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Introduction

The hellenistic mathematician Diophantus of Alexandria (3rd century A.D.), in his major
work �The Arithmetica� considered a number of indeterminate equations, providing numer-
ical solutions to them. In the light of his seminal contribution, the equations with integral
coe�cients in two or more unknowns, for which only integral solutions are looked for, are
said Diophantine equations. In the subsequent centuries, the study of Diophantine equa-
tions (�Diophantine geometry�) remained an important area of mathematical researches (a
signi�cant example is the so called Fermat's Last Theorem). In 1900 Hilbert proposed the
problem of �nding an algorithm that decides the solvability of any given Diophantine equa-
tion as the tenth of his celebrated problems. Seventy years later, Juri V. Matijasevic proved
that such an algorithm cannot exist. It is therefore necessary to develop algorithms that
solve subclasses of Diophantine equations. The easiest Diophantine equations are linear
and they can be solved using the Euclidean algorithm. Furthermore, univariate quadratic
Diophantine equations can be solved using algorithms for extracting square roots. Thus,
the �rst hardly solvable Diophantine equation is a bivariate quadratic, i.e. an equation of
the form

ax2 + bxy + cy2 = m a, b, c, m ∈ Z, (1)

that Diophantus considedered in many of his problems [29, 5] and that is still source of
interesting open questions [26, 57, 11].
The left expression in (1) is an integral binary quadratic form Q(x, y), also denoted with the
triplet (a, b, c), that in the following will be assumed to be primitive (with gcd(a, b, c) = 1).
If equation (1) has a solution in relatively prime integers x and y, then we say that the
quadratic form Q(x, y) represents m. The problem of deciding whether equation (1) is
solvable depends on the discriminant of Q(x, y), which is the integer ∆ de�ned as b2−4ac,
and was addressed by Lagrange [20, Lemma 2.6]. Even though Fermat, Euler and Lagrange
worked on binary quadratic forms, the �rst who considerably expanded the theory of these
objects was Gauss in [26]. Thanks to his theory, in which classes and composition of forms
are studied in a systematic way, the attention was moved from speci�c quadratic forms to
sets of quadratic forms and it became possible to restrict only to those cases where the
constant term m in the equation (1) is a prime integer p [17, page 215].
The set of the quadratic forms with the same discriminant ∆ is partitioned into a �nite
set, C(∆), of h∆ proper equivalence classes (h∆ ∈ N) [44, Theorem 3.7, p.116] by the
equivalence notion: two forms Q1(x, y) and Q2(x, y) are equivalent if integers r, s, t, and
u exist such that Q1(x, y) = Q2(rx + sy, tx + uy) and ru − st = ±1, and are properly
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equivalent if ru − st = 1 [26, �157]. All forms in a proper equivalence class represent the
same integers and they are identi�ed by some reduced form (A,B,C). A reduced form is
a quadratic form (A,B,C) whose coe�cients satisfy the conditions

|B| ≤ A ≤ C and B ≥ 0 when A = |B| or A = C if ∆ < 0

0 < B <
√

∆ and
√

∆−B < 2 |A| <
√

∆ +B if ∆ > 0
(2)

If ∆ < 0, each proper equivalence class contains a single reduced form [45, Theorem 3.1]; if
∆ > 0, each proper equivalence class contains the same even number Pc of reduced forms
[26], [57, p.111]. These capital results were proved by Gauss [26, art. 171 and art. 183] by
means of two constructive demonstrations with the same structure: successive transforma-
tions of a starting form f(x, y) create a sequence of forms, properly equivalent to f(x, y),
that ends with a reduced form. From these proofs one can deduce an algorithm that takes
a quadratic form f(x, y) as input and returns a reduced form h(x, y) properly equivalent
to f(x, y), together with four integers r, s, t, u such that f(rx + sy, tx + uy) = h(x, y).
This algorithm is called Gauss reduction algorithm.
When p is represented by some quadratic form of discriminant ∆, it is possible [20, Lemma
2.6, p.25] to produce an integral binary quadratic form g(x, y) = px2 + b′xy + c′y2 of
discriminant ∆ that represents p. To accomplish this task is necessary to �nd a square
root of ∆ modulo p. According to [17, Theorem 5, p. 200], g(x, y) and g(x,−y) are the
representatives of the only proper equivalence classes contained in C(∆) made up by forms
that represent p. When ∆ < 0, starting from Q(x, y) and g(x, y), one can solve equation
(1) applying Gauss reduction algorithm to Q(x, y), g(x, y) and g(x,−y). Equation (1) has
a solution if and only if the reduced form properly equivalent to Q(x, y) is equal to one of
the reduced forms properly equivalent to g(x, y) and g(x,−y). When a solution exists, it
could be computed using the integers that describe the transformation that sends Q(x, y)
into g(x, y) or into g(x,−y). When ∆ > 0, the same approach presents further di�culties.
In Chapter 1 we will provide an algorithm, written in the language of the modern com-
puter algebra software magma, that, through Gauss reduction algorithm, solves equation
(1) in the both cases ∆ > 0 and ∆ < 0. In particular, when the discriminant is positive,
we use [10, Corollary 6.8.11] to enumerate all the reduced forms contained in the proper
equivalence classes of g(x, y) and g(x,−y).
Now we assume that ∆ is a fundamental discriminant, i.e.

∆ =

{
d ∆ ≡ 1 (mod 4)

4d ∆ ≡ 0 (mod 4)

with d squarefree integer. In this case, there is a natural correspondence between the
quadratic forms with discriminant ∆ and the ideals of the quadratic �eld K = Q(

√
d).

An element of K is an algebraic integer if it is a root of some univariate monic polynomial
with integral coe�cients [11, pag. 89]. The set OK of all the algebraic integers of K is a
ring [11, Proposition 6.6] with K as �eld of fractions of OK [45, Lemma 1.4]. The ring OK
is called the ring of integers of K. None of the elements of K \ OK is integral over OK, i.e.
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is a root of some univariate monic polynomial of OK[x]. Furthermore, the ring of integers
of K is Noetherian and such that each of its prime ideals is maximal. These properties
make OK a Dedekind domain [20, Theorem 5.5]. More generally, the algebraic integers of
every �nite extensions of Q are a Dedekind domain.
Since every ideal of OK is a �nitely generated OK-module, it is natural to consider all
the �nitely generated OK-module contained in K. These are the fractional ideals of OK
and they form a free abelian multiplicative group I(OK) [39, Chapter 1]. Among all, we
consider the subgroup of all those fractional ideals generated by a single element of positive
norm [9, pag. 400]. The corresponding quotient group is denoted by C+(OK) and called
the narrow ideal class group of OK.
The connection between C(∆) and K(

√
d) is due to the existence of an isomporhism [17,

Chapter 13] between C(∆), endowed with the group structure by the composition of forms
[11, Chapter 4], and C+(OK).
Thanks to the Class Field Theory, also the elliptic curves play a role in the relationship
between quadratic forms and quadratic �elds. The Hilbert class �eld L of the quadratic
�eld K = Q(

√
d) is a �nite unrami�ed �eld extension of K such that every non-principal

ideal of K becomes principal in L [46, Theorem 4.18, p.189]. The �eld L is speci�ed by a
root α of an irreducible polynomial hK(x) ∈ K[x]. It is called the Hilbert class polynomial
of L and has degree h∆. In particular, when d < 0, hK(x) always has integral coe�cients.
Given an elliptic curve E over L with complex multiplication OK [15, Chapter 7], and a
prime ideal B of OL containing the constant term of equation (1) (that we assume to be
a prime integer p), we can then consider E modulo B obtaining an elliptic curve E over
the �nite �eld Fq, with q = pn [1, Chapter 4]. When d is negative, by Deuring's results
[47], there exists π ∈ OK such that

∣∣E(Fq)
∣∣ = q + 1− (π + π) and q = ππ, where π is the

conjugate of π in K [11, pag. 92]. This gives a representation of q by the principal form
Q0(x, y) of discriminant ∆ [42, Cor. 2.4] which is de�ned as:

Q0(x, y) =

{
(1, 0,−∆/4) ∆ ≡ 0 (mod 4)
(1, 1,−(∆− 1)/4) ∆ ≡ 1 (mod 4)

(3)

In Chapter 3, we will prove a theorem that allows us to �nd a representantion of p by those
reduced forms of discriminant ∆ that represent p. So it supplies a method, alternative to
that based on the Gauss reduction algorithm, to �nd in polynomial time complexity a rep-
resentation of p. The proof of the theorem is done using the above mentioned connections
between quadratic forms, quadratic �elds and elliptic curves. When h∆ ≤ 3, in the light
of [2, Theorem 3.2], we use the factorization of hK(x) modulo p to determine which of the
h∆ reduced form Q0(x, y), Q1(x, y), . . . , Qh∆−1(x, y) of discriminant ∆ (a representative to
each proper equivalence class of C(∆)) represent p. So, for h∆ = 1, 2, 3 we will provide
three algorithms (written in magma language) to determine the Qi(x, y)'s that represent
p and the corresponding representation.
The polynomial complexity of the proposed algorithms is principally due to the Schoof's
algorithm [50] to count the rational points of elliptic curves over �nite �elds. With an
e�ective use of the Chinese remainder theorem and the division polynomials [58, Section
3.2], it computes the number of the rational points of an elliptic curve over a �nite �eld Fq
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taking O(log9 q) elementary operations. In Chapter 4 we will discuss the possible existence
of a family of elliptic curves not taken into account by the Schoof's original paper.
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Chapter 1

Integral binary quadratic forms

Our work arises from the problem of solving a quadratic Diophantine equation:

ax2 + bxy + cy2 = m (1.1)

where a, b, c,m belongs to Z. Solve a Diophantine equation means to �nd the integer values
of the unknowns for which the equation is satis�ed. We are interested only in solutions
(x0, y0) of equation 1.1 such that gcd(x0, y0) = 1.
The left term of the equation is a binary quadratic form f(x, y) with integral coe�cients.
We will consider only that cases where f(x, y) is primitive, i.e. such that gcd(a, b, c) = 1.
The research of the solutions of equation 1.1 is based on the theory of integral binary
quadratic forms that owed its development to Lagrange, Gauss, Fermat and other great
mathematicians. In particular, Gauss' contribution about composition of forms and re-
duced forms, permits to consider only those cases where m is a prime integer p and to
deduce an algorithm to this kind of equations.
In the following sections we will recall some classical facts about binary quadratic forms
in order to exhibit the mentioned algorithm. Even if quite all what we are going to see
was yet contained in �Disquisitiones Arithmeticae� of Gauss ([26]), we will refer to several
books of number theory, like [11], [20], [45], [38], [10].
We start introducing the notion of integral binary quadratic form and some related ter-
minology, following part four of the Edmund Landau's book �Elementary number theory�
[38].

1.1 An introduction to integral binary quadratic forms

An integral binary quadratic form f(x, y) is an homogeneous polynomial of degree 2 of the
ring Z[x, y]:

f(x, y) = ax2 + bxy + cy2 a, b, c ∈ Z (1.2)

For simplicity, from now on, integral binary quadratic form will be only quadratic form or
form, and f(x, y) = ax2 + bxy + cy2 will be denoted by (a, b, c). As we have said, in the
following only primitive quadratic forms will be considered if not speci�ed otherwise. So

1



2 CHAPTER 1. BINARY QUADRATIC FORMS

the term primitive will be omitted.

A quadratic form f(x, y) = (a, b, c) represents an integer m if there exist two integers
x0, y0 such that f(x0, y0) = m. If x0 and y0 are relatively prime we said that f(x, y) rep-
resents m properly by x0 and y0. We also said that m is (properly) represented by
f(x, y) by the pair (x0, y0).

De�nition 1.1. Let f(x, y) = (a, b, c) be a quadratic form. Its discriminant ∆ is the
integer de�ned as:

∆ = b2 − 4ac

Here are enumerated some elementary observations about the discriminant:

1. ∆ and b2 are congruent modulo 4;

2. ∆ is congruent to 0 modulo 4 if b is even while it is congruent to 1 modulo 4 if b is
odd. Then ∆ and b have the same parity;

3. the following relations hold:

4af(x, y) = (2ax+ by)2 + (4ac− b2)y2 = (2ax+ by)2 −∆y2 (1.3)

4cf(x, y) = (2cy + bx)2 + (4ac− b2)x2 = (2cy + bx)2 −∆x2 (1.4)

For every integer ∆ ≡ 0, 1 (mod 4), there exists a quadratic form Q0(x, y) with ∆ as
discriminant. We have:

Q0(x, y) =

(
1, 0,−∆

4

)
if ∆ ≡ 0 (mod 4) (1.5)

and

Q0(x, y) =

(
1, 1,−∆− 1

4

)
if ∆ ≡ 1 (mod 4) (1.6)

The form Q0(x, y) is called the principal form of discriminant ∆.

1.2 Reducible, de�nite and inde�nite quadratic forms

Given a quadratic form f(x, y) = (a, b, c), we can ask about the types of integers that it
represents:

1. does f(x, y) represent 0 by a couple of integer not both zero?

2. does f(x, y) represent integers of opposite sign?

To answer to these questions we follow [38]. The �rst query needs two preliminary lemmas.
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Lemma 1.2. Given a quadratic form f(x, y) = (a, b, c) there exist four rational numbers
α, β, γ, δ such that (αx+βy)(γx+βy) = f(x, y) if and only if f(x, y) is reducible in Z[x, y]

Proof. One of the two implications is obvious. For the second one, we �x the following
notation:

α =
α′

α′′
β =

β′

β′′
γ =

γ′

γ′′
δ =

δ′

δ′′

with α′, α′′, β′, β′′, γ′, γ′′, δ′, δ′′ integers such that

gcd(α′, α′′) = gcd(β′, β′′) = gcd(γ′, γ′′) = gcd(δ′, δ′′) = 1

Let m̃ be the least common multiple of α′′, β′′, γ′′, δ′′. Then, setting m = m̃2, we have

mf(x, y) = m̃(αx+ βy)m̃(γx+ βy) = (rx+ sy)(tx+ uy)

with r, s, t, u ∈ Z.
If gcd(m, r, s) > 1, then

1

gcd(m, r, s)
mf(x, y) =

(
r

gcd(m, r, s)
x+

s

gcd(m, r, s)
y

)
(tx+ uy)

with

gcd

(
m′ =

m

gcd(m, r, s)
, r′ =

r

gcd(m, r, s)
, s′ =

s

gcd(m, r, s)

)
= 1

So we can assume gcd(m, r, s) = 1 and, for analogy, gcd(m, t, u) = 1.
We want to show that m = 1. If m is not 1, it is divisible by a prime integer p and from

mf(x, y) = max2 +mbxy +mcy2 = (rx+ sy)(tx+ uy) = rtx2 + (ru+ st)xy + suy2

we can deduce that p divides r or t (because it divides ma = rt). Suppose p | r. Since
(ru + st) = mb, p divides s or t. If p | s, then gcd(m, r, s) ≥ p; if p does not divide s but
p | t then gcd(m, t, u) ≥ p. This is a contradiction that we �nd also if we suppose that
p|ma implies p | t.

Lemma 1.3. A quadratic form f(x, y) = (a, b, c) is reducible in Z[x, y] if and only if its
discriminant ∆ is a perfect square.

Proof. If f(x, y) = (rx+ sy)(tx+ uy) = rtx2 + (ru+ st)xy + suy2 with r, s, t, u ∈ Z, then
we have

∆ = (ru+ st)2 − 4rtsu = (ru− st)2

On the other hand, if ∆ = d2, from 1.3 it follows

4af(x, y) = (2ax+ by)2 − d2y2 = (2ax+ (b+ d)y)(2ax+ (b− d)y)

If a 6= 0 then f(x, y) = 1
4a

(2ax+ (b+d)y)(2ax+ (b−d)y) and f(x, y) is reducible in Z[x, y]
by Lemma 1.2. If a = 0 we simply have f(x, y) = bxy + cy2 = (bx+ cy)y.
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If the form f(x, y) = (a, b, c) has discriminant ∆ which is a perfect square we said that
f(x, y) is reducible.

Proposition 1.4. A quadratic form f(x, y) = (a, b, c) represents 0 by two integers not both
zero if and only if its determinant is a perfect square.

Proof. If f(x, y) represents 0 by two integers x0, y0 not both zero, then f(x0, y0) = ax2
0 +

bx0y0 + cy2
0 = 0 and

4af(x0, y0) = 0 = (2ax0 + by0)2 −∆y2
0 ⇒

(
2ax0 + by0

y0

)2

= ∆

Observe that, if y0 = 0 then ax2
0 = 0 and a = 0. In this case ∆ = b2.

Conversely, if ∆ = d2 then f(x, y) = (rx + sy)(tx + uy) with r, s, t, u ∈ Z by Lemma 1.2,
hence f(−s, r) = 0, with r, s not both zero.

Suppose that the form f(x, y) = (a, b, c) of the Diophantine equation 1.1 is reducible
in Z[x, y], i.e. f(x, y) = (rx+ sy)(tx+ uy) for some r, s, t, u ∈ Z. The considered equation
has a solution in two relative prime integers x, y if and only if{

rx+ sy = m1

tx+ uy = m2

for some factors m1, m2 of m such that m = m1m2. Since the number of m's factors is
�nite, solve (rx+sy)(tx+uy) = m means to determine the solution sets of a �nite number
of systems of linear equations. For what we have just seen, in the following we will consider
only non-reduced quadratic forms.

The second of the questions about the integers represented by a �xed quadratic form
f(x, y) is answered by the following result:

Proposition 1.5. Let f(x, y) = (a, b, c) be a quadratic form of discriminant ∆.
If ∆ > 0, f(x, y) represents both positive and negative integers. If ∆ is negative, then
f(x, y) represents only non-negative integers when a > 0 and only non-positive integers
when a < 0.

Proof. If we suppose that ∆ is positive then we have:

f(1, 0) = a

f(b,−2a) = ab2 − 2ab2 + 4a2c = a(4ac− b2) = −a∆

so f(x, y) represents integer of opposite sign (as long as a is non-zero, i.e. ∆ is not a perfect
square). If ∆ < 0, from 4af(x, y) = (2ax + by)2 − ∆y2 it follows that 4af(x, y) is non
negative for every couple of integers x, y.
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The quadratic form f(x, y) = (a, b, c) of discriminant ∆, with ∆ not a perfect square, is
said inde�nite if ∆ > 0, positive de�nite if ∆ < 0 and a > 0, negative de�nite if
∆ < 0 and a < 0.

It is easy to observe that −f(x, y) is positive de�nite if f(x, y) is negative de�nite and
vice versa. In the light of this remark, if the quadratic form of equation 1.1 has negative
discriminant, we can assume that f(x, y) is positive de�nite. Hence, from now on, we will
consider only inde�nite and positive de�nite forms.

1.3 Equivalence of forms

In this section we introduce transformations between quadratic forms that do not change
the discriminant and the represented integers (see [11, pag. 5]). These transformations
will enable us to simplify the study of equation 1.1.

Two quadratic forms f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2) are said equivalent,
and we will write f(x, y) ∼ g(x, y), if there exist four integers r, s, t, u such that

f(rx+ sy, tx+ uy) = g(x, y) (1.7)

and
ru− st = ±1 (1.8)

In particular, when ru − st = 1 the forms f(x, y) and g(x, y) are said properly equiv-
alent, and we will write f(x, y) ∼p g(x, y), while they are said improperly equivalent,
with the notation f(x, y) ∼imp g(x, y), if ru− st = −1.

When f(x, y) and f(rx + sy, tx + uy) = g(x, y) are equivalent, we say that f(x, y) goes
in g(x, y) through the transformation{

x = rx+ sy

y = tx+ uy

that is described by the matrix (
r s
t u

)
We can observe that rs− tu is the determinant of the matrix that describes the transfor-
mation. Furthermore we have:

f(rx+ sy, tx+ uy) = a1(rx+ sy)2 + b1(rx+ sy)(tx+ uy)xy + c1(tx+ uy)2 =

= (a1r
2 + b1rt+ c1t

2)x2 + (2a1rs+ b1(st+ ru) + 2c1tu)xy + (a1s
2 + b1su+ c1u

2)y2 =

= a2x
2 + b2xy + c2y

2 = g(x, y)
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and hence 
a2 = a1r

2 + b1rt+ c1t
2 = f(r, t)

b2 = 2a1rs+ b1(st+ ru) + 2c1tu

c2 = a1s
2 + b1su+ c1u

2 = f(s, u)

As we expect, the de�ned binary relation in the set of all integral binary quadratic forms
is an equivalence relation.

Theorem 1.6. The binary relation �being equivalent to� (�being properly equivalent to�) is
an equivalent relation in the set of all quadratic forms.

Proof. Given a quadratic form f(x, y), it is clear that it is (properly) equivalent with itself.
In fact f(x, y) goes in itself by the transformation described by the 2× 2 identity matrix.
For the transitivity, suppose that f(x, y) = (a1, b1, c1) goes in g(x, y) = (a2, b2, c2) by the
transformation {

x = r1x+ s1y

y = t1x+ u1y

and that g(x, y) goes in h(x, y) = (a3, b3, c3) substituting x with r2x + s2y and y with
t2x+ u2y. So:

g(x, y) = a1(r1x+ s1y)2 + b1(r1x+ s1y)(t1x+ u1y) + c1(t1x+ u1y)2

h(x, y) = a1(r1(r2x+ s2y) + s1(t2x+ u2y))2+

+ b1(r1(r2x+ s2y) + s1(t2x+ u2y))(t1(r2x+ s2y) + u1(t2x+ u2y))+

+ c1(t1(r2x+ s2y) + u1(t2x+ u2y))2 = a1((r1r2 + s1t2)x+ (r1s2 + s1u2)y)+

+ b1((r1r2 + s1t2)x+ (r1s2 + s1u2)y)((t1r2 + u1t2)x+ (t1s2 + u1u2)y)+

+ c1((t1r2 + u1t2)x+ (t1s2 + u1u2)y)2

(1.9)

Therefore f(x, y) is equivalent to h(x, y) since f(r3x+ s3y, t3x+ u3y) = h(x, y) with(
r3 s3

t3 u3

)
=

(
r1 s1

t1 u1

)(
r2 s2

t2 u2

)
The determinant of the matrix on the left is equal to the product of the determinants of
the matrix on the right and so it is equal to ±1 (is equal to 1 if f(x, y) ∼p h(x, y) and
g(x, y) ∼p h(x, y) or f(x, y) ∼imp g(x, y) and g(x, y) ∼imp h(x, y)).
It remains to prove the simmetry of the binary relations. Assume that f(x, y) = (a1, b1, c1)
goes on g(x, y) = (a2, b2, c2) by the transformation{

x = rx+ sy

y = tx+ uy

with ru− st = ±1. Since (
r s
t u

)−1

= (ru− st)
(
u −s
−t r

)
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Using 1.9, from g(x, y) = f(rx + sy, tx + uy) it follows that g(x, y) goes in f(x, y) by the
transformation described by the matrix

(ru− st)
(
u −s
−t r

)
which has determinant ru− st since (ru− st)2 = 1.

It is clear that the binary relation �be proper equivalent to" is contained in the binary
relation �be equivalent to". Proving the transitivity of these binary relations, we have seen
that, if two forms f(x, y) and h(x, y) are improperly equivalent to a form g(x, y), then
f(, y) and h(x, y) are properly equivalent.

1.4 Invariants of equivalent forms

We now want to see which properties have in common two equivalent quadratic forms
f(x, y) = (a1, b1, c1), g(x, y) = f(rx+ sy, tx+ uy) = (a2, b2, c2).

Equivalent quadratic forms have the same discriminant

If ∆1, ∆2 are the discriminants of f(x, y) and g(x, y) respectively, then:

∆2 = b2
2−4a2c2 = (2a1rs+b1(st+ru)+2c1tu)2−4(a1r

2 +b1rt+c1t
2)(a1s

2 +b1su+c1u
2) =

= (b2
1 − 4a1c1)(ru− st)2 = ∆1

Equivalent quadratic forms represent the same integers

If f(x, y) represents an integer m , there exist x0, y0 ∈ Z such that f(x0, y0) = m. There-
fore, we have g(±(ux0 − sy0),±(−tx0 + ry0)) = f(x0, y0) = m for the simmetry of the
equivalence relation. The sign of ux0 − sy0 and −tx0 + ry0 is + when f(x, y) and g(x, y)
are properly equivalent, is − when f(x, y) and g(x, y) are improperly equivalent.

Equivalent quadratic forms properly represent the same integers

Let m be an integer such that f(x0, y0) = m, with gcd(x0, y0) = 1. Then g(±(ux0 −
sy0),±(−tx0 + ry0)) = f(x0, y0) = m. Suppose that the greatest common divisor ` of
ux0 − sy0 and −tx0 + ry0 is greater than 1. Since

±(r(ux0 − sy0) + s(−tx0 + ry0)) = x0

±(t(ux0 − sy0) + u(−tx0 + ry0)) = y0

` divides both x0 and y0. This is a contradiction.
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If g(x, y) is primitive, f(x, y) is primitive too

Suppose gcd(a1, b1, c1) = ` > 1. Then, from
a2 = a1r

2 + b1rt+ c1t
2

b2 = 2a1rs+ b1(st+ ru) + 2c1tu

c2 = a1s
2 + b1su+ c1u

2

it follows that ` divides a2, b2, c2. This is a contradiction.

If f(x, y) is positive de�nite (respectively negative de�nite, inde�nite) then g(x, y) is posi-
tive de�nite (negative de�nite, iden�nite)

If f(x, y) is inde�nite, g(x, y) is inde�nite too since these two forms have the same dis-
criminant. If f(x, y) is positive de�nite, then a2 = f(r, t) is positive and then also g(x, y)
is positive de�nite.

1.5 Some results about the representation of integers

The aim of this section is to discuss some aspects of the representation of integers by
quadratic forms. To begin with, for a quadratic form f(x, y) of discriminant ∆ one can
ask if there exists a necessary and su�cient condition so that an integer m is represented
by f(x, y). The answer is contained in a result due to Lagrange (see [20, Lemma 2.3]).

Proposition 1.7. A quadratic form f(x, y) = (a, b, c) properly represents an integer m if
and only if it is properly equivalent to a form g(x, y) = (m, b′, c′), where b′, c′ are suitable
integers.

Proof. Suppose that f(x, y) represents m properly. Then there exist two coprime integers,
r and s, such that f(r, s) = m. For the Bézout identity, we can �nd t, u ∈ Z such that

ru− st = 1

Hence:

f(rx+ ty, sx+ uy) = f(r, s)x2 + (2ars+ b(st+ ru) + 2ctu)xy + f(t, u)y2 = (m, b′, c′)

On the other hand, if f(x, y) is properly equivalent to (m, b′, c′), since (m, b′, c′) represents
properly m, the same holds for f(x, y).

The last proposition could be used to solve a weaker problem ([20, Lemma 2.5]): decide
if an integer m could be properly represented by some quadratic forms having a �xed
discriminant ∆.



1.5. REPRESENTATION 9

Proposition 1.8. Let ∆ be an integer such that ∆ ≡ 0, 1 (mod 4). If m ∈ Z is odd and
gcd(∆,m) = 1 then m is properly represented by a quadratic form of discriminant ∆ if and
only if ∆ is a square modulo m.

Proof. Suppose that f(x, y) = (a, b, c) is a quadratic form of discriminant ∆ which properly
represents m. By Proposition 1.7, we can assume a = m. Hence:

∆ = b2 − 4mc ⇒ ∆ ≡ b2 (mod m)

Vice versa, suppose that ∆ is a quadratic residue modulo m. Then there exists b ∈ Z
such that ∆ ≡ b2 (mod m). We can assume that ∆ and b have the same parity. In fact,
if it is not the case, m + b would have the same parity of ∆ and b + m ≡ b (mod m).
This implies that ∆ − b2 is divisible by 4 and hence 4m|∆ − b2, since m is odd. Then
there exists c ∈ Z such that ∆ − b2 = 4mc. The quadratic form f(x, y) = (m, b, c) has
discriminant b2−4mc = ∆ and it represents properly m. Furthermore, it is primitive since
gcd(m, b) = 1 (if gcd(m, b) is greater than 1 it divides ∆ too, contradicting the hypothesis
gcd(m,∆) = 1).

Corollary 1.9. Let n be an integer and p ∈ Z an odd prime that doesn't divide n. Then
p is properly represented by a quadratic form of discriminant 4n if and only if (n/p) = 1.

Proof. Using Proposition 1.8, since gcd(4n, p) = 1, we have that p is properly represented
by a primitive quadratic form of discriminant 4n if and only if (4n/p) = 1. But, for the
properties of the Legendre Symbol, we have:

(4n/p) = (n/p)

If ∆ ∈ Z is a discriminant, i.e ∆ ≡ 0, 1 (mod 4), it is a quadratic residue modulo an
odd integer m, coprime with ∆, if and only if it is a quadratic residue modulo any prime
factor of m. For the sake of completeness, we report the proof of this result, obtained by
adapting Proposition 5.1.1 of [32].

Proposition 1.10. Let ∆ ∈ Z be such that ∆ ≡ 0, 1 (mod 4). If m is an odd integer
coprime with ∆, then ∆ is a quadratic residue modulo m = pe11 · · · pess (with p1, . . . , ps
distinct odd primes and e1, . . . , es ∈ N) if and only if ∆ is a quadratic residue modulo
modulo pi, for every i ∈ {1, . . . , s}.

Proof. If x is an integer such that x2 ≡ ∆ (mod m), clearly x2 ≡ ∆ (mod peii ) for every
i ∈ {1, . . . , s}. In order to prove the reverse implication, we claim that the congruence
y2 ≡ ∆ (mod p`i), with i ∈ {1, . . . , s}, is solvable for every non-zero natural number `
if y2 ≡ ∆ (mod pi) is solvable. We proceed by induction on `. Suppose that y0 is a
solution of the congruence y2 ≡ ∆ (mod p`i) with ` natural number grater than 1. Setting
y1 = y0 + bp`i , with b ∈ Z, we have

y2
1 = y2

0 + b2p2`
i + 2by0p

`
i ≡ y2

0 + 2by0p
`
i (mod p`+1

i )
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since 2` > `+ 1. If we choose b such that

2by0 ≡
∆− y2

0

p`i
(mod pi)

for this value of b we would have

2by0 −
∆− y2

0

p`i
= rpi r ∈ Z ⇒ 2by0p

`
i − (∆− y2

0) = rp`+1
i

and then

y2
1 ≡ y2

0 + 2by0p
`
i ≡ y2

0 + (∆− y2
0) = ∆ (mod p`+1

i )

Such a b exists because ∆ 6≡ 0 (mod pi) and ∆ ≡ y2
0 (mod pi), so 2y0 6≡ 0 (mod pi). Now

suppose that z1, . . . , zs ∈ Z are such that (zi)
2 ≡ ∆ (mod pi) for every i in {1, . . . , s}.

Hence we have (xi)
2 ≡ ∆ (mod p`ii ) for some xi ∈ Z. Using the Chinese remainder

theorem, we can �nd x ∈ Z such that x ≡ xi (mod p`ii ) for every i ∈ {1, . . . , s}. So x2 ≡ ∆
(mod p`ii ) and hence x2 ≡ ∆ (mod m). In fact, x2−∆ is divisible by pe11 , i.e. x2−∆ = hpe11

for some h ∈ Z, is divisible by pe22 , and pe22 |h since p1 6= p2 and so on.

In the light of Proposition 1.8, last result says that an odd integer m is represented by
some quadratic form of discriminant ∆, with gcd(∆,m) = 1, if and only if all the prime
factors of m are represented by some form of discriminant ∆. On the other hand, if p is
an odd prime integer, coprime with ∆ and represented by some quadratic form f(x, y) of
discriminant ∆, the following Proposition (see [17, pag. 200]) says that the only quadratic
forms of discriminant ∆ that represent p are those properly or improperly equivalent to
f(x, y).

Proposition 1.11. Let f(x, y), g(x, y) be two quadratic forms with the same discriminant
∆. If the odd prime p is represented by both f(x, y) and g(x, y) we have f(x, y) ∼p g(x, y)
or f(x, y) ∼imp g(x, y).

Proof. By Proposition 1.7 and equation 1.9, we can assume f(x, y) = (p, b1, c1) and
g(x, y) = (p, b2, c2). Then, from

∆ = b2
1 − 4pc1 = b2

2 − 4pc2

it follows b2
1 ≡ b2

2 (mod p). So b1 ≡ b2 (mod p) or b1 ≡ −b2 (mod p). Since b1 and b2 have
the same parity of ∆, we have:

b2 = ±b1 + 2`p (1.10)

with ` ∈ Z, because p is odd. If b2 = b1 +2`p, the form f(x+`y, y) = (p, 2p`+b1, f(`, 1)) is
equal to g(x, y) and properly equivalent to f(x, y); if b2 = b1−2`p, the form f(x+`y,−y) =
(p,−b1 + 2`p, f(−`, 1)) is equal to g(x, y) and improperly equivalent to f(x, y).
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1.6 Composition of forms

In this section we introduce a multiplication between forms of a �xed discriminant: the
composition of forms. This binary operation was discovered by Gauss and published in
his �Disquisitiones Arithmeticae" (see [26, art. 234]). The starting point is the following
de�nition ([20, pag. 47]):

De�nition 1.12. Let f(x, y) and g(x, y) be two quadratic forms of discriminant ∆. A
third binary quadratic form F (x, y) is a composition of f(x, y) and g(x, y) if:

F (B1(x, y, w, z), B2(x, y, w, z)) = f(x, y)g(w, z)

where

Bi(x, y, w, z) = dixw + eixz + `iyw + niyz di, ei, `i, ni ∈ Z

with i ∈ {1, 2}. Furthermore, if {
f(1, 0) = d1e2 − d2e1

g(1, 0) = d1`2 − d2`1

we will say that F (x, y) is a direct composition of f(x, y) and g(x, y).

If f(x, y) represents an integer m1, i.e. f(x0, y0) = m1 for some x0, y0 ∈ Z, and g(x, y)
represents an integer m2, i.e. g(w0, z0) = m2 for some w0, z0 ∈ Z, then a composition
F (x, y) of f(x, y) and g(x, y) represents m1m2:

F (B1(x0, y0, w0, z0), B2(x0, y0, w0, z0)) = f(x0, y0)g(w0, z0) = m1m2

The main result of Gauss's theory of composition of forms, is that the direct composition
makes C(∆), with ∆ ∈ Z such that it is not a perfect square and ∆ ≡ 0, 1 (mod 4),
an abelian group. The existence of the group structure is easier to prove using the rule
to compose forms, based on the united forms, introduced by Dirichlet. If not speci�ed
otherwise, a reference for the rest of the section is [20, � 3].

De�nition 1.13. Two quadratic forms f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2), with
the same discriminant ∆, are said united if:

gcd

(
a1, a2,

b1 + b2

2

)
= 1

We observe that (b1 + b2)/2 is an integer since b1 and b2 have the same parity of ∆.

In order to use the united forms to specify a method to compose forms we need two
lemmas.
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Lemma 1.14. Let a1, b1, . . . , ar, br,m be integers such that gcd(a1, . . . , ar,m) = 1. Then
the system of linear congruences

a1x ≡ b1 (mod m)

· · ·
arx ≡ br (mod m)

has a unique solution modulo m if

aibj ≡ ajbi (mod m)

for every i, j ∈ {1, . . . , r}.

Proof. For the Bézout identity, there exist r + 1 integers `1, . . . , `r, ` such that

`1a1 + · · ·+ `rar + `m = 1

For a j in {1, . . . , r} we have:

−`mbj = −bj + `1a1bj + · · ·+ `rarbj

If aibj ≡ ajbi (mod m) for every i, j ∈ {1, . . . , r}, then

−bj + `1a1bj + · · ·+ `rarbj ≡ −bj + (`1b1 + · · ·+ `rbr)aj ≡ 0 (mod m)

Setting x = `1b1 + · · ·+ `rbr we have

ajx ≡ bj (mod m)

It remains to prove the uniqueness, modulo m, of the solution. Let x′ be a second solution
of the system. Hence:

ajx ≡ ajx
′ (mod m) ∀j ∈ {1, . . . , r}

The set L composed by the aj's that are non-zero modulo m is not empty. Hence
m′ = gcd(x − x′,m) is greater than 1 and m = m′m′′. If aj ∈ L, then m′′|aj and
gcd(a1, . . . , ar,m) ≥ m′′. Hence m′′ = 1 and gcd(x − x′,m) = m. That means x ≡ x′

(mod m).

