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Introduction

This thesis is divided into two main parts. In the first part we report the work
done with my supervisor Massimiliano Sala and in the second the work done jointly
with Eimear Byrne, coming from a collaboration started during a period of research
at University College Dublin.

In the first part we study a particular type of trapdoors, which can be embedded
in a block cipher. Block ciphers combine simple operations to construct a complex
encryption transformation. This tradition has its roots in Shannon’s paper [Sha49]
connecting cryptography with information theory. Shannon suggested building a
strong cipher system out of simple components that substantiate the so-called con-
fusion and diffusion of data applying these components iteratively in a number of
rounds. Each of these components, seen as a single function, would be cryptograph-
ically weak and only their composition can be strong. Feistel [Fei73] and Feistel et
al. [FNS75] were the first to introduce a practical architecture based on Shannon’s
concepts. The most prominent example of a Feistel type cipher is probably the Data
Encryption Standard (DES) [Nat77].

Most modern block ciphers are built using components whose cryptographic strength
is evaluated in terms of the resistance offered to attacks on the whole cipher. In partic-
ular, linear and differential properties of Boolean functions are studied for the S-Boxes
to thwart linear and differential cryptanalysis ([Mat94],[BS93]). Little is known on
similar properties to avoid trapdoors in the design of the block cipher. By a trapdoor
we mean the presence of a secret that, if known, allows to disclose the cipher, i.e.
to read a ciphertext without knowing the key, or to compute the encryption key. In
the DES algorithm, no trapdoors have been found in more than 20 years, but many
users are still suspicious about the DES S-boxes. The discussion of trapdoor issues
has been directed towards individuating trapdoors in known ciphers. Belgian scien-
tists V. Rijmen and B. Preneel [RP97] formulated the trapdoor topic in another way,
proposing for the first time a family of trapdoor block ciphers. We find this approach
fascinating.

A way to consider trapdoors is to employ (permutation) group theory, as follows.
An iterated block cipher can be regarded as a set of permutations of a message space.
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Some properties of the group generated by the round functions of such a cipher are
known to be of cryptanalytic interest. Kenneth Paterson [Pat99] has considered it-
erated block ciphers in which the group generated by the one-round functions acts
imprimitively on the message space, with the aim of exploring the possibility that
this might lead to the design of trapdoors. In particular, Paterson constructed an
example of a DES-like cipher where the group generated by the one-round functions
is imprimitive. In [CDS09b] the authors investigated the minimal properties for the
S-Boxes (and the mixing layer) of an AES-like cipher (more precisely, a translation-
based cipher, or tb cipher) to thwart the trapdoor coming from the imprimitivity
action. More refined group theory can be used to insert additional trapdoors, as
elaborated below.

In [Li03], Li observed that if V is a vector space over a finite field Fp, the symmetric
group Sym(V ) will contain many isomorphic copies of the affine group AGL(V ), which
are its conjugates in Sym(V ). So there are several structures (V, ◦) of a Fp-vector
space on the set V , where (V, ◦) is the abelian additive group of the vector space.
Each of these structure will yield in general a different copy AGL(V, ◦) of the affine
group within Sym(V ). Thus, if the group generated by the one-round functions
of a block cipher is contained in a copy of AGL(V ) this might lead to the design
of trapdoors coming from alternative vector space structure, which we call hidden
sums. Our main results along this direction are the following: Theorem 2.1.21, that
characterizes hidden sums corresponding to translations group generated by affine
maps and that are normalized by the usual translations maps. This characterization
allows us to give a complete classification of elementary abelian subgroups contained
in the affine group of a binary vector space of dimension at most 6. In Theorem 2.2.9
we establish a lower bound on the differential uniformity of the maps contained in the
affine groups related to the hidden sums. Then we show in Theorem 2.4.1 that hidden
sums trapdoors can be practical. Several minor results are scattered in this part of
the thesis, such as the study of trapdoors coming from mixing-layers, keyschedule
and even combining functions (these for stream ciphers).

In the second part of this thesis we report the results obtained jointly with Eimear
Byrne on the Index Coding problem. The Index Coding with Side Information (ICSI)
problem was introduced by Birk and Kol [BK98], in origin called coding on demand
by an informed Source (ISCOD). There are several applications which motived the
study of this problem as video on demand, daily newspaper delivery, or opportunistic
wireless-network. The index coding problem is described in the following scenario.
There is a server (sender) which broadcasts a set of messages to a set of clients
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(receivers). During the transmission, each client might miss a certain part of the
data, due to intermittent reception, limited storage capacity or any other reason.
The server has to find a way to deliver to each client all the missing messages, yet
spending a minimum number of transmissions. Via a slow backward channel, the
clients let the server know which messages they already have in their possession,
and which messages they request. By exploiting this information, the amount of the
overall transmissions can be significantly reduced. For example suppose we have a
single sender who has four message {xi : 1 ≤ i ≤ 4} and there are 4 receivers Ri,
each with side information packets {xj : 1 ≤ j ≤ 4, j 6= i}. Suppose Ri requests the
data xi for each i. The sender can satisfy the demands of all receivers by sending
only one packet z =

∑4
i=1 xi, since each receiver can recover its required message via

xi = z+
∑4

i=j,j 6=i xi. The ICSI problem has been the subject of several recent studies
[ALS+08, BYBJK06, BL11, CASL11, DSC13]. This problem can be regarded as a
special case of the well-known Network Coding (NC) problem [KM03]. In particular,
it was shown that every instance of the NC problem can be reduced to an instance
of the ICSI problem [ERSG08, ERSG10].

Several previous works focused on the design of efficient index codes. Given an
instance of the ICSI problem, Bar-Yossef et al. [BYBJK06, BYBJK11] proved that
finding the best binary scalar linear index code is equivalent to finding the so-called
min-rank of a (di)graph. The concept of min-rank of a graph was first introduced
by Haemers [Hae78], which serves as an upper bound for the celebrated Shannon
capacity of a graph [Sha56]. Unfortunately, as shown by Peeters [Pee96], computing
the min-rank of a general graph (that is, the MinRank problem) is a hard task.
More specifically, Peeters showed that deciding whether a graph has min-rank three
is an NP-complete problem. Exact and heuristic algorithms to find the min-rank
over F2 of a hypergraph (and a (di)graph as a special case) were developed in the
work of Chaudhry and Sprintson [CASL11]. The min-ranks of random (di)graphs are
investigated by Haviv and Langberg [HL12]. The work in [DSC14] identifies the side
information graphs whose optimal IC can be found efficiently, given a classification
of graphs with near-extreme min-rank (i.e. 1, 2, n− 1, n).

In [DSC13], the authors considered the problem of index coding across a noisy
channel. In this generalization, the sender has a vector x = (x1, ..., xn) ∈ Fn

q , each
receiver requests a component xi of x and lets the server know which bits it already
has. The sender linearly encodes the vector x as c = (c1, ..., cN) = LxT using an N×n
matrix L (satisfying certain constraints) over Fq and transmits the symbols of c using
N transmissions. This encoding is referred to as δ-error-correcting if each receiver
can retrieve its desired bit after N transmissions, as long as fewer than δ erroneous
transmissions have occurred. Syndrome decoding is applied to correct errors and
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retrieve the required data at each receiver, which is computationally demanding.
One common point of preceding works is that coded packets in each user’s cache

are not utilized. It is more likely that certain coded packets may exist in some users’
cache, which may aid the decoding and hence may improve transmission efficiency.
In [SDS12] Shum et al. generalized the index coding problem so that coded packets
of a data vector x may be broadcast or part of a user’s cache. This is called Index
Coding with Coded Side Information (ICCSI) problem. This finds applications, for
example, in broadcast channels with helper relay nodes.

Here we investigate the optimal length of an index code, in particular in Theorem
5.1.4 we extend the so called clique-covering bound to the case of hypergraph, which
permits to improve the bound on the graphs in some particular cases. We characterize
also the directed graph having min-rank equals to n − 1 over a sufficient large field,
Theorem 5.2.5. Moreover we show that the decision problem whether a directed
graph has min-rank n − 1 can be solved in a polynomial time over a finite field of a
cardinality q > n.

Subsequently, the ICCSI problem is taken into account. We extend the min-rank
notion to this more general case, showing (Lemma 6.1.3) that is equal to the length of
an optimal scalar linear index code. Then, several bounds and constructions for linear
error-correcting index codes are extended from the ICSI case in Proposition 6.2.3,
Proposition 6.2.5 and Proposition 6.2.6. Also two decoding schemes are investigated.

Organization of this Thesis

The first part of this thesis is divided in 3 chapters.
In Chapter 1 we summarize some known facts about block ciphers, in particular

we introduce the translation based ciphers class, and we give some results on security
properties of the cipher linked to the group of its round functions.

Chapter 2 studies some properties of the vector space structure (V, ◦) which can
be individuated over a binary vector space. In particular we characterize the affine
groups which contain the usual translation group and such that the translation groups
related to the new operations ◦’s are generated by affine maps. For that particular
case we prove that a trapdoor coming from these hidden sums is practical.

Some necessary properties on S-boxes to avoid this kind of trapdoor are studied
in Chapter 3, where we introduce the notion of anti-crooked function.

The second part starts with a chapter reporting some notions and basic results on
coding theory, incident structures and graphs. Then we provide backgrounds on the
ICSI problem. It also contains some bounds on the optimal length of an Index Code
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and introduced the error correction for the ICSI problem.
In Chapter 5 we give some bounds on the optimal length of an index code, extend-

ing the so-called sandwich property to the case of hypergraph and using the t-designs.
We also characterize the directed graphs having min-rank one less than the order.

In Chapter 6 we discuss the error correction for the more general case of the
ICCSI problem. Bounds and constructions for error-correcting index codes of the
ICSI problem case are extended to this more general case.
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Part I

Hidden sum trapdoors
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Preliminaries on Block Ciphers

In the first section of this chapter we report some preliminary results and the
notations which will be used along the thesis. In Section 1.2, we outline some basic
ideas about block ciphers, their security and their cryptanalysis. In the last section,
we introduce the round-function group of a block cipher and some security properties
that can be derived from it.

As reference we use here [LN97, Wat79, Lan12, Car06, Sti95, DR02a, CW09].

1.1 Notations and backgrounds

1.1.1 Linear algebra and group theory terminology

For any positive integer n, we let [n] = {1, . . . , n}. We write Fq to denote the
finite field of q elements, where q is a power of prime, and FN×n

q to denote the set of
all matrices with entries over Fq with N rows and n columns. We write F = F2. We
use

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) ∈ Fn
q

to denote the unit vector, which has a one at the i-th position, and zeros else-
where. The vector (sub)space generated by the vectors v1, . . . ,vn is denoted by
Span{v1, . . . ,vn}. Let V = Fn

q , we denote by Sym(V ), Alt(V ), respectively, the sym-
metric and the alternating group acting on V . By AGL(V ) and GL(V ) we denote
the affine and linear group of V . We write 〈g1, . . . , gn〉 for the group generated by
g1, . . . , gn in Sym(V ).

Let G be a finite group acting on V . We write the action of a permutation g ∈ G
on a vector v ∈ V as vg.

Definition 1.1.1. Let G be a group acting on V . G is called transitive if for all
x,y ∈ V there exists g ∈ G such that xg = y.

G is called regular if for all x,y ∈ V there exists a unique g ∈ G such that
xg = y.

Remark 1.1.2. G is regular if and only if G is transitive and |G| = |V |.

CGC 9



Chapter 1. Preliminaries on Block Ciphers

Definition 1.1.3. A partition B of V is G-invariant if for any B ∈ B and g ∈ G,
one has Bg ∈ B. A partition B is trivial if B = {V } or B = {{v} | v ∈ V }. If B is
non-trivial and G-invariant then B is a block system for the action of G on V . If
a block system exists, then we say that G is imprimitive in its action on V . If G is
not imprimitive (and it is transitive), then we say that G is primitive.

Definition 1.1.4. An element r of a ring R is called nilpotent if rn = 0 for some
n ≥ 1. r ∈ R is called unipotent if r − 1 is nilpotent, i.e. (r − 1)n = 0 for some
n ≥ 1.

Let G ⊆ GL(V ) be a subgroup consisting of unipotent permutations, then G is
called unipotent.

Definition 1.1.5. An element κ ∈ GL(V ) is said upper triangular in a basis
{v1, . . . ,vn} if and only if

viκ− vi ∈ Span{vi+1, . . . ,vn}

for all 1 ≤ i ≤ n. The matrices upper triangular in the canonical basis are called up-
per unitriangular matrices. We denote by U(V ) the upper unitriangular matrices
group.

Remark 1.1.6. Usually the definition of upper triangular matrix in a basis v1, . . . ,vn

is that
viκ− vi ∈ Span{v1, . . . ,vi−1}.

Our definition comes from the fact that the map κ acts on the right of x also when
the action is seen as a multiplication of a vector times a matrix, i.e. xκ = xM where
M is the matrix associated to κ.

The following theorem is well-known (see for instance [Wat79]).

Theorem 1.1.7. Let G be a group consisting of unipotent matrices. Then there is a
basis in which all elements of G are upper triangular.

Definition 1.1.8. Let A be an n × n matrix over a field K, with λ ∈ K along the
main diagonal and 1 along the diagonal above it, that is

A =


λ 1 . . . 0

0 λ 1 . . . 0
...

...
0 . . . λ

 .
Then A is called the n× n elementary Jordan matrix or Jordan block of size n.
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1.1. Notations and backgrounds

Definition 1.1.9. A matrix A defined over a field K is said to be in Jordan canon-
ical form if A is block-diagonal where each block is a Jordan block defined over K.

The following theorem is well-known (see for instance [Lan12]).

Theorem 1.1.10. Let A be an n× n matrix over a field K such that any eigenvalue
of A is contained in K, then there exists J defined over K in Jordan canonical form
such that J is similar to A.

1.1.2 Boolean functions terminology

Definition 1.1.11. A Boolean function (B.f.) is a function f : Fn → F. The set
of all Boolean functions from Fn to F will be denoted by Bn.

Each Boolean function f ∈ Bn can be written in as unique way as a polynomial
in F[X] = F[x1, . . . , xn].

f(X) =
∑
S⊆[n]

aSXS,

whereXS =
∏

i∈S xi. Such a representation is said Algebraic Normal Form (ANF).
The algebraic degree of a B.f. f coincides with the degree of its ANF

deg(f) = max{|S| : aS 6= 0}.

Let An be the set of all affine functions from Fn to F, i.e. the set of the Boolean
functions in Bn with algebraic degree less than or equal to 1. The ANF of an affine
function α ∈ An is

α =
n∑

i=1

aixi + a0.

Let Fn
2 be labelled as F = {v1, . . . , v2n} we can associate to a B.f. f the vector

f̄ = (f(v1), . . . , f(v2n)) ∈ F2n , f̄ is called the value vector of f .
The distance between two B.f.’s f, g ∈ Bn is the Hamming distance between their

value vectors, namely
d(f, g) = |{i | f(vi) 6= g(vi)}|.

Definition 1.1.12. Let f ∈ Bn. The non-linearity of f is the minimum of the
distance between f and any affine function

N(f) = d(f,An).

Theorem 1.1.13 (Covering radius bound). N(f) ≤ 2n−1 − 1
2
2n/2.

Definition 1.1.14. A B.f. f is called bent if N(f) = 2n−1 − 1
2
2n/2.
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Chapter 1. Preliminaries on Block Ciphers

Bent functions can exist only if n is even, as 2n−1 − 1
2
2n/2 has to be an integer.

Definition 1.1.15. A B.f. f : Fn → F is called balanced if |f−1(0)| = |f−1(1)| =
2n−1.

Definition 1.1.16. A function f : Fn → Fm is called vectorial Boolean function
(v.B.f).

We focus on the case m = n. In this case we can, also, identify a v.B.f. with a
univariate polynomial over F2n , since Fn

2 is isomorphic to F2n as vector spaces over F.

Theorem 1.1.17 ([LN97]). If Fq is a finite field and f : Fq → Fq is a function, then
f can be represented by a polynomial f ∈ Fq[x] with deg(f) ≤ q − 1.

Let f be a v.B.f, we denote by fv the components relating to v ∈ Fn, that is the
function x 7→< v, f(x) > (< u,v > is usual scalar product). Clearly, each component
is a Boolean function. The degree of a vectorial Boolean function is the maximum
degree of its components:

deg(f) = max
v∈Fn

2

deg(fv).

With ni(f) we denote the number of components of f with degree i.
We can now extend the notion of non-linearity to the vectorial Boolean functions

and give the first measure of non-linearity for an S-Box.

Definition 1.1.18. Let f be a v.B.f., the non-linearity of f is

N(f) = min
v∈Fn

N(fv).

Definition 1.1.19. A v.B.f. f : Fn → Fm is called balanced if for all v1, v2 ∈ Fm

|f−1(v1)| = |f−1(v2)| = 2n−m.

Remark 1.1.20. A v.B.f. f is balanced if and inky if all components are balanced. In
particular a permutation is always balanced.

Here we report other more measures of non-linearity. Let f̂u(x) := f(x+u)+f(x)

be the derivative of f w.r.t. u.

Definition 1.1.21. Let m,n ≥ 1. Let f : Fm → Fn, for any a ∈ Fm and b ∈ Fn we
define

δf (a, b) = |{x ∈ Fm | f̂a(x) = b}|.

The differential uniformity of f is

δ(f) = max
a∈Fm, b∈Fn

a6=0

δf (a, b).

f is said δ-differentially uniform if δ = δ(f).

12



1.1. Notations and backgrounds

The smaller is δ, the highest is the non-linearity of the function. From this point
of view the best S-Boxes are those which realize δ = 2, the so called Almost Perfect
Non-linear (APN) functions. In odd dimension there exist APN functions, which
are also permutations. As regards even dimension only for the case n = 6 we have
examples of APN permutations and no APN permutation over F4 exists. The case
n ≥ 8 is still open.

Definition 1.1.22. Let f be a v.B.f. f is weakly-δ differentially uniform if

|Im(f̂a)| >
2n−1

δ
, ∀ a ∈ Fn \ {0}.

If f is weakly-2 differential uniform, it is called weakly-APN .

Remark 1.1.23. Weakly-APN permutations exist for any n ≥ 3, e.g. the inversion
function x 7→ x−1.

Remark 1.1.24. Let f be a v.B.f. If f is δ-differentially uniform then f is weakly
δ-differential uniform.

Definition 1.1.25. A function f is l-anti-invariant if for any subspace U ⊆ Fn
2

such that f(U) = U we have dim(U) < n− l or U = Fn
2 .

Definition 1.1.26. A function f is strongly l-anti-invariant if for any two sub-
spaces U,W ⊆ Fn

2 such that f(U) = W then either dim(U) = dim(W ) < n − l or
U = W = Fn

2 .

Definition 1.1.27. Let f be a v.B.f, then

n̂(f) := max
a∈Fn

2 \{0}
|{v ∈ Fn

2 \ {0} | deg(< v, f̂a >) = 0}|.

Remark 1.1.28. For n = 4, n̂(f) = 0 is a sufficient condition to guarantee f weakly-
APN. As we will see it is not true in general.

Definition 1.1.29. Two permutations f, g : Fn → Fn are affine equivalent if there
exist two γ1, γ2 ∈ AGL(V ) such that g(x) = γ1fγ2(x). Those properties which are
invariant under the action of the affine group are called affine-invariant.

The following characteristics are affine-invariant:

• Non-linearity,

• Algebraic degree,

• Differential uniformity,

• Weakly differential uniformity

• n̂(f).
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Chapter 1. Preliminaries on Block Ciphers

1.2 Introduction to Block ciphers

Block ciphers form an important class of cryptosystems in symmetric key cryp-
tography. Stream ciphers ([Rue92]) form another class. Here we are interested only
in cryptosystems of type block cipher. These are algorithms that encrypt and de-
crypt block of data according to a shared secret key. They are commonly used to
provide confidentiality during information transmission and storage. We can formally
describe such a system using the following definition.

Definition 1.2.1. A cryptosystem is a pair (M,K), where:

• M is a finite set of possible messages (plaintext, ciphertext);

• K is a finite set of possible keys;

• for any k ∈ K we have an encryption and decryption functions

ϕk :M→M, ψk :M→M, ϕk, ψk ∈ Sym(M)

such that ψk = ϕ−1
k .

Following the most used structure in modern ciphers, in the previous definition
the plaintext space coincides with the ciphertext space. W.l.o.g., we can consider
M = Fr

q and K = Fl
q , with l ≥ r ≥ 1, and we adapt our previous definition.

Definition 1.2.2. Let r and l be natural numbers. Let ϕ be any function

ϕ : Fr
q × Fl

q → Fr
q .

For any k ∈ Fl
q , we denote by ϕk the function

ϕk : Fr
q → Fr

q , ϕk(x) = ϕ(x, k).

We say that ϕ is an algebraic block cipher if ϕk is a permutation of Fr
q for all key

k ∈ Fl
q .

Under this conditions, we can also consider a block cipher as an indexed set of
permutations Fl

q → Sym(Fr
q ). Any key k ∈ K induces a permutation ϕk onM. Since

M is usually V = Fr for some r ∈ N, we can consider ϕk ∈ Sym(V ).
Most modern block ciphers are iterated ciphers, i.e. they are obtained by the

composition of a finite number N of rounds.
In each round (except possibly for a couple, which may be slightly different) the

iterated ciphers perform a non-linear substitution operation (or S-box) on disjoint
parts of the input that provide “confusion”, followed by a permutation (usually a

14



1.2. Introduction to Block ciphers

linear transformation) on the whole data that provide “diffusion”. A cryptosystem
reaches “confusion” if the relationship between plaintext, ciphertext and key is very
complicated. The “diffusion” idea consists of spreading the influence of all part of the
input (plaintext and key) to all parts of the ciphertext. The operation performed in a
a round form the round function. The round function at the j-th round (1 ≤ j ≤ N)
takes as inputs both the output of the (j−1)-th round and the subkey k(j) (also called
round-key). Any round key k(j) is constructed starting from a (session key) master
key k (nowadays we have 264 ≤ |K| ≤ 2256). The key schedule is a public algorithm
(strictly dependent on the cipher) which constructs N + 1 subkeys (k(0), . . . , k(N)).

Several independent formal definitions have been proposed for an iterated block
cipher, e.g. substitution permutation network [Sti95] and key-alternating block cipher
[DR02a]. Here we present one more recent definition [CDS09b] that define a class
large enough to include some common ciphers (AES, SERPENT, PRESENT), but
with enough algebraic structure to allow for security proofs.

Let V = Fr
2 with r = mb, b ≥ 2. The vector space V is a direct sum

V = V1 ⊕ · · · ⊕ Vb,

where each Vi has the same dimension m (over F2). For any v ∈ V , we will write
v = v1⊕ . . .vb, where vi ∈ Vi. Also, we consider the projections πi : V → Vi mapping
v 7→ vi.

Any γ ∈ Sym(V ) that acts as vγ = v1γ1 ⊕ · · · ⊕ vbγb, for some γi ∈ Sym(Vi), is a
bricklayer transformation (a “parallel map”) and any γi’s is a brick. Traditionally,
the maps γi’s are called S − boxes and γ a “parallel S-box”. A linear map λ : V → V

is traditionally said a “Mixing Layer” when used in composition with parallel maps.
We denote by σv the translation by v ∈ V , namely xσv = x+ v.

For any I ⊂ [b], with I 6= ∅, [b], we define
⊕

i∈I Vi a wall.

Definition 1.2.3. A linear map λ ∈ GL(V ) is a proper mixing layer if no wall is
invariant under λ.

We can characterize the translation-based class by the following:

Definition 1.2.4. A block cipher C = {ϕk | k ∈ K} over F2 is called translation
based (tb) if:

• it is the composition of a finite number of rounds, such that any round ρk,h can
be written1 as γλσk̄, where

- γ is a round-dependent bricklayer transformation (but it does not depend
on k),

1we drop the round indices
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Chapter 1. Preliminaries on Block Ciphers

- λ is a round-dependent linear map (but it does not depend on k),

- k̄ is in V and depends on both k and the round (k̄ is called a “round key”),

• for at least one round we have (at the same time) that λ is proper and that the
map K → V given by k 7→ k̄ is surjective, (a “proper” round).

Remark 1.2.5. A generalization is obtained by allowing a key-independent permuta-
tion at the beginning and/or another at the end. This is the case for example for the
SERPENT cipher. Since these permutations have no influence on the cryptanalysis
of a cipher, we implicitly ignore them.

Remark 1.2.6. A round consisting of only a translation is still acceptable, by assuming
γ = λ = 1V (the identity map on V ), although obviously it is not proper. Indeed,
from now on we can always assume that the first round is of this kind, otherwise we
can remove its γ and λ (Remark 1.2.5). Then, we can also assume that 0γ = 0, since
we can add 0γ to the round key of the previous round.

Remark 1.2.7. To allow affine mixing layers, rather than linear mixing layers, seems a
generalization. However, this case is indeed already present in Definition 1.2.4, since
it is enough to change σv to incorporate the "translation part" of the mixing layer.

1.2.1 Perfect secrecy

Shannon, several decades ago, in [Sha49] formalized the concept of perfect secrecy.
The perfect ciphers (e.g. One Time Pad) are ciphers with a very strong model because
one assumes that Eve’s computational power is infinite. They are impractical for a
real use, as they require at least as many key bits as the message length. Consider2

the set of plaintexts P and ciphertexts C, and assume that a particular key k ∈ K is
used for only one encryption p 7→ ϕk(p). Let X be the random variable defined by
the plaintexts and Y be the random variable defined by the ciphertexts.

Definition 1.2.8. A crypto-system is said to have the property of perfect secrecy if,
for all p ∈ P and c ∈ C, the two probability distributions satisfy

Pr(X = p|Y = c) = Pr(X = p).

Perfect secrecy means that the a posteriori distribution of the plaintext p after
viewing the ciphertext c is identical to the a priori distribution of the plaintext.

Theorem 1.2.9. Suppose that |P| = |C| = |K|. A cryptosystem provides perfect
secrecy if and only if every key is used with equal probability 1/|K| and the action of
{ϕk | k ∈ K} on P = C is a regular action.

2In this case the two spaces may not be the same
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1.2.2 “Good” block cipher

Up to now, there is no received definition of “good block cipher”, but there are
several criteria that contribute to the evaluation of a cipher. We list some of them.
Security
The most important criterion in the evaluation of a block cipher consists of estimating
its security level. Obviously, the security of a block cipher is highly dependent on the
properties of the different components:

- substitution layer consisting of a number of highly non-linear S-boxes (which
are v.B.f.’s, see [Car06]),

- affine or linear invertible transformations.

However, there is no mathematical method to prove the security of a given block
cipher, although it is sometimes possible to prove the insecurity of such a cipher.
What usually happens is that a relative measure of the security of a block cipher
(for instance the K-security in [DR02b]) is given. Some necessary requests on the
ciphers are made and it is a very hard problem to determine the sufficient conditions
that guarantee the security. To evaluate the security, an additional concept is often
considered: practical security. According to this concept, a block cipher is considered
secure if the best-known attack requires too many resources by a suitable and accept-
able margin. One can test the block cipher with different known attacks and assign
a certain security level to it. Obviously, it is impossible to predict the security of the
underlying block cipher with respect to yet unknown attacks.
Efficiency
It refers to the amount of resources required to perform ϕ or ψ. In fact, in software
implementations the speed of ϕ/ψ and the required amount of working memory/mem-
ory storage are relevant. When quoting the speed of a cipher, one often makes the
silent assumption that a large amount of data is encrypted with the same key. In
that case, the key schedule can be neglected. However, if a cipher key is used to
secure only a few messages, the amount of cycles taken by the computation of the
key-schedule becomes important. The ability to efficiently change keys is called key
agility. Block ciphers are often used to encrypt large amounts of data; this makes
data throughput an important evaluation criterion as well. One often differentiates
hardware and software cases, the speed of the algorithm setup, the key setup, a key
change and the encryption and decryption operations.
Flexibility
An expected important property of a block cipher is that it offers a large flexibility.
For instance, a flexible algorithm may offer several possible block and key sizes, allow-
ing to tailor an instance of the block cipher to precise external requirements. Another
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Chapter 1. Preliminaries on Block Ciphers

flexibility form concerns implementation issues. Finally, a block cipher can be used
as a building block in various cryptographic constructions (like a hash function, an
authentication code, or a stream cipher); if it offers an acceptable security level in all
of these situations, then one can consider that it is a flexible block cipher.

1.2.3 Cryptanalytic scenarios

Traditionally, the goal of Eve consists of recovering the plaintext or even the key.
According to the possibilities and the capabilities of Eve, we can classify the different
modes of attack (from the most practical to the most hypothetical, or equivalently,
from the least powerful to the most powerful) as follows:

• Ciphertext-only : Eve tries to deduce some information about the key (or about
the plaintext) starting from the sole knowledge of several ciphertexts and, usu-
ally, assuming some properties about the distribution of the plaintexts. This is
a very unlikely scenario for modern block ciphers.

• Known-plaintext : in this kind of attack, we assume that Eve knows a certain
amount of (plaintext,ciphertext) pairs in order to recover the key. This is a
realistic scenario and there are two types. The first where Eve can observe
encrypted version of well-known data and, for instance, exploit the fact that
messages have redundancy. The second type assumes that the collected plain-
texts form a random sample. Linear cryptanalysis [Mat94] is a typical example
of such an attack.

• Chosen-plaintext or chosen-ciphertext : when performing this kind of attack,
Eve is able to choose plaintexts and obtain the corresponding ciphertexts. Sub-
sequently, Eve uses any information deduced in order to recover either the key,
or plaintexts corresponding to previously unseen ciphertexts. A typical example
is differential cryptanalysis [AC09].

• Adaptive chosen-plaintext or ciphertext : such an attack consists of a chosen-
plaintext (or chosen-ciphertext) attack wherein the choice of the plaintext (or
ciphertext) depends on the information learned during the attack.

• Combined chosen-plaintext and chosen-ciphertext : this is a powerful type of
adaptive attack which assumes that Eve can encrypt and decrypt arbitrary mes-
sages as she desires. A typical example of such an attack is Wagner’s boomerang
attack (see [Wag99]).

• Related-key : in this model, Eve knows (or can choose) additionally some math-
ematical relations between the keys used for encryption, but not their values.
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This is usually employed in conjunction with some of the scenarios above. Even
if in itself this attack may not be considered to be a practical threat against a
block cipher (because it lives in a too strong threat model), it may be practical
when a block cipher is used as a primitive for a hash function.

By considering one of the attacks described above and according to the type of
information recovered during it, the possible outcomes of an attack could be classified
as follows. We describe only the main outcomes from the least favorable for Eve to
the most favorable. (For more details, see e.g. Knudsen [Knu99]).

• Distinguishing attack : Eve is able to tell whether the attacked block cipher
is a permutation (chosen uniformly at random from the set of all permuta-
tions) or one of the permutations {ϕk}k∈K. In fact, most modern block ciphers
are designed to model a random permutation. Even if distinguishing attacks
are considered as the least serious threat in practice, they often indicate some
structural weaknesses of the cipher and they might be transformed into a Key
recovery (or a Global deduction).

