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eLISA is the main project for a space interferometer observatory to search for gravita-

tional waves at very low frequencies, from roughly 0.1 mHz to 1 Hz. A set of freely

falling test masses placed at 106 km apart are the mirrors of the interferometer, joined by

a laser link. The gravitational radiation will be detected by measuring the time-varying

changes of optical path-length between masses. The mirrors of the interferometer are

cubic proof bodies kept inside orbiting spacecrafts. In order to reach the observatory

sensitivity requirement they have to be orbiting in a free fall condition, following a

geodesic trajectory within an acceleration noise below 3 fm/s2/
√
Hz.

Each spacecraft has the aim to protect proof masses from external disturbances and

also houses the GRS or gravitational reference sensor, that includes a capacitive posi-

tion sensor, that is an housing around the test masses that senses the relative position

with the spacecraft. The sensor itself is a potentially dominant source of force noise

that contaminates the free-fall and whose measurement is of fundamental importance in

preparation for eLISA.

Given the technological complexity of the eLISA mission, the need of an accurate testing

of the free fall and of the knowledge of the noise in a space environment is considered

a mandatory phase for the project. For this reason, the LISA Pathfinder mission was

developed.

The LISA Technology Package (LTP) is the technological demonstrator for the eLISA

mission and will fly aboard the satellite LISA Pathfinder. An arm of eLISA is squeezed

into one spacecraft with only two masses in free fall, whose distance is measured by an

interferometer. Two position sensors, rigidly mounted on board the spacecraft, surround

the free falling proof masses without mechanical contact to them and allow the measure-

ment of relative displacement between the three bodies. The aim of LISA Pathfinder

mission is to test the feasibility of the free-fall and its purity, by measuring the residual

acceleration between the two test masses at a level of 30fm/s2
√
Hz at 1 mHz. The

differential acceleration noise level that LISA Pathfinder will detect would represent an

upper limit for the eLISA acceleration noise budget.

In such a sense the Pathfinder can be considered as a differential accelerometer with

the main goal of qualifying the acceleration noise in a space environment. The satellite

dynamical scheme, is based on the “drag-free” control system, that is a well known

way to reduce disturbances on freely falling test masses. The reference position sensor

monitors the position and attitude of the test mass relative to the spacecraft, and this

information is used by the control system which commands the spacecraft to follow the

orbit of the test mass. Because the satellite can’t follow the two masses at the same

time, the second mass must be forced to follow either the other one or the spacecraft,

by applying small electrostatic forces. The capacitance position sensor can also apply

electrostatic forces on the second mass to prevent it from accelerating away because of

the existence of the differential steady gravitational pull of the spacecraft on the two test



masses. The actuation is needed to compensate for the difference in the gravitational

field produced by the satellite in the positions of the two masses.

The fluctuations in the amplitude of the voltages applied to actuate the mass are likely

to be the dominant source of differential force noise acting on the test masses. By reduc-

ing this source of noise it would be possible to reach a sensitivity well below the noise

budget task of the mission.

To do that a particular actuation control scheme was developed, named free-fall mode

(or drift mode). It consists of controlling one of the two masses periodically for a short

time, producing very short impulses to kick it along the sensitive degree of freedom,

instead of a continuous control force. So the mass is allowed to move freely, accelerated

around the center of the GRS housing, the rest of the time. The displacement data

during this phase, free of electrostatic actuation, is then used to estimate the power

spectral density of the remaining noise sources affecting the free-fall motion.

A free-fall mode parallel testing has been successfully implemented on torsion pendulum

facility at the University of Trento and the results of the measurement campaign are

ready to be shown and discussed. The torsion pendulums are equipped with an LPF-like

test mass enclosed in a Gravitational Reference Sensor prototype and have been used

successfully, during the recent years, to measure the small forces relevant to the free-fall

purity in eLISA and LPF. The pendulum torque sensitivity is around 1fNm/
√
Hz at

1mHz, corresponding to an equivalent acceleration of 50fm/s2
√
Hz, and thus near the

LPF specification. The pendulum can thus allow a quantitatively significant test of

the free-fall mode. External torques on the suspended test mass provide the ability to

mimic the LPF gravity gradients that must be compensated in orbit, making the torsion

pendulum an useful test bed for the LPF actuation and the free-fall mode.

The implementation on ground of the free fall mode is very similar to that in-flight. To

simulate a large DC acceleration, the pendulum can be rotated by an angle ∆Φ with

respect to the inertial sensor, such that a torque is required to keep it centered. This

is analogous to the differential actuation force, needed to compensate the self-gravity

difference with LISA Pathfinder. The actuation forces can be applied continuously or

periodically like in the free-fall mode. The differential forces applied by a pair of elec-

trodes to produce this torque can be made similar to the force levels required in flight,

but can be varied at will on ground by choosing the pendulum rotation, something that

is not possible in orbit. The on-ground experiment will also allow more flexibility to

explore different control strategies, by varying flight and impulse time or control points,

and different dynamic configurations, thanks the possibility to have a variable stiffness.

The preliminary part of the work consisted in the characterization of the pendulum

background torque noise level in absence of any applied force, when the pendulum is not

rotated and no forces are required to keep it centered. The measured angular displace-

ment is then converted into torque by means of the pendulum dynamical model. Then



the pendulum is rotated by a large angle to simulate the DC acceleration and a torque

is applied continuously to keep the test mass centered. The measured angular displace-

ment is again converted into torque and the contribution from the noisy electrostatic

actuation produces an excess in noise power relative to the first configuration. Finally,

the free fall control scheme is employed to control the position of pendulum with the

impulse-control scheme described above. Quasi-parabolic flights are alternated to kick

phases where the actuation is used to invert the pendulum motion and allow the next

flight.

Final task is the implementation of the data analysis algorithms to estimate the spectrum

of the acceleration of the controlled test mass, and the estimation of system parameters

such as the force gradients, stiffness terms, etc.

It is a very challenging goal, because the data are affected by the presence of kicks, that

produce a big signal in torque and that must be removed from data producing gap in

the data. These are source of aliasing due to high frequency component that can affect

the measurement frequency of interest.

To analyze the on-ground data experiment, two main techniques have been developed

and implemented. The first technique consists of a sinusoidal fit to the angular time se-

ries during each flight to calculate the pendulum equilibrium point, converted afterwards

in torque to estimate the power spectral density. The second technique is to convert

the angle of the pendulum instantaneously into torque by double differentiation of data,

followed by a Blackman-Harris low pass filter and finally in rejecting the data in which

the actuation impulses are present. In the end we estimate the power spectrum.

The ”free-fall” mode has been tested at the level of 2fNm/
√
Hz, at the frequencies of

1mHz, corresponding to an acceleration of about 100fm/s2/
√
Hz. This level of noise

in torque is to be compared with that measured by keeping the pendulum centered with

a force of constant DC actuation, which is at a lower level to 1fNm/
√
Hz at 1mHz.

The discrepancy observed is still under investigation, to determine if its origin is intrinsic

to the technique of analysis with pulses and then with gaps in the data.

Moreover, due to high dynamical range of the pendulum angular displacement during

each flight, some non linearity in the model of torque was found. The characterization

of the pendulum dynamic and sensing non-linearities is one of the main parts of this

work.

The ground tests have nevertheless allowed to develop and test quantitatively this inno-

vative method of noise reduction due to actuation noise, contributing to its development

for the LISA Pathfinder mission.

Therefore, in Chapter 1 we give an overview about the gravitational wave detection

principles, the eLISA mission and in particular to the description of the technological

demonstrator mission LISA Pathfinder. Moreover, we focused on the the main charac-

teristics of the Gravitational Reference Sensor for eLISA and LISA Pathfinder, on its



design and noise performances and on its electrostatic model.

In the Chapter 2 we will show in detail the free-fall actuation mode concept as will be

implemented on board of LTP, paying particularly attention to the acceleration sensi-

tivity requirement for LISA Pathfinder, that show the importance of implementing a

free-fall scheme able to reduce the electrostatic actuation noise and the aim of the re-

lated ground testing.

The 3rd Chapter presents the one test mass torsion pendulum, as GRS and free fall

mode testing facility, with its main features and operation principle and its relevant

noise sources of disturbances. We will discuss about the limit and performance of the

facility in torque noise floor measurement and in the actuation authority of the used

FM FEE electronic, characteristic that will be a basic element of the implementation of

free-fall mode on torsion pendulum.

In Chapter 4, the free fall mode on torsion pendulum is presented, with the basic mea-

surement concept. The equations of pendulum dynamic during free fall are then devel-

oped, with also the description of controller loop and of the home made FEE circuit.

Chapter 5 address the problem of data analysis technique developed for the laboratory

free fall mode, focusing on the two analysis techniques mentioned above, sine fit and

instantaneous torque conversion. Preliminary results of data analysis techniques were

showed, applied on simulated data coming from a simple harmonic oscillator simulator

of pendulum dynamics during free fall mode.

Finally, in Chapter 6 we present results from the real pendulum free fall experiment.

Non linearity in the pendulum dynamics and other problems of implementation of the

free fall mode arose during the testing campaign, and we address these problems and

their solutions in the same chapter. Conclusive phase show torque noise spectra and

discussion about their interpretation and results. In Chapter 7 we will summarize the

most interesting and innovative aspect of the work presented throughout this thesis:

the success in the free fall mode implemented on torsion pendulum facility, but also its

limits and features to be improved.
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Chapter 1

eLISA and LISA Pathfinder:

gravitational wave detection

Gravitational wave detection is one of the most attractive targets of modern interna-

tional astrophysical research. The scientific history of gravitational waves starts in the

first two decades of the twentieth century, when the German physicist Albert Einstein

published his General Relativity Theory, introducing a completely new way of thinking

about the relationship between matter, space and time. According to his theory, mass

acts on the space-time, dictating how it curves. Compact concentrations of matter and

energy modify the intimate structure of spacetime, warping it and changing the distance

between points, as compared with a reference ruler, such as the wavelength of a light

beam.

During 1916, a few years after the first formulation of the General Relativity theory,

Einstein deduced that the information about the variation of the curvature had to prop-

agate through the space at the speed of light by means of waves. He discovered the

existence of waveform solutions of the field equations, in which a ripple of space-time

propagates through the empty space, as an independent entity, with speed equal to that

of light. These are the gravitational waves that carry information on how the change in

time of the distributions of matter and energy affect the curvature of space-time.

Gravitational waves interact very weakly with matter and can go through anything with-

out losing intensity significantly. This makes them a powerful tool for the investigation

of distant regions, in extreme conditions, but also makes them very difficult to detect.

Gravitational waves are, therefore, a fundamental prediction of General Relativity that

still has not found a direct experimental proof. Studying this new form of energy will

convey rich new information about the behavior, structure, and history of the physical

universe, and about physics itself.

In this chapter we will present the basics of the gravitational waves detection and the

1
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main principles of what will be the first space interferometer capable of their detection at

very low frequency, eLISA. The measurement will be achieved by detecting the relative

acceleration of free-flying test masses in a constellation of three spacecraft separated

by 1 million km. The level of free-fall required for eLISA sets a limit on the parasitic

acceleration on the test mass of 3fm/s2
√
Hz at 0.1 mHz. Due to hard and challeng-

ing technology aspects of the mission, a technological demonstrator was designed and

will fly at the end of 2015, LISA Pathfinder. It will be able to demonstrate a level of

free-fall within one order of magnitude of the LISA performance in acceleration noise

and frequency. We will describe its main features and will focus on the Gravitational

Reference Sensor, which is used for nm-level control of the surrounding spacecraft but,

more importantly, must define the environment in which TM free-fall near the fm/s2

level is possible.

1.1 Gravitational waves and their detection

The idea on which gravitational waves detection is based is the measurement of ex-

tremely small changes in distances. It arises from the principle that gravitational waves

produce tiny fluctuations in the distance between the masses in free fall, isolated from all

other forces except gravity. Such fluctuations can be measured by using the technique

of laser interferometry.

The first steps in the detection of these gravitational signals have been made with several

experiments on ground as the first resonant bars in the 60s and later with laser inter-

ferometers, Michelson type, as LIGO (Laser Interferometer Gravitywave Observatory)

and VIRGO.

The principle of operation of a ground interferometer considers the coherent light of a

laser, send it along two orthogonal paths to distant free-falling test bodies that act as

mirrors, and then recombine the two beams to form an interference pattern. If we assume

that the mirrors of the interferometer are very close to a free falling conditions, the effect

of gravitational waves is a lengthening and shortening of the arms of the instrument and

therefore a change in the optical path of the light. In this way, the interference pattern

will be changed. An advantage of this scheme is that it is non-resonant, that is, the

natural frequencies of the mirrors suspended are much lower than those of gravitational

waves. Consequently, rather than respond to only one of the frequencies of the incident

wave, the mirrors simply follow the trend of the wave, whatever its form. In this way it

is not limited to only record the passage of the wave, but it also get information about

its features. The final oscillations is measured by a photon detector placed in the output

from the interferometer and is a simple function of the phase difference of the two light

beams divided by the beamsplitter, which propagate in the two arms and which are
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recombined at the output.

In this scenario, in the 90s the idea of using laser interferometry in space, on a larger

scale and in a much more quiet environment than the ground, was born. In a space

configuration it is used a laser interferometry between free falling masses at very long

distances, measuring the variations in light travel time along the arms due to the tidal

deformation of space-time produced by gravitational waves.

eLISA (Laser Interferometer Space Antenna) will be the first large-scale space mission

to survey the Universe with gravitational waves [1]. It can be thought of as a modi-

fied setup of a Michelson interferometer in space, with an arm length of 1 million km

between three spacecraft orbiting the sun and exchanging laser light beams. This will al-

low the observation of most of the interesting sources of gravitational waves in the mHz

frequency range, emitted by coalescing binary black holes and ultra-compact galactic

binaries. A greater length of the arms can amplify the effect of gravitational waves,

thereby eLISA can measure their signature, that is a fractional squeezing of space-time

perpendicular to the direction of propagation, with an amplitude h = ∆L/L of the order

of 10−20, measuring displacements of the order of fractions of picometers.

1.2 eLISA mission overview

eLISA basic measurement idea is to place proof masses in space in true geodesic motion,

1 million km distance apart and to measure interferometrically the distance variations

induced by a passing gravitational wave.

Its design considers four proof masses, 46mm AuPt cube, which serve as mirror for

the interferometer, shielded by three spacecraft from the external disturbances in a

triangular configuration as in figure 1.1, which form a single Michelson interferometer

configuration. The spacecraft follow independent heliocentric orbits without any station-

keeping and form a nearly equilateral triangle in a plane that is inclined by 60◦ to the

ecliptic, as visible in figure 1.3.

Each spacecraft contains identical units in which a Gravitational Reference Sensor (GRS)

hosts a free-falling test mass that acts both as the end point of an interferometric sensor,

and as a geodesic reference test particle [1]. The GRS is a capacitive sensor, made by

an cubic electrode housing that hosts 18 electrodes, as shown in figure 1.5, in order

to measure the relative position of the proof mass with respect to the spacecraft at

nm/
√
Hz level. It can also provide nN-level electrostatic force actuation on all non-

interferometric degrees of freedom.

Each payload includes an optical bench, a telescope for receiving and transmitting light

and a laser source, as in figure 1.2. Each telescope of the mother satellite points at one

of the distant spacecraft at the other two corners of the triangle.
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Figure 1.1: eLISA configuration. One mother and two daughter spacecraft exchanging
laser light form a two-arm Michelson interferometer. [1]

While the proof masses are freely falling in space, the hosting spacecraft must keep

as stationary as possible with respect to them and avoid any interference with their

geodesic motion. This purpose is obtained measuring and correcting the relative position

between spacecraft and proof mass with a drag-free control loop, by which the spacecrafts

are actively controlled to remain centered on the test masses along the interferometric

axes, without applying forces on the test masses along these axes. The GRS provides

the control signals for the drag-free control loop and special microthrusters force the

spacecraft to follow the displacements of the freely falling proof mass along that degree

of freedom.

1.2.1 eLISA sensitivity

In figure 1.4 it is showed the eLISA strain sensitivity in term of noise power spectral

density of the instrument. The gravitational wave sensitivity will be limited at low

frequency by residual stray acceleration noise gn in the orbits of the free falling test

mass, at a level of

S1/2
gn ≤ 3

fm

s2
√
Hz

. (1.1)

at frequencies from 0.1 to roughly 10 mHz. The acceleration noise is typically divided

into two categories. The first one includes a contribution from random position indepen-

dent stray forces fstr, such as unshielded non-gravitational external forces, disturbances

generated by sources on board the spacecraft, thermal noise and displacement sensor

back-action. The second category comprises forces that originate from the spring-like
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Figure 1.2: eLISA payload. Each payload unit contains a 20 cm telescope, the test
mass enclosed inside the Gravitational Reference Sensor (GRS) and an optical bench

hosting the interferometers. [1]

Figure 1.3: eLISA set of three orbits in a near-equilateral triangular formation [1].

coupling or “stiffness”, of the test-mass with respect to the noisy motion of the space-

craft, with spring constant mω2
p, and arising from position dependent forces due to the

position sensor noise and the finite gain of the drag-free loop. The closed loop residual

acceleration, with respect to an inertial frame, such as that provided by the optical

wavefront, can be thus expressed as [8]:

ẍ = g + ω2
p

(
xn +

Fstr
Mω2

DF

)
(1.2)

where Mω2
DF is the drag-free force to displacement gain, and is valid in the limit of high

drag-free gain, such that ω2
DF � ω2

p. The term xn + Fstr

Mω2
DF

is the residual jitter in the
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Figure 1.4: eLISA sensitivity in terms of strain resolution. The noise spectrum is
plotted as a linear spectral density. [1]

spacecraft position around the TM. Much of this term can be subtracted, in the limit

that the spacecraft jitter is dominated, at the nm/
√
Hz level, by the stray force on the

satellite Fstr and not the interferometric position sensor, which is more precise.

At higher frequencies position noise, essentially laser shot noise, is dominant, while above

about 5mHz, arm length measurement noise dominates.

Finally, both the satellite and the position sensor themselves could produce force dis-

turbances on the free falling test masses. In order to keep them along the stabilized

geodesic orbit, the gravitational reference sensor should perform the position measure-

ment with sufficiently high precision but minimizing the residual force disturbances on

the test mass. We will describe its main features in the next section.

1.3 The Gravitational Reference Sensor

The Gravitational Reference Sensor is a capacitive readout developed to measure proof

mass position, whose performance must meet the requirement of LISA, in terms of posi-

tion noise, residual couplings and force noise. Its geometrical configuration is showed in

figure 1.5. A set of 18 electrodes are hosted by a cubic electrode housing and measure

the mass position in six degrees of freedom and orientation relative to the spacecraft

[9]. Six pairs of them are used as sensing electrodes (green electrodes in figure 1.5), also

used to apply electrostatic forces to the proof masses by modulating the amplitude of

an audio frequency carriers (30 - 270 Hz) applied to the electrodes. The actuation is

necessary on degrees of freedom other then the sensitive in LISA configuration, while

the sensor drive the drag-free loop only along the interferometric axis, sensitive to the

gravitational waves.

The readout circuit, or GRS front-end electronics (FEE), has the scheme of a capacitive
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Figure 1.5: GRS scheme. Electrode geometry and dimensions refer to the current
design adopted for the LTP flight test. Sensing electrodes are green, injection electrodes

are red, guard ring surfaces are gray [2].

resonant bridge (see figure 1.6). The test mass motion modulates the difference between

the two capacitances couples C1 and C2 facing the test mass, inducing a difference be-

tween the currents flowing through the inductance arm of the circuit that can be read

out by the low noise pre-amplifiers as a current flowing through the low losses trans-

former [10].

The capacitance bridge current is provided by capacitively polarizing the TM with an

oscillating voltage at resonance frequency ω0 = 2π · 100 kHz, with roughly 0.6V am-

plitude, by applying voltages on the six injection electrodes, 2+2 on the z faces plus

1+1 on the y faces (red electrodes in figure 1.5). The 100 kHz injection bias is also

the reference for the phase sensitive detector at the output of differential pre-amplifiers.

The signals are extracted by the phase sensitive detectors and demodulated to provide

only the component at ω0, rejecting the electrical noise at different frequencies. This

allows the measurement of the effective test mass displacement even in an electrostati-

cally noisy environment and in presence of actuation voltages. The demodulated signals

are then A/D converted and processed by the on board computer. Finally, the sum of

the signal in the two channels provides the translational displacement of the test mass

with respect to the center of the electrode housing, while the difference provides the test

mass rotation.

The GRS, has an almost symmetric electrodes configuration, and works with 4.0mm

gaps for the x interferometric axis, sensitive to the gravitational signal, and 3.5mm and

2.9mm respectively for the y and z axes, as also evidenced in figure 1.5.

Because the Gravitational Reference Sensor is the closest object to the test masses, it

is expected to be a major source of stray forces. It is, thus, important to model all of

different sources of stiffness and noise, in force and position, produced by this sensor, as

will be done by the technology demonstration mission LISA Pathfinder [11].
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Figure 1.6: Scheme of the capacitive resonant bridge readout and actuation circuitry.

1.4 LISA Pathfinder, technology demonstrator

Given the technological complexity of the systems required by eLISA, was considered

necessary a demonstration mission of the feasibility of the drag-free control for eLISA

test masses, in order to put also an overall upper limit on all sources of random force

noise. This is the LISA Pathfinder mission (LPF), and will fly at the end of 2015.

LISA Pathfinder has been designed as one single spacecraft (SC) that enclose two test

masses (TM) that are not in mechanical contact with it and so are nominally in free

fall, providing a downscaled version of one of the eLISA arms [12].

The two cubic proof masses, made of gold-platinum, have 46mm edge and weight 1.98 kg.

They are also separated by a nominal distance of ∼ 38 cm, as visible in figure 1.7.

The relative displacement of TMs and SC along the sensitive axis, is measured by means

of laser interferometers at pm-level of accuracy. More precisely, one interferometer mea-

sures the displacement x1 of one of the TMs relative to SC, and the second measures

the relative displacements x12 between the TMs and serves as the main probe of the

drag-free performance.

Each proof mass, with its own electrode housing, is enclosed in a vacuum chamber

vented to space, reaching a pressure below 1−5 Pa. The laser interferometer light passes

through the vacuum chamber wall through an optical window.

LTP will be also equipped with the most crucial aspects of the eLISA technology. One

of these is a set of precision µN thrusters needed for the drag-free compensation of ex-

ternal disturbances: the spacecraft will follow one of the two test masses in its geodesic

motion along x, whereas the second test mass will follow the other according to the

interferometer signal, by means of the electrostatic suspension, as we will largely discuss

in the next chapter.

Others important apparatus are: the Caging Mechanism, which holds the test masses in

place during the launch phase and releases the test mass for the scientific measurement
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phase [13]; the apparatus called Charge Management System, which by means of UV

light and suitable driving voltages controls and remove the net charge accumulated on

the test mass due to the exposure to the cosmic ray radiation.

LTP aims to demonstrate the quality of free fall within one order of magnitude from

LISA such that the residual acceleration noise of the test masses is proven to be below

S
1/2
∆g ≤ 3 · 10−14

[
1 +

(
f

3mHz

)2
]

m

s2
√
Hz

. (1.3)

In order to meet stray force and stiffness requirements of the mission, the position sensor

displacement sensitivity must satisfy a measurement noise of 1.8nm/
√
Hz at 1mHz in

the three displacement d.o.f, and 200nrad/
√
Hz for angular d.o.f in the measurement

bandwidth.

Figure 1.7: LISA Technology Package



Chapter 2

The LPF differential

accelerometry measurement and

the Free-Fall mode

The LISA Technology package is, in its essence, a differential accelerometer, and will be

capable of measuring small acceleration acting on a mass in free fall, at the femto-g level.

It will measure the noise in the relative stray test mass acceleration and its requirement

is to place an overall differential acceleration noise upper limit of 30 fm/s2
√
Hz at

1mHz.

LPF configuration requires an actuation force along the sensitive degrees of freedom,

which is needed to compensate the static spacecraft self-gravity imbalance between the

two test masses, introducing a source of noise in the final budget that is an important

limiting factor at the low frequencies of interest for the mission. This is not a source of

noise for eLISA configuration, in which actuation is performed only along d.o.f. other

then the sensitive ones.

In general, if a large DC force acts on the free falling mass, which arises from the

spacecraft self-gravity, it is possible to implement a new technique to eliminate, at least

most of the time, the applied actuation force and the associated force noise: the free-fall

mode. Actuation forces are limited to short impulses, with the possibility of measuring

the actuation-free acceleration noise in the several hundred second free-flights between

these impulses. So the mass is letting freely to move, with its time-averaged position at

the center of the GRS, the rest of time. The electrostatic actuation is than turned off

between the kicks and the test mass displacement during the free phase can be used for

a spectral estimation of the remaining noise sources affecting the free-fall motion.

In this chapter we will explain the basics of LISA Pathfinder acceleration measurement

and how the acceleration noise budget is dominated by the electrostatic actuation noise.

10
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Finally we will explain the main scheme of the free fall control mode.

The free fall mode is a very powerful method to reduce noise from electrostatic suspension

systems.

