UNIVERSITY OF TRENTO
DEPARTMENT OF MATHEMATICS

PHD THESIS

Binary quadratic forms, elliptic curves
and Schootf’s algorithm

Author: Supervisors:
Federico PINTORE Prof. Michele ELIA,
XXVII Cicle Prof. Massimiliano SALA

27 March 2015



Creative Commons License Attribution 2.5 Generic (CC BY 2.5z)






Introduction

The hellenistic mathematician Diophantus of Alexandria (3rd century A.D.), in his major
work “The Arithmetica” considered a number of indeterminate equations, providing numer-
ical solutions to them. In the light of his seminal contribution, the equations with integral
coefficients in two or more unknowns, for which only integral solutions are looked for, are
said Diophantine equations. In the subsequent centuries, the study of Diophantine equa-
tions (“Diophantine geometry”) remained an important area of mathematical researches (a
significant example is the so called Fermat’s Last Theorem). In 1900 Hilbert proposed the
problem of finding an algorithm that decides the solvability of any given Diophantine equa-
tion as the tenth of his celebrated problems. Seventy years later, Juri V. Matijasevic proved
that such an algorithm cannot exist. It is therefore necessary to develop algorithms that
solve subclasses of Diophantine equations. The easiest Diophantine equations are linear
and they can be solved using the Euclidean algorithm. Furthermore, univariate quadratic
Diophantine equations can be solved using algorithms for extracting square roots. Thus,
the first hardly solvable Diophantine equation is a bivariate quadratic, i.e. an equation of
the form

ar’> +bxy +cy’ =m  a,b,c, meZ, (1)

that Diophantus considedered in many of his problems |29, [5] and that is still source of
interesting open questions [26], 57, [11].

The left expression in (|1 is an integral binary quadratic form Q(x,y), also denoted with the
triplet (a, b, ¢), that in the following will be assumed to be primitive (with ged(a,b,c) = 1).
If equation has a solution in relatively prime integers x and y, then we say that the
quadratic form Q(x,y) represents m. The problem of deciding whether equation is
solvable depends on the discriminant of Q(x,y), which is the integer A defined as b* — 4ac,
and was addressed by Lagrange [20, Lemma 2.6|. Even though Fermat, Euler and Lagrange
worked on binary quadratic forms, the first who considerably expanded the theory of these
objects was Gauss in [26]. Thanks to his theory, in which classes and composition of forms
are studied in a systematic way, the attention was moved from specific quadratic forms to
sets of quadratic forms and it became possible to restrict only to those cases where the
constant term m in the equation is a prime integer p [I7, page 215].

The set of the quadratic forms with the same discriminant A is partitioned into a finite
set, C'(A), of ha proper equivalence classes (ha € N) [44] Theorem 3.7, p.116] by the
equivalence notion: two forms Qi(x,y) and Q2(x,y) are equivalent if integers r, s, t, and
u exist such that Q1(x,y) = Qa2(rx + sy,tz + uy) and ru — st = £1, and are properly
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equivalent if ru — st = 1 |26 §157]. All forms in a proper equivalence class represent the
same integers and they are identified by some reduced form (A, B,C). A reduced form is
a quadratic form (A, B, C') whose coefficients satisfy the conditions

|IBl<A<C and B>0 when A=|B| or A=C it A<0

0<B<VA and VA-B<2|A<VA+B it A>0 @)
If A <0, each proper equivalence class contains a single reduced form [45, Theorem 3.1]; if
A > 0, each proper equivalence class contains the same even number P, of reduced forms
[26], [57, p.111]. These capital results were proved by Gauss [20, art. 171 and art. 183] by
means of two constructive demonstrations with the same structure: successive transforma-
tions of a starting form f(z,y) create a sequence of forms, properly equivalent to f(zx,y),
that ends with a reduced form. From these proofs one can deduce an algorithm that takes
a quadratic form f(x,y) as input and returns a reduced form h(x,y) properly equivalent
to f(x,y), together with four integers r, s, ¢, u such that f(rx + sy,tx +uy) = h(z,y).
This algorithm is called Gauss reduction algorithm.

When p is represented by some quadratic form of discriminant A, it is possible [20, Lemma
2.6, p.25] to produce an integral binary quadratic form g(x,y) = pz?® + Vay + dy* of
discriminant A that represents p. To accomplish this task is necessary to find a square
root of A modulo p. According to [I7, Theorem 5, p. 200|, g(x,y) and g(z, —y) are the
representatives of the only proper equivalence classes contained in C'(A) made up by forms
that represent p. When A < 0, starting from Q(x,y) and g(x,y), one can solve equation
(1) applying Gauss reduction algorithm to Q(x,y), g(x,y) and g(z, —y). Equation has
a solution if and only if the reduced form properly equivalent to Q(x,y) is equal to one of
the reduced forms properly equivalent to g(z,y) and g(x, —y). When a solution exists, it
could be computed using the integers that describe the transformation that sends Q(z,y)
into g(z,y) or into g(z, —y). When A > 0, the same approach presents further difficulties.
In Chapter |1} we will provide an algorithm, written in the language of the modern com-
puter algebra software MAGMA, that, through Gauss reduction algorithm, solves equation
in the both cases A > 0 and A < 0. In particular, when the discriminant is positive,
we use [10, Corollary 6.8.11] to enumerate all the reduced forms contained in the proper
equivalence classes of g(z,y) and g(x, —y).

Now we assume that A is a fundamental discriminant, i.e.

_Jd A=1 (mod4)
~l4d A=0 (mod4)

with d squarefree integer. In this case, there is a natural correspondence between the
quadratic forms with discriminant A and the ideals of the quadratic field K = Q(v/d).

An element of K is an algebraic integer if it is a root of some univariate monic polynomial
with integral coefficients [I1, pag. 89]. The set Ok of all the algebraic integers of K is a
ring |11, Proposition 6.6] with K as field of fractions of Ox [45] Lemma 1.4]. The ring Ok
is called the ring of integers of K. None of the elements of K\ Ok is integral over Ok, i.e.
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is a root of some univariate monic polynomial of Ok[z|. Furthermore, the ring of integers
of K is Noetherian and such that each of its prime ideals is maximal. These properties
make Ok a Dedekind domain [20, Theorem 5.5]. More generally, the algebraic integers of
every finite extensions of Q are a Dedekind domain.

Since every ideal of Ok is a finitely generated Og-module, it is natural to consider all
the finitely generated Og-module contained in K. These are the fractional ideals of Ok
and they form a free abelian multiplicative group I(Ox) [39, Chapter 1]. Among all, we
consider the subgroup of all those fractional ideals generated by a single element of positive
norm [9, pag. 400]. The corresponding quotient group is denoted by C*(Ok) and called
the narrow ideal class group of Ok.

The connection between C'(A) and K(v/d) is due to the existence of an isomporhism [I7,
Chapter 13| between C'(A), endowed with the group structure by the composition of forms
[1T, Chapter 4], and C*(Ok).

Thanks to the Class Field Theory, also the elliptic curves play a role in the relationship
between quadratic forms and quadratic fields. The Hilbert class field I of the quadratic
field K = Q(v/d) is a finite unramified field extension of K such that every non-principal
ideal of K becomes principal in L. [46] Theorem 4.18, p.189|]. The field L is specified by a
root a of an irreducible polynomial hg(z) € K[z]. Tt is called the Hilbert class polynomial
of L and has degree ha. In particular, when d < 0, hx(x) always has integral coefficients.
Given an elliptic curve E over L with complex multiplication Ok [15, Chapter 7|, and a
prime ideal B of Oy, containing the constant term of equation (1) (that we assume to be
a prime integer p), we can then consider E modulo B obtaining an elliptic curve E over
the finite field F,, with ¢ = p™ [1, Chapter 4]. When d is negative, by Deuring’s results
[47], there exists 7 € Ox such that |E(F,)| = ¢+ 1— (7 +7) and ¢ = 77, where T is the
conjugate of 7 in K [I1, pag. 92|. This gives a representation of ¢ by the principal form
Qo(z,y) of discriminant A [42], Cor. 2.4] which is defined as:

(1,0,—A/4) A=0 (mod4)
Qo(z,y) = { (1,1,—(A—=1)/4) A=1 (mod4) )

In Chapter 3, we will prove a theorem that allows us to find a representantion of p by those
reduced forms of discriminant A that represent p. So it supplies a method, alternative to
that based on the Gauss reduction algorithm, to find in polynomial time complexity a rep-
resentation of p. The proof of the theorem is done using the above mentioned connections
between quadratic forms, quadratic fields and elliptic curves. When hx < 3, in the light
of |2, Theorem 3.2|, we use the factorization of hgk(z) modulo p to determine which of the
ha reduced form Qo(z,y), Q1(x,y), ..., Qns—1(x,y) of discriminant A (a representative to
each proper equivalence class of C'(A)) represent p. So, for ha = 1,2,3 we will provide
three algorithms (written in MAGMA language) to determine the Q;(z,y)’s that represent
p and the corresponding representation.

The polynomial complexity of the proposed algorithms is principally due to the Schoof’s
algorithm [50] to count the rational points of elliptic curves over finite fields. With an
effective use of the Chinese remainder theorem and the division polynomials [58, Section
3.2|, it computes the number of the rational points of an elliptic curve over a finite field F,
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taking O(log” ¢) elementary operations. In Chapter We will discuss the possible existence
of a family of elliptic curves not taken into account by the Schoof’s original paper.
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Chapter 1

Integral binary quadratic forms

Our work arises from the problem of solving a quadratic Diophantine equation:
az® +bry + cy® =m (1.1)

where a, b, ¢, m belongs to Z. Solve a Diophantine equation means to find the integer values
of the unknowns for which the equation is satisfied. We are interested only in solutions
(20, Yo) of equation such that ged(xg,yo) = 1.

The left term of the equation is a binary quadratic form f(x,y) with integral coefficients.
We will consider only that cases where f(z,y) is primitive, i.e. such that gcd(a,b,c) = 1.
The research of the solutions of equation is based on the theory of integral binary
quadratic forms that owed its development to Lagrange, Gauss, Fermat and other great
mathematicians. In particular, Gauss’ contribution about composition of forms and re-
duced forms, permits to consider only those cases where m is a prime integer p and to
deduce an algorithm to this kind of equations.

In the following sections we will recall some classical facts about binary quadratic forms
in order to exhibit the mentioned algorithm. Even if quite all what we are going to see
was yet contained in “Disquisitiones Arithmeticae” of Gauss (|26]), we will refer to several
books of number theory, like [T1], [20], [45], [38], [10].

We start introducing the notion of integral binary quadratic form and some related ter-
minology, following part four of the Edmund Landau’s book “Elementary number theory”
[38].

1.1 An introduction to integral binary quadratic forms

An integral binary quadratic form f(z,y) is an homogeneous polynomial of degree 2 of the
ring Zlzx, y]:

f(z,y) = az® + bay + cy? a,b,c € Z (1.2)
For simplicity, from now on, integral binary quadratic form will be only quadratic form or
form, and f(x,y) = az* + bry + cy* will be denoted by (a,b,c). As we have said, in the
following only primitive quadratic forms will be considered if not specified otherwise. So

1



2 CHAPTER 1. BINARY QUADRATIC FORMS

the term primitive will be omitted.

A quadratic form f(x,y) = (a,b,c) represents an integer m if there exist two integers
%0, Yo such that f(zo,y0) = m. If x5 and yo are relatively prime we said that f(z,y) rep-
resents m properly by zy and y,. We also said that m is (properly) represented by

f(z,y) by the pair (zo, o).

Definition 1.1. Let f(x,y) = (a,b,c) be a quadratic form. Its discriminant A is the

integer defined as:
A =b* — dac

Here are enumerated some elementary observations about the discriminant:
1. A and b? are congruent modulo 4;

2. A is congruent to 0 modulo 4 if b is even while it is congruent to 1 modulo 4 if b is
odd. Then A and b have the same parity;

3. the following relations hold:
4af(x,y) = (2ax + by)* + (dac — b*)y* = (2ax + by)* — Ay? (1.3)
def(z,y) = (2cy + bx)? + (dac — b*)z? = (2cy + bx)? — Az? (1.4)

For every integer A = 0,1 (mod 4), there exists a quadratic form Qo(z,y) with A as
discriminant. We have:

Qo(x,y) = (1, 0, —%) if A=0 (mod 4) (1.5)
and A_1
Qo(z,y) = (1, 1, _T_) if A=1 (mod 4) (1.6)

The form Qy(z,y) is called the principal form of discriminant A.

1.2 Reducible, definite and indefinite quadratic forms

Given a quadratic form f(x,y) = (a,b,c), we can ask about the types of integers that it
represents:

1. does f(x,y) represent 0 by a couple of integer not both zero?
2. does f(x,y) represent integers of opposite sign?

To answer to these questions we follow [38]. The first query needs two preliminary lemmas.
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Lemma 1.2. Given a quadratic form f(x,y) = (a,b,c) there exist four rational numbers
a, 3,7,0 such that (ax+ By)(yx+ By) = f(x,y) if and only if f(x,y) is reducible in Z|x, y]

Proof. One of the two implications is obvious. For the second one, we fix the following

notation: , g . 5
«Q Y

with o', a”, 3", 8", ,~", 8, 0" integers such that
ged(d/, o) = ged(B', B") = ged(y', ") = ged(d',8") =1
Let 1m be the least common multiple of o, 3”,~",§". Then, setting m = m?, we have
mf(z,y) = m(oax + Py)m(yz + Py) = (rz + sy)(tz + uy)

with 7, s,t,u € Z.
If ged(m,r,s) > 1, then

——nf(09) = (et Ly ) (1 )
gcd(m,r,s)m i gcd(m,r,s)x gcd(m,r,s)y L

with

cd|m = m r' = ! s = i =1
g ~ gcd(m,r,s)’  ged(m,r,s)’  ged(m,r,s))
So we can assume ged(m,r,s) = 1 and, for analogy, ged(m, t,u) = 1.
We want to show that m = 1. If m is not 1, it is divisible by a prime integer p and from

mf(x,y) = maz® + mbry + mey® = (ro + sy)(tr + uy) = rtz® + (ru + st)xy + suy?

we can deduce that p divides r or ¢ (because it divides ma = rt). Suppose p | r. Since
(ru+ st) = mb, p divides s or t. If p | s, then ged(m,r,s) > p; if p does not divide s but
p | t then ged(m,t,u) > p. This is a contradiction that we find also if we suppose that
p|ma implies p | t. O

Lemma 1.3. A quadratic form f(z,y) = (a,b,c) is reducible in Z[x,y| if and only if its
discriminant A is a perfect square.

Proof. If f(xz,y) = (rz + sy)(tx + uy) = rtx® + (ru+ st)zy + suy® with r, s, t,u € Z, then
we have
A = (ru+ st)* — drtsu = (ru — st)?

On the other hand, if A = d?, from [1.3]it follows
daf(z,y) = (2ax + by)* — d*y* = (2ax + (b + d)y)(2ax + (b — d)y)

If a # 0 then f(z,y) = - (2az + (b+d)y)(2az + (b—d)y) and f(z,y) is reducible in Z[z, y]
by Lemma If @ = 0 we simply have f(z,y) = by + cy®> = (bx + cy)y. O
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If the form f(z,y) = (a,b, c) has discriminant A which is a perfect square we said that
f(z,y) is reducible.

Proposition 1.4. A quadratic form f(x,y) = (a,b, c) represents 0 by two integers not both
zero if and only if its determinant is a perfect square.

Proof. If f(x,y) represents 0 by two integers g, yo not both zero, then f(xg,v0) = az? +
broyo + cyg = 0 and

2ax0+by0>2 _A

da f(xzo,y0) = 0 = (2azo + byo)* — Ay = ( ”

Observe that, if yo = 0 then azj = 0 and @ = 0. In this case A = b%
Conversely, if A = d? then f(z,y) = (rz + sy)(tx + uy) with r,s,t,u € Z by Lemma
hence f(—s,r) =0, with r, s not both zero. ]

Suppose that the form f(x,y) = (a,b,c) of the Diophantine equation is reducible
in Zlx,yl, i.e. f(z,y) = (rz+ sy)(tx + uy) for some r, s,t,u € Z. The considered equation
has a solution in two relative prime integers x,y if and only if

T+ Sy = my
tr 4+ uy = my

for some factors my, my of m such that m = m;ms. Since the number of m’s factors is
finite, solve (rx+ sy)(tz +uy) = m means to determine the solution sets of a finite number
of systems of linear equations. For what we have just seen, in the following we will consider
only non-reduced quadratic forms.

The second of the questions about the integers represented by a fixed quadratic form
f(z,y) is answered by the following result:

Proposition 1.5. Let f(x,y) = (a,b,c) be a quadratic form of discriminant A.

If A >0, f(x,y) represents both positive and negative integers. If A is negative, then
f(z,y) represents only non-negative integers when a > 0 and only non-positive integers
when a < 0.

Proof. Tf we suppose that A is positive then we have:

f(1,0)=a
f(b,—2a) = ab® — 2ab® + 4a*c = a(dac — b*) = —al\

so f(z,y) represents integer of opposite sign (as long as a is non-zero, i.e. A is not a perfect
square). If A < 0, from 4af(z,y) = (2azx + by)? — Ay? it follows that 4af(z,y) is non
negative for every couple of integers x, y. ]
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The quadratic form f(x,y) = (a,b,c) of discriminant A, with A not a perfect square, is
said indefinite if A > 0, positive definite if A < 0 and a > 0, negative definite if
A <0anda<0.

[t is easy to observe that — f(x,y) is positive definite if f(z,y) is negative definite and
vice versa. In the light of this remark, if the quadratic form of equation has negative
discriminant, we can assume that f(z,y) is positive definite. Hence, from now on, we will
consider only indefinite and positive definite forms.

1.3 Equivalence of forms

In this section we introduce transformations between quadratic forms that do not change
the discriminant and the represented integers (see [11, pag. 5]). These transformations
will enable us to simplify the study of equation [I.1}

Two quadratic forms f(z,y) = (a1,b1,c1) and g(x,y) = (ag, bs, c2) are said equivalent,
and we will write f(z,y) ~ g(z,y), if there exist four integers r, s, t,u such that

flra + sy, te 4+ uy) = g(x,y) (1.7)

and
ru — st = =+1 (1.8)

In particular, when ru — st = 1 the forms f(z,y) and g(x,y) are said properly equiv-
alent, and we will write f(z,y) ~, g(x,y), while they are said improperly equivalent,
with the notation f(z,y) ~imp 9(x,y), if ru — st = —1.

When f(z,y) and f(rx + sy,tx + uy) = g(x,y) are equivalent, we say that f(x,y) goes
in g(z,y) through the transformation

r=1rr—+ sy
Yy =txr+uy
T S
t u

We can observe that rs — tu is the determinant of the matrix that describes the transfor-
mation. Furthermore we have:

that is described by the matrix

flra + sy, tr +uy) = a1 (ro + sy) + by(rz + sy)(tz + uy)zy + 1 (tr + uy)? =

= (a17? + byt + e1t?)2® + (2a17s + by (st 4 ru) 4 2e1tu)zy + (a18” + bysu+ cyu’)y? =
= apz’® + byy + 0292 =g(z,y)
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and hence
as = a;r® + byrt + c1t* = f(r,t)

by = 2a17s + by (st + ru) + 2¢1tu
Co = 18 + bisu+ cyu® = f(s,u)
As we expect, the defined binary relation in the set of all integral binary quadratic forms

is an equivalence relation.

Theorem 1.6. The binary relation “being equivalent to” (“being properly equivalent to”) is
an equivalent relation in the set of all quadratic forms.

Proof. Given a quadratic form f(z,y), it is clear that it is (properly) equivalent with itself.
In fact f(z,y) goes in itself by the transformation described by the 2 x 2 identity matrix.
For the transitivity, suppose that f(x,y) = (a1,b1,¢1) goes in g(x,y) = (ag, by, c3) by the
transformation

T =7+ Sy
Y =t1x +uy

and that g(z,y) goes in h(z,y) = (as,bs,c3) substituting x with rox + soy and y with
toxr + ugy. So:
g(x,y) = a1(riz + s1y)* + bi(riz + s1y)(tix + wy) + c1(tiz + wyy)?
Wz, y) = a1 (ri(rax + s2y) + s1(tax + ugy))*+
+ b1 (r1 (e + S2y) + s1(tox + ugy)) (t1(rox + s2y) + wi(tex + ugy))+
4 e1(ty (rom + 59y) + uy (tax + ugy))? = a1 ((rire + sita)x + (1159 + S1Us)y)+
+ b1 ((r1rg + sit2)x + (r1se + s1u2)y) ((t1re + urte)x + (t152 + uuz)y)+
+ c1((tira + urte)w + (t1s2 + urug)y)®
(1.9)

Therefore f(z,y) is equivalent to h(z,y) since f(rsz + s3y, tsx + uzy) = h(z,y) with

s S3\ _ [T S1 T2 82
ts uz)  \t1 wr) \t2 up
The determinant of the matrix on the left is equal to the product of the determinants of

the matrix on the right and so it is equal to £1 (is equal to 1 if f(x,y) ~, h(z,y) and

9(@,y) ~p h(z,y) or f(z,y) ~imp g(z,y) and g(z,y) ~imp h(z,y)).
It remains to prove the simmetry of the binary relations. Assume that f(x,y) = (a1,b1,¢1)
goes on g(x,y) = (ag, by, cy) by the transformation

T =7rr-+ sy
Yy =1tr+ uy

with ru — st = £1. Since
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Using from g(x,y) = f(rz + sy, tx + uy) it follows that g(z,y) goes in f(z,y) by the
transformation described by the matrix

(ru— st) (_“t ‘:)

which has determinant ru — st since (ru — st)? = 1. O

It is clear that the binary relation “be proper equivalent to" is contained in the binary
relation “be equivalent to". Proving the transitivity of these binary relations, we have seen
that, if two forms f(x,y) and h(z,y) are improperly equivalent to a form g(x,y), then
f(,y) and h(x,y) are properly equivalent.

1.4 Invariants of equivalent forms

We now want to see which properties have in common two equivalent quadratic forms
f(@,y) = (a1,b1,¢1), g(x,y) = f(rz + sy, tx + uy) = (a2, by, c2).

Equivalent quadratic forms have the same discriminant

If Ay, Ay are the discriminants of f(x,y) and g(z,y) respectively, then:
Ay = b3 —4dascy = (2a175+ by (st +ru) +2citu)® —4(ayr? + byrt +ct?) (a15* + bisu+cu?) =
= (b2 — dajc))(ru — st)? = A

Equivalent quadratic forms represent the same integers

If f(x,y) represents an integer m , there exist xg, yo € Z such that f(zo,yo) = m. There-
fore, we have g(£(uxy — syo), £(—txo + ryo)) = f(x0,y0) = m for the simmetry of the
equivalence relation. The sign of uxy — syo and —tzg + ryo is + when f(z,y) and g(z,y)
are properly equivalent, is — when f(z,y) and g(x,y) are improperly equivalent.

Equivalent quadratic forms properly represent the same integers

Let m be an integer such that f(xg,y0) = m, with ged(zo,y0) = 1. Then g(F(uxy —
sYo), £(—txo + ryo)) = f(xo,y0) = m. Suppose that the greatest common divisor ¢ of
uxrg — syo and —txg + ryg is greater than 1. Since

+(r(uxo — syo) + s(—txg + ryo)) = o

+(t(uzg — syo) + u(—tzo + ryo)) = Yo

¢ divides both xg and yo. This is a contradiction.
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If g(x,y) is primitive, f(x,y) is primitive too
Suppose gcd(aq, by, c1) = ¢ > 1. Then, from

A9 = a17“2 + bﬂ"t + C1t2
by = 2a17s + by (st + ru) + 2c1tu

¢y = a15% + bysu + cyu?

it follows that ¢ divides as, bo, c5. This is a contradiction.

If f(x,y) is positive definite (respectively negative definite, indefinite) then g(x,y) is posi-
tive definite (negative definite, idenfinite)

If f(x,y) is indefinite, g(z,y) is indefinite too since these two forms have the same dis-
criminant. If f(z,y) is positive definite, then as = f(r,t) is positive and then also g(z,y)
is positive definite.

1.5 Some results about the representation of integers

The aim of this section is to discuss some aspects of the representation of integers by
quadratic forms. To begin with, for a quadratic form f(z,y) of discriminant A one can
ask if there exists a necessary and sufficient condition so that an integer m is represented
by f(z,y). The answer is contained in a result due to Lagrange (see [20, Lemma 2.3]).

Proposition 1.7. A quadratic form f(z,y) = (a,b,c) properly represents an integer m if
and only if it is properly equivalent to a form g(x,y) = (m,b,c), where V', are suitable

integers.

Proof. Suppose that f(x,y) represents m properly. Then there exist two coprime integers,
r and s, such that f(r,s) = m. For the Bézout identity, we can find ¢,u € Z such that

ru—st=1
Hence:
flro +ty, sz +uy) = f(r,s)x® + (2ars + b(st + ru) + 2ctu)zy + f(t,u)y* = (m, V', c)

On the other hand, if f(z,y) is properly equivalent to (m, b, ), since (m, b, ) represents
properly m, the same holds for f(z,y). ]

The last proposition could be used to solve a weaker problem (|20, Lemma 2.5]): decide
if an integer m could be properly represented by some quadratic forms having a fixed
discriminant A.
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Proposition 1.8. Let A be an integer such that A = 0,1 (mod 4). If m € Z is odd and
gcd(A,m) =1 then m is properly represented by a quadratic form of discriminant A if and
only if A is a square modulo m.

Proof. Suppose that f(x,y) = (a,b, ¢) is a quadratic form of discriminant A which properly
represents m. By Proposition [I.7, we can assume a = m. Hence:

A=b—4mec = A=0b" (modm)

Vice versa, suppose that A is a quadratic residue modulo m. Then there exists b € Z
such that A = b* (mod m). We can assume that A and b have the same parity. In fact,
if it is not the case, m + b would have the same parity of A and b+ m = b (mod m).
This implies that A — b? is divisible by 4 and hence 4m|A — b?, since m is odd. Then
there exists ¢ € Z such that A — b* = 4me. The quadratic form f(z,y) = (m,b,c) has
discriminant b —4mc = A and it represents properly m. Furthermore, it is primitive since
gcd(m,b) =1 (if ged(m, b) is greater than 1 it divides A too, contradicting the hypothesis
ged(m, A) =1). O

Corollary 1.9. Let n be an integer and p € Z an odd prime that doesn’t divide n. Then
p 1is properly represented by a quadratic form of discriminant 4n if and only if (n/p) = 1.

Proof. Using Proposition [L.§] since ged(4n, p) = 1, we have that p is properly represented
by a primitive quadratic form of discriminant 4n if and only if (4n/p) = 1. But, for the
properties of the Legendre Symbol, we have:

(4n/p) = (n/p)
O

If A € Zis a discriminant, i.e A = 0,1 (mod 4), it is a quadratic residue modulo an
odd integer m, coprime with A, if and only if it is a quadratic residue modulo any prime
factor of m. For the sake of completeness, we report the proof of this result, obtained by
adapting Proposition 5.1.1 of [32].

Proposition 1.10. Let A € Z be such that A = 0,1 (mod 4). If m is an odd integer
coprime with A, then A is a quadratic residue modulo m = p{*---pS (with py,...,ps
distinct odd primes and ey, ...,es € N) if and only if A is a quadratic residue modulo
modulo p;, for everyi € {1,...,s}.

Proof. If = is an integer such that 22 = A (mod m), clearly 22 = A (mod p§’) for every
i € {1,...,s}. In order to prove the reverse implication, we claim that the congruence
y> = A (mod pf), with i € {1,...,s}, is solvable for every non-zero natural number ¢
if > = A (mod p;) is solvable. We proceed by induction on f. Suppose that y, is a
solution of the congruence 4> = A (mod p!) with ¢ natural number grater than 1. Setting
Y1 = yo + bpf, with b € Z, we have

yr =y + U’pi* + 2byop; = yg + 2byop;  (mod pitt)
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since 2¢ > ¢ 4+ 1. If we choose b such that

A —y2

2byo = (mod p;)

7

for this value of b we would have

— 8
pf

7

=rp T€EZ = 2byopi — (A —y2) =rpit!

2by0 —

and then
Yi = s + 2byop; = 45 + (A —y5) = A (mod p;*)

Such a b exists because A #Z 0 (mod p;) and A = y3 (mod p;), so 2yp Z 0 (mod p;). Now
suppose that zi,...,2z, € Z are such that (z;)? = A (mod p;) for every 7 in {1,...,s}.
Hence we have (z;)> = A (mod p!') for some z; € Z. Using the Chinese remainder
theorem, we can find = € Z such that 2 = z; (mod p?) for every i € {1,...,s}. Soz?> = A
(mod p!*) and hence 2> = A (mod m). In fact, 22 — A is divisible by p¢', i.e. 22— A = hp
for some h € 7Z, is divisible by p3?, and p5?|h since p; # py and so on. ]

In the light of Proposition last result says that an odd integer m is represented by
some quadratic form of discriminant A, with ged(A,m) = 1, if and only if all the prime
factors of m are represented by some form of discriminant A. On the other hand, if p is
an odd prime integer, coprime with A and represented by some quadratic form f(z,y) of
discriminant A, the following Proposition (see [17, pag. 200]) says that the only quadratic
forms of discriminant A that represent p are those properly or improperly equivalent to

f(x,y).

Proposition 1.11. Let f(x,y), g(x,y) be two quadratic forms with the same discriminant
A. If the odd prime p is represented by both f(x,y) and g(x,y) we have f(x,y) ~, g(z,y)

or f(x,y) ~imp 9(T,Y).

Proof. By Proposition and equation we can assume f(z,y) = (p,bi,c1) and
9(z,y) = (p, b2, ¢2). Then, from

A = b2 — dpc; = b3 — 4dpc,

it follows b = b3 (mod p). So by = by (mod p) or by = —by (mod p). Since b; and by have
the same parity of A, we have:
by = b1 + 20p (1.10)

with ¢ € Z, because p is odd. If by = by + 2p, the form f(z+ly,y) = (p,2pl+by, f(¢,1)) is
equal to g(z,y) and properly equivalent to f(z,y); if by = by —20p, the form f(z+ly, —y) =
(p, —=by + 2lp, f(—£,1)) is equal to g(z,y) and improperly equivalent to f(x,y). ]
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1.6 Composition of forms

In this section we introduce a multiplication between forms of a fixed discriminant: the
composition of forms. This binary operation was discovered by Gauss and published in
his “Disquisitiones Arithmeticae" (see [26] art. 234]). The starting point is the following
definition (|20, pag. 47]):

Definition 1.12. Let f(x,y) and g(x,y) be two quadratic forms of discriminant A. A
third binary quadratic form F(x,y) is a composition of f(x,y) and g(z,y) if:

F(Bl(xvy’wa Z)v BZ(wvvav Z)) = f(m,y)g(w, Z)

where
Bi(z,y,w, z) = dizw + e;xz + Liyw + nyyz di,e; lin; €7

with © € {1,2}. Furthermore, if

f(17 0) = dieg — daey
9(1» 0) = dily — dal;

we will say that F(x,y) is a direct composition of f(x,y) and g(x,y).

If f(x,y) represents an integer my, i.e. f(zo,yo) = my for some xg,yo € Z, and g(x,y)
represents an integer ma, i.e. g(wp,z9) = meg for some wy,zy € Z, then a composition
F(z,y) of f(z,y) and g(x,y) represents mymay:

F(B1(z0, yo, wo, 20), B2(20, Yo, Wo, 20)) = f(x0,Y0)g(wo, 20) = mimy

The main result of Gauss’s theory of composition of forms, is that the direct composition
makes C'(A), with A € Z such that it is not a perfect square and A = 0,1 (mod 4),
an abelian group. The existence of the group structure is easier to prove using the rule
to compose forms, based on the united forms, introduced by Dirichlet. If not specified
otherwise, a reference for the rest of the section is [20] § 3.

Definition 1.13. Two quadratic forms f(z,y) = (a1,b1,¢1) and g(z,y) = (ag, b, co), with
the same discriminant A, are said united if:

by +b
ged (@17027 1; 2) =1

We observe that (by + by)/2 is an integer since by and by have the same parity of A.

