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Summary

In the mountain territory the majority of the population and of the produc-

tive activities are concentrated in the proximity of torrents or over alluvial

fans. Here, when intense rainfall occurs, debris flow or hyper-concentrated

flow events can produce serious problems to the population with possible

casualties. On the other hand, the majority of these problems could be

overcome with accurate hazard mapping, disaster prevention planning and

mitigation structures (e.g. silt check dams, paved channels, weirs ...). Good

and reliable mathematical and numerical models, able to accurately describe

these phenomena are therefore necessary.

Debris flows and hyper-concentrated flows can be adequately represented by

means of a mixture of a fluid (usually water) and a solid phase (granular

sediment, e.g. sand, gravel ...), flowing over complex and composite topog-

raphy. Complex topography is related to complicated bed elevation variety

inasmuch as there are slopes, channels, human artifacts and so on. On the

other hand, topography is composite because every type of flow can encounter

two different bed behaviors: the mobile bed and the fixed bed. In the first

case, mass can be exchanged between the bed and the flow, so the bottom

elevation can change in time. In the second case (fixed bed case), this mass

transfer is inhibited, due to the presence of a rigid bottom, such as bedrock

or concrete, and the bottom cannot change in time. The first objective of the

work presented in this thesis concerns the development of a new type of hy-

perbolic mathematical model for free-surface two-phase hyper-concentrated

flows able to describe in a single way the fixed bed, the mobile bed and also

the transition between them. The second objective, strictly connected with

the first, is the development of a numerical scheme that implements this

mathematical model in an accurate and efficient way.



xviii Summary

In the framework of finite-volume methods with Godunov approach, the

fluxes are evaluated solving a Riemann Problem (RP). A RP is an initial

value problem related to a set of PDEs equations wherein, in a certain point,

there is a discontinuity separating different left and right initial constant

states. However, if the topography is composite, a new type of Riemann

problem, called Composite Riemann Problem (CRP), occurs. In a CRP, not

only the initial constant states, but also the relevant PDEs systems change

across the discontinuity. This additional complexity makes the general solu-

tion of the CRP quite challenging to obtain.

The first part of the work is devoted to the derivation of the PDEs systems

describing the fixed- and mobile-bed behaviors. Starting from the 3D discrete

equations valid for each phase (continuous fluid and solid granular) and us-

ing suitable average processes the 3D continuous equations (continuous fluid

and solid) are obtained. Introducing the shallow water approximation and

performing the depth average process, the 2D fully two-phase models for

free-surface flow over fixed- and mobile-bed are derived. The isokinetic ap-

proximation, which states the equality between the velocity of the solid phase

and the liquid phase, is then used, ending up with the so-called two-phase

isokinetic models. Finally, an exhaustive comparison between the fixed- and

the mobile-bed fully two-phase models, the two-phase isokinetic models and

others models proposed in the literature is presented.

The second part of the work concerns the definition and, mainly, the solution

of the CRP from a mathematical point of view. Firstly, a general strategy

for the CRP solution is developed. It allows to couple different hyperbolic

systems that are physically compatible (e.g. fixed-bed with mobile-bed sys-

tems, free-surface flow with pressurized flow ), also if they have a different

number of equations. The resulting CRP solution is composed of a single

PDEs system, called Composite PDEs system, whose properties, under some

assumptions, degenerate to the properties of the original PDEs systems. The

general strategy is developed using the simplest 1D isokinetic models for the

fixed bed and the mobile bed (i.e. PDEs systems valid only for low concen-

tration). Coherently with the generality of the CRP solution method, the

low concentration constraint is then relaxed, ending up with a Composite

PDEs system describing also high concentrated flows.



xix

From the numerical point of view, all the developed Composite systems are

integrated using the finite-volume method with Godunov fluxes. These fluxes

are evaluated using three different approximated Riemann solvers: the Gen-

eralized Roe solver, the LHLL solver and the Universal Osher solver. All

the solvers are analyzed and an exhaustive comparison between them is per-

formed, highlighting pros and cons. The schemes are second order accurate

in space and time, and this has been achieved by means of the MUSCL ap-

proach. Finally numerical schemes have been parallelized using OpenMP

standard.

All the models are then tested comparing analytical and numerical solutions.

The results are satisfactory, with an accurate agreement between the two

solutions in the majority of the physically-based test cases. There is only

some small issue when the simulations are performed in a few resonant cases.

However, these problems arise in not realistic situations, so it is impossible

to encounter them in real situations. Also a realistic application is presented

(i.e. the evolution of a trench over partially paved channel), proving the

capabilities of both the mathematical approach and the numerical scheme.





Part I

Derivation and eigenstructure

analysis of the two-phase flow

equations over fixed and mobile

bed





Chapter 1

Continuum formulations for

liquid-granular mixture flows

From a physical point of view, a liquid-granular flow is a gravity-driven move-

ment of a mixture composed by a granular phase, usually sand or gravel, and

by a fluid phase surrounding the solid one. The problem can be faced with

the use of an appropriate set of three-dimensional partial differential equa-

tions that describe the interstitial fluid and an equation of motion for the

center of mass each single particle. The variables related to a specific phase

of the mixture are therefore defined only in the space actually occupied by

the phase itself. However, this approach has a practical problem: when we

approach real scale phenomena, the number of equations needed to describe

all the particles in a debris flow or hyperconcentrated flow becomes larger and

larger producing an unmanageable system. A possible solution is switching

to a continuum description of the liquid-granular mixture. With this type of

formulation, unlike before, a generic variable related to one phase (both fluid

and solid) is defined in every point of the mixture flow domain, even where

a phase does not actually occupy the space. The definition of such variables

is possible only by means of appropriated average.

This approach was used in the works of Zhang and Prosperetti [67, 68] where

the authors use a statistical ensemble average, and the works of Anderson

and Jackson [5] and Jackson [35, 36] where a volume average is used.

Another possible approach is use, as starting point, a continuum descrip-
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tion of both the fluid and the solid constituent. Although, as said before,

a mixture is the sum of fluid and solid components, the continuum descrip-

tion of this mixture is not obtained simply adding together the equations for

the fluid and solid phases described as continuum, but an indicator function

must be introduced in order to recognize which phase occupy a certain point

of the space. The introduction of the indicator function leads to a discrete

definition of the variables, so an appropriate average process (e.g. ensemble

or volume) has to be used in order to obtain a continuum formulations for

the liquid-granular mixture. Among this class of derivation we cite the works

of Drew [21], Hill [32] and Joseph and Lundgren [38].

In this Chapter we analyze the approaches presented in the literature in

order to have a clear understand of the terms involved in the three dimen-

sional differential equations that describe the liquid-granular mixture flows.

Moreover a unified approach has been presented, since, different approaches

produce slightly different partial differential equations. In particular, we fo-

cus our attention on first approach in Section 1.1 where the ensemble average

is presented, and in Section 1.2 where the volume average is described. The

second approach is briefly introduced in Section 1.3, while in Section 1.4 a

comparison between the different approaches is presented with the defini-

tion of an unified model. Finally, in Section 1.5 some aspects related to the

closure of the problem are introduced.

1.1 Ensemble average for continuous fluid phase

and discrete particles

Given a set of measurements regarding a debris flow or an hyperconcentrated

flow with certain macroscopic conditions (e.g. flow depth, fluid and solid

discharge), the microscopic characteristics, measured during each realization,

are different from one to each other. As for the turbulence, the study of the

pointwise properties for this type of flow is based on the use of the ensemble

average.

The ensemble averaging process for the motion equations of a liquid-

granular mixture was derived by Zhang and Prosperetti [67, 68]. The authors
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use, as starting point, the equation of motion of a set of spherical particles of

radius r surrounded by an inviscid [67] or a viscous fluid [68]. In the follow

only the main aspect of the derivation are presented, while we refer to the

original article for the complete derivation.

1.1.1 Definitions

A configuration CN of a mixture flow is defined by a number N of spherical

particles of radius r, with instantaneous position yα and velocity wα (with

α = 1 . . . N), and a fluid which surrounds the particles (see Figure 1.1 for

an overview of a configuration CN). It is possible to define the indicator

Figure 1.1: Sketch of the configuration CN with the reference system.

function for the fluid phase associated to the configuration CN as

χF (x;CN) =

{
1 if x is in the fluid phase

0 otherwise
(1.1)

while the indicator function for the solid phase, due to impenetrability of the

two phases, is

χS(x;CN) = 1− χF (x;CN) (1.2)

Introducing the Heaviside step function defined as

H(x) =

{
0 if x < 0

1 if x ≥ 0
(1.3)
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the indicator function for the solid phase can be written as

χS(x;CN) =
N∑
α=1

H (r − |x− yα|) (1.4)

where (r − |x− yα|) is positive only when the point x is inside the particle

α located at yα.

Using this indicator function it is possible to define the volume fractions

(also know as volumetric concentration) for the solid phase as

c(x, t) =
1

N !

∫
χS(x;CN)P (CN ; t) dCN (1.5)

where P (CN ; t) is the probability density function associated to the configu-

ration CN and normalized as∫
P
(
CN ; t

)
dCN = N !

where the integral is performed all over the configurations. It is also possible

to define the reduced one-particle density function as

P (y,w; t) = P (1; t) =
1

(N − 1)!

∫
P
(
CN ; t

)
dCN−1 (1.6)

where the integral is performed all over the possible degrees of freedom of

the system except for the ones associated to particle 1.

With this definition and remembering the definition of the solid indicator

function, the solid concentration can be defined as

c(x, t) =

∫
|x−y|≤r

∫
P (y,w; t) d3w d3y (1.7)

where now the integral is performed only over the space (d3y) and velocity

(d3w) associated to the particles. For the fluid phase, instead, the volume

concentration is defined as

β(x, t) =
1

N !

∫
χF (x;CN)P (CN ; t) dCN

Since the sum of the indicator function is one, the two concentration are

correlated by

β = 1− c (1.8)
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The ensemble average of a generic local quantity fF (x, t;CN) related to

the fluid phase, at position x, time t, given the configuration CN , is defined

as

〈fF 〉 (x, t) =
1

N !

1

β

∫
fF (x, t;CN)χF (x;CN)P (CN ; t) dCN (1.9)

This definition has the advantage that is defined in every point of the mixture

domain, but it has the disadvantage that the integral and the derivative is not

commutative due to the discontinuity of the indicator function χF (x;CN).

Performing some algebraic manipulations, it is possible to evaluate the

ensemble average of the time and spatial derivative of fF (x, t) (we refer to the

original articles for the full mathematical manipulation needed) obtaining〈
∂

∂t
fF

〉
=

1

β

(
∂

∂t
β 〈fF 〉+

∮
s

∫
w · n̂ 〈fF 〉1 P (1; t) d3w dSy

)
(1.10)〈

∂

∂xi
fF

〉
=

1

β

(
∂

∂xi
β 〈fF 〉 −

∮
s

∫
n̂ 〈fF 〉1 P (1; t) d3w dSy

)
(1.11)

where n̂ is the normal unit vector oriented outward from the particle, Sy is

the surface of the particle and 〈fF 〉1 is the ensemble average of the function

fF where the position and velocity of one particle is a priori defined. These

two equations will be fundamental when, in the next Sections, we apply the

ensemble average process to the motion equations for the fluid phase.

For a quantity associated to the solid particles as a whole (like center

of mass velocity, momentum, ...) it is more useful to introduce a different

indicator function describing the particle as a point

χS(x;CN) = υ
N∑
α=1

δ (x− yα) (1.12)

where υ is the constant volume of one particle and δ is the Dirac delta

function defined as

δ (x) =
∂H(x)

∂x
=

{
0 if x 6= 0

∞ if x = 0
(1.13)

Given f
(α)
S (t;CN), a quantity pertaining to the particle α as a whole in

the configuration CN at time t, its ensemble average, over all configurations
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in which one particle is located in the point x, is

〈fS(x, t)〉 =
1

n(x, t)

∫
f
(1)
S (t; 1)P (1, t) d3w (1.14)

where n is the particle number density

n(x, t) =

∫
P (1; t) d3w (1.15)

=

∫
P (x,w; t) d3w

Expanding equation (1.7) in Taylor series around x (this is possible since the

averaged quantity changes slowly at the scale of particle) and using equation

(1.15), a more common definition of the solid concentration is obtained

c(x, t) = υn(x, t) +O

(
r2

L2

)
' υn(x, t) (1.16)

where L is a characteristic length scale of the flow field variation.

The ensemble average of total time derivative of the property fS(x, t),

associated to the center of mass of a particle, can be written, after some

mathematical manipulation (see the original papers for the complete deriva-

tion), as〈
d

dt
fS

〉
=

1

n

(
∂

∂t
(n 〈fS〉) +

∂

∂xi
(n 〈fSwi〉)

)
(1.17)

We highlight that, for a fS related to a particle as a whole, so the particle is

a points, a Lagrangian approach has to be used. However, when the average

process is applied, the averaged function 〈fS〉 is define all over the space, so

an Eulerian approach can be used. Equation (1.17) defines this passage from

a Lagrangian approach to an Eulerian one.

Equation (1.17) is, as equations (1.10) and (1.11) for the fluid phase, the

key point for the ensemble average process applied to the equations of motion

for the solid particles.
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1.1.2 Fluid phase equations

The local equation for the mass conservation of the incompressible fluid

phase, valid, as written before, only when the fluid is present, is

∂

∂xi

(
uFi
)

= 0 (1.18)

where uF is the fluid velocity. Applying the average process to the equation

the result is〈
∂

∂xi

(
uFi
)〉

= 0 (1.19)

This equation is not useful, inasmuch it is defined over all the mixture domain

due to the average process, but it is not expressed in term of average func-

tions. However using equations (1.10), (1.11) and the kinematic boundary

condition that states the impenetrability of the solid and fluid phase

w · n̂ = uF · n̂ (1.20)

the resulting expression is

∂

∂t
(β) +

∂

∂xi

(
β
〈
uFi
〉)

= 0 (1.21)

where now only the average variables of the flow compare in the equation.

The local momentum balance for the incompressible fluid phase, with

constant density ρF , is

ρF
∂

∂t

(
uFj
)

+ ρF
∂

∂xi

(
uFi u

F
j

)
=

∂

∂xi
T Fij + ρFgj (1.22)

where TF is the local fluid stress tensor and g is the gravity force.

In order to obtain the averaged momentum equation, the procedure is

similar to the one used for the continuity equations, ending up with

ρF
∂

∂t

(
β
〈
uFj
〉)

+ ρF
∂

∂xi

(
β
〈
uFi u

F
j

〉)
= β

〈
∂

∂xi
T Fij

〉
+ ρFβgj (1.23)

However, in this equation some terms are not expressed using average vari-

ables (e.g. in the second derivative the average is applied to uFi u
F
j and not
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separately to the functions uFi and uFj ) so same mathematical manipulation

is needed. At the end this expression becomes

ρF
∂

∂t

(
β
〈
uFj
〉)

+ ρF
∂

∂xi

(
β
〈
uFi
〉 〈
uFj
〉)

= ρF
∂

∂xi

(
βRF

ij

)
+

+
∂

∂xi

(
β
〈
T Fij
〉)
− F zp

F−S,j + ρFβgj (1.24)

where RF
ij is the ij component of the stress tensor RF = −

〈(〈
uF
〉
− uF

)2〉
composed by the Reynold like terms (the ensemble average of the square of

the difference between the ensemble average fluid velocity and the local fluid

velocity) and F zp
F−S,j is the j-th component of the interphase forces between

fluid and particles Fzp
F−S defined as

Fzp
F−S =

∮
s

∫
P (y,w; t)

〈
TF
〉
1

(x, t; 1) · n̂ d3w dSy (1.25)

1.1.3 Solid phase equations

Using fS = 1 in equation (1.17) it is possible to derive the conservation of

the particle density number n

∂

∂t
(n) +

∂

∂xi
(n 〈wi〉) = 0 (1.26)

and, using the definition of the solid concentration (1.16) the final result is

∂

∂t
(c) +

∂

∂xi
(c 〈wi〉) = 0 (1.27)

remembering that the volume υ of a particle does not change in time and

space.

The equation of motion of one particle moving, with other particles, in a

viscous fluid is

m
d

dt
(w) = FC +mg+

∮
s

TF (z, t;N) · n̂ dSz (1.28)

where m is the particle constant mass, FC is force due to the collision with the

other particles and the integral represents the normal forces exerted by the
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fluid phase on the surface of the particle s. Applying the ensemble average

process to this expression and using equation (1.17), the averaged momentum

equation for the solid phase is obtained

∂

∂t
(nm 〈wj〉) +

∂

∂xi
(nm 〈wiwj〉) = 〈FC〉+mg+

+
1

n

∫
P (x,w; t)

∮
s

〈
TF
〉
1

(z, t; 1) · n̂ dSz d
3w (1.29)

As for the fluid momentum equation, same mathematical manipulation are

needed in order to express all the terms using only average variable, ending

up with

ρS
∂

∂t
(c 〈wj〉) + ρS

∂

∂xi
(c 〈wi〉 〈wj〉) = ρS

∂

∂xi

(
cRS

ij

)
+ F zp

S−F,j+

+ n 〈FC,j〉 + ρScgj (1.30)

where 〈FC,j〉 is the j-th component of the average collisional force FC , RS
ij

is the ij component of the stress tensor RS = −
〈
(〈w〉 −w)2

〉
composed

by the Reynolds like stress produced by the average process, F zp
S−F,j is the

j-th component of the interphase forces between solid and fluid phases Fzp
S−F

defined as

Fzp
S−F =

∫
P (x,w; t)

∮
s

〈
TF
〉
1

(z, t; 1) · n̂ dSz d
3w (1.31)

and ρS is the constant solid density

ρS =
m

υ
(1.32)

1.1.4 Final set of ensembe averaged equations for conit-

nuum liquid-granular mixture flow

The final set of equations describing a liquid-granular mixture flows in a

continuum formulation derived using the ensemble average is composed by
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equations (1.21), (1.24), (1.27) and (1.30) that reads

∂β

∂t
+∇ · (βuf ) = 0

ρf

(
∂

∂t
(βuf ) +∇ · (βufuf )

)
= ρf∇ ·

(
βRF

)
+∇ ·

(
βTF

)
+

−Fzp
F−S + βρfg

∂c

∂t
+∇ · (cw) = 0

ρs

(
∂

∂t
(cw) +∇ · (cww)

)
= ρS∇ ·

(
cRS

)
+ nFC

+Fzp
S−F + cρsg

(1.33)

where, for shake of clarity, we neglect the average symbol.

1.2 Volume average for continuous fluid phase

and discrete particles

The volume average is performed averaging a quantity over a volume in which

there are fluid and particles. This Section is a short review of the works of

Anderson and Jackson [5] and Jackson [35, 36]. The authors start from the

local differential equations of motion for the fluid phase and the equation of

motion for the center of mass of a single particle surrounded by a viscous fluid

(as for the ensemble average presented in Section 1.1). Here we present only

the basic aspect of the volume average process, while for more exhaustive

information about the derivation we refer the reader to the original works.

1.2.1 Definitions

The generic volume average of a function f(x, t) over a sphere of volume V

is define as

〈f〉 (x, t) =
1

V

∫
V

f(y, t) dVy (1.34)

where dVy is the element of volume near y



1.2 Volume average for continuous fluid phase and discrete particles 13

However, if in the volume there are two or more phases (see Figure 1.2

for a sketch of the problem), it is possible to introduce a weighting function

g (|x− y|) in order to define the volume average of the generic function as

〈f〉 (x, t) =

∫
V (t)

f(y, t)g (|x− y|) dVy (1.35)

where V (t) is the whole volume occupied by the phases that can change in

time.

Figure 1.2: Sketch of the variable involved in the volume average with the

reference system.

The weighting function is a generic function that has the following prop-

erty:

• it is normalized to one∫
V (t)

g (|x− y|) dVy = 1

• it is positive defined;

• it is monotone decreasing function of r = |x− y|;

• it goes to zero when r approach the infinity.
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An example of this kind of weighting function is a Gaussian function

centered in x

For a two phase flow it is possible to divide the total volume V (t) into

the fluid one (VF (t)) and the solid one (VS (t)). The average process over

these two volumes produce the definition of the fluid and the solid volume

fraction

β(x, t) =

∫
VF (t)

g (|x− y|) dVy (1.36)

c(x, t) =

∫
VS(t)

g (|x− y|) dVy (1.37)

and, since VF +VF = V , the relation between the two volume fractions follows

straightforwardly

β + c = 1

However, since the solid volume is composed of N(t) particles of volume υ,

the solid volume fraction can be also written as

c(x, t) =

N(t)∑
α=1

∫
υ

g (|x− y|) dVy (1.38)

The particle number density n(x, t) is defined as

n(x, t) =

N(t)∑
α=1

g (|x− yα|) (1.39)

and it is possible to obtain a realtion with the concentration c(x, t) via

n(x, t) ' c(x, t)

υ
(1.40)

where the order of approximation is O
(
r2

L2

)
.

The average of a generic function related the fluid phase fF (x, t) is defined

as

〈fF 〉 (x, t) =
1

β(x, t)

∫
Vf (t)

fF (y, t)g (|x− y|) dVy (1.41)
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and in a similar way it is possible to define the average of a function regarding

the solid phase fS(x, t)

〈fS〉 (x, t) =
1

c(x, t)

∫
VS(t)

fS(y, t)g (|x− y|) dVy (1.42)

Nevertheless there are some function fP (xP , t) defined for a particle as a

whole (e.g. the center of mass velocity, the angular momentum, ...) for

which it is more convenient to use the average based on the particle number

〈fP 〉 (x, t) =
1

n(x, t)

N(t)∑
α=1

fP (yα, t)g (|x− yα|) (1.43)

where yα is the center of the α-th particle.

With some mathematical manipulation (we refer the reader to the original

works for the complete derivation), the volume averaged of the time and space

derivatives of a function fF (x, t) related to the fluid phase are〈
∂

∂t
fF

〉
=

1

β

 ∂

∂t
(β 〈fF 〉) +

N(t)∑
α=1

∮
sα
fF (y, t)g (|x− y|) wα · n̂α dSy


(1.44)

where wα and n̂α are the velocity and the normal outward vector of the α-th

particle respectively, and the integral is performed all over the surface sα of

each particle, and〈
∂

∂xi
fF

〉
=

1

β

 ∂

∂xi
(β 〈fF 〉)−

N(t)∑
α=1

∮
sα
fF (y, t)g (|x− y|) n̂αi dSy

 (1.45)

where n̂αi is the i-th component of n̂α. The volume average of the total time

derivative for a function fP regarding the particles as a whole is instead〈
d

dt
fP

〉
=

1

n

 ∂
∂t

(n 〈fP 〉) +
∂

∂xi

N(t)∑
α=1

fP (yα, t)w
α
i g (|x− yα|)

 (1.46)

We recall, as for the ensemble average, that this expression allows the switch

between the Lagrangian approach used when we describe the particles as

points, to an Eulerian approach that is necessary when we deal with the

continuum liquid-granular mixture.
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1.2.2 Fluid phase equations

Like in the ensemble average, the main objective of this Section (and also

the next one) is to derive the averaged equations of motion for the fluid

(and solid) phase, constituting the mixture, expressed in term of the average

variables that are defined everywhere in the mixture domain.

The averaged mass equation for the incompressible fluid phase is derived,

as for the ensemble average, starting from the local equation (1.18). The

equation is then averaged over the fluid volume using the definition written

in the previous Section. The result is

∂

∂t
(β) +

∂

∂xi

(
β
〈
uFi
〉)

= 0 (1.47)

In the same way, starting from the equation (1.22), it is possible to derive

the following averaged fluid momentum equation

ρF
∂

∂t

(
β
〈
uFj
〉)

+ ρF
∂

∂xi

(
β
〈
uFi u

F
j

〉)
= β

〈
∂

∂xi
T Fij

〉
+ ρFβgj

and with some mathematical manipulation this equation becomes

ρF
∂

∂t

(
β
〈
uFj
〉)

+ ρF
∂

∂xi

(
β
〈
uFi
〉 〈
uFj
〉)

= ρF
∂

∂xi

(
βRF

ij

)
+

+
∂

∂xi

(
β
〈
T Fij
〉)
− FF−S,j + ρFβgj (1.48)

where RF
ij is the ij component of the stress tensor RF = −

〈(〈
uF
〉
− uF

)2〉
composed by the Reynolds like stress produced by the average process and

FF−S,j is the j-th component of the interphase forces between fluid and par-

ticles FF−S defined as

FF−S =
N∑
α=1

∮
sα

TF (y, t) · n̂αg (|x− y|) dSy (1.49)

1.2.3 Solid phase equations

Starting from the equation (1.28), describing the motion for a single particle

immersed in a viscous fluid with other particles, and applying the volume
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average process, it is possible to derive the averaged momentum equation for

the solid phase

ρS
∂

∂t
(n 〈wj〉) + ρS

∂

∂xi
(n 〈wjwi〉) =

n

υ
〈FC,j〉+ ρSngj+

+

(
N∑
α=1

g (|x− yα|)
∮
sα

TF · n̂α dSy

)
j

(1.50)

where 〈FC,j〉 is the j-th component of the averaged collisonal force FC . With

some mathematical manipulation, introducing RS = −
〈
(〈w〉 −w)2

〉
and

remembering that c = nυ, the final momentum equation for the solid phase

is

ρS
∂

∂t
(c 〈wj〉) + ρS

∂

∂xi
(c 〈wi〉 〈wj〉) = ρS

∂

∂xi

(
cRS

ij

)
+ FS−F,j+

+ n 〈FC,j〉 + ρScgj (1.51)

where FS−F,j is the j-th component of the the interphase force exerted by

the solid particles on fluid FS−F defined as

FS−F =
N∑
α=1

g (|x− yα|)
∮
sα

TF (y, t) · n̂α dSy (1.52)

The conservation of the particle number density is derived from equation

(1.46) imposing fP = 1 in equation (1.46) ending up with

∂

∂t
(n) +

∂

∂xi
(n 〈wi〉) = 0 (1.53)

Using the definition of n, the conservation of solid mass is then obtained

∂

∂t
(c) +

∂

∂xi
(c 〈wi〉) = 0 (1.54)

1.2.4 Final set of volume averaged equations for con-

tinuum liquid-granular mixture flow

The final set of equations describing a liquid-granular mixture flows in a

continuum formulation derived using the volume average is composed by
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equations (1.47), (1.48), (1.54) and (1.51) that reads

∂β

∂t
+∇ · (βuf ) = 0

ρf

(
∂

∂t
(βuf ) +∇ · (βufuf )

)
= ρf∇ ·

(
βRF

)
+∇ ·

(
βTF

)
+

−FF−S + βρfg
∂c

∂t
+∇ · (cw) = 0

ρs

(
∂

∂t
(cw) +∇ · (cww)

)
= ρS∇ ·

(
cRS

)
+ nFC+

+FS−F + cρsg

(1.55)

where, for shake of clarity as in the ensemble average, we neglect the average

symbol.

1.3 Average approaches for continuous fluid

and solid phase

The second class of approaches present in the literature uses, as said before,

a continuous description of both the fluid and the solid constituent as start-

ing point. Although a mixture is the sum of fluid and solid components, the

continuum description of this mixture is not obtained simply adding together

the equations for the fluid and solid phases described as continuum, but an

indicator function must be introduced in order to recognize which phase oc-

cupy a certain point of the space. The introduction of the indicator function

leads to a discrete definition of the variables, so an appropriate average pro-

cess (e.g. ensemble or volume) has to be used in order to obtain a continuum

formulations for the liquid-granular mixture. Among this class, we briefly

summarize here the works of Drew [21], Hill [32] and Joseph and Lundgren

[38].

In the work of Drew [21] a review of different average processes (time,

space, ensemble, ...) is introduced highlighting some property they must

have. Then the derivation of the partial differential equations for the contin-

uum formulation of a liquid-granular mixture flow is presented using a general
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average process. With some mathematical manipulation these equations can

be written as

∂β

∂t
+∇ · (β 〈uf〉) = 0

ρf

(
∂

∂t
(β 〈uf〉) +∇ · (β 〈uf〉 〈uf〉)

)
= ∇ ·

(
βRF

)
+∇ ·

(
β
〈
TF
〉)

+

+
(
Md

f +
〈
pF
〉
∇β
)

+ βρfg
∂c

∂t
+∇ · (c 〈us〉) = 0

ρs

(
∂

∂t
(c 〈us〉) +∇ · (c 〈us〉 〈us〉)

)
= ∇ ·

(
cRS

)
+∇ ·

(
c
〈
TS
〉)

+

−
(
Md

f +
〈
pF
〉
∇β
)

+ cρsg

(1.56)

where the first two equations are the fluid mass and momentum balance,

while the last two are the balances of the solid phase. In these equations the

solid phase velocity is us, the fluid stress tensor is decomposed in a deviatoric

part τ̄F and an pressure pF

TF = τ̄F − pF I (1.57)

where I is the identity matrix. Similar decomposition is applied to the solid

stress tensor, but following the paper, the solid pressure pS can be further

decomposed in fluid pressure plus a collisional pressure due to the interaction

between the particles

TS = τ̄S −
(
pF + pco

)
I (1.58)

Terms Md
f +

〈
pF
〉
∇β includes all the interphase forces (drag, buoyancy,

virtual mass effect, ...). In particular we highlight the presence of the gradient

of the fluid phase concentration, though this term is not exactly a gradient,

but only a way to identify the surfaces of the solid particles. We do not write

here the explicit expression of Md
f due to the complexity of the terms and it

is also not relevant for the rest of the discussion.

Hill, in his work [32], follow the dissertation of Drew using a generic

average, but he introduces a weighted decomposition for the fluid and solid
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pressure terms at the interface between the two phases. In this way the final

set of equations is

∂β

∂t
+∇ · (β 〈uf〉) = 0

ρf

(
∂

∂t
(β 〈uf〉) +∇ · (β 〈uf〉 〈uf〉)

)
= ∇ ·

(
βRF

)
+∇ ·

(
β
〈
TF
〉)

+

+
(
Mf +

〈
pF
〉
∇β
)

+ βρfg
∂c

∂t
+∇ · (c 〈us〉) = 0

ρs

(
∂

∂t
(c 〈us〉) +∇ · (c 〈us〉 〈us〉)

)
= ∇ ·

(
cRS

)
+∇ ·

(
c
〈
TS
〉)

+

−
(
Mf −

〈
pS
〉
∇c
)

+ cρsg

(1.59)

where the only difference with the one obtained by Drew (1.56) is in the terms

related to the interphase forces that now are Mf plus the terms
〈
pF
〉
∇β for

the fluid phase and 〈ps〉∇c for the solid one. Mf , in this case, contains all the

interphase forces plus the Reynolds like terms derived from the decomposition

used. Also in this case we do not show the explicit expression of Mf for the

same reason as before.