2.1 Differential accelerometry with combined drag-free and

electrostatic suspension control

LISA Pathfinder can be considered as a differential accelerometer aiming to demonstrate

the possibility to perform a relative acceleration measurement between two test mass

in the same spacecraft, and with the main goal of measuring the acceleration noise in a

space environment.

Most space applications requiring high resolution measurement of acceleration between

spacecraft and other test bodies are based on electrostatic accelerometers [14]. The

baseline of such instruments is a metallic mass that serves as a geodesic reference par-

ticle, that we usually call test mass, enclosed in a structure hosting electrodes, named

electrode housing, which sense mass position and actuate it with electrostatic forces.

The mass is thus electrostatically suspended, forced to follow the spacecraft, in all axes.

The applied control force can then be used to calculate the stray forces acting on the

satellite and to thus reconstruct in analysis its geodesic orbit.

Scientific mission, like eLISA, work with acceleration sensors used in drag-free closed

loop control system in order to compensate the thrust due to all non-gravitational dis-

turbances acting on the satellite. In this way, the geodesic reference mass is not forced,

thus allowing it to truly follow a geodesic orbit and removing force noise which inevitably

accompanies any test mass actuation.

In order to protect the purity of the test mass free fall, the satellite shields test mass and

high precision thrusters are employed to center itself about the test mass, controlling

it on the basis of the feedback signal coming from the test mass position sensor. This

is the basis mechanism of the technique of drag-free control loop, conceived of in the

1960’s, and that is employed for the acceleration disturbance reduction [15].

LISA Pathfinder and the geodesy mission GOCE [16] are single spacecraft differential ac-

celerometers which combine the drag-free and accelerometer techniques. One test mass

serves as the reference for the drag-free control of the satellite, while a second test mass

must be forced to follow the first (or the satellite) to compensate any residual differential

acceleration between the two TM. GOCE is the most sensitive differential accelerom-

eter to date, with its differential acceleration measurements of order 10−10m/s2
√
Hz.

GOCE measures the difference in acceleration between TM displaced along three axes,

thus measuring the 9 component tensor dgi/dqj . LPF measures one of these components,

dgx/dx, at a lower precision of 30 fm/s2
√
Hz at 1mHz. This is possible by reducing
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each source of stray forces arising in the interaction between the sensor and masses but

also because LPF will be located at the first Lagrangian point (L1), not in low earth

orbit like GOCE. This reduce drastically the gravity difference felt by the two TMs from

order micron/s2 for GOCE to nm/s2 for LPF.

Both systems are only partially drag-free, and the need to apply forces to the second

mass to compensate the residual differential acceleration ∆g is quantitatively an impor-

tant limitation. We will see that in the Pathfinder configuration, the actuation noise is

a main noise source along the sensitive axis, that must be reduced.

2.1.1 LPF as a differential accelerometer

Because of the two masses are both hosted in the same satellite, it is impossible for the

spacecraft to follow contemporary two of them. So, one of the proof masses is consid-

ered the reference (say TM1), it defines the inertial frame, it is left free to move in a

geodetic motion, and the spacecraft follows it along a single axis, such as the sensitive x

measurement axis in LPF. The spacecraft is thrusted to follow the TM1 in the drag-free

control loop, as we can see in the Figure 2.1 on the left. The optical path in figure, o1, is

the interferometer output which measures relative displacement of TM1 with respect to

SC, o1 = x1 − xSC , and used for drag-free control. The second mass, (say TM2), must

be forced to follow either the other one or the spacecraft, by applying small electrostatic

forces FES , by means of the capacitance actuation, possibly within a closed loop control

scheme at low frequency, like appears in the Figure 2.1 on the right. This control loop is

usually called the electrostatic suspension. The interferometric displacement o12, is the

differential displacement of the two TMs, o12 = x2 − x1. Both o1 and o12 are required

to achieve 9 pm/
√
Hz or better readout noise, with o12 critical to the sensitivity of the

main differential acceleration LPF measurement.

Different causes can deviate the masses from their purely geodesic motion, and they

can be external or internal. The external ones can be compensated by acting on the

satellite relative position by using thruster. The internal forces are related to the grav-

itational coupling both among the masses, that the masses and satellite. The local

gravitational field between TM1 and TM2 brings the masses to each other, while, the

TMs - spacecraft field produce differential displacement between the involved bodies,

and also a translation that can again be compensated by thruster moving. To coun-

teract the undesired differential shift between the test particles due to the local gravity

field, the only way is act on one of the test mass itself. By actuating on the TM2 in

the suspension loop, would mean impress a constant acceleration but also a fluctuating

force, due to actuation force voltage fluctuations, that produce undesired accelerations

that must be reduced, as we will show below.
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Figure 2.1: On the left: Drag-free on TM1 The interferometer signal path o1 is
showed. On the right: Low frequency control on TM2. The interferometer signal o12

is outlined. [3]

The measured differential displacement of the two TMs, provide the acceleration of

TM2 relative to TM1, or rather the difference in the stray forces per unit mass acting

on the two TMs

∆g ≡ (F2 − F1)

m
. (2.1)

The observable ∆g, is the differential acceleration that would be present between the

two TMs in the absence of any applied forces or any elastic coupling to the satellite,

and with both TM centered such that the stiffness term in equation 1.2 is zero, and is

equivalent to a difference in the local gravitational field.

If we apply the Newton’s equations to the system of the satellite and the two TMs,

mẍ1 = F1 −mω2
1p(x1 − xSC) (2.2)

mẍ2 = F2 −mω2
2p(x2 − xSC) + FES (2.3)

where FES is the applied electrostatic forces on TM2, ω2
1p and ω2

2p are the effective

resonant angular frequencies associated with the elastic coupling, and therefore also

with any steady force gradients, between each TM and the spacecraft, is it possible to

subtract the two equation si that the acceleration ∆ẍ = ẍ2 − ẍ1 is:

∆ẍ = ∆g −∆ω2
p(x1 − xSC)− ω2

2p(x2 − x1) +
FES
m

. (2.4)

We can thus construct an observable quantity to estimate ∆g, if we call the relative

displacement interferometer readout o12 = x2 − x1 + n12 and the TM1 displacement

relative to the optical bench o1 = x1 − xSC + n1, where we have take into account also

the noise components in the signals detected, which are respectively n12 and n1, so that
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the equation of motion can be written as:

∆ĝ ≡ ö12 −
FES
m

+ (ω2
2p − ω2

1p)o1 + ω2
2po12 (2.5)

= ∆g + n̈12 + (ω2
2p − ω2

1p)n1 + ω2
2pn12. (2.6)

This equation represents a time domain estimator of the differential stray force per unit

mass ∆g and can be considered as the sum of the real differential stray acceleration

∆g ≡ (F2 − F1)/m plus a noise component due to the displacement noise in the inter-

ferometry signals [3]. We are interested in the measurement of the real acceleration ∆g

which is the observable ∆ĝ contaminated by a readout noise term.

The presence of the applied control force, FES
m , contributes to the differential force noise

∆g, because along with the desired, commanded actuation force FES there is a stochas-

tic, fluctuating force that comes from noise in the electrostatic actuator.

The electrostatic control force FES can be expressed via its frequency-dependent con-

troller gain, ω2
ES

FES = −mω2
ESo12. (2.7)

Electrostatic actuation is, thus, source of acceleration noise that originates in the need

to compensate the DC acceleration imbalance, that we will call ∆gDC , as we will see,

the free fall mode is a way to reduce this source of noise.

2.2 Acceleration noise budget

The LISA Pathfinder goal is that the noise in the differential acceleration measurement

∆ĝ would be less than

S
1/2
∆ĝ ≤ 3 · 10−14 m

s2
√
Hz

(2.8)

at 1mHz. This is the requirement sets for the gravitational free fall purity, within one

order of magnitude from the requirement for eLISA. This number play the role of a

constraint on the spectral noise density of residual stray forces and interferometry noise.

In figure 2.2 the total differential acceleration requirements and a budget for all the

noise component is shown [4]. These are different contributions of the individual subsys-

tems and noise sources. An extensive ground testing and analysis of the flight hardware

systems and known environmental noise has been used to form a current best estimate

of the differential acceleration noise at 1 mHz that is 3 times below the required one, as

is evidenced in figure 2.3 [3].

This figure shows the current best estimate for the differential acceleration noise in

LPF, based on ground test campaigns of flight hardware and system modeling. This
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Figure 2.2: LISA Pathfinder total differential acceleration requirements and a budget
for different contributions of the individual subsystems and noise sources. The gray
areas are out of the measurement band for the LPF but are of interest for eLISA. [4]

Figure 2.3: Current best estimate for the LPF differential acceleration noise measure-
ment. Blue curves show the total noise with and without the actuation force. [3]
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current estimate is obtained considering the configuration known as ”SCI mode 1”, in

which the spacecraft follows TM1, as read by o1, along the direction of the interferome-

ter arm, and the distance between the proof masses, as read by o12, is used as the error

signal to actuate electrostatically the second proof mass along the same axis [3].

It is important to pay attention to the term related to the X actuation noise budget.

At low frequency it is clear that the noise due to the actuation adds up as an additional

noise source.

This is the force noise due to the fluctuations in the amplitude of the applied electro-

static actuation voltage of the electrostatic suspension loop. If the amplitude of the

audio frequency voltages used to apply the electrostatic actuation force fluctuates, then

this feedback force fluctuates, adding to the noise in ∆g that is expected to limit the

sensitivity at the lowest frequencies. This actuation noise can be related to the instabil-

ity of actuation voltage references or in the amplifier gain.

Any instability in the applied electrostatic actuation forces FES , produces an accelera-

tion noise related to the actuation voltage stability noise S
1
2

δV/V

S
1/2
∆g ≈ 2λ∆gDCS

1
2

δV/V , (2.9)

considering that the applied force is F ∝ V 2 so that δF/F ∝ 2δV/V , as we will se in the

next section in detail. The proportionality factor λ here is equal to 1 if the actuation

amplitudes of actuation amplifier fluctuate in correlated fashion. If not, must be also

considered that the same electrodes are used to control rotation around the z axis or-

thogonal to x (figure 1.5), and the presence of this torque actuation NΦ, on both TMs,

can produce force noise in x.

The DC force generated by the electric field fluctuates because itself fluctuates, so that

the noise contributes directly to the measured differential acceleration ∆g. We will

explain more precisely how this happen, with electrostatic consideration about the ac-

tuation in the next section. Here we report only that the overall actuation amplitude

stability, including the DC reference stability, amplifier gain stability, and other contri-

butions, is required to be stable within

S
1
2

δV/V < 2 · 10−6/
√
Hz, (2.10)

The estimated differential acceleration noise level of 7.5 fm/s2
√
Hz at 1mHz visible

in figure 2.3 considers the allotted gravitational balancing tolerances along x equal to

∆gDC ≈ 0.65nm/s2 and the estimated gravitational torque around z axis less then

2nrad/s2. Following these specifications, this noise source would give an acceleration

noise contribution of roughly 3 fm/s2
√
Hz. Without the DC acceleration contribution

and considering only the presence of the Φ actuation, this acceleration noise contribution
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Figure 2.4: Test mass - spacecraft self-gravity.

falls to 1 fm/s2
√
Hz, which is an important consideration for motivating the actuation

noise reduction with the free-fall mode, that we will address shortly.

The actual measured stability with the inertial sensor Front End Electronics (FEE) gives

3− 7ppm/
√

(Hz) at 1mHz [17] [18] and the observed actuation fluctuations appear to

be uncorrelated between different electrode channels.

Static compensation of the spacecraft gravity imbalance is mandatory to meet the

0.65nm/s2 residual DC acceleration requirement and can be done in part by using

compensation block masses to minimizes the residual gravitational imbalance and stiff-

ness [19]. The expected residual gravitational accelerations ∆gDC ≈ 0.65nm/s2 repre-

sents the uncertainty on the mass compensation after have used the compensation block

masses.

The other part of the noise reduction is carried out by the free fall actuation mode, a

way to control the TM2 aimed at remove completely the actuation noise limiting factor

on sensitive axis and allowing to get closer the performances expected for eLISA.

2.3 The GRS actuation noise

We can explain the noise due to the actuation, giving the basics of the electrostatic and

actuation models of the capacitive sensor.

To allow the production of actuation forces, a voltage difference are established between

TM and various electrodes to which we apply actuation voltages, that, as we said in

section 1.3, altogether form a system of conductors. In figure 1.6 is shown the GRS

actuation circuitry scheme, that allows application of audio frequency AC and DC volt-

ages on each sensing electrodes. For our purpose, we consider only the sensitive axis x.
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Actuation forces arise from TM-electrode voltage differences. So, if we call Vi and VTM

respectively the electrodes and test mass potentials, it is possible to write the general

formula of the DC force applied (as we will discuss later in equation 3.13), from standard

energetic considerations of the electrostatic field of conductors 1:

Fi =
1

2

∑
i

∂Ci
∂x

(Vi − VTM )2. (2.11)

The test mass potential depends on the charge value of the mass QTM and on the

electrodes capacitance Ci, as well as by the potential of each surface Vj in this way:

VTM =
q

Ctot
+

1

Ctot

∑
j

CjVj . (2.12)

The sums are on all the electrodes facing the test mass and the total capacitance Ctot

includes both the housing and the electrodes capacitances (as discussed in the electro-

static model described in section 3.2.1).

When the voltages are fixed by the electronic circuitry, it is possible to expand the ca-

pacitance derivative, respect to a reference position, and rewrite the electrostatic force

between the mass and any electrode as:

Fxi =
1

2

[(
∂Ci
∂x

)
0

+

(
∂2Ci
∂x2

)
0

x

]
(Vi − VTM )2. (2.13)

The first term, that depends on the first capacitance derivative, gives the applied force,

while the second term determines the dependence of the applied force from the test

mass position and depends on the second order capacitance derivative. The second

terms, essentially, expresses the electrostatic spring-like coupling between the test mass

and all the surfaces of the electrode housing and is named the electrostatic stiffness

associated to actuation, ω2
p,act ∝ −∂F/∂x. This act as a negative spring, it will also

make the test mass unstable towards the sensor surfaces. So the electrostatic actuation

will add both force noise and, as the applied forces depend on position, a significant

contribution to the negative parasitic stiffness.

It is possible to apply AC or DC voltages to electrodes, with a constant stiffness actuation

model [20], to apply any force in some range [−FMAX ,+FMAX ] while holding the force

gradient constant.

Each electrode can be used to actuate two d.o.f.s, i.e. x and φ for the x-facing electrodes.

The actuation voltage can thus be separated into a contribution for x-actuation and one

for φ-actuation. If we apply ±Vx1 and ±Vx2 respectively on the right and the left side

1Note that the sum is made on all electrodes and the partial derivative ∂Ci
∂x

≡ ∂Ci,TM

∂x
+

∂Ci,H

∂x
sum

of contribution of capacitance of electrodes x w.r.t. test mass and housing. The second term
∂Ci,H

∂x
is

typically less then the first of roughly 10% (see section 3.2.1)
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Figure 2.5: Scheme of actuation voltages applied on x electrodes.

of the electrode housing (see figure 2.5), we will have (
∑

j Cj)VTM = Ctot
∑

i Vi = 0. So

no changes are produced on VTM caused by the actuation voltage.

If the TM is centered and not rotated and if we want to apply only force keeping the

TM average voltage at zero, the mean force along x is given by:

Fx =
1

2

∑
i

∂Ci
∂x

〈
(Vi − VTM )2

〉
(2.14)

≈ 1

2

∑
i

∂Ci
∂x

〈
V 2
i

〉
(2.15)

If Vx1 = Vx2, the force is zero. If Vx1 > Vx2 (or vice versa), from the equation 2.11 it

would be:

Fx =

∂Cx∂x

(V 2
x1 − V 2

x2

)
(2.16)

As consequence the stiffness will be:

ω2
p,act = − 1

m

∂F

∂x
= − 1

m

∂2Cx
∂x2

(V 2
x1 + V 2

x2

)
. (2.17)

We can thus hold the stiffness constant by keeping constant V 2
x1 + V 2

x2 ≡ V 2
MAX . This

gives a range of forces [−FMAX ,+FMAX ] at constant stiffness

ω2
p,act = −FMAX

m

∂2Cx
∂x2

∂Cx
∂x

 ≈ −2∆gMAX

d
(2.18)

where the expression of the first and second capacitance derivatives has been replaced

as they are from the parallel plate model ∂Cx/∂x = ±Cx/d and ∂2Cx/∂x
2 = 2Cx/d

2

(see section 3.2.1 and reference [20]), showing up the dependence on the gap between

the electrodes and the test mass d.

The actuation scheme can be considered at constant stiffness because the equation 2.17

defines a family of circles in the V1x−V2x plane, with radius of constant stiffness
√
|ω2
p,act|

in the space Vx,i.
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Accordingly to what it has been said about the electrostatic compensation of the gravity

imbalance, the term FMAX
m is the actuation used to counteract the gravity-dominated

DC force imbalance ∆gDC and the relative stability of the quantity < V 2
x,i > is the

relative stability of the applied force.

An ”in band” fluctuation of the actuation drive voltage amplitude δVx is related to a

force fluctuation because Fx ∝ V 2
x,i, so that

δFx
Fx

= 2
δVx
Vx

(2.19)

which translates finally into acceleration noise, according to equation 2.9:

S
1/2
∆g = 2λ∆gDCS

1
2

δV/Vact
(2.20)

and S
1
2

δV/Vact
is the noise spectral density of the actuation voltage fluctuation. Both the

stiffness and the actuation force noise along the x direction, are thus proportional to the

residual imbalanced ∆gDC .

It is worth to note here that the factor λ can be considered equal to 1 for amplifiers

actuation noise correlated. Otherwise in the acceleration noise S
1/2
∆g , depends not just

from ∆gDC , but also from the maximum allowable actuation ∆gMAX = FMAX
m ,and the

applied torques and torque authority on the two TM.

As already said in the acceleration noise budget section, the current design specification

estimate a noise density S
1
2

δV/V ≈ 3 − 7 ppm/
√
Hz to have a gravitational balancing to

∆g < 0.65nm/s2.

2.4 Actuation noise and the free-fall mode

As we said, the capacitive actuation noise is likely to be the limit of our experiment

sensitivity at the lower end of the bandwidth. But the electrostatic actuation is necessary

to compensate of the static field experienced by the TM2.

To reduce this source of noise, the free-fall mode idea is to actuate the test mass only

1% of the time with 100 times the DC force, so that the average suspension force would

be the same. It is possible to use the actuation forces over a short period of time by

switching on and off the suspension force with a constant frequency and a low duty cycle

of 1%. In this way the control on the mass is performed periodically with a series of

discrete kicks by using large suspension forces, rather than to use a continuous applied

force.

Between two kicks, the TM is thus free of applied force and thus also free of the actuation

noise from x actuation. It will follow an approximately parabolic trajectory respect to the
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Figure 2.6: Free-fall mode scheme [5].

other mass, and this displacement can be used to estimate the differential acceleration

as desired. From the equation of motion 2.6 it is possible to derive the equation during

a phase of drift between two kicks, when both TMs are free to move and no actuation

is applied

ö12 = ∆g + ∆ω2
po1 + ω2

2po12 + ∆n (2.21)

where all noise component were grouped in the term ∆n. The term which comprises FES

in the observable ∆ĝ is zero and the also actuation noise associated with FES is absent

from ∆g. The stiffness term multiplying o12 is now much larger, as the displacement in

o12 is now large, of order 5µm as shown in figure 2.7.

The negative stiffness ω2
p makes the dynamics unstable with a time of 500 s but the

constant force F brings the TM out of the interferometer sensing range in even less time

(400 s) and it would go out of range if we assume a certain ∆g [21]. As a conclusion,

the TM2 can have a free motion, only during short range of time, where no kicks are

applied. The free fall mode, therefore, consists of a series of repeated quasi-parabolic

flights with a duration fixed by the controller designed for the LTP, of 350 s along x,

periodically alternated with very short kicks ∼ 1 s, as it is possible to see in the left

part of Figure 2.7, that shows a segment of simulated data [6]. The cycle frequency is

2.85mHz.

Degrees of freedom other than x are controlled through capacitive actuation of drag-free

controlled in this scheme.

An observer tracks the motion of the TM2 during the free flight and estimates the

impulse required to maintain the mass position. The amplitude of the subsequent kick

is adjusted to deliver this impulse and the process is repeated [21].

The right part of Figure 2.7 shows a series of discrete kicks separated by nearly constant

acceleration during the free flight segments.

An important assumption is made about the disturbance force noise in ∆g and the

readout noise contribution. It is considered stationary from one kick to another, so that

the drift phases can be used to estimate the noise spectrum at frequency below the kick

frequency. This assumption is possible if we consider that the actuation use little power

to have a short and smooth transitory behavior.
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Figure 2.7: Free-fall mode time series from simulations. Here, RTM indicates the
reference test mass TM1 and NTM the non-reference test mass TM2. On the left: time
series of differential displacement of the two TMs. On the right: relative acceleration

time series. [6]



Chapter 3

Testing free fall on ground:

torsion pendulum facility

The eLISA and LTP level of performance cannot be verified on ground, due to the pres-

ence of the large Earth gravity, furthermore, their force noise isolation and reduction

requirements, at low frequencies, are well below any previous free-fall experiment. So

each known source of noise should be tested and characterized and needs experimental

investigation. This is the reason why a ground based test bench for small force mea-

surements was developed and realized.

An upper limit to all parasitic forces that act on the proof-mass surfaces (electrostatics

and electromagnetics, thermal and pressure effects, etc) has been established during the

last years with pendulum facilities, configured for low frequency (mHz and sub-mHz

region) and high sensitivity measurements of torque introduced by the sensor on the

suspended test mass. We describe here the most relevant disturbances and discuss the

characterization of their torque noise contribution to the overall pendulum torque noise.

Moreover, the possibility of test the free fall mode with the appropriate accuracy and

sensitivity on ground, is provided by means of torsion pendulum test bench, as we will

explain in this chapter.

3.1 Single TM facility

Torsion pendulum and torsion balances have been widely used in weak forces mea-

surements and the main reasons are that they can measure forces in a plane always

perpendicular to the gravity field, and they are weakly coupled to the seismic noise. So

a pendulum is the best instrument to measure the weak forces exerted by the eLISA

capacitive sensor prototypes on a test mass that is suspended by a thin torsion fiber, so

23
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that it is nearly free along one rotational degree of freedom.

As said before, the required sensitivity in the measurement of small forces on ground is

the fN level, at frequency between 0.1 and 10mHz, a very challenging task considering

that is about 1016 orders of magnitude less than gravity on Earth. So it is necessary to

decouple the measurement process from the local gravitational field, and this is simply

done by suspending the weight of the inertial member with a fiber, hangs the mass par-

allel to local gravitational field. With a correct choice of fiber dimensions and material,

a very low torsional spring constant and high quality factor can be achieved, that result

in a lower torque thermal noise and thus in an increased sensitivity. It is clear that the

only sensitive degree of freedom is the rotational one around the fiber axis.

The equation of motion of the pendulum along the rotational d.o.f. φ is written as:

IΦ̈(t) + γΦ̇(t) + ΓΦ(t) = N(t) (3.1)

where I is the pendulum inertial moment, γ is the dissipative term and we are assuming a

structural damping, with thus γ(ω) = Γδ
ω , where Γ is the fiber torsional elastic constant,

and N is the applied torque. This equation gives an equilibrium angle φEQ = NDC
Γ that

is included in N(t) as the fiber torque ΓΦEQ.

In the frequency domain the equation can be rewritten as:

− Iω2Φ(ω) + Γ(1 + iδ)Φ(ω) = N(ω) (3.2)

where the dissipative term has been defined as δ = 1/Q, that is the loss angle, with Q

quality factor of the oscillator. The moment of inertia can be written in term of ω0, the

natural resonant angular frequency, I = Γ/ω2
0, considering to be in the approximation

of small δ (high quality factor).

The equation 3.2 can be rewritten as:

Φ(ω) =
N(ω)

Γ(1 + iδ)− Iω2
=

N(ω)

Γ
(

1− ( ωω0
)2 + i

Q

) (3.3)

Introducing the pendulum transfer function H(ω), it will be:

Φ(ω) = H(ω)N(ω) with H(ω) =
1

Γ
(

1− ( ωω0
)2 + i

Q

) (3.4)

Each force, or rather torque, acting on the pendulum at frequency ω, can thus be con-

verted in angular displacement at the angular frequency by means of the pendulum

transfer function and then detected as deflection of the pendulum angular rotation.

Measuring the angular motion, it is thus possible, through the knowledge of the pendu-

lum parameters, to estimate the external torque exciting the pendulum or just applying
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the equation 3.1.

It is clear that the pendulum angular measurement is affected also by the noise, Φmeas(ω) =

Φ(ω) + Φn(ω) = H(ω)N(ω) + Φn(ω), so that the sensitivity of the pendulum, in the

torque measurement, it will be affected by the angular readout noise and by the me-

chanical thermal noise as predicted by the fluctuation-dissipation theorem [22]. The

maximum torque sensitivity of the pendulum is reached when it is limited by:

SNth
(ω) = 4kBT

Γ

ωQ
(3.5)

where kB is the Boltzmann constant, and T is the temperature.

