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Abstract 

Grape (Vitis vinifera L.) is among the most cultivated plants in the world. Its origin traces back to 

the Neolithic era, when the first human communities started to domesticate wild Vitis sylvestris L. 

grapes to produce wines. Domestication modified Vitis vinifera to assume characteristics imparted from 

the humans, selecting desired traits (e.g. specific aromas), and excluding the undesired ones. This 

process made this species very different from all the other wild grape species existing around the 

world, including its progenitor, Vitis sylvestris.  

Metabolomics is a field of the sciences that comparatively studies the whole metabolite set of two 

(or more) groups of samples, to point out the chemical diversity and infer on the variability in the 

metabolic pathways between the groups. Crude metabolomics observation can be often used for 

hypotheses generation, which need to be confirmed by further experiments. In my case, starting from 

the grape metabolome project (Mattivi et al. unpublished data), I had the opportunity to put hands on a 

huge dataset built on the berries of over 100 Vitis vinifera grape varieties, tens of grape interspecific 

hybrids and few wild grape species analyzed per four years; all included in a single experiment. 

Starting from this data handling, I designed specific experiments to confirm the hypotheses generated 

from the observation of the data, to improve compound identification, to give statistical meaning to the 

differences, to localize the metabolites in the berries and extrapolate further information on the 

variability existing among the grape genus. 

The hypotheses formulated were two: 1) several glyco-conjugated volatiles can be detected, 

identified and quantified in untargeted reverses-phase liquid chromatography-mass spectrometry; 2) 

The chemical difference between Vitis vinifera and wild grape berries is wider than reported in 

literature. Furthermore, handling a huge dataset of chemical standards injected under the same 

conditions of the sample set, I also formulated a third hypothesis: 3) metabolites with similar chemical 

structures are more likely to generate similar signals in LC-MS, therefore the combined use of the 

signals can predict the more likely chemical structure of unknown markers. 

In the first study (chapter 5), the signals putatively corresponding to glycoconjugated volatiles 

have been first enclosed in a specific portion of the temporal and spectrometric space of the LC-HRMS 

chromatograms, then they have been subjected to MS/MS analysis and lastly their putative identity 

have been confirmed through peak intensity correlation between the signals measured in LC-HRMS 

and GC-MS.  
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In the second study (chapter 6), a multivariate regression model has been built between LC-

HRMS signals and the substructures composing the molecular structure of the compounds and its 

accuracy and efficacy in substructure prediction have been demonstrated. 

In the third study (chapter 7), I comparatively studied some wild grapes versus some Vitis 

vinifera varieties separating the basic components of the grape berry (skin, flesh and seeds), with the 

aim to identify all the detected metabolites that differentiate the two groups, which determine a 

difference in quality between the wild versus domesticated grapes, especially regarding wine 

production.  
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1. General Introduction 

1.1 The genus Vitis and the Vitis vinifera 

1.1.1 The Vitis genus 
The genus Vitis is part of the angiosperms of order Vitales, family Vitaceae. Vitis genus consists 

of about 60 eco-species, most of which are inter-fertile and originate from the northern hemisphere of 

the world. The origin of the Vitis genus dates back about 60 million years ago in the Paleocene epoch. 

All the species of this genus are arboreal plants anchored to the ground through the roots that collect 

nutrients for the plant growth. The shoots sprout from the woody trunk, and they have nodes from 

where new leaves and flowers can form. Generally, Vitis plants have tendrils, green elongations of the 

trunk that are able to cling to handholds, helping the plant to achieve a vertical position. Bushy Vitis 

exist, but are a minority.  

Vitis leaves are generally peculiar, with a very expanse area; their shape depends mostly upon the 

species and on the variety. In general, Vitis leaves connect to the trunk by a petiole long 5 to 10 

centimeters; from the connection between the petiole and the leaf, start five ribs that carry the nutrients 

through the five lobes of the leaf. The leaves perform C3 carbon fixation, therefore are not resistant to 

extreme drought. 

 

 

 

Image 1: example of grape leaf. In the 

image we can distinguish at the bottom the 

petiole sinus where 5 main ribs spread 

across the 5 lobes. The shape of the lobes, 

tooth and sinus are different per each 

variety and each different specie. These 

characteristics have been studied in a field 

called Ampelography to distinguish the 

different grapes.  
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Most of the Vitis species are wind-pollinated; they have hermaphrodite flowers grouped in 

inflorescences. Flowering happens when temperature falls around 15 to 20 centigrade (around May in 

the northern hemisphere and November in the Southern). When pollinated, each flower turn into grape 

berry, so the inflorescence becomes a cluster of grapes. The shape, color and number of the berries are 

strictly depending on the species and the variety, and it can be from tens to hundreds per cluster, in a 

close or open bunch. In nature, red and black grape berries are the most common ones, but white 

berries exist, especially in the domesticated grapes. The amount of seeds in the berry varies between 

one and four depending on variety, species and berry shape.  

 

 

 

The shape of the berry is commonly rounded, even though oblong grape berries exist. It is 

possible to compare the size measuring the diameter. Generally domesticated and selected grape have a 

diameter range of 10 to 25 millimeters, while wild grape range across 3 to 15 millimeters. Being 

generally a sphere, the ratio between the amounts of skin/flesh changes according to the berry size. The 

skin might be very thick, especially in wild Vitis; furthermore, the amount and size of the seeds is 

variable at the expense of the amount of flesh. The ratio of the amount of skin/flesh/seeds is a 

peculiarity of the variety and the specie studied. The variability existing between the berries is very 

Image 2: An illustrative representation 

of the grape berry tissues. The three 

main tissues (Skin, flesh and seeds) are 

consistent of many different sub-tissues 

as shown in the image. Even if not 

directly represented in the image, also 

the skin is constituted of two different 

tissues, an external layer, and an 

internal one. The distribution of the 

compounds contained in the berry is 

very different both between tissues, and 

between the sub-tissues.  
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wide within the Vitis genus; it is beyond this thesis discuss and classify the numerous possibilities that 

we might encounter in all the germplasm. As mentioned earlier, a field of botany, Ampelography, since 

the XIX century systematically classify grapes according to their leaves shape and color (mostly). For 

the reader, interested on knowing more about this field, I report four main works:   

1. Ampelography, published by Pierre Viala and Victor Vermorel in 1910 (in French), which 

is a seven books encyclopedia describing all the varieties and species known at that time, 

with hand drawings of the grapes (the hand drawings are published also in this thesis).  