Lemma 1.15. Let f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2) be two united forms of
discriminant ∆. Then there exist two integers B, C, with B unique modulo 2a1a2, such
that: 

B ≡ b1 (mod 2a1)

B ≡ b2 (mod 2a2)

B2 ≡ ∆ (mod 4a1a2)

and f(x, y), g(x, y) properly equivalent to (a1, B, a2C), (a2, B, a1C) respectively.
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Proof. If an integer B satis�es the �rst two congruences of the system, then B− b1 = 2a1h
and B − b2 = 2a2k for some h, k ∈ Z. Hence (B − b1)(B − b2) = 4a1a2hk and

B2 − (b1 + b2)B + b1b2 = (B − b1)(B − b2) ≡ 0 (mod 4a1a2)

So we have:

B2 ≡ ∆ (mod 4a1a2)⇔ (b1 + b2)B − b1b2 ≡ ∆ (mod 4a1a2)⇔

⇔ b1 + b2

2
B ≡ ∆ + b1b2

2
(mod 2a1a2)

with b1 + b2 and ∆ + b1b2 even since b1 and b2 have the same parity of ∆. Hence, the
starting system is equivalent to:

B ≡ b1 (mod 2a1)

B ≡ b2 (mod 2a2)
b1+b2

2
B ≡ ∆+b1b2

2
(mod 2a1a2)

Furthermore we can observe that:

B ≡ b1 (mod 2a1)⇔ a2B ≡ a2b1 (mod 2a1a2)

Applying the same to the second congruence, we obtain a new equivalent system:
a2B ≡ a2b1 (mod 2a1a2)

a1B ≡ a1b2 (mod 2a1a2)
b1+b2

2
B ≡ ∆+b1b2

2
(mod 2a1a2)

Since we are assuming that f(x, y) and g(x, y) are united, then:

gcd

(
a1, a2,

b1 + b2

2
, 2a1a2

)
= 1

and we can apply Lemma 1.14. In fact we can observe that:

• a2(a1b2) = a1(a2b1);

• since a2∆ ≡ a2b
2
1 (mod 2a1a2), we have

a2(b1b2 + ∆)/2 ≡ (a2b
2
1 + a2b1b2)/2 = (b1 + b2)a2b1/2 (mod 2a1a2)

• since a1∆ ≡ a1b
2
2 (mod 2a1a2), we have

a1(b1b2 + ∆)/2 ≡ (a1b
2
2 + a1b1b2)/2 = (b1 + b2)a1b2/2 (mod 2a1a2)
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So the system has a solution B unique modulo 2a1a2. Since B = b1 + 2a1s for some s ∈ Z,
we have that f(x+ sy, y) = (a1, B, a2C) where:

C =
B2 −∆

4a1a2

∈ Z

In the same way, from B = b2 +2a2s
′ for some s′ ∈ Z we obtain g(x+s′y, y) = (a2, B, a1C).

The Dirichlet composition f(x, y) ◦ g(x, y) of two united forms f(x, y) = (a1, b1, c1),
g(x, y) = (a2, b2, c2) of discriminant ∆, is de�ned as the quadratic form

F (x, y) = f(x, y) ◦ g(x, y) =

(
a1a2, B,

B2 −∆

4a1a2

= C

)
where B and C are the integers of Lemma 1.15.
The quadratic form F (x, y) = f(x, y) ◦ g(x, y) has the following properties:

1. F (x, y) has the same discriminant of f(x, y) and g(x, y). In fact B2 − 4a1a2(B
2−∆

4a1a2
)

is equal to ∆;

2. If ∆ is negative and f(x, y), g(x, y) are both positive de�nite, then F (x, y) is positive
de�nite. We have a1a2 > 0 since, for hypothesis, both a1 and a2 are positive;

3. F (x, y) is primitive if f(x, y) and g(x, y) are primitive. Suppose that the prime
integer p > 1 divides a1a2, B and C. Then we can assume that it divides a1 and
so (a1, B, a2C) is not primitive. This is a contradiction since f(x, y) is properly
equivalent to (a1, B, a2C) by Lemma 1.15;

4. If B′ is another solution of the system of Lemma 1.15, then the quadratic form
F ′(x, y) = (a1a2, B

′, (∆−B′2)/4a1a2) is properly equivalent to F (x, y). We are looking
for four integers r, s, t, u such that ru − st = 1 and F (rx + sy, tx + uy) = F ′(x, y).
Let us �x r = u = 1 and t = 0. Since B ≡ B′ (mod 2a1a2), there exists ` ∈ Z such
that B′ = B + 2a1a2`. Setting s = ` we have

2a1a2rs+B(ru+ st) + 2
B2 −∆

4a1a2

tu = 2a1a2s+B = B′

From F (r, t) = a1a2 it follows F (rx + sy, tx + uy) = F ′(x, y) because F (x, y) and
F ′(x, y) have the same discriminant ∆;

5. F (x, y) = f(x, y) ◦ g(x, y) is a direct composition of f(x, y) and g(x, y).
By Lemma 1.15, f(x, y) is properly equivalent to the form f1(x, y) = (a1, B, a2C)
while g(x, y) is properly equivalent to g1(x, y) = (a2, B, a1C). By a direct computa-
tion one can easily prove that:

f1(x, y)g1(w, z) = F (xw − Cyz, a1xz + a2yw +Byz) (1.11)
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From the proof of Lemma 1.15 we know that:

f1(x, y) = f(x+ sy, y) ; g1(w, z) = g(w + s′z, z)

with s, s′ ∈ Z. Hence

f(x, y) = f1(x− sy, y) = a1(x− sy)2 +B(x− sy)y + a2Cy
2

g(w, z) = g1(w − s′z, z) = a2(w − s′z)2 +B(w − s′z)z + a1Cz
2

From this follows:

f(x, y)g(w, z) = f1(x− sy, y)g1(w − s′z, z) =

= F ((x− sy)(w − s′z)− Cyz, a1(x− sy)z + a2(w − s′z)y +Byz) =

= F (xw − s′xz − syw + (ss′ − C)yz, a1xz + a2yw + (−a1s− a2s
′ +B)yz)

Following the notation of De�nition 1.12 we have d1 = 1, d2 = 0, e1 = −s′, e2 = a1,
`1 = −s, `2 = a2, n1 = ss′ − C, n2 = −a1s− a2s

′ +B and therefore:

d1e2 − d2e1 = a1 = f(1, 0)

d1`2 − d2`1 = a2 = g(1, 0)

If f(x, y) and g(x, y) are two united forms of discriminant ∆, we de�ne:

[f(x, y)] ◦ [g(x, y)] = [F (x, y)] (1.12)

where F (x, y) is the Dirichlet composition of f(x, y) and g(x, y). For the properties seen
above [F (x, y)] belongs to C(∆). We ask ourself if in this fashion we can compose any two
elements of C(∆). That question is answered by the following result [45, Lemma 3.1].

Proposition 1.16. If f(x, y) = (a, b, c) is a primitive quadratic form and m an integer,
then f(x, y) represents properly a positive integer relatively prime with m.

Proof. Let m = pr11 p
r2
2 · · · prss be the prime factor decomposition of m. We can de�ne:

A = {p1, . . . , ps}

A1 = {p ∈ A : p | a ∧ p | c}

A2 = {p ∈ A : p | a ∧ p - c}

A3 = {p ∈ A : p - a ∧ p | c}

A4 = {p ∈ A : p - a ∧ p - c}

Clearly A1, A2, A3, A4 are pairwise disjoint and such that their union is A. Let P,Q,R, S
be the integers obtained multiplying, respectively, the elements of A1, A2, A3, A4. We want
to show that f(Q,RS) = aQ2 +bQRS+c(RS)2 = ` is relatively prime with m. We observe



16 CHAPTER 1. BINARY QUADRATIC FORMS

that gcd(`,m) 6= 1 if and only if there exists a prime integer p that divides ` and m. So it
is su�cient to show that every element of A does not divide `.
If p ∈ A1, it divides aQ

2 and c(RS)2. But it does not divide b (since f is primitive) and
Q,R, S for construction. Therefore p - `.
If p ∈ A2, it divides aQ

2 and b(QRS). But it does not divide c and P,R, S for construction.
Therefore p - `.
If p ∈ A3, it divides c(RS)2 and bQRS. But it does not divide a and P,Q, S for construc-
tion. Therefore p - aQ2.
If p ∈ A4, it divides bQRS and c(RS)2 for construction. But it does not divide a and
P,Q,R. Therefore p - aQ2.

We can assume Q coprime with RS because a divisor of ` is still coprime withm. When the
discriminant ∆ = b2 − 4ac of the form f(x, y) is negative, then ` is positive. Now suppose
that ∆ is positive and ` is negative. Considering the form g(x, y) = (`, b′, c′), properly
equivalent to f(x, y), if we set x0 = b′mt+ 1, y0 = −2`mt, with t non-zero integer, we can
deduce that:

g(x0, y0) = `(1−∆m2t2)

is a positive integer. Furthermore, g(x0, y0) is coprime with m because gcd(`,m) = 1.
If b′ 6= 0, we can choose t = 2`b′ obtaining

x0 = 2(b′)2`m+ 1 , y0 = −4b′`2m

with x0 and y0 coprime. If b′ = 0, then x0 = 1, y0 = −2`mt and

g(x0, y0) = `+ 4c′`2m2t2 = `(1 + 4c′`m2t2)

that is positive since ∆ = −4c′` > 0.

Lemma 1.17. Let f(x, y) = (a, b, c) and g(x, y) = (a′, b′, c′) be two primitive quadratic
forms with the same discriminant ∆. Then there exists a third quadratic form h(x, y),
properly equivalent to g(x, y), such that f(x, y) and h(x, y) are united.

Proof. By Proposition 1.16 g(x, y) represents properly an integer ` relatively prime with a.
Hence g(x, y) is properly equivalent to h(x, y) = (`, b′′, c′′). Therefore the two forms f(x, y)
and h(x, y) are united since from gcd(a, `) = 1 follows gcd(a, `, (b+ b′′)/2) = 1.

The last Proposition shows that a pair of proper equivalence classes of C(∆) could
always be composed. Now we want to verify that the binary operation introduced in C(∆)
is well de�ned. In order to prove it, following [57, � 10], we use an equivalent condition to
ascertain if two quadratic forms are properly equivalent.

Lemma 1.18. Let f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2) be two primitive quadratic
forms with the same discriminant ∆. They are properly equivalent if and only if there exist
r, t ∈ Z such that: 

f(r, t) = a2

2a1r + (b1 + b2)t ≡ 0 (mod 2a2)

(b1 − b2)r + 2c1t ≡ 0 (mod 2a2)
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Proof. If f(x, y) is properly equivalent to g(x, y) there exist four integers r, s, t, u such that
f(r, t) = a2 and {

ru− ts = 1

(b1r + 2c1t)u+ (b1t+ 2a1r)s = b2

The last system could be written in matrix notation as:(
r −t

b1r + 2c1t b1t+ 2a1r

)(
u
s

)
=

(
1
b2

)
The determinant of the 2x2 matrix is:

r(b1t+ 2a1r) + t(b1r + 2c1t) = 2(a1r
2 + b1rt+ c1t

2) = 2a2

which is non-zero since we are considering irreducible forms. Therefore:

2a2

(
u
s

)
=

(
b1t+ 2a1r t
−b1r − 2c1t r

)(
1
b2

)
that means {

2a2u = b1t+ 2a1r + tb2 = (b1 + b2)t+ 2a1r

2a2s = −b1r − 2c1t+ rb2 = (b2 − b1)r − 2c1t

and the necessary condition is proved. Proceeding in the reverse way we easily arrive to
the su�cient condition using the fact that two quadratic forms are equal if they have the
same discriminant and the same �rst two coe�cients.

Proposition 1.19. Let f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2) be two united forms.
Suppose that also f ′(x, y) = (a3, b3, c3) and g′(x, y) = (a4, b4, c4) are united and such that
f(x, y) is properly equivalent to f ′(x, y), g(x, y) is properly equivalent to g′(x, y). Then
f(x, y) ◦ g(x, y) is properly equivalent to f ′(x, y) ◦ g′(x, y).

Proof. By Lemma 1.15 there exist B,C,B′, C ′ ∈ Z such that:

f(x, y) ∼p (a1, B, a2C)

g(x, y) ∼p (a2, B, a1C)

f ′(x, y) ∼p (a3, B
′, a4C

′)

g′(x, y) ∼p (a4, B
′, a3C

′)

(1.13)

so, by Lemma 1.18, we can �nd r, t, r′, t′ ∈ Z for which:
a1r

2 +Brt+ a2Ct
2 = a3

2a1r + (B +B′)t ≡ 0 (mod 2a3)

(B −B′)r + 2a2Ct ≡ 0 (mod 2a3)
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a2r
′2 +Br′t′ + a1Ct

′2 = a4

2a2r
′ + (B +B′)t′ ≡ 0 (mod 2a4)

(B −B′)r′ + 2a1Ct
′ ≡ 0 (mod 2a4)

Using the same lemma, we want to �nd two integers R and T such that:
a1a2R

2 +BR + CT 2 = a3a4

2a1a2R + (B +B′)T ≡ 0 (mod 2a3a4)

(B −B′)R + 2CT ≡ 0 (mod 2a3a4)

Since (a1, B, a2C) represents a3 and (a2, B, a1C) represents a4, using equation 1.11 we can
set {

R = rr′ − Ctt′

T = a1rt
′ + a2tr

′ +Btt′

Furthermore we know that {
a1r + B+B′

2
t ≡ 0 (mod a3)

a2r
′ + B+B′

2
t′ ≡ 0 (mod a4)

and then

2

(
a1r +

B +B′

2
t

)(
a2r
′ +

B +B′

2
t′
)
≡ 0 (mod 2a3a4)

Replacing B′2 with B2 − 4a1a2C + 4a3a4C
′, a direct computation shows that

2a1a2R + (B +B′)T ≡ 2

(
a1r +

B +B′

2
t

)(
a2r
′ +

B +B′

2
t′
)
≡ 0 (mod 2a3a4) (1.14)

So R and T satisfy also the second congruence of the last system. To prove that R and T
satisfy the third congruence, we use four relations that could be easily obtained by a direct
computation:

2a1

(
B −B′

2
R + CT

)
≡ 2

(
a1r +

B +B′

2
t

)(
B −B′

2
r′ + a1Ct

′
)
≡ 0 (mod 2a3a4)

2a2

(
B −B′

2
R + CT

)
≡ 2

(
B −B′

2
r + a2Ct

)(
a2r
′ +

B +B′

2
t′
)
≡ 0 (mod 2a3a4)

(B −B′)
(
B −B′

2
R + CT

)
≡ 2

(
B −B′

2
r + a2Ct

)(
B −B′

2
r′ + a1Ct

′
)
≡ 0 (mod 2a3a4)

(B +B′)

(
B −B′

2
R + CT

)
≡ 2C

(
a1r +

B +B′

2
t

)(
a2r
′ +

B +B′

2
t′
)
≡ 0 (mod 2a3a4)

From the last two congruences, follows

2B

(
B −B′

2
R + CT

)
≡ 0 (mod 2a3a4)
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If (B − B′)R/2 + CT ≡ 0 (mod 2a3a4) then R and T clearly satisfy the third congru-
ence of the system. On the other hand, if gcd((B − B′)R/2 + CT, 2a3a4) < 2a3a4, then
gcd(2a1, 2a2, 2B, 2a2a3) must be greater than 1. But

gcd(2a1, 2a2, 2B, a3a4) = 2gcd(a1, a2, B, a3a4) = 2

since (a1, B, a2C) is a primitive form. Then:

B −B′

2
R + CT ≡ 0 (mod a3a4)

and we have done also in this case.

Now we are ready to state and prove the main theorem about the composition of forms.

Theorem 1.20. Let C(∆) be the set of the proper equivalence classes of the primitive
quadratic forms of discriminant ∆. The composition of elements of C(∆) induced by
the Dirichlet composition of forms is a binary operation in C(∆) that gives to C(∆) the
structure of an abelian group. The proper equivalence class that contains the principal
form of discriminant ∆ is the identity element and the inverse of a proper equivalence
class [(a, b, c)] is [(a,−b, c)].

The abelian group C(∆) is called form class group of discriminant ∆ or, more
simply, class group of discriminant ∆.

Proof. By Lemma 1.17, we can always compose two proper equivalence classes that belong
to C(∆). Composing them we obtain another element of C(∆) thanks to the properties of
the Dirichlet composition between quadratic forms. Hence the composition of elements of
C(∆) is a binary operation in C(∆). Its properties are showed in the following lines.

Commutativity
Given two united forms, f(x, y) = (a1, b1, c1) and g(x, y) = (a2, b2, c2), it is clear that the
integer B of Lemma 1.15 does not depend on which order we consider f(x, y) and g(x, y).
The same holds for F (x, y) = f(x, y) ◦ g(x, y).

Identity element
If ∆ ≡ 0 (mod 4), the principal form of discriminated ∆ is Q0(x, y) = x2 − (∆/4)y2.
Consider a generic element [(a, b, c)] of C(∆). It is obvious that Q0(x, y) and (a, b, c) are
united. Since: 

b ≡ b (mod 2a)

b ≡ 0 (mod 2)

b2 ≡ ∆ (mod 4a)

the Dirichlet composition of (a, b, c) and Q0(x, y) is:(
a, b,

b2 −∆

4a

)
= (a, b, c)
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On the other hand, if ∆ ≡ 1 (mod 4) the principal form is Q0(x, y) = (1, 1,−(∆− 1)/4).
Given a generic primitive quadratic form f(x, y) = (a, b, c) of discriminant ∆, it is clearly
united with Q0(x, y). Furthermore, we have

b ≡ b (mod 2a)

b ≡ 1 (mod 2)

b2 ≡ ∆ (mod 4a)

since b is odd. Therefore the Dirichlet composition of f(x, y) and Q0(x, y) is:(
a, b,

b2 −∆

4a

)
= (a, b, c)

Inverse of an element
Let [f(x, y)] be a generic element of C(∆), with f(x, y) = (a, b, c). The quadratic form
g(x, y) = (c, b, a) is primitive, of discriminant ∆ and positive de�nite if f(x, y) is positive
de�nite. Since:

gcd

(
a, c,

b+ b

2

)
= 1

f(x, y) and g(x, y) are united. From:
b ≡ b (mod 2a)

b ≡ b (mod 2c)

b2 ≡ ∆ (mod 4ac)

we have that f(x, y) ◦ g(x, y) = (ac, b, (b2−∆)/4ac) = (ac, b, 1) that is properly equivalent
to (1,−b, ac). We want to show that every primitive quadratic form f ′(x, y) = (1, b′, c′) of
discriminant ∆ is properly equivalent to the principal form of discriminant ∆. If ∆ ≡ 0
(mod 4), the principal form is Q0(x, y) = (1, 0,−∆/4). Setting r = u = 1, t = 0 and s
such that b′ = −2s, we obtain f ′(rx+ sy, tx+ uy) = (1, 0,−∆/4) since

2rs+ b′(st+ ru) + 2c′tu = 2s+ b′ = 0

If ∆ ≡ 1 (mod 4) the principal form is Q0(x, y) = (1, 1,−(∆−1)/4). As before, we can set
r = u = 1, t = 0 and s such that b′ = −2s+1. Then f ′(rx+sy, tx+uy) = (1, 1,−(∆−1)/4)
since

2rs+ b′(st+ ru) + 2c′tu = 2s+ b′ = 1

Finally, the form g(x, y) = (c, b, a) is properly equivalent to (a,−b, c):

g(−y, x) = (a,−b, c)

Associativity
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Consider three proper equivalence classes contained in C(∆). Let f(x, y) = (a1, b1, c1) be
a form contained in the �rst proper equivalence class. Then, using Lemma 1.16, we can
choose g(x, y) = (a2, b2, c2) in the second proper equivalence class such that gcd(2a1, a2) = 1
and h(x, y) = (a3, b3, c3) in the third proper equivalence class such that gcd(a3, 2a1a2) = 1.
This implies

gcd(a1, a2) = gcd(a2, a3) = gcd(a1, a3) = 1

We have f(x, y) ◦ g(x, y) = (a1a2, B, C) with B solution of the system:
B ≡ b1 (mod 2a1)

B ≡ b2 (mod 2a2)

B2 ≡ ∆ (mod 4a1a2)

and (f(x, y) ◦ g(x, y)) ◦ h(x, y) = (a1a2a3, B
′, C ′) with B′ such that

B′ ≡ B (mod 2a1a2)

B′ ≡ b3 (mod 2a3)

(B′)2 ≡ ∆ (mod 4a1a2a3)

On the other hand, g(x, y) ◦ h(x, y) = (a2a3, N, L) with N solution of the system
N ≡ b2 (mod 2a2)

N ≡ b3 (mod 2a3)

N2 ≡ ∆ (mod 4a2a3)

and f(x, y) ◦ (g(x, y) ◦ h(x, y)) = (a1a2a3, N
′, L′) with N ′ such that

N ′ ≡ b1 (mod 2a1)

N ′ ≡ N (mod 2a2a3)

(N ′)2 ≡ ∆ (mod 4a1a2a3)

From this follows that 
B′ ≡ b1 (mod 2a1)

B′ ≡ b2 (mod a2)

B′ ≡ b3 (mod a3)

and 
N ′ ≡ b1 (mod 2a1)

N ′ ≡ b2 (mod a2)

N ′ ≡ b3 (mod a3)

For the Chinese Remainder Theorem we haveB′ ≡ N ′ (mod 2a1a2a3) since gcd(2a1, a2, a3) =
1 (this explains why we constructed f(x, y), g(x, y) and h(x, y) in that way). Hence
f(x, y) ◦ (g(x, y) ◦ h(x, y)) is properly equivalent to (f(x, y) ◦ g(x, y)) ◦ h(x, y) for the
properties of the Dirichlet composition of forms.
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We end this section mentioning the composition of forms de�ned in the book �A course
in computational algebraic number theory� of Henry Cohen [15, De�nition 5.4.6]. It is
more general than the Dirichlet composition and in order to compose it is not necessary
to solve a quadratic congruence as in Lemma 1.15.

1.7 Factoring

When the prime factorization of the integer m is known, using the composition of binary
quadratic forms it is possible to solve equation (1.1) solving a �nite number of Diophantine
equations of the type

ax2 + bxy + cy2 = p (1.15)

with p prime integer (see [37]). This allows us to consider only the Diophantine equations
of the same type of (1.15).

Even if it is not possible to assert that solving ax2 + bxy + cy2 = m always implies the
factorization of m, there are some special cases in which this is true.
Let (1, b, c) be a quadratic form of discriminant ∆ = b2−4c < −4 and let m be an odd inte-
ger. Assume that two representations ofm by (1, b, c) are known, i.e. m = x2

1+bx1y1+cy2
1 =

x2
2 + bx2y2 + cy2

2, with the condition |y1| 6= |y2|. Setting u1 = x1 + b
2
y1 and u2 = x2 + b

2
y2,

the two expressions for m can be rewritten as

m = (x1 + b
2
y1)2 + 4c−b2

4
y2

1 = u2
1 + 4c−b2

4
y2

1

m = (x2 + b
2
y2)2 + 4c−b2

4
y2

2 = u2
2 + 4c−b2

4
y2

2

Subtracting the second equation multiplied by y2
1 from the �rst multiplied by y2

2, we obtain

m(y2
2 − y2

1) = u2
1y

2
2 − u2

2y
2
1 = (u1y2 − u2y1)(u1y2 + u2y1)

an expression showing that the last product is zero modulo m if
i) u1y2 − u2y1 = 0 (mod m), or
ii) u1y2 + u2y1 = 0 (mod m), or
iii) some factors of m divide (u1y2 − u2y1) and the remaining factors divide (u1y2 + u2y1).
The �rst two hypotheses are excluded because of the Cauchy-Schwarz inequality, that
applied to the vectors (u1,±y1) and (y2, u2) implies

(u1y2 ± y1u2)2 ≤ (u2
1 + y2

1)(u2
2 + y2

2) ⇒ |u1y2 ± y1u2| ≤
√

(u2
1 + y2

1)(u2
2 + y2

2)

If m divides u1y2 − u2y1, then m ≤ |u1y2 − u2y1|, thus

m ≤
√

(u2
1 + y2

1)(u2
2 + y2

2)

however m is trivially larger than u2
1 + y2

1 and u2
2 + y2

2 if ∆ < −4, therefore m is larger
than

√
(u2

1 + y2
1)(u2

2 + y2
2). The contradiction proves that m cannot divide u1y2−u2y1, and

similar argument shows that m cannot divide u1y2 + u2y1. In conclusion some non trivial
factors of m are in common with (u1y2 − u2y1) and some with (u1y2 + u2y1), thus suitable
greatest common divisor computations yield two proper factors of m.
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1.8 Reduced forms

The goal of this section is to determine a canonical representative for each proper equiv-
aqence class of quadratic forms with discriminant ∆. Following the terminology of [20], we
say that a quadratic form f(x, y) = (a, b, c) is reduced when

|b| ≤ a ≤ c and b ≥ 0 if a = |b| or a = c if ∆ < 0

0 < b <
√

∆ and
√

∆− b < 2 |a| <
√

∆ + b if ∆ > 0
(1.16)

Example. Let Q0(x, y) be the principal form of discriminant ∆:

Q0(x, y) =

{
(1, 0,−∆/4) ∆ ≡ 0 (mod 4)

(1, 1, (1−∆)/4) ∆ ≡ 1 (mod 4)

When ∆ is negative, Q0 is reduced in both cases since ∆ ≡ 0, 1 (mod 4) implies ∆ ≤ −3.
Now suppose that Q0(x, y) is inde�nite. When ∆ ≡ 0 (mod 4), the principal form Q0(x, y)
is not reduced (in a reduced inde�nite form b must be positive); when ∆ ≡ 1 (mod 4), we
have 0 < b <

√
∆ (∆ is greater then 3 since it is not a perfect square) but 2 |a| = 2 is less

than or equal to
√

∆− 1 for ∆ ≥ 9.

The number of reduced forms contained in any element of C(∆) is �nite, both for ∆ < 0
and ∆ > 0. To prove it we refer to pages 13,21 and 22 of [11]. We start considering positive
de�nite forms.

Lemma 1.21. If f(x, y) = (a, b, c) is a reduced positive de�nite quadratic form of discrim-
inant ∆ then:

|b| ≤
√
−∆

3

Proof. From conditions 1.16 we can observe that:

4b2 ≤ 4ac = b2 −∆ ⇔ 3b2 ≤ −∆ ⇔ b2 ≤ −∆

3

and then the lemma follows.

Proposition 1.22. If ∆ is a negative integer such that ∆ ≡ 0, 1 (mod 4), then there exist
only a �nite number of reduced positive de�nite forms of discriminant ∆.

Proof. Let f(x, y) be a reduced positive de�nite form of discriminant ∆. By Lemma 1.21,
b belongs to a �nite set. Furthermore, since

b2 −∆

4
= ac

we can consider the prime factorization of (b2 −∆)/4:

b2 −∆

4
= p1p2 · · · pr
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The set {p1, . . . , pr} admits a partition in two non-empty subsets such that the product of
the elements of one is equal to a and the product of the elements of the other is c. Since
the power set of {p1, . . . , pr} is �nite, both a and c lie in a �nite set.

As for the cases of negative discriminant, we need a preliminary lemma also when we
consider inde�nite forms.

Lemma 1.23. If f(x, y) = (a, b, c) be is an inde�nite reduced binary form of discriminant
∆, then ac < 0 and √

∆− b < 2 |c| <
√

∆ + b

Proof. Since b <
√

∆, we have that b2−∆ = 4ac < 0 so that a and c are of opposite signs.
This means −4ac = (2 |a|)(2 |c|) and then

(
√

∆− b)(
√

∆ + b) = (2 |a|)(2 |c|)

Since
√

∆− b < 2 |a| <
√

∆+ b, if we suppose 2 |c| ≥
√

∆+ b we would have −4ac > ∆− b2

and, simmetrically, 2 |c| ≤
√

∆ − b would imply −4ac < ∆ − b2 contradicting ∆ − b2 =
4ac.

Proposition 1.24. The number of inde�nite reduced forms of discriminant ∆ > 0 is �nite.

Proof. Let f(x, y) = (a, b, c) a reduced form of positive discriminant ∆. For the de�nition
of reduced form, b lies in a �nite set. The same is true for a and, in the light of Lemma
1.23, for c too.

Every proper equivalence class of C(∆) contains at least a reduced form. This important
result was �rstly proved by Gauss in his �Disquisitiones Arithmeticae� ([26]) considering
initially the case ∆ < 0 (art. 171) and then the case ∆ > 0 (art. 183). Both the proofs
are constructive and with the same structure: successive transformations of a starting
form f(x, y) create a sequence of forms, properly equivalent to f(x, y), that ends with a
reduced form. From these proofs an algorithm is deduced that takes a form f(x, y) in
input and returns a reduced form properly equivalent to f(x, y). This algorithm is called
Gauss reduction algorithm. To describe theme we will refer to [10, �5 and �6] since the
terminology used by the authors allows them to estimate the number of steps necessary to
�nish the algorithm.

Theorem 1.25. Every positive de�nite quadratic form f(x, y) = (a, b, c) is properly equiv-
alent to a reduced form.

Proof. Given a quadratic form f(x, y) = (a, b, c), if we substitute x by x + s(f)y, with
s(f) ∈ Z, we obtain the form (a, 2as(f) + b, f(s(f), 1)) which is properly equivalent to
f(x, y) since the matrix (

1 s(f)
0 1

)
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has determinant equal to 1. We want to �nd s(f) ∈ Z such that

|2as(f) + b| ≤ |2as′ + b| (1.17)

for every other integer s′. If we de�ne
[−b

2a

]
as the unique integer such that

−1

2
≤ − b

2a
−
[
−b
2a

]
<

1

2

and we set s(f) =
[−b

2a

]
, we have:

−a ≤ −b− 2as(f) < a ⇔ −a < b+ 2as(f) ≤ a

Since s is the nearest integer to −b/2a, given any s′ ∈ Z we obtain∣∣∣∣−b2a
− s(f)

∣∣∣∣ ≤ ∣∣∣∣−b2a
− s′

∣∣∣∣ ⇔ ∣∣∣∣b+ 2as(f)

2a

∣∣∣∣ ≤ ∣∣∣∣b+ 2as′

2a

∣∣∣∣ ⇔ |b+ 2as(f)| ≤ |b+ 2as′|

so s(f) =
[−b

2a

]
satis�es condition 1.17. Furthermore, from 4af(x, y) = (2ax + by)2 −∆y2

it follows f(s(f), 1) = (2as(f)+b)2−∆
4a

and

(2as(f) + b)2 −∆

4a
= f(s(f), 1) ≤ f(s′, 1) =

(2as′ + b)2 −∆

4a

for every integer s′. The form f(x + s(f)y, y) is called the normalization of f(x, y)
(normalize f(x, y) means replace f(x, y) by its normalization).

To prove the theorem, we transform f(x, y) in forms properly equivalent to it until we
�nd a reduced form. The �rst step of this procedure consists in replacing f(x, y) by its
normalization f0(x, y) = (a0, b0, c0). After this, we iteratively apply what is called the
reduction step: we substitute f0(x, y) with the normalization f1(x, y) = (a1, b1, c1) of the
form (c0,−b0, a0) = f0(−y, x). We repeat this step until we �nd a reduced form. This will
be properly equivalent to f(x, y) for the transitivity of the equivalence relation.
The described procedure ends in a �nite number of iterations. Suppose that it is not true
and denote by fi(x, y) = (ai, bi, ci) the form obtained after the ith reduction step. In this
case, the sequence (ai)i≥0 is strictly decreasing. In fact, given a natural number i, the form
fi(x, y) = (ai, bi, ci) is such that

−ai < bi ≤ ai

and so ai must be greater than ci. If ai would be less than or equal to ci, fi(x, y) would be
reduced or such that ai = ci and bi < 0, so fi+1(x, y) would be reduced (fi+1(x, y) is the
normalization of f ′i(x, y) = (ai,−bi, ci) because s(f ′i) is zero). Since ai+1 = ci, it follows
ai+1 < ai.
All the elements of the in�nite sequence (ai)i≥0 are less than or equal to a (since a0 = a)
and properly represented by f(x, y) (ai is properly represented by fi(x, y) which is properly
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equivalent to f(x, y) for every i ∈ N). This is a contradiction since there are only �nitely
many integers which are less than a and which are represented by f(x, y). In fact, if
f(x0, y0) ≤ `, with `, x0, y0 ∈ Z, from equations 1.3 and 1.4 we obtain:

f(x0, y0) =
(2ax0 + by0)2

4a
− ∆

4a
y2

0 , f(x0, y0) =
(2cx0 + by0)2

4c
− ∆

4c
x2

0

Hence, f(x0, y0) ≤ ` implies x2
0 ≤ −(4c`/∆) and y2

0 ≤ −(4a`/∆).

The proof for the case ∆ < 0 is analogous, but a bit more complicated, with respect to
the proof seen above for positive de�nite forms. Before proving that every inde�nite form
is properly equivalent to a reduced form, we give the de�nition of inde�nite normal form
and of normalization of an inde�nite form.

De�nition 1.26. An inde�nite binary quadratic form f(x, y) = (a, b, c) of discriminant ∆
is said normal if:

− |a| < b ≤ |a| if |a| ≥
√

∆ (1.18)
√

∆− 2 |a| < b <
√

∆ if |a| <
√

∆ (1.19)

Given an inde�nite form f(x, y) = (a, b, c) of discriminant ∆, if we de�ne
⌊
(
√

∆− b)/2 |a|
⌋

as the unique integer such that

0 ≤ (
√

∆− b)/2 |a| −
⌊
(
√

∆− b)/2 |a|
⌋
< 1 (1.20)

and we set

s(f) =


sign(a)

[
−b
2|a|

]
|a| ≥

√
∆

sign(a)
⌊√

∆−b
2|a|

⌋
|a| <

√
∆

the form f(x + s(f)y, y) = (a, b + 2as(f), f(s(f), 1)) is properly equivalent to f(x, y) and
normal.
In fact, if |a| ≥

√
∆, from the relation

−1

2
≤ − b

2 |a|
−
[
−b
2 |a|

]
<

1

2

we obtain

− |a| ≤ −b− 2 |a|
[
−b
2 |a|

]
< |a| ⇔ − |a| < b+ 2as(f) ≤ |a| (1.21)

On the other hand, if |a| <
√

∆ from 1.20 (with the �rst inequality proper since ∆ is a
perfect square if (

√
∆− b)/2 |a| ∈ Z) we can deduce:

−
√

∆ < −b− 2 |a|

⌊√
∆− b
2 |a|

⌋
< 2 |a| −

√
∆ ⇔

√
∆− 2 |a| < b+ 2as(f) <

√
∆ (1.22)
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The form f(x+s(f)y, y) is called the normalization of the inde�nite form f(x, y) (normalize
f(x, y) means substitute f(x, y) by its normalization).

Lemma 1.27. Let f(x, y) = (a, b, c) be and inde�nite form of discriminant ∆. If f(x, y)
is normal and |a| ≤

√
∆/2, then f(x, y) is reduced.

Proof. The hypothesis |a| ≤
√

∆/2 implies |a| <
√

∆ because ∆ is non-zero. Then f(x, y)
normal means ∣∣∣√∆− 2 |a|

∣∣∣ =
√

∆− 2 |a| < b <
√

∆

So 0 < b <
√

∆ and∣∣∣√∆− 2 |a|
∣∣∣ < b ⇔ −b < 2 |a| −

√
∆ < b ⇔

√
∆− b < 2 |a| <

√
∆ + b

hence f(x, y) is reduced.

Theorem 1.28. Every inde�nite form f(x, y) = (a, b, c) is properly equivalent to a reduced
form.

Proof. Let ∆ be the discriminant of f(x, y). To prove the theorem, we transform f(x, y)
in forms properly equivalent to it until we �nd a reduced form. The �rst step of this
procedure consists in replacing f(x, y) by its normalization f0(x, y) = (a0, b0, c0). After
this, we iteratively apply the reduction step for inde�nite forms: we substitute f0(x, y)
with the normalization f1(x, y) = (a1, b1, c1) of the form (c0,−b0, a0) = f0(−y, x). We
repeat this step until we �nd a reduced form. This will be properly equivalent to f(x, y)
for the transitivity of the equivalence relation.
To prove that the described procedure ends in a �nite number of iterations we claim that,
given the quadratic form fi(x, y) = (ai, bi, ci) obtained after the ith reduction step, we
have:

1. |ci| ≤ |ai| /4 if |ai| ≥
√

∆;

2. fi+1(x, y) is reduced if |ai| <
√

∆.

For the �rst point, since f(x, y) is normal and |ai| ≥
√

∆, we have a2
i ≥ ∆ and a2

i ≥ b2
i .

So:

|ci| =


∆−b2i
4|ai| ∆ ≥ b2

i

b2i−∆

4|ai| ∆ < b2
i

and in both cases we obtain |ci| ≤ a2
i /4 |ai| = |ai| /4.

For the second point, |ci| ≤
√

∆/2, by Lemma 1.27 fi+1(x, y) is reduced. Hence consider
|ci| >

√
∆/2. Being f(x, y) normal, we have:

−
√

∆ <
√

∆− 2 |ai| < bi <
√

∆ (1.23)
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from which we deduce |bi| <
√

∆ and

0 <
√

∆− bi < 2 |ai| ,
√

∆ + bi > 0 (1.24)

This means that (
√

∆− bi)(
√

∆ + bi) = −4aici is positive and then

√
∆ + bi
2 |ci|

=
2 |ai|√
∆− bi

> 1 ⇒
√

∆ > −bi + 2 |ci| (1.25)

Being |bi| <
√

∆, |ci| can not be greater than or equal to
√

∆ otherwise we would have
2 |ci| − bi >

√
∆. So

|ci| <
√

∆ (1.26)

On the other hand, |bi| <
√

∆ and |ci| >
√

∆/2 imply

− bi + 2 |ci| > 2 |ci| −
√

∆ =
∣∣∣√∆− 2 |ci|

∣∣∣ (1.27)

Now consider the normalization of f ′i(x, y) = (ci,−bi, ai). It has:

s(f ′i) = sign(ci)

⌊√
∆ + bi
2 |ci|

⌋
= sign(ci)

because (
√

∆ + bi)/2 |ci| > 1 for equation 1.25 and
√

∆ + bi < 4 |ci| for equation 1.27.
Hencefi+1(x, y) is (ci,−bi + 2 |ci| , ai − sign(ci)bi + ci). This form is reduced since 0 <
−bi + 2 |ci| <

√
∆ and

√
∆ + bi − 2 |ci| < 2 |ci| <

√
∆− bi + 2 |ci|.