In order to improve the sensitivity by keeping the thermal noise low and the quality

factor Q high, the pendulum is operated in high vacuum and the test mass is suspended

from a fiber with intrinsically low mechanical losses, made by fused silica. This material

choice was well demonstrated an improvement of force sensitivity over what can be

achieved with thermal noise-limited tungsten over a wide range of frequencies, during

the past years [24]. It also possible to lower the torsional stiffness Γ, that depends on

the fiber radius r via the relation:

Γ =
πr4

2L

(
F +

mg

πr2

)
(3.6)

where L is the length of the fiber, F in this case refers to the elastic modulus of the

material employed, m is the pendulum mass and g the local gravitational field. All these

parameters are chosen to minimize the torsional constant in order to be sensitive to very

weak forces [25].

Finally, the noise floor can be expressed as:

SNmeas = SNth
(ω) +

SΦn(ω)

|H(ω)|2
(3.7)

The intrinsic noise limit of the pendulum is dominated at low frequency by the pendulum

thermal noise, that masks external contributions up to its value. The high frequency is

instead dominated by the readout sensitivity, that goes as the ω−2 factor of the transfer

function 3.4, unable to distinguish pendulum movement below a certain value. The

sensitivity in angle and torque is shown in figure 3.1.

Moreover, the final estimate of torque is not done in the frequency domain, but directly

in the time domain from the equation 3.1, by converting the angular time series into an

instantaneous applied torque N(t). This because, by dividing the power spectral density

of the pendulum angular position SΦn by the square modulus of the pendulum transfer

function as in equation 3.7, can produce problem around the most sensitive frequency

we are interested in, the resonance. In fact, the transfer function has a narrow peak
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Figure 3.1: Pendulum sensitivity curves. On the left: angular sensitivity, obtained
considering an angular white noise level SΦn

= 20nrad/
√
Hz at 10mHz. On the right:

torque sensitivity obtained considering a withe torque level of S
1/2
N = 1.4 fNm/

√
Hz.

Thermal limit is obtained considering moment of inertia I = 4.31−5kgm2, quality
factor Q = 1 · 106 and pendulum period T0 = 468 s.
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at resonance frequency ω = ω0, as visible in figure 3.1, as does SΦn . Dividing the two

quantity easily lead to unwanted artifacts around ω0.

The measured torque N(ω) can be converted into a force F (ω) by means of a suitable

conversion arm-length RΦ, depending on the nature of the noise source involved [26]:

F (ω) =
N(ω)

RΦ
. (3.8)

For our purposes, we are interested in the noise source coming from electrostatic in-

teraction. Any electrostatic interaction between sensing circuit noise and the sensor

excitation produces back action forces and torque noise proportional to the net acting

force noise. For these sources of noise the right armlenght is RΦ = 10.75mm, that is

the nominal half separation between adjacent electrodes.

Similarly, it is possible to convert to an equivalent noise in acceleration caused by surface

forces for a eLISA / LPF proof mass of ∼ 2 kg. This means that a measured torque of

∼ 1fN m/
√
Hz at mHz frequency, corresponds to an acceleration of ∼ 50 fm/s2

√
Hz,

a factor 2 above LISA Pathfinder specification. The torsion pendulum facility can thus

allow a quantitatively significant test of the purity of the free fall, because the measured

pendulum angular noise in the eLISA and LISA Pathfinder measurement band, estab-

lishes an upper limit on the contribution of noisy surface forces, as we will explain in

the next sections, where we conclude also at which level it is able to test quantitatively

the feasibility of the free-fall mode.

3.2 Experimental apparatus

The torsion pendulum test bench is based on a lightweight (80g) and hollow eLISA test

mass, of 46mm side and gold coated aluminum, suspended by a thin torsion fiber of 1m

length, made by fused silica of ≈ 38µm of diameter [27]. The test mass has no electrical

contact with the surrounding environment, and is electrically insulated from the rest of

the inertial member by means of a quartz ring, in order to provide a very high electrical

resistance and also reduce the stray capacitance of the test mass to ground.

We will describe schematically the various part and devices of torsion pendulum facility.

• GRS The gold coated aluminum mass hangs inside a prototype of the Gravitational

Reference Sensor (GRS), with a gap between TM and electrodes of 4mm, as

already showed in figure 1.5. This prototype is an engineering model very similar

to the final gravitational reference sensor design for the LTP experiment, employing

Sapphire electrodes. For typical injection bias of 5V at 100 kHz, the noise floor of
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Figure 3.2: The real test mass suspended in the torsion pendulum facility.

Figure 3.3: Scheme of the one test mass facility.

the sensor is roughly 100nrad/
√
Hz at frequencies of 10mHz. The aspect of the

homemade GRS FEE that is most important to our measurements, the actuation

circuitry, is described below in Section 3.2.2.

• Autocollimator The supporting shaft is also made of gold coated aluminum. It



Chapter 3. Torsion pendulum facilities 29

carries a gold coated mirror, used for the independent optical readout of the pen-

dulum angular position. It is based on a commercial two axis autocollimator

Möller-Wedel ELCOMAT vario, that is used as a reference sensor, monitoring the

angular d.o.f. of twist Φ and swing η, as well as the GRS. A LED light source

reflects on the mirror and is collected by a CCD camera. It has a bit resolution

of 50nrad LSB and a full scale range of about ±5mrad. It was measured that

its resolution in the angular measurement with a fixed mirror is to the best of

100nrad/
√
Hz at 1mHz [24]. The optical readout is also used for calibration of

the capacitive readout in Φ and η angular d.o.f..

The intrinsic sampling frequency of the optical readout is 50Hz, typically aver-

aged to give 10Hz sampling. It is connected via a serial communication port with

the data acquisition computer.

• Pendulum parameters The inertial member has a measured moment of inertia

I = 4.3 · 10−5kgm2 [28]. The pendulum typical oscillation period is measured to

be about 460 s, in a condition where no electrical field is applied to the electrodes.

Considering that the torsional stiffness is related to the pendulum period by the

formula Γ = I(2π/T0)2, its value is near to 8.04 ·10−9N m/rad. Purposely applied

or parasitic electrical fields can decrease this number by introducing a correspond-

ing electrostatic stiffness ΓES , as it is produced mainly by the injection sensing

bias and possible applied actuation or DC bias voltages. In typical operating con-

ditions, with a 100 kHz injection bias of 6VRMS amplitude, the pendulum period

raise up to 468 s. With this choice of material and dimensions of fiber, the me-

chanical losses and the energy dissipation are very low, and the energy decay time

is of the order of 108s corresponding to a quality factor of the oscillator Q around

one million. In the next chapters we will discuss about the total amount of the

stiffness Γ as sum of all the electrostatic contribution to the rotational stiffness

provided by different electrostatic sources.

With values and parameters reported before for fiber radius and quality fac-

tor, the thermal noise of such a pendulum, from the equation 3.5, is around

0.14 fN m/
√
Hz at 1mHz, at room temperature (as also shown in figure 3.1).

• Vacuum and thermal parts All the part described [25] are enclosed in a cylindri-

cal vacuum chamber of about 50 litres capacity and 350mm of radius, where the

residual pressure is kept to about 1−2 ·10−5 Pa by means of a 50 l/s turbo molec-

ular pump.

The torsion fiber is instead enclosed in an 80 cm long vacuum tube, mounted on

the top of the vacuum vessel (see figure 3.4). To avoid any dangerous effect due to

environmental vibration, the whole system is kept on a laboratory floor platform
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Figure 3.4: Torsion pendulum vacuum chamber and the thermal box that surround
it.

separated from the rest of the floor. This gives isolation from seismic noise pro-

duced by human activity in the surrounding of the experiment. All the connected

systems, like primary pump and temperature control system, sit on a separated

platform to obtain an additive vibrational isolation.

The entire apparatus is also enclosed inside a thermally isolated box made by

styrofoam panels (the gold panels in figure 3.4). Moreover, to stabilize the tem-

perature inside the thermal box, water circulate in a radiator through a coil in

thermal contact with the metallic plate supporting the experiment. Temperature

gradients are also reduced forcing air circulation within the thermal box with a

set of fans. Thermal stability more than one order of magnitude better than daily

laboratory temperature fluctuations is achieved. The temperature of the experi-

ment is measured by several PtAu100 thermometers read by a digital multimeter

obtaining a measurement resolution about 2mK/
√
Hz.

• Micromanipulator The torsion pendulum has also a two d.o.f manual micromanip-

ulator, mounted on top of the vacuum tube, for vertical and rotational alignment.

The micro-positioning system allows centering of the sensor about the suspended

test mass with a trial and error manual resolution of order 100µrad in Φ rotation,

according to the capacitive sensor signal itself. This operation has been done be-

fore starting the free fall mode testing campaign, and at the end, as we will explain

in the next chapter.

• Data acquisition system All experimental data are continuously recorded by a

dedicated quasi real time data acquisition system, developed in Labview. Sensor
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data are sampled at 10Hz and measured by a PCI-ADC NI-3032 counter with

several ms of jitter determined by interaction with the data acquisition computer

windows.

3.2.1 GRS electrostatic model

The GRS electrostatic model comprises the set of equations that describes mathemat-

ically the inertial sensor electrostatic forces and torques. Here we presents a general

approach to the electrostatic model used in the whole thesis work.

A double approach has been used to describe the model, an analytic one that follows

the basics of a parallel plate electrostatic model of the sensor capacitance surfaces, and

a finite element (FE) model analysis provided by Astrium Germany, whose results are

used to verify the approximations of the current electrostatic modeling applied by per-

formance analyses, simulations, and on-board algorithms [7].

According to simple model of infinite parallel plate capacitors, conducting surfaces facing

the test mass have a capacitance

C =
ε0A

d
, (3.9)

where A is the overlapping area between parallel conductors, ε0 is the vacuum dielectric

constant and d the distance from the mass. In this case each border effects are neglected,

and parallel translation of plates don’t affect capacitance.

Capacitance derivatives, used to calculate both the sensor sensitivity and actuation

forces, follows directly from the infinite plates approximation. This approach, considers

forces and torques exerted on the TM computed taking into account only the gradient

of the electrode to test mass capacitance (CELi,TM ) w.r.t. the force direction.

An improved model has been recently introduced considering all the set of test mass

and sensor surfaces, comprising electrodes and guard-rings surfaces, in a schematic con-

figuration of sensor conductors and capacitances like in figure 3.5 [7]. This scheme form

a system of conductors, for which fundamental laws are valid and from standard ener-

getic considerations of the electrostatic field of conductors, the general form of the force

arising in the system is defined as [7]

Fq =
1

2

N∑
i=1

N∑
j=i+1

∂Ci,j
∂q

(Vi − Vj)2, (3.10)

where q is a generalized coordinate of all possible d.o.f., Vi and Vj are conductor po-

tentials, varying in a system of N conductors, and Ci,j is the corresponding capacitance

between them. In the system of N conductors considered here, the relevant housing

surfaces are those inside the GRS facing the TM and individual electrodes, known also
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as guard ring surfaces. This equation can thus be developed considering all the con-

tributions of capacitance gradients between each electrode and its surrounding housing

(CELi,H), between the test mass and its surrounding housing (CTM,H) and also the

in-between electrode capacitance gradient (CELi,ELj ):

Fq =
1

2

18∑
i=1

∂CELi,TM

∂q
(Vi − VTM )2 +

1

2

∂CTM,H

∂q
V 2
TM (3.11)

+
1

2

18∑
i=1

∂CELi,H

∂q
V 2
i (3.12)

+
1

2

18∑
i=1

18∑
j=i+1

∂CELi,ELj

∂q
(Vi − Vj)2. (3.13)

The second and the third lines of the equations are new terms that were not in the

original electrostatic models used by LPF, which only considered the TM - electrode

and TM - housing capacitances. Moreover, we don’t use in the final computation the

last line because the sum of EL-EL capacitance derivatives is negligible. The test mass

potential VTM used in above equation is defined by

VTM =

∑18
k=1

∂CELk,H

∂q Vk +QTM

CTOT
(3.14)

where QTM is the test mass charge and CTOT =
∑18

k=1CELk,TM + CTM,H . By using

this new approach where all the surfaces are taking into account prevents an error on

force and torque estimation typically of order 10% [7] respect to the simple parallel plate

model.

FE analysis model, starting with a detailed geometrical model of the sensor housing and

test mass, from multiple analyses runs applying a 3D field simulation software, com-

puted all forces and torques in the six d.o.f., as well as all capacitances in-between the

TM, the 18 electrodes, and the housing.

According to this complete electrostatic model, we can define effective capacitance

derivative of x electrodes as sum of derivative w.r.t. Φ of electrodes respect to housing

and respect to test mass, as:

∂Cx
∂q

=
∂Cx,EL−TM

∂q
+
∂Cx,EL−H

∂q
, (3.15)

and this will be used in all equations in the next chapters.

We will express the equation in 3.13 for force and torque during the present thesis work,

where necessary for the used degrees of freedom to explain different electrostatics effects

acting on our system.
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Figure 3.5: GRS conductors and capacitances scheme [7]. H indicates electrode
Housing surfaces, while TM is the test mass surface and EL# stands for the number

of electrodes.

3.2.2 GRS front-end electronics

General mode of functioning of the GRS readout circuit has been described in section

1.3. Here, particular attention will be paid to the description of the front-end electronic

devices used as actuation circuitry of the capacitive position sensor on torsion pendulum

facility, to give the idea of the authority and of the sensitivity with which the free fall

experiment can be implemented.

Actuation voltages are obtained applying audio frequency and DC voltages Vact directly

to the x electrodes across the transformer inputs and it is driven by a computer 16

bit PCI-DAC, a National Instruments 6703, with dynamical range ±10V and resolution

312.5µV . A switch driven by a 205Hz external clock alternatively transmits the applied

DAC voltage with +1 and -1 gain, by switching between the output of unity gain follower

and inverting amplifiers. DC and audio signals are then summed and low-pass filtered,

with a cutoff around 1 kHz to avoid interference with the 100 kHz readout before being

applied to the sensor [29].

Finally, considering that the maximum voltage that can be applied by DAC to the each

electrode is VDC = ±10V , which in the usual torque actuation configuration is employed

on a diagonal pair of x electrodes biased with opposite phase audio voltages, the maxi-

mum torque obtained is |Nmax| =
∂Cx
∂Φ V 2

RMS,MAX

 ≈ 200pN m.

The squarewave amplitude commanded is attenuated by a RMS attenuation factor fatt,

measured to be 0.85, so that < V 2
RMS,MAX >= f2

att V
2
DC . This maximum authority, in

presence of a torsional spring constant Γ = 8nN m/rad, allow control of the test mass

rotational degree of freedom over a range of ≈ 2.5mrad.

Torque authority for torsion pendulum facility is reduced respect the LTP actuation

FEE authority in flight, where it is possible to apply roughly 11V in science mode and

135V AC, applied half the time, in wide range [18].
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The given authority sets a constraint about the pendulum free fall mode implementation

as we will largely discuss in chapter 4, about torque authority and actuator character-

istics.

Audio voltages are also used for PID control of the pendulum torsional mode, such as for

rapid damping or to modify the torsion pendulum equilibrium position, while DC biases

are applied for electrostatic characterization of the sensor electrodes and to measure the

test mass charge.

3.3 Upper limit on measured torque

In this section we present the torsion pendulum sensitivity in terms of power spectral

density of the external torque noise acting on the test mass during a measurement in

quiet conditions.

In figure 3.6 a typical angular deflection time series is showed, for both autocollimator

and capacitive sensor. The ≈ 480 s free mode oscillation is visible. Torsion pendulum

oscillation amplitude is less then 1µrad in a typical measurement. The angular time

series are then converted in torque by direct application of equation of motion and

processed to calculate power and cross spectral densities.

The statistical tool used to describe the sensitivity is the power spectral density (PSD)

[30]. Figure 3.7 shows the typical angular noise S
1/2
Φ of the torsion pendulum as measured

by the sensor and by the optical readout, compared with the intrinsic thermal limit. The

angular noise follows the behavior described in the equation 3.7, in which thermal noise

is factor 6 lower at low frequency below the resonance, and the almost flat readout

noise dominates the frequency band above 10mHz. The angular noise limit is around

30nrad/
√
Hz at 10mHz.

Peaks visible at multiples of resonance frequency have been traced to the autocollimator

non-linearity and will be addressed later in chapter 6. In figure 3.8 the angular noise

is converted into an instantaneous applied torque N(t) through the torsion pendulum

equation of motion 3.1, in time domain, that can be rewritten:

N(t) = IΦ̈(t) + βΦ̇(t) + ΓΦ(t). (3.16)

This is to point out that the quantity to estimate at time ti is N(t), obtained approx-

imating the first and second derivatives of Φ in ti by means of a parabolic fit to the

5 adjoining points at times ti−2 ... ti+2. The obtained values can be then substituted

in equation 3.16 to calculate N(t). This method get rids of both transients and free

oscillation amplitude, giving an instantaneous estimate of N(t) independent from the
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Figure 3.6: Typical pendulum angular deflection during a 10000 s of a torque noise
measurement run. Both the readout are able to resolve the torsion pendulum free

oscillation.

initial conditions. Otherwise, the torque noise is thus not estimated via the angular

noise and the frequency domain transfer function as in equation 3.4, but rather from

the PSD of the torque time series calculated as in equation 3.1. In either case, accurate

estimation relies on knowledge of pendulum parameters I, T0 and Q. This technique

(eqn 3.16) allows us to replace, if needed, the elastic force ΓΦ with a more complicated

position dependent restoring force (with non linear dependences form angular position

Φ2, Φ3 terms). The presence of possible noise sources, originating in the G.R.S. itself

or from coupling to environmental disturbances, can prevent the reaching of the torque

sensitivity limit and resolve the fused silica pendulum thermal noise. It is important to

identify and characterize these disturbances and eventually, if they are both significant

and well-characterized, subtract them from the torque time series, as we will see in the

next section.

3.3.1 Relevant environmental noise sources

The thermal limit is a lower limit on the pendulum sensitivity and on the resolution

with which we can characterize stray torques at low frequency. We measure noise above

this limit and it is possible to investigate at least several environmental noise sources

that have been observed in the past to produce significant torque noise and can couples
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Figure 3.7: Angular noise spectrum of one weekend noise data. The red curve is from
sensor readout, the blue one is from autocollimator and the black curve is the thermal

limit.

to the thermal limit [23]. We identify three disturbance categories: trans-twist noise,

or the coupling to the laboratory floor tilt, magnetic field fluctuations and temperature

fluctuations.

In cases of linear coupling of some disturbance into the measured pendulum torque, each

disturbance A can be considered in terms of its contribution to the pendulum torque as a

∆N = ∂N
∂A∆A. Their fluctuation can have also a contribution on noise S

1/2
NA

= |∂N∂A |S
1/2
A .

By estimating the coefficients relative to the disturbance, then the corrected torque Ncorr

is given by the difference between the measured torque Nmeas and the sum on all the

known disturbances ∂N
∂Ai

∆Ai.

Ncorr = Nmeas −
∑
i

∂N

∂Ai
∆Ai. (3.17)

The coupling factors can be characterized by experiments in which the external source

is modulated at an high enough level to induce a well resolved signal in the pendulum

twist. Otherwise it can be possible to calculate the coupling factors by minimizing the
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Figure 3.8: Torque noise spectrum of one weekend noise data. The red curve is from
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limit.

residual torque noise obtained with the disturbance subtraction. This minimization is

performed using the least square fit method in order to evaluate the coefficients with

which to subtract off the effects of different noise fields. This allows to minimize the

noise spectrum in a certain frequency range, checking for any correlation (with a cross

correlation analysis) between the measured torque and the known disturbances sources.

Tilt-twist The tilt-twist effect originates in a stray interaction between the suspended

pendulum and the position sensor itself, and was observed affecting pendulum noise

during the past years [31], with downgrade version of the facility. Any tilt motion of

laboratory floor, any structure relaxation or even laboratory temperature fluctuation,

can produce a torque on the pendulum. The same effect is produced either by translating

the sensor housing with respect to the suspended test mass and viceversa by holding

the sensor housing and tilting the apparatus. This is proportional, to first order, to the

relative translation displacement of the TM with respect to apparatus:

∆Ntt ≈
∂N

∂η
∆η +

∂N

∂Y
∆Y (3.18)

where ∆η and ∆Y are the tilt angle and the translational d.o.f. along the Y direction,

measured by the sensor.

The coupling to floor tilt was measured by purposely tilting the apparatus by moving



Chapter 3. Torsion pendulum facilities 38

7.283 7.284 7.285 7.286 7.287 7.288 7.289 7.29 7.291

x 10
6

1640

1645

1650

1655

Time (s)

T
o

rq
u

e
 (

fN
 m

)

 

 

7.283 7.284 7.285 7.286 7.287 7.288 7.289 7.29 7.291

x 10
6

−10

0

10

Y
 (

µ
m

)

 

 

7.283 7.284 7.285 7.286 7.287 7.288 7.289 7.29 7.291

x 10
6

0

5

10

15

η
 (

µ
ra

d
)

 

 

autocollimator

sensor

sensor

Figure 3.9: η, Y and torque time series during a tilt twist measurement.

a weight on the floor platform, where the pendulum sits. For each step, a bilinear

fit is performed in η and Y to estimate the contribution of ∆η and ∆Y . Then a least

square fitting is performed to extract the coupling coefficients ∂N
∂η and ∂N

∂Y and finally the

corrected torque is obtained subtracting the relative contributions as Ncorr = Nmeas −
Ntt.

We typically measure coupling coefficients ∂N
∂η and ∂N

∂Y with 0.02nNm/m precision, and

the measured values are typically ∂N
∂η ≈ 0.1nN m/rad, and ∂N

∂Y ≈ 0.6nN m/rad, with

variations of 70% observed over the 1.5 years of measurements.

We do not know if the measured coupling comes from some residual electrostatic or

other interaction inside the GRS, or from some coupling at the fiber suspension point,

but this noise source is no longer a limit to the noise of the pendulum, being very close

to the thermal limit at frequencies below 1mHz, as visible in figure 3.10. It will become

relevant if we hope to one day reach the thermal noise limit.

Temperature Environmental temperature fluctuations can induce a torque on the

pendulum as they may cause structural distortion of the apparatus, changes in the fiber

equilibrium angle and, in general, mechanical deformations. They can also produce

electronics drifts like variation in the readout electronics gain, or induce a tilt motion

of the whole experimental apparatus, introducing a fake defection signal in the readout.

Laboratory floor motion or thermal relaxations of the vacuum vessel, can act as the

trans-twist coupling effect, producing a similar torque noise. This is proportional, again
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Figure 3.10: Torque noise spectrum of one weekend noise data. The red curve is the
contribution of the tilt-twist coupling to torque. The cyan curve is the contribution of

the temperature coupling to torque.

with the same linear behavior, to

∆NT ≈
∂N

∂Tplatform
Tplatform +

∂N

∂Tfiber tube
Tfiber tube. (3.19)

It is possible to calculate the coupling factors by minimizing the residual torque noise

obtained with the disturbance subtraction, starting from the temperature measured time

series. In this case we have minimized the noise due to the effect of the temperature

variation of platform in coincidence to fiber tube thermal variation, in the frequency

range 0.4 − 1mHz. This because the fiber temperature variation can change the value

of the torsional spring constant and the temperature fluctuations of the vacuum tube

supporting the torsion fiber was observed to induce variations in the angular equilibrium

point.

The coupling factors estimated are ∂N
∂Tplatform

= −4 ± 12 fN m/K and ∂N
∂Tfiber tube

=

130 ± 70 fN m/K. As such, the temperature coupling would appear to be barely

resolvable. Additionally, as seen in figure 3.10, coupling at this level produces an effect

that is well below the measured noise floor.

It is worth to note that the minimization is performed on data already corrected for tilt-

twist coupling in order to found a connection between different weekend measurements.

Other torque effects caused by temperature fluctuations among the others thermometers

used in the facility were evaluated, but any correlation was founded, so their coupling

factors can be considered negligible.
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Magnetic field The local magnetic field ~B can exert a torque on the pendulum by

direct interaction with its residual magnetic moment ~m⊥ that has two components in

the horizontal plane xy, so that ~NB = ~m⊥ × ~B. The magnetic field fluctuations will

induce a torque noise of order S
1/2
NB
≈
√
m2
xSBy +m2

ySBx . In order to avoid any coupling

with this effect, all the parts of the pendulum are made by non-magnetic materials and

a µ-metal shield surrounds the apparatus inside the vacuum chamber. Anyway, it is

possible to measure the coupling factors in the x and y directions, with a magnetometer

placed outside the µ-metal shield, in order to evaluate any stray magnetic contribution,

by modulating a sinusoidal external magnetic field at 3mHz frequency, by means of a

round coil of 45 cm radius and 40 turns, alternatively placed orthogonally to the preferred

directions, and observing the coherent deflection of the pendulum rotation angle in phase

with the oscillating magnetic field.