In order to use the united forms to specify a method to compose forms we need two
lemmas.
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Lemma 1.14. Let ay,bq,...,a,,b.,m be integers such that gcd(ay,...,a,,m) = 1. Then
the system of linear congruences

ar = by (mod m)

a,x = b, (mod m)

has a unique solution modulo m if
ab; = a;b;  (mod m)
for everyi,j € {1,...,r}.
Proof. For the Bézout identity, there exist r + 1 integers ¢4, ..., ¢,, ¢ such that
liay + -+ 4lra, +fm =1
For a jin {1,...,r} we have:
——mbj = —b; + lia1b; + - - - + Lra,b;
If a;b; = a;b; (mod m) for every i,j € {1,...,r}, then
—b; + lharb; + - - + lrab; = —bj + (b1by + - - + b )a; =0 (mod m)

Setting x = {1by + - - - + £,.b, we have

a;x =b; (mod m)

It remains to prove the uniqueness, modulo m, of the solution. Let ' be a second solution
of the system. Hence:

ajx = a;z’  (mod m) Vie{l,...,r}

The set £ composed by the a;’s that are non-zero modulo m is not empty. Hence
m' = ged(z — 2',m) is greater than 1 and m = m'm”. If a; € L, then m”|a; and
gcd(ay, ..., a.,,m) > m”. Hence m" = 1 and ged(z — 2',m) = m. That means x = 2

(mod m). O

Lemma 1.15. Let f(z,y) = (a1,b1,¢1) and g(x,y) = (az, by, c2) be two united forms of
discriminant A. Then there exist two integers B, C, with B unique modulo 2aias, such
that:

B = b1 (IIlOd 2@1)

B = by (mod 2as)
B2=A (mod 4ajaz)

and f(x,y), g(x,y) properly equivalent to (a1, B, asC), (az, B,a;C) respectively.
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Proof. 1f an integer B satisfies the first two congruences of the system, then B —b; = 2a,h

and B — by = 2ask for some h, k € Z. Hence (B — by)(B — by) = 4ajashk and
B? — (b1 +b3)B +biby = (B —b1)(B —by) =0 (mod 4a,as)
So we have:
B*=A (mod 4aja) & (b +bo)B —biby = A (mod 4a,a,) &

A
& b ; bQB = +2blb2 (mod 2a;as)

with by + by and A + b1by even since by and by have the same parity of A. Hence, the

starting system is equivalent to:

B=10b (mod 2a,)

B = bg (IIlOd 2&2)
b1 b2 — A b1b2
J2r B = +2

(mod 2a;as)
Furthermore we can observe that:

B=b; (mod 2a) < asB = asb;  (mod 2a;as)

Applying the same to the second congruence, we obtain a new equivalent system:

as B = ashy (mod 2a;as)

a1 B = aiby (mod 2a;as)
b1+bo — A+bibe
, B =75

(mod 2aas)

Since we are assuming that f(z,y) and g(x,y) are united, then:

by +b
ng (a17a2a %7 2&1@2) — ]-

and we can apply Lemma [I.14] In fact we can observe that:
i GQ(CL1b2) = al(a2bl);

e since ayA = ayb? (mod 2a;as), we have

a2(b1b2 -+ A)/2 = (agb% + agblbg)/Q = (b1 -+ bg)a2b1/2 (mod 2@1(12)

e since a;A = a;b3 (mod 2a,as), we have

a1<blbg + A)/2 = (albg + a1b152>/2 = (bl + bg)(llbg/2 (IHOd 2(11@2)
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So the system has a solution B unique modulo 2ajas. Since B = by + 2a;s for some s € Z,
we have that f(x + sy,y) = (a1, B, a2C) where:

CB2-A

C = €7

4@1 (45}

In the same way, from B = by +2ass’ for some s’ € Z we obtain g(z+ s'y,y) = (az, B, a,C).
[

The Dirichlet composition f(z,y) o g(x,y) of two united forms f(z,y) = (a1, b1, 1),
g(x,y) = (ag, by, ¢3) of discriminant A, is defined as the quadratic form

B?— A )

F(a,y) = f(z,y) 0 gl,y) = (B faa O

where B and C' are the integers of Lemma [1.15
The quadratic form F(x,y) = f(x,y) o g(x,y) has the following properties:

1. F(x,y) has the same discriminant of f(x,y) and g(x,y). In fact B? — 4a1a2(f§1_$)
is equal to A;

2. If A is negative and f(x,y), g(z,y) are both positive definite, then F(x,y) is positive
definite. We have ajas > 0 since, for hypothesis, both a; and a, are positive;

3. F(x,y) is primitive if f(z,y) and g(x,y) are primitive. Suppose that the prime
integer p > 1 divides ajas, B and C. Then we can assume that it divides a; and
so (a1, B,aeC') is not primitive. This is a contradiction since f(z,y) is properly
equivalent to (a1, B, ayC) by Lemma [L.15}

4. If B’ is another solution of the system of Lemma then the quadratic form
F'(x,y) = (a1a9, B', (A—B'?)/4ayas) is properly equivalent to F(z,y). We are looking
for four integers r, s, t,u such that ru — st = 1 and F(rz + sy, tz +uy) = F'(x,y).
Let us fix r =u =1 and t = 0. Since B = B’ (mod 2ayay), there exists ¢ € Z such
that B’ = B + 2ajasl. Setting s = ¢ we have

2

2a1a9rs + B(ru + st) 4 2 tu = 2a1a:5 + B = B’

a1a2

From F(r,t) = ajay it follows F(rz + sy,tx + uy) = F'(z,y) because F(z,y) and
F'(z,y) have the same discriminant A;

5. F(x,y) = f(z,y) o g(x,y) is a direct composition of f(x,y) and g(x,vy).
By Lemma [L.15] f(z,y) is properly equivalent to the form fi(z,y) = (a1, B, asC)
while g(x,y) is properly equivalent to gi(x,y) = (ag, B,a;C'). By a direct computa-
tion one can easily prove that:

fi(z,y)g1(w, 2) = F(zw — Cyz,a12z + asyw + Byz) (1.11)
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From the proof of Lemma we know that:

filz,y) = fle+sy,y) 5 q(w,z2)=gw+s'zz2)

with s, s’ € Z. Hence

f(x,y) = filz = sy,y) = ar(x — sy)* + B(x — sy)y + a2Cy”
glw,2) = gi(w — §'2,2) = ay(w — §'2)* + B(w — §'2)z + a, 02>
From this follows:
f@y)g(w, 2) = filz — sy, y)g1(w — 'z, 2) =
= F((x — sy)(w —s'2) — Cyz,a1(x — sy)z + as(w — §'2)y + Byz) =
= F(zw — s'zz — syw + (s8' — C)yz,a122 + asyw + (—as — axs’ + B)yz)

Following the notation of Definition we have dy =1, dy =0, ey = —¢, e5 = ay,
by = —8, 0y =a9,n1 =588 —C, ng =—a18 — ass’ + B and therefore:

dieg — dye; = a; = f(1,0)
dily — daly = ay = g(1,0)
If f(x,y) and g(z,y) are two united forms of discriminant A, we define:

Lf(@,y)] o [g(z,y)] = [F(x,y)] (1.12)

where F'(z,y) is the Dirichlet composition of f(x,y) and g(z,y). For the properties seen
above [F'(x,y)] belongs to C'(A). We ask ourself if in this fashion we can compose any two
elements of C'(A). That question is answered by the following result [45, Lemma 3.1].

Proposition 1.16. If f(z,y) = (a,b,c) is a primitive quadratic form and m an integer,
then f(x,y) represents properly a positive integer relatively prime with m.

Proof. Let m = pi'py* - - - pls be the prime factor decomposition of m. We can define:

A:{plv"‘7p8}
Ai={peA:planp]c}
As={peA:planpfc}
Ay={peA:ptanp|c}
Ay={peA:ptanpfc}

Clearly Aq, Ay, A3, A, are pairwise disjoint and such that their union is A. Let P,Q, R, S
be the integers obtained multiplying, respectively, the elements of A, Ay, A3, Ays. We want
to show that f(Q, RS) = aQ*+bQRS +c(RS)? = { is relatively prime with m. We observe



16 CHAPTER 1. BINARY QUADRATIC FORMS

that ged(¢,m) # 1 if and only if there exists a prime integer p that divides ¢ and m. So it
is sufficient to show that every element of A does not divide /.

If p € Ay, it divides aQ? and ¢(RS)?. But it does not divide b (since f is primitive) and
@, R, S for construction. Therefore p 1 /.

If p € Ay, it divides aQ? and b(QRS). But it does not divide ¢ and P, R, S for construction.
Therefore p 1 ¢.

If p € As, it divides ¢(RS)? and bQRS. But it does not divide a and P, Q, S for construc-
tion. Therefore p{ aQ?.

If p e Ay, it divides bQRS and c¢(RS)? for construction. But it does not divide a and
P,Q, R. Therefore p t aQ?.

We can assume () coprime with RS because a divisor of / is still coprime with m. When the
discriminant A = b% — 4ac of the form f(x,y) is negative, then ¢ is positive. Now suppose
that A is positive and ¢ is negative. Considering the form g(z,y) = (¢,¥, ), properly
equivalent to f(x,y), if we set xg = b'mt + 1, yg = —2¢mt, with ¢ non-zero integer, we can
deduce that:

9(wo, yo) = £(1 — AmQtz)
is a positive integer. Furthermore, g(xo, yo) is coprime with m because ged(¢,m) = 1.
If o # 0, we can choose t = 2(b' obtaining

zo =22 0m+1 |,  yy=—4'm
with z¢ and yg coprime. If &’ = 0, then z¢ = 1, yo = —2¢mt and
g(w0,y0) = £ + 4 CPm*t* = ((1 + 4c tm?*t?)
that is positive since A = —4c¢ > 0. ]
Lemma 1.17. Let f(z,y) = (a,b,¢) and g(z,y) = (d',,) be two primitive quadratic
forms with the same discriminant A. Then there exists a third quadralic form h(x,y),
properly equivalent to g(x,y), such that f(z,y) and h(zx,y) are united.

Proof. By Proposition g(z,y) represents properly an integer ¢ relatively prime with a.
Hence g(z,y) is properly equivalent to h(z,y) = (¢,b0",¢"). Therefore the two forms f(x,y)
and h(x,y) are united since from ged(a, ) = 1 follows ged(a, ¢, (b+0")/2) = 1. O

The last Proposition shows that a pair of proper equivalence classes of C(A) could
always be composed. Now we want to verify that the binary operation introduced in C'(A)
is well defined. In order to prove it, following [57, § 10], we use an equivalent condition to
ascertain if two quadratic forms are properly equivalent.

Lemma 1.18. Let f(x,y) = (a1,b1,¢1) and g(z,y) = (az, be, c2) be two primitive quadratic
forms with the same discriminant . They are properly equivalent if and only if there exist
r,t € Z such that:

f(7”> t) = Q2
2a17 4+ (b1 + b))t =0 (mod 2as)
(by — bo)r +2¢c1t =0 (mod 2a5y)
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Proof. 1f f(x,y) is properly equivalent to g(x,y) there exist four integers r, s, t, u such that

f(r,t) = as and

ru—ts=1
(blT’ + 201t)u + (blt + 2(117")8 = b2

The last system could be written in matrix notation as:

T —t u) (1
bl’f' -+ 2Clt blt —+ 2&17" S o b2

The determinant of the 2x2 matrix is:
r(bit + 2a17) + t(bir + 2c1t) = 2(ayr® + birt + c1t?) = 2ay

which is non-zero since we are considering irreducible forms. Therefore:
9 u\ [ bit+2ar 1t 1
A —bir —2cit r) \ by

QCLQU = blt —|— 2@1’/‘ + tbQ = (bl + bg)t + 2@17"
2@25 = —blr — 2C1t + Tbg = (bg — bl)T’ — QClt

that means

and the necessary condition is proved. Proceeding in the reverse way we easily arrive to
the sufficient condition using the fact that two quadratic forms are equal if they have the

same discriminant and the same first two coefficients.

]

Proposition 1.19. Let f(x,y) = (a1,b1,¢1) and g(x,y) = (ag, by, c3) be two united forms.
Suppose that also f'(x,y) = (as,bs,c3) and ¢'(x,y) = (a4, by, cs) are united and such that
f(z,y) is properly equivalent to f'(x,y), g(x,y) is properly equivalent to ¢'(x,y). Then

f(z,y) o g(z,y) is properly equivalent to f'(z,y) o g'(x,y).

Proof. By Lemma there exist B, C, B’,C" € Z such that:

f(z,y) ~p (a1, B, axC)
9(z,y) ~p (a2, B,a:0)
f'(x,y) ~, (ag, B', asC")
9'(x,y) ~p (a4, B, a3C")

so, by Lemma, [1.18] we can find r,¢,r",t' € Z for which:

a1r? + Brt + ay,Ct? = as
27+ (B+ Bt =0 (mod 2ag)
(B—B')r+2aCt=0 (mod 2as3)

(1.13)
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asr’? + Br't' + a,Ct? =
2a9r" + (B+ B)t' =0 (mod 2ay)
(B—B")r'+2a,Ct' =0 (mod 2ay)
Using the same lemma, we want to find two integers R and T such that:
a1aaR? + BR + CT? = asay
2a1a0R+ (B+ BT =0 (mod 2azay)
(B-B)R+2CT=0 (mod 2azay)

Since (a1, B, asC') represents ag and (ag, B, a;C') represents a4, using equation we can
set

R=nrr"—Ctt
T = ayrt’ + astr’ + Btt'

Furthermore we know that

ar + B+TB/t =0 (mod ag)
asr’ + B+TB/t’ =0 (mod ay)

and then

B+ B B+ DB
2 <a1r+ —; t) <a2r'+ ; t’) =0 (mod 2asay)

Replacing B? with B? — 4a,a,C + 4asa,C’, a direct computation shows that

B+ B B B’
2a1a2R+ (B+ BT =2 (alr + +2 t) <a2r’ + J; ) =0 (mod 2azas) (1.14)

So R and T satisfy also the second congruence of the last system. To prove that R and T
satisfy the third congruence, we use four relations that could be easily obtained by a direct
computation:

2a, (B _2 B/R—i- C’T) =2 (alr + B +2 B/t) (B — B/r + a10t> (mod 2azay)

2a9 (B _2 B/R—i—C'T) =2 (B — r—l—a20t> <a2r + + B, ) =0 (mod 2aszay)
(B— B (BEB,R C’T) = (B — B/r+a20t> ( r +a10t> =0 (mod 2azay)
(B+ B) (B — B,R%—CT) =20 (a1r+ t) ( + B/ ) =0 (mod 2azay)

From the last two congruences, follows

B-D
2B ( 5 R+ CT) =0 (mod 2azay)
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If (B— B')R/2+ CT = 0 (mod 2azay) then R and T clearly satisfy the third congru-
ence of the system. On the other hand, if ged((B — B")R/2 + CT,2a3a4) < 2azay, then
gcd(2aq, 2a, 2B, 2asa3) must be greater than 1. But

gcd(2ay, 2a, 2B, agay) = 2gcd(aq, ag, B, azay) = 2
since (ay, B, asC') is a primitive form. Then:

B—- B

R+CT =0 (mod azay)

and we have done also in this case.
O

Now we are ready to state and prove the main theorem about the composition of forms.

Theorem 1.20. Let C(A) be the set of the proper equivalence classes of the primitive
quadratic forms of discriminant A. The composition of elements of C(A) induced by
the Dirichlet composition of forms is a binary operation in C(A) that gives to C(A) the
structure of an abelian group. The proper equivalence class that contains the principal

form of discriminant A is the identity element and the inverse of a proper equivalence
class [(a, b, c)] is [(a, =b, c)].

The abelian group C(A) is called form class group of discriminant A or, more
simply, class group of discriminant A.

Proof. By Lemma|[I.17, we can always compose two proper equivalence classes that belong
to C'(A). Composing them we obtain another element of C'(A) thanks to the properties of
the Dirichlet composition between quadratic forms. Hence the composition of elements of
C(A) is a binary operation in C'(A). Its properties are showed in the following lines.

Commutativity

Given two united forms, f(z,y) = (a1,b1,c1) and g(z,y) = (ag, bs, ¢2), it is clear that the
integer B of Lemma does not depend on which order we consider f(x,y) and g(z,y).
The same holds for F(x,y) = f(x,y) o g(x,y).

Identity element

If A =0 (mod 4), the principal form of discriminated A is Qo(x,y) = x? — (A/4)y>.
Consider a generic element [(a, b, c)] of C(A). It is obvious that Qo(z,y) and (a,b,c) are
united. Since:

b=b (mod 2a)

b=0 (mod 2)

V¥=A (mod 4a)
the Dirichlet composition of (a,b, c) and Qy(x,y) is:

2 — A
(a, b, P ) = (a,b,c)
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On the other hand, if A =1 (mod 4) the principal form is Qo(z,y) = (1,1, —(A —1)/4).
Given a generic primitive quadratic form f(x,y) = (a, b, ¢) of discriminant A, it is clearly
united with Qo(z,y). Furthermore, we have

b=b (mod 2a)

b=1 (mod 2)

¥=A (mod 4a)

since b is odd. Therefore the Dirichlet composition of f(z,y) and Qo(x,y) is:

2 _
(a, b, b A) = (a,b,¢)

4a

Inverse of an element
Let [f(z,y)] be a generic element of C(A), with f(z,y) = (a,b,c). The quadratic form
g(x,y) = (¢, b,a) is primitive, of discriminant A and positive definite if f(z,y) is positive

definite. Since: bb
gcd <a,c, —; ) =1

f(z,y) and g(x,y) are united. From:

=0 (mod 2a)
b=b (mod 2¢)
v=A (mod 4ac)

we have that f(z,y)og(z,y) = (ac,b, (b> — A)/4ac) = (ac, b, 1) that is properly equivalent
to (1, —b,ac). We want to show that every primitive quadratic form f'(z,y) = (1,¥,¢) of
discriminant A is properly equivalent to the principal form of discriminant A. If A = 0
(mod 4), the principal form is Qy(z,y) = (1,0,—A/4). Setting r = u =1, ¢t = 0 and s
such that ¥ = —2s, we obtain f'(ra + sy, tx +uy) = (1,0, —A/4) since

2rs + V' (st +ru) +2dtu =25+ =0

If A =1 (mod 4) the principal form is Qo(x,y) = (1,1, —(A—1)/4). As before, we can set
r=u=1,t=0and ssuch that b = —2s+1. Then f'(ra+sy,tr+uy) = (1,1,—(A—-1)/4)
since

2rs + U (st +ru) + 2dtu =2s+ b0 =1

Finally, the form g(z,y) = (¢, b, a) is properly equivalent to (a, —b, c):

g(_ya {E) = (CL, —b, C)

Associativity
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Consider three proper equivalence classes contained in C(A). Let f(z,y) = (a1,b1,¢1) be
a form contained in the first proper equivalence class. Then, using Lemma [1.16] we can
choose g(x,y) = (ag, by, ¢2) in the second proper equivalence class such that gcd(2aq,az) = 1
and h(z,y) = (as, b3, c3) in the third proper equivalence class such that ged(as, 2a1a2) = 1.
This implies

ged(ay, az) = ged(ag, az) = ged(ay,az) =1

We have f(z,y) o g(x,y) = (a1aq2, B, C') with B solution of the system:

B= (mod 2a)
B = by (mod 2a5y)
B?=A (mod 4ayas)

and (f(z,y) o g(z,y)) o h(z,y) = (a1az2a3, B',C") with B’ such that

B' =B (mod 2a;as)
B' = b3 (mod 2as3)
(B)?=A (mod 4ajazas)

On the other hand, g(z,y) o h(x,y) = (asas, N, L) with N solution of the system

N = by (mod 2ay)
N = b3 (mod 2as3)
N2 =A (mod 4asas)

and f(z,y) o (g(z,y) o h(z,y)) = (a1azaz, N', L") with N’ such that

N =b (mod 2a4)

N =N (mod 2asag)
(N')?=A (mod 4ayasa3)

From this follows that

B =0, (mod 2a4)

B' = b, (mod as)

| B’ = b3 (mod a3)

and

(N = b, (mod 2a)

N =by (mod ay)

N' = b3 (mod ag)

For the Chinese Remainder Theorem we have B’ = N’ (mod 2ajaza3) since ged(2ay, as, az) =

1 (this explains why we constructed f(x,y), g(x,y) and h(z,y) in that way). Hence

f(z.y) o (9(z,y) o h(z,y)) is properly equivalent to (f(z,y) o g(z,y)) o h(z,y) for the
properties of the Dirichlet composition of forms. ]

\
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We end this section mentioning the composition of forms defined in the book “A course
in computational algebraic number theory” of Henry Cohen [I5, Definition 5.4.6]. Tt is
more general than the Dirichlet composition and in order to compose it is not necessary
to solve a quadratic congruence as in Lemma [1.15

1.7 Factoring

When the prime factorization of the integer m is known, using the composition of binary
quadratic forms it is possible to solve equation solving a finite number of Diophantine
equations of the type

ar® +bry +cy’ =p (1.15)

with p prime integer (see [37]). This allows us to consider only the Diophantine equations

of the same type of (1.15).

Even if it is not possible to assert that solving ax?® + bxy + cy? = m always implies the
factorization of m, there are some special cases in which this is true.

Let (1,0, c) be a quadratic form of discriminant A = b? —4c¢ < —4 and let m be an odd inte-
ger. Assume that two representations of m by (1,0, ¢) are known, i.e. m = 2?+bxy;+cy? =
23 + baoys + cy3, with the condition |y| # |yo|. Setting uy = 21 + Zy; and uy = x5 + Syo,
the two expressions for m can be rewritten as

_ b, \2 | de=b? 2 2 | 4de—b% 2
m = (z1 + 3y1) JFTQ.% =uy + 1.4
_ b 2 4dc—b°,2 __ 2 4c—b= 2
m—(x2—|—§y2)—|——4 Yy = uy + T Y5

Subtracting the second equation multiplied by y? from the first multiplied by y3, we obtain

m(ys — i) = uiys — uayi = (s — uayn) (wrye + uzy:)
an expression showing that the last product is zero modulo m if
i) u1ys — ugy; = 0 (mod m), or
i) u1ye + ugy; = 0 (mod m), or
iii) some factors of m divide (ujys — usy;) and the remaining factors divide (ujys + usyy).
The first two hypotheses are excluded because of the Cauchy-Schwarz inequality, that
applied to the vectors (uy,+y;1) and (y2, us) implies

(ways £ y1ue)® < (ui +471) (w3 +93) = |wrye yrug| < \/(U% +yi)(uj + 3)

If m divides uyys — usyr, then m < |uyys — ugyy|, thus

m <+ g3+ 43)

however m is trivially larger than u? + y? and u3 + y3 if A < —4, therefore m is larger
than /(u? + y?)(u3 + y3). The contradiction proves that m cannot divide uys — usy;, and
similar argument shows that m cannot divide u,ys + u2y;. In conclusion some non trivial
factors of m are in common with (u1ys — uoy;) and some with (u1ys + usy;), thus suitable
greatest common divisor computations yield two proper factors of m.
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1.8 Reduced forms

The goal of this section is to determine a canonical representative for each proper equiv-
agence class of quadratic forms with discriminant A. Following the terminology of [20], we
say that a quadratic form f(z,y) = (a,b,c) is reduced when

b|<a<e¢ and b>0 if a=1b] or a=c if A<O

1.16
0<b<VA and VA-b<2al<VA+b if A>0 (1.16)

Example. Let Qo(z,y) be the principal form of discriminant A:

~f@,0,-A/4) A=0 (mod 4)
Qolz,y) = (1,1,(1—A)/4) A=1 (mod 4)

When A is negative, Qo is reduced in both cases since A = 0,1 (mod 4) implies A < —3.
Now suppose that Qo(x,y) is indefinite. When A =0 (mod 4), the principal form Qo(z,y)
is not reduced (in a reduced indefinite form b must be positive); when A =1 (mod 4), we
have 0 < b < /A (A is greater then 3 since it is not a perfect square) but 2 |a| = 2 is less
than or equal to VA -1 for A > 9.

The number of reduced forms contained in any element of C'(A) is finite, both for A < 0
and A > 0. To prove it we refer to pages 13,21 and 22 of [I1]. We start considering positive
definite forms.

Lemma 1.21. If f(x,y) = (a,b, ¢) is a reduced positive definite quadratic form of discrim-

mant A\ then:

A
bl </ —=
3

Proof. From conditions we can observe that:
A
40 <dac=0"-A & 3IP<-A & bQ§—§

and then the lemma follows. O]

Proposition 1.22. If A is a negative integer such that A = 0,1 (mod 4), then there exist
only a finite number of reduced positive definite forms of discriminant A.

Proof. Let f(x,y) be a reduced positive definite form of discriminant A. By Lemma
b belongs to a finite set. Furthermore, since
b? — A
4

= ac

we can consider the prime factorization of (b* — A)/4:

v —A
4

:p1p2---pr
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The set {p1,...,p,} admits a partition in two non-empty subsets such that the product of
the elements of one is equal to a and the product of the elements of the other is ¢. Since
the power set of {p1,...,p,} is finite, both a and ¢ lie in a finite set. ]

As for the cases of negative discriminant, we need a preliminary lemma also when we
consider indefinite forms.

Lemma 1.23. If f(x,y) = (a,b,c) be is an indefinite reduced binary form of discriminant

A, then ac < 0 and
VA—b<2|e| < VA+b

Proof. Since b < v/A, we have that b> — A = 4ac < 0 so that a and ¢ are of opposite signs.
This means —4ac = (2]a|)(2|c|) and then

(VA = 0)(VA +1b) = (2]a])(2]e])

Since VA —b < 2 |a| < VA +b, if we suppose 2|c| > VA +b we would have —4ac > A —b?
and, simmetrically, 2|c| < VA — b would imply —4ac < A — b® contradicting A — b? =
4ac. O]

Proposition 1.24. The number of indefinite reduced forms of discriminant A > 0 is finite.

Proof. Let f(x,y) = (a,b,c) a reduced form of positive discriminant A. For the definition
of reduced form, b lies in a finite set. The same is true for a and, in the light of Lemma

1.23] for ¢ too. ]

Every proper equivalence class of C'(A) contains at least a reduced form. This important
result was firstly proved by Gauss in his “Disquisitiones Arithmeticae” ([26]) considering
initially the case A < 0 (art. 171) and then the case A > 0 (art. 183). Both the proofs
are constructive and with the same structure: successive transformations of a starting
form f(x,y) create a sequence of forms, properly equivalent to f(x,y), that ends with a
reduced form. From these proofs an algorithm is deduced that takes a form f(z,y) in
input and returns a reduced form properly equivalent to f(x,y). This algorithm is called
Gauss reduction algorithm. To describe theme we will refer to [10, §5 and §6] since the
terminology used by the authors allows them to estimate the number of steps necessary to
finish the algorithm.

Theorem 1.25. Every positive definite quadratic form f(x,y) = (a,b, c) is properly equiv-
alent to a reduced form.

Proof. Given a quadratic form f(z,y) = (a,b,
s(f) € Z, we obtain the form (a,2as(f) + b, f
f(z,y) since the matrix

), if we substitute x by x + s(f)y, with
s(f),1)) which is properly equivalent to

(

)
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has determinant equal to 1. We want to find s(f) € Z such that
12as(f) + b| < |2as” + b (1.17)
for every other integer s'. If we define [E_ﬂ as the unique integer such that
Lo b [—_b} L
27 2a 2
and we set s(f) = [52], we have:
—a<—-b—2as(f)<a & —a<b+2as(f)<a
Since s is the nearest integer to —b/2a, given any s’ € Z we obtain

—b

%—S(f)’ <

<

b+ 2as(f)| < |b+ 2as’|

‘b—i—Zas(f)'

b+ 2as’
2a

2a

so s(f) = [;—b} satisfies condition . Furthermore, from 4af(z,y) = (2ax + by)* — Ay?

it follows f(s(f),1) = % and

(2as(f) +0)* — A
4a

(2as’ +b)* — A
4a

= f(s(f),1) < f(s",1) =

for every integer s’. The form f(z + s(f)y,y) is called the normalization of f(z,y)
(normalize f(x,y) means replace f(x,y) by its normalization).

To prove the theorem, we transform f(z,y) in forms properly equivalent to it until we
find a reduced form. The first step of this procedure consists in replacing f(z,y) by its
normalization fo(z,y) = (ao,bo, o). After this, we iteratively apply what is called the
reduction step: we substitute fy(z,y) with the normalization f;(z,y) = (a1, b1, c1) of the
form (co, —bo, ap) = fo(—y,x). We repeat this step until we find a reduced form. This will
be properly equivalent to f(x,y) for the transitivity of the equivalence relation.

The described procedure ends in a finite number of iterations. Suppose that it is not true
and denote by f;(x,y) = (a;, b;, ¢;) the form obtained after the ith reduction step. In this
case, the sequence (a;);>o is strictly decreasing. In fact, given a natural number 7, the form
fi(z,y) = (a;, b;, ¢;) is such that

—a; < b; < a;

and so a; must be greater than ¢;. If a; would be less than or equal to ¢;, f;(x,y) would be
reduced or such that a; = ¢; and b; < 0, so f;11(z,y) would be reduced (f;11(z,y) is the
normalization of f/(x,y) = (a;, —b;, ¢;) because s(f]) is zero). Since a;41 = ¢;, it follows
Ait1 < Q-

All the elements of the infinite sequence (a;);>o are less than or equal to a (since ay = a)
and properly represented by f(z,y) (a; is properly represented by f;(z,y) which is properly
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equivalent to f(z,y) for every ¢ € N). This is a contradiction since there are only finitely
many integers which are less than a and which are represented by f(z,y). In fact, if
f(xo,y0) < €, with ¢, 29, yo € Z, from equations [1.3] and [1.4] we obtain:

(QCLZUQ + by0)2 A (20330 + by0)2 A
f(anyO):T_E(Q) ) f(l’anO):T_Exg

Hence, f(zo,y0) < ¢ implies x5 < —(4cl/A) and y2 < —(4al/A). H

The proof for the case A < 0 is analogous, but a bit more complicated, with respect to
the proof seen above for positive definite forms. Before proving that every indefinite form
is properly equivalent to a reduced form, we give the definition of indefinite normal form
and of normalization of an indefinite form.

Definition 1.26. An indefinite binary quadratic form f(z,y) = (a,b,c) of discriminant A
15 said normal if:

—lal <b<lal if lao|>VA (1.18)
VA =2a| <b< VA if |a|<VA (1.19)

Given an indefinite form f(z,y) = (a, b, ¢) of discriminant A, if we define L(\/Z —b)/2 |a\J
as the unique integer such that

0< (VA —b)/2|a| - L(\/Z—b)/zmw <1 (1.20)

and we set

sign(a) |54]  lal = VA

sign(a) L@_‘b la| < VA

the form f(z + s(f)y,y) = (a,b+ 2as(f), f(s(f),1)) is properly equivalent to f(z,y) and
normal.
In fact, if |a| > v/A, from the relation

1 < b —b - 1
27 2]q 2|al 2
we obtain
—b
—la] < —=b—2]al [m] <la| & —la] <b+2as(f)<lal (1.21)

On the other hand, if |a| < VA from (with the first inequality proper since A is a
perfect square if (vA —b)/2|a| € Z) we can deduce:

—VA < —b—2]d| VQZME’J <2la|-VA & VA-2|a| <b+2as(f) < VA (1.22)
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The form f(xz+s(f)y,y) is called the normalization of the indefinite form f(z,y) (normalize
f(z,y) means substitute f(z,y) by its normalization).

Lemma 1.27. Let f(x,y) = (a,b,c¢) be and indefinite form of discriminant A. If f(x,y)
is normal and |a| < V/AJ2, then f(x,y) is reduced.

Proof. The hypothesis |a| < v/A/2 implies |a| < v/A because A is non-zero. Then f(z,y)
normal means

VA =2]al| = VA -2/a < b< VA
So 0 < b < /A and

’\/Z—QM <b & —b<2la—VA<b & VA—b<2la] <VA+D

hence f(z,y) is reduced. O

Theorem 1.28. Every indefinite form f(x,y) = (a,b, c) is properly equivalent to a reduced
form.

Proof. Let A be the discriminant of f(z,y). To prove the theorem, we transform f(z,y)
in forms properly equivalent to it until we find a reduced form. The first step of this
procedure consists in replacing f(x,y) by its normalization fo(z,y) = (ao,bo, o). After
this, we iteratively apply the reduction step for indefinite forms: we substitute fo(z,y)
with the normalization fi(z,y) = (a1,b1,c1) of the form (co, —bo,ap) = fo(—y,x). We
repeat this step until we find a reduced form. This will be properly equivalent to f(z,y)
for the transitivity of the equivalence relation.

To prove that the described procedure ends in a finite number of iterations we claim that,
given the quadratic form f;(z,y) = (a4, b;,¢;) obtained after the ith reduction step, we
have:

L || < laq] /4 if |as] > VA,
2. fir1(z,y) is reduced if |a;| < VA.

For the first point, since f(z,y) is normal and |a;| > VA, we have a? > A and a? > b2.
So: ,
A;’_"i A > b2

lci| =

BL A <2
and in both cases we obtain |¢;| < a?/4|a;| = |a;] /4.
“

For the second point, |¢;| < v/A/2, by Lemma [1.27 fiy1(z,y) is reduced. Hence consider
;| > v/A/2. Being f(z,y) normal, we have:

— VA <VA=2|a;| <b; < VA (1.23)
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from which we deduce |b;] < v/A and

0<VA—b<2la;] , VA+b>0 (1.24)
This means that (VA — b;)(vVA + b;) = —4a,c; is positive and then

VA4 b; 2 |a
L= L >1 = VA> b +2]|g 1.25
2l b [ (1.25)

Being |b;] < VA, |ci| can not be greater than or equal to v/A otherwise we would have

;| < VA (1.26)
On the other hand, |b;| < VA and |¢;| > V/A/2 imply

b+ 2la] > 2]a] - VA = |[VA - 2[q

(1.27)

Now consider the normalization of f/(x,y) = (¢;, —b;, a;). It has:

VA 4 b;

J = sign(c;)

because (VA + b;)/2|¢;] > 1 for equation and VA + b; < 4|c;| for equation m
Hencef;1(z,y) is (¢, —b; + 2|, a; — sign(c;)b; + ¢;). This form is reduced since 0 <

Now we can conclude: given f;(x,y) we have that f;.i(x,y) is reduced or |a; 11| = |¢
is less than or equal to |a;| /4. So, after a finite number of steps, we find j € N such that
la;| < VA, that means fi+1(z,y) reduced.