The last average system that we report here is the one proposed by Joseph

and Lundgren [38] obtained by te use of an ensemble average. The equations

that they derive are the following



∂β

∂t
+∇ · (β 〈uf〉) = 0

ρf

(
∂

∂t
(β 〈uf〉) +∇ · (β 〈uf〉 〈uf〉)

)
= ∇ ·

(
βRF

∗
)

+∇ ·
(
β
〈
TF
〉)

+

−〈δSt〉+ βρfg
∂c

∂t
+∇ · (c 〈us〉) = 0

ρs

(
∂

∂t
(c 〈us〉) +∇ · (c 〈us〉 〈us〉)

)
= ∇ ·

(
cRS
∗
)

+∇ ·
(
c
〈
TS
〉)

+

+ 〈δSt〉+ cρsg

(1.60)

where RF
∗ and RS

∗ are a the Reynolds like stresses due to the averaging

process, while 〈δSt〉 represents all the normal interphase forces acting on
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the solid particles. The Reynold stresses presented in this work are slightly

different from the previous ones since they include also the indicator function

used during the average process.

1.4 Comparison of the 3D continuum liquid-

granular systems

In order to going on with the derivation of the two dimensional shallow flow

equations for the two-phase flow over fixed and mobile bed presented in the

next Chapters, it is necessary to define an unified model that represent all

the systems presented in the previous Sections since they are slightly differ-

ent from each other. For this purpose a comparison between the proposed

systems is necessary. For sake of clarity, from now on we neglect the symbols

of the average.

First of all we say something about the velocity us of the particle com-

pared with the velocity w of the center of mass used in Sections 1.1 and 1.2.

Following the works of Zhang and Prosperetti [67, 68] and Jackson [36, 35]

the velocity us can be expanded in Taylor series as

us= w +
r2

L2
f (Ω) +O

(
r4

L4

)

where f (Ω) is a function concerning the angular velocity of the particles.

With the same order of approximation O

(
r2

L2

)
used in the previous Sections,

the two velocity are equal

us ' w (1.61)

so, without adding errors, a switch between them is possible.

With this approximation, the sets of averaged equations (1.33) derived
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Section 1.1 are



∂β

∂t
+∇ · (βuf ) = 0

ρf

(
∂

∂t
(βuf ) +∇ · (βufuf )

)
= ρf∇ ·

(
βRF

)
+∇ ·

(
βTF

)
+

−Fzp
F−S + βρfg

∂c

∂t
+∇ · (cus) = 0

ρs

(
∂

∂t
(cus) +∇ · (cusus)

)
= ρS∇ ·

(
cRS

)
+ nFC+

+Fzp
S−F + cρsg

(1.62)

With the same approximation for the solid velocity, the volume averaged

equations (1.55) derived in Section 1.2 constitute the following system



∂β

∂t
+∇ · (βuf ) = 0

ρf

(
∂

∂t
(βuf ) +∇ · (βufuf )

)
= ρf∇ ·

(
βRF

)
+∇ ·

(
βTF

)
+

−FF−S + βρfg
∂c

∂t
+∇ · (cus) = 0

ρs

(
∂

∂t
(cus) +∇ · (cusus)

)
= ρS∇ ·

(
cRS

)
+ nFC+

+FS−F + cρsg

(1.63)

Now it is possible to compare the systems describing the three dimensional

two-phase flow for liquid-granular mixture with a continuum formulation

obtained with the different average procedures.

The equations describing the fluid and solid mass conservation, i.e. the

first and the third equation in systems (1.56), (1.59), (1.60), (1.62) and (1.63),

are equal in all the approaches. The differences between the different ap-

proaches arise when we consider the momentum equations.

A general structure for these systems can be found looking at the mixture

theory (see the work of Truesdell [65] for more details) used to model mul-

tiphase systems with the principles of continuum mechanics generalized to
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several interpenetrable continua. The set of equations for this theory is



∂β

∂t
+∇ · (βuf ) = 0

ρf

(
∂

∂t
(βuf ) +∇ · (βufuf )

)
= ∇ ·TF − FF−S + βρfg

∂c

∂t
+∇ · (cus) = 0

ρs

(
∂

∂t
(cus) +∇ · (cusus)

)
= ∇ ·TS + FF−S + cρsg

(1.64)

Analyzing the momentum equations it is possible to highlight some terms.

On the left side there are the advection terms, while on the right one there

are the stress terms (TF and TS), the interphase forces (FF−S) that are, due

to the action-reaction law, equal for the equation of both phases but with

an opposite sign, and the gravity force (g). All the systems derived in this

Chapter can be reduced in this form regrouping some terms.

First of all we can look at the left side of the momentum equations, underling

that for all the proposed systems the advection terms are equal. Moving to

the right hand side, one of the common terms in all the systems are the gravity

and the interphase forces. Regrading this last term, the expressions are

slightly different from one approach to the other, but their physical meaning

is the same, so we classify therm as interphase forces. The last class is

the stress terms that in systems (1.64) are presented in a divergence form.

Looking at systems (1.62), (1.63), (1.56), (1.59) and (1.60) a divergence form

of some tensors are present on the right hand side. Since the divergence

is a linear operator it is possible to sum up these terms obtaining a single

divergence. E.g. in system (1.60) it is possible to sum, in the solid momentum

phase, the terms cRS
∗ and cTS.

Using this classification all the terms in the momentum equations for the

systems (1.56), (1.59) and (1.60) are classified. However, for systems (1.62)

and (1.63), there is one more term outside the classification. This term is the

collisional forces exerted between the particles (nFC). However, following the

kinetic theory of gases, that is widely used in the granular flow field (we refer

to the works of Jenkins and Savage [37], Savage [59], Reif [50] and Chapman

and Cowling [17]), it is possible to rewrite it as a divergence of a collisional
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stress tensor

nFC = ∇ ·TColl (1.65)

In this way, since the collisional forces are the divergence of the tensor TColl,

it is possible to insert also this term into the generic solid stress tensor TS.

Since all the systems presented in the Chapter have the same general

structure, we can assume, as unified model for the remainder of the thesis,

the system derived from the mixture theory (1.64), without loss of generality.

1.5 Closure relations

Here we present only some aspects of the closure relation needed for the 3D

equations for the continuum formulation of fluid-granular mixture flow, since

lots of terms will be neglected in the following Chapters due to some suitable

simplifications that will be introduced later on.

The system of equations (1.64) is composed of eight equations (two mass

conservations, three momentum balances for the fluid phase and three mo-

mentum balances for the solid one) with 22 unknowns. The unknowns are:

the solid concentration c (the fluid one β is not an unknown since equation

(1.8) establishes a relation with the solid concentration), the three compo-

nents of solid velocities us, the three components of the fluid velocities uf ,

the three components of interphase forces FF−S and the components of the

fluid and solid stress tensor (the unknown components for each tensor are

six). Since the number of unknowns is larger than the number of equations,

it is necessary to use some closure relations.

The first terms that we analyze are the stress tensors. A generic tensor

can be decompose in an isotropic part plus a deviatoric one. In this way the

stress tensors Ti (where the superscript i refers to the phases involved: f for

fluid phase and s for solid one) is decomposed in isotropic pressure piI and

in tangential stresses (the deviatoric part) τ̄ i as

Ti = −piI + τ̄ i (1.66)
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where I is the identity matrix. These decomposition introduces two addi-

tional unknown: the solid an fluid pressure (ps and pf ), however the intro-

duction of them allows some important considerations that will be presented

in the next Chapter where the shallow flow approximation is introduced.

The second important term that need attention is the interphase forces

vector FF−S. From a physical point of view, this term is composed of all

the forces that the fluid and the solid phases exchange each other. They

are essentially the buoyancy (since there are solid particles immersed in a

fluid) and the drag effect (due to possible differences of velocity between the

phases). Other forces could also be introduced (e.g. the virtual added mass)

but they are smaller than the first two, so we neglected them. Following

the works of Armanini [7, 8] and Jackson [36], the interphase force can be

decomposed as

F F−S
i = c

∂

∂xj
T fij + FD

i (1.67)

where FD
i is the i-th component of the drag vector force FD, and using

equation (1.66) it becomes

F F−S
i = −c ∂

∂xi
pf + c

∂

∂xj
τ fij + FD

i (1.68)

The drag force is a function of the difference between fluid and solid velocity,

the net area of the particles and the density of the fluid phase

FD ∝ r2ρf (uf − uS)2 (1.69)

In this way the interphase force is no more unknown since it is a function of

the other unknowns of the problem.

Using equations (1.66), (1.68) and remembering that β = 1 − c, the set
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of equations (1.64) that describe a two phase flow becomes

∂

∂t
(1− c) +∇ · ((1− c) uf ) = 0

ρf

(
∂

∂t
((1− c) uf ) +∇ · ((1− c) ufuf )

)
= − (1− c)∇pf+

+ (1− c)∇ · τ̄F − FD + (1− c) ρfg
∂c

∂t
+∇ · (cus) = 0

ρs

(
∂

∂t
(cus) +∇ · (cusus)

)
= −∇ps − c∇pf +∇ · τ̄S+

+c∇ · τ̄ f + FD + cρsg

(1.70)

This is the system that we are going to use in the following Chapters, where

the derivation of the two dimensional shallow flow models is developed.



Chapter 2

The shallow flow approximation

The thee dimensional continuum equations derived in Chapter 1 compose

a system that is particularly complicated and, as written in Section 1.5,

requires lots of closure relations not always available in the literature. Since

in a debris flow the planar scale is commonly larger than the vertical one,

it is possible to introduce the shallow flow approximation which is widely

used in the field of free-surface flow when this difference between the spatial

scales is present. The use of the shallow flow simplification allows us to

reduce the complexity of the original set of equations obtaining a simplified

three dimensional system of partial differential equations which will be depth

integrated later on.

The Chapter is structured as follow: in Section 2.1 we focus our attention

on the characteristic scales of a debris flow, then in the Section 2.2 the mo-

mentum equations along the normal directions are simplified, while in Section

2.3 we simplify the momentum equations in the planar directions. Finally, in

Section 2.4, some consideration about the number of closure relations needed

is presented.
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2.1 Debris flow characteristic scales

With shallow flow (SF) we define a free-surface flow where the vertical scale

H is small if compared with the planar scale L

H � L (2.1)

The first step, for the introduction of the shallow flow approximation,

is the definition of the reference system. The choice, widely used in the

derivation of the SF models, is to define the reference system (x1, x2, x3)

with the 1st and 2nd direction parallel to the bottom (the planar axis), while

the 3rd one is perpendicular to it (normal direction) (see Figure 2.1).

Figure 2.1: Sketch of the reference system and the angle of inclination α

respect the gravity force.

Usually a debris flow happens in small basins with an area of less than

5 km2 (see for example [44]), and has a planar extension of about hundreds

of meters, while the the vertical one is of the order of meters. With these

considerations a debris flow can be defined as a shallow flow. As said before,

in order to going on with the simplification of the equations of motion, it

is necessary to understand the orders of magnitude of the variables involved

in the problem (some information can be found in [34], [60], [69] and [56]).

In the follow we present a list of all these variables with their characteristic

scale and order of magnitude.
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• Planar direction x1 and x2 is about hundreds of meter and the charac-

teristic scale is L

L ∼ 102 m (2.2)

• Normal direction x3 is meters with scale H

H ∼ 100 m (2.3)

• Longitudinal solid (us1, u
s
2) and fluid velocities (uf1 , uf2) have scale U

and their order of magnitude is few meters per second

U ∼ 100 m/s (2.4)

We use the same velocity scale for both solid and fluid phases since in

an uniform flow the two velocities are similar.

• Solid (c) and liquid (β) volumetric concentrations assume different val-

ues. Usually a debris flow flow has concentration of about 0.3÷ 0.5, so

the characteristic scale is

C ∼ 10−1 (2.5)

on the contrary, the liquid concentration, since β = 1 − c, is about

0.5÷ 0.7 so the same order of magnitude can be used

B ∼ 10−1 (2.6)

Of course the concentration of a debris flow could be larger, reaching

the maximum value of around 0.65 that is the maximum concentration

of the solid fraction in the bed, however here we are speaking of order

of magnitude, so this approximation cold be reasonable if we look at

the average over a flow event.

• Density of fluid phase ρf , that usually is water or water with silt, is

about 1000 ÷ 1500 kg/m3 while the density of the solid phase ρs is

about 2600 kg/m3. The order of magnitude of the density is therefore

ρ ∼ 103 kg/m3 (2.7)
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• Gravity force g that must be decomposed along x3 and along x1 and

x2. Defining α as the angle between the gravity vector an the normal

to the bed (see Figure 2.1 for a sketch), the two components of the

gravity are g3 = g cosα and g1 = g2 = g sinα where g is the module of

the gravity force with a characteristic scale

G ∼ 101 m/s2

The angle α assumes different value along the path of the debris flow,

ranging from 0◦ up to 20◦ and over in the triggering area. However,

since we are speaking of order of magnitude we can assume an average

value along the debris flow path of about 8◦÷10◦. With these definitions

the two characteristic scales needed are respectively for gravity force

normal to the bed and for the tangential one:

GN ∼ 101 m/s2 (2.8)

GT ∼ 10−1 m/s2 (2.9)

• The fluid pressure pf could be assumed as hydrostatic obtaining, as

order of magnitude

P f = ρGNH ∼ 104 Pa (2.10)

• The components of the tangential fluid stresses τ fij with i, j = 1, 2, 3

can be estimated using empirical relation derived for the uniform flow

such as the Gaukler-Stickler relation (see [6] for more details on this

formulation)

τ0 =
ρgu2

k2sh
1/3

where ks is the Stickler coefficient with a magnitude of 101 m1/3s−1, h

is the flow depth and u is the flow velocity. With this relation the order

of magnitude for the components of the tangential fluid stresses is

T f ∼ 102 Pa (2.11)
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• The solid pressure ps can be assumed hydrostatic like the fluid one.

The difference, respect to the fluid pressure, is that now we introduce

the solid concentration in order to take into account the fact that not

all the volume is occupied by the solid phase.

P s = ρCGNH ∼ 103 Pa (2.12)

Of course it is an approximation since the solid pressure, as the solid

stress tensor, takes into account also the presence of the collision be-

tween the particles.

• The order of magnitude for the components of solid stress tensor τ sij
with i, j = 1, 2, 3 can be estimated following the works of Armanini

[8, 7] and Armanini et al. [11] where the kinetic gas theory is applied

to the liquid-granular flows. Omitting all the formulation, due to its

complexity and length, the final result is

T s ∼ 101 Pa (2.13)

Among these variables are missing the time and the vertical fluid and solid

velocities. In order to evaluate their orders of magnitude, it is necessary to

use the first and the third equations of system (1.70) that represent the mass

balances for the fluid and solid phases

∂

∂t
β +

∂

∂x1
βuf1 +

∂

∂x2
βuf2 +

∂

∂x3
βuf3 = 0 (2.14)

∂

∂t
c+

∂

∂x1
cus1 +

∂

∂x2
cus2 +

∂

∂x3
cus3 = 0 (2.15)

The order of magnitude of one term for each equations, using the previous

characteristic scales, is

∂

∂x2
βuf2  

BU
L
∼ 10−3 s−1 (2.16)

and

∂

∂x2
cus2  

CU

L
= 10−3 s−1 (2.17)
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Since all the terms involved in the mass balance have the same order of

magnitude, it is possible to write the following relations

B
T

=
BV
H

=
BU
L
∼ 10−3 s−1 (2.18)

and

C

T
=
CV

H
=
CU

L
∼ 10−3 s−1 (2.19)

where T is the characteristic time scale and V is the fluid and solid normal

velocity scale. From these expressions it is possible to evaluate the order of

magnitude for the solid and liquid vertical velocity (us3 and uf3)

V =
H

L
U ∼ 10−2 m/s (2.20)

and for the time scale T

T =
L

U
=
H

V
∼ 102 s (2.21)

The last term missing is the drag force FD. As specified in equation (1.69)

in Section 1.5, the drag force is a function of the difference between solid and

fluid velocities, the area of the particles and the fluid density

FD
i ∝ r2

(
ufi − usi

)2
ρf i = 1, 2, 3 (2.22)

In order to understand the order of magnitude of the these forces, we assume

that the radius of the particles is about 10−1 m, while the maximum difference

between the two velocity is reached when the solid particles are stationary and

the fluid is moving (this happens in the triggering and deposition area where

the debris flow starts and stops) so
(
ufi − usi

)2
∼
(
ufi

)2
with i = 1, 2, 3.

With these assumption the order of magnitude for the drag force on direction

i = 1, 2 is

FD
T ∼ 101 N (2.23)

while for the normal direction i = 3 becomes

FD
N ∼ 10−3 N (2.24)
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We want to highlight that this is only an order of magnitude for the drag force

valid in the triggering and deposition area where the solid velocity is null.

Instead, when the uniform flow is developed the fluid and solid velocities have

the same order of magnitude, so the drag force becomes negligible. Since we

are speaking about the orders of magnitude, we can assume that the drag

force values obtained are also the same when we refer to a unit volume, so

we can use them inside the momentum equations.

An estimation of the magnitude of all the variables present into the three

dimensional equations for a continuum fluid-granular mixture flow derived in

Chapter 1 are presented, so it is possible to evaluate which terms into these

equations can be neglected under the shallow flow approximation.

2.2 Simplification of the momentum equations

on the normal direction

The first equation we analyze is the momentum balance for the fluid phase

along the normal direction that is the second equation of system (1.70).

Expanding all the terms, the equation reads

∂

∂t
βuf3 +

∂

∂x1
βuf1u

f
3 +

∂

∂x2
βuf2u

f
3 +

∂

∂x3
βuf3u

f
3 =

= − β

ρf

∂

∂x3
pf +

β

ρf

∂

∂x1
τ f13 +

β

ρf

∂

∂x2
τ f23 +

β

ρf

∂

∂x3
τ f33 −

FD
3

ρf
+ βg3

(2.25)

Using the characteristic scales derived in Section 2.1, the orders of magnitude

for each terms of the equation are (we neglect the unit of measure since now
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all the terms are expressed in m/s2)
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Taking into account only the terms with the highest order of magnitude (so

100) the fluid momentum equation in the normal direction becomes

− β

ρf

∂

∂x3
pf + βg3 = 0 (2.26)

which, simplifying β, becomes

∂

∂x3
pf = ρfg3 (2.27)

The starting solid phase momentum equation along the normal direction

is the fourth equation in system (1.70) that reads
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)
(2.28)

Following the same procedure as for the fluid phase, the order of magnitude
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of the different terms into this equation are
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Using only the first order of approximation, so neglecting all the term with a

magnitude less than 100, the solid momentum equation along the x3 direction

reduce to

∂

∂x3
ps + c

∂

∂x3
pf = cρsg3 (2.29)

The normal derivative of both solid and liquid pressures appears in this

equation. However, using equation (2.27) that describe the normal derivative

of the fluid pressure, equation (2.29) becomes

∂

∂x3
ps = c (ρs − ρf ) g3

= cρ′g3 (2.30)

and represent the vertical variation of the solid pressure, where ρ′ = (ρs − ρf )
is the submerged solid density.

Equations (2.27) and (2.30) constitute the shallow flow momentum equa-

tions for a two-phase flow along the normal direction and in Chapter 3 we

will demonstrate that the integration of these equations produce the well

known linear pressure distributions for both phases.
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2.3 Simplification of the momentum equations

on the planar direction

The momentum equation in the plane x1, x2 for the fluid phase derived in

Section 1.4 is
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where i = 1, 2.

The order of magnitude of each terms in this equation, using i = 1,

are the same than using i = 2 since these two directions are, up to now,

interchangeable. The magnitude of these terms are the following
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Taking into account only the leading terms (so the ones with magnitude of

10−2) the resulting equation describe only permanent flow where no time

variation is allowed. We remember that, as said in Section 2.1, that in a

permanent flow the drag term is smaller, so it is negligible. Since we want

to study phenomena with a time variation in the plane, we need to take into

account also the term with an order of 10−3. With this approximation it is

possible to neglect the terms related to the tangential stresses τ f1i and τ f2i as

commonly happens in the shallow flow models. With all these considerations

the final fluid momentum equation for directions x1 and x2, under the shallow
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flow approximation, for a two-phase flow is
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with i = 1, 2.

Moving now on the solid momentum equation for the axis x1 and x2, the

relevant equation, derived in Section 1.4, is
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(2.33)

for i = 1, 2. Using the same procedure as for the fluid momentum equation,

the following order of magnitude terms are obtained
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Taking into account only the first order terms (10−2) the equation describe,

as for the fluid one, a permanent flow, so it is necessary to use also the second

order terms (10−3). With these assumptions we neglect only the fluid and
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solid tangential stresses τ f,si1 and τ f,si2 . The final shallow flow solid momentum

equation along the x1 and x2 direction for a two-phase flow is then
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(2.34)

with i = 1, 2.

2.4 Number of closure relations needed

The final set of the three dimensional equations that describes a debris flow

or hyperconcentrated flow, under the hypothesis of shallow flow, is composed

by eight partial differential equations: the continuity equations for the fluid

phase (2.14) and for the solid phase (2.15), the two momentum equations

(2.27) and (2.30) along the normal direction x3, the momentum equations

for the fluid (2.32) phase and for the solid (2.34) phase on the plain x1, x2
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(2.35)

with i = 1, 2 and j = 1, 2, 3.

Looking at the unknowns, they are the fluid and solid velocities in the

three directions (ufi and usi with i = 1, 2, 3), the solid volume concentration
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(c), the solid and liquid pressures (ps and pf ) and the stress tensor elements

τ31 and τ32 for the fluid and solid phases. The last two unknowns are the

drag forces FD
1 and FD

2 . In total the number of unknowns are now 15, while

the equations are only eight. The introduction of seven closure relations

are needed, however, as done in Section 1.5, here we do not specify any of

them, since in the next Chapter we integrate these equations along the nor-

mal direction and then we introduce some other simplifications that reduce

drastically the unknowns number.





Chapter 3

Two-dimensional modelling

Frequently, in real cases, debris flow phenomena have the horizontal spatial

extension much bigger than the vertical dimension. As said in Chapter 2,

this characteristic allows the introduction of the shallow flow approximation

that simplifies the three dimensional equation of motion derived in Chapter

1. Nevertheless, as specified in Section 2.4, a three dimensional shallow flow

model needs a lot of closure relations still not available in the literature.

However for many practical use, e.g. the realization of hazard map, disaster

prevention plan and mitigation structures or the study of the morphology of

rivers and creeks, the vertical structure of the flow (i.e. the vertical profile

of concentration, velocity, pressure, ...) is not so important compared to the

planar one. For this reason it is convenient to introduce a two dimensional

depth integrated shallow flow approach, widely used in the field of free-surface

flow applications where only the depth-averaged values of the flow variables

are present.

The switch from a 3D shallow flow (SF) model to a 2D depth averaged

model is performed depth integrating the equations of motion (2.35) derived

in Chapter 2. The depth integration is performed along the normal to the

bottom direction between the bottom and the free surface. The choice of

the normal direction reflect what it was done in the derivation of the SF

equations in Chapter 2. Therefore, using the same reference system, the

depth integration is consistent with the SF approximation. The integrated

equations are then expressed in terms of depth average quantities (in a similar
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way as for the derivation of the 3D continuum equations for fluid-granular

mixture described in Chapter 1). With this procedure, in this Chapter we

derive the fully two-phase, two dimensional depth averaged models for mobile

and fixed bed. The distinction between the two models is necessary since, as

we explain better later on, the bed elevation in the first model can change

in time due to exchange of solid and liquid mass between the flow field and

the bed itself. On the contrary, in the fixed bed model the bed elevation is

fixed in time since the mass exchange is hindered due to the presence, for

example, of a bedrock surface or a paved channel. The derivation of both

models is necessary inasmuch the main objective of the thesis is to study the

transition between fixed and mobile bed.

In this Chapter, we also introduce the isokinetic approximations, in which

the solid and fluid velocities are equal, deriving the so called isokinetic mobile

and fixed models. This approximation is necessary for the simplification the

two-dimensional fully two-phase models since, as we explain better later on,

they are quite complicated and lots of closure relations are needed. Indeed in

the literature there are still not complete and reliable closure relations valid

for debris flow.

During the derivation of all these models we assume that fluid and solid

phases are present in all the flow field, so we disregard all the extreme cases,

e.g. the plug flow (see [40] for a classification of the different cases of flow).

The Chapter is structured as follow: in Chapter 3.1 the two dimensional

depth integrated equations of motion for the mobile bed are derived, while

Chapter 3.2 is devoted derivation of the depth integrated equations for the

fixed bed system. The isokinetic approximation is introduce in Chapter

3.3 and finally a short literature review of two-dimensional SF models is

presented in Chapter 3.4 with a comparison with the models we derived.

3.1 Fully two-phase free-surface mobile bed

system

The two-phase, free-surface phenomena with mobile bed are characterized

by the presence of two distinct surfaces of separation between the mixture
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(composed by fluid and solid phase) an the surrounding environment, where

these surfaces change in time. The first one describes the free-surface and

separates the flow from the air above. The other one separates the flow from

the static bed where no flow is present (velocities of fluid and solid phase are

null). Once these surfaces are defined, appropriated boundary conditions can

be set on them and definite integration of the shallow flow equations derived

in Chapter 2 can be done, obtaining the mobile bed system.

3.1.1 Boundary conditions

The first step for the depth integration of the equations, is the definition of the

appropriate boundary conditions that have to be applied on the separation

surfaces. In the follow they are explained in details.

Free surface conditions

Mathematically, the free-surface η can be expressed as

η(x1, x2, t) = zb(x1, x2, t) +H(x1, x2, t)

where zb is the bed elevation and H is the flow depth (see Figure 3.1 for a

sketch of the variables). It is useful to introduce the function ψ defined as

ψ(x1, x2, x3, t) = η(x1, x2, t)− x3 = 0

where x3 is the normal direction. We highlight that ψ is a function of the

space xi and time t. Since the function ψ is identically zero, also the total

time derivative is null

dψ

dt
=
∂η

∂t
+ uint1

∂η

∂x1
+ uint2

∂η

∂x2
− uint3 = 0 (3.1)

in which uintj is the j-th component of the velocity of the interface.

On this surface, since no penetration or detachment of the three different

phases (air, solid and fluid) occurs, the interface, the solid (us) and the fluid

(uf ) velocities are the same

uint = [us]η =
[
uf
]
η

(3.2)
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Figure 3.1: Sketch of the main variables of the problem.

In this way two distinct kinematic boundary conditions are obtained

∂η

∂t
+
[
uf1

]
η

∂η

∂x1
+
[
uf2

]
η

∂η

∂x2
−
[
uf3

]
η

= 0 (3.3)

∂η

∂t
+ [us1]η

∂η

∂x1
+ [us2]η

∂η

∂x2
− [us3]η = 0 (3.4)

Bed surface conditions

The bottom surface zb(x1, x2, t) is the locus of points with null fluid and solid

velocity below which, in the vertical direction, all the other points have still

null fluid and solid velocity. On this surface we use, as boundary condition,

the null velocities statement[
uf1

]
zb

=
[
uf2

]
zb

=
[
uf3

]
zb

= 0 (3.5)

[us1]zb = [us2]zb = [us3]zb = 0 (3.6)

The velocities, as specified in the definition of bottom surface, are null even

below the bottom, since we disregard possible underground flow. Finally we

want to highlight that the bottom elevation is a function of space and time,

since we are speaking about mobile bed system.

Another important aspect of the bed is represented by the concentration:

the solid bed concentration (the solid concentration below bottom elevation)
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Figure 3.2: Sketch of a generic stress vector R applied on a surface with

normal n̂.

is constant in time and space, is called cb and depends essentially on the gran-

ulometric distribution of bed material. Usually it is about 0.6 ÷ 0.65. The

rest of the volume inside the bed is occupied by the interstitial fluid, so when

an erosion occurs (the bed elevation decreases) a release of solid and fluid

phases happens; on the contrary, when deposition occurs (the bed elevation

increases) an amount of solid and liquid phase are trapped. The concentra-

tion cb is also the limit value for the concentration inside the mixture when

we are dealing with debris flows.

Shear stresses at the bottom and at the free surface

Given a stress vector R applied on a surface with normal n̂ (see figure 3.2

for a sketch), the component along the i-th axis can be expressed using the

Chaucy’s stress theorem

Ri = T1in1 + T2in2 + T3in3 = Tjinj

in which nj is the j-th component of the surface outward normal and Tji is

the ji element of the stress tensor T.

Given a generic surface ψ = 0, the outward normal vector n̂ is

n̂ =
∇ψ
|∇ψ|



46 3 Two-dimensional modelling

and in our case, for the free surface, the normal becomes

n̂η =

(
− ∂η

∂x1
;− ∂η

∂x2
; 1

)
rη

(3.7)

where

rη =

√(
∂η

∂x1

)2

+

(
∂η

∂x2

)2

+ 1 (3.8)

while for the bottom is

n̂zb =

(
− ∂zb
∂x1

;− ∂zb
∂x2

; 1

)
rzb

(3.9)

in which

rzb =

√(
∂zb
∂x1

)2

+

(
∂zb
∂x2

)2

+ 1 (3.10)

Using the above definitions, the projections along the x1, x2 directions of

the stress vector, for the fluid (f) and solid (s) phases, at the bottom, are

τ f,si,zb =
1

rzb

(
−
[
τ f,s1i

]
zb

∂zb
∂x1
−
[
τ f,s2i

]
zb

∂zb
∂x2

+
[
τ f,s3i

]
zb

)
(3.11)

where i = 1, 2 while, at the free surface, they are

τ f,si,η =
1

rη

(
−
[
τ f,s1i

]
η

∂η

∂x1
−
[
τ f,s2i

]
η

∂η

∂x2
+
[
τ f,s3i

]
η

)
(3.12)

where i = 1, 2.

