA Sentinel 1 mission). Moreover, a formulation of the proposed method for solving
problems of multi-source primitive detection is under investigation.
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Chapter 7

Conclusion

This chapter draws the general conclusions on the methods for change detection in VHR
multitemporal SAR images developed in the thesis and presents an outlook of the possible
future developments.

7.1 Summary and discussion

In this thesis we analysed and modelled the main properties of multitemporal VHR SAR
remote sensing images in order to develop effective unsupervised change-detection meth-
ods. In particular, we derived: i) an approach to building change detection; ii) an approach
to rapid and accurate damage detection in built-up areas combining stripmap and spot-
light images; iii) a hierarchical approach to change detection for surveillance applications;
iv) a multitemporal detector for the extraction of primitives. For each topic an analysis of
the state of the art was conducted, and the limitations of literature techniques highlighted.
Starting from this analysis, novel solutions were theoretically developed, implemented and
finally applied to real remote sensing data in order to assess their effectiveness.

With respect to the detection of changed building in chapter 3 a novel approach that
takes advantage from a theoretical modeling of the backscattering mechanisms of new
and fully destroyed buildings in multitemporal VHR SAR images has been introduced.
In detail, new and destroyed buildings are identified by a pattern made up of an area of
both increase and decrease of backscattering with spatial properties and alignment de-
pending on the proprieties of the buildings. In order to extract the changes associated
with increase and decrease of backscattering, the proposed approach makes use of a mul-
tiscale representation of the multitemporal information allowing a detection of changes
at the optimal building scale. This information is used to identify the candidates to be
changed buildings. The building candidates are analyzed in order to properly detect the
new or destroyed building by means of four fuzzy rules. The fuzzy rules are formulated by
taking into account the proposed multitemporal changed building model. The aggregated
membership resulting from the application of the fuzzy rules makes it possible to identify
the class of each building candidate (i.e., new/destroyed building or general change with
size comparable to the building size but not related to new or destroyed building). The
use of both this fuzzy rule set and the intrinsic reliability obtained when working on the
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comparison of two images rather than on each single image has demonstrated its robust-
ness when applied to two different real challenging scenarios related to the detection of
demolished and new buildings.

In chapter 4 the two SAR acquisition modes called StripMap (SM) and SpotLight (SL)
provided by the new generation of SAR satellite missions has been exploited to detect
damages after catastrophic events. The two complementary SAR modes have been used
to perform different duties during the emergency response phase. In detail SM images,
which are characterized by a wide coverage (around 1500 Km2) and a high resolution (3
to 5 m), have been exploited to detect the urban changed areas (hot-spots) spread around
the large observed territory. This has been done using a multiscale strategy based on
the Wavelet transform. The obtained hot-spots are then used to drive the selection from
the archive of pre-crisis spotlight SAR images, which are characterized by a moderate
coverage (around 100 Km2) and a very high resolution (1 m), and the acquisition of new
post-crisis VHR SAR images. These images are used to perform change detection at high
spatial resolution with the goal to detect collapsed buildings. This analysis is conducted
by taking advantage of the theoretical model of new/destroyed building and the detection
method illustrated in chapter 3 by exploiting the Curvelet transform (instead of Wavelet)
in order to better preserve the linear details that characterize urban structures in VHR
SAR images. The proposed method demonstrated to be effective in quickly detecting the
most affected urban areas and accurately identify the demolished buildings. This was
possible because of both the multiscale representation of the multitemporal information
and the high robustness of the proposed building change detection method to deviate
from the ideal model considered for changed buildings.

In chapter 5 the high-complexity backscattering behaviors due to wide diversity of
man-made structures typical of a home-made scenarios has been addressed. The proposed
approach identifies changed areas (hot-spots) at different resolution levels according to
a multiscale technique based on the 2-dimensional stationary Wavelet transform. Each
hot-spot is analyzed according to its spatial position within a specific area of interest by
using the available prior information. The use of such information allows one to define
the best change detectors to be used for extracting the expected changes at fine scale. It
is worth noting that the assumption on the availability of the prior information on the
usage of different areas (and thus on the expected kinds of change) is reasonable since
the method has been developed for high frequency surveillance/monitoring of sensitive
areas such as maritime ports, airports, and so on. The proposed method, applied in two
different real scenarios, has demonstrated to be effective in detecting all the expected
kinds of change with a high geometrical accuracy despite the changes were associated to
objects with significantly different properties in terms of shape, modeling and size. This
is possible because of the hierarchical extraction of hot spots of change and of the specific
definition on the basis of the available prior information of feature extraction techniques
and change detectors.

In chapter 6 a novel approach that exploits the multitemporal information in order
to: i) perform the detection of primitives at a given time (e.g., lines, object with specific
shape); and ii) identify the transitions in the state of primitives between two consecutive
observations has been presented. This is done by introducing a compound detection ap-
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proach based on the Bayesian framework. Nonetheless, due to the difficulty in estimating
the statistical terms in an unsupervised way, the proposed compound detection mecha-
nism is integrated with the fuzzy logic. Fuzzy logic is used in order to test the semantic
consistency among the state of primitives at the different temporal observations and infer
the state of a primitive at a given time. This allows the compound detection to avoid the
problems of the unsupervised statistical estimation. Even though the proposed approach
is presented for primitive detection in VHR SAR images it has general validity and can
be exploited for primitive detection in high- and medium-resolution SAR images. The
effectiveness of the proposed approach has been illustrated on both simulated and real
VHR SAR images by using a detector for bright line identification. When compared to
the independent application of the detector at single time image, the proposed method
exhibits significantly higher accuracy and a better stability on both data sets. In the
context of the detection of primitive transitions, the proposed method has been compared
with the results obtained by a post-detection technique, showing a higher accuracy in
both the considered data sets.

Each chapter contributes to improve the state of the art on the analysis of multitem-
poral VHR SAR images, facing and solving relevant problems related to their analysis.

7.2 Concluding remarks and future developments

In this research activity we developed approaches that improve the capability of identify-
ing changes in multitemporal VHR SAR images. In detail, we address the issues related to
the correct exploitation of the very high geometrical content considering real challenging
change detection scenarios. In this context some issues remain open and need to be ad-
dressed in future developments. We identify (among the others) the future developments
reported in the following.

With the launch of the second generation of COSMO-SkyMed constellation there will
be the availability of multitemporal high resolution polarimetric data. The polarimetric
information allows the separation among different scattering mechanisms (e.g., between
volumetric and multiple scattering). Therefore the possibility to exploit this information
in order to detect partially damaged buildings should be investigated.

With the passage of time the archive of high and very high resolution SAR images of
the current and incoming missions will become richer and richer. In order to properly
exploit this extremely high amount of data, the proposed methods should be extended in
order to cope with the challenging problems of long-time series e.g., high amount of data
to be managed and processed.

The possibility of acquiring data with different incidence angles and with different
orbit nodes (i.e., ascending and descending) may be also exploited to solve the effects
of interaction and occlusions of neighboring objects with respect the changed target of
interest e.g., collapsed buildings.

The cogent time requirements of real emergency scenarios may be addressed by the
integration of the proposed approach for rapid and accurate damage detection in an
interoperability framework that is able to use the data coming from the different SAR
missions currently available allowing a considerable reduction of the response time.
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New primitive/object detectors to identify different kind of change should be developed
taking into account the works already presented in the field of target detection. This may
contribute to a significant improvement of the performance of change detection approaches
for surveillance applications.
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