Now we can conclude: given fi(x, y) we have that fi+1(x, y) is reduced or |ai+1| = |ci|
is less than or equal to |ai| /4. So, after a �nite number of steps, we �nd j ∈ N such that
|aj| <

√
∆, that means fj+1(x, y) reduced.

When ∆ is a positive discriminant, a proper equivalence form of C(∆) could contain
more than one reduced form. On the other hand, when we ∆ is negative, every element
of C(∆) contains a unique reduced form. To prove these results, we provide an example
and a Theorem, for which we refer to [48, Theorem 4.2].

Example. Let f(x, y) = (−1, 5, 1) and g(x, y) = (1, 5,−1) two quadratic forms of discrim-
inant ∆ = 29. Both the forms are reduced and f(−y, x + 5y) = g(x, y), i.e. f(x, y) and
g(x, y) are properly equivalent.

Theorem 1.29. If two reduced positive de�nite forms, f(x, y) = (a1, b1, c1) and g(x, y) =
(a2, b2, c2), are properly equivalent, then they are equal.
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Proof. If x0 and y0 are two coprime integers, then f(x0, y0) ≥ a1, i.e. a1 is the minimum
integer represented by f(x, y). In fact we have:

f(x0, y0) = a1x
2
0 + b1x0y0 + c1y

2
0 ≥ a1x

2
0 ≥ a1 if 0 < |x0| ≤ |y0|

f(x0, y0) = a1x
2
0 + b1x0y0 + c1y

2
0 ≥ c1y

2
0 ≥ a1 if 0 < |y0| ≤ |x0|

f(x0, 0) = a1x
2
0 ≥ a1

f(0, y0) = c1y
2
0 ≥ c1 ≥ a1

Since f(x, y) and g(x, y) are properly equivalent, there exist r, s, t, u ∈ Z such that f(rx+
sy, tx + uy) = g(x, y) and ru− st = 1. Properly equivalent forms represents properly the
same integers, then a1 = a2.

Now we want to show that f(x0, y0) = a1, with x0 and y0 coprime integers, implies x0 = ±1
and y0 = 0. From this we will deduce b1 = b2.

Case 1: a1 < c1

If y0 = 0, we have f(x0, 0) = a1x
2
0 that implies x0 = ±1. On the other hand, f(0, y0) =

c1y
2
0 > a1. Now assume that x0 and y0 are both non-zero. When 0 < |x0| ≤ |y0|

we have f(x0, y0) > a1x
2
0 ≥ a1 since |b1x0y0| < c1y

2
0; when 0 < |y0| ≤ |x0| we have

f(x0, y0) ≥ c1y
2
0 ≥ c1 > a1 since |b1x0y0| < a1x

2
0. Hence, from f(r, t) = a1, we deduce

r = ±1 and t = 0. Since ru−st = 1, we have b2 = 2a1rs+b1(st+ru)+2c1tu = ±2a1s+b1.
Being f(x, y) and g(x, y) reduced, b2 satis�es the inequality |b2| ≤ a2 = a1. If s = 0, we
obtain b2 = b1; if s 6= 0, |±2a1s+ b1| is greater than or equal to a1 and could be equal only
when (±2a1s)b1 < 0 (if b1 = 0 we must have s = 0) and |s| = 1, |b1| = a1. In this case we
have |b2| = |b1| = a1 and hence b2 = b1 (for conditions 1.16, b1 and b2 must be both positive).

Case 2: a1 = c1

If x0 and y0 are non-zero and with, for example, |x0| < |y0|, |x0y0| is less than x2
0 and

f(x0, y0) > a1y
2
0 ≥ a1. If x0 and y0 are both non-zero, |x0| could be equal to |y0| only when

(x0, y0) ∈ {(1, 1), (−1, 1), (1,−1), (−1,−1)}. If (x0 = ±1, y0 = ±1), we have b1 = −a1 that
is impossible since b1 must be positive when a1 = c1; if (x0, y0) = (1,−1) or (x0, y0) = 1
we have b1 = a1 and the only possibilities is f(x, y) = (1, 1, 1). Using Lemma 1.22, it is
easy to see that (1, 1, 1) is the only reduced form of discriminant −3 and in this case the
theorem is proved. Hence f(r, t) = a1 implies r = ±1, t = 0 or r = 0, t = ±1.
If r = ±1 and t = 0, we have b2 = ±2a1s + b1 and we proceed as in the case a1 < c1; if
r = 0 and t = ±1, we have b2 = 2a1rs+ b1(st+ ru) + 2c1tu = −b1 ± 2a1u and also in this
case what we have see at the end of the case a1 < c1.

We conclude observing that from a1 = a2 and b1 = b2 it follows c1 = c2:

c1 =
(b1)2 −∆

4a1

=
(b2)2 −∆

4a2

= c2
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Combining Theorems 1.22 and 1.24 with Theorems 1.25 and 1.28 we can deduce one of
the most important result about the integral binary quadratic forms:

Theorem 1.30. Let ∆ ∈ Z be such that it is not a perfect square and ∆ ≡ 0, 1 (mod 4).
Then the set C(∆) has �nite cardinality.

The �nite cardinality of the set C(∆) is denoted by h∆ and is called the class number
of the discriminant ∆.

In the light of the results presented in this section, in order to solve equation (1) the
following two problems will be principally of concern

Problem 1: Let Qi(x, y), i = 0, . . . , h∆ − 1, be a set of h∆ reduced quadratic forms of
discriminant ∆, one representative for each proper equivalence class. Given a prime
p such that (∆/p) = 1, decide which are the forms representing it.

Problem 2: Knowing that a quadratic form Q(x, y) represents p, �nd a representation.

In the following, we will refer to these problems as representation problems for the
discriminant ∆ and the prime integer p.

1.9 Solving ax2 + bxy + cy2 = p with Gauss reduction

algorithm

In this section we want to show how Gauss reduction algorithm allows to solve a quadratic
Diophantine equation ax2 + bxy + cy2 = p, with a, b, c, p ∈ Z and p prime (equation 1.1
with m = p). Our goal is to provide an algorithm, written in magma language, that takes
a, b, c, p and returns a solution of equation 1.1.
We start assuming that:

• the discriminant ∆ = b2−4ac of the integral binary quadratic form f(x, y) = (a, b, c)
is not a perfect square;

• p is an odd prime that does not divide ∆.

In the light of Proposition 1.8, a necessary condition for Equation 1.1 to be solvable is that
∆ is a quadratic residue modulo p. If (∆/p) = 1 then, by Proposition 1.11, there exist only
two elements [Q(x, y)], [Q′(x, y)] of C(∆) such that the forms contained in them represent
p. Then, equation 1.1 has a solution if and only if f(x, y) lies in one of these two proper
equivalence classes. Since the proof of Proposition 1.7 is constructive, we are able to de-
termine Q(x, y) and Q′(x, y). We provide here the function of magma, named �Lagrange�,
that from ∆ (for easy notation, it will be denoted byD) and p outputs Q(x, y) = (q1, q2, q3).
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1 function Lagrange (p, D)
2 Zp:=Integers(p); /* ring of integers modulo p */
3 D1:=Zp!D; /* consider D in Zp */
4 l,q2:=IsSquare(D1); /* function IsSquare returns true if D1 is a
5 quadratic residue modulo p, false otherwise.
6 If D1 is a quadratic residue,
7 a root is also returned (we put it in q2) */
8 Z:=Integers(); /* ring of integers */
9 q2:=Z!q2; /* q2 is regarded as an integer */

10 if (((D-q2) mod 2) eq 1) then /* a control of the parity of D-q2 */
11 q2:=-q2+p;
12 end if;
13 q3:=-((D-q2^2)/(4*p)); /* for \textsc{magma}, q3 is a rational number */
14 q3:=Z!q3; /* q3 is regarded as an integer */
15 return p,q2,q3;
16 end function;

For the computational complexity of the above function, the issue is to �nd a square
root modulo p working with polynomial complexity in p. The equation x2 ≡ ∆ (mod p)
is easily solved when p ≡ 3 (mod 4), while, when p ≡ 1 (mod 4) and p 6≡ 1 (mod 16), it
is solvable in polynomial complexity using Schoof algorithm for counting the number of
points on elliptic curves over �nite �elds [50, Proposition 4.2]. Otherwise, the complexity

is O((|x|1/2+ε log p)9) which may not be polynomial.

Once we have obtained Q(x, y) we can compute also Q′(x, y) since Q′(x, y) = (q1,−q2, q3).
To establish if f(x, y) lies in one of the two proper equivalence classes [Q(x, y)], [Q′(x, y)] of
C(∆), the strategy is to �nd a representative reduced form for each of the classes [f(x, y)],
[Q(x, y], [Q′(x, y)] by the Gauss reduction algorithm. This algorithm is the procedure to
obtain a reduced form properly equivalent to a given quadratic form provided by Gauss to
prove Theorem 1.25 and Theorem 1.28. An implementation of Gauss reduction algorithm
is here provided in magma language. We observe that the function �Gauss�, together with
the coe�cients of a reduced form g(x, y) properly equivalent to the input form f(x, y),
returns r, s, t, u ∈ Z such that f(rx+ sy, tx+ uy) = g(x, y).

1 function Equivalence (a, b, c) /* Input: coefficients of a form (a,b,c)
2 Output: coefficients of the properly
3 equivalent form (c,-b,a) */
4 return c,-b,a;
5 end function;
6

7 function Normalization (a,b,c) /* Input: coefficients of a positive
8 definite form f(x,y)=(a,b,c);
9 Output: coefficients of the normalization

10 of (a,b,c) and the integer sf used for the
11 transformation */
12

13 D:=b^2-4*a*c; /* D is the discriminant of the form (a,b,c) */



32 CHAPTER 1. BINARY QUADRATIC FORMS

14 if (D lt 0) then
15 sf:=(-b)/(2*a); /* sf is the unique integer such that -b/2a - s is
16 greater than or equal to -0.5 and less than 0.5.
17 \textsc{magma} does not supply a function to

compute
18 such sf so we construct it */
19 if ( (sf lt 0) and (Truncate(sf)-sf eq 0.5)) then
20 sf:=Truncate(sf); /* Truncate(sf) returns the
21 integral part of sf */
22 else
23 sf:=Round(sf); /* Round(sf) returns the integer nearest
24 to sf. In the case of a tie, it returns
25 i+1 if sf=i+0.5 and i-1 if sf=i-0.5 */
26 end if;
27 else
28 if (Abs(a) lt Sqrt(D)) then /* Abs(a) returns the absolute
29 value of a; Sqrt(D) is the
30 square root of D.
31 When (a,b,c) is indefinite, the
32 integer used to transform the
33 form in its normalization as two
34 expressions */
35 sf:=Sign(a)*Floor((Sqrt(D)-b)/(2*Abs(a)));
36 /* Sign(a) returns $1$ if a is positive, -1 if a
37 is negative; Floor(q) is the largest integer
38 less than or equal to the rational number q */
39 else
40 sf:=(-b)/(2*Abs(a));
41 if ( (sf lt 0) and (Truncate(sf)-sf eq 0.5)) then
42 sf:=Truncate(sf);
43 else
44 sf:=Round(sf);
45 end if;
46 sf:=Sign(a)*sf;
47 end if;
48 end if;
49 w:=b; /* the value of b is saved in w */
50 b:=2*a*sf+b; /* the normalization of (a,b,c) is the
51 form (a,b+2*a*sf,a*sf^2+b*sf+c) */
52 c:=a*sf^2+w*sf+c;
53 return a,b,c,sf;
54 end function;
55

56 function Gauss (a,b,c) /* Input: coefficients of the form f(x,y)=(a,b,c)
57 Output: coefficients of a reduced form properly
58 equivalent to (a,b,c) and the integers
59 r,s,t,u of the transformation that send (a,b,c)
60 in the reduced form */
61 r:=1; s:=0; t:=1; u:=1; /* the 2x2 matrix that describes the transformations of
62 (a,b,c) is initially set as the identity matrix */
63 D:=b^2-4*a*c; /* D is the discriminant of (a,b,c) */
64 if (D lt 0) then /* Case D<0 */
65 a,b,c,sf:=Normalization(a,b,c); /* zero step */
66 s:=r*sf+s; u:=t*sf+u; /*the transformation matrix is multiplied by (1,sf;0,1)*/
67 while ((a gt c) or (a eq c and b lt 0)) do /* we repeat the reduction
68 step until we find a reduced
69 form: if (a,b,c) is a normal
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70 form it is not reduced if and
71 only if a>c or a=c and b<0 */
72 a,b,c:=Equivalence(a,b,c);
73 a,b,c,sf:=Normalization(a,b,c);
74 w:=r; z:=t; /* r is saved in w and t is saved in z*/
75 r:=s; ; t:=u; s:=s*sf-w; u:=u*sf-z; /* the transformation matrix is
76 multiplied by (0,-1;1,sf) */
77 end while;
78 else /* Case D>0 */
79 a,b,c,sf:=Normalization(a,b,c); /* zero step */
80 s:=r*sf+s; u:=t*sf+u; /*the transformation matrix is multiplied by (1,sf;0,1)*/
81 while ((b in [1..Floor(D)] eq false) or
82 (2*Abs(a) in [Ceiling(Sqrt(D)-b)..Floor(Sqrt(D)+b)] eq false)) do
83 /* The condition to be an indefinite reduced form is different from
84 the condition to be a positive definite reduced form */
85 a,b,c:=Equivalence(a,b,c);
86 a,b,c,sf:=Normalization(a,b,c);
87 w:=r; z:=t; /* r is saved in w and t is saved in z*/
88 r:=s; ; t:=u; s:=s*sf-w; u:=u*sf-z; /* the transformation matrix is
89 multiplied by (0,-1;1,sf) */
90 end while;
91 end if;
92 return a,b,c,r,s,t,u;
93 end function;

The number of reduction steps performed by function �Gauss� is at most
⌊
log2(a/

√
|∆|)

⌋
+2

when applied to a positive de�nite form f(x, y) = (a, b, c) (see [10, Theorem 5.5.4]) and

is at most 1
2

⌊
log2(a/

√
∆)
⌋

+ 2 when applied to a form f(x, y) = (a, b, c) with positive

discriminant [10, Theorem 6.5.3].

We can now propose an algorithm to solve equation 1.1 when ∆ = b2− 4ac is not a perfect
square and (∆/p) = 1. The idea is to reduce (a, b, c), Q(x, y) and Q′(x, y) = Q(x,−y) ob-
taining the forms (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) respectively. When ∆ < 0, if (a1, b1, c1)
is di�erent from (a2, b2, c2) and (a3, b3, c3), the equation 1.1 has no solution. If, for example,
(a1, b1, c1) is equal to (a2, b2, c2), then by function �Gauss� we know the integers r1, s1, t1, u1

and r2, s2, t2, u2 such that:

a(r1x+ s1y)2 + b(r1x+ s1y)(t1x+ u1y) + c(t1x+ u1y)2 = (a1, b1, c1) (1.28)

Q(r2x+ s2y, t2x+ u2y) = (a2, b2, c2) (1.29)

Therefore, from: (
r s
t u

)
=

(
r1 s1

t1 u1

)(
u2 −s2

−t2 r2

)
we can deduce a(rx+ sy)2 + b(rx+ sy)(tx+ uy) + c(tx+ uy)2 = Q(x, y) and so

ar2 + brt+ ct2 = Q(1, 0) = p
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If ∆ > 0, each proper equivalence class contains the same even number Pc, usually greater
than 2, of reduced forms [26], [57, p.111]. Pc is a number strictly connected with the period
of the continuous fraction development of

√
∆, period that, in some singular cases, depends

on the form of ∆ [52]; for example, the minimum value 2 of Pc occurs when ∆ = `2 + 1, i.e.
when the period of the continuous fraction for

√
∆ is 1, and the value 4 of Pc occurs when

∆ = `2 − 1. The maximum value of Pc may be of order O(∆1/2 log ∆) [31, p.329,p.337].
So, when f(x, y) is inde�nite, it could happen that (a, b, c) lies in one of the two proper
equivalence classes [Q(x, y)], [Q′(x, y)] even if (a1, b1, c1) is di�erent from (a2, b2, c2) and
(a3, b3, c3). So we need to �nd all the reduced forms contained in [Q(x, y)] and [Q′(x, y)].
To obtain the reduced forms of [Q(x, y)], in the light of [10, Corollary 6.8.11], we start
normalizing (a2, b2, c2). Then we normalize the new form and so on until we �nd again
(a2, b2, c2). To each of the reduced forms obtained in this way, we apply the same procedure
seen for the case ∆ < 0.

1 function Diophantine (a,b,c,p) /* Input: coefficients of the equation 1.1
2 Output: a solution, if it exists, of
3 the equation 1.1 */
4 D:=b^2-4*a*c;
5 q1,q2,q3:=Lagrange(p, D);
6 if (D lt 0) then
7 a1,b1,c1,r1,s1,t1,u1:=Gauss(a,b,c);
8 a2,b2,c2,r2,s2,t2,u2:=Gauss(q1,q2,q3);
9 a3,b3,c3,r3,s3,t3,u3:=Gauss(q1,-q2,q3);

10 if ((a1 eq a2) and (b1 eq b2) and (c1 eq c2)) then
11 r:=r1*u2-s1*t2; s:= -r1*s2+s1*r2;
12 t:=t1*u2-u1*t2; u:=-s2*t1+u1*r2;
13 x:=r; y:=t;
14 printf "%o=%o(%o)^2+%o(%o)(%o)+%o(%o)^2",p,a,x,b,x,y,c,y;
15 elif ((a1 eq a3) and (b1 eq b3) and (c1 eq c3)) then
16 r:=r1*u3-s1*t3; s:= -r1*s3+s1*r3; t:=t1*u3-u1*t3; u:=-s3*t1+u1*r3;
17 x:=r;
18 y:=t;
19 printf "%o=%o(%o)^2+%o(%o)(%o)+%o(%o)^2",p,a,x,b,x,y,c,y;
20 else
21 printf "No solutions";
22 end if;
23 else
24 x:=0; y:=0;
25 a1,b1,c1,r1,s1,t1,u1:=Gauss(a,b,c);
26 a2,b2,c2,r2,s2,t2,u2:=Gauss(q1,q2,q3);
27 a3,b3,c3,r3,s3,t3,u3:=Gauss(q1,q2,q3);
28 while ((a3 ne a2) and (b3 ne b2) and (c3 ne c2)) do
29 if ((a1 eq a3) and (b1 eq b3) and (c1 eq c3)) then
30 r:=r1*u3-s1*t3; s:= -r1*s3+s1*r3; t:=t1*u3-u1*t3; u:=-s3*t1+u1*r3;
31 x:=r;
32 y:=t;
33 printf "%o=%o(%o)^2+%o(%o)(%o)+%o(%o)^2",p,a,x,b,x,y,c,y;
34 break;
35 end if;
36 a3,b3,c3:=Equivalence(a3,b3,c3);
37 a3,b3,c3,sf:=Normalization(a3,b3,c3);
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38 w:=r3; z:=t3; /* r is saved in w and t is saved in z*/
39 r3:=s3; ; t3:=u3; s3:=s3*sf-w; u3:=u3*sf-z; /* the transformation matrix is
40 multiplied by (0,-1;1,sf) */
41 end while;
42 a2,b2,c2,r2,s2,t2,u2:=Gauss(q1,-q2,q3);
43 a3,b3,c3,r3,s3,t3,u3:=Gauss(q1,-q2,q3);
44 while ((a3 ne a2) and (b3 ne b2) and (c3 ne c2)) do
45 if ((a1 eq a3) and (b1 eq b3) and (c1 eq c3)) then
46 r:=r1*u3-s1*t3; s:= -r1*s3+s1*r3; t:=t1*u3-u1*t3; u:=-s3*t1+u1*r3;
47 x:=r;
48 y:=t;
49 printf "%o=%o(%o)^2+%o(%o)(%o)+%o(%o)^2",p,a,x,b,x,y,c,y;
50 break;
51 end if;
52 a3,b3,c3:=Equivalence(a3,b3,c3);
53 a3,b3,c3,sf:=Normalization(a3,b3,c3);
54 w:=r3; z:=t3; /* r is saved in w and t is saved in z*/
55 r3:=s3; ; t3:=u3; s3:=s3*sf-w; u3:=u3*sf-z; /* the transformation matrix is
56 multiplied by (0,-1;1,sf) */
57 end while;
58 if ((x eq 0) and (y eq 0)) then
59 printf "No solutions";
60 end if;
61 end if;
62 return x,y;
63 end function;
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Chapter 2

Ideals and quadratic forms

In Section 8 of the previous chapter, we have introduced the form class group of the binary
quadratic forms with a �xed discriminant. The aim of this chapter is to create a bridge
between the quadratic forms and the ideals of a quadratic �eld, i.e. a two dimensional �eld
extension of Q. Such a �eld contains a subring, known as the ring of integers, which turns
out to be a Dedekind ring. This property allows to give to the fractional ideals of the �eld
a group structure, the narrow ideal class group, isomorphic to the form class group of the
quadratic forms having the discriminant of the �eld. The matters recalled in the following
are classic and they can be founded in several books of algebraic number theory. For the
sake of easy reference, we report and prove all the intermediate results that bring to the
isomorphism. We refer to [39], [33], [45], [20] for more detailed discussions.

2.1 Dedekind rings

Let R be an integral domain with K as �eld of fractions. Recalling that R could be seen
as a subring of K, an element α ∈ K is said integral over R if it is a root of some monic
polynomial f(x) ∈ R[x]. The set of all elements of K that are integral over R is called the
integral closure of R in K. When α ∈ K integral over R implies α ∈ R we say that R
is integrally closed [39, Chap. 1].

De�nition 2.1. A Dedekind ring R is an integral domain such that [45, Def. 1.23]:

1. it is Noetherian, i.e. does not exist an in�nite ascending chain I1 ( · · · ( Is ( . . .
of ideals of R;

2. every non-zero prime ideal is maximal;

3. it is integrally closed.

Throughout this section, R will denote a Dedekind ring with �eld of fractions K.

It is useful to see an equivalent de�nition ([39, pag. 4]) of integral element over R.

37
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Lemma 2.2. An element α of the �eld of fractions ∈ K of an integral domain R is integral
over R if and only if there exists a non-zero �nitely generated R-submodule M of K such
that xM ⊂M .

Proof. It is evident that K is an R-module (the scalar multiplication is simply the product
in K). If α ∈ K is integral over R, then αn + an−1α

n−1 + · · · + a0 = 0 for some elements
a1, . . . , an−1 ofR. Hence theR-moduleM generated by 1, α, . . . , αn−1 is such that αM ⊂M
(since αn = −an−1α

n−1 − · · · − a0).
Vice versa, let M = 〈α1, . . . , αn〉 be a �nitely generated R-submodule of K such that
αM ⊂M for α ∈ K. Then:

αα1 = a11α1 + · · ·+ a1nαn, . . . , ααn = an1α1 + · · ·+ annαn (2.1)

with the aij's elements of R. The matrix: α− a11 . . . −a1n

. . .
−an1 . . . α− ann


is singular since the endomorphism of Kn that it de�nes is not injective (the non-zero vector
(α1, . . . , αn) is mapped into the zero vector). Its determinant could be seen as a monic
polynomial of R[x] evaluated in α (it is monic since the biggest power of α is obtained
multiplying the elements of the diagonal). This proves that α is integral over R.

In a Dedekind ring every non-zero ideal could be uniquely written as a product of prime
ideals of the ring. We need some preliminary results before proving it. From now to the
end of the section we follow [39].

Lemma 2.3. Let B be a Noetherian ring. Then every ideal of B is �nitely generated and
contains a product of prime ideals of B.

Proof. Let I be an ideal of B. If I = {0} it is obviously �nitely generated. Suppose that I
is non-zero and not �nitely generated. Given one of its non-zero elements a1, there exists
a2 ∈ I \ 〈a1〉. Proceeding in this way we create an ascendent in�nite chain of ideals:

〈a1〉 ( 〈a1, a2〉 ( · · · ( 〈a1, . . . , a`〉 . . . (2.2)

This is a contradiction because B is Noetherian.
Now suppose that I does not contain a product of prime ideals of B. We can assume that
I is maximal with respect to this property. Obviously, I is not prime and hence there exist
two elements b1, b2 ∈ B \ I such that b1b2 belongs to I. We de�ne:

J1 = Bb1 + I, J2 = Bb2 + I (2.3)

Since B is a ring with unit, J1 and J2 strictly contain I. Hence, both J1 and J2 contain a
product of prime ideals of B. But J1J2 is contained in I, so I contain a product of prime
ideals. This is a contradiction that proves the lemma.
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Given a Dedekind ring R with �eld of fractions K, we are interested in the non-zero
�nitely generated R-submodules of K: they are called fractional ideals of R. If a
fractional ideal M of R is contained in R then it is an ideal of R; vice versa, if I is
an ideal of R it is a �nitely generated R-submodule of K since R is Noetherian.
Let M and N be two fractionals ideals of R. We de�ne MN as the set:

MN = {
∑̀
i=1

mini | ` ∈ N,mi ∈M, ni ∈ N} (2.4)

The next elementary properties of fractional ideals will be useful in the following.

Lemma 2.4. Given three fractional ideals M, N and F of a Dedekind ring R with �eld of
fractions K we have that:

1. MN is a fractional ideal of R;

2. MN = NM;

3. (MN)F = M(NF).

Proof. From (2.4) points 2 and 3 follow easily.
For the �rst point, observe that MN is an additive group, closed under multiplication by
elements of R. Therefore it is an R-submodule of K. If α1, . . . , α` and β1, . . . , βs are the
generators of M and N respectively, then MN is generated by αiβj with i ∈ {1, . . . , `} and
j ∈ {1, . . . , s}.

Lemma 2.5. If M is a fractional ideal of a Dedekind ring R with �eld of fractions K, then
the set

M−1 = {α ∈ K | αM ⊂ R}

is a fractional ideal of R.

Proof. As before, we observe that M−1 contains 0, it is closed under addition, contains the
opposite of any of its elements, is closed under multiplication by elements of R. Therefore
M−1 is an R-submodule of K. Suppose that η is a non-zero element of M. Then M−1η
is an ideal of R , hence it is �nitely generated since R is Noetherian. Now it is clear that
M−1 is �nitely generated (by the generators of M−1η multiplied by η−1).

Given a non zero element γ of the �eld of fractions K of a Dedekind ring R, we have
that Rγ is a fractional ideal of R. We call principal this kind of fractional ideals of R.
Observe that, for α ∈ K, we have αRγ ⊂ R if and only if αγ ∈ R (R is a ring with unit).
Therefore

(Rγ)−1 = Rγ−1 (2.5)

and
(Rγ)−1Rγ = Rγ−1Rγ = R (2.6)
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De�nition 2.6. A fractional ideal M of a Dedekind ring R is invertible if MM−1 ⊂ R,
with M−1 de�ned as in Lemma 2.5.

As we have seen, all the principal fractional ideals of a Dedekind ring R are invertible.

Proposition 2.7. A non-zero ideal I of a Dedekind ring R with �eld of fractions K is an
invertible fractional ideal of R.

Proof. We start assuming that I is a maximal ideal of R. Obviously I−1 contains R: we
want to prove that such inclusion is proper.
Given a non-zero element a ∈ I, using Lemma 2.3 we can choose a minimal s such that
there exist s prime ideals p1, . . . , ps of R with p1 · · · ps contained in Ra. We can assume
that p1 is contained in I (if we suppose that all the prime ideals p1, · · · , ps contain an
element that do not belong to I then their product could not belong to I because it is a
prime ideal). Since p1 is maximal by the hypothesis on R, then I = p1. For the minimality
of s, p2 · · · ps is not contained in Ra and hence there exists b ∈ p2 · · · ps such that b /∈ Ra.
But bp1 = bI ⊂ Ra and a−1bI ⊂ R. Therefore a−1b is an element of I−1 that do not belong
to R. This proves that R is properly contained in I−1.
Since 1 ∈ I−1, then I ⊂ I(I−1) ⊂ R. Now observe that I(I−1) is an ideal of R (it is a
fractional ideal contained in R). Since 1 ∈ I−1, it contains I. For the maximality of I it
follows that I(I−1) = I or I(I−1) = R. The �rst possibility implies that the elements of
I−1 send I in I. Since I is a �nitely generated R-module, the elements of I−1 would be
integral over R (Lemma 2.2). This is impossible because I−1 is bigger than R and R is
integrally closed. So I(I−1) = R.
Now let I be a generic non-zero ideal of R. Suppose that the proposition is false. Since R
is Noetherian, we can suppose that I is a maximal ideal with respect to this property. For
the �rst part of the proof, I could not be a maximal ideal. Hence I ⊂ p for some maximal
ideal p ([40, pag. 93]).
We have:

I ⊂ Ip−1 ⊂ I(I−1) ⊂ R

Since I is a �nitely generated R-module we could not have Ip−1 ⊂ I because R is integrally
closed and p−1 contains properly R (see the previous case). But Ip−1 is an ideal in R (it is a
fractional ideal contained in R since p−1 ⊂ I−1). Therefore, for the maximality of I, Ip−1 is
invertible with (Ip−1)−1 = J−1. This is a contradiction: Ip−1J−1 = R implies I invertible
with I−1 = p−1J−1 (if αI ⊂ R, with α ∈ K, then αIp−1J−1 ⊂ p−1J−1, xR ⊂ p−1I−1).

Now, we are ready to prove the mentioned result about the ideals of a Dedekind ring.

Theorem 2.8. Every non-zero ideal I of a Dedekind ring R with �eld of fractions K could
be uniquely factored as a product of prime ideals of R.

Proof. Suppose that there exists a non-zero ideal I of R that could not be written as a
product of prime ideals of R. Since R is a Noetherian, we can assume that I is maximal
with respect to this property. Obviously, I is not prime and then is properly contained in
some prime ideal p of R (see [40, pag. 93]). So Ip−1 is contained in R and contains I (since
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p−1 contains the unit). From the proof of Proposition 2.7, we know that p−1 properly
contains R and then p−1I could not be contained in I, otherwise the elements of p−1 would
be integral over R, contradicting the hypothesis that R is integrally closed. Hence:

I ( p−1I (2.7)

and, for the maximality of I, we can write

p−1I = p1 · · · ps (2.8)

with p1, . . . , ps prime ideals of R. Therefore, from Proposition 2.7, it follows:

I = pp1 · · · ps (2.9)

that is a contradiction. This ends the proof of the existence of a prime factorization.
Now, for the uniqueness of the factorization of a non-zero ideal I of R, suppose that:

I = q1 · · · qn = q′1 · · · q′` (2.10)

with q1, . . . , qn, q
′
1, . . . , q

′
` prime ideals of R. Observe that q1 · · · qn ⊂ q1∩· · ·∩qn. Therefore,

q′1 · · · q′` is contained in q1 and then one of the q′j is contained in q1. From the maximality
of q′j it follows q′j = q1. Less then renumbering, we can assume j = 1. Proceeding in
this fashion, we obtain the equality of the two factorization. In fact, we can not arrive to
qh · · · qn = R, since this means R contained in a prime ideal.

A similar theorem holds also for the fractional ideals of a Dedekind ring.

Theorem 2.9. Let M be a fractional ideal of a Dedekind ring R with �eld of fractions K.
It can be uniquely factored as the product of integral powers of prime ideals of R, i.e.

M = p`11 · · · p`nn

where p1, . . . , pn are prime ideals of R and `1, . . . , `n are, not necessarily positive, integers.

Proof. Let α1, . . . , αr be the generators of M. Since they are elements of K, we have:

αi = ai/bi

where ai and bi belong to R, with bi non-zero. If we put b = (b1 · · · br) ∈ R we obtain that

αib = (ai/bi)(b1 · · · br) ∈ R

for every i ∈ {1, . . . , r}. Hence, Mb ⊂ R is an ideal of R. By Theorem 2.8, we have:

Rb =
∏

q
`j
j , Mb =

∏
p
`′h
h

whit qj and ph prime ideals of R and `j, `
′
h positive integers. We can observe that:∏

p
`′h
h = Mb = (MR)b = MRb = M

∏
q
`j
j
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By Proposition 2.7, we can deduce:

M =
∏

p
`′h
h

∏
q
−`j
j

This ends the proof of the existence of the factorization. It remains the uniqueness. Assume
that:

M =
∏

p`hh
∏

q
−`′j
j =

∏
rsvv
∏

s−s
′
u

u

with ph, qj, rv, su prime ideals of R and `h, `
′
j, sv, s

′
u positive integers. We can assume that

all the ph's and qj's are distinct; the same could be done for all the rv's and su's. Since
the multiplication of a fractional ideal of R by R does not change the fractional ideal, we
deduce: ∏

p`hh
∏

ss
′
u
u =

∏
q
`′j
j

∏
rsvv

Both the terms of the relation are ideals of R. Hence, from Proposition 2.8 and the
hypothesis that all the ph's and qj's are distinct and all the rv's and su's are distinct, the
result follows.

Denote by I(R) the set of all the fractional ideals of a Dedekind ring R. We have
already de�ned a product in I(R) which is commutative and associative (Proposition 2.4).
Furthermore:

• I(R) has R as identity: it belongs to I(R) and RM = M for every fractional ideal
M of R.

• every fractional ideal M of R has an inverse. By Theorem 2.8 we have

M = p`11 · · · p`nn
where p1, . . . , pn are prime ideals of R and `1, . . . , `n are integers, hence

Mp−`11 · · · p−`nn = R

by Proposition 2.7

• every element of I(R) could be written uniquely as a product of integral powers of
prime ideals of R.

It follows that I(R) is a free abelian group respect to the de�ned product: it will be
called ideal group of R. An important subgroup of I(R) is the subset composed by the
principal fractional ideals, that is denoted by P (R). It is easy to observe that: the identity
R is contained in P (R); the inverse of a principal fractional ideal Rγ, with γ in the �eld
of fractions K of R, is the principal fractional ideal Rγ−1; the product of two principal
fractional ideals Rγ1, Rγ2 is Rγ1γ2. The quotient group

C(R) = I(R)/P (R) (2.11)

is called the ideal class group of R.
When R is a principal ideal domain, we have I(R) = P (R) and hence C(R) = {1}. So
C(R) may be taken as a measure of how far R is from being a principal ideal domain.
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2.2 Finite �eld extensions

In the rest of our work, the �nite �eld extensions will assume an important role. In partic-
ular, we will concern with �nite �eld extensions of the �eld Q. For this reason we dedicate
this section to brie�y recall some results that will be used in next sections. For more details
we refer to [9].

In the whole section K denotes a �nite �eld extension, of degree n, of the �eld F with
{ω1, . . . , ωn} as a basis.

Given α ∈ K, the map

ϕα : K → K
ξ 7→ αξ

is a linear map because

1. α(aξ) = a(αξ) for every ξ ∈ K, a ∈ F;

2. α(ξ1 + ξ2) = αξ1 + αξ2 for every ξ1, ξ2 ∈ K.

For i ∈ {1, . . . , n} we have αωi =
∑n

j=1 aijωj and the matrix associated to ϕα with respect
to the �xed basis is A = (aij). If we change the basis, we obtain a matrix similar to A,
so with the same determinant and trace. The determinant det(A) is called the norm of
α and is denoted by NK/F(α) and the trace of A is called the trace of α and denoted by
SpK/F(α).
The characteristic polynomial of α over F is the characteristic polynomial of ϕα, i.e.
det(A − xId), and it does not depend on the basis that we have �xed. Such polynomial
has leading coe�cient equal to 1 or −1 and has α as root (because (A− αId)(ω1, . . . , ωn)t

is equal to the zero-vector and then the matrix is singular).
If β is another element of K, ϕαβ = ϕα ◦ ϕβ. If the matrices associated to ϕα and ϕβ with
respect to {ω1, . . . , ωn} are A and B respectively, then AB is the matrix associated to ϕαβ
with respect the same �xed basis. From the properties of the determinant it follows that
NK/F(αβ) = NK/F(α)NK/F(β).