The measured magnetic noise along the two directions is S
1/2
B ≈ 60nT/

√
Hz at 1mHz

and the measured torque is proportional to the applied magnetic field as:

NB ≈
∂N

∂Bx
By −

∂N

∂By
Bx (3.20)

The measured coupling factors are of the order ∂N
∂Bx
≈ 0.22 ± 0.01nAm2 and ∂N

∂By
≈

0.135 ± 0.002nAm2. So, the stray torque contribution is S
1/2
NB

=
√
m2
xSBy +m2

ySBx ≈
0.016 fN m/

√
Hz at 1mHz, a factor ten below the thermal limit, so it is not a limiting

factor for the pendulum’s torque sensitivity performance.

We note in figure 3.10 that the trans-twist and temperature coupling effects cannot

explain most of the excess pendulum noise. As such, we will not perform any subtraction

for such effects from our torque time series. It is still partly related to the pendulum

systematic effects. Any unexplained excess, even if possibly due to other intervening

mechanisms irrelevant to eLISA and LTP, can in principle come from the presence of

the GRS, and should thus be considered as an upper limit to the disturbances originating

inside it. Some of the noise can be related to the noise in the readout, and we will show

in the next section how we can separate this noise source from true force noise.

3.4 Readout noise and cross spectral density analysis

The cross spectral density (CSD) between torque measured by the two readout, the

optical and the capacitive one, is used as a tool to reduce the noise [23].

The real pendulum motion should be in principle detected by all the sensors if they are

correctly calibrated. The angular position measured from each sensor can be thought as
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a combination of the real angular position of the pendulum Φ(t) plus a noise Φni(t) that

is combination of the read out noise and a possible contribution due to the motion of

sensor respect to the TM, Φi(t) = Φ(t) + Φni(t). The angular part of noise should have

a part of totally correlated noise among the sensors, and another that depends on the

used sensor. The same idea can be applied when we convert the angular displacement

in torque, procedure that involve only linear operations. It is thus possible to write for

the two readout:

Nac(t) = N(t) +Nnoise
ac (t) (3.21)

Nsensor(t) = N(t) +Nnoise
sensor(t) (3.22)

We can define two combination of the measured Nac and Nsensor:

N+(t) =
Nac(t) +Nsensor(t)

2
= N(t) +

Nnoise
ac (t) +Nnoise

sensor(t)

2
(3.23)

N−(t) =
Nac(t)−Nsensor(t)

2
=
Nnoise
ac (t)−Nnoise

sensor(t)

2
(3.24)

If we consider Nnoise
ac (t) and Nnoise

sensor(t) ideally stationary and zero mean random process,

we can calculate the power spectral densities:

SN+(ω) = SN (ω) +
SNnoise

ac
(ω) + SNnoise

sensor
(ω)

4
(3.25)

SN−(ω) =
SNnoise

ac
(ω) + SNnoise

sensor
(ω)

4
(3.26)

SN (ω) is the power spectral densities of the true torque acting on the TM, and can

be estimated considering the definition of N+ and N−, by subtracting the last two

equations

SN (ω) = SN+(ω)− SN−(ω) = Re(SNac,Nsensor(ω)). (3.27)

The power spectral density SN (ω) of the correlated part of the signal computed is thus

equal to the real part of the cross spectral density between the torque time series obtained

by the two different sensors output. It is worth to note that this determination of the

PSD of pendulum torque noise allow to use the readout of two partially independent

sensors to get rid of the uncorrelated noise read by each of them.

The CSD is computed using the Welch periodogram method [30], given that we process

time series of finite length. This method is an unbiased estimator of power and cross

spectral density, from finite length discrete real time series and its expectation value

should be the external torque power spectral density, defined real and positive. The

uncertainty on the estimated CSD obtained from a single stretch of data is given by:

δSNac,Nsensor(ω) =
√
SNacNac(ω)SNsensorNsensor(ω) (3.28)
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where SNacNac(ω) and SNsensorNsensor(ω) are the PSD of single processes. In general,

the uncertainty of the CSD depends on the readout noise contribute from each sensor.

Consequently, the cross correlation technique for readout noise rejection gives optimal

results when the readout noise of the two detectors is comparable. When one of the

two contributes much larger readout noise than the other, the cross correlation still pro-

vides a good estimation of the external torque power spectral density, but with a larger

uncertainty than the PSD of the output of the less noisy detector, due to the noise con-

tribution of the noisiest sensor. The ability of extracting from noisy measurements the

external torque acting on the torsion pendulum is limited by the noisiest of the readouts.

It is possible to use some strategies to reduce the uncertainty of the spectral estimator.

First of all it is possible to divide the data string from which the power spectral density

is performed into n segments of the same length. Then, the best estimate of the cross

spectral density is then computed as the average of the CSD obtained from each segment,

obtaining a reduction of the uncertainty by a factor
√
n. However, dividing the time

series into shorter segments for averaging, therefore limits the minimum frequency and

the frequency resolution of the obtained cross spectral density because they are related

to the inverse of the time duration of the data segment. Because we are interested to

measure the performance of our instruments in the low frequency region, by averaging

to reduce the uncertainty on the estimation of the spectral densities we need to perform

measurements longest possible. For our frequency region of interest, that extends below

0.1 mHz, we need data stretches of at least 10000 s. Usually we choose 25000 s long

spectral windows for discarding the first three points of the spectrum known to be biased

with a Blackman Harris windowing function.

The application of a normalized window function like the Blackmann Harris 3rd order

function, together with the operation of data detrending, is another operations that

ensure the data stretch smoothly approaches zero at its ends, avoiding artifacts in the

estimated power spectral density introduced by the unavoidable truncation of the data

string to a finite length.

To obtain maximum information from the time series, it is then possible to use the head

and tail of each data segment more than once in the estimation of the cross spectral

density. This is done dividing the time series in overlapping segments. The amount

of overlapping chosen for Blackman Harris windows, to maximize the information and

avoid the introduction of some correlation between the PSD computed from adjacent

windows, is 0.66% for our system data.

Another important operation is to perform a frequency binning, in order to produce a

smoother estimate of the spectrum. The frequency range is divided into logarithmically

spaced bins and, the spectrum points belonging to the same bin, are averaged. For pen-

dulum data is performed a singularly frequency binning, in order to obtain 10 frequency

bin per decades. Binned spectra are then averaged into groups of ten consecutive data
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stretches and uncertainty in each frequency bin computed from the standard deviation

of the samples.

All the operations performed on pendulum data allow to reduce the problematic of

the computation of spectral estimates uncertainties that is peculiar of low frequency

experiments.

3.5 Excess torque noise

As a conclusion of torsion pendulum facility presentation, we show the external torque

noise best estimate measured in the recent past. This is the remaining unknown source

of noise attributed to the test mass interaction with the GRS, when all other identified

disturbances have been subtracted, and is considered as an upper limit to the excess

torque noise we can measure with torsion pendulum facility. The excess noise is com-

puted subtracting the thermal noise background from the measured external torque.

The measurements are realized mainly during the weekend, to remove the environmen-

tal noise produced by the presence of human activity during the work day and reach

high sensitivity performances. In order to have an high statistics to reduce spectral es-

timation uncertainty, as explained in the previous section, we need to average over long

time measurements repeatedly in the time. If the torsion pendulum torque noise can be

considered stationary in the period of time covered by the measurements, it is possible

consider non consecutive measurements to form a single estimate of the external torque

power spectral density.

Figure 3.11 shows data obtained for seven long weekend of noise runs performed in the

summer of 2013. The cross correlation technique has been used to reduce the spectrum

uncertainties at low frequency and it is the plotted as green points in the figure. It is clear

that the torsion pendulum facility is able to reach a sensitivity around 0.8 fN m/
√
Hz

at 1mHz. It is useful to convert the noise level from torque to acceleration, to directly

compare with the eLISA and LISA Pathfinder requirements, where the relevant exper-

imental quantity is a translation acceleration noise. It is done, as explained in section

3.1, and results, compared with missions requirements are shown in figure 3.12. As

conclusion, the torsion pendulum facility is able to rule out a large class of TM surface

disturbances at level of 30 fm/s2
√
Hz at 1mHz, within a factor 1.5 of LISA Pathfinder

goal.

Finally, it is possible also to show the noise stationarity during time for our facility.

This is a necessary requirement to statistically compare sets of data acquired over a long

range of time. Figures 3.13 shows the difference between torque power spectral densities

from two groups of measurements taken from the whole set of August and September

2013 shown in figure 3.11 and 3.12. We subtract two group of three weekends of noise
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converted into an equivalent torque noise on a single mass.

runs in order to show the reproducibility of background noise level over time. The

difference is consistent with zero within the estimated uncertainty in a small part of

the frequency region of interest, and is compared with the LPF requirement, suitably

converted into an equivalent torque noise on a single mass. The possible error due to

non-stationarity is around 0.2 fN2m2/Hz, that converted in to an effective differential

acceleration noise, is roughly the level of LISA Pathfinder goal. However, we are able to

detect extra acceleration noise acting on our instrument within LISA Pathfinder speci-

fications in the frequency region of interest near 1mHz, either from actuation noise or

by the free fall experiment.
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Free fall mode on torsion

pendulum

As shown in chapter 2, actuation noise is potentially the dominating noise source in the

LPF differential acceleration measurement and the free-fall mode represents a possible

way to eliminate this noise component. However, this has not been demonstrated exper-

imentally. Small force testing of the relevant GRS configuration, presented in chapter 3,

has all been performed with continuous torsion pendulum measurements in which the

TM is essentially still at the GRS center without actuation.

Moreover, many aspects like much larger dynamic range associated with the free-fall

mode or data analysis change introduced by gaps in the usable data, require experimen-

tal verification before application in flight. Our torsion pendulum provides a similar

system for such a test, with a quantitatively interesting possible level of sensitivity.

The measured torque noise sensitivity of 0.8 fNm/
√
Hz at 1mHz corresponds to an ef-

fective LPF TM acceleration noise level 40 fm/s2
√
Hz. Moreover, the torque authority

of the actuation circuit used for testing on ground is around 200 pNm and corresponds

to an equivalent differential applied force in DC of roughly 20 pNm, corresponding to

2nN forces applied by each of 2 electrodes, as we will explain later in this chapter.

These characteristics, make the pendulum a good instrument to test the feasibility of

the free fall mode.

The in-flight free fall mode test is designed to measure the intrinsic test mass acceleration

noise in the absence of applied electrostatic forces. This is a technique of disturbance

reduction and on ground it is possible to implement a similar but simplified experiment

with the objective to establish a facility for performing a parallel testing. The on-ground

experiment aims to demonstrate, with sufficient sensitivity, the feasibility of the free-fall

mode and the level of force noise measurement that can it allows. Additionally, if the

sensitivity is sufficient, we aim to measure the actuation force noise and to verify the

46
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possibility of actually achieving a lower noise level with the free-fall mode.

This is done thanks to the possibility to effectively simulate the LPF differential DC

gravitational acceleration with a large external torque on our pendulum. By rotating

pendulum respect to the gravitational reference sensor, it is necessary to apply external

torques on the suspended mass to hold it centered, and this means to mimic the LPF

gravity gradients that must be compensated in orbit. Moreover, the on-ground experi-

ment has the advantage to tune the effective DC gravitational imbalance, to allow more

flexibility to explore different control strategies, by varying flight and impulse time or

control points, and different dynamic configurations made possible by having a variable

stiffness.

4.1 Measurement concept

In flight a differential gravity imbalance must be compensated to hold the two masses

at a near constant distance. For this reason the second test mass must be actuated to

avoid being accelerated away, applying a force to compensate the differential acceleration

∆gDC . On ground a similar DC torque NDC can be introduced on torsion pendulum if

it is rotated with respect to the inertial sensor housing, in order to simulate a large DC

acceleration that require a force to be compensated, so that the test mass can be held

centered. In this way the condition on torsion pendulum are very close to the in flight

configuration and allow to implement the free fall control mode.

An ideal experiment to test our free-fall mode sensitivity would then consist of three

measurements: measure the noise floor of torsion pendulum in nominal conditions; mea-

sure the external torque noise in presence of a continuous actuation force in order to

measure the contribution from the actuation fluctuation that affect the noise estimation;

finally, measure the noise floor during the free fall mode to compare with the expected

one with no forces applied.

• Background force noise measurement. This is the measurement of the torque noise

floor of torsion pendulum as presented in section 3.5 and showed in figure 3.11.

On suspended mass acts a real external torque N(t) so that:

IΦ̈ = −ΓΦ− γΦ̇ +N(t) (4.1)

The signal detected from the pendulum angular deflection coming from the read-

out, is sum of the real displacement, plus a term of noise

Φm = Φ + Φn. (4.2)
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We can thus define an observer for the external torque N acting on the pendulum

N̂1 ≡ IΦ̈m + ΓΦm + γΦ̇m (4.3)

and includes a real torque N1(t) as in equation 4.1, plus a term of readout noise

components

N̂1 = N1(t) + (Φ̈n + ΓΦn + γΦ̇n). (4.4)

The measured noise is thus SN̂1
. This noise measurement is obviously performed

without any applied electrostatic actuation, when the pendulum suspension point,

and thus the test mass, are centered with respect to the gravitational reference

sensor electrode housing.

• Torque noise with applied DC actuation force. The idea is to measure again the

torque noise, but in a different condition, where the pendulum suspension point

is rotated and the TM is held in the GRS center with a constant applied torque.

The torsion pendulum is, in this configuration, rotated with respect to the GRS

electrode housing by an angle ∆Φ to simulate a large DC acceleration acting on

mass. It is thus necessary to apply a DC torque NDC = −Γ∆ΦEQ to roughly hold

the test mass centered respect the sensor housing. We remember that Γ is the

pendulum elastic torsion constant (see section 3.1). This DC force is analogous to

the bias ∆gDC on the non-reference TM2 suspension in LPF, needed in orbit to

compensate the self-gravity difference. Unlike Pathfinder, the bias for the torsion

pendulum can be tuned by adjusting ∆Φ, effectively allowing us to set the NDC

to a chosen level.

With this constant DC force applied, the pendulum equation of motion became in

principle

IΦ̈ = −Γ2Φ− γΦ̇ +N(t) +NACT (t), (4.5)

The stiffness Γ2 is not the same in equation 4.1. It has an additive contribution

due to the actuation, as we will explain in section 4.2.3. The torque measured by

the readout is then

N̂2 ≡ IΦ̈m + Γ2Φm + γΦ̇m − N̂ACT (4.6)

where N̂ACT is the constant commanded torque applied to keep the mass at center.

Measured torque include again the real torque N2(t) plus a noise component so

that the measured total torque is

N̂2 = N2(t) + (NACT (t)− N̂ACT ) + (Φ̈n + Γ2Φn + γΦ̇n). (4.7)
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The true actuation torque NACT (t) has two component

NACT (t) = αN̂ACT + δNACT (t). (4.8)

This is the commanded torque N̂ACT multiplied by an actuator calibration factor

α, plus the noise of the actuator of the GRS front-end electronics, δN(t). By

substituting in equation 4.7

N̂2 = N2(t) + (δNACT (t) + (α− 1)N̂ACT ) + (Φ̈n + ΓΦn + γΦ̇n). (4.9)

The measured torque noise in this phases is SN̂2
= SN2 + SNACT

, which include

the contribution from the actuation fluctuations,

S
1/2
NACT

= 2NDCS
1/2
δV/V , (4.10)

analogous to the ”in band” fluctuation of the actuation drive voltage amplitude

that translates into acceleration noise in flight, in the limit that the two actuators

have correlated fluctuations, as we saw in equation 2.20, S
1/2
∆g = 2∆gDCS

1
2

δV/Vact
.

The contribution on torque noise coming from the noisy electrostatic actuation

produces an excess in the noise power compared to the first configuration, that we

want to account for with the explained second measurement.

• Free fall torque noise with applied impulse. Using the same pendulum rotation

angle as in the previous experiment, the free fall control scheme is employed to

control the position of the TM. Torque impulses are applied periodically with a

frequency fexp = 1/Texp. The length of flights is defined as Tfly, while the impulse

is long Timp, so that the experiment time is Texp = Tfly + Timp and Tfly can be

connected to the impulse duty cycle χ ≡ Timp

Texp
.

In order to hold the test mass centered on average in between two impulses, the

applied torque must be equal, to NDC = −Γ∆ΦEQ of the previous experiment.

So, the amplitude of each impulse is Nimp ≈ −ΓΦEQ/χ.

We can write again the measured torque from the readout

N̂3 ≡ IΦ̈m + ΓΦm + γΦ̇m (4.11)

= N3(t) + (Φ̈n + ΓΦn + γΦ̇n), (4.12)

whereN3(t) is the true torque in between two impulses, during which, the actuation

NACT (t) is no longer present and the test mass is actuated only during the impulse

phases. Data that are free from continuous actuation, are analyzed to estimate the

free fall torque noise, SN̂3
and then compared with both the background SN̂1

and

continuous actuation cases SN̂2
, with the aim to recover the actuation free torque
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noise SN̂1
in the impulses experiment and resolve the excess actuation noise in

SN̂2
.

4.2 Pendulum dynamics during free fall

During the free fall mode experiment, the free motion of torsion pendulum follows the

dynamic of the free oscillation of a simple harmonic oscillator, truncated by the applied

impulses. The pendulum dynamics in between two impulses, is a free oscillation around

its equilibrium point ΦEQ, as showed in figure 4.1.

It is possible to calculate the angular dynamics of what we could define as an ideal

flight, in which the TM traces a trajectory around the GRS center (and thus with a

time average angle of zero) repeatedly in every flight. We start from the basic pendulum

equation of motion, simplified neglecting the contribution of the dissipation term

IΦ̈(t) = −ΓΦ(t) +N(t). (4.13)

If N(t) is constant in time N = NDC , this has a solution

Φ(t) = A cosω0t+B sinω0t+ ΦEQ, (4.14)

where ΦEQ = NDC/Γ. We set t = 0 at center of flight so that it lasts from −Tfly/2 until

+Tfly/2 and introduce conditions for position and velocity Φ(0) = Φ0 and Φ̇(0) = 0. In

this way A = Φ0 + ΦEQ and B = 0, so that

Φ = (Φ0 − ΦEQ) cosω0t+ ΦEQ. (4.15)

Moreover, during the flights, the time average of Φ(t) between −Tfly
2 and

Tfly
2 is chosen

to be zero, so that:

< Φ(t) >=
1

Tfly

∫ Tfly
2

−
Tfly
2

Φ(t)dt = 0. (4.16)

This means to choose time average pendulum angle being equal to some setpoint value

Φset, that in this case is zero. Finally, with a little algebra, this ideal free motion is

given by

Φ(t) = ΦEQ

(
1−

ω0
Tfly

2

sinω0
Tfly

2

cosω0t

)
. (4.17)

This solution is related to the pendulum period T0 and to the pendulum stiffness Γ, via

the angular frequency ω0 = 2π/T0 that is equal to 1
2π

√
Γ
I . The solution is also symmetric

about t = 0 and by design has a null average angle. This solution diverges in amplitude

at Tfly = T0, while in the limit of Tfly = T0/2, will be a free fall with Φ(t) = ΦEQ for
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Figure 4.1: Pendulum trajectory during the free fall mode.

t = Tfly/2. It is thus important to choose correctly the flight time duration related to

the pendulum period as we will see below. In the limit 1
Tfly
� 1

T0
, this would reduce to

constant angular acceleration, 1
2(

ΓΦEQ

I )t2, and thus to a parabolic motion characteristic

of constant acceleration.

Deriving the equation 4.17 it is possible to obtain the angular velocity of suspended

mass

Φ̇(t) = ΦEQ
ω2 Tfly

2

sinω
Tfly

2

sinωt. (4.18)

There is an ideal impulse torque value such that the pend motion is periodically forced

by the impulses applied, to come back to a single initial position with a chosen velocity,

to allow a periodic flight. Ideally, the value of impulse Nimp can be calculated starting
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from the equation of motion during an impulse phase:

IΦ̈(t) = −Γ(Φ(t)− ΦEQ)− ΓACTΦ(t) +Nimp (4.19)

whose solution is

Φ(t) = C cosω0t+D sinω0t+
Nimp + ΓΦEQ

Γ + ΓACT
(4.20)

with ω0 =
√

Γ+ΓACT
I . ΓACT is the induced stiffness of the actuation due to the electro-

static, that sum to the fiber stiffness. Considering, this time, that t = 0 corresponds to

the beginning of the impulse phase, and considering that Φ̇∗ and Φ∗ are velocity and

position at that time and come from the end of the previous free fall phase, the impulse

to apply can be derived imposing Φ̇(0) = Φ̇∗, Φ(0) = Φ∗ and Φ̇(
Timp

2 ) = 0.

With some calculation to determine C and D parameters, the impulse to apply became:

Nimp = (Γ + ΓACT )

(
Φ∗ − Φ̇∗

ω0 tan(ω
Timp

2 )

)
− ΓΦEQ. (4.21)

Using the ideal velocity Φ̇∗ and position Φ∗ as solutions of the free fall phases equation

4.17, it is possible to derive the definitive impulse necessary to drive the mass at the right

position at the beginning of the next flight. In principle, the ideal flight can be repeated

over and over by starting with the correct initial conditions and repeatedly applying

the ideal Nimp as in figure 4.4. However, any imperfection in the initial conditions, or

any torque noise, will drive the pendulum away from this ideal motion, as in figure 4.3.

To avoid instability, a control scheme has been implemented, made by an observer that

estimates the pendulum position and velocity before each impulse. Then a controller

estimates the impulse intensity needed to reach the initial point for the next cycle, by

using the pendulum dynamic constants as well as flight and impulse times. Controller

mechanism will be described in the next section.

4.2.1 Controller

The purpose of the controller is precisely to calculate the right impulse to apply to bring

the mass to the ideal position to start the next flight. Given initial conditions different

from the ideal, the controller should, after a certain number of kicks, stabilize the posi-

tion of the mass and converge to a single repeated applied torque impulse corresponding

ideally to that calculated in equation 4.21. This allows to make flights on average around

the set-point desired. Controller scheme is showed in figure 4.2. An observer estimates

pendulum position and velocity at the instant of the beginning of the impulse, i.e. the
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Figure 4.2: Scheme od controller working flow.

Figure 4.3: Simulated free fall angular displacement with control scheme in an open
and closed loop. The action of controller allow to stabilize the mass position after the

initial phase.

last 100 points before the end of the free fall phase (corresponding to 10 s), using a

linear LSQ fit to a model of quadratic time dependence of the pendulum position. Then

controller calculates the impulse intensity that will be opportunely converted in voltages

then applied by the GRS FEE actuation circuit to a diagonal couple of x electrodes (as

in scheme 4.5 and as we will explain in detail later).

4.2.2 Labview controller

Observer and controller are implemented in laboratory using Labview control routine,

in order to evolve pendulum motion in time, starting from initial condition that are
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Figure 4.4: Controller impulse amplitude applied on a simulated harmonic oscillator.
After a certain time, the impulse value stabilize to the ideal case.

position Φ∗ and velocity Φ̇∗ of the pendulum at the end of free phase, following the

equation described in section 4.2. In figure 4.3 a time series during the free fall mode

obtained from simulated data, is showed. It is clear from figure 4.3, that the use of

controller in a closed loop is mandatory, in simulation as in the real case, to reach the

convergence in time of the pendulum motion towards a stable free fall displacement. In

the ideal case, the achievement of stability depends only on the initial conditions and

there is only one value of Φ0 and Φ̇0 such that Φ(0) = Φ(Tfly) and Φ̇(0) = −Φ̇(Tfly).

From equations 4.17 and 4.18, ideal position and velocity values are:

Φ(0) = Φ(Tfly) = ΦEQ

(
1−

ω0
Tfly

2

sinω0
Tfly

2

)
(4.22)

Φ̇(0) = −Φ̇(Tfly) = −ΦEQω
2
0

Tfly
2
. (4.23)

Independently from the boundary conditions, the controller should ensure that the mass

reach the ideal position expressed by equation 4.22. Otherwise the motion is observed

to oscillate with much larger amplitude than needed.

There is only a limitation to the possible torque that the actuator can produce that

correspond at VMAX = ± 10V , maximum voltages available. If the initial conditions

define an impulse greater than this value, the actuator can provide only the maximum

value of the design, considering that the maximum authority is NMAX ≈ 200pNm, as

we will explain in the next section.

Moreover, from equations 4.22 and 4.23 it is clear that the main parameters that can

affect the convergence towards a stable motion are the equilibrium angle ΦEQ and the

duty cycle χ, or Tfly = (1− χ)Texp that must be chosen so that Nimp ≤ NMAX .
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4.2.3 GRS FEE actuator

As explained in section 3.2.2, the actuation circuit can apply voltages to the x electrodes,

in order to produce a constant DC actuation and then a constant torque NDC on mass

as in the proposed second measurement, or to produce large impulses Nimp to kick the

pendulum during the free fall mode. The circuit produces a low-pass filtered square wave,

applied with opposite phase to diagonal pairs of x electrodes to nominally maintain the

TM at zero induced potential. For a positive torque, ±V1Φ are applied to EL1 and EL3,

as can be seen in figure 4.5, with ±V2Φ applied to EL2 and EL4 for negative torques.

