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Chapter 1 General Introduction 

ABSTRACT 

In daily life, we are immersed in a continuous flow of stimuli targeting each 

of our different senses. Far from being independently processed, accumulating 

evidence has been widely documented by studies showing that stimuli from 

different modalities largely interact. However, despite the increasing interest, the 

interpretations of the results of experiments studying multisensory interaction are 

still controversial and the underlying mechanisms remain broadly unknown. 

The aim of this thesis is to investigate the interactions that occur between 

the senses of audition and touch. Audiotactile interactions have been far less 

studied than the ones existing between other modality pairings. Maybe because 

they go often unnoticed though being well present in many everyday life situations. 

This thesis focuses mainly on two aspects that concern interactions: understanding 

the impact of the relative saliency between the stimuli and investigating the 

mechanism behind perceptual integration. These questions are addressed 

respectively in two studies conducted by means of magnetoencephalography. 

 The thesis is structured as following: in chapter 1, I provide the theoretical 

background to my scientific questions. A brief synthesis of the two main studies is 

presented in chapter 2. The two studies are entirely reported under the form of 

manuscripts in chapter 4.  

Finally, in appendix a behavioral study that investigates spatial aspects of 

AT interactions is reported. Although the results of this study are of pertinence of 

the project, given the preparatory character and the preliminary state of the study 

we decided to show them in the appendix rather than include them in the main 

body of the thesis.  
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Chapter 1 General Introduction 

CHAPTER 1 

General introduction 

 

The scope of this chapter is to give an overview of the state of art of 

audiotactile (AT) multisensory research. It has been the basis of my scientific 

questions and motivated the experimental choices of the two 

magnetoencephalography (MEG) studies presented in chapter 2 and of the 

behavioral study reported in the appendix.  

In particular, this introduction is about the field of multisensory research (s. 

1.1), the reasons for studying AT interactions (s. 1.2), the existent behavioral results 

in humans of AT interactions (s. 1.3), and evidences suggesting a particular role of 

peripersonal space and of looming signals (s. 1.4) for multisensory interactions. 

Another part of this chapter is dedicated to the presentation of studies that have 

contributed in delving into the neural substrates subserving audiotactile interactions 

in both animals and humans (s. 1.5, 1.6, 1.7, 1.8). Finally, I discuss some concerns 

related to methodological issues that need to be taken into consideration when 

dealing with the studying of multiple modalities at once (s. 1.9). 
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Chapter 1 General Introduction 

 

1.1 A multisensory world 

In daily life, we receive a continuous and simultaneous flow of information 

from each of our different senses. This information is merged in the brain, resulting 

in a seamless perception of the world. For many years research tended to focus on 

each of our senses in isolation. However, it has now been amply documented how 

stimuli from different modalities largely interact. Despite the increasing interest in 

interactions between senses, there is a long standing debate concerning the 

understanding of the underlying mechanism of multisensory interaction.  

In the past the limiting factors that caused crossmodal interactions to be 

poorly, or almost not, investigated have been the assumption that such a complex 

structure as the brain and the functional architecture of the mind can be described 

in term of modules. In the 1980’s, Jerry Fodor provided an extensive discussion on 

the idea of the modularity of the mind (Fodor, 1983). According to Fodor, modules 

are cognitive domains that only respond to certain kind of stimuli (i.e., they are 

specialized), are neurally specific, innately specified, fast and process information 

in a mandatory manner. In addition, they need not refer to other cognitive systems 

in order to operate (i.e., ‘informationally-encapsulated’ in Fodor’s terminology) and 

therefore function in an essentially autonomous fashion. From this perspective, 

early sensory areas have typically been conceived as the quintessential modules. 

They were thought to deal with information from a single sensory modality at a 

time, within neurally specific and innately specified structures, and in a highly 

autonomous and ‘informationally encapsulated’ fashion. Not only, it may also 

partially reflect the fact that some of our perceptual experiences might appear 

unisensory. For example, when people try to understand what another person is 

saying they typically think that all the information they get comes from what they 

hear. However, when we listen to someone speaking in a noise environment (such 
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as at one in cocktail party), our perception can be facilitated if we not only hear the 

person’s voice together with those of many others, but can also see their face- and 

lip-movements (e.g. Sumby and Pollack, 1954). Although this influence is outside 

the observer’s awareness, it becomes apparent when auditory and visual 

information are somewhat incongruent. For instance, whenever we go to the 

cinema we perceive the voices of the actors  on the screen as emanating from their 

lips, despite the fact that the sounds are actually presented from loudspeakers 

situated elsewhere (Spence and Driver, 2000). This illusion known as the 

‘ventriloquism effect’, demonstrates that people often mislocalize sounds toward 

their apparent visual source (e.g., Bertelson and Schersleben, 1998). Moreover, 

another paradigmatic case of crossmodal interaction is the well-known McGurk’s 

effect (McGurk and MacDonald, 1976), where the presentation of an auditory 

syllable, paired with presentation of a visual different syllable, leads to the 

modified auditory perception of a third syllable.  

  In all of the examples of sensory conflicts reported so far, vision 

dominate when the information where somewhat incongruent. However, this is not 

always the case. Sometimes what we hear can also change what we see and what 

we feel. For instance, Shams and colleagues (2000) have shown that a beeping 

sound can lead to the illusory flashing of a light. People in their study fixate on a 

spot on a computer monitor and were asked to judge how frequently a white disk 

was flashed on the periphery of the screen. When presented in silence participants 

were extremely accurate in reporting the number of flashes, however, when a single 

flash of light was accompanied with multiple auditory beeps, participants were 

fooled into believing that the light had flashed several times. This is a clear 

demonstration that we hear can lead to a qualitative change in what we see.  

Auditory cues can also influence (or dominate) tactile perception in the 

absence of visual cues as shown by  the ‘parchment-skin’ illusion (Jousmäki and 

Hari, 1998). In this experiment, people were asked to rate the perceived roughness 
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/dryness of their own hands while rubbing them together. The hand rubbing-sounds 

were picked up by a microphone placed close to the hands, and fed back over 

headphones. This audio feedback could either be identical to the original sound or 

else manipulated to boost or cut the high-frequencies (i.e., above 2 kHz). People 

reported that their hands felt smother/dryer when the high-frequency sounds were 

amplified, but cutting (or reducing) sounds in this range led to the hands feeling 

rougher/smoother. These examples clearly demonstrate how is limiting to focus on 

one sensory modality in isolation in order to deeply understand how we perceive 

external world and the need to discover the general rules of how senses interact. 

 

1.2 Interactions between the senses of audition and touch 

A specific focus of this thesis is the interaction between the auditory and 

tactile senses. AT-interactions have been far less studied than interactions between 

any other pairs of modality. While a rough search in the database PubMed using the 

keyword ‘audiotactile’ yields 49 results, a search with the keyword ‘audiovisual’ 

produces over 8000 results (visuotactile ranks 108). Nevertheless, AT interactions 

deserve its interest because they can link a remote sense (audition) to a bodily 

sense (touch). Moreover, though they go often unnoticed, they are present in 

everyday life. For example, when touching an object, we perceive its consistency 

through the touch but also the sound produced by the touch is informative about the 

object’s properties, when leafing through a newspaper, or when typing on a 

keyboard or the buzz of a mosquito and its bite, knocking at a door, playing 

instruments, walking, shaving etc. Furthermore, a number of similarities exist 

between the senses of hearing and touch that may suggest the existence of a 

favored link between both modalities. In the fifties of the past century, von Békésy 

highlighted a number of similarities between the senses of audition and touch, 

suggesting to adopt the sense of touch as supporting model for studying audition 
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(e.g., von Békésy, 1955, 1957, 1959). For instance, he noticed that mechanisms for 

transducing sensory signals are analogous for sounds and vibrotactile stimuli. In 

particular, the auditory and tactile receptors are activated by the same type of 

physical energy, namely the mechanical pressure of the travelling waves (von 

Békésy, 1959; cf. Nicolson, 2005).  Furthermore, there are analogies in the 

physiological mechanisms (see Corey, 2003; Gillespie & Müller, 2009) supporting 

the idea that the two sensory modalities have common origins (see Soto-Faraco & 

Deco, 2009; von Békésy, 1959, for reviews). From this point of view, prenatal 

studies of ontogenetic brain development in humans show that the structures of the 

inner ear gradually evolved from skin tissue (Driver and Kelley, 2009; Vickaryous 

and Hall, 2006). It is also interesting to note that the devolopments of neuros in the 

the anterior ectosylvian follows a precise order, first, the tactile neurons, second the 

auditory neurons and finally the visual neurons (Wallace et al., 2006). Therefore, 

the closer development of the auditory and tactile systems could affect the 

subsequent multisensory interactions having some effect upon the successive 

strength, direction, and amount of reciprocal connections between them (e.g., 

Gregory, 1967; Katuski, 1965). Moreover, the fact that auditory and tactile signal 

transduction times from the ear and skin are faster and comparable in time, as 

opposed to visual signals with much longer transduction times (Barnett-Cowan and 

Harris, 2009). Finally, studying AT interactions is interesting not only in and of 

itself, but can provide insights into the broad understanding of how different senses 

interact, regardless of their modalities. 

 

1.3 Behavioral evidence of AT multisensory interactions  

Perhaps the most striking evidence of interaction between the senses of 

audition and touch is revealed in the Parchment-Skin Illusion (Jousmäki and Hari, 

1998) already mentioned in this chapter (s. 1.1). Beside this illusion, several 
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behavioral studies reported AT interactions and how they are sensitive to different 

factors like the space around the body where the stimuli are presented, the distance 

of the audio stimuli from the body, the complexity of the sound, and the spatial 

arrangement of the stimuli. 

In Farnè and Làdavas (2002), patients suffering from tactile extinction failed to 

report most of the tactile stimuli presented on the contralesional (peri-head) side 

when an auditory stimulus was presented simultaneously on the ipsilesional side, 

even though they could report contralesional tactile stimuli nearly perfectly, when 

they were presented in isolation. The magnitude of this extinction effect was 

greater when the auditory stimuli were presented from close to the participant’s 

head (20 cm) than when they were presented far from the head (70 cm away) for 

complex stimuli (white noise bursts) rather than pure tones (see also Làdavas et al., 

2001, for similar results) 

   Despite these findings, research on healthy participants suggested a weaker 

spatial link for interactions between signals presented in the auditory and 

somatosensory modalities than those that exist between other pairs of modalities. 

For instance, people’s performance in crossmodal Temporal Order Judgment (TOJ) 

tasks is typically worse when the two stimuli in different modalities are presented 

from the same location than when they are presented from different locations, 

perhaps because crossmodal integration (i.e., temporal ventriloquism; Morein-

Zamir, Soto-Faraco, & Kingstone, 2003) is enhanced for stimuli presented from the 

same direction. This spatial modulatory effect on crossmodal TOJs has been 

reported between auditory and visual stimuli (Zampini et al., 2003a, 2003b), and 

between visual and tactile stimuli (Spence et al., 2003). However, somewhat 

surprisingly, Zampini et al. (2005) recently found no such spatial modulatory 

effects on audiotactile TOJs across three experiments. Moreover, in an EEG study, 

Murray et al. (2005) observed no difference in in RTs facilitation for AT presented 

in the peri-hand space, when the stimuli were presented left/right aligned or 
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misaligned (interaction’s neural correlates were as well indistinguishable between 

spatially aligned and misaligned and originated in auditory area, leading the 

authors to suggest the existence of large bilateral auditory RF in this region). 

Similar behavioral results were reported by Zampini et al. (2007)  who presented 

AT stimuli from separated spatial location (front/back) and observed a facilitation 

of RTs irrespective of whether the stimuli were in spatial register or not (see also 

Lloyd et al., 2003; Zampini et al., 2005 similar results).  

But in all the AT studies reported above, the stimuli were presented to 

participants’ hands. Successive studies suggests that AT interactions in humans 

depends to a large extent on the particular region of space in which the auditory 

and tactile stimuli happen to occur and that, among the various regions of space 

surrounding the different parts of the body, stimuli delivered to the space around 

the head (peri-head space) have  a higher degree of salience. This fits well with the 

consideration of the high importance of head for our survivor and the fact that 

vision cannot monitor its surface. Kitagawa et al. (2005) investigated AT temporal 

order judgments for the first time in healthy humans in the region behind the head. 

They showed how, accordingly to the results found between other modality 

pairings, in this portion of space performance was worse when auditory distractors 

were presented on the same side to the tactile stimuli than when they were 

presented on the opposite side. This crossmodal distractor interference effect was 

more pronounced when white noise distractors (vs pure tones) were presented from 

close to the head (20 cm) than when they were presented far from the head (70 cm). 

Tajadura-Jimenez and colleagues (2009) applied electrocutaneous stimuli to either 

earlobe while auditory stimuli were presented from the congruent or incongruent 

side and at two distances, close (20 cm) or far (70 cm) from the participant’s head. 

They showed a spatial modulation of AT interaction for stimuli presented close to 

the head, with faster RTs for congruent with respect to incongruent stimuli. 

Interestingly, when the same stimuli were delivered to the hands, which were 
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placed either close to or far from the head, they could not prove any spatial 

modulation of AT interactions, showing a specificity of the particular body part 

stimulated rather than to the region of space (i.e. around the head) where the 

stimuli were presented. 

In literature, it has been distinguished between different partitions of the 

space as a function of their distance to the body. The space directly surrounding the 

body is called peripersonal space (PPS) and possesses a particular relevance, since 

it is the space where physical interactions of a subject with the external world takes 

place (Rizzolatti, 1997). Evidence from studies in humans mentioned in above in 

this section (Kitagawa et al., 2005; Tajadura-Jiménez et al., 2009), together with 

similar results from other modality parings (e.g. Làdavas, 2002) and from in 

neurophysiological studies in monkeys (see section 1.6 or Graziano et al., 2004 for 

a review) suggested the existence of a specialized brain system that specifically 

represents  the PPS in a multisensory way (e.g. Holmes and Spence, 2004).  

 

1.4 Multisensory looming signals  

Among the multiple worries a living being has to daily deal with is the protection 

from external physical threats (e.g., Dosey and Murray 1969; Cavallin and Houston 

1980 see Cooper and Vitt 2002; Eilam 2005 for evidence in animals). One of the 

possible functions suggested for the special relevance of multisensory in PPS 

representation is thought to be the better monitoring of the space around the body, 

and the better encoding of approaching stimuli that could be potentially harmful in 

order to prepare defensive behaviors. 

 

1.4.1 Looming (and receding) signals 

A considerable amount of evidence shows that the increase in sound 

intensity or in the size of a visual shape can reliably be interpreted as an 
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approaching object and are therefore increasingly used to simulate looming objects 

in experimental settings (e.g. Ghazanfar et al. 2002; Seifritz et al. 2002; Riskind et 

al. 2014). Approaching or looming signals are often related to extremely relevant 

environmental events, such as collisions or threats. Thus, the activation of an 

appropriate defensive behavior, such as attention orienting or motor acts (Bach et 

al., 2009; Grassi, 2010), in response to a looming object potentially threatening the 

body, is of vital importance for the maintenance of the integrity of a living being. 

Along this line, studies have shown that humans tend to overestimate the change in 

loudness of sounds with increasing level compared to those decreasing by an 

equivalent amount (Neuhoff, 1998) and, conversely, to underestimate the distance 

or time-to-arrival of looming sounds (Neuhoff, 2001). Similarly, the detection of 

looming sounds is prioritized as compared to static or receding sounds, as reflected 

by shorter reaction times in the former than in the latter conditions (Bach et al., 

2009; Cappe et al., 2009). Looming sounds are also rated as more unpleasant, 

arousing, intense, salient and threatening and elicit increased skin conductance 

responses than receding sounds (Bach et al., 2009; Tajadura-jiménez et al., 2010).  

 

1.4.2 Multisensory looming signals 

Given the special relevance of prompt detection of looming signal (see 

previous section) given the fact that we live in a multisensory environment rich of 

information that comes from different sensory modalities and the presence of 

stimuli from different modalities has been largely shown to provide behavioral 

benefits, one could reasonably expect to obtain larger multisensory effects from the 

presence of looming than static signals. Indeed it has been shown in monkeys (e.g., 

Graziano et al., 1997) how multisensory neurons respond better to approaching 

visual stimuli and that, when electrically stimulated, these neurons evoke defensive 

movements (Cooke et al., 2003). Accordingly, it has been found that the 
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multisensory neurons in PZ and VIP are highly responsive to objects rapidly 

approaching the body (Graziano et al., 2002). When these sites are electrically 

stimulated, a specific pattern of defensive behaviors is evoked, such as facial 

grimace, head turn, hand lifting in the proximal space. The same pattern of 

behaviorally observable reactions is nevertheless triggered by presenting airpuffs 

close to the animal’s face (Cooke et al., 2003). By virtue of their functional feature, 

these neurons have been considered as the neural substrate of the capability to 

detect objects potentially threatening and noxious for the body and to implement 

appropriate motor responses (Graziano and Cooke, 2006). In the audiovisual 

domain, looming (vs. receding or static) signals have been shown to induce 

preferential orientation responses in 3-month-old infants (Lewkowicz, 2008), 

human adults (Leo et al., 2011) as well as in monkeys (Maier et al., 2004) and 

shorter reaction times (Cappe et al., 2009). Although still tentative, studies on the 

neural underpinnings of the audiovisual looming effects show that audiovisual 

looming (vs. receding) signals determine an enhanced BOLD response in primary 

visual and auditory areas as well as in multisensory areas (superior temporal sulcus 

STS; parietal and frontal structures; Tyll et al., 2013; see also Hall and Moore 2003 

for a review). Moreover, the processing of looming sounds is associated with an 

increased connectivity of bilateral superior temporal sulcus with visual areas (Tyll 

et al. 2013), possibly subserving a modulatory effect of looming sounds on the 

excitability of visual cortex (Romei et al., 2009).  

With regard to the interactions between auditory looming signals and tactile 

stimuli, in a study conducted by Serino’s group (Canzoneri et al., 2012) a tactile 

stimulus was administered at the hand at different delays from the onset of a 

looming or of a receding sound. Results showed that the moving auditory stimulus 

speeded up the processing of the tactile stimulus as long as the sound was 

perceived at a limited distance from the hand for both sounds. Moreover, when 

comparing looming vs receding sounds, the approaching one seems to have a 
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stronger effect in speeding up the processing of a tactile stimulus. 

 

1.5 Neural correlates of multisensory interactions: the hierarchical 

model and new findings 

At a cortical level, traditionally the processing of different senses has been 

believed to occur in a first step separately for each sensory modality and to 

converge successively, through a feedforward pathway, in a strictly hierarchical 

manner from primary to secondary sensory specific cortices and to regions of 

‘association’ or ‘heteromodal’ cortex (hierarchical model). The classical 

multisensory association regions for AT were identified by a number of studies in 

the frontal lobe, as parts of the premotor cortex, in the parietal lobe, particularly in 

the intraparietal sulcus (IPS), and in the temporal lobes, particularly the STS. 

In the last 15 years a multitude of studies have shown multisensory 

interactions already at a very early latency of cortical process and in primary or 

close to primary cortical areas. These results challenge the assumption that 

multisensory integration takes place only in high-order association cortices. 

Though several attempts have been made (see Ghazanfar and Schroeder, 2006 for a 

review), a clear understanding of the mechanisms of interactions is still lacking.  

 

1.6 AT multisensory association areas   

In monkeys, the premotor cortex contains multisensory neurons responding 

to visual, auditory, and somatosensory inputs presented in proximity of the face, 

arm and upper torso (Graziano and Gandhi, 2000; Graziano and Gross, 1998; 

Graziano et al., 1999). For the most part, multisensory neurons are located in a 

‘polysensory area’ in the dorsal part of premotor cortex. The function of these 

neurons appear to be involved with the production of defensive behavior: they are 

particularly sensitive to looming sounds or looming visual stimuli (Ghazanfar et al., 
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2002), i.e. to stimuli that indicate an approaching potential danger. This view is 

supported by defensive movements that are elicited by microstimulation of the 

‘polysensory zone’ (Graziano et al., 2002). 

The ventral intraparietal region (VIP), located in the fundus of the 

intraparietal sulcus, has been shown to respond to visual, somatosensory (Duhamel 

et al., 1998), and auditory (Schlack et al., 2005) stimuli, especially moving stimuli, 

and also to vestibular stimuli (Bremmer et al., 2002).  

In macaque monkeys, along the fundus of the posterior superior temporal 

sulcus (STS), in a region, also labeled ‘superior temporal polysensory’ (STP) area, 

neurons have been detected that are responding to auditory, visual and 

somatosensory stimuli (Bruce et al., 1981). A multitude of neuroimaging studies in 

humans reported responses to auditory and visual stimulation in STS (Beauchamp 

et al., 2004; Calvert et al., 2001; Noesselt et al., 2007)(Beauchamp et al., 2004; 

Calvert et al., 2001; Noesselt et al., 2007) and also to somatosensory stimulation 

(Beauchamp et al., 2008). 

 

1.7 Multisensory AT interactions in animals in primary or close to 

primary cortical areas 

The caudomedial auditory area (CM) is an area adjacent to primary auditory 

cortex (AI), which is thought to participate in early processing of sounds, 

especially complex noises, as a first stage (or "belt") auditory association cortex. 

This area has been shown to be a site of multisensory convergence, since it shows 

robust somatosensory and auditory responses, at early stages of cortical processing. 

The first report of non-auditory inputs in CM is a study in 2001 by Schroeder and 

colleagues (Schroeder et al., 2001). By using multi-contact electrodes implanted in 

monkeys they reported somatosensory input in CM. Awake monkeys were 

presented with binaural clicks, pure tones and band-passed noise via headphones, 
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and somatosensory stimulation was delivered by means of contralateral median 

nerve stimulation. The timing and the laminar profile of activity in the caudomedial 

(CM) belt auditory area were similar for somatosensory and auditory inputs, and in 

both cases responses expressed a feedforward profile. (i.e., the initial responses 

began in and near lamina 4 and spread to extragranular layers). On the contrary, no 

somatosensory activation was registered in AI. 

Fu and colleagues (Fu et al., 2003), by means of multi-neuron cluster 

recordings, confirmed that the majority of recording sites that responded to 

auditory stimulation in CM, but not in AI, responded also to somatosensory 

stimulation. They further investigated which body parts and which somatosensory 

modalities best activate the CM belt area and found an activation preference in 

response to hand and head surfaces and for cutaneous stimulation. 

Kayser and colleagues (Kayser et al., 2005) showed by means of functional 

Magnetic Resonance Imaging (fMRI) technique in anaesthetized monkeys a supra-

additive integration effect in response to a touch of the hand or foot, when 

presented simultaneously to a sound. This effect was localized in the CM, but also 

in the caudolateral (CL) belt areas of the auditory cortex. Integration was stronger 

for temporally coincident stimuli and obeyed the principle of inverse effectiveness, 

i.e. greater enhancement for less effective stimuli. 

Cappe and Barone (2005) injected retrograde tracers in unimodal auditory, 

somatosensory and visual cortical areas of marmoset and found several direct 

connections between cortical areas involved in processing information of different 

modalities. Among others, they found projections from secondary somatosensory 

cortex (SII) to the auditory cortex and the anterior bank of the lateral sulcus. 

Furthermore, neurons were detected that respond to auditory stimuli at a short 

latency in a somatosensory region including SII. These findings suggest that this 

area, together with the posterior auditory areas, is involved in the integration of 

auditory and somatosensory stimuli. However, there is a lack in physiological 
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studies investigating activation or convergence in somatosensory cortex for visual 

and/or auditory responses (but see Zhou and Fuster, 2004). 