We say that K is a separable over F if the linear map

SpK/F : K → F
α 7→ SpK/F(α)

is not identically zero. Since ϕ1 = Id(K), then Sp(1)K/F = n.
So, if F has characteristic 0 or n is not a multiple of char(F), then K is always separable
over F.
Now consider the square matrix, of order n and with entries in F, de�ned as

S = (sij) = (SpK/F(ωiωj))
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Its determinant is called discriminant of the basis {ω1, . . . , ωn} and is denoted by
D(ω1, . . . , ωn). We want to show that, if K is separable over F, then S is not singular.
Suppose that det(S) = 0. Therefore there exist c1, . . . , cn ∈ F, not all zero, such that:

n∑
j=1

cjSpK/F(ωiωj) = 0 ∀i ∈ {1, . . . , n}

since the columns of the matrix are linearly dependent over F.
If we put γ = c1ω1 + · · ·+ cnωn, last relation is equivalent to the following:

SpK/F(ωiγ) = 0 ∀i ∈ {1, . . . , n}

since SpK/F is a linear map. In the light of the linear independence of ω1, . . . , ωn over F, we
can observe that also γω1, . . . , γωn are linearly independent over F becuase γ is non-zero.
Hence, given a generic element ξ of K, then ξ = a1γω1 + · · · + γanωn with a1 . . . , an ele-
ments of F. Therefore from the linearity of SpK/F it follows SpK/F(ξ) = 0. This contradicts
the separability of K.

If we suppose K separable over F, given b1, . . . , bn ∈ F there exists a unique element
α ∈ K such that SpK/F(ωiα) = bi for i ∈ {1, . . . , n} (if we put α = x1ω1 + · · · + xnωn
and we impose SpK/F(ωiα) = bi for i ∈ {1, . . . , n} we obtain a linear system with matrix
S. But S is not singular and hence, the system has a unique solution in F). In particular
we can �nd n elements ω∗1, . . . , ω

∗
n ∈ K such that SpK/F(ωiω

∗
j ) = δij. These elements are

linearly independent over F since, from e1ω
∗
1 + · · · + enω

∗
n = 0 (ei ∈ F), multiplyng by ωi

and applying SpK/F, it follows ei = 0 for every i ∈ {1, . . . , n}. Therefore {ω∗1, . . . , ω∗n} is a
basis for K, called the dual basis of {ω1, . . . , ωn}. Finally, if α = a1ω1 + · · ·+ anωn is an
element of K then

ai = SpK/F(αω
∗
i ) (2.12)

2.3 The ring of integers of a number �eld

For all the section, K will denote a number �eld, i.e. a �nite �eld extension of the �eld of
rational numbers:

n = [K : Q]

The �eld K contains a subring, denoted by OK, such that:

1. its �eld of fractions is K;

2. it is a Dedekind ring.

The subring OK could be introduced in several ways: we take as model what is done in
the book Number theory by Borevich and Shafarevich [9]. We start with the notion of
algebraic integer.
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De�nition 2.10. An element α of the number �eld K is an algebraic number if it is a
root of some polynomial f ∈ Z[x]; α is an algebraic integer if it is a root of some monic
polynomial f ∈ Z[x].

The set OK composed by all the algebraic integers of the number �eld K is called the
ring of integers of K. The rest of this section is devoted to the proof of the properties
of OK. We will do it using orders.

Any number �eld K is a Z-module. We denote by M a �nitely generated Z-submodule of
K. If µ1, . . . , µm are its generators, then:

M = {a1µ1 + · · ·+ amµm | ai, . . . , am ∈ Z}

For simplicity, we will write M = [µ1, . . . , µm]. Two Z-submodules of K, M1 and M2, are
said similar if there exists a non-zero α ∈ K such that M1 = αM2. We can observe that
αM2 = [αµ1, . . . , αµm] if M2 = [µ1, . . . , µm].

De�nition 2.11. A �nitely generated Z-submodule of a number �eld K is said full if it
contains a basis of the Q-vector space K; non-full in the other case.

A system of generators µ1, . . . , µm of the �nitely generated Z-submodules M of K is
a basis for M if µ1, . . . , µm are linearly independent over Z. Therefore, every element
µ of the M is uniquely written as a linear combination, with integral coe�cients, of the
elements of the basis.

The structure of a �nitely generated Z-module M in a number �eld K could be inves-
tigated using the abelian groups. Let G be an additive abelian group. It is �nitely
generated if there exist g1, . . . , gm ∈ G such that every element g of G is of the form
c1g1 + · · · + cmgm where c1, . . . , cm are integers. In this case g1, . . . , gm will be called a
�nite system of generators for G. A �nite system of generators g1, . . . , gm of G is a
basis if c1g1 + · · · + cmgm = 0 implies c1 = · · · = cm = 0 (when it happens g1, . . . , gm are
said linearly independent over Z). The order of g ∈ G is the least positive integer ` such
that `g = 0. If such integer does not exist, g is said of in�nite order.

Proposition 2.12. Let G be an additive abelian group without elements of �nite order. If
it is �nitely generated, then it admits a basis.

Proof. Let g1, . . . , gm be a �nite system of generators for G. If we substitute gi with gi+`gj,
where i 6= j and ` ∈ Z, we obtain another �nite system of generators for G. In fact, given
g ∈ G, we have:

g = c1g1 + · · ·+ cmgm = c1g1 + · · ·+ (cj − `ci)gj + · · ·+ ci(gi + `gj) + · · ·+ cmgm

with c1, . . . , cm ∈ Z. Suppose that g1, . . . , gm are not linearly independent over Z. Given
b1g1 + · · ·+ bmgm = 0 with b1, . . . , bm ∈ Z not all zero, assume that b1 is the minimum (in
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absolute value) of the non-zero bi's. We would like that all the other bi's would be divisible
by b1 because g1 would be a linear combination of g2, . . . , gm (we use the fact that G has
not elements of �nite order). On the other hand, if (for example) b2 is not divisible by
b1, then b2 = qb1 + r with q, r ∈ Z and 0 ≤ r < b1. Then we can put b′2 = b2 − qb1 = r
and substitute g1 with g1 + qg2. We obtain a new system of generators to which apply the
same process (they remain linearly dependent over Z because b1 and b′2 are non-zero). If
we do not �nd the desired situation, iterating the procedure, at each step we decrease the
non-zero coe�cient with minimum absolute. Then, after a �nite number of steps the non-
zero coe�cient with minimum absolute value becomes zero. But this is impossible since
the new non-zero coe�cient with minimum absolute value is the rest r of the euclidian
division performed above.
So, if g1, . . . , gm are not linearly independent over Z we can decrease the number of gener-
ators until we �nd a basis. It happens every time since at most remains only a generator:
it is linearly independent over Z since it is of in�nite order.

It is easy to observe that a �nitely generated Z-submodule M of a number �eld K is an
abelian additive group, �nitely generated and without elements of �nite order (a �eld does
not have zero divisors). Its generators are also generators for the abelian group. Hence
every �nitely generated Z-submodule M of K admits a basis.
The cardinality of a basis of M is equal to the maximal number s of linearly independent
(over Q) vectors of K. In fact, since vectors linearly independent over Z are also linearly
independent over Q, we have that the cardinality m of a basis is less or equal to s. These
two natural numbers must be equal: suppose that ν1, . . . , νs are elements of M linearly
independent over Q and µ1, . . . , µm form a basis forM , with s > m. Therefore a1ν1 + · · ·+
asνs = 0 (ai ∈ Q) not necessarily implies a1 = · · · = ar = 0 (to the relation corresponds a
linear system with variables a1, . . . , as and coe�cient matrix of order m × s with entries
in Q: every linear application from Qs to Qm is obviously non-injective. Therefore all
the basis of M have the same cardinality that is called rank of M and it is denoted by
rank(M).
Obviously, rank(M) = [K : Q] if and only if M is full. Furthermore, a set of generators of
M must have a cardinality greater or equal to rank(M) for the proof of Theorem 2.12.

Theorem 2.13. Let G be an abelian additive group, �nitely generated and without elements
of �nite order. Then, if N is a non-zero subgroup of M , it has a �nite system of generators
and hence a basis. Furthermore, for any basis {g1, . . . , gm} of G there exists a basis of N
of the form:

η1 = c11g1 + · · ·+ c1mgm

η2 = c22g2 + · · ·+ c2mgm

· · ·
ηn = cnngn + · · ·+ cnmgm

(2.13)

where the cij are integers with cii > 0 and n ≤ m.
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Proof. We will prove the theorem by induction on the cardinality m of a basis of G.
If m = 1, the non-zero element g1 generates G. Let ` be the smallest positive integer such
that `g1 ∈ N . Given an element `′g1 ∈ N , with `′ positive integer, we have `′ = q`+ r with
q, r ∈ Z and 0 ≤ r < `. Since `′g1 − q`g1 = (`′ − q`)g1 = rg1 belongs to N , we must have
r = 0, otherwise the minimality of ` will be contradicted. So N is generated by `g1. It is
a basis for N since G does not have elements of �nite order.
Now suppose m > 1. Let β a non-zero element of N . Then β = c1g1 + · · · + cmgm where
the integers c1, . . . , cm are not all zero. For simplicity, assume c1 > 0 (if necessary we can
consider −β). From the existence of β, it follows that we can consider, among all the
elements of N , an element η1 = c11g1 + · · · + c1mgm, with c11, . . . , c1m ∈ Z in which the
positive coe�cient of g1 is the smallest. Then c1 is divisible by c11. Indeed, if c1 = c′′c11 +c′

with C ′, C ′′ ∈ Z and 0 ≤ c′ < c11, then β − qη1 belongs to N and has c′′ as coe�cient of
g1. If c

′′ 6= 0 we contradict the minimality of c11. Therefore β − qη1 = e2g2 + · · · + emgm
with e2, . . . , eg ∈ Z.
Let G0 be the subgroup of G generated by g2, . . . , gm (they form a basis of the subgroup).
Then G0 ∩N is a non-zer subgroup of G0 (otherwise η1 would generate N) and we can use
the induction hypothesis on G0. So G0 ∩N has a basis of the type:

η2 = c22g2 + · · ·+ c2mgm

η3 = c33g3 + · · ·+ c3mgm

· · ·
ηn = cnngn + · · ·+ cnmgm

(2.14)

where the cij's are integers with cii > 0 and n is less than or equal to m. We claim that
N is generated by η1, . . . , ηn. Let α = b1g1 + · · ·+ bmgm, with b1, . . . , bm ∈ Z, an arbitrary
element of N . Since c11 divides b1 (even if b1 = 0), we have:

α− tη1 ∈ G0 ∩N

for a suitable t ∈ Z, and therefore:

α− tη1 = t2η2 + · · ·+ tnηn ⇒ α = tη1 + t2η2 + · · ·+ tnηn

for t, t2, . . . , tn ∈ Z, i.e. η1, . . . , ηn generate N .
From the linear independence of g1, · · · , gm and for the form of η1, . . . , ηn it follows the
linear independence of η1, · · · , ηn.

Corollary 2.14. Let M be a �nitely generated Z-submodule of a number �eld K. Then
every additive subgroup N of M is a �nitely generated Z-submodule of M and hence of K.

Proof. M is an abelian additive group without elements of �nite order. Therefore, if N is
a subgroup of M , it is �nitely generated and with a basis for the previous theorem. Then
N is a �nitely generated Z-submodule of K.

De�nition 2.15. Let M be a full �nitely generated Z-submodule of a number �eld K. A
coe�cient of M is an element α ∈ K such that αM ⊂M .
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The set DM composed by all the coe�cients of M is a subring of K (it is clearly an
additive subgroup, it is closed under multiplication and contains the unit). DM is called
the ring of coe�cients of M . Observe that, if {µ1, . . . , µn} is a basis for M , then α ∈ K
belongs to DM if and only if αµ1, . . . , αµn belong to M . One implication is clear; vice
versa, for every β ∈M we have:

αβ = α(b1µ1 + · · ·+ bnµn) = b1αµ1 + · · · bnαµn ∈M

with b1, . . . , bn ∈ Z, because M is an additive group.

Proposition 2.16. Let M be a full �nitely generated Z-submodule of a number �eld K.
Then also DM is full �nitely generated Z-submodule of K.

Proof. Let γ be a non-zero element of M . For the de�nition of DM we have γDM ⊂ M
with γDM additive subgroup of M (since also DM is an additive group). For 2.14, γDM is
a �nitely generated Z-submodule of K and then same holds for DM = γ−1γDM .
Let α be a non zero element of K and {µ1, . . . , µn} a basis for M and therefore for K. We
denote by a the common denominator of the rationals aij, with i, j ∈ {1, . . . , n}, such that:

αµi = ai1µ1 + · · ·+ ainµn

It follows that aαµi ∈M , for every i ∈ {1, . . . , n}, and aα belongs to DM . Furthermore, if
{α1, . . . , αn} is a basis for K, then a1α1, . . . , anαn belong to DM for some non-zero integers
a1, . . . , an. Obviously, a1α1, . . . , anαn are linearly independent over Q so DM is full.

De�nition 2.17. A full �nitely generated Z-submodule M of a number �eld K is an order
of K if it is a ring.

From the above de�nition, it follows that the ring of coe�cients DM of a full �nitely
generated Z-submodule M ⊂ K is an order. Vice versa, if D is an order of K then it is the
ring of coe�cients of itself (because 1 ∈ D and αD ⊂ D implies α ∈ D).

Lemma 2.18. Let M be a �nitely generated full Z-submodule of a number �eld K. If γ is a
non-zero element of K, then DM = DγM . Furthermore, M is similar to a full Z-submodule
of K contained in DM .

Proof. An element α ∈ K belongs to DM if αβ ∈ M for every β ∈ M . This is equivalent
to the condition αγβ ∈ γM for every β ∈ M (we use the fact that γ as an inverse in K
since it is non-zero). Hence DM = DγM .
Let {µ1, . . . , µn} be a basis for M and {η1, . . . , ηn} be a basis for DM . For i ∈ {1, . . . , n},
we have µi =

∑n
j=1 bijηj, with bij ∈ Q (observe that η1, . . . , ηn form a basis for K). Denote

with b the common denominator of the rationals b11, . . . , bnn. Then bµi belongs to DM .
So bM is a full �nitely generated Z-submodule of K (bµ1, . . . , bµn are linearly independent
over Q) and a subset of DM .

Lemma 2.19. Let D be an order in a number �eld K. An element α ∈ D has characteristic
polynomial and minimal polynomial over Q with integral coe�cients. In particular its norm
NK/Q(α) and its trace SpK/Q(α) are integers.
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Proof. Let D be the ring of coe�cients of the full �nitely generated Z-submodule M with
basis {µ1, . . . , µn} (for example, M could be D itself). If α ∈ D then αµi, with i ∈
{1, . . . , n}, belongs to M and then the matrix A = (aij) associated to ϕα with respect to
the basis {µ1, . . . , µn} of K has integral entries. It follows that det(A) and trace(A) are also
integers. Furthermore, the characteristic polynomial of α over Q has integral coe�cients
and then α is an algebraic integer. It remains to prove that α has minimal polynomial over
Q with integral coe�cients.
Let p(x) ∈ Q[x] be the minimal polynomial of α over Q and let g(x) ∈ Z[x] a monic
polynomial having α as root. It follows that:

g(x) = p(x) · h(x)

with h(x) ∈ Q[x]. Suppose that p(x) does not belong to Z[x]. So one of its coe�cients
is a rational number a/b with a, b ∈ Z and gcd(a, b) = 1 and 〈b〉 6= 1 . Let p 6= 1 be
a prime integer that divides b and suppose that pi is the biggest power of p that divides
some denominator of the p(x)'s coe�cients. Similarly, let pj be the biggest power of p that
divides some denominator of the h(x)'s coe�cients. Then:

pi+jg(x) = pi+jh(x)p(x) = (pjh(x))(pip(x))

Now consider pi+jg(x) and (pjh(x))(pip(x)) in Zp: the left term has all the coe�cients
equal to zero modulo p. Let xs be the biggest monomial of p(x) such that the denominator
b1 of its coe�cient a1/b1 is divisible by p

i; let xr be the biggest monomial of h(x) such that
the denominator b2 of its coe�cient a2/b2 is divisible by pj. Hence the coe�cient of xr+s

in (pjh(x))(pip(x)) is:

pi+j(
a1

b1

a2

b2

+
a3

b3

+ · · ·+ ae
be

)

with a3/b3, . . . , ae/be ∈ Q. This coe�cient is non-zero modulo p since the numerator of
pi+j(a1a2/b1b2) is not divisible by p while pi+j(a3/b3 + · · ·+ ae/be) is zero in Zp. This is a
contradiction.

We denote by OK the set of all the elements of a number �eld K such that their
minimal polynomial over Q have integral coe�cients. From the last lemma it follows that
OK contains every order of K.

Lemma 2.20. Let K be a number �eld. If α ∈ OK and its minimal polynomial over Q is

xm + cm−1x
m−1 · · ·+ c1x+ c0 ∈ Z[x]

then the �nitely generated Z-submodule M = {1, α, . . . , αm−1} of K is a ring.

Proof. For the distributivity of the product in K it is su�cient to prove that α` belongs to
M for every positive integer `. We proceed by induction on `. For ` ≤ m− 1 this is clearly
true and the same holds if ` = m (because αm = −cm−1α

m−1−· · ·−c1α−c0 ∈M). Finally,
if ` > m, for inductive hypothesis we have α` = αα`−1 = α(a0 + a1α+ · · ·+ am−1α

m−1) for
some a0, . . . , am−1 ∈ Z and hence α` belongs to M .
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Lemma 2.21. Let D be an order in a number �eld K and α an element of OK. Then the
ring D[α] = {f(α) | f ∈ D[x]} is an order in K.

Proof. It is obvious that D[α] is a ring in K (0,1 belong to K; it is closed under addition
and multiplication and it contains the opposite of each of its elements). Since D ⊂ D[α],
D[α] contains a basis of K, i.e. n linearly independent elements over the rationals numbers.
It remains to show that D[α] is a �nitely generated Z-submodule of K. Let {ω1, . . . , ωn}
be a basis for D. If m is the degree of the minimal polynomial of α over Q, for the proof
of the Lemma 2.20 we have that α` = a0 + a1α + · · · + am−1α

m−1, with a0, . . . , am−1 ∈ Z,
for every positive integer `. We can conclude that D[α] is a Z-submodule of K generated
by the elements ω1, ω1α, . . . , ω1α

m−1, . . . , ωn, ωnα, . . . , ωnα
m−1.

Corollary 2.22. Let D be an order in a number �eld K and α1, . . . , αr elements of OK.
Then the ring D[α1, . . . , αr] = {f(α1, . . . , αr) | f ∈ D[x1, . . . , xr]} is an order in K.

Proof. It follows from Lemma 2.21 since we can proceed by induction on r using the fact
D[α1 . . . , αr−1, αr] = D[α1, . . . , αr−1][αr]

Theorem 2.23. Let K be a number �eld. The set OK of all the elements of K whose
minimal polynomials over Q have integral coe�cients is the maximal order in K, i.e. it
contains every order of K and is not properly contained in an another order of K.

Proof. Let D be an order in K (it exists: we can consider the full Z-submodule of K
generated by a basis of K and then take its ring of coe�cients). Fix two elements α, β of
OK. Since D[α, β] is an order in K for Corollary 2.22, than it is contained in OK (Lemma
2.19). So α− β and αβ belong to D[α, β] and then to OK. This proves that OK is a ring.
It contains a basis of K because the order D, which is contained in OK by Lemma 2.19,
does. It remains to show that OK is a �nitely generated Z-submodule of K.
Since char(Q) = 0 and K is a �nite extension of Q, then K is a separable extension of Q.
Given a basis {ω1, . . . , ωn} for D we can consider the dual basis {ω∗1, . . . , ω∗n}. We want to
show that the full Z-submodule D∗ of K generated by ω∗1, . . . , ω

∗
n contains OK.

Let α be any element of the ring OK. Then α = c1ω
∗
1 + · · ·+ cnω

∗
n with c1, . . . , cn rational

numbers. For i ∈ {1, . . . , n} we have SpK/Q(ωiα) = ci and ωiα is obviously an element of
the order D[α]. But D[α] is an order and then the trace of ωiα is an integer, so c1, . . . , cn
are integers. Thus OK ⊂ D∗. Since OK is an additive group, we have that it is a �nitely
generated Z-submodule of K by Lemma 2.14. Its maximality follows from 2.19.

The maximal order OK of a number �eld K is the ring of integers of K de�ned at the
beginning of the section: the algebraic integers of K are all and only the elements of K
with minimal polynomials over Q with integral coe�cients.

The next step is to show that the ring of integers OK of a number �eld K has K as
�eld of fractions (see Lemma 1.4 and Corollary 1.16 of [45]).

Proposition 2.24. Let K be a number �eld. Then its ring of integers OK has K as �eld
of fractions.
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Proof. Since OK is a subring of the �eld K, it is an integral domain. Let Q(OK) be its �eld
of fractions and consider the map:

ϕ : Q(OK) → K
[(α, β)] 7→ αβ−1

First of all, ϕ is well de�ned because if (α, β) and (α′, β′) are in the same equivalence class
of the domain, then αβ′ = βα′ and:

α = βα′(β′)−1 ⇒ αβ−1 = ϕ([(α, β)]) = α′(β′)−1 = ϕ([(α′, β′)])

We want to show that ϕ is a �eld isomorphism. If [(α1, β2)], [(α2, β2)] are two elements of
Q(OK) then we have:

ϕ([(α1, β1)] + [(α2, β2)]) = ϕ([(α1β2 + α2β1, β1β2)]) = (α1β2 + α2β1)(β1β2)−1 =

α1β
−1
1 + α2β

−1
2 = ϕ([(α1, β1)]) + ϕ([(α2, β2)])

(2.15)

ϕ([(α1, β1)][(α2, β2)]) = ϕ([(α1α2, β1β2)]) = α1α2(β1β2)−1 = (α1β
−1
1 )(α2β

−1
2 ) =

ϕ([(α1, β1)])ϕ([(α2, β2)])
(2.16)

and ϕ([(1, 1)]) = 1. It remains to prove that ϕ is a bijection. For the injectivity, if [(α1, β1)]
and [(α2, β2)] have the same image, then:

α1β
−1
1 = α2β

−1
2 ⇒ α1 = α2β1β

−1
2 ⇒ α1β2 = α2β1 ⇒ [(α1, β1)] = [(α2, β2)]

Furthermore, every element γ of K is a fraction of elements of OK. In fact, γ is an algebraic
over Q since K is a �nite �eld extension of Q. Hence, there exists a monic polynomial
f(x) ∈ Q[x] such that:

f(γ) = a0 + a1γ + · · ·+ ad−1γ
d−1 + γd = 0

with a0, . . . , ad−1 rational numbers. Let ` be the least common multiple of the denominators
of the rational numbers a0, . . . , ad−1. So:

(`γ)d + (`ad−1)(`γ)d−1 + · · ·+ (`d−1a1)(`γ) + `da0 = 0

It follows that α = `γ is an algebraic integer and therefore γ = α/` where α ∈ OK and
` ∈ Z ⊂ OK. This concludes the proof.

Before prove that the ring of integers OK of a number �eld K is a Dedekind ring we
need one more preliminary results that will be used even in the following. For the next
two propositions we refer to [20, Exercixe 5.1],

Proposition 2.25. Let OK the ring of integers of a number �eld K and I a non-zero ideal
of OK. Then the quotient ring OK/I is �nite.



52 CHAPTER 2. IDEALS AND QUADRATIC FORMS

Proof. Every non-zero ideal I of OK contains an integer `. In fact, if α is a non-zero element
of I then there exists a monic polynomial p(x) ∈ Z[x] such that p(α) = 0:

a0 + a1α + · · ·+ an−1α
m−1 + αm = 0

with a0, a1, · · · , am−1 ∈ Z. Since I is an ideal and OK contains Z, then a0 = −a1α− · · · −
an−1α

m−1 − αm belongs to I. We consider the ideal of OK generated by `: it is contained
in I. Therefore we can de�ne the following map:

ϕ : OK/〈`〉 → OK/I
[β]〈`〉 7→ [β]I

that is well de�ned because if two elements of OK are equivalent modulo 〈`〉 then they
are equivalent modulo I too. Obviously the map is surjective and hence, if the domain is
�nite, then OK/I must be �nite too. Given β ∈ OK we have γ = b1ω1 + · · ·+ bnωn, where
b1, . . . , bn are integers and {ω1, . . . , ωn} is a basis for OK as order of K. Then:

[β]〈`〉 = [b1ω1 + · · ·+ bnωn]〈`〉 = [b1]〈`〉[ω1]〈`〉 + · · ·+ [bn]〈`〉[ωn]〈`〉

If two integers are congruent modulo ` then they are in the same equivalence class modulo
〈`〉 and then

{[b1]〈`〉, · · · , [bn]〈`〉} ⊆ {[0]〈`〉, [1]〈`〉, . . . , [`− 1]〈`〉}

So the cardinality of the domain is less than or equal to `n.

The �nite cardinality of OK/I, where I is a non-zero ideal of the ring of integers of a
number �eld K is called norm of I and is denote by N(I). Now we are able to show that
OK is a Dedekind ring.

Proposition 2.26. Let OK be the ring of integers of a number �eld K. Then:

1. OK is Noetherian;

2. every nonzero prime ideal of OK is maximal;

3. OK is integrally closed (i.e. if γ ∈ K is a root of a monic polynomial with coe�cients
in OK then γ belongs to OK).

Proof. 1) Suppose that there exists an in�nite chain I1 ( I2 ( · · · ( Ih ( · · · of ideals of
OK. Given α ∈ OK we have [α]Ih ⊆ [α]Ih+1

for every natural number h. Hence

N(Ih) ≥ N(Ih+1)

Since Ih is properly contained in Ih+1, then OK has at least two elements, one in Ih+1 \ Ih
and one in Ih, equivalent modulo Ih+1 and not equivalent modulo Ih. Therefore

N(Ih) 	 N(Ih+1)
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This is a contradiction, because in the sequence

N(I1) 	 N(I2) 	 · · · 	 N(Ih) 	 · · ·

every norm is greater then 0 and then the chain could not be in�nite. Hence OK is
Noetherian.
2)Let p be a non-zero prime ideal of OK. Since OK is an integral domain, the quotient
ring OK/p is an integral domain. But every �nite integral domain is a �eld and then p is
a maximal ideal.
3) Let γ ∈ K be integral over OK, i.e. γ is a root of a monic polynomial f(x) ∈ OK[x]. All
the elements of OK are, by de�nition, integral over Z. We want to show that γ is integral
over Z (we refer to [39, pag. 5]). For hypothesis there exist α0, α1, . . . , αm−1 ∈ OK such
that

γm + αm−1γ
m−1 + · · ·+ α1γ + α0 = f(γ) = 0

with m natural number. This implies that OK[γ] = {g(γ) | g(x) ∈ OK[x]} is an OK-module
�nitely generated. In fact, it is an additive subgroup of K and it is closed under multi-
plication by elements of OK. Furthermore, from γm = −αm−1γ

m−1 − · · · − α1γ − α0, we
can proceed by induction over the power of γ to show that every positive power of γ is a
linear combination, with coe�cients in OK, of 1, γ, . . . , γm−1. Hence OK[γ] is generated by
1, γ, . . . , γm−1.
Following the same ideas, we have that Z[α0, . . . , αm−1] = {g(α0, . . . , αm−1) | g(y0, . . . , ym−1) ∈
Z[y0, . . . , ym−1]} is a Z-module and a subring of K. Since α0, . . . , αm−1 are integral over Z,
every power of αj is a linear combination (with integral coe�cients) of a �nite number of
powers of αj. This means that Z[α0, . . . , αm−1] is �nitely generated. Obviously, γ is integral
over Z[α0, . . . , αm−1] and then Z[α0, . . . , αm−1][γ] is a �nitely generated Z[α0, . . . , αm−1]-
module (use what we have said for γ integral over OK). From Z[α0, . . . , αm−1][γ] =
Z[α0, . . . , αm−1, γ] it follows that Z[α0, . . . , αm−1, γ] is �nitely generated.
To end the proof, we show that all the elements of Z[α0, . . . , αm−1, γ] are integral over Z.
Suppose that µ1, . . . , µl generate Z[α0, . . . , αm−1, γ] and let ε be an element of the module.
Since Z[α0, . . . , αm−1, γ] is a ring, εµ1, . . . , εµl belongs to it and so we have:

εµi =
l∑

j=1

cijµj ⇔
l∑

j=1

(εδij − cij)µj = 0 j ∈ {1, . . . , l}

with cij ∈ Z. The square matrix (εδij − cij) is singular (since sends (µ1, . . . , µl)
t in the

zero vector). In particular its determinant could be seen as a product of polynomials of
Z[x] evaluated in ε. We obtain a monic polynomial (since the term of maximum degree is
obtained multiplying the elements of the principal diagonal, which are monic) of Z[x] that
evaluated in ε is 0. This proves that ε, and hence γ, are integral over Z. So γ ∈ OK.
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2.4 Quadratic Fields

In this section with K we will denote a quadratic �eld, i.e. an extension of degree 2 of the
�eld of rational numbers. Our aim is to characterize the quadratic �elds and their ring of
integers. For the following results, de�nitions and terminology we refer to Chapter 6 of
[11].

Theorem 2.27. All and only the quadratic �elds K are that of the form Q(
√
d) with d 6= 1

squarefree integer (i.e the square of each integer di�erent from ±1 does not divide d).
Furthermore, {1,

√
d} is a basis for Q(

√
d).

Proof. First consider Q(
√
d) = {f(

√
d) | f(x) ∈ Q[x]} with d 6= 1 square free integer. To

prove that Q(
√
d) is a �eld, we consider the minimal polynomial p(x) = x2 − d ∈ Z[x] of√

d over Q. Given some α = f(
√
d) ∈ Q(

√
d), from the irreducibility of p(x) over Q[x] it

follows that there exist g1(x), g2(x) ∈ Q[x] such that 1 = f(x)g1(x) + p(x)g2(x). Hence
αg1(
√
d) = 1 and α as an inverse in Q(

√
d). Now is evident that Q(

√
d) is a Q-vector

space. It is generated by 1 and
√
d: given (

√
d)`, with ` ∈ N, we can prove by induction on

` that (
√
d)` = q1 + q2

√
d for suitable q1, q2 ∈ Q. Furthermore, 1 and

√
d are independent

over Q since the minimal polynomial p(x) of α has degree 2. Hence {1,
√
d} is a basis of

the quadratic �eld Q(
√
d).

Now consider a quadratic �eld K. An element β of K \ Q is algebraic over Q. Let
p(x) ∈ Q[x], of degree n, be the minimal polynomial of β over Q. Since β /∈ Q, we
have n > 1. The set Q(β) is a Q-vector space that has {1, β, . . . , βn−1} as a basis. In fact
1, β, . . . , βn−1 are linearly independent over Q for the de�nition of minimal polynomial and
they generate Q(β) (since p(β) = 0, βn = −qn−1β

n−1 − · · · − q1β − q0 with qi ∈ Q and so
we can prove, by induction on the exponent l ∈ N, that every power βl could be written
as linear combination of 1, β, . . . , βn−1 with rational coe�cients).
But Q(β) is also a �eld:

• it is closed under product;

• Q(β) contains the inverse of each non-zero element. Given α = f(β) ∈ Q(
√
β), since

p(x) is irreducible over Q, there exist two polynomials g1(x), g2(x) ∈ Q[x] such that
f(x)g1(x) + p(x)g2(x) = 1. Hence f(β)g1(β) = 1 and α has an inverse in Q(

√
d).

Then we have [Q(β) : Q] = n and, from [K : Q(β)][Q(β) : Q] = 2, it follows that n = 2.
So [K : Q(β)] = 1, i.e. K = Q(β).
We can now observe that β is a root of ax2 + bx + c ∈ Z[x] for suitable a, b, c ∈ Z. So we
have:

β =
−b±

√
b2 − 4ac

2a
=
−b± e

√
d

2a
=
−b+ e

√
d

2a

where b2 − 4ac = e2d, with d squarefree integer, and the sign of ±
√
b2 − 4ac absorbed by

e. Obviously d 6= 1 and e 6= 0 since β ∈ K \Q. So:

K = {q1 + q2
−b+ e

√
d

2
| q1, q2 ∈ Q} = Q(

√
d) (2.17)
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If Q(
√
d1) and Q(

√
d2) are two equal quadratic �elds, with d1 and d2 squarefree integers

di�erent from 1, then:√
d2 =

a1

b1

+
a2

b2

√
d1 ⇒ d2 +

(
a1

b1

y

)2

−
(
a2

b2

)2

d1 − 2
a1

b1

√
d2 = 0

with a1/b1, a2/b2 ∈ Q. Since 1 and
√
d2 are linearly independent over Q we have:d2 +
(
a1

b1

)2

−
(
a2

b2

)2

d1 = 0

−2a1

b1
= 0

and from this follows that {
a1 = 0

(b2)2d2 = (a2)2d1

Therefore, since (b2)2 divides d1 (gcd(a2, b2) = 1) and (a2)2 divides d2 we have (a2)2 =
(b2)2 = 1 and d1 = d2.

Given a quadratic �eld K, the unique squarefree integer d 6= 1 such that K = Q(
√
d),

is called the radicand of K.

De�nition 2.28. Let K = Q(
√
d), with d 6= 1 squarefree integer, be a quadratic �eld. The

discriminant of K, denoted by ∆, is de�ned as:

∆ =

{
d d ≡ 1 (mod 4)

4d d ≡ 2, 3 (mod 4)

We observe that K = Q(
√

∆). When d ≡ 1 (mod 4) this is obvious; in the other case
we have

√
∆ = 2

√
d. Clearly Q(

√
d) = Q(2

√
d).

In the light of Theorem 2.27, we can compute the norm NK/Q(α) and the trace SpK/Q(α)

of an element α of a quadratic �eld K = Q(
√
d). We consider {1,

√
d} as basis of K. We

write α = q1 + q2

√
d, where q1 and q2 are rational numbers. The matrix that corresponds

to the linear map ϕα : K→ K respect to the �xed basis is:(
q1 q2d
q2 q1

)
The determinant q2

1 − (q2
2)d and the trace 2q1 of the matrix are the norm NK/Q(α) and the

trace SpK/Q(α) respectively.
If we denote by α what we called the conjugate of α:

α = q1 − q2

√
d (2.18)
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we have:
NK/Q(α) = q2

1 − (q2
2)d = αα (2.19)

SpK/Q(α) = 2q1 = α + α (2.20)

Theorem 2.29. An element α of a quadratic �eld K = Q(
√
d) is an algebraic integer if

and only if NK/Q(α) and SpK/Q(α) belong to Z.

Proof. Suppose that α ∈ K has integral norm and integral trace. If α ∈ Z, it is obviously
an algebraic integers. If α belongs to K \ Z, for the proof of Theorem 2.27, its minimal
polynomial p(x) ∈ Q[x] over Q has degree 2. So:

α2 +
a1

b1

x+
a2

b2

= 0 (2.21)

with a1/b1, a2/b2 ∈ Q. Writing α = q1 + q2

√
d for suitable rational numbers q1, q2, it is

immediate to verify that also α is a root of p(x). Since α 6= α we have:

p(x) = (x− α)(x− α) = x2 − (α + α)x+ αα = x2 − SpK/Q(α)x+NK/Q(α) (2.22)

Hence p(x) has integral coe�cients and α is an algebraic integer.
Vice versa, suppose that α is an algebraic integer. If α belong to Z, its norm and trace
obviously are integers. When α ∈ K \Z, from the previous case we know that its minimal
polynomial p(x) over Q is equal to:

p(x) = x2 − SpK/Q(α)x+NK/Q(α) (2.23)

But, by de�nition of algebraic integer, p(x) lies in Z[x] and so NK/Q(α), SpK/Q(α) ∈ Z.

Proposition 2.30. Let K = Q(
√
d) be a quadratic �eld. The ring of integers OK of K is

{a + b
√
d | a, b ∈ Z} if d ≡ 2, 3 (mod 4) and it is {a+b

√
d

2
| a, b ∈ Z ∧ a ≡ b (mod 4)} if

d ≡ 1 (mod 4).

Proof. The quadratic �eld K is equal to the set

S =

{
a+ b

√
d

2
| a, b ∈ Q

}

since K is generated by 1 and
√
d. In the light of 2.19 and 2.20, for an element ν =

(a+ b
√
d)/2 of the quadratic �eld we have:

NK/Q

(
a+ b

√
d

2

)
=
a2 − b2d

4
, SpK/Q

(
a+ b

√
d

2

)
= a (2.24)

We want to show that ν belongs to OK if and only if a, b are integers and{
a ≡ b (mod 2) d ≡ 1 (mod 4)

a ≡ b ≡ 0 (mod 2) d ≡ 2, 3 (mod 4)
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If a, b are integers with the above property, then NK/Q(ν) and SpK/Q(ν) belong to Z and
then, in the light of Theorem 2.29, ν is an algebraic integer. This proves the su�cient
condition.
Vice versa, if ν is an algebraic integer then a, a

2−b2d
4
∈ Z and also b2d is an integer, since

a2 − 4
a2 − b2d

4
= b2d

Furthermore, a2 − b2d must be zero modulo 4. This forces a ≡ b (mod 2) when d is
congruent to 1 modulo 4 and a ≡ b ≡ 0 (mod 2) when d ≡ 2, 3 (mod 4).

Corollary 2.31. Let K = Q(
√
d) be a quadratic �eld of discriminant ∆.