In general, the torque can be expressed:

NACT =

∂C∂Φ

 (< V 2
1φ > − < V 2

2φ >) (4.24)

where < V 2
i,φ > are time average square voltages applied as in figure 4.5. This is slightly

lower than the squarewave amplitude commanded by DAC because of the presence

of low pass filter that attenuate of an RMS factor measured to be fatt = 0.85, so that

< V 2
RMS,MAX >= f2

attV
2
MAX . The allowed maximum torque applicable, for maximum al-

lowed DAC voltages VMAX = 10V is thus NMAX =
∂C
∂Φ

 < V 2
RMS,MAX >≈ 200 pNm,

assuming that the capacitance derivative with respect to Φ is equal to
∂C
∂Φ

 = 2.84 ±
0.06 pF/rad, as measured during the testing campaign.

The corresponding rotational stiffness can be written as

ΓACT = −
∂2C

∂Φ2

 (< V 2
1φ > + < V 2

2φ >). (4.25)

The maximum value of torque NMAX allows also to give an estimate of the actuation

stiffness

|ΓACT | =
∂2C
∂Φ2

∂C
∂Φ

NMAX ≈ 2.81nNm/rad. (4.26)

considering the measured value of ∂2C
∂Φ2 = 28.14± 0.03 pNm/rad2.

The actuation scheme allows a range of torques NACT while holding the stiffness ΓACT

constant [20], by choosing V 2
1φ and V 2

2φ such that < V 2
1φ > + < V 2

2φ >≡ V 2
Auth = const.

The resulting available torque range is thus [−NAuth,+NAuth] where

NAuth =

∂C∂Φ

V 2
Auth. (4.27)

In case of the free fall experiment, this set the maximum allowable Nimp, can’t overcome

χNMAX . Considering a duty cycle of 10%, it is not possible to get over 20 pNm of total

DC torque, corresponding to 2nN forces applied by each of 2 electrodes. The maximum
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Figure 4.5: Scheme of x electrodes able to produce a torque NΦ on mass. The
actuation voltages Vi,Φ are applied on diagonal pairs of electrodes. Choosing V 2

2Φ = 0
will produce a positive torque on pendulum.

authority allows to set also the maximum angle to which torsion pendulum can be ro-

tated, considering the constraint about the fiber stiffness Γ = I
√

2π/T0 = 8 pNm/rad

for a period of T0 = 460 s. With NMAX ≈ 200 pNm, the corresponding maximum angle

of rotation is about χNMAX/Γ ≈ 2.5mrad. The bias for the torsion pendulum can be

tuned by adjusting ∆Φ up to the level provided by the geometry of the sensor, effectively

allowing us to set the NDC to a desired level.

In the current free fall mode implementation, furthermore, the value of maximum au-

thority NAuth is reduced by choosing 180 pNm. In this case, the induced stiffness due

to actuation is, from 4.26, around 2nNm/rad that corresponds to commanded RMS

voltage of VAuth,commanded =
√

Γ/∂
2C
∂Φ2 ≈ 8.5V .

4.2.4 Simulated data with a harmonic oscillator simulator

Pendulum dynamic during free fall experiment can be simulated implementing a simple

harmonic oscillator simulator. It is a state space representation of the pendulum system

equations used to compare the ideal expected motion during free fall with the real

dynamic during the implemented experiment, prepared in MATLAB by our group.

It can reproduce the time series evolution during free fall experiment starting from free

experimental parameters like total duration of one cycle Texp, duty cycle χ (related to

the impulse time duration as Timp = χTexp), pendulum angle of equilibrium, Φ(0) and

Φ̇(0) which are initial values of angle and angular velocity. All the pendulum intrinsic

dynamic parameters like moment of inertia and fiber stiffness can be fixed in the model.

An example of simulated free fall time series is shown in figure 4.6 on top. The panel

below shows the corresponding torque time series, calculated from the equation of motion

3.1, and the impulse phases are visible.

Many options can be implemented to simulate real case of interest. A suitable level

of white noise can be added as time series of noise in torque or readout. Though a
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Figure 4.6: Simulated time series of angular motion during free fall experiment and
the corresponding value of IΦ̈.

simplification of the true pendulum noise sources, these allow an idea of dynamics and

analysis issues with noise levels similar to those of the pendulum. Moreover, it is possible

to restrict the value of Nimp to the maximum allowed by the torsion pendulum actuation

board.

The pendulum simulator will be used as an important test of the dynamics and control

in different conditions, as well as the limits of data analysis techniques developed for the

free fall measurements.

4.3 Experimental parameters and implementation

As explained until now, the on-ground experiment performed with torsion pendulum has

the advantage to allow more flexibility to explore different control strategies, by varying

flight and impulse time or control points, and different dynamic configurations made

possible by having a variable stiffness.
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Figure 4.7: Time series of two simulated free fall experiments. Blue curve is obtained
using T0 = 465 s and Tfly = 250 s. Green curve corresponds to T0 = 830 s and Tfly =

250 s.

The current configuration used to perform the free fall test provides to rotate the torsion

pendulum of an angle ∆Φ ≈ −1.8mrad with respect to the electrode housing, to sim-

ulate a large DC acceleration. Such a rotation angle requires a DC torque, in nominal

operating conditions, of roughly 14.4 pNm to keep the test mass centered (considering

that Γfib ≈ 8nNm/rad), analogous to a differential force of roughly 14.4nN .

It is possible to soften electrostatically the pendulum by applying DC constant voltages

to lengthen the pendulum period from roughly 465 s, without applied fields, to as much

as T0 ≈ 830 s, to allow flight times comparable to those foreseen for LPF, that are of

350 s. As seen from pendulum dynamics during free fall, amplitude of motion diverges

with Tfly approaching T0 as in equation 4.17, and this is the reason why we lengthen the

period from 465 s to roughly 830 s, in order to avoid a diverging pendulum amplitude by

performing free fall mode with large flight times. As is visible in figure 4.7, simulating

a free fall run by using a Tfly = 250 s and a period of T0 = 465 s (blue curve), means to

have an higher dynamic range compare to the case with period T0 = 830 s (green curve).

We choose Tfly = 250 s and hence a Timp = 25 s considering a duty cycle of 10%.

Pendulum softening is done by applying DC bias of 9.5V on electrodes placed on Y

faces of the sensor (see figure 1.5). This means to add an electrostatic stiffness on pen-

dulum with the effect of reduce the system strength. From electrostatic considerations,

it is

NΦ,y =
1

2

∑
i

∂Ci
∂Φ

V 2
DC,y. (4.28)
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With a suitable capacitance derivative expansion around a zero angle, stopping at the

first order, the corresponding stiffness will be

ΓY = −
∂NΦ,y

∂Φ
= −V 2

DC,y

∂2Cy
∂Φ2

(4.29)

where the subscript Cy indicates that the capacitance are referred to those of the elec-

trodes y with respect to test mass or housing.
∂Cy

∂Φ for the Y electrodes is zero by

symmetry so that the net torque on center is zero.

With electrostatic softening of the pendulum, the total stiffness as sum of fiber and Y DC

bias contribution, became Γ ≈ 2.47nNm/rad, while the required torque to center mass

is around NDC ≈ 14.6 pNm, so that the equilibrium point became ΦEQ ≈ 5.9mrad.

With this values, it is possible to put an estimate on the allowable resolution in the

measurement of actuation fluctuations of S
1/2
δV/V from the equation 4.10. With a torque

noise level of S
1/2
N ≈ 1 fNm/

√
Hz at 1mHz, and a DC allowable torque level of

NDC ≈ 14.6 pNm, relative fluctuations in the applied actuation bias would become

a dominant noise source at a level of S
1/2
δV/V ≈ 3 · 10−5/

√
Hz corresponding to a relative

voltage fluctuations at the 30 ppm/
√
Hz level.

Real time data series from pendulum free fall experiment are shown in figure 4.8, where

we observer flight times of 90 and 250 s, using pendulum periods of 482 and 830 s, re-

spectively, the latter with three different setpoints. Most of the measurement presented

in this thesis are performed with the choice Tfly = 250 s and Timp = 25 s, and the cycle

frequency is ωk = 1/Texp = 3.6mHz. It is worth to note here how large the dynamic

range spanned from pendulum is in this case, with a ∆Φ ≈ 3mrad. This picture also

shows the stability of used controller and the convergence to desired setpoint.

We can note also that the net torsional spring for pendulum systems is relatively large

and positive, ω2
0 = (2π/T0)2 ≈ 1.6 · 10−4 s−2, compared to the small, negative stiffness

relevant to flight conditions of ≈ −10−6 s−2.

On ground actuation voltage needed to apply to keep the test mass centered NDC can

vary by the rotation of the pendulum as desired, while the ∆gDC in LPF cannot be

changed. Also the stiffness can always be altered with fields. Moreover, changing the

setpoint changes the effective NDC , as we can move towards or away from the equilibrium

angle. This variability of measurement parameters will help us to validate measurement

and analysis techniques in different conditions.

To conclude, it can be noted that applied actuation forces on torsion pendulum are

similar to the flight ones, using the same x electrodes, albeit in a different configuration,

paired diagonally for torque rather than force. In flight, the involved electrodes are along

one side of test mass, while torsion pendulum actuation is performed with a diagonal

pair of x electrodes as in figure 4.5.

Finally, we can also note that we obtain similar DC force levels ≈ 1nN by using an
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Figure 4.8: Free fall angular trajectories during the free fall mode operated at different
setpoints and with different time flight durations. The action of controller allow to

stabilize the mass position after the initial phase.

impulse duty cycle that is 10 times larger then in-flight.

Differences between pendulum free fall implementation and in flight experiment, are

summarized in table 4.1.

LTP Torsion pendulum

Equation of
motion

∆ẍ12 = ∆g − ∆ω2 (x1 − xSC) −
ω2

2p∆x12

IΦ̈ = −Iω2
0Φ− γΦ̇ +N(t)

Stiffness ω2
0 ≈ −10−6 s−2 ω2

0 = (2π/T0)2 ≈ 1.6 · 10−4 s−2

DC force f = m∆gDC ≈ nN NDC = ΓΦEQ = Iω2
0ΦEQ ≈

14.4 pNm =⇒ 1.4nN

Experimental
frequency

2.86mHz 3.6mHz

Tfly 350 s 250 s

Timp 1.5 s 25 s

Employed x
electrodes

parallel couple on one side TM diagonal couple

Table 4.1: Differences in free fall implementation parameters between LISA Technol-
ogy Package and torsion pendulum facility.
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Data analysis techniques

The free fall experiment provides a measurement that includes data segments that are

free of actuation and thus also free of the associated force noise. The corresponding

acceleration data in flight, and torque data on ground, are then used to estimate the

experiment disturbance spectrum. Different analysis algorithms have been developed to

estimate the power spectral density of the signal detected in presence of displacement

data with gaps coinciding with the applied impulses that appear periodically and which

need to be removed from the analyzed data. Here we present two analysis techniques that

we have implemented to calculate the torque time series for our laboratory experiment.

One involves a time-domain fitting of the angular displacement, with one data point per

flight. The other, closely aligned with a technique that is being implemented for LPF

[21], uses the ”instantaneous” conversion into torque, followed by Blackman-Harris low-

pass filtering and decimation. We explain here both techniques, which are then applied

to data in chapter 6.

5.1 Free-fall data analysis concepts

Free fall measurements data have some peculiarity: they contain large motion in term of

angular displacement but also big kicks, and then big torque peaks (as shown in figure

4.6), which need to be removed introducing gaps in the data.

The main idea is to use the torque measured during the free phases, when the free fall

mode is applied, to retrieve noise spectrum estimates at frequencies below the kick-

frequency ωk, particularly at frequencies around and below 1mHz. This idea is based

on the assumption that the disturbance force noise is stationary over time scales much

longer than the flight - impulse cycle time Texp.

If we use the whole torque time series, including gaps, for a direct spectral estimation,

61
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Figure 5.1: Sinusoidal fit technique flow chart.

we will observe some problem in the final evaluation. First of all the frequency band

over 1mHz is polluted with peaks produced by data gaps at multiple of fexp = 1/Texp =

3.6mHz, in case of Texp = 275 s which means flights of 250 s alternated with impulses

of 25 s. Moreover, a possible aliasing problem at low frequency can be caused from high

frequency noise component and the presence of missing data in the gaps can also be

related to an excess final noise, as we will addess later.

Two main techniques were developed to extract the true low frequency torque time

series and fluctuations from free fall measurement on torsion pendulum, both with the

aim of allow the final power spectral density estimation. These employ, respectively, a

sinusoidal fit to each flight and an instantaneous conversion in torque, followed by a low

pass filter, technique.

The proposed data analysis is performed on real data coming from the optical readout

autocollimator, and not on gravitational reference sensor data, the latter being more

noisy, as already seen in section 3.3 for noise floor estimation, and this has an high

impact using the analysis technique developed. Moreover, the cross spectral density

estimation (section 3.4) is not implemented as yet for free fall experiment data, because

of high sensor noise and its non-linearity, which has not yet been investigated.

Sinusoidal fit technique The sinusoidal fit techniques consists of performing a linear

least squares fit to each free fall phases, when no actuation is applied. The schematic

flow chart of the technique is shown in figure 5.1. Angular data are preprocessed before

fitting, performing, first of all, a correction on angular data, due to the non-linearity of

the autocollimator response, as we will explain in section 6.2.1. At the beginning and

end of each flight, Tcut = 2 s of data are cut to eliminate transient effect between free

and impulse phases. The used model is:

Φ(t) = ΦEQ +A cosω0t+B sinω0t. (5.1)

This is a solution to equation 4.1 in the event that N(t) is constant for the duration of

the flight, with ΦEQ = N/Γ. This is a simple way to recover pendulum equilibrium angle

for each flight, obtaining one data point per experiment cycle, as we see in figure 5.2. It

must be noted that this solution is exact only if there is a constant value of the external

torque, otherwise it must be considered a change in equilibrium angle that doesn’t follow
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Figure 5.2: Pendulum equilibrium angle (magenta points) estimated for each flight
(blue line) by performing a sinusoidal fit.

the 5.1. This works only for a truly harmonic oscillator, with dN/dΦ = −Γ for all Φ

angles, as it assumes the solution to the equation of motion 5.1.

The corresponding torque value for each equilibrium point is calculated by multiplying

by the stiffness

N̂sin = Γ ΦEQ, (5.2)

as directly comes from pendulum equation of motion 3.1 for constant torque, neglecting

the dissipation term. In this technique there is one point per flight, resulting in a time

series that is uniformly sampled at 1/Texp. The stiffness is the only important parameter

for torque resolution, and its determination depends mainly on the pendulum period T0

knowledge.

Instantaneous conversion in torque This analysis technique consists of an in-

stantaneous conversion of angular data into torque by double differentiation of data,

followed by a Blackman-Harris low pass filter and finally in rejecting the data in which

the actuation impulses are present. We briefly name the techniques Blackman-Harris

(BH) low pass filter later in the text.

The flow chart of this technique is shown in figure 5.3. First of all, pendulum angular

data time series are linearly interpolated at the sampling frequency (nominally 10Hz) in

order to obtain equally spaced data, because of the possible presence of missing samples.

Then they are corrected for the autocollimator non-linearity (that we address later in

section 6.2.1) and converted in torque by means of pendulum equation of motion 3.16,

where N(t) is obtained approximating the first and second derivatives of Φ(t) in ti by

means of a parabolic fit to the 5 adjoining points at times ti−2 ... ti+2. This fit can be
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Figure 5.3: Instantaneous conversion in torque and Blackman-Harris low pass filtering
technique flow chart.

implemented as a 5 point FIR filter for constant sampling time, hence requiring the in-

terpolation of samples onto a uniform time grid. Time torque conversion need pendulum

dynamics parameters as period T0, moment of inertia I and quality factor Q, following

the equation:

N̂BH = IΦ̈ + ΓΦm +
Γ

2π
T0
Q

Φ̇ (5.3)

The obtained torque time series is then filtered by multiplication by a normalized

Blackman-Harris (BH) window of length Twin

w(t) =
1

a0 Twin

3∑
j=0

aj cos 2πj
t

Twin
1. (5.4)

This is a low pass filtering operation on torque data with a chosen sampling frequency

Tsamp. Torsion pendulum data are sampled at 10Hz, so it is important to choose window

sampling time in order not to produce aliasing problems, also with the frequency of the

experiment 1/Texp.

An integer number of total samples ntot per experimental times Texp is chosen to define

Tsamp like

Tsamp ntot = Tfly + Timp. (5.5)

The length of the BH window is related to the number of samples nkeep that can be kept

per experimental time so that

Twin = Tfly − 2Tcut − (nkeep − 1)Tsamp (5.6)

1a0 = [.35875;−0.48829; 0.14128;−0.01168]
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Figure 5.4: On top, pendulum angular deflection converted in torque time series,
during free fall mode. Peaks corresponding to impulse phase are visible. On bottom,
Blackman-Harris windows used to filter data. Bold line correspond to data in the

impulse phases.

where Tcut is the number of seconds cut at the beginning and end of each free phase of

one flight. In this way we can define a period Ta ≡ Tfly − 2Tcut, corresponding to the

length of each flight really analyzed.

The idea is to perform the analysis only for ntot and nkeep that give an oversampling

factor Twin/Tsamp in a range that we fix to be between 4 and 6.

If we opt for keeping nkeep = 10 samples over a total of ntot = 16, in case of Tfly = 250 s

and Timp = 25 s, will be Twin = 91.3125 s and Tsamp = 17.1875 s, with an oversampling

factor of Twin/Tsamp = 5.3127. An example of used windows is in figure 5.4.

Torque data points corresponding to windows that have some overlap with the time of

the impulse are contaminated by the applied torque. We will set these points to zero as

in figure 5.5. This is again a filter operation that can cause aliasing problem.

The BH filter, which transfer function we plot in figure 5.6, is chosen for its attenuation

of high frequency lobes, to avoid down-converting high frequency acceleration noise into

our mHz frequency band.

Finally, torque time series of data simulated with the simple harmonic oscillator simu-

lator presented in section 4.2.4, and analyzed with both the techniques described, are

shown in figure 5.7. Low pass filtering has been performed fixing Twin = 91.3125 s and

Tsamp = 17.1875 s.

We can note that for instantaneous conversion into torque technique, the sampling
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Figure 5.5: Torque time series after low pass filter and set to zero data in the gaps.
Pink lines denote beginning and end of each impulse.
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Figure 5.6: Blackman-Harris transfer function for Twin = 91.3125 s. Instantaneous
torque conversion technique sampling frequency 58mHz is outlined from magenta line.

rate (1/Tsamp = 1/17.1875 s = 58mHz) is higher then the sinusoidal fit technique

(1/275 s = 3.63mHz), but with the constraint that the data that we analyze are not

longer uniformly sampled because of gaps. In fact, on a total of 16 data points, only 10

of these are kept, while the others are put to zero as visible in figure 5.5.

Moreover, respect to the sinusoidal fit for which the equation of motion is solved for

Nelastic = ΓΦ, for the BH filtering technique, it is no longer obligatory to use the exact

simple harmonic oscillator equation of motion, but it is possible to implement a more

exotic ”quasi elastic” coupling ΓΦ in the equation 5.3 like Nelastic = −ΓΦ + aΦ2 + bΦ3,

with an effective Γ that is dependent on Φ.



Chapter 5. Data analysis techniques 67

1400 1600 1800 2000 2200 2400 2600 2800 3000

−1.3525

−1.352

−1.3515

−1.351

−1.3505

x 10
−11

Time (s)

T
o

rq
u

e
 (

N
)

 

 

Sine fit

BH low pass technique

Figure 5.7: Torque time series obtained applying the two techniques of free fall data
analysis described in the text. Analyzed data are produced with the harmonic oscillator

simulator.

5.1.1 Estimate noise spectrum of simulated data

Data analysis techniques described above were employed on simulated data in order to

understand how they work and their effect on known data.

As we said in section 4.2.4, it is possible to insert, in simulated free fall data, a desired

level of white noise, in both torque and angle.

A free fall run has been simulated by considering a pendulum dynamic with a period

of 823 s and thus a relative positive stiffness of around 2.9nNm/rad. Moreover, free

fall parameters employed are: Tfly = 250 s, Timp = 25 s, set-point angle equal to zero,

equilibrium point of −5.33mrad and measurement duration of 100000 s, similar to the

conditions of a real free-fall experiment. The white noise level of torque injected in

the simulation is of 1.4 fNm/
√
Hz, similar to that measured with the pendulum at

mHz frequencies, while the angular noise injected is of the order of 20nrad/
√
Hz, which

corresponds roughly to the measured for the autocollimator noise at high frequencies like

10mHz. Finally we analyze the simulated free fall run with both analysis techniques

developed in order to estimate torque time series and calculate the noise spectra.

Power spectral densities of the recovered torque time series are performed as explained

in section 3.4, with the Welch periodogram method. In order to reduce the uncertainty

on the estimation of the spectral densities we need to perform measurements longest

possible, so that it is possible to divide the data series in shorter stretches, that are
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Figure 5.8: Torque time series of data from a real free fall run, before and after data
detrending over the spectrum window length of 27500 s.

multiplied by a Blackman Harris spectral windows and then averaged. Stretches are

also overlapped by 66%. Blackman-Harris windows length is chosen to be 27500 s in

order to have 100 flights of 250 s length, on each stretches.

Some processing is performed for both techniques to obtain the final spectrum, as will

explain below.

Instantaneous conversion in torque spectra Data analyzed with the BH low

pass filtering technique are detrended before performing the spectrum. This means to

perform a linear fit to all good data points over the spectrum window length, and setting

to zero all points from windows that overlap with the impulse, and then subtract from

the data the linear trend. This intends to subtract the DC component of the square

waves obtained after putting zero data in the gaps as showed in figure 5.8. This reduces

the height of peaks at high frequency in the final spectrum as visible in figure 5.9, in

case of real data.

Moreover, the power spectrum must be multiplied by a scaling factor equal ntot/nkeep,

that is 1.6 in case of ntot = 16 and nkeep = 10, that provides a normalization necessary

because of the presence of zeros in the data.

Finally, spectrum is also normalized for the BH window transfer function, shown in

figure 5.6, used to low pass filter data, after the linear trend subtraction.
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Figure 5.9: Torque noise spectra for a free fall real run before and after data detrend-
ing. Spectra are averaged over a window length of 27500 s and overlap of 66%.

Sinusoidal fit spectra In case of sinusoidal fit techniques, the spectrum is obtained

after performing a normalization dividing for a transfer function calculated as we will

explain in a while.

It must be considered how the the sinusoidal fit analysis technique works. First of all the

pendulum filters an external torque N (ω) with its transfer function H (ω) of equation

3.4, so that N (ω) became φ (ω). Then the sinusoidal fit performs a linear least square

fit to the model in equation 5.1

Φ (t) = ΦEQ +A cosω0t+B sinω0t (5.7)

such that Φ (ω) goes in ΦEQ (ω).

This process can be shown to be convolution of the time series in Φ with a linear filter

function, that provides a decimation to one point per flight. This is an exact solution

of the equation of motion with ΦEQ = N
Γ , if we neglect the dissipation term and if the

torque N (t) is constant over the time range analyzed.

Finally, the angle is reconverted back into torque by multiplying by Γ, so that N̂sin =

Γ ΦEQ as in equation 5.2.

The linear fit to the three parameter model in equation 5.7 can be considered equivalent

to a linear filter. If we approximate the data as continuous and consider data analyzed

over the period Ta ≡ Tfly − 2Tcut as defined in equation 5.6, then the output value of
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φEQ (t) is given by

φEQ (t) =
1

Ta

∫ t+Ta/2

t−Ta/2

(
C11 + C22 cosω0t

′)φ (t′) dt′ (5.8)

C11 and C12 are the relevant elements of the covariance matrix resulting from fit, and

have values

C11 = −
1
2 (1 + sincω0Ta)(

sinc ω0Ta
2

)2 − 1
2 (1 + sincω0Ta)

(5.9)

C12 =
sinc ω0Ta

2(
sinc ω0Ta

2

)2 − 1
2 (1 + sincω0Ta)

. (5.10)

The approximation of continuous data is justified if we consider to have many points per

cycle, because in the Ta = 246 s period of data analyzed (Tfly = 250 s and we choose

Tcut = 2 s), there are roughly 2500 points.

We can then Fourier transform the equation 5.8 to give the frequency response of the

sinusoidal fit filter function:

φ̃EQ (ω) = Hsine (ω) φ̃ (ω)

= φ̃ (ω)

[
C11 sinc

ωTa
2

+
C12

2

(
sinc

(ω + ω0)Ta
2

+ sinc
(ω − ω0)Ta

2

)]
(5.11)

Substituting the calculation of the coefficients C11 and C12 in equation 5.10, we can see

that the transfer function Hsine goes to 1 in the limit of zero frequency. Multiplying the

combined pendulum and sinusoidal fit transfer functions by Γ to convert into torque,

we have the net transfer function between external torque and our sinusoidal fit torque

observable, which is thus

H (ω) = ΓHpend (ω) Hsine (ω) (5.12)

and is plotted in figure 5.10. It can be noted that the transfer function is continuous and

we sample this, once per flight, and thus with a frequency fsamp = 1/Texp ≈ 3.64 mHz,

with Texp = Tfly + Timp = 275 s. The finite input response filter allows us to make this

sampling in such a way that there is no overlap of the impulse time with the analyzed

pieces of data.