Lakatos and colleagues (Lakatos et al., 2007) aimed to further investigate 

neuronal mechanisms and functional significance of low-level multisensory 

interaction in monkeys in primary auditory cortex (AI). They penetrated primary 

auditory cortical area of macaque monkeys with multielectrodes and recorded 

current source densities and multi-unit activity. They stimulated the animals with 

sound clicks and via median nerve electrical pulses first separately and found that 

somatosensory stimuli have a modulatory effect in AI, rather than increasing the 

neural firing rate. By comparing the sum of singular responses to those resulting 

from simultaneous AT stimulation using different intensities of the sound, they 

found AT interaction effects in AI. These effects were super-additive for weak 

auditory stimuli (below 50 dB) and additive for stronger auditory stimuli (from 50 

dB to 80 dB), nicely in accordance with the principle of inversive effectiveness. 

Furthermore, by temporally shifting the occurrence of the auditory stimulus (with  

sound of fixed intensity) with respect to the onset of the tactile stimulus, they 

showed how the auditory-somatosesensory interaction effect does not fall linearly 

or exponentially with the stimulus onset asynchronies (SOAs), but rather it follows 

a non-linearity cycle that coincide with the frequency-periods of the classical 

spontaneous oscillatory activity in AI (for this see Lakatos et al., 2005) detected in 

brain (i.e. gamma, theta and delta band). These results suggest that a somatosensory 

stimulus, rather than inducing an increase in neuronal firing rates, induces a reset of 

local oscillatory activity to an optimal excitability phase. This mechanism would 

ensure that the crucial input arrives at the moment of maximum excitability in the 

oscillatory cycle present in AI and enhances the response to an auditory stimulus. 

 

1.8 Neural correlates of AT interactions in humans 
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Since some decades, the question of whether interactions between auditory 

and somatosensory can be detected at neuronal level in humans using non-invasive 

imaging techniques such as electroencephalography (EEG), MEG of fMRI has 

been raised.  

Lam and colleagues (1998) reported that the activity in a region that was 

considered to reflect ipsilateral SII was suppressed by continuous auditory (music) 

stimulation.  

In a high-density EEG study, Foxe and colleagues (Foxe et al., 2000) 

provided for the first time topographical maps of the AT interaction potential. They 

showed AT interactions already in early stages of cortical processing. The earliest 

significant AT interaction peaked at ~65 ms, in the hand representation area of the 

postcentral gyrus. A later interaction at ~80 ms was consistent with a contribution 

from activity within the posterior auditory cortices. The responses to AT stimuli 

were stronger than the sum of responses to auditory and tactile stimuli presented 

alone.  

In a complementary fMRI study, Foxe and colleagues (2002) showed 

convergence of somatosensory and auditory inputs to a sub-region of the human 

auditory cortex along the superior temporal gyrus, a possible human homologue of 

the macaque monkey CM belt area. Moreover, they showed how simultaneous 

stimulation in both, auditory and somatosensory modalities, resulted in activity 

exceeding that predicted by summing the responses to unisensory stimuli, 

interpreted as facilitatory effect of AT interaction.  

In a MEG study, (Lütkenhöner et al., 2002), subjects were stimulated with 

binaural tones and unilateral tactile pressure pulses to the right thumb, either 

separately or simultaneously. MEG recordings indicated AT interaction in the 

hemisphere contralateral to the tactile stimuli, in six of eight subjects, with the 

major effects at ~ 140 and ~220 ms. The responses to AT stimuli were weaker than 

the sum of responses to auditory and tactile stimuli presented alone and were 
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identified as reflecting partial inhibition of SII cortex. 

Gobbelé and colleagues (2003) attempted to extend the study of 

Lütkenhöner by applying spatially and temporally coincident stimuli, so that the 

stimuli were also perceptually bound together. They recorded MEG responses to 

unilateral auditory or tactile stimuli, or spatiotemporally coincident bimodal AT 

stimuli, which could be presented either from the right or left side of the body 

midline. They identified suppressive AT interaction at about 75–85 ms, in the 

contralateral posterior parietal cortex, and at about 105–130 ms in the contralateral 

temporoparietal areas, between SII and auditory cortices. 

In an EEG experiment, Murray and colleagues (2005) investigated the 

spatial alignment as the critical parameter for the temporally earliest multisensory 

interactions observed in lower-level sensory cortices. They recorded 

psychophysical and electrophysiological data, where participants performed a 

reaction time task in response to unisensory stimulus or to multisensory AT stimuli 

arranged in different spatial configurations: aligned (e.g. Left hand touch/ left sided 

sound), or spatially misaligned stimulation (e.g. left hand touch/ right-sided sound). 

The psychophysical data showed that participants responded more rapidly to 

multisensory than unisensory stimuli, irrespectively of whether the stimuli were 

presented spatially aligned or misaligned. Similarly, the EEG data showed 

(facilitatory) multisensory interactions at just 50-95 ms for both spatially aligned 

and misaligned stimuli. The auditory-somatosensory interaction was localized in 

auditory association areas contralateral to the side of somatosensory stimulation.  

In Sperdin et al. (2009) in order to link early, low-level multisensory 

interactions and behavioral indices of multisensory processing, a different analysis 

was performed on the eight conditions of the dataset collected in the study of 

Murray et al. (2005) cited right above. In order to evaluate whether early AT 

interactions impact subsequent behavior, trials were sorted according to slow or 

fast reaction times for each condition. Results provide evidence that AT interactions 
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relate to the later response speed. However, no evidence was found of distinct 

networks engaged for fast and slow reaction times, but rather a modulation in their 

strength. 

 

1.9 Methodological considerations 

It is important to note how the different approaches mentioned in the 

previous sections of this chapter, utilized different methods to investigate and to 

define multisensory interactions. For example, in the case of anatomical tracer 

studies, typically connections between sensory-specific areas are investigated. In 

the case of single-cell studies, it is typically assessed how single neurons respond 

to more than one sensory modality when stimuli are presented in isolation or 

combined. Since it is quite widely debated, how multisensory integration is 

explored by different approaches the following paragraph aims to highlight the 

principles and methods (and the consequent strengths, precautions and limits) 

inherent in the study of multisensory interaction in humans and, thus of relevance 

for two of the three studies presented in this thesis. 

 

1.9.1 Definition of the principles of multisensory integration from cat's 

superior culliculus (SC) 

The milestone in multisensory research field is the early work conducted by 

Stein and Meredith (1993) on cat’s superior colliculus (SC), later complemented by 

studies in the SC of macaque monkey (Wallace and Stein, 2001). The SC is a 

midbrain structure that controls orientation behavior (for instance gaze shifts), and 

coordination of movements. SC is characterized by the presence of many 

multisensory neurons, i.e. neurons responding to stimuli of more than a single 

modality. Operationally, multisensory integration has been defined as the presence 
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of a number of neuronal impulses significantly higher (superadditive) when evoked 

by a crossmodal combination of stimuli than when evoked by the most effective of 

these stimuli individually. Thus, according to this definition and based on single 

cell recordings in SC, the three basic principles of multisensory were formulated. 

The first principle is the ‘spatial rule’ that states that multisensory integration is 

more likely (or largest) when the unisensory stimuli to be integrated occur at the 

same location in space. Indeed, in SC, multisensory neurons possess multiple 

receptive fields (RFs), one for each modality. These RFs overlap in space, and, if 

two stimuli are in the same spatial register, the brain activity is enhanced. On the 

contrary, if two stimuli are not spatially aligned no enhancement is present, or even 

a depression. The second principle, the ‘temporal rule’, states that multisensory 

integration is more likely (or largest) when the unisensory stimuli to be integrated 

are presented at approximately the same time. In general, it has been hypothesize 

that exist a possible window of time (in the order of few up to several hundreds of 

milliseconds) (Spence and Squire, 2003), during which integration can take place. 

This enables also to take into account different modalities speeds (e.g. light speed 

and sound speed), different response latencies and different mechanical 

transduction speeds. The third principle, the ‘rule of inverse effectiveness’, states 

that multisensory integration is more likely (or largest) if the uni-sensory stimuli 

are rather weak. This is also intuitively logic: while highly salient cues are easily 

detected and their combination has a modest effect on their detection and 

localization, combination of weak cues evokes a substantially enhanced response 

when compared to the individual weak stimuli.  

This operational definition of multisensory integration and the three 

principles empirically derived from SC recordings, has provided a simple 

conceptual framework for interpreting multisensory findings for neuroimaging 

studies in humans. 
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1.9.2 The linear additive model 

AT integration in human neuroimaging studies is usually defined by means 

of the additive linear model. This model is based and inspired on the studies on SC 

reviewed in previous section. According to the linear model, the data recorded 

during the simultaneous bimodal stimulation (AT) is contrasted with the sum of the 

data obtained from its unisensory components presented singularly (Audio A, 

tactile T). The rationale is that if the two dimensions of the bimodal stimulus are 

processed independently, the neural activities obtained by the algebraic sum of the 

responses to the unimodal constituent of the bimodal stimulus to the response 

should be equal to the activity produced by the bimodal stimulus itself. Any 

activity exceeding (superadditive effect) or falling below (depression) the sum is 

regarded as interaction. In other words, AT interactions = response to (AT) –

(response to (A) + response to (T)). 

This model has been widely used in human studies of crossmodal 

interactions but unluckily it has two main limitations. The first limitation is that this 

estimation is sensitive to several potential biases, and experiments have to be 

designed carefully in order to avoid or minimize them (see Besle et al., 2004). It 

assumes that the analyzed brain responses do not include any activity common to 

all three stimulation (AT, A, T). If this assumption is not true, this common activity 

would be added once and subtracted twice, leading to a wrong estimation of the 

multisensory integration effect. These common activities could be task-related 

neural activities associated with late cognitive processes, response selection, or 

motor processes. However, these activities arise usually after about 200 ms post-

stimulus, while previous latencies are characterized by sense-specific answers (see  

Hillyard et al., 1998). Thus, with EEG and MEG techniques usually the analysis is 

limited to a time range below 200 ms, while with fMRI this is not possible, 

rendering this technique unsuitable for an ‘additive model’ based approached. 
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However, also in EEG/MEG preparatory states, i.e. slow potentials/fields that begin 

prior to stimulus onset, can introduce a further potential artifact (Teder-Sälejärvi et 

al., 2002). Another assumption of this approach is that, during unimodal 

stimulation, the non-stimulated cortex is not affected by the stimulation in the other 

modality. However, this is not entirely the case since several studies have reported 

deactivations in sensory-specific cortex when subjects were presented with 

continuous stimulation in another modality (e.g, Laurienti et al., 2002). 

Furthermore, it assumes that the attentional load required in the two unimodal and 

in the unimodal conditions is the same. This is obtained usually by requiring the 

same task in all three conditions to the subjects. However, it may be the case that 

the task may require less attentional effort in one condition than in the other. 

Moreover, this model is blind to linear interactions between senses. In fact, 

as an implicit consequence of its design it can detect only super- or sub-additive 

interactions. On the contrary, senses can interact linearly. For example, if they 

converge (and are integrated) on the same pool of neurons, but they responses still 

approximate the sum of the responses to its modality-specific components. Due to 

poorness of spatial localization of imaging techniques, this interaction cannot be 

distinguished from activation of separating pools of unisensory neurons. Since 

studies using noninvasive methods like fMRI and ERP have become increasingly 

important tools for the study of brain function and are constrained to focus 

specifically on response non-linearities, non-linearities (in particular 

superadditivity) have become  the main signature for the presence of multisensory 

integration and multisensory integration has become synonymous with response 

nonlinearity. However, in this regard it is important to mention more recent 

findings on SC in cats (Stanford et al., 2005; see also Perrault et al., 2005; Stanford 

and Stein, 2007) that emphasize the incidence of linear interactions with respect to 

the non-linear ones. In these studies in fact, the most multisensory interactions 

were approximated by simple summation of modality-specific input, while 
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superadditive interactions were common only in responses to very ineffective 

modality-specific stimuli (while subadditive interactions were relatively rare).
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CHAPTER 2  

Short description of the project 

 

 

In this chapter a brief description of the entire research project is given. At 

first an overview of the project is provided (s. 2.1). Afterwards, the two MEG 

studies are synthetically introduced, described and discussed (Study I, s. 2.2; Study 

II, s. 2.3). Finally, I outline some general conclusions and future perspective (s. 

2.4). 

For a more detailed description of the studies see chapter 4 where the 

manuscripts of the two studies are reported. To note that a third behavioral study 

has not been included in the main body of the thesis but in the appendix. In fact, 

although results of this study are of pertinence of the project, it is at a preliminary 

stage.  
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2.1 Global overview of the project 

The overall aim of this project was to expand the current knowledge in 

multisensory interactions, in particular between the senses of audition and touch. 

Although AT interactions have been poorly investigated (see section 1.2) so far, 

they may significantly increase our knowledge of the multisensory field. As a 

conclusion of the literature review previously presented, three main questions were 

issued.  

In the first MEG experiment, the role of the saliency of the stimuli over 

audiotactile interactions was investigated. This was achieved using three sounds 

that, although identical in their frequency content, were modulated in amplitude 

obtaining sounds characterized by three different perceived saliences. The goal was 

to study how the different saliencies of the stimuli can modulate the neural 

processing of a tactile stimulus that was always the same throughout the entire 

experiment. 

 The second MEG study investigated how perceptual integration occurs. 

Perceptual integration refers to the process by which stimuli from different 

modalities are perceived as emanating from the same event (or vice versa as two 

separate events; i.e., perceptual segregation). In particular, in this study the 

temporal relationship between an auditory and a tactile stimulus was manipulated 

in order to elicit (or not) perceptual integration.  

Finally, spatial aspects of AT interactions were investigated in a behavioral 

experiment that is reported in the Appendix. The results of this last study are 

preliminary and may be used for a comprehensive MEG experiment. 

Several methodological features of the project are worth to be highlighted. 

First of all, two studies are conducted using MEG, a neuroimaging technique that 

allows high spatial resolution, especially when combined with the latest methods of 

source localization such as beamforming algorithms. Moreover, MEG data possess 



 

29 

 

Chapter 2  

a temporal resolution of millisecond allowing to follow the cortical stages of 

processing and to observe changes in the network patterns within this temporal 

resolution. Furthermore, given the several controversial issues that concern the 

design of multisensory experiments involving neuroimaging techniques (for a 

review Besle et al. 2004 or see section 1.9), a particular effort was put in this aspect 

by designing two experiments that allow us to overcome the usage of the linear 

additive model. Moreover, in all of our experiments, stimuli were presented in the 

peri-head space where possible effect of AT interactions are supposed to be 

stronger than in other portion of the space/body (Kitagawa et al. 2005; Tajadura-

Jiménez et al., 2009; or see section 1.3).  

Finally, regarding the design of the stimuli: all three studies utilized the 

same sound sample, i.e. a one second long sound of a mosquito. The reason for 

choosing the mosquito sound is that this sound represents an everyday situation and 

it is usually accompanied by a tactile event, i.e. the mosquito bite. Besides the 

ecological validity of the stimuli used, this sound consists of different sound 

frequencies, the typology of sound which has been proved to be integrated with 

tactile stimulation at a higher extent than pure tones. Thus, this sound sample was 

manipulated in amplitude and virtually localized so as to obtain the desired 

auditory stimuli according to the paradigm required by each of the studies.  

 

2.2 Study I 

2.2.1 Introduction 

Traditionally AT interactions have been defined as the difference between 

the sum of the activity elicited from unimodal stimuli and bimodal stimuli, i.e. in 

the case of audio-tactile ATinteraction = AT − (A + T) (‘linear additive model’, as 

discussed in detail in the section 1.9). In particular, interactions can show enhanced 

profiles (defined also as ‘facilitative’) if the bimodal activity exceeds the sum of 
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the activity elicited by its unisensory components when presented individually 

(AT > A + T), while they are defined ‘suppressive’ in the opposite case (AT < A + 

T). In the literature interactions have been found not only under the form of the 

more intuitive facilitative profiles, but also of suppressive nature. To briefly 

exemplify some of the results, Lütkenhöner et al. (2002) found suppressive AT 

interactions at 140 ms that they interpreted as partial inhibition of SII, whereas 

Gobbelé and colleagues (2003) showed an AT-interaction profile at around 120 ms 

that was more similar to T than to A, and the authors suggested a suppression of 

auditory responses. Conversely, Foxe and colleagues (2000) and Murray and 

colleagues (2005) found facilitative effects (Foxe and colleagues at 65 and 80 ms, 

Murray and colleagues at 50ms) that they localized as originating from 

somatosensory and auditory cortices. As it clearly emerges from the few studies 

mentioned here and from similar studies on AT interactions reviewed in the 

previous chapter, all in all the pattern of results that emerge is extremely mixed.  

A well-established finding, though often under-considered in the design and 

discussion of multisensory experiments, is that stimuli interact differently 

according to their respective effectiveness or saliency (Stein and Meredith 1993). 

For example, electrical stimulation paired to a soft “bip” will generate an AT 

interaction that differs from the interaction generated by the same tactile stimulus 

but paired to a loud binaural white noise and these interactions will differ from the 

ones generated by the same sounds but associated with electrical stimulus and so 

on. Thus, one major candidate responsible for such strikingly discrepant patterns of 

results reported in literature is the wide range of different types of stimuli used 

among these studies. For instance, the participants in Lütkenhöner et al.'s study 

(2002), who claimed partial inhibition of SII, reported that auditory stimuli where 

perceived as "more intense" than tactile stimuli (p. 518). Conversely those in 

Gobbelé and colleagues's study (2003), who reported similar AT-interaction 

profiles,  claimed that the tactile inputs (i.e., the electrical stimulation of the median 
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nerve) "dominated during AT stimulation" (p. 510).  

Indeed, when considering the equation of the linear model used for 

calculating the interaction, the single component of each stimulus is identical in the 

bimodal as in the unimodal stimulation, i.e. from both sides of the equation AT = A 

+ T. However, the effect of relative saliency between stimuli is present only in the 

case of bimodal stimulation and thus it is not eliminated by applying the model, on 

the contrary is well preserved in the found interaction (correctly, since it constitutes 

an intrinsic part of it). However, since relative saliency varies with the stimuli 

chosen from study to study, this might represent one of the main causes behind the 

mixed pattern of results found in literature. 

In the present study, in order to investigate the possible role of relative 

perceived saliencies of the stimuli, we compared MEG recordings of the tactile 

activity elicited by an identical somatosensory stimulus (i.e. an air puff) that was 

preceded by various different sounds. In fact the auditory stimuli we used, though 

identical in their content (a one second long buzz of a mosquito), were manipulated 

in amplitude so to appear as static and localized near the participants or as static but 

far from the participants or as approaching the participants (looming). These three 

sounds, according to literature and as confirmed by a behavioral questionnaire, 

possess a different saliency. Thus, in the present study we used three sounds 

characterized by different saliences that were followed by an always identical 

somatosensory input. As the tactile event is the event of interest, and as it was 

always presented right at the end of the sounds and not simultaneously, we 

compared the activity elicited by three identical tactile events that were however 

preceded by sounds characterized by different saliencies, thus we can safely 

attribute all differences we found to our manipulation of sounds’ features. 

Noteworthy, this paradigm avoided to adopt the linear additive model approach, 

which can introduce multiple confounds if not carefully applied (see s. 1.9). 
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2.2.2 Results 

 The computation of the differential magnitude of tactile responses across 

the three conditions allowed us to define the spread of the influence of the different 

auditory stimuli across time and space. The main findings we report are: 

 a change in the magnitude of the elicited somatosensory responses, in the time-

locked  results: the tactile stimulus responses following the looming sound 

elicited a smaller activity than the ones following the two static conditions and, 

among the latter, the smallest response was observed in the static-near 

condition. This difference in the event related fields (ERF) is at early latency 

(from 1075 ms to 1125 ms, 1000 correspond to auditory offset and tactile onset) 

and encompasses the right hemisphere (contralateral with respect to tactile 

stimulus), peaking over superior temporal sulcus (STS) and temporal pole (TP). 

(see Figure 2.1) 

 a change in the magnitude of the elicited somatosensory responses in the time-

frequency results that followed the same pattern as in the time-lock results, i.e. 

the tactile stimulus responses following the looming sound elicited a smaller 

activity than the ones following the two static conditions and, among the latter, 

the smallest response was observed in the static-near condition. Two clusters 

were identified: a first difference is localized over the right SII (peaking at 1100 

ms; 6-8 Hz) and, on a later stage, over the contralateral frontal areas (peaking at 

1250 ms; 4-6 Hz). (see Figure 2.2)  
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Figure 2.1. Summarized results of the time-course analysis.  

Time point 1 sec represents the offset of the auditory stimulus and the onset of the 

tactile stimulus. 

 

 

 

 (A) Right: event-related field trace of the positive sensor cluster for the tactile 

event preceded by a static but far sound (T/far; brown), preceded by a static-near 

sound (T/near; light brown) or by a looming sound (T/loom; orange). The highlighted 

rectangle shows the statistically significant time-window (1075-1125 ms). 

Left: Topography (f values) of the positive sensor cluster (1087-1125 ms), masked 

for statistical significance. The dots indicate the channels of the significant cluster 

(1075-1130 ms).  

(B) the barplots represent the mean average for the sensors and time-window of the 
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significant cluster. Error bars show within-subjects 95% confidence intervals. In 

order to reveal the origin of the statistical differences revealed with the f test, post-

hoc analysis was conducted (paired, Bonferroni corrected, t-test). *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001.  

(C) Figure 2.1D shows the projected f-values obtained from statistical comparison 

in sensor space between conditions T/near, T/loom, T/far. Like in the topography shown 

in Figure 2.1A-right, differences are spread in the right hemisphere encompassing 

frontal, parietal and temporal lobes. The main generators are located in the 

temporal lobe (TP and STS). 

 

Figure 2.2. Summarized results of the time-frequency analysis. 

Time point 1 sec represents the offset of the auditory stimulus and the onset of the 

tactile stimulus. 
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 (A) Left: time-frequency representation for the time window 1000-1500 ms. Shown 

are the f- values for comparison of conditions the T/far, T/near, T/loom T of the combined 

gradiometers. The arrows indicate roughly the two significant clusters identified. 

First cluster: p < .03, 1000–1270 ms, 6-8 Hz, peaking at 1100 ms. Second cluster: 

p < .02, 1030–1370 ms, 4-6 Hz, peaking at 1250 ms. Non-significant values have 

been reduced to 40% opacity. 

Right: Topography of the significant clusters. The first cluster is localized centrally 

towards the front, whereas the second is right-lateralized.  

(B)The bar plots show the means and the standard errors of the mean of the power 

for the sensors, time-window and frequency of the two significant clusters. Error 

bars show within-subjects 95% confidence intervals. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001. 

(C)Projection in source space of the statistical comparison (f values) across the 

three conditions for time window 1000–1370 ms in the frequency 4 to 8 Hz. The 

areas corresponding to the first cluster (1250 ms, 4-6Hz) can be identified with the 

right secondary somatosensory cortex (BA40 spreading into BA2). The second 

cluster originate in correspondence with the right dorsolateral prefrontal cortex 

(BA 8).  