De�ne ω as:

ω =

{
1+
√

∆
2

= 1+
√
d

2
∆ ≡ 1 (mod 4)√

∆
4

=
√
d ∆ ≡ 0 (mod 4)

Then we have that:

OK = [1, ω] = {a+ bω | a, b ∈ Z}

Proof. When d ≡ 2, 3 (mod 4), we have ∆ = 4d, ω =
√

∆/4 =
√
d and OK = {a +

b
√
d | a, b ∈ Z}. Hence the result is clear. Suppose that d ≡ 1 (mod 4). Then ∆ = d,

ω = (1 +
√
d)/2 and OK = {(a + b

√
d)/2 | a, b ∈ Z ∧ a ≡ b (mod 2)}. It is evident that

[1, ω] ⊂ OK. Vice versa, if (a+ b
√
d)/2 belongs to OK then:

a+ b
√
d

2
=
a− b

2
+ b

(
1 +
√
d

2

)
∈ [1, ω]

since a, b are two integers with the same parity.

Given a quadratic �eld K = Q(
√
d), we have that {1, ω} generates the maximal order

OK of K. Furthermore, 1 and ω are linearly independent over Q (since the same holds for
1 and

√
d) and hence over Z. So {1, ω} is a basis of the maximal order OK and it is called

integral basis of OK.

2.5 Ideals of a quadratic �eld

A non-zero ideal I of the ring of integers OK of a quadratic �eld K is a Z-submodule of
OK. For Corollary 2.13, I is �nitely generated. In particular, I is an order in K:

Proposition 2.32. Let K be a quadratic �eld and I a non-zero ideal of OK. Then I
contains a basis of the Q-vector space K.
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Proof. Let {α1, α2} be a basis of K. From the proof of Proposition 2.24 follows:

α1 =
γ1

`1

; α2 =
γ2

`2

(2.25)

with γ1, γ2 ∈ OK and `1, `2 ∈ Z. Furthermore, we know that I contains at least a non-zero
integer ` (see the prof of Proposition 2.25). Hence ``1α1, ``2α2 are contained in I and they
form a basis for K since ``1 and ``2 are non-zero.

Following [11, Chapter 6], we are going to show, by means of several smaller proposi-
tions, that a non-zero ideal I of OK, with K quadratic �eld, has a unique basis, as order,
of the form {a, b+ gω} where a, b, g ∈ Z, a is positive, 0 ≤ b < a, 0 < g ≤ a and g divides
both a and b.

Theorem 2.33. Every non-zero ideal I of the ring of integers OK of a quadratic �eld K
admits, as order, a basis {a, b+ gω} with a, b, g ∈ Z, a positive, 0 ≤ b < a and 0 < g ≤ a.

Proof. Given a basis {α1, α2} of the order I, we have:

α1 = a1 + b1ω ; α2 = a2 + b2ω a1, b1, a2, b2 ∈ Z

We already seen (proof of Proposition 2.12), that if we substitute α1 with α1 + tα2 (t ∈ Z)
we obtain a new basis for I; the same holds if we substitute α2 with α2 + tα1 with t ∈ Z. In
the light of the Euclidean Algorithm to �nd the greatest common divisor of two integers,
we proceed in this way:

1. b2 = q1b1 + r1 with q1, r1 ∈ Z and 0 ≤ r1 < b1. So:

α′2 = α2 − q1α1 = (a2 − q1a1) + (b2 − q1b1)ω = (a2 − q1a1) + r1ω

If r1 = 0 then b1 = gcd(b1, b2), if r1 6= 0 we go further;

2. b1 = q2r1 + r2 with q2, r2 ∈ Z and 0 ≤ r2 < r1. Therefore

α′1 = α1 − q2α
′
2 = (a1 − q2(a2 − q1a1)) + (b1 − q2r1)ω = (a1 − q2(a2 − q1a1)) + r2ω

If r2 6= 0 we return to the �rst step.

After a �nite number of steps, we obtain a basis for I of the form {a, b+ gω} where a, b, g
are integers and g > 0 is the greatest common divisor of b1 and b2. We can assume b1 and
b2 positive since we can change the signs of α1 and α2. For the same reason we can assume
a > 0. We can also divide b by a obtaining b = qa+ r, with q, r ∈ Z such that 0 ≤ r < a,
and a new basis {a, b + gω − qa} = {a, r + gω}. So, in the basis {a, b + gω} we suppose
0 ≤ b < a.
Now, aω belongs to I, so aω = a`1 + (b+ gω)`2, for suitable integers `1, `2. For the linear
independence of 1 and ω over Z, we have a = g`2 and hence 0 < g ≤ a. This completes
the proof.
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Proposition 2.34. Let I be a non-zero ideal of the ring of integers OK of a quadratic
�eld K and {a, b + gω} a basis of the order I, with a, b, g ∈ Z, a positive, 0 ≤ b < a and
0 < g ≤ a. Then every integer m that belongs to I is a multiple of a. In particular a
divides NK/Q(b+ gω).

Proof. If the integer m belongs to I, it could be uniquely written as a linear combination,
with integral coe�cients, of the elements of the basis {a, b+ gω}:

m = a`1 + `2(b+ gω)⇒ (a`1 + b`2 −m) + g`2ω = 0 `1, `2 ∈ Z

Since 1 and ω are linearly independent over Z it follows `2 = 0 (g is non-zero). This implies
m = a`1. So m is a multiple of a.
Now, it is easy to observe that b+ gω = b + gω. Since ω belongs to the ring OK (see
Proposition 2.30), then also b + gω belongs to OK and the integer NK/Q(b + gω) = (b +
gω)(b+ gω) is an element of I. So a divides NK/Q(b+ gω).

Proposition 2.35. Every non-zero ideal I of the ring of integers OK of a quadratic �eld
K admits a unique basis {a, b + gω}, as order, with a, b, g ∈ Z, a positive, 0 ≤ b < a and
0 < g ≤ a.

Proof. For the existence of the basis we refer to Proposition 2.33. For the uniqueness,
suppose that {a′, b′ + g′ω} is another basis of I that respects the conditions of the claim.
Since a divides a′ and vice versa, we have a = a′. Furthermore, b′+ g′ω = a`1 + (b+ gω)`2

for suitable integers `1, `2 and, since 1 and ω are linearly independent over Z, we have that
g divides g′. Analogously we can obtain that g is a multiple of g′ and so g = g′. Using
b′ + gω = a`1 + (b+ gω)`2, it follows b

′− b = a`1 since `2 must be 1. But b and b
′ are both

less then a, so `1 must be zero.

Theorem 2.36. Every non-zero ideal I of the ring of integers OK of a quadratic �eld K
admits, as order, a unique basis {a, b+gω} with a, b, g ∈ Z, a positive, 0 ≤ b < a, 0 < g ≤ a
and such that g divides both a and b.

Proof. In the light of the previous proposition, I admits a unique basis {a, b + gω} with
a, b, g ∈ Z, a positive, 0 ≤ b < a, 0 < g ≤ a. We have to prove only that, for this basis, g
divides a and b. Let m be the greatest common divisor of a and g. For the Bézout identity,
there exist two integers `1, `2 such that a`1 + g`2 = m. From:

a`1ω ∈ I ⇒ a`1ω + (b+ gω)`2 = mω + b`2 = ar + s(b+ gω) (2.26)

(with r, s suitable integers) it follows that m = sg, i.e. g divides a.
On the other hand, since ω2 = `′1 + `′2ω for `′1, `

′
2 ∈ Z, we have:

(b+ gω)ω ∈ I ⇒ bω + g(`′1 + `′2ω) = g`′1 + (b+ g`′2)ω = ar′ + s′(b+ gω) (2.27)

with r′, s′ integers. Hence gs′ = b+ g`′2. Hence g divides b.
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The basis {a, b + gω} of the non-zero ideal I ⊂ OK of the previous Theorem is called
canonical basis of I. This basis is the one that we have �nd, starting from a generic
basis {α1, α2} of I, in the proof of Theorem 2.33. Using the canonical basis we can easily
compute the norm of I. The results proved in the last part of the section follow [42].

Theorem 2.37. Let I be a non-zero ideal of the ring of integers OK of a quadratic �eld
K. If {a, b+ gω} is its canonical basis, then N(I) = ag.

Proof. We want to show that the set T = {r+ sω | 0 ≤ r < a, 0 ≤ s < g} contains exactly
one representative for each class of OK/I. Let `1 + `2ω, with `1, `2 ∈ Z, be an element of
OK. Dividing `2 by g we obtain `2 = q1g + r1 with q1, r1 ∈ Z and 0 ≤ r1 < g. We have:

`1 + `2ω − q1(b+ gω) = `1 − q1b+ r1ω (2.28)

and hence `1 + `2ω ≡ `′1 + r1ω (mod I) since q1(b + gω) belongs to I. Now divide `′1 by
a: `′1 = q2a + r2 with q2, r2 ∈ Z and 0 ≤ r2 < a. Then `′1 + r1ω ≡ r2 + r1ω (mod I) with
r2 + r1ω ∈ T .
Now, suppose that the elements r + sω, r′ + s′ω of T are equivalent modulo I. Then
r − r′ + (s − s′)ω belongs to I and s − s′ is divisible by g. This implies s = s′ and r − r′
multiple of a. So r = r′ and r + sω = r′ + s′ω.

If {a, b + gω} is the canonical basis of a non-zero ideal I ⊂ OK, with K = Q(
√
d)

quadratic �eld of discriminant ∆, setting α1 = a and α2 = b+ gω we have:∣∣∣∣α1α2 − α1α2√
∆

∣∣∣∣ =

∣∣∣∣ag(ω − ω)√
∆

∣∣∣∣ (2.29)

In the light of Corollary 2.31, we can compute:

ω − ω =

{
1+
√

∆
2
− 1−

√
∆

2
=
√

∆ ∆ ≡ 1 (mod 4)√
∆
4

+
√

∆
4

=
√

∆ ∆ ≡ 0 (mod 4)

So: ∣∣∣∣α1α2 − α1α2√
∆

∣∣∣∣ = |ag| = ag = N(I) (2.30)

Now suppose that {α1, α2} is a generic basis of the order I. We have:

α1 = a1 + b1ω ; α2 = a2 + b2ω a1, b1, a2, b2 ∈ Z

from which follows∣∣∣∣α1α2 − α1α2√
∆

∣∣∣∣ =

∣∣∣∣(a1b2 − a2b1)(ω − ω)√
∆

∣∣∣∣ = |a1b2 − a2b1| (2.31)

If we substitute α1 with α′1 = α1 + tα2 (t ∈ Z) as in the proof of Theorem 2.33 we obtain
that: ∣∣∣∣(α1 + tα2)α2 − (α1 + tα2)α2√

∆

∣∣∣∣ =

∣∣∣∣α1α2 − α1α2√
∆

∣∣∣∣ (2.32)
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The same holds if we substitute α2 with α′2 = α2 + tα1 (t ∈ Z) and if we change the signs
of α1 and α2. With elementary transformations of this type, from {α1, α2} we arrive to
the canonical basis. This implies: ∣∣∣∣α1α2 − α1α2√

∆

∣∣∣∣ = N(I) (2.33)

A second way to compute the norm of a non-zero ideal I of OK, with K a quadratic
�eld, uses the conjugates of the elements of K. De�ne I as:

I = {α | α ∈ I} (2.34)

It is easy to observe that:

• I contains 0;

• if α1 and α2 belong to I then α1 + α2 = α1 + α2 belongs to I;

• if α ∈ I then −α = −α;

• if β belongs to OK and α ∈ I, we have βα = βα ∈ I

since the map

K → K
α 7→ α

is an involution, linear over Q and such that the conjugate of the product of two elements
is the product of the conjugates. Hence, I is a non-zero ideal of OK.

Proposition 2.38. Let K = Q(
√
d) be a quadratic �eld. If I is a non-zero ideal of OK,

then II is a principal ideal generated by an integer.

Proof. Let {α1, α2} be a basis of the order I. It is obvious that I = 〈α1, α2〉 and I =
〈α1, α2〉. Therefore:

II = 〈α1α1, α1α2, α1α2, α2α2〉 = 〈NK/Q(α1), α1α2, α1α2, NK/Q(α2)〉 (2.35)

Consider the ideal of OK generated by NK/Q(α1), SpK/Q(α1α2), NK/Q(α2), that are integers
by Theorem 2.29. If f ∈ N is their greatest common divisors, then

〈f〉 ⊂ 〈NK/Q(α1), SpK/Q(α1α2), NK/Q(α2)〉

for the Bézout identity. Actually, the equality holds, since f divides each of the three
generators.
If we de�ne γ = α1α2/f , we have γ = α1α2/f and

NK/Q(γ) =
NK/Q(α1)NK/Q(α2)

f 2
; SpK/Q(γ) =

SpK/Q(α1α2)

f
(2.36)
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for the linearity of the map SpK/Q. This implies that γ belongs to OK and then f divides
both α1α2 and α1α2. Then:

II = 〈f〉〈
NK/Q(α1)

f
,
α1α2

f
,
α1α2

f
,
NK/Q(α2)

f
〉 (2.37)

Observing that
NK/Q(α1)

f
,
SpK/Q(α1α2)

f
,
NK/Q(α2)

f
are relative prime and

SpK/Q(α1α2)

f
= α1α2

f
+ α1α2

f
,

for the Bézout identity we obtain II = 〈f〉.

Lemma 2.39. If a rational number is an algebraic integer, then it belongs to Z ([11,
Proposition 6.4]).

Proof. Every integer is an algebraic integer. Vice versa, suppose that the algebraic integer
(a/b) belongs to Q\Z (i.e. gcd(a, b) = 1 and |b| 6= 1). There exist c0, c1, . . . , cm−1 ∈ Z such
that: (a

b

)m
+ cm−1

(a
b

)m−1

+ · · ·+ c0 = 0 (2.38)

If we multiply both terms by bm we obtain:

am + cm−1a
m−1b+ · · ·+ c1ab

m−1 + c0b
m = 0 (2.39)

that implies b|am. This is a contradiction because for hypothesis a and b are coprime.

Theorem 2.40. Let I be a non-zero ideal of OK, with K quadratic �eld K. Then II is a
principal ideal generated by an integer f such that |f | = N(I).

Proof. Let {a, g(b′ + ω)} be the canonical basis of I. We have seen that N(I) = ag and
that II is principal, generated by an integer f . We want to show that |f | = ag. We have:

II = 〈a2, ag(b′ + ω), ag(b′ + ω), g2NK/Q(b′ + ω)〉 (2.40)

We observe that g(b′+ω)(b′+ω) belongs to I. But g(b′+ω)(b′+ω) is equal to gNK/Q(b′+ω)
that lies in I ∩ Z. So it is divisible by a and we have:

II = 〈ag〉〈c, (b′ + ω), (b′ + ω),
1

c
NK/Q(b′ + ω)〉 = 〈ag〉J (2.41)

with J non-zero ideal of OK. Using the properties of the ideal group I(OK), we obtain
〈f/ag〉 = J . So J is a principal ideal and f̃ = f/ag is an integer since it is an algebraic
integer (see Lemma 2.39). Obviously f̃ must divide every element of J . In particular there
exist `1, `2 such that b′+ω = f̃(a`1 + `2g(b′+ω)). So we have f̃ `2g = 1 and hence f̃ = ±1.
Now we can conclude: f = ±ag.

The last theorem allows to obtain two important properties of the ideal norm:

Theorem 2.41. Let K = Q(
√
d) be a quadratic �eld. Then:

1. if I1 and I2 are non-zero ideals of OK, then N(I1I2) = N(I1)N(I2);
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2. if α is a non zero element of OK, then N(OKα) =
∣∣NK/Q(α)

∣∣.
Proof. 1) From Theorem 2.40, we know than N(I1I2) is the absolute value of the integral
generator of the principal ideal I1I2I1I2. Since the conjugate of a product of elements of
K is the product of the conjugates, the ideal I1I2 is equal to (I1)(I2). Hence:

I1I2I1I2 = I1I1I2I2 = OKf1f2 (2.42)

with |f1| = N(I1) and |f2| = N(I2). So N(I1I2) = |f1f2| = N(I1)N(I2).
2) Given the principal ideal I = OKα we have:

II = OKαα = OKNK/Q(α) (2.43)

and N(I) =
∣∣NK/Q(α)

∣∣.
2.6 Narrow ideal class group and form class group

Let K = Q(
√
d) be a quadratic �eld. We consider the ideal group I(OK) of the Dedekind

ring OK. The principal fractional ideals of OK form a subgroup P (OK). We can de�ne a
subset P+(OK) of P (OK) composed by the principal fractional ideals of OK generated by
elements of positive norm. Obviously the set containsOK, the identity of the multiplication.
For the multiplicativity of the norm, this set is also closed under multiplication and contains
the inverse of each of its elements. So it is a subgroup. We call narrow ideal class group
the quotient group C+(OK) = I(OK)/P+(OK). Two fractional ideals of OK that lie in the
same equivalence class of C+(OK) are said narrowly equivalent.
When d is negative, the norm of any non-zero element of K is positive and then P+(OK) =
P (OK). When d is positive, the norm of the elements of K could be positive or negative.
Let ε be a unit of OK, i.e. an element of the Dedekind ring that has inverse in OK, and
γOK a principal fractional ideal. Then it is easy to observe that γOK = γεOK. If there
exists a unit of norm −1, every principal fractional ideal is generated by some element of
K of positive norm. Hence, also in this case we have the equality:

P (OK) = P+(OK)

When such a unit does not exist, an equivalence class [I] ∈ C(OK) of the ideal class group
contains two classes of equivalence of C+(OK): one of the fractional ideals of the form γI
with γ ∈ K of positive norm and one the fractional ideal of the form γI with γ ∈ K of
negative norm.

If the quadratic �eld K has discriminant ∆ then the narrow ideal class group C+(OK)
and the form class group C(∆) are isomorphic. This allows to de�ne the class number
hK of K: it is the �nite cardinality of C+(OK), equal to h∆. In particular, the following
result holds ([11, Theorem 6.20]):
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Theorem 2.42. Let K = Q(
√
d) be a quadratic �eld of discriminant ∆. Given an equiva-

lence class of C+(OK) and a non-zero ideal I of OK contained in it, if {α1, α2} is a basis
of I (as order) with α1α2 − α1α2 positive integer or positive imaginary then

f(x, y) =
(α1x+ α2y)(α1x+ α2y)

N(I)
(2.44)

is a binary quadratic form of discriminant ∆. The form f is positive de�ned if ∆ < 0.
This correspondence naturally induces an isomorphism Ψ between the narrow ideal class
group C+(OK) and the form class group C(∆).

The rest of the section will be devoted to the proof of this fundamental result. First
of all, we have to show that the map Ψ from C+(OK) to C(∆) naturally induced by the
correspondence between ideals and quadratic forms is well de�ned.

We start observing that every fractional ideal J of K is narrowly equivalent to a non-
zero ideal I of OK. If J is principal and generated by an element of positive norm, it is
narrowly equivalent to OK. If J is generated, as OK-module, by the elements η1, . . . , ηr of
K, then for the proof of Proposition 2.24 we have ηi = αi/`i, with αi ∈ OK and `i ∈ Z, for
every i ∈ {1, . . . , r}. Setting ` = `1 · · · `r, we have that the product of the fractional ideal
generated by ` and J is a non-zero ideal I of OK, that is narrowly equivalent to J .

The second step is veri�ng that f(x, y) is a binary quadratic form of discriminant ∆.
We observe that:

f(x, y) =
(α1x+ α2y)(α1x+ α2y)

N(I)
=

=
NK/Q(α1)x2 + (NK/Q(α1 + α2)−NK/Q(α1)−NK/Q(α2))xy +NK/Q(α2)y2

N(I)

Since N(I) divides the norm of any element of I (Theorem 2.40), f(x, y) belongs to Z[x, y].
Furthermore, we have that:∣∣∣∣α1α2 − α1α2√

∆

∣∣∣∣ =
α1α2 − α1α2√

∆
= N(I) (2.45)

for the hypothesis on the basis and for 2.33. Hence, the discriminant of f(x, y) becomes:

1

N(I)2
((α1α2 + α1α2)2 − 4α1α1α2α2) =

1

N(I)2
(α1α2 − α1α2)2 =

1

N(I)2
N(I)2∆ = ∆

It is clear that f(x, y) is primitive: every binary quadratic form (a, b, c) of discriminant ∆
is primitive. In fact, if a prime p ∈ Z divides a, b and c then ∆ is a multiple of p2. But ∆
is squarefree, so p could be only 1 or −1.
If ∆ is negative, the norm of any element of the quadratic �eld is positive. Hence the
coe�cient of x2 in f(x, y) is positive and f(x, y) is positive de�nite.
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To be sure that Ψ is well de�ned it remains to prove that the image does not depend on
the basis of I and on the non-zero ideal of OK chosen as representative of the class. Let
{α1, α2} and {β1, β2} be two basis of the ideal I ⊂ OK seen as order of K. We have:(

α1

α2

)
=

(
a11 a12

a21 a22

)(
β1

β2

)
(2.46)

with aij ∈ Z. Vice versa: (
β1

β2

)
=

(
b11 b12

b21 b22

)(
α1

α2

)
(2.47)

where the bij's ar integers. Since every element of I could be uniquely written as a linear
combination, with integral coe�cients, of the elements of a basis, we have that the product
of the matrices A = (aij) and B = (bij) must be the identity matrix. So

det(A) = det(B) = ±1

If we suppose that α1α2−α1α2 and β1β2−β1β2 are positive integers or positive imaginary
(as requested by the claim of the theorem) then we obtain that det(A) and det(B) must
be equal to 1 since

α1α2 − α1α2 = (a11a22 − a12a21)(β1β2 − β1β2)

Using 2.47 and 2.44 we obtain that the form that corresponds to I using the basis {β1, β2} is
properly equivalent to the form associated to I using the basis {α1, α2}: the transformation
matrix is precisely the transpose of B.
Now suppose that I and J are two narrowly equivalent non-zero ideals of OK. Then, there
exists γ ∈ K, of positive norm, such that γI = J . Hence, if {α1, α2} is a basis of the order
I, with α1α2 − α1α2 positive integer or positive imaginary, we have that J is generated,
as Z-module, by γα1 and γα2. They form a basis of the order J and γα1γα2 − γα1γα2 is
a positive integer or a positive imaginary, since γ has positive norm. The quadratic form
that correspond to J respect to the basis {γα1, γα2} is:

(γα1γα1)x2 + (γα1γα2 + γα1γα2)xy + (γα2γα2)y2

N(J)
(2.48)

Observing that N(J) = γγN(I) (Theorem 2.41) we can easily deduce the equality with
the form corresponding to I respect to the basis {α1, α2}.

The next step is to demonstrate that Ψ is bijective. We refer to [31, Theorem 13.1] for the
surjectivity and to [?, pag. 192] for the injectivity. We start proving that every quadratic
form (a, b, c) of discriminant ∆ corresponds to some non-zero ideal of OK. Consider the

Z-module I generated by a and b+
√

∆
2

. Since ∆ ≡ b (mod 2), the module is contained in
OK by Proposition 2.30. In particular we have:

b+
√

∆

2
=

{
b−1

2
+ ω d ≡ 1 (mod 4)

b
2

+ ω d ≡ 2, 3 (mod 4)
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From the linear independence of ω and 1 over Z it follows that a and b+
√

∆
2

form a basis
for I. To show that I is an ideal of OK it is su�cient to show that ω multiplied by the
generators of I gives two elements of I. We have:

aω =

{
a(1−b

2
) + a( b−1

2
+ ω) d ≡ 1 (mod 4)

a(− b
2
) + a( b

2
+ ω) d ≡ 2, 3 (mod 4)

and(
b+
√

∆

2

)
ω =

{
(1+b

2
)( b−1

2
+ ω) + d−b2

4
= (1+b

2
)( b−1

2
+ ω)− ac d ≡ 1 (mod 4)

b
2
( b

2
+ ω) + d− b2

4
= b

2
( b

2
+ ω)− ac d ≡ 2, 3 (mod 4)

since ∆ = b2 − 4ac. If a is positive, the norm of I is:

N(I) =

∣∣∣∣∣
(
a
b+
√

∆

2
− ab−

√
∆

2

)
/
√

∆

∣∣∣∣∣ =
∣∣∣(a√∆

)
/
√

∆
∣∣∣ = a (2.49)

and then its correspondent quadratic form is:

(ax+ b+
√

∆
2

y)(ax+ b−
√

∆
2

y)

a
= ax2 + bxy + cy2 (2.50)

If a is negative the form (a, b, c) is inde�nite, so ∆ is positive. Consider the ideal I ′ = 〈
√

∆〉I
which has {a

√
∆, b

√
∆+∆
2
} as a basis. The norm of I ′ is:∣∣∣∣∣

(
−a
√

∆
b
√

∆ + ∆

2
− a
√

∆
−b
√

∆ + ∆

2

)
/
√

∆

∣∣∣∣∣ =
∣∣∣(−a∆

√
∆)/
√

∆
∣∣∣ = −a∆ (2.51)

and the quadratic form associated to I ′ is:

(a
√

∆x+ b
√

∆+∆
2

y)(−a
√

∆x+ −b
√

∆+∆
2

y)

−a∆
= ax2 + bxy + cy2 (2.52)

This proves the surjectivity of Ψ.
For the injectivity, if to two non-zero ideals I, J of OK of basis (as orders) {α1, α2} and
{β1, β2} respectively, correspond properly equivalent forms f(x, y), g(x, y), we want to
prove that I and J are narrowly equivalent. We have:

f(x, y) =
(α1x+ α2y)(α1x+ α2y)

N(I)
; g(x, y) =

(β1x+ β2y)(β1x+ β2y)

N(J)
(2.53)

For hypothesis there exist four integers r, s, t, u such that f(rx + sy, tx + uy) = g(x, y)
and ru− st = 1. So:

(β1x+ β2y)(β1x+ β2y)

N(J)
=
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=
((rα1 + tα2)x+ (sα1 + uα2)y)((rα1 + tα2)x+ (sα1 + uα2y)

N(I)
(2.54)

Since g(x, 1) has at most two roots in K, we have that −(sα1 + uα2)/(rα1 + tα2) is equal
to −β2/β1 or to −β2/β1. Hence there exists a non-zero element γ of K such that

rα1 + tα2 = γβ1 , sα1 + α2 = γβ2 (2.55)

or
rα1 + tα2 = γβ1 , sα1 + α2 = γβ2 (2.56)

Substituting these relations in the equality 2.54, in both cases we obtain:

γγ =
N(I)

N(J)
> 0 (2.57)

But this implies that only 2.55 holds, for the other equalities we have a contradiction:

γβ1γβ2 − γβ1γβ2 = −γγ(β1β2 − β1β2) = (ru− st)(α1α2 − α1α2) (2.58)

since we suppose that for the basis {α1, α2} and {β1, β2} hold the conditions of the claim.
From ru−st = 1 it follows that {γβ1, γβ2} is a new basis for the order I. So I = [γβ1, γβ2]
and then

I = (γOK)J (2.59)

with γ ∈ K of positive norm. This means that I and J are narrowly equivalent.

Finally, we want to show that Ψ is a group homomorphism [17, Chapter 13]. We start
proving that Ψ sends the identity of C+(OK) in the identity of C(∆). The identity of
C+(OK) contains the maximal order OK of K. Its canonical basis is {1, ω} (see Theorem
2.36). Since N(OK) = 1, the form associated to OK is:

x2 + (ω + ω)xy + ωωy2 (2.60)

When ∆ ≡ 1 (mod 4) we have ω+ω = 1 and ωω = (1−∆)/4. So the obtained form is the
principal form of discriminant ∆ (see 1.6). When ∆ ≡ 0 (mod 4), we have ω + ω = 0 and
ωω = (−∆)/4. Even in this case, the computed form is the principal form of discriminant
∆ (see 1.5).

In order to prove that Ψ respects the product, we consider two non-zero ideals of OK,
I1 and I2, to which correspond, respectively, the quadratic forms f1(x, y) and f2(x, y).
The form f1(x, y) represents properly some positive integer both for positive and neg-
ative discriminant ∆. By Propositions 1.7 and Proposition 1.16, there exist two forms
(a1, b1, c1), (a2, b2, c2), properly equivalent to f1(x, y) and f2(x, y) respectively, with a1,
a2 coprime positive integers. If their Dirichlet composition is the form (a1a2, B, C), with
C = (B2 − ∆)/4a1a2, by Lemma 1.15 we have that f1(x, y) is properly equivalent to the
form Q1(x, y) = (a1, B, a2C) and f2(x, y) is properly equivalent to the form Q2(x, y) =
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(a2, B, a1C). Using what we have seen about the surjectivity of Ψ, we can deduce that
J1 = [a1, (B +

√
∆)/2] and J2 = [a2, (B +

√
∆)/2] are two non-zero ideals of OK to which

correspond the forms Q1(x, y) and Q2(x, y) respectively. Furthermore, for the injectivity
of Ψ we have that I1 is narrowly equivalent to J1 and that I2 is narrowly equivalent to J2.
The algebraic integer λ = (B +

√
∆)/2 is such that:

λ2 =
B2

4
+

∆

4
+
B
√

∆

2
, Bλ−a1a2C =

B2

2
+
B
√

∆

2
−a1a2C =

B2

4
+

∆

4
+
B
√

∆

2
(2.61)

that means
λ2 = Bλ− a1a2C (2.62)

Given α1 = a1x1 + λy1 ∈ J1 and α2 = a2x2 + λy2 ∈ J2, with x1, x2, y1y2 ∈ Z, using relation
2.62 we obtain:

α1α2 = a1a2(x1x2 − Cy1y2) + λ(a1x1y2 + a2x2y1 +By1y2)

and so, setting x3 = x1x2 − Cy1y2, y3 = a1x1y2 + a2x2y1 +By1y2, we can write

α1α2 = a1a2x3 + λy3 x3, y3 ∈ Z

So J1J2 is contained in the Z-module M = [a1a2, λ] generated by a1a2 and λ. On the
other hand M is contained in J1J2. In fact, J1J2 contains a1a2, a1λ, a2λ and so λ ∈ J1J2

(we can use the Bézout identity since a1 and a2 are relatively prime). So J1J2 = [a1a2, λ].
Obviously, a1a2 and λ are linearly independent over Z, so they form a basis for M . Since
a1a2λ−a1a2λ is equal to a1a2

√
∆ with a1a2 > 0, the ideal J1J2 has norm a1a2 for equation

2.33. So, the quadratic forms that corresponds to J1J2 is:

(a1a2x+ λy)(a1a2x+ λy)

a1a2

=
(a1a2)2x2 + a1a2(λ+ λ)xy + λλy2

a1a2

= a1a2x
2 +Bxy + Cy2

that is the Dirichlet composition of Q1(x, y) and Q2(x, y).
In conclusion, Ψ maps the product [I1][I2] ∈ C+(OK) in Ψ([I1]) ◦Ψ([I2]).



Chapter 3

Solving representation problems via

elliptic curves

In Chapter 1 we have seen a way, based only on the theory of integral binary quadratic
forms, to solve the representation problems for an odd prime p and a discriminant ∆ when
∆ is not a perfect square.
If we suppose that ∆ is the discriminant of a quadratic �eld K = Q(

√
d), in the view of

the correspondence between the form class group C(∆) and the narrow ideal class group
C+(OK) seen in Theorem 2.42, a suitable use of the Class �eld theory and the elliptic
curves over a �nite �elds leads to our alternative method to solve representation problems.
This method concerns the cases of negative fundamental discriminant ∆ and of small class
number. Before starting the description of the method, we summarize few results, not
mentioned in the previous chapters, about the tools we are going to use. The �rst step is
the introduction of the notion of Hilbert class �eld of a number �eld. For the terminology
used in the next section we refer to [20].

3.1 Hilbert class �eld

Let L be a �nite extension of a number �eld K.
Given a non-zero prime ideal p of OK, by Theorem 2.8 we have that :

pOL = Be1
1 · · ·Beg

g

where B1, . . . ,Bg are distinct non-zero prime ideals of OL containing pOL and e1, . . . , eg
are positive integers. We say that p rami�es in L if at least one of the ei's is bigger than
one; p is unrami�ed in L if e1 = · · · = eg = 1.

Usually a prime ideal of OK is called �nite prime ideal of K. This name is due to
a second type of prime ideals of K: the in�nite prime ideals. A real in�nite prime ideal
of K is a �eld homomorphism σ : K → R; a complex in�nite prime ideal of K is a
pair of complex conjugated �eld homomorphisms σ, σ : K→ C with σ 6= σ (σ and σ could

69
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be equal: this happens in the case that Im(σ) ⊂ R).
Given an in�nite prime ideal σ of K, we say that σ rami�es in L if it is real and there
exists a complex in�nite prime ideal σ̃ of L such that σ̃|K = σ. Otherwise, we said that σ
is unrami�ed in L.

De�nition 3.1. A �nite extension L of a number �eld K is said unrami�ed if each prime
ideal of K, �nite or in�nite, is unrami�ed in L.

It could happen that a given number �eld has unrami�ed extensions of arbitrarily high
degree. But if we ask for unrami�ed abelian extensions, there is a maximal one:

Theorem 3.2. Given a number �eld K there exists a �nite Galois extension L of K such
that:

1. L is an abelian and unrami�ed extension of K (abelian means that the Galois group
Gal(L/K) is abelian);

2. any unrami�ed, abelian, Galois �nite extension of K is contained in L.

Proof. See [20, �8].

The extension L of the last theorem is called Hilbert class �eld of the number
�eld K. The next lines will be devoted to show the properties of the degree [L : K] when
K is an imaginary quadratic �eld Q(

√
d), i.e. d is negative.

Lemma 3.3. Let K ⊂ L be two number �elds, with L Galois extension of K, and let p be
a non-zero prime ideal of OK that is unrami�ed in L. If B is a non-zero prime ideal of OL
containing p there exists a unique automorphism σ ∈ Gal(L/K) such that σ(α) ≡ αN(p)

(mod B) for all α ∈ OL, where N(p) is the norm |OK/p|.

Proof. See [20, Lemma 5.19]

This lemma holds for every non-zero prime ideal p ofOK when L is the Hilbert class �eld

of K. The unique automorphism σ is called theArtin Symbol and it is denoted by
(
L/K
B

)
.

Consider a non-zero prime ideal p of the ring of integers OK of a number �eld K. Given a
�nite extension L of K and a non-zero prime ideal B of OL that contains p, the map

ϕ : OK/p → OL/B
[ξ]p 7→ [ξ]B

is an homomorphism of �elds. In fact, it is well de�ned (B contains p and so two elements
of OK equivalent modulo p are also equivalent modulo B) and clearly respects sum and
product. Therefore Im(ϕ) is a sub�eld of OL/B, so OK/p could be regarded as sub�eld
of the �nite �eld OL/B. The natural number fB|p = [OL/B : OK/p] is called inertial
degree of p in B.
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Corollary 3.4. Let K ⊂ L be two number �elds, with L Galois extension of K and p prime
ideal of OK unrami�ed in L. If B is a prime ideal of OL containing p then:

1. if σ ∈ Gal(L/K) then
(
L/K
σ(B)

)
= σ

(
L/K
B

)
σ−1;

2. the order of
(
L/K
B

)
in Gal(L/K) is fB|p = [OL/B : OK/p].

Proof. See [20, Corollary 5.21]

Suppose that the Galois extension L of K is abelian. Fixed a non-zero prime ideal
p ⊂ OK unrami�ed in L, Gal(L/K) acts transitively on the prime ideals of OL containing
p [20, Theorem 5.9]. So, given two prime ideals of OL containing p, B and B′, there exists
σ ∈ Gal(L/K) such that B′ = σ(B). Then, for point 1 of the last Corollary and the
hypothesis of abelianity, we have:(

L/K
B′

)
=

(
L/K
σ(B)

)
= σ

(
L/K
B

)
σ−1 =

(
L/K
B

)
(3.1)

In this case, the Artin Symbol could be written as
(
L/K
p

)
, since it does not depend onB but

only on p. Furthermore, from point 2 of the last Corollary and the equality
(
L/K
B

)
=
(
L/K
B′

)
it follows fB/p = fB′/p, i.e. the inertial degree of p over a prime ideal B of OL containing
it does not depend of B but its the same natural number, that we will denote by fp, for
every B.
The observations of the above lines hold when L is the Hilbert class �eld of K.

When L is an abelian extension of K, we can de�ne the Artin symbol for every frac-
tional ideal of OK. Let I(OK) be the ideal group of OK and a one of its elements. By
Theorem 2.9 we have:

a =
r∏
i=1

prii

where the pi's are distinct prime ideals of OK and ri ∈ Z. The Artin symbol for a is:(
L/K
a

)
=

r∏
i=1

(
L/K
pi

)ri
This allows to introduce the Artin map:(

L/K
·

)
: I(OK) → Gal(L/K)

a 7→
(
L/K
a

)
where

(
L/K
OK

)
= IdL for convention. It is clear that the Artin map is an homomorphism

of groups (it respect the product: the prime factors decomposition of a fractional ideal is
unique).
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Artin reciprocity theorem for the Hilbert class �eld. Let L be the Hilbert class �eld

of a number �eld K. The Artin Map
(
L/K
·

)
is surjective and its kernel is P (OK). Thus the

Artin map induces an isomorphism between Gal(L/K) and the ideal class group C(OK).

Proof. See [20, �8].