Usually, in the field of debris flow and hyperconcentrated flow, the stress

vectors at the free surface are negligible respect to all the other forces. This

happens since these stresses are produced by the wind forces that usually are

very weak respect to other forces acting inside the flow. Therefore expression

(3.12) becomes null

τ f1,η = τ f2,η = 0 (3.13)

τ s1,η = τ s2,η = 0 (3.14)
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Pressures at the free surface

Concerning the solid and liquid pressures on the free surface, we assume that

they are null, since it is widely used working with relative pressure where the

atmospheric one is considered as reference pressure, so

psη = pfη = 0 (3.15)

3.1.2 Continuity equations

The 3D shallow flow equation describing the fluid mass balance (2.14) can

be expressed in the following way

− ∂

∂t
c+

∂

∂xj
ufj −

∂

∂xj
cufj = 0 (3.16)

The depth integration gives

−
∫ η(x1,x2,t)

zb(x1,x2,t)

∂

∂t
c dx3 +

∫ η(x1,x2,t)

zb(x1,x2,t)

∂

∂xj
ufj dx3−

∫ η(x1,x2,t)

zb(x1,x2,t)

∂

∂xj
cufj dx3 = 0

where we highlight the space and time dependency of the domain integration

extrema. Introducing the definition of the depth average expression for a

generic quantity f(x, t)

F (x1, x2, t) =
1

H

∫ η

zb

f(x, t) dx3 (3.17)

where H is the mixture depth defined as

H =

∫ η

zb

dx3 = η − zb (3.18)

and, since we want to express, as said before, the terms of the equation

as a depth average value, it is necessary to switch the integral with the

derivatives. Because the integration extrema depend on space and time,

the switch between integration and derivative can be done via the Leibniz
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integration rule, obtaining

−
(
∂

∂t

∫ η

zb

c dx3 − [c]η
∂η

∂t
+ [c]zb

∂zb
∂t

)
+

+

(
∂

∂x1

∫ η

zb

uf1 dx3 −
[
uf1

]
η

∂η

∂x1
+
[
uf1

]
zb

∂zb
∂x1

)
+

+

(
∂

∂x2

∫ η

zb

u2 dx3 −
[
uf2

]
η

∂η

∂x2
+
[
uf2

]
zb

∂zb
∂x2

)
+

([
uf3

]
η
−
[
uf3

]
zb

)
+

−
(

∂

∂x1

∫ η

zb

cuf1 dx3 −
[
cuf1

]
η

∂η

∂x1
+
[
cuf1

]
zb

∂zb
∂x1

)
+

−
(

∂

∂x2

∫ η

zb

cuf2 dx3 −
[
cuf2

]
η

∂η

∂x2
+
[
cuf2

]
zb

∂zb
∂x2

)
−
([
cuf3

]
η
−
[
cuf3

]
zb

)
= 0

Regrouping the different terms, the following expression is obtained
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(
∂η

∂t
+
[
uf1

]
η

∂η

∂x1
+
[
uf2

]
η

∂η

∂x2
−
[
uf3

]
η

)
︸ ︷︷ ︸

I

+

−
([
uf1

]
η

∂η

∂x1
+
[
uf2

]
η

∂η

∂x2
−
[
uf3

]
η

)
︸ ︷︷ ︸

II

+

− [c]zb

(
∂zb
∂t

+
[
uf1

]
zb

∂zb
∂x1

+
[
uf2

]
zb

∂zb
∂x2
−
[
uf3

]
zb

)
︸ ︷︷ ︸

III

+

+

([
uf1

]
zb

∂zb
∂x1

+
[
uf2

]
zb

∂zb
∂x2
−
[
uf3

]
zb

)
︸ ︷︷ ︸

IV

= 0 (3.19)

In this expression term I is nothing but the kinematic boundary condition

for the fluid phase at free surface (3.3), so it is null. Using the same boundary

condition, the term II becomes

II = −∂η
∂t

The term III, due to the non-slip and impermeability condition at the bot-

tom (3.5) reduces to

III =
∂zb
∂t
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while, for the same reasons, the term IV is zero. Finally, remembering that

at the bottom the solid concentration is constant and equal to cb, the depth

integrated equation for the mass conservation of the fluid phase becomes

− ∂

∂t

∫ η

zb

c dx3 +
∂

∂x1

∫ η

zb

uf1 dx3 −
∂

∂x1

∫ η

zb

cuf1 dx3 +
∂

∂x2

∫ η

zb

uf2 dx3+

− ∂

∂x2

∫ η

zb

cuf2 dx3 +
∂η

∂t
− cb

∂zb
∂t

= 0 (3.20)

Using the definition of the depth average quantity (3.17) to the motion vari-

ables, the fluid phase mass conservation becomes

∂

∂t
(1− C)H + (1− cb)

∂zb
∂t

+
∂

∂x1
(1− αcu1C)HU1+

+
∂

∂x2
(1− αcu2C)HU2 = 0 (3.21)

where C, U1 and U2 are the depth average solid concentration c, fluid veloc-

ities uf1 and uf2 respectively. Finally

αcu1 =

∫ η
zb
cuf1 dz

CHU1

(3.22)

αcu2 =

∫ η
zb
cuf2 dz

CHU2

(3.23)

are two corrective coefficients. These coefficients arise since we are express-

ing the integral of the product between two (or more) variables with a non

uniform vertical profiles (in Figure 3.3 is sketched a qualitative vertical dis-

tribution of concentration and velocity) in terms of their depth average coun-

terparts.

Moving now to the solid phase, the mass balance equation (2.15) reads

∂c

∂t
+
∂cusj
∂xj

= 0

and following the same procedure as for the fluid phase, the depth averaged

equation becomes

∂

∂t
(CH) + cb

∂zb
∂t

+
∂

∂x1
(αcv1CHV1) +

∂

∂x2
(αcv2CHV2) = 0 (3.24)
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Figure 3.3: Sketch of a qualitative profile of the concentration c and velocity

u along x3 for an hyperconcentrated flow over mobile bed.

where the boundary condition expressed by equations (3.4) and (3.6) have

been used. In equation (3.24) the terms V1 and V2 are the depth average value

of solid velocities us1 and us2 respectively, while the two corrective coefficients

are

αcv1 =

∫ η
zb
cus1 dz

CHV1
(3.25)

αcv2 =

∫ η
zb
cus2 dz

CHV2
(3.26)

3.1.3 Momentum equations

Pressure distributions

The momentum along x3 for the fluid phase (2.27) reads

∂pf

∂x3
= ρfg3 (3.27)

where g3 is the component of the gravity force along the x3 direction. Per-

forming an indefinite integral along x3, the results is

pf (x3) = ρfg3x3 +Kf (3.28)

where the constant Kf can be evaluated at free surface thanks to the bound-

ary condition (3.15)

pf (η) = 0 = ρfg3η +Kf
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Figure 3.4: Sketch of the reference system with the direction ξ.

from which follows

Kf = −ρfg3 (zb +H) (3.29)

and

pf (x3) = −ρfg3 (zb +H − x3) (3.30)

therefore, with the assumption of shallow flow, the fluid pressure distribution

is hydrostatic, as said before and also supposed in Section 2.1.

It is useful to define the variable ξ = η − x3 sketched in Figure 3.4

and performing the depth integration using this variable, the fluid pressure

distribution becomes

pf (ξ) = −ρfg3ξ (3.31)

In a similar way it is possible to evaluate the solid pressure distribution

starting from equation (2.30) that is

∂

∂x3
ps = cρ′g3 (3.32)

where ρ′ = ρs − ρf is the submerged solid density. Performing the same

integration as for the fluid phase, the result is

ps (x3) = ρ′g3

∫ x3

0

c dx′3 +Ks (3.33)
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where the constant Ks is evaluated imposing the boundary condition (3.15)

ps (η) = 0 = ρ′g3

∫ η

0

c dx3 +Ks

obtaining

Ks = −ρ′g3
∫ η

0

c dx3 = −ρ′g
(∫ zb

0

c dx3 +

∫ η

zb

c dx3

)
= −ρ′g3 (cbzb + CH) (3.34)

So the final expression for the solid pressure distribution under the hypothesis

of shallow flow is

ps (x3) = −ρ′g3
(
cbzb + CH −

∫ x3

0

c dx′3

)
(3.35)

In this expression the integral of the concentration is undefined since it is

strictly depending on the concentration distribution. The solution of the in-

tegral will be discuss later on in this Section where the momentum equations

in directions x1, x2 for the liquid phase are integrated.

As for the fluid phase, it useful to perform the integration of the solid

pressure using the ξ variable, obtaining

ps (ξ) = −ρ′g3
∫ ξ

0

c dξ′ (3.36)

The solid and fluid pressures evaluated at the bed surface are

pf
∣∣
zb

= −ρfg3H (3.37)

ps|zb = −ρ′g3CH (3.38)

and these expressions will be useful in later on, where the depth integration

of the momentum equations along x1 and x2, are performed.
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The fluid phase momentum on the x1, x2 plane

The depth integral of the 3D SF equation for the fluid momentum along the

x1 direction derived in Section 2.3, is

∫ η

zb

(
∂

∂t
(1− c)uf1 +

∂

∂xj
(1− c)uf1u

f
j

)
dx3︸ ︷︷ ︸

I

=

−
∫ η

zb

(1− c)
ρf

∂

∂x1
pf dx3︸ ︷︷ ︸

II

+

∫ η

zb

(1− c)
ρf

∂

∂x3
τ f31 dx3︸ ︷︷ ︸

III

+

∫ η

zb

(
(1− c)g1 −

FD
1

ρf

)
dx3︸ ︷︷ ︸

IV

(3.39)

with j = 1, 2, 3. Since the momentum equation has a lot of different terms

that have to be integrated, we group them in four categories that have the

same integration strategy: the advective terms (I), the pressure term (II),

the shear stress (III) and gravity and drag forces (IV ).

Expansion of term I, using the Leibniz rule, gives

I =
∂

∂t

∫ η

zb

(1−c)uf1 dx3+
∂

∂x1

∫ η

zb

(1−c)uf1u
f
1 dx3+

∂

∂x2

∫ η

zb

(1−c)uf1u
f
2 dx3+

−
[
(1− c)uf1

]
η

(
∂η

∂t
+
[
uf1

]
η

∂η

∂x1
+
[
uf2

]
η

∂η

∂x2
−
[
uf3

]
η

)
︸ ︷︷ ︸

a

+

+
[
(1− c)uf1

]
zb

(
∂zb
∂t

+
[
uf1

]
zb

∂zb
∂x1

+
[
uf2

]
zb

∂zb
∂x2
−
[
uf3

]
zb

)
︸ ︷︷ ︸

b

Using the kinematic boundary condition (3.3), term a becomes null, while

using the bed boundary condition (3.5) term b becomes null. The previous

expression reduces now to

I =
∂

∂t

∫ η

zb

(1−c)uf1 dx3+
∂

∂x1

∫ η

zb

(1−c)uf1u
f
1 dx3+

∂

∂x2

∫ η

zb

(1−c)uf1u
f
2 dx3

Finally, using the definition of depth average variable (3.17) and introducing
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the following corrective coefficients

αcu1u1 =

∫ η
zb
cuf1u

f
1 dz

CHU1U1

(3.40)

αcu1u2 =

∫ η
zb
cuf1u

f
2 dz

CHU1U2

(3.41)

the depth integration of term I becomes

I =
∂

∂t
(1− αcu1C)HU1 +

∂

∂x1
(1− αcu1u1C)HU1U1+

+
∂

∂x2
(1 − αcu1u2C)HU1U2 (3.42)

Term II can be expanded as

−(1− c)
ρf

∂

∂x1
pf = − 1

ρf

∂

∂x1
pf︸ ︷︷ ︸

a

+
c

ρf

∂

∂x1
pf︸ ︷︷ ︸

b

(3.43)

Integration of term a, using the Leibniz rule, gives

− 1

ρf

∫ η

zb

∂

∂x1
pf dx3 = − 1

ρf

(
∂

∂x1

∫ η

zb

pf dx3 −
[
pf
]
η

∂η

∂x1
+
[
pf
]
zb

∂zb
∂x1

)
Using the hydrostatic fluid pressure distribution (3.30), the value of the pres-

sure at the bottom (3.37) and the boundary condition at the free surface

(3.15), this expression reduces to

− 1

ρf

∫ η

zb

∂

∂x1
pf dx3 =

∂

∂x1
g3
H2

2
+ g3H

∂zb
∂x1

(3.44)

However the last term of this equation is null since, for the reference system

used (direction x1 and x2 are tangential to the bed surface) we have

∂zb
∂xi

= 0 (3.45)

for i = 1, 2. We want to highlight that this term is different from zero when

other types of reference systems are used, e.g. the one used in Chapter 4.

The depth integration of a is then

− 1

ρf

∫ η

zb

∂

∂x1
pf dx3 =

∂

∂x1
g3
H2

2
(3.46)
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The integral of term b in (3.43) presents a product between two quantities:

the concentration c and the derivative of the fluid pressure respect direction

x1. It is possible to define, as for all the other terms integrated before where

a product of two variables is present, a corrective coefficient αp1 that allows

to express the integral in terms of the depth average variables, namely

αp1 =

∫ η

zb

c
∂

∂x1
pf dx3

HC

(
1

H

∫ η

zb

∂pf

∂x1
dx3

) (3.47)

Using this coefficient, the integration of b using the Leibniz rule gives∫ η

zb

c

ρf

∂

∂x1
pf =

αp1C

ρf

(
∂

∂x1

∫ η

zb

pf dx3 −
[
pf
]
η

∂η

∂x1
+
[
pf
]
zb

∂zb
∂x1

)
Introducing the hydrostatic fluid pressure distribution (3.30) with the same

boundary condition as before, the resulting expression is∫ η

zb

c

ρf

∂

∂x1
pf dx3 = −αp1C

∂

∂x1
g3
H2

2
(3.48)

thus term II of (3.39) becomes

II = (1− αp1C)
∂

∂x1
g3
H2

2
(3.49)

The term III is integrated in a similar way as II obtaining

(1− ατ1C)

ρf

([
τ f31

]
η
−
[
τ f31

]
zb

)
where

ατ1 =

∫ η

zb

c
∂

∂x3
τ f31 dx3

HC

(
1

H

∫ η

zb

∂

∂x3
τ f31 dx3

) (3.50)

Using the boundary condition concerning the fluid shear stresses at the bed

(3.11), at the free-surface (3.13) and remembering that, for the shallow flow

approximation, the terms τ f11 and τ f21 are negligible, the term III reduces to

III = −(1− ατ1C)

ρf
rzbτ

f
1,zb

(3.51)
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For the term IV of (3.39), its integral is

g1

∫ η

zb

(1− c) dx3 −
1

ρf

∫ η

zb

FD
1 dx3

obtaining

IV = (1− C) g1H −
1

ρf
HFD1 (3.52)

where

FDi =
1

H

∫ η

zb

FD
i dx3 (3.53)

is the depth average value of the drag force along x1.

Assembling all the terms of the initial equation (3.39), namely the terms

(3.42), (3.49), (3.51) and (3.52), the 2D depth averaged SF equation for the

momentum of the fluid phase along x1 direction becomes

∂

∂t
(1−αcu1C)HU1+

∂

∂x1
(1−αcu1u1C)HU1U1+

∂

∂x2
(1−αcu1u2C)HU1U2 =

= (1− αp1C)
∂

∂x1
g3
H2

2
− (1− ατ1C)

ρf
rzbτ

f
1,zb
− 1

ρf
HFD1 +

+ (1− C) g1H (3.54)

For the x2 direction, the derivation is similar and the final result is

∂

∂t
(1−αcu2C)HU2+

∂

∂x1
(1−αcu1u2C)HU1U2+

∂

∂x2
(1−αcu2u2C)HU2U2 =

= (1− αp2C)
∂

∂x2
g3
H2

2
− (1− ατ2C)

ρf
rzbτ

f
2,zb
− 1

ρf
HFD2 +

+ (1− C) g2H (3.55)

In this equation the following corrective coefficients have been introduced

αcu2u2 =

∫ η
zb
cu2u2 dz

CHU2U2

(3.56)
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αp2 =

∫ η

zb

c
∂

∂x2
pf dx3

HC

(
1

H

∫ η

zb

∂pf

∂x2
dx3

) (3.57)

ατ2 =

∫ η

zb

c
∂

∂x3
τ f32 dx3

HC

(
1

H

∫ η

zb

∂

∂x3
τ f32 dx3

) (3.58)

The solid phase momentum on the x1, x2 plane

The 3D solid phase momentum equation along x1 (2.34), derived in Chapter

2, is integrated in a similar way as for the fluid phase. The only term, that has

a different treatment regards the integration of the solid pressure derivative∫ η

zb

∂

∂x1
ps dx3 (3.59)

The integral is evaluated, first of all, using the Leibniz rule obtaining

∂

∂x1

∫ η

zb

ps dx3 − [ps]η
∂η

∂x1
+ [ps]zb

∂zb
∂x1

Introducing now the expression for the hydrostatic solid pressure distribution

presented in equation (3.35) and remembering that, for the reference system

used the bed elevation derivative is null, the integral becomes

ρ′g3
∂

∂x1

∫ η

zb

∫ x3

0

c dx3 dx3︸ ︷︷ ︸
a

−
∫ η

zb

cbzb dx3 −
∫ η

zb

CH dx3

 (3.60)

Term a can be divided in two integral and, since c = cb below the bed

elevation, it becomes∫ x3

0

c dx3 dx3 =

∫ zb

0

c dx3 dx3 +

∫ x3

zb

c dx3 dx3

= cbzb +

∫ x3

zb

c dx3 dx3
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Using this equation, expression (3.60) simplifies as

ρ′g3
∂

∂x1

(∫ η

zb

∫ x3

zb

c dx3 dx3 −
∫ η

zb

CH dx3

)
and, since CH is constant along x3, it becomes

ρ′g3
∂

∂x1

(∫ η

zb

∫ x3

zb

c dx3 dx3 − CH2

)
The problem arise when we have to evaluate the double integral, since the

inner one is strictly related to the vertical concentration distribution. It

is possible to introduce, also in this case, a corrective coefficient for the

evaluation of the integral defined as

αc = 2

∫ η
zb

∫ x3
zb
c dx3 dx3

CH2
(3.61)

Using this coefficient, the depth integration of the solid pressure terms is

∫ η

zb

∂

∂x1
ps dx3 = − ∂

∂x1
g3C (2− αc) ρ′

H2

2
(3.62)

The derived 2D depth averaged shallow flow equation for the momentum

of the solid phase along x1 direction is

∂

∂t
αcv1CHV1 +

∂

∂x1
αcv1v1CHV1V1 +

∂

∂x2
αcv1v2CHV1V2 =

=
g3
ρs

(
ρ′

∂

∂x1
C
H2

2
(2− αc) + ρfαp1C

∂

∂x1

H2

2

)
+

− 1

ρs
rzb

(
τ s1,zb + ατ1Cτ

f
1,zb

)
+

1

ρs
HFD1 + +Cg1H (3.63)

where the following corrective coefficients have been used

αcv1v1 =

∫ η
zb
cus1u

s
1 dz

CHV1V2
(3.64)

αcv1v2 =

∫ η
zb
cus1u

s
2 dz

CHV1V2
(3.65)
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In the same way it is possible derive the averaged momentum for the x2

direction starting from equation (2.34) with i = 2 obtaining the 2D vertical

averaged shallow flow equation for the momentum of the solid phase along

x2 direction

∂

∂t
αcv2CHV2 +

∂

∂x1
αcv1v2CHV1V2 +

∂

∂x2
αcv2v2CHV2V2 =

=
g3
ρs

(
ρ′

∂

∂x2
C
H2

2
(2− αc) + ρfαp2C

∂

∂x2

H2

2

)
+

− 1

ρs
rzb

(
τ s2,zb + ατ2Cτ

f
2,zb

)
+

1

ρs
HFD2 + Cg2H (3.66)

where the corrective coefficient

αcv2v2 =

∫ η
zb
cv2v2 dz

CHV2V2
(3.67)

has been used.
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3.1.4 Final set of mobile bed motion equations and

closure relations

The final set of equations describing the momentum balance in the x1, x2

directions are compose by the equations (3.54), (3.55) for the fluid phase and

(3.63), (3.66) for the solid one. These equation plus the mass balance for fluid

(3.21) and solid phase (3.24) are the set of Partial Differential Equations

(PDEs) that describe the 2D depth averaged two-phase shallow flow over

mobile bed.

∂

∂t
(1− C)H + (1− cb)

∂zb
∂t

+
∂

∂xj

(
1− αcujC

)
HUj = 0

∂

∂t
(CH) + cb

∂zb
∂t

+
∂

∂xj

(
αcvjCHVj

)
= 0

∂

∂t
(1− αcuiC)HUi +

∂

∂xj
(1− αcuiujC)HUiUj =

= (1− αpiC)
∂

∂xi
g3
H2

2
− (1− ατiC)

ρf
rzbτ

f
i,zb

+

− 1

ρf
HFDi + (1− C) giH

∂

∂t
αcviCHVi +

∂

∂xj
αcvivjCHViVj =

=
g3
ρs

(
ρ′
∂

∂xi
C
H2

2
(2− αc) + ρfαpiC

∂

∂xi

H2

2

)
+

−rzb
ρs

(
τ si,zb + ατiCτ

f
i,zb

)
+

1

ρs
HFDi + CgiH

where i, j = 1, 2. The unknowns of this system are: the two components

of the fluid velocity Ui, the two components of the solid velocity Vi, the

flow depth H, the bottom elevation zb, the solid concentration C, the two

components of the bottom shear stress for the fluid τ fi,zb and for the solid phase

τ si,zb and the two components of the drag force FDi . In total the system is

composed by six equations, while the unknowns are 13. Though, the number

of unknowns are bigger since all the corrective coefficients are unknowns. For

the evaluation of these coefficients, however, it is necessary the knowledge of

the vertical distribution of the quantities. Since this is not still available, we

assume that

αk = 1 (3.68)
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where k represent a generic corrective coefficient. With unitary coefficients,

we assume that the distributions along the normal direction of the concen-

tration c and the velocities uf,s1 , uf,s2 are constant, i.e.

c = C; c = φ; ufi = Ui; usi = Vi

Since the equations are only six while the unknown variables are 13, it

is necessary to define some closure relation. Typically, the hydrodynamic

variables are taken as unknowns, so for this equations they are the four

velocity components (Ui and Vi) the flow depth H and the bed elevation zb.

Instead, for the other quantities, we need to introduce some relations that

connect them to the hydrodynamic variables.

The first closure relation needed is the one for the concentration C. The

literature is full of such relations, mainly of empirical origin and obtained in

conditions of equilibrium with respect to the hydrodynamic state (steady-

state). For this reason the concentration obtained with these relations is also

called equilibrium concentration. Generically, this relation is

C =
qs (|U| , H)

|U|H
(3.69)

where |U| in the module of the fluid velocity

|U| =
√
U2
1 + U2

2

and qs (|U| , H) is any sediment transport formula that can be found in the

literature (see e.g. [66] for a possible list).

Other four closure relation are needed for the fluid and solid shear bed

stresses. These types of closure are present in literature only for dilute sus-

pension (see for example the works of Zhang and Prosperetti [68], Drew

[21], Jackson [36] and Marchioro et al. [45]) and no general ones exist for

hyperconcentrated flow or debris flow.

The last two closure relations are connected with the drag forces FDi . As

mentioned in the previous Chapters, a general structure of this term is

FDi = CDr
2ρf (Ui − Vi)2 (3.70)
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where r is the radius of the solid particle and CD is the drag coefficient that

depends on the regime of the flow. However a general formulation for CD, in

the case of debris flow, is still not present in the literature.

3.2 Fully two-phase free-surface fixed bed sys-

tem

The derivation of the 2D shallow flow equations that describe the two-phase

flow over fixed bed is performed in the same way as for the mobile bed ones.

The main difference between the two derivations is in the lower extrema of

integration that, in the fixed bed case, it is no more a function of time and

space, but only of space, so the Leibniz rule for the time derivative produces

a different result respect to the mobile bed condition, that is, for a generic

function f(x, t)∫ η(x,t)

zb(x)

∂

∂t
f(x, t) dx3 =

∂

∂t

∫ η(x,t)

zb(x)

f(x, t) dx3 − [f ]η
∂η

∂t
(3.71)

Regarding the boundary conditions, they are the same as the mobile bed-

case, so the depth integration could be developed in a similar way as before.

3.2.1 Continuity equations

The starting point for the fluid continuity equation is (2.14) and performing

the vertical integration we end up with

∂η

∂t
− ∂

∂t
φH +

∂

∂x1
(1− αϕu1φ)HU1 +

∂

∂x2
(1− αϕu2φ)HU2 = 0 (3.72)

where φ is the depth averaged solid concentration in the flow field

φ =
1

H

∫ η

zb

c dx3 (3.73)

and αϕu1 and αϕu2 are two corrective coefficients defined in the same way as in

(3.22) and (3.23). All the other quantities have been defined in the previous
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Section. Here we use the symbol φ to express the averaged concentration

inside the flow field instead C since the concentration in the fixed bed has

a different behavior than the one in the mobile bed. This difference will

be explained briefly in Section 3.2.3, while in Chapter 4 a more exhaustive

discussion is presented.

Equation (3.72) contains the term η that describe the free surface eleva-

tion. Since η is the sum of the bed elevation plus the flow depth, it is possible

to rewrite the expression as

∂

∂t
(1− φ)H +

∂

∂x1
(1− αϕu1φ)HU1 +

∂

∂x2
(1− αϕu2φ)HU2 = 0 (3.74)

where we neglect the time derivative of zb since it not depends on time.

Moving to the solid continuity equation (2.15), the depth averaged process

produces

∂

∂t
φH +

∂

∂x1
αϕv1φHV1 +

∂

∂x2
αϕv2φHV2 = 0 (3.75)

that is the 2D shallow flow equation for the solid mass balance over the fixed

bed, where αϕv1 and αϕv2 are two corrective coefficients defined in the same

way as (3.25) and (3.26).

3.2.2 Momentum equations

The depth integration of the momentum equation along the x3 direction,

does not change respect to the mobile bed case, so the expressions for the

fluid and solid pressure are given by (3.30) and (3.35).

The depth integration of the momentum equations in the plane x1, x2 is

performed in the same way and produce a similar results as the mobile bed.

For the fluid phase the final equation is

∂

∂t
(1−αϕuiφ)HUi+

∂

∂xj
(1−αϕuiujφ)HUiUj = − 1

ρf
HFDi +(1− φ) giH+

+ (1− αpiφ)
∂

∂xi
g3
H2

2
− (1− ατiφ)

ρf
rzbτ

f
i,zb

(3.76)
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with i, j = 1, 2, while for the solid phase the resulting equation is

∂

∂t
αϕviφHVi +

∂

∂xj
αϕvivjφHViVj =

1

ρs
HFDi + φgiH+

+
g3
ρs

(
ρ′
∂

∂xi
φ
H2

2
(2− αc) + ρfαpφ

∂

∂xi

H2

2

)
− 1

ρs
rzb

(
τ si,zb + ατiφτ

f
i,zb

)
(3.77)

with i, j = 1, 2. As for the continuity equations, also in the momentum

equations we use the symbol φ for representing the solid depth average con-

centration.

3.2.3 Final set of fixed bed motion equations and clo-

sure relations

The final set of equations describing the fully two-phase fixed bed model is

∂η

∂t
− ∂

∂t
φH +

∂

∂xj

(
1− αϕujφ

)
HUj = 0

∂

∂t
φH +

∂

∂xj
αϕvjφHVj = 0

∂

∂t
(1− αϕuiφ)HUi +

∂

∂xj
(1− αϕuiujφ)HUiUj = − 1

ρf
HFDi + (1− φ) giH+

+ (1− αpiφ)
∂

∂xi
g3
H2

2
− (1− ατiφ)

ρf
rzbτ

f
i,zb

∂

∂t
αϕviφHVi +

∂

∂xj
αϕvivjφHViVj =

1

ρs
HFDi + φgiH+

+
g3
ρs

(
ρ′
∂

∂xi
φ
H2

2
(2− αc) + ρfαpiφ

∂

∂xi

H2

2

)
+

−rzb
ρs

(
τ si,zb + ατiφτ

f
i,zb

)
with i, j = 1, 2. The number of equations are six, while the unknowns are

12. Comparing this model with the mobile bed one, we note that now there

is one unknown less inasmuch the bed elevation does not change in time, so

zb is no more a variable of the problem. As for the mobile case, the hydro-

dynamic unknowns are the components of the fluid and solid velocities (Ui

and Vi), the flow depth H and, conversely than before, the concentration φ.
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The use of different symbols for describing the concentration in fixed bed and

mobile bed systems derives from the processes involved in the generation of

the concentration. In the mobile bed case, the concentration changes due to

variations of the bed elevation so it is correlated with the local hydrodynamic,

while in the fixed bed case the concentration is simply advected by the flow

field so it become a variable of the problem. The closure relations, instead,

define a relation between these hydrodynamic variables and the other un-

knowns, and in particular with the components of bed shear stresses and the

drag forces. For this system, the closure relations needed are similar to the

ones of the mobile bed case.

3.3 Isokinetic models

As said in Sections 3.1.4 and 3.2.3, in the literature there are still not complete

and reliable closure relations valid for debris flow or hyperconcentrated flows,

so we introduce an approximation widely used in the free-surface models (see

e.g. [10],[13], [15] and [47]). The approximation is called isokinetic and it

assumes equal solid and fluid velocities

ufi = usi (3.78)

where i = 1, 2. With this assumption, as a consequence, also the averaged

velocities are equal

Ui = Vi (3.79)

and the drag force is identically null.

With the isokinetic approximation, the number of unknowns is reduced

and, as a consequence, the number of the equations needed for the description

of the motion is smaller. Since we need less equations, a sensible choice is to

use the simplest ones in order to simplify the model.

Usually, with the isokinetic approximation, the systems describing fixed

or mobile bed are composed by mixture mass and momentum balances and

by the solid mass equation. The mixture, as written in Chapter 1, is the
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combination of the fluid and solid phases, and the equations describing its are

the ones describing the fluid phase plus the equations for the solid phase. The

presence of only the momentum balance equations for the mixture derives

directly from the isokinetic assumptions. Since the fluid and solid velocities

are equal, the momentum equations for the solid and fluid phases describe

the same behaviors, so the equations for one of the two phases are redundant.

In the follow Section we derive the mixture and solid equations describing

the isokinetic 2D two-phase free-surface flow over mobile and fixed bed.

3.3.1 Mobile bed isokinetic model

Regarding the mass conservations, since we want the simplest equation pos-

sible as said before, a good choice is to use the mass conservation of the

mixture. The mixture, as written in Chapter 1, is the combination of the

fluid and solid phases, and the equation describing its is the one describing

the fluid phase plus the equation for the solid phase. Adding equation (3.21)

with equation (3.24) and using the isokinetic approximation, the result is

∂

∂t
(H + zb) +

∂

∂x1
HU1 +

∂

∂x2
HU2 = 0 (3.80)

and describe the mass conservation of the mixture. We highlight that, thanks

to the equality of the velocities, the corrective coefficient αcui is equal to αcvi

αcvi =

∫ η
zb
cvi dz

CHVi
=

∫ η
zb
cui dz

CHUi
= αcui (3.81)

so they disappear from the equation.

The other mass conservation needed can be chosen between the fluid

and the solid one. We chose the solid mass conservation (3.24) since it is

composed by less terms than the fluid one. Using (3.79), it becomes

∂

∂t
(CH) + cb

∂zb
∂t

+
∂

∂x1
(αcu1CHU1) +

∂

∂x2
(αcu2CHU2) = 0 (3.82)

Also for the momentum equations a sensible choice is to use the mixture

equations. These equations are derived, as for the mass conservation, adding



3.3 Isokinetic models 67

the equations for the solid phase (3.63) and (3.66) with the ones for the fluid

phase (3.54) and (3.55). After some mathematical manipulation the final

result is

∂

∂t
(1 + αcuiC∆)HUi +

∂

∂xj

(
1 + αcuiujC∆

)
HUiUj =

=
∂

∂xi
(1 + (2− αc)C∆) g3

H2

2
+

− rzb
τ fi,zb + τ si,zb

ρf
+ (1 + C∆)giH (3.83)

for i = 1, 2 where ∆ is the relative submerged solid density defined as

∆ =
ρs − ρf
ρf

(3.84)

We highlight that this equation, respect to the fluid or solid momentum

equation, is simplest since it is composed by less terms.