2. “Origin and classification of cultivated grape” in USSR ampelography by prof. 

Alexander Mikhailovich Negrul who studied the ampelographic differences of the Vitis 

vinifera varieties in the Asian territories. Through ampelographic classification, he was 

able to classify Vitis vinifera in three main group (“proles”): A) “Proles Pontica” 

genotypes diffused in Georgia and in the Near-East. B) “Proles Occidentalis” genotypes 

spread in the western European countries (Italy, France, Spain and Germany). C) “Proles 

Orientalis” genotypes spread in central Asia, Afghanistan and Iran.  

3.  Ampelographie practique a book published by Pierre Galet in 1952, and translated in 

English in two different editions in 1979 and in 2000. The peculiarity of this book is that 

Galet invented a very sharp method to distinguish the different grape varieties based on 

multiple factors: “shape and contours of the leaves, the characteristics of growing shoots, 

shoot tips, petioles, the sex of the flowers, the shape of the grape clusters and the color, 

size and pips of the grapes themselves”.  

4. The work of Chitwood et al. (2014) tried to individuate the genetic bases of the leaf shape 

of 1200 different grape varieties.  

In the last decade, the application of molecular biology and genetic markers enhanced the grape 

genotyping and now multiple methods based on “Single Sequence Repeats” (SSR) and “Single 

Nucleotide Polymorphisms” SNPs are used to classify and characterize Vitis germplasm collected in 

various research institutes in the world. A deeper description of the classification given by this 

approach is demanded to the literature, for example Lamboy (1998), This et al. (2004), Myles et al., 

(2011), and Emanuelli et al. (2013). The latter study is based on the germplasm maintained at the 

experimental fields of the Fondazione Edmund Mach, the institution where I developed my thesis, so 

all the classification of the grape materials used in this thesis is from the work of Emanuelli et al. 

(2013). A repository of all the Vitis characterized, product of a large collaborative European project, 
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exist on the website of the “Vitis International Variety Catalogue”, www.vivc.de, where the 

classification of Emanuelli et al. (2013) has been uploaded. 

1.1.2 Vitis vinifera origin, distribution and cultivation 
Vitis vinifera is the domesticated progeny of Vitis sylvestris, a species originated probably around 

45 million years ago in the Caucasus region, that naturally widespread in the entire near east and all the 

Mediterranean area. The domestication started around 8000 years ago, when humans started farming 

cereals and arboreal plants (like grape); jars containing trace of wines were found in many ruins of 

Neolithic cities and villages. Sumerian, Egyptian, Hittites, Persian and other old civilities have been 

reported to produce and consume wine, while the oldest wine press has been located in Armenia 

(southern Caucasus). In a recent paper, Myles et al. (2011) could establish the start of the domestication 

through a genetic analysis, confirming that all the Vitis vinifera are genetically closer to the Vitis 

sylvestris originating from the Caucasus than from the ones from western Mediterranean area. 

Nevertheless, Vitis vinifera also spread across the Mediterranean, and the further influence that western 

Sylvestris might have given to the domesticated viniferas is still under consideration (Emanuelli et al. 

2013). A few Italian cultivars (Lambrusco di Sorbara, Enantio) have been classified as product of the 

domestication of autochthonous Vitis Sylvestris (Emanuelli et al. 2013). 

 

 

 

During Roman Empire, wine production and consumption spread all around the Mediterranean 

Sea and Europe, and since then, it is still among the most cultivated arboreal plant in the world. 

Image 3: The origin of Vitis 

Sylvestris is located in the southern 

area of the Caucasus region. In 

Southern Caucasus was found the 

first winery of the world. In this 

image, the first wineries are 

displayed, with an indication of the 

zones of diffusion of Vitis Sylvestris. 

It is probably in this area where 

domestication of Vitis 

Sylvestrisstarted, producing the first 

Vitis viniferas. 

http://www.vivc.de/
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Domestication and diffusion of selected grapes (varieties) has been achieved through vegetative 

propagation, which has the advantage to control the genetic diversity and assure the quality of the 

products, but although, it is also responsible for the lack of natural selection and the weakening of 

natural defenses of the grapes against their natural pathogens. In the XIX century, grapes imported 

from the new world (Americas), brought to Europe also new pathogens, which almost destroyed Vitis 

vinifera cultivation. Indeed the main cause of the European grape blight was Daktulosphaira vitifoliae, 

commonly called “Phylloxera”, an aphid that attacks the roots of the Vitis vinifera, to depose eggs, 

infecting it with a poisonous liquid that eventually kills the vines.  

 

 

 

Between 1860 to 1880, “Phylloxera” and other minor parasites caused the destruction of over two 

thirds of the European vineyards, which brought to a drop in Vitis vinifera variability. In the last 

decades of the XIX century, grape producers, to defend Vitis vinifera from the pests, needed to graft all 

the vines on American rootstocks that proved to be resistant to the pathogens. A second solution was to 

create crosses between Vitis vinifera x American Vitis that were chosen selectively to resist the pests 

and produce quality wines. The description of all the existing American species, rootstocks and the 

resistant hybrids is beyond the aim of this thesis, but some of this material has been used during the 

analysis and will be described in the next chapters of this introduction.  