The second part of the Artin reciprocity theorem follows from the �rst isomorphism
theorem for groups. In particular the isomorphism is:

ϕ : C(OK) → Gal(L/K)

[a] 7→
(
L/K
a

)
Assuming that L is the Hilbert class �eld of a number �eld K, we can deduce that:

• given a non-zero prime ideal p of OK and a prime ideal B of OL containing p, the
inertial degree fp is equal to the order of ((L/K)/p) in Gal(L/K) and then to the
order of [p] in C(OK);

• when K is an imaginary quadratic �eld Q(
√
d), i.e. d is negative, C(OK) is equal to

C+(OK). Then, by Theorem 2.42, we have that C(∆), with ∆ discriminant of K, is
isomorphic to Gal(L/K). Hence the degree of L over K is the class number hK of K
(see Section 2.6). In fact, the Hilbert class �eld of K is a �nite Galois extension, i.e.
[L : K] = |Gal(L/K)|.

Since K and Q have both characteristic 0, the Hilbert class �eld L of K is separable over
K and over Q ([19, Proposition 5.3.7]). So we can apply the primitive element theorem
([19, Theorem 5.4.1]) to deduce that:

• L = Q(α) for some α ∈ L. The minimal polynomial over Q of α will be denoted by
HK(x);

• there exists γ ∈ L such that L = K(γ). The minimal polynomial of γ over K will
be denoted by hK(x) and called Hilbert class polynomial of K. In particular, if
K is an imaginary quadratic �eld, hK(x) has degree hK and integral coe�cients [20,
Proposition 5.29].

Furthermore, for the Principal Ideal Theorem (see [14, p.157]), every ideal I of OK is
principal in OL, i.e. IOL is a principal ideal of the ring of integers OL.

Finally, given a prime ideal p of OK and its prime factorization Be1
1 · · ·B

eg
g in OL, we

have e1 = · · · = eg = 1 since L is an unrami�ed extension of K. If we denote by fp the
inertial degree of p in Bi (recall that the inertial degree depends only on p), from [20,
Theorem 5.8] it follows that fpg = [L : K] and hence g = [L : K]/fp. As observed before,
fp is the order of [p] in C(OK).
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3.2 Elliptic curves with OK as endomorphism ring

Let L be a number �eld. The equation of an elliptic curve E(L | j0), de�ned over L and of
j-invariant j0 ∈ L \ {0, 1728}, is [58, pag. 47]:

y2 = x3 +
3j0

1728− j0

x+
2j0

1728− j0

(3.2)

The elliptic curve de�ned over L with j-invariant 0 has equation

y2 = x3 + 1 (3.3)

while the elliptic curve de�ned over L with j0 = 1728 has equation

y2 = x3 + x (3.4)

In the last two cases the coe�cients of the equations belong to Q.

Assume that B is a non-zero prime ideal of OL. Since the �eld of fractions of OL is
L (see Proposition 2.24), the coe�cients of E(L | j0) are fractions of elements of OL. If
their denominators do not belong to B, then we can consider the equivalence classes of the
coe�cients of E in the �nite �eld OL/B. In this way we obtain a cubic curve E de�ned
over a �nite �eld. If it is non-singular, then it is an elliptic curve and in the literature ([20,
pag. 317]) it is called reduction of E modulo B and it is also said that E has good
reduction modulo B.
Adapting Deuring's results we can deduce the following Theorem [47].

Theorem 3.5. Let K = Q(
√
d) be an imaginary quadratic �eld (i.e. d is negative), OK its

ring of integers and L its Hilbert class �eld. Given a prime integer p and a prime ideal B
of OL that contains p, we have OL/B = Fpf with f ∈ N. If E(L | j0) is an elliptic curve
that has good reduction modulo B and endomorphism ring EndC(E) equal to OK, there
exists π ∈ OK such that:

• pf = ππ;

•
∣∣E(Fpf )

∣∣ = pf + 1− (π + π).

where π is the conjugate of π in K.

The natural number f of the theorem is the inertial degree of the prime ideal 〈p〉 of Z
over B, i.e. f = [OL/B : Z/〈p〉]. In fact, B ∩ Z is a prime ideal of Z so it contains only
one prime integer. By hypothesis B lies over p, hence the unique prime integer contained
in B is p. Therefore, the cardinality of OL/B is pf since one of its basis (as Z/〈p〉-vector
space) has f elements and the �eld of scalars has p elements. So we have pf di�erent linear
combinations.
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The elliptic curves E(L | j0) having OK as endomorphism ring, with L Hilbert class �eld
of the imaginary quadratic �eld K, are all and only those with j0 root of the Hilbert class
polynomial hK(x) (see [47, Theorem 6.10]).

Via Theorem 3.5 it is possible to set a correspondence between elliptic curves and bi-
nary quadratic forms. Let K = Q(

√
d) be the imaginary quadratic �eld of the theorem,

with d < 0 square-free integer. We recall how the discriminant ∆ of K was de�ned (De�-
nition 2.28):

∆ =

{
d d ≡ 1 (mod 4)

4d d ≡ 2, 3 (mod 4)

Furthermore the ring of integers OK is the order [1, ω] (Corollary 2.31) where:

ω =


1+
√

∆
2

= 1+
√
d

2
∆ ≡ 1 (mod 4)

√
∆
4

=
√
d ∆ ≡ 0 (mod 4)

First consider the case d ≡ 1 (mod 4). The algebraic integer π of Theorem 3.5 is:

π = u+ vω = u+ v
1 +
√
d

2

for suitable u, v ∈ Z. So we have that:

pf = ππ =

(
u+ v

1 +
√
d

2

)(
u+ v

1−
√
d

2

)
=

= (u)2 + uv +
1− d

4
(v)2 = (u)2 + uv +

1−∆

4
(v)2 (3.5)

What we have shown is that pf = ππ is actually a representation of pf via the principal
form (1.6) of discriminant ∆.
Similarly, if d ≡ 2, 3 (mod 4), the π ∈ OK of Theorem 3.5 is:

π = u+ vω = u+ v
√
d

for suitable u, v ∈ Z. Hence:

pf = ππ =
(
u+ v

√
d
)(

u− v
√
d
)

=

= (u)2 − d(v)2 = (u)2 − ∆

4
(v)2 (3.6)

Also in this case pf = ππ is a representation of pf via the principal form (1.5) of discrimi-
nant ∆.
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3.3 Main theorem

The connection between binary quadratic forms and elliptic curves introduced in the previ-
ous section provides the setting necessary to describe a method, alternative to that viewed
in Chapter 1, for solving the representantion problems when the discriminant ∆ is negative,
fundamental and such that the class number h∆ is less than or equal to 3.

A discriminant ∆ is said fundamental if ∆ is a squarefree integer when ∆ ≡ 1 (mod 4),
and in this case ∆ is denoted by d, or of the form 4d, where d is a squarefree integer
such that d ≡ 2, 3 (mod 4), when ∆ ≡ 0 (mod 4). The hypothesis that ∆ is negative
and fundamental guarantees that ∆ is the discriminant of an imaginary quadratic �eld, in
particular it is the discriminant of K = Q(

√
d). We denote by L the Hilbert class �eld of

K and by hK(x) ∈ Z[x] the corresponding Hilbert class polynomial.

Consider an odd prime integer p for which holds (∆/p) = 1 and suppose that h∆ re-
duced quadratic forms Q0(x, y), Q1(x, y), . . . , Qh∆−1(x, y), a representative for each proper
equivalence class, are known, where Q0(x, y) is the principal form.

The theorem that follows allows to �nd a representation of p once we know which reduced
forms represent p. The context is the one described in the previous lines.

Main Theorem - Theorem 3.6. The ideal pOK, generated in OK by the prime integer
p, is equal to the product of two distinct conjugates prime ideals of OK, p and p, and p is
properly represented by a reduced form Qi(x, y) of discriminant ∆. If fp is the order of [p]
in C+(OK), four representations Q0(u, v) = q = pfp are obtained from

± (u1, v1) =


±
(
aq−v

2
,
√

4q−a2
q

−∆

)
∆ ≡ 1 (mod 4)

±
(
aq
2
,
√

4q−a2
q

−∆

)
∆ ≡ 0 (mod 4)

(3.7)

± (u2, v2) =


±
(
aq+v

2
, −
√

4q−a2
q

−∆

)
∆ ≡ 1 (mod 4)

±
(
aq
2
, −
√

4q−a2
q

−∆

)
∆ ≡ 0 (mod 4)

(3.8)

where Nq = q + 1 − aq is the number of rational points of E, the reduction, modulo a
prime ideal B of OL containing p, of the elliptic curve E(L | j0), with 0 a root of hK(x).
Furthermore, if fp 6= 1 then p is properly represented by a non principal reduced form
Qi(x, y), i.e. there exist two coprime integers x0, y0 such that Qi(x0, y0) = p. These x0 and
y0 are found as a solution of one of the Diophantine systems{

e1(x, y) = ±u1

e2(x, y) = ±v1

{
e1(x, y) = ±u2

e2(x, y) = ±v2
(3.9)
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of two homogeneus equations in x and y of degree fp.

Proof. The existence of i ∈ {0, . . . , hK−1} such that Qi(x, y) properly represents p follows
from the hypothesis (∆/p) = 1 and Theorem 1.8. Also the factorization pp, with p 6= p,
of the principal ideal pOK is a standard fact (for a proof see [20, Proposition 5.16] or [42,
Theorem 2.19]).
The prime integer p is represented by the principal form Q0(x, y) if and only if p is a
principal ideal of OK. If p = 〈π〉 then pOK = 〈ππ〉, with ππ ∈ Z. Hence, for the group
structure of I(OK), we obtain 〈p/ππ〉 = 〈ππ/p〉 = OK. In the light of Lemma 2.39, we can
deduce p = ππ that means p properly represented by Q0(x, y). Vice versa, if p = ππ, then
pOK = 〈π〉〈π〉. From the uniqueness of the prime factorization of pOK it follows p = 〈π〉.
In order to prove our theorem, we take a prime ideal B of OL that contains p and an
elliptic curve E(L | j0) where j0 is a root of the Hilbert class polynomial hK(x). As we have
seen in Section 2, the cardinality of OL/B is pf , where f is the inertial degree of 〈p〉 ⊂ Z
in B. But f coincides with the inertial degree of p in B. For [39, pag. 24] we have that
the inertial degree of 〈p〉 ⊂ Z in B is equal to the product of the inertial degree of p in
B and the inertial degree of 〈p〉 ⊂ Z in p. Applying [20, Theorem 5.9] it follows that the
inertial degree of 〈p〉 ⊂ Z in p is one (we have e = 1, g = 2 and, from egf = 2, f = 1). So
f is the inertial degree fp of p in B and it is equal to the order of [p] in C(OK), i.e. f = fp.
The reduction of E modulo B leads to an elliptic curve E de�ned over the �nite �eld Fq,
with q = pfp . The number Nq of rational points of E could be computed in polynomial
time complexity using the Schoof algorithm (see [50] or next chapter) and, by Theorem
3.5, there exists π = u+ ωv ∈ OK, with u, v ∈ Z, such that:

q = ππ (3.10)

Nq = q + 1− (π + π̄) = q + 1− aq (3.11)

The sum aq = π+ π̄, considered together with the relation ππ = q allows to obtain π from
Nq and q. In fact, we have:

aq = π + π = (u+ ωv) + (u+ ωv) = 2u+ (ω + ω)v (3.12)

q = (u+ ωv)(u+ ωv) = u2 + (ω + ω)uv + ωωv2 (3.13)

and then it follows that:

4q − a2
q = 4u2 + 4(ω + ω)uv + 4ωωv2 − 4u2 − 4(ω + ω)uv − (ω + ω)2v2 =

= −(ω − ω)2v2 (3.14)

Hence, from the de�nition of ω we have:

ω − ω =


1+
√

∆
2
− 1−

√
∆

2
=
√

∆ ∆ ≡ 1 (mod 4)

√
∆
4

+
√

∆
4

=
√

∆ ∆ ≡ 0 (mod 4)
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and then

v = ±

√
4q − a2

q

−∆
(3.15)

Furthermore, from

ω + ω =


1+
√

∆
2

+ 1−
√

∆
2

= 1 ∆ ≡ 1 (mod 4)

√
∆
4
−
√

∆
4

= 0 ∆ ≡ 0 (mod 4)

and the observation that f(−x,−y) = f(x, y) for every quadratic form we can deduce that
(u, v) could be one of the following four pairs:

± (u1, v1) =


±
(
aq−v

2
,
√

4q−a2
q

−∆

)
∆ ≡ 1 (mod 4)

±
(
aq
2
,
√

4q−a2
q

−∆

)
∆ ≡ 0 (mod 4)

(3.16)

± (u2, v2) =


±
(
aq+v

2
, −
√

4q−a2
q

−∆

)
∆ ≡ 1 (mod 4)

±
(
aq
2
, −
√

4q−a2
q

−∆

)
∆ ≡ 0 (mod 4)

(3.17)

If p is a principal ideal, then q = p and u, v are two integers such that p = ππ = Q0(u, v),
i.e. we have found a proper representation of p by the principal form Q0(x, y).
If p is not principal, p is properly represented by a non-principal reduced form Qi(x, y).
We can consider the ideal Iai = 〈ai, bi + ω〉, with ai, bi ∈ Z, such that:

Qi(x, y) =
NK/Q(aix+ (bi + ω)y)

NK/Q(Iai)
(3.18)

Now we observe that the element

NK/Q(aix+ (bi + ω)y)fp

(NK/Q(Iai))
fp

(3.19)

of K (with x, y ∈ Z), that is equal to

NK/Q((aix+ (bi + ω)y)fp)

(NK/Q(I
fp
ai ))

(3.20)

for the multiplicativity of the norm both for elements of K and ideals ofOK (Theorem 2.41),
is the norm of an algebraic integer

(aix+ (bi + ω)y)fp

πai
(3.21)
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where πai is the generator of I
fp
ai .

So we can impose

π = u+ ωv =
(aix+ (bi + ω)y)fp

πai
(3.22)

and, from the linear independence of 1 and ω over Z, we obtain the following Diophantine
systems in x, y {

e1(x, y) = u
e2(x, y) = v

(3.23)

where the polynomials e1(x, y), e2(x, y) ∈ Z[x, y] are homogeneous of degree fp and the
constant terms (u, v) could be one of the four pairs ±(u1, v1),±(u2, v2).

Remark. In the proof of the Theorem we assume that the elliptic curve E has good reduction
modulo B since the number of cases where E has not good reduction is �nite.

Theorem 3.6 could be used to �nd a representation of p once we know which reduced
forms represent p. By the following theorem [2, Theorem 3.2], when hK ≤ 3 we can use
the factorization of hK(x) (mod p) in Zp to determine which are the reduced forms that
represent p.

Theorem 3.7. Let K = Q(
√
d) be an imaginary quadratic �eld of discriminant ∆ and let

hK(x) ∈ Z[x] be its Hilbert class polynomial. An odd prime integer p is represented by the
principal form Q0(x, y) of discriminant ∆ if and only if hK(x) (mod p) has only simple
roots and they are all in Zp.

Gauss, in his Disquisitiones Arithmeticae [26], found nine imaginary quadratic �elds
with class number 1, and he conjectured he had found all of them. It turns out he was
correct. The proof follows from the results of Heegner, Baker and Stark. Furthermore, the
work of Goldfeld and Gross-Zagier shows that for every �xed class number N there exist
only a �nite number of imaginary quadratic �elds of class number N . In particular, we
know all the imaginary quadratic �elds with class number 1,2, and 3.
The next sections will be devoted to �nd explicit algorithms, deduced from our theorem,
for these imaginary quadratic �elds.

3.4 Class number 1

The only imaginary quadratic �elds Q(
√
d) which have class number 1 are those with −d

in the following set [47, pag.37]:

D1 = {1, 2, 3, 7, 11, 19, 43, 67, 163} (3.24)

Let K = Q(
√
d) be one of these nine �elds and let ∆ be its discriminant. Since C(∆)

contains only the proper equivalence class of the principal form, if (∆/p) = 1 for an odd
prime integer p, then p is properly represented by the principal formQ0(x, y) of discriminant
∆. A representation could be found as in the proof of Theorem 3.6. The goal of the section
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is to construct, in magma language, the explicit algorithm: its structure will be discussed
in the following lines and the complete algorithm will be exhibited at the end of the section.
The Hilbert class �eld L of K has dimension hK = 1 over K and hence K = L. The Hilbert
class polynomial hK(x) has degree one and integral coe�cients: its unique root j0 belongs
to Z. We consider the elliptic curve E(L | j0). For (3.2), we can observe that E has rational
coe�cients. The ideal pOK is equal to the product pp, where p and p are prime ideals of
OK containing p with p 6= p.
It is easy to see that the map:

ϕ : Z/ < p > → OK/p
[`]p 7→ [`]p

is an isomorphism of �elds. Clearly, ϕ is a �eld homomorphism, so it is injective. Fur-
thermore, ϕ is surjective since domain and codomain have the same cardinality. In fact
N(p) = p by Theorem 2.41 since pp = pOK. In the light of the isomorphism ϕ, to verify if E
has good reduction modulo p it is su�cient to see wether the integral denominators of the
coe�cients of E are non-zero modulo p. Furthermore we can use ϕ to construct an elliptic
curve Ẽ over Zp = Z/〈p〉 with the same number of rational points of E, the reduction of E
modulo p. Using the Schoof algorithm we can �nd the number Np = p+ 1− ap of rational
points of Ẽ. From Theorem 3.5 it follows that:

ap = π + π = (u+ ωv) + (u+ ωv) (3.25)

and
p = (u+ ωv)(u+ ωv) (3.26)

for some π = u+ ωv ∈ OK, with u and v integers. Since ππ is a representation of p by the
principal form of discriminant ∆, u and v must be coprime. By Theorem 3.6, we know the
formulas to obtain u and v once we know ap.

To lower the computational complexity necessary to compute a representation of p by
our method, we can construct a database with the following data for each of the nine
imaginary quadratic �elds of class number 1:

• the discriminant ∆;

• the unique reduced form Q0(x, y) (i.e. the principal one) of discriminant ∆;

• the root j0 ∈ Z of the Hilbert class polynomial hK(x) = x− j0 ∈ Z[x];

• the elliptic curve E(K | j0).

This information are collected in the following table:
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d ∆ ω Q0  E(L | j0)

-1 −4
√
−1 x2 + y2 123 x3 − x

-2 −8
√
−2 x2 + 2y2 203 x3 − 375

98
x− 125

49

-3 −3 1+
√
−3

2
x2 + xy + y2 0 x3 − 1

-7 −7 1+
√
−7

2
x2 + xy + 2y2 (−15)3 x3 − 125

63
x− 250

189

-11 −11 1+
√
−11

2
x2 + xy + 3y2 (−32)3 x3 − 1536

539
x− 1024

539

-19 −19 1+
√
−19

2
x2 + xy + 5y2 (−96)3 x3 − 512

171
x− 1024

513

-43 −43 1+
√
−43

2
x2 + xy + 11y2 (−960)3 x3 − 512000

170667
x− 1024000

512001

-67 −67 1+
√
−67

2
x2 + xy + 17y2 (−5280)3 x3 − 85184000

28394667
x− 170368000

85184001

-163 −163 1+
√
−163
2

x2 + xy + 41y2 (−640320)3 x3 − 151931373056000
50643791018667

x− 303862746112000
151931373056001

Table 3.1: Imaginary quadratic �elds K = Q(
√
d) of class number 1

Remark. The described method to �nd a representation of p by the principal form Q0 of
discriminant ∆ needs some checks to be used in practice:

1. the characteristic of Zp must be di�erent from 3 to apply the Schoof algorithm;

2. the cubic curve E must have good reduction modulo p;

3. the reduced elliptic curve Ẽ must be non-singular in order to apply the Schoof algo-
rithm.

We observe that:

1. only the quadratic forms of discriminant −8 and −7 properly represent p = 3, while
(−3/3) = 0;

2. the prime factors of the denominators of the elliptic curve E used for the discriminant
∆ (of one of imaginary quadratic �elds with class number 1) are not represented by
the principal form of discriminant ∆, so E has always good reduction;

3. if a1/b1 and a2/b2 are the coe�cient of the elliptic curve E used for the discriminant
∆, the prime factors of (b1)3(b2)2 + 27(a2)2(b1)3 are not represented by the quadratic
forms of discriminant ∆, so E is always non-singular.

3.4.1 Algorithm for class number 1

We now attach the explicit algorithm, in magma language, of our method relative to
the imaginary quadratic �elds of class number 1. For each discriminant ∆ contained
in {−4,−8,−3,−7,−11,−19,−43,−67,−163}, the function �Database1� returns the root
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j0 of the Hilbert class polynomial of Q(
√

∆), the coe�cient a, b, c of the principal form
Q0(x, y) of discriminant ∆ and the coe�cients a1/b1, a2/b2 of the elliptic curve

E(Q(
√

∆) | j0) = x3 + (a1/b1)x+ (a2/b2)

The function �ClassNumber1� takes the radicand of one of the nine imaginary quadratic
�elds of class number 1 and a prime integer p such that (∆/p) = 1, with ∆ discriminant of
the �eld. Calling the function �Database1�, it constructs the elliptic curve Ẽ de�ned over
Zp, computes the number of rational points of Ẽ and returns the integers u, v such that

Q0(u, v) = p

1 //CLASS NUMBER 1
2

3 function Database1 (dK)
4

5 if (dK eq -4) then
6 j:=12^3; a1:=-1; a2:=1; b1:=0; b2:=1;
7 a:=1; b:=0; c:=1;
8 elif (dK eq -8) then
9 j:=20^3; a1:=-375; a2:=98; b1:=-125; b2:=49;

10 a:=1; b:=0; c:=2;
11 elif (dK eq -3) then
12 j:=0; a1:=0; a2:=1; b1:=-1; b2:=1;
13 a:=1; b:=1; c:=1;
14 elif (dK eq -7) then
15 j:=(-15)^3; a1:=-125; a2:=63; b1:=-250; b2:=189;
16 a:=1; b:=1; c:=2;
17 elif (dK eq -11) then
18 j:=(-32)^3; a1:=-1536; a2:=539; b1:=-1024; b2:=539;
19 a:=1; b:=1; c:=3;
20 elif (dK eq -19) then
21 j:=(-96)^3; a1:=-512; a2:=171; b1:=-1024; b2:=513;
22 a:=1; b:=1; c:=5;
23 elif (dK eq -43) then
24 j:=(-960)^3; a1:=-512000; a2:=170667; b1:=-1024000; b2:=512001;
25 a:=1; b:=1; c:=11;
26 elif (dK eq -67) then
27 j:=(-5280)^3; a1:=-85184000; a2:=28394667; b1:=-170368000;
28 b2:=85184001; a:=1; b:=1; c:=17;
29 elif (dK eq -163) then
30 j:=(-640320)^3; a1:=-151931373056000; a2:=50643791018667;
31 b1:=-303862746112000; b2:=151931373056001; a:=1; b:=1; c:=41;
32 end if;
33

34 return j,a1,a2,b1,b2,a,b,c;
35 end function;
36

37 function ClassNumber1(d,p)
38

39 if ((d mod 4) eq 1) then
40 dK:=d;
41 else
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42 dK:=4*d;
43 end if;
44 Zp:=GF(p);
45 DK:=Zp!dK;
46 // IsSquare(DK);
47 j,a1,a2,b1,b2,a,b,c := Database1 (dK);
48 A1:=Zp!a1;
49 A2:=Zp!a2;
50 B1:=Zp!b1;
51 B2:=Zp!b2;
52 A:=A1/A2;
53 B:=B1/B2;
54 E:=EllipticCurve([A,B]);
55 Np:=#E; //Schoof's algorithm
56 ap:=p+1-Np;
57 if ((dK mod 4) eq 1) then
58 v:=Sqrt((4*p-ap^2)/-dK);
59 u:=(ap-v)/2;
60 else
61 v:=Sqrt((4*p-ap^2)/-dK);
62 u:=ap/2;
63 end if;
64 Z:=Integers();
65 u:=Z!u;
66 v:=Z!v;
67

68 return u,v,a,b,c;
69 end function;
70

71 d:=...;
72 p:=...;
73 x,y,a,b,c:=ClassNumber1(d,p);
74 if (b eq 0) then
75 printf "%o=%o*(%o)^2+%o*(%o)^2",p,a,x,c,y;
76 else
77 printf "%o=%o*(%o)^2+%o*(%o)+%o*(%o)^2",p,a,x,b,x*y,c,y;
78 end if;

3.5 Class number 2

The only imaginary quadratic �elds Q(
√
d) which have class number 2 are those with −d

in the following set [49, pag.636]:

D2 = {5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427} (3.27)

Let K = Q(
√
d) be one of these �elds and let ∆ be its discriminant. Given an odd prime

integer p such that (∆/p) = 1, it is properly represented by the principal form Q0(x, y)
or by the other reduced form, Q1(x, y). In this section we will discuss about the structure
of the explicit algorithm to �nd a representation of p. The complete algorithm will be
presented, in magma language, at the end of the section.



3.5. CLASS NUMBER 2 83

The ideal pOK is equal to the product pp, where p and p are a prime ideals of OK containing
p, with p di�erent from p. The Hilbert class �eld L of K has dimension hK = 2 over K.
The Hilbert class polynomial hK(x) has degree two and integral coe�cients. By Theorem
3.7, p is properly represented by Q0(x, y) if and only if the polynomial hK(x) (mod p) has
only simple roots and they are all in Zp.

3.5.1 p represented by Q0(x, y)

When p is properly represented by the principal form we proceed as for the quadratic �elds
of class number 1, with a substantial di�erence that we will explain. Let B be a prime
ideal of OL that contains p. As we have seen, the cardinality of OL/B is equal to pfp . But
fp coincides with the order of [p] in C(OK). Therefore OL/B is a �nite �eld of p elements
and the map

ϕ : Z/ < p > → OL/B
[`]p 7→ [`]B

is a �eld isomorphism. Clearly, ϕ is well de�ned, since p belongs to B, and a �eld homo-
morphism, hence it isinjective. Furthermore, ϕ is surjective since domain and codomain
have the same �nite cardinality.
We consider the elliptic curve E(L | j0), where j0 is a root of hK(x). Unlike for the imagi-
nary quadratic �elds of class number 1, it is not easy to �nd explicitly the roots of hK(x)
and, consequently, the elliptic curve E(L | j0). We can use ϕ to �nd, directly, the reduction
of E modulo B, which is de�ned over the �nite �eld of p elements and is denoted by E.
The idea is to consider the equivalence classes in OL/B of the coe�cients of E and their
correspondent elements in Z/〈p〉 = Zp. For example, given the coe�cient 2j0/(1728− j0),
we have: [

2j0

1728− j0

]
B

=
[2]B[j0]B

[1728]B − [j0]B
(3.28)

Since ϕ is an isomorphism , to compute ϕ−1([ 2j0
1728−j0 ]B) we need only to determine ϕ−1([j0])B.

We assume to know an integer j′0 such that [j′0]p is a root of hK(x) (mod p): the equivalence
class [j′0]B is also a root of hK(x) modulo B. But the polynomial hK(x) (mod B) has at
most two roots in OL/B. Hence j′0 is equivalent, modulo B, to one of the roots of hK(x).
It is important to remark that construct E we can consider, equivalently, one of the roots
of hK(x). Then, the elliptic curve

Ẽ : y2 = x3 +
[2]p[j

′
0]p

[1728]p − [j′0]p
x+

[3]p[j
′
0]p

[1728]p − [j′0]p
(3.29)

de�ned over Zp has the same number of rational points of the reduced curve E.
Using the Schoof algorithm (see [50] or next chapter) we can �nd the number Np = p+1−ap
of rational points of Ẽ. From Theorem 3.5 it follows that:

ap = π + π = (u+ ωv) + (u+ ωv) (3.30)
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and
p = (u+ ωv)(u+ ωv) (3.31)

for some π = u+ ωv ∈ OK, with u and v integers. The last relation is a representation of
p by the principal form Q0(x, y), so u and v must be coprime. By Theorem 3.6, we know
the formulas to obtain u and v once we know ap.

3.5.2 p represented by Q1(x, y)

Let us suppose that hK(x) (mod p) is irreducible in Z or with a root o multiplicity two in
Zp. Hence, p is properly represented by the reduced non-principal formQ1(x, y). Obviously,
p2 is principal and then p2 is represented by the principal form Q0(x, y). The �rst step is
to �nd this representation of p2 using Theorem 3.5. As before, B is a prime ideal of OL
containing p. The only di�erence with the previous case is that there exists an isomorphism
of �elds

ϕ : Fp2 → OL/B

where Fp2 is the �nite �eld of p2 elements. The cardinality of OL/B is pfp , with fp equal to
the order of [p] in C+(OK). Is necessary to spend some words about Fp2 . From a theoretical
point of view, there is not a canonical �nite �eld of p2 elements. But our perspective is
that of magma (or another computer algebra system) so with Fp2 we denote the �nite �eld
of p2 elements provided by magma using the command "GF (p∧2);".
The roots of hK(x) (mod p) lie in Fp2 . We consider the elliptic curve E(L | j0), where j0

is a root of hK(x). As before, we do not want to explicitly �nd the roots of hK(x) and,
consequently, the elliptic curve E(L | j0). We can use ϕ to �nd, the reduction of E modulo
B, which is de�ned over the �nite �eld of p2 elements and denoted by E. The strategy is
to take the equivalence classes in OL/B of the coe�cients of E and their correspondent
elements of Fp2 . For example, given the coe�cient 2j0/(1728− j0), we have:[

2j0

1728− j0

]
B

=
[2]B[j0]B

[1728]B − [j0]B
(3.32)

Since ϕ is a �eld isomorphism, to compute ϕ−1([ 2j0
1728−j0 ]B) we only need to compute

ϕ−1([j0])B. In fact ϕ−1([2]B) = 2 and ϕ−1([1728]B) = 1728. Observe that [j0]B is sent
by ϕ−1in a root j′0 ∈ Fp2 of hK(x) (mod p) that we assume to know. So, the elliptic curve

Ẽ : y2 = x3 +
2j′0

1728− j′0
+

3j′0
1728− j′0

(3.33)

de�ned over Fp2 has the same number of rational points of the reduced curve E.
Using the Schoof algorithm we can �nd the number Np2 = p2 + 1 − ap2 of rational points

of Ẽ. From Theorem 3.5 it follows that:

ap2 = π + π = (u+ ωv) + (u+ ωv) (3.34)
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and
p2 = (u+ ωv)(u+ ωv) (3.35)

for some π = u+ωv ∈ OK, with u, v ∈ Z. The last relation is a representation of p2 by the
principal form Q0(x, y). By Theorem 3.6, we know the formulas to obtain u and v once we
know ap2 .
Now, let 〈a, b+ ω〉 be a non-zero ideal of OK such that:

Q1(x, y) =
NK/Q(ax+ (b+ ωy)

a
(3.36)

To �nd two integers x0, y0 such that Q1(x0, y0) = p we impose

u+ ωv =
(ax+ (b+ ω)y)2

πa

where 〈πa〉 = 〈a, b+ ω〉2 and πaπa = a2. From the independence of 1 and ω over Q we can
deduce the Diophantine systems. Since (u, v) is not uniquely determined, we have to try
all its four possible values ±(u1, v1),±(u2, v2) until we �nd x0 and y0. This systems have
two homogeneous equations of degree two in x and y. Apart from u and v, these systems
do not depend on p. So they could be computed once for each of the imaginary quadratic
�elds of class number 2. In the following two examples, we will see how to proceed to
determine the Diophantine systems.

Example. Consider the quadratic �eld K = Q(
√
−35) of discriminant ∆ = −35. The

ideal I = 〈3, ω〉 of OK corresponds to the reduced form Q1(x, y) = 3x2 + xy + 3y2:

Q1(x, y) =
(3x+ ωy)(3x+ ωy)

3

The square I2 is generated by 9, 3ω and ω2, with:

ω2 =

(
1 +
√
−35

2

)2

= ω − 9 (3.37)

Now we can observe that:

〈9, 3ω, ω − 9〉 = 〈9, 3ω, ω − 9 + 9〉 = 〈9, 3ω, ω〉 = 〈9, 3ω − 3ω, ω〉 = 〈9, ω〉 = (3.38)

= 〈ω − ω2, ω〉 = 〈ω〉〈1− ω, 1〉 = 〈ω〉
and hence πa = ω, with ωω = 9. So we have:

u+ ωv =
ω(3x+ ωy)2

9
=
ω(9x2 + 6ωxy + ω2y2)

9
=

(9ωx2 + 6ωωxy + ωωωy2)

9
= (3.39)

9ωx2 + 54xy + 9ωy2

9
= (1− ω)x2 + 6xy + ωy2

from which follow the Diophantine systems{
x2 + 6xy = u
−x2 + y2 = v

(3.40)



86 CHAPTER 3. REPRESENTATION PROBLEMS

Example. Consider the quadratic �eld K = Q(
√
−37) of discriminant ∆ = −37. The

ideal I = 〈2, 1 + ω〉 of OK corresponds to the reduced form Q1(x, y) = 2x2 + 2xy + 19y2:

Q1(x, y) =
(2x+ (1 + ω)y)(2x+ (1 + ωy)

2

The square I2 is generated by 4, 2(1 + ω) and 1 + 2ω + ω2, with:

1 + 2ω + ω2 = 1 + 2
√
−37− 37 = −36 + 2ω (3.41)

Now we can observe that:

〈4, 2(1 + ω), 2ω − 36〉 = 〈2〉〈2, 1 + ω, ω − 18〉 = 〈2〉〈2, 1 + ω, ω − 18 + 18〉 = (3.42)

〈2〉〈2, 1 + ω, ω〉 = 〈2〉〈2, 1 + ω − ω, ω〉 = 〈2〉〈2, 1, ω〉 = 〈2〉
and hence πa = 2. So we have:

u+ ωv =
(2x+ (1 + ω)y)2

2
=

4x2 + 4(1 + ω)xy + (1 + 2ω + ω2)y2

2
= (3.43)

=
(4x2 + 4xy + 4ωxy + (2ω − 36)y2

2
= 2x2 + 2xy + 2ωxy + ωy2 − 18y2

from which follow the Diophantine systems{
2x2 + 2xy − 18y2 = u
2xy + y2 = v

(3.44)

As we have seen in the examples, we have to play with the generators of 〈a, b+ ω〉2 to
write the square of 〈a, b + ω〉 as a principal ideal 〈πa〉. The observations that one has to
take into consideration are:

• the product of two �nitely generated ideals is �nitely generated. In particular, given
〈α, β〉 and 〈γ〉 ideals of OK, we have:

〈γ〉〈α, β〉 = 〈γα, γβ〉 (3.45)

〈α, β〉〈α, β〉 = 〈α2, αβ, β2〉 (3.46)

• a repeated generator may be erased;

• if an ideal of OK contains 1, then it is equal to all the ring OK;

• if two generators of an ideal ofOK are relatively prime integers, then the ideal contains
1 for the Bézout's identity;

• if 〈α1, . . . , αn〉 is an ideal of OK, then

〈α1, . . . , αn〉 = 〈α1, . . . , αi−1, αi − ηαj, αi+1, . . . , αn〉 (3.47)

for every element η of OK.
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To lower the computational complexity necessary to compute a representation of p with
our method, we can construct a database with the following data for each of the imaginary
quadratic �elds of class number 2:

• the discriminant ∆;

• the reduced forms Q0(x, y), Q1(x, y) of discriminant ∆;

• the ideals that correspond to Q0(x, y) and Q1(x, y) respectively;

• the generator of the square of the ideal that corresponds to Q1(x, y);

• the coe�cients of the Hilbert class polynomial hK(x) ∈ Z[x];

• the Diophantine systems, with u and v unknown, to �nd a representation of p by the
non-principal form.

This information are collected in the tables at the end of the chapter.