Other equations describing only the fluid or solid momentum are not

needed. This derives from the assumption of equal fluid and solid velocity

(3.79), so the momentum equations for the solid phases, the fluid phase and

the mixture describe the same behaviors.

The final system of partial differential equations describing the motion of

the isokinetic mixture for the mobile bed case is

∂

∂t
(H + zb) +HU1 +

∂

∂x2
HU2 = 0

∂

∂t
(CH) + cb

∂zb
∂t

+
∂

∂x1
(αcu1CHU1) +

∂

∂x2
(αcu2CHU2) = 0

∂

∂t
(1 + αcuiC∆)HUi +

∂

∂xj

(
1 + αcuiujC∆

)
HUiUj =

=
∂

∂xi
(1 + C (2− αc) ∆) g3

H2

2
− rzb

τi,zb
ρf

+ (1 + C∆)giH

for i = 1, 2, where τi,zb is the total bed shear stress. With this model the

number of equations are four: two mass balances and two momentum bal-

ances. The unknowns are now seven: the two components of the velocity

Ui, the flow depth H, the bed elevation zb, the solid volume concentration

C and the components of the total bed shear stress τi,zb . Also in this case



68 3 Two-dimensional modelling

we assume unitary corrective coefficients. Now, the system needs to use only

three closure relations. The first one is for the concentration C and it is the

same as for the fully two-phase model (3.69).

The other closure relations needed are for the components of the total

bed shear stress and in the literature exists lots of them. For example, we

can use, for a hyperconcentrated flow, a relation like Strickler

τi,zb
ρf

= g
Ui |U|
k2sH

1/3
(3.85)

where ks is the Strickler coefficient. For a debris flow, it is possible to use

the relation derived by Bagnold (see [12] for more details)

τi,zb
ρf

=
25

4

ρs
ρf

sinφd
λ2

Y 2
|U|Ui (3.86)

where φd is the dynamic friction angle of the sediment, Y is defined as

Y =
h

d
√
a

(3.87)

with a = 0.32 for Takahashi (see [62]), d is the characteristic diameter of the

solid particle, while λ is the linear concentration defined as

λ =
C1/3

c
1/3
b − C1/3

(3.88)

A more complex relation, that we want to mention, is the one proposed by

Armanini [8] where the bed shear stress is a weighted combination of the pre-

vious two expressions. This relation is valid for both hyperconcentrated flow,

debris flow and also for classical sediment transport phenomena, however it

is quite complicated to be implemented and fall outside the main scope of

this thesis, so we do not discuss any more about its.
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3.3.2 Fixed bed isokinetic model

For the fixed bed isokinetic model, the derivation is similar as for the mobile

bed one, so the final set of PDEs is

∂η

∂t
+HU1 +

∂

∂x2
HU2 = 0

∂

∂t
φH +

∂

∂x1
αϕu1φHu1 +

∂

∂x2
αϕv2φHu2 = 0

∂

∂t
(1 + αϕuiφ∆)HUi +

∂

∂xj

(
1 + αϕuiujφ∆

)
HUiUj =

=
∂

∂xi
(1 + φ (2− αc) ∆) g3

H2

2
− rzb

τi,zb
ρf

+ (1 + φ∆)giH

where the number of equations is four, while the unknowns are six, so two

closure relations are needed. These closure relations are related to the bed

shear stresses that can be expressed using a relation similar to the one used

in the isokinetic mobile bed system, so equations (3.85) or (3.86), where it is

necessary to swap the concentration C with φ.

3.4 Brief literature review

In the literature exists, as specified in the previous sections, two type of two-

phase models: the first one is the fully two-phase model where the two phases

(solid and fluid) can assume different velocities, while the second type is the

isokinetic model where the fluid and solid velocities are equal. Among the

paper dealing with the first type of model, notable to citation are the model

proposed by Pitman and Le [49] and Greco et al. [30].

Pitman and Le [49], in they work, start from the 3D continuum equations

(the ones derived in Chapter 1) and perform the depth integration ending

up with a two-phase fixed bed model like the one derived in Section 3.2. As

closure relations they assume an inviscid fluid (so τ fi,zb = 0) and a Mohr-

Coulomb stress type for the solid phase. For the drag force they assume a

linear dependency with the difference of velocity and a drag coefficient that

depends on the concentration and flow type.
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On the contrary, Greco et al. [30] derive the equations starting from the

solid and fluid mass and momentum balance applied to a control volume.

This model is similar to the mobile bed one derived here in Section 3.1, but

it is valid only for low concentration. Greco et al. introduce also another

partial differential equation describing the time variation of the bed elevation

∂zb
∂t

= D − E (3.89)

where D is a generic deposition formula related with the settling velocity of

the solid particles and E is a generic erosion expression strictly related to a

sediment transport formula. This equation derives from a work of Armanini

and Di Silvio [9] where they present a closure relations for the non-equilibrium

concentration, thus the concentration becomes a variable of the problem.

As closure relation for the bed shear stresses they use a Chézy formulation

τi,zb
ρf

=
|U|
χ2

Ui

that is decompose in fluid and solid stresses

τi,zb
ρf

=
τ fi,zb
ρf

+
τ si,zb
ρs

where the solid one is evaluated trough a Mohr-Coulomb relation as for Pit-

man and Le. For the drag force Greco et al. assume a quadratic dependency

with the difference of velocities and a drag coefficient that depends on flow

type.

The second type of shallow flow two-phase models is the isokinetic ones

that can be classified essentially in two categories: the mobile bed models

as derived in Section 3.3 and the models with a differential closure relation

for the concentration in which a partial differential equation like to (3.89) is

introduced. Among the first category we mentioned the model TRENT2D

(see papers of Armanini et al. [10] and Rosatti and Begnudelli [53, 52])

that was developed for hyperconcentrated and debris flows. In the second

categories we can cite the models proposed by Benkhaldoun et al. [13] and

Cao et al. [15].
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In literature, however, there are also lots of other 2D models, but them are

developed only for low concentration regime, so they are suitable to simulate

only bed load transport. This type of models are derived in a similar way

as the isokinetic ones, but with the assumption of low concentration, so the

terms containing the concentration in the mixture momentum equations are

neglected (more details on this approximation are presented in Section 4.1).

In this category we can cite the model of Murillo and Garćıa-Navarro [47].





Chapter 4

One-dimensional isokinetic

modelling

The Chapter is devoted to the one-dimensional isokinetic modelling where the

PDEs system describes a two-phase flow which properties change only in one

direction. This one-dimensional model refers to purely one directional flow, so

we do not speak about the section-averaged model. In real cases, a purely one

directional flow is rarely, however the study of this flow type is fundamental

for the development of numerical solvers in the framework of finite volume

method with Godunov fluxes even for two dimensional application.

All the equations used in the following Sections derive from the 2D isoki-

netic models obtained in Section 3.3, where, as specified, the corrective co-

efficients are unitary. In previous Chapters the equations was derived using

a reference system that are tangent to the bed with the x3 direction normal

to it. From now on, the reference system is different since we use as x3 the

vertical direction (the same direction of the gravity force but with opposite

sign), while the other two directions (x1 and x2) are horizontal as specified in

Figure 4.1. The switching from the boundary fitted reference system to the

one with vertical x3 direction is necessary since, in the mobile bed case, the

bed elevation changes in time, so the slope are varying, thus the reference

system has to change with it introducing lots of difficulties.

Using the reference systems with vertical x3 direction, some modification

on the PDEs systems derived in Section 3.3 have to been introduced:
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1. the integration of the equations is performed on the vertical direction,

therefore the vertical averaged variables are different from the normal

depth averaged ones used in the previous Chapter. Also some corrective

coefficients for the bed pressures and tangential stresses appears, but

assuming them unitary no large errors are introduced (see Armanini et

al. [10]);

2. for the shallow flow approximation, the velocity must be tangential to

the bottom, so the velocity vector is

U = (U1, U2,W )

where U1 and U2 are the velocity along the x1 and x2 directions, while

W is the vertical velocity and it is related to the previous ones with

W√
U2
1 + U2

2

= tanα

where α is the local bed slope;

3. since x1 and x2 directions are horizontal, the gravity acceleration is

g = (0, 0,−g)

so the term

gi (1 + C∆)H

with i = 1, 2 in the momentum equation vanishes. Instead, the term

g (1 + C∆)H
∂zb
∂xi

where i = 1, 2, is present in the momentum equation as specified in

Section 3.1.3. From a physical point of view, this term can be explained

as the pressure that the bed exerts on the flow.
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The two-dimensional isokinetic SF PDEs system with mobile bed is then

∂

∂t
(H + zb) +

∂

∂xj
HUj = 0

∂

∂t
(CH) + cb

∂zb
∂t

+
∂

∂xj
CHUj = 0

∂

∂t
(1 + C∆)HUi +

∂

∂xj
(1 + C∆)HUiUj +

∂

∂xi
(1 + C∆) g

H2

2
+

+g (1 + ∆C)H
∂zb
∂xi

= −τi,zb
ρf

(4.1)

while in the fixed bed case is

∂

∂t
(H + zb) +

∂

∂xj
HUj = 0

∂

∂t
φH +

∂

∂xj
φHUj = 0

∂

∂t
(1 + φ∆)HUi +

∂

∂xj
(1 + φ∆)HUiUj +

∂

∂xi
(1 + φ∆) g

H2

2
+

+g (1 + ∆φ)H
∂zb
∂xi

= −τi,zb
ρf

(4.2)

with i = 1, 2.

In this Chapter we speak about tree different classes of isokinetic 1D

systems for fixed and mobile bed. All the systems presented derive from the

previous two where, as said before, the common simplification made is to

neglect all the derivative in the direction x2

∂

∂x2
= 0 (4.3)

The other simplification made is to assume an unidirectional flow

U = (U1, 0,W ) (4.4)

With these simplifications, for shake of clarity, we neglect the subscript 1

that indicate the x1 direction since now is univocally defined.

The first class of systems, presented in Section 4.1, is the simplest one,

since it describe only low concentrated flow. Then, in Section 4.2 we present
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the class of models that describes hyperconcentrated flow or debris flow.

Finally, in Section 4.3, we present the two-dimensional plane wave class. This

class of models describes 2D problems but with a plane solution. We present

this type of models among the one-dimensional ones, since the variations of

the flow variables occurs only in one directions, so they can be assimilated

to 1D problems. For this latter class of models, the assumption (4.4) is no

more valid since velocity U2 is present.

4.1 One-dimensional systems with low sedi-

ment concentration

When the concentration of the solid phase in the flow field, as find by Gareg-

nani et al. [27], is less than 1%, the equations of motion can be simplified. In

particular, it is possible to neglect the concentration in the momentum equa-

tion. This type of simplified equation is widely used in literature (see e.g.

[39], [33], [22], [1] and [63] among many others), since the low concentration

regime is the one that exist in the classical bed load transport phenomena.

Following Garegnani et al. [27], the resulting system for the fixed bed is

∂

∂t
h+

∂

∂x
uh = 0

∂

∂t
uh+

∂

∂x

(
hu2 + g

h2

2

)
+ gh

∂zb
∂x

= − τ0
ρf

∂

∂t
ϕh+

∂

∂x
ϕuh = 0

∂

∂t
zb = 0

(4.5)

where h is the flow depth, u is the flow velocity, zb is the bed elevation, ϕ

in the solid concentration inside the flow, g is the gravity acceleration, ρf

is the fluid density and τ0 is the bottom shear stress (see Figure 4.1a for a

representation of the variables).

This system is composed by the well known shallow flow (SF) equations

plus the advection of a passive scalar that is the solid phase concentration.

Since ϕ is a quantity that is simply advected by the liquid phase, we call
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(a) Fixed-bed case. (b) Mobile-bed case.

Figure 4.1: Sketch with the indication of the variables for: (a) fixed-bed case,

(b) mobile-bed case.

this concentration transported concentration. The last differential equation

in system (4.5) describes the time invariance of the bed elevation. This equa-

tion is not strictly necessary, but allows a rigorous analytical investigation

of problems involving discontinuities in the bed elevation (see the works of

LeFloch and Thanh [42] and Rosatti and Begnudelli [51] among many oth-

ers). In order to close the flow problem, an expression for the bed shear stress

as a function of the flow depth and velocity must be provided. An expression

derived from the uniform flow condition is commonly employed, for example

the Gaukler relation, as specified in Section 3.3

τ0
ρf

=
gu2

K2
sh

1/3
(4.6)

Moving to the mobile bed case, the approximations produce the following

system



∂

∂t
h+

∂

∂x
uh = 0

∂

∂t
uh+

∂

∂x

(
hu2 + g

h2

2

)
+ gh

∂zb
∂x

= − τ0
ρf

cb
∂zb
∂t

+
∂

∂x
cuh = 0

(4.7)

where cb is the constant concentration inside the bed, c is the solid concen-

tration inside the flow field and the other variables have the same meaning
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as for fixed bed case (see Figure 4.1b for a representation of the variables).

Also this system is composed by the well known SF equation, but this time

the solid mass balance is the so-called Exner equation. This equation states

that the bed elevation can change in time when a variation of solid discharge

(cuh) occurs. The problem is solvable introducing two closure relations. The

first one is for the bed shear stress τ0 as for the fixed bed. The second

regards the concentration i.e., as specified in Section 3.3, it is a relation be-

tween the local hydrodynamic variables and the concentration itself. This

relation has mainly empirical origin and it is obtained in equilibrium condi-

tions with the hydrodynamic variables (steady-state). For these reason we

called equilibrium concentration. We want to remark that the concentration

ϕ and c express the same physical quantity (the concentration of the solid

phase inside the flow depth), however they are related to different physical

phenomena: in the fixed-bed case, sediments are simply advected by the fluid

phase, while in the mobile-bed case, besides the advection, the exchange of

sediment with the bed plays a fundamental role in determining the actual

value of the concentration.

As specified in Section 2.1, in a hyperconcentrated flow, the concentration

is higher than 0.01, so these models are no more valid. However, we discuss

about them since they are well studied, simple and easy to deal with thus

they allows as, in Part II, to define a general procedure for the study of the

complex phenomena that is the transition between fixed and mobile bed.

4.2 One-dimensional systems for high sedi-

ment concentration

The one-dimensional systems for high sediment concentration are a step of

difficulty above the low concentration models derived in Section 4.1 and they

are the base for an accurate description of an isokinetic hyperconcentrated

two-phase free-surface flow.

Starting from (4.2) describing the 2D fixed bed isokinetic two-phase flow
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and applying the simplification (4.4) the resulting system is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(1 + ϕ∆)uh+

∂

∂x
(1 + ϕ∆)

(
hu2 + g

h2

2

)
+

+ (1 + ϕ∆) gh
∂zb
∂x

= − τ0
ρf

∂

∂t
ϕh+

∂

∂x
ϕuh = 0

∂

∂t
zb = 0

(4.8)

where ∆ is the constant relative submerged solid density defined as

∆ =
ρs − ρf
ρf

while the other variables are the same as the low concentration system. The

equations constituting the system are mass and momentum balance of the

mixture and the solid mass balance. The last equation, as for the low con-

centration system, is not necessary, but it covers a fundamental role for the

correct description of discontinuous bed cases. The flow problem is resolvable

when a closure relation for the total bed shear stress is introduced.

For the mobile bed case the resulting system is, indeed,

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= − τ0
ρf

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

(4.9)

where the symbols are the same as before. The system is composed by the

mixture mass and momentum balances plus the solid mass balance. Com-

paring this systems with the one developed under the low concentration ap-

proximation (4.7), the main difference, in addition to the presence of the

concentration terms in the momentum equation, is the presence of the term
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∂
∂t
ch in the solid mass balance that indicate the solid mass stored in the fluid

column. With this term the variation of the bottom elevation occurs, not

only due to a variation of the fluxes cuh, but also due to a increasing or

decreasing of the solid mass stored in the fluid field. For solving this system,

as for the previous mobile bed one, it is necessary to introduce two closure

relation: one for the concentration c and one for the bed shear stress τ0.

This type of systems has the advantage that describe not only debris

flow, so flow with high value of sediment, but they represents also the classi-

cal bed load transport. The switch between a debris flow and the description

of a river is possible simply changing the closure relations. For the debris

flow case a granular-inertia relation, like the one proposed by Bagnold [12],

is appropriated, while for the bed load transport an empirical relation like

Gaukler-Strickler is adequate. As specified in Section 3.3, Armanini [8] pro-

poses a more complex formulation which has validity all over the range of

physical concentration. The use of this type of closure relation allow to sim-

ulate correctly most of the free-surface flow form low concentration up to

debris-flow. However this formulation is very stiff to be introduced into nu-

merical models, so, as said in the previous Chapter, we leave the use of this

formulation to future works.

4.3 Two-dimensional plane-wave systems

The last systems that we consider are the two-dimensional plane-wave ones.

As said before, these models describe 2D problems but with plane solutions.

A plane solution is characterized by variations of the flow variables only in

one directions, so they can be assimilated to 1D problem. These systems are

the most interesting from a numerical point of view, since they are at the

base of the Riemann solver for the 2D models. In fact they take into account

not only the presence of the longitudinal velocity u, but also the transversal

one (in the follow called v).
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For the fixed bed case the PDEs system is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(1 + ϕ∆)uh+

∂

∂x
(1 + ϕ∆)

(
hu2 + g

h2

2

)
+

+ (1 + ϕ∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + ϕ∆) vh+

∂

∂x
(1 + ϕ∆)huv = −τ0,y

ρf

∂

∂t
ϕh+

∂

∂x
ϕuh = 0

∂

∂t
zb = 0

(4.10)

and it is composed by five equations: the mixture mass conservation, the

momentum balance for the mixture along the normal (x) and transversal

direction (y), the solid mass balance and, as for all the previous 1D fixed

bed cases, the time invariance in time of bed elevation. For this systems the

closure relations needed are the two bed shear stress, one for longitudinal

direction τ0,x and one for the transversal direction τ0,y.

For the mobile bed case, the relevant system is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + c∆) vh+

∂

∂x
(1 + c∆)huv = −τ0,y

ρf

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

(4.11)

that is composed, as for the fixed one, by the mixture mass conservation, the

longitudinal an transversal momentum equation for the mixture and the solid

mass balance. The flow problem depicted by this system is solvable when

two closure relations for the bed shear stresses and one for the concentration

are introduced.
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Regarding the closure relation for the concentration, the consideration

done for the 1D high sediment concentration systems are still valid with the

requirement to use the module of the velocity |u| =
√
u2 + v2 in the transport

formula

c = c (|u| , h) =
qs (|u| , h)

|u|h
(4.12)

as for the 2D models presented in Chapter 3.1.4. Also for the bed shear

stresses it is possible to use the previous relations once they are written in

the same way as the 2D models.



Chapter 5

Eigenstructure of the

one-dimensional models

This Chapter is devoted to the description of the mathematical features of

the three different classes of one-dimensional free-surface two-phase systems

derived in the Chapter 4.

Analyzing the eigenvalues and the associated eigenvectors, it is possible

to understand the type (hyperbolic, parabolic or elliptic) of PDEs system we

are dealing with. A system is hyperbolic if it has a full set of real eigenvalues

and associated eigenvectors while in the other cases it is parabolic or elliptic.

When the hyperbolicity is ensured, it is possible to define a Riemann Prob-

lem (RP) that is a particular initial value problem, associated to the PDEs

system, where the initial condition consists in two piecewise constant states

separated by a discontinuity. The solution of the RP is composed by a set of

simple waves (rarefaction, shock or contact) with particular properties that

derives from the eigenstructure of the PDEs system. As we will demonstrate

in the following Sections, the fixed and mobile bed systems described in the

previous Chapter are hyperbolic and the eigenstructure of each of them is

composed by:

• the eigenvalues, i.e. the speed of the small perturbations and their

dependency on the flow variables;

• the eigenvectors associated to each eigenvalues, that describe how the

flow variables change across each wave;
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• the nature of the characteristic fields, i.e. which type of waves an

eigenvalue can develop (shock, rarefaction or contact);

• the Rankine-Hugoniot relations, that describe the discontinuous solu-

tions that can occur.

All these properties are fundamental for the derivation of numerical finite

volume method with Godunov fluxes since for each cell interface a RP oc-

curs. The establishment of a RP on each cell interface will be crucial in the

following Parts of the thesis where we use these properties for the solution

of the transition between fixed and mobile bed.

Since the 1D fixed and mobile bed systems are well studied in the lit-

erature, only the major aspects used in the remainder of the thesis will be

recalled hereafter. For a more exhaustive analysis of fixed bed systems with

discontinuous bed, we refer the reader to the papers of Alcrudo and Benkhal-

doun [2], LeFloch and Thanh [42] and Rosatti and Begnudelli [51], while for

the mobile bed cases the papers are Fraccarollo and Capart [25], Morris and

Williams [46] and Rosatti and Fraccarollo [54] among many others. Regard-

ing the eigenstructure analysis methodology, we refer to the books of Toro

[64] and LeVeque [43].

Since only the homogeneous part of the systems are necessary for the

eigenstructure analysis, for the mobile bed cases it is fundamental to define

the concentration closure relation. As written in the previous Chapter, the

equilibrium concentration c is related to the local hydrodynamic (velocity u

and flow depth h) via

c = c(u, h) (5.1)

Here we have highlighted only the dependence on the dynamic quantities that

affect the eigenstructure of the relevant system, while we have disregarded

all the other quantities that characterize a given type of sediment (diameter,

relative density etc.). The explicit expression of c is necessary only in the

numerical application.
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5.1 One-dimensional systems with low sedi-

ment concentration

The low concentration system for the fixed bed condition (4.5), derived in

Section 4.1 can be written in compact form as

∂

∂t
Uf +

∂

∂x
Ff + Hf

∂Wf

∂x
= Sf (5.2)

where the subscript f indicates the fixed bed case, Uf and Wf are the vectors

of the conserved and primitive variables

Uf =


h

uh

ϕh

zb

 ; Wf =


h

u

ϕ

zb

 (5.3)

Ff and Hf are the conservative and non-conservative fluxes

Ff =


uh

u2h+ 1
2
gh2

ϕuh

0

 ; Hf =


0 0 0 0

0 0 0 gh

0 0 0 0

0 0 0 0

 (5.4)

while Sf are the source term

Sf =


0

− τ0
ρf
0

0

 (5.5)

The eigenstructure of this system can be obtained by analyzing the asso-

ciated homogeneous quasi-linear form, that can be written as

JUf

∂Wf

∂t
+
(
JFf + Hf

) ∂Wf

∂x
= 0 (5.6)

where

JUf
=

∂Uf

∂Wf

; JFf =
∂Ff

∂Wf

(5.7)
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are respectively the Jacobian of the conserved variables and of the fluxes with

respect to the primitive variable vector Wf . Its characteristic polynomial,

deriving from

det
∣∣JFf + Hf − λJUf

∣∣ = 0 (5.8)

has four real and distinct eigenvalues
λ1 = u−

√
gh

λ2 = u

λ3 = u+
√
gh

λ4 = 0

(5.9)

It is important to notice that depending on the value of the Froude number

Fr = u/
√
gh, if Fr < 1 (subcritical flow) two eigenvalues have the same sign

as the velocity while one has an opposite sign. On the contrary, if Fr > 1

(supercritical flow), all the three nonnull eigenvalues have the same sign as

the velocity.

The eigenvectors associated with the previous eigenvalues are

R
Wf

1 =


−1

g

√
gh

1

0

0

 ; R
Wf

2 =


0

0

1

0



R
Wf

3 =


1

g

√
gh

1

0

0

 ; R
Wf

4 =


−g h

gh− u2

g
u

gh− u2
0

1



(5.10)

Regarding the nature of the characteristic fields, those associated with λ1 and

λ3 are Genuinely Non-Linear (GNL). A GNL field can develop rarefaction

waves (i.e. continuous solutions) or shocks (i.e. discontinuous solutions).

Moreover, considering the relevant Riemann Invariants (RI), we can state

that both ϕ and zb do not change across the waves of these fields. Thus

the relevant possible shocks are described by the classical Rankine-Hugoniot
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Figure 5.1: Possible wave patterns of a fixed-bed RP as a function of the

Froude number of the flow near the origin - (A) subcritical flow, (B) super-

critical flow. Velocity is assumed positive throughout.

(RH) relations, since these discontinuities occur over a flat bed.

The characteristic field associated with λ2 is a classic Linearly Degenerate

(LD) one across which only ϕ changes. In this case RI and RH relations give

the same informations. Finally the field associated with λ4 = 0 is a steady

contact wave across which, in addition to h and u, the bed elevation also

changes. This is a particular Linearly Degenerate (LD∗) field across which,

as demonstrated in [51], only the Generalized Rankine-Hugoniot (GRH) re-

lations are valid. In compact form these relations can be written as:

F∗fR − F∗fL = Df (5.11)

where F∗fR,F
∗
fL are the fluxes respectively on the right and on the left of the

wave while following [54], DT
f = (0, D, 0, 0), where

D = −g
(
hk −

|zR − zL|
2

)
(zR−zL) with k =

{
L if zL ≤ zR

R otherwise
(5.12)

is the thrust term exerted by the bed step on the control volume used to

obtain relations (5.11).

Finally, according to the features described above, the two possible wave

patterns marking out a generic RP are reported in Figure 5.1 as a function

of the Froude number of the flow near the origin.

Moving to the mobile bed case system (4.7) derived in Section 4.1, as the

fixed bed one, it can be written in compact form as

∂Um

∂t
+

∂

∂x
Fm(Um) + Hm

∂Wm

∂x
= Sm (5.13)
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where the subscript m indicates the mobile-bed case and

Um =

 h

uh

cbzb

 ; Wm =

hu
zb

 ; Fm =

 uh

u2h+ 1
2
gh2

cuh

 (5.14)

Hm =

 0 0 0

0 0 gh

0 0 0

 ; Sm =


0

− τ0
ρf
0

 (5.15)

The eigenstructure of this system can be obtained by analyzing the asso-

ciated homogeneous quasi-linear form that can be written as

JUm

∂Wm

∂t
+ (JFm + Hm)

∂Wm

∂x
= 0 (5.16)

where

JUm =
∂Um

∂Wm

; JFm =
∂Fm

∂Wm

(5.17)

are respectively the Jacobian of the conserved variables and of the fluxes

with respect to the primitive variable vector Wm. The relevant characteristic

polynomial, deriving from

det |JFm + Hm − λJUm| = 0 (5.18)

is the following

λ3−2uλ2−
(
gh− u2 +

gh

cb

(
c+ u

∂c

∂u

))
λ− ghu

cb

(
h
∂c

∂h
− u ∂c

∂u

)
= 0 (5.19)

As demonstrated by several authors (e.g. [25] and [46]) when using different

closure relations, the three solutions of the polynomial, λi with i = 1, 3, are

real and distinct; two eigenvalues have the same sign of particle velocity u

while one is opposite; the eigenvector associated to a generic eigenvalue λi is

RWm
i =

 gh

−g(u− λi)
(u− λi)2 − gh

 (5.20)
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Figure 5.2: Wave patterns of a mobile-bed RP. Velocity is assumed positive

throughout.

and the characteristic field associated to each eigenvalue is genuinely non-

linear except for the case of water at rest. Finally, since the system is non-

conservative, the relations valid across any shock wave are the GRH relations

F∗mR − F∗mL −Dm = Ss (U∗mR −U∗mL) (5.21)

where Ss is the speed of the shock, F∗mR,F
∗
mL and U∗mR,U

∗
mL are the fluxes

and the conserved variables respectively on the right and on the left of the

shock wave and finally DT
m = (0, D, 0), where D is given by equation (5.12).

Finally, according to the features described above, the possible wave pat-

tern marking out a mobile-bed RP is reported in Figure 5.2 where the velocity

is assumed positive everywhere.

5.2 One-dimensional systems for high sedi-

ment concentration

The eigenstructure analysis of the one-dimensional systems for high sediment

concentration, derived in Section 4.2, is performed in the same way as in the

previous Section.

Starting from the fixed bed system (4.8), its compact form is expressed
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by an equation formally equal to (5.2) where in this case, the vectors are

Uf =


h+ zb

(1 + ϕ∆)uh

ϕh

zb

 ; Ff =


uh

(1 + ϕ∆)
(
u2h+ 1

2
gh2
)

ϕuh

0

 (5.22)

Hf =


0 0 0 0

0 0 0 (1 + ϕ∆) gh

0 0 0 0

0 0 0 0

 ; Sf =


0

− τ0
ρf
0

0

 ; Wf =


h

u

ϕ

zb

 (5.23)

The characteristic polynomial associated to this system has four real and

distinct roots
λ1 = u−

√
gh

λ2 = u

λ3 = u+
√
gh

λ4 = 0

(5.24)

and thy are equal to the ones obtained for the low concentration systems

(5.9). Moving to the eigenvectors, they are

R
Wf

1 =


−1

g

√
gh

1

0

0

 ; R
Wf

2 =


−h ∆

2 (1 + ϕ∆)

0

1

0



R
Wf

3 =


1

g

√
gh

1

0

0

 ; R
Wf

4 =


−g h

gh− u2

g
u

gh− u2
0

1



(5.25)

and, compared with (5.10), only the second one is different.

Regarding the nature of the characteristic fields, they are the same as for

the low concentration fixed bed case. The only difference is related to the
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characteristic field associated with λ2 that is a classic Linearly Degenerate

(LD) one where, in this case, not only ϕ changes across it, but also the flow

depth h changes its value. The variation of h across the λ2 wave derives

from the presence of an high sediment concentration inside the flow field

that modify in a sensible way the characteristic of the flow itself.

The last difference between the eigenstructure of the complete 1D fixed

bed system and the low concentration one is in the thrust term D exerted

by the bed step on the control volume used to obtain relations (5.11) that is

now, following [54],

D = −g (1 + ϕ∆)

(
hk −

|zR − zL|
2

)
(zR − zL) (5.26)

with k =

{
L if zL ≤ zR

R otherwise

The one-dimensional mobile bed system for high sediment concentration

(4.9), in compact form, assume the same expression as (5.13) where, in this

case,

Um =

 h+ zb

(1 + c∆)uh

cbzb + ch

 ; Fm =

 uh

(1 + c∆)
(
u2h+ 1

2
gh2
)

cuh

 (5.27)

Hm =

 0 0 0

0 0 (1 + c∆) gh

0 0 0

 ; Sm =


0

− τ0
ρf
0

 ; Wm =

hu
zb


(5.28)

As for the low concentration case, the relevant characteristic polynomial, is

the following

a3λ
3 + a2λ

2 + a1λ+ a0 = 0 (5.29)

where the coefficients are

a3 = (1 + c∆)

(
h
∂c

∂h
− cb + c

)
− (1 + cb∆)u

∂c

∂u
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a2 =
1

2
gh∆ (cb − c)

∂c

∂u
+ 2u (1 + ∆c)

(
cb − c− h

∂c

∂h

)
+

− u (1 + ∆cb)

(
h
∂c

∂h
− 2u

∂c

∂u

)

a1 = (1 + c∆)

((
gh− u2

)(
cb − c− h

∂c

∂h

)
+ ghu

∂c

∂u

)
+

+

(
h
∂c

∂h
− u ∂c

∂u

)(
u2 (1 + cb∆) +

1

2
gh∆ (cb − c)

)
a0 = ghu (1 + c∆)

(
h
∂c

∂h
− u ∂c

∂u

)
Also in this case, when using different closure relations, the three solutions of

the polynomial, λi with i = 1, 3, are real and distinct; two eigenvalues have

the same sign of particle velocity u while one is opposite.