5.1.1.1 Comparing noise spectra

Finally, in figure 5.11 we compare noise spectra results obtained applying both our

techniques to the simulated free fall run, with respect to the level of theoretical torque
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Figure 5.10: Transfer function between external torque and measured output torque
using our torsion pendulum and the sine-fit analysis method. The pendulum transfer
function has been multiplied by Γ in order to be unitless, as is natural because the
final analysis step multiplies by Γ. Also shown is the frequency at which we sample the

filter, which is 1
Texp

.

noise injected, that has a level of 1.4 fNm/
√
Hz. Both analysis techniques are able to

recover the white noise level a factor 1.4 above the noise injected, at frequency lower

then 2mHz. We perform different simulations in order to explain if this effect is due to

aliasing effects.

Problems arise if we inject an higher sensing noise level, which should affect only the

high frequency portion of the torque noise spectrum, into the simulator data. We com-

pare torque noise spectra of different free fall simulations made by using white angular

noise level of 20, 50 and 80 nrad/
√
Hz, analyzed with BH filtering technique, and results

are shown in figure 5.12. There is a noise component, at low frequency, that scales with

level of high frequency readout noise. This is due to the presence of an aliasing effect

that is still to study and explain.

Another important comparison can be done by performing the same analysis also on

simulated pendulum data in the absence of impulses, with the DC torque and the ac-

tuation set to zero. The free-fall analysis thus inserts artificial gaps in the otherwise

continuous data. This allows to investigate whether the aliasing effect is due to the im-

pulse control scheme or rather to the presence of gaps in the data and analysis scheme.

From figure 5.13, but also 5.15 and 5.16, it is clear that the gapped-data analysis tech-

niques obtain the same noise whether we have data with impulses or the impulse free

data.
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Figure 5.11: Torque noise spectrum obtained analyzing simulated free fall data with
both techniques described in the text. Analyzed data are produced with the harmonic
oscillator simulator in which white noise levels are injected: 1.4 fNm/

√
Hz for torque

and 20nrad/
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Figure 5.12: Torque noise spectrum obtained analyzing free fall simulated data with
the low pass filtering technique. Analyzed data are produced with the harmonic os-
cillator simulator using white noise levels similar to torsion pendulum experiment, are
injected: torque noise of 1.4 fNm/

√
Hz and 20, 50 and 80nrad/
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Hz for readout noise.
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Figure 5.13: Torque noise spectra obtained analyzing a simulated noise run with
period T0 = 819.69 s, without a DC torque and without applied impulse torques, with
free-fall data analysis techniques described and with the standard analysis. Torque

noise level injected in the data is 1.4 fNm/
√
Hz. Angular noise is 20nrad/

√
Hz.

The aliasing effect visible in figure 5.12 is still present if we analyze with free fall analysis

techniques no-impulse data with an high sensor noise level injected, 80nrad/
√
Hz, as

visible in figure 5.14. It is thus clear that the standard analysis (without gaps) extracts

the expected noise level, and the gapped analysis techniques do not.

The wrong noise estimation is then not related to the high dynamical range of free fall

data with respect to background noise measurements, but to the presence of the gaps.

We also perform the same analysis on simulated data by injecting white noise levels

similar to those expected for the LISA Technology Package system. The simplified sim-

ulation performed again with the simple harmonic oscillator simulator, requires to map

the LISA Pathfinder free-fall experiment in order to enter it in the torsion pendulum

free fall simulator. The Φ angle will be substituted by

x0 =
∆gDC

(2π
T0

)2
(5.13)

where we have chosen ∆gDC ≈ −1nm/s2, because simulation requires a dynamic with

a very low and positive stiffness, on the contrary to the negative stiffness expected for

LPF. The sign of the stiffness does not have a large impact on the analysis, but is

chosen to make the simulation easier and to keep the stiffness term of the same order

of magnitude as in flight. Period of oscillation is chosen to be T0 = 4400 s. Free fall

experiment parameters are Texp = 275 s and Timp = 2.75 s, with a duty cycle of 1%.
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Figure 5.15: Torque noise spectra obtained analyzing a simulated free fall run and a
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level injected in the data is 1.4 fNm/
√
Hz. Angular noise is 20nrad/

√
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Figure 5.16: Torque noise spectra obtained analyzing a simulated free fall run and a
simulated noise run without actuation with sinusoidal fit technique. Torque noise level

injected in the data is 1.4 fNm/
√
Hz. Angular noise is 20nrad/

√
Hz.

We simulate several runs of free fall mode, by inserting different level on noise similar

to that of the interferometer, from 0.6 pm to 60 pm/
√
Hz and acceleration noise level of

10 fm/s2
√
Hz.

Only the BH low pass filtering techniques has been used to analyze these simulations, as

shown in figure 5.17. Already at 6 pm of noise level, it is not possible recover the original

noise injected because of the presence of impulse in the data, as already at 20nrad/
√
Hz

for pendulum spectra the noise level recovered is a factor two higher then the expected.

It is worth to note that the used duty cycle (1%) is lower then the others simulations.

This means that the result of the analysis and the presence of the aliasing are not related

with the impulse length, considering that the simulated free fall for torsion pendulum

has a duty cycle of 10%.

It is possible to conclude that the amount of the effect of aliasing depends on how much

high frequency sensor noise there is in the data.

We have not performed a full analysis of aliasing with the sinusoidal fit technique.

However, we know that the down-sampling introduces aliasing into our measurement

band by folding the spectrum at f ± nfsamp, with fsamp = 1/Texp. This means that our

spectrum at, for example, 1 mHz is a sum of the true, continuous process torque noise

at 1 mHz, at the output of the pendulum, plus the analysis process shown in Fig. 5.10,
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Figure 5.17: Differential acceleration noise spectrum obtained analyzing simulated
free fall data with the low pass filtering technique. Analyzed data are produced with
the harmonic oscillator simulator using noise levels similar to the LPF condition: ac-

celeration noise of 10 fm/s2
√
Hz and from 0.6 pm to 60 pm/

√
Hz for IFO noise.

including both torque and readout noise, and that at 4.64 mHz and 2.64 mHz (from

-2.64 mHz made positive in the single-sided spectrum), and so on.



Chapter 6

The Free-fall experiment results

A long free fall testing campaign was carried out during the last year and a half with

torsion pendulum facility, ranging different experimental parameters and conditions.

Measurements were taken mainly during weekends in order to take advantage of the

best quiet environmental conditions. These start with calibration of the apparatus and

of the actuator and with pendulum rotation, to make the free fall possible. The free

fall actuation mode implemented on torsion pendulum has its own non ideality. In this

chapter we will present pendulum optical readout limits and non linearity and how these

couple with the aliasing problem encountered in data analysis techniques developed in

the previous chapter. We will explain how it is possible to correct data for non linearity

and time stamp issues. We then explain how we calibrate the torque measurement, ex-

tracting the correct pendulum period and thus the stiffness, from the shift in pendulum

resonance frequency due to electrostatic factors. Finally we will show results for torque

time series and spectra recovered from free phases during the free fall mode, by the

application of the two analysis techniques, and how we can calibrate these techniques in

order to account for aliasing problems.

We are able, at present time, to recover an excess torque noise of 2 fNm/
√
Hz at

1mHz from free fall measurements, a factor two above that achieved with constant

DC actuation force. This corresponds to an acceleration of about 100fm/s2
√
Hz,

a factor 10 above the level of acceleration noise from actuation expected for LISA

Pathfinder mission. The measured torque noise with constant DC actuation has a level

of 0.9 fNm/
√
Hz at 1mHz. Attributing all of this noise to actuation would correspond

to actuation fluctuations at a level of S
1/2
δV/V = S

1/2

N̂2
/2NDC ≈ 3.1 ·10−5 /

√
Hz or roughly

30 ppm/
√
Hz, considering that the level of DC torque applied to hold the test mass

centered is NDC = 14.62 pNm.

The resolution of the noise of the actuator is instead 0.2 fNm2/Hz at 1mHz, that

on the scale of voltage fluctuations corresponds to S
1
2

δV/V ≈ 15ppm/
√
Hz, a factor two

77
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above the actual measured stability with the inertial sensor Front End Electronics of

LTP that gives 3− 7ppm/
√
Hz at 1mHz.

6.1 Measurement data set

In this chapter we present time series and torque noise spectra of the whole measurement

data set. We briefly summarize how many run we acquired and analyzed in table 6.1.

As already explained in section 5.1.1, we divide the data series in shorter stretches, that

are multiplied by a Blackman Harris spectral windows and then averaged. Stretches are

also overlapped by 66%. Blackman-Harris windows length is chosen to be 27500 s in

order to have an integer number of flights, on each stretches.

In table 6.1 we report the number of overlapped stretches for each type of measurements

that are then averaged. The data set include 8 long weekend of background noise mea-

surements performed in the summer-winter 2013 before rotating pendulum to perform

the free fall measurements and 3 long weekend plus 3 night of measurements performed

after rotating back the pendulum at the end of testing campaign, in March 2015. Free

fall measurements presented were performed during the winter 2014-2015 and include 14

weekend of data. Each weekend was divided in two parts performing also measurements

with constant DC actuation. Noise measurements weekend with DC actuation are 9.

From all of these, we discarded data cuts contaminated by technical problems as time

stamping that we will describe in section 6.2.2. All data are corrected for autocollimator

non-linearity the we will describe in section 6.2.1.

Finally, during the week of testing campaign, we dedicate the facility also to make a

calibration measurement of the free fall technique, applying a torque both during a free

fall measurement than a noise run with DC actuation, as we describe in section 6.7.

6.2 Experimental difficulties with readout and time-stamping

At least two technical problems with the autocollimator become critical in the free-fall

experiment, and must be addressed, in the data acquisition software and in the data

preprocessing.

One of these problems is visible in the residuals of sinusoidal fit technique described

in section 5.1. In figure 6.2 are shown residuals from sinusoidal fit applied to a free

fall run with Tfly = 100 s and Timp = 10 s. The down panel shows the presence of

some systematic error that must be accounted for. This problem is mainly due to the

intrinsic autocollimator non linearity. Though it does not obey a simple analytic form,

the autocollimator non-linear error turns out to be highly reproducible, and thus we can
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Figure 6.1: First panel: Angular time series from free fall measurement performed
with Tfly = 250 s, Timp = 25 s and with Tfly = 100 s, Timp = 10 s (blue). Second and

third panel: applied impulses.
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Centered pendulum Rotated pendulum
ΦEQ ≈ 0 rad ΦEQ ≈ −5mrad

Background noise 70 of 25000 s
March 2015
205 25000 s
Winter 2013

DC actuation noise 40 of 27500 s
Autumn 2014

Free-fall 108 of 27500 s
Winter 2014-2015

Tfly = 250s and Timp = 25s
set-point zero

11 cut of 27500 s
Tfly = 250s and Timp = 25s

set-point −500µrad and 500µrad

8 cut of 27500 s
Tfly = 100s and Timp = 10s

set-point zero

8 cut of 27500 s
Tfly = 140s and Timp = 15s

set-point zero

Calibration tone free fall runs 60 cut of 27500 s

Calibration tone 4 cut of 27500 s 44 cut of 27500 s
DC actuation runs

Table 6.1: Measurements data set expressed in number of stretches of 27500 s or
25000 s.

calibrate the effect and subtract it from our data.

Moreover, another issue can affect free fall measurements due to the high speed of

pendulum at the beginning and at the end of each flight. It is related to the sampling

frequency of autocollimator signal and also to the right time stamps assigned to each

data points.

Both of these issues are particular to the free-fall mode, the first is due to large motions

which are sensitive to the AC non-linearity, while the high velocities make time-stamping

critical as well as the determination of the correct pendulum position. We address these

main two problems in the next two sections.

6.2.1 Autocollimator non-linearity

Autocollimator response has been found non linear when pendulum has an oscillation

of amplitude of few µrad. This is an effect of unknown cause, probably due to problem

of CCD detector on which the light beam moves or could be due to a stray reflection

issue.

To estimate this effects, it is possible to analyze measurement runs during which the
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Figure 6.2: Residual from the sinusoidal fit for four flights. On top panel the residual
are calculated after correcting data for autocollimator non linearity. On bottom panel

the same data are showed without correction. A systematic error is visible.

pendulum has a free oscillation that covers an angular range including all the angles of

the free-fall run that we want to analyze. We calculate the residual model Φsin,mod by

fitting the angular time series Φac to an ideal sine wave. This is done for a number of

selected cycles of length equal to the pendulum period T0, in order to analyze a number

of integer cycles over the whole measurement, that are averaged at the end. Residuals

∆Φres are calculated cycle by cycle as difference of the real autocollimator signal with

the model:

∆Φres = Φac − Φsin,mod. (6.1)

and are plotted in figure 6.3 and 6.4. Then, for each cycle, the angular range of Φ

considered, is divided into a grid, whose spacing is defined to be 1µrad for a free fall run

correction measurement, and 0.01µrad for a noise run correction, with DC or no actua-

tion. Residuals are sorted in the selected bins and then summed together and averaged

on the number of bins. Measured autocollimator Φ correction are shown in figures 6.3

and 6.4, respectively, for a noise run correction and for a free fall run correction, that is

performed on a larger scale.

Finally, the residual model calculated, is subtracted from pendulum angular motion Φ

that needs correction, both in case of background noise measurements than for free fall

runs.

In case of noise measurements, with a typical amplitude of 1µrad, the autocollimator
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Figure 6.3: Residuals from the autocollimator non linearity angular correction. The
analysis is performed to correct data of a background noise run.
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Figure 6.4: Residual from the autocollimator non linearity angular correction. The
analysis is performed to correct data of a free fall run.
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Figure 6.5: Torque noise spectrum of autocollimator data for a background noise
measurement. Blue spectrum is corrected for autocollimator non-linearity. The green

one is not corrected.

linear correction allows correct the final spectrum, by reducing peaks at frequency mul-

tiple of resonance, as in figure 6.4.

The correction effect is also visible on residuals from the sinusoidal fit techniques applied

on free fall data, as in the top panel of figure 6.2. The systematic effect disappears in

the residuals of sinusoidal fit to each flight.

6.2.2 Time stamp issue

The data acquisition system that monitors the torsion pendulum experiment collects

data nominally at 10Hz. As we said, they are measured by a PCI-ADC NI-3032 counter.

However, the autocollimator send data points to serial port at 50 Hz internal clock. The

serial port is read asynchronously, based on NI clock, every 100ms with jitter of 2-3

ms due to interaction with windows, with thus 5 autocollimator data points read, in

normal conditions, per sample. The autocollimator points do not have a dedicated time

stamp, and our serial port sample just reads all the available data. A careful study was

performed on the number of packets of bit that are sent at serial port of data acquisition

computer, from autocollimator electronics, and on how many points are actually read

each 100ms. We found mainly two problems:
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Figure 6.6: Interval between successive points sampled by our acquisition system,
nominally 100ms but often missing one sample (0.2 s interval) and rarely more missing

samples.

1. missing samples from the autocollimator without any identification on which sam-

ple is missing

2. relative slippage of autocollimator internal clock compared to NI clock.

Five points are expected at serial port, 8 bytes each, if we sample each 100ms, but we

observe that, with our data aquisition system and NI clock programmed to sample at

exactly 10 Hz, the clock slips by one sample (and thus 20ms) every several hundred

seconds, as if the AC internal clock were off by roughly 20 ms/300 s, or several seconds

per day. This means that sometimes bouncing sequence of 4 or 6 points are available

each 100ms interval if the two clock are not lined up. A faster NI clock means that it

will start sampling before the 5th sample arrives, acquiring only 4 samples. The fifth

sample is often available sometime in the next several, with a serial read receiving 6

samples.

This effect produce a sequence of 4/6 samples, and it will bounce forward and back

to give several 4/6 sequences, (or 6/4 if the NI clock is late respect the autocollimator

internal clock) before moving deterministically away from the wrong alignment, as could

be seen in figure 6.7 on the top panel. The impact of this timing problems can be seen

in figure 6.7, in the bottom panel. A torque time series obtained applying the BH low

pass filter technique is shown and an additive noise is visible when sequence of 4/6 or

6/4 are present, that reflects as an excess noise on final data spectra at low frequency.

Making sampling frequency of the data acquisition computer variable, allows to sync up

with autocollimator reading. If the sequence of 4/6 has a periodicity of T4/6 = 50000 s
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as in figure 6.7, it is possible to calculate the number of second to add or subtract from

the sampling frequency in order to synchronize the two clocks as 20ms/T4/6. The sam-

pling frequency we set to synchronize the clocks is around 9.9995405Hz. After adjusting

the sampling frequency, it is also possible to stretch the grid of sampling thresholds as

desired by adding or subtract some milliseconds, depending on whether sampling is in

delay or advance compared to the autocollimator clock.

This allows to have very long period without sequence of 4/6 are founded. The two

clocks become synchronized, to within 20ms every 100000 s, would be to within a few

seconds offset per year. The duration of good sampling moments depends also on en-

vironmental temperature, not always stable during weeks of testing campaign. It was

necessary a continuous monitoring and adjusting of sampling frequency to obtain the

very good free fall data without time stamp issues. From our final data averages on the

whole set of weekends of free fall run, we will exclude periods of data in which the clock

slippage problem is clear from the number of points.

These imperfections in the sampling do not affect the information content of the sam-

pled signal in the frequency band of interest (from 1 to 3mHz), in case of background

noise measurements. This because of the low pendulum velocity. During free fall mea-

surements, however, pendulum velocity is higher, around 30µrad/s, during the upward

and downward phase of each flight and the presence of a sampling delay can cause po-

sition information losses.

The missing autocollimator samples, and our lack of knowledge of when the missing sam-

ples occured, also impacts our free-fall analysis. As such, we have altered the acquisition

program to record all autocollimator data arriving at the serial port, at 50 Hz, and then,

in the event of missing samples, try to assign time stamps to the samples present based

on a least squares fit to the preceding data. Additionally, some of the data packets were

found to have incomplete autocollimator samples (see figure 6.8), that could in most

cases be joined to partial information at the beginning of the next packet and we were

able to reconstruct such points. This operation is done recording some data series that

help us to recognize where data packets are broken and how many points are acquired.

Each data point is indexed with numbers that go from 0 to 4 if we have 5 points each

0.1 s.

A code vector of zeros is also recorded for each point. If there are broken packets and

then missing bytes, the code is sets to 1 or -1 in order to have and indication on which

end the first part of packet and which packets we have to joint together.

Once the broken packets are joined, we assign time stamps to data where some samples

are missing. This can be done simply by assigning a nominal time separation of 20 ms

to each point, as is done for green points in figure 6.9. Otherwise, it is more precise to

perform a linear fit in time considering that the number of points expected Nexp for each

sample is 5 and identifying where there are holes in the data points, if instead are found
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Figure 6.7: Top panel: sequence of points of autocollimator. Sequence of 4 or 6 points
alternate with moments when 5 points arrive. Bottom panel: torque time series from

a free fall measurement. Noisy points are visible during the 4/6 phases.



Chapter 6. The Free-fall experiment results 87

15.65 15.7 15.75 15.8 15.85

−8

−6

−4

−2

0

2

4

6

8

V
o

lt
a

g
e

 l
e

v
e

l 
(V

)

Time (s)

Figure 6.8: Autocollimator data packets as detected at serial port by using an os-
cilloscope. Each packet is 8 bytes. Some of these arrive corrupted, with information
divided from two subsequent packets, as visible for example for packets between 15,68

and 15.7 seconds in this plot.
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Figure 6.9: Autocollimator angular Φ time series. Blue data points are data sampled
at 10Hz. Green data points are sampled at 50Hz with no correction. Magenta points
are sampled at 50Hz after performing a fit in time in order to reassign the correct time

stamp.
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N less then Nexp. A grid of times separated of 20 ms and where the position of the hole

slips on the different positions in the matrix, is built. Matrix dimension is defined by the

number of point founded in the sample N and by the number of possible combinations

that is defined as Nexp!/(N !(Nexp−N)!). For instance, with 4 points received out of an

expected 5, we need to decide which of the 5 times, separated by 20 ms, corresponds to

the missing sample, and then place the remaining 4 samples correctly. Once identified

packets of point to which reassign time stamp, a linear fit φ = at+ b is performed to last

50 autocollimator points φ before the missing sample. Then is calculated the minimum

χ2 as

χ2 =
N∑
i=1

[φin − (atin + b)]2 (6.2)

where φin and tin are autocollimator points and times in the interval to reposition, and

N the number of points in the interval. The time stamps that minimize χ2 gives the

indexes of holes in the data and of the column of the time grid matrix to slip correctly

points in the interval.

Usually, on 10000 s of data we make 5000 corrections time stamps, including of order

1000 partial packs. Data well spaced are the magenta point in figure 6.9.

6.3 Calibration of the experiment: pendulum dynamical

parameters

The modeled pendulum dynamic which is used to convert the angular displacement Φ

in torque N is linear and, as already explained, provide that:

N = IΦ̈ +
Γδ

ω
Φ̇ + I

(
2π

T0

)2

Φ (6.3)

= IΦ̈ + γΦ̇ + ΓΦ (6.4)

where, for convenience, we express the dissipation factor as γ = Γδ
ω and the stiffness

term Γ = I
(

2π
T0

)2
.

Both the analysis techniques, described in the previous chapter, employ this linear model

of torque with a linear dependence of the stiffness Γ from Φ (as seen from equation 5.2

and 5.3). The relative torque time series, as a result of the analysis techniques applied

on real free fall data, are shown in figure 6.10. These are results from a free fall run

with Tfly = 250 s and Timp = 25 s, considering that the pendulum is soften by applying

DC bias on Y electrodes of ±9.5V , which results in a longer pendulum period.
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In case of sinusoidal fit, the only parameter employed is the stiffness, which comes from

period measurement performed leaving oscillating pendulum around its equilibrium an-

gle of ΦEQ =≈ −5.7mrad. For a measurements of free oscillation around equilibrium

angle, of at least two hours, we perform a fit to stretches of data 2000 s long and typi-

cally with amplitude of 400µrad peak to peak. The performed fit estimates the period

T0 that minimizes the model χ2, for some range of periods [T0,ran1 T0,ran2] around the

expected one, using quadratic fit to mean square deviation of data from fitted model.

Periods calculated for each cycles are then averaged to give the final result. The mea-

sured period around the equilibrium point −5.7mrad, is T0 = 825.654± 0.003 s, brings

to a stiffness of Γ = I(2π/T0)2 = 2.4960± 0.0002nNm/rad.

We note the variation of torque obtained applying the Blackman-Harris low pass fil-

tering technique in figure 6.10. There is a difference in torque of 50 fNm between the

central and the side part of each flight. This residual dependence of the measured torque

on Φ could correspond to an error in the value used for Γ of roughly 20 pNm/rad, with

50 fNm torque change over roughly 3mrad of angular range, as visible in figure 6.1.

This suggests that period measurement does not accurately reflect the true stiffness rel-

evant to the free-fall measurement. We note also that the pendulum period has been

measured around the equilibrium angle of −5.7mrad, while the free fall measurement

is performed between −2.3mrad and 800µrad. Performing the free-oscillation period

measurement in this free-fall angular range would requires an applied torque, which

would have a torque gradient that alters the stiffness.

This leads to think that some non linearity respect the angular position in the stiffness

behavior is to take into account. A possible torque model with a quasi-elastic term could

be:

N = IΦ̈ + γΦ̇ + Γ
[
1 + αΦ + βΦ2

]
Φ. (6.5)

so that the stiffness model will be

ΓMOD = −∂N
∂Φ

= −
[
Γ + 2αΓΦ + 3βΓΦ2

]
, (6.6)

where the stiffness Γ is referred to the zero angle position. Accounting for the right stiff-

ness model parameters, α, β, Γ, it could be possible to reduce the position dependence

of the torque measured during free fall measurements, which would be accentuated here

due to an higher dynamic range respect to typical background force noise measurements.

In order to calibrate the free fall experiment and estimate the dynamical parameters in

the angular range relevant to the free-fall experiment and to determine if a non-linear

model is necessary, we perform a least square fit to an acceleration model, calculated as

the double derivative of pendulum angular deflection during the free fall measurement.
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Figure 6.10: Torque time series for a free fall measurement as results of the two
analysis technique developed. The parameter employed in the torque model come from

measured period, T0 = 825.654± 0.003s.

Figure 6.11: Flow chart of the algorithm used to estimate non linear parameters from
a fit to an acceleration model.

The used model is:

Φ̈ = a+ bΦ̇ + cΦ + dΦ2 + eΦ3 (6.7)

where, a = N(Φ = 0)/I, b = −γ/I, c = −(2π/T0)2 and related to the stiffness Γ =

I(2π/T0)2, d = −α(2π/T0)2 and e = −β(2π/T0)2.