O]

When A is a positive discriminant, a proper equivalence form of C'(A) could contain
more than one reduced form. On the other hand, when we A is negative, every element
of C(A) contains a unique reduced form. To prove these results, we provide an example
and a Theorem, for which we refer to [48, Theorem 4.2].

Example. Let f(z,y) = (—1,5,1) and g(x,y) = (1,5, —1) two quadratic forms of discrim-
inant A = 29. Both the forms are reduced and f(—y,z + 5y) = g(x,y), i.e. f(z,y) and
g(x,y) are properly equivalent.

Theorem 1.29. If two reduced positive definite forms, f(x,y) = (a1,b1,¢1) and g(x,y) =
(a9, by, c2), are properly equivalent, then they are equal.
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Proof. If zy and yy are two coprime integers, then f(xo,y0) > a1, i.e. a; is the minimum
integer represented by f(x,y). In fact we have:

f(zo,y0) = a1xf + biwoyo + 1y > arxg > ap  if 0 < |zo] < Jyol

f(@o,y0) = ar1xg + bizoyo + c1yg > c1yg > a1 if 0 < |yo| < |
f(x(b 0) = all’(Q) >
f0,9) =y > > a

Since f(x,y) and g(x,y) are properly equivalent, there exist r, s, t,u € Z such that f(rz+
sy, tx +uy) = g(x,y) and ru — st = 1. Properly equivalent forms represents properly the
same integers, then a; = as.

Now we want to show that f(zo,yo) = a1, with xy and yo coprime integers, implies g = +1
and yo = 0. From this we will deduce b; = bs.

Case 1: a1 < ¢

If yo = 0, we have f(zg,0) = ayz? that implies o = +1. On the other hand, f(0,y0) =
c1ys > a;. Now assume that zy and yo are both non-zero. When 0 < |zo] < |yof
we have f(zo,y0) > a17d > ay since |bizoye| < c1yd; when 0 < |yo] < |zo| we have
f(xo,90) > c1y? > ¢1 > ay since |bizoye| < a;xd. Hence, from f(r,t) = a1, we deduce
r==+1and t = 0. Since ru— st = 1, we have by = 2a17s+ by (st +ru) +2c1tu = +2a15+b;.
Being f(x,y) and g(z,y) reduced, by satisfies the inequality [bs] < ag = ay. If s = 0, we
obtain by = by; if s # 0, |+2a;s + by| is greater than or equal to a; and could be equal only
when (+2a;5)b; < 0 (if by = 0 we must have s = 0) and |s| = 1, |b;| = a;. In this case we
have |by| = |b1| = a; and hence by = b; (for conditions by and by must be both positive).

Case 2: a1 = ¢

If 2o and yo are non-zero and with, for example, |zo| < |yo|, |Toyo| is less than x? and
f(x0,90) > a1ys > ay. If g and yy are both non-zero, |z,| could be equal to |y| only when
(o, y0) € {(1,1),(—1,1),(1,—1), (=1, —1)}. If (xg = £1,yo = £1), we have by = —a; that
is impossible since b; must be positive when a; = ¢; if (2, y0) = (1, —1) or (zo,5) = 1
we have by = a; and the only possibilities is f(z,y) = (1,1,1). Using Lemma [1.22] it is
easy to see that (1,1,1) is the only reduced form of discriminant —3 and in this case the
theorem is proved. Hence f(r,t) = a; implies r = +1,t =0orr =0, t = £1.

If r =41 and t = 0, we have by, = +2a;s + b; and we proceed as in the case a; < ¢q; if
r=0and t = £1, we have by = 2ayrs + by (st + ru) + 2¢itu = —b; £+ 2a;u and also in this
case what we have see at the end of the case a; < ¢;.

We conclude observing that from a; = as and by = by it follows ¢; = co:

(01)? =A ()’ A
Cl = = = 02
4@1 4&2
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Combining Theorems and with Theorems and we can deduce one of
the most important result about the integral binary quadratic forms:

Theorem 1.30. Let A € Z be such that it is not a perfect square and A = 0,1 (mod 4).
Then the set C(A) has finite cardinality.

The finite cardinality of the set C'(A) is denoted by ha and is called the class number
of the discriminant A.

In the light of the results presented in this section, in order to solve equation the
following two problems will be principally of concern

Problem 1: Let Q;(x,y), i = 0,...,ha — 1, be a set of ha reduced quadratic forms of
discriminant A, one representative for each proper equivalence class. Given a prime
p such that (A/p) = 1, decide which are the forms representing it.

Problem 2: Knowing that a quadratic form Q(x,y) represents p, find a representation.

In the following, we will refer to these problems as representation problems for the
discriminant A and the prime integer p.

1.9 Solving ax? + bxy + cy?> = p with Gauss reduction
algorithm

In this section we want to show how Gauss reduction algorithm allows to solve a quadratic
Diophantine equation az? + bxy + cy®> = p, with a,b,c,p € Z and p prime (equation
with m = p). Our goal is to provide an algorithm, written in MAGMA language, that takes
a,b,c,p and returns a solution of equation [I.1]

We start assuming that:

e the discriminant A = b? — 4ac of the integral binary quadratic form f(z,y) = (a,b,c)
is not a perfect square;

e pis an odd prime that does not divide A.

In the light of Proposition a necessary condition for Equation [L.1|to be solvable is that
A is a quadratic residue modulo p. If (A/p) = 1 then, by Proposition there exist only
two elements [Q(z,y)], [Q'(x,y)] of C(A) such that the forms contained in them represent
p. Then, equation has a solution if and only if f(z,y) lies in one of these two proper
equivalence classes. Since the proof of Proposition is constructive, we are able to de-
termine Q(z,y) and Q'(z,y). We provide here the function of MAGMA, named “Lagrange”,
that from A (for easy notation, it will be denoted by D) and p outputs Q(z,y) = (q1, 2, q3)-
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function Lagrange (p, D)

Zp:=Integers(p); /* ring of integers modulo p */
3| D1:=Zp!D; /* consider D in Zp */
1| 1,92:=IsSquare(D1); /* function IsSquare returns true if D1 is a

quadratic residue modulo p, false otherwise.
If D1 is a quadratic residue,
a root is also returned (we put it in q2) */

Z:=Integers(); /* ring of integers */
9] q2:=Z1q2; /* q2 is regarded as an integer x/
o|if (((D-g2) mod 2) eq 1) then /* a control of the parity of D-q2 */
q2:=-q2+p;
end if;
31 q3:=-((D-q272)/(4*p)); /* for \textsc{magma}, g3 is a rational number */
1| q3:=Z'q3; /* g3 is regarded as an integer */

5|return p,q2,93;
;| end function;

For the computational complexity of the above function, the issue is to find a square
root modulo p working with polynomial complexity in p. The equation 2> = A (mod p)
is easily solved when p = 3 (mod 4), while, when p =1 (mod 4) and p £ 1 (mod 16), it
is solvable in polynomial complexity using Schoof algorithm for counting the number of
points on elliptic curves over finite fields [50, Proposition 4.2]. Otherwise, the complexity
is O((|z|"/*™log p)°) which may not be polynomial.

Once we have obtained Q(z,y) we can compute also Q’'(x,y) since Q'(z,y) = (q1, —q2, g3)-
To establish if f(z,y) lies in one of the two proper equivalence classes [Q(z,y)], [Q'(z,y)] of
C(A), the strategy is to find a representative reduced form for each of the classes [f(x,y)],
[Q(z,y], [Q'(z,y)] by the Gauss reduction algorithm. This algorithm is the procedure to
obtain a reduced form properly equivalent to a given quadratic form provided by Gauss to
prove Theorem and Theorem An implementation of Gauss reduction algorithm
is here provided in MAGMA language. We observe that the function “Gauss”, together with
the coefficients of a reduced form g(x,y) properly equivalent to the input form f(z,y),
returns r, s, t,u € Z such that f(rz + sy, tx +uy) = g(x,y).

i|return c,-b,a;

function Equivalence (a, b, ¢) /* Input: coefficients of a form (a,b,c)
Output: coefficients of the properly
equivalent form (c,-b,a) */

end function;

function Normalization (a,b,c) /* Input: coefficients of a positive
definite form f(x,y)=(a,b,c);
Output: coefficients of the normalization
of (a,b,c) and the integer sf used for the
transformation */

D:=b~2-4x*ax*c; /* D is the discriminant of the form (a,b,c) */
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if (D 1t 0) then
sf:=(-b)/(2*a); /* sf is the unique integer such that -b/2a - s is
greater than or equal to -0.5 and less than 0.5.
\textsc{magma} does not supply a function to
compute
such sf so we construct it */
if ( (sf 1t 0) and (Truncate(sf)-sf eq 0.5)) then
sf:=Truncate(sf); /* Truncate(sf) returns the
integral part of sf */

else
sf :=Round(sf) ; /* Round(sf) returns the integer nearest
to sf. In the case of a tie, it returns
i+l if sf=i+0.5 and i-1 if sf=i-0.5 */
end if;
else

if (Abs(a) 1t Sqrt(D)) then /* Abs(a) returns the absolute
value of a; Sqrt(D) is the
square root of D.
When (a,b,c) is indefinite, the
integer used to transform the
form in its normalization as two
expressions */

sf:=Sign(a)*Floor ((Sqrt(D)-b)/(2*Abs(a)));

/* Sign(a) returns $1$ if a is positive, -1 if a
is negative; Floor(q) is the largest integer
less than or equal to the rational number q */

else
sf:=(-b)/(2xAbs(a));
if ( (sf 1t 0) and (Truncate(sf)-sf eq 0.5)) then
sf:=Truncate(sf);

else
sf:=Round (sf) ;
end if;
sf:=Sign(a)*sf;
end if;

end if;
w:=b; /* the value of b is saved in w */
b:=2xaxsf+b; /* the normalization of (a,b,c) is the

form (a,b+2*a*xsf,a*xsf~2+bxsf+c) */
c:=a*xsf " 2twkxsf+c;
return a,b,c,sf;
end function;

function Gauss (a,b,c) /* Input: coefficients of the form f(x,y)=(a,b,c)
Output: coefficients of a reduced form properly
equivalent to (a,b,c) and the integers
r,s,t,u of the transformation that send (a,b,c)
in the reduced form */
r:=1; s:=0; t:=1; u:=1; /% the 2x2 matrix that describes the transformations of
(a,b,c) is initially set as the identity matrix */
D:=b~2-4x*ax*c; /* D is the discriminant of (a,b,c) */
if (D 1t 0) then /* Case D<O */
a,b,c,sf:=Normalization(a,b,c); /* zero step */
s:=r*sf+s; u:=t*sf+u; /+the transformation matrix is multiplied by (1,sf;0,1)*/
while ((a gt ¢) or (a eq ¢ and b 1t 0)) do /* we repeat the reduction
step until we find a reduced
form: if (a,b,c) is a normal
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form it is not reduced if and
only if a>c or a=c and b<0 */
a,b,c:=Equivalence(a,b,c);
a,b,c,sf:=Normalization(a,b,c);
Wi=r; z:=t; /* r is saved in w and t is saved in z*/
r:=s; ; t:=u; s:=s*sf-w; u:=uxsf-z; /* the transformation matrix is
multiplied by (0,-1;1,sf) */
end while;
else /* Case D>0 */
a,b,c,sf:=Normalization(a,b,c); /* zero step */
s:=r*sf+s; u:=t*sf+u; /+the transformation matrix is multiplied by (1,sf;0,1)*/
while ((b in [1..Floor(D)] eq false) or
(2%Abs(a) in [Ceiling(Sqrt(D)-b)..Floor(Sqrt(D)+b)] eq false)) do
/* The condition to be an indefinite reduced form is different from
the condition to be a positive definite reduced form */
a,b,c:=Equivalence(a,b,c);
a,b,c,sf:=Normalization(a,b,c);
Wi=r; z:=t; /* r is saved in w and t is saved in z*/
r:=s; ; t:=u; s:=s*sf-w; u:=uxsf-z; /* the transformation matrix is
multiplied by (0,-1;1,sf) */
end while;
end if;
return a,b,c,r,s,t,u;

93| end function;

The number of reduction steps performed by function “Gauss” is at most {logg(a/\/ |A|)J +2
when applied to a positive definite form f(z,y) = (a,b,c) (see [10, Theorem 5.5.4]) and
is at most 3 Llogg(a/\/Z)J + 2 when applied to a form f(z,y) = (a,b,c) with positive
discriminant [I0] Theorem 6.5.3].

We can now propose an algorithm to solve equation when A = b? — 4ac is not a perfect
square and (A/p) = 1. The idea is to reduce (a,b,c), Q(z,y) and Q'(z,y) = Q(z, —y) ob-
taining the forms (aq, b1, ¢1), (ag,ba, c2), (as, bs, c3) respectively. When A < 0, if (aq, by, ¢1)
is different from (as, by, ¢2) and (as, bs, ¢3), the equation [1.1has no solution. If, for example,
(a1,b1,¢1) is equal to (ag, by, ¢o), then by function “Gauss” we know the integers rq, s1, t1, u;
and 79, S, ta, Uy such that:

a(rix + sly)Z + b(rix + s1y)(tix + ury) + c(tz + uly)2 = (a1, b1, 1) (1.28)
Q(rax + Soy, tax + usy) = (as, ba, ¢2) (1.29)

r sy _ [ S U9 —S9
tou)  \t1 u ) \—ta 1o

we can deduce a(rz + sy)* + b(rz + sy)(tx + uy) + c(tr + uy)* = Q(z,y) and so

Therefore, from:

ar® + brt 4 ct* = Q(1,0) = p




SR

NN N
© o =

34 CHAPTER 1. BINARY QUADRATIC FORMS

If A > 0, each proper equivalence class contains the same even number P,, usually greater
than 2, of reduced forms [26], [57, p.111]|. P.is a number strictly connected with the period
of the continuous fraction development of /A, period that, in some singular cases, depends
on the form of A [52]; for example, the minimum value 2 of P, occurs when A = (2 +1, i.e.
when the period of the continuous fraction for v/A is 1, and the value 4 of P. occurs when
A = (2 — 1. The maximum value of P. may be of order O(A'?log A) [31], p.329,p.337].
So, when f(x,y) is indefinite, it could happen that (a,b,c) lies in one of the two proper
equivalence classes [Q(z,v)], [@'(x,y)] even if (a1,b1, ;) is different from (as, bo, c2) and
(as, bz, c3). So we need to find all the reduced forms contained in [Q(z,y)] and [Q'(z,y)].
To obtain the reduced forms of [Q(z,y)], in the light of [10, Corollary 6.8.11], we start
normalizing (ag, by, c2). Then we normalize the new form and so on until we find again
(@9, by, c2). To each of the reduced forms obtained in this way, we apply the same procedure
seen for the case A < 0.

function Diophantine (a,b,c,p) /* Input: coefficients of the equation 1.1
OQutput: a solution, if it exists, of
the equation 1.1 */

D:=b"2-4x*ax*c;
ql,q2,93:=Lagrange(p, D);
if (D 1t 0) then
al,bl,cl,rl,s1,t1,ul:=Gauss(a,b,c);
a2,b2,c2,r2,s2,t2,u2:=Gauss (q1,92,93);
a3,b3,c3,r3,s3,t3,u3:=Gauss(ql,-92,93) ;
if ((al eq a2) and (bl eq b2) and (cl eq c2)) then
r:=rl*xu2-s1*t2; s:= -rl*s2+sl*r2;
ti=til*u2-ul*t2; u:=-s2*til+ul*r2;
X:=Tr; y:=t;
printf "Y0=Y0(%o) ~2+%o(%o) (o) +%o(%o)~2",p,a,x,b,x,y,C,¥;
elif ((al eq a3) and (bl eq b3) and (cl eq c3)) then
r:=rl*u3d-si1*t3; s:= -rl*s3+sl*r3; t:=tl*u3-ul*t3; u:=-s3*tl+ul*r3;
X:=T;
y:=t;
printf "Y0=Y0(%o) ~2+%0(%o) (o) +%o(%o)~2",p,a,x,b,x,y,C,¥;
else
printf "No solutions";
end if;
else
x:=0; y:=0;
al,bl,cl,rl,s1,t1,ul:=Gauss(a,b,c);
a2,b2,c2,r2,s2,t2,u2:=Gauss(q1,92,93);
a3,b3,c3,r3,s3,t3,u3:=Gauss (q1,92,93);
while ((a3 ne a2) and (b3 ne b2) and (c3 ne c2)) do
if ((al eq a3) and (bl eq b3) and (cl eq c3)) then
r:=rixu3d-si1*t3; s:= -rl*xs3+sl*r3; t:=t1*xu3-ul*t3; u:=-s3*tl+ul*r3;
X:=r;
y:=t;
printf "ho=%o (%O) ~2+%0 (%0) (%0)+%0(%0) -2 ,P,a,X,b 3 X,¥,C,¥5
break;
end if;
a3,b3,c3:=Equivalence(a3,b3,c3);
a3,b3,c3,sf:=Normalization(a3,b3,c3);
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w:=r3; z:=t3; /* r is saved in w and t is saved in z*/
r3:=83; ; t3:=u3; s3:=s3*sf-w; u3:=uld*sf-z; /* the transformation matrix is
multiplied by (0,-1;1,sf) */
end while;
a2,b2,c2,r2,s2,t2,u2:=Gauss(ql,-92,93) ;
a3,b3,c3,r3,s3,t3,u3:=Gauss(ql,-92,93) ;
while ((a3 ne a2) and (b3 ne b2) and (c3 ne c2)) do
if ((al eq a3) and (bl eq b3) and (cl eq c3)) then
r:=ril*u3-si1*t3; s:= -rlxs3+sl*r3; t:=tl*u3-ul*t3; u:=-s3*tl+ul*r3;
X:=r;
y:=t;
printf "%o0=%o (%o) ~2+%o (%o) (ho)+%o (o) ~2",p,a,x,b,x,y,C,¥;
break;
end if;
a3,b3,c3:=Equivalence(a3,b3,c3);
a3,b3,c3,sf:=Normalization(a3,b3,c3);
w:=r3; z:=t3; /* r is saved in w and t is saved in zx/
r3:=s83; ; t3:=u3; s3:=s3%sf-w; ul:=u3d*sf-z; /* the transformation matrix is
multiplied by (0,-1;1,sf) */
end while;
if ((x eq 0) and (y eq 0)) then
printf "No solutions";
end if;
end if;
return Xx,y;

;3 end function;
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Chapter 2

Ideals and quadratic forms

In Section 8 of the previous chapter, we have introduced the form class group of the binary
quadratic forms with a fixed discriminant. The aim of this chapter is to create a bridge
between the quadratic forms and the ideals of a quadratic field, i.e. a two dimensional field
extension of Q. Such a field contains a subring, known as the ring of integers, which turns
out to be a Dedekind ring. This property allows to give to the fractional ideals of the field
a group structure, the narrow ideal class group, isomorphic to the form class group of the
quadratic forms having the discriminant of the field. The matters recalled in the following
are classic and they can be founded in several books of algebraic number theory. For the
sake of easy reference, we report and prove all the intermediate results that bring to the
isomorphism. We refer to [39], [33], [45], [20] for more detailed discussions.

2.1 Dedekind rings

Let R be an integral domain with K as field of fractions. Recalling that R could be seen
as a subring of K, an element a € K is said integral over R if it is a root of some monic
polynomial f(z) € R[x]. The set of all elements of K that are integral over R is called the
integral closure of R in K. When a € K integral over R implies a € R we say that R
is integrally closed [39, Chap. 1].

Definition 2.1. A Dedekind ring R is an integral domain such that [{5, Def. 1.25]:

1. it s Noetherian, i.e. does not exist an infinite ascending chain Iy C --- C I, C ...
of ideals of R;

2. every non-zero prime ideal is mazximal;
3. it s integrally closed.

Throughout this section, R will denote a Dedekind ring with field of fractions K.
It is useful to see an equivalent definition (|39, pag. 4|) of integral element over R.
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Lemma 2.2. An element « of the field of fractions € K of an integral domain R is integral
over R if and only if there exists a non-zero finitely generated R-submodule M of K such
that xM C M.

Proof. 1t is evident that K is an R-module (the scalar multiplication is simply the product
in K). If « € K is integral over R, then o™ + a,_1a""! + -+ + ap = 0 for some elements
ai,...,an_1 of R. Hence the R-module M generated by 1, ..., a" !is such that oM C M
(since a" = —a, "' — - —qy).

Vice versa, let M = («ay,...,q,) be a finitely generated R-submodule of K such that
aM C M for a € K. Then:

ao = ajoq + -t G, . O = A0 T Ol (2.1)
with the a;;’s elements of R. The matrix:

a—ayr ... —Q1np

—Cp1 ... OQ— Gy

is singular since the endomorphism of K™ that it defines is not injective (the non-zero vector
(v, ..., ) is mapped into the zero vector). Its determinant could be seen as a monic
polynomial of R[z] evaluated in « (it is monic since the biggest power of « is obtained
multiplying the elements of the diagonal). This proves that « is integral over R. [

In a Dedekind ring every non-zero ideal could be uniquely written as a product of prime
ideals of the ring. We need some preliminary results before proving it. From now to the
end of the section we follow [39].

Lemma 2.3. Let B be a Noetherian ring. Then every ideal of B is finitely generated and
contains a product of prime ideals of B.

Proof. Let I be an ideal of B. If I = {0} it is obviously finitely generated. Suppose that I
is non-zero and not finitely generated. Given one of its non-zero elements a;, there exists
as € I'\ {a1). Proceeding in this way we create an ascendent infinite chain of ideals:

(a1) € (a1,a9) € -+ C{ay,...,ap) ... (2.2)

This is a contradiction because B is Noetherian.

Now suppose that I does not contain a product of prime ideals of B. We can assume that
I is maximal with respect to this property. Obviously, I is not prime and hence there exist
two elements by, by € B\ I such that biby belongs to I. We define:

Ji=Bb+1, Jo=DBby+1I (2.3)

Since B is a ring with unit, J; and J; strictly contain /. Hence, both J; and J; contain a
product of prime ideals of B. But J;J; is contained in I, so I contain a product of prime
ideals. This is a contradiction that proves the lemma. O
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Given a Dedekind ring R with field of fractions K, we are interested in the non-zero
finitely generated R-submodules of K: they are called fractional ideals of R. If a
fractional ideal 91 of R is contained in R then it is an ideal of R; vice versa, if I is
an ideal of R it is a finitely generated R-submodule of K since R is Noetherian.

Let 9t and D1 be two fractionals ideals of R. We define 9101 as the set:

¢
SJT‘T(:{me,» | 0 € N,m; € M, n; € N} (2.4)
i=1

The next elementary properties of fractional ideals will be useful in the following.

Lemma 2.4. Given three fractional ideals M, N and § of a Dedekind ring R with field of
fractions K we have that:

1. 9N is a fractional ideal of R;
2. MM = I,
3. (MMN)F = M(NF).

Proof. From points 2 and 3 follow easily.
For the first point, observe that 9191 is an additive group, closed under multiplication by
elements of R. Therefore it is an R-submodule of K. If ay,...,a, and f,..., 3, are the
generators of M and N respectively, then MN is generated by «;5; with i € {1,...,¢} and
jed{l,... s}k

]

Lemma 2.5. If M is a fractional ideal of a Dedekind ring R with field of fractions K, then
the set
M={acK|aMCR}

s a fractional ideal of R.

Proof. As before, we observe that 91~! contains 0, it is closed under addition, contains the
opposite of any of its elements, is closed under multiplication by elements of R. Therefore
M~ is an R-submodule of K. Suppose that 7 is a non-zero element of 9. Then M~y
is an ideal of R , hence it is finitely generated since R is Noetherian. Now it is clear that
9! is finitely generated (by the generators of 91~y multiplied by n~!). O

Given a non zero element ~ of the field of fractions K of a Dedekind ring R, we have
that Ry is a fractional ideal of R. We call principal this kind of fractional ideals of R.
Observe that, for o € K, we have aRy C R if and only if ay € R (R is a ring with unit).
Therefore

(RY)™ =Ry (2.5)

and
(Ry)'Ry=Ry'Ry=R (2.6)
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Definition 2.6. A fractional ideal M of a Dedekind ring R is invertible if MMM~ C R,
with M~ defined as in Lemma [2.5

As we have seen, all the principal fractional ideals of a Dedekind ring R are invertible.

Proposition 2.7. A non-zero ideal I of a Dedekind ring R with field of fractions K is an
invertible fractional ideal of R.

Proof. We start assuming that I is a maximal ideal of R. Obviously 1! contains R: we
want to prove that such inclusion is proper.
Given a non-zero element a € I, using Lemma [2.3| we can choose a minimal s such that
there exist s prime ideals pq,...,ps of R with p;---ps contained in Ra. We can assume
that p; is contained in I (if we suppose that all the prime ideals pq,--- ,ps contain an
element that do not belong to I then their product could not belong to I because it is a
prime ideal). Since p; is maximal by the hypothesis on R, then I = p;. For the minimality
of s, pa---ps is not contained in Ra and hence there exists b € ps - - - ps such that b ¢ Ra.
But bp; = bl C Ra and a~'bI C R. Therefore a='b is an element of I~! that do not belong
to R. This proves that R is properly contained in I~
Since 1 € 7!, then I C I(I™') C R. Now observe that I(I™') is an ideal of R (it is a
fractional ideal contained in R). Since 1 € ™!, it contains I. For the maximality of I it
follows that I(I"') = I or I(I"') = R. The first possibility implies that the elements of
I7' send I in I. Since I is a finitely generated R-module, the elements of I=! would be
integral over R (Lemma . This is impossible because 1! is bigger than R and R is
integrally closed. So I(I7!) = R.
Now let I be a generic non-zero ideal of R. Suppose that the proposition is false. Since R
is Noetherian, we can suppose that I is a maximal ideal with respect to this property. For
the first part of the proof, I could not be a maximal ideal. Hence I C p for some maximal
ideal p (|40, pag. 93|).
We have:

IclytcI(I'™MCR

Since I is a finitely generated R-module we could not have Ip~! C I because R is integrally
closed and p~! contains properly R (see the previous case). But Ip~! is an ideal in R (it is a
fractional ideal contained in R since p~! C I71). Therefore, for the maximality of I, Ip~!is
invertible with (Ip~1)~' = J~!. This is a contradiction: Ip~'J~! = R implies I invertible
with I7' =p~1J71 (if af C R, with a € K, then alp~tJ ' CcptJ L aRCp Y. O

Now, we are ready to prove the mentioned result about the ideals of a Dedekind ring.

Theorem 2.8. Every non-zero ideal I of a Dedekind ring R with field of fractions K could
be uniquely factored as a product of prime ideals of R.

Proof. Suppose that there exists a non-zero ideal I of R that could not be written as a
product of prime ideals of R. Since R is a Noetherian, we can assume that [ is maximal
with respect to this property. Obviously, I is not prime and then is properly contained in
some prime ideal p of R (see [40, pag. 93|). So Ip~! is contained in R and contains I (since
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p~! contains the unit). From the proof of Proposition , we know that p~! properly
contains R and then p~'I could not be contained in I, otherwise the elements of p~! would
be integral over R, contradicting the hypothesis that R is integrally closed. Hence:

ICyp I (2.7)

and, for the maximality of I, we can write

pi =pi---ps (2.8)
with pi,...,ps prime ideals of R. Therefore, from Proposition [2.7] it follows:
I'=ppr---ps (2.9)

that is a contradiction. This ends the proof of the existence of a prime factorization.
Now, for the uniqueness of the factorization of a non-zero ideal I of R, suppose that:

I=qqu=0q) q; (2.10)

with q1,...,qn, 9, ..., qy prime ideals of R. Observe that ¢, ---q,, C q1N---Nq,,. Therefore,
qy - - - gy is contained in q; and then one of the g} is contained in q,. From the maximality
of q} it follows q; = q;. Less then renumbering, we can assume j = 1. Proceeding in
this fashion, we obtain the equality of the two factorization. In fact, we can not arrive to
qn - - - qn = R, since this means R contained in a prime ideal. [

A similar theorem holds also for the fractional ideals of a Dedekind ring.

Theorem 2.9. Let M be a fractional ideal of a Dedekind ring R with field of fractions K.
It can be uniquely factored as the product of integral powers of prime ideals of R, i.e.

= gl opf
where Py, ..., P, are prime ideals of R and (1, ..., L, are, not necessarily positive, integers.
Proof. Let aq,...,a, be the generators of 9. Since they are elements of K, we have:

a; = a;/b;

where a; and b; belong to R, with b; non-zero. If we put b = (b; ---b,) € R we obtain that
Oéib = (az/bz)(bl tee br) €ER
for every i € {1,...,r}. Hence, Mb C R is an ideal of R. By Theorem [2.8] we have:

Rb=[[a7, ow=]]»y

whit q; and p;, prime ideals of R and ¢;, ¢}, positive integers. We can observe that:

Hp = M = (MR)b = MRb =M [ a7
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By Proposition we can deduce:

m = JToi [T

This ends the proof of the existence of the factorization. It remains the uniqueness. Assume

that: i ,
on =TT Tl - TT T c*

with pp, q;, vy, §, prime ideals of R and (;, 0}, s,, s;, positive integers. We can assume that
all the p;’s and q;’s are distinct; the same could be done for all the t,’s and s,’s. Since
the multiplication of a fractional ideal of R by R does not change the fractional ideal, we

deduce: p
V4 s J Sv
Iei 1= = 11a 11+
Both the terms of the relation are ideals of R. Hence, from Proposition and the

hypothesis that all the p,’s and q;’s are distinct and all the t,’s and s,’s are distinct, the
result follows. [

Denote by I(R) the set of all the fractional ideals of a Dedekind ring R. We have
already defined a product in I(R) which is commutative and associative (Proposition [2.4).
Furthermore:

e /(R) has R as identity: it belongs to I(R) and ROt = 9M for every fractional ideal

M of R.
e every fractional ideal 9 of R has an inverse. By Theorem we have
= bl b
where pq,...,p, are prime ideals of R and /4, ..., /¢, are integers, hence

Mp, - -p, " =R

n

by Proposition

e every element of I(R) could be written uniquely as a product of integral powers of
prime ideals of R.

It follows that I(R) is a free abelian group respect to the defined product: it will be
called ideal group of R. An important subgroup of I(R) is the subset composed by the
principal fractional ideals, that is denoted by P(R). It is easy to observe that: the identity
R is contained in P(R); the inverse of a principal fractional ideal Rvy, with v in the field
of fractions K of R, is the principal fractional ideal Ry~!; the product of two principal
fractional ideals Rvy;, R, is Rvy172. The quotient group

C(R) = I(R)/P(R) (2.11)

is called the ideal class group of R.
When R is a principal ideal domain, we have I(R) = P(R) and hence C'(R) = {1}. So
C(R) may be taken as a measure of how far R is from being a principal ideal domain.
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2.2  Finite field extensions

In the rest of our work, the finite field extensions will assume an important role. In partic-
ular, we will concern with finite field extensions of the field Q. For this reason we dedicate
this section to briefly recall some results that will be used in next sections. For more details
we refer to [9].

In the whole section K denotes a finite field extension, of degree n, of the field F with
{wi,...,w,} as a basis.

Given a € K, the map

Yo: K — K
£ = of
is a linear map because
1. a(a&) = a(ag) for every £ € K, a € TF;
2. a(& + &) = a&y + aéy for every &1,& € K.
Fori € {1,...,n} we have aw; = )7, a;w; and the matrix associated to ¢, with respect

to the fixed basis is A = (a;;). If we change the basis, we obtain a matrix similar to A,
so with the same determinant and trace. The determinant det(A) is called the norm of
« and is denoted by Nk p(a) and the trace of A is called the trace of a and denoted by
Sprr(a).

The characteristic polynomial of a over F is the characteristic polynomial of ¢,, i.e.
det(A — xld), and it does not depend on the basis that we have fixed. Such polynomial
has leading coefficient equal to 1 or —1 and has « as root (because (A — ald)(wy, ..., wy)"
is equal to the zero-vector and then the matrix is singular).

If B is another element of K, ¢,3 = ¢, © ps. If the matrices associated to ¢, and ¢z with
respect to {wy,...,w,} are A and B respectively, then AB is the matrix associated to ¢ag
with respect the same fixed basis. From the properties of the determinant it follows that

Ngyr(aB) = Ngje(a) Nk r(B).

We say that K is a separable over F if the linear map

SPK/]F: K —» F
a —  Spgr(a)

is not identically zero. Since ¢; = Id(K), then Sp(1)g/r = n.

So, if F has characteristic 0 or n is not a multiple of char(F), then K is always separable
over .