During the second half of the last century, European regulation about wine limited the use of the 

hybrids for wine production, limits that became more stringent during the last decades. Many European 

Image 4: In this image, the 

description of the life cycle of the 

Phylloxera from an old French 

biology book.  As you may notice, 

the official name was different, and 

was indicating the ”devastating” 

effect of the Phylloxera. 
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countries did not allow for long times to sell wine produced from hybrid varieties. Furthermore, the 

advent in the 50s of new agricultural techniques, machines (tractors), chemical pesticides and 

herbicides apparently provided a viable solution to the issues caused by grape pathogens; as 

consequence the research and the production of hybrid grape varieties dropped quickly to leave room to 

the cultivation of highly productive and qualitative vinifera varieties.  

1.2 Current trends in grape cultivation and wine production 
Recently, grape cultivation is suffering due to the scarce resistance of the Vitis vinifera varieties. 

The general lack of variability, due to domestication and vegetative propagation, makes Vitis vinifera 

susceptible to the pathogens and to climate change, implying higher need of treatments for the grapes 

to be grown.  

In the last decade, the massive use of pesticides and herbicides correlated with the development 

of several human diseases including cancer, cardio-circulatory diseases, and neurodegenerative 

diseases (Baldi, 2003). The use of many pesticides related to diseases has been prohibited from the 

authorities, e.g. Organophosphates. Nevertheless, the scarce accountability of the farmers on the use of 

chemical products on cultivated areas, forces the authorities to monitor continuously the water and the 

fields. Furthermore, in some areas, massive use of fungicides is leading to fungicide resistance of the 

Powdery mildew (Gadoury et al. 2012), leading to an increase in pesticide use. Pollution is already a 

problem in very populated areas, and a general decrease in the use of chemicals for plant cultivation is 

recommended by Food and Agriculture Organization (FAO). In the 1970s the American Food and 

Drug Administration (FDA) developed a program called the Integrated Pest Management (IPM), that 

aims to reduce (if not eliminate) the use of pesticides in crop production. This program is approved and 

taken as a model by FAO. Among the different integrated strategies to fight pests without chemicals, 

the use of resistant varieties is encouraged to reduce naturally the need of pesticides 

(http://www.epa.gov/opp00001/factsheets/ipm.htm).  

In grape cultivation, the production of novel and resistant varieties can be achieved by 

interspecific-crossings and/or genetic modification (Myles 2013, Borneman et al. 2013). In the last two 

decades the genome of Vitis vinifera has been sequenced (Jaillon et al. 2007, Velasco et al. 2007, 

Myles et al. 2010), its genotyping is straightforward (Emanuelli et al. 2013, Zarouri et al. 2015), 

numerous metabolic pathways have been discovered and their regulation is continuously revealed 

(Boss et al. 1996, Kobayashi et al. 2004, and many others). The recent advances in Genomics, 

Transcriptomics and Proteomics tools enhanced the level of the studies and the research on novel grape 
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hybrids, allowing in the near future to quickly moving forward in the development of more resistant 

grape varieties.  

The effort in the direction of improving grape quality is a much more long-term, since this has to 

be ascertained in the final products; in case of fermented or refined grape products (e.g. wine, spirits), 

the final quality cannot be yet predicted from the starting material (i.e. there is not a complete 

understood route from good grape to good wine). In Wine production, several Milestones exist and 

they are respected by winemakers, but deeper research on the chemical grape berry composition, yeast 

nature and use, wine storage, aging and many other parameters is required. 

1.3 From the grape metabolome project to my project 

In our lab, trying to reduce the lack of knowledge about grape and its derived products, we aimed 

to fill the gap about the chemical composition of the grape berries, performing a huge experiment 

called “grape metabolome”. In this experiment, the grape berries of over 100 different genotypes have 

been analyzed for four years with seven different analytical platforms (Mattivi et al. unpublished data). 

I contributed actively in both instrumental and data analysis of this experiment; but the thesis will not 

cover the outcome of the grape metabolome project.   

In this thesis, the data obtained from the grape metabolome has been used to formulate 

hypotheses regarding characteristics that have not been described yet in literature. Multiple hypotheses 

have been generated, but I decided to focus on two of them, after considering their feasibility and the 

timing of the planned confirmative experiments. Both hypotheses are outcome of mere observation of 

the raw chromatograms of the grape samples. 

First hypothesis comes from the observation that some varieties, especially the aroma-rich ones, 

showed a higher number of peaks with uncommon retention times and rather high relative mass defect. 

My hypothesis was that these peaks were aroma-precursor compounds (glyco-conjugated volatiles) and 

I designed an innovative approach to identify them; the experiment assessing their identification and 

quantification is described in chapter 5. 

The second hypothesis comes from the observation that grape species from America show a 

rather different metabolic profile in comparison to the domesticated Vitis vinifera. The difference was 

consistently wide between Vitis vinifera and all the American species studied, while in literature the 

differences reported were multiple but not so wide. My hypothesis was that analyzing singularly the 

tissues of the berries of the diverse grape species, I could highlight sharper variations between the wild 

American grapes and the domesticated Vitis vinifera. This experiment is described in chapter 7. 
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Last, but not least, working with such wide dataset of samples and standards used in the grape 

metabolome experiment, I realized that there is a possibility to create a regression model able to 

quickly classify the signals obtained from the samples. The regression model could be used to narrow, 

during markers identification, the number of possible structures compatible with markers’ RT, MS and 

MS/MS spectra. The regression model built is described in chapter 6.  

 

1.4 Aim of the thesis 

Given the gaps in the knowledge on the Vitis germplasm from a metabolic point of view and its 

importance from the quality of the grape and its derived products, this thesis aims to evaluate the 

hypotheses generated observing the grape metabolome data, designing and performing specific 

experiments to confirm or discard such hypotheses. To achieve this goal, this thesis has been divided 

into three major parts:  

1) The development of a method for the direct identification and semi-quantification of the 

aroma compound precursors through LC-MS (chapter 5). 

2) Establishment of a computer assisted identification method to speed up and strengthen the 

putative identifications (chapter 6). 

3) Comparative analysis of the metabolomes of Vitis vinifera varieties versus some American 

Vitis species (chapter 7). 