The flow chart of the performed algorithm is showed in figure 6.11. First of all Φ

angular data are preprocessed, by interpolating data at the nominal sampling frequency

10Hz, then they are corrected for the autocollimator non-linearity. First and second

derivatives of Φ are then obtained performing a parabolic fit to 5 adjoining points at



Chapter 6. The Free-fall experiment results 91

close time intervals of angular time series. Before to perform the final least square fit,

acceleration, velocity and angular deflection, but also Φ2 and Φ3, are filtered with the

same algorithm used for the BH low pass filter technique, by choosing a Blackman-

Harris window length Twin and a sampling time Tsamp. The choice of window sampling

time Tsamp is done to have an integer number of finite window in one free fall cycle

time Texp as in equation 5.5. Moreover, the BH window length Twin, has been chosen

an oversampling factor equal to 5 times the sampling frequency Tsamp. With the usual

choice of Tfly = 250 s and Timp = 25 s, from equations 5.5 and 5.6 will be Twin = 62.5 s

and Tsamp = 12.5 s.

The least square fit is then performed for each flight.

The same fit is performed also considering only a linear dependence from Φ:

Φ̈ = a+ cΦ (6.8)

with only a = N(Φ = 0)/I and c = (2π/T0)2. This allows to extrapolate the stiffness as

the only parameters from c.

For a typical free fall measurement the estimated parameters, obtained performing a

fit to the non linear model 6.7, averaged and scaled opportunely in order to show only

quantity of interest for the final torque model 6.5, are reported in table 6.2. The analo-

gous result for a fit to a linear acceleration model 6.8, is reported in table 6.3. Clearly,

Non linear parameters

Γ 2.5402± 0.0002nNm/rad
T0 818.44± 0.04 s

2αΓ −16.6± 0.2nNm/rad2

3βΓ 7.9± 1.6µNm/rad3

−γ
I (−1.12± 0.02)10−7 1/s

Table 6.2: Non linear model parameters estimated from a typical free fall measure-
ments performed with Tfly = 250 s and Timp = 25 s and a corresponding range in angle

displacement of around ∆Φ ≈ 3mrad.

Linear parameters

Γ 2.5401± 0.0004nNm/rad
T0 818.454± 0.006 s

Table 6.3: Linear model parameters estimated from a typical free fall measurements
performed with Tfly = 250 s and Timp = 25 s and a corresponding range in angle

displacement of around ∆Φ ≈ 3mrad.

there is a discrepancy of at least 1% between the measured period 825.654± 0.003 s and

the estimated ones from fit. This is also addressed in section 6.3.1 by comparing period,

and then stiffness measurements, with the prediction of the electrostatic model, which

account for an effective non linearity of the stiffness from the angular displacement.
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Figure 6.12: Torque time series for a free fall measurement as results of the two
analysis technique developed. The parameter employed in the torque model 6.4, comes

from linear fit at the linear acceleration model 6.8.

The determination of stiffness model parameters has an impact on the torque time

series estimated during free fall measurement. Taking into account the correct stiffness

obtained from the linear fit to the acceleration model 6.8, the recovered torque obtained

from both analysis techniques is showed in figure 6.12. It can be noted the difference

with figure 6.10 in which the parameter used in the model was the measured stiffness

from period. A correct estimate of stiffness allows to reduce uncertainties in the final

torque estimation.

Since the electrostatic model admits a non linear dependence of the stiffness from the

angle, as we will discuss in the next section, also non linear parameters α and β have

been considered to calculate the stiffness and then torque model as in equation 6.5 and

6.6.

6.3.1 Stiffness from measurements and electrostatic model

Both to have a rough confirmation of the electrostatic stiffness and to evaluate the

plausibility of a significant non-linear stiffness contribution, we performed a series of

period measurements with the pendulum centered and near the equilibrium angle that

we compare with measurement performed with pendulum rotated with respect to the

electrode housing, near the new equilibrium angle.

The stiffness is the residual coupling of the test mass to the gravitational reference sensor

and to the suspension point, defined as Γ = −∂N/∂Φ. From the electrostatic point of

view, this is the sum of all of components of spatial gradients due to forces acting on

test mass. On torsion pendulum they sum with the stiffness due to fiber.
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The linear, purely harmonic equation of motion 3.1 can be divided into different stiffness

terms like Γs, generated by the sensor and by ΓY , due to the presence of DC bias applied

on Y electrodes, as follows:

IΦ̈ + Γf (Φf − Φf0) + Γs(Φs − Φs0) + ΓY (ΦY − ΦY0) = 0. (6.9)

Γf is the torsion constant of the fiber and Φf is the equilibrium position. Here, Φs0 is the

equilibrium position which nulls the torque associated with sensor induced stiffness Γs,

while ΦY 0 is the equilibrium position which nulls the torque associated with Y electrodes

DC bias stiffness ΓY , and they set the pendulum equilibrium angle to be

Φ0 =
ΓfΦf0 + ΓsΦs0 + ΓY ΦY0

Γf + Γs + ΓY
. (6.10)

The overall angular spring constant Γtot can be then considered as the sum of all single

contribution, which is possible to measure by evaluating the shift each term causes in

the torsion pendulum resonance frequency,

Γtot = Γf + Γs + ΓY . (6.11)

We perform different period measurements in order to account for all of this terms,

considering also the dependence of the stiffness from the angle. Period measurements

are performed by letting oscillate pendulum with an amplitude around 400µrad and

performing a sinusoidal fit to cycle length 2000 s, in order to calculate period on the

average of different cycles.

Results are shown in table 6.4. The period T0,sens measured, with a centered test

mass respect to the housing, and then near the equilibrium point ΦEQ ≈ 0 rad, is

made in nominal condition with the AC sensing bias applied with an RMS amplitude

of Vinj = 3.6V . The period decreases to T0,fib = 460.766 ± 0.002 s with the sensing

bias switched off. If the contribution due to Y electrodes DC bias is taken into account,

applying voltages equal to VY = 9.5V , the period increase, as we said, up to T0,YDC,bias
=

819.73± 0.01 s.

The same period measurements were performed in the condition in which the pendulum

is out of center, with test mass rotated with respect to the electrode housing of an angle

ΦEQ ≈ −2mrad, as done to perform the free fall measurements. From equation 6.10, it

can be noted that the equilibrium angle change when a source of stiffness is added. The

new equilibrium angle with Y DC bias switched on is around −5mrad. Measurement

of period around the new equilibrium angle give T0,YDC,bias
= 823.43 ± 0.05s when DC

bias on Y electrodes are switched on.

We note again the difference of 4 s in period measured around the equilibrium point

zero and −5mrad, when Y DC bias are applied. We account for the dependence of the
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Period measurements

Centered pendulum Rotated pendulum Rotated pendulum
ΦEQ ≈ 0 rad ΦEQ ≈ −2mrad ΦEQ ≈ −5mrad

T0,fib 460.766± 0.002 s
T0,sens 468.011± 0.003 467.971± 0.002 s

T0,YDC,bias
819.73± 0.01 823.43± 0.05 s

Γ fit results Prediction from electrostatic

Γfib 8.014± 0.007 nNm/rad
A −18.9± 0.7 Γs/V

2
inj −17± 16 pNm/V 2rad2

B −58.0± 0.1 −2∂
2CY
∂Φ2 −45.8± 1.6 pNm/V 2rad2

C −8.9± 0.1 −∂4CY
∂Φ4 −24.0± 0.3 nNm/V 2rad4

Estimation from fit

Γsens(Φ = 0) = AV 2
inj −245.5± 9.3 pNm/rad

ΓYDC,bias
(Φ = 0) = BV 2

YDC,bias
−5.237± 0.009 nNm/rad

∂Γ(Φ)
∂Φ2 = CV 2

YDC,bias
−80± 1 nNm/rad2

Γtot(Φ = 0) = Γf + Γsens + ΓY 2.54± 0.02 nNm/rad

Capacitance derivatives from FE analysis
∂2Cinj

∂Φ2 22.90± 11 pF/rad2

∂2Ctot
∂Φ2 0.596± 0.003 nF/rad2

∂2CY
∂Φ2 22.8± 0.8 pF/rad2

∂4CY
∂Φ4 24.0± 0.3 nF/rad4

Table 6.4: Top panel: period measurements results. Central panel: parameters ob-
tained from fit to measured Γ compared with the prediction of the electrostatic model.

Bottom panel: capacitance derivatives w.r.t Φ values from FE analysis.

period, and then the stiffness, from angle, by performing a least square fit of Γ from all

the period measurements, remembering that Γ = I(2π/T0)2, to the model:

Γm = Γfib +AV 2
inj +BV 2

YDC,bias
+ CV 2

YDC,bias
Φ2. (6.12)

We don’t consider the dependence of the injection bias from the angle, because the Y

electrodes are closer to the test mass (2.9 mm) respect the injection bias (4 mm) (see

figure 1.5), and the effect can be neglected.

We obtain the stiffness contribution of the injection bias respect to Φ = 0rad as

Γsens(Φ = 0) = AV 2
inj . While the stiffness due to Y DC bias in zero is ΓYDC,bias

(Φ =

0) = BV 2
YDC,bias

. Results of various stiffness contribution and of coefficients of the fit,

are listed in the central panel of table 6.4. All parameters errors are scaled for the χ2

of the fit that is around 100.

Each stiffness contribution, and each coefficient of stiffness fit, can be also apportioned

from the electrostatic model [7], except the stiffness of fiber. Starting from equations

of section 3.2.1, we can write the contribution of torque due to injection and sensing

electrodes as well as that due to Y electrodes, biased with DC voltages.
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• Sensing stiffness The total torque along Φ due to all electrodes and housing sur-

faces facing the test mass, can be generally written as:

NΦ =
1

2

∂Cinj,TM
∂Φ

(Vinj − VTM )2 +
1

2

∑
i 6=inj

∂Ci,TM
∂Φ

(Vi − VTM )2 +
1

2

∂Cinj,H
∂Φ

V 2
inj

(6.13)

where
∂Cinj,TM

∂Φ and
∂Cinj,H

∂Φ are the derivative of injection electrode respect to test

mass and housing surfaces.
∑

i 6=inj
∂Ci,TM

∂Φ is the sum of capacitance derivative of

all x electrodes respect to test mass and housing, and we will named this sum of

capacitance as Ctot.

With some algebra and expanding capacitance derivative with respect to a Φ0 zero

position, and reducing the notation as explained in section 3.2.1

∂C

∂Φ
≈ ∂C

∂Φ

∣∣∣∣∣
0

+
∂2C

∂Φ2

∣∣∣∣∣
0

(Φ− Φ0), (6.14)

the final torque expression due to electrodes sensing contribution is

NΦ =
1

4
α2V 2

inj

[
∂Ctot
∂Φ

∣∣∣∣∣
0

+
∂2Ctot
∂Φ2

∣∣∣∣∣
0

(Φ− Φ0)

]

+
1

2
V 2
inj

[
∂Cinj
∂Φ

∣∣∣∣∣
0

+
∂2Cinj
∂Φ2

∣∣∣∣∣
0

(Φ− Φ0)

] (6.15)

where α is defined as α = Cinj/Ctot. Now the stiffness due to the sensing bias is

Γs = −∂NΦ

∂Φ
= −1

2
α2V 2

inj

∂2Ctot
∂Φ2

− 1

2
V 2
inj

∂2Cinj
∂Φ2

. (6.16)

This is directly comparable with the A parameter coming from fit to stiffness

considering

Γs = AV 2
inj . (6.17)

If we consider an injection bias Vinj = 3.6VRMS , and we use capacitance derivatives

as measured from FE analysis [7], we have model prediction of Γs that is completely

dominated from the error in the derivative
∂2Cinj

∂Φ2 coming from FE analysis. This

is still to investigate.

• Electrostatic stiffness from Y DC bias A similar calculation can be done for Y

electrodes DC bias contribution, as already shown in equation 4.28. The torque

along Φ direction is

NΦ,Y =
1

2

∑
j

∂Cj
∂Φ

V 2
DC,Y , (6.18)
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where the only contribution comes from the four Y electrodes surfaces facing the

test mass and the electrode housing. This time, the capacitance derivative series

expansion is performed considering also third order terms, in order to account for

non linear terms in the final stiffness expression, that can explain the non linear

dependence from Φ of the stiffness model 6.6. So

∂C

∂Φ
=
∂C

∂Φ

∣∣∣∣∣
0

+
∂2C

∂Φ2

∣∣∣∣∣
0

(Φ− Φ0) +
1

2

∂3C

∂Φ3

∣∣∣∣∣
0

(Φ− Φ0)2 +
1

6

∂4C

∂Φ4

∣∣∣∣∣
0

(Φ− Φ0)3. (6.19)

The final expression for the stiffness due to Y DC bias will be

ΓY (Φ) = −
∂NΦ,Y

∂Φ
= −2V 2

DC,Y

[
∂2CY
∂Φ2

+
1

2

(
∂4CY
∂Φ4

)
Φ2

]
. (6.20)

This is comparable with parameters from fit of stiffness B and C so that

ΓY (Φ) = BV 2
DC,Y + CV 2

DC,Y Φ2. (6.21)

so that we can estimate B as −2∂
2CY
∂Φ2 and C directly from ∂4CY /∂Φ4. First,

second and fourth order capacitance derivatives with respect to Φ of Y, X and

injection electrodes, can be estimated from the electrostatic finite-element (FE)

analysis, as explained in section 3.2.1. For the C parameter, we found a difference

of a factor 2.7 with our model estimation. The factor B can instead be compared

with the second order capacitance derivative of the Y electrodes, and a factor 1.3

of difference is found. Parameters estimated from fit are of the same order of

magnitude of that expected from electrostatic. Our model is able to estimate the

presence of a non-linearity at a level not comparable to the model.

It is thus possible to conclude that exist a non linearity of the stiffness respect to the

angle displacement expected from the electrostatic model, as shown in equation 6.20,

and this account for the discrepancy in the measured period, and consequently in stiff-

ness, when measurements are performed out of center, as visible in table 6.4.

We can also compare these results with the estimation of non linear parameters, showed

in table 6.2, obtained performing a fit of the acceleration during a free fall run at a non

linear model of angle, as explained in the previous section. The estimated parameter β,

that is related to the dependence on Φ2, can be compared to the estimated value of the

C parameter from fit to Γ, as well as the α parameter can be compared with B. There

is a factor 3 of difference from β recovered from fit to acceleration data and the value of

C from fit to measured period.

This can be also showed by comparing the non linear stiffness model of equation 6.6 ob-

tained from different free fall measurements, performed in several weekend from January
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Figure 6.13: Plot of non linear stiffness models from equation 6.6, for different free
fall measurements (numbered 216, 217, 220, ...). Non linear parameters are estimated
with the calibration algorithm explained in section 6.3. We also show the model of the
stiffness, for VDC,Y = 9.5V and Vinj = 3.6VRMS , based on period measurements as in

Table 6.4.

until March 2015, as in figure 6.13. Non linear parameters α and β are well resolved

inside each run (see table 6.2), but they do not agree with each other and they do not

help the residuals shown in figure 6.14, as we will explain shortly. Additionally, their

values differ, from run to run, from what we expect theoretically in sign, while the the-

oretical model for non-linear stiffness is roughly correct over larger angular scales (0 to

−5mrad).

The behavior of the non linear stiffness model 6.6 is not that expected from the elec-

trostatic (equation 6.20), because of the wrong estimated curvature. As seen, α and β

terms, related to the second and third power of angle, are estimated with a wrong sign

from fit. The expected stiffness trend is shown as the yellow line in figure 6.13. This

is estimated considering the non linear model of the measured Γ of equation 6.12. It

seems there is also a variability in time of the resulting stiffness from fit, that appears

like the presence of two family of curves in figure 6.13, that can not be related to an

electrostatic or a geometrical effect.

In order to show if α and β parameters account for a real non linearity behavior of the

stiffness measured during the free fall measurement, it is possible to show a plot of the
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residual non linear torque calculated for each flight as

Nres,non lin = I
(

Φ̈− (a+ bΦ̇ + cΦ + dΦ2 + eΦ3)
)

(6.22)

where parameters are estimated from fit of equation 6.7. In case of linear model 6.8, this

residuals reduce to Nres,lin = I(Φ̈− (a+ cΦ)). Residuals from non linear fit are plotted

with respect to Φ displacement in figure 6.14 on bottom panel. On top panel are shown

the same residuals obtained by calculating parameters a and c as in Nres,lin. The angle

time series Φ used to calculate residuals, is obtained after the Blackman-Harris filtering

as in the algorithm explained in section 6.3 (shown schematically in figure 6.11). All

displacement data are corrected for the autocollimator non linearity.

From these figures it is clear that the non linear model 6.7 doesn’t help to account for

all the non linearity effect at angle near 600µrad, where there is a systematic variation

in the torque residual in a small range of angle.

The same plot has been done without considering the autocollimator correction, in order

to see what is the impact of this correction on the final data, as it is shown in figure 6.15.

The use of the autocollimator correction gives an improvement in the residuals especially

in the range of Φ on the top part of the flight, near 600µrad, where the pendulum is

slower and remains there for more time, scanning slowly over the periodic errors of the

autocollimator.

As the residual torque in figure 6.14 varies systematically in angle on small scales, as

does that measured without the AC correction (6.15), it is likely that the systematic

short scale non-linearity is due to some imperfection in our autocollimator correction.

Residuals indicate an error that varies on much shorter angular scales than could be

explained by an electrostatic non-linearity.

In conclusion, an application of the non linear torque model 6.5, with non linear param-

eter α and β in the final estimation of torque in free fall measurements, has been found

not a real advantage in the torque spectral estimation. For all our torque estimation,

we use the linear model 6.4.

6.4 Actuator calibration

The calibration of the electrostatic actuator, with a scale factor α defined in equation 4.7,

is important for the accuracy of the torque estimation with DC actuation (as already

described in section 4.1 in equations 4.7-4.9). We note that the actuator in the DC

torque experiment is used with Φ = 0, so that is the angle at which we must calibrate

the actuator. Though not relevant for the free-fall mode analysis, the calibration does

also affect the accuracy of the free-fall mode torque impulse controller.
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Figure 6.14: Residual torque from equation 6.22. Fit parameters are calculated with
the calibration method explained in section 6.3 in the linear and not linear case. Data

are corrected for autocollimator non linearity.
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Figure 6.15: Residual torque from equation 6.22 for data not corrected for the au-
tocollimator non linearity. Fit parameters are calculated with the calibration method

explained in section 6.3 in the linear and not linear case.
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As already seen in section 4.2.3, pendulum actuation scheme allows a range of torque

NACT while holding the stiffness ΓACT constant, applying voltages ±V 2
i,Φ on diagonal

couples of x electrodes so that:

NACT =

∂C∂Φ

(< V 2
1Φ > − < V 2

2Φ >
)
. (6.23)

We remember here that the square wave voltages applied are always attenuated of a low

pass filter factor measured to be fatt = 0.85, so that the real applied voltage is :

NACT =

∂C∂Φ

 f2
att

(
V 2
com,1Φ − V 2

com,2Φ

)
≡
(
V 2
com,1Φ − V 2

com,2Φ

) ∂N

∂(V 2
com)

. (6.24)

The actuator calibration consists to measure partial derivatives with respect to Φ of the

capacitance of x electrode in case of AC actuation, in order to obtain the final factor
∂N

∂(V 2
com)

. This was done before, during and after pendulum rotation with respect to the

electrode housing.

The technique usually employed consist to produce a square wave modulation on the

diagonal couple of electrodes EL1 and EL3, as in figure 4.5, polarizing them by switching

on and off an AC signal of commanded amplitude VMOD chosen to be an exact integer

multiple of the DAC LSB (δVbit = 312.5µV ). The chosen frequency of modulation is

fMOD = 3mHz.

In case of measurement with pendulum rotated with respect to the electrode housing,

there is also an offset VOFF that has to be considered, applied on the used electrodes, in

order to keep the test mass centered while the modulation is on. This offset corresponds

to VOFF = ± 2.65857V in case of a DC torque applied during a noise measurements

with actuation, that is NDC =
∂C
∂Φ

 f2
attV

2
OFF = 14.52 pNm.

This operation induces a torque signal on test mass with squarewave amplitude

NMOD = 2
∂C

∂Φ
f2
attVOFFVMOD. (6.25)

The first harmonic is 4/π times this value and we applied a VMOD corresponding to

roughly one bit of the DAC, δVbit = 3.125µV , for a modulated torque of order of

4 fNm, as also shown in figure 6.16. This allows the extraction of the calibration

factor between the DAC commanded squarewave actuation amplitude and torque as

∂C/∂Φ = 2.04± 0.02 pNm/V 2.

At the end of the experiment, with the pendulum rotated near to Φ = 0 (and thus

with no torque needed to hold the pendulum centered), we perform the same calibration

by applying VMOD = 200δVbit = 0.0625V (again modulating at frequency fMOD =

3mHz) and an offset of VOFF = ±0.0625V , obtaining a modulated torque of order of

15 fNm. The calibration factor measured with pendulum centered is ∂N
∂(V 2

com)
= 2.021±
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Figure 6.16: Torque amplitude signal of order 4 fNm, obtained after demodulation
of a measurement of the actuator calibration factor with pendulum out of center of

−5mrad.
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Figure 6.17: Torque amplitude signal of order 20 fNm, obtained after demodulation
of a measurement of the actuator calibration factor, with pendulum centered around

0 rad.
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0.008 pNm/V 2.

Results and measured conditions are summarized in table 6.5

Both measurements are sensitive to possible electronics non-linearities in a different

Centered pendulum Rotated pendulum
ΦEQ ≈ 0 rad ΦEQ ≈ −5mrad

VMOD 200δVbit = 0.0625 δVbit = 0.0003125 V
VOFF ±0.0625 ±2.65857 V
fMOD 3 3 mHz

NMOD 20 4 fNm
∂C
∂Φf

2
att 2.021± 0.008 2.04± 0.02 pNm/V 2

Table 6.5: Actuator calibration measurement parameters and results.

way with respect to the noise measurements with DC torque applied. The centered

pendulum measurements use very small offset voltage, while in the DC actuation noise

measurements there is a voltage of 2.6 V.

Finally, the used actuator calibration factor is obtained with a weighted average from

the two values measured: ∂C∂Φ

 f2
att = 2.024± 0.007

pNm

V 2
. (6.26)

6.5 Measured time series

Finally, in figures 6.18, we show angular time series of different free fall measurements

performed in sequence, at different combinations of Tfly and Timp. In order to show

the accuracy and the repeatability of the free fall measurement on time, we show also

the corresponding torque time series as coming from the two analysis techniques, as in

figure 6.20 and 6.21.

As discussed above, we are using a harmonic model with linear stiffness term. This

means that the torque has a linear model like in equation 6.4, and the parameter Γ is

obtained from the linear fit in equation 6.8. The parameter is calculated separately for

each run.

In order from left to right, showed measurements have been performed with Tfly =

100, 140, 100, 250, s and Timp = 10, 15, 10, 25 s.

The last time series, in red on each plot, is a noise measurement performed with con-

stant DC actuation applied to hold the test mass centered around zero (as zoomed in

the bottom panel of figure 6.19 that shown also the difference in the dynamic range in-

spected by pendulum during the two type of measurements). As already said, the torque

measured with DC actuation depends on the subtracted value of the commanded torque
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as in equation 4.6, which we calculate to be NDC = 14.28 pNm, considering that the

applied AC voltage on each x electrodes is 2.659V and the calibration factor used above

2.024± 0.007 pNm
V 2 . To compare the torque measured with the results coming from free

fall analysis, we subtract this DC value from the estimated torque time series. There is

a discrepancy of 0.5% in the torque between free-fall and the continuous actuation case,

which could be compatible with the uncertainties in our actuator calibrator mentioned

above.

The torque estimated from free fall measurements operated in different conditions, is in

line and the visible drift in time is due to an angular drift related to laboratory temper-

ature variation.

Data in figure 6.21, analyzed with BH low pass filter techniques for Tfly = 100s (magenta

curve), appears divided into two bands. The BH windows length in this case is chosen

to be Twin = 50.1667s (with a Tsamp = 9.1667s and an oversampling factor of 5.4727).

There is a still a residual systematic position dependence of the measured torque still

to correct. It is consistent with an effective miscalibration of Γ by of order 0.1nN/rad,

that could be related to the local errors in the autocollimator residual, locally, at the

angles relevant to the 100 s free-fall dynamics or related to the different window sizes

used on the shorter data. This needs to be still investigated.

Another test of the free-fall mode accuracy, particularly regarding the ability to accu-

rately estimate the external torque at Φ = 0, independently of the pendulum angle

during the measurement, is shown in figure 6.22 where the torque time series are shown

for different set points angles. The corresponding torque recovered with the BH low pass

filter technique is shown in figure 6.23. The used set points are 0, 500 and -500 µrad.

Points of the time series with noisier periods around 50720000s for cyan curve or

50900000s for red curve are due to the moments of clock slippage mentioned in section

6.2.2 and that can’t be reduced. This is the reason why we discard this data stretches

from the grand averages performed in the final analysis.

6.6 Torque noise spectra

In this section we present all torque noise power spectral densities obtained for our

free fall, DC actuation and background noise measurements data set. All the spectra

showed in this section, are obtained considering a linear model for the stiffness with all

data corrected for the autocollimator non-linearity. The use of 50 Hz sampling, with

the correction scheme discussed in section 6.2.2, has only been implemented with the

sine-fit analysis, and is still being investigated for the BH analysis.