Now consider the square matrix, of order n and with entries in IF, defined as

S = (sij) = (Spx/r(wiw;))
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I[ts determinant is called discriminant of the basis {wi,...,w,} and is denoted by
D(wy,...,w,). We want to show that, if K is separable over F, then S is not singular.
Suppose that det(S) = 0. Therefore there exist ¢y, ..., ¢, € F, not all zero, such that:

chSpK/F(wiwj) =0 Vie{l,...,n}

j=1

since the columns of the matrix are linearly dependent over F.
If we put v = cywy + - - - + c,wy, last relation is equivalent to the following:

Spxp(wiy) =0 Vie{l,...,n}

since Spg/r is a linear map. In the light of the linear independence of wy, ..., w, over F, we
can observe that also yws, ..., yw, are linearly independent over F becuase 7 is non-zero.
Hence, given a generic element ¢ of K, then & = ayywy + -+ - + ya,w, with ay ... a, ele-
ments of F. Therefore from the linearity of Spg r it follows Spk/r(§) = 0. This contradicts
the separability of K.

If we suppose K separable over F, given by,...,b, € F there exists a unique element
a € K such that Spgr(wiar) = b; for i € {1,...,n} (if we put o = zwy + -+ + Tpwy
and we impose Spg/r(wjar) = b; for i € {1,...,n} we obtain a linear system with matrix
S. But S is not singular and hence, the system has a unique solution in F). In particular
we can find n elements wy, ..., w, € K such that Spg/r(wiw;) = d;;. These elements are
linearly independent over F since, from eywj + - -+ + e,w = 0 (e; € F), multiplyng by w;
and applying Spk/r, it follows e; = 0 for every i € {1,...,n}. Therefore {w},...,w;} is a
basis for K, called the dual basis of {w;,...,w,}. Finally, if « = ayw; + - - - + a,w, is an
element of K then

a; = Spxr(ow;) (2.12)

2.3 The ring of integers of a number field

For all the section, K will denote a number field, i.e. a finite field extension of the field of
rational numbers:

n=[K:Q]
The field K contains a subring, denoted by Ok, such that:
1. its field of fractions is K;
2. it is a Dedekind ring.

The subring Ok could be introduced in several ways: we take as model what is done in
the book Number theory by Borevich and Shafarevich [9]. We start with the notion of
algebraic integer.
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Definition 2.10. An element « of the number field K is an algebraic number if it is a
root of some polynomial f € Z[z|; « is an algebraic integer if it is a root of some monic
polynomial f € Z[z].

The set Ok composed by all the algebraic integers of the number field K is called the
ring of integers of K. The rest of this section is devoted to the proof of the properties
of Ogx. We will do it using orders.

Any number field K is a Z-module. We denote by M a finitely generated Z-submodule of
K. If py, ..., p, are its generators, then:

M ={aypy + -+ ampim | @iy ... am € Z}

For simplicity, we will write M = [p1,. .., ttm]. Two Z-submodules of K, M; and M,, are
said similar if there exists a non-zero o € K such that M; = aM;. We can observe that

aMy = [ap, ...,y if My = [pg, ..., fim]-

Definition 2.11. A finitely generated Z-submodule of a number field K is said full if it
contains a basis of the Q-vector space K; non-full in the other case.

A system of generators pq, ..., u, of the finitely generated Z-submodules M of K is
a basis for M if py,...,u, are linearly independent over Z. Therefore, every element
i of the M is uniquely written as a linear combination, with integral coefficients, of the
elements of the basis.

The structure of a finitely generated Z-module M in a number field K could be inves-
tigated using the abelian groups. Let G be an additive abelian group. It is finitely
generated if there exist ¢1,...,¢9, € G such that every element g of GG is of the form

191 + -+ + Cngm Where cq, ..., ¢, are integers. In this case ¢q,..., g, Wwill be called a
finite system of generators for GG. A finite system of generators ¢i,..., ¢, of G is a
basis if ¢1g1 + -+ + ¢ngm = 0 implies ¢; = -+ = ¢, = 0 (when it happens g1, ..., g, are

said linearly independent over Z). The order of g € G is the least positive integer ¢ such
that g = 0. If such integer does not exist, ¢ is said of infinite order.

Proposition 2.12. Let G be an additive abelian group without elements of finite order. If
it us finitely generated, then it admits a basis.

Proof. Let g1,..., gn be a finite system of generators for G. If we substitute g; with g;+£g;,
where i # 7 and ¢ € Z, we obtain another finite system of generators for G. In fact, given
g € G, we have:

g=c1g1+ -+ CnGm = c1g1 + -+ (¢; — ley)g; + -+ ¢ci(gi +Lg;) + - + Cmgm

with ¢q,..., ¢, € Z. Suppose that gi,..., g, are not linearly independent over Z. Given
big1 + - -+ + bmgm = 0 with by, ..., b, € Z not all zero, assume that by is the minimum (in
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absolute value) of the non-zero b;’s. We would like that all the other b;’s would be divisible
by b; because g; would be a linear combination of gs, ..., g, (we use the fact that G has
not elements of finite order). On the other hand, if (for example) by is not divisible by
by, then by = gby + r with ¢,7 € Z and 0 < r < b;. Then we can put b, = by — qby = r
and substitute g; with g; + ggo. We obtain a new system of generators to which apply the
same process (they remain linearly dependent over Z because b; and b}, are non-zero). If
we do not find the desired situation, iterating the procedure, at each step we decrease the
non-zero coefficient with minimum absolute. Then, after a finite number of steps the non-
zero coefficient with minimum absolute value becomes zero. But this is impossible since
the new non-zero coefficient with minimum absolute value is the rest r of the euclidian
division performed above.

So, if g1, ..., g are not linearly independent over Z we can decrease the number of gener-
ators until we find a basis. It happens every time since at most remains only a generator:
it is linearly independent over Z since it is of infinite order. ]

It is easy to observe that a finitely generated Z-submodule M of a number field K is an
abelian additive group, finitely generated and without elements of finite order (a field does
not have zero divisors). Its generators are also generators for the abelian group. Hence
every finitely generated Z-submodule M of K admits a basis.

The cardinality of a basis of M is equal to the maximal number s of linearly independent
(over Q) vectors of K. In fact, since vectors linearly independent over Z are also linearly
independent over Q, we have that the cardinality m of a basis is less or equal to s. These
two natural numbers must be equal: suppose that vq,..., v, are elements of M linearly
independent over Q and 4, ..., u,, form a basis for M, with s > m. Therefore a1y +- - -+
asvs = 0 (a; € Q) not necessarily implies a; = --- = a, = 0 (to the relation corresponds a
linear system with variables ay,...,as and coefficient matrix of order m x s with entries
in Q: every linear application from Q° to Q™ is obviously non-injective. Therefore all
the basis of M have the same cardinality that is called rank of M and it is denoted by
rank(M).

Obviously, rank(M) = [K : Q] if and only if M is full. Furthermore, a set of generators of
M must have a cardinality greater or equal to rank(M) for the proof of Theorem

Theorem 2.13. Let G be an abelian additive group, finitely generated and without elements
of finite order. Then, if N is a non-zero subgroup of M, it has a finite system of generators

and hence a basis. Furthermore, for any basis {q1,...,gm} of G there exists a basis of N
of the form:
T = c11g1 + -+ CimGm
T2 = C22G2 + + -+ + ComGm (2.13)

M = CanGn ++* + ComIm

where the c;; are integers with ¢;; > 0 and n < m.
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Proof. We will prove the theorem by induction on the cardinality m of a basis of G.

If m = 1, the non-zero element g; generates GG. Let ¢ be the smallest positive integer such
that /g, € N. Given an element ¢'g; € N, with ¢’ positive integer, we have ¢/ = ¢/ +r with
q,r € Z and 0 < r < (. Since l'gy — qlgy = (¢’ — qf)g1 = rg; belongs to N, we must have
r = 0, otherwise the minimality of ¢ will be contradicted. So N is generated by (g;. It is
a basis for N since G does not have elements of finite order.

Now suppose m > 1. Let [ a non-zero element of N. Then § = ¢1g1 + - - - + ¢;ngm Where
the integers ¢y, ..., ¢, are not all zero. For simplicity, assume ¢; > 0 (if necessary we can
consider —f3). From the existence of [, it follows that we can consider, among all the
elements of N, an element 77 = c1191 + - -+ + C1mGm, With c11,..., ¢ € Z in which the
positive coefficient of ¢; is the smallest. Then ¢; is divisible by ¢;;. Indeed, if ¢; = ¢+
with C',C" € Z and 0 < ¢ < ¢q1, then 8 — gn; belongs to N and has ¢’ as coefficient of
g1 If ¢ # 0 we contradict the minimality of ¢;;. Therefore § — qn; = €292 + -+ + €mgm
with ey, ..., e, € Z.

Let Gy be the subgroup of G generated by g, ..., g, (they form a basis of the subgroup).
Then Gp N N is a non-zer subgroup of G (otherwise 7, would generate N) and we can use
the induction hypothesis on Go. So Gy N N has a basis of the type:

N2 = Co2G2 + **+ + ComGm

0 = (Ca- ++Cmm
UR] 3393 3mJ (2'14)

M = CanGn ++* + ComIm

where the ¢;;’s are integers with ¢; > 0 and n is less than or equal to m. We claim that
N is generated by ny,...,n,. Let @« =b1g1 + -+ - + b;ngm, with by,... b, € Z, an arbitrary
element of N. Since ¢y divides by (even if by = 0), we have:

a—1tn € GoNN
for a suitable ¢ € Z, and therefore:
a—tng =t + - +tyn, = a=tn +ilm+- -+t

for t,ty, ..., t, € Z,i.e. ny,...,n, generate N.
From the linear independence of ¢1,--- , g, and for the form of n,...,n, it follows the
linear independence of 1y, -+, n,. O

Corollary 2.14. Let M be a finitely generated Z-submodule of a number field K. Then
every additive subgroup N of M s a finitely generated Z-submodule of M and hence of K.

Proof. M is an abelian additive group without elements of finite order. Therefore, if N is
a subgroup of M, it is finitely generated and with a basis for the previous theorem. Then
N is a finitely generated Z-submodule of K. ]

Definition 2.15. Let M be a full finitely generated Z-submodule of a number field K. A
coefficient of M is an element o € K such that aM C M.
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The set Dy, composed by all the coefficients of M is a subring of K (it is clearly an
additive subgroup, it is closed under multiplication and contains the unit). Dy, is called
the ring of coefficients of M. Observe that, if {yy, ..., p,} is a basis for M, then o € K
belongs to Dy, if and only if ap,...,au, belong to M. One implication is clear; vice
versa, for every 5 € M we have:

aff = a(bypy + -+ bppin) = brapy + - - - bpap, € M
with by,...,0, € Z, because M is an additive group.

Proposition 2.16. Let M be a full finitely generated Z-submodule of a number field K.
Then also Dy 1s full finitely generated Z-submodule of K.

Proof. Let v be a non-zero element of M. For the definition of D), we have vIDy, C M
with 7Dy, additive subgroup of M (since also Dy, is an additive group). For [2.14 D, is
a finitely generated Z-submodule of K and then same holds for Dy, = v~ 1yDy,.

Let a be a non zero element of K and {p, ..., u,} a basis for M and therefore for K. We
denote by a the common denominator of the rationals a;;, with 7, j € {1,...,n}, such that:

Qfli = Qi1 by + * -+ Qinfln

It follows that aau; € M, for every i € {1,...,n}, and aa belongs to D,,;. Furthermore, if
{aq,...,a,} is a basis for K, then ajaq, ..., a,q, belong to Dy, for some non-zero integers
ai, ..., a,. Obviously, ajaq, ..., a,q, are linearly independent over Q so Dy, is full. O

Definition 2.17. A full finitely generated Z-submodule M of a number field K is an order
of K if it us a ring.

From the above definition, it follows that the ring of coefficients D,; of a full finitely
generated Z-submodule M C K is an order. Vice versa, if D is an order of K then it is the
ring of coefficients of itself (because 1 € D and oD C D implies o € D).

Lemma 2.18. Let M be a finitely generated full Z-submodule of a number field K. If v is a
non-zero element of K, then Dy = Dypr. Furthermore, M is similar to a full Z-submodule
of K contained in Dy,.

Proof. An element o € K belongs to Dy, if a8 € M for every 5 € M. This is equivalent
to the condition ayf € yM for every € M (we use the fact that v as an inverse in K
since it is non-zero). Hence Dy = D, .

Let {1, ..., } be a basis for M and {n,,...,n,} be a basis for Dy,. For i € {1,...,n},
we have p; = >, biin;, with b;; € Q (observe that 7y, ..., 7, form a basis for K). Denote

j=1
with b the common denominator of the rationals byq,...,b,,. Then bu; belongs to Dy,.
So bM is a full finitely generated Z-submodule of K (buy, .. ., bu, are linearly independent
over Q) and a subset of Dy;. O]

Lemma 2.19. Let D be an order in a number field K. An element o € D has characteristic
polynomial and minimal polynomial over Q with integral coefficients. In particular its norm
Nk /g(a) and its trace Spgjg(a) are integers.



2.3. RING OF INTEGERS 49

Proof. Let D be the ring of coefficients of the full finitely generated Z-submodule M with
basis {1,...,u,} (for example, M could be D itself). If & € D then au,;, with i €
{1,...,n}, belongs to M and then the matrix A = (a;;) associated to ¢, with respect to
the basis {p1, . . ., tn } of K has integral entries. It follows that det(A) and trace(A) are also
integers. Furthermore, the characteristic polynomial of o over Q has integral coefficients
and then « is an algebraic integer. It remains to prove that o has minimal polynomial over
Q with integral coefficients.

Let p(x) € Q[z] be the minimal polynomial of o over Q and let g(z) € Z[zx] a monic
polynomial having « as root. It follows that:

with h(z) € Q[z]. Suppose that p(z) does not belong to Z[z]. So one of its coefficients
is a rational number a/b with a,b € Z and gcd(a,b) = 1 and (b) # 1 . Let p # 1 be
a prime integer that divides b and suppose that p’ is the biggest power of p that divides
some denominator of the p(x)’s coefficients. Similarly, let p’ be the biggest power of p that
divides some denominator of the h(z)’s coefficients. Then:

P g(x) = ph(z)p(x) = (p'h(x))(p'p(x))

Now consider p"™g(z) and (p’h(z))(p'p(x)) in Z,: the left term has all the coefficients
equal to zero modulo p. Let z® be the biggest monomial of p(x) such that the denominator
by of its coefficient a; /b; is divisible by p’; let 2" be the biggest monomial of h(z) such that
the denominator by of its coefficient as /by is divisible by p’. Hence the coefficient of z"*¢

in (ph(x))(p'p(x)) is:

i1 4 Qe

P ety
with ag/bs,...,a./b. € Q. This coefficient is non-zero modulo p since the numerator of
P (ajag/bibsy) is not divisible by p while p™*7(a3/bs + - - - + ae/b.) is zero in Z,. This is a
contradiction. W

We denote by Ok the set of all the elements of a number field K such that their
minimal polynomial over Q have integral coefficients. From the last lemma it follows that
Ok contains every order of K.

Lemma 2.20. Let K be a number field. If a € Ok and its minimal polynomial over Q is
T 4 Cop1 8™ 1 + ¢ € Zl]
then the finitely generated Z-submodule M = {1,c,...,a™ '} of K is a ring.

Proof. For the distributivity of the product in K it is sufficient to prove that of belongs to
M for every positive integer £. We proceed by induction on ¢. For £ < m — 1 this is clearly
true and the same holds if £ = m (because o™ = —c,,_1a@™ ' —- .- —cja—cy € M). Finally,
if £ > m, for inductive hypothesis we have o = aa’™! = a(ag + aja+ -+ - + a,,_1a™ 1) for

some ag, . . ., am—1 € Z and hence of belongs to M. O
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Lemma 2.21. Let D be an order in a number field K and o an element of Ox. Then the
ring Djo] = {f(a) | f € D[z]} is an order in K.

Proof. 1t is obvious that D[a] is a ring in K (0,1 belong to K; it is closed under addition
and multiplication and it contains the opposite of each of its elements). Since D C D|a],
D]a] contains a basis of K, i.e. n linearly independent elements over the rationals numbers.
[t remains to show that D[] is a finitely generated Z-submodule of K. Let {wq,...,wy,}
be a basis for . If m is the degree of the minimal polynomial of o over Q, for the proof
of the Lemma we have that of = ag+ aya + -+ - + ayp_10™ ", with aq, ..., am_1 € Z,
for every positive integer . We can conclude that D[a] is a Z-submodule of K generated
by the elements wy, wia, ..., wi ™ L .. Wy, Weo, . .., wp™ L O
Corollary 2.22. Let D be an order in a number field K and o, ..., «, elements of Ok.
Then the ring D[ay, ..., o] = {f(c1,...,ap) | f € D[xy,...,2,]} is an order in K.

Proof. Tt follows from Lemma since we can proceed by induction on r using the fact
Dl ..., 1, 0] = Dlay, ..., ap_1][cv] O]

Theorem 2.23. Let K be a number field. The set Ok of all the elements of K whose
minimal polynomials over Q have integral coefficients is the maximal order in K, i.e. it
contains every order of K and is not properly contained in an another order of K.

Proof. Let D be an order in K (it exists: we can consider the full Z-submodule of K
generated by a basis of K and then take its ring of coefficients). Fix two elements a, 5 of
Ok. Since D[a, f] is an order in K for Corollary than it is contained in Ok (Lemma
2.19). So a — 3 and af belong to D[a, 3] and then to Ok. This proves that Ok is a ring.
It contains a basis of K because the order D, which is contained in Ok by Lemma [2.19]
does. It remains to show that Ok is a finitely generated Z-submodule of K.

Since char(Q) = 0 and K is a finite extension of Q, then K is a separable extension of Q.
Given a basis {w1,...,w,} for D we can consider the dual basis {w], ... ,w’}. We want to
show that the full Z-submodule D* of K generated by wyj,...,w’ contains Ok.

Let « be any element of the ring Og. Then o = ciwj + - - - + c,w;; with ¢y, ..., ¢, rational
numbers. For i € {1,...,n} we have Spg,g(w;i) = ¢; and w;a is obviously an element of
the order D[a]. But D[] is an order and then the trace of w;« is an integer, so ¢y,..., ¢,
are integers. Thus Ox C D*. Since Ok is an additive group, we have that it is a finitely
generated Z-submodule of K by Lemma Its maximality follows from [2.19] O

The maximal order Ok of a number field K is the ring of integers of K defined at the
beginning of the section: the algebraic integers of K are all and only the elements of K
with minimal polynomials over Q with integral coefficients.

The next step is to show that the ring of integers Ok of a number field K has K as
field of fractions (see Lemma 1.4 and Corollary 1.16 of [45]).

Proposition 2.24. Let K be a number field. Then its ring of integers Ok has K as field
of fractions.
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Proof. Since Ok is a subring of the field K| it is an integral domain. Let Q(Ox) be its field
of fractions and consider the map:

v: QO0k) — K
[(a,8)] = aB™!

First of all, ¢ is well defined because if (o, 5) and (¢, 5’) are in the same equivalence class
of the domain, then o’ = Sa’ and:

a= B (B)" = af™ = o(l(a, B)]) = ' (B) 7" = o([(c, B)])

We want to show that ¢ is a field isomorphism. If [(aq, 82)], [(a2, B2)] are two elements of
Q(Ok) then we have:

e([(ar, B1)] + [(az, B2)]) = o([(1 B2 + a2B1, B152)]) = (1B + a2 fr)(Brfa) ' =

B + 0! = pll(cn, B)]) + ({0, Bo)) (213)
ell(n, Bi)ll(o, B)) = p(l(enan, BiB]) = aroa(Bufe)™ = (B o) =, 10
o[(n, B ([(2, Bo)]) |

and ¢([(1,1)]) = 1. It remains to prove that ¢ is a bijection. For the injectivity, if [(aq, £1)]
and [(aw, B2)] have the same image, then:

B =By = ap = BBy = aufe = B = [(a1, 1)) = [(az, B2)]

Furthermore, every element v of K is a fraction of elements of Ok. In fact, ~y is an algebraic
over Q since K is a finite field extension of Q. Hence, there exists a monic polynomial
f(z) € Q[z] such that:

f) =a+ay+-+agy" +97=0

with ag, ..., aq_1 rational numbers. Let £ be the least common multiple of the denominators
of the rational numbers aq, ..., aq_1. So:

() + (Lag_1)(Ly) " 4+ (0" ay) (by) + (Pag =0

It follows that o = ¢+ is an algebraic integer and therefore v = a/¢ where o € Ok and
¢ € Z C Og. This concludes the proof. O

Before prove that the ring of integers Ok of a number field K is a Dedekind ring we
need one more preliminary results that will be used even in the following. For the next
two propositions we refer to [20, Exercixe 5.1],

Proposition 2.25. Let Ok the ring of integers of a number field K and I a non-zero ideal
of Ox. Then the quotient ring Ox/I is finite.
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Proof. Every non-zero ideal I of Ok contains an integer ¢. In fact, if « is a non-zero element
of I then there exists a monic polynomial p(z) € Z[z| such that p(«a) = 0:

apg+aa+ - +a, 12" +am =0

with ag, a1, -+ ,a,_1 € Z. Since [ is an ideal and Ok contains Z, then ag = —a;a — - - - —

ap_10™ 1 — o™ belongs to I. We consider the ideal of Ok generated by ¢: it is contained

in /. Therefore we can define the following map:

Bl = 6l

that is well defined because if two elements of Ok are equivalent modulo (¢) then they
are equivalent modulo I too. Obviously the map is surjective and hence, if the domain is
finite, then Ok /I must be finite too. Given 5 € Ok we have v = byjw; + - - - + b,w,,, where
bi,...,b, are integers and {wy,...,w,} is a basis for Ok as order of K. Then:

[Bligy = [brwr + - - - 4 bawn) ey = [b1]ioy[wr] gy + - -+ + [buliey [wnl )

If two integers are congruent modulo ¢ then they are in the same equivalence class modulo
(¢) and then

{[o1)eeys - -+ 5 [oaligy} S {0y, [Lieys - - -5 [€ = 140y }

So the cardinality of the domain is less than or equal to ¢". ]

The finite cardinality of Og/I, where I is a non-zero ideal of the ring of integers of a
number field K is called norm of I and is denote by N(I). Now we are able to show that
Ok is a Dedekind ring.

Proposition 2.26. Let Ok be the ring of integers of a number field K. Then:
1. Ok is Noetherian;
2. every nonzero prime ideal of Ok is maximal;

3. Ok is integrally closed (i.e. if v € K is a root of a monic polynomial with coefficients
in Ok then ~ belongs to Ok ).

Proof. 1) Suppose that there exists an infinite chain I C Io C --- C I, C --- of ideals of

Ok. Given a € Ok we have [a];, C [a];,,, for every natural number h. Hence

N(In) = N(In1)

Since Iy, is properly contained in Ij,,q, then Ok has at least two elements, one in Ij, 1 \ I,
and one in [, equivalent modulo /;,; and not equivalent modulo [;. Therefore

N(In) 2 N(Int1)
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This is a contradiction, because in the sequence
N(L) z N(ly) z - 2 N(Ip) Z -

every norm is greater then 0 and then the chain could not be infinite. Hence Ok is
Noetherian.

2)Let p be a non-zero prime ideal of Ok. Since Ok is an integral domain, the quotient
ring Ok /p is an integral domain. But every finite integral domain is a field and then p is
a maximal ideal.

3) Let v € K be integral over Ok, i.e. 7y is a root of a monic polynomial f(x) € Ok[z]. All
the elements of Ok are, by definition, integral over Z. We want to show that v is integral
over Z (we refer to [39, pag. 5|). For hypothesis there exist ag, aq,...,an_1 € Ok such
that

T Q)" Ty Fag = f(y) =0

with m natural number. This implies that Ox[v] = {g(7) | g(x) € Ok|[z]} is an Og-module
finitely generated. In fact, it is an additive subgroup of K and it is closed under multi-
plication by elements of Okg. Furthermore, from 7" = —a,, 7™ ! — -+ — a1y — o, we
can proceed by induction over the power of v to show that every positive power of 7 is a
linear combination, with coefficients in Ok, of 1,7, ...,7™ 1. Hence Ok[y] is generated by

1777""7m71'

Following the same ideas, we have that Z[ag, ..., am-1] = {g(a0, ..., m—1) | 9W0,- -+, Ym-1) €

ZYo, - - -, Ym-1]} is a Z-module and a subring of K. Since ay, ..., a,,_1 are integral over Z,
every power of ¢ is a linear combination (with integral coefficients) of a finite number of
powers of ;. This means that Z]ay, . . ., ay,,—1] is finitely generated. Obviously, 7 is integral
over Zlo, - .., Qpy—1] and then Z[ay, ..., an-1][7] is a finitely generated Z|ay, ..., pm_1]-
module (use what we have said for v integral over Ox). From Z[ao,...,an1]|[y] =
Zlag, ..., ap1,7] it follows that Z[ao, ..., ay,_1,7] is finitely generated.

To end the proof, we show that all the elements of Z[ay, ..., a,,_1,7] are integral over Z.
Suppose that p, ..., generate Z[ag, ..., am_1,7] and let € be an element of the module.
Since Z|a, . . ., 4m_1,7y] 1S a ring, €uy, . . ., €y belongs to it and so we have:

l l
ei = > cijity & Y (b —ci)u; =0 je{l,... 1}
1 =1

j=

with ¢;; € Z. The square matrix (ed;; — ¢;;) is singular (since sends (p1,..., )" in the
zero vector). In particular its determinant could be seen as a product of polynomials of
Z|z] evaluated in e. We obtain a monic polynomial (since the term of maximum degree is
obtained multiplying the elements of the principal diagonal, which are monic) of Z[x| that
evaluated in € is 0. This proves that e, and hence 7, are integral over Z. So v € Ok.
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2.4 Quadratic Fields

In this section with K we will denote a quadratic field, i.e. an extension of degree 2 of the
field of rational numbers. Our aim is to characterize the quadratic fields and their ring of
integers. For the following results, definitions and terminology we refer to Chapter 6 of
[11].

Theorem 2.27. All and only the quadratic fields K are that of the form Q(v/d) with d # 1
squarefree integer (i.e the square of each integer different from +1 does not divide d).

Furthermore, {1,7/d} is a basis for Q(+/d).

Proof. First consider Q(v/d) = {f(v/d) | f(z) € Q[z]} with d # 1 square free integer. To
prove that Q(v/d) is a field, we consider the minimal polynomial p(z) = 2® — d € Z[z] of
Vd over Q. Given some a = f(v/d) € Q(+/d), from the irreducibility of p(x) over Q[z] it
follows that there exist gi(z),g2(x) € Q[z] such that 1 = f(x)g1(z) + p(x)g2(x). Hence
ag1(v/d) = 1 and a as an inverse in Q(v/d). Now is evident that Q(v/d) is a Q-vector
space. It is generated by 1 and v/d: given (\/c_i)‘/, with ¢ € N, we can prove by induction on
¢ that (\/E)Z = ¢1 + ¢2V/d for suitable ¢y, ¢ € Q. Furthermore, 1 and v/d are independent
over Q since the minimal polynomial p(z) of a has degree 2. Hence {1,/d} is a basis of
the quadratic field Q(v/d).

Now consider a quadratic field K. An element 5 of K\ Q is algebraic over Q. Let
p(z) € Qlz], of degree n, be the minimal polynomial of 8 over Q. Since 8 ¢ Q, we
have n > 1. The set Q(3) is a Q-vector space that has {1,3,...,3" 1} as a basis. In fact
1,/,..., 3" ! are linearly independent over Q for the definition of minimal polynomial and
they generate Q(f) (since p(8) =0, " = —qp_18" ' — -+ — @18 — qo with ¢; € Q and so
we can prove, by induction on the exponent | € N, that every power /' could be written
as linear combination of 1,3, ..., 3"~ ! with rational coefficients).

But Q(p) is also a field:

e it is closed under product;

e Q(B) contains the inverse of each non-zero element. Given a = f(8) € Q(v/f), since
p(z) is irreducible over Q, there exist two polynomials ¢;(x), g2(x) € Q[z] such that
f(@)gi(x) + p(x)ge(x) = 1. Hence f(B)g1(B) = 1 and a has an inverse in Q(v/d).

Then we have [Q(3) : Q] = n and, from [K : Q(5)][Q(8) : Q] = 2, it follows that n = 2.
So [K: Q(B)] = 1, ie. K = Q(8).

We can now observe that 3 is a root of az? + bz + ¢ € Z[z] for suitable a,b,c € Z. So we

have:
= —b+ Vb — 4dac B —b+eVd B —b+eVd
- 2a N 2a - 2a

where b? — 4ac = e2d, with d squarefree integer, and the sign of £/ — 4ac absorbed by
e. Obviously d # 1 and e # 0 since § € K\ Q. So:

—b+e\/;l
2

K= {q + ¢ | q1,¢2 € Q} = Q(Vd) (2.17)
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]

If Q(v/d;) and Q(v/ds) are two equal quadratic fields, with d; and dy squarefree integers
different from 1, then:

2 2
Vo= 2+ 2 d = do+ (2y) — (2) di—22/d =0
b1 bg b1 b2 bl

with a; /by, as/bs € Q. Since 1 and /dy are linearly independent over Q we have:

and from this follows that

a)p = 0

(b2)2d2 = (a2)2d1
Therefore, since (by)? divides d; (ged(as,bs) = 1) and (ay)? divides dy we have (ap)? =
(b2)2 =1 and d1 = dg.

Given a quadratic field K, the unique squarefree integer d # 1 such that K = Q(+/d),
is called the radicand of K.

Definition 2.28. Let K = Q(\/E), with d # 1 squarefree integer, be a quadratic field. The
discriminant of K, denoted by A, is defined as:

_Jd d=1 (mod4)
- |4d d=2,3 (mod 4)

We observe that K = Q(v/A). When d = 1 (mod 4) this is obvious; in the other case
we have VA = 2/d. Clearly Q(v/d) = Q(2V4d).

In the light of Theorem we can compute the norm Ng g(c) and the trace Spgg(c)

of an element « of a quadratic field K = Q(v/d). We consider {1,/d} as basis of K. We
write o = ¢1 4+ ¢2v/d, where ¢, and ¢, are rational numbers. The matrix that corresponds
to the linear map ¢, : K — K respect to the fixed basis is:

q1 C]2d>
g2 ¢1

The determinant ¢i — (¢3)d and the trace 2¢; of the matrix are the norm N ,g(«) and the
trace Spg () respectively.
If we denote by @ what we called the conjugate of «o:

a=q—q@Vd (2.18)
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we have:
Nicso(a) = ¢i — (g3)d = ac (2.19)
Spxjo(a) =2¢ = a+@ (2.20)

Theorem 2.29. An element o of a quadratic field K = Q(\/E) s an algebraic integer if
and only if Nx g(o) and Spgg(c) belong to Z.

Proof. Suppose that a € K has integral norm and integral trace. If o € Z, it is obviously
an algebraic integers. If a belongs to K\ Z, for the proof of Theorem [2.27 its minimal
polynomial p(z) € Q[x] over Q has degree 2. So:

2+ D+ 2oy (2.21)
by ba

with a1 /by, as/bs € Q. Writing @ = ¢ + qQ\/E for suitable rational numbers ¢, ¢o, it is
immediate to verify that also @ is a root of p(z). Since @ # a we have:

pz) = (z —a)(z —a) =2° — (a + @)z + a@ = 2> — Spgg(a)r + Ng /o) (2.22)

Hence p(z) has integral coefficients and « is an algebraic integer.

Vice versa, suppose that « is an algebraic integer. If a belong to Z, its norm and trace
obviously are integers. When a € K\ Z, from the previous case we know that its minimal
polynomial p(x) over Q is equal to:

p(x) = 2° — Sprjo(a)x + Ng/g(a) (2.23)
But, by definition of algebraic integer, p(z) lies in Z[z] and so Nk g(c), Spk/o(a) € Z. O

Proposition 2.30. Let K = Q(\/E) be a quadratic field. The ring of integers Ok of K s
{a+bVd | a,beZ} ifd=23 (mod4) and it is {%ﬁ | a,b € ZNa=b (mod 4)} if
d=1 (mod 4).

Proof. The quadratic field K is equal to the set

S:{a—i_b\/a\a,be(@}

2

since K is generated by 1 and v/d. In the light of |2.19| and |2.20|, for an element v =
(a + bV/d)/2 of the quadratic field we have:

a+bvd a? — b4 a+bvd
NK/Q ( ) = y Sp]K/Q (— =a (224)

2 4 2
We want to show that v belongs to Ok if and only if a, b are integers and

a=b (mod 2) d=1 (mod 4)
a=b=0 (mod2) d=2,3 (mod4)



2.5. IDEALS OF A QUADRATIC FIELD 57

If a,b are integers with the above property, then Ng,g(v) and Spk/g(v) belong to Z and
then, in the light of Theorem v is an algebraic integer. This proves the sufficient
condition.