 

2.2.3 Discussion 

In Study I, by changing the saliency of a (preceding) auditory stimulus and 

keeping a (subsequent) tactile stimulus always identical, we investigated how the 

relative saliency between the stimuli impact the magnitude of the activity elicited 

by the tactile stimulus. We further confirmed thus the relevance for multisensory 

interactions of the relative saliency between stimuli. Possibly, this factor plays a 



 

36 

 

Chapter 2  

crucial role in explaining the discrepant pattern of results found in the literature of 

AT interactions.  

Additionally, we show an inverse relationship between the perceived 

saliency of the acoustic stimulus and the strength of this modulation, with more 

salient auditory stimuli being associated to less tactile activity. The fact that these 

three auditory stimuli possess a different saliency is supported by evidence in the 

literature (e.g. Ahveninen et al., 2014; Bach et al., 2009; Hall and Moore, 2003; 

Kopco et al., 2012; Tonetto et al., 2014) and has been further confirmed by a 

questionnaire we performed during in the experiment. We believe that the 

perceived saliency of the auditory stimuli, rather than acoustic intensity cues per se, 

impact the following tactile activity because the rapidly approaching sound is 

followed by the smallest tactile activity, whereas the near stimulus − that overall 

possesses the highest intensity but relative less saliency, given that is static – is 

followed by an intermediate response and the far sound − static and low-intensity − 

by the biggest response.  

This pattern of results is well in accordance to the law of inverse 

effectiveness (Stein and Meredith, 1993) which has long been considered one of the 

basic principles of the multisensory field. According to the inverse effectiveness 

rule, the strength of multisensory interactions increases when the stimuli efficacy 

(usually measured in terms of saliency) of the isolated components are relatively 

weak by themselves.  

However, an alternative explanation to our findings is possible when 

recurring to the crossmodal shared attention mechanism, i.e. by assuming attention 

to be a limited resource and stimulus representations and different modalities are in 

competition with one another based on their representational strength (salience): 

the more salient a stimulus representation, the more it will dominate the 

competition (e.g. Spence and Driver, 2004). The different types of sounds used in 

the present study are endowed with different levels of saliency, so differences in 



 

37 

 

Chapter 2  

attentional bias cannot be excluded. However it is worth noting that in our 

paradigm the sounds were already off in time window on which the analysis was 

centered and that potential sound offset effects were ruled out. 

Another very interesting aspect of the results emerging from Study I is that 

this differential magnitude of responses across the three conditions allowed us to 

track the spread of the exerted crossmodal influence across time and space. Our 

results show a first modulation of amplitude at early latency (75 ms after tactile 

stimulus onset) over the right temporal lobe (STS and TP). Time-frequency results 

further reveled differences across the three conditions: the earlier cluster is 

localized over secondary somatosensory cortex (BA40/2; 6-8Hz, peak of activity at 

100 ms after tactile stimulus onset) and finally, differences spread towards more 

frontal areas (BA 8; 4-6Hz, peak of activity at 250 ms after tactile stimulus onset). 

Noteworthy, the differences start in area close to primary auditory, extend to 

secondary somatosensory and finally move towards more frontal. This pattern 

further support the idea that multisensory interactions can be present at different 

level and stages of cortical processing (see s. 1.5). 

 

2.3  Study II 

2.3.1 Introduction 

A fundamental ability of our brain is to generate a coherent and seamless 

representation of the external multisensory world. To this aim, the brain has to 

perceptually integrate (or bind or unify) information coming from different sensory 

modalities that belong to the same object/event, while unrelated incoming signals 

are perceptually segregated.  

To note that a confound arises from the fact that in the multisensory 

literature, the term “integration” has been used for referring to every multisensory 

phenomenon, also to phenomenon generated by combination of relatively 
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meaningless multisensory stimuli, as for example a “bip” paired to and 

electrocutaneous stimulus (Foxe et al. 2000). A clarification in this sense, come 

from Driver and Noesselt (2008) where they differentiate between multisensory 

“interplay” (or interaction), when the processing of a sensory modality is affected 

by the presence of one (or more) stimuli from other modalities. While the term 

multisensory “integration” properly refers to the presence of multisensory interplay 

and of an integrated perception of the stimuli, as emanating from one event. In this 

study we aimed to investigate multisensory integration in the proper sense and in 

the present thesis we refer to this nomenclature.  

It is generally thought that the solution of this cross-modal integration 

problem, depends on stimulus-driven factors such as spatial, temporal properties of 

the stimuli (Calvert et al., 2004) as well as on cognitive factors (the “unity 

assumption” (Vatakis and Spence, 2007; Vatakis et al., 2008; Welch and Warren, 

1980). Paradigmatic examples are the cases where multisensory discordant cues are 

perceptually unified and generate illusory percepts. As in the “ventriloquism 

effect”, where the presence of an apparent speaker alters the perceived location of 

speech sounds as coming from the direction of the speaker (Bertelson, 1998). 

Interestingly, when the visual stimulus becomes blurred the opposite occurs with 

visual stimulus captured by audition (Alais and Burr, 2004). Another paradigmatic 

example, is the McGurk illusion in which conflicting audio (the syllable “ba”) and 

visual (the labial of the syllable “fa”) information is erroneously bind together 

generating a third new illusory auditory percept (the syllable ”ga”). However, little 

is known about the neural mechanism underlying the binding operation (though see 

Bushara et al., 2003 for and fMRI study on this topic). 

In this MEG study we investigated perceptually integrated (INT) or 

segregated (SEG) multisensory AT perceptions. In particular, we created a bistable 

paradigm, i.e. identical AT stimuli that could be alternatively perceived either as 

emanating from one event (INT) or from two distinct events (SEG). To this aim we 
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used an approaching one-second long auditory stimulus (the buzz of a mosquito) 

and a short tactile stimulus (delivered at the peri-oral area). The stimuli were 

spatially related (both presented in the left peri-head space) and semantically 

correlated (the sound of a mosquito and a touch that resembled its bite), while we 

manipulated the relative timing (stimulus onset asynchrony, SOA). In fact, 

perceptual integration rely critically on the temporal congruence of the stimuli 

(Calvert et al., 2004; Welch, 1999), more than the spatial one (e.g., the 

ventriloquist effect). So, in the experiment stimulation was delivered at a particular 

SOA (individually determined) that rendered the temporal relationship between the 

audio and the tactile stimuli ambiguous: the tactile stimulus in 50% of the cases 

was perceived as the bite of the approaching mosquito (integrated percept) and 

50% of the cases as two different events (segregated percept).  In this manner, we 

could dissociate the simple co-occurrence of two stimuli from cross-modal binding 

and investigate the underlying mechanism. This paradigm allows direct comparison 

of physically identical multisensory stimuli that however elicit different 

multisensory percepts. In this way, we overcome the limitations introduced by the 

linear additive model such as sensitivity only to responses nonlinearities or 

introduction of possible confounds (for a deeper discussion of the topic see section 

1.9). Since with our paradigm we exclude the fact that integrated and segregated 

percepts are due to differences between stimuli because they are physically 

identical, we hypothesize that different brain-states prior to the upcoming tactile 

stimulus predispose different multisensory percepts. Indeed, an increasing body of 

evidence is showing an influence of prestimulus activity on subsequent perception, 

especially in the case of near-threshold stimuli (see Ruhnau et al., 2014 for a 

review) but also in multisensory perception (e.g. Hipp et al., 2011; Keil et al., 

2012; see Lange et al., 2014 for a revision).  

 

2.3.2 Results 
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By comparing physically identical trials that however elicited different 

percepts (segregated vs integrated) we found: 

 time-frequency analysis revealed that the perception of integrated AT stimulus 

with respect to a segregated percept is associated with a prestimulus increase in 

alpha power (9 Hz) . This difference is localized bilaterally in inferior and 

superior parietal lobules (IPLs and SPLs) among a time window of 300 ms 

prior to tactile stimulus. (see Figure 2.3 A-B) 

 prior to tactile stimulus, connectivity analysis, seeded in the rIPL  (point of 

maximum difference between conditions) revealed that prior to a unified 

percept with respect to segregated percept, this region for the frequency of 9 Hz 

is characterized by more synchronized oscillations with right prefrontal cortex 

(rPFC), right secondary somatosensory and visual cortices (rSII, rVII) , while 

less synchronized oscillations with auditory regions. (see Figure 2.3 C-D) 
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Figure 2.3 

 

 (A) Results of the statistical comparison at sensor level for condition INT vs 

condition SEG. Red color indicates relatively more power during condition INT. Time 0 

ms indicates the onset of touch.  
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Left: time-frequency representation (TFR) of the statistically significant sensors 

(cluster-p<0.05) for the interval pre- and post- tactile stimulus. The dashed rectangle 

highlight the significant time-frequency window 

Right: Topographical representation of the statistical results for the time-

window -290 to 40 ms in the frequency band 8-12 Hz. Black dots represent the sensors 

that gave statistically significant results at sensor level and whose TFR are plotted on 

the left side of the figure.  

 (B) Projection in source space of the grand average of INT versus SEG for the 

time-frequency window and frequency of the significant results at sensors level.  

(C) Phase synchrony between the seed region, rIPL ((60 – 40 40), MNI 

coordinates), and the whole-brain volume. T-values of INT versus SEG percept masked 

for statistical significance are displayed. Dashed lines represent the borders of 

Brodmann areas of interest. rAII exhibited significant decoupling with the rIPL, while 

rPFC/rSII and rVII showed increased coupling with rIPL during integrated compared 

to segregated percept. 

(D)  We calculated PLV of each significant cluster showed in (C) normalized to 

the baseline prior to the sound onset in order to evaluate if the differences reported in 

(C), originate by, respectively, a coupling and a decoupling in both conditions with 

respect to baseline or, on the contrary, the effect is driven only by a coupling (or 

decoupling) in one condition. PLV greater than 1, indicated by the dashed line, 

indicates higher coupling with respect to baseline and vice versa. Barplots show 

differences of PLV in the rPFC/rSII and rVII originate from an increase of coupling for 

INT and a decrease of coupling for SEG with respect to the baseline, while for the rAII 

the difference is primarily driven by an increase of coupling for the SEG percept 

 

2.3.3 Discussion 
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In Study II we investigated the neural correlates of perceptual integration 

between an audio and a tactile stimulus. Experiments in multisensory field usually 

compared neuronal responses between well-defined bimodal and unimodal stimuli 

and focused on the non-linear differences in activation, according to the additive 

linear model (see s. 1.9). Here, we created a bi-stabile paradigm, i.e. upon invariant 

bimodal AT stimulation, participants reported different percepts. The advantage of 

our paradigm is that it allows direct comparison of instances of identical bimodal 

AT stimuli that are however differently perceived (integrated or segregated), thus 

rending the experiment sensitive also to linear AT interactions and moreover 

limiting the interpretation of results only to our manipulation, given that a part 

different percepts the two conditions (segregated and integrated) were physically 

identical. We found differences localized bilaterally over IPLs (and SPLs), in a 

prestimulus time-window of about 300 ms in the frequency band of alpha.  

Several studies in macaque monkeys showed auditory and somatosensory 

convergence in area adjacent to the primary auditory cortex (AI), the caudomedial 

(CM) belt area (Brosch et al., 2005; Fu et al., 2003; Kayser et al., 2005; Schroeder 

and Foxe, 2002; Schroeder et al., 2001). In monkeys, CM is positioned between AI, 

the temporal parietotemporal areas (Tpt), and retroinsular area (Ri). Studies of 

auditory cortex on humans individuate their homologues in the parietal operculum 

and IPL (Galaburda and Sanides, 1980; Hackett et al., 2001; Sweet et al., 2005). 

Previous studies in humans revealed correlates of audiotactile interaction in 

approximately this region (Caetano and Jousmäki, 2006; Foxe et al., 2002, 2000; 

Gobbelé et al., 2003; Lütkenhöner et al., 2002; Schürmann et al., 2006). Our 

findings further support that IPL is a site of where AT interactions occur and the 

human homologue of the multisensory area CM in monkeys. Interestingly, in 

previous literature, IPLs and SPLs have been described as being activated during a 

localization task for both auditory and tactile stimuli (Renier et al., 2009), and 

relevant in localization tasks for stimuli of all modalities (e.g. Bushara et al., 1999; 
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Reed et al., 2005). Furthermore, rIPL appears to be involved in perception of time 

(e.g. Harrington et al., 1998; Rao et al., 2001) and the detection of temporal 

synchrony between auditory and visual stimuli (Adhikari et al., 2013; Bushara et 

al., 1999; Dhamala et al., 2007), and in tasks where multisensory temporal and 

spatial information need to be evaluated together (Assmus et al., 2005, 2003). In 

our paradigm, we manipulated the temporal relationship between the two stimuli. 

Given that the sound is looming, time is translated into the location of the sound 

source so that the integration/segregation task also had a spatial component, i.e. the 

localization of the flying mosquito, based on the loudness of its buzzing sound, at 

the time the tactile stimulus is delivered. Although the role of IPLs and SPLs 

described above has been determined based on post-stimulus activities, in our 

experiment the difference in IPLs and SPLs prior to the application of the tactile 

stimulus between conditions INT and SEG suggests that the ongoing brain state 

affects upcoming computations of spatio-temporal relations between stimuli of 

different modalities (here, audio and tactile).  

Regarding the role of alpha, activity in the alpha-band has long being 

associated with a state of idling (Pfurtscheller et al., 1996). However, according to 

current literature, activity in this frequency band plays an active role in the brain, in 

particular in the inhibitory-excitatory balance: higher alpha in a certain brain region 

is related to local inhibition and vice versa (Jensen and Mazaheri, 2010). In 

particular, differences in the level of alpha power in the prestimulus window can 

modulate the perception of near-threshold (NT) stimuli (e.g. Hanslmayr et al., 

2007; Jones et al., 2010; Romei et al., 2010; Thut et al., 2006; van Dijk et al., 2008; 

Weisz et al., 2014). In the sense that low levels of alpha power preceded “hits” (the 

NT stimulus is perceived), while high levels of alpha power preceded misses (the 

NT stimulus is not perceived). Interestingly, recent studies using super-threshold 

stimuli extended this binary role of alpha in either inhibiting or processing of a 

weak stimulus, to modulation of the quantity of supra-threshold stimuli perceived 
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(one or two) within visual illusions such as fusion effect (FE) and double flash 

illusion (DFI) (Lange et al., 2013) or within two tactile stimuli when presented in 

close temporal proximity (Baumgarten et al., 2014). In these studies, low level of 

alpha power preceded detection of two stimuli (independent from the fact that they 

were real, as in the FE or illusory as in the DFI) while, following higher alpha-

power levels, only one stimulus was perceived. All in all our results are well in line 

with previous findings (Baumgarten et al. 2014; Lange et al. 2013) in the alpha 

band with increased excitability preceding the perception of two stimuli 

(segregated percept) and vice versa. For the first time we show a similar 

mechanism in binding across modalities.  

Given our finding on IPLs (and SPLs) and the proven responsiveness of the 

areas to multisensory stimuli, we can reasonably suppose that these areas are 

critical for perceptual integration suggesting a specific role of these in spatio-

temporal separation of incoming AT stimuli and expanding our knowledge of the 

functional role of alpha band to crossmodal perception. 

A second very interesting aspect of our study are the results obtained by 

calculating brain  connectivity with a seed placed in the point of maximum 

difference between conditions (rIPL) which exhibited differential patterns in a 

prestimulus time window.  This support the hypothesis that not only local power 

differences over relevant regions, but also that the inclusion or exclusion of these 

regions into a globally distributed functional network critically influences 

subsequent perception (Hanslmayr et al., 2007; Keil et al., 2012; Ploner et al., 

2010; Weisz et al., 2014). Our results suggest rather than a specific multisensory 

area, integrated/segregated perception is predisposed by a network comprising 

different areas. Integration of AT stimuli was preceded by a large-scale functional 

network involving distant region of the brain. It goes behind the purpose and the 

possibilities of this experiment to infer in detail which the role and the ratio of the 

particular functional architecture we found, however some remarks are noteworthy 
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to be mentioned. For condition INT, with respect to conditions SEG, rIPL is 

oscillating more in synchrony with rPFC, and PFC has been shown to be critical in 

situations when top-down processing is required (e.g. Miller, 2000). rIPL is 

disconnected from the superior temporal gyrus-sulcus (STG-STS). This region is a 

polysensory region (audio, visual, tactile) in monkeys as well in humans (see s.1.6). 

The fact that the differentiated network comprised somatomotor and even visual 

areas, despite the presentation of AT stimuli, suggests a non-modality specific 

integration/segregation network, possibly for exploiting any upcoming information. 

We can speculate that the precise network configuration is obtained through the 

local inhibitory/excitatory balance, as inhibition is essential for the establishment of 

long-range networks (Jonas and Buzsaki, 2007) so that the differential alpha levels 

observed in rIPLs in the two conditions is related to the formation of the network 

relevant for multisensory integration.  

 

2.4 General conclusions  

During the past decade, the field of multisensory research has expanded and 

has received increasing interest. However, as the mixed and contrasting pattern of 

results present in the literature shows, little is known about how sensory 

information interacts. The overall aim of this PhD study was to investigate further 

into AT interactions.  

Interactions between these two sensory modalities have been under-

investigated, maybe because they go often unnoticed. However, they are well 

present in many everyday life situations. Furthermore, a number of similarities 

exist between the senses of hearing and touch that may suggest the existence of a 

favored link between both modalities. For instance, mechanisms for transducing 

sensory signals are analogous for sounds and vibrotactile stimuli, analogies in the 

physiological mechanisms supporting the idea that the two sensory modalities have 
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common origins or the fact that auditory and tactile signal transduction times from 

the ear and skin are faster and comparable in time, as opposed to visual signals 

with much longer transduction times (see s. 1.2).  

Studying AT interactions is interesting not only in and of itself, but can 

provide insights into the broad understanding of how different senses interact, 

regardless of their modalities. So we attempted to exploit these two modalities to 

study several interesting aspects strictly related to AT interactions but that however 

are also of broad interest of the multisensory research field. 

In order to pursue our goals, we stressed methodological features. First of 

all we conducted the research in the portion of the space surrounding the head, a 

portion of space where AT interactions possess a particular relevance, though 

studies on AT usually has been conducted in the space of the hands. Possibly 

because in the space of the head is more difficult to provide stimulation 

(piezoelctrical or electrical stimulation for example cannot be provided). Moreover, 

we broadly exploited a particularly relevant class of signals for multisensory 

interactions, i.e. the looming ones. Furthermore, multisensory research is 

particularly demanding since, by increasing the number of modalities involved, 

their interaction raises the possible interpretation of results and the number of 

confounds and in order to control for them an exponential number of control 

conditions are usually required. We put a lot of effort in designing the experimental 

paradigms so to limit interpretation of our results to purely our desired 

manipulation (e.g. relative saliency or perceptual binding). Finally, by using MEG 

we could rely on a temporal resolution in the order of millisecond and on a spatial 

resolution of centimeter.  

All in all our results add new interesting findings to crucial aspects of 

multisensory interactions at cortical level. A first aspect is that our study confirms 

how relative saliency between crossmodal stimuli can dramatically impact the 

activity elicited. Although this fact is known since decades (see “inverse 
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effectiveness rule”, Stein and Meredith 1993), it has been scarcely considered in 

the design of paradigms of “classical” neuroimaging studies on AT interactions. 

However, our results highlight the main role this factor plays in the interaction 

elicited and how more effort should be put into taking it into account. Thus, our 

results suggest how relative saliency of the stimuli has to be considered as a major 

factor able to dramatically influence the results of any multisensory experiment. 

Another interesting highlight emerged in Study I is the time and space across which 

the auditory stimulus impact the tactile processing. Noteworthy, it started in area 

close to primary auditory, extended to secondary somatosensory and finally moved 

towards more frontal. This pattern further support the idea that multisensory 

interactions can be present at different level and stages of cortical processing (e.g. 

Ghazanfar and Schroeder 2006). Though, here even crossmodal modulations are 

present at several levels of cortical processing, the “traditional” hierarchy of 

cortical processing is preserved.  

In Study II we found that different level of alpha power, which according to 

current literature indicated different level of cortical excitability, over IPLs (and 

SPLs) in a prestimulus (tactile stimulus) predispose a different AT percept 

(segregated vs integrated). This finding is line with a growing body of evidence 

which underlines the importance of prestimulus brain states, in particular in the 

alpha band, in emerging of a certain percept (see Ruhnau et al. 2014). In the 

multisensory research field, the importance of prestimulus brain-state has already 

been shown in the creation of illusory percept such as the McGurk illusion, the 

double-flash and the fusion effect (see Lange et al., 2014 for a review). 

Interestingly, our nicely complement these findings extending its influence also to 

creation of an integrated/segregated crossmodal percepts. 

 Moreover, in this prestimulus time-window, rIPL (point where difference in 

alpha power is maximum) is oscillating with different synchrony within a network 

that encompasses several traditionally unisensory areas and prefrontal cortex.  
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Large-scale interactions modify the communication structure between brain areas 

that are functionally and anatomically specialized, leaving anatomical connections 

unchanged (Varela et al., 2001) and create distinct functional network architectures 

that constitute privileged pathways along which neural information will flow. Thus, 

large-scale interactions provide flexibility and plasticity and allow complex 

coordination between different brain regions. These fundamental properties are 

required to integrate incoming inputs from a dynamic and multifaceted world and 

endogenous activity and could constitute a mechanism of interactions between 

senses that complements the traditional hierarchical model. This further finding is 

in line with the most recent framework introduced by Weisz and colleagues (2014) 

according to which not only local prestimulus oscillatory power, but also global 

prestimulus connectivity architectures predispose different percepts, possibly by 

predetermining information flow. 

 

2.5 Final considerations and future directions 

All in all our results support the significance of AT interactions, especially 

for experiments conducted in the space of head. Although is not obvious that 

mechanism holding for interactions between A and T can be extended 

straightforward to other modality parings, still studying of AT interactions can add 

relevant insights into the complex interactions between senses that can occur in the 

brain. 

Study I, suggest the importance of relative stimuli saliencies. It would be of 

broad interest to further deep our understanding the effects of this factor on 

interactions, for giving a more comprehensive interpretation of multisensory 

findings. For example, one might think about the reverse design of Study I, i.e. 

keeping auditory stimulus constant while changing the tactile stimulus saliency 

(e.g. air-puff vs electrical stimulation vs piezoelectrical stimulation) or experiments 
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with a similar paradigm but involving other modality pairings. In general, further 

experiments should be conducted where interactions between all senses are 

evaluated in function of parametric changes of saliencies. Ideally, by conducting 

such experiments one could think of creating a scale for evaluating relative stimuli 

saliencies that could be than used as a metric to account for relative saliences used 

across multisensory experiments. 

Study II suggests the importance of prestimulus brain states, alpha power 

over multisensory regions and different connectivity states, in creation of different 

multisensory percepts. Similar paradigms could be used to study perceptual 

integration between also different modality parings, especially in light of our 

findings that involve also visual cortices. Moreover, it could be interesting to 

further investigate the role of rIPL in building of crossmodal percepts by using 

TMS. Finally, it would be interesting to investigate the role of expectation by 

creating a paradigm where one or other percepts are cued with a different 

probability. 
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ABSTRACT 

In literature, audiotactile (AT) interactions have been found at different locations, 

latencies and under the form of enhanced or suppressive profiles. The differences 

between the A and T stimuli involved, especially their relative saliency, are likely to 

contribute in determining the mixed pattern of found results.. In the present study,  we 

investigate the modulation exerted by three auditory stimuli, characterized by different 

perceived salience (looming, static-near or static-far sounds, each lasting one second) 

on the activity evoked by an always identical tactile stimulus that was administered at 

the end of the sounds.  We found that the most salient the preceding sound was, the less 

activity was elicited by the tactile stimulus. This differential amount of activity 

associated to an always identical tactile event, was found in the event related fields at 

early latencies (75-125ms after tactile stimulus onset) encompassing the right 

hemisphere, mainly the superior temporal sulcus (STS) and the temporal pole (TP). 