• Local deduction: Eve finds the plaintext (or ciphertext) of an intercepted ci-
phertext (or plaintext) which she did not obtain from the legitimate sender. If
the number of likely plaintexts (or ciphertexts) is small, such an attack may be
fatal for the cryptosystem.

• Partial Key Recovery : Eve is able to get some information on the key k (e.g.
some relations, some bits). An efficient partial key recovery is very undesirable
because it could be used to determine the remaining bits of the key.

• Global deduction: Eve finds an algorithm functionally equivalent to ϕk or ψk,
without knowing the actual value of the key k. For instance, a possibility of
global deduction is when an attacker is able to recover the round subkeys but
not the key. A more dangerous case is when the encryption function is actually
linear, allowing the deduction of the matrix representing the encryption (and
then its inverse will represent the decryption). A historical example is Hill’s
cipher.

• Key recovery (Total break): Eve is able to recover (or reconstruct) the secret
key k ∈ K, thus reaching the highest goal of the attacker.

The security of a cipher against the types of attack described above is in practice
measured by several additional parameters that are necessary:
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• time complexity : it measures the computational processing required to perform
an attack, i.e. it is closely related to the input. Usually, the choice of the
computational unit is done to compare the attack with an exhaustive key search.

• data complexity : it is the number of collected data (like ciphertexts, (known/-
chosen)-plaintext,...) required to perform an attack, according to a specific
model.

• success probability : it measures the frequency at which the attack is successful
when repeated a certain number of times in a statistically independent way.

• memory complexity : it measures the amount of memory units necessary to store
pre-computed/obtained data necessary to perform the attack.

Usually, an attack is considered to be successful (and the attacked block cipher is
considered to be broken) if the time/data/memory complexity is significantly smaller
than 2l evaluations of the block ciphers, with K = Fl, and a success probability close
to 1.

1.2.4 Trapdoors

A trapdoor is a hidden structure of the cipher; knowledge of this structure allows
an attacker to obtain information on the key or to decrypt certain ciphertexts. The
discussion of trapdoor issues in symmetric cryptographic papers has been one-sided
for a long time. In particular, it was directed towards looking for trapdoors in ciphers
that had already been designed. Rijmen and Preneel [RP97] proposed for the first
time a family of trapdoor block ciphers. As defined in [RP97] a full trapdoor is
some secret information which allows an attacker to obtain knowledge on the key (or
a global deduction) by using a very small number of known plaintexts, no matter
what these plaintexts are or what the key is. A partial trapdoor, is a trapdoor that
not necessarily work for all keys, or that give an attacker only partial information
on the key. Moreover, a trapdoor is said to be detectable (undetectable) if it is
computationally feasible (infeasible) to find it even if one knows the general form of
the trapdoor.

In [RP97] the authors constructed a cipher within a partial trapdoor. In this fam-
ily of ciphers, a trapdoor is hidden in S-boxes and it was claimed to be undetectable
for properly chosen parameters. Given the trapdoor, the secret key (used for encryp-
tion and decryption) can be recovered easily by applying Matsuis linear cryptanalysis
[Mat93]. Interestingly, the work of [WBDY98] shows that these trapdoors are either
easily detected or yield only attacks requiring an infeasible number of plaintext/ci-
phertext pairs. A full trapdoor is given in [Pat99], but Paterson claim that it is also
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detectable. This trapdoor is based on the imprimitive action of the round functions
group of the block cipher.

1.3 Group theoretic properties

Let C be a tb cipher, whit the plaintext space V = Fd, for some d ∈ N.

C = {ϕk | k ∈ K}

It would be very interesting to determine the group Γ(C) = 〈ϕk | k ∈ K〉 ⊆
Sym(V ) generated by the permutations ϕk. Unfortunately, for many classical cases
(e.g. AES [DR99], SERPENT [ABK98], DES [Nat77]) this appears to be a difficult
problem. However, more manageable overgroups of Γ have been investigated (see
[Wer93, HSW94, Wer02, SW08]), such as the ones that we now define. Define the
groups for each h

Γh(C) = 〈ϕk,h | k ∈ K〉 ⊆ Sym(V ),

here ϕk,h = λhγhσh,k is the round function, and the group

Γ∞(C) = 〈Γh(C) | h = 1, . . . , l〉.

For a given cipher, it is an interesting problem to determine Γ∞(C), that is the
permutation group generated by its round functions (with the key varying in the key
space), since this group might reveal weaknesses of the cipher. Paterson [Pat99], as
said before, showed that if this group is imprimitive, then it is possible to embed a
trapdoor in the cipher.

We give the idea of the basic (chosen-plaintext) attack of Paterson. LetX1, . . . , Xr

be a complete non-trivial block system for the group Γ∞. Suppose further that, given
m ∈ V , there is a description of the blocks such that it is easy to compute the i
with m ∈ Xi. Choose one plaintext mi in each set Xi and obtain the corresponding
ciphertext ci. Then the effect of ϕk on each block Xi is determined. From the
imprimitivity of Γ∞,

ci = miϕk ∈ Xj ⇒ Xiϕk = Xj.

Now given any further ciphertext c, we compute l such that c ∈ Xl. Then, we can find
the plaintext m of c examining the block Xi corresponding to Xl. Then the plaintext
m corresponding to c satisfies m ∈ Xlϕk

−1. Thus r chosen plaintexts determine that
the message corresponding to any ciphertext must lie in a set of size |V |

r
. Hence the

security of the system is severely compromised. The plaintext m itself can be found
by examining the set of meaningful message Xlϕk

−1.
Paterson give this trapdoor for a DES-like cipher, but it can be extended to the

case of tb ciphers.
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For a tb cipher, in [CDS09b] the authors provided conditions on the S-boxes which
ensure that the group Γ∞ is primitive.

Theorem 1.3.1 ([CDS09b]). Let C be a tb cipher, with h a proper round, and 1 ≤
r < m/2. If any brick of γh is:

(1) weakly 2r-uniform and

(2) strongly r-anti-invariant,

then Γh(C) is primitive (and hence Γ∞(C) is primitive).

A cipher may be regarded as having a weakness, also if this group is small in
size, since not every possible permutation of the message space can be realized by the
cipher[CG75, EG83]. Attacks on ciphers whose encryptions generate small groups
were given in [KJRS88].

Caranti et al. in [CDS09a] established some extra conditions on S-boxes of a tb
cipher such that Γ∞(C) is either Alt(V ) or Sym(V ), obtaining the following theorem.

Theorem 1.3.2 ([CDS09a]). Let d = mn, with m,n > 1. Let C be a tb cipher such
that

(1) C satisfies the hypothesis of Theorem 1.3.1, and

(2) for all non-zero a ∈ Vi, Im(γ̂ia) is not a coset of a subspace of Vi.

Then the group Γ∞(C) is either Alt(V ) or Sym(V ).

However the ability of a cipher (or its round functions) to generate a large group
does not alone guarantee security: an example of a weak cipher generating the sym-
metric group is given in [MPW94].
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Hidden sums

In [Li03], Li observed that if V is a vector space over a finite field Fp, the symmetric
group Sym(V ) will contain many isomorphic copies of the affine group AGL(V ), which
are its conjugates in Sym(V ). As we will see below, there are several structures (V, ◦)
of a Fp-vector space on the set V , where (V, ◦) is the abelian additive group of the
vector space. Each of these structure will yield in general a different copy AGL(V, ◦)
of the affine group within Sym(V ). In particular the result of Li is the following
theorem, which is a particular case of the O’Nan-Scott theorem.

Theorem 2.0.3 ([Li03]). Let G be a primitive group of degree pb, with b > 1. Suppose
G contains a regular abelian subgroup T . Then G is one of the following.

(1) Affine, G ⊆ AGL(e, p), for some prime p and e ≥ 1.

(2) Wreath product, that is

G ∼= (S1 × · · · × St).O.P,

with pb = ct for some c and t > 1.Here T = T1 × · · · × Tt, withTi ⊆ Si and
|Ti| = c for each i, S1

∼= . . . ∼= St, O ⊆ Out(S1) × · · · × Out(St), P permutes
transitively the Si, and one of the following holds:

(i) (Si, Ti) = (PSL2(11),Z11), (Si, Ti) = (M11,Z11), (Si, Ti) = (M23,Z23);

(ii) Si = Sym(c) or Alt(c), and Ti is an abelian group of order c.

(3) Almost simple, that is, S ≤G ≤Aut(S), for a non-abelian simple group S.

Here the notation S.T denotes an extension of the group S by the group T .

We refer to these structures (V, ◦) as hidden sums. Note that if h is a proper
round of a tb cipher C, then Γh(C) = 〈λhγh, T (V )〉, where T (V ) is the translation
group. Thus it could be that Γ∞ is contained in a isomorphic copy of AGL(V ), if it
happens the abelian additive group (V, ◦) is said a hidden sum trapdoor.

In this chapter we characterize the translation and affine group related to a hidden
sum, in particular we focus on translation groups generated by affine maps. In Section
2.4 we explain why this case is more interesting. Moreover, always, in Section 2.4 we
give an example of a toy-cipher with a hidden sum trapdoor.
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2.1 On affine groups of hidden sums

In the following, if not specified, V will be an n dimensional vector space over F
and p a prime number.

With the symbol + we refer to the usual sum over the vector space V , and we
denote by T+, AGL(V,+) and GL(V,+), respectively, the translation, affine and linear
groups w.r.t. +.

Remark 2.1.1. An elementary group acting on V = Fn
p is obviously a p-elementary

group. The translation group of V is an elementary abelian regular group. Vice
versa, we claim that if T is an elementary abelian regular group, there exists a vector
space structure (V, ◦) such that T is the related translation group. In fact, from the
regularity of T we have T = {τa | a ∈ V } where τa is the unique map in T such
that 0 7→ a. Then, defining the sum x ◦ a := xτa, it is easy to check that (V, ◦) is
an additive group. Moreover, let the multiplication of a vector by an element of Fp
defined by

sv := v ◦ · · · ◦ v︸ ︷︷ ︸
s

, for all s ∈ Fp,

then it is easy to check that for all s, t ∈ Fp, and v,w ∈ V

s(v ◦w) = sv ◦ sw,

(s+ t)v = sv ◦ tv,

(st)v = s(tv)

and being T elementary pv = 0. Thus (V, ◦) is a vector space over Fp. Observe that
(V, ◦) and (V,+) are isomorphic vector space (since |V | <∞).

For abelian regular subgroups of the affine group in [CDS06] the authors give an
easy description of these in terms of commutative associative algebras that one can
impose on the vector space (V,+). We report the principal result shown in [CDS06].
Recall that a (Jacobson) radical ring is a ring (V,+, ·) in which every element is
invertible with respect to the circle operation x ◦ y = x+ y + x · y, so that (V, ◦) is
a group. The circle operation may induce a vector space structure on V or not.

Theorem 2.1.2. Let K be any (finite or infinite) field, and (V,+) a vector space of
any dimension over K.

There is a one-to-one correspondence between

1 (not necessarily elementary) abelian regular subgroups T of AGL(V,+), and

2 commutative, associative K-algebra structures (V,+, ·) that one can impose on
the vector space structure (V,+), such that the resulting ring is radical.
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In this correspondence, isomorphism classes of K-algebras correspond to conjugacy
classes of abelian regular subgroups of AGL(V,+), where the conjugation is under the
action of GL(V,+) .

We do not report their proof, but we write explicitly the correspondence, as fol-
lows.

Let T = {τa | a ∈ V }, any τa ∈ T can be written as τa = κσ with κ ∈ GL(V )

and σ ∈ T+. Then for all a ∈ V we consider the map δa = κ− 1V , with κ as before.
The product operation on V defined by x ·a = xδa is such that the structure (V,+, ·)
results a commutative K-algebra and the resulting ring is radical.

Remark 2.1.3. From the theorem above we can note that in characteristic 2, algebras
corresponding to elementary abelian regular subgroups of AGL(V,+) are exterior
algebras or a quotient thereof, without the part of 0 degree. Indeed, algebras related
to elementary groups are such that x2 = 0 for all x ∈ V and the exterior algebra is
the universal objet with that characteristic. We do not consider the part of degree 0,
because the algebras have to be nilpotent and −1 would have no inverse w.r.t. ◦, as
−1 ◦ a = −1 for all a ∈ V .

We recall that σa denotes the translation in T+ such that x 7→ x + a. We will
use T◦ and AGL(V, ◦) to denote the translation and affine group corresponding to a
hidden sum ◦, that is when (V, ◦) is a vector space and so T◦ is elementary abelian
and regular.
As noted in the remark above, since T◦ is regular, for each a ∈ V there is a unique
map τa ∈ T◦ such that 0 7→ a. Thus

T◦ = {τa | a ∈ V }.

The relation between T◦ and AGL(V, ◦) is that AGL(V, ◦) is the normalizer of T◦ in
Sym(V ). Indeed, AGL(V,+) is the normalizer of T+ and they are, respectively, the
isomorphic images of AGL(V, ◦) and T◦.

With 1V we will denote the identity map of V , clearly, 1V ∈ AGL(V, ◦) for any ◦.

Remark 2.1.4. If T◦ ⊆ AGL(V,+), being the semi direct product AGL(V,+) =

GL(V,+)n T+, then τa can be written as κσb for one κ ∈ GL(V,+) and one b ∈ V .
From 0τa = a we have b = a. We can denote by κa the map κ corresponding to τa
and by Ω(T◦) = {κa | a ∈ V } ⊂ GL(V,+).

Let T ⊆ AGL(V,+) and define the set

U(T ) = {a | τa = σa}.

It is easy to check that U(T ) is a subspace of V (whenever T is a subgroup). If T = T◦

for some operation ◦, then U(T◦) is not empty for the following lemma.
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Lemma 2.1.5 ([CDS06]). Let T ⊆ AGL(V,+) be a regular subgroup. Then, if V is
finite T+ ∩ T is nontrivial.

In particular we claim our first result:

Proposition 2.1.6. Let T ⊆ AGL(V,+) be an elementary abelian regular subgroup.
If T 6= T+, then 1 ≤ dim(U(T )) ≤ n− 2.

Proof. From the lemma above we have 1 ≤ dim(U(T )). If dim(U(T )) = n then
T = T+. Let T 6= T+ and suppose that U(T ) contains v1, . . . ,vn−1 linear independent
vectors. Let vn be a vector linear independent from v1, . . . ,vn−1. Being T elementary
abelian regular subgroup, then T = T◦ for some operation ◦. For all 1 ≤ i ≤ n − 1,
vi ◦vn = vi+vn, thus we have viκvn = vi for all 1 ≤ i ≤ n−1. Moreover, vn ◦vn = 0

implies vnκvn = vn. Then for all v ∈ V we have v◦vn = (
∑

i<n αivi+αnvn)κvn+vn =∑
i<n αivi + αnvn + vn = v + vn. This implies dim(U(T )) = n, which leads to a

contradiction.

Let W be a subspace of V , then for all γ ∈ GL(V ) such that Wγ = W , it is well
defined the action of γ over V/W , i.e. the map γ̄ : [v] 7→ [vγ] in GL(V/W ).

Lemma 2.1.7. Let V = Fn
p , with p prime number. Let T = 〈τe1 , . . . , τen〉 be a

subgroup of AGL(V,+), where τei : x 7→ xκei + ei for all i, such that

(1) {κei | 1 ≤ i ≤ n} ⊆ U(V )

(2) the action of κei over V/Span{ei+1, . . . , en} is the identity map for all 1 ≤ i ≤ n.

Then T is transitive.

Proof. Note that the action of κei over V/Span{ei+1, . . . , en} is well defined, and from
the conditions (1) and (2) when we apply the map τei to a vector v the first i − 1

entries of v do not change.
Consider two vectors v = (v1, . . . , vn) and v̄ = (v̄1, . . . , v̄n). We will show that

there exists τ ∈ T such that vτ = v̄. We start considering v1 ∈ Fp. If v1 is equal
to v̄1 then we continue considering v2. Otherwise, v̄1 = v1 + c for some c ∈ Fp. So
applying τe1 for c times to v we obtain from the conditions (1) and (2),

vτ ce1 = v′ = (v̄1, v2 + c2, . . . , vn + cn),

for some ci’s in Fp.
Now we consider v′2 = v2 + c2, if it is equal to v̄2 then we move to v′3. Otherwise,

v̄2 = v′2 + c′ for some c′ ∈ Fp and applying c′ times the map τe2 to v′ we obtain

v′τ c
′

e2
= v′′ = (v̄1, v̄2, v

′
3 + c′3 . . . , v

′
n + c′n).

Iterating this process we obtain the maps that we have to compose to obtain τ .
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Corollary 2.1.8. Let T = 〈τe1 , . . . , τen〉 ⊆ AGL(V,+) satisfying the condition (1)

and (2) of Lemma 2.1.7. If T is an elementary abelian subgroup, then T is regular.

Proof. From Lemma 2.1.7 T is transitive, that implies |T | ≥ |V | = pn. Now, T
elementary and abelian implies that we can obtain from the composition of τe1 , . . . , τen
at most pn maps. So T is also regular.

Remark 2.1.9. These last two results imply that if T is an elementary abelian subgroup
as above, then {e1, . . . , en} is a basis of the associated vector space structure (V, ◦).
In general the canonical basis may not be a basis w.r.t. a new sum ◦.

Example 2.1.10. Let V = F3 and

T◦ = 〈

 0 1 1

0 1 0

1 1 0

+ (1, 0, 1),

 1 0 0

1 0 1

1 1 0

+ (0, 1, 1), 1V + (1, 1, 1)〉.

The translations τe1 , τe2 , τe3 are given by 1 0 0

1 0 1

1 1 0

+ e1,

 0 1 1

0 1 0

1 1 0

+ e2,

 0 1 1

1 0 1

0 0 1

+ e3.

Then e1 ◦ e2 = e1

 0 1 1

0 1 0

1 1 0

+ e2 = e3.

We come back to the more general situation.

Lemma 2.1.11. Let V = Fn and T ⊆ AGL(V,+) be an elementary abelian regular
subgroup. Then for each a ∈ V , κa has order 2 and it is unipotent. In particular
Ω(T ) is a unipotent subgroup of GL(V,+).

Proof. We know that τa has order 2, because T is elementary. Then τ 2a = 1V implies
aτa = 0, in particular aκa = a. So

x = xτ 2a = (xκa + a)κa + a = xκ2a + a+ a = xκ2a for all x ∈ V.

Which implies (κa − 1V )
2 = κ2a − 1V = 0.

Remark 2.1.12. The lemma above can be extended to any characteristic p, in this
case the order of κa is p.
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Lemma 2.1.13. Let V = Kn, with K any field. Let G ⊆ GL(V ) be a unipotent
subgroup and let W ⊆ V be a subspace such that for all v ∈ W and g ∈ G vg = v,
i.e. G is contained in the stabilizer of W . Then all elements of G are upper triangular
in a basis {v1, . . . ,vn−k+1, . . . ,vn}, where {vn−k+1, . . . ,vn} is any basis of W .

Proof. The vectors of W are fixed by all elements of G. So, G acts by unipotent maps
on V/W . From Theorem 1.1.7 there exists a basis [v1], . . . , [vn−k] of V/W , such that
[vi]g− [vi] lies in Span{[vi+1], . . . , [vn−k]} for all elements of G. Then all elements of
G are upper triangular in the basis v1, . . . ,vn−k,vn−k+1, . . . ,vn, since vig − vi = 0

for all n− k + 1 ≤ i ≤ n.

Corollary 2.1.14. Let V = Kn and T ⊆ AGL(V,+) be an abelian regular subgroup
such that Ω(T ) is a unipotent group. Then all elements of Ω(T ) are upper triangular
in a basis {v1, . . . ,vn−k+1, . . . ,vn}, with {vn−k+1, . . . ,vn} any basis of U(T ).

Proof. By definition, for all v ∈ U(T ) and κ ∈ Ω(T ), vκ = v. So from Lemma 2.1.13
we have our claim.

Remark 2.1.15. Let V = Fn
p then any elementary abelian regular subgroup T ⊆

AGL(V,+) is unipotent. Thus we obtain the following corollary.

Corollary 2.1.16. Let V = Fn
p and T ⊆ AGL(V,+) be an elementary abelian regular

subgroup. Then there exists a subgroup T ′ conjugated to T such that Ω(T ′) ⊆ U(V )

and U(T ′) = Span{en−k+1, . . . , en}, where k = dim(U(T )).

Proof. From Corollary 2.1.14 we have that all the elements of Ω(T ) are upper tri-
angular with respect to a basis v1, . . . ,vn, with the last k vectors which are a ba-
sis of U(T ). Let, now, consider g ∈ GL(V ) such that vig = ei for all i. Since
Ω(g−1Tg) = g−1Ω(T )g, for all κ ∈ Ω(T ) we have

eig
−1κg − ei = viκg − vig = (viκ− vi)g.

So, being viκ− vi ∈ Span{vi−1, . . . ,vn} it results (viκ− vi)g ∈ Span{ei−1, . . . , en}.
To conclude, from the fact that g−1τvg : x 7→ xg−1κvg+vg, we have also U(g−1Tg) =

U(T )g = Span{en−k+1, . . . , en}.

Now, we want to characterize the translation groups that contains T+ in their
affine groups. We report the following lemma proved in [CDS06].

Lemma 2.1.17. Let V be a vector space over any field K and T ⊆ AGL(V,+) be an
abelian regular subgroup. Then for all σx ∈ T+ and τy ∈ T

[σx, τy] = σx·y.

Where x · y is the product of the K-algebra related to T as in Theorem 2.1.2, and
[σx, τy] = σ−1

x τ−1
y σxτy.
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From Lemma 2.1.17 we obtain that T+ normalizes T◦ ⊆ AGL(V,+) if and only if
σxy ∈ T◦ for all x,y ∈ V , that is xyz = 0 for all x,y, z ∈ V . Indeed, if T+ normalizes
T◦ for all σx ∈ T+, σ−1

x T◦σx = T◦, thus

σxy = σ−1
x τ−1

y σx︸ ︷︷ ︸∈

T◦

τy ∈ T◦.

Conversely if σxy ∈ T◦ then

σxyτ
−1
y = σ−1

x τ−1
y σx ∈ T◦.

In the case of the field F, from Remark 2.1.3 we obtain the following result.

Theorem 2.1.18. If dim(V ) ≤ 6, then T+ ⊆ AGL(V, ◦) if and only if T◦ ⊆ AGL(V,+)

Proof. By contradiction we assume that there exists T◦ ⊆ AGL(V,+) such that T+ *
AGL(V, ◦).

From Lemma 2.1.17 we have that there exist x,y, z ∈ V such that xyz 6= 0.
Consider the vectors x, y, z, xy, xz, yz and xyz, they are all non-zero. Suppose

now that there exist λx, λy, λz, λxy, λxz, λyz, λxyz ∈ F such that

λxx+ λyy + λzz+ λxyxy + λxzxz+ λyzyz+ λxyzxyz = 0. (2.1)

Multiplying by yz the Equation 2.1, and recalling that a2 = 0 for all a ∈ V , we have
λxxyz = 0, that implies λx = 0. Analogously multiplying by xz, xy, x, y and z we
obtain λy = λz = λxy = λxz = λyz = 0. So, it results λxyzxyz = 0, that implies
λxyz = 0.

Then x, y, z, xy, xz, yz and xyz are linear independents, and dim(V ) ≥ 7.
Conversely we can invert the sum + and ◦ in Theorem 2.1.2 so we obtain the same

result only changing + with ◦.

Theorem 2.1.19. If dim(V ) ≥ 7, then there exists T◦ ⊆ AGL(V,+) such that T+ *
AGL(V, ◦).

Proof. Let n be the dimension of V , then V = V1 ⊕ V2 where

V1 = Span{e1, e2, e3, e4, e5, e6, e7}

and
V2 = Span{e8, . . . , en}.

If n = 7 then we consider only V1.
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Over V1 we consider the algebra structure induced by the exterior algebra over a
vector space of dimension 3, that is

e1 ∧ e2 = e4, e1 ∧ e3 = e5, e2 ∧ e3 = e6, e1 ∧ e2 ∧ e3 = e7,

and over V2 the algebra structure is given by x ∗ y = 0 for each x,y ∈ V2.
So over V we individuate the structure (v1,v2) · (w1,w2) = (v1 ∧ w1,v2 ∗ w2)

where v1,w1 ∈ V1 and v2,w2 ∈ V2.
(V,+, ·) is a commutative associative F-algebra such that the resulting ring is

radical. This algebra corresponds to an elementary abelian regular subgroup T◦ of
AGL(V,+) for Theorem 2.1.2 and because x ◦ x = 0 for all x ∈ V . From Lemma
2.1.17 we have our claim, in fact e1 · e2 · e3 6= 0.

Remark 2.1.20. Let V = Kn, with K any field. Let T ⊆ AGL(V,+) be an abelian
regular subgroup such that T+ is in the normalizer of T . Then any conjugate to T
in AGL(V,+) is conjugate under the action of GL(V,+). In fact, let τ ∈ AGL(V,+)

with τ = κσ for some κ ∈ GL(V,+) and σ ∈ T+ and let T ′ = τTτ−1. Because T+
normalizes T , we have

κσTσ−1κ−1 = κTκ−1.

The following theorem is reported for any finite field Fp.

Theorem 2.1.21. Let V = Fn+k
p , with n ≥ 2, k ≥ 1, and T◦ ⊆ AGL(V,+) be such

that U(T◦) = Span{en+1, . . . , en+k}. Then, T+ ⊆ AGL(V, ◦) if and only if for all
κy ∈ Ω(T◦) there exists a matrix By ∈ Fn×k

p such that

κy =

[
In×n By

0 Ik×k

]
.

Proof. Let T2 conjugated to T◦ be such that Ω(T2) ⊆ U(V ), such a group exists for
Corollary 2.1.16. Let y ∈ V and

κy =

[
Uy By

0 Ik×k

]
,

for some By ∈ Fn×k
p and Uy ∈ Fn×n

p . Lemma 2.1.17 implies T+ ⊆ AGL(V,2) if and
only if x·y ∈ U(T2) for all x,y ∈ V . Recall that x·y = xκy−x for all x,y ∈ V . Thus
x ·y ∈ U(T2) if and only if xκy−x ∈ U(T2). Consider, now, W = Span{e1, . . . , en},
then for all x ∈ W we have that xκy − x ∈ U(T2) if and only if Uy = In×n.

Now, we need to proof only that any conjugate T◦ of T2 is such that all the
matrices in the group Ω(T◦) have this form, whenever the space U(T◦) is spanned by
the last k elements of the canonical basis.

30



2.1. On affine groups of hidden sums

Let g ∈ GL(V,+) be such that U(g−1T2g) = U(T◦) == Span{en+1, . . . , en+k}.
This implies U(T2)g = U(T2) and also U(T2)g−1 = U(T2), so

g =

[
G1 G2

0 G3

]
, g−1 =

[
G−1

1 G′
2

0 G−1
3

]
,

for some G1 ∈ Fn×n
p , G2, G

′
2 ∈ Fn×k

p and G3 ∈ Fk×k
p . Then for all κ ∈ Ω(T◦) we have

g−1κg =

[
G−1

1 G′
2

0 G−1
3

][
In×n Bn×k

0 Ik×k

][
G1 G2

0 G3

]
=

[
In×n B′

n×k

0 Ik×k

]
.

Remark 2.1.22. Let T ⊆ AGL(V,+) be an abelian regular group and τei , τej ∈ T be
the affinities related to the canonical vectors ei, ej. Then from

ei ◦ ej = eiκej + ej = ejκei + ei = ej ◦ ei

we obtain that the i-th row of κej and the j-th row of κei differ only in the position
i and j.

Lemma 2.1.23. Let T ⊆ AGL(V,+) be an abelian regular subgroup such that Ω(T ) ⊂
U(V ). Then the action of κei over V/Span{ei+1, . . . , en} is the identity map, for all
1 ≤ i ≤ n.

Proof. It follows directly from the remark above and from Ω(T ) ⊂ U(V ).

In characteristic 2 we obtain also that if 2 ≤ n ≤ 5 then the matrices are always
in the form of Theorem 2.1.21.

Proposition 2.1.24. Let V = Fn+k, with 2 ≤ n ≤ 5 and k ≥ 1. If T ⊆ AGL(V,+)

is an elementary abelian regular subgroup with U(T ) = Span{en+1, . . . , en+k}, then
for all κv ∈ Ω(T ) there exists a matrix Bv ∈ Fn×k such that

κv =

[
In×n Bv

0 Ik×k

]
.

Proof. We report only the proof for n = 5, the others are analogous. Let T be such
that Ω(T ) ⊆ U(V ) and U(T ) = Span{en+1, . . . , en+k}, such a group there exists
for Corollary 2.1.16. Also, from Lemma 2.1.7 and Lemma 2.1.23, we have that T is
generated by the maps related to the vectors of the canonical basis. For those vectors,

31



Chapter 2. Hidden sums

from Lemma 2.1.23 and Remark 2.1.22 we have that the maps κei are of the form

κe1 =



1 0 0 0 0 0

1 a
(1,2)
1 a

(1,2)
2 a

(1,2)
3 b

(1)
2

1 a
(1,3)
1 a

(1,3)
2 b

(1)
3

1 a
(1,4)
1 b

(1)
4

1 b
(1)
5

Ik×k


κe2 =



1 0 a
(1,2)
1 a

(1,2)
2 a

(1,2)
3 b

(1)
2

1 0 0 0 0

1 a
(2,3)
1 a

(2,3)
2 b

(2)
3

1 a
(2,4)
1 b

(2)
4

1 b
(2)
5

Ik×k



κe3 =



1 0 0 a
(1,3)
1 a

(1,3)
2 b

(1)
3

1 0 a
(2,3)
1 a

(2,3)
2 b

(2)
3

1 0 0 0

1 a
(3,4)
1 b

(3)
4

1 b
(3)
5

Ik×k


κe4 =



1 0 0 0 a
(1,4)
1 b

(1)
4

1 0 0 a
(2,4)
1 b

(2)
4

1 0 a
(3,4)
1 b

(3)
4

1 0 0

1 b
(4)
5

Ik×k



κe5 =



1 0 0 0 0 b
(1)
5

1 0 0 0 b
(2)
5

1 0 0 b
(3)
5

1 0 b
(4)
5

1 0

Ik×k


κei = 1V for i > 5,

with a
(j,h)
i ∈ F and b

(i)
j ∈ Fk for all i, j, h. Now, we will show that if there exists

a
(j,h)
i 6= 0 then it will be U(T ) 6= Span{en+1, . . . , en+k}. We have these two conditions

I κ2ei = 1V ;

II κeiκej = κejκei ;

which imply

a
(i,4)
1 b

(i)
5 = 0 (2.2a)

a
(i,4)
1 b

(4)
5 = 0 for all i < 4 (2.2b)

and

a
(i,4)
1 b

(j)
5 = a

(j,4)
1 b

(i)
5 for all i, j < 4. (2.3)

Now, supposing that a(i,4)1 = 1 for some 1 ≤ i ≤ 3, from Equation (2.2) and (2.3)
we have b

(j)
5 = 0 for all j and then e5 ∈ U(T ). Thus a(i,4)1 = 0 for all i.