. . . .. 2_
Vice versa, if v is an algebraic integer then a, ¢

2 . . .
"4 ¢ 7 and also b?d is an integer, since

a? — bd B

b*d
4

a’ — 4

Furthermore, a? — b*d must be zero modulo 4. This forces a = b (mod 2) when d is
congruent to 1 modulo 4 and a =b =0 (mod 2) when d = 2,3 (mod 4). O

Corollary 2.31. Let K = @(\/E) be a quadratic field of discriminant A.
Define w as:

e A=1 (mod4)
\/§:\/8 A=0 (mod 4)

{1+\/Z_1+x/8
2~ 2
w =

Then we have that:
Ok =[l,w] ={a+bw|abecZ}

Proof. When d = 2,3 (mod 4), we have A = 4d, w = \/A/4 = v/d and Ox = {a +
bWd | a,b € Z}. Hence the result is clear. Suppose that d = 1 (mod 4). Then A = d,
w=(1++d)/2and Ox = {(a +bVd)/2 | a,b € ZANa =0b (mod 2)}. It is evident that
[1,w] C Ok. Vice versa, if (a + bv/d)/2 belongs to Ok then:

a+b\/3:a—b+b<1+\/a) € [,

2 2 2
since a, b are two integers with the same parity. ]

Civen a quadratic field K = Q(v/d), we have that {1,w} generates the maximal order
Ok of K. Furthermore, 1 and w are linearly independent over Q (since the same holds for
1 and v/d) and hence over Z. So {1,w} is a basis of the maximal order Ok and it is called
integral basis of Ok.

2.5 Ideals of a quadratic field

A non-zero ideal I of the ring of integers Ok of a quadratic field K is a Z-submodule of
Ok. For Corollary I is finitely generated. In particular, I is an order in K:

Proposition 2.32. Let K be a quadratic field and I a non-zero ideal of Ox. Then I
contains a basis of the Q-vector space K.
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Proof. Let {a1, s} be a basis of K. From the proof of Proposition follows:

i V2
=— ; = — 2.25
Qg ‘. Qo ‘s ( )
with 71,7 € Ok and {4, {5 € Z. Furthermore, we know that [ contains at least a non-zero
integer ¢ (see the prof of Proposition [2.25). Hence €0, a, ¢say are contained in I and they
form a basis for K since ¢/, and ¢¢5 are non-zero. O

Following [I1, Chapter 6|, we are going to show, by means of several smaller proposi-
tions, that a non-zero ideal I of Ok, with K quadratic field, has a unique basis, as order,
of the form {a,b + gw} where a,b,g € Z, a is positive, 0 < b < a, 0 < g < a and g divides
both a and b.

Theorem 2.33. Every non-zero ideal I of the ring of integers Ok of a quadratic field K
admits, as order, a basis {a,b+ gw} with a,b,g € Z, a positive, 0 < b < a and 0 < g < a.

Proof. Given a basis {aq, as} of the order I, we have:
ar=a1+biw ; as =as+ bw ai,by,a9,by € 7

We already seen (proof of Proposition [2.12)), that if we substitute a; with ay + tas (¢ € Z)
we obtain a new basis for I; the same holds if we substitute as with as+taq witht € Z. In
the light of the Euclidean Algorithm to find the greatest common divisor of two integers,
we proceed in this way:

1. bg = q1b1 +r with q1,71 € Z and 0 S r < bl. So:
ay =g — qroy = (ag — qray) + (b — @b1)w = (a2 — quay) +rw
If r1 = 0 then by = ged(by, by), if 71 # 0 we go further;
2. by = qar1 + 1o with g9, 79 € Z and 0 < ry < r1. Therefore
o) = ay — @y = (a1 — q2(az — q1a1)) + (b1 — @ari)w = (a1 — qa(az — qray)) + row
If o # 0 we return to the first step.

After a finite number of steps, we obtain a basis for I of the form {a,b+ gw} where a,b, ¢
are integers and g > 0 is the greatest common divisor of b; and by. We can assume b; and
by positive since we can change the signs of a; and «as. For the same reason we can assume
a > 0. We can also divide b by a obtaining b = ga + r, with ¢, € Z such that 0 < r < a,
and a new basis {a,b+ gw — qa} = {a,r + gw}. So, in the basis {a,b + gw} we suppose
0<b<a.

Now, aw belongs to I, so aw = aly + (b + gw)ls, for suitable integers ¢, f5. For the linear
independence of 1 and w over Z, we have a = gf5 and hence 0 < g < a. This completes

the proof.
]



2.5. IDEALS OF A QUADRATIC FIELD 29

Proposition 2.34. Let I be a non-zero ideal of the ring of integers Ok of a quadratic
field K and {a,b+ gw} a basis of the order I, with a,b,g € Z, a positive, 0 < b < a and
0 < g < a. Then every integer m that belongs to I is a multiple of a. In particular a
divides Ngg(b+ gw).

Proof. If the integer m belongs to I, it could be uniquely written as a linear combination,
with integral coefficients, of the elements of the basis {a,b + gw}:

m:a€1+£2(b+gw):>(a€1+b€2—m)+g€2w:() fl,EQEZ

Since 1 and w are linearly independent over Z it follows ¢5 = 0 (g is non-zero). This implies
m = afy. So m is a multiple of a.

Now, it is easy to observe that b+ gw = b+ gw. Since W belongs to the ring Ok (see
Proposition , then also b + g belongs to Ok and the integer Ng,q(b + gw) = (b +
gw)(b + gw) is an element of I. So a divides Nk q(b+ gw). O

Proposition 2.35. Fvery non-zero ideal I of the ring of integers Ok of a quadratic field
K admits a unique basis {a,b+ gw}, as order, with a,b,g € Z, a positive, 0 < b < a and
0<g<a.

Proof. For the existence of the basis we refer to Proposition 2.33] For the uniqueness,
suppose that {a’,0' + g/w} is another basis of I that respects the conditions of the claim.
Since a divides o' and vice versa, we have a = @’. Furthermore, b’ + g'w = al; + (b+ gw)ls
for suitable integers /1, {5 and, since 1 and w are linearly independent over Z, we have that
g divides ¢’. Analogously we can obtain that ¢ is a multiple of ¢’ and so g = ¢’. Using
b 4 gw = aly + (b+ gw)ls, it follows b’ — b = af; since £ must be 1. But b and V' are both
less then a, so /1 must be zero. ]

Theorem 2.36. FEvery non-zero ideal I of the ring of integers Ok of a quadratic field K
admits, as order, a unique basis {a,b+gw} with a,b,g € Z, a positive, ) < b <a,0 < g<a
and such that g divides both a and b.

Proof. In the light of the previous proposition, I admits a unique basis {a,b + gw} with
a,b,g € Z, a positive, 0 < b < a, 0 < g < a. We have to prove only that, for this basis, g
divides a and b. Let m be the greatest common divisor of @ and g. For the Bézout identity,
there exist two integers /1, {5 such that al; + gl = m. From:

alwel = aliw+ (b+ gw)ly =mw+ bly = ar + s(b+ gw) (2.26)

(with 7, s suitable integers) it follows that m = sg, i.e. g divides a.
On the other hand, since w? = ¢} + tyw for ¢}, ¢} € Z, we have:

(b+gwwel = bw+gll]+lw)=gli+ b+ gly)w=ar + s (b+ gw) (2.27)

with r/, s" integers. Hence gs’ = b+ g{,. Hence g divides b. ]
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The basis {a, b+ gw} of the non-zero ideal I C Ok of the previous Theorem is called
canonical basis of I. This basis is the one that we have find, starting from a generic
basis {aq,as} of I, in the proof of Theorem . Using the canonical basis we can easily
compute the norm of I. The results proved in the last part of the section follow [42].

Theorem 2.37. Let I be a non-zero ideal of the ring of integers Ox of a quadratic field
K. If {a,b+ gw} is its canonical basis, then N(I) = ag.

Proof. We want to show that the set 7 = {r+sw |0 <r <a,0 <s < g} contains exactly
one representative for each class of Ok /I. Let {1 + low, with 1,05 € Z, be an element of
Ok. Dividing ¢5 by g we obtain ¢, = ¢;g + 1 with ¢,7 € Z and 0 < r; < g. We have:

O+ lw—q(b+gw) =0 —qb+rw (2.28)

and hence ¢y + low = ¢} + riw (mod I) since ¢1(b + gw) belongs to I. Now divide ¢| by
a: U} = qga + 1o with go,79 € Z and 0 < r9 < a. Then ¢} + riw = ro + rw (mod I) with
To + 1w € T

Now, suppose that the elements r + sw,r’ + s'w of T are equivalent modulo I. Then
r—1"+ (s — s')w belongs to I and s — s is divisible by g. This implies s = s’ and r — 7
multiple of a. Sor =" and r + sw =1’ + sw. ]

If {a,b+ gw} is the canonical basis of a non-zero ideal I C O, with K = Q(v/d)
quadratic field of discriminant A, setting a; = a and ag = b+ gw we have:

ozlag\/—zozlozg _ ag(c\u/i w) (2.29)
In the light of Corollary we can compute:
B %—#:\/Z A=1 (mod4)
w_w:{\/§+\/§:\/z A=0 (mod4)
So: o o
S = Jagl = ag = NUT) (2:30)
Now suppose that {a;, as} is a generic basis of the order I. We have:
ap=a1+biw ; ay=ay+bw ai,bi,a0,by €EZ
from which follows
O‘_lo‘vzala_z O a\z/%l)(w =9 ayby — ashy] (2.31)

If we substitute oy with o) = a; + tay (t € Z) as in the proof of Theorem we obtain

that: o o
Q10 — Qg

VA

(04_1 + tOé_z)OZQ — (Oél + tOZQ)a_Q

VA

(2.32)
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The same holds if we substitute ay with of, = as + tay (t € Z) and if we change the signs
of ay and ay. With elementary transformations of this type, from {ay, s} we arrive to
the canonical basis. This implies:

= N(I) (2.33)

A second way to compute the norm of a non-zero ideal I of Ok, with K a quadratic
field, uses the conjugates of the elements of K. Define I as:

I={a|lael} (2.34)
It is easy to observe that:
e ] contains 0;
e if a7 and @, belong to I then @7 + @3 = oy + as belongs to I;
o ifa e then —a=—q;
e if 3 belongs to Ox and @ € I, we have B_cy =Bacl
since the map
K — K
a = o

is an involution, linear over Q and such that the conjugate of the product of two elements
is the product of the conjugates. Hence, I is a non-zero ideal of Ok.

Proposition 2.38. Let K = Q(Vd) be a quadratic field. If T is a non-zero ideal of O,
then II is a principal ideal generated by an integer.

Proof. Let {ay, s} be a basis of the order I. It is obvious that I = (a1, as) and I =
(a7, a5). Therefore:

IT = {ayan, q @, Grag, axti) = (Ngjg(aq), arde, aras, Ngjg(az)) (2.35)

Consider the ideal of Ok generated by Nk, g(o1), Spr/g(0n@z), Nk/g(az), that are integers
by Theorem If f € N is their greatest common divisors, then

(f) € (Ngjolar), Spkg(anaz), Ngjg(az))

for the Bézout identity. Actually, the equality holds, since f divides each of the three
generators.
If we define v = aya/ f, we have ¥ = ajas/ f and

Nejol) = NK/@(al}JQ\fK/@(%) . Sprje(y) = M (2.36)
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for the linearity of the map Spk . This implies that v belongs to Ok and then f divides
both a1y and oy, Then:

Nijg(on) aqaz aras Ngjglaz)
f 2 f 7 f

Observing that ?c(al), 5px/ Q}alaﬁ), Ney Q]%(QZ) are relative prime an ; = o .

for the Bézout identity we obtain 1T = (f). O

IT = (f)( ) (2.37)

d Sp]K/Q(C”T?) _ a1a2+a1a2

Lemma 2.39. If a rational number is an algebraic integer, then it belongs to Z ([11,
Proposition 6.4]).

Proof. Every integer is an algebraic integer. Vice versa, suppose that the algebraic integer
(a/b) belongs to Q\Z (i.e. gcd(a,b) =1 and |b| # 1). There exist ¢, 1, ..., Cm_1 € Z such
that:

(;)m e (%)m‘l et =0 (2.38)

If we multiply both terms by 4™ we obtain:
a™ + Cp1a™ 4 4 cpab™ !t 4 g™ =0 (2.39)
that implies bla™. This is a contradiction because for hypothesis a and b are coprime. [

Theorem 2.40. Let I be a non-zero ideal of Ok, with K quadratic field K. Then I is a
principal ideal generated by an integer f such that |f| = N(I).

Proof. Let {a,g(t' + w)} be the canonical basis of /. We have seen that N(I) = ag and
that I is principal, generated by an integer f. We want to show that |f| = ag. We have:

IT = (a*,ag(t) + W), ag(t + w), ¢° N o (V' + w)) (2.40)
We observe that g(b' +w)(b'+@) belongs to I. But g(b'+w)(¥ +w) is equal to gNg o (b’ +w)
that lies in I NZ. So it is divisible by a and we have:

17 = (aghle, ¥ +B), (1 +w), %NK/Q(b’ +w)) = (ag)J (2.41)

with J non-zero ideal of Og. Using the properties of the ideal group I(Ok), we obtain
(f/ag) = J. So J is a prm(;lpal ideal and f = f/ag is an integer since it is an algebraic
integer (see Lemma . Obviously f must divide every element of J. In particular there
exist ¢1, /5 such that b'—l—w = f(at, + gV +w)). So we have flyg =1 and hence f = +1.
Now we can conclude: f = =+ag. [

The last theorem allows to obtain two important properties of the ideal norm:
Theorem 2.41. Let K = Q(\/d) be a quadratic field. Then:
1. if I and I are non-zero ideals of Ok, then N(I11y) = N(I,)N(l2);
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2. if a is a non zero element of Ok, then N(Oxa) = |NK/Q(a)’.

Proof. 1) From Theorem [2.40, we know than N(I;1) is the absolute value of the integral
generator of the principal ideal I11511 5. Sin(ﬂhe conjugate gf a_product of elements of
K is the product of the conjugates, the ideal I1; is equal to (I;)(/3). Hence:

LILIT, = L1 LI, = Ok fifz (2.42)

with |f1’ = N(]l) and ’f2| = N(Ig) So N(Ilfg) = |f1f2’ = N(]l)N(IQ)
2) Given the principal ideal I = Oga we have:

]T = OKOéa = OKNK/Q(CY) (243)

and N(I) = | Nk g(a)|. O

2.6 Narrow ideal class group and form class group

Let K = Q(v/d) be a quadratic field. We consider the ideal group I(Og) of the Dedekind
ring Ok. The principal fractional ideals of Ok form a subgroup P(Ok). We can define a
subset PT(Ok) of P(Ok) composed by the principal fractional ideals of Ok generated by
elements of positive norm. Obviously the set contains O, the identity of the multiplication.
For the multiplicativity of the norm, this set is also closed under multiplication and contains
the inverse of each of its elements. So it is a subgroup. We call narrow ideal class group
the quotient group C(Ok) = I(Ok)/P(Ok). Two fractional ideals of Ok that lie in the
same equivalence class of CT(Ok) are said narrowly equivalent.

When d is negative, the norm of any non-zero element of K is positive and then P*(Ok) =
P(Ok). When d is positive, the norm of the elements of K could be positive or negative.
Let € be a unit of Ok, i.e. an element of the Dedekind ring that has inverse in Ok, and
vOk a principal fractional ideal. Then it is easy to observe that yOx = veOk. If there
exists a unit of norm —1, every principal fractional ideal is generated by some element of
K of positive norm. Hence, also in this case we have the equality:

P(Ok) = P (Oxk)

When such a unit does not exist, an equivalence class [I] € C(Ox) of the ideal class group
contains two classes of equivalence of CT(Ok): one of the fractional ideals of the form ~7
with v € K of positive norm and one the fractional ideal of the form v/ with v € K of
negative norm.

If the quadratic field K has discriminant A then the narrow ideal class group C*(Ok)
and the form class group C(A) are isomorphic. This allows to define the class number
hk of K: it is the finite cardinality of C*(Ok), equal to ha. In particular, the following
result holds (|11, Theorem 6.20)):
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Theorem 2.42. Let K = Q(\/c_i) be a quadratic field of discriminant A. Given an equiva-
lence class of CT(Ox) and a non-zero ideal I of O contained in it, if {a1, a2} is a basis
of I (as order) with Gy — aq @z positive integer or positive imaginary then

(a1 + aoy)(ar + azy)
N(I)

[l y) = (2.44)

s a binary quadratic form of discriminant A. The form f is positive defined if A < 0.
This correspondence naturally induces an isomorphism VU between the narrow ideal class
group C*(Ok) and the form class group C(A).

The rest of the section will be devoted to the proof of this fundamental result. First
of all, we have to show that the map ¥ from C*(Ok) to C(A) naturally induced by the
correspondence between ideals and quadratic forms is well defined.

We start observing that every fractional ideal J of K is narrowly equivalent to a non-
zero ideal I of Og. If J is principal and generated by an element of positive norm, it is
narrowly equivalent to Ok. If J is generated, as Og-module, by the elements 7, ..., n, of
K, then for the proof of Proposition we have n; = «;/0;, with a; € Ox and {; € Z, for
every i € {1,...,r}. Setting £ = {; ---{,., we have that the product of the fractional ideal
generated by ¢ and J is a non-zero ideal I of Ok, that is narrowly equivalent to J.

The second step is verifing that f(x,y) is a binary quadratic form of discriminant A.

We observe that:

(1z + agy)(are + ay)

flr,y) = N -

_ Nijglan)2? + (Nijglon + a2) — Ngjg(ar) — Njg(az))zy + Nkjglaz)y?

N(I

Since N (/) divides the norm of any element of /
Furthermore, we have that:

~—~

— —

Theorem [2.40)), f(x,y) belongs to Z|x, y].

Q10 — Qi Qp Q10 — Qi Qp
= = N(I 2.45
A A (1) ( )

for the hypothesis on the basis and for Hence, the discriminant of f(z,y) becomes:

1
N(1)?

1
N(I)?

5 (10 + @an)? — dagaagtn) = (g — cn@p)® = N(I)’A=A

N(I)
It is clear that f(z,y) is primitive: every binary quadratic form (a,b, ¢) of discriminant A
is primitive. In fact, if a prime p € Z divides a, b and ¢ then A is a multiple of p?>. But A
is squarefree, so p could be only 1 or —1.
If A is negative, the norm of any element of the quadratic field is positive. Hence the
coefficient of 2% in f(z,y) is positive and f(z,y) is positive definite.
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To be sure that U is well defined it remains to prove that the image does not depend on
the basis of I and on the non-zero ideal of Ok chosen as representative of the class. Let
{a1,as} and {5y, B2} be two basis of the ideal I C Ok seen as order of K. We have:

(o) = (o o) () -
()= () (o) .

where the b;;’s ar integers. Since every element of I could be uniquely written as a linear
combination, with integral coefficients, of the elements of a basis, we have that the product
of the matrices A = (a;;) and B = (b;;) must be the identity matrix. So

det(A) = det(B) = £1

with a;; € Z. Vice versa:

If we suppose that ajas — s and (18, — 1 B2 are positive integers or positive imaginary
(as requested by the claim of the theorem) then we obtain that det(A) and det(B) must
be equal to 1 since

1o — oz = (1099 — a12a21)(Eﬁ2 - 51@)

Usingandwe obtain that the form that corresponds to I using the basis {1, 52} is
properly equivalent to the form associated to I using the basis {ay, as}: the transformation
matrix is precisely the transpose of B.

Now suppose that I and J are two narrowly equivalent non-zero ideals of Og. Then, there
exists v € K, of positive norm, such that v/ = J. Hence, if {ay, s} is a basis of the order
I, with a7as — ajas positive integer or positive imaginary, we have that J is generated,
as Z-module, by va; and yay. They form a basis of the order J and Jyayyas — yayas is
a positive integer or a positive imaginary, since v has positive norm. The quadratic form
that correspond to J respect to the basis {yay,yas} is:

(yaryon)z? + (yoayan + yaryaz)zy + (yaryaz)y?
N(J)

Observing that N(J) = v7N(I) (Theorem [2.41)) we can easily deduce the equality with
the form corresponding to I respect to the basis {ay, as}.

(2.48)

The next step is to demonstrate that W is bijective. We refer to [31, Theorem 13.1] for the
surjectivity and to [?, pag. 192| for the injectivity. We start proving that every quadratic
form (a, b, c) of discriminant A corresponds to some non-zero ideal of Og. Consider the

Z-module I generated by a and %Z. Since A = b (mod 2), the module is contained in
Ok by Proposition 2.30] In particular we have:

b+\/z_ bliw d=1 (mod4)
2 b+w  d=2,3 (mod4)
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From the linear independence of w and 1 over Z it follows that a and %Z form a basis
for I. To show that I is an ideal of O it is sufficient to show that w multiplied by the
generators of I gives two elements of I. We have:

1 (mod 4)
=2,3 (mod 4)

and

b+ VA L (1—“’)(1’*71+w)+2d77b2:(17b)(b*71+w)—ac d=1 (mod 4)
2 b +d-% =%t+w)—ac d=2,3 (mod 4)

since A = b% — 4ac. If a is positive, the norm of I is:

N(I)z‘(ab_'_\/z—ab_\/z) /\/Z

) ) — ‘(m/Z) /\/Z‘ —a (2.49)

and then its correspondent quadratic form is:

(ax + %Zy)(ax + #y)

a

= az® + bry + cy? (2.50)

If a is negative the form (a, b, ) is indefinite, so A is positive. Consider the ideal I’ = (v/A)T
which has {aV/A, MTJ’A} as a basis. The norm of I’ is:

| (ngTw . M%) (WA

and the quadratic form associated to I’ is:

(a\/Zx + MTJFAy)(—a\/Zx + M#y)
—al\

- ‘(—aA\/Z)/\/Z ——aA  (251)

= az® + bry + cy? (2.52)

This proves the surjectivity of W.

For the injectivity, if to two non-zero ideals I, J of Ok of basis (as orders) {aj, a2} and
{1, P2} respectively, correspond properly equivalent forms f(x,y), g(z,y), we want to
prove that I and J are narrowly equivalent. We have:

(B2 + Boy) (Biz + Boy)
N(J)

(qx + agy)(aqz + azy)
N(I) ’

flz,y) = (2.53)

g(z,y) =

For hypothesis there exist four integers r, s, ¢, u such that f(rx + sy, tx + uy) = g(x,y)
and ru — st = 1. So:

(Brz + Boy) (Prx + Boy)
N(J)
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((rag + tag)x + (sa1 + uas)y)((rag + tas)z + (sag + uaiy)
_ (2.54)
N(I)
Since g(w, 1) has at most two roots in KK, we have that —(sa; + uas)/(ra;y + tas) is equal
to —f/P1 or to —[5/ 1. Hence there exists a non-zero element v of K such that

rog +tag =61 ,  say+ ag =y (2.55)
or o o
ray; +tag =6,  say+ ag =y (2.56)
Substituting these relations in the equality in both cases we obtain:
N(I)
¥y=—-+>0 2.57

But this implies that only holds, for the other equalities we have a contradiction:
61782 — vB17 P2 = —vV(BrfB2 — B1P2) = (ru — st)(aqas — ona) (2.58)

since we suppose that for the basis {a1, as} and {81, 52} hold the conditions of the claim.
From ru — st = 1 it follows that {1,782} is a new basis for the order I. So I = [yf,v[s]
and then

I=(Ox)J (2.59)

with v € K of positive norm. This means that / and J are narrowly equivalent.

Finally, we want to show that ¥ is a group homomorphism [I7, Chapter 13]. We start
proving that ¥ sends the identity of C*(Ok) in the identity of C(A). The identity of
C*(Ok) contains the maximal order Ok of K. Its canonical basis is {1,w} (see Theorem
[2.36)). Since N(Ok) = 1, the form associated to Ok is:

2 + (w4 w)zy + wwy? (2.60)

When A =1 (mod 4) we have w+w = 1 and ww = (1 —A)/4. So the obtained form is the
principal form of discriminant A (see [1.6). When A =0 (mod 4), we have w + @ = 0 and
ww = (—A)/4. Even in this case, the computed form is the principal form of discriminant

A (see[L.5).

In order to prove that W respects the product, we consider two non-zero ideals of Ok,
I and Iy, to which correspond, respectively, the quadratic forms fi(z,y) and fo(z,y).
The form fi(x,y) represents properly some positive integer both for positive and neg-
ative discriminant A. By Propositions and Proposition [I.16 there exist two forms
(a1,b1,¢1), (az, by, cz), properly equivalent to fi(x,y) and fo(x,y) respectively, with ay,
ay coprime positive integers. If their Dirichlet composition is the form (ajaq, B, '), with
C = (B* — A)/4ajas, by Lemma we have that fi(x,y) is properly equivalent to the
form Qi(z,y) = (a1, B,a2C) and fo(z,y) is properly equivalent to the form Qq(x,y) =
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(ag, B,a;C). Using what we have seen about the surjectivity of ¥, we can deduce that
Ji = [a1, (B ++V/A)/2] and Jy = [ag, (B 4+ vA)/2] are two non-zero ideals of Ok to which
correspond the forms Q1(z,y) and Qz(x,y) respectively. Furthermore, for the injectivity
of ¥ we have that I is narrowly equivalent to .JJ; and that I is narrowly equivalent to Js.
The algebraic integer A = (B + v/A)/2 is such that:

B> A BVA B? B\/ B2 A BvVA
2 [ — J— [ J— [ — —_ e — JE— [
A= 1 -+ 1 -+ 5 N BA a1a20 2 5 alagC A + 4 9 (261)
that means
M = B\ — aja,C (2.62)

Given ay = a1x1 + Ay € Jp and an = asxs + Ay € Jo, with x1, 2o, y1y2 € 7Z, using relation
we obtain:

a1y = araz(r129 — Cyrye) + Marz1yz + azzoys + Byiys)
and so, setting x3 = x119 — Cy1ys2, Y3 = A1T1Y2 + a2y + Byiy., we can write
Q1 = a1aT3 + \y3  T3,Y3 € Z

So JyJy is contained in the Z-module M = [ajaq, \| generated by ajas and A\. On the
other hand M is contained in J;J5. In fact, J;Jy contains ajas, a1\, asA and so X\ € J;J,
(we can use the Bézout identity since a; and ay are relatively prime). So JiJo = [ajas, A].
Obviously, ajas and A are linearly independent over Z, so they form a basis for M. Since
a1as\ — ajas\ is equal to arasyV/A with ajas > 0, the ideal J;.J> has norm a;as for equation
[2.33] So, the quadratic forms that corresponds to J;J; is:

(a1a27 + Ay)(a1asw + Ay)  (a102)?2* + agaz (X + X)zy + Ay
a1ao B a1G2

= aia22% + Bzy + Cy?

that is the Dirichlet composition of Q1(x,y) and Qy(z,y).
In conclusion, ¥ maps the product [[1][I5] € C*(Ok) in ¥([{1]) o U([L3]).



Chapter 3

Solving representation problems via
elliptic curves

In Chapter 1 we have seen a way, based only on the theory of integral binary quadratic
forms, to solve the representation problems for an odd prime p and a discriminant A when
A is not a perfect square.

If we suppose that A is the discriminant of a quadratic field K = Q(\/g), in the view of
the correspondence between the form class group C(A) and the narrow ideal class group
C*(Ok) seen in Theorem [2.42] a suitable use of the Class field theory and the elliptic
curves over a finite fields leads to our alternative method to solve representation problems.
This method concerns the cases of negative fundamental discriminant A and of small class
number. Before starting the description of the method, we summarize few results, not
mentioned in the previous chapters, about the tools we are going to use. The first step is
the introduction of the notion of Hilbert class field of a number field. For the terminology
used in the next section we refer to [20).

3.1 Hilbert class field

Let L be a finite extension of a number field K.
Given a non-zero prime ideal p of Ok, by Theorem [2.8 we have that :

pOL = BS' -+ B

where 9B,,...,B, are distinct non-zero prime ideals of O, containing pOr, and ey,..., ¢4
are positive integers. We say that p ramifies in L if at least one of the e;’s is bigger than
one; p is unramified in Life; =--- =¢, = 1.

Usually a prime ideal of Ok is called finite prime ideal of K. This name is due to
a second type of prime ideals of K: the infinite prime ideals. A real infinite prime ideal
of K is a field homomorphism ¢ : K — R; a complex infinite prime ideal of K is a
pair of complex conjugated field homomorphisms 0,7 : K — C with ¢ # @ (0 and @ could

69
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be equal: this happens in the case that Im(o) C R).

Given an infinite prime ideal o of K, we say that ¢ ramifies in L if it is real and there
exists a complex infinite prime ideal & of IL such that ojx = 0. Otherwise, we said that o
is unramified in L.

Definition 3.1. A finite extension IL of a number field K is said unramified if each prime
wdeal of K, finite or infinite, is unramified in L.

It could happen that a given number field has unramified extensions of arbitrarily high
degree. But if we ask for unramified abelian extensions, there is a maximal one:

Theorem 3.2. Given a number field K there exists a finite Galois extension I of K such
that:

1. L is an abelian and unramified extension of K (abelian means that the Galois group
Gal(L/K) is abelian);

2. any unramified, abelian, Galois finite extension of K is contained in L.
Proof. See |20, §8|. O

The extension L of the last theorem is called Hilbert class field of the number
field K. The next lines will be devoted to show the properties of the degree [L : K] when
K is an imaginary quadratic field Q(v/d), i.e. d is negative.

Lemma 3.3. Let K C L be two number fields, with . Galois extension of K, and let p be
a non-zero prime ideal of Ok that is unramified in L. If B is a non-zero prime ideal of O
containing p there exists a unique automorphism o € Gal(LL/K) such that o(a) = a™N®)

(mod B) for all a € O, where N(p) is the norm |Ox/p|.
Proof. See |20, Lemma 5.19| O

This lemma holds for every non-zero prime ideal p of Ok when L is the Hilbert class field
of K. The unique automorphism o is called the Artin Symbol and it is denoted by (L/TK).

Consider a non-zero prime ideal p of the ring of integers Ok of a number field K. Given a
finite extension L of K and a non-zero prime ideal 26 of O, that contains p, the map

v: Og/p — OL/B
e~ €

is an homomorphism of fields. In fact, it is well defined (B contains p and so two elements
of Ok equivalent modulo p are also equivalent modulo 8) and clearly respects sum and
product. Therefore Im(yp) is a subfield of O /B, so Ok/p could be regarded as subfield
of the finite field Op/%B. The natural number fy, = [OL/B : Ok/p| is called inertial
degree of p in ‘B.
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Corollary 3.4. Let K C L be two number fields, with I Galois extension of K and p prime
ideal of Ok unramified in L. If B is a prime ideal of Or, containing p then:

1. if o € Gal(L/K) then (%) _ (%K) o1

2. the order of (%K) in Gal(L/K) is fg)p = [OL/B : Ok/p].

Proof. See [20, Corollary 5.21] O

Suppose that the Galois extension L of K is abelian. Fixed a non-zero prime ideal
p C Ok unramified in L, Gal(L/K) acts transitively on the prime ideals of Oy, containing
p [20, Theorem 5.9]. So, given two prime ideals of Oy, containing p, B and B’, there exists
o € Gal(L/K) such that B’ = ¢(B). Then, for point 1 of the last Corollary and the
hypothesis of abelianity, we have:

(#)-Ga) - (&)-(%) o

In this case, the Artin Symbol could be written as (H‘/TK), since it does not depend on B but

only on p. Furthermore, from point 2 of the last Corollary and the equality (L/TK) = (%—F)
it follows fo,, = fa//p, i.e. the inertial degree of p over a prime ideal B of Oy containing
it does not depend of ‘B but its the same natural number, that we will denote by f,, for
every ‘B.

The observations of the above lines hold when L is the Hilbert class field of K.

When IL is an abelian extension of K, we can define the Artin symbol for every frac-
tional ideal of Ok. Let I(Ok) be the ideal group of Ok and a one of its elements. By
Theorem 2.9 we have: )
a= H P
i=1

where the p;’s are distinct prime ideals of Ok and r; € Z. The Artin symbol for a is:
(L/K) B H (L/K)“’
a 1\ P

This allows to introduce the Artin map:
(%) . I(Ox) — Gal(L/K)
c ()
L/K

where <O_K) = Idy, for convention. It is clear that the Artin map is an homomorphism

of groups (it respect the product: the prime factors decomposition of a fractional ideal is
unique).
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Artin reciprocity theorem for the Hilbert class field. Let L be the Hilbert class field
of a number field K. The Artin Map (H“/—K> is surjective and its kernel is P(Ok). Thus the

Artin map induces an isomorphism between Gal(L/K) and the ideal class group C(Ok).
Proof. See [20, §8|. O

The second part of the Artin reciprocity theorem follows from the first isomorphism
theorem for groups. In particular the isomorphism is:

v: C(Ox) — Ga(L/K)
W e (%)
Assuming that L is the Hilbert class field of a number field K, we can deduce that:

e given a non-zero prime ideal p of Ok and a prime ideal 8 of Op containing p, the
inertial degree f, is equal to the order of ((L/K)/p) in Gal(L/K) and then to the
order of [p] in C(Ok);

e when K is an imaginary quadratic field Q(v/d), i.e. d is negative, C'(Ok) is equal to
C*(Ok). Then, by Theorem we have that C(A), with A discriminant of K, is
isomorphic to Gal(L/K). Hence the degree of L over K is the class number hx of K
(see Section 2.6). In fact, the Hilbert class field of K is a finite Galois extension, i.e.
L : K] = |Gal(L/K)|.