The same differential pattern was found in the time-frequency domain at 100ms after 

tactile stimulation (6-8 Hz) localized over the right secondary somatosensory cortex 

(S2) and at 250ms (4-6 Hz), over the right dorsolateral prefrontal cortex (BA 8).  

In sum, the activity triggered by somatosensory stimulation can be modulated by the 

saliency of a preceding sound at various stages of cortical processing, from primary 

cortices at early latencies to higher order areas.  

 

KEYWORDS: auditory, tactile, multisensory, looming, peri-head, 

magnetoencephalography. 
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Introduction  
A number of studies using various techniques have contributed in delving into 

the neural substrates subserving audiotactile interactions in both animals (e.g. Fu et al., 

2003; Kayser et al., 2005; Lakatos et al., 2007) and humans (e.g. Foxe et al., 2002, 

2000; Gobbelé et al., 2003; Lütkenhöner et al., 2002; Murray et al., 2005). However, 

despite the large amount of evidence available at present, the overall pattern which 

emerges from these studies looks somehow mixed and tentative.  

Traditionally, AT interactions have been defined as the difference between the 

neural activity elicited by the bimodal stimuli and the sum of the neural activities 

elicited by the unimodal stimuli, i.e. ATinteraction = AT − (A + T) (‘linear additive 

model’, see Besle et al., 2004 for a review). AT interactions are identified with 

‘multisensory enhancement’ when the bimodal neural activity exceeds the sum of the 

neural activity elicited by its unisensory components when presented individually (AT 

> A + T), while they are defined as suppressive in the opposite case (AT < A + T). In 

the literature, AT interactions have been found to result not only into enhanced 

profiles, but also, although more sparsely, into suppressive ones. For example, 

Lütkenhöner et al. (2002) found suppressive AT interactions, interpreted as partial 

inhibition of secondary somatosensory cortex (S2), whereas Gobbelé and colleagues 

(2003) showed a profile of AT that was more similar to T than to A, suggesting a 

suppression of auditory responses. Conversely, Foxe and colleagues (2000) and Murray 

and colleagues (2005) found enhanced activity, that they localized as originating from 

somatosensory and auditory cortices. One major candidate responsible for such 

strikingly discrepant patterns is the wide range of different types of stimuli used among 

these studies (see Gobbelé et al., 2003 for a similar discussion and Lakatos et al. 2007 

for evidence on monkeys). The participants in Lütkenhöner et al.'s study (2002) 

(binaural tone burst, 100 ms, 60 dB SL, 1047 Hz delivered through plastic tubes fitted 

into the ear canals) were perceived as "more intense" than T stimuli (balloon 

diaphragm driven by bursts of compressed air on the right thumb; p. 518). Those in 

Gobbelé and colleagues's study (2003) claimed that the tactile inputs (the electrical 

stimulation of the median nerve) "dominated during AT stimulation" (p. 510) (auditory 

stimulus is a monaural 50-ms 1-kHz square-wave sounds, presented at about 70 dB 

SPL and delivered to the subject by plastic tubes). Thus, when applying the linear 

additive model though the single component of each stimulus is identical in the 

bimodal as in the unimodal stimulation, i.e. from both sides of the equation AT = A + 

T, the relative saliency between stimuli changes.  

In the present study, the modulation played by three auditory stimuli differing 

in salience on the activity evoked by subsequent identical somatosensory stimuli will 

be assessed. To create sounds with different salience, the intensity level of the sounds 

was manipulated in order to induce the impression of static sounds being delivered 

near, far from the head or a sound moving towards the head (looming). Although crude 

(Kopco et al., 2012), the amplitude manipulation to induce the impression of sounds 
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sources located at different distances has been demonstrated to effectively convey the 

perception of near vs. far sounds (see Ahveninen et al., 2014; Moore and King, 1999 

for reviews). Along the same line, the increase in the intensity of a sound or in the size 

of a visual input can reliably be interpreted as an approaching object (Ghazanfar et al., 

2002; Riskind et al., 2014; Seifritz et al., 2002). From the literature, it is known that 

being exposed to certain types of sounds reflect into specific behavioural patterns. For 

instance, louder sounds are more arousing than softer sounds (Tonetto et al., 2014) and 

have been demonstrated to act as salient exogenous cues, facilitating subsequent 

voluntary shift of the attentional focus (Alho et al., 2014). Looming sounds are rated as 

more unpleasant, arousing, intense, salient and threatening than receding sounds (Bach 

et al., 2009; Tajadura-Jiménez et al., 2010) and typically induces attention orienting or 

motor acts (Bach et al., 2009; Cappe and Barone, 2005; Kearsley, 1973; Lloyd et al., 

2003). Moreover, they are perceptually more salient than receding sound. For example, 

looming sounds are longer (Grassi and Darwin, 2006; Grassi and Pavan, 2012; Grassi, 

2010; Schlauch et al., 2001) louder (Stecker and Hafter, 2000), change more in 

loudness (Neuhoff, 2001, 1998; Olsen and Stevens, 2010; Olsen et al., 2010) than do 

receding sounds.  

Finally, studies on humans have shown that effects are stronger for stimuli 

delivered to the space around the head (peri-head space) than when the same stimuli 

are delivered to the hands (Kitagawa et al., 2005; Farnè and Làdavas, 2002; Tajadura-

Jimenez et al. 2009). Therefore, in order to increase the possible different impact of the 

various auditory stimuli on the tactile one, the tactile stimuli were presented on the 

head. 

Thus, in the present study the interplay between looming vs. static far and near 

sounds and somatosensory inputs (i.e., air puffs) presented within the peri-head space 

are assessed. MEG will be used to characterize the different neuronal activity 

responses. If the manipulation of the sound is effective, it would be expected to observe 

a differential modulation of the oscillatory activity as a function of the type of sounds 

delivered. As additional measure of the efficacy of the manipulation we performed on 

sounds stimuli in order to obtain a different salience, behavioral ratings about various 

features of the sounds (i.e., pleasantness, remoteness, motion, arousal, power, distance, 

duration, ecological validity, threat) will be collected.  

 

Materials and methods 

 

Participants  

Fourteen healthy volunteers (5 female, mean age 30 years, range 21-53 years; 

all right-handed) participated in the study. Participants provided written, informed 

consent to the experimental session. The study had prior approval by the Ethical 

Committee of the University of Trento, and an informed consent was obtained from 
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each subject prior the beginning of the experimental session. The participants received 

a reimbursement in return for taking part in the study.  

 

Stimuli and experimental instrumentation  

The sound used in the experiment was a mosquito sound (22050 Hz sample 

rate, 16 bits resolution). This kind of sound was chosen for different reasons. First, it 

has ecological validity especially when paired with a tactile stimulation in form of an 

air puff that can constitute a violation of the peripersonal zone. Moreover, the 

experience of being bitten by a mosquito is thought to constitute an unpleasant event, 

such to induce in the participants the sensation of a threat for the body. Lastly, the 

sound of a mosquito is composed of different sound frequencies, which is the typology 

of sound which has been proved to be integrated with tactile stimulation at a higher 

extent than pure tones (e.g., Farnè and Làdavas, 2002; Graziano et al., 1999). The 

original sample of the auditory stimulus can be found in the following webpage: 

http://www.acoustics.org/press/132nd/3pab10.html. The sample (1.4 sec) was edited in 

duration and amplitude. The duration was truncated to 1 sec. The amplitude was 

customly attenuated (or amplified) in various parts of the recording in order to obtain a 

sound as much as possible constant in root mean square amplitude over time. The 

resulting sound was presented either at a level of 40 dB SPL (far static sound), at a 

level of 75 dB SPL (near static sound) or further modulated in amplitude with an 

exponential envelope increasing of 35-dB (from 40 to 75 dB SPL) over the sound’s 

duration (looming sound). This latter stimulus simulates the proximal stimulation 

pattern produced by the motion of an object emitting a steady-amplitude sound and 

moving at a constant speed toward the perceiver. An object as such generates a change 

in intensity at the listener’s ear that is linear on a logarithmic scale. Note that a sound 

source moving as such does not produce any audible frequency shift at the perceiver’s 

ear (Neuhoff & McBeath, 1997).  

The auditory stimuli presented during the behavioural part were presented via 

headphones (Logitech USB Headset H330). During the MEG measurement, inside the 

shielded room, the stimuli were delivered to the participants earplugs via MEG-

compatible pneumatic tubal insert foam plugs (Tip-300, Nicolet, Madison, WI, USA). 

The somatosensory stimulation was delivered via an air nozzle located ~5 cm from the 

face of the participant. The nozzle was fixed to a wooden MEG-compatible jib and set 

in such a way that it was pointing at the participant’s left perioral area. The tactile 

stimulation was delivered via an inhouse built pneumatic stimulator, with computer 

controlled valves. The air stream had a pressure of 0.07 bar.  

 

Procedure  

At the beginning of the experimental session, the participants were asked to rate 

the three auditory stimuli (i.e., looming, static near and static far sounds) according to 

different dimensions by using 7-point Likert scales (modified from Bach et al., 2009). 
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The evaluated dimensions were: pleasantness (unpleasant – pleasant), remoteness (very 

close - very far), perception of motion (static – high motion), arousal (calming – 

activating), power (weak – strong), distance estimation (0-10 cm – 60-70 cm), 

perception of moving away (static – highly receding), perception of getting closer 

(static – highly approaching), duration (short – long). In addition, the participants were 

asked to evaluate how much the sounds heard resembled to an everyday life sounds 

(ecology) and how likely was that they could be followed by a threatening event 

(threat). The participants could listen to them as many times as they considered 

necessary in order to give an accurate rating. MEG recordings were performed in a 

magnetically shielded room. For the MEG measurement, they were asked to wear 

earplugs and sit upright with their heads comfortably resting within the mould of the 

helmet. The participants were instructed to look straight ahead, trying to fixate a 

fixation cross in the centre of the screen, to avoid any movements during the 

measurement, and to ignore the auditory and somatosensory stimuli. In order to keep 

the participants alert throughout the session, the colour of the fixation cross was 

programmed to randomly change from white to red during the time interval right 

before the start of the sound and the participants were asked to report at the end of each 

run the number of times the change occurred. Each session included fourteen runs. 

Eleven trials for each experimental condition were presented in each run in a random 

order. Participants were presented with the six following experimental conditions. 

Three experimental conditions were unimodal auditory: looming sound (condition 

Aloom), static near sound (condition Anear ), static far sound (condition Afar). Three 

experimental conditions were bimodal auditory-somatosensory stimuli: each of the 

three types of sound was followed, after sound offset, by a tactile stimulus (conditions 

Afar → T, Anear → T, Aloom → T). The somatosensory stimulation was programmed 

such that the 23 ms delay due to the transmission of the air through the pipe was 

compensated and resulted as presented right at the end of the sound (see Figure 1).  
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Figure 1  

 

Schematic representation of the experimental design. In light gray, the time 

window considered in the data analysis. 

 

Data Acquisition  

The magnetic brain activity was recorded with a whole head Elekta Neuromag 

Vectorview® MEG system, with 306 channels (204 first order planar gradiometers, 

102 magnetometers) in a magnetically shielded room (AK3B, Vakuum Schmelze, 

Hanau, Germany). Raw magnetic data were hardware band-pass filtered in the 

frequency range 0.1-330 Hz and subsequently sampled at a rate of 1kHz . Before the 

MEG measurements, five head position indicator (HPI) coils were placed on the head 

surface. The position of the coils and the participants’ head shapes were digitized with 

a Fastrak 3D digitizer (Polhemus, Colchester, VT, USA, www.polhemus.com). In 

order to control for head movements, participants’ head positions with respect to the 

MEG sensors were estimated at the beginning of each run. Stimulus presentation was 

controlled using E-prime software package (PST, Inc., Pittsburgh, PA), running on a 

Windows computer, and presented by a projector. MEG recordings were stored for off-

line analysis.  

 

Data analysis  
The data from one participant were discarded due to excessive noise. The MEG 

data of the remaining participants (4 female, mean age 30 years, range 21-53 years 

were analyzed offline using Fieldtrip (Oostenveld et al., 2011), an open source toolbox 

for Matlab (www.mathworks.com).  

 

http://www.mathworks.com/
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Data preprocessing  

Epochs of four seconds were centered at the auditory stimulus onset, 1500 ms 

pre sound-onset and 2500 ms post-sound onset (i.e., 1500 seconds post-sound offset). 

Zero seconds therefore represents the onset of the auditory stimulus while one second 

represents the onset of the tactile stimulus. The recorded epochs were high-pass filtered 

at 1 Hz to remove very slow frequencies (DC offset) and then down-sampled to 400 

Hz. Epochs were visually inspected for possible artifacts and contaminated trials were 

excluded from further processing.  

 

Definition of the conditions of interest  

Main focus of this study is to assess the modulation of the somatosensory 

activity as a function of the typology of the sound preceding the somatosensory 

stimulation, i.e. to compare the somatosensory activity elicited in three bimodal 

conditions: Anear → T, Aloom → T, Afar → T. It is well known that the offset of an 

auditory sound produces an activity (e.g. Hari et al., 1987). In order to cancel out this 

auditory effect, we defined the three different types of touch as:  

T/far = (Afar → T) − Afar 

T/near = (Anear → T) − Anear 

T/loom = (Aloom → T) − A loom 

 

Event related fields (ERFs) calculation in sensors space  

For the three bimodal conditions, Anear → T, Aloom → T, Afar → T, and the 

three unimodal conditions, Anear, Afar, Aloom, single trials were low-pass filtered 

using a 30-Hz filter prior to averaging. We averaged the data over trials to obtain the 

ERF waveforms. In the analysis of the ERFs at sensor level, we considered only the 

combined gradiometers: horizontal and vertical planar gradients of the magnetic field 

were combined separately at each sensor and the root of the squared sum of both 

directions was computed to obtain a single positive-valued number representing the 

averaged ERF at each sensor. The conditions of interest T/near, T/loom, and T/far, were 

calculated for each participant by subtracting unimodal conditions Anear, Aloom, Afar, 

from the respective compound activities Anear → T, Aloom → T, Afar → T.  

 

Time-frequency (TF) calculation in sensors space  

For each participant, time-frequency analysis was performed on single trials 

between 1-30 Hz for the three bimodal conditions, Anear → T, Aloom → T, Afar → T, 

and the three unimodal conditions Anear, Aloom, Afar.We applied an adaptive sliding 

time window with a length (Δt) of 5 cycles of the respective frequency and shifted in 

steps of 50 ms between -0.5 to 1.5s. A Hanning taper was applied yielding a spectral 

smoothing of 1/Δt. For time-frequency analysis at sensor level, we considered the 

combined gradiometers: orthogonal gradients of the magnetic field were calculated 

separately at each sensor. The root of the squared sum of both directions was computed 
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to obtain the power at each sensor irrespective of the orientation of the gradients 

(Medendorp et al., 2007). The TF representations of the T/near, T/loom, and T/far 

conditions were calculated for each participant by subtracting from the TFs of the three 

conditions Anear → T, Aloom → T, Afar → T, their respective unimodal conditions 

Anear, Aloom, Afar (see above and section Definition of the conditions of interest).  

 

Statistics for the event related fields and the time-frequency analysis in sensors 

space  

For both time and frequency domain analysis, the T/near, T/loom, and T/far 

conditions were compared through a non-parametric cluster-based dependent-samples 

F-test with Monte-Carlo randomization (Maris and Oostenveld, 2007) performed on 

the time window encompassing the somatosensory stimulation, i.e. 1 s to 1.500 s. A 

post-hoc analysis was conducted for each couple of conditions by using a paired t test 

Bonferroni corrected. In the time domain the paired t test was performed on the 

individual mean amplitude of the T/near, T/loom, and T/far of the significant cluster, 

while in the time-frequency domain the individual mean power for each significant 

clusters.  

 

Projection of the data in source space  

For ten participants, the head shape obtained with Polhemus 3d-digitizer prior 

to the MEG measurement was co-registered with the individual structural MRI (4T 

Bruker MedSpec, Siemens). This procedure consists of a first course alignment 

between the three fiducials digitized with the Pholemus, and the corresponding points 

on the individual MRIs. Finally, the head shape points were fitted, through a rigid body 

transformation, to the individual head surface as extracted from the structural MRI. For 

three participants the individual MRIs were not available, thus their head shapes points 

obtained with Polhemus were fitted to a Montreal Neurological Institute (MNI) brain. 

Subsequently, a 3D grid covering the entire brain volume (1 cm spacing, 2982 points 

inside the brain) fitted to a template MNI brain was created. In order to compare the 

source activity across participants on a group level, for each participant the constructed 

grid was warped into individual headspace. In this manner, the grid points were not 

regularly spaced but they were located in the same area with respect to the MNI 

template across participants (Larson-Prior et al., 2013). Based on the implementation of 

Nolte (2003), an analytical single shell model was fitted to the individual segmented 

MRI and the lead field was calculated for each grid point. Both, magnetometers and 

gradiometers were taken into account after appropriate adjustment of the balancing 

matrix based on the distance of the gradiometers (17 mm). In order to project the data 

into source space, i.e. on the points of the grid, a linearly constrained minimum 

variance (LCMV; Van Veen et al., 1997) spatial filter was used: first a LCMV filter 

was individually estimated using for each condition for the data on the time interval -1 

s to +2 s; then, the time-series of each trial was multiplied with this common filter.  
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Localization of the task-dependent ERF modulation in source space  

In order to identify the sources for the task dependent modulation of ERF on the 

sensor level the activity of bimodal conditions Afar → T, Anear → T, Aloom → T and 

unimodal conditions Afar, Anear, Aloom, were projected into source space using an 

LCMV Beamformer after preprocessing (see previous section). Then, the source 

activity for each voxel was low-pass filtered at 30 Hz and time-lock averaged with the 

same parameters as had been used for the ERF analysis. As before, by subtracting from 

the activity of the time-lock averaged bimodal conditions the activity of the time-lock 

averaged unimodal conditions, we obtained an estimate for the source activation T/far, 

T/near and T/loom (in source space). For identifying the origin of the significant 

difference found previously at sensor level, we searched for the same task-dependent 

parametric modulation of source data in the same time window as defined by the sensor 

level analysis. Using an F-test, the areas were identified by using the ERF-amplitudes 

T/far, T/near, and T/loom as regressors: (i.e., resulting coefficients: 0.7, -.256, -0.444). 

F-values were plotted on an MNI brain. It is important to stress however, that statistical 

validation to ERF analysis is given by the statistics conducted at sensor level. At source 

level, the multiple comparisons problem renders statistic difficult and a rigorous 

pipeline of how conducting statistic is still lacking. For this reason no statistical 

comparison of source activation was performed, instead, only effects found on the 

sensor level were identified on the level of sources.  

 

Localization of task-dependent TF modulation in source space  

For bimodal conditions Afar → T, Anear → T, Aloom → T and unimodal 

conditions Afar, Anear, Aloom we applied the same parameters utilized in the TF at the 

sensor level to the preprocessed data projected to the source space (see previous 

paragraph). Source activity for each condition – T/far, T/near and T/loom – was then 

individually calculated and clusters of voxels adjacent in space and time revealing the 

parametric modulation observed in sensor space were identified. F-values were then 

plotted on an MNI brain. As for the analysis in time, the projection of TF to source 

space is meant to localize the origin of the statistical difference found at sensor level. 

Because of the multicomparison problem no additional hypothesis testing was done on 

the source level.  

 

Results  
The focus of the present study is the effect of different types of sound located or 

moving in space on a subsequent tactile stimulus. To this aim, we investigated a 500 

ms time-window encompassing the activity generated by a tactile stimulus, always 

identical, that nevertheless could be preceded by a one second sound, either far static 

(T/far), near static (T/near) or looming (T/loom).  
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Behavioural data.  

Each sound was rated by 12 participants before the session according to various 

dimensions (see Section of Methods). For each rated dimension, an ANOVA between 

the three typologies of sound was performed and, when significant, post-hoc paired 

comparisons were calculated. Whereas the three sounds were not evaluated as differing 

for valence and duration, they were perceived as significantly differing for other 

features: distance (i.e., looming sound ~20 cm distant, static far ~50 cm distant and the 

static near ~30 cm distant); arousal (looming significantly more arousing than static 

far); power (static far being significantly weaker than both static near and looming 

sounds); motion (looming sound being perceived as more endowed with motion than 

static far and, though not significantly, than static near); approaching (looming sound 

being perceived as more highly approaching than the two static sounds); ecological 

valence (looming sound being perceived as more ecological than the static near sound); 

thread valence (static near sound being perceived as more threatening than the static 

far) (see Table 1 for results). Taken together, these data show that looming sounds were 

perceived as being more salient that the static far sounds. Given that static near sounds 

were rated as significantly different from the looming sounds in some scales, and from 

static far sounds in other scales, it is reasonable to assume that they were perceived in 

the middle on a possible saliency continuum. 

 

 

Table 1. Explicit subjective ratings.  

Abbreviations: L = Looming; SN = Static Near; SF = Static Far. *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001.  

 

 

 

Dimension 
Mean±SE 

subjective ratings  
ANOVA 

Post-hoc paired 

comparisons 

Valence 

(unpleasant – 

pleasant) 

L 4.17±.64    

SN 3.58±.58  p=.14 --- 

SF 3.08±.29    

Remoteness 

(near – far) 

L 3.36±.61   L vs. SN p=1.00 

SN 2.75±.43  p=.003**
 

L vs. SF p=.09 

SF 5.25±.49   SN vs. SF p=.002** 

Distance estimation 

(0-10 cm – 60-70 

L 2.17±.21 
p<.001*** 

L vs. SN p=.27 

SN 3.17±.52 L vs. SF p=.001*** 
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cm) SF 4.92±.57 SN vs. SF p=.005** 

Arousal 

(calming – 

activating) 

L 6.00±.25   L vs. SN p=1.00 

SN 5.75±.31  p=.004** L vs. SF p=.03* 

SF 4.75±.35   SN vs. SF p=.06 

Power 

(weak – strong) 

L 4.83±.30  L vs. SN p=.73 

SN 5.25±.37  p<.001*** L vs. SF p<.001*** 

SF 2.00±.30   SN vs. SF p<.001*** 

Motion 

(static – high motion) 

L 6.42±.19   L vs. SN p=.07 

SN 4.92±.51 p<.001*** L vs. SF p=.001*** 

SF 3.75± .51  SN vs. SF p=.16 

Approaching 

(static – highly 

approaching)  

L 6.67±.14   L vs. SN p=.009** 

SN 3.83±.76 p<.001*** L vs. SF p<.001 

SF 2.58±.47   SN vs. SF p=.29 

Duration 

(short – long) 

L 3.42±.43  L vs. SN p=.16 

SN 3.83±.42  p=.03* L vs. SF p=.63 

SF 3.00±.33  SN vs. SF p=.08 

Ecology 

(artificial – natural) 

L 5.58±.45   L vs. SN p=.03* 

SN 4.33±.56  p=.013* L vs. SF p=.72 

SF 5.17±.49   SN vs. SF p=.22 

Thread 

(low – high)  

L 5.00±.39  L vs. SN p=1.00 

SN 5.25±.35 p=.04* L vs. SF p=.29 

SF 4.17±.39  SN vs. SF p=.04* 

 

 

Event-Related Activity  

In order to evaluate the differences in activation between T/loom, T/near and 

T/far, we compared their somatosensory event-related activities. We found a significant 

difference between the three conditions, p = .001, in the time window 1075–1125 ms, 

i.e. between 75 and 125 ms after tactile stimulus onset (Figure 2A left. The topography 

of the statistical values in the significant time window shows that the difference is 

localized in the hemisphere contralateral to the tactile stimulation and spreads along the 

entire hemisphere, peaking over fronto-temporal sensors (Figure 2A right). 
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Interestingly, the pattern of amplitude is that T/loom elicits the smallest amplitude ERF, 

while T/near intermediate amplitude, while T/far evokes the biggest activity. In order to 

better evaluate these differences, figure 2B shows the individual mean average of the 

significant sensors, within the statistically significant time-window. A post-hoc analysis 

(paired t-test, Bonferroni corrected) revealed a statistical difference between T/loom 

and T/near (p = .02), between T/far and T/near (p = .003) and between T/far and T/loom 

(p = .0002) (Figure 2B). Main generators are located in the right temporal cortex 

(Broadmann Area (BA) 22-STS and BA 21-TP) (Figure 2C). However, estimation of 

the sources shows activity on the right hemisphere that encompasses the frontal (BA 

10), the parietal (BA 7, BA 9, BA 2) and the temporal lobe (BA 22, BA 21). 