 

1.5 Outline of the thesis 

The thesis has been organized in this way: 

Chapter 2: Description of the grape materials used in this thesis 

Chapter 3: Description of the analytical materials and methods used to collect the data 

Chapter 4: Metabolomics: the basic concepts, experimental design and data analysis 

Chapter 5: Fusion of GC/MS and LC/HRMS data to improve the identification and 

confirmation of the unknown Volatile-aroma-compound precursors’ in Grape. 

Chapter 6: Compound characteristics comparison method and its integration in the data analysis 

process 
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In the abstracts of the experimental chapters (5, 6, 7) you will find a statement regarding the 

level of my contribution in each of the experimental part. 
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7. Galet P. (1952), Précis d'ampélographie pratique. Impr. P. Déhan 
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2. Grape materials 

2.1 Vitis vinifera grapes 
Seven different Vitis vinifera varieties were chosen for this thesis. All the grapes have been 

collected at 18° ± 0.5 brix, and immediately frozen under liquid Nitrogen. The vinifera here selected 

can be divided in three groups according to their diffusion in the market. 

Group 1: Internationally recognized varieties: Merlot, which is probably the most cultivated red 

grape in the world, Sauvignon Blanc and Riesling, that are respectively the second and the third most 

cultivated white varieties in the world (after Chardonnay). 

Group 2: Local famous varieties: Gewürztraminer is a mutation of the original Traminer from 

Tramin (South Tyrol, Italy), it is very famous in the market and is becoming every day more 

international. Muscat Ottonel is a muscat variety from southern Germany, it is cultivated only in 

Northern Italy, Austria and Southern Germany. Moscato Rosa variety  is cultivated only in Dalmatia, 

Istria and North-East Italy and produces a precious wine.  

Group 3: Intraspecific hybrid: Iasma Eco 3, a variety patented last year from my institution 

(FEM).  

Here follows a brief description of the materials used in this thesis. 

2.1.1 Iasma ECO 3 (ECO) 
Iasma Eco 3 is a proprietary variety patented by FEM in 2014. It is an intraspecific hybrid 

obtained by crossing “Moscato Ottonel” x “Malvasia Bianca di Candia”. Numerous hybrids have been 

evaluated and this one together with Iasma Eco 1 and Iasma Eco 2 has been patented. Due to its 

aromatic progenitors, the main characteristic of this variety is its aroma. It is very rich in free terpenols 

and terpendiols, as reported by Ghaste et al. (2015). Nevertheless, it has been appreciated for its high 

tannic content. 

ECO is a very productive variety; it has a robust trunk and it is leafy. The leaves are medium size, 

larger than long. The berries are round of 17 x 17 millimeters, with few small seeds. The skin is thick 

and yellowish, while the flesh is very sweet. The main characteristic of this variety is that it is super 

aromatic.  
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2.1.2 Gewürztraminer/Savagnin jaune (GWT) 
Gewürztraminer is a natural mutation of the original Traminer from Tramin in South Tyrol region 

(Italy). It is famous worldwide due to its peculiar aroma and sweetness. It is used alone or blended with 

other grapes to produce numerous quality aromatic wines. This variety is rich in aromatic compounds, 

both in free and bound forms. The wine produced from this grape is very aromatic and spicy. It is 

mostly cultivated in the Italian Tyrol region, in Alsace (France), in Austria, southern Germany, 

Hungary, Slovenia and Croatia. As you may notice from the pictures, two different forms exist: the 

yellow one considered as the original Traminer, and the pink one, the  Gewürztraminer, but they are 

considered genetically almost identical. Even though, the genetic causes of the different berry colors 

are unknown in this variety, both yellow and pink Gewürztraminer are supposed to be the same variety, 

with a genetic mutation occurred in only a little part of its genome. In some Gewürztraminer clusters, 

yellow berries can be found, meaning that the color mutation can be reversed. In my experiments, I 

used the Gewürztraminer pink berries. 

GWT is a medium vigorous variety with medium trunk, medium size leaves and small berries, 

with a skin color variable from yellow to pink, and with visible lenticels. The seeds are small and 

between 2 to 4 in each berry. The flesh is not very consistent, with a sweet, slightly acidic taste, and a 

very aromatic note. 

 

Image 5: The cluster and 

the leaf of Iasma Eco 3. 

From the experimental 

fields of the Fondazione 

Edmund Mach, San 

Michele all’Adige, (TN), 

Italy. 
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2.1.3 Merlot (MER) 
The origin of Merlot is unknown;  it is believed to be from Bordeaux during the first half of the 

XIX century or earlier. The name is because the local blackbird (Merleu in Occitane) loves to eat this 

grape. Merlot has been demonstrated to be an intraspecific hybrid of “Cabernet Franc” and 

“Magdeleine Noire des Charentes” (Boursiquot et al. 2009). Nowadays, it is widespread in the world, 

and is one of the most used varieties to produce quality wines. Together with “Cabernet sauvignon”, 

“Malbec” and “Petit Verdot” is one of the varieties used to produce “Bordeaux” wines. The variety is 

mostly used in two ways: new world producers tend to follow a late ripening to increase the color and 

the tannic taste of the variety, while Bordeaux producers (classic producers) harvest the grape earlier to 

exploit its acidity and aroma. 

MER is a vigorous variety, with a hard trunk and hard petioles. The leaves are very big, larger 

than longer. The berries are in average 20 x 20 millimeters, usually spherical with a very dark skin. 

Need are medium size 5 x 5 millimeters and the flesh is sweet, slightly acidic, with few aromatic notes.   

 

Image 6: The grape cluster 

of Gewürztraminer, also 

known with the name  

Savagnin Jaune. The sketch 

on the left is from the book 

“Ampelographie” of Pierre 

Viala and Victor Vermorel 

(1910).  The picture on the 

right is from the Vitis 

international variety 

catalogue (www.vivc.de). 
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2.1.4 Moscato Rosa (MOR) 
The origins of Moscato Rosa are likely Greek. Across the centuries it spread in the entire Adriatic 

coast up to Slovenia and then arrived to Trentino and Friuli regions (Northern-East Italy), where it is, 

nowadays, mostly cultivated and vinificated. It is part of the Muscat family, and its second name is due 

to its rose aroma (Rosa = rose). Moscato Rosa variety is not very famous, but the raisin wine produced 

with this grape is one of the most appreciated from the amateurs. The main defect of this variety is that 

it is not very productive mostly due to the Millerandage, which is often found in its clusters.  