Since K and Q have both characteristic 0, the Hilbert class field IL of K is separable over
K and over Q (|19, Proposition 5.3.7]). So we can apply the primitive element theorem
(J19, Theorem 5.4.1]) to deduce that:

e L = Q(«) for some o € L. The minimal polynomial over Q of « will be denoted by
Hy(2);

e there exists 7 € L such that L = K(v). The minimal polynomial of v over K will
be denoted by hx(z) and called Hilbert class polynomial of K. In particular, if
K is an imaginary quadratic field, hx(x) has degree hx and integral coefficients |20,
Proposition 5.29].

Furthermore, for the Principal Ideal Theorem (see [14, p.157]), every ideal I of Ok is
principal in O, i.e. IOy is a principal ideal of the ring of integers OL.

Finally, given a prime ideal p of Ox and its prime factorization B{ --- B¢’ in O, we
have e; = --- = ¢, = 1 since L is an unramified extension of K. If we denote by f, the
inertial degree of p in B; (recall that the inertial degree depends only on p), from [20)
Theorem 5.8] it follows that f,¢g = [L : K] and hence g = [L : K]/ f,. As observed before,
fy is the order of [p] in C'(Ok).
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3.2 Elliptic curves with Ox as endomorphism ring

Let L be a number field. The equation of an elliptic curve E(LL | jo), defined over L and of
J-invariant jo € L\ {0, 1728}, is [58, pag. 47]:

v 172?;j0— o T 1722j0— Jo (3.2)
The elliptic curve defined over I with j-invariant 0 has equation
=2 +1 (3.3)
while the elliptic curve defined over IL with jo = 1728 has equation
=2+ (3.4)

In the last two cases the coefficients of the equations belong to Q.

Assume that 8 is a non-zero prime ideal of Op. Since the field of fractions of O is
L (see Proposition [2.24), the coefficients of E(L | jo) are fractions of elements of Op. If
their denominators do not belong to B, then we can consider the equivalence classes of the
coefficients of E in the finite field Op/%B. In this way we obtain a cubic curve E defined
over a finite field. If it is non-singular, then it is an elliptic curve and in the literature (|20,
pag. 317|) it is called reduction of E modulo B and it is also said that E has good
reduction modulo ‘B.

Adapting Deuring’s results we can deduce the following Theorem [47].

Theorem 3.5. Let K = Q(v/d) be an imaginary quadratic field (i.e. d is negative), O its
ring of integers and 1L its Hilbert class field. Given a prime integer p and a prime ideal B
of Ov that contains p, we have Op/B = F,r with f € N. If E(L | jo) is an elliptic curve
that has good reduction modulo B and endomorphism ring Endc(E) equal to Ok, there
exists m € Ok such that:

o p/ =77;
. ‘E(pr)‘ =p/+1— (7 +7).
where T s the conjugate of m in K.

The natural number f of the theorem is the inertial degree of the prime ideal (p) of Z
over B, i.e. f=[0L/B :Z/(p)]. In fact, B NZ is a prime ideal of Z so it contains only
one prime integer. By hypothesis B lies over p, hence the unique prime integer contained
in B is p. Therefore, the cardinality of Op/%B is p’ since one of its basis (as Z/(p)-vector
space) has f elements and the field of scalars has p elements. So we have p/ different linear
combinations.
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The elliptic curves E(L | jo) having Ok as endomorphism ring, with L. Hilbert class field
of the imaginary quadratic field K, are all and only those with j, root of the Hilbert class
polynomial hx(x) (see [47, Theorem 6.10]).

Via Theorem it is possible to set a correspondence between elliptic curves and bi-
nary quadratic forms. Let K = Q(v/d) be the imaginary quadratic field of the theorem,
with d < 0 square-free integer. We recall how the discriminant A of K was defined (Defi-

nition [2.28)):

4d d=2,3 (mod 4)
Furthermore the ring of integers O is the order [1,w] (Corollary [2.31]) where:

A:{d d=1 (mod 4)

#z%ﬁ A=1 (mod4)

w =
\/§ =d A=0 (mod4)

First consider the case d =1 (mod 4). The algebraic integer 7 of Theorem [3.5] is:

1++d
9

T=U+VWw=1u-+7v

for suitable u,v € Z. So we have that:

pf =77 = <u+v1+2\/a> (u—i—vl_\/E) -

2

1—-d 1-A

- (v)? (35)

What we have shown is that p/ = 77 is actually a representation of p/ via the principal
form (1.6) of discriminant A.
Similarly, if d = 2,3 (mod 4), the 7 € Ok of Theorem [3.5] is:

= () +uw+ () = (W) v+

T=u+ovw=u+uvvd

for suitable u,v € Z. Hence:

pf =77 = <U+U\/g> (u—vﬂ) =

= ()’ —d(v)* = (u)* = —(v)” (3.6)

Also in this case p/ = 77 is a representation of p/ via the principal form (1.5 of discrimi-
nant A.
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3.3 Main theorem

The connection between binary quadratic forms and elliptic curves introduced in the previ-
ous section provides the setting necessary to describe a method, alternative to that viewed
in Chapter 1, for solving the representantion problems when the discriminant A is negative,
fundamental and such that the class number hn is less than or equal to 3.

A discriminant A is said fundamental if A is a squarefree integer when A =1 (mod 4),
and in this case A is denoted by d, or of the form 4d, where d is a squarefree integer
such that d = 2,3 (mod 4), when A = 0 (mod 4). The hypothesis that A is negative
and fundamental guarantees that A is the discriminant of an imaginary quadratic field, in
particular it is the discriminant of K = Q(v/d). We denote by L the Hilbert class field of
K and by hg(z) € Z[z] the corresponding Hilbert class polynomial.

Consider an odd prime integer p for which holds (A/p) = 1 and suppose that ha re-
duced quadratic forms Qo(x,y), Q1(x,y),. .., Qn—1(z,y), a representative for each proper
equivalence class, are known, where Qy(x,y) is the principal form.

The theorem that follows allows to find a representation of p once we know which reduced
forms represent p. The context is the one described in the previous lines.

Main Theorem - Theorem 3.6. The ideal pOx, generated in Ok by the prime integer
D, is equal to the product of two distinct conjugates prime ideals of Ok, p and p, and p is
properly represented by a reduced form Q;(z,y) of discriminant A. If f, is the order of [p]
in C*(Ok), four representations Qy(u,v) = q = p» are obtained from

+ (% : 4q—:g> A=1 (mod 4)

+ (ug,v1) = (3.7)
+ (%q : %) A=0 (mod4)
+ (aq;v , — 4'1_13) A=1 (mod 4)

+ (ug,v9) = (3.8)
+ <a2—’1 , — 4q_§g) A=0 (mod 4)

where N, = q + 1 — a4 is the number of rational points of E, the reduction, modulo a
prime ideal B of Oy, containing p, of the elliptic curve E(IL | jo), with 30 a root of hx(x).
Furthermore, if f, # 1 then p is properly represented by a non principal reduced form
Qi(x,y), i.e. there exist two coprime integers Ty, yo such that Q;(xo,y0) = p. These xy and
Yo are found as a solution of one of the Diophantine systems

61(1’,y) = tu 61(1‘, y) = Fu,
{ 62(1’,y) = tu { 62(1’,y) = Fuy (39)
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of two homogeneus equations in x and y of degree f,.

Proof. The existence of i € {0,..., hg — 1} such that Q;(z,y) properly represents p follows
from the hypothesis (A/p) = 1 and Theorem Also the factorization pp, with p # p,
of the principal ideal pOk is a standard fact (for a proof see |20, Proposition 5.16] or [42]
Theorem 2.19]).

The prime integer p is represented by the principal form Qo(x,y) if and only if p is a
principal ideal of Ok. If p = (7) then pOx = (n7), with 77 € Z. Hence, for the group
structure of I(Ok), we obtain (p/n7) = (77 /p) = Ok. In the light of Lemma[2.39] we can
deduce p = 77 that means p properly represented by Qo(z,y). Vice versa, if p = 77, then
pOx = (m)(7). From the uniqueness of the prime factorization of pOk it follows p = ().
In order to prove our theorem, we take a prime ideal 8 of Op that contains p and an
elliptic curve E(LL | jo) where jg is a root of the Hilbert class polynomial hg(x). As we have
seen in Section 2, the cardinality of Op /9B is p/, where f is the inertial degree of (p) C Z
in 8. But f coincides with the inertial degree of p in B. For [39, pag. 24| we have that
the inertial degree of (p) C Z in B is equal to the product of the inertial degree of p in
B and the inertial degree of (p) C Z in p. Applying [20, Theorem 5.9| it follows that the
inertial degree of (p) C Z in p is one (we have e = 1, g = 2 and, from egf =2, f = 1). So
f is the inertial degree f, of p in B and it is equal to the order of [p] in C(Ok), i.e. f = f,.
The reduction of E modulo B leads to an elliptic curve E defined over the finite field F,,
with ¢ = p/». The number N, of rational points of E could be computed in polynomial
time complexity using the Schoof algorithm (see [50] or next chapter) and, by Theorem
there exists m = u + wv € Ok, with u,v € Z, such that:

q=7T (3.10)

Ny=q+1—(n+7)=q+1—aqy (3.11)

The sum a, = 7+ 7, considered together with the relation 77 = ¢ allows to obtain 7 from
Ny and ¢. In fact, we have:

ag=T+7T=(u+wv)+ (u+wv) =2u+ (w+wv (3.12)
q=(u+wv)(u+wv) =1*+ (w+w)uw + wov? (3.13)
and then it follows that:
4q — a2 = 4u® + 4w + D)uv + dwwv® — 4u® — 4w + D)uv — (w + ©)%0* =
= —(w—w)*? (3.14)

Hence, from the definition of w we have:

—1+;/Z — 1_§/K =VvVA A=1 (mod4)

) \/§+\/§:¢Z A=0 (mod4)

W —w
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and then

(3.15)

Furthermore, from

VA L 1VA — 1 A=1 (mod 4)
w+w=

\/é_\/ézo A=0 (mod4)

and the observation that f(—z, —y) = f(z,y) for every quadratic form we can deduce that
(u,v) could be one of the following four pairs:

+ (2 , 4‘1_‘53) A=1 (mod 4)

+ (Ul, U1) = (316)
+ (%‘1 : %) A=0 (mod4)
i(“gi,—\/%) A=1 (mod4)

+ (UQ,UQ) = (317)

i(%,—\/@) A=0 (mod 4)

If p is a principal ideal, then ¢ = p and u, v are two integers such that p = 77 = Qo(u,v),
i.e. we have found a proper representation of p by the principal form Qq(x,y).

If p is not principal, p is properly represented by a non-principal reduced form Q;(x,y).
We can consider the ideal J,, = (a;, b; + w), with a;, b; € Z, such that:

_ Ngjglaix + (b +w)y)

Qi(z,y) = NeaOa) (3.18)
Now we observe that the element
Ngjglair 4 (bi + w)y)”» (3.19)
(Vk/(Ja,))?
of K (with z,y € Z), that is equal to
Nigjo((aix + (b + w)y) ) (3.20)

(Nie/o(32))

for the multiplicativity of the norm both for elements of K and ideals of Ok (Theorem [2.41)),
is the norm of an algebraic integer

(a;z + (b + w)y)P

Ta,

7

(3.21)
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where 7, is the generator of Jf:‘;.

So we can impose

(aiz + (bi + w)y)P
Ta,

7

(3.22)

T=Uu+wv=

and, from the linear independence of 1 and w over Z, we obtain the following Diophantine
systems in x,y

{ e1(@,y) =u (3.23)

62<1’7 y) =v
where the polynomials e;(x,y),es(z,y) € Z[x,y| are homogeneous of degree f, and the
constant terms (u,v) could be one of the four pairs 4(uy, v1), £(ug, v2). O

Remark. In the proof of the Theorem we assume that the elliptic curve E has good reduction
modulo B since the number of cases where E has not good reduction is finite.

Theorem could be used to find a representation of p once we know which reduced
forms represent p. By the following theorem [2l Theorem 3.2|, when hx < 3 we can use
the factorization of hx(z) (mod p) in Z, to determine which are the reduced forms that
represent p.

Theorem 3.7. Let K = Q(\/E) be an imaginary quadratic field of discriminant A and let
hk(x) € Z[z] be its Hilbert class polynomial. An odd prime integer p is represented by the
principal form Qo(x,y) of discriminant A if and only if hx(x) (mod p) has only simple
roots and they are all in Z,.

Gauss, in his Disquisitiones Arithmeticae [26], found nine imaginary quadratic fields
with class number 1, and he conjectured he had found all of them. It turns out he was
correct. The proof follows from the results of Heegner, Baker and Stark. Furthermore, the
work of Goldfeld and Gross-Zagier shows that for every fixed class number N there exist
only a finite number of imaginary quadratic fields of class number N. In particular, we
know all the imaginary quadratic fields with class number 1,2, and 3.

The next sections will be devoted to find explicit algorithms, deduced from our theorem,
for these imaginary quadratic fields.

3.4 Class number 1

The only imaginary quadratic fields Q(v/d) which have class number 1 are those with —d
in the following set [47, pag.37]:

Dy = {1,2,3,7,11,19,43,67,163} (3.24)

Let K = Q(v/d) be one of these nine fields and let A be its discriminant. Since C(A)
contains only the proper equivalence class of the principal form, if (A/p) = 1 for an odd
prime integer p, then p is properly represented by the principal form Qo (x, y) of discriminant
A. A representation could be found as in the proof of Theorem The goal of the section
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is to construct, in MAGMA language, the explicit algorithm: its structure will be discussed
in the following lines and the complete algorithm will be exhibited at the end of the section.
The Hilbert class field L of K has dimension hx = 1 over K and hence K = L. The Hilbert
class polynomial hg(x) has degree one and integral coefficients: its unique root jo belongs
to Z. We consider the elliptic curve E(L | jo). For (3.2), we can observe that E has rational
coefficients. The ideal pOk is equal to the product pp, where p and p are prime ideals of
Ok containing p with p # p.

It is easy to see that the map:

v: Z/<p> — Ok/p
4], = [y

is an isomorphism of fields. Clearly, ¢ is a field homomorphism, so it is injective. Fur-
thermore, ¢ is surjective since domain and codomain have the same cardinality. In fact
N(p) = p by Theorem[2.41]since pp = pOk. In the light of the isomorphism ¢, to verify if E
has good reduction modulo p it is sufficient to see wether the integral denominators of the
coefficients of E are non-zero modulo p. Furthermore we can use ¢ to construct an elliptic
curve E over Z, = Z/(p) with the same number of rational points of E, the reduction of E
modulo p. Using the Schoof algorithm we can find the number N, = p+ 1 — a,, of rational
points of E. From Theorem [3.5]it follows that:

ap =m1+7 = (u+wv) + (u+wv) (3.25)

and
p = (u+ wv)(u+ wv) (3.26)

for some m = u + wv € Ok, with u and v integers. Since 77 is a representation of p by the
principal form of discriminant A, u and v must be coprime. By Theorem we know the
formulas to obtain u and v once we know a,,.

To lower the computational complexity necessary to compute a representation of p by
our method, we can construct a database with the following data for each of the nine
imaginary quadratic fields of class number 1:

e the discriminant A;

e the unique reduced form Qo(z,y) (i.e. the principal one) of discriminant A;
e the root jo € Z of the Hilbert class polynomial hg(z) = x — jo € Z[z];

e the elliptic curve E(K | jo).

This information are collected in the following table:
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T8 w @ ) EC 7
-1 —4 V-1 22 + 32 123 -
-2 -8 V=2 x? + 2y° 203 g3 — 3B — 15
3| =3 | B a2 hay 42 0 23 —1
Tl =T | T by 2 | (—15)° 7% — 15, 260
A1 | 11 | I a2 gy 3y (—32)3 gd — 1036, 1o
-19 —19 1+\é—T9 22+ Ty + 5y2 (—96)3 3 — ?_gx _ %
43 | =43 | BB a2 fay 411y | (—960)° o — BL2000, _ 1024000
67 | 67 H\éim v+ ay +17y° | (=5280)° 7 — o167 — ‘S5ISA00L
163 | 163 | E | 4 ay 4 4ly® | (=640320)° | 2° — SR — SR

Table 3.1: Imaginary quadratic fields K = Q(v/d) of class number 1

Remark. The described method to find a representation of p by the principal form )y of
discriminant A needs some checks to be used in practice:

1. the characteristic of Z, must be different from 3 to apply the Schoof algorithm;

2. the cubic curve E must have good reduction modulo p;

3. the reduced elliptic curve E must be non-singular in order to apply the Schoof algo-
rithm.

We observe that:

1. only the quadratic forms of discriminant —8 and —7 properly represent p = 3, while
(=3/3) =0;

2. the prime factors of the denominators of the elliptic curve [E used for the discriminant
A (of one of imaginary quadratic fields with class number 1) are not represented by
the principal form of discriminant A, so E has always good reduction;

3. if a1 /by and ay /by are the coefficient of the elliptic curve E used for the discriminant
A, the prime factors of (b1)?(b)? + 27(az)?(b1)? are not represented by the quadratic

forms of discriminant A, so E is always non-singular.

3.4.1 Algorithm for class number 1

We now attach the explicit algorithm, in MAGMA language, of our method relative to
the imaginary quadratic fields of class number 1. For each discriminant A contained

in {—4,-8,-3,-7,—11,—-19,—43, —67, —163}, the function “Databasel” returns the root
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jo of the Hilbert class polynomial of Q(v/A), the coefficient a,b, ¢ of the principal form
Qo(z,y) of discriminant A and the coefficients a; /by, as/bs of the elliptic curve

E(Q(VA) | jo) = 2° + (a1 /b1)z + (az/by)

The function “ClassNumberl” takes the radicand of one of the nine imaginary quadratic
fields of class number 1 and a prime integer p such that (A/p) = 1, with A discriminant of
the field. Calling the function “Databasel”, it constructs the elliptic curve E defined over
Z,, computes the number of rational points of E and returns the integers u, v such that

Qﬂ(ua U) =p
//CLASS NUMBER 1
3| function Databasel (dK)

if (dK eq -4) then
j:=12"3; al:=-1; a2:=1; b1:=0; b2:=1;
a:=1; b:=0; c:=1;

elif (dK eq -8) then
j:=20"3; al:=-375; a2:=98; bl:=-125; b2:=49;
a:=1; b:=0; c:=2;

elif (dK eq -3) then
j:=0; al:=0; a2:=1; bl:=-1; b2:=1;
a:=1; b:=1; c:=1;

elif (dK eq -7) then
j:=(-15)"3; al:=-125; a2:=63; b1l:=-250; b2:=189;
a:=1; b:=1; c:=2;

elif (dK eq -11) then
j:=(-32)"3; al:=-1536; a2:=539; bl:=-1024; b2:=539;
a:=1; b:=1; c:=3;

elif (dK eq -19) then
j:=(-96)"3; al:=-512; a2:=171; b1:=-1024; b2:=513;
a:=1; b:=1; c:=5;

elif (dK eq -43) then
j:=(-960)"3; al:=-512000; a2:=170667; b1:=-1024000; b2:=512001;
a:=1; b:=1; c:=11;

elif (dK eq -67) then
j:=(-5280) ~3; al:=-85184000; a2:=28394667; bl:=-170368000;
b2:=85184001; a:=1; b:=1; c:=17;

elif (dK eq -163) then

j:=(-640320) ~3;
b1:=-303862746112000;

end if;

end function;

al:=-151931373056000; a2:=50643791018667;

b2:=151931373056001 ; a:=1; b:=1; c:=41;

i|return j,al,a2,bl,b2,a,b,c;

function ClassNumberl(d,p)

if ((d mod 4) eq 1) then

dK:=d;
else
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dK:=4x*d;

end if;

Zp:=GF (p);

DK:=Zp!dK;

// IsSquare(DK) ;

j,al,a2,b1,b2,a,b,c := Databasel (dK);

Al:=Zp'al;

A2:=7pla2;

Bl:=Zp!'b1l;

B2:=Zp!b2;

A:=A1/A2;

B:=B1/B2;

E:=EllipticCurve([A,B]);

Np:=#E; //Schoof’s algorithm

ap:=p+1-Np;

if ((dK mod 4) eq 1) then
v:=Sqrt ((4*p-ap~2)/-dK);
u:=(ap-v)/2;

else
v:=Sqrt ((4*p-ap~2)/-dK);
u:=ap/2;

end if;

Z:=Integers();

u:=Z'u;

v:=Z!v;

return u,v,a,b,c;

50| end function;

d:
P:

.«

73| X,y,a,b,c:=ClassNumberl(d,p);
|if (b eq 0) then

printf "Jo=lo*(%0) "2+%o* (%0)"2",p,a,X,C,¥;

6| else

printf "Jo=lo*(%0) ~2+%ox (%0)+o* (%0)~2",p,a,x,b,x*y,c,y;

slend if;

3.5 Class number 2

The only imaginary quadratic fields Q(v/d) which have class number 2 are those with —d
in the following set [49] pag.636:

D, = {5,6,10,13,15,22,35,37,51, 58,91, 115, 123, 187, 235, 267, 403, 427} (3.27)

Let K = Q(v/d) be one of these fields and let A be its discriminant. Given an odd prime
integer p such that (A/p) = 1, it is properly represented by the principal form Qq(x,y)
or by the other reduced form, Q;(z,y). In this section we will discuss about the structure
of the explicit algorithm to find a representation of p. The complete algorithm will be
presented, in MAGMA language, at the end of the section.
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The ideal pOk is equal to the product pp, where p and p are a prime ideals of Ok containing
p, with p different from p. The Hilbert class field L of K has dimension hx = 2 over K.
The Hilbert class polynomial hg(x) has degree two and integral coefficients. By Theorem
p is properly represented by Qo(z,y) if and only if the polynomial hg(z) (mod p) has
only simple roots and they are all in Z,.

3.5.1 p represented by Qq(z,y)

When p is properly represented by the principal form we proceed as for the quadratic fields
of class number 1, with a substantial difference that we will explain. Let B8 be a prime
ideal of Oy, that contains p. As we have seen, the cardinality of O /B is equal to p/*. But
fy coincides with the order of [p] in C(Ok). Therefore O /B is a finite field of p elements
and the map

o: Z/<p> — Op/B
[, = s

is a field isomorphism. Clearly, ¢ is well defined, since p belongs to B, and a field homo-
morphism, hence it isinjective. Furthermore, ¢ is surjective since domain and codomain
have the same finite cardinality.

We consider the elliptic curve E(L | jo), where jj is a root of hk(x). Unlike for the imagi-
nary quadratic fields of class number 1, it is not easy to find explicitly the roots of hx(z)
and, consequently, the elliptic curve E(L | j5). We can use ¢ to find, directly, the reduction
of E modulo B8, which is defined over the finite field of p elements and is denoted by E.
The idea is to consider the equivalence classes in Op, /B of the coefficients of E and their
correspondent elements in Z/(p) = Z,. For example, given the coefficient 2j,/(1728 — jo),
we have:

27 2)|J
{ jo_ ] _ __[Plsljols (3.28)
1728 — jo) o [1728] — [jol
Since ¢ is an isomorphism , to compute ¢’1([175§3j0]%) we need only to determine ¢~ ([jo]) .

We assume to know an integer jj such that [j{], is a root of hg(z) (mod p): the equivalence
class [jo]s is also a root of hx(x) modulo ®B. But the polynomial hx(z) (mod 9B) has at
most two roots in Op /B. Hence jj is equivalent, modulo B, to one of the roots of hg(x).
It is important to remark that construct [E we can consider, equivalently, one of the roots
of hi(x). Then, the elliptic curve

[2lpl7l
[1728], — [joly

S 11 520

£y = o
yore [1728], — Lol

defined over Z, has the same number of rational points of the reduced curve E.
Using the Schoof algorithm (see [50] or next chapter) we can find the number N, = p+1—a,
of rational points of E. From Theorem it follows that:

ap=m+7 = (u+wv)+ (u+wv) (3.30)
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and
p = (u+wv)(u+wv) (3.31)

for some ™ = u + wv € Ok, with u and v integers. The last relation is a representation of
p by the principal form Qg(z,y), so u and v must be coprime. By Theorem we know
the formulas to obtain v and v once we know a,,.

3.5.2 p represented by Q(z,y)

Let us suppose that hx(z) (mod p) is irreducible in Z or with a root o multiplicity two in
Z,. Hence, p is properly represented by the reduced non-principal form @ (z,y). Obviously,
p? is principal and then p? is represented by the principal form Qq(z,y). The first step is
to find this representation of p? using Theorem [3.5] As before, B is a prime ideal of O,
containing p. The only difference with the previous case is that there exists an isomorphism
of fields

¢:Fp— OL/B

where F,: is the finite field of p? elements. The cardinality of Oy, /B is plr, with f» equal to
the order of [p] in C*(Ok). Is necessary to spend some words about F2. From a theoretical
point of view, there is not a canonical finite field of p? elements. But our perspective is
that of MAGMA (or another computer algebra system) so with F,2 we denote the finite field
of p? elements provided by MAGMA using the command "GF(p"2);".

The roots of hg(z) (mod p) lie in F2. We consider the elliptic curve E(L | jo), where jy
is a root of hg(z). As before, we do not want to explicitly find the roots of hg(z) and,
consequently, the elliptic curve E(LL | j5). We can use ¢ to find, the reduction of E modulo
9B, which is defined over the finite field of p? elements and denoted by E. The strategy is
to take the equivalence classes in Op /B of the coefficients of E and their correspondent
elements of F,2. For example, given the coefficient 2j,/(1728 — jj), we have:

2Jo (2] [ o]
{1728 - jo} s 11728]x — [jols (3.32)

Since ¢ is a field isomorphism, to compute @‘1([1722§gj0]%) we only need to compute
o ([jo])m- In fact o~ ([2]s) = 2 and ¢ '([1728]) = 1728. Observe that [jo]s is sent

by ¢~ tin a root j) € Fy2 of hg(x) (mod p) that we assume to know. So, the elliptic curve

27! 370
Jo I 70

£y = o
I T T SR T T )

(3.33)

defined over [F,» has the same number of rational points of the reduced curve E.
Using the Schoof algorithm we can find the number N,z = p® + 1 — a2 of rational points
of E. From Theorem [3.5 it follows that:

ape =7+7 = (u+wv)+ (u+wv) (3.34)
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and
p® = (u+wv)(u+wv) (3.35)

for some ™ = u +wv € Ok, with u,v € Z. The last relation is a representation of p? by the
principal form Qo (z,y). By Theorem we know the formulas to obtain v and v once we
know a,2.

Now, let (a,b+ w) be a non-zero ideal of Ok such that:

Q1(9€,y) _ NK/Q(ax —ai_ (b +wy)

To find two integers xg, o such that Q1 (zo, o) = p we impose

(ax + (b+ w)y)?

(3.36)

U+ wv =

where (7,) = (a,b+ w)? and 7,7, = a*. From the independence of 1 and w over Q we can
deduce the Diophantine systems. Since (u,v) is not uniquely determined, we have to try
all its four possible values +(uy,vy), £(ug, vo) until we find xy and yy. This systems have
two homogeneous equations of degree two in x and y. Apart from u and v, these systems
do not depend on p. So they could be computed once for each of the imaginary quadratic
fields of class number 2. In the following two examples, we will see how to proceed to
determine the Diophantine systems.

Example. Consider the quadratic field K = Q(v/—35) of discriminant A = —35. The
ideal I = (3,w) of Ok corresponds to the reduced form Qi(z,y) = 3x* + zy + 3y*:

(3x 4+ wy)(3x + Wy)

Q1<$,y) = 3

The square I? is generated by 9, 3w and w?, with:

() -

w? = ~9 (3.37)

Now we can observe that:
(9,3w,w —9) = (9,3w,w —9+9) = (9, 3w, w) = (9,3w — 3w, w) = (9, w) = (3.38)
= <w _w27w> = <w><1 ) 1> = <w>

and hence m, = w, with wo = 9. So we have:

" — w(3x +wy)? _ w(92? + 6wy + w?y?) _ (Ywx? + 6wy + wwwy?) _ (339)
9 9 9
9wox? + Sdxy + Ywy?
9

from which follow the Diophantine systems

{x2+6xy:u

= (1 —w)z® + 6xy + wy?

- S (3.40)
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Example. Consider the quadratic field K = Q(v/—37) of discriminant A = —37. The
ideal I = (2,1 + w) of Ok corresponds to the reduced form Q(x,y) = 2z* + 2xy + 19y>:

Qi(z,y) = (2x + (1 + (A})y;<2x + (14 wy)

The square I* is generated by 4,2(1 + w) and 1 + 2w + w?, with:

142w+ w? =1+42v=37—-37=—-36+ 2w (3.41)
Now we can observe that:
(4,2(1 + w), 2w — 36) = (2)(2,1 + w,w — 18) = (2)(2,1 + w,w — 18+ 18) = (3.42)
(2)(2, 14 w,w) = (2)(2, 1+ w —w,w) = (2)(2,1,w) = (2)

and hence m, = 2. So we have:

2z + (1+w)y)?®  42? +4(1+w)ay + (14 2w + w?)y?

U+ W 5 5 (3.43)
(42? + 4oy + dway + (2w — 36)y? 5 5 5
= 5 = 22" 4+ 22y + 2wzy + wy® — 18y
from which follow the Diophantine systems
222 + 2zy — 18> = u
{ S (3.44)

As we have seen in the examples, we have to play with the generators of (a,b+ w)? to
write the square of (a,b+ w) as a principal ideal (m,). The observations that one has to
take into consideration are:

e the product of two finitely generated ideals is finitely generated. In particular, given
(v, B) and (7) ideals of Ok, we have:

(M. B) = (va,7B) (3.45)
(, B){a, B) = (a?, 0B, B7) (3.46)

a repeated generator may be erased;

if an ideal of Ok contains 1, then it is equal to all the ring Ok;

if two generators of an ideal of Ok are relatively prime integers, then the ideal contains
1 for the Bézout’s identity;

o if (ay,..., ) is an ideal of O, then
(a1, ... 00) = (a1, ..., i1, 04 — NG, Qg1 . ., Q) (3.47)

for every element n of Ok.
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To lower the computational complexity necessary to compute a representation of p with
our method, we can construct a database with the following data for each of the imaginary
quadratic fields of class number 2:

e the discriminant A;

the reduced forms Qo(z,y), @Q1(z,y) of discriminant A;

the ideals that correspond to Qo(x,y) and Q1 (z,y) respectively;

the generator of the square of the ideal that corresponds to Qi(x,y);

the coefficients of the Hilbert class polynomial hx(x) € Z|x];

the Diophantine systems, with u and v unknown, to find a representation of p by the
non-principal form.

This information are collected in the tables at the end of the chapter.

3.5.3 Algorithm for class number 2

The algorithm described in the previous two sections is here provided in MAGMA language.
The input of the function “Database2” is the discriminant of one of the imaginary quadratic
fields of class number 2. It returns the integral coefficients hq, hy of the Hilbert class poly-
nomial 22 + hyx + hy € Z[z] and the coefficients a,b,c of the principal form Qo(z,y) of
discriminant A.