 

 

 

 

Figure 2. Summarized results of the time-course analysis. 

 

(A) Right: event-related field trace of the positive sensor cluster for the T/far 

(brown), T/near (light brown), T/loom (orange). The highlighted rectangle shows the 
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statistically significant time-window (1.075-1.125 sec, 1sec is the auditory offset and 

tactile onset)  

Left: Topography (f values) of the positive sensor cluster (1.087-1.125 ms), 

masked for statistical significance. the significant channels. The dots indicate the 

channels of the significant cluster (1075-1130 ms).  

(B) the bar plots represent the mean average for the sensors and time-window 

of the significant cluster. Error bars show within-subjects 95% confidence intervals. In 

order to reveal the origin of the statistical differences revealed with the f test, post-hoc 

analysis was conducted (paired, Bonferroni corrected, t-test). *p ≤ 0.05, **p ≤ 0.01, 

***p ≤ 0.001.  

(C) Figure 2D shows the projected f-values obtained from statistical 

comparison in sensor space between conditions T/near, T/loom, T/far. Like in the 

topography showin in Figure 2A-right, differences are spread in the right hemisphere 

encompassing frontal, parietal and temporal lobes. The main generators are located in 

the temporal lobe (TP and STS). 

 

 

Time- frequency results  

We analyzed the oscillatory power pattern within a 500 ms interval 

encompassing the tactile event. Utilizing a cluster based permutation statistic, we 

identified two clusters of power that significantly differed between the three conditions. 

The first cluster (p < .03, 1000–1270 ms, 6-8 Hz, max at 1100 ms) was localized on the 

right part of the topography (contralateral to the tactile stimulus). A second cluster (p 

< .02, 1030–1370 ms, 4-6 Hz, peaking at 1250 s) was localized centrally towards the 

frontal part of the topography (Figures 3A and 3B). Figure 3C shows the mean power 

of activity averaged across the sensors, and the time-frequency windows forming 

significant clusters. Mean power is depicted for all three conditions and for all clusters 

identified. For both clusters, the T/loom (in orange) elicits the smallest increase in 

power, followed by T/near (in green) and by T/far (in brown). Post-hoc analysis (paired 

t-test Bonferroni corrected) was performed. For the first cluster, a statistical difference 

was revealed between T/far and T/loom (p = .0005), while between T/loom and T/near 

and between T/far and T/near no statistical difference could be proven (p = .10 and p 

= .14, respectively). For the second cluster, a statistical difference was revealed 

between T/loom and T/near (p = .0008) and between T/far and T/loom (p = .001), while 

between T/far and T/near no statistical difference could be proved (p = .17). Figure 3D 

shows the projected f-values obtained from statistical comparison in source space 

between conditions T/near, T/loom, T/far. Each cluster was projected into source space 

centered at the point of its maximum value in sensor level (first cluster 1100 ms, 6-8 

Hz; second cluster 1250 ms , 4-6Hz) and then two cluster were plotted on the same 

brain. By comparing the topography at sensor level and the projection of the cluster, 

the principal area originating in the first cluster (1250 ms , 4-6Hz) can be identified as 
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the right secondary somatosensory cortex (BA40 spreading towards BA2). The second 

cluster originates in the dorsolateral prefrontal cortex (BA 8). 

 

 

 
 

Figure 3. Summarized results of the time-frequency analysis 

 

(A) Left: time-frequency representation for the time window 1000-1500 ms (1 is 

the auditory offset and tactile onset)). Shown are the f- values for comparison of 

conditions the T/near, T/loom, T/far of the combined gradiometers. The arrows 

indicates roughly the two significant clusters identified. First cluster: p < .03, 1000–

1270 ms, 6-8 Hz, peaking at 1100 ms. Second cluster: p < .02, 1030–1370 ms, 4-6 Hz, 

peaking at 1250 ms. Non-significant values have been reduced to 40% opacity. 

Right: Topography of the significant clusters. The first cluster is localized 

centrally towards the front, whereas the second is right-lateralized.  

(B)The bar plots show the means and the standard errors of the mean of the 

power for the sensors, time-window and frequency of the two significant clusters. Error 

bars show within-subjects 95% confidence intervals. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 
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0.001. 

(C)Projection in source space of the statistical comparison (f-stat) across the 

three conditions for time window 1000–1370 ms in the frequency 4 to 8 Hz. The areas 

corresponding to the first cluster (1250 ms, 4-6Hz) can be identified with the right 

secondary somatosensory cortex (BA40 spreading into BA2). The second cluster 

originate in correspondence with the right dorsolateral prefrontal cortex (BA 8).  

 

Discussion  
In the present study, we have characterized how the neuronal activity elicited by 

a somatosensory stimulation is modulated by different types of preceding auditory 

stimuli. In particular, we created three sounds with different saliency. Our behavioral 

data confirm that the looming sounds were perceived as being more salient than the 

static far sounds, while the static near sounds were perceived somewhat in the middle. 

The three different sounds exert a different cross-modal influence on a subsequent 

tactile stimulus that, on the contrary, was kept constant among conditions. The 

observation we report is a change in the magnitude of the elicited somatosensory 

responses, in the time-locked as well as in the time-frequency results: the tactile 

stimulus responses following the looming sound elicited a smaller activity than the 

ones following the two static conditions and, among the latter, the smallest response 

was observed in the static near condition. The computation of the differential 

magnitude of responses across the three conditions allowed us to define the spread of 

the exerted cross-modal influence across time and space. The first difference, as 

revealed by the ERF analysis, is at early latency (from 75 ms to 125 ms after tactile 

stimulus onset) and encompassed the contralateral hemisphere (right), peaking over 

STS. Later, as highlighted by the time frequency domain, a difference is localized over 

the right S2 (peaking at 100 ms; 6-8 Hz) and, on a later stage, over the contralateral 

frontal areas (peaking at 250 ms; 4-6 Hz).  

 

Decrease in the magnitude of tactile activity correlates with the salience of 

auditory stimulus.  

Our results demonstrate the importance for multisensory interactions of the 

relative saliency between stimuli. In particular, by changing the saliency of a 

(preceding) auditory stimulus while keeping a (subsequent) tactile stimulus always 

identical, we show how the relative saliency between the stimuli impact the magnitude 

of the activity evoked by the tactile stimulus.  

A first consideration is that this factor (the relative saliency) affects the 

interaction calculated with the linear additive model (AT interaction=AT-(A+T), see 

Besle et al. 2004 for a review of the model). In fact, when applying the model, the 

“absolute saliency” of each of the stimuli is taken into account by summing and 

subtracting the same stimuli when presented in combination (AT) and when presented 

singularly (A and T). However in the bimodal condition the factor “relative saliency “ 
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between the stimuli is present while in the unimodal conditions is not, thus rending the 

calculated AT interaction sensitive to the relationship between the particular type of 

stimuli used (for example, interaction between a strong electrical pulse and a weak 

“bip” will be different than interaction between a soft touch and a loud binaural noise). 

Differences in relative saliencies between stimuli is therefore likely to constitute one of 

the main reasons of the discrepant pattern of results found in the literature of AT 

interactions (see Introduction for a review), since these studies were conducting by 

using very different stimuli. Moreover, we believe that the perceived saliency, rather 

than acoustic intensity cues per se, impact the found interaction since the rapidly 

approaching sound is followed by the smallest tactile activity, whereas the near 

stimulus − that overall possesses the highest intensity but relative less saliency, given 

that is static – is followed by an intermediate response and the far sound − static and 

low-intensity − by the biggest response. Our participants' self-reports support the 

assumption that the three typologies of sounds were perceived differently in regard to 

some critical features: according to our predictions, the static far sound was perceived 

significantly weaker and less activating than the other two sounds (see Table 1). This 

finding is consistent with previous evidence, showing that looming sounds are 

associated with a higher warning significance (Bach et al., 2009; Klimesch et al., 1998; 

Neuhoff, 1998), and possibly with a stronger attentional orienting bias toward these 

stimuli compared to static ones (Balconi et al., 2009).  

Additionally, we show an inverse relationship between the perceived saliency 

of the acoustic stimulus and the strength of this modulation, with more salient auditory 

stimuli being associated to less tactile activity. This pattern of results is well in 

accordance to the law of inverse effectiveness (Stein and Meredith, 1993) which has 

long been considered one of the basic principles of the multisensory field and which 

states that, the strength of multisensory interactions increases when the stimuli efficacy 

(usually measured in terms of saliency) of the isolated components are relatively weak 

by themselves (see also Kayser et al., 2005; Lakatos et al., 2007; Perrault et al., 2005; 

Stanford et al., 2005).  

Noteworthy, in order to avoid differential manipulation of attention or 

expectancy between conditions, no tasks involving the auditory or the somatosensory 

stimulation was implied, and the auditory stimuli had an equal probability to be or not 

to be followed by a somatosensory stimulus. Thus, any potential discrepancy in the 

neural activation across the sounds can be genuinely attributed to the features of the 

auditory stimulation delivered. However, an alternative explanation to our findings is 

possible when recurring to the crossmodal shared attention mechanism. This 

mechanism assumes attention to be a limited resource and stimulus representations 

from different modalities are in competition with one another based on their 

representational strength (salience): the more salient a stimulus representation, the 

more it will dominate the competition (e.g. Spence and Driver, 2004). The different 

types of sounds here used are endowed with different levels of saliency, so differences 
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in attentional bias cannot be excluded. However it is worth noting that in our paradigm 

the sounds were already off in time window on which the analysis was centered and 

that potential sound offset effects were ruled out (see Methods section).  

 

Spatiotemporal profile of the modulation of tactile activity: from early STS and 

temporal pole (TP) to S2 to prefrontal areas  

Besides the aspects discussed in previous section, this differential magnitude of 

responses across the three conditions allowed us to track the spread of the exerted 

cross-modal influence across time and space. Our results show modulations of 

amplitude in the activity of areas within or in close proximity to auditory and 

somatosensory cortices and a subsequent spread of this modulation towards more 

frontal regions.  

The earliest significant difference between tactile activities appears at early 

latency (75 ms after tactile stimulus onset) and is in the activity evoked (stimulus-

locked analysis). This first differential contribution to the evoked activity come from 

regions that encompasses a major part of contralateral hemisphere (with respect to 

tactile stimulation), peaking over the right temporal lobe (STS and TP). TPs are known 

to be involved in category-specific conceptual knowledge processing (Hanley, 2014; 

Noppeney and Price, 2002). Moreover, it has been found to be sensitive to complex 

auditory features, such as changes in the acoustic scale (von Kriegstein et al., 2007) or 

spectral composition (Kaiser et al., 2002) in a variety of sound categories, including 

animal sounds. Furthermore, a recent study investigating the large-scale functional 

connectivity pattern of the TP has shed further light on the functions of this area 

(Pascual et al., 2013).Interestingly, the TP shows connectivity with somatosensory 

primary cortex, in particular with its ventral portion, which subserves mouth and 

tongue movement, thus suggesting its role in the integration of auditory and 

somatosensory information corresponding to the mouth. The TP also shows 

connections with the orbitofrontal cortex and neighboring frontal regions as well as 

with subcortical structures related to higher order sensorimotor processing. The authors 

conclude that its connectivity pattern suggests that the TP might be involved in the 

integration of sensorimotor and auditory information and/or use this information to 

categorize sounds and build concepts (Pascual et al., 2013). Regarding STS region, this 

is located in proximity to the primary auditory cortices and known to be a multisensory 

area, responding to stimuli in vision, hearing and touch (Beauchamp, 2005; Beauchamp 

et al., 2008, 2004; Musacchia and Schroeder, 2009; Schürmann et al., 2006) Schroeder 

and Foxe, 2005;). Beauchamp and coworkers demonstrated a significant enhancement 

of the BOLD response for simultaneous somatosensory and auditory stimulation as 

compared to unisensory stimulation (Beauchamp et al., 2008; see also Kayser et al., 

2005; Schroeder et al., 2001; Foxe et al., 2002; Murray et al., 2005;, for evidence on 

monkeys). Moreover, STS has been suggested to be the human homologue of the 

caudomedial (CM) belt area of primates’ auditory association cortex(Schroeder and 



 

82 

 

Chapter 4 Papers and contributions 

Foxe, 2002) which consistently shows auditory and somatosensory stimuli 

convergence with a bias for the skin surfaces of the head and neck (Fu et al., 2003; 

Kayser et al., 2005; Schroeder and Foxe, 2002; Schroeder et al., 2001), similarly to the 

stimuli used here. The activity within STS has been found to be highly biased for 

looming versus receding auditory signals (Bach et al., 2009; Seifritz et al., 2002). 

Interestingly, when distance is conveyed, as in the present study, by amplitude changes, 

a right enhanced response over the right STS has been reported (Mathiak et al., 2003). 

STS also responds to audiovisual motion signals (Baumann and Greenlee, 2007; Lewis 

and Noppeney, 2010; Maier and Ghazanfar, 2007; Sadaghiani et al., 2009; Seifritz et 

al., 2002; Tyll et al., 2013; Werner and Noppeney, 2011), possibly suggesting its role 

in the selective enhancement of a class of salient stimuli – those rising in intensity – 

that could constitute a potentially threatening change of the environment (Tyll et al., 

2013).  

The assessment of the oscillatory activity induced by the tactile event indicated 

that the power frequency difference across the three conditions was right-lateralized 

and localizable in correspondence with two clusters. The earlier cluster (6-8Hz) is 

localized over secondary somatosensory cortex (S2). The peak of activity within this 

cluster observed in correspondence with S2 at 100 ms after stimulus onset is in 

agreement with the idea that S2 is the second stage of tactile processing − on which the 

analysis was centered − and with previous evidence on ERF latency timing of airpuff 

stimulation of peri-oral area (Nguyen et al., 2005). This evidence adds to the robust 

demonstration of S2 in selective somatosensory attention (Fujiwara et al., 2002; 

Johansen-berg and Lloyd, 2000; Meftah et al., 2009). However, S2 has also been 

proved to have multisensory properties, as shown by studies demonstrating its 

responsivity to sounds (Beauchamp and Ro, 2008). Along the same line is the evidence 

showing mutual connections between S2 and auditory cortices (Ro et al., 2013) and AT 

multisensory interactions within this area (Gobbelé et al., 2003; Lütkenhöner et al., 

2002). Moreover, S2 is considered as providing a link between sensory inputs and 

motor areas (Lin and Forss, 2002).  

It is worth noting, however, that the interpretation in terms of suppressive or 

enhanced effects of auditory and S2 cortices is somehow deceptive, given the spatial 

arrangement of these areas. Indeed, auditory and S2 cortices have opposite location in 

the Sylvian fissure and originate signals that exhibit opposite deflections and may 

cancel out, thus hampering a clear interpretation of whether the signal changes are due 

to suppression of one, facilitation of the other or a combination of both mechanisms 

(see also Gobbelé et al. 2003 on this point). The fact that, as demonstrated by the post-

hoc analysis (see Results section), the only significant comparison across the three 

conditions is between the looming and the static far conditions is consistent with the 

conjecture that this cluster is more sensitive to distance cues than to sound motion 

properties. The self-reports of our participants support the assumption that these two 

typologies of sounds were perceived as significantly differing in distance: whereas the 
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looming sound was estimated as being ~20 cm distant, the static far sound was 

estimated as being ~30 cm distant (see Table 1).  

Finally, differences spread towards more frontal areas , i.e. condition is the right 

dorsolateral prefrontal cortex (BA 8). Strongly connected with the motor system, this 

area has been traditionally mainly considered as a motor-related region involved in 

planning motor behaviors (Abe and Hanakawa, 2009; Chouinard and Paus, 2006; 

Schluter et al., 1999). Recently, the involvement of the dorsal prefrontal cortex has 

been suggested for cognitive tasks as well (Hanakawa et al., 2002), such as early 

filtering of irrelevant sensory information in order to accomplish specific goals in the 

most efficient way (Abe and Hanakawa, 2009; Bolton and Staines, 2011). The 

evidence that within this cluster a significant difference was observed between the 

looming sound and static near sound conditions contributes to rule out the hypothesis 

that the intensity and the perceived closeness of the auditory stimulation delivered is 

not sufficient per se to induce a differing pattern of results, but points to the functional 

specificity of motion. In support of this conjecture are the self-reports of the 

participants, who estimated the looming sound as being endowed with a higher degree 

of motion than the two static conditions (see Table 1). Moreover, the significant 

differences observed with the static far sound condition and the other two conditions 

indicates that the necessity of producing an effective motor response in conditions of 

threat or danger is of particular relevance in presence of aversive objects occurring 

within the peripersonal space.  

 

Conclusions  

In this study we have provided evidence that the activity triggered by 

somatosensory stimulation of the perioral area can be crossmodally modulated by a 

preceding sound. We manipulated the saliency of the preceding sound and showed how 

the magnitude of the tactile activity inversely correlated with this feature. Namely, 

following looming sounds (the most salient sound) less tactile activity was elicited as 

compared to the two static conditions, and among the two static conditions the near 

static sounds (more salient than the far static sound but less salient than the looming 

sounds) were followed by less activity than the far-static sound. This inverse relation 

between amplitude and saliency is well in accordance with the “inverse effectiveness 

rule”, though we cannot exclude an involvement of cross-modal attention mechanism. 

Importantly, our results show the effects of stimuli relative saliences on interactions 

between senses and underscore the need to appropriately considering this factor when 

designing and discussing experiments of multisensory nature. Interestingly, following 

this modulatory pattern we could show influences of the sounds on the activity elicited 

by a tactile event as early as 75 ms (e.g. Foxe et al., 2002, Gobbelé et al., 2003) in 

regions encompassing the anterior temporal lobe. At later latencies this modulation 

spread towards secondary somatosensory and frontal regions. The computation of the 

spatiotemporal features of the interplay between sounds and somatosensory stimuli 
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allowed us to highlight influences at several levels of cortical processing (Ghazanfar 

and Schroeder, 2006) thus supporting the idea that multisensory interactions are present 

at various stages of cortical processing, from primary cortices at early latencies to 

higher order areas.  

 

Future directions  

Since audiotactile interactions have been shown to be more pronounced in the 

space behind the head (e.g., Farné and Làdavas, 2002), different portions of the peri-

head space could be tested by presenting auditory stimuli from the front and behind the 

head. Another line of future research pertains the potential influence of visual 

experience on the development of the mechanism devoted to the coding of audiotactile 

interactions within the peri-head space. In particular, it would be interesting to assess 

whether the absence of visual experience induces the establishment of a higher 

sensitive system for the coding of audiotactile interplay in the peri-head space, and 

whether this is spatially-modulated. 
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ABSTRACT 

To efficiently perceive and respond to the external environment, our brain has 

to perceptually integrate or segregate stimuli of different modalities.  The temporal 

relationship between the different sensory modalities is therefore essential for the 

formation of different multisensory percepts. In this magnetoencephalography (MEG) 

study, we created a paradigm where an audio and a tactile stimulus were presented by 

an ambiguous temporal relationship so that perception of physically identical 

audiotactile stimuli could vary between integrated (emanating from the same source) 

and segregated. This bistable paradigm allowed us to compare identical bimodal 

stimuli that elicited different percepts, providing a possibility to directly infer 

multisensory interaction effects. 

Local differences in alpha power over bilateral inferior parietal lobules (IPLs) 

and superior parietal lobules (SPLs) preceded integrated versus segregated percepts of 

the two stimuli (audio and tactile). Furthermore, differences in long-range cortical 

functional connectivity seeded in rIPL (region of maximum difference) revealed 

differential patterns that predisposed integrated or segregated percepts encompassing 

secondary areas of all different modalities and prefrontal cortex. We showed that the 

prestimulus brain states predispose the perception of the audiotactile stimulus both in a 

global and a local manner. Our findings are in line with a recent consistent body of 

findings on the importance of prestimulus brain states for perception of an upcoming 

stimulus. This new perspective on how stimuli originating from different modalities are 

integrated suggests a non-modality specific network predisposing multisensory 

perception. 
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Introduction 

Inputs through multiple senses are continuously processed in our brain, 

resulting in a unique and coherent perception of the world. Using data recorded from 

single neurons in the cat’s superior colliculus, Stein and Meredith [1993] were the first 

to propose specific principles of multisensory interactions. They showed that, rather 

than being independent, processing of stimuli of different modalities depends on their 

relative spatiotemporal properties and salience. However, the mechanism of 

crossmodal interactions in the human brain remains largely unknown. Specifically, 

audio-tactile (AT) interactions have been far less investigated than those of other 

sensory modalities (e.g. audio-visual or visuo-tactile), despite their frequent occurrence 

in everyday life (knocking at a door, playing instruments, walking, shaving, perceiving 

the buzzing and the sting of a mosquito).  

To date, neurons responsive to both audio and tactile stimuli have been found in 

primates in the ventral premotor cortex, the ventral intraparietal region and the superior 

temporal sulcus [e.g. Bruce et al. 1981; Graziano et al. 1999; Schlack et al. 2005]. 

Further evidence suggests that AT interactions may occur already at early latencies of 

the sensory processing in brain regions close to or within primary sensory areas. More 

specifically, somatosensory stimulation was found to evoke rapid activations in belt 

areas of the auditory cortex [e.g. Schroeder and Foxe 2002; Fu et al. 2003] and tactile 

stimuli modulated the activity of primary auditory cortex [Lakatos et al., 2007].  

In human neuroimaging studies, AT multisensory interactions have been 

identified in secondary somatosensory cortex, the auditory belt area, and the posterior 

parietal cortex also before 100 ms [Beauchamp et al., 2008; Foxe et al., 2000; Foxe et 

al., 2002; Gobbelé et al., 2003; Hoefer et al., 2013; Kassuba et al., 2013; Lütkenhöner 

et al., 2002; Murray et al., 2005; Schürmann et al., 2006].  