The plant is of medium dimension with a robust trunk and medium size leaves. The berries are of 

medium size (18 x 18 millimeters), with medium size seeds in a number of four per each berry. The 

skin is quite dark (bluish mostly), and the flesh is very sweet and aromatic. It is a late ripening grape 

and it is generally dried to obtain the raisins used to produce its sweet aromatic raisin wine. 

 

Image 7: The grape 

cluster of Merlot. The 

sketch on the left is from 

the book 

“Ampelographie” of 

Pierre Viala and Victor 

Vermorel (1910). The 

picture on the right is 

from the Vitis 

international variety 

catalogue (www.vivc.de). 
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2.1.5 Moscato Ottonel (MOT) 
Moscato Ottonel (MOT) is a hybrid of “Chasselas” x “Muscat de Saumur” obtained in the late 

XIX century in France. It is part of the Muscat family, and, as every Muscat, it has a strong aromatic 

note. It is cultivated in Alsace, Southern Germany, Romania and Serbia, and is used to produce sweet 

and aromatic wines. 

The plant is not very big, with a medium size trunk, many leaves of medium to small leaves of 11 

x 11 centimeters. The berries are round, medium size (15 x 15 millimeters); the seeds are small of 4 x 4 

millimeters, in a number of 2-3 in each berry. The skin is thin, with a yellow to greenish color, with 

few dark lenticels. The flesh is sweet and quite aromatic, with notes of peach and musk.  

 

 

Image 8: The grape cluster of Moscato Rosa.  

Image 9: The grape 

cluster and two leaves 

of Moscato Ottonel. 

(pictures from the 

Vitis international 

variety catalogue, 

www.vivc.de) 
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2.1.6 Riesling (RIE) 
Riesling is a variety originally from Germany, where nowadays it is mostly cultivated and 

vinificated. Its origin is unknown but it is considered one of most antique variety in the world. It is the 

20th most planted variety, and the third among the white ones, after “Chardonnay” and “Sauvignon 

Blanc” (OIV report, 2014, www.oiv.int). It is cultivated in the central Europe, from North Germany to 

Northern Italy, from Eastern France to Hungary. It is also cultivated in NC and Zeeland, Australia and 

Chile. Wines produced with this variety have a big influence from the “terroir” of the cultivated zone. 

Their peculiar characteristic is its acidity mixed with citrus, apple and peach aroma.  

RIE is a variety of moderate growth, with a robust trunk and many leaves. Its leaves are medium 

size, usually larger than longer. The berries are usually small (12 x 12 millimeters), with a yellow to 

greenish color. The skin is very thin, seeds are medium size (5 x 3.5 millimeters) in a number of 2-3 

per berry. The taste is mostly acidic, but this variety can achieve very long maturation periods (late 

maturing), that enables it to accumulate a lot of sugar and specific aromas.  

 

 

2.1.7 Sauvignon Blanc/Gros Sauvignon (SAU) 
The “Gros sauvignon” or “Sauvignon blanc” has been confused with the “Sauvignon” for 

decades; indeed settlers were thinking that the difference was due to the different areas of cultivation 

Image 10: The grape 

cluster and  leaves of 

Riesling variety. The 

sketch on the left is 

from the book 

“Ampelographie” of 

Pierre Viala and 

Victor Vermorel 

(1910). The picture on 

the right is from the 

Vitis international 

variety catalogue 

(www.vivc.de). 
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and not in a varietal difference. It is a very famous variety planted in Italy and France, USA, Chile, 

South Africa, Australia and New Zeeland. The grapes bud late, but ripe early; they are usually quite 

acidic with peculiar aromas due to methoxy-pyrazines and volatile thiols. The oak aging is common for 

the wine produced from this grape: it helps in rounding the aromas and reduces the acidity. 

The leaves of the SAU are quite big, as well the berries that reach the size of 20x20 millimeters. 

The seeds are rather big with a size of 6x6 millimeters. The skin is very thin, the color is yellow to 

greenish and it is sweet and a bit aromatic. Wines produced with this variety are not very alcoholic (11 

to 13°), with an acidic taste and a slightly aromatic note. 

 

 

  

Image 11: The grape 

cluster and  leaves of 

Sauvignon Blanc 

variety also known 

with the name of Gros 

Sauvignon. The sketch 

on the left is from the 

book “Ampelographie” 

of Pierre Viala and 

Victor Vermorel 

(1910). The picture on 

the right is from the 

Vitis international 

variety catalogue 

(www.vivc.de). 
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2.2 The American Vitis germplasm: general considerations 
American Vitis germplasm encloses many different eco-species, mostly original from Southern 

and Eastern United States and Mexico, where they still grow as wild plants. Few species growing in 

Canada exist, like Vitis aestivalis and Vitis riparia that are now widespread in the entire eastern coast, 

from Ontario (Canada) down to Florida (USA), indicating their resistance to very different climates.  

The main agricultural importance of the American Vitis is due to their resistance to many pests; 

for example, as stated above, the main solution to the XIX century “Phylloxera” blight was the use of 

resistant American rootstocks to graft susceptible Vitis vinifera varieties. Indeed American Vitis are 

resistant to many pests that nowadays are infesting the vinifera vineyards, especially Powdery mildew, 

etc. 

American Vitis germplasm is very vast; the natural barriers between the different regions of the 

northern America speeded up the speciation process, while since the XVI century they have been used 

for cultivation and hybridization by American settlers (Vitis vinifera was not able to grow in northern 

America). Many wild species exist, and many varieties and hybrid varieties has been established during 

the last four centuries. An impulse to hybrid establishment has been the spread of diseases, especially 

in the XIX century in France, where breeders established numerous interspecific hybrids, commonly 

called French-American hybrids. If the first hybrids established had poor quality in comparison to Vitis 

vinifera varieties, nowadays many valuable crosses are cultivated, especially in the USA 

(http://www.hort.cornell.edu/reisch/grapegenetics/cultivars.html). Some of the hybrids have no vinifera 

parentage, but still are able to produce quality grapes. 