3.5.3 Algorithm for class number 2

The algorithm described in the previous two sections is here provided in magma language.
The input of the function �Database2� is the discriminant of one of the imaginary quadratic
�elds of class number 2. It returns the integral coe�cients h1, h2 of the Hilbert class poly-
nomial x2 + h1x + h2 ∈ Z[x] and the coe�cients a,b,c of the principal form Q0(x, y) of
discriminant ∆.
The function �Systems2� has the same input but returns the coe�cients a, b, c of the non-
principal form Q1(x, y) and the coe�cients of the polynomials e1(x, y), e2(x, y) of the Dio-
phantine systems used to �nd a proper representation of a prime integer p by Q1(x, y). The
third function, �ClassNumber2�, takes the radicand d of one of the imaginary quadratic
�elds with class number 2 and a prime integer p such that (∆/p) = 1, where ∆ is the dis-
criminant of K = Q(

√
d). It calls the function �Database2� and constructs the polynomial

hK (mod p). If hK (mod p) has only simple roots and they are all in Zp, the function com-
putes one of its roots and provides the elliptic curve Ẽ. Counting the rational points of Ẽ,
�ClassNumber2� returns two integers u, v such that p = Q0(u, v). On the other hand, if hK
(mod p) is irreducible in Zp or with a root of multiplicity two in Zp, the function computes
one of its roots (whose are contained in Fp2) and constructs the elliptic curve Ẽ. As before,
are found two integers u, v such that Q0(u, v) = p2. Finally, using the data obtained from
�Systems2�, the function build the Diophantine systems. The constant terms (u, v) could
be equal to ±(u1, v1) or to ±(u2, v2), so we have to try all of them until x0, y0 ∈ Z, such
that Q1(x0, y0) = p, are found. A solution (x0, y0) is returned.
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1 // CLASS NUMBER: 2
2

3 function Database2 (dK)
4

5 if (dK eq -20) then
6 h1:=-1264000;
7 h2:=-681472000;
8 a:=1; b:=0; c:=5;
9 elif (dK eq -24) then

10 h1:=-4834944;
11 h2:=14670139392;
12 a:=1; b:=0; c:=6;
13 elif (dK eq -40) then
14 h1:=- 425692800;
15 h2:=9103145472000;
16 a:=1; b:=0; c:=10;
17 elif (dK eq -52) then
18 h1:=- 6896880000;
19 h2:=- 567663552000000;
20 a:=1; b:=0; c:=13;
21 elif (dK eq -15) then
22 h1:=191025;
23 h2:=- 121287375;
24 a:=1; b:=1; c:=4;
25 elif (dK eq -88) then
26 h1:=- 6294842640000;
27 h2:=15798135578688000000;
28 a:=1; b:=0; c:=22;
29 elif (dK eq -35) then
30 h1:=117964800;
31 h2:=-134217728000;
32 a:=1; b:=1; c:=9;
33 elif (dK eq -148) then
34 h1:=- 39660183801072000;
35 h2:=- 7898242515936467904000000;
36 a:=1; b:=0; c:=37;
37 elif (dK eq -51) then
38 h1:=5541101568;
39 h2:=6262062317568;
40 a:=1; b:=1; c:=13;
41 elif (dK eq -232) then
42 h1:=-604729957849891344000;
43 h2:=14871070713157137145512000000000;
44 a:=1; b:=0; c:=58;
45 elif (dK eq -91) then
46 h1:=10359073013760;
47 h2:=-3845689020776448;
48 a:=1; b:=1; c:=23;
49 elif (dK eq -115) then
50 h1:=427864611225600;
51 h2:=130231327260672000;
52 a:=1; b:=1; c:=29;
53 elif (dK eq -123) then
54 h1:=1354146840576000;
55 h2:=148809594175488000000;
56 a:=1; b:=1; c:=31;
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57 elif (dK eq -187) then
58 h1:=4545336381788160000;
59 h2:=- 3845689020776448000000;
60 a:=1; b:=1; c:=47;
61 elif (dK eq -235) then
62 h1:=823177419449425920000;
63 h2:=11946621170462723407872000;
64 a:=1; b:=1; c:=59;
65 elif (dK eq -267) then
66 h1:=19683091854079488000000;
67 h2:=531429662672621376897024000000;
68 a:=1; b:=1; c:=67;
69 elif (dK eq -403) then
70 h1:=2452811389229331391979520000;
71 h2:=- 108844203402491055833088000000;
72 a:=1; b:=1; c:=101;
73 elif (dK eq -427) then
74 h1:=15611455512523783919812608000;
75 h2:=155041756222618916546936832000000;
76 a:=1; b:=1; c:=107;
77 end if;
78

79 return h1,h2,a,b,c;
80 end function;
81

82 function Systems2 (dK)
83 Z:=Integers();
84 PZ<x,y>:=PolynomialRing(Z,2);
85 if (dK eq -20) then
86 e1:=2*x^2+2*x*y-2*y^2;
87 e2:=2*x*y+y^2;
88 a:=Z!2; b:=Z!2; c:=Z!3;
89 elif (dK eq -24) then
90 e1:=2*x^2-3*y^2;
91 e2:=2*x*y;
92 a:=Z!2; b:=Z!0; c:=Z!3;
93 elif (dK eq -40) then
94 e1:=2*x^2-5*y^2;
95 e2:=2*x*y;
96 a:=Z!2; b:=Z!0; c:=Z!5;
97 elif (dK eq -52) then
98 e1:=2*x^2+2*x*y-6*y^2 ;
99 e2:=2*x*y+y^2 ;

100 a:=Z!2; b:=Z!2; c:=Z!7;
101 elif (dK eq -15) then
102 e1:=x^2+4*x*y ;
103 e2:=-x^2+y^2 ;
104 a:=Z!2; b:=Z!1; c:=Z!2;
105 elif (dK eq -88) then
106 e1:=2*x^2-11*y^2 ;
107 e2:=2*x*y ;
108 a:=Z!2; b:=Z!0; c:=Z!11;
109 elif (dK eq -35) then
110 e1:=x^2+6*x*y;
111 e2:=-x^2+y^2 ;
112 a:=Z!3; b:=Z!1; c:=Z!3;
113 elif (dK eq -148) then
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114 e1:=2*x^2+2*x*y-18*y^2 ;
115 e2:=2*x*y+y^2;
116 a:=Z!2; b:=Z!2; c:=Z!19;
117 elif (dK eq -51) then
118 e1:=3*x^2+2*x*y-4*y^2 ;
119 e2:=2*x*y+y^2 ;
120 a:=Z!3; b:=Z!3; c:=Z!5;
121 elif (dK eq -232) then
122 e1:=2*x^2-29*y^2 ;
123 e2:=2*x*y;
124 a:=Z!2; b:=Z!0; c:=Z!29;
125 elif (dK eq -91) then
126 e1:=2*x^2+10*x*y+y^2;
127 e2:=-x^2+y^2;
128 a:=Z!5; b:=Z!3; c:=Z!5;
129 elif (dK eq -115) then
130 e1:=5*x^2+4*x*y-5*y^2 ;
131 e2:= 2*x*y+y^2;
132 a:=Z!5; b:=Z!5; c:=Z!7;
133 elif (dK eq -123) then
134 e1:=3*x^2+2*x*y-10*y^2 ;
135 e2:=2*x*y+y^2;
136 a:=Z!3; b:=Z!3; c:=Z!11;
137 elif (dK eq -187) then
138 e1:=2*x^2+14*x*y+y^2 ;
139 e2:=-x^2+y^2 ;
140 a:=Z!7; b:=Z!3; c:=Z!7;
141 elif (dK eq -235) then
142 e1:=5*x^2+4*x*y-11*y^2 ;
143 e2:=2*x*y+y^2 ;
144 a:=Z!5; b:=Z!5; c:=Z!13;
145 elif (dK eq -267) then
146 e1:=3*x^2+2*x*y-22*y^2;
147 e2:=2*x*y+y^2;
148 a:=Z!3; b:=Z!3; c:=Z!23;
149 elif (dK eq -403) then
150 e1:=5*x^2+22*x*y+4*y^2 ;
151 e2:=-x^2+y^2 ;
152 a:=Z!11; b:=Z!9; c:=Z!11;
153 elif (dK eq -427) then
154 e1:=7*x^2+6*x*y-14*y^2;
155 e2:=2*x*y+y^2;
156 a:=Z!7; b:=Z!7; c:=Z!17;
157 end if;
158

159 return e1,e2,a,b,c;
160 end function;
161

162

163 function ClassNumber2(d,p)
164

165 if ((d mod 4) eq 1) then
166 dK:=d;
167 else
168 dK:=4*d;
169 end if;
170
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171 Zp:=GF( p);
172 DK:=Zp!dK;
173 // IsSquare(DK);
174 h1,h2,a,b,c:=Database2(dK);
175 PZp<x>:=PolynomialRing(Zp);
176 hk:=x^2+(h1)*x+(h2);
177

178 if (IsIrreducible(hk) eq false and IsSeparable(hk) eq true) then
179 j0:=Roots(hk)[1][1];
180 A:=(3*j0)/(1728-j0);
181 B:=(2*j0)/(1728-j0);
182 E:=EllipticCurve([A,B]);
183 Np:=#E; // Schoof's algorithm
184 ap:=p+1-Np;
185 if ((dK mod 4) eq 1) then
186 v:=Sqrt((4*p-ap^2)/-dK);
187 u:=(ap-v)/2;
188 else
189 v:=Sqrt((4*p-ap^2)/-dK);
190 u:=ap/2;
191 end if;
192 Z:=Integers();
193 u:=Z!u; v:=Z!v;
194 else
195 Fp2:=GF(p^2);
196 h1,h2,a,b,c:=Database2(dK);
197 PFp2<z>:=PolynomialRing(Fp2);
198 hk:=z^2+(h1)*z+(h2);
199 j0:=Roots(hk)[1][1];
200 A:=(3*j0)/(1728-j0);
201 B:=(2*j0)/(1728-j0);
202 E:=EllipticCurve([A,B]);
203 Np2:=#E; //Schoof's algorithm
204 ap2:=p^2+1-Np2;
205 if ((dK mod 4) eq 1) then
206 v1:=Sqrt((4*(p^2)-ap2^2)/-dK);
207 v2:=-v1;
208 u1:=(ap2-v1)/2;
209 u2:=(ap2-v2)/2;
210 else
211 v1:=Sqrt((4*(p^2)-ap2^2)/-dK);
212 v2:=-v1;
213 u1:=ap2/2;
214 u2:=u1;
215 end if;
216 UV:=[[u1,v1],[-u1,-v1],[u2,v2],[-u2,-v2]];
217 sum:=0;
218 for j in [1..4] do
219 u:=UV[j][1];
220 v:=UV[j][2];
221 Z:=Integers();
222 PZ<x,y>:=PolynomialRing(Z,2);
223 e1,e2,a,b,c:=Systems2(dK);
224 e1:=e1-Z!u;
225 e2:=e2-Z!v;
226 f:=Resultant(e1,e2,1);
227 PZ<t>:=PolynomialRing(Z);
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228 ff:=UnivariatePolynomial(f);
229 F:=Roots(ff);
230 n:=#F;
231 for i in [1..n] do
232 v:=F[i][1];
233 s:=Evaluate(e1,2,v);
234 ss:=UnivariatePolynomial(s);
235 U:=Roots(ss);
236 m:=#U;
237 for k in [1..m] do
238 u:=U[k][1];
239 sum:=a*u^2+b*u*v+c*v^2;
240 if (sum eq p) then
241 u:=Z!u; v:=Z!v;
242 break j;
243 end if;
244 end for;
245 end for;
246 end for;
247 end if;
248

249 return u,v,a,b,c;
250 end function;
251

252 d:=...;
253 p:=...;
254 x,y,a,b,c:=ClassNumber2(d,p);
255 if (b eq 0) then
256 printf "%o=%o(%o)^2+%o(%o)^2",p,a,x,c,y;
257 else
258 printf "%o=%o(%o)^2+%o(%o)+%o(%o)^2",p,a,x,b,x*y,c,y;
259 end if;

3.6 Class number 3

The only imaginary quadratic �elds Q(
√
d) which have class number 3 are those with −d

in the following set [54]:

D3 = {23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907} (3.48)

Let K = Q(
√
d) be one of these �elds and let ∆ be its discriminant. Given an odd prime

integer p such that (∆/p) = 1, it is properly represented by the principal quadratic form
Q0(x, y) or by the other reduced forms, Q1(x, y) and Q2(x, y). In fact [Q1(x, y)], [Q2(x, y)]
are not the unit in the multiplicative group of three elements C(∆), henceQ1(x, y), Q2(x, y)
are improperly equivalent because [Q1(x, y)]−1 = [Q2(x, y)]. In particular, if Q1(x, y) =
(a, b, c) then Q2(x, y) = (a,−b, c). In this section we will discuss about the structure of the
explicit algorithm, deduced from Theorem 3.6, to �nd a proper representation of p. The
complete algorithm will be provided, in magma language, at the end of the section.
The Hilbert class �eld L of K has dimension hK = 3 over K and the Hilbert class polynomial
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hK(x) has degree 3 and integral coe�cients. The ideal pOK factorizes as the product pp,
where p and p are prime ideals of OK containing p and such that p 6= p. We denote by B
one of the prime ideals of OL containing p. By Theorem 3.7, p is properly represented by
Q0(x, y) if and only if the polynomial hK(x) (mod p) has only simple roots and they are
all in Zp.

3.6.1 p represented by Q0(x, y)

Suppose that the prime integer p is represented by the principal form Q0(x, y). Then p is
principal and |OL/B| = p. The map

ϕ : Z/ < p > → OL/B
[`]p 7→ [`]B

is a �eld isomorphism. It is a �eld homomorphism, hence injective, and also surjective
because domain and codomain have the same �nite cardinality. We consider the elliptic
curve E(L | j0), where j0 is a root of hK(x). It is not easy to explicitly compute the roots
of hK(x) and, consequently, the elliptic curve E(L | j0). We can use ϕ to �nd directly the
reduction of E modulo B, which is de�ned over the �nite �eld of p elements and denoted
by E. The idea is to consider the equivalence classes in OL/B of the coe�cients of E and
their correspondent elements in Zp. For example, given the coe�cient 2j0/(1728− j0), we
have: [

2j0

1728− j0

]
B

=
[2]B[j0]B

[1728]B − [j0]B
(3.49)

Since ϕ is an isomorphism, to compute ϕ−1([ 2j0
1728−j0 ]B), we need only to determine ϕ−1([j0])B.

We assume to know an integer j′0 such that [j′0]p is a root of hK(x) (mod p): the equivalence
class [j′0]B is a root of hK(x) (mod B). Since hK(x) (mod B) has at most two roots in
OL/B, j′0 is equivalent, modulo B, to one of the roots of hK(x). It is important to remark
that to construct E we can consider, equivalently, one of the roots of hK(x). Then the
elliptic curve

Ẽ : y2 = x3 +
[2]p[j

′
0]p

[1728]p − [j′0]p
x+

[3]p[j
′
0]p

[1728]p − [j′0]p
(3.50)

de�ned over Zp has the same number of rational points of the reduced curve E.
Using the Schoof algorithm (see [50] or next chapter) we can �nd the number Np = p+1−ap
of rational points of Ẽ. From Theorem 3.5 it follows that:

ap = π + π = (u+ ωv) + (u+ ωv) (3.51)

and
p = (u+ ωv)(u+ ωv) (3.52)

for some π = u+ ωv ∈ OK, with u and v integers. The last relation is a representation of
p by the principal form Q0(u, v). By Theorem 3.6, we know the formulas to obtain u and
v once we know ap.
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3.6.2 p represented by Q1(x, y)

Now suppose that hK(x) (mod p) does not split in Zp or that its roots are not simple.
Hence, p is properly represented by the reduced non-principal form Q1(x, y). This implies
that p3 is represented by the principal form Q0(x, y) since p is not principal and [p] has
order 3 in C+(OK). To �nd this representation of p3 we use Theorem 3.5. The only
di�erence with the previous case is that there exists an isomorphism of �elds

ϕ : Fp3 → OL/B

Is necessary to spend some words about Fp3 . From a theoretical point of view, there is not
a canonical �nite �eld of p3 elements. But our perspective is that of magma (or another
computer algebra system) so with Fp3 we denote the �nite �eld of p3 elements provided by
magma using the command "GF (p∧3);".
We consider the elliptic curve E(L | j0), where j0 is a root of hK(x). As before, we do not
want to explicitly �nd the roots of hK(x) and, consequently, the elliptic curve E(L | j0).
We can use ϕ to �nd the reduction of E modulo B, which is de�ned over the �nite �eld
of p3 elements and denoted by E. Our strategy is to take the equivalence classes in OL/B
of the coe�cients of E and their correspondent elements of Fp3 . For example, given the
coe�cient 2j0/(1728− j0), we have:[

2j0

1728− j0

]
B

=
[2]B[j0]B

[1728]B − [j0]B
(3.53)

Since ϕ is a �eld isomorphism, to compute ϕ−1([ 2j0
1728−j0 ]B) we only need to compute

ϕ−1([j0])B. In fact ϕ−1([2]B) = 2 and ϕ−1([1728]B) = 1728. Observe that [j0]B is sent
by ϕ−1 in a root j′0 ∈ Fp3 of hK(x) (mod p) that we assume to know. So, the elliptic curve

Ẽ : y2 = x3 +
2j′0

1728− j′0
+

3j′0
1728− j′0

(3.54)

de�ned over Fp3 has the same number of rational points of the reduced curve E.
Using the Schoof algorithm we can �nd the number Np3 = p3 + 1 − ap3 of rational points

of Ẽ. From Theorem 3.5 it follows that:

ap3 = π + π = (u+ ωv) + (u+ ωv) (3.55)

and
p3 = (u+ ωv)(u+ ωv) (3.56)

for some π = u+ωv ∈ OK, with u, v ∈ Z. The last relation is a representation of p3 by the
principal form Q0(x, y). By Theorem 3.6, we know the formulas to obtain u and v once we
know ap3 .
Now, let 〈a, b+ ω〉 be a non-zero ideal of OK such that:

Q1(x, y) =
NK/Q(ax+ (b+ ωy)

a
(3.57)
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Imposing

π = u+ ωv =
(ax+ (b+ ω)y)3

πa

where 〈πa〉 = 〈a, b + ω〉3 and πaπa = a3, we can deduce a Diophantine system from the
independence of 1 and ω over Q. This system has two homogeneous equations of degree 3
in x and y and one of its solution (x0, y0) is such that Q1(x0, y0) = p. Actually, since (u, v)
is not uniquely determined, we have four Diophantine systems and not only one. Apart
from u and v, these systems do not depend on p. So they could be computed once for all
for each of the imaginary quadratic �elds of class number 3. In the following example we
show how to proceed to determine the Diophantine systems using magma.

Example. It is possible to work with quadratic �elds in magma. If d 6= 1 is a squarefree
integer, the quadratic �eld K = Q(

√
d) could be de�ned by the command:

K<d>:=QuadraticField(d);

while its ring of integers OK can be created writing

OK<w>:=MaximalOrder(K);

In the ring OK we are able to introduce the ideal 〈a, b+ ω〉:

I:=ideal <OK| a,b+w>;

Furthermore, from

ris,pa:=IsPrincipal(I*I*I);

we obtain, in the second output pa, the generator πa of the principal ideal 〈a, b+ω〉3. Now,
we de�ne the polynomial (ax + (b + ω)y)3 ∈ OK[x, y] and we multiply it by the conjugate
of πa:

R<x,y>:=PolynomialRing(OK,2);

e1+we2:=Conjugate(pa)*((7*x+w*y)^3);

In this way, we obtain NK/Q(πa)(e1(x, y) +ωe2(x, y)) and it remains to divide by the norm
of πa, that could be computed writing:

a:=Norm(pa);

Obviously, one can compute by hand the Diophantine systems, playing with the gen-
erators of 〈a, b+ ω〉3 and using the rules recalled in Section 3.5.2.

To lower the computational complexity necessary to compute a representation of p with
the described method, we can construct a database with the following data for each of the
imaginary quadratic �elds of class number 3:

• the discriminant ∆;
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• the reduced forms Q0(x, y), Q1(x, y) of discriminant ∆;

• the ideals of OK that correspond to Q0(x, y) and Q1(x, y) respectively;

• the coe�cients of the Hilbert class polynomial hK(x) ∈ Z[x];

• the generator of the third power of the ideal that corresponds to Q1(x, y);

• the Diophantine systems, with u and v unknown, to �nd a representation of p by the
non-principal form.

This information are collected in the tables attached at the end of the chapter.

3.6.3 Algorithm for class number 3

The algorithm described in the previous two sections is here provided in magma language.
The input of the function �Database3� is the discriminant of one of the imaginary quadratic
�elds of class number 3. It returns the integral coe�cients h1, h2, h3 of the Hilbert class
polynomial x3 + h1x

2 + h2x + h3 ∈ Z[x] and the coe�cients a,b,c of the principal form of
discriminant ∆.
The function �Systems3� has the same input but returns the coe�cients a, b, c of the non-
principal form Q1(x, y) and the coe�cients of the polynomials e1(x, y), e2(x, y) of the Dio-
phantine systems used to �nd a proper representation of a prime integer p by Q1(x, y). The
third function, �ClassNumber3�, takes the radicand d of one of the imaginary quadratic
�elds with class number 3 and a prime integer p such that (∆/p) = 1, where ∆ is the
discriminant of K = Q(

√
d). It calls the function �Database3� and constructs the polyno-

mial hK (mod p). If hK (mod p) has only simple roots and they are all in Zp, the function
computes one of its roots and provides the elliptic curve Ẽ. Counting the rational points
of Ẽ, �ClassNumber3� returns two integers u, v such that p = Q0(u, v). On the other hand,
if hK (mod p) does not split in Zp or it is not separable, the function computes one of
its roots (whose are contained in Fp3) and constructs the elliptic curve Ẽ. As before, are
found two integers u, v such that Q0(u, v) = p3. Finally, using the data obtained from
�Systems3�, the function build the Diophantine systems. The constant terms (u, v) could
be equal to ±(u1, v1) or to (±(u2, v2), so we have to try all of them until x0, y0 ∈ Z such
that Q1(x0, y0) = p are found. A solution (x0, y0) is returned.

1 // CLASS NUMBER: 3
2

3 function Database3 (dK)
4

5 if (dK eq -23) then
6 h1:=3491750;
7 h2:=-5151296875;
8 h3:=12771880859375;
9 a:=1; b:=1; c:=6;
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10 elif (dK eq -31) then
11 h1:=39491307;
12 h2:=-58682638134;
13 h3:=1566028350940383;
14 a:=1; b:=1; c:=8;
15 elif (dK eq -59) then
16 h1:=30197678080;
17 h2:=- 140811576541184;
18 h3:=374643194001883136;
19 a:=1; b:=1; c:=15;
20 elif (dK eq -83) then
21 h1:=2691907584000;
22 h2:=- 41490055168000000;
23 h3:=549755813888000000000;
24 a:=1; b:=1; c:=21;
25 elif (dK eq -107) then
26 h1:=129783279616000;
27 h2:=- 6764523159552000000;
28 h3:=337618789203968000000000;
29 a:=1; b:=1; c:=27;
30 elif (dK eq -139) then
31 h1:=12183160834031616;
32 h2:=- 53041786755137667072;
33 h3:=67408489017571610198016;
34 a:=1; b:=1; c:=35;
35 elif (dK eq -211) then
36 h1:=65873587288630099968;
37 h2:=277390576406111100862464;
38 h3:=5310823021408898698117644288;
39 a:=1; b:=1; c:=53;
40 elif (dK eq -283) then
41 h1:=89611323386832801792000;
42 h2:=90839236535446929408000000;
43 h3:=201371843156955365376000000000;
44 a:=1; b:=1; c:=71;
45 elif (dK eq -307) then
46 h1:=805016812009981390848000;
47 h2:=- 5083646425734146162688000000;
48 h3:=8987619631060626702336000000000;
49 a:=1; b:=1; c:=77;
50 elif (dK eq -331) then
51 h1:=6647404730173793386463232;
52 h2:=368729929041040103875232661504;
53 h3:=56176242840389398230218488594563072;
54 a:=1; b:=1; c:=83;
55 elif (dK eq -379) then
56 h1:=364395404104624239018246144;
57 h2:=-121567791009880876719538528321536;
58 h3:=15443600047689011948024601807415148544;
59 a:=1; b:=1; c:=95;
60 elif (dK eq -499) then
61 h1:=3005101108071026200706725969920;
62 h2:=-6063717825494266394722392560011051008;
63 h3:=4671133182399954782798673154437441310949376;
64 a:=1; b:=1; c:=125;
65 elif (dK eq -547) then
66 h1:=81297395539631654721637478400000;
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67 h2:=-139712328431787827943469744128000000;
68 h3:=83303937570678403968635240448000000000;
69 a:=1; b:=1; c:=137;
70 elif (dK eq -643) then
71 h1:=39545575162726134099492467011584000;
72 h2:=-6300378505047247876499651797450752000000;
73 h3:=308052554652302847380880841299197952000000000;
74 a:=1; b:=1; c:=161;
75 elif (dK eq -883) then
76 h1:=34903934341011819039224295011933392896000;
77 h2:=-151960111125245282033875619529124478976000000;
78 h3:=167990285381627318187575520800123387904000000000;
79 a:=1; b:=1; c:=221;
80 elif (dK eq -907) then
81 h1:=123072080721198402394477590506838687744000;
82 h2:=39181594208014819617565811575376314368000000;
83 h3:=149161274746524841328545894969274007552000000000;
84 a:=1; b:=1; c:=227;
85 end if;
86

87 return h1,h2,h3,a,b,c;
88 end function;
89

90 function Systems3 (dK)
91 Z:=Integers();
92 PZ<x,y>:=PolynomialRing(Z,2);
93 if (dK eq -23) then
94 e1:=x^3-9*x^2*y-9*x*y^2+3*y^3;
95 e2:=x^3+3*x^2*y-3*x*y^2-2*y^3;
96 a:=Z!2; b:=Z!1; c:=Z!3;
97 elif (dK eq -31) then
98 e1:=-12*x^2*y-18*x*y^2+y^3;
99 e2:=x^3+3*x^2*y-3*x*y^2-4*y^3;

100 a:=Z!2; b:=Z!1; c:=Z!4;
101 elif (dK eq -59) then
102 e1:=-4*x^3-15*x^2*y+15*x*y^2+10*y^3;
103 e2:=x^3-3*x^2*y-6*x*y^2+y^3;
104 a:=Z!3; b:=Z!1; c:=Z!5;
105 elif (dK eq -83) then
106 e1:=2*x^3-21*x^2*y-21*x*y^2+14*y^3;
107 e2:=x^3+3*x^2*y-6*x*y^2-3*y^3;
108 a:=Z!3; b:=Z!1; c:=Z!7;
109 elif (dK eq -107) then
110 e1:=-x^3-27*x^2*y+27*y^3;
111 e2:=x^3-9*x*y^2-y^3;
112 a:=Z!3; b:=Z!1; c:=Z!9;
113 elif (dK eq -139) then
114 e1:=9*x^3-21*x^2*y-42*x*y^2+7*y^3;
115 e2:=x^3+6*x^2*y-3*x*y^2-3*y^3;
116 a:=Z!5; b:=Z!1; c:=Z!7;
117 elif (dK eq -211) then
118 e1:=8*x^3-27*x^2*y-69*x*y^2+6*y^3;
119 e2:=x^3+6*x^2*y-3*x*y^2-5*y^3;
120 a:=Z!5; b:=Z!3; c:=Z!11;
121 elif (dK eq -283) then
122 e1:=-17*x^3-45*x^2*y+48*x*y^2+35*y^3;
123 e2:=x^3-6*x^2*y-9*x*y^2+y^3;
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124 a:=Z!7; b:=Z!5; c:=Z!11;
125 elif (dK eq -307) then
126 e1:=5*x^3-66*x^2*y-33*x*y^2+33*y^3;
127 e2:=2*x^3+3*x^2*y-9*x*y^2-2*y^3;
128 a:=Z!7; b:=Z!1; c:=Z!11;
129 elif (dK eq -331) then
130 e1:=-7*x^3-54*x^2*y+39*x*y^2+69*y^3;
131 e2:=x^3-3*x^2*y-12*x*y^2+y^3;
132 a:=Z!5; b:=Z!3; c:=Z!17;
133 elif (dK eq -379) then
134 e1:=-6*x^3-57*x^2*y+57*x*y^2+76*y^3;
135 e2:=x^3-3*x^2*y-12*x*y^2-3*y^3;
136 a:=Z!5; b:=Z!1; c:=Z!19;
137 elif (dK eq -499) then
138 e1:=-x^3-75*x^2*y+125*y^3;
139 e2:=x^3-15*x*y^2-y^3;
140 a:=Z!5; b:=Z!1; c:=Z!25;
141 elif (dK eq -547) then
142 e1:=-27*x^3-60*x^2*y-123*x*y^2+5*y^3;
143 e2:=2*x^3+9*x^2*y-3*x*y^2-4*y^3;
144 a:=Z!11; b:=Z!5; c:=Z!13;
145 elif (dK eq -643) then
146 e1:=13*x^3-69*x^2*y-138*x*y^2+69*y^3;
147 e2:=x^3+6*x^2*y-9*x*y^2-7*y^3;
148 a:=Z!7; b:=Z!1; c:=Z!23;
149 elif (dK eq -883) then
150 e1:=16*x^3+153*x^2*y-51*x*y^2-68*y^3;
151 e2:=-3*x^3+3*x^2*y+12*x*y^2-y^3;
152 a:=Z!13; b:=Z!1; c:=Z!17;
153 elif (dK eq -907) then
154 e1:=-11*x^3+147*x^2*y+150*x*y^2-37*y^3;
155 e2:=-3*x^3-6*x^2*y+9*x*y^2+5*y^3;
156 a:=Z!13; b:=Z!9; c:=Z!19;
157 end if;
158

159 return e1,e2,a,b,c;
160 end function;
161

162

163 function ClassNumber3(d,p)
164

165 if ((d mod 4) eq 1) then
166 dK:=d;
167 else
168 dK:=4*d;
169 end if;
170

171 Zp:=GF( p);
172 DK:=Zp!dK;
173 // IsSquare(DK);
174 h1,h2,h3,a,b,c:=Database3(dK);
175 PZp<x>:=PolynomialRing(Zp);
176 hk:=x^3+(h1)*x^2+(h2)*x+(h3);
177

178 if (SplittingField(hk) eq Zp and IsSeparable(hk) eq true) then
179 j0:=Roots(hk)[1][1];
180 A:=(3*j0)/(1728-j0);
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181 B:=(2*j0)/(1728-j0);
182 E:=EllipticCurve([A,B]);
183 Np:=#E; // Schoof's algorithm
184 ap:=p+1-Np;
185 if ((dK mod 4) eq 1) then
186 v:=Sqrt((4*p-ap^2)/-dK);
187 u:=(ap-v)/2;
188 else
189 v:=Sqrt((4*p-ap^2)/-dK);
190 u:=ap/2;
191 end if;
192 Z:=Integers();
193 u:=Z!u; v:=Z!v;
194 else
195 Fp3:=GF(p^3);
196 h1,h2,h3,a,b,c:=Database3(dK);
197 PFp3<z>:=PolynomialRing(Fp3);
198 hk:=z^3+(h1)*z^2+(h2)*z+(h3);
199 j0:=Roots(hk)[1][1];
200 A:=(3*j0)/(1728-j0);
201 B:=(2*j0)/(1728-j0);
202 E:=EllipticCurve([A,B]);
203 Np3:=#E; //Schoof's algorithm
204 ap3:=p^3+1-Np3;
205 if ((dK mod 4) eq 1) then
206 v1:=Sqrt((4*(p^3)-ap3^2)/-dK);
207 v2:=-v1;
208 u1:=(ap3-v1)/2;
209 u2:=(ap3-v2)/2;
210 else
211 v1:=Sqrt((4*(p^3)-ap3^2)/-dK);
212 v2:=-v1;
213 u1:=ap3/2;
214 u2:=u1;
215 end if;
216 UV:=[[u1,v1],[-u1,-v1],[u2,v2],[-u2,-v2]];
217 sum:=0;
218 for j in [1..4] do
219 u:=UV[j][1];
220 v:=UV[j][2];
221 Z:=Integers();
222 PZ<x,y>:=PolynomialRing(Z,2);
223 e1,e2,a,b,c:=Systems3(dK);
224 e1:=e1-Z!u;
225 e2:=e2-Z!v;
226 f:=Resultant(e1,e2,1);
227 PZ<t>:=PolynomialRing(Z);
228 ff:=UnivariatePolynomial(f);
229 F:=Roots(ff);
230 n:=#F;
231 for i in [1..n] do
232 v:=F[i][1];
233 s:=Evaluate(e1,2,v);
234 ss:=UnivariatePolynomial(s);
235 U:=Roots(ss);
236 m:=#U;
237 for k in [1..m] do
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238 u:=U[k][1];
239 sum:=a*u^2+b*u*v+c*v^2;
240 if (sum eq p) then
241 u:=Z!u; v:=Z!v;
242 break j;
243 end if;
244 end for;
245 end for;
246 end for;
247 end if;
248

249 return u,v,a,b,c;
250 end function;
251

252 d:=...;
253 p:=...;
254 x,y,a,b,c:=ClassNumber3(d,p);
255 if (b eq 0) then
256 printf "%o=%o(%o)^2+%o(%o)^2",p,a,x,c,y;
257 else
258 printf "%o=%o(%o)^2+%o(%o)+%o(%o)^2",p,a,x,b,x*y,c,y;
259 end if;
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d ∆ ω Qi Ideals hK(x)

-5 −20
√
−5 x2 + 5y2 〈1, ω〉 x2 − 1264000x−

2x2 + 2xy + 3y2 〈2, 1 + ω〉 −681472000

-6 −24
√
−6 x2 + 6y2 〈1, ω〉 x2 − 4834944x+

2x2 + 3y2 〈2, ω〉 +14670139392

-10 −40
√
−10 x2 + 10y2 〈1, ω〉 x2 − 425692800x+

2x2 + 5y2 〈2, ω〉 +9103145472000

-13 −52
√
−13 x2 + 13y2 〈1, ω〉 x2 − 6896880000x−

2x2 + 2xy + 7y2 〈2, 1 + ω〉 −567663552000000

-15 −15 1+
√
−15

2
x2 + xy + 4y2 〈1, ω〉 x2 + 191025x−
2x2 + xy + 2y2 〈2, ω〉 −121287375

-22 −88
√
−22 x2 + 22y2 〈1, ω〉 x2 − 6294842640000x+

2x2 + 11y2 〈2, ω〉 +15798135578688000000

-35 −35 1+
√
−35

2
x2 + xy + 9y2 〈1, ω〉 x2 + 117964800x−
3x2 + xy + 3y2 〈3, ω〉 −134217728000

-37 −148
√
−37 x2 + 37y2 〈1, ω〉 x2 − 39660183801072000x−

2x2 + 2xy + 19y2 〈2, 1 + ω〉 −7898242515936467904000000

-51 −51 1+
√
−51

2
x2 + xy + 13y2 〈1, ω〉 x2 + 5541101568x+
3x2 + 3xy + 5y2 〈3, 1 + ω〉 +6262062317568

-58 −232
√
−58 x2 + 58y2 〈1, ω〉 x2 − 604729957849891344000x+

2x2 + 29y2 〈2, ω〉 +14871070713157137145512000000000

-91 −91 1+
√
−91

2
x2 + xy + 23y2 〈1, ω〉 x2 + 10359073013760x−
5x2 + 3xy + 5y2 〈5, 1 + ω〉 −3845689020776448

-115 −115 1+
√
−115
2

x2 + xy + 29y2 〈1, ω〉 x2 + 427864611225600x+
5x2 + 5xy + 7y2 〈5, 2 + ω〉 +130231327260672000

-123 −123 1+
√
−123
2

x2 + xy + 31y2 〈1, ω〉 x2 + 1354146840576000x+
3x2 + 3xy + 11y2 〈3, 1 + ω〉 +148809594175488000000

-187 −187 1+
√
−187
2

x2 + xy + 47y2 〈1, ω〉 x2 + 4545336381788160000x−
7x2 + 3xy + 7y2 〈7, 1 + ω〉 −3845689020776448000000

-235 −235 1+
√
−235
2

x2 + xy + 59y2 〈1, ω〉 x2 + 823177419449425920000x+
5x2 + 5xy + 13y2 〈5, 2 + ω〉 +11946621170462723407872000

-267 −267 1+
√
−267
2

x2 + xy + 67y2 〈1, ω〉 x2 + 19683091854079488000000x+
3x2 + 3xy + 23y2 〈3, 1 + ω〉 +531429662672621376897024000000

-403 −403 1+
√
−403
2

x2 + xy + 101y2 〈1, ω〉 x2 + 2452811389229331391979520000x−
11x2 + 9xy + 11y2 〈11, 4 + ω〉 −108844203402491055833088000000

-427 −427 1+
√
−427
2

x2 + xy + 107y2 〈1, ω〉 x2 + 15611455512523783919812608000x+
7x2 + 7xy + 17y2 〈7, 3 + ω〉 +155041756222618916546936832000000

Table 3.2: Imaginary quadratic �elds K = Q(
√
d) of class number 2
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d ∆ ω πa Systems

-5 −20
√
−5 2 2x2 + 2xy − 2y2 = u

2xy + y2 = v

-6 −24
√
−6 2 2x2 − 3y2 = u

2xy = v

-10 −40
√
−10 2 2x2 − 5y2 = u

2xy = v

-13 −52
√
−13 2 2x2 + 2xy − 6y2 = u

2xy + y2 = v

-15 −15 1+
√
−15

2
ω x2 + 4xy = u

−x2 + y2 = v

-22 −88
√
−22 2 2x2 − 11y2 = u

2xy = v

-35 −35 1+
√
−35

2
ω x2 + 6xy = u

−x2 + y2 = v

-37 −148
√
−37 2 2x2 + 2xy − 18y2 = u

2xy + y2 = v

-51 −51 1+
√
−51

2
3 3x2 + 2xy − 4y2 = u

2xy + y2 = v

-58 −232
√
−58 2 2x2 − 29y2 = u

2xy = v

-91 −91 1+
√
−91

2
1 + ω 2x2 + 10xy + y2 = u

−x2 + y2 = v

-115 −115 1+
√
−115
2

5 5x2 + 4xy − 5y2 = u
2xy + y2 = v

-123 −123 1+
√
−123
2

3 3x2 + 2xy − 10y2 = u
2xy + y2 = v

-187 −187 1+
√
−187
2

1 + ω 2x2 + 14xy + y2 = u
−x2 + y2 = v

-235 −235 1+
√
−235
2

5 5x2 + 4xy − 11y2 = u
2xy + y2 = v

-267 −267 1+
√
−267
2

3 3x2 + 2xy − 22y2 = u
2xy + y2 = v

-403 −403 1+
√
−403
2

4 + ω 5x2 + 22xy + 4y2 = u
−x2 + y2 = v

-427 −427 1+
√
−427
2

7 7x2 + 6xy − 14y2 = u
2xy + y2 = v

Table 3.3: Imaginary quadratic �elds K = Q(
√
d) of class number 2
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d ∆ ω Qi Ideals hK(x)