The eigenvector associated to a generic eigenvalue λi is

RWm
i =



hλi

(
cb − c+ (λi − u)

∂c

∂u

)
λi (u− λi)

(
h
∂c

∂h
− cb + c

)
h (u− λi)

(
h
∂c

∂h
− (u− λi)

∂c

∂u

)


(5.30)

and the characteristic field associated to each eigenvalue is genuinely nonlin-

ear. Finally, since the system is non-conservative, the relations valid across

any shock wave are the GRH relations (5.21) with the following thrust term

D

D = −g (1 + ck∆)

(
hk −

|zR − zL|
2

)
(zR − zL) (5.31)

with k =

{
L if zL ≤ zR

R otherwise

A comparison between these eigenvalues, the ones of the low concentration

mobile bed model and the fixed bed ones, it is possible if we introduce a

closure relation. For this purpose the choice is to consider

c = c(u, h) = β
u2

gh
= βFr2 (5.32)
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(a) Low transport capacity β = 0.001.
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(b) High transport capacity β = 0.1

Figure 5.3: Dimensionless eigenvalues for fixed bed (green), low concentration

mobile bed (blue) and high concentration mobile bed (red): (a) low transport

capacity case, (b) high transport capacity case. The parameters used are:

∆ = 1.65 and cb = 0.65. Black dots represent the concentration.

where β is a semi-empirical non-dimensional constant, depending on sediment

characteristics, and g = 9.81m/s2. The previous relation can be formally ob-

tained from a Meyer-Peter and Müller sediment transport formula, assuming

an expression for the bed shear stress of type τ0/ρf = fu2, where the fric-

tion factor f depends on the diameter and the shape of the sediments. We

refer the reader to the work of Rosatti and Fraccarollo [54] for details on this

relation. Once the closure relation for the concentration has been defined,

it is possible to represent the eigenvalues deriving from the characteristic

polynomials (5.19), (5.29) and the eigenvalues for the fixed bed (5.25) on a

dimensionless plot λ̃ = λ√
gh

versus Fr reported in Figure 5.3. In this Figure

it is possible to note that if the concentration is low (Figure 5.3a) all the

systems have essentially the same eigenvalues, while when the concentration

increase (Figure 5.3b), the eigenvalues of the two mobile bed systems become

significantly different from each other and also from the fixed bed ones. As

written before, we can notice that in the fixed bed case (green lines) one

eigenvalue changes sign, while the ones for the mobile bed do not have this

behavior.
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5.3 Two-dimensional plane-wave systems

The last two systems that we analyze are the two-dimensional plane-wave

systems derived in Section 4.3. The fixed bed case, defined by the set of

equations (4.10), can be written in compact form as (5.2) where the vectors

are now

Uf =


h+ zb

(1 + ϕ∆)uh

(1 + ϕ∆) vh

ϕh

zb

 ; Ff =


uh

(1 + ϕ∆)
(
u2h+ 1

2
gh2
)

(1 + ϕ∆)uvh

ϕuh

0

 (5.33)

Hf =


0 0 0 0 0

0 0 0 (1 + ϕ∆) gh 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ; Sf =



0

−τ0,x
ρf

−τ0,y
ρf
0

0


; Wf =


h

u

v

zb

ϕ

 (5.34)

Analyzing the characteristic polynomial, it has five real roots
λ1 = u−

√
gh

λ2,3 = u

λ4 = u+
√
gh

λ5 = 0

(5.35)

where all the property of the fixed bed low concentration systems are still

valid.
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The associated eigenvectors are instead

R
Wf

1 =



−1

g

√
gh

1

0

0

0


; R

Wf

2 =



−h ∆

2 (1 + ϕ∆)

0

0

0

1


; R

Wf

3 =


0

0

1

0

0



R
Wf

4 =



1

g

√
gh

1

0

0

0


; R

Wf

5 =



−g h

gh− u2

g
u

gh− u2
0

1

0



(5.36)

Regarding the nature of the characteristic fields, those associated with λ1 and

λ4 are Genuinely Non-Linear (GNL). Moreover, considering the relevant Rie-

mann Invariants (RI), we can state that both v, ϕ and zb do not change across

the waves of these fields. Thus the relevant possible shocks are described by

the classical Rankine-Hugoniot (RH) relations, since these discontinuities oc-

cur over a flat bed. The characteristic field associated with λ2 is a classic

Linearly Degenerate (LD) one across which h and ϕ change (as for the pure

1D system). Also the characteristic field associated to λ3 is LD and across

its only v changes. In these two cases RI and RH relations give the same in-

formations. Finally the field associated with λ5 = 0 is a steady contact wave

across which, in addition to h and u, the bed elevation also changes. This is

a particular Linearly Degenerate (LD∗) field across which, as demonstrated

in [51], only the Generalized Rankine-Hugoniot (GRH) relations are valid.

The last model presented is the two-dimensional plane-wave mobile bed

system (4.11). Written in compact form, it assumes the expression (5.13)

where the terms are now

Um =


h+ zb

(1 + c∆)uh

(1 + c∆) vh

cbzb + ch

 ; Fm =


uh

(1 + c∆)
(
u2h+ 1

2
gh2
)

(1 + c∆)uvh

cuh

 (5.37)
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Hm =


0 0 0 0

0 0 0 (1 + c∆) gh

0 0 0 0

0 0 0 0

 ; Sm =


0

−τ0,x
ρf

−τ0,y
ρf
0

 ; Wm =


h

u

v

zb

 (5.38)

The characteristic polynomial of its linearized version (5.16) is the following

(λ− u)
(
a3λ

3 + a2λ
2 + a1λ+ a0

)
= 0 (5.39)

where the coefficients are

a3 = (1 + c∆)

(
h
∂c

∂h
− cb + c

)
− (1 + cb∆)

(
u
∂c

∂u
+ v

∂c

∂v

)

a2 =
1

2
gh∆ (cb − c)

∂c

∂u
+ 2u (1 + c∆)

(
cb − c− h

∂c

∂h

)
+

− u (1 + cb∆)

(
h
∂c

∂h
− 2u

∂c

∂u
− 2v

∂c

∂v

)

a1 = (1 + c∆)

((
gh− u2

)(
cb − c− h

∂c

∂h

)
+ ghu

∂c

∂u

)
+

+

(
h
∂c

∂h
− u ∂c

∂u

)(
u2 (1 + cb∆) +

1

2
gh∆ (cb − c)

)
+

+ v
(
gh− u2

) ∂c
∂v

(1 + cb∆)

a0 = ghu (1 + c∆)

(
h
∂c

∂h
− u ∂c

∂u

)
These coefficients are different from the ones derived for the one-dimensional

systems for high sediment concentration, due to the presence of the transver-

sal velocity v. The roots of the third order polynomial, λi with i = 1, 3, when

using different closure relations, are real and distinct and they degenerate to

the ones of the pure 1D system when v is null. Two of these eigenvalues have

the same sign of the velocity u while one is opposite.
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The eigenvector associated to a generic eigenvalue λi is

RWm
i =



hλi

(
(1 + c∆)

(
cb − c+ (λi − u)

∂c

∂u

)
+ v

∂c

∂v
(1 + cb∆)

)
λi (λi − u)

(
(1 + c∆)

(
cb − c− h

∂c

∂h

)
+ v

∂c

∂v
(1 + cb∆)

)
−vλi (1 + cb∆)

(
h
∂c

∂h
+ (λi − u)

∂c

∂u

)
h (u− λi) (1 + c∆)

(
h
∂c

∂h
+ (λi − u)

∂c

∂u

)


(5.40)

and the characteristic field associated to each eigenvalue is genuinely nonlin-

ear except for the case of water at rest. Since the system is non-conservative,

the relations valid across any shock wave are the GRH relations as for the

1D system for high sediment concentration.

The last solution of the characteristic polynomial (5.39) is

λ4 = u (5.41)

The associated eigenvector is

RWm
4 =


h∆

∂c

∂v
0

−2 (1 + c∆)− h∆
∂c

∂h
0

 (5.42)

and the characteristic field is a classic linearly degenerate one where only h

and v change. Across this wave, bot the RI and the classical RH condition

are valid since no variation of the bed is admissible.





Part II

Transition from fixed bed to

mobile bed: mathematical

aspect





Chapter 6

Fixed and mobile-bed flows:

possible coupled phenomena

In the previous Part we derive two different classes of systems: the fixed

bed and the mobile bed one. As presented in Chapter 5, these two classes of

systems have a different number of equations, a different number of unknowns

and describe two different bed behaviors. However they refer to a common

phenomena: a two-phase free-surface flow.

In this thesis, we are interested in modelling the transition across a fixed–

mobile interface located at a given point of a flow field that not change in

time. This condition occurs rather often in natural or partially anthropized

environment. For example, a debris flow along its path in an alluvial fan can

flow over a rigid bedrock in the upper part, while in the lower, sedimentation

can occur with a significant increase in the bed level. Similarly, the same

river can encounter both artificially paved and natural mobile-bed transects

as in Figure 6.1. Careful modelling of the transition between fixed and mobile

bed conditions is therefore an important task for obtaining reliable numerical

simulations in flow situations involving this type of bed change. Moreover,

it can become a crucial point in simulations addressed to disaster prevention

and protection since the presence of artificial artifacts generates lots of these

transitions.

However, in some situations the bed state can change dynamically. For

example, a rigid surface can be placed at a given level under a layer of
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Figure 6.1: Example of transition between mobile bed and fixed bed in Cis-

mon creek.

sediments: the bed is initially in mobile condition, but if the erosion reaches

the fixed surface, the bed becomes fixed. On the other hand, given a fixed-

bed transect, if the concentration of sediments in the flowing mixture exceeds

a threshold value (known as capacity transport concentration), a deposition

occurs, the bed level increases and it becomes mobile. The dynamic changes

of the bed state is left to further works.

In Section 6.1 a literature review about the fixed and mobile bed transi-

tion is presented, while in Section 6.2 a new approach for the coupling of the

systems describing the two relevant bed states is described.
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6.1 Literature review

In the literature, the problem of the transition between fixed and mobile bed

condition is not well studied. In fact exists only a few papers about it and,

in particular, notable to citation are the one of Struiksma [61] and the one

of Rulot et al. [58]. Both of them use only the mobile bed systems where

some suitable restrictions on the solid fluxes are imposed.

In the model proposed by Struiksma [61], the solid fluxes qs are evaluated

using a formulation like

qs = ψ

(
zb
z∗b

)
q∗s (6.1)

where q∗s is a sediment transport formula that can be found in the literature

and ψ
(
zb
z∗b

)
is an arbitrary regularization quantity, which is a function of the

ratio between the actual bed elevation zb and the fixed-bed elevation z∗b in

each point of the computational domain. This function ranges from 1, when

the bed is far from the fixed level, to 0 when the bed is fixed. According

to the author, this approach is limited to small scours for each time step, in

order to avoid the computation of non-physical bed elevations.

The method proposed in Rulot et al. [58] is slightly different. In this case

the solid fluxes are initially evaluated as if the bed was completely mobile

(step 0 in Figure 6.2). Then, in a fixed-bed computational cell subjected to

possible erosion, the outgoing flux, is forced to be equal to the ingoing flux to

ensure that the solid mass balance does not change the bed elevation (step 1

in Figure 6.2). This flux modification requires that the mass balance of the

downstream cell must be consistently updated.

Performing a critical review of this method we highlighted the follow-

ing limit. Looking at the example in Figure 6.2, when the ingoing flux for

the second fixed bed cell was modified, the outgoing flux must be changed

in turn (step 2 in Figure 6.2) since no scour can happen. In this way, a

cascade process interests the whole possible fixed-bed reach in a single time

step independently of the actual length of the transect. This approach has

two drawbacks: computational cost, connected to the sequential iterative

procedure necessary to describe the cascade, and wrong computation of the

sediment wave speed over the fixed-bed reach. In the example sketched in
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Figure 6.2: Example of a fixed-bed transect computation using the method-

ology developed by Rulot et al..

Figure 6.2, the erosion process that potentially affect the first non erodible

cell, are simply moved downstream in the closest mobile bed cell in only one

time step.

A final remark for these two approaches is that both methods work only

when the concentration of the solid phase is quite low and a low concentration

model can be used.

6.2 A novel approach for the coupling of fixed

and mobile bed systems

The transition between fixed and mobile bed can be analyzed using different

sets of equations. This possibility is more physically based, i.e. it uses the set

of equations for the fixed-bed situation where the bed is actually fixed, and

the set of equations for the mobile-bed where the bed is actually mobile. In

this case, at the interface between the fixed-and the mobile-bed conditions,

an abrupt switch between the two systems occurs and appropriate treatment

of this interface is therefore necessary. It is quite logical to conceive the

possibility of describing what happens across the interface in terms of the

development of Riemann Problems (RPs) since it is a initial-value problem

in which the initial values of the variables are piecewise constant functions
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Figure 6.3: Sketch of a CRP describing the transition between mobile and

fixed bed with the main variables involved.

with a single discontinuity located conventionally in the origin of the spatial

axis. Nevertheless, these types of RPs present a new feature, in that not

only the constant initial values of the variables change abruptly across the

interface but also the relevant system of equations. We call this novel RP

a Composite Riemann Problem (CRP). A sketch of a CRP describing the

transition between mobile and fixed bed is presented in Figure 6.3 with the

indication of the main variables involved. The solution of this challenging

problem has intrinsic scientific importance but it becomes fundamental if, as

in our case, we are interested in developing a finite-volume numerical method

based on Godunov fluxes presented in Part III.

The key idea, introduced with this thesis and published in [57], is to

merge the two original systems by means of a suitable weighting function,

in order to obtain a new single system which is able to reproduce both the

mobile-bed and the fixed-bed original conditions by simply acting on the

weighting parameter. The introduction of a convenient differential equation

for the weighting parameter makes it possible to obtain a single hyperbolic

system valid on both sides of the discontinuity. Thus, it is possible to reduce

a CRP to a classical RP, where its distinctive features can be analyzed by

means of standard tools. In particular, the development of a standing contact

wave can correctly describe the sharp transition between mobile and fixed

bed conditions. This approach recalls some aspects of the work of Göz and

Munz [29] in which a material interface, across which a sharp transition

between two different gases occurs, is described by introducing a suitable

flux weighting function and a convenient relevant differential equation which
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allows the automatic switch of the fluxes across a contact wave.

The problem of coupling different sets of hyperbolic systems is in present

in several fields of research [3, 4, 14, 28] and an overview can be found in

Coquel [18]. However, these works develop a specific strategy strictly related

to the problem involved, and they do not solve the Riemann problem at the

interface where the systems change. We develop, in Chapter 7, a strategy to

solve the coupling problem using a specific sets of equations: the fixed and

the mobile bed systems. However, the strategy we present, for the solution of

the CRP, is quite general and is actually not linked to the specific topic. For

this reason the coupling methodology presented later on can be considered

a possible alternative respect to others present in the literature where the

only requirement needed is to have two systems related to the same physical

problem.



Chapter 7

The Composite Riemann

Problem: definition, solution

and eigenstructure

In this Chapter we use the idea for the coupling different hyperbolic systems

presented in Chapter 6, for the study of transition between the fixed and

mobile bed. In order to derive a general methodology, we decide to start

the dissertation about the transition between fixed an mobile bed using the

systems for low sediment concentration. These systems of partial differential

equations (PDEs) were obtained in Section 4.1 and for the fixed bed part of

the problem, is (4.5) and reads

∂h

∂t
+

∂

∂x
(uh) = 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+ gh
∂zb
∂x

= − τ0
ρw

∂

∂t
(ϕh) +

∂

∂x
(ϕuh) = 0

∂zb
∂t

= 0

(7.1)
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while for the mobile part the system is (4.7)

∂h

∂t
+

∂

∂x
(uh) = 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+ gh
∂zb
∂x

= − τ0
ρw

∂

∂t
(zb) +

∂

∂x

(
c

cb
uh

)
= 0

(7.2)

where h is the flow depth, u is the velocity, zb is the bottom elevation, ϕ the

transported solid concentration pertaining to the fixed bed model, c is the

solid equilibrium concentration pertaining to the mobile bed model, cb is the

constant sediment concentration in the bed, ρw is the water density, g is the

constant gravity acceleration and τ0 is the bed shear stress.

These systems are hyperbolic and the eigenstructures were analyzed in

Section 5.1.

7.1 The Composite Riemann problem

A classical 1D RP is an initial-value problem in which an unique set of

homogeneous equations holds throughout the flow field and the initial values

of the variables are piecewise constant functions with a single discontinuity

located conventionally in the origin of the spatial axis. Mathematically, it

can be written as:
∂

∂t
U +

∂

∂x
F (U) = 0

U (x, 0) =

{
UL if x < 0

UR if x > 0

(7.3)

The RP that can be defined in the neighborhood of the fixed-mobile bed

interface is somewhat different: as in the previous case the initial values of

the variables are piecewise constant functions with a single discontinuity but

the set of equations valid on the left and on the right of the discontinuity are

different (see Figure 7.1). We called this novel type of RP as Composite Rie-

mann Problem (CRP). Mathematically it can be described in the following
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Figure 7.1: Sketch of the initial values of a Composite Riemann Problem with

a mobile-bed condition on the left of the discontinuity and with a fixed-bed

one on the right.

way:



∂Ui

∂t
+

∂

∂x
Fi(Ui) + Hi

∂Wi

∂x
= 0

Ui (x, 0) =

{
UiL

UiR

where

{
i = m if x < 0

i = f if x > 0

(7.4)

For i = m, the relevant set is given by the homogeneous part of system

(7.2) while for i = f , the relevant system is the homogeneous part of system

(7.1). The previous expression is valid for the case in which on the left of

the discontinuity there is a mobile-bed condition and on the right a fixed-bed

one. A simple swap of the indexes m and f gives the fixed-mobile case. It

worth noticing that the two sets are characterized by a different number of

differential equations.

Now some questions arise: is it possible to obtain CRP solutions? In the

case, which are their properties? The rigorous answer to these questions is

presented in Section 7.2. Here we focus on some intuitive features of the

solutions that can be inferred from reasoning on the physics of the problem

and on the relation that must hold across the fixed-mobile interface.
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7.1.1 Expected features of the CRP solutions and the

Generalized Rankine-Hugoniot relation

A CRP solution should be composed on the left by the set of waves asso-

ciated with the negative eigenvalues of the left system and on the right by

the set of waves associated with the positive eigenvalues of the right system.

Across the origin, since it is assumed that the interface between the fixed-

and mobile-bed conditions does not change its position in time, a stationary

wave that guarantees the mass and momentum balance is expected. The

relations that characterize this wave are the GRH relations which, following

Rosatti and Fraccarollo [54], can be obtained by considering a control volume

of infinitesimal width placed across the interface. Stationary mass and mo-

mentum balances for the liquid phase and mass balance for the solid phase

written in integral form for the given control volume provide the following

expressions for the mobile–fixed case:
[uh]∗fR − [uh]∗mL = 0[

u2h+
1

2
gh2
]∗
fR

−
[
u2h+

1

2
gh2
]∗
mL

= D

[ϕuh]∗fR − [cuh]∗mL = 0

(7.5)

where the star values refer to the constant states on the left and on the right

of the standing wave, while D is is, as specified in Section5.1, the thrust term

exerted by the bed step on the control volume

D = −g
(
hk −

|zR − zL|
2

)
(zR− zL) with k =

{
L if zL ≤ zR

R otherwise
(7.6)

The indication of the subscript m, f is actually useless, since the meaning

of h and u is the same in both bed conditions, while ϕ and c are defined

only in their respective cases. Therefore, it will not be used any longer.

For the fixed–mobile case, only the last equation changes with a swap in the

subscripts. It is worth noting that while the first two equations are standard,

the third, concerning the solid mass balance, provides the connection between

the transported concentration ϕ and the equilibrium concentration c: the

fluxes of solid mass across the discontinuity must be equal independently

from the form in which the sediment is conveyed. Moreover, considering the
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water flux is the same (first equation), the constancy of solid mass through

the discontinuity is reduced to an equality between the equilibrium and the

transported concentrations, c = ϕ.

7.2 The CRP solution strategy: the Compos-

ite PDEs system

As we stated in Section 6.2, the strategy to obtain the solution to the CRP

is based on the key idea of merging the two original systems by means of

a suitable weighting function, in order to obtain a single system able to

reproduce both the mobile-and the fixed-bed original conditions simply by

changing the value of the weighting parameter. Nevertheless, it is not possi-

ble to do this in a straightforward manner because, as already indicated in

Section 7.1, the number of variables (and obviously of equations) is differ-

ent in the two bed situations. As a result, the first step is to introduce a

new appropriate equation in the mobile-bed system, in order to balance the

number of equations. In fact, comparing both the primitive variable vector

of this bed case, WT
m =

[
h u zb

]
, with the corresponding fixed-bed case,

WT
f =

[
h u ϕ zb

]
, and the relevant systems, namely equations (7.2) and

(7.1), it is clear that a suitable equation involving the variable ϕ should be

added to the mobile-bed system. Obviously in mobile-bed conditions ϕ does

not represent the concentration of the solid phase at all, but simply a dummy

variable that does not affect the overall flow. A differential equation stating

that the dummy product ϕh does not change in time can be introduced in

system (7.2), giving rise to

∂h

∂t
+

∂

∂x
(uh) = 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+ gh
∂zb
∂x

= − τ0
ρf

∂zb
∂t

+
∂

∂x

(
c

cb
uh

)
= 0

∂

∂t
(ϕh) = 0

(7.7)
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This system resembles now system (7.1) since both of them have the same

number and types of equations (namely mass and momentum balance of the

water, mass balance of the solid phase and time invariance of one property)

and unknowns.

In order to compose the two sets of PDEs, now we introduce the variable

α (x) which describes the state of the bed as a function of the space

α(x) =

{
0 if fixed-bed

1 if mobile-bed
(7.8)

We called this function erodibility. It must be stressed that in the CRP the

switch between mobile-and fixed-bed conditions occurs only in a given posi-

tion of the space and do not change in time. For this reason, the erodibility

is not a function of time. In principle, a more general relation could be

used for α, but in this case the physical justification for the choice and the

relevant mathematical consequences fall far outside the scope of this Part

where the mathematical description of how to combine two different systems

of PDEs is presented. We therefore restrict our analysis to the case expressed

by equation (7.8).

The Composite PDEs system can be derived adding system (7.1) multi-

plied by (1− α) to system (7.2) multiplied by α

∂h

∂t
+
∂ (uh)

∂x
= 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+ gh
∂zb
∂x

= − τ0
ρw

∂

∂t
((1− α)ϕh+ αzb) + (1− α)

∂

∂x
(ϕuh) + α

∂

∂x

(
c
cb
uh
)

= 0

∂

∂t
(αϕh+ (1− α)zb) = 0

(7.9)

Here α has been shifted inside the time derivatives because it does not depend

on time. In this way a single standard PDE system has been obtained and

it is straightforward to check that it converges to system (7.1) using α = 0

and to system (7.2) using α = 1.

Nevertheless, the introduction of the erodibility function is not enough

to describe the development of the CRP in a proper manner. In fact, the
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previous partially nonconservative system does not allow the development

of a standing wave, located in the origin, which is able to describe the flow

associated with the discontinuity in α(x). This limit can be overcome by

using the same strategy used by Le Roux [41], who introduced a differential

equation stating the time invariance of the bed elevation, in order to describe

fixed-bed SW flows over a discontinuity of the topography. In the present

case, the equation of the time invariance of the erodibility can be introduced

∂α

∂t
= 0 (7.10)

With the addition of this equation, the system (7.9) admits a steady contact

wave that is expected to adequately describe the transition across the two

bed conditions. An important manipulation can now be introduced: the

functions (1− α) and α in the third equation can be brought inside the

spatial partial derivative. In fact, both the functions are piecewise constant

and so, since their derivatives are null everywhere except in the discontinuity

point, the following equivalence holds

(1− α)
∂

∂x
(ϕuh) + α

∂

∂x

(
c

cb
uh

)
=

∂

∂x

[(
(1− α)ϕ+ α

c

cb

)
uh

]
(7.11)

The inclusion of the function α and (1− α) in the spatial derivatives of

system (7.9) can be justified also in the following way.

The system composed by system (7.9) plus equation (7.10), can be for-

mally written in compact form as

∂U

∂t
+
∂F′

∂x
+H∂U

∂x
= S (7.12)

where

U =


h

uh

ϕh+ zb

αϕh+ (1− α)zb

α

 ; F′ =



uh

u2h+
1

2
gh2

ϕuh

0

0


(7.13)

while H = H′∂W/∂U where

WT = [h, u, zb, ϕ, α] (7.14)
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is the vector of the primitive variables and

ST = [0,−τ0/ρf , 0, 0, 0] (7.15)

is the source term. It is not strictly necessary to know the actual expressions

of H′ and of ∂W/∂U so they are not reported. The only important thing is

to guess that in H some terms depends on α. System (7.9) is composed by

a conservative part, namely ∂F′/ ∂x, and a non-conservative part, namely

H∂U/∂x. Following the theory developed by Dal Maso et al. [20], the

relation that must hold across the steady wave of the fixed-mobile interface

is: ∫ 1

0

f(Φ(s; U∗L,U
∗
R))

∂Φ

∂s
(s; U∗L,U

∗
R)ds = 0. (7.16)

where

f =
∂F′

∂U
+H (7.17)

Φ(s; U∗L,U
∗
R), called family of paths, is a Lipschitz map Φ : [0, 1] × Rm ×

Rm → Rm satisfying some properties of consistency and regularity and U∗L,

U∗R are the constant values of the conserved variables on the left and on the

right of the wave. The Jacobian part of f gives rise to a path-independent

value of the integral while the truly nonconservative one leads to a path-

dependent term:

F′∗R − F′∗L +

∫ 1

0

H(Φ(s; U∗L,U
∗
R))

∂Φ

∂s
(s; U∗L,U

∗
R)ds = 0. (7.18)

In particular, the integral depends on the path connecting the left and right

values of α. In the present case the path connecting the two states cannot

be chosen arbitrarily but, in order to be physically correct, it must follow

the one described by the GRH relations of equation (7.5). Looking at these

expressions, it is straightforward to notice that they don’t depend on α. So

the integral of the nonconservative term must be independent from the path

relevant to the variable α. This condition can be achieved rewriting the

nonconservative fluxes of the third equation of system (7.9) in a conservative

form, i.e. bringing inside the spatial derivative the terms depending on α as

expressed by equation (7.11).
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Considering the previous operation, the final form of the CPDEs system

is then made up of system (7.9), where it is useful to add the fourth equation

of (7.9) to the third, plus equation (7.10)



∂h

∂t
+
∂ (uh)

∂x
= 0

∂

∂t
(uh) +

∂

∂x

(
u2h+

1

2
gh2
)

+ gh
∂zb
∂x

= − τ0
ρf

∂

∂t
(ϕh+ zb) +

∂

∂x

[(
ϕ(1− α) + α

c

cb

)
uh

]
= 0

∂

∂t
(αϕh+ (1− α)zb) = 0

∂α

∂t
= 0

(7.19)

In compact form, the previous system becomes

∂U

∂t
+
∂F

∂x
+ H

∂W

∂x
= S (7.20)

where

U =


h

uh

ϕh+ zb

αϕh+ (1− α) zb

α

 ; F =



uh

u2h+
1

2
gh2(

ϕ(1− α) + α c
cb

)
uh

0

0


(7.21)

H =


0 0 0 0 0

0 0 gh 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ; W =


h

u

zb

ϕ

α

 ; S =


0

−τ0/ρf
0

0

0

 (7.22)
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7.3 Eigenstructure and shock relations of the

CPDEs

In order to study the eigenstructure of the CPDEs system (7.19), its homo-

geneous part can be rewritten in the following quasi-liner form:

JU
∂W

∂t
+ (JF + H)

∂W

∂x
= 0 (7.23)

where

JU =
∂U

∂W
; JF =

∂F

∂W
(7.24)

are respectively the Jacobian of the conserved variables and of the fluxes

respect to the primitive variable vector W defined in equation (7.22). Their

detailed expression is

JU =


1 0 0 0 0

u h 0 0 0

ϕ 0 cb h 0

αϕ 0 cb (1− α) hα hϕ− zbcb
0 0 0 0 1

 (7.25)

JF =


u h 0

u2 + gh 2hu 0

uϕ (1− α) + uα
(
c+ h ∂c

∂h

)
hϕ (1− α) + hα

(
c+ u ∂c

∂u

)
0

0 0 0

0 0 0

0 0

0 0

hu (1− α) hu (c− ϕ)

0 0

0 0

 (7.26)

The relevant characteristic polynomial, obtained from

det |JF + H− λJU| = 0 (7.27)
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is the following

λ2
(
a3λ

3 + a2λ
2 + a1λ+ a0

)
= 0 (7.28)

where the coefficient of the polynomial are

a3 = cb (1− 2α) (7.29)

a2 = ucb
(
6α− α2 − 3

)
(7.30)

a1 =

(
2u2cb + gh

(
c− ϕ+ u

∂c

∂u

))
α2 +

(
gh (ϕ+ 2cb)− 6cbu

2
)
α+

+ cb
(
3u2 − gh

)
(7.31)

a0 = u

(
gh

(
ϕ+ cb + h

∂c

∂h
− u ∂c

∂u

)
− u2cb

)
α2+

− u
(
gh (ϕ+ 2cb)− 2cbu

2
)
α − ucb

(
u2 − gh

)
(7.32)

It is useful to note that since ai depends only on velocity, depth and erodi-

bility parameter (it must be noted that the terms depending on ϕ can be

cancelled in each polynomial coefficient both if α = 0 and if α = 1), the

eigenvalues also depend on these variables only

λi = λi(h, u, α) (7.33)

Moreover, two eigenvalues are identically null, namely

λi = 0 for i = 4, 5

so the problem is not strictly hyperbolic. The other three eigenvalues, λi for

i = 1, 3, derive from the solution of the third order polynomial present in

equation (7.28), namely

a3λ
3 + a2λ

2 + a1λ+ a0 = 0
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With α = 0 the previous polynomial collapse to

(u− λ)
(
λ2 − 2uλ+ u2 − gh

)
= 0 (7.34)

with roots

λ1 = u+
√
gh; λ2 = u; λ3 = u−

√
gh (7.35)

These eigenvalues are equal to the first three eigenvalues of the fixed bed case

(see equation (5.9)). Also λ4 = 0 is equal to the corresponding eigenvalue

of the fixed bed case while λ5 is obviously present only in the CPDE case.