Here, I will describe only the material used in my experiment, taking into account that it is only a 

very little part of all the variability existing within the American Vitis germplasm. Our institute is rich 

in wild Vitis species, nevertheless the choice of the American grape materials was limited to the ones 

analyzed in the grape metabolome project (Mattivi et al. unpublished data). I chose only the material 

that was able to produce grape berries in a sufficient amount with the desired characteristics (18° brix). 

The classification and the pictures displayed in the next chapters are from the book series 

“Ampelographie” published by Pierre Viala and Victor Vermorel (1910).    



30 
 

2.2.1 Vitis arizonica Texas 
Vitis arizonica has been classified by Engelmann in 1868; in nature, it is original to the whole 

Arizona, some mountain regions of Northern Mexico, Nevada and some western Texas. It is very 

robust species, adaptable to very big temperature shift. It has been found growing in places up to 8000 

feet altitude (2700 meters). Vitis arizonica Texas is a phenotype coming from western Texas. 

Generally, this species is very resistant to Chlorosis, but it is not very resistant to Phylloxera and is very 

rich in nodes. For these reasons, it cannot be used as rootstock for Vitis vinifera plantations (Ravaz, 

1902) 

 The plant has strong roots and a strong thin ligneous trunk, while the leaves are small, with small 

spherical berries of diameter and longitude of 7 x 7 millimeters. Seeds have a diameter and longitude of 

3.5 x 4.5 millimeters. The skin is dark and thick, flesh is very soft with a prominent acidic taste.  

 

 

 

  

Image 12: On the left, the grape cluster and leaves of the Vitis arizonica. The sketch is from the book 

“Ampelographie” of Pierre Viala and Victor Vermorel (1910). On the right, the areal of diffusion of the Vitis arizonica 

that goes from Nevada to Texas. (data from the National resources conservation services, http://plants.usda.gov/core) 
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2.2.2 Vitis californica 
Vitis californica has been classified by Bentham in 1844. It is original from California and 

Oregon states. It is mostly found close to the rivers of the slopes of the mountain range to the pacific 

coast. It has vigorous roots, with a wide trunk and many long secondary ramifications. It is not very 

resistant to the Phylloxera and it suffers the Powdery mildew more than Vitis vinifera. For these 

reasons, it was of scarce interest for breeders, and it has not often used to constituted hybrids with Vitis 

vinifera (Ravaz, 1902)  

The leaves are quite big (22 x 22 centimeters) and produces small berries with both diameter and 

length of 7 millimeters, and seeds of 3 x 6 millimeters of diameter and length. The skin is very dark, 

flesh is consistent with a sweet taste. 

 

 

 

  

Image 13: On the left, the grape cluster and leaves of the Vitis californica. The sketch is from the book 

“Ampelographie” of Pierre Viala and Victor Vermorel (1910). On the right, the areal of diffusion of the Vitis 

californica that goes from Oregon to California. (data from the National resources conservation services, 

http://plants.usda.gov/core) 
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2.2.3 Vitis cinerea 
Vitis cinerea has been first described by Engelmann in 1867, even if he classified it as sub-

species of Vitis aestivalis. Was only Millardet that in 1878 proposed Vitis cinerea as a different species. 

The main confusion about this species is that it is widespread in the central states of United States, 

from Georgia to Texas, from Missouri to northern Mexico, and it is difficult to find wild forms, while 

hybrid with other Vitis species are very often found in nature especially in Missouri valley, where it 

cohabits with Vitis cordifolia. Vitis cinerea is very resistant to Phylloxera, and to the fungal pathogens. 

It is susceptible to chlorosis but it grows very well in Silicon-rich fields (Ravaz, 1902)  

It has a very strong trunk, of about 40 centimeters in diameter, and very long branches. It can 

have leaves very different plant by plant (from 7 to 20 centimeters in both diameter and length). The 

berries are small of spherical form (7 x 7 millimeters) with seeds long 5 millimeters and large 2.5, often 

unique in the berry. The skin is lucent and dark, the flesh is greenish with an acidic taste. 

 

 

 

  

Image 14: On the left, the grape cluster and  leaves of the Vitis cinerea. The sketch is from the book “Ampelographie” 

of Pierre Viala and Victor Vermorel (1910). On the right, the areal of diffusion of the Vitis cinerea that goes from 

central to eastern United States. (data from the National resources conservation services, http://plants.usda.gov/core) 
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2.2.4 Vitis berlandieri x Vitis riparia Teleki selection “Kober 5 BB” (K5BB)  
K5BB is a hybrid variety obtained around 1910 in Austria by crossing Vitis berlandieri with Vitis 

riparia. It is commonly used as rootstock because it showed to have a good resistance to Phylloxera 

and to active lime in the soil. It does not suffer temperature changes and lack of calcium and potassium 

in the soil. It might have inconstant production. Both of its parents are original from USA: Vitis 

berlandieri was firstly found in the northern area of Texas, while Vitis riparia is from Missouri and 

Mississippi. Hybrids of this two species can be found in nature, being inter-fertile and widespread in 

the same regions (Ravaz, 1902).  

As selected rootstock, K5BB has a very robust trunk, with strong roots. Leaves are medium size 

(15 x 15 centimeters), with the berries that are small (7 x 7 millimeters) and seeds of 4 x 5 millimeters 

of diameter and length. Its skin is very thick and the flesh is dark red colored with an acidic taste.  