32



2.1. On affine groups of hidden sums

Now from the conditions I and II we obtain

a
(i,3)
1 b

(i)
4 + a

(i,3)
2 b

(i)
5 = 0 (2.4a)

a
(i,3)
1 b

(3)
4 + a

(i,3)
2 b

(3)
5 = 0 (2.4b)

a
(i,3)
1 b

(4)
5 = 0 (2.4c)

a
(i,3)
2 b

(4)
5 = 0 for all i < 3 (2.4d)

and
a
(1,3)
1 b

(2)
4 + a

(1,3)
2 b

(2)
5 = a

(2,3)
1 b

(1)
4 + a

(2,3)
2 b

(1)
5 , (2.5)

moreover

a
(1,2)
1 a

(1,3)
1 = 0 (2.6a)

a
(1,2)
1 a

(1,3)
2 = 0 (2.6b)

a
(1,2)
1 a

(2,3)
1 = 0 (2.6c)

a
(1,2)
1 a

(2,3)
2 = 0. (2.6d)

a
(1,2)
1 b

(1)
3 + a

(1,2)
2 b

(1)
4 + a

(1,2)
3 b

(1)
5 = 0 (2.7a)

a
(1,2)
1 b

(2)
3 + a

(1,2)
2 b

(2)
4 + a

(1,2)
3 b

(2)
5 = 0 (2.7b)

Suppose (a
(1,3)
1 , a

(1,3)
2 ) = (1, 0), we obtain from Equation (2.4) that b

(1)
4 = b

(3)
4 =

b
(4)
5 = 0, thus b

(2)
4 has to be equal to 1 otherwise e4 ∈ U(T ). So from (2.5) we

have a(2,3)2 = b
(1)
5 = 1. Now, from (2.6) we obtain a

(1,2)
1 = 0 and (2.7a) becomes

a
(1,2)
3 b

(1)
5 = 0, which implies a(1,2)3 = 0. So (2.7b) becomes a(1,2)2 b

(2)
4 = 0, and a(1,2)2 = 0.

Consider, then, the matrix κe2κe3 , we have that (κe2κe3)
2 = 1V implies

a
(1,3)
1 b

(2)
4 + a

(1,3)
2 b

(2)
5 = b

(2)
4 = 0,

and we have a contradiction. So (a
(1,3)
1 , a

(1,3)
2 ) 6= (1, 0). The cases (a

(1,3)
1 , a

(1,3)
2 ) =

(0, 1), (a
(2,3)
1 , a

(2,3)
2 ) = (1, 0) and (a

(2,3)
1 , a

(2,3)
2 ) = (0, 1) lead to a contradiction in a

similar way. Then the last possible cases are: (a
(1,3)
1 , a

(1,3)
2 ) and (a

(1,3)
1 , a

(1,3)
2 ) are

together (1, 1) or one is (0, 0) and the other (1, 1). Note that in all the two cases we
obtain b

(2)
4 + b

(2)
5 = b

(1)
4 + b

(1)
5 = b

(3)
4 + b

(3)
5 = b

(4)
5 = 0 from (2.4) and (2.5), which

means e4 + e5 ∈ U(T ). Thus, also, (a(2,3)1 , a
(2,3)
2 ) = (a

(2,3)
1 , a

(2,3)
2 ) = (0, 0).

Consider now (a
(1,2)
1 , a

(1,2)
2 , a

(1,2)
3 ), if it is different from zero, then (2.7) implies that

a
(1,2)
1 e3 + a

(1,2)
2 e4 + a

(1,2)
3 e5 ∈ U(T ). So, also, these values have to be equal to zero.

To conclude, as in Theorem 2.1.21 we have that any conjugate to such a group,
maintaining unvaried the space U(T ), has the maps κy’s in this form.
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Example 2.1.25. Proposition 2.1.24 does not hold, in general, for n ≥ 6. Let (V,+, ·)
be the exterior algebra over a vector space of dimension three, spanned by e1, e2, e3.
That is, V has basis

e1, e2, e3, e4 = e1 ∧ e2, e5 = e1 ∧ e3, e6 = e2 ∧ e3, e7 = e1 ∧ e2 ∧ e3.

The associated translation group T◦ is such that U(T◦) = Span{e7}, but we have

κe1 =



1 0 0 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0

1 0 0 0

1 0 0

1 1

1


.

Let n ≥ 2 and k ≥ 1 and define for all 1 ≤ i ≤ n the matrix

κi =


b
(i)
1,1 . . . b

(i)
1,k

In×n
...

...
b
(i)
n,1 . . . b

(i)
n,k

Ik×k

 . (2.8)

Lemma 2.1.26. Let N = n + k and V = FN , with n ≥ 2 and k ≥ 1. The ele-
mentary abelian regular subgroups T◦ ⊆ AGL(V,+) such that dim(U(T )) = k and
T+ ⊆ AGL(V, ◦) are [

N

k

]
2

· |V(Ik)|

where Ik is the ideal generated by

S1 ∪ S2 ∪ S3

with

S1 =

{
n∏

i=1

k∏
j=1

(
1 +

∑
s∈S

b
(s)
i,j

)
| S ⊆ [n], S 6= ∅

}
,

S2 = {b(s)i,j − b
(i)
s,j|i, s ∈ [n], j ∈ [k]},

S3 = {b(i)i,j |i ∈ [n], j ∈ [k]},

V(Ik) is the variety over F of Ik and
[
N
k

]
q
=
∏k−1

i=0
qN−i−1
qk−i−1

is the Gaussian Binomial.

Proof. Let T◦ ⊆ AGL(V,+) such that U(T◦) is generated by the last k elements of
the canonical basis and T+ ⊆ AGL(V, ◦). From Theorem 2.1.21 we have that the
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2.1. On affine groups of hidden sums

matrices κi’s for 1 ≤ i ≤ n are as in (2.8). Let S be a subset of [n] and denoting by
κS the product of κi’s with i ∈ S then

κS =


∑

i∈S b
(i)
1,1 . . .

∑
i∈S b

(i)
1,k

In×n
...

...∑
i∈S b

(i)
n,1 . . .

∑
i∈S b

(i)
n,k

Ik×k

 .

For all S ⊆ [n] we have that κS 6= 1V otherwise the vector
∑
i∈S

ei lies in U(T◦). Thus

there exist h, j such that
∑
i∈S

b
(i)
h,j = 1 and it happens if and only if

n∏
i=1

k∏
j=1

(
1 +

∑
s∈S

b
(s)
i,j

)
= 0.

The others conditions come from the Remark 2.1.22 and from the fact that κi fixes
ei. Imposing only these two conditions and from the fact that the matrices are in
this form, the group is always elementary and abelian, then from Corollary 2.1.16 it
is also regular. Thus we do not need to add more equations. So, there are #V(Ik)
subgroups with U(T◦) = Span{en+1, . . . , en+k}.

Consider, now, a k dimensional vector subspace W . Let g ∈ GL(V,+) be such
that Wg = Span{en+1, . . . , en+k}. Let T1, . . . , T#V(Ik) denote the distinct groups with
U(Ti) = Span{en+1, . . . , en+k}. Then the groups T ′

1, . . . , T
′
#V(Ik), with T ′

i = gTig
−1

are all distinct and U(T ′
i ) = W . Now, let T be such that U(T ) = W , U(g−1Tg) =

Span{en+1, . . . , en+k}, which implies g−1Tg = Ti for some i, and so T = T ′
i . Being the

number of k dimensional vector subspace of V given by
[
N
k

]
2

we have our claim.

Proposition 2.1.27. Let Ik defined as in Lemma 2.1.26, then

[
N

k

]
2

· |V(Ik)| ≤
[
N

k

]
2

·

2k n(n−1)
2 − 1−

n−2∑
r=1

(
n

r

) (n−r)(n−r−1)
2∏

i=1

(
2k − 1

) .
Proof. Let consider the vector

(b
(1)
1 , . . . ,b(1)

n ,b
(2)
1 , . . . ,b(2)

n , . . . ,b
(n)
1 , . . . ,b(n)

n ),

where b
(j)
i = (b

(j)
i,1 , · · ·

(j)
i,k) ∈ Fk for all i, j as in (2.8). From the conditions in S3 we

have b
(i)
i = 0 for all i, and from S2, b(i)

j = b
(j)
i for all i > j. Thus we can consider

only the vector formed by

B = (b
(1)
2 , . . . ,b(1)

n ,b
(2)
3 , . . . ,b(2)

n , . . . ,b(n−1)
n ),
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so we have 2k
n(n−1)

2 solution of the equations in S2 ∪ S3. Now the entries of B have
to satisfy the conditions given by S1, so we can exclude some cases where, for any
subset S of [n] the matrices κi’s, as in (2.8), with i ∈ S are equal to the identity
and the others no, in particle we consider vectors B such that the only zero b(i)’s
are those necessary to obtain the identity maps. Note that if any κi is equal to the
identity and the others not, then n − 1 entries of B are zero and the others are all
non-zero. Similarly, if any pairs κi, κj are equal to the identity and the others not
then n−1+n−2 entries of B are zero and the others are all non-zero. In fact suppose
i < j then the zero entries of B must be b

(1)
i , . . . ,b

(i−1)
i ,b

(i)
i+1, . . . ,b

(i)
n to have κi = 1V

and b
(1)
j , . . . ,b

(j−1)
j ,b

(j)
j+1, . . . ,b

(j)
n to have κj = 1V , considering the fact that b

(i)
j is

already zero from the condition on κi. Iterating, if we consider r maps that have to
be the identity then

∑r
i=1 n− i entries of B are zero and the others are all non-zero.

To conclude, if n − 1 maps of the κi’s are the identity, by the conditions of S2 ∪ S3
also the last one is the identity, and this append when B is zero.

When U(T ) has co-dimension 2 and 3 we have the following results.

Corollary 2.1.28. Let V = Fn. There exist
[

n
n−3

]
2
·(23(n−3)−7(2n−3−1)−1) distinct

elementary abelian regular subgroups of AGL(V,+) such that dim(U(T )) = n− 3.

Proof. From Lemma 2.1.26, we need to compute the number of groups such that
U(T ) = Span{e3, . . . , en}. To do this we count the case when the κS = 1V for
S ⊆ {1, 2, 3}. From Lemma 2.1.24 and Remark 2.1.22 we have

κ1 =



1 0 0 0 . . . 0

1 0 b
(1)
2,1 . . . b

(1)
2,n−3

1 b
(1)
3,1 . . . b

(1)
3,n−3

In−3×n−3


κ2 =



1 0 0 b
(1)
2,1 . . . b

(1)
2,n−3

1 0 0 . . . 0

1 b
(2)
3,1 . . . b

(2)
3,n−3

In−3×n−3



κ3 =



1 0 0 b
(1)
3,1 . . . b

(1)
3,n−3

1 0 b
(2)
3,1 . . . b

(2)
3,n−3

1 0 . . . 0

In−3×n−3


36



2.1. On affine groups of hidden sums

κ{1,2} =



1 0 0 b
(1)
2,1 . . . b

(1)
2,n−3

1 0 b
(1)
2,1 . . . b

(1)
2,n−3

1 b
(1)
3,1 + b

(2)
3,1 . . . b

(1)
3,n−3 + b

(2)
3,n−3

In−3×n−3



κ{1,3} =



1 0 0 b
(1)
3,1 . . . b

(1)
3,n−3

1 0 b
(1)
2,1 + b

(2)
3,1 . . . b

(1)
2,n−3 + b

(2)
3,n−3

1 b
(1)
3,1 . . . b

(1)
3,n−3

In−3×n−3



κ{2,3} =



1 0 0 b
(1)
2,1 + b

(1)
3,1 . . . b

(1)
2,n−3 + b

(1)
3,n−3

1 0 b
(2)
3,1 . . . b

(2)
3,n−3

1 b
(2)
3,1 . . . b

(2)
3,n−3

In−3×n−3



κ{1,2,3} =



1 0 0 b
(1)
2,1 + b

(1)
3,1 . . . b

(1)
2,n−3 + b

(1)
3,n−3

1 0 b
(1)
2,1 + b

(2)
3,1 . . . b

(1)
2,n−3 + b

(2)
3,n−3

1 b
(1)
3,1 + b

(2)
3,1 . . . b

(1)
3,n−3 + b

(2)
3,n−3

In−3×n−3


.

Denoting by b
(1)
2 = (b

(1)
2,1, . . . , b

(1)
2,n−3),b

(1)
3 = (b

(1)
3,1, . . . , b

(1)
3,n−3),b

(2)
3 = (b

(2)
3,1, . . . , b

(2)
3,n−3),

we have the following cases

1 κ1 = 1V ⇔ b
(1)
2 = 0 and b

(1)
3 = 0;

2 κ2 = 1V ⇔ b
(1)
2 = 0 and b

(2)
3 = 0;

3 κ3 = 1V ⇔ b
(1)
3 = 0 and b

(2)
3 = 0;

4 κ{1,2} = 1V ⇔ b
(1)
2 = 0 and b

(1)
3 = b

(2)
3 ;

5 κ{1,3} = 1V ⇔ b
(1)
3 = 0 and b

(1)
2 = b

(2)
3 ;

6 κ{2,3} = 1V ⇔ b
(1)
2 = b

(1)
3 and b

(2)
3 = 0;

7 κ{1,2,3} = 1V ⇔ b
(1)
2 = b

(1)
3 , b(1)

2 = b
(2)
3 and b

(1)
3 = b

(2)
3 .
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Each case admits 2n−3 values for (b
(1)
2 ,b

(1)
3 ,b

(2)
3 ) and the only common solution is

(b
(1)
2 ,b

(1)
3 ,b

(2)
3 ) = (0, 0, 0). Thus we have 23(n−3) − 7(2n−3 − 1) − 1 subgroups with

U(T ) = Span{e3, . . . , en}.

Corollary 2.1.29. Let V = Fn. There exist
[

n
n−2

]
2
· (2n−2 − 1) distinct elementary

abelian regular subgroups of AGL(V,+) such that dim(U(T )) = n− 2.

Proof. As above for T such that U(T ) = Span{e3, . . . , en} we have

κ1 =


1 0 0 . . . 0

1 b
(1)
2,1 . . . b

(1)
2,n−3

In−2×n−2

 κ2 =


1 0 b

(1)
2,1 . . . b

(1)
2,n−3

1 0 . . . 0

In−2×n−2



κ{1,2} =


1 0 b

(1)
2,1 . . . b

(1)
2,n−3

1 b
(1)
2,1 . . . b

(1)
2,n−3

In−2×n−2


and the cases

1 κ1 = 1V ⇔ b
(1)
2 = 0;

2 κ2 = 1V ⇔ b
(1)
2 = 0;

3 κ{1,2} = 1V ⇔ b
(1)
2 = 0.

Then there exist 2n−2−1 elementary abelian regular subgroups with U(T ) = Span{e3, . . . , en}
and

[
n

n−2

]
2
· (2n−2 − 1) subgroups of AGL(V,+) such that dimU(T ) = n− 2.

Proposition 2.1.30. The groups of Corollary 2.1.29 are all conjugated.

Proof. We need to proove that the groups such that U(T ) = Span{e3, . . . , en} are all
conjugated.

Each of those groups correspond to a vector b
(1)
2 ∈ Fn−2 \ {0} as above. Con-

sider two groups, T = 〈τe1 , . . . , τen〉 and T ′ = 〈τ ′e1 , . . . , τ
′
en〉 corresponding to b =

(b
(1)
2,1, . . . , b

(1)
2,n−3) and b′ = (b

′(1)
2,1 , . . . , b

′(1)
2,n−3), with same Hamming weight w(b) = w(b′).

Then, there exists a permutation matrix P ∈ Fn−2×n−2 such that bP = b′. Let
P ′ ∈ Fn×n be the permutation matrix given by

P ′ =


1 0 0 . . . 0

0 1 0 . . . 0

0 0
...

... P

0 0

 .
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2.1. On affine groups of hidden sums

Note that when we multiply a matrix M by P ′ on the right, i.e. MP ′, we are
permuting the last n − 2 columns of M . On other hands when we multiply M by
P ′−1 on the left, we are permuting the last n− 2 rows of M . So, we have P ′−1τeiP

′ =

τ ′eiP ′ = τ ′eσ(i)
, where σ is the permutation on the indices related to P ′, thus P ′−1TP ′ =

T ′. That implies that two groups corresponding to vectors with same weight are
conjugated.

Consider now two vectors in Fn−2

(1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0) and (1, . . . , 1︸ ︷︷ ︸
i+1

, 0, . . . , 0)

and the corresponding groups T = 〈τe1 , . . . , τen〉, T ′ = 〈τ ′e1 , . . . , τ
′
en〉.

Let P ∈ Fn×n be the matrix with rows Pj = ej if j 6= i+2 and Pi+2 = ei+2+ ei+3,

P =



1 0 0 . . . 0

0 1 0 . . . 0
...

... 0

0 . . . 1 1 . . . 0

0 . . . 0 1 . . . 0

0 0 . . . 1


.

Note that when we multiply a matrix M by P on the right, we are changing the
i + 3-th column of M summing to it the i + 2-th row. On other hands when we
multiply a matrix M by P−1 = P on the left, we are changing the i + 2-th row of
M summing to it the i + 3-th row. So, we have PτejP = τ ′ej for j 6= i + 2 and
Pτ(ei+2+ei+3)P = τ ′ei+2

, implying PTP = T ′. Then, all the groups are conjugated.

2.1.1 Classes in small dimension

Here we report the classification of elementary abelian regular subgroups in
AGL(V,+). We take into account dim(V ) = 3, 4, 5, 6, the case 1 and 2 are obvious.
We report these cases in Table 2.1.1 with the number of classes (C’s), their cardinality
(|C|) and the dimension of the space U(T ) (dim(UC)). In Appendix A there are also
reported the representatives of each class.

Remark 2.1.31. The cases dim(V ) = 3, 4 are consequence of Corollary 2.1.28 and
Corollary 2.1.29. For the other two cases we used MAGMA to obtain the classification.
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n C’s |C| dim(UC)

3 2
|C1| = 1 3

|C2| = 7 1

4 2
|C1| = 1 4

|C2| = 105, 2

5 4

|C1| = 1 5

|C2| = 1085 3

|C3| = 6510 2

|C4| = 868 1

6 8

|C1| = 1 6

|C2| = 9765 4

|C3| = 234360 3

|C4| = 410130 3

|C5| = 8202260 2

|C6| = 218736 2

|C7| = 546844 2

|C8| = 1093680 2

Table 2.1: Classes table

2.2 Differential properties of ◦-affine maps

In this section we establish a lower bound on the δ-differential uniformity of the
maps lie in some AGL(V, ◦). We will consider the cases of affine group AGL(V, ◦) such
that T◦ ⊆ AGL(V,+) and/or T+ ⊆ AGL(V, ◦). In all the two cases in the following
proofs we can consider w.l.o.g. maps γ such that 0γ = 0. Because in the first case we
can compose γ with τ0γ that maps 0γ in 0 and in the second case we compose with
σ0γ, in all the cases we compose with an affine map.

Lemma 2.2.1. Let T◦ ⊆ AGL(V,+) and dim(U(T◦)) = k and γ ∈ AGL(V, ◦), then
δ(γ) ≥ 2k.

Proof. Let a ∈ U(T◦), then for all x ∈ V

(x+ a)γ + xγ = (x ◦ a)γ + xγ

= (xγ ◦ aγ) + xγ.

So, for all xγ ∈ U(T◦) we have

(xγ ◦ aγ) + xγ = (xγ + aγ) + xγ = aγ,

that means U(T◦)γ−1 ⊆ {x | (x+a)γ+xγ = aγ}, which implies |{x | (x+a)γ+xγ =

aγ}| ≥ 2k.

40



2.2. Differential properties of ◦-affine maps

When T+ ⊆ AGL(V, ◦), we can define U◦(T+) = {a | σa ∈ T+ ∩ T◦} and it is a
vector subspace of (V, ◦), and of (V,+). Then we obtain, analogously, the following
lemma.

Lemma 2.2.2. Let T+ ⊆ AGL(V, ◦) and dim(U◦(T+)) = k, as subspace of (V, ◦). If
γ ∈ AGL(V, ◦), then δ(γ) ≥ 2k.

Remark 2.2.3. By definition a square matrix is unipotent if and only if its charac-
teristic polynomial P (t) is a power of t− 1, i.e. it has a unique eigenvalue equals to
1.

Lemma 2.2.4. Let T◦ ⊆ AGL(V,+). For each a ∈ V , κa fixes at least 2b
n−1
2

c+1

elements of V .

Proof. κa has a unique eigenvalue equals to 1 ∈ F2, then from Theorem 1.1.10 there
exists a matrix over F2 in the Jordan form similar to κa. Thus, κa = AJA−1, for
some A, J ∈ GL(V,+) with

J =


1 α1 . . . 0

0 1 α2 . . . 0
...

...
0 . . . 1 αn−1

0 . . . 1

 and J2 =



1 0 α1α2 . . . 0

0 1 0 α2α3 . . . 0
...

...
0 . . . 1 0 αn−2αn−1

0 . . . 1 0

0 . . . 1


.

where αi ∈ F2 for 1 ≤ i ≤ n− 1.
From the fact that J is conjugated to κa we have J2 = 1V , and that implies

αiαi+1 = 0 for all 1 ≤ i ≤ n− 2.
Note that if αi = 1 then αi−1 and αi+1 have to be equal to 0. Thus we have

that when n is even at most n
2
αi’s can be equal to 1 and at least n

2
elements of the

canonical basis are fixed by J . When n is odd we have at most n−1
2

αi’s equal to 1

then at least n−1
2

+1 elements of the canonical basis are fixed by J . Our claim follows
from the fact that κa is conjugated to J .

In terms of algebras we have the following corollary.

Corollary 2.2.5. Let T◦ ⊆ AGL(V,+), and let (V,+, ·) be the associated algebra of
Theorem 2.1.2. Then for each a ∈ V , a · x is equal to 0 for at least 2b

n−1
2

c+1 x ∈ V .

Remark 2.2.6. The bound on the number of elements fixed by κa given in Lemma
2.2.4 is tight. In fact let (V,+, ·) be the exterior algebra over a vector space of
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dimension three, spanned by e1, e2, e3. We have that e1 · x = 0 for all x ∈ E =

〈e1, e1 ∧ e2, e1 ∧ e3, e1 ∧ e2 ∧ e3〉. So, for all x ∈ E

x ◦ e1 = x+ e1 + x · e1 = x+ e1.

Vice versa if x ◦ e1 = x+ e1 then x ∈ E. The cardinality of E is 24.
In fact, considering the translation by e1 with respect the new sum ◦. κe1 is given

by the matrix

κe1 =



1 0 0 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0

1 0 0 0

1 0 0

1 1

1


,

and its Jordan form is

J =



1 0 0 0 0 0 0

1 1 0 0 0 0

1 0 0 0 0

1 1 0 0

1 0 0

1 1

1


Lemma 2.2.7. Let T◦ ⊆ AGL(V,+) and γ ∈ AGL(V, ◦), then δ(γ) ≥ 2b

n−1
2

c+1.

Proof. From Lemma 2.1.5 there exists a ∈ U(T◦) different from zero. So

(x+ a)γ + xγ = (x ◦ a)γ + xγ = (xγ ◦ aγ) + xγ =

(xγ + aγ + aγ · xγ) + xγ

Now, from Corollary 2.2.5 we have that aγ · xγ = 0 for at least 2b
n−1
2

c+1 elements
of V .

This implies |{x | (x+ a)γ + xγ = aγ}| ≥ 2b
n−1
2

c+1.

Lemma 2.2.8. Let T+ ⊆ AGL(V, ◦) and γ ∈ AGL(V, ◦), then δ(γ) ≥ 2b
n−1
2

c+1.

Proof. Note that Theorem 2.1.2, Lemma 2.1.5 and Corollary 2.2.5 hold also inverting
the operation ◦ and +. Then, there exists a ∈ V different from zero such that
x+a = x◦a for all x ∈ V . Considering the algebra (V, ◦, ·) such that x+y = x◦y◦x·y
for all x,y ∈ V , we have

(x+ a)γ + xγ = (x ◦ a)γ + xγ = (xγ ◦ aγ) + xγ =
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(xγ ◦ aγ) ◦ xγ ◦ xγ · (xγ ◦ aγ) =

xγ ◦ aγ ◦ xγ ◦ xγ · xγ ◦ xγ · aγ.

From Remark 2.1.3, we have y2 = 0 for all y ∈ V , and from Corollary 2.2.5
xγ · aγ = 0 for at least 2b

n−1
2

c+1 elements. Thus |{x | (x + a)γ + xγ = aγ}| ≥
2b

n−1
2

c+1.

So we obtain:

Theorem 2.2.9. Let T◦ ⊆ AGL(V,+) (T+ ⊆ AGL(V, ◦), respectively) and γ ∈
AGL(V, ◦), then δ(γ) ≥ 2m, where m = max{bn−1

2
c+ 1, dim(U(T◦))}

(m = max{bn−1
2
c+ 1, dim(U◦(T+))}, respectively).

For the case when T◦ ⊆ AGL(V,+) and T+ ⊆ AGL(V, ◦) we can obtain also the
following.

Lemma 2.2.10. Let T◦ ⊆ AGL(V,+) be such that T+ ⊆ AGL(V, ◦). If γ ∈ AGL(V, ◦),
then δ(γ) ≥ 2n−k, where k = dim(U(T◦)).

Proof. W.l.o.g. U(T◦) = Span{en−k+1, . . . , en}. From Theorem 2.1.21 for all v ∈ V

κv =

[
In−k×n−k Bv

0 Ik×k

]
,

Bv ∈ Fn−k×k. Let B⊥
v = {x ∈ V | xn−k+1 = · · · = xn = 0, (x1, . . . , xn−k)Bv = 0},

then dim(B⊥
v ) ≥ n−2k. Let W = B⊥

v ⊕U(T◦), thus for all w ∈ W we have v ·w = 0,
where the product is that of the algebra associated to T◦. Let γ ∈ AGL(V, ◦) and
a ∈ U(T◦), then

(x+ a)γ + xγ = (xγ ◦ aγ) + xγ

= aγ + xγaγ.

For all xγ ∈ B⊥
aγ ⊕ U(T◦) we have (x + a)γ + xγ = aγ, thus |{x | (x + a)γ + xγ =

aγ}| ≥ 2n−k

Theorem 2.2.11. Let T◦ ⊆ AGL(V,+) be such that T+ ⊆ AGL(V, ◦). If γ ∈
AGL(V, ◦), then δ(γ) ≥ 2m, where m = max{dim(U(T◦)), n− dim(U(T◦))}.

2.2.1 Differential Uniformity for dim(V ) = 3, 4, 5

For the cases with 3 ≤ dim(V ) ≤ 5 we found the minimum differential uniformity
of the function in an affine group AGL(V, ◦), containing the usual translation group,
using the software MAGMA. For case dim(V ) = 2 we already know that Sym(V ) =

AGL(V,+), thus it is not interesting. Up to compose by an affine map we can
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study only the maps lie in GL(V, ◦). Moreover the classes are conjugated w.r.t. an
element of AGL(V,+), then we can take into account only a representative for each
class of elementary abelian regular subgroups. We can restrict our study to the set
H = {γ ∈ GL(V, ◦) | v1γ 6= v2 for all v1,v2 ∈ U(T◦) \ {0}}, because if v1γ = v2, for
some v1,v2 ∈ U(T◦), we have |{x | (x + v1)γ + xγ = v2}| = 2n. By an exhaustive
research we obtain the following theorem.

Theorem 2.2.12. Let 3 ≤ dim(V ) = n ≤ 5, and let T+ ⊆ AGL(V, ◦). Then for each
γ ∈ AGL(V, ◦), δ(γ) ≥ 2n−1.

For the case n = 6 it is not possible to do a direct check of the differential
uniformity of the affine groups, but for n = 7 we will prove that there exists γ ∈
AGL(V, ◦) with δ(γ) = 27−2 for some operation ◦ such that T+ ⊆ AGL(V, ◦).

Lemma 2.2.13. Let T◦1 and T◦2 be elementary abelian regular groups such that T◦1 ⊆
AGL(V,+), T+ ⊆ AGL(V, ◦2) and the associated algebra are isomorphic. Define
δ◦1(γ) = maxa,b |{x | (x ◦1 a)γ ◦1 xγ = b}|, then there exists γ′ ∈ AGL(V,+) with
δ◦1(γ

′) = δ if and only if there exists γ ∈ AGL(V, ◦2) with δ(γ) = δ

Proof. From Theorem 2.1.2 there exist two algebra (V,+, ·) and (V, ◦2, ∗) related to
T◦1 and T+ respectively. Consider φ : (V, ◦2, ∗) → (V,+, ·) be an isomorphism of
algebra and let γ ∈ AGL(V, ◦2), then γ′ = φ−1γφ ∈ AGL(V,+).

Let a ∈ V , thus, recalling that x ◦1 y = x+ y + x · y and x+ y = x ◦2 y ◦2 x ∗ y
we have (x ◦1 y)φ−1 = xφ−1 + yφ−1 and

(x ◦1 a)γ′ ◦1 xγ′ = (xφ−1 + aφ−1)γφ ◦1 xφ−1γφ

= ((xφ−1 + aφ−1)γ + xφ−1γ)φ.

Then |{x | (x ◦1 a)γ′ ◦1 xγ′ = b}| = |{x | (x+ aφ−1)γ + xγ = bφ}|.

Corollary 2.2.14. Let n = 7. There exists T◦ such that T+ ⊆ AGL(V, ◦) and
γ ∈ AGL(V, ◦) with δ(γ) = 2n−2.

Proof. Consider T◦1 corresponding to the algebra as in Remark 2.2.6. Let φ : (V, ◦1)→
(V,+) be an isomorphism of vector space. Then φ−1T◦1φ = T+, in fact for all x,y ∈ V
we have xφ−1τyφ = (xφ−1 ◦1 y)φ = x + yφ. So, considering T◦2 = φ−1T+φ, we have
T+ ⊆ AGL(V, ◦2) = φ−1AGL(V,+)φ. Let (V,+, ·) and (V, ◦2, ∗) be the associated
algebras of T◦1 and T+, respectively, then φ is an isomorphism of algebra. In fact, let
y ∈ V and σy : x 7→ x+ y, thus xφ−1σyφ = x ◦2 yφ from the fact that 0σy = y and
0φ−1 = 0. Then (x+ y)φ = xφφ−1σyφ = xφ ◦2 yφ. More over

(x ◦1 y)φ = (x+ y + x · y)φ = xφ ◦2 yφ ◦2 (x · y)φ
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and
(x ◦1 y)φ = xφ+ yφ = xφ ◦2 yφ ◦2 xφ ∗ yφ,

this implies (x · y)φ = xφ ∗ yφ for all x,y ∈ V , thus φ is an isomorphism of algebra.
Let γ ∈ AGL(V,+) given from the univariate polynomial

γ(x) = e105x64 + e88x32 + e10x16 + e12x8 + e50x4 + e37x2 + e60x

where e is a primitive element of F27 , it results δ◦1(γ) = 27−2. From the lemma above
we have our claim.