Moreover, all torque time series have been divided in stretches of 27500 s with 66%

overlapping each multiplied by a Blackman Harris window, as explained in section 5.1.1,
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Figure 6.18: Angular time series of different free fall measurements performed with,
in order from left to right, Tfly = 100, 140, 100, 250, s and Timp = 10, 15, 10, 25 s. The
last red time series on the right is a noise measurement with constant DC actuation

with NDC = 14.56 pNm.

when we performed spectra on simulated data.

The cross correlation technique between the sensor and autocollimator data was not

used to analyze free fall data because of the high noise level in sensor data. As we

said, we didn’t analyze in detail non linearity and sensor issues. We still use this noise

estimator for noise run with constant DC actuation and without actuation.

Moreover, we analyze the DC actuation and no actuation data, which are intrinsically

continuous and without gaps, both with a ”standard” analysis (following equation 4.6)

and with the sine and BH analysis techniques used for the free-fall data.

In figure 6.24 we report torque noise power spectral densities of a background noise

run, with electrostatic constant DC actuation applied to hold the test mass centered,

compared with a free fall measurement analyzed with both the techniques developed.

As we said in section 4.1, we want to verify that the free fall can allow a torque noise

measurement at the background levels measured in the absence of actuation, lower then

that possible with the commanded DC actuation force. At the current state, this is not

totally true at frequency of interest of the experiment. This appears to be due to the

effect of the aliasing of high frequency noise components, and to the down conversion

at low frequency, as this was already observed by analyzing simulated torsion pendulum

data in section 5.1.1.

It can be useful to compare the same free fall measurement of figure 6.24 with the

showed noise run with DC actuation, analyzed with the sine-fit and BH free-fall analysis

techniques, essentially analyzing the continuous data as if it had gaps for the impulses.
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Figure 6.19: Top panel: Angular time series of different free fall measurements per-
formed with different Tfly = 100, 140, 100, 250, s and Timp = 10, 15, 10, 25 s. They
are overlying respect to the plot in figure 6.18. The red time series is a noise measure-
ment with constant DC actuation with NDC = 14.28 pNm. Bottom panel: zoom on

DC actuation noise run time series.

In figure 6.25 we analyzed the free fall run and the noise run with the BH low pass

filtering technique. This technique works better with continuous data, but there is still

an effect of residual aliasing. Even though the detrending operated on filtered data,

peaks at frequency of the experiment Texp = 275 s are still present.

A similar comparison is done with data analyzed with the sinusoidal fit technique in

figure 6.26. At frequency below 1mHz this technique works well with noise data with DC

actuation, recovering the same torque noise level obtained with the standard analysis.

Moreover, gaps in analyzed data produce excess noise, but not enough to explain the

noise floor in our free-fall experiment.

To illustrate the variation in time of the noise level achieved, at least in one relevant
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Figure 6.22: Angular time series of different free fall measurements performed with
different set points, in order from left to right, 0 rad, −500µrad and 500µrad. Exper-
imental parameters are Tfly = 250, s and Timp = 25 s. The first blue series on the left

is from a noise measurement with constant actuation on with NDC = 14.28 pNm.

frequency window, we can integrate the spectrum in the range from 1 to 3 mHz to obtain

a mean square torque. Uncertainty has been estimated from the standard deviation of

the samples in the frequency bin. We associate a single data point with each 27500 s cut

and plot this as a time series, depending on the day of the week in which it was taken,

as in figure 6.27.

In this figure, all free fall run stretches are shown, for measurements performed between

October 2014 and March 2015, mainly during weekends, as function of experimental time

scale. The spectra can be averaged to obtain a final spectrum. Before average, some

cuts is rejected from final average according to a certain criterion (gray points in figure

6.27). Criteria developed to discriminate data are based on the implementation problem

of data acquisition explained in section 6.2. Cuts in which data presents a time interval

between consecutive points longer then dt > 1 s are rejected. The same is done for

data that have the problem of clock slippage explained in section 6.2. This is done by

considering the number of 4/6 points that are collected for each stretch. If this number

exceeds 100 the cut is rejected.

All rejected stretches based on the explained criteria are shown as faded points in figure

6.28. A zoom on the same data is shown in figure 6.29.

Finally, in figure 6.30, free fall integrated torque spectra are compared to those of noise

measurements performed with constant DC actuation. Time variations in the torque
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Figure 6.23: Torque time series as results of Blackman-Harris low pass filtering tech-
niques, for different free fall measurements performed with different set points, in or-
der from left to right,0 rad, −500µrad and 500µrad. Experimental parameters are
Tfly = 250, s and Timp = 25 s. The first blue series on the left, is torque difference be-
tween a noise measurement with constant actuation and the applied DC offset in torque
NDC = 14.28 pNm. Points of the time series with noisier periods around 50720000s
for cyan curve or 50900000s for red curve are due to the moments of clock slippage

mentioned in section 6.2.2

noise power integrated in the frequency band from 0.45 to 1 mHz, for both cases, are

shown.

The full data set of free fall runs have been then averaged and is showed in figure 6.31,

analyzed with both analysis techniques and compared with the noise with DC actuation

measurements. The average is performed by pre-averaging spectra from groups of 10

cuts of each run of measurements and then taking the final average. The error is the

standard deviation of the real part of spectra of all stretches, divided by the number of

spectra. Noise run with DC actuation are averaged on BH windows length of 25000s

and overlapped of 66%.

We are able, at present time, to recover an excess torque noise of 2 fNm/
√
Hz at 1mHz

for data analyzed with both the free fall analysis techniques, a factor two larger then

that achieved with constant DC actuation force. This represents a level of acceleration
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tificial gaps (blue). Free-fall run from fig 6.24 with sinusoidal fit analysis shown for

comparison (red).

noise of 100 fm/s2
√
Hz that we can compared to LPF differential acceleration require-

ment. This is factor 10 above the level of actuation noise expected for LISA Pathfinder

mission showed in figure 2.3 in section 2.2, that is 7.5 fm/s2
√
Hz at 1mHz.

We note here the presence of a peak near the pendulum resonance frequency for both

free fall data, that is not presents in DC actuation data. This is not only due to aliasing

effect, but it is also related to the dynamics during the free fall not completely accounted

for. The BH low pass filter data shown also a peak around 1.5mHz, related again to

aliasing problem.

6.6.1 Noise with constant DC actuation

Measurements performed with constant DC actuation were alternated with free fall

measurements during weekends of test campaign. The measured torque noise in this

phases includes the contribution from the actuation fluctuations, as explained in section

4.1

S
1/2
NACT

= 2NDCS
1/2
δV/V . (6.27)
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Figure 6.27: Integrated torque noise power spectral density in the frequency band
from 1mHz to 3mHz obtained from all free fall measurements, mainly performed
during weekends. Faded points represents rejected cuts based on time stamp issues.
Data points that have big error bars are due to an effect of the rendering of the screen.
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Figure 6.28: Integrated torque noise power spectral density in the frequency band
from 1mHz to 3mHz obtained from all free fall measurements (numbered 199, 202,
...), mainly performed during weekends. Faded points represents rejected cuts based on

the experimental implementation problem criteria.

The measured total torque noise is showed in figure 6.33, and has a level of S
1/2

N̂2
≈

0.9 fNm/
√
Hz at 1mHz. This means that, attributing all of this noise to actua-

tion would correspond to actuation fluctuations at a level of S
1/2
δV/V = S

1/2

N̂2
/2NDC ≈

3 · 10−5 /
√
Hz, considering that the level of DC torque applied to hold the test mass

centered is NDC = 14.28 pNm. This is roughly equivalent to 30 ppm/
√
Hz of voltage

stability at mHz, a factor 15 above that expected for LPF that is S
1
2

δV/V < 2 ·10−6/
√
Hz.

We also show in figure 6.34 background torque noise measured in March 2015, after the

free fall test campaign, and after rotate again the suspended test mass respect to the

electrode housing to center it.

Make the difference between torque noise without actuation and that measured with

constant DC actuation allow to estimate the excess actuation noise as defined in equa-

tion 4.6. The difference from power spectral densities is shown in figure 6.35. We plot

also the difference in the cross spectral densities between torque measured by the two

readout, compared to the LPF requirements converted into an equivalent torque noise.

At frequency near resonance (1-1.5 mHz) we are able to resolve an excess actuation noise

of 0.2fN2m2/Hz that correspond to a voltage noise at level of 15ppm/
√
Hz. At higher

frequency, as well as frequency below 1 mHz, we don’t resolve this effect. There is not

a noise stationarity, at low frequency this difference is negative, highlighting an excess

in noise without actuation.
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Figure 6.29: Integrated torque noise power spectral density in the frequency band
from 1mHz to 3mHz obtained from all free fall measurements (numbered 199, 202, ...),
analyzed with sinusoidal fit techniques(first panel) and BH low pass filter techniques

(second panel).
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Figure 6.30: First and second panel: Integrated torque noise power spectral density in
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analyzed with sinusoidal fit techniques(first panel) and BH low pass filter techniques
(second panel). Bottom panel: Integrated torque noise power spectral density in the
same frequency band obtained from noise measurements with constant DC actuation

with standard analysis.
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Figure 6.31: Torque power spectral densities of all free fall measurements with Tfly =
250 s and Timp = 25 s, averaged on 10 groups of 10 cuts of 27500 s. Magenta points
are analyzed with BH low pass filtering technique. Green points are analyzed with the
sinusoidal fit techniques. Red points are average of 4 groups of 10 cuts of noise run

with constant DC actuation measurements analyzed with the standard technique.

6.7 Calibration tone

In order to both test the accuracy of the torque measurement in free-fall mode and to

test our ability to resolve a coherent torque signal, we have implemented a calibration

tone experiment that was applied to the data in both free-fall and continuous actuation

modes.

We do this by performing a measurement of the test mass potential, which is very nearly

constant during our measurements, at a level of VTM ≈ −37.5mV . We can generate a

torque of nearly constant amplitude with a standard charge measurement. This means

to modulate a sinusoidal bias potential ±VMOD sin(2πfMODt), with amplitude VMOD =

10mV at frequency fMOD = 0.5mHz, applied to x sensing electrodes of figure 4.5 with

polarization positive on EL2, EL4 electrodes and negative on EL1, EL3.

The torque exerted on the test mass with this bias configuration is, from electrostatic

considerations of section 3.2.1, equal to:

NΦ =
1

2

∑
i

[
∂Ci
∂Φ

+
∂2Ci
∂Φ2

Φ

]
(Vi − VTM )2, (6.28)
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Figure 6.32: Torque power spectral densities of DC actuation measurements averaged
on 4 groups of 10 cuts, analyzed with the two free fall analysis techniques. Blue points
are analyzed with BH low pass filtering technique. Red points are analyzed with the

sinusoidal fit techniques.
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Figure 6.33: Torque power spectral densities of all noise measurements performed
with constant DC actuation, averaged on 4 groups of 10 cuts of 25000 s. Blue data
are autocollimator averaged data, green points are cross spectra between sensor and

autocollimator signal.
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where Vi are voltages applied on each electrodes, that in this case are sum of a DC

voltage δVi plus the modulation VMOD sin(2πfMODt).

Additionally, to have a torque signal that is independent of angle, we try to null the

rotational electrostatic DC bias imbalance to remove the angular dependence of the

coherent torque [32].

Because pendulum was rotated with respect to the electrode housing, in this phase, the

test mass voltage VTM has an additional component depending on the angle of rotation

Φ:

VTM = VTM,0 + 4

∂C
∂Φ

ΦVMOD

CTOT
(6.29)

By substituting in the equation 6.28, the component of torque at the first harmonic will

be

NΦ,1f = VMOD sin(2πfMODt)

[
−4∆VTM

∂C

∂Φ
+ Φ

∂2Ci
∂Φ2

(
1− 4

∂C
∂Φ

2

CTOT
∂2Ci
∂Φ2

)
∆Φ(x)

]
,

(6.30)

where we define

∆VTM = VTM,0 −
∑
i

δVi (6.31)

∆Φ(x)
= δVEL1 − δVEL2 + δVEL3 − δVEL4. (6.32)

where ∆Φ(x)
is the rotational DC bias imbalance. To measure and null ∆Φ(x), we per-

formed measurement of test mass potential with the same sinusoidal charge modulation

applied on x electrodes, at different Φ angles 0, −1, −2, −3, mrad, as we show in figure

6.38. In this case VMOD = 200mV and fMOD = 3mHz. The corresponding angu-

lar deflection is converted in torque and is then demodulated, and the resulting torque

components at modulation frequency, are averaged for each steps. Finally, a linear fit

of torque as a function of Φ is implemented, as visible in figure 6.39. The slope is

proportional to ∆Φ(x)

∂NΦ,1f

∂Φ
=

(
VMOD

∂2Ci
∂Φ2

− 4
VMOD(∂C∂Φ )2

CTOT

)
∆Φ(x)

. (6.33)

In order to compensate the Φ dependence of the applied force 6.28 during measurements

of free fall with calibration tone switched on, it is possible to apply to each electrode x

a compensation voltage proportional to ∆Φ(x)

Vcomp = −
∆Φ(x)

4
. (6.34)

We obtain a ∆Φ(x)
≈ 0.275V , considering that ∂Cx/∂Φ = 3.3 pNm/rad and ∂2Cx/∂Φ2 =

28 pNm/rad2 from FE analysis [7]. We apply a Vcomp ≈ 69mV on x electrodes with
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Figure 6.38: Top panel: Time series of modulated signal at different angle
0, −1, −2, −3, mrad. Bottom panel: The resulting sine and cosine component of

torque after demodulation at 1 fMOD.

sign plus or minus depending on the electrodes sign polarization, in order to null the

potential applied.

With this compensation applied, we perform measurements of free fall and background

noise with DC actuation force, both with the calibration tone switched on. It is possible
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Figure 6.39: Linear fit of torque component measured at different Φ position.

to analyze relative runs either with sinusoidal fit techniques then with Blackman-Harris

low pass filter, to recover the corresponding torque time series. In figure 6.40 we show the

recovered torque time series of a free fall run, where the modulation applied is clearly

visible. We want to recover the resolution with which we measure the torque signal

applied during the free fall mode and during the DC actuation noise measurement. To

do this we perform a sinusoidal fit to torque time series obtained applying free fall

analysis techniques on both type of measurements, on cycles length 1/fMOD, using the

model

Ncal = N0 +A cos(2πfMODt) +B sin(2πfMODt). (6.35)

Results of fit components are listed in table 6.6 with their standard deviation, as is

also shown in figure 6.41. We are able to extract with this technique, the coherent

torque applied, from all analysis techniques within 1%. The RMS deviation obtained

cycle by cycle is related to the torque noise at frequency of modulation fMOD as σ =√
SN (fMOD)fMOD. From figure 6.31 the torque noise expected at fMOD = 0.5mHz

for the measurement analyzed with the BH low pass technique, or with the sinusoidal

fit, is around 2 fNm/
√
Hz. This means that we have a resolution of 0.05 fNm. This

is a factor two below the resolution with which we resolve the coherent torque signal

applied on our pendulum with the same techniques of analysis, shown in table 6.6,

that are σsin = 0.11 for BH low pass and σsin = 0.09. For the torque noise with

DC actuation showed in figure 6.32, analyzed with standard analysis, the resolution at

fMOD = 0.5mHz is ≈ 0.03 fNm, compatible with σsin = 0.04 obtained with standard

analysis during the DC actuation noise measurement with the calibration tone switched

on.
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Figure 6.40: Torque time series recovered with free fall analysis techniques, during
the application of a calibration tone at frequency fMOD = 0.5mHz during a free fall

measurement (top panel) and a noise run with DC actuation on (bottom panel).

Free fall

Sinusoidal fit
Cos 0.015± 0.007 σcos 0.04 fNm
Sin −4.84± 0.02 σsin 0.09 fNm

BH low pass
Cos 0.021± 0.016 σcos 0.08 fNm
Sin −4.86± 0.02 σsin 0.11 fNm

DC actuation

Sinusoidal fit
Cos −0.014± 0.009 σcos 0.05 fNm
Sin −4.79± 0.01 σsin 0.07 fNm

BH low pass
Cos −0.03± 0.02 σcos 0.08 fNm
Sin −4.79± 0.02 σsin 0.12 fNm

Standard analysis
Cos −0.014± 0.007 σcos 0.03 fNm
Sin −4.795± 0.008 σsin 0.04 fNm

Table 6.6: Charge measurement parameters and their resolution for free fall and DC
actuation runs. For both measurements were used 23 cycles.



Chapter 6. The Free-fall experiment results 124

5.346 5.348 5.35 5.352 5.354 5.356 5.358 5.36

x 10
7

−6

−5

−4

−3

−2

−1

0

1

S
in

e
 a

n
d
 C

o
s
in

e
 c

o
m

p
o
n
e
n
ts

 (
fN

m
)

Time (s)

 

 

Free−fall BH filter

Free−fall sine−fit

DC actuation BH filter

DC actuation sine−fit

DC actuation standard analysis

Figure 6.41: Sine and cosine components.



Chapter 7

Conclusions and future steps

The LISA Pathfinder mission has a very challenging task in the measurement of residual

differential acceleration between two free falling test masses at level of 30fm/s2
√
Hz at

1mHz. The actuation forces necessary in flight introduce a source of disturbance inter-

nal to the orbiting apparatus, that affects the acceleration noise budget of the mission.

The current best estimate of the LPF differential acceleration noise considers a stray ac-

celeration noise level of 7.5 fm/s2
√
Hz at 1mHz considering a gravitational balancing

tolerances along the sensitive axis of ∆gDC ≈ 0.65nm/s2, as shown in figure 2.3.

This is the motivation that led to the search for a way of reduce the actuation noise at

least along the sensitive axis of the interferometer on board of LTP. This is the Free-fall

mode.

The possibility of test the free fall mode with a quantitatively interesting accuracy and

sensitivity on ground has been provided by means of torsion pendulum test bench. It

is possible to mimic the LPF gravity gradients that must be compensated in orbit as

external torques acting on the suspended test mass.

Key device that allows to implement the free fall mode on pendulum, is the home made

front end electronics. The actuation circuit of the capacitive position sensor gives the au-

thority and the sensitivity with which the free fall mode can be implemented on torsion

pendulum facility. The maximum voltage that can be applied by DAC to each electrode

is ±10V that means the possibility to apply a maximum torque on test mass of around

200 pNm. This translates into an equivalent differential applied force corresponding to

20nN forces applied by each electrodes. This means that with 10% of duty cycle, we

can’t have more than 20 pNm of DC torque, equivalent to 2nN of differential force.

This is similar to LPF level (≈ 1nN for 1% of duty cycle), but applied with a higher

duty cycle. Torque authority is reduced respect to that in flight, where it is possible to

apply roughly 11V in science mode and 135V AC, applied half the time, in wide range.

Despite the difference in the authority, the study of DC actuation noise on ground has

125
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allowed to put an upper limit on actuation noise up to 1fNm/
√
Hz at 1mHz. The

electrostatic actuator calibration has allowed to set the accuracy in the determination

of the torque with DC actuation with respect to the torque measured with the free fall

technique. We found a discrepancy of the 0.5% as visible in figure 6.20, compatible with

the uncertainties in our actuator calibration.

We also put an upper limit on the actuator noise, performing the difference in noise

with and without DC torque actuation for our system based on a commercial DAC card

and homemade switching circuitry, and as shown in figure 6.35. The resolution of the

actuation noise is 0.2 fN2m2/Hz at 1mHz, that on the scale of voltage fluctuations

corresponds to S
1
2

δV/V ≈ 15ppm/
√
Hz. This is a factor two above the actual measured

stability with the inertial sensor Front End Electronics of LTP that gives 3−7ppm/
√
Hz

at 1mHz.

The torsion pendulum facility is a high sensitivity apparatus to measure small and par-

asitic forces acting on the suspended test mass at low frequencies. The measured torque

noise is 0.8 fNm/
√
Hz at 1mHz that corresponds to an effective LPF TM acceleration

noise level of 40 fm/s2
√
Hz. We are able to resolve an extra acceleration noise acting on

our instrument within LISA Pathfinder specifications in the frequency region of interest

near 1mHz, either from actuation noise or by the free fall experiment.

One advantage of the ground testing facility is the possibility to tune the effective DC

gravitational imbalance, to allow more flexibility to explore different control strategies,

by varying flight and impulse time or control points, and different dynamic configura-

tions made possible by having a variable stiffness. This means to introduce high angular

and dynamics ranges never inspected before. The typical amplitude of a noise floor mea-

surement is around the microradiant, while the range inspected during the free flight

can be from 300µrad up to 3mrad, as also visible in figure 6.18.

Thanks to the study of the pendulum dynamics and the authority of its front-end elec-

tronics, it has been possible to choose the optimal experimental configuration to im-

plement the free fall mode in a way most similar to that in flight. To achieve similar

conditions, we softened electrostatically the pendulum in order to reduce the stiffness ap-

plying DC constant voltages on Y electrodes in order to lengthen the pendulum period,

to allow more longer flights without to be near the condition of pendulum amplitude

divergence. Pendulum softening had an impact on the total stiffness of the system, with

the addition of an electrostatic stiffness that involves a non linearity and a quadratic

dependence of the stiffness on the angular displacement. This is also confirmed by the

electrostatic model of the gravitational reference sensor.

An important part of this work was dedicated to the calibration of the experiment in or-

der to estimate pendulum dynamical parameters which are used in the dynamical model

that convert pendulum angular displacement in torque and to the measurement of the

stiffness from pendulum period in order to estimate the dependence from the angular
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displacement. We account for a non linear dependence of the stiffness from the angle

that allow to explain 1% difference in the period measured with the pendulum centered

with respect to the electrode housing and rotated by 5mrad and that has an impact on

the torque estimation during free fall as visible by comparing figure 6.10 and 6.12. Non

linear parameters, however, are not used in the torque model (eqn 6.4) used to convert

the pendulum angular motion in the free fall data analysis, because they do not agree

from one run of measurement to another and are inconsistent with stiffness estimated

from period measurements over a larger angular range.

Moreover, the free fall mode implementation has allowed to reach a deep knowledge of

pendulum dynamics and data acquisition system, bringing to light problems that oth-

erwise would not have been investigated, and that was founded to be critical for the

free fall experiment on ground. These are related to an optical readout non linearity

and to a problem in the time stamping of the data acquisition system, that must be

corrected in order to improve the torque noise estimation during free fall measurement.

Similar issues could be potentially relevant also for the implementation in flight and

could be depend on the interferometer linearity over the 5 micron length scales explored

in the orbit free-fall test. A testing campaign about inertial sensor non linearity could

be implemented in order to reduce possible in-flight issues.

Another important challenge of this experiment is the data analysis of free fall data

because of the introduction of gaps. The two developed analysis techniques have been

tested on free fall data as well as on continuous data, with and without DC actuation,

whit no gaps and impulses, as finally compared in figure 6.31 and 6.33. The main idea

of the testing campaign was to verify that the free fall can allow a torque noise measure-

ment at the background levels measured in the absence of actuation, lower then that

possible with the commanded DC actuation force. At the current state, the free-fall

mode has been tested at the level of 2fNm/
√
Hz, at the frequencies of 1mHz, a factor

2 larger than from the measured torque noise with DC actuation at the same frequency,

and corresponding to an acceleration of about 100fm/s2
√
Hz. This is factor 10 above

the level of actuation noise expected for LISA Pathfinder mission, that is 7.5 fm/s2
√
Hz

at 1mHz.

The discrepancy observed is still under investigation and will be the subject of future

developments in particular on the aspects of the aliasing from the high frequency com-

ponents. There is a noise component, at low frequency, that scales with level of high

frequency readout noise. This is due to the presence of an aliasing effect. This is related

to the presence of gaps in the data, because the same effect was found also on continu-

ous data analyzed with the same techniques (figure 6.32). This was also confirmed by

the test on simulated data, as shown by comparing different free fall simulations with

growing readout noise in figure 5.12, and need still investigation.

However, we are able to test the accuracy of the torque measurement in free-fall mode
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and to test our ability to resolve a coherent torque signal, thanks to the implementation

of a calibration tone experiment that has been applied with a charge modulation to the

data in both free-fall and continuous actuation modes. We are able to resolve a torque

signal applied at frequency 0.5mHz in the free-fall and DC actuation conditions, by

performing a fit to torque estimated with the free fall analysis techniques, within 1%, as

reported in table 6.6. We can compare this resolution with the estimate of torque noise

from the free fall and DC actuation spectrum at the same frequency of the modulation,

and analyzed with the same techniques, as in figure 6.31 and 6.33, we found comparable

resolutions.

In conclusion, we are able to implement a ground testing of a noise reduction technique

like the free fall mode, never implemented on a torsion pendulum facility, usually used to

measure small forces and not large DC torque as during the free fall mode. We produce

a big data set, 554 stretches of 25000s overlapped of 66%, around 96 s, that produce a

statistics on the free fall mode experiment but also on DC actuation measurements as

well as the pendulum noise floor, and that are ready for further analysis. Results from

the testing campaign will be of support to the implementation of the free fall mode in

flight, eventually testing the data analysis techniques developed for the mission on real

data.
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