 

 

 

  

Image 15: The leaves of the K5BB. The picture is 

from the UC Davis grape varietal collection 

database: 

http://iv.ucdavis.edu/Viticultural_Information/ 
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2.3 Hybrid varieties 
As stated earlier, the major part of the Vitis genus is composed of inter-fertile species; crosses 

between the different species happen in nature, and are very common in Northern America, where 

multiple wild species co-exist. Many breeders took advantage of this characteristic to create hybrid 

varieties crossing different species. From a commercial point of view, hybrids of wild Vitis have poor 

or none economic value and will not be considered in this work. In this thesis, for “Hybrid varieties” I 

refer to all the varieties obtained by crossing Vitis vinifera with another Vitis species.  

The hybrids obtained from selected Vitis vinifera parents give a higher value and many 

interesting hybrids have been obtained during the last century. On the other hand, the non-vinifera 

heritage often gives the desired robustness and resistance to the hybrid progeny. Sounds obvious that a 

commercial variety is not obtained after only one-step hybridization, and that further steps of 

backcrossing or crossing with other hybrids/species are needed to obtain a variety that has the desired 

characteristics. Nevertheless, the description of the whole hybrids set is out of the aim of this thesis that 

wants only to focus on the common hybrid selection procedure, to point out the limits of the hybrids 

and to describe the materials used in this work. 

The first hybrids have been established by American settlers, but it was only in the second half of 

the XIX century, during the “Phylloxera” grape blight, that hybridization became a common practice. 

In Europe, susceptible Vitis vinifera were crossed with American Vitis to obtain hybrids resistant to 

Phylloxera but also resistant to lime. Indeed American Vitis were not accustoming to lime-rich soil that 

in Europe are very common. Hundreds of hybrids have been produced since 1870, and up to 1950, they 

were commonly planted, grown and used for vinification (Pee-laby, 1929), especially in France (indeed 

these hybrids are commonly called French-American hybrids).  

Due to the introduction of new agricultural practices in the late 40s and 50s, like new mechanical 

instrument, new pesticides and herbicides, the interest in resistant hybrids decreased. Furthermore, 

around 1940 Europe started to prohibit the commercialization of wines produced from hybrid grapes. 

Only Vitis vinifera grapes have been allowed to produce wine for decades. 

Despite of the prohibition, breeders mostly from Germany, Switzerland, Austria, Hungary and 

Czech Republic continued to create hybrids starting from the old French-American hybrids, with the 

aim to confer resistance, good yields and a quality comparable to Vitis vinifera varieties (Bouquet et al. 

2000). Nowadays, hundreds of hybrids have been established, most of which are resistant to the main 

grape pests. A specific mention is given to the PIWI grapes (Pilzwiderstandsfähige = fungus resistant), 
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that as the German word states are grapes resistant to fungus infections. Many of these hybrid varieties 

exist and are now commercialized both as wine and table grapes. 

As stated in the previous chapter, the cultivation of susceptible Vitis vinifera varieties is no longer 

sustainable, due to the high production and environmental cost of their plantation. Many fruit plant 

breeders are creating hybrid resistant varieties that are cultivated and sold in fruit market. Therefore, to 

reduce costs and improve the environmental sustainability, hybrids cultivation will be a common 

practice in the next years. From this point of view, the study of the germplasm resources is basic to 

understand the possibilities that hybrid varieties give to breeders and to shorten the hybridization 

process, selecting the adequate material and using marker assisted selection to select the promising 

progenies in hybridization programs.  

In the next paragraphs, I will describe the three hybrid varieties chosen in this experiment. The 

first two are interspecific crossing with 50% vinifera heritage and 50% American heritage. The third 

choice is Nero, one of the first PIWI grape established back in the 1965. Their inclusion in the 

experiment was not to compare their characteristics to the Vitis vinifera varieties (otherwise, more 

recent hybrids would have been chosen). The idea was to see if these first stage hybrids (F1) tend to 

resemble more one of the two groups from a metabolic point of view. This was intended to see which 

desirable and undesirable metabolic characteristics tend to be transmitted to the progeny. On the other 

hand, Nero was chosen to see if a patented variety already used for vinification and selected without the 

use of any molecular/metabolic marker possess such desirable or undesirable characteristics. 

2.3.1 Chasselas x Vitis berlandieri 41B (Millardet & De Grasset) 
41B is a hybrid variety obtained by crossing the variety Vitis vinifera Chasselas with the Vitis 

berlandieri clones imported in France in the 1880 by Millardet. It can be considered one of the first 

French-American hybrids. The idea of these crosses was to obtain hybrid varieties resistant to 

“Phylloxera” and to the Chlorosis. 41B was obtained in 1882 and it started to be used as rootstock in 

1894 to rebuild the vine plantations in the “champagne de Cognac”. It is very resistant to Phylloxera, 

chlorosis, grows very well in cold regions (like Northern France), and has a strong trunk. Like 

berlandieri grape, it delays the fructification of the varieties grafted on. Nevertheless, it is still 

considered a good rootstock, especially in cold areas. 

It has a robust trunk, superficial roots, leaves wider than longer, the berries are rather small (10 x 

10 millimeters) with seeds similar to the ones of the Vitis berlandieri of size 3.5 x 4.5 millimeters. The 
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skin is hard, flesh is pale green and the taste is sweet. Due to its Chasselas progenitor it is also slightly 

aromatic. 

 

 

2.3.2 Isabella (Vitis vinifera x Vitis Labrusca) 
The origin of Isabella grape is unknown. It was believed to be a Vitis labrusca variety for many 

decades, but its different characteristics like the extreme fertility, production, susceptibility to powdery 

mildew and black root indicate a Vitis vinifera heritage in its genome. Its name is derived from Miss 

Isabelle Gibbs that first disclosed such seeds to the settlers. DNA analysis through molecular markers 

demonstrated it to be a hybrid between Vitis vinifera and Vitis labrusca (Emanuelli et al. 2013), 

probably obtained by chance while American cultivators were trying to cultivate some Vitis vinifera 

varieties in the United States. It is probably from South Carolina, but due to its extreme fertility, it 

spread quickly across the USA. It is the first “American” variety imported in Europe, and it is believed 

that through some of these imports “Phylloxera” arrived to Europe.  