Moreover in dimension 8 we have the following example.

Example 2.2.15. Let T◦ ⊆ AGL(V,+) be such that

κe1 =



1 0 0 0 0 0 0 0

1 0 0 0 0 0 1

1 0 0 0 1 1

1 0 0 0 1

1 0 0 0

1 1 0

1 0

1


κe2 =



1 0 0 0 0 0 0 1

1 0 0 0 0 0 0

1 0 0 0 1 0

1 0 0 1 0

1 0 1 1

1 0 1

1 0

1



κe3 =



1 0 0 0 0 0 1 1

1 0 0 0 0 1 0

1 0 0 0 0 0

1 0 0 0 1

1 0 0 1

1 0 0

1 0

1


κe4 =



1 0 0 0 0 0 0 1

1 0 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0

1 0 0 1

1 1 1

1 0

1



κe5 =



1 0 0 0 0 0 0 0

1 0 0 0 0 1 1

1 0 0 0 0 1

1 0 0 0 1

1 0 0 0

1 0 1

1 0

1


κe6 =



1 0 0 0 0 0 1 0

1 0 0 0 0 0 1

1 0 0 0 0 0

1 0 0 1 1

1 0 0 1

1 0 0

1 0

1


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and κe7 = κe8 = 1V . From Theorem 2.1.21 T+ ⊆ AGL(V, ◦) and by a computer check,
let α be a primitive element of F28 such that α8 = α4 + α3 + α2 + 1,

f(x) =α160x224 + α14x208 + α161x200 + α191x196 + α109x194 + α251x193 + α33x192 + α226x176+

α27x168 + α202x164 + α15x162 + α230x161 + α32x160 + α2x152 + α22x148 + α250x146+

α96x145 + α65x144 + α50x140 + α104x138 + α161x137 + α152x136 + α181x134 + α215x133+

α217x132 + α236x131 + α226x130 + α33x129 + α7x128 + α58x112 + α73x104 + α68x100+

α48x98 + α146x97 + α47x96 + α235x88 + α142x84 + α186x82 + α157x81 + α157x80 + α184x76+

α150x74 + α29x73 + α230x72 + α16x70 + α218x69 + α47x68 + α49x67 + α99x66 + α208x65+

α23x64 + α209x56 + α123x52 + α60x50 + α175x49 + α3x48 + α90x44 + α33x42 + α35x41+

α180x40 + α119x38 + α30x37 + α206x36 + α133x35 + α159x34 + α222x33 + α42x32 + α16x28+

α104x26 + α27x25 + α31x24 + α32x22 + α41x21 + α124x20 + α218x19 + α28x17 + α150x16+

α92x14 + α241x13 + α192x12 + α147x11 + α24x10 + α197x9 + α119x8 + α53x7 + α218x6+

α86x5 + α14x4 + α139x3 + α88x2 + α85x+ α34

is 26-differentially uniform and f ∈ AGL(V, ◦). In this case we have that the bound
given in Theorem 2.2.11 is thigh.

Remark 2.2.16. Note that if we consider a 4 differentially uniform boolean function
γ over F4. Then the parallel map (γ, γ) acting on F8 results 26 differentially uniform.
Thus the differential uniformity may not guarantee, alone, security from a hidden
sum trapdoor.

2.3 Some conditions coming from the mixing layer

Recalling that a square-matrix A is MDS (Maximum Distance Separable) if each
minor of A is non-zero, we give the following definition.

Definition 2.3.1. Let λ ∈ GL(V ) be a mixing layer of a block cipher acting on the
message space V = V1⊕· · ·⊕Vn, with Vi = Fm for all i, then λ is called MDS mixing
layer if there exists an equivalent map λ′ ∈ GL(Fn

2m) that is an MDS matrix.

Many modern block ciphers, such as Square [DKR97], SHARK [RDP+96], AES,
use MDS mixing layer. This MDS property is used to ensure that the number of
active S-boxes involved in a differential or linear attack increases rapidly, and the
security against these particular attacks can be established.

Proposition 2.3.2. Let V =
⊕s

i=1 Vi and γ = (γ1, . . . , γs) be a parallel S-box with
γi /∈ AGL(Vi,+) for all i. If λ is a MDS mixing layer and γλ ∈ AGL(V, ◦), for some
operation ◦, then ◦ cannot be an operation that works in parallel on the bricks.

46



2.4. Attack based on hidden sum

Proof. Assume by contradiction ◦ = (◦1, . . . , ◦s) where ◦i is such that (Vi, ◦i) is a
vector space for all i.

Let the MDS map λ′

λ′ =

 a1,1 . . . a1,s

...
...

as,1 . . . as,s


and the corresponding MDS mixing layer λ

λ =

 A1,1 . . . A1,s

...
...

As,1 . . . As,s

 .
λ MDS mixing layer implies that Ai,j ∈ GL(Vj) for all i, j. W.l.o.g. we can suppose
0γ = 0. Let x = (x1, 0, . . . , 0) and y = (y1, 0, . . . , 0), then x ◦ y = (x1 ◦1 y1, 0, . . . , 0).

γλ ∈ GL(V, ◦) implies xγλ ◦ yγλ = (x ◦ y)γλ, that is

(x1γ1A1,1◦1y1γ1A1,1, . . . ,x1γ1A1,s◦1y1γ1A1,s) = ((x1◦1y1)γ1A1,1, . . . , (x1◦1y1)γ1A1,s)

That implies
x1γ1A1,1 ◦1 y1γ1A1,1 = (x1 ◦1 y1)γ1A1,1

for all x1,y1 ∈ V1, then γ1A1,1 ∈ GL(V1, ◦1).
Similarly, considering x = (x1, 0, . . . , 0) and y = (0,y2, . . . , 0) we obtain

x1γ1A1,1 ◦1 y2γ2A2,1 = x1γ1A1,1 + y2γ2A2,1

for all x1 ∈ V1. This is equivalent to x◦1 y = x+y for all x,y ∈ V1, then ◦1 coincides
with the sum +, and A1,1γ1 ∈ GL(V1,+). So γ1 ∈ GL(V1,+), that is not possible.

Proposition 2.3.3. Let λ ∈ GL(V,+) and T◦ ⊂ AGL(V,+). If λ ∈ GL(V, ◦), then
U(T◦)λ = U(T◦).

Proof. Let w ∈ U(T◦), for all v ∈ V we have

wλ ◦ vλ = (w ◦ v)λ = (w + v)λ = wλ+ vλ

thus wλ ∈ U(T◦) and U(T◦)λ = U(T◦).

2.4 Attack based on hidden sum

2.4.1 Affine maps normalized by the translation group

In this subsection we want to explain the reason why we concentrate our studies
on translation groups coming from subgroups in AGL(V,+), which are normalized by
the usual translation group T+.
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To embed a hidden sum trapdoor in a block cipher we need Γ∞ ⊆ AGL(V, ◦)
for some hidden sum ◦, thus a first condition is T+ ⊆ AGL(V, ◦), as T+ ⊂ Γ∞.
Now, let T◦ ⊆ AGL(V,+) be such that T+ ⊆ AGL(V, ◦). Consider the vector space
U(T◦), which has dimension k for some k ≥ 1. Let g ∈ GL(V,+) be such that
U(T◦)g = Span{en−k+1, . . . , en} = U(T2), with T2 = g−1T◦g. It is easy to check that
g is an isomorphism of vector space between (V, ◦) and (V,2). From Theorem 2.1.21

we have that the maps relatives to the canonical basis vectors are

κei =

[
In−k×n−k Bei

0 Ik×k

]
,

for some Bei ∈ Fn−k×k. Moreover from Lemma 2.1.7 we have also that e1, . . . , en is a
basis of (V,2) and to write v ∈ V as a linear combination of these w.r.t. to the sum
2, i.e. v = λ1e12 . . .2λnen, we can use the Algorithm 1.

Algorithm 1.
Input: vector v = (v1, . . . , vn) ∈ V
Output: coefficients λ1 . . . λn.
[1] λi ← vi for 1 ≤ i ≤ n− k;
[2] v′ ← vτλ1

e1
· · · τλn−k

en−k ;
[3] λi ← v′i for n− k + 1 ≤ i ≤ n;
return λ1, . . . , λn,

Where τei is the translation x 7→ x2ei and the notation xτ bv, with b ∈ F2, denote
either xτv (when b = 1) or x (when b = 0). Thus, let vi = eig

−1 for all i, applying
Algorithm 1 to vg we can obtain the combination of vi’s w.r.t the sum ◦ of the vector
v. The complexity of this procedure is O(n3).

If T+ ⊆ AGL(V, ◦), but T◦ * AGL(V,+), then for any basis of (V, ◦) there exists
a vector v such that τv /∈ AGL(V,+), thus we need to apply a non-linear map to
vectors of length n, which might implies an huge quantity of memory.

2.4.2 Basic attack

Let C = {ϕk | k ∈ K} be a tb cipher such that Γ∞ ⊆ AGL(V, ◦) for some operation
◦, and also T◦ ⊆ AGL(V,+). Let dim(U(T◦)) = k. Let g ∈ GL(V,+) be a linear
transformation such that U(T◦)g = Span{en−k+1, . . . , en}. Denote by

[v] = [λ1, . . . , λn]

the vector with the coefficients obtained from Algorithm 1. Let ϕ = ϕk̄ be the
encryption function, with a given unknown session key k̄. We are able to mount an
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attack, computing the matrix M and the translation vector t defining ϕ ∈ AGL(V, ◦).
Chose the plaintext 0ϕ,v1ϕ, . . . ,vnϕ, where vi = eig

−1, and compute [0ϕg],
[v1ϕg], . . . , [vnϕg], since the translation vector is [t] = [0ϕg] and the [eiϕg] + [t]’s are
the matrix rows. In other words, we will have

[vϕg] = [vg] ·M + [t], [vϕ−1g] = ([vg] + [t]) ·M−1,

for all w ∈ V , where the product row by column is the standard scalar product.
The knowledge of M and M−1 provides a global deduction (reconstruction), since it
becomes trivial to encrypt and decrypt. Moreover from [vg] = [λ1 . . . , λn] we obtain
that v = 0τλ1

v1
· · · τλn

vn
, where τvi

: x 7→ x ◦ vi. So, we need only n + 1 plaintext to
reconstruct the cipher and the cost of this attack is given from the algorithm above
to compute the combinations plus the cost of n+ 1 encryptions.

Our discussion has thus proved the following result.

Theorem 2.4.1. Hidden sum trapdoors coming from translation groups such that
T◦ ⊆ AGL(V,+) are (practical) full trapdoors.

2.4.3 A toy-block cipher with a hidden sum

In this section we give an example, in a small dimension, of a translation based
block cipher in which it is possible to embed a hidden-sum trapdoor.

Let m = 3, n = 2, then d = 6 and we have the message space V = F6. The mixing
layer of our toy cipher is given by the matrix

λ =



0 1 1 0 1 0

0 1 0 0 0 0

1 1 1 0 1 0

0 1 0 1 1 1

0 0 0 0 1 0

0 1 0 1 1 0


Note that λ is a proper mixing layer. The bricklayer transformation γ = (γ1, γ2) of
our toy cipher is given by two identical S-boxes

γ1 = γ2 = α5x6 + αx5 + α2x4 + α5x3 + αx2 + αx

where α is a primitive element of F23 such that α3 = α + 1.

We show now the existence of a hidden-sum trapdoor for our toy cipher. We
consider the hidden sum ◦ over V1 = V2 = F3 induced by the elementary abelian
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regular group T◦ = 〈τ1, τ2, τ3〉, where

xτ1 = x ·

 1 0 0

0 1 0

0 1 1

+ e1, xτ2 = x ·

 1 0 0

0 1 0

0 0 1

+ e2, xτ3 = x ·

 1 1 0

0 1 0

0 0 1

+ e3.

(2.9)
Obviously T = T◦ × T◦ is an elementary abelian group inducing the hidden sum

(x1,x2) ◦′ (y1,y2) = (x1 ◦ y1,x2 ◦ y2) on V = V1 × V2.

Theorem 2.4.2. 〈T+, γλ〉 ⊆ AGL(V, ◦′).

Proof. By a computer cheek γλ ∈ AGL(V, ◦′), and from Theorem 2.1.18 T+ ⊆
AGL(V, ◦′).

Thanks to the previous theorem, ◦′ is a hidden sum for our toy cipher, but it
remains to verify whether it is possible to use it to attack the toy cipher with an
attack that costs less than brute force. We have not discussed the key schedule and
the number of rounds yet. We have in mind a cipher where the number of rounds is
so large to make any classical attack useless (such as differential cryptanalysis) and
the key scheduling offer no weakness. Therefore, the hidden sum will actually be
essential to break the cipher only if the attack that we build will cost significantly
less than 64 encryptions, considering that the key space is F6.

Remark 2.4.3. Given a sum 2, the vectors e1, e2, e3 may not be a linear basis of
(V1,2). For this specific sum ◦, the vectors e1, e2, e3 actually form a basis for (V1, ◦)
as their ◦-translation generate T◦. Let x = (x1, x2, x3) ∈ V1, from (2.9) we can simply
write

xτ1 = (x1 + 1, x2 + x3, x3),xτ2 = (x1, x2 + 1, x3),xτ3 = (x1, x1 + x2, x3 + 1).

Let us write x as a linear combination of e1, e2 and e3 w.r.t. to the sum ◦, i.e.
x = λ1e1 ◦ λ2e2 ◦ λ3e3. We claim that λ1 = x1, λ3 = x3 and λ2 = λ1λ3 + x2. In fact

x = (λ1e1 ◦ λ2e2) ◦ λ3e3 = (λ1e1 ◦ λ2e2)τ
λ3
3 = ((λ1e1)τ

λ2
2 )τλ3

3 = ((λ1e1)τ
λ3
3 )τλ2

2

= ((λ1, 0, 0)τ
λ3
3 )τλ2

2 = (λ1, λ3λ1, λ3)τ
λ2
2 = (λ1, λ1λ3 + λ2, λ3).

So
(x1, x2, x3) = x = (λ1, λ1λ3 + λ2, λ3)

and our claim is proved.

Thanks to the previous remark we can find the coefficients of a vector w = (v,u) ∈
V with respect to ◦′ by using the following algorithm separately on the two bricks of
w.
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Algorithm 2.
Input: vector x ∈ F3

2

Output: coefficients λ1, λ2 and λ3.
[1] λ1 ← x1;
[2] λ3 ← x3;
[3] λ2 ← λ1λ3 + x2;
return λ1, λ2, λ3.

Let w = (v,u) ∈ V , we write

v = λv1e1 ◦ λv2e2 ◦ λv3e3 and u = λu1e1 ◦ λu2e2 ◦ λu3e3.

We denote by
[w] = [λv1 , λ

v
2 , λ

v
3 , λ

u
1 , λ

u
2 , λ

u
3 ]

the vector with the coefficients obtained from the bricks of w using Algorithm 2.
Let ϕ = ϕk be the encryption function, with a given unknown session key k. We

want to mount two attacks by computing the matrix M and the translation vector t
defining ϕ ∈ AGL(V, ◦′), which exist thanks to Theorem 2.4.2.
Assume we can call the encryption oracle. Then M can be computed from the 7

ciphertexts 0ϕ, e1ϕ, . . . , e6ϕ as seen before. In other words, we will have

[wϕ] = [w] ·M + [t], [wϕ−1] = ([w] + [t]) ·M−1,

for all w ∈ V . However, we have an alternative depending on how we compute ϕ−1:

• if we compute M−1 from M , by applying for example Gaussian reduction, we
will need only our 7 initial encryptions;

• else we can compute M−1 from the action of ϕ−1, assuming we can call the
decryption oracle, simply by performing the 7 decryptions eiϕ

−1 and 0ϕ−1;
indeed, the rows of M−1 will obviously be [eiϕ

−1] + [0ϕ−1].

The first attack requires more binary operations, since we need a matrix inversion,
but only 7 encryptions. The second attack requires both 7 encryptions and 7 decryp-
tions, but less binary operations. The first attack is a chosen-plaintext attack, while
the second is a chosen-plaintext/chosen-ciphertext attack. Both obtain the same goal,
that is, the complete reconstruction of the encryption and decryption functions. Note
that, since an encryption/decryption will cost a huge number of binary operations in
our assumptions (we are supposing that many rounds are present), the first attack is
more dangerous and its cost is approximately that of 7 encryptions, while the cost of
the second attack is approximately 14 encryptions (being the cost of an encryption
close to the cost of a decryption).
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Figure 2.1: Attacks on the toy cipher

In Figure 2.4.3 we compare the brute force attack and hidden sum attack (chosen
plaintext) on our toy cipher. For each fixed number of rounds we implement 10

attacks, there we give the plot of maximum, minimum and average time complexity
of the attacks. As expected, the attack complexity grows linearly with the number of
rounds.

Remark 2.4.4. Concentrating on the cases T+ ⊆ AGL(V, ◦) it permits to implement
a hidden sum trapdoor independently from the action of the key-schedule. However,
if the translation group T+ is not properly contained in the affine group of the hidden
sum, but the intersection T+ ∩AGL(V, ◦) is non-trivial, then the translations in that
intersection represent a set of weakly keys for the cipher. The set of weakly keys
can be huge and for any key there exist different hidden sums which linearize it.
That permits to have an hight probability to break the cipher with the hidden sum
trapdoor. Thus, it could be possible to create a partial trapdoor.

2.5 A result on scalar Boolean functions

In this section we report a result on scalar Boolean functions that are linear with
respect to a sum ◦.
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2.5. A result on scalar Boolean functions

Note that f : Fn → F is linear with respect to ◦ if f is a morphism of vector space
between (Fn, ◦) and (F,+).

Lemma 2.5.1. Let m = n if n is even or m = n− 1 if n is odd. Then
m
2∑

i=0

(
n

2i

)
= 2n−1.

Proof. Recalling that (
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
,

we have
m
2∑

i=0

(
n

2i

)
=

(
n

0

)
+

m
2∑

i=1

((
n− 1

2i− 1

)
+

(
n− 1

2i

))
. (2.10)

If n is odd, then (2.10) is equal to(
n

0

)
+

n−1∑
i=1

(
n− 1

i

)
= 2n−1.

If n is even, then (2.10) is equal to(
n

0

)
+

n−1∑
i=1

(
n− 1

i

)
+

(
n− 1

n

)
= 2n−1.

Remark 2.5.2. This lemma means that if we consider a vector space over F of dimen-
sion n, then half of the the vectors are obtained combining an even number of vectors
of any basis and the other half combining an odd number of vectors.

Theorem 2.5.3. Let f : Fn
2 → F2 be a non zero Boolean function (f(0) = 0). If f is

linear over Fn
2 with respect to a sum ◦ then f is balanced (|f−1(0)| = |f−1(1)|). Vice

versa if f is balanced then there exists a sum ◦ s.t. f is linear with respect to ◦.

Proof. Let f be a morphism between (Fn, ◦) and (F,+). Suppose by contradiction
that f is not balanced. We can distinguish 2 case, the case where |f−1(0)| > |f−1(1)|
and the case when |f−1(0)| < |f−1(1)|.

If |f−1(0)| > |f−1(1)|. Then |f−1(0)| > 2n−1, that implies Span{v1, . . . ,v|f−1(0)|} =
Fn, where vi is such that f(vi) = 0 for any 1 ≤ i ≤ |f−1(0)| and the span is w.r.t.
the operation ◦.

So, considering v ∈ f−1(1) 6= ∅, we have v =©iλivi for some λi ∈ F2. From the
linearity of f we obtain

f(v) =
∑
i

λif(vi) = 0,
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which leads to a contradiction.
Suppose, now, |f−1(0)| < |f−1(1)|. Then, |f−1(1)| > 2n−1 and Span{v1, . . . ,v|f−1(1)|} =

Fn, where vi is such that f(vi) = 1 for any 1 ≤ i ≤ |f−1(1)|. W.l.o.g. v1, . . . ,vn

is a basis. From Lemma 2.5.1 there exists vj with j ∈ {1, . . . , |f−1(1)|} which is a
combination of an even numbers of elements of the basis vi1 , . . . ,vik . This implies

f(vj) =
k∑

l=1

f(vik) = k · 1,

with k even, that is f(vj) = 0.
Vice versa, let f be balanced . Choose n−1 non zero vectors in f−1(0), v1, . . . ,vn−1,

and vn ∈ f−1(1).
We can construct a bijection ψ : Fn

2 → Fn
2 s.t. ψ(vi) = ei, for all 1 ≤ i ≤ n,

ψ(f−1(0)) = {w = (w1, . . . , wn) ∈ Fn
2 |wn = 0} and ψ(f−1(1)) = {w = (w1, . . . , wn) ∈

Fn
2 |wn = 1}.

Now we define the combination with respect to a new sum ◦ as following

©n
i=1λivi := ψ−1

(
n∑

i=1

λiei

)
.

This is well defined by the fact that f is balanced, and f is linear with respect to
◦.

Note that the operation ◦ could be related to a translation group T◦ * AGL(V,+).

Example 2.5.4. Let V = F3 and consider the Boolean function with algebraic normal
form f(x) = x1x2 + x1x3 + x2x3 + x1 + x3. Then

(0, 0, 0) 7→ 0 (1, 1, 0) 7→ 0

(1, 0, 0) 7→ 1 (1, 0, 1) 7→ 0

(0, 1, 0) 7→ 0 (0, 1, 1) 7→ 1

(0, 0, 1) 7→ 1 (1, 1, 1) 7→ 1

.

If we consider over V the algebra structure induced by the exterior algebra of a 2

dimensional vector space, that is we have the basis

e1, e2, e3 = e1 ∧ e2,

and the corresponding sum ◦ defined by x ◦ y = x + y + x ∧ y. Then it is easy to
check that f is linear with respect to ◦.

The same sum is obtained considering the vectors v1 = (1, 0, 1),v2 = e2,v3 = e3

and the bijection from F3 to F3 defined by

ψ(v) =


e1 if v = (1, 0, 1),

v1 if v = e1,

v otherwise
.
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2.5. A result on scalar Boolean functions

Then any combination of the vi’s is given by ©3
i=1λivi := ψ−1

(∑3
i=1 λiei

)
.

2.5.1 Application to stream cipher

A combination generator is a running-key generator for stream cipher applica-
tions. It is composed of several linear feedback shift registers (LFSRs) (see for in-
stance [Kle13]) whose outputs are combined by a Boolean function to produce the
key-stream. Then, the output sequence (st)t≥0 of a combination generator composed
of n LFSRs is given by

st = f(ut1, u
t
2, . . . , u

t
n), ∀t ≥ 0,

where (uti)t≥0 denotes the sequence generated by the i-th constituent LFSR and f is
a function of n variables.

If the combining function f is balanced, then its output are uniformly distributed.
Moreover Canteaut in [Can06] has observed that only balanced n-variables functions
can have optimal algebraic immunity for odd n. This property is useful against
algebraic attacks [CM03].

Consider the case to have n LFSRs working on vectors of length l and the function
f is the XOR of the last bit of any register. Then we have a linear boolean function
F from Fnl to F that is represented from a vector λ ∈ Fnl, i.e. F (v) = λvT =

∑
i λivi.

So collecting the stream outputs st’s we have the relations

s1 = λvT1

s2 = λvT2
...

where the state vi depends in a linear way from vi−1. An attack on this example of
stream cipher can be done using the Berlekamp-Massey algorithm [Mas69] to recon-
struct the initial state v1.
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In order to remove these linear relations in the combination generator we use a
non-linear function f to combine the last bits of the LFSRs. If now we suppose to use
a balanced non-linear function f to combine the last bits of the registers, then from
Theorem 2.5.3 there exists at least a hidden sum ◦ such that the function F : Fnl → F
(that is the composition of the projection of the bits with the function f) is linear.
Using the notation as in Section 2.4 we can represent the action of F as [λ][v]T for
some [λ]. So

s1 = [λ][v1]
T

s2 = [λ][v2]
T

...

If also the action of the LFSRs on the states is linear with respect ◦ we obtain that [vi]
depends in a linear way from [vi−1] and that might permit to recover the initial state.

Some stream ciphers, e.g. E0 [Kle13], use non-linear functions to update the state.
If this update is linear in the operation ◦ we have again a linear correlation between
[vi] and [vi−1], so it is possible to embed a weakness in the stream cipher.
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As seen in Chapter 1.2 the S-boxes of a tb cipher play an important role in the
primitivity of Γ∞ and also to avoid hidden sum trapdoors. In fact in Theorem 1.3.2
the condition (2), i.e. no derivative of the S-boxes maps the space V in a proper affine
subspace, was used in [CDS09a] by the authors to exclude the first case of Theorem
2.0.3. That means the round functions group is not contained in any affine isomorphic
copy of AGL(V ). In this chapter we introduce the definition of anti-crooked function,
giving some result for the case of power functions. In the last part we give, also, some
results on weakly-APN functions.

3.1 Anti-Crooked functions

Definition 3.1.1. A v.B.f. γ is called anti-crooked (AC) if for each a ∈ V \ {0}
the set

Im(f̂a) = {f(x+ a) + f(x) | x ∈ V }

is not an affine subspace of V .

This condition is not always satisfy by the S-boxes of a block chipper, e.g. the
PRESENT S-box is not AC. That may permit to embed a weakness in the block
cipher.

In this section we give some properties on the anti-crookedness of a Boolean func-
tion. As said in Chapter 1, any vectorial Boolean function f from Fn to Fn can be
expressed uniquely as a univariate polynomial in F2n [x].

A first result on vBf is the following.

Theorem 3.1.2. Let f be a vBf weakly 2t-differential uniform, but not weakly
2t−1-differential uniform, and not 2t-differential uniform. Then, there exists a 6= 0 ∈
F2n, such that Im(f̂a) is not a coset of a subspace W ⊆ F2n. In particular for t = 1,
if f is weakly-APN but not APN, then, there exists a ∈ F2n nonzero such that Im(f̂a)

is not a coset of a subspace W ⊆ F2n.

Proof. By contradiction suppose that for all a 6= 0 we have Im(f̂a) = w + W for
some w ∈ F2n and W vector space. Since f is weakly 2t-differential uniform, at
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Chapter 3. The role of Boolean functions

most, it results 2n−t−1 < |Im(f̂a)| ≤ 2n−t. Thus dimF(W ) = n − t. But then f̂a is a
2t-to-1 function for all a 6= 0, which means that f is 2t-differential uniform, and this
contradicts our hypothesis. In other words, there exists a such that Im(f̂a) is not a
coset.

Consider the following lemma for a power function (not necessarily a permutation).

Lemma 3.1.3. Let us consider F2n as a vector space over F. Let f(x) = xd. If there
exists a ∈ F2n, a 6= 0, such that Im(f̂a) is a coset of a subspace of F2n, then Im(f̂a′)

is a coset of subspace of F2n for all a′ 6= 0.

Proof. We have Im(f̂a) = w +W where W is a F-vector subspace of F2n for some
w ∈ F2n . Now, let a′ ∈ F2n , a′ 6= 0, we have

f̂a′(x) = (x+ a′)d + xd =

(
a′

a

)d [(
x
a

a′
+ a
)d

+
(
x
a

a′

)d]
=

(
a′

a

)d

f̂a

(
x
a

a′

)
.

So we have Im(f̂a′) =
(
a′

a

)d
Im(f̂a) =

(
a′

a

)d
w +

(
a′

a

)d
W = w′ + W ′. Since W ′ =

(a′/a)dW is again an F-vector subspace of F2n , our claim is proved.

Thanks to Lemma 3.1.3, for power functions we can strengthen Theorem 3.1.2.

Corollary 3.1.4. Let f be a vBf permutation on F2n that is weakly 2t-differential
uniform, but not 2t-differential uniform. If f(x) = xd, then f is AC.

Remark 3.1.5. Given an arbitrary vBf there are three possible cases: f is either
crooked or anti-crooked or neither. However, Lemma 3.1.3 shows that for a power
function there are only two possible cases: f is either crooked or anti-crooked.

We want now to investigate condition that guaranty the anti-crookedness of a
Boolean function.

A vBf can also be represented by n Boolean functions of n variables. For all
a ∈ Fn \ {0}, let Va be the vector space

Va = {v ∈ Fn \ {0} : deg(< v, f̂a >) = 0} ∪ {0}.

By definition, if t = maxa∈Fn\{0} dim(Va), then n̂(f) = 2t − 1.

Proposition 3.1.6. Let f be a vBf and a ∈ Fn \{0}. Then f(a)+V ⊥
a is the smallest

affine subspace of Fn containing Im(f̂a). In particular, n̂(f) = 0 if and only if for any
a ∈ Fn \ {0} there is no proper affine subspace of Fn containing Im(f̂a).
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Proof. Let a ∈ Fn \ {0}. Note that Va = {v ∈ Fn :< v, f̂a > is constant}. Let
x ∈ Fn, then f̂a(x) = f(a) + w, for some w ∈ Fn, and < v, f̂a(x) >= c ∈ F for
all v ∈ Va. In particular c =< v, f̂a(0) >=< v, f(a) > and so < w,v >= 0, that
is, w ∈ V ⊥

a . Then we have Im(f̂a) ⊆ f(a) + V ⊥
a . Now, let A be an affine subspace

containing Im(f̂a), then A = f(a) + V , for some vector subspace V in Fn. For all
v ∈ V ⊥, we have < v, f̂a >=< v, f(a) >= c ∈ F and so, by definition, V ⊥ ⊆ Va.
Then A contains f(a) + V ⊥

a .
Finally, n̂(f) = 0 if and only if Va = {0} for all a ∈ Fn \ {0}, and so our claim
follows.

Obviously, for any affine subspace W , Im(f̂a) 6⊂ W =⇒ Im(f̂a) 6= W and so we
have the next corollary.

Corollary 3.1.7. Let f be a vBf. If n̂(f) = 0 then f is AC.

Coming back to power functions it is important to recall a result by Kyureghyan.

Theorem 3.1.8 ([Kyu07]). The only crooked APN power functions in F2n are those
with exponent 2i + 2j, gcd(i− j, n) = 1.