Traditionally, crossmodal interactions have been estimated through the so-

called “linear additive model”. This model defines multisensory interaction as the 

difference between the neural activity generated by the bimodal stimuli and the linear 

sum of the unimodal neural responses (e.g. AT interaction = AT-[A+T]). This model 

has been inspired and supported by observations of non-linear superposition of single 

neuron measurements in the cat’s superior colliculus [e.g. Stein and Meredith 1993]. 

The model is sensitive to super/sub-additivity of neural responses, i.e. neural responses 

elicited by the stimuli presented in combination that exceed/diminish the sum of the 

activity elicited by the stimuli when these are presented singularly. However, it fails 

when it comes to detection of linear interactions, which have been as well extensively 

reported [e.g. Stanford et al., 2005] and  is sensitive to multiple confounds, when not 

applied appropriately [Besle et al., 2004]. 

 In the present study, we aimed to elucidate the mechanism of perceptual 

integration/segregation of AT stimuli. It is well known that to create a coherent and 

correct representation of the external world, stimuli emanating from the same object or 

event are perceptually integrated, while stimuli independently generated are 
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perceptually segregated [Ghazanfar and Schroeder 2006]. To investigate this process, 

we created a bistable paradigm that allowed direct comparison of identical bimodal 

stimuli that however could elicit different (integrated or segregated) percepts. A sound 

of one second, simulating a looming mosquito approaching the head, was utilized as 

the auditory stimulus. A short touch, delivered on the face and resembling the mosquito 

landing, was the tactile stimulus. As the timing between the different modalities is 

critical for perceptually merging two stimuli [Calvert et al., 2004; Welch, 1999], we 

manipulated the stimulus onset asynchronies (SOAs) between the stimuli, rendering 

their temporal relation “ambiguous”: i.e. the perception of the physically identical AT 

stimuli could vary from integrated (condition INT) (audio and tactile stimuli perceived 

as the approaching mosquito and its landing) to segregated (condition SEG) (audio and 

tactile perceived as independent events) from trial to trial. These stimuli were selected 

because of their ecological relevance, and because approaching sounds [Canzoneri et 

al., 2012] and the space around the head [e.g. Kitagawa et al. 2005] have been shown 

to evoke stronger AT interactions. 

Since with our paradigm we exclude the fact that integrated and segregated 

percepts are due to physical differences between stimuli, we hypothesize that different 

brain-states prior to the upcoming tactile stimulus predispose different multisensory 

percepts. Indeed, an increasing body of evidence is showing an influence of 

prestimulus activity on subsequent perception, especially in the case of near-threshold 

stimuli [Ruhnau et al., 2014] and in multisensory perception [Hipp et al., 2011; Keil et 

al., 2012]. We focused our analysis on the prestimulus time-window and characterized 

the multimodal AT interaction by local measures of power and global measures of 

inter-areal coupling [Weisz et al., 2014]. 

 

Materials and methods 

Participants 

Sixteen participants (5 females, mean age ± s.d., 26 ± 7 years, all right-handed) 

were recruited from a participant database of the Center for Mind/Brain Sciences at the 

University of Trento. Visual acuity was normal or corrected-to-normal and all 

participants reported a normal sense of hearing and touch. The study was approved by 

the Ethical Committee of the University of Trento and was conducted in accordance 

with the Declaration of Helsinki as revised in October 2008. All participants gave 

written informed consent prior to participation and received monetary compensation 

for their time. The approximate duration of the study including preparation was 90 

minutes. 

 

Stimuli and experimental instrumentation 

The auditory stimuli consisted of a sound simulating a flying mosquito (44100 

Hz sample rate, 16 bits resolution). The original stimulus length (see 

http://www.acoustics.org/press/132nd/3pab10.html) was truncated to one second and 



 

93 

 

Chapter 4 Papers and contributions 

its intensity was modulated with an exponential envelope increasing of 35 dB (from 25 

to 60 dB) over the duration of the sound to create the impression of a looming sound 

approaching the participant’s head. Stimuli were presented binaurally via tubal insert 

headphones compatible with MEG. The sound was filtered with the head related 

transfer function (HRTF) of a KEMAR dummy head. The function was selected from 

the CIPIC HRTF Database [Algazi et al., 2001, dataset freely downloadable at 

http://interface.cipic.ucdavis.edu/sound/hrtf.html]. The simulated sound source 

appeared in the horizontal plane, at an azimuth angle of 30° left of the direction of the 

participant’s gaze and was in accordance with the spatial position of the tactile 

stimulus. The tactile stimulation consisted of a light touch (diameter = 3 mm) at the 

participant’s left perioral area. The tactile stimulation was delivered via a custom-built 

apparatus. A plastic filament was attached to a piston that could be moved back and 

forth by a double-acting pneumatic cylinder that was driven by compressed air with a 

pressure of 0.7 bars. The system was controlled electrically by a valve via a custom-

built relay box. The final part of the stimulation equipment was mounted on a wooden 

MEG-compatible pedestal (that had no direct contact with the participant). The 

pneumatic system was placed outside the magnetically shielded room, so the noise 

produced by the device was not audible inside. The plastic filament was the terminal 

part of a fiber optic system (Keyence series FS-N, Neu-Isenburg, Germany). One fiber 

of the system was connected to an infra-red light and the other to a light sensor 

installed outside the magnetically shielded room. The fiber approaching the skin during 

stimulation resulted in an increase of reflected light until the fiber reached the skin. It 

was therefore possible to measure the precise timing of the delivery of the tactile 

stimulation. Participants’ view of the tactile stimulation apparatus was obstructed to 

avoid them performing the task using visual cues provided by the movement of the 

apparatus. 

 

Procedure 

In each trial, the participants listened to the one second mosquito sound and felt 

the tactile stimulus described above (see Figure 1A). While the individual stimuli were 

always the same, their relative timing, i.e. stimulus onset asynchrony (SOA), could 

vary from trial to trial.  

The SOAs were individually determined prior to recording in a pilot run. Aim 

of this pilot was to determine the individual psychophysical curve (Fig. 1B) that 

describes how, in function of their SOAs, perception of the auditory and the tactile 

stimuli varies between integrated (i.e. the touch being judged as caused by the 

approaching mosquito) and segregated (i.e. the touch being judged as unrelated to the 

approaching mosquito). In particular, we were interested in the two “transition” SOAs, 

one before and one after the end of the sound, at which the occurrence of the touch 

elicited 50% of time an integrated and 50% of the time a segregated percept. Each one 
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of these two SOAs was determined by staircase procedures conducted using a staircase 

toolbox for Matlab (https://code.google.com/p/matlabstaircase/). Four (i.e. two for each 

of the two SOAs) independent staircase procedures were randomly interleaved during 

the same pilot run. For each of the two SOAs one staircase started from a clearly 

integrated percept (touch occurring at the sound offset) and one from a clearly 

segregated percept (touch occurring at the sound onset or 1 second after sound offset) 

and they moved towards the ambiguity threshold with a one-up/one-down step 

procedure. In order to quickly approach the ambiguity region, the step-sizes at the 

beginning were bigger (80ms) and progressively diminished until (after 7 reversals) 

becoming stable with a step-size of 16 ms. Each staircase procedure stopped when a 

defined number of trials (40) or of reversals (30), or of boundaries-hits (5) was reached. 

At this point the SOA was determined by averaging the two thresholds obtained. 

In the recording session, according to previously individually estimated SOAs, 

two types of trials were presented. In the first type of trials, the touch occurred before 

the end of the sound and the SOA matched the 50% rate of integration/segregation as 

previously determined. In the second type of trials, the tactile stimulation was delivered 

after the end of the sound and matched the previously determined 50% rate of 

integration/segregation (Fig. 1B). Additionally, a third type of trials was presented 

where SOAs between audio and tactile stimuli were randomly chosen from a uniform 

distribution of SOA ranging from sound onset (1000 ms prior to the end of the sound) 

to 1000 ms  after the sound offset. The latter trials were presented to increase the 

difficulty level of the perception evaluation task and were discarded from further 

analyses. 

The three types of trials were randomly presented within a block. Each block 

consisted of 78 trials with 26 trials of each trial type. Each participant underwent nine 

blocks. The participants’ task was to report after each trial whether the two sensory 

inputs belonged to the same event or were distinct events. Henceforth, INT response 

refers to the perception of the auditory and the tactile stimuli being perceived as a 

single event (i.e. the touch being judged as caused by the approaching mosquito); SEG 

response refers to the perception of the auditory and the tactile stimuli as distinct events 

(i.e. the touch being judged as unrelated to the approaching mosquito). 

The experiment design allowed direct comparison of physically identical 

stimuli that produced either the percept of integrated or segregated AT stimuli. During 

the trial, participants were instructed to fixate on a cross on the display screen. After a 

period of 2000±400 ms (uniform distribution) following the sound onset, participants 

were asked to report their perception by answering the question “Do the auditory and 

the tactile stimuli belong together?” Responses were delivered via button presses 

within the given time limit of 2000 ms using the left and right index fingers to respond 

“yes” or “no” respectively. The buttons corresponding to positive and negative were 

changed randomly on a trial-by-trial basis, in order to avoid possible confounds due to 

https://code.google.com/p/matlabstaircase/
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motor-response mapping preparation. Trials were eliminated if participants responded 

prior to the onset of the tactile stimulus or failed to make a response within the limit. 

Such responses accounted for less than 1% of trials overall and were not further 

analyzed. 

 

 

 
 

Figure 1 

 (A) Each trial consisted of an auditory stimulus, a one-second sound of a 

mosquito approaching the participant’s head from the left side, and a spatially 

correlated tactile stimulus that was intended to simulate the bite of a mosquito. 

Different (SOAs) between audio and tactile stimuli yielded different percepts: 

integrated, i.e. the approaching mosquito and the touch belonged to the same event 

(condition INT, the impression that it was the approaching mosquito that touched them) 

or segregated (condition SEG, audio and tactile stimuli were unrelated events). SOAs 

could vary from trial to trial. Participants were asked to report their percept after each 

trial. 

(B) Schematic psychophysical function describing the relationship between 

different SOAs and an integrated percept. SOAs of interest (prior and following sound 
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offset) were those in which integrated and segregated percepts were equally probable. 

 

Data Acquisition 

MEG data were recorded at a sampling rate of 5 kHz using a 306-channel (204 

first order planar gradiometers, 102 magnetometers) VectorView MEG system (Elekta-

Neuromag Ltd., Helsinki, Finland) in a magnetically shielded room (AK3B, Vakuum 

Schmelze, Hanau, Germany). Hardware filters were adjusted to band-pass the MEG 

signal in the frequency range of 0.01–1000 Hz. Prior to the MEG recording, 3 

localization coils were placed on the forehead and 2 behind the ears. The position of 

the coils and the participants’ head shapes were digitized with a Fastrak 3D digitizer 

(Polhemus, Colchester, VT, USA, http://www.polhemus.com). Prior to each 

experimental block, participants’ head positions with respect to the MEG sensors were 

estimated. The neurophysiological MEG data were analyzed offline using Fieldtrip 

(Oostenveld et al., 2011), an open source toolbox for Matlab (www.mathworks.com). 

 

Data preprocessing 

As we were interested in the integration of a tactile stimulus with an ongoing 

auditory stimulus, epochs of four seconds (2.5 sec pre and 1.5 sec post) were centered 

on the tactile stimulus onset; onsets were obtained from the optical fiber device (see 

Stimuli and experimental instrumentation). Zero seconds therefore represents the onset 

of the tactile stimulus. Epochs were high-pass filtered at 1 Hz to remove very slow 

frequencies (DC offset) and filtered for line noise removal, then down-sampled to 400 

Hz. Trials were visually inspected for possible artefacts and contaminated trials were 

excluded from further processing. As mentioned in the Procedure section, we are 

interested only in trials where the auditory and the tactile stimulus are related by a 

certain SOA that produced a rate of INT/SEG responses as close as possible to 50%, 

while the other trials (i.e. trials with random SOA) were discarded.  Remaining trials 

were divided into two conditions based on participant responses: SEG and INT 

conditions. Since the rate of integrated/segregated percepts was not always 50%, we 

equalized the trial number by randomly discarding trials from the condition having a 

larger number of trials for each subject. This procedure was conducted separately for 

the case of touch occurring prior to the end of the sound and after the end of the sound. 

Equalization of trial number ensured comparable signal-to-noise ratios and ensured that 

any other common activation, including activity due to the auditory stimulus in the 

condition where touch arrives prior to the end of the sound, was cancelled when 

contrasting SEG and INT. Since we were interested in the neural mechanism 

underlying perceptual integration, trials in which touch occurred prior and after sound 

offset were collapsed.  

 

Event related fields (ERFs) analysis in sensor space 

For each participant, for condition INT and SEG, we averaged the preprocessed 

http://www.polhemus.com/
http://www.mathworks.com/
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data over trials to obtain the ERF waveforms. Since we were interested in the 

perception of a tactile stimulus with an ongoing auditory stimulus, statistical analysis 

was performed on the post-stimulus time after the tactile stimulus was delivered. A 

non-parametric cluster-based dependent-samples t-test with Monte-Carlo 

randomization [Maris and Oostenveld 2007] was conducted on the time window 0 ms 

to 200 ms (0 ms refers to the tactile stimulus onset). The time window was selected to 

encompass the first peak of activation following tactile stimulation. 

 

Time-frequency analysis in sensors space 

For each participant, time-frequency analysis was performed on single trials 

between 1-40 Hz. We applied an adaptive sliding time window with a length (Δt) of 5 

cycles of the respective frequency and shifted in steps of 50 ms between -1.2 to .9s. A 

Hanning taper was applied yielding a spectral smoothing of 1/Δt. For the gradiometers, 

orthogonal gradients of the magnetic field were calculated separately at each position. 

The sum of both directions was computed to obtain the power at each sensor 

irrespective of the orientation of the gradients (Medendorp et al., 2007). In order to 

statistically examine sensor level differences between the condition SEG and INT, we 

performed two non-parametric cluster-based dependent-samples t-tests with Monte-

Carlo randomization for gradiometer recordings [Maris and Oostenveld, 2007]. A first 

statistical test of this type was run on a time-frequency window that encompassed the 

pre-(tactile) stimulus period (-450 to 50 ms, 1-40 Hz ), while the second test was run 

for the post-(tactile) stimulus time-window (0 to 500 ms, 1-40 Hz). This type of 

statistical test was used because it controls for the multiple comparisons problem (type 

I error rate). In particular, a t-test for each sensor-time- frequency pair is performed. 

Subsequently, t-values exceeding a certain threshold (here 0.05) are considered and, 

based on spatial, temporal and frequency adjacencies, clusters of significant differences 

over space, time, and frequency are identified. Finally, cluster-level statistics, i.e. the 

sum of t-values within each identified cluster, are evaluated under the permutation 

distribution of the maximum cluster-level statistic. This permutation distribution is 

obtained from a random draw of the observed data (random partition) repeated a high 

number of times (here 1000). Thus, the proportion of random partitions that resulted in 

a larger value than the true observed one (maximum cluster-level statistics) is 

calculated and represents significance probability (p-value) under which cluster-level 

statistics are evaluated. Since a significant positive cluster of condition INT versus 

SEG was revealed in the time window from -300 ms to 50 ms in the alpha range (peak 

at 9Hz), further investigation in the prestimulus window was focused on this frequency 

band and time window. 

 

Localization of the time-frequency findings in source space 

The individual head shapes obtained with Polhemus were co-registered with the 

individual structural MRI (4T Bruker MedSpec, Siemens). First, a course alignment 
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was performed on the three fiducials, as collected with Polhemus prior to the MEG 

measurement, to the corresponding points on the individual MRI. Second, a rigid body 

transformation fitted the digitized head shape points of the individual to the head 

surface as extracted from the structural MRI. For two participants for whom individual 

MRIs were not available, a Montreal Neurological Institute (MNI) brain was morphed 

to fit the individual head shape. To compare the source activity across participants on a 

group level, a grid (1 cm spacing, 2982 points inside the brain) fitted to a template MNI 

brain was warped to individual headspace for each participant. Resulting grid points 

were not regularly spaced but they were located in the same area with respect to the 

MNI template across participants [Larson-Prior et al., 2013]. An analytical single shell 

model was fitted to the individual segmented MRI [Nolte 2003] and the leadfield was 

calculated for each grid point. 

Both magnetometers and gradiometers were taken into account for source 

estimation after appropriate adjustment of the balancing matrix based on the distance of 

the gradiometers (17 mm), applied in order to take into account the different 

measurement units of magnetometer [T] and gradiometers [T/m] sensors. We projected 

the preprocessed data, i.e. each trial, into source space, i.e. on the points of the grid, 

using the linearly constrained minimum variance (LCMV) spatial filter [Van Veen et al. 

1997]: first, for each participant, a LCMV filter was estimated on the combined 

conditions SEG and INT on the time interval -0.8 ms to +0.8 ms with respect to touch 

onset; then, the time-series of each trial was multiplied with this common filter. This 

allowed time-frequency analysis with the same parameters utilized at the sensor level 

for conditions INT and SEG. The grand average of the difference between the two 

conditions for the significant time interval (from -291 ms to +42 ms) at the significant 

frequency (9 Hz) was then plotted on an MNI brain.   

 

Connectivity analysis in source space 

The spectral analysis suggested strong pre-touch alpha power differences (see 

Results). To investigate potential connectivity patterns that predispose different 

percepts, we examined brain functional connectivity to and from the voxel with the 

maximum power effect (MNI coordinates: [60 -40 40]; corresponding to BA40). As a 

connectivity metric we used phase locking values (PLV) [Lachaux et al., 1999]. The 

frequency of interest was the peak frequency in the time-frequency results (9 Hz) in the 

time window chosen for the source analysis (-291ms +42ms). We used the fast Fourier 

transform (FFT) algorithm on the sensor data (multitaper analysis, Hanning window) 

and projected the complex Fourier coefficients into source space by multiplying them 

with the respective spatial filters. Spatial filters were constructed using Dynamic 

Imaging of Coherent Sources (DICS) beamformer [Gross et al., 2001] from the cross-

spectral density matrix, calculated using a multitaper FFT transformation over the time 

window and frequency of interest resulting from the analysis on sensor level (-0.291 

0.042 ms, 9 Hz, temporal interval centered at the maximum effect found in the time 
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frequency analysis, length of 3 cycles/9 Hz = 333 ms) and the respective leadfields. We 

then calculated PLV between the reference voxel and all other voxels. 

To perform the statistical analysis, we used a non-parametric cluster-based 

dependent-samples t-test with Monte-Carlo randomization for condition INT versus 

SEG. Neighboring voxels above a given threshold with a minimum cluster size were 

considered as significant. The minimum size required for a cluster to be considered 

significant was defined according to a cluster-based approach common in fMRI 

research and implemented as 3DClustSim within the AFNI suite [Cox 1996; Cox and 

Hyde 1997]. The program simulates random t-values on a grid provided by the user, 

thresholds them according to a p-value and records the size of remaining clusters. This 

process is repeated 10,000 times and calculates the probability that this purely random 

activity will produce a significant cluster of a given size. To account for correlation 

between neighboring voxels, we applied a smoothing to the random activity. We used a 

smoothing factor of 1cm on the random data prior to cluster identification. The value of 

1 cm was chosen as it coincides to the estimated spatial resolution of MEG [Hansen et 

al., 2010]. This leads to a minimum cluster size of 15 voxels to be significant, for an 

alpha threshold of p <= 0.05. 

 

Results 

In each trial in the experimental paradigm, an audio and a tactile stimulus were 

presented in a way that, although physically identical, could be perceived either as 

integrated, i.e. as emanating from the same source, or as segregated, i.e. they were 

independently generated. The perception fluctuated on a trial-by-trial basis. As the 

stimuli were physically identical, it is expected that any differences between conditions 

INT and SEG will arise from intrinsic neural dynamics and reflect only the differences 

related to perception.  

 

Behavior 

In a first pilot run, we studied for each participant the individual psychophysical 

function that links perception of integration/segregation to SOAs, so as to determine 

the two “transition” SOAs at which stimuli are ambiguously related and the rate of 

INT/SEG is 50. For touch occurring before the end of the sound, mean “transition” 

SOA is at 665 ms (±238 ms s.d., 0 ms refers to the onset of sound). Exploration of the 

“right” part of the psychophysical function, i.e. for touch occurring after the end of the 

sound, resulted in a mean “transition” SOAs of 1338 ms (±188 ms s.d., 0 ms refers to 

the onset of sound).  In the subsequent part of the experiment, stimulation at these 

“transition” SOAs resulted in a percentage of INT of 44±14% trials (mean±s.d) for the 

touch occurring before the end of the sound, and 46±15% trials for the other case. For 

three participants we were unable to elicit an ambiguous percept for touch before the 

end of the sound. For these participants only trials belonging to “transition” SOAs for 

touch after the end of the sound were used in the analysis.  
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Event related fields analysis 

Touch elicited strong responses in both conditions, with the evoked response 

showing the most pronounced peak ~85 ms. Source analysis of the 0-200ms time 

window versus prestimulus baseline revealed pronounced generators in left and right 

primary somatosensory regions. Bilateral activation for lip/face tactile stimulation is in 

accordance with the literature [e.g. Schulz et al. 2004]. Interestingly, the ERF following 

the tactile stimulus did not differ between INT and SEG (Figure 2A). In the following 

analysis we focused on the period before the upcoming tactile stimulus. 

 

 
 

Figure 2 

(A) The event-related field for the combined gradiometers for condition INT 

(black line) and SEG (dotted line). A non-parametric cluster-based dependent-samples 

t-test with Monte-Carlo randomization was conducted on the time window 0 ms to 200 

ms  and failed to reveal any statistically significant difference between the two 

conditions. (B) Source analysis shows the localization of touch-related evoked 

responses - independent of condition - in primary somatosensory cortex. These results 

are shown as a sanity check of our data  

 

Time-frequency analysis 

We statistically compared the time-frequency representations of INT trials 

versus SEG trials at sensor level. This comparison yielded a positive cluster (p < 0.05) 

starting from approximately 290 ms prior to touch onset and lasting until 40 ms after 

touch onset. The effect was in the alpha range (Figure 3A), clearly peaking at 9 Hz and 

was dominant at central and frontal sensors bilaterally. We consider the time-window 

of the significant effect as prestimulus (prior to the tactile stimulus) even if it exceeds 
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the presentation of the tactile stimulus, since the ERF of the tactile stimulus had its first 

peak only at 85 ms on primary somatosensory cortex (Figure 2A). The spatial pattern 

of the sensor topography is also reflected at source level (Figure 3B). The main cortical 

generator of the difference between INT and SEG is localized in the right hemisphere 

(contralateral to tactile stimulus) in the inferior parietal lobule (rIPL) (BA 40, max: [60, 

-40, 40] MNI coordinates). This cluster propagates towards sensorimotor cortices (BA 

2, 3, 4). Another cluster of activation is localized centrally over superior parietal 

lobules (SPLs) (BA7). Finally, ipsilateral (with respect to touch) activation is localized 

in lIPL and similarly to contralateral activation, this cluster expands towards 

sensorimotor cortices (BA 2 and 3) reaching the frontal cortex (BA6). 