Analogously, with α = 1 we checked that the resulting third order polynomial

is equal to the one obtained in the mobile bed case, expressed by equation

(5.19). As a result, in this bed condition, the first three eigenvalues of the

CPDEs system are equal to the corresponding values in the mobile-bed case.

The last two eigenvalues are obviously present only in the composite problem.

The eigenvectors related to system (7.19) are given by

(JF + H) RW
i = λiJURW

i (7.36)

The general expression of RW
i for i = 1, 4 is

RW
i =



gh2 (λi − u (1− α))

−gh (u− λi) (λi − u (1− α))

h (λi − u (1− α))
(
(u− λi)2 − gh

)
−λi

(
(u− λi)2 − gh

)
+
ghα

cb

[
λi (c− ϕ) + u

(
h
∂c

∂h
− (u− λi)

∂c

∂u

)]
0


(7.37)

while for λ5 = 0, since the system is not strictly hyperbolic, the relevant
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eigenvalue has one degree of freedom

RW
5 =



−gh (ξ (1− α) + c− ϕ)

gu (ξ (1− α) + c− ϕ)

(gh− u2) (ξ (1− α) + c− ϕ)

ghξα
∂c

∂h
− gξuα ∂c

∂u

ghα
∂c

∂h
− guα ∂c

∂u


(7.38)

where ξ is an arbitrary constant. It is important to notice that the eigenvec-

tors associated to the null eigenvalues λ4,5 are independent. In the following,

we will indicate with RW
i,j the j-th component of the i-th eigenvector.

Carrying out some simple manipulations it is possible to verify the con-

sistency of the CPDEs eigenvectors with the pure fixed- or mobile-bed eigen-

vectors. In particular, with α = 0 the first four components of the first

four CPDE eigenvectors coincide with the eigenvector components obtained

from the pure fixed-bed system with discontinuous topography reported in

equation (5.10), namely

R
Wf

i,j = RW
i,j with i, j = 1, 4

while RW
i,5 with i = 1, 4 is identically null. In the mobile-bed sate, with

α = 1, the first three components of the first three CPDE eigenvectors

are equal to the eigenvector components obtained from the pure mobile-bed

system expressed by equation (5.20), namely

RWm
i,j = RW

i,j with i, j = 1, 3

while RW
i,4 with i = 1, 3 is always non-null and RW

i,5 with i = 1, 3 is identically

null.

The nature of the characteristic fields can be determined by analyzing

the quantity G = ∇Wλi ·RW
i , where the gradient of λi is calculated respect

the primitive variable vector. Considering equation (7.33), the previous dot

product becomes

G =
dλi
dh

RW
i,1 +

dλi
du

RW
i,2 +

dλi
dα

RW
i,5 (7.39)
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λ1 λ2 λ3

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

GNL

ϕ, zb, α

GNL

α

LD

h, u, zb, α

GNL

α

GNL

ϕ, zb, α

GNL

α

λ4 = 0 λ5 = 0

α = 0 α = 1 ξ = 0 ξ 6= 0

LD∗

ϕ, α

LD∗

h, u, zb, α

LD∗

ϕ

LD∗

-

Table 7.1: Summary of the possible characteristic fields with indication of

the variables that remain constant across each wave of that field. Meanings

of the symbols: GNL = genuinely nonlinear field; LD = classical linearly

degenerate field; LD∗ = linearly degenerate field with λ independent from U.

Finally ξ is a degree of freedom of the fifth field

and, as a result, the nature of each characteristic field depends on the first two

components and on the last one of the relevant eigenvector. Other features of

the waves can be obtained analyzing the RI associated with each eigenvalue,

namely

dWj

RW
i,j

= κi with i, j = 1, 5 (7.40)

where κi indicates a generic constant. It is important to recall that if the

j-th component of the i-th eigenvector is null, namely RW
i,j = 0, the relevant

variable Wj remains constant across each possible wave type of the i-th field

while if RW
i,j 6= 0, then Wj 6= const. A summary of the possible fields for the

CPDEs system along with their main properties is reported in Table 7.1.

A series of useful observations can be made.

Regarding the first four fields, since RW
i,5 = 0 for i = 1, 4, they are char-

acterized by W5 = α = const, namely the state of the bed does not change

across these waves. So these waves are pure fixed-bed or pure mobile-bed:

• for α = 0 and i = 1, 4, then RW
i,1 and RW

i,2 become equal to the corre-

sponding values of the fixed-bed eigenvector, while RW
i,5 = 0. Therefore,
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thanks to (7.39), we can say that the nature of these characteristic fields

of the CPDEs system, in fixed-bed state, is equal to that obtained in

the pure fixed-bed case (see Section 5.1);

• for α = 1 and i = 1, 3, the relevant characteristic fields have the same

nature as the pure mobile-bed fields (see Section 5.1). In the fourth

field, all the component of RW
4 are null except the fourth and therefore

across this wave only ϕ changes. Actually this wave is not important

because the quantity ϕ has no physical meaning in mobile-bed condi-

tions.

Therefore we can conclude that the CPDEs system reproduce correctly

both the pure fixed or mobile bed models if no transition is present.

Regarding the last wave λ5 = 0, the corresponding field is linearly de-

generate with eigenvalue independent from U. Moreover, since RW
5,5 6= 0, α

must change across this wave. In other words, the fifth characteristic field de-

scribes the fixed–mobile transition. Recalling that this eigenvector presents

a degree of freedom ξ (see equation (7.38)), it can be noted (Table 7.1) that

if ξ 6= 0 all the variables can change across the wave, while if ξ = 0, ϕ must

remain constant while the other three variables can change. Obviously, the

choice ξ 6= 0 is more general, since it includes ϕ = const as a particular case

and for this reason is preferable.

Genuinely nonlinear fields can develop shocks. In these cases, since system

(7.19) is nonconservative, the following GRH relations must hold

F∗R − F∗L −D = Ss (U∗R −U∗L) (7.41)

where Ss is the speed of the shock, F∗R,F
∗
L and U∗R,U

∗
L are the fluxes and

the conserved variables respectively on the right and on the left of the shock

wave and finally DT = (0, D, 0, 0, 0), where D is given by equation (7.6).

Considering Table 7.1, we can notice that if α = 0, since zb is constant across

λ1 and λ3 fields, the term D is null and the GRH relations degenerates to

standard RH ones where the first tree relation are equal to the RH relations

for the pure fixed-bed case while the last two are trivial relations. If α = 1,

the first three GRH relations are equal to the GRH ones for the pure mobile-

bed case, equation (5.21), while the last two relations are trivial.
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Regarding the linearly degenerate fields, the contact wave associated to

λ2 with α = 0 is nothing but a classical contact wave over flat bed. On the

contrary, the relations valid across λ4 are the GRH ones with null wave speed{
F∗R − F∗L = D if α = 0

F∗R − F∗L = 0 if α = 1

while the ones valid across the contact wave associated to λ5 are{
F∗R,0 − F∗L,1 = D mobile-fixed transition

F∗R,1 − F∗L,0 = D fixed-mobile transition
(7.42)

where the second subscript refers to the bed state at which the fluxes must be

evaluates. The first three equations of these vectorial expressions are nothing

but equation (7.5) while the last two are trivial relations. It is important to

notice that these equations provide a relation between ϕ on the fixed-bed

side and con the mobile-bed side. Nevertheless, no constraint that links ϕ on

both sides of the transition is present. Moreover, considering that with the

choice ξ 6= 0, ϕ can change, we conclude that the value of the transported

concentration on the mobile-bed side is completely arbitrary. So, it is possible

to consider an initial value ϕ = 0 in all the transects characterized by mobile

bed and we are sure that this condition is in any case compatible with any

condition present on the fixed bed side of a transition. Moreover, considering

the last equation of system (7.7), we can conclude that the null value is

maintained in time.

7.4 Classes of solutions of the CRP

As we noticed in Section (7.2), the solution of a CRP, defined by equation

(7.4), is composed by a suitable combination of the waves whose features

have been presented in the previous Section. Solutions can be conveniently

grouped in classes characterized by some common peculiarities. For simplic-

ity, from now on, we suppose that the velocity in a neighborhood of the origin

is always positive for times t > 0. If the velocity is negative, the proposed

classification is still valid but must be applied specularly respect what we

present here.



7.4 Classes of solutions of the CRP 123

The type of waves generated by the CRP that travel the left and the right

part of the flow field must be consistent with the possible waves admitted

by the relevant bed state. The first feature that can be used to make the

classification is the sequence of bed states from left to right of the origin.

Two categories can be identified:

• FB-MB: flow with fixed to mobile bed transition;

• MB-FB: flow with mobile to fixed bed transition.

Another key feature, peculiar of the fixed-bed condition, is the change of

sign in one eigenvalue as a function of the Froude number (see Section 5.1 for

details). Therefore, the second feature that must be used for the classification

is the nature of the flow (super or subcritical) in the neighborhood of the

origin on the fixed-bed side.

As a result there are four different categories:

• FBsub-MB: transition from subcritical flow over fixed bed to mobile-

bed condition;

• FBsup-MB: transition from supercritical flow over fixed bed to mobile-

bed condition;

• MB-FBsub: transition from mobile-bed condition to subcritical flow

over fixed bed;

• MB-FBsup: transition from mobile-bed condition to supercritical flow

over fixed bed.

The wave-pattern associated to each category, reported in Figure 7.2, is

then composed by parts of wave pattern of pure fixed- or mobile-bed RPs

(see Figures 5.1 and 5.2) plus a LD∗ wave in the origin. Analysis of the

peculiarity of each class demonstrates that:

FBsub-MB The solutions of this class are composed, from left to right, by

a λ1 GNL fixed-bed wave, a λ5 LD∗ contact followed by two λ2, λ3 GNL

mobile-bed waves.
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Figure 7.2: The four different classes of CRP solutions for positive velocity

in the neighborhood of the origin: (a) FBsub-MB, (b) FBsup-MB, (c) MB-

FBsub, (d)MB-FBsup. Dashed lines represent mobile-bed fields, solid lines

fixed-bed ones. GNL represent genuinely nonlinear fields, LD classical lin-

early degenerate fields and LD∗ linearly degenerate fields with λ independent

from U.

FBsup-MB This class is characterized by the absence of waves on the left

of the origin, a λ5 LD∗ contact in the origin followed by two λ2, λ3 GNL

mobile-bed waves.

MB-FBsub The solutions of this class are composed by a λ1 GNL mobile-

bed wave, a λ5 LD∗ contact, a LD λ2 contact and finally by a λ3 GNL

fixed-bed wave.

MB-FBsup In this case the solutions are composed by a λ1 GNL mobile-

bed wave, a λ5 LD∗ contact, a LD λ2 contact and two λ1, λ3 GNL

fixed-bed waves.

Some final observation must be made:
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1. The proposed classification exclude the extreme case in which the sign

of the velocity changes across the origin.

2. As highlighted in the presentation of the models, in pure fixed-bed con-

ditions, resonant cases may occur (see Section 5.1). On the other hand,

in pure mobile-bed conditions, resonance cannot occur (Section5.1).

With fixed-mobile transition, resonance can occur if a sonic rarefaction

on the fixed-bed side overlap the bed step wave.

3. The MB-FBsup class shows the peculiar feature that infinite wave pat-

terns connecting given left and right initial conditions can be found. In

fact, the supercritical condition of the fixed-bed side presents a com-

plete wave pattern of a standard RP over flat bed, which permits the

linking of the initial right condition to any condition arising from the

central contact wave. On the other hand, since there is no constraint

deriving from the right side, any suitable couple of λ1 GNL mobile-bed

wave and λ5 LD∗ contact can be chosen starting from the left initial

value. These fortuitous conditions lead to the non-uniqueness of the

CRP solution in this case. An example of two possible exact solutions

associated with the same initial values are reported in Figure 7.3. It

must be noted that all the waves considered in the example are entropic.

More effort is needed to clarify this point but, since it is an extreme

case with a low probability of occurrence in practical applications, we

leave this topic for a future in-deep analysis.
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Figure 7.3: Example of two possible exact solutions of a RP of MB-FBsup

type. All the waves are entropy satisfying.



Chapter 8

Application of the CRP

procedure to high sediment

cases

The strategy for coupling different PDEs systems developed in Chapter 7 can

be applied, as specified in Chapter 6, to different sets of equations related to

the same physical problem. In this Chapter we apply this strategy in order

to couple the fixed and the mobile bed systems in cases of high sediment con-

centration. Although the coupling procedure is the same, the complexity of

the systems obtained is gradually increasing, in particular the eigenstructure

analysis becomes more and more complicated.

Firstly we present the Composite PDEs system for the one-dimensional

high concentration system in Section 8.1, while in Section 8.2 the two-

dimensional plane wave CPDEs is derived.
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8.1 CPDEs system for one-dimensional case

The one-dimensional two-phase free-surface flow over fixed bed for high sed-

iment concentration described by the system (4.8) derived in Chapter 4.2

reads

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
ϕh+

∂

∂x
ϕuh = 0

∂

∂t
(1 + ϕ∆)uh+

∂

∂x
(1 + ϕ∆)

(
hu2 + g

h2

2

)
+

+ (1 + ϕ∆) gh
∂zb
∂x

= − τ0
ρf∂

∂t
zb = 0

(8.1)

where h is the flow depth, u is the flow velocity, zb is the bed elevation,

∆ =
ρs−ρf
ρf

is the constant relative submerged solid density, ϕ in the solid

concentration inside the flow, g is the constant gravity acceleration, ρf is the

fluid density and τ0 is the bed shear stress. For the mobile bed, the system

(4.9) is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= − τ0
ρf

(8.2)

where cb is the constant concentration inside the bed, c is the solid concen-

tration inside the flow field and the other variables have the same meaning

as for fixed bed case.

The eigenstructure of both systems has been analyzed in Chapter 5.2,

where we demonstrated their hyperbolicity.

Following the procedure developed in the previous Chapter, the first step

for the coupling is to check systems (8.1) and (8.2) in order to find if some
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additional variables and associated equations are needed. Comparing the

primitive vector of the two systems, i.e. WT
f =

[
h u ϕ zb

]
and WT

m =[
h u zb

]
, the missing variable in the latter vector is ϕ. This variable, as

states in Section 7.2, is a dummy variable for the mobile bed part of the

problem, so it does not affect the flow. A suitable equation involving this

dummy variable is

∂

∂t
ϕh = 0 (8.3)

Introducing this equations in the mobile bed system, we obtain

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= − τ0
ρf∂

∂t
ϕh = 0

(8.4)

It is composed by the same number (four) and type (mixture and solid mass

conservations, mixture momentum balance and invariance of one property)

of equations. Using the erodibility function (7.8) and its associated equation

(7.10), and following the approach developed in Section 7.2, the final CPDEs

that describe the transition between fixed and mobile bed valid for high

concentration regime, is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(cbzb + ϕh+ αch) +

∂

∂x
(δuh) = 0

∂

∂t
(1 + δ∆)uh+

∂

∂x
(1 + δ∆)

(
u2h+ g

h2

2

)
+

+ (1 + δ∆) gh
∂zb
∂x

= − τ0
ρf

∂

∂t
((1− α) cbzb + αϕh) = 0

∂

∂t
α = 0

(8.5)
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where δ = (αc+ (1− α)ϕ). It is straightforward to check that this system

converges to system (8.1) using α = 0 and to system (8.2) using α = 1.

The system (8.5) can be written in compact form as

∂U

∂t
+
∂F

∂x
+ H

∂W

∂x
= S (8.6)

where U and W are the vectors of the conserved and primitive variables

U =


h+ zb

cbzb + ϕh+ αch

(1 + δ∆)uh

(1− α) cbzb + αϕh

α

 ; W =


h

u

zb

ϕ

α

 (8.7)

F and H are the conservative and non-conservative fluxes

H =


0 0 0 0 0

0 0 0 0 0

0 0 (1 + δ∆) gh 0 0

0 0 0 0 0

0 0 0 0 0

 ; F =



uh

δuh

(1 + δ∆)

(
u2h+ g

h2

2

)
0

0


(8.8)

while S is the source term

S =


0

0

−τ0/ρf
0

0

 (8.9)

8.1.1 Eigenstructure and shock relation of the CPDEs

The eigenstructure of system (8.5) can be determined analyzing its linearized

homogeneous form that reads

JU
∂W

∂t
+ (JF + H)

∂W

∂x
= 0 (8.10)
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where

JU =
∂U

∂W
; JF =

∂F

∂W
(8.11)

are respectively the Jacobian of the conserved variables and of the fluxes

respect to the primitive variable vector W defined in equations (8.7) and

(8.8). Their detailed expressions are

JU =


1 0 1

ϕ+ αc+ hα ∂c
∂h

hα ∂c
∂u

cb

u
(
1 + δ∆ + h∆α ∂c

∂h

)
h
(
1 + δ∆ + u∆α ∂c

∂u

)
0

αϕ 0 cb (1− α)

0 0 0

0 0

h hc

hu∆ (1− α) hu∆ (c− ϕ)

hα hϕ− zcb
0 1

 (8.12)

JF =


u h 0

u
(
δ + hα ∂c

∂h

)
h
(
δ + uα ∂c

∂u

)
0

(gh+ u2) (1 + δ∆) + ∆α ∂c
∂h

Φ 2hu (1 + δ∆) + ∆α ∂c
∂u

Φ 0

0 0 0

0 0 0

0 0

hu (1− α) hu (c− ϕ)

Φ∆ (1− α) Φ∆ (c− ϕ)

0 0

0 0

 (8.13)

where Φ =
(
1
2
gh2 + hu2

)
.

Evaluating the relevant characteristic polynomial we obtain

λ2
(
a3λ

3 + a2λ
2 + a1λ+ a0

)
= 0 (8.14)

where the expression of the four coefficients ai with i = 0, . . . , 3 will be not

reported due to their complexity and length. An important aspect is that
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these coefficients depend only on variables u, h and α, as for the simplified

system (7.33). Two null eigenvalues are present

λi = 0 for i = 4, 5

so the problem is not strictly hyperbolic, while the other three eigenvalues

derive from the solution of the third order polynomial. Imposing α = 0

in this polynomial, the three roots are the ones associate to the fixed bed

system (8.1) and presented in Section 5.2. On the contrary, using α = 1,

the characteristic polynomial associate to the mobile bed system (8.2) is

obtained.

The eigenvectors related to system (8.5) are given by equation (7.36).

For the same reason as the polynomial coefficients, the general expression of

RW
i for i = 1, 3 is not reported. Here we present only the two eigenvectors

associated to the two null eigenvalues (λ4,5 = 0) that read

RW
4 =



gh (α− 1)

−gu (α− 1)

− (α− 1) (gh− u2)

ghα
∂c

∂h
− guα ∂c

∂u
0


(8.15)

RW
5 =



−gh (ξ (1− α) + c− ϕ)

gu (ξ (1− α) + c− ϕ)

(gh− u2) (ξ (1− α) + c− ϕ)

ghξα
∂c

∂h
− gξuα ∂c

∂u

ghα
∂c

∂h
− guα ∂c

∂u


(8.16)

where ξ is an arbitrary constant. It is important to notice that the eigenvec-

tors associated to the null eigenvalues λ4,5 are independent. All the properties

related to the eigenvectors and associated characteristic fields highlighted in

Section 7.3 are still valid also for the CPDEs system (8.5), so we refer to that

Section for more details.
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As specified in the previous Chapter, genuinely nonlinear fields can de-

velop shocks. In these cases, since system (8.5) is nonconservative, the fol-

lowing GRH relations hold

F∗R − F∗L −D = Ss (U∗R −U∗L) (8.17)

where Ss is the speed of the shock, F∗R,F
∗
L and U∗R,U

∗
L are the fluxes and

the conserved variables respectively on the right and on the left of the shock

wave and finally DT = (0, 0, D, 0, 0). Following Rosatti and Fraccarollo [54]

it is possible to determinate the expression of D obtaining

D = −g (1 + αkck∆ + (1− αk)ϕk∆)

(
hk −

|zR − zL|
2

)
(zR − zL)

(8.18)

with k =

{
L if zL ≤ zR

R otherwise

All the other properties, included the classes of solutions, are the same

as the CPDEs system for low sediment concentration, so we refer to Sections

7.3 and 7.4 for all the details.
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8.2 CPDEs for two-dimensional plane wave

case

The two-phase free-surface flow over fixed bed with the plane wave is de-

scribed by the system (4.10) derived in Chapter 4.3 and reads

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
ϕh+

∂

∂x
ϕuh = 0

∂

∂t
(1 + ϕ∆)uh+

∂

∂x
(1 + ϕ∆)

(
hu2 + g

h2

2

)
+

+ (1 + ϕ∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + ϕ∆) vh+

∂

∂x
(1 + ϕ∆)uvh = −τ0,y

ρf

∂

∂t
zb = 0

(8.19)

The mobile bed the system (4.11) is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + c∆) vh+

∂

∂x
(1 + c∆)huv = −τ0,y

ρf

(8.20)

The eigenstructure of both systems has been analyzed in Section 5.3, where

we demonstrate their hyperbolicity.

Following the coupling procedure developed in Chapter 7, as first step we

compare the two initial systems in order to find if some additional variables

and associated equations are needed. Comparing the primitive vector of the

two systems, i.e. WT
f =

[
h u v zb ϕ

]
and WT

m =
[
h u v zb

]
the
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mobile bed system has one variable less and, also in this case, the missing

variable is ϕ so, as performed in Section 7.2, the dummy variable ϕ and a

suitable equation involving this dummy variable

∂

∂t
ϕh = 0 (8.21)

are introduced in the mobile bed system obtaining



∂

∂t
(h+ zb) +

∂

∂x
uh = 0

cb
∂zb
∂t

+
∂

∂t
ch+

∂

∂x
cuh = 0

∂

∂t
(1 + c∆)uh+

∂

∂x
(1 + c∆)

(
hu2 + g

h2

2

)
+

+ (1 + c∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + c∆) vh+

∂

∂x
(1 + c∆)huv = −τ0,y

ρf

∂

∂t
ϕh = 0

(8.22)

and it is composed by the same number (five) and type (mixture and solid

mass conservation, mixture momentum balance along longitudinal and transver-

sal direction and invariance of one property) of equations. Introducing the

erodibility function (7.8) and the associated differential equation (7.10), and

following the same approach as before, the final CPDEs system with plane
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wave is

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(cbzb + ϕh+ αch) +

∂

∂x
(δuh) = 0

∂

∂t
(1 + δ∆)uh+

∂

∂x
(1 + δ∆)

(
u2h+ g

h2

2

)
+

+ (1 + δ∆) gh
∂zb
∂x

= −τ0,x
ρf

∂

∂t
(1 + δ∆) vh+

∂

∂x
(1 + δ∆)uvh = −τ0,y

ρf

∂

∂t
((1− α) cbzb + αϕh) = 0

∂

∂t
α = 0

(8.23)

It is straightforward to check that this system converges to system (8.19)

using α = 0 and to system (8.20) using α = 1.

In compact form it reads

∂U

∂t
+
∂F

∂x
+ H

∂W

∂x
= S (8.24)

where U and W are the vectors of the conserved and primitive variables

U =



h+ z

αch+ ϕh+ cbzb

(1 + δ∆)uh

(1 + δ∆) vh

αϕh+ (1− α) cbzb

α


; W =



h

u

v

zb

ϕ

α


(8.25)

F and H are the conservative and non-conservative fluxes

H =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 (1 + δ∆) gh 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


; F =



uh

δuh

(1 + δ∆)
(
u2h+ g h

2

2

)
(1 + δ∆)uvh

0

0


(8.26)
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while S is the source term

S =



0

0

−τ0,x/ρf
−τ0,y/ρf

0

0


(8.27)

8.2.1 Eigenstructure and shock relation for the CPDEs

The eigenstructure of system (8.23) can be determined analyzing its lin-

earized homogeneous form that reads

JU
∂W

∂t
+ (JF + H)

∂W

∂x
= 0 (8.28)

where

JU =
∂U

∂W
; JF =

∂F

∂W
(8.29)

are respectively the Jacobian of the conserved variables and of the fluxes

respect to the primitive variable vector W defined in equations (8.25) and

(8.26). Their detailed expressions are

JU =



1 0 0

ϕ+ αc+ hα ∂c
∂h

hα ∂c
∂u

hα ∂c
∂v

u
(
1 + δ∆ + h∆α ∂c

∂h

)
h
(
1 + δ∆ + u∆α ∂c

∂u

)
hu∆α ∂c

∂v

v
(
1 + δ∆ + h∆α ∂c

∂h

)
hv∆α ∂c

∂u
h
(
1 + δ∆ + v∆α ∂c

∂v

)
αϕ 0 0

0 0 0

1 0 0

cb h hc

0 hu∆ (1− α) hu∆ (c− ϕ)

0 hv∆ (1− α) hv∆ (c− ϕ)

cb (1− α) hα hϕ− zcb
0 0 1


(8.30)
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and

JF =



u h

u
(
δ + hα ∂c

∂h

)
h
(
δ + uα ∂c

∂u

)
(gh+ u2) (1 + δ∆) + Φ∆α ∂c

∂h
2hu (1 + δ∆) + Φ∆α ∂c

∂u

uv
(
1 + δ∆ + h∆α ∂c

∂h

)
hv
(
1 + δ∆ϕ+ u∆α ∂c

∂u

)
0 0

0 0

0 0 0 0

huα ∂c
∂v

0 hu− huα huc− huϕ
Φ∆α ∂c

∂v
0 Φ∆ (1− α) Φ∆ (c− ϕ)

hu
(
1 + δ∆ + v∆α ∂c

∂v

)
0 huv∆ (1− α) huv∆ (c− ϕ)

0 0 0 0

0 0 0 0


(8.31)

The characteristic polynomial is

λ2 (u− λ)
(
a3λ

3 + a2λ
2 + a1λ+ a0

)
= 0 (8.32)

where ai with i = 0, . . . , 3 are four coefficients (not written in this thesis due

to their complexity and length) that depend only on variables u, v, h and α.

It is important to highlight the presence of two null eigenvalues

λi = 0 for i = 4, 5 (8.33)

so the problem is not strictly hyperbolic. One eigenvalue is always

λ6 = u (8.34)

while the other three eigenvalues derive from the solution of the third order

polynomial(
a3λ

3 + a2λ
2 + a1λ+ a0

)
= 0 (8.35)

Imposing α = 0 or α = 1 this polynomial reduces to the one associated to

the fixed and mobile bed case respectively derived in Section 5.3.



8.2 CPDEs for two-dimensional plane wave case 139

The eigenvectors related to system (8.23) can be obtained form equation

(7.36). For the same reason of the polynomial coefficients, the general ex-

pression of RW
i for i = 1, 3 is not reported. The eigenvectors associated to

the two null eigenvalues (λ4,5 = 0) are

RW
4 =



gh (α− 1)

−gu (α− 1)

0

− (α− 1) (gh− u2)

ghα
∂c

∂h
− guα ∂c

∂u
0


(8.36)

RW
5 =



−gh (ξ (1− α) + c− ϕ)

gu (ξ (1− α) + c− ϕ)

0

(gh− u2) (ξ (1− α) + c− ϕ)

ghξα
∂c

∂h
− gξuα ∂c

∂u

ghα
∂c

∂h
− guα ∂c

∂u


(8.37)

where ξ is an arbitrary constant (as for the previous cases). It is important

to notice that the eigenvectors associated to the null eigenvalues λ4,5 are

independent. The last eigenvector presented here is associated to λ6 = u and

it is

RW
6 =



∆αh
∂c

∂v
0

∆α

(
ϕ− 2c− h ∂c

∂h

)
−∆ϕ− 2

0

−∆αϕ
∂c

∂v
0


(8.38)

All the properties related to the eigenvectors RW
i with i = 1, . . . , 5 and their

associated characteristic fields highlighted in Section 8.1.1 are still valid also
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λ1 λ2 λ3

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

GNL

ϕ, zb, v, α

GNL

α

LD

h, u, zb, v, α

GNL

α

GNL

ϕ, zb, v, α

GNL

α

λ4 = 0 λ5 = 0 λ6 = u

α = 0 α = 1 ξ = 0 ξ 6= 0 α = 0 α = 1

LD∗

ϕ, v, α

LD∗

h, u, zb, v, α

LD∗

ϕ, v

LD∗

v

LD

h, u, zb, ϕ, α

LD

u, zb, α

Table 8.1: Summary of the possible characteristic fields with indication of

the variables that remain constant across each wave of that field. Meanings

of the symbols: GNL = genuinely nonlinear field; LD = classical linearly

degenerate field; LD∗ = linearly degenerate field with λ independent from

U. Finally ξ is a degree of freedom of the fifth field

for the CPDEs system (8.23) but, in this case, there is one more compo-

nent in each eigenvectors, related to the velocity v, that does not affect the

dissertation done before. Regarding the eigenvector RW
6 , the associated char-

acteristic field is a classical linearly degenerate one where α, u and zb does not

change. Some important property related to the eigenvectors and associated

characteristic fields are summarized in Table 8.1.

Since system (8.23) is nonconservative, the relation valid across shocks

associated to GNL fields is following GRH relation

F∗R − F∗L −D = Ss (U∗R −U∗L) (8.39)

where Ss is the speed of the shock, F∗R,F
∗
L and U∗R,U

∗
L are the fluxes and

the conserved variables respectively on the right and on the left of the shock

wave and finally DT = (0, 0, D, 0, 0, 0) where D is defined by equation (8.18).

The classes of solutions of the CRP are similar to the one presented for

the simplified model (Section 7.4). The only difference is in the presence

of the contact wave λ6 in all the categories as reported in Figure 8.1 where

the wave pattern associated to each categories is presented. Nevertheless,
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Figure 8.1: The four different classes of CRP solutions for positive velocity

in the neighborhood of the origin: (a) FBsub-MB, (b) FBsup-MB, (c) MB-

FBsub, (d)MB-FBsup. Dashed lines represent mobile-bed fields, solid lines

fixed-bed ones. GNL represent genuinely nonlinear fields, LD classical lin-

early degenerate fields and LD∗ linearly degenerate fields with λ independent

from U.

the existence of this additional wave does not modify all the characteristics

highlighted in Section 7.4.





Part III

Transition from fixed bed to

mobile bed: numerical aspect





Chapter 9

Numerical Riemann solvers

The homogeneous part of generic PDEs system (as the composite systems

developed in Part II) can be written, in compact form, as

∂U

∂t
+
∂F

∂x
+ H

∂W

∂x
= 0 (9.1)

where U and W are the vectors of conservative and primitive variables, while

F and H represents the conservative and non conservative fluxes respectively.