Recalling that the known exponents of APN power functions (up to factor 2i) are

2k + 1, gcd(k,m) = 1 (Gold’s exponent [BFDF98, Gol68])

22k − 2k + 1, gcd(k,m) = 1 (Kasami’s exponent [Kas71])

24k + 23k + 22k + 2k − 1, m = 5k (Dobbertin’s functions [Dob01])

if m = 2l + 1 also

2l + 3 (Welch’s exponent [Dob99, CCD00, HX01])

2l + 2
l
2 − 1 if l is even and

2l + 2
3l+1
2 − 1 if l is odd (Niho’s exponent [Dob99, HX01])

2m − 2 (patched inversion [Nyb94])

This implies that the only crooked power functions, among the known maps, are those
with Gold’s exponent. Thanks to Remark 3.1.5 we have:

Corollary 3.1.9. Let xd be one of the APN power functions above, with d not a
Gold’s exponent, then xd is AC. In particular the power function x2

m−2 is AC for all
m ≥ 3.

Proof. It follows directly from Lemma 3.1.3 and the theorem above. For the case of
the patched inversion, from Corollary 3.1.4, it is AC also in even dimension.
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Having examined some anti-crooked functions we would like to show some prop-
erties of this notion.

Lemma 3.1.10. If f is AC then f−1 is not necessarily AC.

Proof. We provide an explicit example f : F6 → F6 defined by f(x) = x38, then
f−1(x) = x5. A computer check shows that f is anti-crooked while f−1 is not. In
particular, Im( ˆf−1

e6) is an affine subspace of dimension 4, where e is a primitive
element of F64 such that e6 = e4 + e3 + e+ 1.

We recall that two vBf’s f and f ′ are called CCZ-equivalent if their graphs Gf =

{(x, f(x)) | x ∈ Fn} and Gf ′ = {(x, f ′(x)) | x ∈ Fn} are affine equivalent. We recall
also that f and f ′ are called EA-equivalent if there exist three affine functions g, g′

and g′′ such that f ′ = g′fg + g′′.
Lemma 3.1.10 and the well-known fact that a vBf f is CCZ-equivalent to f−1

imply the following result.

Corollary 3.1.11. The anti-crookedness is not CCZ invariant.

On the other hand, anti-crookedness behaves well with EA invariance, as shown
below.

Proposition 3.1.12. The anti-crookedness is EA invariant.

Proof. Let f be a vBf anti-crooked, and let f ′ be a vBf such that f and g are EA
equivalent. Then, there exist three affinities λ1, λ2, λ3 such that g = λ1fλ2 + λ3.
Without loss of generality we can suppose f(0) = g(0) = 0 and λi(0) = 0 for all
i = 1, 2, 3. Then

ĝa = λ1fλ2(x+ a) + λ1fλ2(x) + λ3(x+ a) + λ3(x)

= λ1(f(λ2(x) + λ2(a)) + f(λ2(x)) + λ−1
1 λ3(a)),

which implies
Im(ĝa) = λ1(λ

−1
1 λ3(a) + Im(f̂λ2(a))),

thus g is AC if and only if f is AC.

3.2 Weakly-APN functions

Definition 3.2.1. Let f(x) = xd and 0 ≤ i ≤ 2n. We denote by ωi the number of
output differences of b that occur i times, that is

ωi(f) = |{b ∈ Fn | δf (1, b) = i}|.

The differential spectrum of f is the set of ωi(f)’s, denoted by S(f).
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The following two results are well know (see for instance [BCC11]).

Proposition 3.2.2. Let f(x) = xd, f ∈ F2n [x], then for any a, a′ ∈ Fn, with a, a′ 6= 0,
and 0 ≤ i ≤ 2n

|{b ∈ Fn : δf (a
′, b) = i}| = |{b ∈ Fn : δf (a, b) = i}|.

In other words, when f is a monomial function the differential characteristics given
by {δf (a, b)}b∈Fn are determined by only one nonzero value a.

Lemma 3.2.3. Let f(x) = xd with gcd(2n − 1, d) = 1. Let g(x) = xe such that
e ≡ 2kd mod (2n − 1) or ed ≡ 1 mod (2n − 1), then S(f) = S(g).

From Lemma 3.2.3 we obtain, for power function:

Theorem 3.2.4. Let f(x) = xd with gcd(2n−1, d) = 1. Then f is weakly δ-differentially
if and only if f−1 is weakly δ-differentially.

Proof. For a power function we have

|Im(f̂a)| = |Im(f̂1)| = 2n − ω0, ∀a 6= 0.

From Lemma 3.2.3 we have ω0(f) = ω0(f
−1), and that concludes the proof.

Lemma 3.2.5. Suppose that f is not a power function. If f is weakly δ-differentially
uniform then f−1 is not necessarily weakly δ-differentially uniform.

Proof. We provide the following example f : F4 → F4 defined by

f(x) = x14 + e10x13 + ex12 + e2x11 + e9x10 + e8x9 + e3x8 + e5x7

+ e5x6 + e11x5 + e8x3 + e10x2 + ex+ e12,

where e is a primitive element of F16 such that e4 = e+ 1, and the inverse of f

f−1(x) = x14 + e10x13 + e14x12 + e8x11 + e7x10 + e10x9 + x8 + e5x7 + e14x6

+ e2x5 + e7x4 + e5x3 + e14x2 + e11x+ e14.

We have that f is weakly-APN while f−1 is only weakly 4-differentially uniform.

As before we obtain.

Corollary 3.2.6. The weakly differential uniformity is not CCZ invariant.

On the other hand:

Proposition 3.2.7. The weakly differential uniformity is EA invariant.
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Proof. Let f be a vBf weakly δ-differential, and let g be a vBf such that f and g are
EA equivalent. Then, there exists a vBf g′ affine equivalent to f and g = g′+λ where
λ is an affinity over Fn.

From the fact that the weakly differential uniformity is affine invariant we have
|Im(ĝ′a)| > 2n−1/δ for all a ∈ Fn. So, Im(ĝa) = {x + λ(a) |x ∈ Im(ĝ′a)} implies
|Im(ĝa)| = |Im(ĝ′a)| > 2m−1/δ for all a ∈ Fn.

We extend some results of [FPRS12] in the following theorem.

Lemma 3.2.8 ([Kyu07],Corollary 6). Let f(x) = xd be a permutation. Then f̂1 is
constant if and only if deg(f) = 2.

Lemma 3.2.9 ([Her05], Theorem 1). Let f(x) = xd, with d = 22k − 2k + 1 (Kasami
exponent), gcd(k, n) = s and n/s odd. Then f̂1 is a 2s-to-1 function.

Theorem 3.2.10. Let f be a vBf permutation such that n̂(f) = 0. Then
(i) if n = 3 then f is weakly-APN;
(ii) if n = 4 then f is weakly-APN;
(iii) if n = 2m, with m odd, f is not necessarily weakly-APN.

Proof. (i) Let F3 = {x1, . . . , x8} and let Ma be the matrix of dimension 3× 8, whose
columns are mj = f̂a(xj) for 1 ≤ j ≤ 8. We claim that n̂(f) = 0 implies rank(Ma) = 3

for all a. Otherwise, we could obtain (0, . . . , 0) ∈ F3 from a combination of the rows
of Ma. If f is not weakly-APN, we have |Im(f̂a)| ≤ 2 for some a ∈ F3

2 \ {0}. So we
have at most 2 distinct columns that means rank(Ma) ≤ 2.

(ii) See [FPRS12] Proposition 2 .
(iii) Let t > 0 be such that gcd(22

t+1 − 22
t
+ 1, 2n − 1) = 1, and consider the

power function f(x) = xd, with d = 22
t+1 − 22

t
+ 1. We have gcd(2t, n) = 2, thus f is

4-differential uniform and weakly 4-differential uniform from Lemma 3.2.9. Moreover,
being deg(f) equals to the Hamming weight of the binary expansion of d, we have
that f is not quadratic. Then, from Lemma 3.2.8 n̂(f) = 0

In [FPRS12] it was shown that a weakly-APN f function over F4 has n3(f) ∈
{12, 14, 15}, where n3(f) is the number of components of f with degree 3, moreover by
a computer check on the class representatives the authors exclude the case n3(f) = 12

(Fact 4 in [FPRS12]).
We give, now, a formal proof of this fact. We recall some results firstly.

For a Bf f the set V (f) = {a ∈ Fn | f̂a is costant} is said the set of linear
structures of f .
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3.2. Weakly-APN functions

Theorem 3.2.11 ([CCK08]). Let f : Fn → F be a quadratic Bf. Then the dimension
of V (f) is equal to n − 2h, 1 ≤ h ≤ bm

2
c. Moreover dim(V (f)) = 0 if and only if f

is bent.

Theorem 3.2.12 ([FPRS12]). Let f : Fn
2 → Fn

2 be a weakly-APN permutation. Then
n̂(f) ≤ 1.

Proposition 3.2.13 (Fact 4 in [FPRS12]). Let f : F4 → F4 be a weakly-APN per-
mutation. Then n3(f) ∈ {14, 15}.

Proof. Assume by contradiction that deg(fj) ≤ 2, 1 ≤ j ≤ 3, for three distinct
components of f .

From the Theorem 3.2.11, f̂ja is constant for every a ∈ V (fj) where V (fj) ⊆ F4,
i.e. the set of linear structures of fj, is a vector subspace of dimension 0 if and
only if fj is bent, 4 if and only if fj is linear (affine), and 2 otherwise. Since f is
a permutation we have that fj is balanced, so fj is not bent for any j. If there
exists a ∈ V (fi) ∩ V (fj) different from 0 for some i and j, then n̂(f) ≥ 2. But f
weakly-APN implies n̂(f) ≤ 1 (Theorem 3.2.12). So, we obtain that deg(fj) = 2 and
V (fi) ∩ V (fj) = {0}, with dim(V (fi)) = 2, for all i, j. Without loss of generality,
since V (f1)⊕ V (f2) = F4, we can assume
V (f1) = 〈(1, 0, 0, 0), (0, 1, 0, 0)〉 and V (f2) = 〈(0, 0, 1, 0), (0, 0, 0, 1)〉.

Let f1(x) =
∑

i<j ci,jxixj +
∑

i cixi. Since f1(x + (1, 0, 0, 0)) + S1(x) is constant
we have that ci,j = 0 if i or j equals 1. Similarly, since f1(x + (0, 1, 0, 0)) + S1(x)

is constant we have ci,j = 0 if i or j equals 2. Then f1(x) = x3x4 +
∑

i cixi and
analogously we have f2(x) = x1x2 +

∑
i c

′
ixi, for some c′i’s.

So, f3(x) = x1x2 + x3x4 +
∑

i bixi, bi = ci + c′i, and we can compute the derivate
of S3 with respect to a ∈ F4 as

ˆ(f3)a(x) = a2x1 + a1x2 + a4x3 + a3x4 + c, where c is constant.

ˆ(f3)a(x) is constant if and only if a = 0, that implies f3 is bent. This contradicts
the fact that f is a permutation and each component is balanced.

As was shown in [SZZ94] there is no APN quadratic permutation over Fn for n
even. This result was extended by Nyberg [Nyb95] to the case of permutations with
partially bent components (for n even). We are able to extend these results to the
case of weakly-APN permutations defined over Fn with n even.

Definition 3.2.14 ([Car93]). A Bf f is partially bent if there exists a linear sub-
space V (f) of Fn such that the restriction of f to V (f) is affine and the restriction of f
to any complementary subspace U of V (f), V (f)⊕U = Fn, is bent. In that case, f can
be represented as a direct sum of the restricted functions, i.e., f(y+ z) = f(y)+f(z),
for all z ∈ V (f) and y ∈ U .
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Remark 3.2.15. The space V (f) is formed by the linear structures of f , in fact

f(x+ a) + f(x) = f(y+ z + a) + f(y+ z) = f(y) + f(z) + f(a) + f(y) + f(z) = f(a)

where z, a ∈ V (f) and y ∈ U . Moreover, since bent function exist only in even
dimension, n− dim(V (f)) is even. That means if n is even, the dimension of V (f) is
even.

Theorem 3.2.16. For n even, a weakly-APN permutation has at most 2n−1
3

partially
bent components. In particular f cannot have all partially bent components.

Proof. Let f be a weakly-APN permutation. Assume by contradiction that f has
more than 2n−1

3
partially bent components, and denote those with f1, . . . , fs. f is a

permutation, then dim(V (fi)) 6= 0 for all 1 ≤ i ≤ s, otherwise fi is bent and it is
not balanced. From Remark 3.2.15 we have that there exist at least three nonzero
vectors in each V (fi). So

s∑
i=1

|V (fi)| ≥ 3 s > 2n − 1.

Thus, there exist i and j such that a ∈ V (fi) ∩ V (fj) with a 6= 0. This implies
n̂(f) ≥ 2, which contradicts that f is weakly-APN, since in that case n̂(f) ≤ 1.

From the fact that a quadratic Boolean function is partially bent (see for instance
[Nyb95]), we have immediately the following result.

Corollary 3.2.17. There exists no weakly-APN quadratic permutation over Fn, for
n even.

Corollary 3.2.18. Let n even. Let f be a weakly-APN permutation. Then f has at
most 2n−2 − 1 quadratic components.

Proof. That depends on the fact that the set of components of degree less or equal
to 2 is a vector space.

Proposition 3.2.19. Let f : Fn → Fn be a Boolean permutation such that n̂(f) = 0.
Then f has no partially bent (quadratic) components.

Proof. n̂(f) = 0 implies that the linear structures set of any component contains only
0. So if there exists a partially bent (quadratic) component, then it is bent. But f is
a permutation, then this is not possible.

For the particular case of 4-bit S-Boxes we obtain these two more results.
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Corollary 3.2.20. Let f : F4 → F4 be a vBf permutation.
(i) If n̂(f) = 0. Then f is weakly-APN and n3(f) = 15.
(ii) If f is weakly APN and n3(f) = 14. Then n̂(f) = 1.

Proof. Let f be weakly-APN, so n̂(f) ≤ 1. From Proposition 3.2.19, the thesis
follows.

So for weakly-APN function for n = 4 we have all the three cases:

• n̂(f) = 0 and n3(f) = 15 with ANF:

f1 = x1x2x3 + x2x3x4 + x1x3 + x2x3 + x1 + x2 + x3 + x4

f2 = x1x2x4 + x1x2 + x1x3 + x2x3 + x2x4 + x4

f3 = x1x3x4 + x1x2 + x1x3 + x1x4 + x3 + x4

f4 = x2x3x4 + x1x4 + x2x4 + x2 + x3x4 + x3 + x4

• n̂(f) = 1 and n3(f) = 15 with ANF:

f1 = x1x3x4 + x2x3x4 + x2x3 + x2x4 + x3x4 + x1

f2 = x1x2x4 + x1x3 + x1x4 + x2x3 + x2

f3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x3x4 + x3

f4 = x2x3x4 + x1x2 + x1x4 + x2x3 + x4

• n̂(f) = 1 and n3(f) = 14, with ANF:

f1 = x1x2x3 + x1x2x4 + x1x3 + x1 + x2x3x4 + x2x3 + x3x4

f2 = x1x2x4 + x1x2 + x1x3x4 + x1x3 + x1x4 + x2

f3 = x1x2x4 + x1x2 + x1x3x4 + x1x3 + x2x4 + x3

f4 = x1x3 + x1x4 + x2x3x4 + x2x4 + x4
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Index Coding
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Preliminaries on Index Coding

In this chapter we report some extra notations used in this second part. Then we
introduce the ICSI problem exploiting some results on the optimal length of an index
code and on error correction index codes, results and definitions are from [MS77,
Ass92, W+01, ALS+08, BYBJK06, DSC13].

4.1 Notations and backgrounds

4.1.1 Linear Codes terminology

Let M ∈ FN×n
q , we write Mi and M j to denote the i-th row and j-th column of

M , respectively. More generally, for subsets S ⊆ [N ] and H ⊆ [n] we write MS and
MH to denote the |S|×n and N ×|H| submatrices of M comprised of the rows of M
indexed by S and the columns of M indexed by H respectively. Moreover let M be a
matrix we denote by rowsp(M) the space spanned by the rows of M and by colsp(M)

the space spanned by the columns of M .
For the vectors u = (u1, u2, . . . , un) ∈ Fn

q and v = (v1, v2, . . . , vn) ∈ Fn
q , the

(Hamming) distance between u and v is defined to be the number of coordinates
where u and v differ, namely,

d(u,v) = |{i ∈ [n] : ui 6= vi}|.

If u ∈ Fn
q and S ⊆ Fn

q is a set of vectors,then the last definition can be extended to

d(u, S) = min
v∈S

d(u,v).

The support of a vector u = (u1, u2, . . . , un) ∈ Fn
q is defined to be the set Supp(u) =

{i ∈ [n] : ui 6= 0}. The (Hamming) weight of a vector u, denoted w(u), is defined
to be |Supp(u)|, the number of nonzero coordinates of u.

Definition 4.1.1. Let C be a k-dimensional subspace of Fn
q . C is called a linear

[n, k, d]q code if the minimum distance of C,

d(C) = min
u,v∈C,u6=v

d(u,v)

is equal to d. We call n the length and k the dimension of the code. The vectors in C
are called codewords.
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Remark 4.1.2. It is easy to see that the minimum weight of a nonzero codeword in a
linear code C is equal to its minimum distance d(C).

A generator matrix G of an [n, k, d]q code C is a k × n matrix whose rows are
linearly independent codewords of C. Then C = {yG : y ∈ Fk

q }. The parity-check
matrix of C is an (n−k)×n matrix H over Fq such that c ∈ C if and only if HcT = 0T .
Given q, k, and d, let Nq[k, d] denote the length of the shortest linear code over Fq

that has dimension k and minimum distance d. The dual code of C is defined as
C⊥ = {u ∈ Fn

q |ucT = 0 for all c ∈ C}.
The following upper bound on the minimum distance of a q-ary linear code is well

known (see [MS77])

Theorem 4.1.3 (Singleton Bound). For an [n, k, d]q code, we have d+ k − 1 ≤ n.

Codes attaining this bound are called maximum distance separable (MDS)
codes.

The set Sr
q (n,x) = {y ∈ Fn

q | d(x,y) ≤ r} is called the Hamming sphere of radii
r centered in x. The volume of a sphere is denoted by Vq(n, r) and

Vq(n, r) =
r∑

i=0

(
n

i

)
(q − 1)i.

For a prime power q, let Hq denote the q-ary entropy function

Hq(x) : (0, 1)→ R, Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

The function Hq(x) is continuous and increasing in (0, 1− (1/q)).
A proof of the following lemma can be found in [Loe94].

Lemma 4.1.4. Let λ ∈ (0, 1− (1/q)) be such that nλ is an integer. Then

Vq(n, λn) ≤ qHq(λ)n.

4.1.2 Incidence structures and t-designs terminology

A finite incidence structure which we denote by S = (P ,B, I), consists of two
disjoint finite sets P , the set of points, and B, the set of blocks, and e subset I of
P × B. If (p,B) is in I we say that p is contained in B.

Definition 4.1.5. An incidence structure D = (P ,B, I) is a t-(v, k, λ) design, where
t, v, k and λ are non-negative integers, if

(1) |P| = v;
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(2) |B| = k for all B ∈ B;

(3) every t distinct points are together contained in precisely λ blocks.

Theorem 4.1.6. Let D be a t-(v, k, λ) design. Then for every integer s such that
0 ≤ s ≤ t, D is a s-(v, k, λs) design with

λs = λ
(v − s)(v − s− 1) · · · (v − t+ 1)

(k − s)(k − s− 1) · · · (k − t+ 1)
.

An important parameter of a design is its order, that is define as

n = λ

(
v−2
k−1

)(
v−t
k−t

) .
Definition 4.1.7. Let S = (P ,B, I), with |P| = v and |B| = b. Let the points be
labelled {p1, . . . , pv} and the blocks be labelled {B1, . . . , Bb}. An incidence matrix
for S is a b× v matrix A = (ai,j) of 0’s and 1’s such that

ai,j =

{
1 if (pj, Bi) ∈ I
0 if (pj, Bi) /∈ I

Definition 4.1.8. Let S = (P ,B, I) be an incident structure and A the incident
matrix of S. The code of S over Fq is the subspace Cq(S) of F|P|

q spanned by the rows
of A.

Definition 4.1.9. If S is any incident structure and p is any prime, the p-rank of
S is the dimension of the code Cp(S) and is written

rankp(S) = dim(Cp(S)).

Theorem 4.1.10. Let D = (P ,B) be a 2-(v, k, λ) design of order n and let p be a
prime dividing n. Then

rankp(D) ≤
|B|+ 1

2
;

more over if p does not divide λ and p2 does not divide n, then

Cp(D)⊥ ⊆ Cp(D)

and rankp(D) ≥ v/2.
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4.1.3 Projective planes

A 2-(n2 + n+ 1, n+ 1, 1) design, for n ≥ 2, is called a projective plane of order
n.

Remark 4.1.11. A projective plane of order n has the same number of points and
blocks, i.e. |P| = |B|.

Theorem 4.1.12 ([Ass92]). Let Π be a projective plane of order n and p be a prime
such that p|n. Then the p-ary code of Π, Cp(Π), has minimum distance n+1. Moreover
the scalar multiples of the rows of the incidence matrix are the codewords of minimal
weight.

Chouinard, in [Cho00], proved that:

Theorem 4.1.13. Let Cp(Π) be a code arising from a projective plane of prime order
p. Then there are no codewords of weight in the interval [p+ 2, 2p− 1].

4.1.4 Graphs terminology

Definition 4.1.14. A simple graph is a pair G = (V(G), E(G)) where:

• V(G) is the set of vertices of G,

• E(G) is the set of edges of G.

A typical edge of G is of the form {u, v} where u, v ∈ V(G), and u 6= v. If e = {u, v} ∈
E(G) we say that u and v are adjacent. We also refer to u and v as the endpoints
of e.

Definition 4.1.15. A simple digraph is a pair D = (V(D), E(D)) where:

• V(D) is the set of vertices of D,

• E(D) is the set of arcs (or directed edges) of D.

A typical arc of D is of the form e = (u, v) where u, v ∈ V(D), and u 6= v. The
vertices u is called tail of e and v the head of e. The arc e is called an out-going
arc of u and an in-coming arc of v. The out-degree of a vertex u, degO(u) is the
number of out-going arcs, and the in-degree of a vertex u, degI(u) is the number of
in-coming arcs.

Simple (di)graphs have no loops and no parallel (arcs) edges. In this thesis, only
simple (di)graphs are considered. Therefore, we use (di)graphs to refer to simple
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(di)graphs for succinctness. A complete graph is a graph that contains all possible
edges.

For a digraph D = (V(D), E(D)), unless specified otherwise, we label the vertices
of D by the natural numbers 1, 2, . . . , |V(D)|. The number of vertices |V(D)| is called
the order of D, whereas the number of arcs |E(D)| is called the size of D.

The complement of a digraph D = (V(D), E(D)), denoted by D̄ = (V(D̄), E(D̄)),
is defined as follows. The vertex set is V(D̄) = V(D). The arc set is

E(D̄) = {(u, v) : u, v ∈ V(D̄), (u, v) /∈ E(D)}.

Analogous conventions and concepts are also defined for graphs.

Definition 4.1.16. Let V be a subset of vertices of a graph G = (V(G), E(G)) (digraph
D = (V(D), E(D)), respectively). The subgraph of G (D, respectively) induced by
V is a graph (digraph, respectively) whose vertex set is V , and edge set (arc set,
respectively) is {{u, v} : u, v ∈ V, {u, v} ∈ E(G)} ({(u, v) : u, v ∈ V, (u, v) ∈ E(D)}).
We refer to such a subgraph as an induced subgraph of G (D).

Definition 4.1.17. A path in a graph G (digraph D, respectively) is a sequence of
distinct vertices (u1, u2, . . . , uk), such that {ui, ui+1} ∈ E(G) ((ui, ui+1) ∈ E(D), re-
spectively) for all i ∈ [k−1]. If a path is closed, i.e. {uk, u1} ∈ E(G) ((uk, u1) ∈ E(D),
respectively), then it is called circuit. A (di)graph is called acyclic if it contains no
circuits.

Let ν(D) be the circuit packing number of D, namely, the maximum number
of vertex-disjoint circuits in D. A feedback vertex set of D is a set of vertices
whose removal destroys all circuits in D. Let τ(D) denote the minimum size of a
feedback vertex set of D.

Definition 4.1.18. An independent set in a graph G is a set of vertices of G with
no edges connecting any two of them. An independent set in G of largest cardinality
is called a maximum independent set in G. The cardinality of such a maximum
independent set is referred to as the independence number of G, denoted by α(G).

In the case of digraph we denote by α(D) the maximum induced acyclic sub-
graph (note that for the graphs case a maximum independent set is an acyclic sub-
graph).

Definition 4.1.19. A clique of a (di)graph is a set of vertices that induces a complete
subgraph of that (di)graph. A clique cover of a (di)graph is a set of cliques that
partition its vertex set. A minimum clique cover of a (di)graph is a clique cover of
minimum number of cliques. The number of cliques in such a minimum clique cover
of a (di)graph is called the clique cover number of that (di)graph. We denote by
cc(G) the clique cover number of a (di)graph G.
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Definition 4.1.20. Let D = (V(D), E(D)) be a digraph of order n. A matrix M =

(mi,j) ∈ Fn×n
q is said to fit D if

mi,j =

{
1 if i = j

0 if (i, j) /∈ E(D)

The minrank of D over Fq is defined to be

minrkq(D) = min{rankq(M) :M fits D}

We also have analogous definitions for a graph.

Definition 4.1.21. A (directed) hypergraph H is a pair (V , E), where V is a set of
vertices and E is a set of hyperacrs. A hyperarc e itself is an ordered pair (v,H),
where v ∈ V and H ⊆ V, they respectively represent the tail and the head of the
hyperarc e.

The complement of H = (V , E), denoted by H̄ = (V̄ , Ē), is defined as follows.
The vertex set is V̄ = V . The hyperarc set is Ē = {(v, [n] \H ∪ {v}) : (v,H) ∈ E}.

Definition 4.1.22. Let |V| = n and |E| = m. Let the hyperarcs be labelled {e1, . . . , em},
a matrix M = (mi,j) ∈ Fm×n

q fits the hypergraph if

mi,j =

1 if j is the tail of ei
0 if j does not lie in the head of ei

The minrank of H over Fq is defined to be

minrkq(H) = min{rankq(M) :M fits H}
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4.2 An introduction to ICSI problem

4.2.1 Index Coding problem

The Index Coding with Side Information (ICSI) problem is described in the fol-
lowing scenario. There is a unique sender S, who has a vector of messages x =

(x1, x2, . . . , xn) ∈ Fn
q . There are also m receivers R1, ..., Rm, each with a request for a

data packet xi, and it is assumed that each receiver has some side-information, that
is, Ri has a subset of messages {xj}j∈Xi

, where Xi ⊆ [n] for all i ∈ [m]. The requested
packet by Ri is denoting by xf(i), where f : [m] → [n] is a (surjective) demand
function. Here we assume that f(i) /∈ Xi for all i ∈ [m]. We may assume that each
i-th receiver requests only the message xf(i), since a receiver requesting more than one
message can be split into multiple receivers, each of whom requests only one message
and has the same side information set as the original [ALS+08].

Let X = (X1, . . . ,Xn). An instance of the ICSI problem (or an ICSI instance,
for short) is given by a quadruple I = I(m,n,X , f). It can also be conveniently
described by a (directed) hypergraph [ALS+08].

Definition 4.2.1. Let (m,n,X , f) be an ICSI instance. The corresponding side
information (directed) hypergraph H = H(m,n,X , f) is defined by the vertex
set V(H) = [n] and the hyperarc set E(H), where

E(H) = {(f(i),Xi) : i ∈ [m]}.

Example 4.2.2. Consider the scenario in Figure 4.2.2. The ICSI instance has n = 3

(three messages), m = 4 (four receivers), f(1) = 1, f(2) = 2, f(3) = 3, f(4) =

1, X1 = {3},X2 = {1, 3},X3 = {1, 2}, and X4 = {2}. The hypergraph H that
describes this instance has three vertices 1, 2, 3, and has four hyperarcs. These are
e1 = (1, {3}), e2 = (2, {1, 3}), e3 = (3, {1, 2}), and e4 = (2, {2}). This hypergraph is
depicted in Figure 4.2.2.

The sender can satisfy the demands of all receivers sending two messages, x1 + x2

and x1 + x3. Each receivers is able to recover the requesting packet using the side
information.

Remark 4.2.3. If we have m = n and f(i) = i for all i ∈ [n], the corresponding side
information hypergraph has precisely n hyperarcs where each of them has a different
origin vertex. Then it is simpler to describe such an ICSI instance by a digraph
G = (V(G) = [n], E(G)), so-called side information (di)graph [BYBJK06]. For
each hyperarc (i,Xi) of H, there will be |Xi| arcs (i, j) of G, for j ∈ Xi. Equivalently,
E(G) = {(i, j) : i, j ∈ [n], j ∈ Xi}.
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Figure 4.1: An example of ICSI problem

Definition 4.2.4. An index code over Fq for an ICSI instance I(m,n,X , f) (also
expressed (m,n,X , f)-IC or I-IC) of length N over Fq is an encoding map

E : Fn
q → FN

q ,

such that for each receiver Ri there is a decoding map

Di : FN
q × F|Xi|

q → Fq,

satisfying

∀x ∈ Fn
q , Di(E(x),xXi

) = xf(i).

We say that the I-IC is linear if its encoding map E is Fq-linear.

Definition 4.2.5. An index code of minimum length is called optimal.

Hereafter, we assume that the sets Xi’s for i ∈ [m] are known to S. In practice
this can be achieved by a preliminary communication session.

The following lemma was implicitly formulated by Bar-Yossef et al. [BYBJK06,
BYBJK11] for the case where m = n, f(i) = i for all i ∈ [m], and q = 2, then
generalized to the case m 6= n for any q by [DSC12]. This lemma specifies a sufficient
condition on L to correspond to a linear I-IC over Fq.

Lemma 4.2.6. An (m,n,X , f)-IC of length N over Fq has a linear encoding map if
and only if there exists a matrix L ∈ FN×n

q such that for each i ∈ [m], there exists a
vector u(i) ∈ Fn

q satisfying

Supp(u(i)) ⊆ Xi (4.1)

u(i) + ef(i) ∈ rowsp(L). (4.2)
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Remark 4.2.7. The lemma above implies the existence of a vector b(i) ∈ FN
q such that

b(i)L = u(i) + ef(i), in which case the receiver at i retrieves

xf(i) = ef(i)x
T = b(i)LxT − u(i)xT = b(i)y − u(i)xT

Xi
.

As consequence we obtain the following corollary.

Corollary 4.2.8. Let I(m,n,X , f) be an instance of the ICSI problem, and H its
hypergraph. Then the optimal length of a q-ary linear I-IC is minrkq(H).

Remark 4.2.9. Finding such an L with minimum number of rows by a careful selection
of u(i)s is a difficult task (in fact, the corresponding decision problem is NP-complete
[BYBJK06, Pee96]), which, however, yields a linear coding scheme with minimum
number of transmissions.

4.2.2 Clique-covering bound and circuit-packing bound

Methods for constructing index codes (i.e. upper bounds for index coding) can be
broadly separated in two categories: graph theoretic methods and algebraic methods
relying on rank minimization. Here we report two upper bounds coming from graph
theoretic methods.