 

Functional connectivity analysis 

The maximum grid point of the right IPL cluster described above (MNI 

coordinates [60 -40 40]) was chosen as a seed and functional connectivity between the 

seed and the rest of the brain was conducted in the time-window of interest (-290 until 

40 ms) for the frequency of interest (9 Hz). As shown in Figure 3C, three brain regions 

- all located in the right hemisphere and contralateral to the upcoming tactile stimulus - 

showed altered functional connectivity to rIPL during INT with respect to SEG. In 

particular, rIPL showed more coupling with the right prefrontal cortex (BA 10) and 

motor-sensory regions (size: 35 voxels, max at MNI [30 50 20]) and with the right 

visual cortex (BA 18, BA 19) (size: 16 voxels, max at MNI [40 -90 20]) prior to the 

INT with respect to SEG condition. Interestingly, the coupling between rIPL and the 

right auditory belt area (BA 20, size: 20 voxels, max at MNI [60, -10, 10]) was reduced 

in INT with respect to SEG condition. For each of these three clusters we calculated the 

mean PLV value across voxels and normalized it to the values of the baseline, i.e. prior 

to the sound onset, as shown in Figure 3D. A coupling in condition SEG drives the 

effect in auditory belt area, while a decoupling in condition SEG and a coupling in 

condition INT drive the other effects. 
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Figure 3 

(A) Results of the statistical comparison at sensor level for condition INT vs 

condition SEG. Red color indicates relatively more power during condition INT. Time 0 

ms indicates the onset of touch.  

Left: time-frequency representation (TFR) of the statistically significant sensors 

(cluster-p<0.05) for the interval pre- and post- tactile stimulus. Non-significant values 

have been reduced to 40% opacity.  
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Right: Topographical representation of the statistical results for the time-

window -290 to 40 ms in the frequency band 8-12 Hz. Black dots represent the sensors 

that gave statistically significant results at sensor level and whose TFR are plotted on 

the left side of the figure.  

 (B) Projection in source space of the grand average of INT versus SEG for the 

time-frequency window and frequency of the significant results at sensors level.  

(C) Phase synchrony between the seed region, rIPL ([60 – 40 40], MNI 

coordinates), and the whole-brain volume. T-values of INT versus SEG percept masked 

for statistical significance are displayed. Dashed lines represent the borders of 

Brodmann areas of interest. rA2 exhibited significant decoupling with the rIPL, while 

rPFC/rS2 and rV2 showed increased coupling with rIPL during integrated compared 

to segregated percept. 

(D)  We calculated PLV of each significant cluster showed in (C) normalized to 

the baseline prior to the sound onset in order to evaluate if the differences reported in 

(C), originate by, respectively, a coupling and a decoupling in both conditions with 

respect to baseline or, on the contrary, the effect is driven only by a coupling (or 

decoupling) in one condition. PLV greater than 1, indicated by the dashed line, 

indicates higher coupling with respect to baseline and vice versa. Barplots show 

differences of PLV in the rPFC/rS2 and rV2 originate from an increase of coupling for 

INT and a decrease of coupling for SEG with respect to the baseline, while for the rA2 

the difference is primarily driven by an increase of coupling for the SEG percept 

 

 Discussion 

In the present MEG study, we investigated how prestimulus brain-states 

predispose integrated or segregated percepts of an ongoing audio and an upcoming 

tactile stimulus. Since the temporal relationship between stimuli of different modalities 

is a critical factor for their perceptual integration [Calvert et al., 2004; Welch, 1999], 

we manipulated the temporal relation between the offset of a dynamic (approaching) 

sound of a mosquito and the onset of a touch (resembling the landing of the mosquito). 

By stimulating around the threshold SOA, at which stimuli were perceived as either 

emanating from the same source (i.e. the mosquito approaching the head and landing 

on it; condition INT) or as two distinct events (condition SEG), perception of 

physically identical multisensory stimuli fluctuated between trials from integrated to 

segregated and vice versa. This approach is powerful as it allows direct comparison of 

physically identical but differently perceived stimuli. We hypothesized that differences 

in brain-states prior to upcoming tactile stimulus can predispose different multisensory 

percepts. Alpha power was relatively increased in a pre-tactile stimulus time-window 

of about 330 ms for subsequent perceptions of integrated versus segregated. The 

difference was localized in IPLs and SPLs bilaterally. Moreover, the functional 

connectivity pattern was modulated by different percepts in the same time window. 
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Prior to integrated percept, rIPL was more coupled with the right secondary 

somatosensory and visual cortices and more decoupled from secondary auditory cortex 

as compared to the period prior to segregated percept. 

 

IPLs and SPLs involved in multisensory interactions: evidence from monkeys 

and humans 

Comparisons between the human and primate auditory cortices [Galaburda and 

Sanides, 1980; Hackett et al., 2001; Sweet et al., 2005] reveal that human IPL seems to 

be a close homologue of the caudomedial (CM) belt area of primates’ auditory 

association cortex, which consistently shows auditory and somatosensory stimuli 

convergence with a bias for the skin surfaces of the head and neck [Brosch et al., 2005; 

Fu et al., 2003; Giard and Peronnet, 1999; Kayser et al., 2005; Schroeder et al., 2001; 

Schroeder and Foxe, 2002].  

Our findings are consistent with the IPL being the human homologue of the 

multisensory area CM in monkeys [Calvert et al., 2004; Hackett et al., 2007], since the 

integrated percept of the looming sound and the touch were preceded by higher alpha 

power exactly in bilateral IPLs. In previous literature, IPLs and SPLs have been 

described as being activated during a localization task for both auditory and tactile 

stimuli [Renier et al., 2009], and relevant in localization tasks for stimuli of all 

modalities [e.g. Bushara et al. 1999; Reed et al., 2005]. Furthermore, rIPL appears to be 

involved in perception of time [e.g. Harrington et al. 1998; Rao et al. 2001] and the 

detection of temporal synchrony between auditory and visual stimuli [Adhikari et al., 

2013; Bushara et al., 1999; Dhamala et al., 2007], and in tasks where multisensory 

temporal and spatial information need to be evaluated together [Assmus et al., 2003; 

Assmus et al., 2005]. 

 In our paradigm, we manipulated the temporal relationship between the two 

stimuli. Given that the sound is looming, time is translated into the location of the 

sound source so that the integration/segregation task also had a spatial component, i.e. 

the localization of the flying mosquito, based on the loudness of its buzzing sound, at 

the time the tactile stimulus is delivered. Although the role of IPLs and SPLs described 

above has been determined based on post-stimulus activities, in our experiment the 

difference in IPLs and SPLs prior to the application of the tactile stimulus between 

conditions INT and SEG suggests that the ongoing brain state affects upcoming 

computations of spatio-temporal relations between stimuli of different modalities (here, 

audio and tactile). Our results propose for the first time that local and inter-areal 

synchronization properties of IPL prior to the stimuli crucially determine whether an 

AT stimulus will be perceived as integrated or not.  

 

AT interactions in humans: previous findings and the linear additive model 

In humans, AT interactions have been localized in regions in the vicinity of 

IPLs, i.e. in secondary somatosensory cortex, the superior temporal gyrus/sulcus and 
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the posterior parietal cortex at different latencies [Beauchamp et al., 2008; Foxe et al., 

2000; Foxe et al., 2002; Gobbelé et al., 2003; Hoefer et al., 2013; Kassuba et al., 2013; 

Lütkenhöner et al., 2002; Murray et al., 2005; Schürmann et al., 2006], but the results 

are not consistent. This could be partially explained by the fact that crossmodal 

interactions are currently estimated using the linear additive model. This model is 

derived from observations on the cat’s superior colliculus and defines interaction 

between senses as the difference between the activity elicited by the bimodal stimulus 

and the sum of the activity elicited by its unisensory components (i.e. here: interaction 

= AT-[A+T]). Given that the relative saliency of the stimuli (“inverse effectiveness” 

rule, Stein and Meredith 1993) affects the interaction, it is likely that part of the 

variance found in the results in previous works, i.e. results defined through the linear 

additive model, reflects differences in the type of stimuli used, i.e. in their relative 

saliency (see Gobbelè et al. 2003 for a discussion of the topic). It is also important to 

note that the model is sensitive only to non-linear observations, while interactions have 

been documented as well in a linear fashion [e.g. Stanford et al. 2005]. The model is 

also potentially sensitive to several confounds if experiments are not carefully 

designed, such as differences in attentional load between multimodal and unimodal 

conditions [Besle et al., 2004]. 

In previous works, interactions reflected the co-occurrence of stimuli of 

different modalities regardless whether they elicited an integrated or segregated 

percept. As we compared bimodal physically identical stimuli, the lack of statistically 

significant difference in the post-stimulus phase suggests that, at least initially, both 

conditions elicit the same amount of activation. Although we cannot exclude that the 

lack of significance is due to insufficient power or too conservative statistical methods. 

However, given that identical bimodal stimuli are differently perceived, either as 

integrated or as segregated, this paradigm ensured that our results purely reflect our 

interest, i.e. neural activity/connectivity patterns related to the different percepts.  

 

Integrated percepts are preceded by relative increase of alpha activity in IPLs 

and SPLs regions 

In the interval prior to tactile stimulus, bilateral SPLs and IPLs showed an 

increased alpha power in cases of subsequent integration with respect to segregation. 

According to the current literature, alpha band power is believed to be crucial for the 

inhibitory-excitatory balance of the brain: higher alpha in a certain brain region is 

related to local inhibition, while lower alpha reflects states of heightened excitability 

[Jensen and Mazaheri, 2010]. Likewise, in recent years, there has been cumulative 

evidence that power fluctuations of neuronal activity in this frequency band, prior to 

stimulation, substantially influence subsequent perception of weak stimuli, with alpha 

power inversely correlating to detection and discrimination performance. For instance, 

local fluctuations of alpha activity in the prestimulus period, modulate the perception 

of near-threshold (NT) stimuli [e.g. Weisz et al. 2014], namely low levels of alpha 
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power preceded “hits” (the NT stimulus is perceived), while high levels of alpha power 

preceded misses (the NT stimulus is not perceived) [for similar results see e.g. Thut et 

al. 2006; Hanslmayr et al. 2007; Schubert et al. 2008; van Dijk et al., 2008;  Romei et 

al., 2010; Jones et al. 2010]. Interestingly, recent studies show that low alpha is related 

not only to higher probability of NT stimuli detection, but also to identification of more 

than one super-threshold stimuli of the same modality presented with very close 

temporal proximity [Baumgarten et al. 2014] or in the context of visual illusions 

[Lange et al. 2013].  

Although we cannot exclude that high alpha simply biased participants towards 

a particular judgment, this is highly improbable for the following reasons. Our findings 

are localized in areas characterized as multisensory in the literature (see first section of 

the Discussion). The ambiguous temporal relation of audio and tactile stimuli in our 

paradigm allows considering that the level of alpha in those specific areas was what 

determined the upcoming INT or SEG perception. High excitability of these areas 

predisposed segregation of AT stimuli, which is in line with the aforementioned 

findings, where also low alpha was connected to perception of two distinct stimuli 

[Baumgarten et al. 2014; Lange et al. 2013]. We can therefore argue first that 

excitability of IPLs and SPLs is critical for perceptual binding, and second, that alpha 

plays a role in crossmodal perception on relevant areas. 

 

Engagement/disengagement of relevant brain areas into a distributed network 

predispose distinct multisensory percepts  

The brain connectivity analysis revealed a specific pattern of functional 

connections between distant cortical areas preceding different multisensory percepts. 

For the connectivity analysis, we used rIPL as a seed from which we computed 

connectivity to all other voxels of the brain. rIPL was chosen because it yielded the 

maximum difference between INT and SEG in the prestimulus time window and was 

therefore assumed to reveal major differences in a network level. rIPL exhibited 

increased coupling with rPFC, right secondary somatosensory and visual cortices, and 

decreased coupling with secondary auditory cortex, prior to the integrated percept with 

respect to the segregated percept.  

The relationship between prestimulus activity patterns and perception has been 

recently investigated [Hanslmayr et al., 2007; Keil et al., 2012; Ploner et al., 2010]. 

These studies not only showed local power differences over relevant regions, but also 

that the inclusion or exclusion of these regions into a globally distributed functional 

network critically influences subsequent perception [Weisz et al. 2014]. Our data 

essentially confirm the relevance of both local and global aspects of brain-states in the 

prestimulus for subsequent perception: local alpha power levels as well as long-range 

connections appear to predispose whether subsequent AT stimuli are integrated or not.  

The absence of post-stimulus effects suggests that, rather than a specific 

multisensory area, integrated/segregated perception is predisposed by a network 

http://cercor.oxfordjournals.org/content/early/2014/10/18/cercor.bhu247.full.html#ref-52
http://cercor.oxfordjournals.org/content/early/2014/10/18/cercor.bhu247.full.html#ref-52
http://cercor.oxfordjournals.org/content/early/2014/10/18/cercor.bhu247.full.html#ref-16
http://cercor.oxfordjournals.org/content/early/2014/10/18/cercor.bhu247.full.html#ref-50
http://www.jneurosci.org/content/33/7/3212.full#ref-43
http://www.jneurosci.org/content/33/7/3212.full#ref-36
http://www.jneurosci.org/content/33/7/3212.full#ref-36
http://cercor.oxfordjournals.org/content/early/2014/10/18/cercor.bhu247.full.html#ref-22
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comprising "multisensory integration" areas with unisensory areas. The precise 

network configuration is possibly modulated by local inhibitory/excitatory balance. 

Indeed, inhibition is believed to be essential for the establishment of long-range 

networks [Jonas and Buzsaki, 2007] and one might hypothesize that the higher alpha 

power observed in IPLs and SPLs in our study for the integrated condition reflect the 

formation of the network relevant for multisensory integration.  

The notion of a network that predisposes integrated or segregated percepts 

offers advantages and proposes a complementary mechanism to the traditional 

hierarchical model. The latter assumes that each sense is first processed in isolation and 

interaction takes place in multisensory “heteromodal” brain regions where feedforward 

convergence from the sensory-specific cortices occurs [Stein and Meredith, 1993]. 

However, this fails to explain interactions already at early latencies and in areas close 

to primary cortices [e.g. Foxe et al. 2000], and multisensory interactions that create 

novel percepts such as the “Hearing Hands Effect” in which gently touching a vibrating 

probe dramatically changes the perception of the sound intensity of a probe tone 

[Schürmann et al., 2004], or the "Parchment-Skin Illusion" [Jousmäki and Hari 1998]. 

Contrary to the hierarchical model, large-scale interactions provide flexibility and 

efficiency in a network [Varela et al., 2001], which, when it comes to the brain, is 

fundamental to the efficient integration of inputs from a dynamic and multifaceted 

world along with endogenous activity. Thus, functional dynamic long-scale 

interactions seem to be a plausible mechanism to be added to the way multisensory 

interactions are thought about, using the hierarchical model which is primarily based 

on unchanged anatomical pathways. 

The fact that the differentiated network comprised even visual areas despite the 

presentation of AT stimuli, suggests a non-modality specific integration/segregation 

network. Indeed, vision plays a dominant role in localization tasks [Eimer, 2004]. For 

example, in the famous Ventriloquist Effect, auditory [Alais and Burr, 2004] and tactile 

[Caclin et al., 2002] stimuli were wrongly detected towards a simultaneous visual 

stimulus at a different location. Interestingly, it has also been shown that by blurring 

the visual stimulus, the effect is reversed with vision being captured by audition thus 

showing how multisensory perception must rely on a flexible mechanism. In our 

experiment, participants had no visual information that could bias their percept and no 

post-stimulus effects were found in visual areas. It seems that visual cortices form part 

of a distributed cortical network that predisposes integration/segregation possibly for 

exploiting any upcoming visual information.  

 

 Conclusions 

Previous research has already pointed out the role of prestimulus brain-states 

and cortical networks in multisensory processing [Hipp et al., 2011; Keil et al., 2012; 

Senkowski et al., 2008]. In the present MEG study, we investigated the neural 

correlates of multisensory percepts. We enhanced our results by exploiting a paradigm 
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that allowed direct comparison of physically identical AT stimuli that elicited different 

percepts. Locally, our results showed how relative inhibition prior to the upcoming 

tactile stimulus of areas involved in temporal and localization tasks across different 

modalities leads to an AT integrated percept. The results suggest a functional role of 

these areas in comparing and separating stimuli of different modalities. Globally, we 

observed prestimulus differences in a cortical network that encompasses secondary 

areas of different modalities and prefrontal cortex suggesting a non-modality specific 

integration/segregation network.   
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APPENDIX 

AT interactions have been shown to depend on many factors (see s 1.3). 

This behavioral study focuses on the investigation of their spatial properties. Its 

main goal was to obtain the most information possible for preparing an MEG study. 

In this perspective, we explored factors potentially critical for spatial interactions. 

In particular, we investigated AT interactions in the peri-head space and 

examined their sensitivity to the spatial arrangement of the stimuli (i.e. the relative 

spatial position to which the A and T stimuli occur), we then analyzed how they are 

modulated by the distance between the auditory stimulus and the body (by using 

moving auditory stimuli) and by whether the auditory stimulus is perceived as 

approaching or receding.  

Moreover, we designed an experiment that can be easily replicated in an 

MEG room, given that this experimental environment imposes many limitations. 

For example, we choose to spatially localize the auditory stimuli in a virtual 

manner so as to deliver the sound through headphones rather than utilizing spatially 

distributed loudspeakers.  

Given their preliminary nature, these results are shown in the appendix 

rather than in the thesis' main body.  
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Introduction 

Sensitivity to spatial arrangements between stimuli of different modalities is 

a debated topic in the field of multisensory perception. Neurophysiological studies 

in cats’ Superior Colliculus (SC) found that multisensory integration is largest 

when stimuli are spatially aligned in their external positions (neurons’ RFs 

overlap), while for spatially misaligned stimuli no facilitation or even response 

depression can be observed. This rule has long been considered as one of the three 

fundamental general principles (see s. 1.9), holding not only for direct recordings in 

SCs, but in the whole field of multisensory research. However, it is not yet clear to 

which extent it is possible to directly transpose these (and the others) multisensory 

principles, based on neural observations in SC to behavioral results or to neocortex 

recordings (see Spence 2013 for a review).  

Contrary to what has been reported for other modalities parings, a previous 

EEG study (Murray et al. 2005) failed to reveal any modulation, at behavioral and 

at cortical levels, of AT interactions in function of the spatial arrangement of the 

stimuli. In this study static auditory stimuli were presented aligned/misaligned 

(left/right) to a touch in the space of the hand. However, evidences already 

highlighted in this thesis (s 1.3) suggest that by presenting the stimuli in the space 

close to the head, different findings could be revealed. In fact, sensitivity to spatial 

arrangement for AT was shown in successive behavioral studies in the space of the 

head (Kitagawa et al., 2005; Tajadura-Jiménez et al., 2009). For these reasons we 

conducted a study on spatial arrangement between auditory and tactile modalities 

in the peri-head space. Moreover, we used different types of auditory stimuli, i.e. 

instead of static sounds, we used dynamic sounds. Dynamic sounds possess higher 

ecological valence and are particularly relevant (see s. 1.4) compared to sounds 

presented at fixed locations. In particular, as typology of sounds we used both 
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possible typologies of dynamic sounds: looming and receding. These two types of 

sounds have shown asymmetrical behavior being the approaching ones especially 

salient. Moreover, in the space of the head sensitivity to spatial arrangement was 

modulated by distance between the sound and the body. Interactions were more 

pronounced when the sound was presented near the body (20 cm) than far from it 

(70 cm). Dynamic auditory stimuli offer the advantage to investigate interactions 

along a continuum of perceived distances with respect to the body. 

A similar behavioral study on AT interactions, i.e. using dynamic (receding 

and looming) sounds has been conducted by the group of Serino (Canzoneri et al. 

2012). In this study a tactile stimulus was administered at the hand at different 

delays from the onset of an approaching or of receding sound. Their results showed 

that the moving auditory stimulus speeded up the processing of the tactile stimulus 

as long as the sound was perceived at a limited distance from the hand for both 

sounds. Moreover, when comparing looming vs receding sounds, the approaching 

one seemed to have a stronger effect in speeding up the processing of a tactile 

stimulus.  

Here, we collected RTs to a tactile stimulus (while auditory stimuli were 

task-irrelevant). The touch has been presented to the participants’ head (right peri-

oral area). Moreover, touch was delivered at different time points with respect to 

the sound onset, thus when the moving (looming or receding) auditory stimulus 

was perceived at various distances from the body. Auditory stimuli were virtually 

manipulated so that the two sounds (looming or receding), although binaurally 

presented through headphones, could be perceived either as coming from the left 

side or from the right side, i.e. spatially congruent or incongruent with the tactile 

stimulus. 

 We expected that when the auditory stimuli are perceived close to the body, 

spatial arrangement of the stimuli affects RTs. Possibly, when stimuli are perceived 

in this space, also the typology of sounds, i.e. whether it is receding or approaching 
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may influence behavior. On the contrary, when stimuli are perceived far from the 

body we expected to not see behavioral differences between different spatial 

arrangements or sound types. 

 

Methods 

Subjects 

Twenty healthy subjects (6 males, age mean  ± standard deviation 21.8 ± 1.5 

years) participated in the study. All participants reported normal hearing and touch. 

All subjects gave their written informed consent to participate in the study, which 

was approved by the Ethical Committee of the University of Trento and was 

performed in accordance with the Declaration of Helsinki amended in October 

2008. Participants received credits as a reimbursement in return for taking part in 

the study. 

 

Audio stimuli 

The sound used in the experiment was a mosquito sound (22050 Hz 

sampling rate, 16 bits resolution). The original sample can be found in the 

following webpage: http://www.acoustics.org/press/132nd/3pab10.html. The sound 

stimulus (∼1.4 sec) was edited in duration and amplitude. The duration was 

truncated to 1 sec. The amplitude was attenuated or amplified in various parts of 

the sound stimulus in order to obtain a stimulation signal that was as much as 

possible constant in root mean square amplitude over time. For the experimental 

conditions testing the looming and the receding auditory stimuli, the sound 

equalized for stimulation energy was further modulated in amplitude in two 

different manners: with an exponential envelope increasing from 35 to 65 dB over 

the sound’s duration, so to give an impression of an approaching sound (looming), 

or viceversa decreasing from 65 dB to 35 dB so to give the impression of a 
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receding sound.The two sounds (looming and receding ) were filtered with HRTF 

coming from the CIPIC HRTF Database (Algazi et al., 2001). This database, freely 

available in internet (http://interface.cipic.ucdavis.edu/sound/hrtf.html), contains 

HRTF obtained from recordings in 50 individuals of the impulse responses 

measurements collected over the sphere surrounding individuals’ heads at 25 

different azimuths and 50 different elevations. Convolving a sound with the 

binaural impulse responses obtained from the recording at a defined azimuth and 

elevation angle, the final sound used for the stimulation possess all the cues (ILT, 

IAD and others) representing the selected location. In particular, we used the two 

HRTF obtained from measurements from a KEMAR dummy head recorded 

respectively at an elevation of 34°, at an azimuth angle of 65° and at an elevation of 

34° and an azimuth angle of -65° so that the sounds source appeared with respect to 

the subject’s gaze direction at the same elevation but coming either from the left or 

right side. Thus, in total four types of auditory stimuli, representing the buzzing of 

a mosquito, were used: looming from the left/right side or receding from the left 

/right side. Sounds were delivered via headphones.  

 

Tactile stimulus 

Tactile stimulation was delivered through a customized device. A piston was 

moved back and forth by means of a double-acting pneumatic cylinder working 

with compressed air with a pressure of 0.7 bars and driven electrically by a valve 

via a custom-built relay box. The terminal part of an optic fiber system was 

attached to the piston. One fiber of the system was connected to an infra-red light 

and the other to a light sensor (Keyence series FS-N, Neu-Isenburg, Germany). 