In the framework of finite volume method the classical update formula for

equation (9.1) is

Un+1
i = Un

i −
∆t

∆x

(
F−i+1/2 − F+

i−1/2

)
(9.2)

where ∆t is the time step integration, ∆x is the space discretization, the

superscript n refers to the time step n∆t, the subscript i refers to cell i

which center is located at i∆x, F−i+1/2 is the outgoing flux on the right bor-

der of cell i, while F+
i−1/2 is the incoming flux evaluated on the left side of

cell i. Since we want to use the Godunov method, the evaluation of F−i−1/2
and F+

i+1/2 is performed solving a Riemann problem (RP) with appropriated

and numerical solvers. We highlight that, since equation (9.1) contains both

conservative and non conservative fluxes, the F−i−1/2 and F+
i+1/2 can be dif-

ferent, so the numerical solver must take into account both conservative and

non-conservative terms.

In this Chapter we present three different Riemann solvers used to solve

the CPDEs systems derived in the previous Chapters. In particular, in Sec-

tion 9.1 a modified version of the LHLL solver is presented, in Section 9.2 the
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Closure Independent Generalized Roe solver is introduced and the Extended

Multiple Averages strategy is developed, while in Section 9.3 a new version of

the Universal Osher solver is presented. Finally, in Section 9.4, a comparison

between the three different Riemann solvers is performed.

In the following Sections, we focus our attention on the homogeneous

part of the CPDEs system for high sediment concentration (8.5) developed

in Section 8.1 that reads

∂

∂t
(h+ zb) +

∂

∂x
uh = 0

∂

∂t
(cbzb + ϕh+ αch) +

∂

∂x
(δuh) = 0

∂

∂t
(1 + δ∆)uh+

∂

∂x
(1 + δ∆)

(
u2h+ g

h2

2

)
+ (1 + δ∆) gh

∂zb
∂x

= 0

∂

∂t
((1− α) cbzb + αϕh) = 0

∂

∂t
α = 0

(9.3)

where δ = (αc+ (1− α)ϕ), while the associated CRP problem can be writ-

ten in the following form
∂U

∂t
+
∂F

∂x
+ H

∂W

∂x
= 0

U (x, 0) =

{
UL if x < 0

UR if x > 0

(9.4)

where U, W, F and H are defines in equations (8.7) and (8.8). The ex-

tensions to the CPDEs model for low sediment concentration (7.19) and to

the CPDEs with plane wave (8.23) are not reported since they are quite

straightforward.

9.1 The LHLL solver

The LHLL Riemann solver developed by Fraccarollo et al. [26] is an extension

of the HLL Riemann solver of Harten et al. [31]. The general expression, for
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the left and right intercell fluxes, using the LHLL is

FL,R
LHLL = FHLL − SL,R

SR − SL
gh (1 + δ∆) (zR − zL) (9.5)

where L and R are respectively the left and the right initial values of Rie-

mann’s problem,

SL = min (λL,min, λR,min)

SR = max (λL,max, λR,max)

are respectively the minimum and maximum of the eigenvalues λ evalu-

ated with left and right initial values, h (1 + δ∆) is the arithmetic mean

of h (1 + δ∆)

h (1 + δ∆) =
hL (1 + δL∆) + hR (1 + δR∆)

2

and FHLL is the flux evaluated using the HLL solver

FHLL =


FL if SL > 0

FR if SR < 0
SRFL − SLFR + SLSR (UR −UL)

SR − SL
otherwise

The drawback of its simplicity is the highly numerical diffusion peculiar

of this type of Riemann solver where only some features of the RP are used.

In order to avoid the diffusion on the last two equations of systems (9.3), so

the ones where the fluxes are null, a simple superimposition of zero value can

be applied

FLHLL
4 = 0 (9.6)

FLHLL
5 = 0 (9.7)

where the subscripts 4 and 5 indicate the fourth and fifth element of the flux

vector FLHLL. The superimposition of these null fluxes is necessary since the

function α can assume, as specified in Chapter 7, only value 0 or 1, thus the

diffusion must be neglected. However performing a numerical simulation (see

the blue dots in Figure 9.1) for the transition between mobile and fixed bed,
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x [m]

z b,
 η

 [
m

]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

Mobile bed Fixed bed x [m]

z b 
[m

]

-0.4 -0.2 0 0.2 0.4

-0.2

-0.1

0

0.1

0.2

Mobile bed Fixed bed

Figure 9.1: Comparison between analytical (solid line) and numerical so-

lutions obtained with LHLL without (blue dots) and with (red circles) F2

correction for the transition between mobile and fixed bed case. On the left

subfigure: free surface η and bed elevation zb; on the right: detail of the

bottom elevation near the interface.

we highlight the development of incorrect solutions near the interface between

mobile and fixed bed. The initial data for the simulation are hL = 1 m,

hR = 1.2 m, uL = 1 m/s, uR = 2 m/s, zb,L = 0 m, zb,R = 0 m, ϕL = 0,

ϕR = 0 and αL = 1, αR = 0. As closure relation for the concentration we

used equation (5.32) with β = 0.5. Other parameters are cb = 0.6, ∆ = 1.65,

spatial discretization ∆x = 0.005 m, simulation time t = 1 s and Courant

number CFL = 0.9.

The key idea to solve the problem is to try to estimate the numerical

diffusion associated to the solid mass conservation from one of the equations

of the system. In particular here we focus on the fourth equation that reads

∂

∂t
((1− α) cbzb + αϕh) = 0 (9.8)

Since the LHLL solver is quite diffusive we can imagine that the real equation

solved is

∂

∂t
((1− α) cbzb + αϕh) = Dnum (9.9)

where Dnum is the numerical diffusion associated to the fourth equation.

Since the second equation of system (9.3), as described in Chapter 8, derives

from the weighted sum of the fixed and mobile bed solid mass balance and
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then it is added to the fourth one, we can imagine that also the second

equation contains the same diffusion term as the fourth one as

∂

∂t
(αch+ cbzb + ϕh) +

∂

∂x
(αcuh+ (1− α)ϕuh) = Dnum (9.10)

Knowing the general structure of equations (9.9) and (9.10) it is possible to

obtain a better estimation of the numerical flux for the second equation in

the following way

FLHLL,∗
2 = FLHLL

2 − FLHLL
4 (9.11)

where FLHLL,∗
2 is a new estimation of the solid flux. At this point it is possible

to nullify F4. Schematically the procedure to follow is:

1. evaluate the numerical fluxes using the classical LHLL solver (9.5);

2. estimate the corrected solid mass flux FLHLL,∗
2 with equation (9.11);

3. nullify F4 and F5.

Performing the same numerical simulation presented in Figure 9.1, fol-

lowing this new procedure the solution obtained (red circles) is now a good

approximation of the analytical one (solid black line in the same Figure) since

only some diffusion is present.

9.2 The Closure Independent Generalized Roe

solver

An effective numerical scheme for the system (9.3), which is partially non-

conservative, as said before, is the Generalized Roe (GR) method originally

introduced in [55] and extended to a general closure relations in [52] (the

Closure Independent GR). In particular, here we will exploit and improve

the Multiple Averages (MAs) approach introduced in this last paper in order

to obtain in a rather straightforward way the matrices needed in the GR

scheme. For sake of completeness, here we will only briefly summarize the

method and we address the reader to the original papers for details.
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In the GR method, the approximated solution of (9.4) is obtained from

the exact solution of the following linear problem:
∂U

∂t
+A (UL,UR)

∂U

∂x
= 0

U (x, 0) =

{
UL if x < 0

UR if x > 0

(9.12)

where A is a suitable constant matrix whose values depend on the left and

right states. In order to obtain a good matrix, it must satisfy the following

three conditions:

1. the linear problem (9.12) must tend smoothly to the linearized version

of (9.4)

A (UL,UR)→ ∂F

∂U
+ H

∂W

∂U
smoothly as UL → UR (9.13)

2. the matrix A (UL,UR) must have a complete set of real eigenvalues

and associated eigenvectors;

3. the integral of the approximate solution over a space-time interval must

be equal to the integral of the exact solution over the same interval

A (UL,UR) (UR −UL) = (FR − FL)−D (9.14)

where D is defined by equation (8.18).

Considering that it is useful to rewrite the matrix A (UL,UR) as a func-

tion of the primitive variables in the following way

A (UL,UR) = [A (WL,WR) + H (WL,WR)] B−1 (WL,WR) (9.15)

where A,H,B are suitable unknown matrices function of the primitive vari-

ables, the previous three conditions become

B (WL,WR) (WR −WL) = UR −UL (9.16a)

A (WL,WR) (WR −WL) = FR − FL (9.16b)

H (WL,WR) (WR −WL) = −D (9.16c)
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The MAs procedure allows to determine the matrices satisfying the previous

constraints in the following way

B (WL,WR) = JU(
...
M) (9.17a)

A (WL,WR) = JF (
...
M) (9.17b)

H (WL,WR) = H(
...
M) (9.17c)

where JU and JF are respectively the Jacobians of the conserved variables and

of the fluxes evaluated respect the primitive variables (detailed expression

are reported in Section 8.1.1) while
...
M is a suitable set of primitive variable

averages. Following the procedure presented in [52] it is possible to determine

the required set.

Firstly, we consider the introduce the algebraic average state

ũ =
uL + uR

2
; h̃ =

hL + hR
2

; ϕ̃ =
ϕL + ϕR

2
(9.18)

while, in order to avoid problems with the inversion of matrix B, the following

average for the erodibility parameter has been used

α̃ =
k1αL + k2αR
k1 + k2

(9.19)

where k1 and k2 are two distinct parameters, function of the left and right

initial conditions. A possible choice is to use the following value

{
k1 = 1

k2 = 0
if ũ > 0{

k1 = 0

k2 = 1
otherwise

(9.20)

that is an upwind method for the erodibility parameter.

If we insert these averaged values in the general expression of JU , two

of the relations of equation (9.16a) are satisfied (i.e. the ones related to the

first and the fifth rows of the matrix). In order to satisfy the fourth equation

we have to introduce an unknown average in JU and then solve the linear

equation deriving from equation (9.16a). In this case we have considered as

unknown the non linear variable ̂ϕh− zbcb. Highlighting only the fourth row
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of JU(
...
M), the linear equation to be solved reads

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α̃ϕ̃ 0 cb − α̃cb h̃α̃ ̂ϕh− zbcb
0 0 0 0 0

∆W −∆U4 = 0 (9.21)

where ∆W = WR −WL and ∆U4 = UR
4 − UL

4 in which U4 is the con-

served variables vector where only the fourth row is non null (i.e. UT
4 =

[0, 0, 0, αch+ cbzb + ϕh, 0]). The result of this linear equation is

̂ϕh− zbcb =
ϕRk1hR + ϕLk2hL

k1 + k2
− cb

k1zR + k2zL
k1 + k2

that is the unknown average value that satisfy equation (9.16a). We highlight

that this average value satisfy also the differential consistency (9.13).

In a similar way it is possible to solve the second equation
0 0 0 0 0

ϕ̃+ α̃cm + ĥαch ĥαcu cb h̃ h̆cm

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

∆W −∆U2 = 0 (9.22)

in which U2 refers to the conserved variables vector where only the second

row is non null,

h̆ =
k1hL + k2hR
k1 + k2

(9.23)

is a-priori defined average state,

cm = c
(
ũ, h̃
)

; ch =
∂c

∂h

∣∣∣∣
(ũ,h̃)

; cu =
∂c

∂u

∣∣∣∣
(ũ,h̃)

(9.24)

that are univocally determined when a proper closure relation for the con-

centration is defined, while the unknown average value is

ĥα =
αLcLhL − αRcRhR − (αLhL − αRhR) cm

(hL − hR) ch + (uL − uR) cu
(9.25)
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The third equation, derived from (9.16a), is the most complicated one and

the application of the MAs procedure is quite difficult, since lot of non-linear

products are present but only one unknown average can be defined. In order

to overcome this problem, we developed the Extended Multiple Averages

procedure (EMAs).

9.2.1 A novel Extended Multiple Averages procedure

With the MAs procedure, as said before, it is possible to obtain only one

unknown average for each equation derived from the integral consistency

(equations (9.16a), (9.16b) and (9.16c)), while all the other average values

have to be defined. When in the Jacobian matrix, used as starting point

in the MAs strategy, there are lots of non-linear products, the choice of the

unknown average and the known ones becomes crucial, since if we impose

in an arbitrary way the known averages, often enough we obtain as result

an unknown that is not an average, but a difference of terms, so it does not

satisfy the differential consistency (9.13).

The key idea for the EMAs is to take advantage of the linearity of the

Jacobian matrix respect to the algebraic sum. For example, when a conserved

variable can be decomposed in the sum of n terms, it is possible to split the

conserved vector as

U =
n∑
i=1

Ui (9.26)

where Ui is the vector of conserved variable containing one of the term of

the decomposition. For each of these vectors the Jacobian matrixes respect

to the primitive are evaluated

JU i =
∂Ui

∂W
(9.27)

and using the linearity of the Jacobian the following relation can be written

JU =
n∑
i=1

JU i (9.28)
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With equations (9.26) and (9.28), the integral consistency (9.16a) becomes

n∑
i=1

JU i(
...
M) (WR −WL) =

n∑
i=1

Ui
R −

n∑
i=1

Ui
L (9.29)

that can be decomposed in n equations

JU i(
...
M) (WR −WL) = Ui

R −Ui
L (9.30)

with i = 1, . . . , n. The same procedure can be applied also to the flux

components ending up with

JF i(
...
M) (WR −WL) = Fi

R − Fi
L (9.31)

where i = 1, . . . , nF and nF is the number of terms in which the flux vector

is decomposed.

With this decomposition strategy the complexity of each equation is dras-

tically reduced, namely the number of non-linear terms in each equation is

limited. In this way, the choice of the known averages is more simple, since

for a linear term the arithmetic mean is a sensible choice, while one of the

non-linear terms becomes the unknown average and the other can be imposed

as multiplication of linear terms. Using the EMAs strategy, the possibility

to obtained unknown averages that satisfy the differential consistency (9.13)

is greater than the classical MAs.

In the following section we apply the EMAs strategy tThe third equation,

derived from (9.16a) (the one not solved before with the MAs), showing the

capability of this new methodology.

9.2.2 Application of the EMAs

The third conserved variable of systems (9.3) is

U3 = (1 + (αc+ (1− α)ϕ) ∆)uh (9.32)

and can be decomposed in four different terms

U3 = U ′3 + U ′′3 + U ′′′′3 + U ′′′′3 (9.33)
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where

U ′3 = uh

U ′′3 = ϕ∆uh

U ′′′′3 = −αϕ∆uh

U ′′′′3 = αc∆uh

For each component, as said before, it is possible to evaluate the Jacobian

matrix respect to the primitive variables W (we remember that we are fo-

cusing only on the third row of the conserved vector U, so the other elements

can be assumed null)

JU3 = JU ′3 + JU ′′3 + JU ′′′3 + JU ′′′′′3
(9.34)

where, for example

JU ′′3 =
∂U′′3
∂W

=


0 0 0 0 0

0 0 0 0 0

u∆ϕ h∆ϕ 0 hu∆ 0

0 0 0 0 0

0 0 0 0 0


and U′′3 is the conserved vector where only the U ′′3 term is present on the

third row. Using this splitting of the conserved variables it is possible to

obtain, from the integral consistency (9.16a) as specified before, four simplest

conditions that must be fulfilled

JU ′3(
...
M) (WR −WL) = U′3R −U′3L (9.35a)

JU ′′3 (
...
M) (WR −WL) = U′′3R −U′′3L (9.35b)

JU ′′′3 (
...
M) (WR −WL) = U′′′3R −U′′′3L (9.35c)

JU ′′′′3
(
...
M) (WR −WL) = U′′′′3R −U′′′′3L (9.35d)

Introducing a new average value

h̃u =
k2hLuL + k1hRuR

k1 + k2
(9.36)
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the matrix JU3(
...
M) becomes

JU3(
...
M) =


0 0 0 0 0

0 0 0 0 0

ũζ̃ + ûhα∆ch h̃ζ̃ + ûhα∆cu 0 ĥu (1− α̃) ∆ ∆
(
cmh̃u− ϕ̂hu

)
0 0 0 0 0

0 0 0 0 0


where ζ̃ = (1 + (α̃cm + (1− α̃) ϕ̃) ∆), while the unknown average values ob-

tained are

ĥu =
hLuL + hRuR

2
(9.37)

ϕ̂hu =
k2ϕLhLuL + k1ϕRhRuR

k1 + k2
(9.38)

ûhα =
αLcLhLuL − αRcRhRuR − (αLhLuL − αRhRuR) cm

ch (hL − hR) + cu (uL − uR)
(9.39)

We highlight that using the EMAs we obtain three unknown averages, while

if we used the MAs strategy only one of these terms can be obtained, while

the other two must be imposed.

Assembling together all the elements of the matrix JU(
...
M) obtained, the

result is

JU(
...
M) =


1 0 1

ϕ̃+ α̃cm + ĥαch ĥαcu cb

ũζ̃ + ûhα∆ch h̃ζ̃ + ûhα∆cu 0

α̃ϕ̃ 0 cb − α̃cb
0 0 0

0 0

h̃ h̆cm

ĥu (1− α̃) ∆ ∆
(
cmh̃u− ϕ̂hu

)
h̃α̃ ̂ϕh− zbcb
0 1


(9.40)
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Analogous procedure can be applied to obtain matrix A. As known av-

erage variables to by introduced in JF , we use

ũ =
uL + uR

2
; h̃ =

hL + hR
2

; ϕ̃ =
ϕL + ϕR

2
; ᾰ =

αL + αR
2

and, applying the EMAs strategy explained before, we obtain

JF (
...
M) =


ũ h̃

ũϕ̃ (1− ᾰ) + ᾰũcm + ûhαch h̃ϕ̃ (1− ᾰ) + ᾰh̃cm + ûhαcu(
û2 + gh̃

)
ζ̆ + Φ̂α∆ch

(
2ũh̃

)
ζ̆ + Φ̂α∆cu

0 0

0 0

0 0 0

0 ĥu (1− ᾰ) −ũhϕ+ ĥucm

0 ∆Φ̂ (1− ᾰ) Φ̂∆cm −∆Φ̂ϕ

0 0 0

0 0 0

 (9.41)

where the unknown averages are

Φ̂ =

(
1

2
g
h2R + h2L

2
+
u2RhR + u2LhL

2

)
(9.42)

Φ̂ϕ =

(
1

2
g
h2RϕR + h2LϕL

2
+
u2RhRϕR + u2LhLϕL

2

)
(9.43)

Φ̂α =
αLcLΦL − αRcRΦR − (αLΦL − αRΦR) cm

(hL − hR) ch + (uL − uR) cu
(9.44)

û2 =
u2L + u2R

2
(9.45)

ũhϕ =
hRuRϕR + hLuLϕL

2
(9.46)

in which

Φ =

(
hu2 + g

h2

2

)
and

ζ̆ = 1 + (ᾰcm + (1− ᾰ) ϕ̃) ∆
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We highlight that all the unknown averages satisfy the differential consistency

(9.13).

Finally, from relation (9.16c) it is straightforward to obtain the expression

for H, where the only non-null term is:

H3,3(
...
M) = −g (1 + δk∆)

(
hk −

|zR − zL|
2

)
with k =

{
L if zL ≤ zR

R otherwise

(9.47)

The GR fluxes are then

F− = FL +A− (UR −UL) ; F+ = FR −A+ (UR −UL) (9.48)

where

A± = RΛ±R−1 (9.49)

and R is the matrix of the right eigenvalues of A,

Λ± = Λ±ii =
1

2

(
λi ±

∣∣λi∣∣) (9.50)

is the diagonal matrix of the eigenvalues of A where

A =
[
JF (

...
M) + H(

...
M)
] [

JU(
...
M)
]−1

9.3 The Universal Osher solver

The Osher Solomon solver that was developed by Osher and Solomon [48]

for conservative systems, so systems where the matrix H is identically null.

This Riemann solver is based on the assumption that it is possible to split

the flux in positive part and negative one

F (U) = F− (U) + F+ (U) (9.51)

and on the existence of

∂F−

∂U
= A−U ;

∂F+

∂U
= A+

U (9.52)
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Given the left value UL and the right one UR of any Riemann problem, the

Osher flux is evaluated using

Fi+ 1
2

= F+ (UL) + F− (UR) (9.53)

and, with the integral relation of A+ and A− namely∫ UR

UL

A+
U dU = F+ (UR)− F+ (UL) (9.54)

∫ UR

UL

A−U dU = F− (UR)− F− (UL) (9.55)

the Osher flux (9.53) becomes

Fi+ 1
2

=
1

2
(FL + FR)− 1

2

∫ UR

UL

|AU | dU (9.56)

where |AU | = A+
U−A−U = R|Λ|R−1,R is the matrix of the right eigenvectors

of AU and |Λ| = Λ+ − Λ−. The first term of the flux is the central part of

the fluxes, while the integral represents the so called numerical viscosity. The

critical point of this solver is to chose the integral path in order to solve the

integral itself. The strategy used in the Osher-Solomon approach is to select

a particular integration path based on the eigenstructure of the problem, so

as to been able to solve the integral in an explicit form. For this purpose

the Osher-Solomon solver divides the path I (U) that connect UL and UR

in m disjointed partial paths Ik (U) with k = 1, . . . ,m. Each of these partial

paths connect two states called U k−1
m

and U k
m

and are tangential to the

associated right eigenvector Rk (U). The fundamental aspect is that all the

intermediate states Uk have to be known. This implies that we have to solve

the Riemann problem in an approximated way (e.g. using only simple wave

patterns) and then use these solutions to solve the integral in the (9.56).

This leads to a complicated and expensive numerical solver.

To overcome the necessity to know all the intermediate states, Dumbser

and Toro [23] developed the Universal Osher (UO) solver using the explicit

form of the integral path in the phase-space (we refer to the original paper

for more details on it) ending up with

Fi+ 1
2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AU (Ψ (UL,UR; s))| ∂Ψ

∂s
ds (9.57)
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where Ψ (s) is the path that links the left state UL with the right one UR

in the phase-space. This path is a Lipschitz continuous function defined in

the interval s ∈ [0, 1] with Ψ (0) = UL and Ψ (1) = UR. In this way it is

possible to use every type of path, detaching from the necessity to know all

the intermediate states.

They also extended the UO solver to the case of fully non-conservative

systems (i.e. systems where the conserved fluxes vector F is null) (see the

original work of Dumbser and Toro [24] for more details) using the theory of

Dal Maso et al. [20] about the non-conservative products. With this theory

the compatibility condition on the fluxes becomes

D−
i+ 1

2

−D+
i+ 1

2

=

∫ 1

0

H (Ψ (UL,UR; s))
∂Ψ

∂s
ds (9.58)

where D−
i+ 1

2

and D+
i+ 1

2

are the fluxes evaluated respectively at the left and

right side of the initial discontinuity and D is the matrix of nonconservative

fluxes. From this definition, the authors define the fluxes for the Universal

Osher solver in the following way

D+
i+ 1

2

= −1

2

∫ 1

0

(H (Ψ (UL,UR; s)) + |H (Ψ (UL,UR; s))|) ∂Ψ

∂s
ds

(9.59)

D−
i+ 1

2

=
1

2

∫ 1

0

(H (Ψ (UL,UR; s))− |H (Ψ (UL,UR; s))|) ∂Ψ

∂s
ds (9.60)

A second key-point of the Universal Osher solver introduced by Dumbser

and Toro [23, 24] is the use of the simplest path to connect the left and the

right state. They propose to use a straight-line segment path

Ψ (UL,UR; s) = UL + s (UR −UL) (9.61)

This assumption is used in lots of paper and among which we can cite Castro

Diaz at al. [16] where they say: “...when there are no clear indication about

the correct family of paths to be chosen, the family of straight segments is a

sensible choice...”.

Using the straight line path the Universal Osher solver for a fully non-
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conservative systems becomes the follow

D±
i+ 1

2

= −
(
±1

2

(∫ 1

0

H (Ψ (UL,UR; s)) ds

±
∫ 1

0

|H (Ψ (UL,UR; s))| ds

))
(UR −UL) (9.62)

This leads to a versatile and general scheme that could be used over a great

number of hyperbolic problems since the Universal Osher use the liner path,

and needs only the eigenstructure of the problem.

9.3.1 The Universal Osher solver for partially non-

conservative system

The general structure of generic hyperbolic PDEs system (e.g. the CPDEs

system (9.3)) is composed both form conservative and non-conservative terms,

therefore the UO solvers reported before could not be applied directly, but it

is necessary to combine them together. In quasi-linear form, a generic PDEs

system can be written as

∂U

∂t
+AU(U)

∂U

∂x
= 0 (9.63)

where

AU(U) = AU (U) +H (U) (9.64)

and

AU (U) =
∂F

∂U
(9.65)

Since AU(U) is composed by a conservative AU and a non-conservative H

part and the Osher scheme assumes a splitting of the fluxes, for the evaluation

of the fluxes F±
i+ 1

2

is possible to split the fluxes in the conservative and the

non-conservative one as

F±
i+ 1

2

= Fi+ 1
2

+ D±
i+ 1

2

(9.66)
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where Fi+ 1
2

is described by equation (9.57) and D±
i+ 1

2

with the equations

(9.59) and (9.60). With this statement we end up with

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AU (Ψ (s))| ∂Ψ

∂s
ds+

− 1

2

∫ 1

0

|H (Ψ (s))| ∂Ψ

∂s
ds−

(
±1

2

∫ 1

0

H (Ψ (s))
∂Ψ

∂s
ds

)
(9.67)

For the sake of clarity from now on we neglect the dependency from UL and

UR in the path Ψ. It is also possible to add the absolute value matrixes of

the conservative and the non-conservative fluxes

|AU |= |AU |+ |H| (9.68)

obtaining the Universal Osher solver for a generic hyperbolic system contain-

ing conservative and non-conservative fluxes

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AU (Ψ (s))| ∂Ψ

∂s
ds

−
(
±1

2

∫ 1

0

H (Ψ (s))
∂Ψ

∂s
ds

)
(9.69)

We can easily check that for a conservative system (H = 0 and |AU |= |AU |)
the solver becomes exactly the conservative one (9.57). Also the compatibil-

ity condition that reads

F−
i+ 1

2

− F+
i+ 1

2

=

∫ 1

0

H (Ψ (s))
∂Ψ

∂s
ds (9.70)

as for the non-conservative system (9.58), can be easily proved.

9.3.2 A new Universal Osher solver with Primitive re-

constitution

The UO for partially non-conservative systems was developed starting form

an hyperbolic PDEs system where the fluxes are written using the conser-

vative variables, so in equation (9.69) the path integral is performed using

the conserved variables U. However, for a generic hyperbolic PDEs system,
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is not always possible to write the fluxes in term of conservative variables,

indeed in the CPDEs system (9.3) the flux terms are written in term of prim-

itive variables (i.e. F = F(W) and H = H(W)). In quasi linear form the

system is

∂U

∂t
+AW

∂U

∂x
= 0 (9.71)

where

AW (W) = (JF (W) + H (W)) JU (W)−1 (9.72)

Comparing the two linear forms (9.63) and (9.71) we can notice that they

are similar except for the definition of the matrix AW . Since the UO solver

is associated to the linear form of the problem, a change of A matrix can

be done, therefore we can use AW in equation (9.69) instead AU . This lead,

after some manipulations, to the following expression for the fluxes

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AW (Ψ (s))| ∂Ψ

∂s
ds

−
(
±1

2

∫ 1

0

H (Ψ (s)) J−1U (Ψ (s))
∂Ψ

∂s
ds

)
(9.73)

where |AW | = RW |Λ|R−1W ,RW is the matrix of the right eigenvectors ofAW .

This simple extension has the disadvantage that the path integral is defined

for the conserved variables, while the matrixes JF , JU and H are functions

of the primitive ones. Therefore, the integration along the path needs a

change of variable from the conserved variable to the primitive ones. For the

CPDEs system (9.3), the switch from conserved variables to primitive ones is

quite complicated and lead to a non-liner system that must be solved several

time during the numerical solution of the integrals. In order to overcome

this problem, our idea is to change the path integration from the conserved

variables to the primitive ones. Starting from the flux definition (9.73) we

can substitute the path with the original definition of the integral and then
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making a change of variable from conserved to primitive ending up with

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ WR

WL

|AW |
∂U

∂W
dW

−
(
±1

2

∫ WR

WL

HJ−1U
∂U

∂W
dW

)
(9.74)

and, remembering the definition of JU , we obtain

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ WR

WL

|AW |JU dW−
(
±1

2

∫ WR

WL

H dW

)
(9.75)

At this point it is possible to re-introduce the path integral in phase-space

but, this time, written using the primitive variable. In this way a new Uni-

versal Osher solver with Primitive variable (UOP) is obtained

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AW (ΨP (s))|B (ΨP (s))
∂ΨP

∂s
ds

−
(
±1

2

∫ 1

0

H (ΨP (s))
∂ΨP

∂s
ds

)
(9.76)

where ΨP (s; WL,WR) is the path in primitive variable connecting the left

values WL and the right ones WR. The the first term of the UOP is the cen-

tral part of the fluxes, the first integral represents the so called numerical vis-

cosity that derives from the conservative and non-conservative fluxes, while

the second integral is strictly connected with the non-conservative fluxes.