The first comes from the well-known fact that all the users forming a clique in the
side information digraph can be simultaneously satisfied by transmitting the sum of
their packets [BK98]. This idea shows that the number of cliques required to cover
all the vertices of the graph (the clique cover number) is an achievable upper bound.

A lower bound on the min-rank of a (di)graph was given in [BYBJK06]. An acyclic
(di)graph has min-rank equal to its order (see for instance [BYBJK06]) and for any
subgraph G ′ of a graph G we have

minrkq(G ′) ≤ minrkq(G).

Let M be a matrix that fits G, the sub-matrix M ′ of M restricted on the rows and
columns indexed by the vertices in V(G ′) is a matrix that fits G ′. These two results
can be summarize in the following theorem.

Theorem 4.2.10 (Sandwich property). Let G be a (di)graph. Then

α(G) ≤ minrkq(G) ≤ cc(G).

Instead of covering with cliques, one can cover the vertices with circuits. In
[CASL11] was introduced the so called circuit-packing bound. This bound was
implicitly introduced by the authors. Indeed, Chaudhry and Sprintson construct a
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linear index code partitioning the graph of the ICSI instance in disjoint circuits. The
same bound was also given in the work of Dau et al. [DSC14]. Let ν(G) be the
circuit-packing number of G. Then

minrkq(G) ≤ n− ν(G),

where n is the order of the graph.
In general the two bounds are not comparable, here we report two cases when it

is possible to establish which is the lowest.

Proposition 4.2.11. Let G be a directed graph. If there exist ν(G) vertex-disjoint
circuits of order 2, i.e. Ci = (vi,1, vi,2) for i ∈ [ν(G)]. Then

cc(G) ≤ n− ν(G).

Proof. Consider the subgraph G ′ of G with V(G ′) = V(G) and the set of arcs containing
only the arcs relative to the circuits C1, . . . , Cν(G). Thus cc(G ′) = n− ν(G), in fact we
have n − 2ν(G) cliques composed only from single vertices, and ν(G) cliques of two
vertices. From the fact that G ′ is a subgraph of G with same vertices set, our claim
follows.

Example 4.2.12. Consider the graph as in Figure 4.2.12. It is easy to check that
ν(G) = 2, and we can obtain this considering 2 disjoint circuits of order 2 in the clique
composed by the vertex 1, 2, 3, 4. So we have cc(G) = 2 and n− ν(G) = 3.

4

1

5

2

3

Figure 4.2: graph G

Proposition 4.2.13. Let G be a directed graph with at most two circuits of order 2.
Then

n− ν(G) ≤ cc(G).

Proof. It follows from the fact that if the two circuits are vertex-disjoint we have
at least n − 2 cliques and ν(G) ≥ 2. Otherwise the cliques are at least n − 1 and
ν(G) ≥ 1.

Example 4.2.14. Consider the graph as in Figure 4.2.14. It is easy to check that
ν(G) = 3. So we have cc(G) = 8 and n− ν(G) = 6.
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Figure 4.3: graph G

4.2.3 Nonlinear Index Coding Outperforming the Linear Optimum

The graph parameter minrkq(G) completely characterizes the length of an optimal
linear index code. Bar-Yossef et al. [BYBJK06, BYBJK11] showed that in various
cases linear codes attain the optimal word length, and they conjectured that the min-
imum broadcast rate of a graph G was minrk2(G) also for non-linear codes. Lubetzky
and Stav in [LS09] disproved this conjecture.

Definition 4.2.15. Let G be a (di)graph related to an ICSI instance I. The broadcast
rate βq(G) over Fq of an IC (not necessarily linear) is the minimum number of symbols
of Fq necessary to encode. Moreover the minimum broadcast rate β(G) is the minimum
broadcast possible over all Fq, that is

β(G) = inf
q
βq(G).

By definition it results β(G) ≤ βq(G) ≤ minrkq(G).
The result obtained by Lubetzky and Stav is the following.

Theorem 4.2.16 ([LS09]). For any ε > 0 and any sufficient large n there is an
n-vertex graph G such that:

1) any linear IC for G over some field Fq requires
√
n symbols, i.e. minrkq(G) ≥√

n,

2) there exists a non-linear IC using nε symbols that is β(G).

In the works of Alon et al. [ALS+08] and Shanmugam et al. [SDL14], it turns
out that the idea based on coloring the vertex of the complement of the graph G
lead to a family of stronger bounds on β(G), starting with an LP relaxation called
fractional chromatic number [ALS+08] and the stronger fractional local chromatic
number [SDL14]. Let χ(G) denotes the chromatic number of a graph we recall that
χ(Ḡ) = cc(G). So denoting with χf (G) and χl

f (G) the fractional chromatic num-
ber and the fractional local chromatic number, respectively, we obtain the following
theorem.

Theorem 4.2.17 ([ALS+08, SDL14]).

β(G) ≤ χl
f (G) ≤ χf (G).
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4.2.4 Error correction in ICSI problem

Dau et al. in [DSC13] studied the case that the transmitted symbols are subject
to errors, introducing the error-correcting index codes (ECICs). In this model, given
an I(m,n,X , f)-IC the sender S transmits the vector E(x) and for each i ∈ [m], Ri

receives
yi = E(x) + εi ∈ FN

q .

Definition 4.2.18. An I(m,n,X , f)-IC over Fq of length N is called δ-error cor-
recting (referred to as an (I, δ)-ECIC) if there is is an encoding function

E : Fn
q → FN

q ,

such that for each receiver Ri, i ∈ [m], there exists a decoding function

Di : FN
q × F|Xi|

q → Fq,

satisfying

∀x ∈ Fn
q and ∀εi ∈ FN

q , w(εi) ≤ δ : Di(E(x) + εi,xXi
) = xf(i).

The code is called linear if E is Fq-linear.

Given an ICSI instance I(m,n,X , f), and H its hypergraph, for each i ∈ [m], we
define the following set:

Yi := [n] \ Xi ∪ {f(i)} and Zi := [n] \ Xi = Yi ∪ {f(i)}.

A necessary and sufficient condition for a matrix L to correspond to a ECIC is
the following.

Lemma 4.2.19 ([DSC13]). The matrix L corresponds to an (I, δ)-ECIC over Fq if
and only if for each i ∈ [m]

w(LZivT
Zi
) ≥ 2δ + 1

for each v ∈ Fn
q satisfying Supp(v) ⊂ Zi and vf(i) 6= 0.

Clearly any (I, δ)-ECIC can detect up to 2δ errors. The following Lemma is
equivalent to Lemma 4.2.6.

Lemma 4.2.20. An (m,n,X , f)-IC of length N over Fq has a linear encoding map
if and only if there exists a matrix L ∈ FN×n

q such that for each i ∈ [m],

Lf(i) /∈ colsp(LYi).
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4.2.5 α-bound, κ-bound and Singleton bound

In [DSC13] the authors report some bounds on the optimal length of an ECIC,
which we report in the following two results. Let

J (H) =
⋃
i∈[m]

{{f(i)} ∪ Yi : Yi ⊆ Yi}.

Definition 4.2.21. A subset H of [n] is called a generalized independent set
in H if every nonempty subset K of H belongs to J (H). The size of a maximum
generalized independent set in H is denoted by α(H).

We denote by Nq(I, δ) the optimal length N of an (I, δ)-ECIC and by Nq(k, d)

the optimal length of a k-dimensional linear code over Fq of minimum distance d.

Theorem 4.2.22 (α-bound and κ-bound). Let H be the side information hypergraph
of the ICSI instance I. Let κq = minrkq(H). Then an ECIC for the instance I
satisfies

Nq(α(H), 2δ + 1) ≤ Nq(I, δ) ≤ Nq(κq, 2δ + 1).

It is shown in the example below that these inequalities can be strict.

Example 4.2.23. Let q = 2, m = n = 5, δ = 2, and f(i) = i for all i ∈ [m]. Assume

X1 = {2, 5},X2 = {1, 3},X3 = {2, 4},X4 = {3, 5},X5 = {1, 4}.

Let H the associated hypergraph. Then we have

J (H) = {{1}, {1, 3}, {1, 4}, {1, 3, 4}, {2}, {2, 4}, {2, 5},
{2, 4, 5}, {3}, {1, 3}, {3, 5}, {1, 3, 5}, {4}, {1, 4},
{2, 4}, {1, 2, 4}, {5}, {2, 5}, {3, 5}, {2, 3, 5}}

.

It is easy to verify that α(H) = 2. It follows from [BYBJK11, Theorem 9] that
minrk2(H) = 3. From [SS06] we have N2(2, 5) = 8, N2(3, 5) = 10 and from [DSC13]
N2(H, 2) = 9.

Theorem 4.2.24 (Singleton bound). Let H be the side information hypergraph of
the ICSI instance I. Let κq = minrkq(H). Then an ECIC for the instance I satisfies

Nq(I, δ) ≥ κq + 2δ

An implicit upper bound on the optimal length of the ECICs is based on con-
structing a random ECIC.

Theorem 4.2.25. Let I = (m,n,X , f) be an instance of the ICSI problem. Then
there exists a linear (I, δ)-ECIC over Fq of length N if∑

i∈[m]

qn−|Xi|−1 <
qN

Vq(n, r)
.
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4.2.6 Syndrom decoding

Consider the (I, δ)-ECIC over Fq based on a matrix L. Suppose that the receiver
Ri, i ∈ [m], receives the vector

yi = LxT + εi, (4.3)

where LxT is the codeword transmitted by S, and εi is the error pattern affecting this
codeword. In the classical coding theory, the transmitted vector c, the received vector
y, and the error pattern e are related by y = c + e. Therefore, if y is known to the
receiver, then there is a one-to-one correspondence between the values of unknown
vectors c and e, whenever it occurs at most bd−1

2
c errors. For index coding, however,

this is no longer the case.
From (4.3), we have

yi = Lf(i)xf(i) + LXixT
Xi

+ LYixT
Yi
+ εi.

and
yi − LXixT

Xi
− εi ∈ Spanq{Lf(i) ∪ {Lj}j∈Yi

}.

Let C(i) = Spanq{Lf(i) ∪ {Lj}j∈Yi
}, and let H(i) be a parity check matrix of C(i).

We obtain that
H(i)εi = H(i)(yi − LXixT

Xi
).

Let βi be a column vector defined by

βi = H(i)(yi − LXixT
Xi
).

Observe that each Ri is capable of determining βi. Thus we have the following
decoding procedure for Ri

Imput: yi,xXi
, L.

Step 1: Compute
H(i)(yi − LXixT

Xi
) = βi. (4.4)

Step 2: Find lowest weight solution ε̄ of

H(i)ε̄ = βi. (4.5)

Step 3: Given x̂Xi
= xXi

solve the system for x̂f(i)

yi = Lx̂T + ε̄. (4.6)

Remark 4.2.26. Step 2 is computationally hard. Indeed, the problem of finding ε̄ over
F2 of the lowest weight satisfyingH(i)ε̄ = βi, for a given binary vector βi corresponds to
the decision problem coset weights, which was shown by Berlekamp et al. [BMVT78]
to be NP-complete.
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In this chapter we extend the so-called sandwich property to the min-rank of a
hypergraph, improving in some case also the clique-covering bound for the digraphs.
Then we characterize the digraphs that have extreme min-rank n−1 over a sufficiently
large finite field, obtaining also that the problem of deciding whether the min-rank of
a digraph is equal to n−1 over a field of cardianlity q > n can be solve in polynomial
time. In the last part we report a bound on the length of an index code whenever a
t-design is contained in the side information.

5.1 Sandwich property for hypergraphs

In this section we consider hypergraphs H = (V , E) such that for all nodes i ∈ V
there exists a hyperarc e ∈ E with tail v. If H does not satisfy this condition we
can reduce H to the hypergraph H′ obtained from H removing all vertices that are
not tail of any hyperarc. Then we have that minrkq(H) = minrkq(H′). Indeed, any
matrix that fits H can be obtained from a matrix that fits H′ adding the columns
related to the deleted vertices. These columns can be zero so the rank is the same.

A hypergraph H = (V , E) can be associated with the directed graph GH = (V , E ′)
defined in the following way. For each directed edge (i, V ) ∈ E there will be |V | di-
rected edges (i, v) ∈ E ′, for v ∈ V . It is straightforward that minrkq(GH) ≤ minrkq(H)
(under the previous assumption on H).

The last inequality in Theorem 4.2.10 is called the clique-covering bound for
min-rank. If we have a hypergraph H, and let GH be the related (di)graph. Then we
cannot use the clique number cc(GH) to obtain a bound on the min-rank of H.

Example 5.1.1. Let q = 2, n = 3, m = 4, f(i) = i for i ∈ [3] and f(4) = 1. Assume

X1 = {x3}, X2 = {x1, x3}, X3 = {x1, x2}, X4 = {x2}.

LetH = H(4, 3,X , f). Then it is easy to check that minrk2(H) = 2 and minrk2(GH) =
cc(GH) = 1. In Figure 5.1 we have the graph GH and the hypergraph H.

Remark 5.1.2. Let G = (V , E) be a (di)graph. Then

cc(G) = min{|P| | P is a partition of V composed by independent sets of Ḡ}.
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1

2 3

R1R4

R2

R3

(a) Hypergraph H

1

2 3

(b) Graph GH

Figure 5.1: Graphs of the Example 5.1.1

In fact, let P be a partition of V with independent sets of the graph Ḡ. Then each
set of the partition form a clique in G, so

cc(G) ≤ |P|.

Vice versa, the set of vertices in the same clique form an independent set of Ḡ.

Let H = (V , E) be a directed hypergraph we can always define an ICSI instance
(m,n,X , f), as in the following:

• n = |V| and m = |E|;

• let the vertices be labelled {v1, . . . , vn} and the blocks be labelled {e1, . . . , em},
then f(i) = j if j is the tail of ei and the set Xi is the head of ei for all i ∈ [m].

Remark 5.1.3. Let H be a hypergraph corresponding to an instance of the ICSI
problem. Consider now the graph GH̄, we have that if there are no arcs between i and
j, for some i, j ∈ [n], then i /∈ Yl, for all l ∈ f−1(j), and j /∈ Yh, for all h ∈ f−1(i).

We report, now, our result on the clique-covering bound for the hypegraphs.

Theorem 5.1.4. Let H = (V , E) be a hypergraph and H̄ its complement. Then

minrkq(H) ≤ cc(ḠH̄).

Moreover, if the cardinalities of the edges’ heads of H̄ are less than cc(ḠH̄) − 1.
Then

minrkq(H) ≤ cc(ḠH̄)− 1.

Proof. We can suppose that H is related to an (m,n,X , f)-ICSI instance. Let P be a
partition of V composed by independent sets of GH̄. Then we can construct a matrix
L such that two columns Li, Lj are equal if i, j are in the same set of the partition and
are linearly independents if i, j do not lie in the same set of the partition. Thus, such
a matrix can be L ∈ F|P|×n

q with |P| columns linearly independents. L is related to
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the (m,n,X , f)-ICSI instance from the Lemma 4.2.20 and the remark above. From
Remark 5.1.2 we obtain the bound on the min-rank of the hypergraph.

Now suppose that for each edge e of H̄ we have |U | < cc(ḠH̄)− 1, where U is the
head of e . Then we need, only, to construct cc(ḠH̄) vectors cc(ḠH̄)−1 by cc(ḠH̄)−1

linearly independents. These vectors can be of length cc(ḠH̄) − 1, e. g. we can use
the vectors

(1, 0, . . . , 0︸ ︷︷ ︸
cc(ḠH̄)−1

), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (1, 1, . . . , 1).

If n = m, then minrkq(H) = minrkq(GH) and GH̄ = ḠH. So we obtain the following
Corollary.

Corollary 5.1.5. Let G be a directed graph. If the out-degree of the vertices of Ḡ are
less than cc(G)− 1, then

minrkq(G) ≤ cc(G)− 1.

Remark 5.1.6. For the case of a directed graph the Corollary 5.1.5 cannot be deduced
from the Theorem 4.2.10. In [Hae78] the proof of Theorem 4.2.10 is based on the
construction of the matrix A = (ai,j), where

ai,j =

{
1 if i, j same clique
0 otherwise

.

This matrix fits the directed graph G and rank(A) = cc(G). For the Corollary
5.1.5 we do not need to construct a matrix that fits G, but only a matrix such that
the rows satisfy the property of Lemma 4.2.20.

Example 5.1.7. Let G be a circuit of order n. We have that cc(G) = n, in fact there
are no clique of order greaten than 1. Moreover, we note that for any i ∈ V(Ḡ) with
i ≤ n− 1 (i, j) ∈ E(Ḡ) if and only if j 6= i and j 6= i+ 1, and for i = n (n, j) ∈ E(Ḡ)
if and only if j 6= n and j 6= 1. That implies out-degree of i is equal to n − 2 for all
i ∈ V(Ḡ), from Corollary 5.1.5, we have minrkq(G) ≤ n− 1. In that case we have the
equality over any fields (see for instance [DSC14]).

5.2 On directed graphs with min-rank one less than the order

Recalling that τ(G) is the minimum number of vertices necessary to remove from
G to obtain an acyclic subgraph, we have n− τ(G) = α(G), thus

n− τ(G) ≤ minrkq(G) ≤ n− ν(G)

85



Chapter 5. On the optimal length of Index Codes

1 2 3 . . . n

Figure 5.2: Circuit G

over any finite field Fq. In this section we characterize the graphs with min-rank one
less than the order over finite fields with cardinality grater than n.

Lemma 5.2.1. Let G = (V , E) be a directed graph of order n such that there exist
i1, i2 ∈ V with

(1) (i1, i2) ∈ E and (i2, i1) /∈ E

(2) degO(i1) = 1.

Let G ′ = (V ′, E ′) with V ′ = V \ {i1} and E ′ = (E ∪ {(j, i2) | (j, i1) ∈ E}) \ {(i1, i2)}.
Then

minrkq(G) = minrkq(G ′) + 1

for any q.

Proof. Let M = (mi,j) be a matrix that fits G of minimum rank. W.l.o.g. we can
suppose i1 = 1 and i2 = 2. then the first two rows of M are

M1 = (1, α, 0, . . . , 0)

and
M2 = (0, 1,m2,3, . . . ,m2,n).

If α = 0 then it is easy to check that deleting the first row and the first column of M
we obtain M ′ of rank rank(M)− 1 that fits G ′.

If α 6= 0, we can suppose that the rows M1,M2, . . . ,Mminrkq(G) are linearly inde-
pendents.

Denoting the vertices of G ′ with {i − 1 | for i ∈ V \ {1}}, that is the vertex 2

becomes 1, 3 becomes 2 and so on, we construct the matrix M ′ such that the i-th
row is obtained by the i+ 1-th row of M in the following way

M ′
i = (mi+1,1 +mi+1,2,mi+1,3, . . . ,mi+1,n)

for i = 1, . . . ,minrkq(G)− 1. For i = minrkq(G), . . . , n− 1 we define

M ′
i = (mi+1,1 +mi+1,2 − λ1(1 + α),mi+1,3, . . . ,mi+1,n)
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where λ1 is the coefficient of M1 such that Mi+1 =
∑minrkq(G)

r=1 λrMr. The matrix M ′

fits G ′, so
minrkq(G ′) ≤ rank(M ′) ≤ minrkq(G)− 1.

Vice versa, let M ′ = (m′
i,j) be a matrix that fits G ′ of rank minrkq(G ′) and the

rows M ′
1,M

′
2, . . . ,M

′
minrkq(G′)

are linear independents. Let I = {j | (j, 1) ∈ E} be the
set of vertices of G with outgoing arcs directed to 1. We construct the matrix M such
that

M1 = (1,−1, 0, . . . , 0),

Mi = (m′
i−1,1, 0,m

′
i−1,2, . . . ,m

′
i−1,n−1)

for i = 2, . . . ,minrkq(G ′) + 1 and i ∈ I, and

Mi = (0,m′
i−1,1,m

′
i−1,2, . . . ,m

′
i−1,n−1)

for i = 2, . . . ,minrkq(G ′) + 1 and i /∈ I. For i > minrkq(G ′) + 1 we have that the
i− 1-th row of M ′ is given by

M ′
i−1 =

minrkq(G′)∑
r=1

λrM
′
r,

with λr ∈ Fq, thus we put

Mi =
(
m′

i−1,1, 0,m
′
i−1,2, . . . ,m

′
i−1,n−1

)
if i ∈ I, and we obtain

Mi = λM1 +

minrkq(G′)+1∑
r=2

λr−1Mr

where λr are the coefficient in the combination of M ′
i−1, w.r.t the first rows of M ′,

and λ =
∑

r /∈I λr−1.
If i /∈ I

Mi =
(
0,m′

i−1,1,m
′
i−1,2, . . . ,m

′
i−1,n−1

)
and

Mi = λM1 +

minrkq(G′)+1∑
r=2

λr−1Mr

where λ = −
∑

r∈I λr−1.
M fits G and

minrkq(G) ≤ rank(M) ≤ minrkq(G ′) + 1.
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Example 5.2.2. Let G and G ′ be two graphs as in Figure 5.2.2. The nodes 1 and 2

of G satisfy the condition (1) and (2) of the lemma above.
So we can reduce G to G ′, in fact consider the matrix

M =


1 −1 0 0

0 1 1 1

1 0 1 1

1 0 1 1


which fits G. We have M3 =M4 =M1 +M2, constructing M ′ as in the lemma above
we obtain

M ′ =

 1 1 1

1 1 1

1 1 1

 .
M ′ fits G ′. Vice versa from M ′ we obtain M , and rank(M) = rank(M ′) + 1.

3

4

12

(a) G

2 13

(b) G′

Figure 5.3: Contraction

Here we report a proposition that will be proved in a more general case in the
next chapter (see Corollary 6.3.4).

Proposition 5.2.3. Let G be a graph of order n. Then

minrkq(G) ≤ n−min
v∈V

degO(v),

for any q > n.
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Lemma 5.2.4. Let G be a directed graph of order n such that τ(G) = 2. Then
minrkq(G) = n− 2, for any q > n.

Proof. We need only to prove minrkq(G) ≤ n− 2.
W.l.o.g. we can suppose that there does not exist i ∈ V with out-degree less than

1, otherwise we can discharge the node and consider the subgraph without i, and the
min-rank of G is the min-rank of the subgraph plus 1.

From the fact τ(G) = 2 we can have ν(G) = 1, 2. If it is equal to 2 then we have
our claim immediately. So, assume ν(G) = 1. We can apply, now, Lemma 5.2.1,
iteratively. Note that any time that we reduce G we obtain G ′ with τ(G ′) = 2 and
ν(G ′) = 1, in fact any time that we reduce the graph we only shorten the circuits that
pass trough the node that we delete, and we do not create any new circuit from the
fact that the out degree of the node is 1.

When we cannot apply any more the Lemma 5.2.1, then we can have two possible
cases:

1 the out degree of each node of the reduced graph G ′ is becamed at least 2,

2 there exists i1 with out degree 1 and (i1, i2), (i2, i1) ∈ E ′.

This last case is not possible, in fact if we consider the circuit C = (i1, i2), from
τ(G ′) = 2 we have that there exists a circuit C ′ which, removing i2, is not broken.
Then, C ′ does not pass trough i1 other wise it has to pass trough i2. Then C and C ′

are disjoint, but this is not possible because ν(G ′) = 1.
So, reducing G we obtain G ′ with k less nodes and all nodes have out degree at

least 2. From the proposition above and Lemma 5.2.1 it follows

minrkq(G) = minrkq(G ′) + k ≤ n− 2.

We have now our main result of this section.

Theorem 5.2.5. Let G a graph of order n and q > n. Then minrkq(G) = n − 1 if
and only if τ(G) = 1

Proof. If τ(G) = 1 then ν(G) = 1 and we have minrkq(G) = n− 1.
Vice versa assume by contradiction that τ(G) ≥ 2, then we can consider a subgraph

G ′ of G with τ(G) = 2. From Lemma 5.2.4 we have our claim.

This last theorem implies that the problem to decide whether a digraph has min-
rank n− 1, over a sufficiently large field, can be solved in polynomial time, using the
Depth-first search algorithm (see for instance [CSRL01]), which verify in a polynomial
time if a graph is acyclic.
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Corollary 5.2.6. Let D be a digraph of order n and q > n. Then deciding whether
minrkq(D) = n− 1 can be done in polynomial time (O(n3)).

In the following table we report the values of the min-rank for graphs and directed
graphs with near-extreme min-rank (i.e. 1, 2, n− 2, n− 1 and n).

Figure 5.4: Forbidden subgraph

Min-rank Graph G Directed graph D
1 G is complete (trivial) D is complete (trivial)
2 if Ḡ is 2 colorable [Pee96] for q = 2, if D̄ is 3-fair col-

orable [DSC14]
n-2 G has maximum matching

2 and does not contain the
graph in Figure 5.2 [DSC14]

unknown

n-1 G is a star graph [DSC14] for q > n, τ(D) = 1 Theo-
rem 5.2.5

n G has no edges (trivial) D is acyclic (trivial)
[BYBJK06]

5.3 A bound from t-designs

In this section we study the case when it is possible to individuate an incident
structure in the side information. From that we obtain a bound on the min-rank of
the hypergraph, when the incidence structure is a 2 design. Moreover we study the
particular case when the design is a projective plane, i. e. a 2-(n2 + n + 1, n + 1, 1)

design.

Definition 5.3.1. We said that an instance, (m,n,X , f), of the ICSI problem con-
tains an incident structure S = (P ,B) if

1) P = [n] and |B| ≤ m;

2) for each i ∈ [m] there exists B ∈ B such that f(i) ∈ B and B \ {f(i)} ⊆ Xi.

More over we said that the instance coincides with the incident structure S if it is
satisfy
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2′) for each i ∈ [m] there exists B ∈ B such that f(i) ∈ B and B \ {f(i)} = Xi.

We immediately obtain the following proposition.

Proposition 5.3.2. Let (m,n,X , f) be an instance of ICSI problem and H let be the
corresponding hypergraph. If the instance contains a 2-(n, k, λ) design D = (P ,B).
Then for all q a power of a prime p such that p divides the order of D we have

minrkq(H) ≤
m+ 1

2
.

Proof. Let D be the incident matrix of D. Then for the Theorem 4.1.10 we have that
the p-rank of D is less or equal to m+1

2
.

Now, it is easy to check that D fits H, so

minrkq(H) ≤ rankq(D) ≤ rankp(D)

and that concludes the proof.

Remark 5.3.3. To compute the min-rank of a hypergraph is an NP-hard problem
[Pee96]. When there exists a 2-design as in Proposition 5.3.2 it is possible to have
a bound on this value and we can use the linear independents rows of its incident
matrix to decrease the number of transmission.

Example 5.3.4. Consider the instance of the ICSI problem I given by n = m = 7,
and f(i) = i for i = 1, . . . , 7. Let the side information be

X1 = {2, 3}, X2 = {6, 7}, X3 = {5, 7}, X4 = {2, 5},

X5 = {1, 6}, X6 = {3, 4}, X7 = {1, 4}.

Consider the blocks

B1 = {1, 2, 3}, B2 = {2, 6, 7}, B3 = {3, 5, 7}, B4 = {2, 4, 5},

B5 = {1, 5, 6}, B6 = {3, 4, 6}, B7 = {1, 4, 7}

These blocks form the Fano plane as in Figure 5.3.4. This is a 2-(7, 3, 1) design
of order 2 and the design is contained in the side information. The 2-rank of the
design is 4. Then we can consider 4 linear independent rows of the incident matrix of
the Fano plane, and encode the message using those. That permits to decrease the
number of transmission from 7 to 4.
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Figure 5.5: Fano plane

5.3.1 Security with projective planes

Here we consider the case when an instance (m,n,X , f) of the ICSI problem
contains a 2-(n2 + n+ 1, n+ 1, 1) design, and the matrix corresponding to the index
code is composed from the independent rows of the incident matrix of the design. We
recall that a 2-(n2+n+1, n+1, 1) design has order n and the code of the design over
Fp, with p a prime number s. t. p divides n, has minimum distance equal to n + 1

(Theorem 4.1.12).

Theorem 5.3.5. If the instance I of the ICSI problem coincides with the 2-(n2 +

n + 1, n + 1, 1) design, then each receiver Ri with i ∈ [m] it is not able to recover a
massage xj /∈ Xi ∪ {f(i)}.

Proof. Let D be the 2-(n2 +n+1, n+1, 1) design. Suppose that Ri wants to recover
xj /∈ Xi ∪ {f(i)}. For the Lemma 3.2.3 it is able to do so if and only if there exists a
vector u ∈ FN

p , N = n2+n+1, such that Supp(u) ⊆ Xi∪{f(i)} and u+ej ∈ C(D). If
this vector is a codeword of the code, at least n+1 positions are different from 0. Now
consider the vector 1Xi

+ef(i) ∈ C(D), where with 1Xi
we means the vector in FN

p with
1’s in the positions contained in Xi. We have |Supp(u+ ej) ∩ Supp(1Xi

+ ef(i))| ≥ n

and also there are at least 2 positions of u+ ej in this intersection that have the same
value (we can use only the p − 1 values of Fp \ {0} for these n positions). Suppose
that this value is α ∈ Fp \ {0}, then we have d(u+ ej, α(1Xi

+ ef(i))) ≤ n. So u+ ej

is not a codeword of C(D), that means that Ri is not able to recover xj.

Remark 5.3.6. Encoding with a matrix related to a projective plane guarantees the
privacy of the transmission.

Assume, now, the presence of an adversary A who can listen to all transmissions.
The adversary is assumed to possess side information {xh |h ∈ XA ⊆ [n]}. In [DSC12],
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5.3. A bound from t-designs

it is shown that if |XA| ≤ d(rowsp(L))− 2, then A is not able to recover an element
xj with j /∈ XA.

Now, consider an instance (m,n,X , f) of the ICSI problem containing a 2-(p2 +
p+ 1, p+ 1, 1) design, and suppose that to transmit the messages we use the matrix
L as above. Then we obtain the following result.

Theorem 5.3.7. If |XA| ≤ 2p−2 and for each block B of the design |XA∩B| ≤ p−1,
then A is not able to recover xj for all j /∈ XA.

Proof. If p is even, then the thesis follows from the fact that |XA| ≤ 1 = d− 2. Let p
be odd. We know,Theorem 4.1.13, that in the code related at the 2-(p2+p+1, p+1, 1)

design there are not codewords with weight in [p+2, 2p− 1]. To recover the message
xj, A needs a codewords of weight p+1. Those kinds of codewords are the codewords
related to some block B, that is ∑

i∈B

ei

and the multiplies of these.
So A recovers xj if and only if there exists u + ej ∈ C with Supp(u) ⊂ XA and

|Supp(u)| = p. Here C means the code of the projective space. Then Supp(u+ej) = B

for some block B, and so |(XA ∪ {j}) ∩B| ≥ p+ 1.
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Index Coding with Coded Side Information Problem

In this chapter we study the more general case where the side information can be
coded packets. That problem was introduced by Shum et al. in [SDS12], where a
linear index code with coded side-information can be found equivalently by solving a
system of multi-variable polynomial equations, which is difficult to solve in general.
Here, we extend the definition of min-rank at an instance of the index coding with
coded side information (ICCSI) problem, showing that this is the optimal length for a
linear index code related to the instance. Then we extend some results on the ECICs.