The function “Systems2” has the same input but returns the coefficients a, b, ¢ of the non-
principal form Q4 (z,y) and the coefficients of the polynomials e;(z,y), ea(x, y) of the Dio-
phantine systems used to find a proper representation of a prime integer p by Q1(z,y). The
third function, “ClassNumber2”, takes the radicand d of one of the imaginary quadratic
fields with class number 2 and a prime integer p such that (A/p) = 1, where A is the dis-
criminant of K = Q(\/E) It calls the function “Database2” and constructs the polynomial
hx (mod p). If hx (mod p) has only simple roots and they are all in Z,, the function com-
putes one of its roots and provides the elliptic curve E. Counting the rational points of ]E,
“ClassNumber2” returns two integers u, v such that p = Qo(u,v). On the other hand, if hg
(mod p) is irreducible in Z, or with a root of multiplicity two in Z,, the function computes
one of its roots (whose are contained in [F,2) and constructs the elliptic curve E. As before,
are found two integers u, v such that Qy(u,v) = p?. Finally, using the data obtained from
“Systems2”, the function build the Diophantine systems. The constant terms (u,v) could
be equal to £(uq,v1) or to £(ug,vs), so we have to try all of them until z¢,yo € Z, such
that Q1 (zo,yo) = p, are found. A solution (zg,yo) is returned.
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!/

CLASS NUMBER: 2

3| function Database2 (dK)

if (dK eq -20) then
h1:=-1264000;
h2:=-681472000;
a:=1; b:=0; c:=5;
elif (dK eq -24) then
h1:=-4834944;
h2:=14670139392;
a:=1; b:=0; c:=6;
elif (dK eq -40) then
hil:=- 425692800;
h2:=9103145472000;
a:=1; b:=0; c:=10;
elif (dK eq -52) then
hil:=- 6896880000;
h2:=- 567663552000000;
a:=1; b:=0; c:=13;
elif (dK eq -15) then
h1:=191025;
h2:=- 121287375;
a:=1; b:=1; c:=4;
elif (dK eq -88) then
hl:=- 6294842640000;
h2:=15798135578688000000;
a:=1; b:=0; c:=22;
elif (dK eq -35) then
h1:=117964800;
h2:=-134217728000;
a:=1; b:=1; c:=9;
elif (dK eq -148) then
hil:=- 39660183801072000;
h2:=- 7898242515936467904000000;
a:=1; b:=0; c:=37;
elif (dK eq -51) then
h1:=5541101568;
h2:=6262062317568;
a:=1; b:=1; c:=13;
elif (dK eq -232) then
h1:=-604729957849891344000;
h2:=14871070713157137145512000000000;
a:=1; b:=0; c:=b8;
elif (dK eq -91) then
h1:=10359073013760;
h2:=-3845689020776448;
a:=1; b:=1; c:=23;
elif (dK eq -115) then
h1:=427864611225600;
h2:=130231327260672000;
a:=1; b:=1; c:=29;
elif (dK eq -123) then
h1:=1354146840576000;
h2:=148809594175488000000;
a:=1; b:=1; c:=31;
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elif (dK eq -187) then
h1:=4545336381788160000;
h2:=- 3845689020776448000000;
a:=1; b:=1; c:=47;

elif (dK eq -235) then
h1:=823177419449425920000;
h2:=11946621170462723407872000;
a:=1; b:=1; c:=59;

elif (dK eq -267) then
h1:=19683091854079488000000;
h2:=531429662672621376897024000000;
a:=1; b:=1; Cc:=67;

elif (dK eq -403) then
h1:=2452811389229331391979520000;
h2:=- 108844203402491055833088000000;
a:=1; b:=1; c:=101;

elif (dK eq -427) then
h1:=15611455512523783919812608000;
h2:=155041756222618916546936832000000;
a:=1; b:=1; c:=107;

end if;

olreturn hi,h2,a,b,c;
olend function;

2| function Systems2 (dK)

Z:=Integers();
PZ<x,y>:=PolynomialRing(Z,2);

5| if (dK eq -20) then

el :=2x%x"2+2%x*y-2%y~2;
e2:=2xx*y+y~2;
a:=72'2; b:=Z212; c:=7Z!3;

olelif (dK eq -24) then

el:=2xx"2-3%y"2;
e2:=2%x%y;
a:=7'2; b:=Z10; c:=7'3;

93| elif (dK eq -40) then

el:=2xx"2-5%xy~2;

e2:=2%x%y;

a:=72'2; b:=Z10; c:=Z'5;
elif (dK eq -52) then

el:=2%x"2+2xx*y-6*y~2 ;

e2:=2xx*y+y~2 ;

a:=72'2; b:=7212; c:=Z!7;
elif (dK eq -15) then

el:=x"2+4*x*xy ;

e2:=-x"2+y"2 ;

a:=7'2; b:=Z11; c:=7Z12;
elif (dK eq -88) then

el:=2xx"2-11%y~2 ;

e2:=2%x*y ;

a:=72'2; b:=Z10; c:=Z'11;
elif (dK eq -35) then

el:=x"2+6x*x*y;

e2:=-x"2+y"2 ;

a:=72!'3; b:=Z11; c:=7Z!3;
elif (dK eq -148) then

89
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el:=2%x"2+2xx*xy-18%y~2 ;

e2:=2xx*y+y~2;

a:=72'2; b:=Z212; c:=7Z'19;
elif (dK eq -51) then

el:=3%x"2+2xx*xy-4*y~2 ;

e2:=2xx*y+y~2 ;

a:=Z!'3; b:=Z!3; c:=7Z'5;
elif (dK eq -232) then

el:=2xx"2-29%y"2 ;

e2:=2%x*y;

a:=7Z!2; b:=Z10; c:=7129;
elif (dK eq -91) then

el:=2%x"2+10*x*y+y~2;

e2:=-x"2+y"2;

a:=7'5; b:=713; c:=Z!5;

o|elif (dK eq -115) then

el:=5%x"2+4xx*xy-b*xy~2 ;
e2:= 2xx*y+y~2;
a:=Z!'5; b:=Z'5; c:=Z!'T;

33| elif (dK eq -123) then

el:=3%x"2+2*x*y-10*y~2 ;

e2:=2xx*y+y~2;

a:=7Z!'3; b:=Z!3; c:=7'11;
elif (dK eq -187) then

el:=2xx"2+14*x*y+y~2 ;

e2:=-x"2+y"2 ;

a:=z2!'7; b:=713; c:=Z!7;
elif (dK eq -235) then

el:=b%x"2+4xx*xy-11%y~2 ;

e2:=2xx*y+y~2 ;

a:=Z!'5; b:=Z'5; c:=7'13;
elif (dK eq -267) then

el:=3%x"2+2%x*y-22%y~2;

e2:=2xx*y+y~2;

a:=7Z!'3; b:=Z!3; c:=7123;
elif (dK eq -403) then

el:=5%x"2+22xx*y+4*xy~2 ;

e2:=-x"2+y"2 ;

a:=72'11; b:=7Z19; c:=Z'11;

;lelif (dK eq -427) then

el:=T*x"2+6xx*xy-14%y~2;

e2:=2xx*y+y~2;

a:=Z'7; b:=Z'7; c:=7Z'17;
end if;

)| return el,e2,a,b,c;
olend function;

63| function ClassNumber2(d,p)

if ((d mod 4) eq 1) then
dK:=d;

else
dK:=4x%d;

end if;

CHAPTER 3. REPRESENTATION PROBLEMS
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Zp:=GF( p);

DK:=Zp!dK;

// IsSquare(DK);
h1,h2,a,b,c:=Database2(dK) ;
PZp<x>:=PolynomialRing(Zp) ;
hk:=x"2+(h1)*x+(h2);

if (IsIrreducible(hk) eq false and IsSeparable(hk) eq true)
jO:=Roots (hk) [1][1];
A:=(3%j0)/(1728-30) ;
B:=(2%j0)/(1728-30) ;
E:=EllipticCurve([A,B]);
Np:=#E; // Schoof’s algorithm
ap:=p+1-Np;
if ((dK mod 4) eq 1) then
v:=Sqrt ((4*p-ap~2)/-dK) ;
u:=(ap-v)/2;
else
v:=Sqrt ((4*p-ap~2)/-dK) ;
u:=ap/2;
end if;
Z:=Integers();
u:=Z'u; v:=2Z'v;
else
Fp2:=GF (p~2);
h1,h2,a,b,c:=Database2(dK) ;
PFp2<z>:=PolynomialRing (Fp2) ;
hk:=z"2+(h1)*z+(h2) ;
jO:=Roots(hk) [1][1];
A:=(3%j0)/(1728-j0);
B:=(2xj0)/(1728-30) ;
E:=EllipticCurve([A,B]);
Np2:=#E; //Schoof’s algorithm
ap2:=p~2+1-Np2;
if ((dK mod 4) eq 1) then
v1:=8qrt ((4*(p~2)-ap2~2)/-dK);
v2:=-v1;
ul:=(ap2-v1)/2;
u2:=(ap2-v2)/2;
else
v1:=8qrt ((4*(p~2)-ap2~2)/-dK);
v2:=-v1;
ul:=ap2/2;
u2:=ul;
end if;
UV:=[[ul,v1], [-ul,-v1], [u2,v2], [-u2,-v2]];
sum:=0;
for j in [1..4] do
u:=UV[jI1[1];
v:=UV[j][2];
Z:=Integers();
PZ<x,y>:=PolynomialRing(Z,2);
el,e2,a,b,c:=Systems2(dK) ;
el:=el-Z'u;
e2:=e2-7Z'v;
f:=Resultant(el,e2,1);
PZ<t>:=PolynomialRing(Z) ;

then

91




253| Pi=e.
254 X,y,a,b,c:=ClassNumber2(d,p) ;
255/ 1f (b eq 0) then
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ff:=UnivariatePolynomial(f);
F:=Roots(ff);
n:=#F;
for i in [1..n] do
v:=F[i][1];
s:=Evaluate(el,2,v);
ss:=UnivariatePolynomial(s);
U:=Roots(ss);
m:=#U;
for k in [1..m] do
u:=U[k] [1];
sum:=ax*u~2+b*xuxv+cxv~2;
if (sum eq p) then
u:=Z'u; v:=Z!v;
break j;
end if;
end for;
end for;
end for;
end if;

40| return u,v,a,b,c;
250/ end function;

d:

.«

printf "Jo=lo(%o) ~2+}o(%o)"2",p,a,x,c,¥;
else
printf "%o0=%0 (%o) ~2+%o (%ho)+%o(%o)~2",p,a,x,b,x*y,C,¥;

50l end if;

3.6 Class number 3

The only imaginary quadratic fields Q(v/d) which have class number 3 are those with —d
in the following set [54]:

Dy = {23,31,59,83,107,139, 211, 283, 307, 331, 379, 499, 547, 643, 883,907} (3.48)

Let K = Q(v/d) be one of these fields and let A be its discriminant. Given an odd prime
integer p such that (A/p) = 1, it is properly represented by the principal quadratic form
Qo(z,y) or by the other reduced forms, Q1 (z,y) and Q2(z,y). In fact [Q1(z,y)], [Q2(x,y)]
are not the unit in the multiplicative group of three elements C(A), hence Q1 (x,y), Q2(x,y)
are improperly equivalent because [Q:(z,y)]™' = [Q2(z,y)]. In particular, if Q,(x,y) =
(a,b,c) then Qa(z,y) = (a,—b,c). In this section we will discuss about the structure of the
explicit algorithm, deduced from Theorem to find a proper representation of p. The
complete algorithm will be provided, in MAGMA language, at the end of the section.

The Hilbert class field L of K has dimension hx = 3 over K and the Hilbert class polynomial
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hk(x) has degree 3 and integral coefficients. The ideal pOx factorizes as the product pp,
where p and p are prime ideals of Ok containing p and such that p # p. We denote by B
one of the prime ideals of O, containing p. By Theorem p is properly represented by
Qo(z,y) if and only if the polynomial hg(z) (mod p) has only simple roots and they are
all in Z,.

3.6.1 p represented by Qy(z,y)

Suppose that the prime integer p is represented by the principal form Qq(z,y). Then p is
principal and |Op/B| = p. The map

v: Z/<p> — OL/B
4], = [l

is a field isomorphism. It is a field homomorphism, hence injective, and also surjective
because domain and codomain have the same finite cardinality. We consider the elliptic
curve E(L | jo), where jo is a root of hx(x). It is not easy to explicitly compute the roots
of hx(z) and, consequently, the elliptic curve E(L | jy). We can use ¢ to find directly the
reduction of E modulo ®8, which is defined over the finite field of p elements and denoted
by E. The idea is to consider the equivalence classes in Op /9B of the coefficients of E and
their correspondent elements in Z,. For example, given the coefficient 27j,/(1728 — jo), we

have:

{ 270 ]  [2]slo)s

1728 — jo |y [1728]s — Lolw

2jo

1728—jo
We assume to know an integer jj such that [jj], is a root of hg(z) (mod p): the equivalence
class [j4]s is a root of hx(x) (mod B). Since hx(z) (mod B) has at most two roots in
OL/*B, j is equivalent, modulo B, to one of the roots of hx(z). It is important to remark
that to construct E we can consider, equivalently, one of the roots of hg(z). Then the

elliptic curve

2],[74 3], (74

2l bl 550
[1728], — [joly [1728], — [joly
defined over Z, has the same number of rational points of the reduced curve E.

Using the Schoof algorithm (see [50] or next chapter) we can find the number N, = p+1—a,
of rational points of E. From Theorem it follows that:

(3.49)

Since ¢ is an isomorphism, to compute (] ] ), we need only to determine =1 ([jo])s.

E:y2:m3+

ap=1+7=(u+wv)+ (u+wv) (3.51)
and
p = (u+ wv)(u+wv) (3.52)

for some m = u 4+ wv € Ok, with v and v integers. The last relation is a representation of
p by the principal form Qg(u,v). By Theorem we know the formulas to obtain « and
v once we know a,.
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3.6.2 p represented by Q:(z,y)

Now suppose that hg(z) (mod p) does not split in Z, or that its roots are not simple.
Hence, p is properly represented by the reduced non-principal form Q1 (z,y). This implies
that p? is represented by the principal form Qu(x,y) since p is not principal and [p] has
order 3 in C"(Og). To find this representation of p> we use Theorem The only
difference with the previous case is that there exists an isomorphism of fields

Q : Fp:s — OL/%

Is necessary to spend some words about F,s. From a theoretical point of view, there is not
a canonical finite field of p* elements. But our perspective is that of MAGMA (or another
computer algebra system) so with F,s we denote the finite field of p* elements provided by
MAGMA using the command "GF (p"3);".

We consider the elliptic curve E(IL | jy), where jy is a root of hx(x). As before, we do not
want to explicitly find the roots of hg(z) and, consequently, the elliptic curve E(L | jo).
We can use ¢ to find the reduction of E modulo 8, which is defined over the finite field
of p? elements and denoted by E. Our strategy is to take the equivalence classes in O /B
of the coefficients of E and their correspondent elements of Fps. For example, given the
coefficient 2j,/(1728 — jy), we have:

27 2|19
1728 — Jo %B [1728]% — []0]%
Since ¢ is a field isomorphism, to compute @‘1([1722§gj0]%) we only need to compute

o ([jo])m- In fact o~ ([2]s) = 2 and ¢ '([1728]) = 1728. Observe that [jo]s is sent
by ¢! in a root jj € Fys of hg(z) (mod p) that we assume to know. So, the elliptic curve
2Jy 35
1728 — ji, 1728 — j

E:y?=a%+ (3.54)

defined over [Fs has the same number of rational points of the reduced curve E.
Using the Schoof algorithm we can find the number N,z = p® + 1 — a3 of rational points

of E. From Theorem [3.5]it follows that:
ap =1+7T = (u+wv)+ (u+wv) (3.55)
and
P = (u+wv)(u + o) (3.56)

for some m = u +wv € Ok, with u,v € Z. The last relation is a representation of p* by the
principal form Qo(z,y). By Theorem we know the formulas to obtain v and v once we
know a,s.

Now, let (a,b+ w) be a non-zero ideal of Ok such that:

_ Ngjglaz + (b+ wy)
a

Qi(z,y) (3.57)
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I )
mposing ;
(az + (b+ w)y)
T

T=U+Wwv=

where (m,) = (a,b+ w)® and 7,7, = a*, we can deduce a Diophantine system from the
independence of 1 and w over Q. This system has two homogeneous equations of degree 3
in z and y and one of its solution (¢, yo) is such that Q1 (z¢, yo) = p. Actually, since (u,v)
is not uniquely determined, we have four Diophantine systems and not only one. Apart
from u and v, these systems do not depend on p. So they could be computed once for all
for each of the imaginary quadratic fields of class number 3. In the following example we
show how to proceed to determine the Diophantine systems using MAGMA.

Example. It is possible to work with quadratic fields in MAGMA. If d # 1 is a squarefree
integer, the quadratic field K = @(\/a) could be defined by the command:

K<d>:=QuadraticField(d) ;

while its ring of integers Ok can be created writing
OK<w>:=MaximalOrder (K) ;

In the ring Ox we are able to introduce the ideal (a,b+ w):
I:=ideal <OK| a,b+w>;

Furthermore, from

ris,pa:=IsPrincipal (I*I*I);

we obtain, in the second output pa, the generator w4 of the principal ideal {a,b+w)>. Now,
we define the polynomial (ax + (b + w)y)® € Oklz,y] and we multiply it by the conjugate
of my:

R<x,y>:=PolynomialRing(0K,2) ;
el+we2:=Conjugate (pa) * ((7*x+w*y) ~3) ;

In this way, we obtain N q(7.)(e1(z,y) +wea(x,y)) and it remains to divide by the norm
of mq, that could be computed writing:

a:=Norm(pa);

Obviously, one can compute by hand the Diophantine systems, playing with the gen-
erators of (a, b+ w)® and using the rules recalled in Section 3.5.2.

To lower the computational complexity necessary to compute a representation of p with
the described method, we can construct a database with the following data for each of the
imaginary quadratic fields of class number 3:

e the discriminant A;



96 CHAPTER 3. REPRESENTATION PROBLEMS

the reduced forms Qo(z,y), Q1(z,y) of discriminant A;

e the ideals of Ok that correspond to Qo(z,y) and @Q1(x,y) respectively;

the coefficients of the Hilbert class polynomial hyg(x) € Z|x];

the generator of the third power of the ideal that corresponds to Q1 (z,y);

the Diophantine systems, with u and v unknown, to find a representation of p by the
non-principal form.

This information are collected in the tables attached at the end of the chapter.

3.6.3 Algorithm for class number 3

The algorithm described in the previous two sections is here provided in MAGMA language.
The input of the function “Database3” is the discriminant of one of the imaginary quadratic
fields of class number 3. It returns the integral coefficients hq, ho, hs of the Hilbert class
polynomial z® + hyx? + hex + h3 € Z[z] and the coefficients a,b,c of the principal form of
discriminant A.

The function “Systems3” has the same input but returns the coefficients a, b, ¢ of the non-
principal form Q4 (z,y) and the coefficients of the polynomials e;(z,y), ea(x, y) of the Dio-
phantine systems used to find a proper representation of a prime integer p by Q1(z,y). The
third function, “ClassNumber3”, takes the radicand d of one of the imaginary quadratic
fields with class number 3 and a prime integer p such that (A/p) = 1, where A is the
discriminant of K = Q(\/a) It calls the function “Database3” and constructs the polyno-
mial hg (mod p). If hx (mod p) has only simple roots and they are all in Z,, the function
computes one of its roots and provides the elliptic curve E. Counting the rational points
of E, “ClassNumber3” returns two integers u, v such that p = Qo(u,v). On the other hand,
if hx (mod p) does not split in Z, or it is not separable, the function computes one of
its roots (whose are contained in F,s) and constructs the elliptic curve E. As before, are
found two integers u,v such that Qo(u,v) = p*. Finally, using the data obtained from
“Systems3”, the function build the Diophantine systems. The constant terms (u,v) could
be equal to +(uy,v1) or to (£(ug,vs), so we have to try all of them until zg,yo € Z such
that Q1(zo,yo) = p are found. A solution (x¢,yo) is returned.

// CLASS NUMBER: 3

3| function Database3 (dK)

if (dK eq -23) then
h1:=3491750;
h2:=-5151296875;
h3:=12771880859375;
a:=1; b:=1; c:=6;
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elif (dK eq -31) then
h1:=39491307;
h2:=-58682638134;
h3:=1566028350940383;
a:=1; b:=1; c:=8;

elif (dK eq -59) then
h1:=30197678080;
h2:=- 140811576541184;
h3:=374643194001883136;
a:=1; b:=1; c:=15;

elif (dK eq -83) then
h1:=2691907584000;
h2:=- 41490055168000000;
h3:=549755813888000000000;
a:=1; b:=1; c:=21;

elif (dK eq -107) then
h1:=129783279616000;
h2:=- 6764523159552000000;
h3:=337618789203968000000000;
a:=1; b:=1; c:=27;

elif (dK eq -139) then
h1:=12183160834031616;
h2:=- 53041786755137667072;
h3:=67408489017571610198016;
a:=1; b:=1; c:=35;

elif (dK eq -211) then
h1:=65873587288630099968;
h2:=277390576406111100862464;
h3:=5310823021408898698117644288;
a:=1; b:=1; c:=b3;

elif (dK eq -283) then
h1:=89611323386832801792000;
h2:=90839236535446929408000000;
h3:=201371843156955365376000000000;
a:=1; b:=1; c:=71;

elif (dK eq -307) then
h1:=805016812009981390848000;
h2:=- 5083646425734146162688000000;
h3:=8987619631060626702336000000000;
a:=1; b:=1; c:=T7T7;

elif (dK eq -331) then
h1:=6647404730173793386463232;
h2:=368729929041040103875232661504;
h3:=56176242840389398230218488594563072;
a:=1; b:=1; c:=83;

elif (dK eq -379) then
h1:=364395404104624239018246144;
h2:=-121567791009880876719538528321536;
h3:=15443600047689011948024601807415148544 ;
a:=1; b:=1; c:=95;

elif (dK eq -499) then
h1:=3005101108071026200706725969920;
h2:=-6063717825494266394722392560011051008;
h3:=4671133182399954782798673154437441310949376;
a:=1; b:=1; c:=125;

elif (dK eq -547) then
h1:=81297395539631654721637478400000;
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98 CHAPTER 3. REPRESENTATION PROBLEMS

h2:=-139712328431787827943469744128000000;
h3:=83303937570678403968635240448000000000;
a:=1; b:=1; c:=137;

elif (dK eq -643) then
h1:=39545575162726134099492467011584000;
h2:=-6300378505047247876499651797450752000000;
h3:=308052554652302847380880841299197952000000000;
a:=1; b:=1; c:=161;

elif (dK eq -883) then
h1:=34903934341011819039224295011933392896000;
h2:=-151960111125245282033875619529124478976000000;
h3:=167990285381627318187575520800123387904000000000;
a:=1; b:=1; c:=221;

elif (dK eq -907) then
h1:=123072080721198402394477590506838687744000;
h2:=39181594208014819617565811575376314368000000;
h3:=149161274746524841328545894969274007552000000000;
a:=1; b:=1; c:=227;

end if;

return hi1,h2,h3,a,b,c;
end function;

90| function Systems3 (dK)

Z:=Integers();
PZ<x,y>:=PolynomialRing(Z,2);

;/if (dK eq -23) then

el:=x"3-9%x"2%y-9xx*xy~2+3%y~3;
€2:=x"3+3*%x"2%y-3*x*y~2-2%xy~3;
a:=7'2; b:=Z'1; c:=7'3;

elif (dK eq -31) then
el:=-12%x"2%y-18%x*y~2+y~3;
e2:=x"3+3*xX"2%y-3*x*y~2-4%y~3;
a:=72'2; b:=Z2'1; c:=2'4;

elif (dK eq -59) then
el:=-4xx"3-15%x"2*%y+15*x*y~2+10%y~3;
e2:=x"3-3*xX"2%y-6*x*y " 2+y~3;
a:=7!'3; b:=Z1'1; c:=Z!5;

elif (dK eq -83) then
el:=2xx"3-21*%x"2*y-21*x*y~2+14*y~3;
€2:=x"3+3*%x"2%y-6*x*y~2-3%y~3;
a:=Z!'3; b:=Z'1; C:=Z!'T;

19| elif (dK eq -107) then

el:=-x"3-27*x"2%y+27*y~3;
e2:=x"3-9%x*y~2-y~3;
a:=72!'3; b:=Z2'1; c:=Z'9;

3 elif (dK eq -139) then

el:=0%x"3-21%x"2%y-42%x*xy~2+7*y"3;
€2:=x"3+6*x"2%y-3*x*y~2-3*y~3;
a:=7!'5; b:=Z11; c:=Z!7;

elif (dK eq -211) then
el:=8%x"3-27*x"2*y-69*x*y~2+6xy~3;
€2:=x"3+6*%x"2%y-3*x*y~2-5xy~3;
a:=Z!'5; b:=Z13; c:=7Z'11;

elif (dK eq -283) then
el:=-17%x"3-45%x"2xy+48*x*y~2+35%y~3;
e2:=x"3-6*x"2%y-9*x*xy~2+y~3;
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a:=Z!'7; b:=Z'5; c:=7Z'11;

5|elif (dK eq -307) then

el:=b*x"3-66*x"2*y-33*x*y~2+33*y~3;
e2:=2x%x"3+3*xX " 2%y-9*x*y~2-2%y~3;
a:=Z!7; b:=Z'1; c:=7Z'11;

olelif (dK eq -331) then

el:=-T*x"3-54*x"2*%y+39*x*y~2+69*y~3;
e2:=x"3-3%x"2%y-12%x*y~2+y~3;
a:=7!'5; b:=713; c:=Z'17;

slelif (dK eq -379) then

el:=-6%x"3-57*x"2%xy+57*x*y~2+76%y"3;
e€2:=x"3-3%x"2%y-12*x*y~2-3%y~3;
a:=Z!'5; b:=Z'1; c:=7'19;

7|elif (dK eq -499) then

el:=-x"3-75*%x"2%y+125%y~3;
e2:=x"3-15*x*y~2-y~3;
a:=Z!5; b:=Z'1; c:=7125;

elif (dK eq -547) then
el:=-27%x"3-60%x"2%y-123*x*y~2+5*y~3;
€2:=2xx"3+90%x " 2%y -3*x*y~2-4*%y~3;
a:=72'11; b:=Z!5; c:=Z'13;

s|elif (dK eq -643) then

el:=13%x"3-69*%x"2%y-138*x*y~2+69%y~3;
€2:=xX"3+6*x"2%y-O*x*y " 2-T*y~3;
a:=Z!'7; b:=2'1; c:=7'23;

elif (dK eq -883) then
el:=16*x"3+1563*x"2*y-51*x*y~2-68*y~3;
e2:=-3%x"3+3*x"2*xy+12*x*y~2-y~3;
a:=7Z113; b:=Z11; c:=7Z'17;

53| elif (dK eq -907) then

el:=-11xx"3+147*x"2*y+150*x*y~2-37*y~3;
€2:=-3%x"3-6*x"2%y+9*x*y~2+b*xy~3;
a:=72'13; b:=Z19; c:=7Z'19;

end if;

return el,e2,a,b,c;
end function;

53| function ClassNumber3(d,p)

if ((d mod 4) eq 1) then
dK:=d;

else
dK:=4x*d;

end if;

Zp:=GF( p);

DK:=Zp!dK;

// IsSquare(DK);
h1,h2,h3,a,b,c:=Database3(dK) ;
PZp<x>:=PolynomialRing(Zp);
hk:=x"3+(h1)*x~2+(h2) *x+(h3) ;

if (SplittingField(hk) eq Zp and IsSeparable(hk) eq true) then
jO:=Roots (hk) [1][1];
A:=(3%j0)/(1728-30);
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100 CHAPTER 3. REPRESENTATION PROBLEMS

B:=(2%j0)/(1728-30) ;
E:=EllipticCurve([A,B]);
Np:=#E; // Schoof’s algorithm
ap:=p+1-Np;
if ((dK mod 4) eq 1) then
v:=Sqrt ((4*p-ap~2)/-dK) ;
u:=(ap-v)/2;
else
v:=Sqrt ((4*p-ap~2)/-dK) ;
u:=ap/2;
end if;
Z:=Integers();
u:=Z'u; v:=2Z'v;
else
Fp3:=GF (p~3);
h1,h2,h3,a,b,c:=Database3(dK) ;
PFp3<z>:=PolynomialRing(Fp3) ;
hk:=2z"3+(h1)*z~2+(h2) *z+(h3) ;
jO:=Roots (hk) [11[1];
A:=(3%j0)/(1728-30) ;
B:=(2%j0)/(1728-30);
E:=EllipticCurve([A,B]);
Np3:=#E; //Schoof’s algorithm
ap3:=p~3+1-Np3;
if ((dK mod 4) eq 1) then
v1:=8qrt ((4*(p~3)-ap3~2)/-dK);
v2:=-v1;
ul:=(ap3-v1)/2;
u2:=(ap3-v2)/2;
else
v1:=Sqrt ((4*(p~3)-ap3~2)/-dK) ;
v2:=-v1;
ul:=ap3/2;
u2:=ul;
end if;
UV:=[[ul,v1],[-ul,-v1], [u2,v2], [-u2,-v2]];
sum:=0;
for j in [1..4] do
u:=UV[j1[1];
v:=UV[j][2];
Z:=Integers();
PZ<x,y>:=PolynomialRing(Z,2) ;
el,e2,a,b,c:=Systems3(dK) ;
el:=el-Z'u;
e2:=e2-7Z'v;
f:=Resultant(el,e2,1);
PZ<t>:=PolynomialRing(Z);
ff:=UnivariatePolynomial(f);
F:=Roots(ff);
n:=#F;
for i in [1..n] do
v:=F[i] [1];
s:=Evaluate(el,2,v);
ss:=UnivariatePolynomial(s);
U:=Roots(ss);
m:=#U;
for k in [1..m] do
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u:=U[k] [1];

sum:=a*u~2+b*uxv+cxv=2;

if (sum eq p) then
u:=Z'u; v:=Z!v;
break j;

end if;

end for;
end for;
end for;
end if;

return u,v,a,b,c;
end function;

d:=...;
pPi=...;
X,¥,a,b,c:=ClassNumber3(d,p);
if (b eq 0) then
printf "Yo0=o(%o) ~2+%o(%ho)"2",p,a,x,c,¥;
else

printf "Jo=Yo (%o) ~2+%o (%ho)+%o(%o) 2" ,p,a,x,b,x*y,c,y;

end if;
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d A w Q; Ideals hx(x)
5 | =20 | V-5 22 + 5y (1, w) 2% — 12640002 —
222 + 22y + 3y* | (2,14 w) —681472000
6 | —24 | -6 22 + 6y (1, w) 2?2 — 4834944+
222 + 3y? (2, w) 414670139392
210 | —40 | /=10 2% 4 10y (1,w) 2% — 4256928002+
222 + 5y? (2,w) +9103145472000
13 | =52 | /=13 2% 4 1312 (1, w) 2% — 68968800002 —
222 + 2xy + Ty? | (2,1 +w) —567663552000000
15 | —15 | HER L a2 gy 4y (1,0) 2% + 1910252 —
222 + xy + 2y (2,w) —121287375
22 | —88 | =22 2% 4 22y (1,w) 2% — 6294842640000x+
222 + 112 (2,w) +15798135578688000000
35 | =35 | IR a2 gy 4 9y? (1,w) 2% + 1179648002 —
32% + xy + 3y? (3, w) —134217728000
37 | —148 | /=37 2% 4 3792 (1, w) 2% — 396601838010720002 —
222 + 22y + 1992 | (2,1 +w) —7898242515936467904000000
51 | =51 | B L g2 gy 4 13y (1,w) 2 + 55411015682+
322 + 3zy +5y° | (3,1 +w) +6262062317568
58 | —232 | /=58 2% 4 58y (1, w) 2% — 6047299578498913440002+
222 + 29y° (2, w) +14871070713157137145512000000000
91 | —91 | IS a2 gy 4232 (1,w) 2% 4 103590730137602 —
522 + 3zy +5y° | (5,1 +w) —3845689020776448
115 | —115 | BRI T g2y gy 4 20y (1,w) 2% + 4278646112256002 4+
522 + 5y + Ty? | (5,2 +w) +130231327260672000
-123 | —123 | BVIEE 02 4 gy 4 312 (1,w) 2% + 13541468405760002+
322 + 3zy + 11y% | (3,1 +w) +148809594175488000000
-187 | —187 | BRI 02 4 gy 4 47y (1,w) 2% + 45453363817881600002—
T2+ 3xy + T2 | (7,14 w) —3845689020776448000000
-235 | —235 | TRV L 02 4 gy 4 50y (1,w) 2% + 8231774194494259200002+
5202 4 5xy 4+ 13y% | (5,24 w) +11946621170462723407872000
-267 | —267 | TRHT L 02 4 gy 4 67y (1,w) 2% + 19683091854079488000000x+
302 4 3zy 4+ 2317 | (3,14 w) 4531429662672621376897024000000
-403 | —403 | B0 02 4 gy 4 101y2 (1,w) 2% + 24528113892293313919795200002 —
1122 +9zy + 1152 | (11,4 +w) | —108844203402491055833088000000
~427 | =427 | BT 02 gy 4 107y? (1,w) | 22 + 156114555125237839198126080002+
T2+ Tey + 17y | (7,3 +w) | +155041756222618916546936832000000

Table 3.2: Imaginary quadratic fields K = Q(v/d) of class number 2
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d A w g Systems
-5 —20 NE 2 202 + 2xy — 2y = u
2zy +y* =v
6 | —24 | /-6 2 202 — 3y’ =u
20y = v
210 | —40 | /—10 2 202 — 5y’ = u
20y = v
-13 | =52 | /13 2 222 + 2zy — 6y = u
2ry +y? =v
-15 | =15 @ w 2% +day = u
—22+y? =
-22 | —88 V=22 2 202 — 11y’ = u
2xy = v
35 | =35 | E L 2% + 6y = u
—?+yt=v
-37 | —148 | /=37 2 202 + 2xy — 18y% = u
2ry +y? =wv
51| =51 | L3 302 popy — 42 =w
2zy +y? = v
-58 | =232 | /—58 2 202 — 29y? = u
20y = v
91 | —91 _1+\éT)1 14w | 222+ 102y + 9> = u
—?+yt=v
115 | =115 | B L 5 5a? pday — 52 = w
2zy +y? =v
123 | —123 | BB 30 1802 4 20y — 10)2 = w
2ry +y? =v
187 | —187 | BT b | 202 4 Mday + P =
—x% + y2 =
235 | =235 | I 5 152 pday — 112 = u
2ry +y? =v
2267 | —267 | T2 30 1802 4 20y — 2212 = w
2ry +y? =v
-403 | —403 | B8 gy | 52 4+ 220y + 4y = u
—z2 4 y2 =
427 | —d27 | IZRT L7 7?4 Gay — 14y =
2ay +1y? =v