-23 −23 1+
√
−23

2
x2 + xy + 6y2 〈1, ω〉 x3 + 3491750x2−

2x2 + xy + 3y2 〈2, ω〉 −5151296875x + 12771880859375

-31 −31 1+
√
−31

2
x2 + xy + 8y2 〈1, ω〉 x3 + 39491307x2−

2x2 + xy + 4y2 〈2, 1 + ω〉 −58682638134x + 1566028350940383

-59 −59 1+
√
−59

2
x2 + xy + 15y2 〈1, ω〉 x3 + 30197678080x2−

3x2 + xy + 5y2 〈3, ω〉 −140811576541184x + 374643194001883136

-83 −83 1+
√
−83

2
x2 + xy + 21y2 〈1, ω〉 x3 + 2691907584000x2−

3x2 + xy + 7y2 〈3, ω〉 −41490055168000000x+

+549755813888000000000

-107 −107 1+
√
−107
2

x2 + xy + 27y2 〈1, ω〉 x3 + 129783279616000x2−

3x2 + xy + 9y2 〈3, ω〉 −6764523159552000000x+

+337618789203968000000000

-139 −139 1+
√
−139
2

x2 + xy + 35y2 〈1, ω〉 x3 + 12183160834031616x2−

5x2 + xy + 7y2 〈5, ω〉 −53041786755137667072x+

+67408489017571610198016

-211 −211 1+
√
−211
2

x2 + xy + 53y2 〈1, ω〉 x3 + 65873587288630099968x2+

5x2 + 3xy + 11y2 〈5, 1 + ω〉 +277390576406111100862464x+

+5310823021408898698117644288

-283 −283 1+
√
−283
2

x2 + xy + 71y2 〈1, ω〉 x3 + 89611323386832801792000x2+

7x2 + 5xy + 11y2 〈7, 2 + ω〉 +90839236535446929408000000x+

+201371843156955365376000000000

Table 3.4: Imaginary quadratic �elds K = Q(
√
d) of class number 3
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d ∆ ω Qi Ideals hK(x)

-307 −307 1+
√
−307
2

x2 + xy + 77y2 〈1, ω〉 x3 + 805016812009981390848000x2−

7x2 + xy + 11y2 〈7, ω〉 −5083646425734146162688000000x+

+8987619631060626702336000000000

-331 −331 1+
√
−331
2

x2 + xy + 83y2 〈1, ω〉 x3 + 6647404730173793386463232x2+

5x2 + 3xy + 17y2 〈5, 1 + ω〉 +368729929041040103875232661504x+

+56176242840389398230218488594563072

-379 −379 1+
√
−379
2

x2 + xy + 95y2 〈1, ω〉 x3 + 364395404104624239018246144x2−

5x2 + xy + 19y2 〈5, ω〉 −121567791009880876719538528321536x+

+15443600047689011948024601807415148544

-499 −499 1+
√
−499
2

x2 + xy + 125y2 〈1, ω〉 x3 + 3005101108071026200706725969920x2−

5x2 + xy + 25y2 〈5, ω〉 −6063717825494266394722392560011051008x+

+4671133182399954782798673154437441310949376

-547 −547 1+
√
−547
2

x2 + xy + 137y2 〈1, ω〉 x3 + 81297395539631654721637478400000x2−

11x2 + 5xy + 13y2 〈11, 2 + ω〉 139712328431787827943469744128000000x+

83303937570678403968635240448000000000

-643 −643 1+
√
−643
2

x2 + xy + 161y2 〈1, ω〉 x3 + 39545575162726134099492467011584000x2−

7x2 + xy + 23y2 〈7, ω〉 6300378505047247876499651797450752000000x+

+308052554652302847380880841299197952000000000

-883 −883 1+
√
−883
2

x2 + xy + 221y2 〈1, ω〉 x3 + 34903934341011819039224295011933392896000x2−

13x2 + xy + 17y2 〈13, ω〉 151960111125245282033875619529124478976000000x+

+167990285381627318187575520800123387904000000000

-907 −907 1+
√
−907
2

x2 + xy + 227y2 〈1, ω〉 x3 + 123072080721198402394477590506838687744000x2+

13x2 + 9xy + 19y2 〈13, 4 + ω〉 +39181594208014819617565811575376314368000000x+

+149161274746524841328545894969274007552000000000

Table 3.5: Imaginary quadratic �elds K = Q(
√
d) of class number 3
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d ∆ ω πa Systems

−23 −23 1+
√
−23

2
2− ω x3 − 9x2y − 9xy2 + 3y3 = u

x3 + 3x2y − 3xy2 − 2y3 = v

−31 −31 1+
√
−31

2
1− ω −12x2y − 18xy2 + y3 = u

x3 + 3x2y − 3xy2 − 4y3 = v

−59 −59 1+
√
−59

2
−3− ω −4x3 − 15x2y + 15xy2 + 10y3 = u

x3 − 3x2y − 6xy2 + y3 = v

−83 −83 1+
√
−83

2
3− ω 2x3 − 21x2y − 21xy2 + 14y3 = u

x3 + 3x2y − 6xy2 − 3y3 = v

−107 −107 1+
√
−107
2

−ω −x3 − 27x2y + 27y3 = u
x3 − 9xy2 − y3 = v

−139 −139 1+
√
−139
2

10− ω 9x3 − 21x2y − 42xy2 + 7y3 = u
x3 + 6x2y − 3xy2 − 3y3 = v

−211 −211 1+
√
−211
2

9− ω 8x3 − 27x2y − 69xy2 + 6y3 = u
x3 + 6x2y − 3xy2 − 5y3 = v

−283 −283 1+
√
−283
2

−16− ω −17x3 − 45x2y + 48xy2 + 35y3 = u
x3 − 6x2y − 9xy2 + y3 = v

−307 −307 1+
√
−307
2

7− 2ω 5x3 − 66x2y − 33xy2 + 33y3 = u
2x3 + 3x2y − 9xy2 − 2y3 = v

−331 −331 1+
√
−331
2

−6− ω −7x3 − 54x2y + 39xy2 + 69y3 = u
x3 − 3x2y − 12xy2 + y3 = v

−379 −379 1+
√
−379
2

−5− ω −6x3 − 57x2y + 57xy2 + 76y3 = u
x3 − 3x2y − 12xy2 + 3y3 = v

−499 −499 1+
√
−499
2

−ω −x3 − 75x2y + 125y3 = u
x3 − 15xy2 − y3 = v

−547 −547 1+
√
−547
2

29− 2ω −27x3 − 60x2y − 123xy2 + 5y3 = u
2x3 + 9x2y − 3xy2 − 4y3 = v

−643 −643 1+
√
−643
2

14− ω 13x3 − 69x2y − 138xy2 + 69y3 = u
x3 + 6x2y − 9xy2 − 7y3 = v

−883 −883 1+
√
−883
2

13 + 3ω 16x3 + 153x2y − 51xy2 − 68y3 = u
−3x3 + 3x2y + 12xy2 − y3 = v

−907 −907 1+
√
−907
2

−14 + 3ω −11x3 + 147x2y + 150xy2 − 37y3 = u
−3x3 − 6x2y + 9xy2 + 5y3 = v

Table 3.6: Imaginary quadratic �elds K = Q(
√
d) of class number 3



Chapter 4

Schoof's algorithm

In 1985 Renè Schoof published a deterministic polynomial-time algorithm to count the
rational points of non-singular elliptic curves over �nite �elds. Fixed a prime integer `,
the algorithm works over the point of order `, distinguishing two cases through the group
law of the elliptic curve. In the following lines we will present the possible existence of a
family of elliptic curves not taken into account by Schoof's original paper [50].

4.1 Elliptic curves over �nite �elds

For the sake of easy references, we summarize some basic facts about elliptic curves over
�nite �elds refering to [58]. In the rest of the chapter p, n, q will denote, respectively, a
prime integer greater than 3, a non-zero natural number and the power pn.
Let E be an elliptic curve de�ned by the Weierstrass equation over the �nite �eld Fq, i.e.
E is the projective closure of the a�ne variety de�ned over Fq by the polynomial:

y2 − x3 − Ax−B ∈ Fq[x, y] (4.1)

If F is an extension �eld of Fq we de�ne:

E(F) = {(x, y) ∈ F× F | y2 = x3 + Ax+B} ∪ {∞} (4.2)

where ∞ is the point at in�nity.
Since an elliptic curve is a non-singular cubic curve, the cubic x3 +Ax+B ∈ Fq[x] doesn't
have multiple roots, i.e. 4A3 + 27B2 is not zero.

It is possible to de�ned a sum in E(F ) that gives to it the structure of an abelian group.
In particular, given two points P1 = (x1, y1), P2 = (x2, y2) of E(F), di�erent from ∞, their
sum P3 = (x3, y3) is de�ned as :

107
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P3 :=



((
y2−y1

x2−x1

)2

− x1 − x2,
(
y2−y1

x2−x1

)
(x1 − x3)− y1

)
if x1 6= x2

∞ if x1 = x2 and y1 = −y2((
3x2

1+A

2y1

)2

− 2x1,
(

3x2
1+A

2y1

)
(x1 − x3)− y1

)
if P1 = P2 and y1 6= 0

∞ if P1 = P2 and y1 = 0

Moreover, P +∞ =∞+ P = P for every point P ∈ E(F).
An estimate of the number of rational points of E, i.e. the elements of E(Fq), is given by
a result obtained by Helmut Hasse in 1933 [28].

Hasse Theorem. The number of elements of E(Fq) is equal to q + 1 − a, where a is an
integer such that |a| ≤ 2

√
q.

This result could be related with the Frobenius Endomorphism φq, which is a group
endomorphism de�ned as:

φq : E(Fq) → E(Fq)
(x, y) 7→ (xq, yq)

We have [53, pag. 142]:

φq(φq(P )) + qP = aφq(P ) ∀P ∈ E(Fq)

A useful tool to investigate the group structure of E(Fq) is a familiy of multivariate poly-
nomials of Fq[x, y], called the division polynomials of E, de�ned recursively:

ψ0(x, y) = 0

ψ1(x, y) = 1

ψ2(x, y) = 2y

ψ3(x, y) = 3x4 + 6Ax2 + 12Bx− A2

ψ4(x, y) = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3)

ψ2m+1(x, y) = ψm+2(x, y)ψ3
m(x, y)− ψm−1(x, y)ψ3

m+1(x, y) form ≥ 2

ψ2m(x, y) = (2y)−1ψm(x, y)(ψm+2(x, y)ψ2
m−1(x, y)− ψm−2(x, y)ψ2

m+1(x, y)) form ≥ 3

If i is odd, y has even power in every term of ψi(x, y); if i is even ψi(x, y) is the product of
2y and a polynomial of Fq[x, y] where y has even power in all its terms. Hence it is possible
to consider a family of polynomials of Fq[x]:

fi(x) = ψ′i(x, y) if i odd

fi(x) =
ψ′i(x, y)

y
if i even

(4.3)
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where ψ′i(x, y) denotes the polynomial obtained substituting y2 with x3+Ax+B in ψi(x, y).
Given P = (x, y) ∈ Fq[x], we have:

iP =

(
xψ2

i (x, y)− ψi−1(x, y)ψi+1(x, y)

ψ2
i (x, y)

,
ψi+2(x, y)ψ2

i−1(x, y)− ψi−2(x, y)ψ2
i+1(x, y)

4yψ3
i (x, y)

)
and therefore:

iP =


(
x(x3+Ax+B)f2

i (x)−fi+1(x)fi−1(x)

(x3+Ax+B)f2
i (x)

,
fi+2(x)f2

i−1(x)−fi−2(x)fi+1(x)2

4(x3+Ax+B)f3
i (x)

)
i even(

xf2
i (x)−(x3+Ax+B)fi+1(x)fi−1(x)

f2
i (x)

,
(x3+Ax+B)[fi+2(x)f2

i−1(x)−fi−2(x)f2
i+1(x)]

4yf3
i (x)

)
i odd

(4.4)
If P is such that y 6= 0 then iP =∞, with i ∈ N, if and only if fi(x) = 0. Furthermore,

if p does not divide i, we have:

deg(fi(x)) =


1
2
(i2 − 4) i even

1
2
(i2 − 1) i odd

and the set E[i] de�ned as

E[i] = {P ∈ E(Fq) | iP = 0}

is isomorphic to Zi × Zi. Hence E[i] has i2 elements.

4.2 Case 1 of the Schoof's Algorithm

Schoof's algorithm [50] computes #E(Fq) = q + 1− a requiring at most log9 q elementary
operations. The algorithm's basic idea is to consider the smallest set S = {3, . . . , L} =
{`1, . . . , `t} of consecutive prime integers (starting from 3 and excluding p) such that

t∏
j=1

`j > 4
√
q

and to �nd, for every ` ∈ S, an integer a` such that a` ≡ a (mod `). Then, using the
Chinese remainder theorem, we can solve the system of linear congruences

x ≡ a`1 (mod `1)

· · ·
x ≡ a`t (mod `t)

�nding a solution m ∈ Z unique up to congruence modulo
∏t

j=1 `j. This means a ≡ m

(mod
∏t

j=1 `j). Since a lies in {0,±1, . . . ,
∏t

j=1 `j

2
}, it is the only solution of the system
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contained in this complete residue system. So is su�cient to reduce m modulo
∏t

j=1 `j to
obtain a. To �nd a`, Schoof uses the group structure of E[`] and the division polynomials.
For a �xed ` ∈ S, the algorithm distinguishes two cases by means of the addition law in
E(Fq). We recall how to proceed in one of them, improving the notation used by Schoof
in his original work.

Let ` be a prime integer of S. Since it is not divisible by p, E[`] has cardinality `2.
So we can write:

E[`] = {∞, P1, . . . , P`2−1}
The roots of the separable polynomial f`(x) are all and only the x-coordinates of the
non-zero elements of E[`]. For every P ∈ E[`], we have:

φ2
q(P ) + k(P ) = a`(φq(P )) k ≡ q (mod `)

and so we can consider the set

G̃ = {P ∈ E[`] \ {∞} | φq(φq(P )) = ±kP}

In the light of (4.4), this set is non empty if and only if there exist some non-zero P =
(x, y) ∈ E[`] such that:

xq
2 − x(x3 + Ax+B)f 2

k (x)− fk+1(x)fk−1(x)

(x3 + Ax+B)f 2
k (x)

= 0 k even

xq
2 − xf 2

k (x)− (x3 + Ax+B)fk+1(x)fk−1(x)

f 2
k (x)

= 0 k odd

We observe that fk(x) is non-zero on the x-coordinates of a non-zero P = (x, y) of E[`]
because we can choose k ∈ {0, . . . , l−1}. Hence G̃ 6= ∅ if and only if the following greatest
common divisor G(x)

G(x) =

{
gcd(fl(x), (xq

2 − x)(f 2
k (x))(x3 + Ax+B) + fk−1(x)fk+1(x)) k even

gcd(fl(x), (xq
2 − x)(f 2

k (x)) + (x3 + Ax+B)fk−1(x)fk+1(x)) k odd

is not 1. Schoof's algorithm distinguishes two cases depending on the cardinility of G̃: if
it is di�erent from zero we are in Case 1 of the original paper. This is the case we are
interested in and that we will consider.

If there exists a non-zero element P ∈ E[`] such that φq(φq(P )) = −kP , then a(φq(P )) =∞
and a ≡ 0 (mod `) because also φq(P ) is of order `. The existence of such a non-zero ele-
ment of E[`] forces φq(φq(P )) = −kP for every P ∈ E[`].
So, de�ning the sets

G̃+ = {P ∈ E[`] \ {∞} | φq(φq(P )) = +kP}

and
G̃− = {P ∈ E[`] \ {∞} | φq(φq(P )) = −kP}

we have three possible scenarios:
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1. G̃ = G̃− = E[`];

2. G̃ = G̃+ = E[`];

3. G̃ = G̃+ ( E[`].

It is easy to see that G̃ = G̃+ if and only if q is a quadratic residue modulo ` (i.e. q ≡ w2

(mod `) for some w ∈ Z) and φq(P ) = wP or φq(P ) = −wP for every P in G̃. In fact, we
observe that could not exist two di�erent points P1, P2 ∈ G̃ such that φq(P1) = wP1 and
φq(P2) = −wP2. In fact, from

∞ = φ2
q(P1)− aφq(P1) + kP1 = φ2

q(P1)− awP1 + kP1 = (2k − aw)P1

it would follow 2k− aw ≡ 0 (mod `) and hence a ≡ 2w (mod `). At the same time, using
P2 we would obtain a ≡ −2w (mod `). But 2w + 2w = 4w is not zero modulo `.

If w is the square root of q in Z`, the set:

F̃ = {P ∈ E[`] \ {∞} | φq(P ) = ±wP} ⊂ G̃

is non empty if and only if there exist some non-zero P = (x, y) ∈ E[`] such that:

xq − x(x3 + Ax+B)f 2
w(x)− fw+1(x)fw−1(x)

(x3 + Ax+B)f 2
w(x)

= 0 w even

xq − xf 2
w(x)− (x3 + Ax+B)fw+1(x)fw−1(x)

f 2
w(x)

= 0 w odd

As before, we observe that fw(x) is non-zero on the x-coordinates of the points of E[`]
because we can choose w ∈ {0, . . . , l − 1}. Hence, F̃ 6= ∅ if and only if the following
greatest common divisor F (x):

F (x) =

{
gcd(f`(x), (xq − x)(f 2

w(x))(x3 + Ax+B) + fw−1(x)fw+1(x)) w even

gcd(f`(x), (xq − x)(f 2
w(x)) + (x3 + Ax+B)fw−1(x)fw+1(x)) w odd

is not 1. So we are in the �rst scenario if and only if G(x) 6= 1 and F (x) = 1; we are in
the other two scenarios if and only if G(x) 6= 1 and F (x) 6= 1. We assume to be in one of
the last two scenarios.
As we have done for G̃, we can de�ne

F̃+ = {P ∈ E[`] \ {∞} | φq(P ) = +wP}

and
F̃− = {P ∈ E[`] \ {∞} | φq(P ) = −wP}
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To �nd the equivalence class of a in Z` we have to determine if F̃ = F̃+ or F̃ = F̃−. To do
this Schoof suggest to compute:

H1(x) =

{
gcd(fl(x), 4(y)q+3(f 3

w(x))− (fw+2(x)f 2
w−1(x)− fw−2(x)f 2

w+1(x))) w even

gcd(fl(x), 4(y)q+1(f 3
w(x))− (y2)(fw+2(x)f 2

w−1(x)− fw−2(x)f 2
w+1(x)) w odd

and

H2(x) =

{
gcd(fl(x), 4(y)q+3(f 3

w(x)) + (fw+2(x)f 2
w−1(x)− fw−2(x)f 2

w+1(x))) w even

gcd(fl(x), 4(y)q+1(f 3
w(x)) + (y2)(fw+2(x)f 2

w−1(x)− fw−2(x)f 2
w+1(x)) w odd

that corresponds to �nd P = (x, y) ∈ E[`] \ {∞} such that

0 = yq − (wP )y = yq −


fw+2(x)f2

w−1(x)−fw−2(x)fw+1(x)2

4y(x3+Ax+B)f3
w(x)

w even

(x3+Ax+B)[fw+2(x)f2
w−1(x)−fw−2(x)f2

w+1(x)]

4yf3
w(x)

w odd

or, respectively, such that:

0 = yq + (wP )y = yq +


fw+2(x)f2

w−1(x)−fw−2(x)fw+1(x)2

4y(x3+Ax+B)f3
w(x)

w even

(x3+Ax+B)[fw+2(x)f2
w−1(x)−fw−2(x)f2

w+1(x)]

4yf3
w(x)

w odd

Since we have supposed F̃ 6= ∅, one of H1(x) and H2(x) must be di�erent from 1. If F̃ = F̃+

then H1(x) 6= 1 and a ≡ 2w (mod `), otherwise H2(x) 6= 1 and a ≡ −2w (mod `).
This conditions are necessary. Despite Schoof did not prove that they are also su�cient
conditions, he used it as su�cient conditions. In fact, Schoof's paper says:

�If H1(x) equals 1 then a ≡ −2w (mod `)...�.

This could lead to an error on a curve for which (for example) F̃ is equal to F̃− (so
H2(x) 6= 1 and a ≡ −2w (mod `)) and there exists a point P = (x, y) ∈ E[`] \ G̃ such that
(φ(P ))y = (wP )y, i.e. H1(x) is not equal to 1. In this case Schoof's algorithm concludes
a ≡ 2w (mod `) even if a is actually congruent to −2w modulo `.

Clearly, this problem of the original Schoof's Algorithm is easily solved substituting f`(x)
with G(x) in the computation of H1(x) and H2(x): this little change avoids the existence
of elliptic curves with a �bad behavior� and also makes faster the computation of H1(x)
and H2(x) because deg(G(x)) is less then deg(f`(x)).

Even if the correctness and the power of the Schoof's algorithm are not damaged, it
remains intriguing the problem of the existence of elliptic curves on which the Schoof's
algorithm falls into an error.
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4.3 Attempts and observations

After that Schoof himself con�rmed, in an informal conversation, our observation about
the possible existence of a family of curves not considered by his original paper, we did
several attempts to �nd a counter-example.

As suggested by Schoof, �rst of all we looked for a non-singular elliptic curve E, de�ned
over a �nite �eld Fq, and a prime integer ` such that E[`] contains two distinct points with
the same y-coordinate. Using magma to test the elliptic curves, we obtain that for q = 23
and ` = 11 there exist numerous non-singular elliptic curves de�ned over Fq with two
di�erent points of order 11 having the same y-coordinate. But ` = 11 does not belong to
the set S of consecutive primes used by Schoof's algorithm to �nd the number of rational
numbers of a curve over F23. So another question arises: does exist a non-singular elliptic
curve with two di�erent points that have the same y-coordinate and the same order `,
where ` is a prime of S? Setting q = 71 and ` = 5 (or q = 59 and ` = 5, q = 3 and ` = 7)
we have a lot of non-singular elliptic curves de�ned over Fq for which exist two di�erent
points of order ` having the same y-coordinate. But these curves are not counter-examples.
So the condition that E[`] contains two distinct points with the same y-coordinate is not
su�cient to have a counter-example.

With the power of calculus available to us, we were able to sift all the non-singular el-
liptic curves over a �nite �eld with a number of elements less than or equal to 101. We
did not �nd the desired curve with a �bad behavior�. So we tried to �nd an elliptic curve
E over Fq with a �bad behavior� in E[`], with ` not necessary in the set S used by the
Schoof's algorithm. The idea was to start from such a curve and then work on it to obtain
a counter-example. For p, ` ∈ {5, 7, . . . , 101} we tested the `-torsion points E[`] of all the
non singular elliptic curves over Fp by the following magma program:

1 // Set of base fields
2 p:=3;
3 BaseFields:=[ ];
4 while (p lt 101) do
5 p:=NextPrime( p);
6 BaseFields:=Append(BaseFields,p);
7 end while;
8

9 // Set of prime integers l
10 l:=2;
11 HugeS:=[];
12 while (l lt 101) do
13 l:=NextPrime(l);
14 HugeS:=Append(HugeS,l);
15 end while;
16

17 // Function that constructs the t-th division polynomial of an elliptic curve
y^2=x^3+Ax+B over the finite field of q elements
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18 DivPol:= function (A,B,q,t)
19 Z:=IntegerRing();
20 K:=GF(q); // Finite field of q elements
21 PolK<x>:=PolynomialRing(K);
22 P:=[-1,0, 1, 2, 3*(x^4)+6*A*(x^2)+12*B*x-(A^2), 4*(x^6+5*A*(x^4)+20*B*(x^3) -

5*(A^2)*(x^2) - 4*A*B*x - 8*(B^2) - (A^3))]; /* division polynomial that
23 initialize the recurrence */
24 s:=t+2; /* the idea is to append the successive division polynomials until
25 we obtain the t-th. This would be the (t+2)-th element of the list P */
26 if t lt 5 then
27 f:=P[s];
28 end if;
29 for i in [5..t] do // recurrence
30 if (IsEven(i) eq true) then m:=i/2;
31 m:=Z!m;
32 P:=Append(P,(2^(-1))*P[m+2]*(P[m+4]*(P[m+1]^2)-P[m]*(P[m+3]^2)));
33 else
34 m:= (i - 1)/2;
35 m:=Z!m;
36 if (IsEven(m) eq true) then
37 P:=Append(P,P[m+4]*(P[m+2]^3)*((x^3+A*x+B)^2) - (P[m+3]^3)*P[m+1]);
38 else
39 P:=Append(P,P[m+4]*(P[m+2]^3) - (P[m+3]^3)*(P[m+1])*((x^3+A*x+B)^2));
40 end if;
41 end if;
42 end for;
43 f:=P[s];
44 return f;
45 end function;
46

47 for p in BaseFields do
48 q:=p;
49 K:=GF(q);
50 l:=...; // l must be chosen in HugeS
51 if (l eq p) then
52 continue; // if p=l we pass to next iteration
53 end if;
54 Z:=IntegerRing();
55 Zl:=IntegerRing(l); // ring of integers modulo l
56 r:=Zl!q; // r is the rest of the division of q by l
57 if (IsPower(r,2) eq false) then /* first necessary condition to have a
58 counter-example: q must be a quadratic
59 residue modulo l */
60 continue;
61 end if;
62 w:= Sqrt(r); // square root of q in Z/lZ
63 w:=Z!w;
64 // construction of all the non-singular elliptic curves over Fq
65 a:=K!0;
66 b:=K!0;
67 Et:=[* *]; // list of lists
68 for i in [1..q] do
69 Et[i]:=[]; // list of elliptic curves y^2=x^3+Ax+B with A=i-1;
70 for j in [1..q] do
71 if 4*a^3 + 27*b^2 ne 0 then
72 E := EllipticCurve([K | a,b]) ;
73 Et[i] := Append(Et[i], E);
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74 end if ;
75 b:=b+1;
76 end for ;
77 a:=a+1;
78 end for;
79 // behavior of each curve
80 for i in [1..#Et] do
81 for E in Et[i] do
82 A:=K!Coefficients(E)[4]; /* for Magma E is a polynomial of five terms:
83 the last two are Ax and B */
84 B:=K!Coefficients(E)[5];
85 PolK<x>:=PolynomialRing(K);
86 if (IsEven(w) eq true) then /* F is the greatest common divisor F(x)
87 defined in the previous section */
88 f:=(x^q-x)*(x^3+A*x+B)*(DivPol(A,B,q,w)^2)+
89 DivPol(A,B,q,w-1)*DivPol(A,B,q,w+1);
90 else
91 f:=(x^q-x)*(DivPol(A,B,q,w)^2)+
92 (x^3+A*x+B)*DivPol(A,B,q,w-1)*DivPol(A,B,q,w+1);
93 end if;
94 F:=GreatestCommonDivisor(DivPol(A,B,q,l),h);
95 if F eq 1 then // If F(x)=1 the tested curve is not a counter-example
96 continue;
97 else
98 if IsEven(w) eq true then
99 t:=Z!(q+3)/2;

100 if w eq 1 then
101 hpp:=4*((x^3+A*x+B)^(Z!t))*(DivPol(A,B,q,w)^3)-
102 (+(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2-
103 (-1)* DivPol(A,B,q,w+1)^2));
104 hpm:=4*((x^3+A*x+B)^(Z!t))*(DivPol(A,B,q,w)^3)-
105 (-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2-
106 (-1)* DivPol(A,B,q,w+1)^2));
107 else
108 hpp:=4*((x^3+A*x+B)^(Z!t))*(DivPol(A,B,q,w)^3)-
109 (+(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2-
110 DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)^2));
111 hpm:=4*((x^3+A*x+B)^(Z!t))*(DivPol(A,B,q,w)^3)-
112 (-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2-
113 DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)^2));
114 end if;
115 H1:=GreatestCommonDivisor(DivPol(A,B,q,l),hpp);
116 H2:=GreatestCommonDivisor(DivPol(A,B,q,l),hpm);
117 if (IsDivisibleBy(H1,F) eq true) then /* F(x) must divide one of the
118 polynomials H1(x), H2(x) */
119 if H2 ne 1 then
120 printf"Half Eureka!"; E; // curve that we are looking for
121 end if;
122 else
123 if H1 ne 1 then
124 printf"Half Eureka!"; E;
125 end if;
126 end if;
127 else
128 s:=Z!(q-1)/2;
129 if w eq 1 then
130 hdp:=4*((x^3+A*x+B)^(Z!s))*(DivPol(A,B,q,w)^3)-
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131 (+(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2 -
132 (K!-1)* DivPol(A,B,q,w+1)^2));
133 hdm:=4*((x^3+A*x+B)^(Z!s))*(DivPol(A,B,q,w)^3)-
134 (-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2 -
135 (K!-1)* DivPol(A,B,q,w+1)^2));
136 else
137 hdp:=4*((x^3+A*x+B)^(Z!s))*(DivPol(A,B,q,w)^3)-
138 (+(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2 -
139 DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)^2));
140 hdm:=4*((x^3+A*x+B)^(Z!s))*(DivPol(A,B,q,w)^3)-
141 (-(DivPol(A,B,q,w+2)*DivPol(A,B,q,w-1)^2 -
142 DivPol(A,B,q,w-2)* DivPol(A,B,q,w+1)^2));
143 end if;
144 H1:=GreatestCommonDivisor(DivPol(A,B,q,l),hdp);
145 H2:=GreatestCommonDivisor(DivPol(A,B,q,l),hdm);
146 if (IsDivisibleBy(H1,F) eq true) then
147 if H2 ne 1 then
148 printf"Half Eureka!"; E;
149 end if;
150 else
151 if H1 ne 1 then
152 printf"Half Eureka!";E;
153 end if;
154 end if;
155 end if;
156 end if;
157 end for;
158 end for;
159 end for;
160

Unfortunately, also with this test we did not �nd what we were looking for. The failure
in the research of a counter-example despite the number of tested curves, suggest that a
more organic investigature is needed. Or, maybe, the counter-example does not exist. In
this case, it remains challenging give a theoretical proof of the non-existence. An idea to
obtain this proof could be that of considering the �elds of `-torsion points of an elliptic
curve E over a �nite �eld Fq. It is the �eld adjoining the coordinates of the `-torsion points
to the base �eld Fq. We did not follow this approach but we will perform this analysis in
the next future.
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Another method to determine if an inde�nite quadratic form Q(x, y) of discriminant ∆ > 0
represents a prime integer p (such that (∆/p) = 1) is here deduced using the continue
fractions. To verify whether Q(x, y) represents p we devise the following procedure based
on Proposition 1.11, Gauss reduction algorithm and composition of forms:

1. Apply Gauss reduction algorithm to Q(x, y) obtaining a quadratic form go(x, y).

2. Construct a quadratic form (p,B,C) of discriminant ∆, which represents p by the
pair (1, 0), and reduce it via Gauss reduction algorithm to a form fo(x, y).

3. Compose the form go(x, y) with either fo(x, y) and fo(x,−y), obtaining
go(x, y) ◦ fo(x, y) and go(x, y) ◦ fo(x,−y).

4. Check whether the reduction of go(x, y)◦fo(x, y) or the reduction of go(x, y)◦fo(x,−y)
is a principal form.

We observe that when the discriminant ∆ is positive, we call principal every reduced form
properly equivalent to the form Q0(x, y), of discriminant ∆, de�ned in Chapter 1.

The problem of determining whether a quadratic form is a principal form can be tack-
led in several ways: we describe two possible approaches.

Preliminarly, we recall a classical result concerning the periodic continued fraction rep-
resentation of

√
∆ written as

[d0, [d1, d2, . . . , dT ]]

where d0 is the anti-period and the remaining entries constitute the period of length T .
Let pi

qi
be the partial quotients, also called convergents, of the continued fraction pertaining

to the period. Numerators and denominators of the convergents are computed recursively
as {

pi = dipi−1 + pi−2 p0 = d0, p−1 = 1
qi = diqi−1 + qi−2 q0 = 1, q−1 = 0

i = 1, 2, . . .

The sequence S = {∆i = p2
i −∆q2

i }∞i=1 satis�es the following properties, see [31]:

1. The sequence S is periodic of period T .

117
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2. |∆i| < 2
√

∆ for every i.

3. ∆T−1 = ±1, i.e. pT−1 + qT−1

√
∆ is the fundamental unit in Q(

√
∆).

4. All the integers of absolute value less than
√

∆, represented by a principal form
of discriminant ∆, are in a period of the sequence S. The remaining terms of the
sequence S are of absolute value less than 2

√
∆.

The previous properties o�er a criterion for testing whether a quadratic form is a principal
form [43]:

Proposition. A reduced quadratic form (a, b, c), with positive discriminant ∆, is a prin-
cipal form if and only if the smallest between |a| and |c| occurs in a period of the sequence
S constructed from the continued fraction expansion of

√
∆.

A second criterion can be deduced from the following theorem.

Theorem. Let (a, b, c) be a reduced quadratic form with discriminant ∆ > 0, and
K = Q(

√
∆) be a real quadratic �eld whose Hilbert class �eld L is de�ned by the root of a

known polynomial HK(x) of degree 2h∆ over Q. Suppose that all prime factors qi occurring
in a (with the assumption |a| < |c|) and c are known, then (a, b, c) is principal if HK(x)
fully splits modulo qi for every i.

Proof. If HK(x) fully splits modulo qi, then qi is representable by a principal form because
qi splits into 2h∆ prime factors in L ([20, Theorem 5.9] and [21]), and thus into two
conjugate prime factors in K. Hence qi is representable by the principal quadratic form.
The composition of forms implies that a and c are representable by the principal form,
which in turn imply that (a, b, c) is a principal form.

Recall that full factorization of HK(x) modulo qi can be checked in polynomial complexity
by computing the greatest common divisor with xqi−1 − 1 modulo qi.

Conclusions

The issue of solving, with polynomial complexity, the representation problems for a nega-
tive discriminant ∆ and for a prime integer p, was practically closed by Gauss reduction
algorithm with the further use of Schoof's algorithm. The same problems, when the dis-
criminant is positive, are not generally settled in polynomial complexity. The methods
seen above have a restrained complexity.

In this thesis alternative algorithms for fundamental negative discriminants of class number
less than 4 have been developed. Such algorithms are sped up by the precomputation of
the Hilbert class polynomials and the Diophantine systems. When a prime p is represented
by the principal form, the computational complexity of the algorithms is dominated by the
calculation of the number of rational points of an elliptic curve over a �nite �eld Fp. It
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can be done using the Schoof's algorithm [50], that takes O(log9 p) elementary operations,
or even better using the improvement by Schoof - Elkies - Atkin (SEA algorithm) [3].
When a prime p is represented by a non-principal reduced form, one needs to determine the
number of rational points of an elliptic curve over a �nite �eld Fq, with q = pn. As above,
the Schoof's algorithm -or the SEA algorithm- can be used to perform this calculation
with polynomial complexity. Furthermore, hK(x) (mod p) has to be factorized in order to
decide which are the reduced forms that represent a prime p when the imaginary quadratic
�elds have class number 2 and 3. This factorization could be obtained in polynomial com-
plexity using the Cantor-Zassenhaus probabilistic algorithm [12] or a variation of it due to
Schipani and Elia [24], which requires less computational cost.

Future developements of this thesis

A more accurate estimates of the numbers of operations required by the algorithms for the
computations may be considered.
For the sake of comparison, many tests may be performed using a large set of primes with
the algorithms, collect the timings obtained with magma and compare them with respect
to the various algorithms solving the representation problems.

In order to use Theorem 3.6 to deduce an algorithm solving representation problems for ev-
ery imaginary quadratic �eld, whatever is its class number, further properties to distinguish
the proper equivalence classes of the form class group are desirable. For example, let us
consider the case of class number 4. This case is interesting because there are two possible
non-isomorphic groups of order 4. If the narrow ideal class group is cyclic of order 4, then
a hypothetical criteria to identify the classes that represent a prime integer p could be the
factorization of hK(x) (mod p): when hK(x) (mod p) splits into 4 distinct linear factors,
p would be represented by the principal quadratic form; when hK(x) (mod p) factors into
2 quadratic factors, p would be represented by the quadratic form that, composed with
itself, yields the principal form; when hK(x) (mod p) is irreducible p would be represented
by the remaining classes of quadratic forms which represent the same set of primes. If the
narrow ideal class group is the group Z2 × Z2, then the factorization of hK(x) (mod p)
identi�es just the principal form; the remaining three classes, when composed with them-
selves, yield the principal form and the idea of using the factorization of hK(x) could not be
applied. Further e�orts are necessary to �nd the properties nedeed to distinguish between
non-principal reduced forms.

A future work plan would involve the extension of the research of this thesis to obtain
more stringent results concerning inde�nite quadratic forms. The �rst step will require an
analogous of Theorem 3.5.
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