6.1 Broadcasting with coded side information

A simple example of the scenario is the following. The source node has three
packets x1, x2 and x3, which are elements in F2. There are three users. For i = 1, 2, 3,
user i wants packet xi. The transmitted packet is subject to independent erasures. It
is assumed that there are feedback channels from the users, informing the transmitting
node which packets are successfully received. Consider the following scenario. The
source node transmits packets x1, x2 and x3 in time slot 1, 2 and 3 respectively. At
the end of time slot 3, user 1 has packets x2 and x3, and user 2 has packets x1 and
x3, while user 3 fails to receive any packet. The source node in time slot 4 transmits
the coded packet x1 + x2, and hope that user 1 and user 2 can decode their packets.
Unfortunately, only user 3 can receive the coded packet x1 + x2 in time slot 4. There
is now a coding opportunity that utilizes the coded packet x1 + x2 in user 3s cache.
The source can send the sum x1+x2+x3 in time slot 5. If all three users can receive
x1 + x2 + x3 successfully, then all user can decode the required packets by linearly
combining with the packets received earlier (see Fig. 6.1).

We present the coded model as follows. There is a data vector x ∈ Fn
q , x =

(x1, . . . , xn). For each i ∈ [m], user Ri seeks some linear combination of the xi’s, say
rix

T for some ri ∈ Fn
q . A user’s cache comprises a pair (V (i),Λ(i))

V (i) ∈ Fdi×n
q and Λ(i) ∈ Fdi

q

related by the equation
Λ(i) = V (i)xT .
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Time slot Packet sent Received by R1? Received by R2? Received by R3?
1 x1 no yes no
2 x2 yes no no
3 x3 yes yes no
4 x1 + x2 no no yes
5 x1 + x2 + x3 yes yes yes

Figure 6.1: Illustration of utilizing coded packets as side information.

While the vector x is unknown to Ri, it is assumed that any vector in the row spaces
of V (i) can be generated by user Ri and for each vector v in the row space of V (i),
Ri can determine vxT using Λ(i). We denote the row space by X (i) := rowsp(V (i))

and the set of pairs (v,vxT ) by L(i) := {(v,vxT ) | v ∈ X (i)} for each i. The side
information of Ri is (X (i),L(i)). Similarly, the sender has the pair (X (S),L(S)) for
matrix

V (S) ∈ FdS×n
q and vector Λ(S) = V (S)xT ∈ FdS

q

and does not necessarily possess the vector x itself.
The user Ri requests a coded packet rix

T with ri ∈ X (S)\X (i). We denote by R
the m× n matrix over Fq with each ith row equal to ri. R represents the requests of
all m users. We denote by

X := {A ∈ Fm×n
q : Ai ∈ X (i), i ∈ [m]},

so that X = ⊕i∈[m]X (i) is the direct sum of the X (i) as a vector space over Fq. Similarly,
we write X̃ := ⊕i∈[m]X (S) = {Z ∈ Fm×n

q : Zi ∈ X (S)}.

Definition 6.1.1. An instance of an Index Coding with Coded Side Information
(ICCSI) problem is a list I = (m,n,X ,X (S), R) for some positive integers m,n,
matrix R ∈ X̃ , X (S) a dS-dimensional subspace of Fn

q and X = ⊕i∈[m]X (i) for
di-dimensional subspaces X (i) < Fn

q .

Definition 6.1.2. Let I = (m,n,X ,X (S), R) be an instance of an ICCSI problem
and let N be a positive integer. We say that the map

E : Fn
q → FN

q ,

is a code for I of length N if for each receiver Ri there exists a decoding map

Di : FN
q ×X (i) → Fq,

satisfying
∀x ∈ Fn

q : Di(E(x),v) = rix
T ,
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6.1. Broadcasting with coded side information

for some vector v ∈ X (i). E is called a linear code for I if E(x) = LV (S)xT for some
L ∈ FN×dS

q , in which case we say that L represents the code E.

Lemma 6.1.3. Let L ∈ FN×dS
q . Then L represents a linear index code of length N

over Fq for the instance I = (m,n,X ,X (S), R) if and only if for each i ∈ [m],

ri ∈ rowsp

([
V (i)

LV (S)

])
.

Proof. Let i ∈ [m] and let ri ∈ X (S). Suppose that y = LV (S)xT has been transmit-
ted. If

ri ∈ rowsp

([
V (i)

LV (S)

])
,

then there exist a ∈ Fqdi ,b ∈ FN
q such that ri = aV (i)+bLV (S). Then for any x ∈ Fn

q

we have
rix = aV (i)xT + bLV (S)xT = aΛ(i) + by.

Therefore, receiver Ri acquires rix
T .

Conversely, suppose that ri is not contained in the row space of the matrix[
V (i)

LV (S)

]
for some i ∈ [m]. Then for each u ∈ Fq, we have

rank


 ri u

V (i) Λ(i)

LV (S) y


 = 1 + rank

([
V (i) Λ(i)

LV (S) y

])

= 1 + rank

([
V (i)

LV (S)

])
= rank


 ri

V (i)

LV (S)


 .

In particular, the linear system

rix
T = u, V (i)xT = Λ(i), LV (S)xT = y

is consistent for each u ∈ Fq. It follows that

Pr(rix
T = u|V (i)xT = Λ(i), LV (S)x = y) =

1

q
, (6.1)

so in particular the side information of Ri conveys no information about rix
T to

Ri.

We remark that the sufficiency of the statement of Lemma 6.1.3 has already been
noted in [SDS12].

97



Chapter 6. Index Coding with Coded Side Information Problem

Given an instance I = (m,n,X ,X (S), R) over Fq, for each i ∈ [m] we define the
sets

Y(i) := X (i)⊥ and Z(i) := X (i)⊥\ri⊥,

where r⊥i is the vector space of the vectors orthogonal to ri.

Corollary 6.1.4. Let L ∈ FN×dS
q . Then L represents a linear index code of length N

over Fq for the instance I = (m,n,X ,X (S), R) if and only if rank(LV (S)zT ) ≥ 1 for
each i ∈ [m], and z ∈ Z(i).

Proof. Let z0 ∈ Z i, let LV (S)zT0 = w and let w ∈ Fq. Suppose that ri is not contained

in the row space of the matrix

[
V (i)

LV (S)

]
. Then as in the proof of Lemma 6.1.3, the

linear system
riz

T = w, V (i)zT = 0, LV (S)zT = w (6.2)

is consistent for every choice of w. In particular (6.2) has a solution z1 for w = 0,
in which case z1 ∈ r⊥i ∩ Y(i) = Y(i)\Z(i). Then z = z0 − z1 ∈ Z(i) and LV (S)z = 0.
It follows that if rank(LV (S)zT ) ≥ 1 then for each i ∈ [m], and z ∈ Z(i) then L is a
linear index code for the instance I. Conversely, if there exist a ∈ Fdi

q ,b ∈ FN
q such

that ri = aV (i) + bLV (S) then

riz
T = aV (i)zT + bLV (S)zT = bLV (S)zT 6= 0,

so that rank(LV (S)zT ) ≥ 1 for any z ∈ Z(i).

We extend now the definition of min-rank of an instance of the ICSI problem to
the ICCSI problem.

Definition 6.1.5. We define the min-rank of an instance I = (m,n,X ,X (S), R) of
the ICCSI problem over Fq to be

κq(I) = min{rankq(A+R) : A ∈ Fm×n
q , Ai ∈ X (i) ∩ X (S) < Fn

q , ∀i ∈ [m]}.

Similar to Corollary 4.2.8, the minimum length of an instance I of the ICCSI
problem over Fq is given by its min-rank.

Corollary 6.1.6. The length of an optimal linear code for an instance I of the ICCSI
problem Fq is κq(I).

Proof. Let I = (m,n,X ,X (S), R) be an instance of the ICCSI problem Fq. Let
A ∈ Fm×n

q with Ai ∈ X (i) ∩ X (S) for each i ∈ [m]. Suppose that A + R has rank
N . Since A,R ∈ X̃ , there exists Z ∈ Fm×dS

q of rank N satisfying A + R = ZV (S).
Furthermore, there exist B ∈ Fm×N

q and L ∈ FN×dS
q such that Z = BL. Then

R = A−BLV (S) so from Lemma 6.1.3 L represents a linear code of length N for the
instance I. The optimal length N is achieved for N = κq(I).
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The reader will observe of course that the classical ICSI problem is indeed a special
case of the index coding problem with coded side information. Setting V (S) to be the
n×n identity matrix, ri = ef(i) and V (i) to be the di×n matrix with rows V (i)

j = eij
for each ij ∈ Xi yields X (i) = Span{ej : j ∈ Xi}, so that Supp(v) ⊂ Xi if and only if
v ∈ X (i).

6.2 Error correction in the ICCSI problem

Definition 6.2.1. Let I = (m,n,X ,X (S), R) be an instance of an ICCSI problem
and let N be a positive integer. We say that the map

E : Fn
q → FN

q ,

is a δ-error correcting code for I of length N , and write (I, δ)-ECIC, if for each i-th
receiver there exists a decoding map

Di : FN
q ×X (i) → Fq,

satisfying
Di(E(x) +w,v) = rix

T

for all x ∈ Fn
q and w ∈ FN

q , w(w) ≤ δ for some vector v ∈ X (i). E is called a linear
code for I if E(x) = LV (S)xT for some L ∈ FN×dS

q , in which case we say that L
represents the linear (I, δ)-ECIC E.

Theorem 6.2.2. Let I = (m,n,X ,X (S), R) be an instance of an ICCSI problem and
let N be a positive integer. A matrix L ∈ FN×dS

q represents a linear (I, δ)-ECIC if
and only if for all i ∈ [m] we have

w
(
LV (S)zT

)
≥ 2δ + 1,

for all z ∈ Z(i).

Proof. For each x ∈ Fn
q , define

B(x, δ) = {y : y = LV (S)xT +w, w ∈ FN
q , w(w) ≤ δ}.

Then the receiver Ri can correct δ errors if and only if

B(x, δ) ∩B(x′, δ) = ∅

for each x,x′ ∈ Fn
q such that V (i)xT = V (i)x′T and rix

T 6= rix
′T
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This is equivalent to

LV (S)xT +w 6= Lx′T +w′, (6.3)

for all w,w′ ∈ FN
q with w(w) ≤ δ and w(w′) ≤ δ.

It is easy to check that

{w −w′ |w,w′ ∈ FN
q , w(w) ≤ δ, w(w′) ≤ δ} = {w |w ∈ FN

q , w(w) ≤ 2δ},

so letting z = x− x′, we see then (6.3) is equivalent to

LV (S)zT 6= w

for all z,w satisfying riz
T 6= 0, V (i)zT = 0 and w(w) ≤ 2δ.

In particular, Ri corrects δ errors if and only if

w(LV (S)zT ) ≥ 2δ + 1

for all z ∈ V (i)⊥ \ r⊥i .

Clearly any (I, δ)-ECIC detects up to 2δ errors.

6.2.1 α-bound, κ-bound and Singleton bound

In the case of the ICCSI problem we obtain the same α-bound, κ-bound and
Singleton bound given in Section 4.2.5. We first fix some further notation.

Define:

S(I) =
⋃
i∈[m]

Z(i) ⊂ Fn
q

and

J (I) = {U < Fn
q | U\{0} ⊂ S(I)}.

The maximum dimension of any subspace contained in J (I) is denoted by α(I).
We denote by Nq(I, δ) the optimal length N of an (I, δ)-ECIC and by Nq(k, d)

the optimal length ` of a k-dimensional Fq-linear code in F`
q of minimum distance d.

We have the following results.

Proposition 6.2.3. (α-bound)

Nq(α(I), 2δ + 1) ≤ Nq(I, δ).
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Proof. Let L ∈ FN×ds
q represent a linear (I, δ)-ECIC. Let U ∈ J (I) have dimension

k and let G be a rank k matrix in Fn×k
q such that U = {GzT : z ∈ Fk

q }. Let CU =

{LV (S)GzT : z ∈ Fk
q } ⊂ FN

q . Then for all non-zero z ∈ Fk
q we haveGzT ∈ Z(i) for some

i ∈ [m], and so w(LV (S)GzT ) ≥ 2δ + 1 for all non-zero zT ∈ Fk
q . This furthermore

implies that LV SG has rank k over Fq. It follows that CU is an Fq-[N, k, 2δ + 1]

code with N ≥ N(k, 2δ + 1). Choosing U of maximal dimension in J (I) for an
I(δ)− ECIC of optimal length we see that N(α(I), 2δ + 1) ≤ N (I, δ).

Setting δ = 0 in the above give the following as an immediate consequence.

Corollary 6.2.4.
α(I) ≤ κq(I).

Proposition 6.2.5. (κ-bound)

Nq(I, δ) ≤ Nq(κq(I), 2δ + 1).

Proof. Let L ∈ FN×dS
q be an encoding matrix for an optimal linear index code of

length N = κg(I) for I. Let φ : FN
q −→ FN ′

q be an Fq-monomorphism such that
C = φ(FN

q ) is an [N ′, N, 2δ + 1] linear code over Fq with N ′ = Nq(N, 2δ + 1). Then
LV (S)zT is non-zero for all z ∈ Z(i), i ∈ [m] and so w(φ(LV (S)zT )) ≥ 2δ+1 for all such
z. Then C is a linear (I, δ)-ECIC of length N ′ = Nq(κq(I), 2δ + 1) ≥ Nq(I, δ).

Recall from the Singleton bound we have k + 2δ ≤ N for any Fq − [N, k, 2δ + 1]

code. In particular, k + 2δ ≤ Nq(k, 2δ + 1).

Proposition 6.2.6. (Singleton bound for Index Codes)

Nq(I, δ) ≥ κq(I) + 2δ.

Proof. Let L ∈ FN×dS
q be a matrix for a linear with (I, δ)-ECIC. Suppose that N =

Nq(I, δ). Let L′ the matrix obtained by deleting any 2δ rows of L. By Theorem 6.2.2,
w
(
LV (S)zT

)
≥ 2δ + 1 for all i ∈ [m] and for all z ∈ Z(i), so that w

(
L′V (S)zT

)
≥ 1,

for all such z. So L′ is a linear index code of length N − 2δ for the instance I. Now
L′ has at least κq(I) rows so that κq(I) ≤ Nq(I, δ)− 2δ.

In the case that there exists an Fq-linear [N, κq(I), 2δ + 1] code that is MDS we
get Nq(κq(I), 2δ + 1) = κq(I) + 2δ.

Reed-Solomon codes are examples of MDS codes. In fact any extended generalized
Reed-Solomon code over Fq is an MDS code of length q + 1 [HP03, Theorem 5.3.4]
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so the existence of such codes is assured for such lengths. It is conjectured that any
Fq − [N, k, d] MDS code satisfies N ≤ q + 1 unless q is even and k = 3 or k = q − 1

(in which case N ≤ q + 2) [HP03].

Corollary 6.2.7. Suppose that q ≥ κq(I) + 2δ − 1. Then

Nq(I, δ) = κq(I) + 2δ.

Proof. If q ≥ κq(I) + 2δ − 1 then there exists an Fq-linear [q + 1, κq(I), 2δ + 1] MDS
code, namely an extended Reed-Solomon code. So, we obtain

κq(I) + 2δ ≤ Nq(I, δ) ≤ Nq(kq(I), 2δ + 1) = κq(I) + 2δ.

6.3 Random index coding

In this section we extend the random construction to the ICCSI problem case.
A proof of the following Lemma can be found in [HKM+03, Lemma 1]

Lemma 6.3.1. Let a, b be positive integers and let P be a polynomial over Fq of degree
less than or equal to ab, in which the largest exponent of any variable is at most a.
The probability that P equals zero is at most 1− (1− a/q)b for q > a.

Remark 6.3.2. Before proving the following theorem, we note that if X1, . . . , Xn are
independent uniformly distributed random variables that take their values over a field
Fq, then the random variable

Z` =
∑̀
i=1

αiXi,

for some ` ∈ [n], αi ∈ F×
q , has a uniform distribution.

This is easily shown by an inductive argument. Clearly P (Z1 = β) = 1
q

for any
β ∈ Fq since α1 6= 0. Moreover, for any ` ∈ [n], β ∈ Fq,

P (Z` = β) = P (Z`−1 = β − α`X`)

=
∑
γ∈Fq

P (X` = γ)P (Z`−1 = β − α`γ) =
1

q
.

Theorem 6.3.3. Let I = (m,n,X ,X (S), R) be an instance of an ICCSI problem and
let k = max{n − di : i ∈ [m]}. If the entries of a matrix L ∈ FN×dS

q are chosen
uniformly at random in Fq, then the probability that L represents a linear code for I
is at least (1−m/q)k, for q > m.
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Proof. From Theorem 6.2.2, if w
(
LV (S)zT

)
≥ 1 for each z ∈ Y (i) then L represents

a code for I. For each i ∈ [m], let Z(i) ∈ Fn×ki
q satisfy V (i)Z(i) = 0 and have

rank ki = n − di. Write L(i) = LV (S)Z(i). The matrix L represents a code for I if
L(i) is a full-rank matrix for each i ∈ [m], which holds if and only if there exists a
non-zero ki × ki minor M (i) of L(i). Since the entries of L are uniformly distributed,
so are the entries of L(i), from Remark 6.3.2. Now

∏
i∈[m]M

(i) may be viewed as

a polynomial in NdS variables of degree
∑
i∈[m]

ki ≤ mk with each variable appearing

with multiplicity at most m in any term. Then the probability that L represents a
code for I is the probability that

∏
i∈[m]M

(i) is non-zero, which from Lemma 6.3.1 is
at least (1−m/q)N , for q > m.

As consequence we obtain immediately the following bound on the min-rank of
an instance of the ICCSI problem.

Corollary 6.3.4. Let I = (m,n,X ,X (S), R) be an instance of the ICCSI problem.
The min-rank of the instance I, over a finite field Fq with q > m, satisfies

κq(I) ≤ N = max
i∈[m]

dim(Y(i)).

Remark 6.3.5. The corollary above implies the bound on the min-rank of a graph
given in Proposition 5.2.3.

We now give a result on the existence of a linear encoding of length N for (I, δ),
extending Theorem 4.2.25. Recall that Vq(N, s) denote the size of the set {x ∈ FN

q :

w(x) ≤ s}.

Theorem 6.3.6. Let I = (m,n,X ,X (S), R) be an Fq-linear index code and let L ∈
FN×dS
q for some positive integer N . The probability that L corresponds to an (I, δ) is

at least

1−
∑

i∈[m] q
(n−di−1)Vq(N, 2δ)

qN
.

In particular, there exists such a matrix L if∑
i∈[m]

q(n−di−1) <
qN

Vq(N, 2δ)
.

Proof. From Theorem 6.2.2, a matrix L ∈ FN×dS
q corresponds to an (I, δ) if and only

if for each i ∈ [m], w(LV (S)zT ) ≥ 2δ + 1 for any z ∈ Z(i). Now Y(i) = Y(i) ∩ r⊥i ⊕ B
for some 1-dimensional subspace B = Span{b}, with b ∈ Fn

q \r⊥i . Then any z ∈ Z(i)

has the form z = αb+w for some w ∈ Y (i)∩r⊥i and α non zero, so that w(LV (S)z) =

d(LV (S)bT , α−1LV (S)wT ).
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Let ΦL : Fn
q −→ FN

q : x 7→ LV (S)xT and let bΦ : FN×dS
q −→ FN

q : X 7→ XV (S)bT . If
d(LV (S)bT ,w) ≥ 2δ + 1 for all w ∈ ΦL(Y(i) ∩ r⊥i ), then w(LV (S)zT ) ≥ 2δ + 1 for all
z ∈ Z(i). Since ΦL(Y(i) ∩ r⊥i ) is an Fq-space of dimension at most (n− di − 1), there
are at most q(n−di−1)Vq(N, 2δ) vectors LV (S)bT ∈ Im(bΦ) ⊂ FN

q within distance 2δ of
ΦL(Y(i) ∩ r⊥i ). Thus the probability that there exists some z ∈ Z(i) ⊂ Fn

q such that
w(LzT ) ≤ 2δ is upper bounded by

q(n−di−1)Vq(N, 2δ)

|Im(bΦ)|
=

q(n−di−1)Vq(N, 2δ)

qN

The result now follows from the union bound.

Theorem 4.2.25 is extended by the following corollary, from Lemma 4.1.4.

Corollary 6.3.7. Let I = (m,n,X ,X (S), R) be an instance of the ICCSI problem.
Let q be any prime power and let λ be any rational number such that 0 < λ < 1−1/q.
Let N be any integer such that N−Hq(λ)N > logq

(∑m
i=1 q

ki−1
)
, where ki = dim(Y(i))

for i ∈ [m], and λN is an integer. Then choosing the entries of L ∈ FN×n
q uniformly

at random over the field Fq, the probability that L corresponds to a (I ′, δ)-ECIC, with
δ =

⌊
λN
2

⌋
, is at least

1−
m∑
i=1

qki−1

qN(1−Hq(λ))
.

Remark 6.3.8. Corollary 6.3.7 implies a sufficient condition for the existence of a
(I, δ)-ECIC, that is

N −Hq

(
2δ

N

)
> logq

(
m · qM

)
> logq

(
m∑
i=1

qki−1

)
, M = max

i∈[m]
dim(Y(i))− 1.

6.4 Decoding Schemes

6.4.1 Syndrome decoding revisited

In this section we take into account the classical case of ICSI problem where V (S)

is the identity matrix and Ri requests an uncoded packet.
In the algorithm given in Chapter 4.2, each time that we decode, we have to solve

the system (4.6). Here we report a possible modification of that procedure to avoid
this step. Let L ∈ FN×n

q be a matrix corresponding to a (I, δ)-ECIC, and suppose
that a receiver Ri, i ∈ [m], receives the message

yi = LxT + εi,
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where LxT is the codeword transmitted by S and εi is the error.
Now consider the two codes

C(i) = Spanq({Lf(i)} ∪ {Lj}j∈Yi
)

and

C(i) = Spanq({Lj}j∈Yi
).

Remark 6.4.1. For each receiver Ri, i ∈ [m], we have C(i) ⊆ C(i) with dim(C(i)) =

dim(C(i)) + 1. And C(i)⊥ ⊆ C(i)⊥ with dim(C(i)⊥) = dim(C(i)⊥) + 1. Then we can
consider H(i) a parity check matrix of C(i) of the form

H(i) =

[
h(i)

H(i)

]
. (6.4)

Where H(i)is a parity check matrix of C(i) and h(i) ∈ C(i)⊥ \ C(i)
⊥.

Moreover

H(i)L
f(i) = (sf(i), 0, . . . , 0)

T

where sf(i) ∈ Fq \ {0}.

We now describe the decoding procedure.

Step 1: Compute

H(i)(yi − LXixT
Xi
) = (αi, βi) (6.5)

where xf(i)sf(i) + h(i) · εi = αi and βi = H(i)εi.

Step 2: Find ε̄ with w(ε̄) ≤ δ such that

H(i)ε̄ = βi. (6.6)

Step 3: Compute

x̂f(i) = (αi − h(i) · ε̄)/sf(i). (6.7)

Theorem 6.4.2. If w(εi) ≤ δ. Then the procedure above has output xf(i).
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Proof. We have
H(i)εi = H(i)ε̄ = βi.

Then εi − ε̄ ∈ C(i) and w(εi − ε̄) ≤ 2δ, that means εi − ε̄ ∈ C(i).
So

(αi − h(i)ε̄)/sf(i) = (xf(i)sf(i) + h(i)(εi − ε̄)︸ ︷︷ ︸
0

)/sf(i) = xf(i).

Example 6.4.3. Let q = 2, m = n = 5, and f(i) = i for each i ∈ [5]. Assume

X1 = {2, 5},X2 = {1, 3},X3 = {2, 4},X4 = {3, 5},X5 = {1, 4}.

Suppose that for this instance of the ICSI problem is used the matrix

L =



1 0 1 0 1

1 1 1 1 0

1 1 0 0 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 0

0 1 1 1 1


.

That is a (I, 1)-ECIC.
Let x = (1, 1, 1, 1, 1), and LxT = (1, 0, 0, 1, 0, 0, 0).
Suppose now that R1 receives

yT
1 = (1, 0, 0, 1, 0, 1, 0).

Then ε1 = (0, 0, 0, 0, 0, 1, 0).
A parity check matrix of C(1) = Span{L3, L4} of the form (6.4) is

H(1) =


0 1 0 0 1 0 0

1 0 0 1 0 1 0

0 1 0 1 0 0 1

0 0 1 1 0 0 0

0 0 0 0 1 0 1

 .

We have
y1 − LX1xT

X1
= (0, 1, 1, 1, 0, 0, 0),

and

H(1)(y1 − LX1xT
X1
) = (1, 1, 0, 0, 0).
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So α1 = 1, and β1 = (1, 0, 0, 0). We obtain ε̄ = (1, 0, 0, 0, 0, 0, 0), from Step 2.
Now we compute x̂1 = (α1 − h(1) · ε̄)/s1 = (1− 0)/1 = 1 = x1.

Remark 6.4.4. In our algorithm we have to determine h(i) like in (6.4) solving the
system

[
Lf(i) LYi

]T
hT(i) =


1

0
...
0

 .
We can use the Gaussian elimination to solve the system.

6.4.2 Syndrome decoding for ICCSI problem

Now we extend the Syndrome decoding to the ICCSI problem.
Let L ∈ FN×dS

q be a matrix corresponding to a (I, δ)-ECIC, and suppose that a
receiver Ri, i ∈ [m], receives the message

yi = LV (S)xT + εi,

where LV (S)xT is the codeword transmitted by S and εi is the error.
Let v1, . . . ,vdi be a basis of X (i) and rix

T be the requested coded packet. Let
M(i) ∈ Fn×n

q be an invertible matrix such that

vjM(i) = ej for 1 ≤ j ≤ di, and riM(i) = ef(i)

for some f(i) /∈ [di]. Defining x′T =M−1
(i) x

T , we have

vjx
T = ejM

−1
(i) x

T = x′
j for 1 ≤ j ≤ di

and
rix

T = ef(i)M
−1
(i) x

T = x′
f(i).

Note that Ri already knows v1x
T , . . . ,vdix

T .

Lemma 6.4.5. Let E = Span{e1, . . . , edi}. Then for all z′ ∈ E⊥ with z′f(i) 6= 0

w(LV (S)M(i)z
′T ) ≥ 2δ + 1.

Proof. From Theorem 6.2.2 for all z ∈ Y (i) \ r⊥i we have

w(LV (S)zT ) ≥ 2δ + 1.

Let z′ ∈ E⊥ be such that z′f(i) 6= 0, then ejz
′T = 0 for 1 ≤ j ≤ di and ef(i)z

′T 6= 0.
Being ej = vjM(i) and ef(i) = riM(i) we have

vjM(i)z
′T = 0 for 1 ≤ j ≤ di, and riM(i)z

′T 6= 0,

thus z′MT
(i) ∈ Y (i) \ r⊥i and the claim follows.
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Define, now, the sets

X ′
i = {1, . . . , , di} and Y ′

i = [n] \ X ′
i ∪ {f(i)},

and let L′ = LV (S)M(i).
As in the previously subsection Ri can construct the parity check matrices H(i)

and H(i) of C(i) = Spanq({L′f(i)}∪{L′j}j∈Y ′
i
) and C(i) = Spanq({L′j}j∈Y ′

i
), respectively,

with

H(i) =

[
h(i)

H(i)

]
, (6.8)

where, as before, h(i) ∈ C(i)⊥ \ C(i)
⊥.

Analogously
H(i)L

′f(i) = (sf(i), 0, . . . , 0)
T

for some sf(i) ∈ Fq \ {0}, and the decoding scheme is

Step 1: Compute

H(i)(yi − L′X ′
ix′T

X ′
i
) = (αi, βi) (6.9)

where x′f(i)sf(i) + h(i) · εi = αi and βi = H(i)εi.

Step 2: Find ε̄ with w(ε̄) ≤ δ such that

H(i)ε̄ = βi. (6.10)

Step 3: Compute

x̂′f(i) = (αi − h(i) · ε̄)/sf(i). (6.11)

Remark 6.4.6. Note that Ri knows the matrix LV (S) and and the vector x′
X ′

i
so it is

able to perform Step 1.

Theorem 6.4.7. If w(εi) ≤ δ. Then the procedure above has output x′f(i).

Proof. It follows directly from Lemma 6.4.5 and from

yi =LV
(S)xT + εi = LV (S)M(i)M

−1
(i) x

T + εi

=L′x′T + εi = L′X ′
ix′T

X ′
i
+ L′Y ′

ix′T
Y ′
i
+ L′f(i)x′f(i) + εi.
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6.4.3 Decoding Index Codes over Matrix Channels

Error correction for index code in general is non-trivial. In the model presented
here, we assume that there is a data matrix X ∈ Fn×t

q to transmit, and for each
i ∈ [m], receiver Ri seeks some linear combination of the rows of X. Thus a matrix
Y is transmitted and that at any given sink, a matrix of the form Y + W is re-
ceived. Therefore the decoding algorithm of the additive matrix channel as described
in [SKK10] may be considered.

Recall that given an Fq-linear index code I(m,n,X ,X (S), R) with N×dS encoding
matrix L, each receiverRi requires L, V (S) and LV (S)X in order to retrieve its required
data riX. Employing the method of [SKK10], we let

A =

[
0v×v 0v×t

0N×v B

]
,

whereB = LV (S)X ∈ FN×t
q if LV (S) is known to each receiver andB = [LV (S)|LV (S)X] ∈

FN×(n+t)
q if LV (S) is not known to all receivers. Given an error matrixW of rank r ≤ v,

we write

W =

[
W11 W12

W21 W22

]
,

with W11 ∈ Fv×v
q , W21 ∈ FN×v

q , W12 ∈ Fv×t
q , W22 ∈ FN×t

q . If W11 has rank r then

r = rank(W11) ≤ rank

([
W11 W12

W21 W22

])
= rank(W ) = r,

so the rows of W21 are contained in the row space of W11. Therefore, TW11 = W21

for some T ∈ FN×v
q . Then

r = rank(W ) = rank(W11) + rank(TW12 −W22) = r + rank(TW12 −W22),

so we must have TW12 = W22. The matrix T can be easily computed, since the
submatrices W11,W21 are known to each receiver. Moreover, since W12 is also known,
the decoder retrieves B = −TW12 +W22 +B.

From Lemma 6.1.3, the matrix L encodes the I ′(m,n,X ,X (S), R) index code if
and only if for each i ∈ [m] there exist vectors u ∈ Fn

q , a ∈ Fdi
q and b ∈ FN

q such that

ri = aV (i) − bLV (S) and u = aV (i).