Table 3.3: Imaginary quadratic fields K = Q(v/d) of class number 2
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d A w Q; Ideals hx(z)
-23 —23 # x2 + 2y + 6y2 <1, w) 23 + 349175002 —
222 + zy + 3y° (2,w) —5151206875a + 12771880859375
-31 —31 % % + Ty + 8y2 <1, w) @3 + 3949130727 —

2.%2 + 2y + 4y2 <2, 1+ w> —58682638134x + 1566028350940383

-59 —59 Lt 2_59 x? + Ty + 15y2 <1, w) @3 + 3019767808022 —
3])2 +zxy + 5y2 <3, w) —140811576541184x + 374643194001883136
-83 —83 %_783 2 + Ty + 21y2 <1, w) @® + 26919075840002> —
3[132 + Ty + 7y2 <3, w) —41490055168000000x+
+549755813888000000000
-107 | —107 w 2 + Ty + 27y2 <1, > =3 + 1297832796160002% —

w
322 + Y + 9y2 <3, w) —67645231595520000002+

+337618789203968000000000

-139 | —139 H\/# x? + 2y + 353/2 <1, w) 23 +121831608340316162% —
52 + Ty + 7y2 <5, w) —53041786755137667072z+
+67408489017571610198016
=211 | =211 H\/% x? + Ty + 53y2 <1, w) «® + 6587358728863009996822 +
52 + 3ry + 11y2 <5, 1+ w) +27739057640611110086246 42+
+5310823021408898698117644288
-283 | —283 H—\/# 2 + Ty + 71y2 <1, w) =3 + 896113233868328017920002 >+

Ta? + dxy + 11y2 <7, 2+ w} +908392365354469294080000002+

+201371843156955365376000000000

Table 3.4: Imaginary quadratic fields K = Q(v/d) of class number 3
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d A w Q; Ideals hk(x)
-307 | =307 W z? + Ty + 77y2 <1, w) 23 + 80501681200998139084800022 —
To? 4 Ty + 11y2 <7, w) —50836464257341461626880000007 +
+8987619631060626702336000000000
-331 | —331 # % 4 Ty + 83y2 <1, w) @® + 66474047301737933864632322+
S5a? + 3ry + 173/2 <5, 1+ w) +368729929041040103875232661504z+
+56176242840389398230218488594563072
-379 | =379 w %+ Ty + 95y2 <1, w) @3 + 36439540410462423901824614402 —
55(]2 +zy + 19y2 <5, w) —1215677910098808767195385283215362+
+15443600047689011948024601807415148544
—499 —499 w ZE2 —|— Ty —I— 125y2 <1, w) 23 4 300510110807102620070672596992022 —
5%2 + Ty —I— 25y2 <5, w) —6063717825494266394722392560011051008x+
+4671133182399954782798673154437441310949376
—547 —547 W $2 + Ty + 137y2 <1, w) z3 + 81297395539631654721637478400000z2 —
1122 + oxy + 13y2 <11, 2+ w} 139712328431787827943469744128000000z +
83303937570678403968635240448000000000
-643 | —643 % .732 + Yy + 161y2 <1, w) 23 4 3954557516272613409949246701158400022 —
T2 +xy + 23y2 <7, w) 6300378505047247876499651797450752000000+
+308052554652302847380880841299197952000000000
-883 | —883 w x? +zy + 221y2 <1, w) x3 + 34903934341011819039224295011933392896000x% —
131‘2 +zy + 17y2 <137 w} 151960111125245282033875619529124478976000000+
+167990285381627318187575520800123387904000000000
-907 | =907 w x? +zy + 227y2 <1, w) «3 + 123072080721198402394477590506838687744000x2 +
13%2 + 911y —f- 19y2 <13, 4 + w> 4-39181594208014819617565811575376314368000000x+

+149161274746524841328545894969274007552000000000

Table 3.5: Imaginary quadratic fields K = Q(v/d) of class number 3
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d A w Ty Systems

—23 | —23 | L= 2 —w 23— 92%y — 9xy® + 3y = u
23 + 322y — 3ay? — 2% =0

31 | =31 | HSL —122%y — 182> + 1 = u
23+ 3%y — 3xy? — 4y =0

59 | =59 | M b3 | —da® — 152%y + 150y + 10y = u
2 — 3%y — 6xy* + P =

—83 | —83 1+‘é_783 3—w 223 — 212y — 21xy? + 1493 = u
23 + 32y — 6xy? — 3y3 =0

—107 | —107 | 2107 —w —a3 — 2Ta%y + 27y = u

23— 9xy? — 3 =

—139 | —139 | 19110 — 923 — 2122y — 422y + Ty® = u
3 + 622y — 3ay? — 3y3 =0

—211 | =211 | 22 gy, 823 — 2722y — 692y + 6y = u

3 + 622y — 3ay? — 5y3 =0
—283 | —283 | |16 —w | —172% — 4522y + 48xy® + 35y = u
2 —6x%y — 9y + P =

—307 | —307 | 20T 7 9y 523 — 6622y — 33zy2 + 333 = u
223 + 32y — 9xy? — 293 =0
—331 | —331 | L6y, —72% — 5422y + 39292 + 69y® = u
2 —32%y — 122y +y3 =
—379 | —379 | VIO 5, —623 — 5722y + 5Txy? + T6y° = u
x® — 322y — 1229y% + 3y = v
—499 | —499 | MV A9 —w —23 — 7522y + 12593 = u
2 — 1bzy? — P =
—5AT | 54T | BT 99 0y | 2723 — 6022y — 123xy? + 5y’ = u

203 + 922y — 3ay? — 4y =0
—643 | —643 | IO 1 g g 1323 — 6922y — 13822 + 69y = u
23+ 62%y — 9xy? — Ty = v
—883 | —883 | S8 113 4 30 162> + 1532%y — 51zy? — 68y° = u
—3x% + 32y + 1229% — 3 =0
—907 | —907 | HVZ0T 114 4 3w | —112% + 14722y 4 150xy® — 37y° = u
—32% — 62%y + 92y + 5yd = v

Table 3.6: Imaginary quadratic fields K = Q(v/d) of class number 3



Chapter 4

Schoof’s algorithm

In 1985 René Schoof published a deterministic polynomial-time algorithm to count the
rational points of non-singular elliptic curves over finite fields. Fixed a prime integer ¢,
the algorithm works over the point of order ¢, distinguishing two cases through the group
law of the elliptic curve. In the following lines we will present the possible existence of a
family of elliptic curves not taken into account by Schoof’s original paper [50].

4.1 Elliptic curves over finite fields

For the sake of easy references, we summarize some basic facts about elliptic curves over
finite fields refering to [58]. In the rest of the chapter p, n, ¢ will denote, respectively, a
prime integer greater than 3, a non-zero natural number and the power p".

Let E be an elliptic curve defined by the Weierstrass equation over the finite field F,, i.e.
[E is the projective closure of the affine variety defined over I, by the polynomial:

y? —2° — Ar — B € F [z, 9] (4.1)
If F is an extension field of IF, we define:
E(F) ={(z,y) € FxF|y* =2+ Az + B} U {0} (4.2)

where oo is the point at infinity.
Since an elliptic curve is a non-singular cubic curve, the cubic z* + Az + B € F,[x] doesn’t
have multiple roots, i.e. 443 4 2782 is not zero.

[t is possible to defined a sum in E(F') that gives to it the structure of an abelian group.

In particular, given two points Py = (z1,y1), Py = (x2,y2) of E(F), different from oo, their
sum P; = (x3,ys3) is defined as :
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( 2
P o if vy = a9 and y; = —yo
3= ) 9 )
3x1+A . 21,1, M Ty —T3) — Y1 lf Pl _ ‘F)2 and n 0
2y1 2y1
o0 ifPIZPQandyIZO

\

Moreover, P + 0o = oo + P = P for every point P € E(F).
An estimate of the number of rational points of E, i.e. the elements of E(FF,), is given by
a result obtained by Helmut Hasse in 1933 [28].

Hasse Theorem. The number of elements of E(F,) is equal to ¢ +1 — a, where a is an
integer such that |a| < 2,/q.

This result could be related with the Frobenius Endomorphism ¢,, which is a group
endomorphism defined as:

Pq : I(E(E)

We have [53], pag. 142]:

¢q(¢q(P)) +qP = a¢q(P) VP e E(E)

A useful tool to investigate the group structure of E(F,) is a familiy of multivariate poly-
nomials of F [z, y], called the division polynomials of E, defined recursively:

(z,y) =0

(z,y) =1

(z,y) =2y

s(7,y) = 30" + 6Ar* + 12Bx — A

(z,y) = 4y(z® + 5Ax* + 20Bx® — 5A4%2® — 4ABx — 8B* — A%)
(@, y) = Yusa (@, YV (2, 9) = Y1 (2, Y)Y 1 (2,9) form > 2
(@, 9) = (29) " (@, 9) Cmi2(2, )05 1 (2, Y) = Yo (2, 9) 054 (v,y))  form >3

If i is odd, y has even power in every term of ¢;(x,y); if i is even ¢;(z, y) is the product of
2y and a polynomial of F,[z, y] where y has even power in all its terms. Hence it is possible
to consider a family of polynomials of F,[z]:

fi(z) = iz, y) if ¢ odd
fi(z) = %(i,y) if 4 even (4.3)
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where ¢;(z, y) denotes the polynomial obtained substituting y* with 2+ Az + B in ¥;(z, y).
Given P = (x,y) € F,[z], we have:

iP = (M/)iz(xa y) — i1 (z, y) i (z,y) Yiga(z, y)wl{l(i’fa y) — Yi—a(x, y)wiﬂl(m, y))
iz, y) ’ Ay (2, y)

and therefore:

x(z®4+Az+B) f2(2)— fir1 (@) fi—1 () fir2(®) f2 1 (@)= fi—a(@) fit1(x)?

iP — (z3+Az+B) f2(x) ) 131 Azt B) 3 () 1 even
- (xfig(x)_(x3+Ax+B)fi+1(x)fifl(x) ($3+A$+B)[fi+2($)fi271(I)—fi—z(r)ffﬂ(m)}> i odd
fi(=) ’ dyf3(z)

(4.4)
If P is such that y # 0 then iP = oo, with i € N, if and only if f;(x) = 0. Furthermore,
if p does not divide 7, we have:

(i* —4) i even

N =

deg(fi(x)) =
(i —1) i odd

N |—=

and the set E[i] defined as
Efi] = {P € E(F,) | iP = 0}

is isomorphic to Z; x Z;. Hence E[i] has i? elements.

4.2 Case 1 of the Schoof’s Algorithm

Schoof’s algorithm [50] computes #E(F,) = ¢ + 1 — a requiring at most log” ¢ elementary
operations. The algorithm’s basic idea is to consider the smallest set S = {3,...,L} =
{l1,...,4;} of consecutive prime integers (starting from 3 and excluding p) such that

t
114 > 4va
j=1
and to find, for every ¢ € S, an integer a, such that a; = a (mod ¢). Then, using the

Chinese remainder theorem, we can solve the system of linear congruences

T = ay, (mod ¢)

T = ay, (mod ¢;)

finding a solution m € Z unique up to congruence modulo Ht

j=1
t g
(mod H§'=1 ;). Since a lies in {0,%1,..., %}, it is the only solution of the system

¢;. This means a = m
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contained in this complete residue system. So is sufficient to reduce m modulo H§'=1 ¢ to
obtain a. To find a,, Schoof uses the group structure of E[¢] and the division polynomials.
For a fixed ¢ € S, the algorithm distinguishes two cases by means of the addition law in

E(F,). We recall how to proceed in one of them, improving the notation used by Schoof
in his original work.

Let ¢ be a prime integer of S. Since it is not divisible by p, E[{] has cardinality (2.
So we can write:

E[E] = {OO,Pl,...,Pp_l}
The roots of the separable polynomial f;(x) are all and only the z-coordinates of the
non-zero elements of E[¢]. For every P € E[/], we have:
$g(P) +k(P) = ar(¢,(P)) k=g (mod?)
and so we can consider the set
G = {P € E[] \ {00} | ¢4(¢4(P)) = £kP}
In the light of (4.4)), this set is non empty if and only if there exist some non-zero P =
(x,y) € E[¢] such that:
: (2’ + Ar + B) f} (@) = frn (@) fra (@)
(23 + Az + B) f#(x)
L 2 fi(x) — (2° + Az + B) fr1(2) fr-a ()
fi(z)

We observe that fi(z) is non-zero on the z-coordinates of a non-zero P = (z,y) of E[/]

because we can choose k € {0,...,l—1}. Hence G # 0 if and only if the following greatest
common divisor G(x)

G(z) = ged(filw), (@7 — ) (f2(2))(@* + Az + B) + fi-1(2) fira(z)) K even
ged(fi(x), (27 — 2)(fF(2)) + (2° + Az + B) fica (2) fia () k odd
is not 1. Schoof’s algorithm distinguishes two cases depending on the cardinility of G: if

it is different from zero we are in Case 1 of the original paper. This is the case we are
interested in and that we will consider.

2 =0 £keven

=0 kodd

If there exists a non-zero element P € E[¢] such that ¢,(¢,(P)) = —kP, then a(¢,(P)) = oo
and a =0 (mod /) because also ¢,(P) is of order ¢. The existence of such a non-zero ele-
ment of E[(] forces ¢,(¢,(P)) = —kP for every P € E[/].

So, defining the sets

Gy ={P € E[]\ {00} | ¢4(¢4(P)) = +kP}
and
G ={P e E[f]\ {00} | ¢4(0q(P)) = —kP}

we have three possible scenarios:
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3. G=G, CE[].

It is easy to see that G = é+ if and only if ¢ is a quadratic residue modulo ¢ (i.e. ¢ = w?

(mod ) for some w € Z) and ¢,(P) = wP or ¢,(P) = —wP for every P in G. In fact, we
observe that could not exist two different points Py, P, € G such that ¢,(P;) = wP; and
¢q(P2) = —wP,. In fact, from

00 = ¢?,(P1) —apy(Py) + kP, = qb?](Pl) —awP, + kP, = (2k — aw) P,

it would follow 2k —aw = 0 (mod /) and hence a = 2w (mod ¢). At the same time, using
P, we would obtain ¢ = —2w (mod ¢). But 2w + 2w = 4w is not zero modulo ¢.

If w is the square root of ¢ in Z,, the set:
F={PcE[]\{cc} | ¢,(P) =+wP} C G
is non empty if and only if there exist some non-zero P = (z,y) € E[{] such that:
_ 2(e® 4+ Ax  B)FA() — funa(o) furr (o)
(z° + Az + B) fi(2)

q_ xfo(r) = (2° + Ar + B) fui1 (%) fu1 ()
fa(x)
As before, we observe that f,(x) is non-zero on the z-coordinates of the points of E[/]

because we can choose w € {0,...,1 — 1}. Hence, F # ) if and only if the following
greatest common divisor F'(x):

=0 weven

x4

T =0 wodd

Fla) = {gcd<fe(w>’ (29 — 2)(f2(2))(2® + Az 4+ B) + fu-1(2) fus1(z)) w even
ged(fo(z), (27 — x)(f2(x)) + (2° + Az + B) fu1(2) fws1(r))  w odd

is not 1. So we are in the first scenario if and only if G(z) # 1 and F(z) = 1; we are in
the other two scenarios if and only if G(z) # 1 and F(x) # 1. We assume to be in one of
the last two scenarios.

As we have done for G, we can define

Fy = {P € E[(]\ {00} | ¢,(P) = +wP}

and
F.={P cE[(]\ {00} | ¢4(P) = —wP}
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To find the equivalence class of a in Z, we have to determine if F = Z:l or F=F_. Todo
this Schoof suggest to compute:

H1<x>:{ng(ﬁ(x)’4<y)q+3(f3(x)) (Foss(@f2(0) = fos() (@) weven
ged(fi(w), 4 (F3 () = W) Fursa(@) F21(2) = Fua(@) 21 (2)) w odd

ged(fi(@), 4Ay) (fo(2) + W) (fura (@) fo1(2) = fua(2) f211(x)) w odd

that corresponds to find P = (z,y) € E[¢] \ {oo} such that

H2<x>:{ng(ﬁ(w)’4<y)q+3(f3<f>> orse)f2s(5) = fors)2s(e)  weven

fuwt2(z ) 1 (#)— fu—2(2) fut1(x)?
( D+ At B)F3 (@)

W even

O——yq—(wP)y——yq—
234+ Ax+B)|[fuwr2(z) f2 z)— fw—a(x) f2 T
( ) fw+2( igw%(l()) Jw—2( )fw+1( )] W dd

or, respectively, such that:

Jwt2(z) i—l(m)*fw—ﬂz)fw-%l (x)z
Ty A B) 73 (2)

W even

O—_yq+(wP)y _—yq_|
234+ Az+B)[fuwt2(z) f2 z)— fw—a(x) f2 T

Since we have supposed F' # (), one of Hy(z) and H,(z) must be different from 1. If ' = F,
then Hi(x) # 1 and a = 2w (mod ¢), otherwise Hy(x) # 1 and a = —2w (mod ¢).

This conditions are necessary. Despite Schoof did not prove that they are also sufficient
conditions, he used it as sufficient conditions. In fact, Schoof’s paper says:

«If H(z) equals 1 then a = —2w (mod /)...».

This could lead to an error on a curve for which (for example) F is equal to F_ (so
H,(z) # 1 and a = —2w (mod ¢)) and there exists a point P = (z,y) € E[(]\ G such that
(¢(P))y = (wP),, i.e. Hi(z) is not equal to 1. In this case Schoof’s algorithm concludes
a = 2w (mod /) even if a is actually congruent to —2w modulo /.

Clearly, this problem of the original Schoof’s Algorithm is easily solved substituting fo(x)
with G(z) in the computation of H;(x) and Hs(x): this little change avoids the existence
of elliptic curves with a “bad behavior” and also makes faster the computation of H;(x)
and Hs(z) because deg(G(x)) is less then deg(fo(x)).

Even if the correctness and the power of the Schoof’s algorithm are not damaged, it
remains intriguing the problem of the existence of elliptic curves on which the Schoof’s
algorithm falls into an error.
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4.3 Attempts and observations

After that Schoof himself confirmed, in an informal conversation, our observation about
the possible existence of a family of curves not considered by his original paper, we did
several attempts to find a counter-example.

As suggested by Schoof, first of all we looked for a non-singular elliptic curve E, defined
over a finite field I, and a prime integer ¢ such that E[{] contains two distinct points with
the same y-coordinate. Using MAGMA to test the elliptic curves, we obtain that for ¢ = 23
and ¢ = 11 there exist numerous non-singular elliptic curves defined over IF, with two
different points of order 11 having the same y-coordinate. But ¢ = 11 does not belong to
the set S of consecutive primes used by Schoof’s algorithm to find the number of rational
numbers of a curve over Fo3. So another question arises: does exist a non-singular elliptic
curve with two different points that have the same y-coordinate and the same order /,
where £ is a prime of S7 Setting ¢ =7l and { =5 (or g =59 and / =5, g=3 and { = T7)
we have a lot of non-singular elliptic curves defined over I, for which exist two different
points of order ¢ having the same y-coordinate. But these curves are not counter-examples.
So the condition that E[/] contains two distinct points with the same y-coordinate is not
sufficient to have a counter-example.

With the power of calculus available to us, we were able to sift all the non-singular el-
liptic curves over a finite field with a number of elements less than or equal to 101. We
did not find the desired curve with a “bad behavior”. So we tried to find an elliptic curve
E over F, with a “bad behavior” in E[¢], with ¢ not necessary in the set S used by the
Schoof’s algorithm. The idea was to start from such a curve and then work on it to obtain
a counter-example. For p, ¢ € {5,7,...,101} we tested the ¢-torsion points E[¢] of all the
non singular elliptic curves over I, by the following MAGMA program:

// Set of base fields
p:=3;

;| BaseFields:=[ 1;
(|while (p 1t 101) do

p:=NextPrime( p);
BaseFields:=Append (BaseFields,p);
end while;

o|// Set of prime integers 1
0| 1:=2;

HugeS:=[1];

>|while (1 1t 101) do

1:=NextPrime(1);
HugeS:=Append (HugeS, 1) ;

5|end while;

7| // Function that constructs the t-th division polynomial of an elliptic curve

y~2=x"3+Ax+B over the finite field of q elements
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3| DivPol:= function (A,B,q,t)

Z:=IntegerRing();
K:=GF(q); // Finite field of g elements
PolK<x>:=PolynomialRing(K) ;
P:=[-1,0, 1, 2, 3% (x~4)+6*xA*x(x~2)+12*B*x- (A~2), 4*(x~6+5*A*(x~4)+20*B*(x~3) -
5x(A~2) *(x~2) - 4*A*Bxx - 8%(B~2) - (A~3))]; /* division polynomial that
initialize the recurrence */
s:=t+2; /* the idea is to append the successive division polynomials until
we obtain the t-th. This would be the (t+2)-th element of the list P */

if t 1t 5 then

f:=P[s];
end if;
for i in [5..t] do // recurrence

if (IsEven(i) eq true) then m:=i/2;

m:=Z'm;

P:=Append (P, (2 (-1) ) *P [m+2]* (P [m+4] * (P [m+1]1~2) -P[m] * (P [m+3]1~2)) ) ;
else

m:= (i - 1)/2;

m:=Z'm;

if (IsEven(m) eq true) then
P:=Append (P,P [m+4]* (P[m+2] ~3) * ((x~3+A*x+B) ~2) - (P[m+3]~3)*P[m+1]);

else
P:=Append (P,P [m+4]*(P[m+2]~3) - (P[m+3]~3)*(P[m+1])*((x~3+A*x+B)~2));
end if;
end if;
end for;
f:=P[s];
return f;

end function;

/| for p in BaseFields do

q:=P;
K:=GF(q);
l:=...; // 1 must be chosen in Huge$S

if (1 eq p) then
continue; // if p=1 we pass to next iteration

end if;

Z:=IntegerRing();

Zl:=IntegerRing(l); // ring of integers modulo 1

r:=Z1'q; // r is the rest of the division of q by 1

if (IsPower(r,2) eq false) then /* first necessary condition to have a
counter-example: q must be a quadratic
residue modulo 1 */

continue;
end if;
w:= Sqrt(r); // square root of q in Z/1Z
w:=Zlw;
// construction of all the non-singular elliptic curves over Fq
a:=K!0;
b:=K!0;

Et:=[* *]; // list of lists
for i in [1..q] do
Et[i]:=[]; // list of elliptic curves y~2=x"3+Ax+B with A=i-1;
for j in [1..q] do
if 4*a”~3 + 27*b"2 ne 0 then
E := EllipticCurve([K | a,bl) ;
Et[i] := Append(Et[i], E);
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end if ;
b:=b+1;
end for ;
a:=atl;
end for;
// behavior of each curve
for i in [1..#Et] do
for E in Et[i] do
A:=K!Coefficients(E)[4]; /* for Magma E is a polynomial of five terms:
the last two are Ax and B */
B:=K!Coefficients(E) [5];
PolK<x>:=PolynomialRing(K) ;
if (IsEven(w) eq true) then /* F is the greatest common divisor F(x)
defined in the previous section */
f:=(x"q-x)*(x~3+A*x+B) * (DivPol(A,B,q,w) ~2)+
DivPol(A,B,q,w-1)*DivPol(A,B,q,w+1);
else
f:=(x"q-x)*(DivPol(A,B,q,w) " 2)+
(x~3+A*x+B)*DivPol (A,B,q,w-1)*DivPol (A,B,q,w+1) ;
end if;
F:=GreatestCommonDivisor (DivPol(A,B,q,1),h);
if F eq 1 then // If F(x)=1 the tested curve is not a counter-example
continue;
else
if IsEven(w) eq true then
t:=Z1(q+3)/2;
if w eq 1 then
hpp:=4* ((x~3+A*x+B)~(Z!t))*(DivPol(A,B,q,w) ~3) -
(+(DivPol(A,B,q,w+2)*DivPol (A,B,q,w-1) "2~
(-1)* DivPol(A,B,q,w+1)"2));
hpm:=4* ((x~3+A*x+B) ~(Z!t)) *(DivPol(A,B,q,w)~3) -
(-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)"2-
(-1)* DivPol(A,B,q,w+1)"2));
else
hpp:=4*((x~3+A*x+B) ~(Z!t)) *(DivPol(A,B,q,w)"3)-
(+(DivPol(A,B,q,w+2)*DivPol (A,B,q,w-1) "2~
DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)"2));
hpm:=4* ((x~3+A*x+B)~(Z!t)) *(DivPol(A,B,q,w) ~3) -
(-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)"2-
DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)"2));
end if;
H1:=GreatestCommonDivisor (DivPol(A,B,q,1) ,hpp);
H2:=GreatestCommonDivisor (DivPol(A,B,q,1) ,hpm);
if (IsDivisibleBy(H1,F) eq true) then /* F(x) must divide one of the
polynomials H1(x), H2(x) */
if H2 ne 1 then
printf"Half Eureka!"; E; // curve that we are looking for
end if;
else
if H1 ne 1 then
printf"Half Eureka!"; E;
end if;
end if;
else
s:=Z1(q-1)/2;
if w eq 1 then
hdp:=4* ((x~3+A*x+B)~(Z!s)) *(DivPol(A,B,q,w) ~3) -

115
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(+(DivPol(A,B,q,w+2)*DivPol (A,B,q,w-1)"2 -
(K!'-1)* DivPol(A,B,q,w+1)"2));
hdm:=4* ((x~3+A*x+B)~(Z!s)) *(DivPol(A,B,q,w) ~3) -
(-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)"2 -
(K!'-1)* DivPol(A,B,q,w+1)"2));
else
hdp:=4* ((x~3+A*x+B)~(Z!s)) *(DivPol(A,B,q,w)~3) -
(+(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)"2 -
DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)"2));
hdm:=4* ((x~3+A*x+B)~(Z!s)) *(DivPol(A,B,q,w) ~3) -
(- (DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)"2 -
DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)"2));
end if;
H1:=GreatestCommonDivisor (DivPol(A,B,q,1) ,hdp);
H2:=GreatestCommonDivisor (DivPol(A,B,q,1) ,hdm);
if (IsDivisibleBy(H1,F) eq true) then
if H2 ne 1 then
printf"Half Eureka!"; E;
end if;
else
if H1 ne 1 then
printf"Half Eureka!";E;
end if;
end if;
end if;
end if;
end for;
end for;
end for;

Unfortunately, also with this test we did not find what we were looking for. The failure
in the research of a counter-example despite the number of tested curves, suggest that a
more organic investigature is needed. Or, maybe, the counter-example does not exist. In
this case, it remains challenging give a theoretical proof of the non-existence. An idea to
obtain this proof could be that of considering the fields of /-torsion points of an elliptic
curve [ over a finite field F,. It is the field adjoining the coordinates of the /-torsion points
to the base field F;. We did not follow this approach but we will perform this analysis in
the next future.




Further results and Conclusions

Another method to determine if an indefinite quadratic form Q(z,y) of discriminant A > 0
represents a prime integer p (such that (A/p) = 1) is here deduced using the continue
fractions. To verify whether Q(z,y) represents p we devise the following procedure based
on Proposition [I.TT} Gauss reduction algorithm and composition of forms:

1. Apply Gauss reduction algorithm to Q(z,y) obtaining a quadratic form g,(z,y).

2. Construct a quadratic form (p, B,C') of discriminant A, which represents p by the
pair (1,0), and reduce it via Gauss reduction algorithm to a form f,(x,y).

3. Compose the form g,(x,y) with either f,(x,y) and f,(z, —y), obtaining
9o(x,y) © fol@,y) and go(z,y) o fo(, —y).

4. Check whether the reduction of g,(z, y)o f,(x,y) or the reduction of g,(z, y)o fo(z, —y)
is a principal form.

We observe that when the discriminant A is positive, we call principal every reduced form
properly equivalent to the form Qg(z,y), of discriminant A, defined in Chapter 1.

The problem of determining whether a quadratic form is a principal form can be tack-
led in several ways: we describe two possible approaches.

Preliminarly, we recall a classical result concerning the periodic continued fraction rep-
resentation of v/ A written as
[d07 [dla d27 s 7dT]]

where dj is the anti-period and the remaining entries constitute the period of length T'.
Let % be the partial quotients, also called convergents, of the continued fraction pertaining
to the period. Numerators and denominators of the convergents are computed recursively
as

i=12,...

Di = dipi—1 + pi—2 po=do, p_1=1
g = diGi—1 + Gi—2 Go=1 q1=0

The sequence S = {A; = p? — Ag?}3°, satisfies the following properties, see [31]:

1. The sequence § is periodic of period T.

117
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2. |Aj] < 2V/A for every i.
3. Ap_y = =+1, ie. pr_i + gr_1VA is the fundamental unit in @(\/Z)

4. All the integers of absolute value less than /A, represented by a principal form
of discriminant A, are in a period of the sequence S. The remaining terms of the
sequence S are of absolute value less than 2v/A.

The previous properties offer a criterion for testing whether a quadratic form is a principal
form [43]:

Proposition. A reduced quadratic form (a,b,c), with positive discriminant A, is a prin-
cipal form if and only if the smallest between |a| and |c| occurs in a period of the sequence
S constructed from the continued fraction expansion of VA.

A second criterion can be deduced from the following theorem.

Theorem. Let (a,b,c) be a reduced quadratic form with discriminant A > 0, and

K= Q(\/Z) be a real quadratic field whose Hilbert class field 1L is defined by the root of a
known polynomial Hx(x) of degree 2ha over Q. Suppose that all prime factors q; occurring
in a (with the assumption |a| < |c|) and ¢ are known, then (a,b,c) is principal if Hg(x)
fully splits modulo q; for every 1.

Proof. If Hg(x) fully splits modulo ¢;, then ¢; is representable by a principal form because
¢; splits into 2ha prime factors in L (J20, Theorem 5.9] and [21]), and thus into two
conjugate prime factors in K. Hence ¢; is representable by the principal quadratic form.
The composition of forms implies that a and ¢ are representable by the principal form,
which in turn imply that (a, b, ¢) is a principal form. ]

Recall that full factorization of Hk(z) modulo g; can be checked in polynomial complexity
by computing the greatest common divisor with 2%~ — 1 modulo g;.

Conclusions

The issue of solving, with polynomial complexity, the representation problems for a nega-
tive discriminant A and for a prime integer p, was practically closed by Gauss reduction
algorithm with the further use of Schoof’s algorithm. The same problems, when the dis-
criminant is positive, are not generally settled in polynomial complexity. The methods
seen above have a restrained complexity.

In this thesis alternative algorithms for fundamental negative discriminants of class number
less than 4 have been developed. Such algorithms are sped up by the precomputation of
the Hilbert class polynomials and the Diophantine systems. When a prime p is represented
by the principal form, the computational complexity of the algorithms is dominated by the
calculation of the number of rational points of an elliptic curve over a finite field IF,. It
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can be done using the Schoof’s algorithm [50], that takes O(log” p) elementary operations,
or even better using the improvement by Schoof - Elkies - Atkin (SEA algorithm) [3].
When a prime p is represented by a non-principal reduced form, one needs to determine the
number of rational points of an elliptic curve over a finite field IF,, with ¢ = p™. As above,
the Schoof’s algorithm -or the SEA algorithm- can be used to perform this calculation
with polynomial complexity. Furthermore, hx(z) (mod p) has to be factorized in order to
decide which are the reduced forms that represent a prime p when the imaginary quadratic
fields have class number 2 and 3. This factorization could be obtained in polynomial com-
plexity using the Cantor-Zassenhaus probabilistic algorithm [I2] or a variation of it due to
Schipani and Elia [24], which requires less computational cost.

Future developements of this thesis

A more accurate estimates of the numbers of operations required by the algorithms for the
computations may be considered.

For the sake of comparison, many tests may be performed using a large set of primes with
the algorithms, collect the timings obtained with MAGMA and compare them with respect
to the various algorithms solving the representation problems.

In order to use Theorem to deduce an algorithm solving representation problems for ev-
ery imaginary quadratic field, whatever is its class number, further properties to distinguish
the proper equivalence classes of the form class group are desirable. For example, let us
consider the case of class number 4. This case is interesting because there are two possible
non-isomorphic groups of order 4. If the narrow ideal class group is cyclic of order 4, then
a hypothetical criteria to identify the classes that represent a prime integer p could be the
factorization of hk(x) (mod p): when hx(z) (mod p) splits into 4 distinct linear factors,
p would be represented by the principal quadratic form; when hg(x) (mod p) factors into
2 quadratic factors, p would be represented by the quadratic form that, composed with
itself, yields the principal form; when hg(z) (mod p) is irreducible p would be represented
by the remaining classes of quadratic forms which represent the same set of primes. If the
narrow ideal class group is the group Zs x Z,, then the factorization of hx(z) (mod p)
identifies just the principal form; the remaining three classes, when composed with them-
selves, yield the principal form and the idea of using the factorization of hk(x) could not be
applied. Further efforts are necessary to find the properties nedeed to distinguish between
non-principal reduced forms.

A future work plan would involve the extension of the research of this thesis to obtain
more stringent results concerning indefinite quadratic forms. The first step will require an

analogous of Theorem [3.5
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