To understand better the meaning of the last integral in the UOP solver,

we need to refer to the theory developed by Dal Maso et al. [20] about the

non-conservative product. Following them, the weak solution of (9.71) across

a discontinuity must satisfy∫ 1

0

(−SSJU (ΨP (s)) + JF (ΨP (s)) + H (ΨP (s)))
∂ΨP (s)

∂s
ds = 0 (9.77)

where SS is the speed of the travelling discontinuity. After some manipulation

and remembering the definition of JF and JB we end up with

SS (UR −UL) = FR − FL +

∫ 1

0

H (ΨP (s))
∂ΨP

∂s
ds (9.78)
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Comparing this equation with the GRH condition (5.21) that reads

SS (UR −UL) = FR − FL −D

we notice that, from a physical point of view, the integral of the non-

conservative term is nothing more than the pressure exerted by the bed step

on fluid∫ 1

0

H (ΨP (s))
∂ΨP

∂s
ds = −D (9.79)

With this equation, the choice of the path ΨP is no more arbitrary, but it

is strictly related to the value of D. Cozzolino et al. [19] derive a path

satisfying this relation, but its expression is quite complicated to be used

since is composed by a discontinuous function. However we can overcame

the problem simply using directly the expression of D in the UOP solver

(9.76) obtaining

F±
i+ 1

2

=
1

2
(FL + FR)− 1

2

∫ 1

0

|AW (ΨP (s))|B (ΨP (s))
∂ΨP

∂s
ds± 1

2
D (9.80)

At this point, no constrains exist for the path integral of the numerical vis-

cosity, so we can maintain the universality of the solver, as the UO, using

the segment linear path

ΨP (WL,WR; s) = WL + s (WR −WL) (9.81)

In this way the final version of the UOP is

F±
i+ 1

2

=
1

2
(FL + FR)−1

2

(∫ 1

0

|AW (ΨP (s))|B (ΨP (s)) ds

)
(WR −WL)±1

2
D

(9.82)

The last difficult in this approach is the evaluation the integral. Since

a closed form is not always available, it is possible to use some numerical

method (e.g. trapezoidal rules, midpoint rules, ...) among which a good

accuracy is obtained using the Gauss-Legendre (GL) quadrature rule with
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three points (as demonstrate by Dumbser and Toro [23, 24]). Using the three

point GL rule in the UOP solver (9.82) we obtain

F±
i+ 1

2

=
1

2
(FL + FR)−1

2

3∑
i=1

(ωi |AW (ΨP (si))|B (ΨP (si))) (WR −WL)±1

2
D

(9.83)

where si is the position and ωi is the weight and for the three point integra-

tion, in the domain [0; 1], are

s1,3 =
1

2
±
√

15

10
, s2 =

1

2
ω1,3 =

5

18
, ω2 =

8

18
(9.84)

9.4 Comparison between the three numerical

Riemann solver

In this Section we present a brief comparison between the three different

Riemann solvers introduced and developed in this Chapter. We compare

essentially three aspects: the mathematical and numerical implementation,

the computational cost and the accuracy of the solution.

The LHLL Riemann solver, as specified in Section 9.1, is composed es-

sentially by equation (9.5) where the required terms are the conserved fluxes

F, the conserved variables U and the maximum and minimum eigenvalues

λmax,min. Since the evaluation of all these variables are quite simple (the only

difficult could arise in the determination of the eigenvalues), we can state

that the implementation cost is very low. Also the computational cost is

very low since equation (9.5) is composed only by simple numerical opera-

tion (i.e. algebraic sums and multiplications).

For the Closure Independent GR (CIGR) solver, on the contrary, the mathe-

matical and numerical implementation is quite costly since we need to obtain

the Roe constant matrix A
( ...
M
)
. As specified in Section 9.2, the development

of the EMAs approach allow to obtain this matrix in a easier way than the
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Case Side α h [m] u [m/s] zb [m] ϕ [−]

Fixed-mobile
L

R

0

1

1.0

1.2

1.0

2.0

0.0

0.0

0.01

0.0

Mobile-Fixed
L

R

1

0

1.0

1.2

1.0

2.0

0.0

0.0

0.0

0.0

Table 9.1: Initial values used for the fixed to mobile bed transition, and

mobile to fixed bed transition RPs test case.

MAs, however some mathematical efforts are needed. Regarding the compu-

tational cost, it is bigger than the LHLL, since the complete set of eigenvalues

and associated eigenvectors of matrix A
( ...
M
)

has to be determined for each

cell of the computational domain.

The implementation of the UOP solver is more complicated than the LHLL

one since it is necessary the evaluation of the eigenvalues and associated

eigenvectors of the PDEs system. However, it is easier than the CIGR since

the matrix AW derives directly, as specified in Section 9.3, from the lineariza-

tion of the system. Nevertheless, from a computational point of view, the

UOP is the most expensive, since as written in equation (9.83), is necessary

to evaluate the |AW | = RW |Λ|R−1W three times (one for each point of the

GL) for each cell of the computational domain. Compared to the CIGR

solver, the cost of the UOP is two time more.

For the evaluation of the accuracy of the solution, we show two different

numerical simulation of RP: one for the transition from fixed to mobile bed

case and one for the transition from mobile to fixed bed. The initial data for

the different simulation is reported in Table 9.1. As closure relation for the

concentration we use equation (5.32) with β = 0.5. The common parameters

of the simulations are cb = 0.6, ∆ = 1.65, spatial discretization ∆x = 0.005 m

and simulation time t = 1 s and Courant number CFL = 0.9.

In Figure (9.2) is shown the transition from fixed to mobile bed case.

The solutions obtained from the three numerical Riemann solvers are in

good agreement with the analytical one. Nevertheless, looking more in detail

the bed elevation near the transition (the right subfigure), some differences

between the three numerical solvers arise. In particular the LHLL solver
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x [m]

z b,
 η

 [
m

]

-2 0 2 4

0

0.5

1

Fixed bed Mobile bed x [m]

z b 
[m

]

-0.4 -0.2 0 0.2 0.4

-0.15

-0.1

-0.05

0

0.05

0.1

Fixed bed Mobile bed

Figure 9.2: Comparison between analytical (solid line) and numerical solu-

tions obtained with LHLL (blue dots), CIGR (red dots) and UOP (green

dots) numerical solvers for the transition between fixed and mobile bed case.

On the left subfigure: free surface η and bed elevation zb; on the right: details

of the bottom elevation near the interface.

is quite diffusive in the mobile bed part, while the UOP and the CIGR

solvers reproduce exactly the analytical solution. We highlight that for all

the Riemann solvers, no spurious erosions or depositions occur in the fixed-

bed side.

In Figure (9.3) is shown the transition from mobile to fixed bed case.

As for the previous case, the solutions obtained from the three numerical

Riemann solvers are in good agreement with the analytical one. Looking

more in detail the bed elevation near the transition (the right subfigure), we

highlight that the LHLL solver is quite diffusive in the mobile bed part, the

UOP solver present, in the first cell of the mobile-bed side, a small spike

that anyhow, does not affect the overall goodness of the method, while the

CIGR reproduces in a correct way the analitical solution. We emphasize that

also for this case, all the Riemann solvers produce no spurious erosions or

depositions in the fixed-bed side.

From these comparisons, we can state that, looking at the accuracy of

the solution the best numerical RP solver is the CIGR, followed by the UOP,

while the worst is the LHLL due to its high numerical diffusion.
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Figure 9.3: Comparison between analytical (solid line) and numerical solu-

tions obtained with LHLL (blue dots), CIGR (red dots) and UOP (green

dots) numerical solvers for the transition between mobile and fixed bed case.

On the left subfigure: free surface η and bed elevation zb; on the right: detail

of the bottom elevation near the interface.





Chapter 10

Numerical applications of the

CRP

In this Chapter, we present in Section 10.1 a set of Riemann problems de-

scribing the transition between fixed and mobile bed for all the three CPDEs

systems developed (i.e. the low sediment concentration model in Section

10.1.1, high sediment concentration model in Section 10.1.2 and the plane-

wave model in Section 10.1.3). In Section 10.2 a realistic application for the

transition between fixed an mobile bed are presented.

In all the numerical applications presented, the following closure relation

for the concentration has been considered

c(u, h) = β
u2

gh
(10.1)

where β is a semi-empirical non-dimensional constant, depending on sediment

characteristics, and g = 9.81 m/s2. More details on this closure relation are

written in Chapter 5.

The numerical scheme implemented is second-order accuracy achieved

with a MUSCL-type method. A second order version of the update formula

shown in equation (9.2) can be straightforwardly obtained following Armanini

et al. [10], where a minmod slope limiter is used to reconstruct the variables

in the nonconservative half step. As numerical Riemann solver we choose

to use the CIGR since, as highlighted in Section 9.4, it produces, compared
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with the UOP and the LHLL, the more accurate solution at the interface

between fixed and mobile bed.

10.1 Riemann problems

In this Section we present some numerical tests aimed at validating the ca-

pability of the CIGR scheme to solve correctly and accurately any CRP. In

particular, we will compare numerical solutions with exact solutions obtained

by solving an inverse problem [25, 54]. This procedure is based on the fact

that knowing the left state of a wave it is possible to obtain the right state

by using the relevant wave relation. Therefore, given a left initial state and

assumed a wave pattern, moving through the wave sequence, it is possible to

reconstruct the right initial state.

10.1.1 CPDEs model for low sediment concentration

First of all we present two tests regarding a pure fixed-bed and mobile-bed

case, in order to show that the scheme is able to solve standard RPs. Then,

to demonstrate the capabilities in fixed–mobile cases, we present four tests,

each one belonging to a different class introduced in Section 7.4. The last

case analyzes the behavior of the scheme in case of resonant problems. In all

the simulation we used cb = 0.6, a Courant number equal to 0.9, the space

was discretized with cells of width ∆x = 0.001 m and the ending time is

t = 1 s. In addition, the free-surface elevation η = h + zb is shown in the

plots instead of the flow depth h. The test cases presented in this Section

were achieved using a first order scheme, with the exception of the resonant

cases where the second order schema, as specified before, were used.

Pure fixed-bed and mobile-bed cases

The initial conditions used for these two test cases are shown in Table 10.1,

while the value of the transport parameter is β = 0.5.

Comparison between analytical and numerical solutions is shown in Fig-

ure 10.1: the numerical scheme correctly reproduces the wave pattern, with
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Type Side α h [m] u [m/s] zb [m] ϕ [−]
Fixed L 0 5.0 0.0 0.0 0.01

Fixed R 0 1.86 0.80 0.0 0.01

Mobile L 1 5.0 0.0 0.0 0.01

Mobile R 1 2.90 0.59 0.36 0.017

Table 10.1: Initial values used for the pure fixed-bed and the pure mobile-bed

RP test case.
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Figure 10.1: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the free surface η and the bed level zb for the pure fixed-bed

(on the left) and the pure mobile-bed (on the right) RP test case.

the same accuracy that can be obtained by using the CIGR approach ap-

plied to the pure fixed-bed and mobile-bed PDEs systems. In other words,

the numerical solution of a CRP converges correctly to the exact solution of

a standard RP if the erodibility function is constant.

FBsub-MB test case

This test case belongs to the class characterized by a transition from fixed-to

mobile-bed conditions with a subcritical nature of the flow near the left side

of the origin. The relevant wave pattern is described in case (A) of Figure

7.2. The initial conditions are: hL = 3.0 m, hR = 1.356 m, uL = 1.0 m/s,

uR = 0.617 m/s, zbL = 0.0 m, zbR = −0.114 m, ϕL = 0.01, ϕR = 0.0,

β = 0.05. The comparison between numerical and analytical solution is
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Figure 10.2: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the FBsub-MB test case. Clockwise from upper left sub-

figure: free surface η and bed level zb, velocity u, Froude number u/
√
gh,

equilibrium and transported concentrations ϕ, c.

presented in Figure 10.2. All the waves are correctly reproduced with the

expected high accuracy. In particular, the shift between the transported and

the equilibrium concentration is exact (ϕ = c, see Chapter 7) as well as the

bed step, where no spurious erosions or depositions occur in the fixed-bed

side (see Figure 10.3).

FBsup-MB test case

This second test belongs to the class characterized by a transition from fixed-

to mobile-bed conditions, with a supercritical nature of the flow near the left

side of the origin. The relevant wave pattern is described in case (B) of Figure

7.2. The initial conditions are:hL = 1.0 m, hR = 0.452 m, uL = 4.0 m/s,

uR = 2.321 m/s, zbL = 0.0 m, zbR = 0.098 m, ϕL = 0.01, ϕR = 0.0,

β = 0.01. The comparison between numerical and analytical solution is
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Figure 10.3: Details of the behavior of the concentration (on the left) and

of the bottom elevation (on the right) near the interface between fixed and

mobile bed for the FBsub-MB test case.

presented in Figure 10.4. As expected, on the left there is no wave, while on

the mobile part there is a rarefaction followed by a shock. Also in this case,

the agreement with the analytic solution is very good.

MB-FBsub test case

The third test belongs to the class characterized by a transition from mobile-

to fixed-bed conditions, with a subcritical nature of the flow near the right

side of the origin. The relevant wave pattern is described in case (C) of Figure

7.2. The initial conditions are: hL = 3.0 m, hR = 1.087 m, uL = 1.0 m/s,

uR = 0.806 m/s, zbL = 0.0 m, zbR = 0.1 m, ϕL = 0.0, ϕR = 0.02, β = 0.01.

The comparison between numerical and analytical solution is presented in

Figure.10.5, where the agreement is similar to the previous cases.

MB-FBsup test case

The last test belongs to the class characterized by a transition from mobile-to

fixed-bed conditions, with a supercritical nature of the flow near the right side

of the origin. The relevant wave pattern is described in case (D) of Figure

7.2. The initial conditions are: hL = 1.0 m, hR = 1.2 m, uL = 4.0 m/s,

uR = 5.242 m/s, zbL = 0.0 m, zbR = 0.0 m, ϕL = 0.0, ϕR = 0.019, β = 0.01.

Since in this class there are infinite solutions relevant to a given couple of left
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cles) solutions of the FBsup-MB test case. Clockwise from upper left sub-

figure: free surface η and bed level zb, velocity u, Froude number u/
√
gh,

equilibrium and transported concentrations ϕ, c.

and right initial values, this time the comparison was performed between the

numerical solution and the analytical solution consistent with the numerical

results. In other words, Figure 10.6 asserts that the numerical solution is a

good approximation of one of the possible solutions to the CRP. The reason

why the numerical scheme chooses a specific solution is an open question.

However, Figure 10.7 indicates the absence of spurious erosions or depositions

in the fixed-bed side.

Resonant test cases

As explained in Section 7.4, resonance occurs if a rarefaction on the fixed-

bed side has a sonic point. The problem is extremely interesting from a pure

mathematical point of view, but it has less meaning for practical purposes

since it is characterized by extreme conditions.
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The performance of the first and second order scheme in case of resonance

has been analyzed considering both a mobile-fixed and a fixed-mobile transi-

tion. Figure 10.8 shows the first case. The initial conditions are: hL = 5.0 m,

hR = 0.1 m, uL = 0.0 m/s, uR = 1.86 m/s, zbL = 0.0 m, zbR = 0.0 m,

ϕL = 0.00, ϕR = 6.74 × 10−3, β = 0.01. In this case, resonance appears

on the right side, where a sonic rarefaction characterizes the solution on the

fixed-bed side. It can be noted that the second order scheme reproduces cor-

rectly the analytical solution, while, as expected, the first order is affected

by the classical entropy glitch.

Figure 10.9 shows the second case. The initial conditions are: hL = 3.0 m,

hR = 2.0 m, uL = 0.0 m/s, uR = 7.13 m/s, zbL = 0.0 m, zbR = 0.12 m,

ϕL = 0.01, ϕR = 0.0, β = 0.01. Here, the deviation of the numerical results

with respect to the exact solution is more significant. In particular, in the

first order solution, the glitch in the central wave actually affects the left



178 10 Numerical applications of the CRP

x [m]

z b,
 η

 [
m

]

0 5

0

0.5

1

Mobile bed Fixed bed x [m]

u 
[m

/s
]

0 5

4

4.5

5

Mobile bed Fixed bed

x [m]

F
r 

[-
]

0 5
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

Mobile bed Fixed bed x [m]

c,
 ϕ

 [-
]

0 5
0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

Mobile bed Fixed bed
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rarefaction and both the right waves as well. Moreover, there is a significant

spike in the first cell of the mobile-bed side. On the contrary, the second

order approach has a good behavior, except in the first cell of the mobile-bed

side where a spike, by far smaller than in the first order case, is present.

Anyhow, the other waves are not affected by this local error.
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Figure 10.7: Details of the bottom elevation near the interface between fixed

and mobile bed for the MB-FBsup test case.
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10.1.2 CPDEs model for high sediment concentration

In this Sections we present the CRP problems related the one-dimensional

high sediment concentration CPDEs obtained in Section 8.1. Here, four CRP

tests, each one belonging to a different class introduced in Section 7.4 are

shown. In all the simulation we used cb = 0.6, ∆ = 1.65, a Courant number

equal to 0.9, the space was discretized with cells of width ∆x = 0.005 m and

the ending time is t = 1 s. In addition, the free-surface elevation η = h+ zb

is shown in the plots instead of the flow depth h.

FBsub-MB test case

This test case belongs to the class characterized by a transition from fixed-to

mobile-bed conditions with a subcritical nature of the flow near the left side

of the origin. The relevant wave pattern is described in case (A) of Figure

7.2. The initial conditions are: hL = 3.5 m, hR = 2.453 m, uL = 1.0 m/s,

uR = 3.374 m/s, zbL = 0.0 m, zbR = 0.547 m, ϕL = 0.2, ϕR = 0.0, β = 1.0.

The comparison between numerical and analytical solution is presented in

Figure 10.10. All the waves are correctly reproduced with the expected high

accuracy. In particular, the shift between the transported and the equilibrium

concentration is exact (ϕ = c) as well as the bed step, where no spurious

erosions or depositions occur in the fixed-bed side (see Figure 10.11).

FBsup-MB test case

This second test belongs to the class characterized by a transition from fixed-

to mobile-bed conditions, with a supercritical nature of the flow near the left

side of the origin. The relevant wave pattern is described in case (B) of Figure

7.2. The initial conditions are:hL = 1.0 m, hR = 0.166 m, uL = 4.0 m/s,

uR = 0.807 m/s, zbL = 0.0 m, zbR = 0.178 m, ϕL = 0.1, ϕR = 0.0, β =

0.1. The comparison between numerical and analytical solution is presented

in Figure 10.12. As expected, on the left there is no wave, while on the

mobile part there is a rarefaction followed by a shock. Also in this case, the

agreement with the analytic solution is good.
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Figure 10.10: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the FBsub-MB test case. Clockwise from upper left sub-

figure: free surface η and bed level zb, velocity u, Froude number u/
√
gh,

equilibrium and transported concentrations ϕ, c.

MB-FBsub test case

The third test belongs to the class characterized by a transition from mobile-

to fixed-bed conditions, with a subcritical nature of the flow near the right

side of the origin. The relevant wave pattern is described in case (C) of Figure

7.2. The initial conditions are: hL = 3.0 m, hR = 2.3 m, uL = 1.0 m/s,

uR = 3.6 m/s, zbL = 0.0 m, zbR = 0.0 m, ϕL = 0.0, ϕR = 0.167, β = 0.5.

The comparison between numerical and analytical solution is presented in

Figure.10.13, where the agreement is similar to the previous cases. Figure

10.14 indicates the absence of spurious erosions or depositions in the fixed-

bed side.
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Figure 10.11: Details of the behavior of the concentration (on the left) and

of the bottom elevation (on the right) near the interface between fixed and

mobile bed for the FBsub-MB test case.

MB-FBsup test case

The last test belongs to the class characterized by a transition from mobile-to

fixed-bed conditions, with a supercritical nature of the flow near the right side

of the origin. The relevant wave pattern is described in case (D) of Figure

7.2. The initial conditions are: hL = 1.0 m, hR = 1.2 m, uL = 4.0 m/s,

uR = 5.242 m/s, zbL = 0.0 m, zbR = 0.0 m, ϕL = 0.0, ϕR = 0.019, β = 0.01.

Since in this class there are infinite solutions relevant to a given couple of left

and right initial values, this time the comparison was performed between the

numerical solution and the analytical solution consistent with the numerical

results. In other words, Figure 10.15 asserts that the numerical solution is

a good approximation of one of the possible solutions to the CRP. Only a

very small overshoot is present in the transported concentration ϕ near the

contact wave in the fixed bed part.
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cles) solutions of the FBsup-MB test case. Clockwise from upper left sub-
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Figure 10.13: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the MB-FBsub test case. Clockwise from upper left sub-

figure: free surface η and bed level zb, velocity u, Froude number u/
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gh,

equilibrium and transported concentrations ϕ, c.
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Figure 10.14: Details of the bottom elevation near the interface between fixed

and mobile bed for the MB-FBsub test case.



186 10 Numerical applications of the CRP

x [m]

z b,
 η

 [
m

]

-2 0 2 4 6 8

0

0.5

1

1.5

Mobile bed Fixed bed x [m]

u 
[m

/s
]

0 5
3.5

4

4.5

5

5.5

Mobile bed Fixed bed

x [m]

F
r 

[-
]

0 5

1.2

1.4

1.6

Mobile bed Fixed bed x [m]

c,
 ϕ

 [-
]

-2 0 2 4 6 8
0.01

0.015

0.02

0.025

Mobile bed Fixed bed

Figure 10.15: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the MB-FBsup test case. Clockwise from upper left sub-
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gh,
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10.1.3 CPDEs plane-wave model

In this Sections we present the CRP problems related the two-dimensional

plane wave high sediment concentration CPDEs obtained in Section 8.2.

Here, four CRP tests, each one belonging to a different class introduced

in Section 7.4 are shown. In all the simulation we used cb = 0.65, ∆ = 1.65,

a Courant number equal to 0.9, the space was discretized with cells of width

∆x = 0.01 m and the ending time is t = 1 s. In addition, the free-surface

elevation η = h+ zb is shown in the plots instead of the flow depth h.

FBsub-MB test case

This test case belongs to the class characterized by a transition from fixed-to

mobile-bed conditions with a subcritical nature of the flow near the left side

of the origin. The relevant wave pattern is described in case (A) of Figure

8.1. The initial conditions are: hL = 2.0 m, hR = 0.919 m, uL = 1.0 m/s,

uR = 2.173 m/s, vL = 0.5 m/s, vR = 0.87 m/s, zbL = 0.0 m, zbR = 0.682 m,

ϕL = 0.2, ϕR = 0.0, β = 0.5. The comparison between numerical and

analytical solution is presented in Figure 10.16. All the waves are correctly

reproduced with the expected high accuracy. In particular, the shift between

the transported and the equilibrium concentration is exact (ϕ = c) as well as

the bed step, where no spurious erosions or depositions occur in the fixed-bed

side (see Figure 10.17).

FBsup-MB test case

The second test belongs to the class characterized by a transition from fixed-

to mobile-bed conditions, with a supercritical nature of the flow near the left

side of the origin. The relevant wave pattern is described in case (B) of Figure

8.1. The initial conditions are:hL = 1.0 m, hR = 0.156 m, uL = 4.0 m/s,

uR = 0.690 m/s, vL = 0.1 m/s, vR = 0.551 m/s, zbL = 0.0 m, zbR = 0.174 m,

ϕL = 0.1, ϕR = 0.0, β = 0.1. The comparison between numerical and

analytical solution is presented in Figure 10.18. As expected, on the left

there is no wave, while on the mobile part there is a rarefaction followed by
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Figure 10.16: Comparison between analytical (solid line) and numerical (cir-

cles) solutions of the FBsub-MB test case. Clockwise from upper left subfig-

ure: free surface η and bed level zb, velocities u (red) and v (blue), Froude

number u/
√
gh, equilibrium and transported concentrations ϕ, c.

the contact wave associated to v and then a shock. Also in this case, the

agreement with the analytic solution is good.

MB-FBsub test case

The third test belongs to the class characterized by a transition from mobile-

to fixed-bed conditions, with a subcritical nature of the flow near the right

side of the origin. The relevant wave pattern is described in case (C) of

Figure 8.1. The initial conditions are: hL = 3.0 m, hR = 1.299 m, uL =

1.0 m/s, uR = 1.411 m/s, vL = 0.1 m/s, vR = 1.0 m/s, zbL = 0.0 m,

zbR = 0.0 m, ϕL = 0.0, ϕR = 0.255, β = 0.1. The comparison between

numerical and analytical solution is presented in Figure.10.19, where the

agreement is similar to the previous cases. Figure 10.20 indicates the absence

of spurious erosions or depositions in the fixed-bed side.
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Figure 10.17: Details of the behavior of the concentration (on the left) and

of the bottom elevation (on the right) near the interface between fixed and

mobile bed for the FBsub-MB test case.

MB-FBsup test case

The last test belongs to the class characterized by a transition from mobile-to

fixed-bed conditions, with a supercritical nature of the flow near the right

side of the origin. The relevant wave pattern is described in case (D) of Figure

8.1. The initial conditions are: hL = 1.0 m, hR = 1.2 m, uL = 4.0 m/s, uR =

5.242 m/s, vL = 0.0 m/s, vR = 0.5 m/s, zbL = 0.0 m, zbR = 0.0 m, ϕL = 0.0,

ϕR = 0.019, β = 0.01. Since in this class there are infinite solutions relevant

to a given couple of left and right initial values, this time the comparison

was performed between the numerical solution and the analytical solution

consistent with the numerical results. In other words, Figure 10.21 asserts

that the numerical solution is a good approximation of one of the possible

solutions to the CRP. Only a small overshoot is localized in the transported

concentration ϕ near the contact wave in the fixed bed part.
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10.2 Realistic application

For the simulation of realistic applications it is necessary to solve not only

the homogeneous part of equation (8.5), but also the source term. The

source term has been evaluated using a classical operator-splitting approach.

The first step is to solve the homogeneous problem obtaining Ũn+1
i at time

t = (n+ 1) ∆t. This solution is then used as initial value for the ordinary

differential equation

dU

dt
= S (10.2)

This equation is solved using the implicit Euler method in order to have no

integration time step restriction

Un+1
i = Ũn+1

i + ∆tSn+1
i (10.3)

The primitive variables W are then obtained solving the non liner system

(10.3). More details can be found in Armanini et al. [10].

10.2.1 Trench evolution

As realistic test case we present the evolution of a trench dug in an channel

with uniform flow in which, in the middle, there is a fixed bed transect.

The model used is the one-dimensional CPDEs system for high sediment

transport since the phenomena is 1D. For the bed shear stress we use the

closure relation (3.85) with Ks = 25 m1/3s−1, while for the concentration

the relation is the same as before where β = 2.31. The initial uniform flow

has the following properties: total discharge for unit width q = 1.0 m2/s,

bed slope if = 0.1%, solid concentration c = ϕ = 0.02. With these data

we obtain h = 2.275 m and u = 0.439 m/s. In this uniform flow, in the

upper the mobile bed transect a trench is present. Since in the trench the

water depth is higher and consequently the velocity is lower, the equilibrium

concentration c, respect to the rest of the channel, is lower (see Figure 10.22).

We expect that the trench, during the flow, moves downstream, ap-

proaches the fixed bed transect and then, after some time, it reappears in the
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Figure 10.22: Initial condition of the trench. On the left the free surface and

the bottom elevation, on the right the concentration.

downstream mobile bed transect. We highlight that, with the approach pro-

posed by Rulot et al. [58] the trench, when approach the fixed bed transect,

is instantaneously transfered in the downstream mobile bed, as depicted in

Section 6.1, producing a wrong estimation of the evolution speed.

Looking at the Figures 10.23, 10.24 and 10.25, we notice that the model

developed reproduces, in a correct way, what we expected. In particular 10.23

shows the trench approaching the fixed bed transect. then, in Figure 10.24,

we highlight the presence of the lower concentration wave that is advected

by the flow field in the fixed bed transect. When this wave approach the

downstream mobile bed transect (Figure 10.25), it is as a boundary condition

for the flow, so the local hydrodynamic changes in order to adapt to the

solid concentration arriving from upstream. When the concentration wave

is completely outside the fixed bed transect (Figure 10.26), the trench is

fully recreated and then moves downstream. We highlight that the trench,

moving downstream, changes its shape due to the bed shear stress and, as a

consequence, also the equilibrium concentration changes according to it.
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Figure 10.23: Evolution of a trench: approaching the fixed bed transect. On

the left the free surface and the bottom elevation, on the right the concen-

tration.
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Figure 10.24: Evolution of a trench: inside the fixed bed transect. On the

left the free surface and the bottom elevation, on the right the concentration.
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Conclusions

In the first Part of the thesis, a review of the literature about of the three-

dimensional continuum motion equations for the liquid-granular mixture flow

was carried out. Then, after the introduction of the shallow flow hypothe-

sis, the two-dimensional depth averaged fully two-phase free-surface shallow

flow systems for high sediment concentration over fixed and mobile bed are

derived. A particular attention was carried out in the depth average pro-

cess where the presence of lots of corrective coefficients was highlighted. A

brief literature review has been done comparing the models obtained with

the ones presented in literature. The isokinetic two-dimensional models are

also derived since, in the literature there are still not complete and reliable

closure relations valid for debris flow or hyperconcentrated flow. Finally the

one-dimensional isokinetic models both for low and high sediment concen-

tration over fixed and mobile bed was obtained and their eigenstructure was

analyzed.

In the second Part, the mathematical description of coupling two different

hyperbolic systems is investigated. A general solution strategy, using the two-

phase free-surface flows with low solid concentration, across a sharp transition

in the bed conditions was developed by introducing the Composite Riemann

Problem, a new type of RP in which not only the initial constant values of

the variables but also the system of equations changes from left to right of

a discontinuity. The possibility of solving a CRP was obtained by reducing

the original problem to a classical RP associated with a single composite

system, made up of a suitable weighted combination of the original fixed-

bed and mobile-bed systems plus an additional differential equation for the

weighting parameter, namely the erodibility function. Consistency of the
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CPDEs system, i.e. reduction to the pure fixed-bed or to the pure mobile-

bed system as a function of the erodibility value, was carefully checked.

Moreover, the features of the CRP waves and solutions were analyzed in

detail by using standard theoretical tools and a classification of the possible

wave patterns was presented. The application of this coupling strategy was

then applied to the high sediment concentration cases showing the versatility

of method developed.

In the last Part of the thesis, three different Riemann solvers (LHLL,

Closure Independent Generalized Roe and Universal Osher) were analyzed

and improved. In particular the LHLL solver was modified in order to adapt

it to the transition between fixed and mobile bed. An Extended Multiple

Average strategy, an improvement of the MAs, was developed for the CIGR

solver allowing to obtain in an easier way the Roe constant matrix satisfying

the differential and integral condition. The UO solver was extended to the

case of partially nonconservative hyperbolic systems where non-conservative

fluxes are evaluated directly without a path integral. Also a new path in-

tegral strategy in primitive variables was introduced. The three numerical

Riemann solver was tested and compared highlighting pros and cons of each.

A second-order finite volume scheme was then developed, which was system-

atically validated by comparing the computed solutions with those obtained

through an inverse procedure. As expected, when applied to problems that

fall within the physical range of applicability of the relevant mathematical

model, the numerical method has an overall high accuracy and it is exactly

well-balanced across any discontinuous wave, in particular across the stand-

ing contact wave which describes the transition from mobile to fixed-bed

conditions. Finally, a realistic test case regarding the evolution of a trench

over partially non-erodible bed was presented, proving the capabilities of

both the mathematical approach and the numerical scheme.

The future developments of the work presented in this thesis are firstly the

implementation in a two dimensional numerical model of the CRP, secondly

the possibility of considering dynamic fixed-mobile transitions and finally the

extension of this approach to the fully two-phase models. In this way the

barrier between mobile-bed and fixed-bed models may be broken down and
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a single model may be applied in any bed condition.
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nouvelles applications. Ecoles CEA-EDF-INRIA problemes non lineaires

appliqués, INRIA Rocquencourt (France), 1996.

[42] P. G. LeFloch and M. D. Thanh. The Riemann problem for the shallow

water equations with discontinuous topography. Communications in

Mathematical Sciences, 5(4):865–885, 2007.

[43] R. J. LeVeque. Numerical methods for conservation laws. Lectures in
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