Once LV (S) and LV (S)X is known at receiver Ri, its requested data riX can be
computed as follows.

1. Choose u ∈ X (i). Equivalently, choose a ∈ Fdi
q and write u = aV (i).
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2. Solve ri + aV (i) = bLV (S) for some b ∈ FN
q .

3. Compute riX = bY − aΛ(i).

In practice, the decoder computes M = [A|B], the reduced-row echelon (RRE) form
of the matrix [

V (i) Λ(i)

LV (S) Y

]
and solves for x in xA = ri to retrieve riX = xB. In particular, if ri = ej for some
j ∈ [N ], then ri already appears as a row of A, and the corresponding row of B gives
the required vector sought.

In the event that rank(W11) < rank

([
W11

W21

])
, the decoder detects that error-

trapping has failed to occur. If rank(W11) = rank

([
W11

W21

])
< rank(W ), the de-

coder does not detect that error-trapping has failed, so a decoding failure will occur.
As noted in [SKK10] this probability is given by

Pf <
2r

q1+v−r
. (6.12)

If LV (S) is known to each receiver in advance of the transmission, so that the sender
has sent

A =

[
0v×v 0v×t

0N×v LV (S)X

]
,

if the index code I(m,n,X ,X (S), R) is δ error correcting the decoder may apply an
algorithm to determine ri from the received submatrix [W22 + LV (S)X].

When is requested an uncoded packet

In [SKK10] is given also the following alternative decoding scheme for the NC
problem. Let L ∈ Fn×n

q be the encoding (full rank) matrix and X ∈ Fn×n
q the data

matrix. Then if we transmit

A =

[
0v×v 0v×n 0v×n

0n×v L LX

]
,

we can directly detect if error-trapping has failed or not and decode computing the
RRE form of the received matrix A +W . Here we extend this decoding scheme on
the case of the ICSI and ICCSI problem, when it is requested a row of the message
X, i.e. ri = ej for some j ∈ [n].
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ICSI problem case

Remark 6.4.8. Let L be a matrix corresponding to an (m,n,X , f) instance of the ICSI
problem. The sender S sends the message Y = LX. Then a receiver Ri, i ∈ [m], is
interested to the vector Xf(i), and he is able to recover this, solving the system

LX̂ = Y,

with X̂Xi
= XXi

.
It means that the values of the variable X̂f(i) depends only on the values of the

variables X̂Xi
.

Now if we rewrite the system in the following form

L′X̂ ′ = Y, (6.13)

where

L′ =
[
Lf(i) LYi LXi

]
, (6.14)

and

X̂ ′ =

 X̂f(i)

X̂Yi

X̂Xi

 .
From Lemma 3.2.3, computing the reduced row echelon (RRE) form of the aug-

mented matrix of the system, that is [L′ |Y ], the receiver Ri obtains

RRE(L′ |Y ) =


1 0 . . . 0

0
... U U ′ Y ′

0

 ,
where U ∈ F(N−1)×|Yi|

q and U ′ ∈ FN×|Xi|
q . So to determine Xf(i) we have to compute

Y ′
1 − U ′

1 ·XXi
.

As before S sends

A =

[
0v×v 0v×t

0N×v B

]
,

where B = [L|LX] ∈ FN×(n+t)
q .

Given an error matrix W of rank r ≤ v, we write

W =

[
W11 W12 W13

W21 W22 W23

]
,
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with W11 ∈ Fv×v
q , W21 ∈ FN×v

q , W12 ∈ Fv×n
q , W22 ∈ FN×n

q , W13 ∈ Fv×t
q , W23 ∈ FN×t

q .
Suppose that error trapping successful, then considering a permutation σ such that
σ(L) = L′, with L′ as in (6.14) we can permute the columns of A+W to obtain

(A+W )′ =

[
W11 σ(W12) W13

W21 σ(W22 + L) W23 + LX

]
.

Computing the RRE form of (A+W )′ we obtain

RRE(A+W )′ =

[
Ŵ11 Ŵ12 Ŵ13

0 L̂′ Ŷ

]
,

for some Ŵ11 ∈ Fv×v
q in RRE form, Ŵ12 ∈ Fv×n

q , Ŵ13 ∈ Fv×t
q and where [L̂′|Ŷ ] =

RRE([L′|Y ]). So we correct the error and solve the system at the same time.

ICCSI problem case

Remark 6.4.9. As noted before if we consider the matrix[
LV (S) Y

V (i) Λ(i)

]
and we compute the RRE form then we obtain in the first columns block the rows
ef(i), so the corresponding row in the other columns block is the requested packet
Xf(i).

From remark above we have that for the ICCSI problem case if we have the
matrices A and W as above and error trapping is successful, then we can recover the
requested packet adding to the matrix A+W the extra rows

[
0 V (i) Λ(i)

]
obtaining W11 W12 W13

W21 W22 + LV (S) W23 + LV (S)X

0 V (i) Λ(i)

 .
Computing the RRE form of the obtained matrix we decode and solve the system at
the same time.
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Translation groups in small dimension

In this appendix we report some computational results about the classes of ele-
mentary abelian regular subgroups of AGL(V,+) up to dimension 6, giving also a
representative of each class.

n C’s |C| dim(UC)

3 2
|C1| = 1 3

|C2| = 7 1

Table A.1: Classes in AGL(F3,+)

Representatives:

C1 −→ T+

C2 −→ T◦ = 〈

 1 0 0

1 1

1

+ e1,

 1 0 1

1 0

1

+ e2, 1V + e3〉

n C’s |C| dim(UC)

4 2
|C1| = 1 4

|C2| = 105, 2

Table A.2: Classes in AGL(F4,+)

Representatives:

C1 −→ T+

C2 −→ T◦ = 〈


1 0 0 0

1 1 0

1 0

1

+ e1,


1 0 1 0

1 0 0

1 0

1

+ e2, 1V + e3, 1V + e4〉
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n C’s |C| dim(UC)

5 4

|C1| = 1 5

|C2| = 1085 3

|C3| = 6510 2

|C4| = 868 1

Table A.3: Classes in AGL(F5,+)

Representatives:

C1 −→ T+

C2 −→ T◦ = 〈


1 0 0 0 0

1 1 0 1

1 0 0

1 0

1

+ e1,


1 0 1 0 1

1 0 0 0

1 0 0

1 0

1

+ e2, 1V + e3, 1V + e4, 1V + e5〉

C3 −→ T◦ = 〈


1 0 0 0 0

1 0 1 1

1 1 1

1 0

1

+e1,


1 0 0 1 1

1 0 0 0

1 1 0

1 0

1

+e2,


1 0 0 1 1

1 0 1 0

1 0 0

1 0

1

+e3, 1V+e4, 1V+e5〉

C4 −→ T◦ = 〈


1 0 0 0 0

1 0 0 0

1 0 0

1 1

1

+ e1,


1 0 0 0 0

1 0 0 0

1 0 1

1 1

1

+ e2,


1 0 0 0 0

1 0 0 1

1 0 0

1 0

1

+ e3,


1 0 0 0 1

1 0 0 1

1 0 0

1 0

1

+ e4, 1V + e5〉

Representatives:

C1 −→ T+
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n C’s |C| dim(UC)

6 8

|C1| = 1 6

|C2| = 9765 4

|C3| = 234360 3

|C4| = 410130 3

|C5| = 8202260 2

|C6| = 218736 2

|C7| = 546844 2

|C8| = 1093680 2

Table A.4: Classes in AGL(F6,+)

C2 −→ T◦ = 〈



1 0 0 0 0 0

1 1 0 1 0

1 0 0 0

1 0 0

1 0

1


+ e1,



1 0 1 0 1 0

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1


+ e2,

1V + e3, 1V + e4, 1V + e5, 1V + e6〉

C3 −→ T◦ = 〈



1 0 0 0 0 0

1 0 1 1 0

1 0 1 1

1 0 0

1 0

1


+ e1,



1 0 0 1 1 0

1 0 0 0 0

1 0 1 0

1 0 0

1 0

1


+ e2,



1 0 0 0 1 1

1 0 0 1 0

1 0 0 0

1 0 0

1 0

1


+ e3, 1V + e4, 1V + e5, 1V + e6〉
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C4 −→ T◦ = 〈



1 0 0 0 0 0

1 0 1 1 0

1 0 1 1

1 0 0

1 0

1


+ e1,



1 0 0 1 1 0

1 0 0 0 0

1 0 1 1

1 0 0

1 0

1


+ e2,



1 0 0 0 1 1

1 0 0 1 1

1 0 0 0

1 0 0

1 0

1


+ e3, 1V + e4, 1V + e5, 1V + e6〉

C5 −→ T◦ = 〈



1 0 0 0 0 0

1 0 0 0 1

1 0 0 0

1 1 1

1 0

1


+ e1,



1 0 0 0 0 1

1 0 0 0 0

1 0 1 1

1 1 1

1 0

1


+ e2,



1 0 0 0 0 0

1 0 0 1 1

1 0 0 0

1 0 0

1 0

1


+ e3,



1 0 0 0 1 1

1 0 0 1 1

1 0 0 0

1 0 0

1 0

1


+ e4, 1V + e5, 1V + e6〉

C6 −→ T◦ = 〈



1 0 0 0 0 0

1 0 0 0 1

1 0 0 0

1 1 1

1 0

1


+ e1,



1 0 0 0 0 1

1 0 0 0 0

1 0 1 1

1 1 1

1 0

1


+ e2,



1 0 0 0 0 0

1 0 0 1 1

1 0 0 0

1 1 0

1 0

1


+ e3,



1 0 0 0 1 1

1 0 0 1 1

1 0 1 0

1 0 0

1 0

1


+ e4, 1V + e5, 1V + e6〉
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C7 −→ T◦ = 〈



1 0 0 0 0 0

1 0 0 0 0

1 0 1 1

1 0 0

1 0

1


+ e1,



1 0 0 0 0 0

1 0 0 0 0

1 0 1 1

1 1 1

1 0

1


+ e2,



1 0 0 0 1 1

1 0 0 1 1

1 0 0 0

1 0 0

1 0

1


+ e3,



1 0 0 0 0 0

1 0 0 1 1

1 0 0 0

1 0 0

1 0

1


+ e4, 1V + e5, 1V + e6〉

C8 −→ T◦ = 〈



1 0 0 0 0 0

1 0 0 0 1

1 0 0 0

1 1 1

1 0

1


+ e1,



1 0 0 0 0 1

1 0 0 0 0

1 0 1 1

1 1 1

1 0

1


+ e2,



1 0 0 0 0 0

1 0 0 1 1

1 0 0 0

1 1 1

1 0

1


+ e3,



1 0 0 0 1 1

1 0 0 1 1

1 0 1 1

1 0 0

1 0

1


+ e4, 1V + e5, 1V + e6〉

A.0.4 To be ◦-linear is not affine invariant

Here we report the procedure used to find an example, over F3, of a function f

that is linear for some operation ◦ but admits an affine-equivalent map non-linear for
all possible operations ◦ that induce a vector space structure over F3. To compute
such a function we used MAGMA.

We consider all the conjugates of the translation group T+ in Sym(F3), obtaining
30 distinct subgroups. We create all the affine groups AGL(F3, ◦) retlated to those
groups. We fix the function f given by the permutation

f(x) = e4x6 + e2x5 + x4
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where e is a primitive element of F23 such that e3 = e + 1. This is affine for the
operation related to the elementary group given by

T◦ = 〈

 1 0 0

1 1

1

+ e1,

 1 0 1

1 0

1

+ e2, 1V + e3〉

Now considering the affinity τ ∈ AGL(F3,+) given by 1 0 0

0 1 0

1 0 1

+ e1

we have fτ /∈ AGL(F3, ◦′) for any operation ◦′.
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Magma Code

Here we report some MAGMA functions used during this work.

B.1 Basic functions

Here we give the MAGMA code used to compute some properties of Boolean
functions as anti-crookedness, (weakly) differential uniformity,....

1

2 WDiffUnif:=function(f)
3 local V, min, numV, A, y, division, val;
4 V:=Domain(f);
5 dim:=Degree(V);
6 char:=Root(#V,dim);
7 min:=#V;
8 numV:=char^(dim-1);
9 for u in V do

10 A:={};
11 if u ne 0 then
12 for x in V do
13 y := f(x + u) + f(x);
14 A := Include(A, y);
15 end for;
16 m := #A;
17 if(m lt min) then
18 min:=m;
19 end if;
20 end if;
21 end for;
22 for delta := 2 to #V by 2 do
23 m := numV/(delta);
24 if (m lt min) then
25 return (delta);
26 end if;
27 end for;
28 return "Error!";
29 end function;
30

31

32 //////////////////////////////////////
33

34 AntiCrooked:=function(f)
35 local V, A,Im,y;
36 V:=Domain(f);
37 for u in V do
38 Im:={};
39 if u ne 0 then
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40 for x in V do
41 y := f(x + u) + f(x);
42 Im := Include(Im, y);
43 end for;
44 A:=sub<V|[x+f(u)+f(V!0):x in Im]>;//
45 if #A eq #Im then return "false";
46 end if;
47 end if;
48 end for;
49

50 return "true";
51 end function;
52

53

54

55 //////////////////////////////////////
56 Deltadiff := function(f)
57 //given the function f as map
58 //return the delta differential uniformity of f
59

60 local V;//domain of f
61 local max;//delta
62 local numV;//cardinality of V
63 local m;//cardinality of the pre-images
64 V := Domain(f); max :=0;
65 numV := #V;
66 for a in V do
67 for b in V do
68 if (a ne 0) or (b ne 0) then
69 m:=0;
70 for x in V do
71 if ((f(x) + f(x+a)) eq b) then
72 m:=m+1;
73 end if;
74 end for;
75 if (m ge numV) then return m;
76 elif (m gt max) then
77 max := m;
78 end if;
79 end if;
80 end for;
81 end for;
82 return max;
83 end function;
84 ////////////////////////////////////
85

86 ///////////////////////////////////////////////////////////////
87

88 Anf:=function(f)
89 //given the function f as map
90 //return the ANF of f
91 //if f is vBf then return the ANF’s of the components
92 //
93 local D;// domain of f
94 local C;// codomain of f
95 local d;//dimension of D
96 local PS;//Power set
97 local R;//polynomial ring
98 local c;//dimension of C
99 local Pol;//polynomial to return
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100 local sum;
101

102 D:=Domain(f);
103 C:=Codomain(f);
104 d:=Dimension(D);
105 c:=Degree(C);
106 R<[x]>:=PolynomialRing(GF(2),d);
107 Pol:=ZeroMatrix(R,c,1);
108 PS:=Subsets({i : i in [1..d]});
109

110 if c gt 1 then
111 for I in PS do
112 sum:=C!0;
113 for v in D do
114 if Support(v) subset I then sum:=sum+f(v);
115 end if;
116 end for;
117 if I ne {} then
118 for i in [1..c] do
119 Pol[i][1]:=Pol[i][1]+sum[i]*&*[x[j]:j in I];
120 end for;
121 else
122 for i in [1..c] do
123 Pol[i][1]:=Pol[i][1]+sum[i];
124 end for;
125 end if;
126 end for;
127 else
128 for I in PS do
129 sum:=C!0;
130 for v in D do
131 if Support(v) subset I then sum:=sum+f(v);
132 end if;
133 end for;
134 if I ne {} then
135 for i in [1..c] do
136 Pol[i][1]:=Pol[i][1]+sum*&*[x[j]:j in I];
137 end for;
138 else
139 for i in [1..c] do
140 Pol[i][1]:=Pol[i][1]+sum;
141 end for;
142 end if;
143 end for;
144 end if;
145 return Pol;
146 end function;
147

148

149 ///////////////////////////////////////////////////////////////
150 Element2Vector := function(c)
151 //given an element of F_q^n return the corresponding vector of length n over F_q
152 local FF, e, degree, char, VDeg, R, prim, v, ln, p;
153 FF := Parent(c);
154 if not IsField(FF) then
155 printf "Error! the argument of this function is not a field element!\n" ;
156 return -1 ;
157 end if ;
158 e := PrimitiveElement(FF);
159 degree := Degree(FF);
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160 if degree eq 1 then
161 return Vector(FF,[c]);
162 end if ;
163 char := Characteristic(FF);
164 VDeg := VectorSpace(GF(char), degree);
165

166 if c eq 0 then
167 v := Zero(VDeg);
168 else
169 R<x> := PolynomialRing(GF(char));
170 prim := PrimitivePolynomial(GF(char), degree);
171 v := [];
172

173 if c eq 1 then
174 ln := 0;
175 else
176 ln := Log(e, c);
177 end if;
178 p := x^ln mod(prim);
179 for i in [1..degree] do
180 v:=Append(v,Coefficient(p,degree-i));
181 end for;
182 end if;
183 return VDeg!v;
184 end function;
185

186 //////////////////////////////////////////////////////////////
187

188 Vector2Element := function(v)
189 //given a vector element over GF(q) of length n return the corresponding element

of F_q^n
190 local length, F, char, k;
191 // NO check on the input!!
192 length := NumberOfColumns(v);
193 F := Parent(v[1]);
194 char := #F;
195 F<e> := GF(char,length);
196 k := F!0;
197 for i in [1..length] do
198 k := k + v[i]*e^(length-i);
199 end for;
200 return k;
201 end function;
202 ///////////////////////////////////////////////////////////////
203 Univariate_Pol:=function(f)
204 //
205 //
206 local L;//list of lagrange polynomials
207 local n;//dimension
208 local V;//domain of f
209 local F;//finite field GF(2^n)
210 local e;//primitive element
211 local x;//variable
212 local El;//list of element of F
213 local R;//ring R[x]
214 local p;//polynomial
215 local j;
216 El:=[];
217 L:=[];
218 V:=Domain(f);
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219 n:=Dimension(V);
220 F<e>:=GF(2^n);
221 El:=[Vector2Element(v) :v in V];
222 R<x>:=PolynomialRing(F);
223 for i in El do
224 Append(~L,&*[(x-j)/(i-j): j in El | j ne i]);
225 end for;
226 p:=0;
227 j:=1;
228 for i in V do
229 p:=p+Vector2Element(f(i))*L[j];
230 j:=j+1;
231 end for;
232 return p;
233 end function;

B.2 Classes classification

The code used to classify the elementary abelian regular subgroups of AGL(V ) is
given below.

1

2 //create the spaces
3 n:=6;//dimension
4 fix:=2;//dimension of u(T)
5 Vn:=VectorSpace(GF(2),n);
6 e:=[v:v in Vn| Weight(v) eq 1];//canonical basis
7 Vsn:={v:v in Vn};
8 Sn:=Sym(Vsn);//symmetric group
9 Id:=IdentityMatrix(GF(2),n);

10 t:=sub<Sn|[[v*Id+e[t]: v in Vsn]: t in [1..n]]>;//translation group
11 V:=VectorSpace(GF(2),(n-fix-1)*fix);
12 v0:=V!0;
13

14

15 //////////////B_ei,M_ei
16 Matrix_ei:=function(i,v,n_fix)
17 //given the element e_i and a vector v
18 //return a matrix in blocks form of type
19 // [ I B]
20 // [ 0 I ]
21 //and B
22 l:=Eltseq(v);
23 l0:=[GF(2)!0:j in [1..n_fix]];
24 Insert(~l,n_fix*(i-1)+1, n_fix*(i-1),l0);
25 dimV:=Degree(e[i]);
26 B:=Matrix(GF(2),dimV-n_fix,n_fix,l);
27 I:=IdentityMatrix(GF(2),dimV);
28 return B,InsertBlock(I,B,1,dimV-n_fix+1);
29 end function;
30

31 /////////////
32 control:=function(i,v,B,n_fix,v_null)
33 //given the matrix constructed before it verifies
34 //if the rows match the rows of precedent matrices constructed
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35 l:=&cat[Eltseq(B[j][i]):j in [1..i-1]];
36 return (v ne v_null) and (l eq Eltseq([v[j]:j in [1..(i-1)*fix]]));//control on

v_null because if v is zero then e_i lies in U(T)
37 end function;
38

39

40 N_e:=[Id:j in [1..n]];B_e:=[ZeroMatrix(GF(2),n-fix,fix):j in [1..n]];//lists of
matrices associated to e_i’s

41 Gr:=[];//list of the groups that fix the last "fix" elements of canonical basis
42

43 Group:=procedure(~G,i,V,~B,~N,n,fix)
44

45 if i gt n-fix then
46 g1:=sub<Sn|[[v*N[t]+e[t]: v in Vsn]: t in [1..n]]>;//create the group
47 if #(g1 meet t) eq 2^fix then
48 Append(~G,g1);//aggiungi gruppo
49 end if;
50 else
51 for vect in V do
52 B[i],N[i]:=Matrix_ei(i,vect,fix);
53 if not control(i,vect,B,fix,v0) then continue vect;
54 else
55 $$(~G,i+1,V,~B,~N,n,fix);//iteration to i+1
56 end if;
57 end for;
58 end if;
59 end procedure;
60 Group(~Gr,1,V,~B_e,~N_e,n,fix);

B.3 Non-affine invariance of ◦-linearization

To find the example of a ◦ linear map over F3 with an affine equivalent function
non-linear for all possible ◦ over F3 we used the following code:

1

2 V:=VectorSpace(GF(2),3);
3 Vs:={v:v in V};
4 S:=Sym(Vs);
5 e:=[v:v in V| Weight(v) eq 1];
6 T:=[map<V->V| x:->x+ei> : ei in e];
7 t:=sub<S|[[t(v): v in Vs]:t in T]>;
8 C:=[x:x inClass(S,t)];
9 Agl:=[Normalizer(S,tr):tr in C];

10 Agl1:=Normalizer(S,t);
11 Agl_join:=&join[{m: m in agl}:agl in Agl];
12 for c in C do
13 if c subset Agl1 and {V!0^p: p in c meet t} eq {V!0, e[3]} then r:=Position(C,c);
14 end if;
15 end for;
16 f:=Random(Agl[r]);
17 for a in Agl1 do
18 for b in Agl1 do
19 if not a*f*b in Agl_join then A:=a;B:=b; "No"; break a;
20 end if;
21 end for;
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22 end for;

B.4 Toy-Cipher

The toy block cipher of Chapter 2 and the brute force, hidden sum attack were
implemented with the following code.

1

2

3 function kb(n)
4 box := [ [1,0,1,1,1,1] , [1,1,1,0,1,1] , [0,1,1,0,0,1] , [1,0,1,0,1,0] ,

[0,0,1,1,1,1] , [0,1,0,1,1,1] , [0,1,1,1,0,0] , [1,0,0,1,1,1] ,
[0,1,1,0,1,0] , [1,0,0,1,1,0] , [1,0,0,1,0,0] , [0,1,0,0,1,1] ,
[1,1,1,1,0,0] , [0,1,1,0,0,0] , [0,1,1,1,0,1] , [1,1,1,0,0,0] ,
[1,0,0,1,0,1] , [1,1,1,1,1,1] , [0,1,0,1,0,0] , [1,1,1,1,0,1] ,
[1,1,0,1,1,1] , [0,0,0,0,1,0] , [0,1,1,1,1,0] , [1,0,1,1,0,0] ,
[0,0,1,0,0,1] , [0,0,1,0,1,0] , [0,0,0,1,1,0] , [0,1,0,1,1,0] ,
[1,1,0,1,0,1] , [1,1,0,0,0,0] , [1,1,0,0,1,1] , [0,0,1,0,1,1] ,
[1,1,1,1,1,0] , [1,1,0,1,0,0] , [1,0,0,0,1,1] , [0,1,0,0,1,0] ,
[0,0,1,1,1,0] , [1,0,1,1,1,0] , [0,0,0,0,0,0] , [1,1,0,1,1,0] ,
[0,1,0,0,0,1] , [1,0,1,0,0,0] , [0,1,1,0,1,1] , [0,0,0,1,0,0] ,
[0,1,1,1,1,1] , [0,0,1,0,0,0] , [0,0,0,1,0,1] , [0,0,1,1,0,0] ,
[0,0,0,0,1,1] , [0,1,0,0,0,0] , [1,0,1,0,0,1] , [1,0,0,0,1,0] ,
[1,0,0,0,0,1] , [0,0,0,1,1,1] , [1,0,1,1,0,1] , [1,1,0,0,0,1] ,
[1,1,0,0,1,0] , [1,1,1,0,1,0] , [0,0,0,0,0,1] , [0,1,0,1,0,1] ,
[1,0,1,0,1,1] , [1,1,1,0,0,1] , [1,0,0,0,0,0] , [0,0,1,1,0,1] ];

5 return box[SequenceToInteger(n,2)+1];
6 end function;
7

8

9 function keySchedule(k,n)
10 A := [];
11 A := Append(A,k);
12 for i in [1..n] do
13 k := kb(k);
14 A := Append(A,k);
15 end for;
16 return A;
17 end function;
18

19

20 function sbox(n)
21 toyblock := [[0,0,0] ,[1,1,0] ,[0,1,1] ,[1,1,1] ,[1,0,0] ,[0,0,1] ,[1,0,1]

,[0,1,0] ];
22 t1 := Reverse(n[1..3]);
23 t2 := Reverse(n[4..6]);
24 return (toyblock[SequenceToInteger(t1,2)+1]) cat

(toyblock[SequenceToInteger(t2,2)+1]);
25 end function;
26

27 function mlayer(n)
28 a1 := (n[3]) mod 2;
29 a2 := (n[1]+n[2]+n[3]+n[4]+n[6]) mod 2;
30 a3 := (n[1]+n[3]) mod 2;
31 a4 := (n[4]+n[6]) mod 2;
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32 a5 := (n[1]+n[3]+n[4]+n[5]+n[6]) mod 2;
33 a6 := (n[4]) mod 2;
34 return [a1,a2,a3,a4,a5,a6];
35 end function;
36

37

38

39 function keysum(n,k)
40 return [ ( n[i] + k[i] )mod 2 : i in [1..#n] ];
41 end function;
42

43

44 function ENtoyblock(m,k,n)
45 K := keySchedule(k,n);
46 //c := m;
47 c := keysum(m,K[1]);
48 for i in [1..n] do
49 c := sbox(c);
50 c := mlayer(c);
51 c := keysum(c,K[i+1]);
52 end for;
53 return c;
54 end function;
55

56 ////////////////////////////////////
57 /////// Hidden Sum attack //////////
58 ///////////////////////////////////
59

60 function lambda(x)
61 //given a vector v return the coefficients w.r.t. the o-sum
62 l1 := (x[1]) mod 2;
63 l2 := (x[1]*x[3] + x[2]) mod 2;
64 l3 := (x[3]) mod 2;
65 return [l1,l2,l3];
66 end function;
67

68 function lambdaInv(l)
69 x1 := (l[1]) mod 2;
70 x2 := (l[2] + l[1]*l[3]) mod 2;
71 x3 := (l[3]) mod 2;
72 return [x1,x2,x3];
73 end function;
74

75 function vprime(v)
76 return lambda(v[1..3]) cat lambda(v[4..6]);
77 end function;
78

79 function vprimeInv(v)
80 return lambdaInv(v[1..3]) cat lambdaInv(v[4..6]);
81 end function;
82

83

84

85 function HSAttack(Block,c)
86

87 A := [
88 [1,0,0,0,0,0],
89 [0,1,0,0,0,0],
90 [0,0,1,0,0,0],
91 [0,0,0,1,0,0],
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92 [0,0,0,0,1,0],
93 [0,0,0,0,0,1]
94 ];
95

96 zero := [0,0,0,0,0,0];
97

98 Caz := [ Block(A[i]) : i in [1..6] ];
99 zeroc := Block(zero);

100

101 lCaz := [ vprime(Caz[i]) : i in [1..6]];
102 lzeroc := vprime(zeroc);
103

104 lCaz2 := [ [ (lCaz[i][j] + lzeroc[j]) mod 2 : j in [1..6]] : i in [1..6] ];
105

106 M := Matrix(GF(2),6,6, &cat lCaz2);
107

108 V6:=VectorSpace(GF(2),6);
109 cc := V6!vprime(c);
110

111 mm := (cc + V6!lzeroc)*M^(-1);
112

113 mc := vprimeInv([Integers()!ElementToSequence(mm)[i] : i in [1..6]]) ;
114

115 return mc;
116

117 end function;
118

119 ////////////////////////////////////
120 /////// Brute force attack ////////
121 ///////////////////////////////////
122

123

124 function decToBin(n,k)
125 tmp :=(Intseq(n,2));
126 zero :=[];
127 if #tmp eq k then
128 else
129 zero := [0 : i in [1..(k-#tmp)]];
130 end if;
131 return tmp cat zero ;
132 end function;
133

134 function BFAttack(Block,c)
135 for i in [0..(2^6 - 1)] do
136 m := decToBin(i,6);
137

138 if Block(m) eq c then
139 return m;
140 end if;
141 end for;
142 end function;
143

144

145 function randomKey()
146 v := ElementToSequence(Random(VectorSpace(GF(2),6)));
147 return [Integers()| v[i] : i in [1..#v]];
148 end function;
149

150

151 procedure testAtt()
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152

153 k := [0,0,0,0,0,0];
154 n := 5;
155

156 Block := function(m)
157 return ENtoyblock(m,k,n);
158 end function;
159

160 m := [1,0,1,0,1,0];
161

162 c := Block(m);
163

164 m1 := BFAttack(Block,c);
165

166 print (m1 eq m), " Brute Force";
167

168 m2 := HSAttack(Block,c);
169

170 print (m2 eq m), " Hidden Sum";
171

172 end procedure;
173

174 function average(x)
175

176 avg := &+ [x[i]/#x : i in [1..#x]];
177 min,_ := Minimum(x);
178 max,_ := Maximum(x);
179

180 return [min,avg,max];
181

182 end function;
183

184

185 function attRound(n)
186

187

188

189 t1 := [];
190 t2 := [];
191

192 for i in [1..10] do
193

194 k := randomKey();
195 m := randomKey();
196

197 Block := function(m)
198 return ENtoyblock(m,k,n);
199 end function;
200

201

202 c := Block(m);
203

204

205 // Brute Force Attack
206 t:= Cputime();
207 m1 := BFAttack(Block,c);
208 t1 := t1 cat [Cputime(t)];
209

210 // Hidden Sum Attack
211 t:= Cputime();
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212 m1 := HSAttack(Block,c);
213 t2 := t2 cat [Cputime(t)];
214

215 end for;
216

217 return t1,t2;
218

219 end function;
220

221

222 procedure attackTime()
223

224 t1 := [];
225 t2 := [];
226

227 print "N Round \t BF Min \t BF Avg \t BF Max \t HS Min \t HS Avg \t HS Max";
228

229 for i in [5..100] do
230 tBF , tHS := attRound(i);
231 t1 := average(tBF);
232 t2 := average(tHS);
233

234 print (i),"\t",t1[1],"\t",t1[2],"\t",t1[3],"\t",t2[1],"\t",t2[2],"\t",t2[3];
235

236 end for;
237

238 end procedure;
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