Thus, approaching the skin during stimulation resulted in an increase of reflected 

light until the fiber has reached the skin and indicated the timing of the delivery of 

the touch to participants. The pneumatic system was placed outside the 
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experimental room, so that the noise produced by the compressed air device was 

not perceivable. The terminal part of the stimulation equipment containing the 

pneumatic valve was mounted on a metal pedestal (having no direct contact with 

the participant). The participants’ head was placed on a chinrest in order to 

minimize head movement. Tactile stimulation was delivered always to the right 

peri-oral area. Prior to each block, the  stimulator was adjusted so that the point and 

the intensity of the tactile stimulus was constant among blocks. We accurately 

controlled that participants executed the experimental task (see next section) only 

on the basis of the perceived touch, and not on the bases of other cues, such as the 

noise of the stimulator or vision of the moving tactile stimulus. To this aim, the 

participants wore foam earplugs under the headphones in order to cancel the 

audition of the weak sound produced by the tactile stimulator placed outside the 

experimental room. Moreover, participants’ view of the final part of the tactile 

stimulator, the moving piston, was covered. In this way, the tactile stimulus was 

totally “invisible” and “silent”.  

 

Paradigm 

During the experiment, on each trial, the participants listened to one of the 

four sounds described above, i.e. a looming or a receding sound coming from either 

the left or right side with respect to body midline. Since the tactile stimulus was 

always localized on the right peri-oral area, in half of the experimental conditions it 

was spatially congruent with the auditory stimulus (AloomTcon, ArecTcon), while in 

half of the experimental conditions tactile and auditory stimuli were spatially 

separated (AloomTinc, ArecTinc) (see Figure 4.1A). Along with the auditory 

stimulation, in the 90% of trials subjects received a tactile stimulus, as described 

above. In 10% of the trials, one of the four types of sounds was presented but no 

tactile stimulation was delivered. This type of trials was introduced in order to 
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minimize expectations about an upcoming tactile stimulus. Five different stimulus 

onset asynchronies (SOA) between the sound and the touch were used, i.e. the 

touch could occur either after 100 ms, 600 ms, 1100 ms,1600 ms, or 2100 ms from 

sound onset (see Figure 4B). Since the a specific time during the presentation of the 

looming and receding sound carries subjective information about the distance of 

the sound source from the subject, in this way, the touch might occur when sounds 

were perceived at different locations (T1 and T2), or when the sound was already 

off. Each sound was preceded by a period of silence lasting randomly between 400 

ms ± 200 and followed by a random period of silence of 2700ms ±500.The SOAs 

and the type of sound could vary from trial to trial and were randomly presented, 

together with the condition of only sound, within a block. Each block consisted of 

88 trials. 80 were “bimodal” trials (20 for each type of sound, 4 for each different 

SOAs) and 8 only sound (2 for each type of sound). Each participant underwent 

four blocks. The participants’ task was to respond as fast as possible to touch 

through bottom presses, while ignoring the co-occuring auditory stimulus 

(detection task). During the trial, participants were instructed to fixate on a cross on 

the display screen.  

As additional measures of the efficacy of the stimuli, after the experiment 

each sound was presented ten times and behavioral ratings about various features 

of the sounds presented (i.e., pleasantness, remoteness, motion, arousal, power, 

distance, duration, ecological validity, threat) were collected. 
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A. Experimental setup. Subjects received a tactile stimulus at the right peri-

oral area while task-irrelevant sounds either approached to or receded from the left 

or right side (4 auditory stimuli). 

 B. Procedure. From trial to trial tactile stimuli were delivered at different 

temporal delays from sound onset (from T1 to T5). In this the touch way occurred 

when sounds were perceived at a different location (T1 and T2), or when the sound 

was already off. Participants had to respond as fast as possible to touch, while they 

had to ignore the sound. 

 

Results 

Reaction times analysis 

Unimodal auditory trials were discarded from the analysis. Mean RTs to 

tactile targets were calculated for every temporal delay, (i.e., T1 to T5), separately 

for AloomTcon, AloomTinc, ArecTcon, ArecTinc. RTs exceeding more than 2 standard 

deviations from the mean RT were considered outliers and eliminated from the 

analyses. The RTs to the tactile target for the different temporal delays at which the 

tactile stimulus was administered (from T1 to T5) and the different conditions (i.e, 

AloomTcon, AloomTinc, ArecTcon, ArecTinc) is represented in Figure 2. 
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Figure 2 

Mean RTs (and S.E.M.) to the tactile target at different temporal delays for 

the different experimental conditions. The light brown region indicates the duration 

of the sound 

 

 



 

122 

 

Appendix 

A three way repeated measure ANOVA on tactile RTs with the within 

subjects factors of Sound (loom, rec), Temporal Delay (T1, T2, T3, T4, T5) and 

Spatial Congruency (Tcon Tinc) was performed. A significant three-way Sound x 

Temporal Delay x Spatial Congruency interaction was found. Results are shown in 

Table 1. In order to investigate the different aspects of this 3way-interaction we 

performed two different post-hoc analyses.  

 

Effect 

 

DF F P 

Sound 

 

1 2,292 0,146 

spatial congruency 

 

1 0,317 0,58 

temporal delay 

 

4 43,525 0 

sound x spatial congruency 

 

1 1,911 0 

sound x temporal delay 

 

4 58,778 0,183 

spatial congruency x temporal delay 

 

4 9,835 0,005 

sound x spatial congruency x temporal delay 4 6,424 0,02 

 

Table 1: results of the three-way ANOVA  

 

Post-hoc Analysis 1 

The data were analyzed separately for each of the five Temporal Delays, 

therefore producing five distinct ANOVAs with two factors, Sound (Aloom/Arec) and 

Space Congruency(Tcon/Tinc).  

For T1, T3 and T4 we found a main effect of Sound (T1: F(1,32.14), 

p<0.0001; T2: F(1,20), p<0.00001; T3: F(1,20), p<0.00001). For these temporal 
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delays, only the type of sound and not the spatial congruency between the moving 

sounds and tactile stimuli, influenced significantly the participants’ responses. In 

particular, participants’ responses were slower for looming than for receding 

sounds at T1 (respectively 494ms ±18 vs 432ms±14, mean ± SEM), while 

participants’ responses were faster for looming than for receding sounds at T3 and 

T4 (respectively, T3: 374±13 vs 393±11; T4: 371±13 vs 400± 14).  

Furthermore, we found a significant Sound x Spatial Congruency 

interaction (F(1,5.65), p=0.028) and a main effect of Sound (F(1,9.126), p<0.007 

uncorrected) at T2. In order to disentangle this result, two paired t-test Bonferroni 

corrected between Aloom and Arec, with spatially congruent touches (AloomTcon vs 

ArecTcon p =0.151, respectively 446±17 and  434±14) and spatially incongruent 

touches  (AloomTinc, ArecTinc, p= 0.003 uncorrected, respectively 429 ±14 and 

393±13) thus revealing  that only for incongruent touches whether the sound is 

looming or receding influence RTs in T2 (one can argue that at this points sounds 

are more or less localized at the same distance). Space significantly influence RTs 

for receding sounds and ArecTcon vs ArecTinc (p<0.001 uncorrected) but not for 

looming sounds (AloomTcon vs AloomTinc p=0.013 uncorrected). 

For T5 we found significant main effects for Sound (F(1,15.46), p=0.001) 

and Space (F(1, 11.354), p=0.003). Two paired t-test Bonferroni corrected were 

conducted between the factor Sound (AloomTcon vs ArecTcon, p=0,001 uncorrected; 

AloomTinc vs ArecTinc, p=0,038 uncorrected) revealed sound being a significant 

factor. Interpretation of the main effect space (AloomTcon vs AloomTinc , p= 0.02 

uncorrected; ArecTcon vs ArecTinc p= 0.2 uncorrected) shows how spatial factor is 

significant only in the case of looming sound .   



 

124 

 

Appendix 

 

Significant 

effects 

 

 

 

 Sound  Sound 

 

Sp. congruency 

 

Sound X 

Sp.congruency 

Sound Sound Sound 

 

Sp. congruency 

R
T

 (
m

s)
 

500 

 

480 

460 

440 

420 

400 

380 

 

      T1  T2  T3  T4  T5 

           

 con inc  con inc con inc  con inc con inc 

 

 

 

 

receding 

 
 looming 

 

Figure3 

The plot presents the mean of the RTs for spatially congruent or 

incongruent for all five different time delays, for looming (blu lines) and receding 

(red lines) sounds. The results of the two-ways ANOVAs on single time delay made 

to explore the three-way interaction are shown above each temporal delay.  
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Post-Hoc Analysis 2 

In order to analyses further aspects of the interaction found in the three-way 

ANOVA, we performed two separate ANOVAs for each of the two sounds 

(looming or receding), with two factors, Temporal Delays and Space Congruency.  

The ANOVA between AloomTcon and AloomTinc revealed a main effect of 

Temporal Delay (F(4,5.8),p<0.0001). Newman-Keuls post-hoc tests showed that 

RTs at T1 (when sounds were perceived far from the body; mean RTs ms, S.E.M.) 

was significantly slower compared to RTs at T2, T3, T4 and T5 (all ps<0.005). T2 

was significantly slower than T3, T4 and T5 (all p<0.05). No statistically 

significant differences were revealed between T3 and T4 and T5 as well as between 

T4 and T5.  

The ANOVA between ArecTcon and ArecTinc revealed an interaction 

SpatialCongruency x Temporal Delay (F(4,4.91),p<0.00001) and a main effect of 

Temporal Delay (F(4,8.8), p<0.00001). To analyze this interaction we performed 

two separate ANOVA ArecTcon and ArecTinc with Temporal Delays as within-subjects 

factor. 

For ArecTcon a significant main effect of Temporal Delay was revealed 

(F(4,12),p<0.0001. Newman-Keuls post-hoc tests showed that T1 and T2 were 

significantly slower than T3, T4 and T5 (all ps<0.05). No statistically significant 

difference was revealed between T1 and T2 and between T3, T4 and T5.  

 

Subjective ratings results  

Each sound was rated by the participants according to various dimensions 

(see Section of Methods) after the experimental session. For each rated dimension, 

an ANOVA between the four typologies of sound was performed and, when 

significant, post-hoc paired comparisons were calculated (Bonferroni corrections). 

Whereas the four sounds were not evaluated as differing for distance at their 
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beginning, they were perceived as significantly differing for the other features (see 

Table 1). AloomTinc was evaluated significantly more pleasant than AloomTc and 

ArecTinc and significantly more powerful than ArecTinc. Also, AloomTinc was 

considered as significantly more moving than both RC and ArecTinc and more 

ecological than ArecTinc. ArecTinc was evaluated as the least arousing sound. 

AloomTcon was considered as significantly closer at the end than both RC and 

ArecTinc and more threatening than ArecTinc. L sounds were also considered as 

longer than R sounds. The participants were also asked to indicate the direction of 

motion of each sound on a template (see Table3). The results indicate that C sounds 

were localized as more right-lateralized than INC sounds (see also Figure xx).  

 

Table 1. Explicit subjective ratings.  

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

 

 

Dimension Mean±SD subjective ratings 
ANOV

A 
Post-hoc paired comparisons 

Valence 

(pleasant — 

unpleasant) 

AloomTcon 4.39±1.42 

p=.003 

** 

AloomTcon   vs   

AloomTinc 
p<.05* 

AloomTinc   vs   

ArecTcon 
p=.06 

AloomTinc 5.44±1.10 
AloomTcon   vs   

ArecTcon 
p=1.00 

AloomTinc c vs   

ArecTinc 
p=.002** 

ArecTcon 4.50±1.29 
AloomTcon   vs   

ArecTinc 
p=1.00 

ArecTcon vs   

ArecTinc 
p=1.00 

ArecTinc 4.28±1.18     

Power 

(weak — strong) 

AloomTcon 4.33±1.19 

p=.002 

** 

AloomTcon  vs   

AloomTinc 
p=.53 

AloomTinc   vs   

ArecTcon 
p=.64 

AloomTinc 4.78±1.11 
AloomTcon  vs   

ArecTcon 
p=1.00 

AloomTinc vs   

ArecTinc 

p=.001**

* 

ArecTcon 4.22±1.56 
AloomTcon   vs   

ArecTinc 
p=.17 

ArecTcon vs   

ArecTinc 
p=.27 

ArecTinc 3.61±1.14     
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Arousal 

(calming — 

activating) 

AloomTcon 5.22±.88 

p<.001 

*** 

AloomTcon  vs   

AloomTinc 
p=.29 

AloomTinc vs   

ArecTcon 
p=.86 

AloomTinc 5.61±.85 
AloomTcon   vs   

ArecTcon 
p=1.00 

AloomTinc vs   

ArecTinc 
p=.002** 

ArecTcon 5.11±1.08 
AloomTcon   vs   

ArecTinc 

p=.006*

* 

ArecTcon   vs   

ArecTinc 
p=.004** 

ArecTinc 4.11±.90     

Motion 

(static — high 

motion) 

AloomTcon 5.39±1.33 

p=.001 

*** 

AloomTcon   vs   

AloomTinc 
p=1.00 

AloomTinc vs   

ArecTcon 
p=.007** 

AloomTinc 5.61±.85 
AloomTcon   vs   

ArecTcon 
p=.41 

AloomTinc vs   

ArecTinc 
p=.004** 

ArecTcon 4.61±1.54 
AloomTcon   vs   

ArecTinc 
p=.18 

ArecTcon   vs   

ArecTinc 
p=1.00 

ArecTinc 4.22±1.63     

Remoteness Begin 

(far — near) 

AloomTcon 3.67±1.61 

p=.79 

    

AloomTinc 3.39±1.75     

ArecTcon 3.83±1.76     

ArecTinc 3.67±1.81     

Remoteness End 

(far — near) 

AloomTcon 5.22±2.24 

p=.001 

*** 

AloomTcon   vs   

AloomTinc 
p=1.00 

AloomTinc vs   

ArecTcon 
p=.23 

AloomTinc 4.89±2.03 
AloomTcon  vs   

ArecTcon 
p=.04* 

AloomTinc vs   

ArecTinc 
p=.17 

ArecTcon 3.50±1.65 
AloomTcon   vs   

ArecTinc 
p=.02* 

ArecTcon   vs   

ArecTinc 
p=.1.00 

ArecTinc 3.50±1.82     

Ecology 

(artificial — 

natural) 

AloomTcon 4.83±1.89 

p=.005 

** 

AloomTcon   vs   

AloomTinc 
p=1.00 

AloomTinc vs   

ArecTcon 
p=.45 

AloomTinc 5.00±1.37 
AloomTcon   vs   

ArecTcon 
p=1.00 

AloomTinc vs   

ArecTinc 
p=.04* 

ArecTcon 4.33±1.61 
AloomTcon   vs   

ArecTinc 
p=.12 

ArecTcon vs   

ArecTinc 
p=.17 

ArecTinc 3.89±1.53     

Thread 

(low — high) 

AloomTcon 4.44±1.76 
p=.001 

*** 

AloomTcon   vs   

AloomTinc 
p=.69 

AloomTinc vs   

ArecTcon 
p=.06 

AloomTinc 5.17±1.47 
AloomTcon   vs   

ArecTcon 
p=.44 

AloomTinc vs   

ArecTinc 
p=.44 
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Table 2.   Explicit subjective ratings.  

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

ArecTcon 3.72±1.56 
AloomTcon  vs   

ArecTinc 
p<.05* 

ArecTcon vs   

ArecTinc 
p=1.00 

ArecTinc 3.39±1.50     

Duration 

(short — long) 

AloomTcon 4.17±.99 

p<.001 

*** 

AloomTcon  vs   

AloomTinc 
p=.24 

AloomTinc vs   

ArecTcon 

p<.001**

* 

AloomTinc 4.94±1.26 
AloomTcon  vs   

ArecTcon 

p=.002*

* 

AloomTinc vs   

ArecTinc 

p<.001**

* 

ArecTcon 3.28±.96 
AloomTcon  vs   

ArecTinc 
p=.02* 

ArecTcon  vs   

ArecTinc 
p=1.00 

ArecTinc 3.28±1.07     

Direction of motion 

AloomTcon 4.44±2.57 

p<.001 

*** 

AloomTcon   vs   

AloomTinc 

p=.001*

* 

AloomTinc vs   

ArecTcon 
p=.02* 

AloomTinc -1.44±4.71 
AloomTcon  vs   

ArecTcon 
p=.55 

AloomTinc vs   

ArecTinc 
p=.87 

ArecTcon 3.61±2.97 
AloomTcon  vs   

ArecTinc 

p<.001

** 

ArecTcon  vs   

ArecTinc 
p=.003** 

ArecTinc -2.17±3.85     

 Dimension 
Mean±SD subjective 

ratings 

Tactile 

Valence (pleasant — unpleasant) 4.11±1.23 

Power (weak — strong) 3.33±1.14 

Arousal (calming — activating) 4.33±1.46 

Ecology (artificial — natural) 2.61±1.65 

Thread (low — high) 3.61±1.72 

Location 4.17±1.65 
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Table 3.   Explicit subjective of stimuli position.   

Participants were requested to judge on a circle the perceived position of 

each stimulus 

 

   

 

 

Aloom Left (Tinc) 

 

Aloom Right (Tcon) 

 

        T 

 

   

    

Arec Left (Tinc) Arec Right (Tcon)  

 

 

 

Discussion 

In literature AT multisensory interactions have been shown to be sensitive to 

a number of features all to some extent related to space: they are sensitive to the 

typology of sound (whether a moving sound is approaching or receding the 

participants), to the distance between the auditory stimulus and the body, to the part 

of the body to which tactile stimulus is delivered and finally they may be sensitive 

to their relative spatial arrangement. 

Given the poorness of sensitivity of AT interactions to spatial arrangements 

in the space of the hand (e.g. Zampini et al. 2005; Murray et al. 2005), we 
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conducted our analysis in the peri-head space, a portion of space that has been 

shown to be especially sensitive for AT interactions. In this space, we investigated 

how AT interactions are modulated by a moving auditory stimulus, as dependent 

from the fact whether this approaches (looming) or recedes the participants’ head 

and whether the sound is perceived close or far from the body. We used 

approaching and receding sound, since these have been shown to exert significanlty 

different reactions, with the approaching sounds being more salient and activating 

than the receding (Bach et al., 2009; Tajadura-Jiménez et al., 2010, see also section 

1.4). The rationale behind using dynamic stimuli is that we could investigate AT 

interaction around the head at different positions: by delivering the tactile stimulus 

at five different time points (T1-T5) with respect to the moving sound, we modified 

the perceived distance between the auditory stimulus and the body (T1 and T2) and 

if the effect persisted after auditory stimulus offset (T3 to T5).  

By using auditory stimuli oriented in space (looming/receding from 

left/right), while the tactile stimulus was always placed to the right, we studied the 

impact of spatial overlap between the stimuli. 

Our results (analysis 1) show that the type of sound, i.e. looming or 

receding, modulates RTs to the tactile stimulus for each time point we tested 

(though for T2 it interacts with space). Remarkably, receding sounds elicit faster 

RTs than looming sounds to a tactile stimulus for early temporal delay (T1 and T2), 

i.e. when the receding sound is perceived closer to the head than the looming 

sound. For later time points (T3-T5), a reversal occurs, i.e. looming sounds elicit 

faster RTs then receding sounds. These results confirm the findings reported in 

previous AT literature (Canzoneri et al. 2012). Interestingly the effect of the type of 

sound persists also after a sound offset of more than one second, though after sound 

offset RTs remain constant within condition.  Contray to this, Canzoneri et al. 

(2012) found RTs following receding sounds, after a first decrease, to return to 

RT’s baseline values (i.e. prior to sound onset). However, this discrepancy may be 
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due to substantial different paradigms, being the time points at which the tactile 

stimuli were delivered in Canzoneri’s experiment spread over a time window of 

almost 5 seconds (sounds lasting 3 seconds) against the time window used in the 

present study of 2.1 seconds (and a sound of 1 second).  

Here, when comparing RTs within the different temporal delays (analysis 2) 

our results showed that looming sound elicited a behavior which is identical, 

regardless of the different spatial alignment of the stimuli: a decrease in RTs 

between T1, T2 and T3 while RTs remain stable for successive time points. On the 

contrary, when it comes to receding sounds, the spatial congruency between the 

sound and the tactile stimulus affected behavior. In particular, when there is spatial 

congruency, i.e. the auditory stimulus is receding from the same side of the head 

where the tactile stimulus is delivered, no RTs’ difference is observed between the 

first two time points (T1 and T2), when the auditory stimulus is still close to the 

head. The only RTs’ decrease is observed after T2. When the auditory stimulus is 

receding from the opposite side with respect to the side where the tactile event 

appears, a decrease of RTs occured between T1 to T2.  This dependency on spatial 

congruency was found only for receding sounds, only for T2, when the sound is 

localized at an intermediate distance with respect to the body. Surprisingly, at this 

point RTs are significantly faster for incongruent stimuli (there is a similar trend 

also in the looming sounds). This result suggest that, at least for receding stimuli, 

the auditory stimulus on the same side of the tactile stimulus interfere rather than 

facilitate detection of the tactile stimulus.  

A similar pattern of interference is the well-known “Crossmodal 

congruency effect” (CCE) paradigm. This behavioral task has been used to study 

the multisensory representation of space. For example, in one of its applications 

Spence et al. (2000) made a speeded up/down discrimination task for a vibrotactile 

stimulus, i.e. tactile targets as well as visual distracters were presented to one of 

two different locations on the hand in a congruent way (same elevation, up/down) 
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or incongruent (different elevation) while ignoring the visual distractor (that could 

appear on the same or opposite side). Participants responded significantly slower 

when the elevation of the vibrotactile distractor was incongruent with that of the 

visual target than when they were presented from the same (i.e., congruent) 

elevation. This interference effect was larger when the visual distractor appeared on 

the same side of space as the vibrotactile target than when they appeared on 

different sides. 

Our results show a modulation of RTs for different spatial arrangements, 

although this occurred only in the case of receding sounds. In this case, it showed 

shorter RTs for spatially incongruent, rather than for spatially congruent, AT 

stimuli. On the contrary, for looming sounds no spatial modulation was observed.   

e expected that looming sounds, being more salient, would exhbit enhanced 

spatial sensitivity so as to exploit this treat to investigate its neural correlates in the 

MEG, but this did not occur.  

In this study, the tactile stimulus was presented always on the right, while 

the auditory stimuli were virtually localized. A major confounding point was that, 

as shown in Table 3, virtual localizations of sounds were imprecisely perceived by 

participants. Furthermore, it has been shown that multisensory enhancement 

depends on task requirements, e.g. in a visuotactile experiment Girard and 

colleagues (2010) observed that multisensory integration is sensitive to spatial 

arrangement of the stimuli only when spatial information is task-relevant, while 

when spatial information is task-irrelevant, multisensory integration of spatially 

aligned and misaligned stimuli is equivalent. Provided that only auditory stimuli 

were differently located in space while the tactile stimulus, i.e. the task-relevant 

stimulus, was always presented to the right, it might be that auditory spatial 

information is used in a limited way in executing the task.  

Although several results show the prominence of the space of the head for 

AT interactions, inside this space they are more pronounced in the space behind 
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(e.g., Farné and Làdavas, 2002, Kitagawa et al. 2005). Although it must be noticed 

that our stimuli were presented in an area (close to the lips) where vision does not 

have access, different portions of the peri-head space could be tested by presenting 

auditory stimuli from behind the head. 
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