It is quite resistant to Phylloxera and grows very well in warm regions and sub-tropical areas 

(southern Italy, northern Africa, Corea, and China). It was exported to Europe, Africa and Asia, and 

nowadays it is cultivated in many countries in the world. Its foxy taste is a heritage of the Vitis 

labrusca, and it is not considered a variety for quality wines. On the other hand, its strawberry aroma is 

the main characteristic known to the consumers and made it famous worldwide. For this reason it is 

Image 16: On the left the berries and the 

leaves of 41B. The sketch is from the book 

“Ampelographie” of Pierre Viala and 

Victor Vermorel (1910). On the bottom, the 

leaf of 41B, picture from The Vitis 

internation Variety Catalogue, 

www.vivc.de. 
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also called “Strawberry Grape”, “Framboisier” (French), and “Uva Fragola” (Italian). It has big leaves 

with only three lobes; the berries are globose of with a diameter of 20 millimeters and length of 25. In 

each berry, there are from one to four seeds that are rather small. The flesh is consistent and has the 

typical labrusca texture, with a sweet taste and strawberry aroma due to the high content of furaneol in 

its flesh (Zabetakis et al. 1999). 

 

 

2.3.3 Nero 
Nero is a rather recent hybrid varieties obtained after numerous backcrossing with Vitis vinifera 

varieties. It has in its pedigree both Vitis berlandieri and Vitis rupestris but most of its progenitors are 

vinifera grapes. Despite of this vinifera heritage, it still has many characteristics of its wild progenitors, 

like di-glycosidic bond anthocyanins, and resistance to many pathogens. It has been obtained by two 

Hungarian breeders “Jozsef Csizmazia” and “Laszlo Bereznai” back in 1965, inside an experimental 

breeding program based on the use of old French American hybrids (Csizmazia & Bereznai 1968). It 

was registered as wine grape only in 1993.  

Nero is a resistant variety, it is a Hungarian PIWI grape (fungus resistant) and does not need the 

use of pesticides for its cultivation. It has wide leaves and produces spherical berries of 25 millimeters 

diameter. The seeds are rather big with a diameter of 7 x 7 millimeters. The skin is dark red and the 

flesh is greenish, but can have a red external layer if damaged by cold. The taste is sweet, and rich in 

tannins. It is used to produce sweet red sparkling wines. 

 

 

Image 17: On the left the berries and the leaves of Isabella. The sketch is 

from the book “Ampelographie” of Pierre Viala and Victor Vermorel (1910). 

On the right, the leaf and the berries of Isabella, pictures from The Vitis 

internation Variety Catalogue, www.vivc.de. 
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Image 18: The shooting buds of the Nero leaves. The picture is from the Vitis 

international variety Catalogue www.vivc.de.  

http://www.vivc.de/
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3. Liquid chromatography coupled to Mass Spectrometry: types, strategies 

and role in the separation and identification of the metabolites 

 

Many different types of compounds co-exist in a mixture and they need to be separated to permit 

their identifications. The separation step is necessary for the single compound identification and the 

type of separation technique is chosen based on the nature of the studied compound/s. Compounds with 

a very different chemical nature coexist in a mixture, and their separation, at the state of the art, cannot 

be achieved using just one separation technique. This means that, only few classes of compounds can 

be separated by a unique separation technique, and to cover the whole classes set, many different 

approaches are required.  

In untargeted studies, mass spectrometry (MS) and nuclear magnetic resonance (NMR) are the 

state of the art methodologies to identify and quantify large number of compounds (Dettmer et al. 

2007). Their use can be coupled to chromatography, which is a separation method delaying in time the 

analysis of different compounds, allowing the MS/NMR to measure large number of compounds. Few 

chromatographic methods are available with NMR due to long analysis time required by the instrument 

for each compound. Furthermore, the NMR is not very sensitive, so its use in untargeted studies is 

limited. NMR has not been used in this thesis and will not be described here. In my thesis, I used Mass 

spectrometry as benchmark, and this chapter will describe the separation methodologies coupled with 

mass spectrometry and the basic principles behind a mass spectrometer. 

3.1 Separation techniques 
Mainly three separation techniques are coupled with mass spectrometry: Gas Chromatography 

(GC), Liquid Chromatography (LC) and Capillary Electrophoresis (CE). Moreover, some researchers 

prefer to have a separation of the metabolites before the analysis (off-line), extracting the interesting 

compounds with dedicated solvents and using then the mass spectrometer with direct infusion (DI) of 

the extracted mixture. A detailed description of all the four techniques is too vast to be treated in this 

text, and their description and comparison is delegated to the literature. A description of the basic 

principles of liquid chromatography will follow in the next chapter. A wider description of all the 

liquid chromatography techniques available nowadays can be found at 

http://www.americanlaboratory.com/163469-Review-of-HPLC-2014-Advances-in-HPLC-and-So-

Much-More/.  

http://www.americanlaboratory.com/163469-Review-of-HPLC-2014-Advances-in-HPLC-and-So-Much-More/
http://www.americanlaboratory.com/163469-Review-of-HPLC-2014-Advances-in-HPLC-and-So-Much-More/
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3.1.1 Liquid Chromatography 
Liquid chromatography (LC) is a separation technique where a liquid solvent containing the 

sample mixture passes through an absorbent column that attracts or repulse the mixture compounds 

according to their chemical nature, determining a temporal shift in their release from the column (the 

temporal shift is called “retention time”, RT). If high pressure is used to push the compounds through 

the chromatographic column, the method is called HPLC (high-pressure liquid chromatography) or 

UHPLC (ultra-high-pressure liquid chromatography). The adequate pressure is created by pumps that 

pump the solvents (eluents) with a continuous flow in the instrumental tubing; an injector inserts the 

sample mixture in the flow, which carries the mixture to the stationary phase (column) that interacts 

with the eluents and sample mixture and determines the RT of the compounds. The column can be of 

different lengths, while the absorbent material inside can be of different materials and different particle 

size. The absorbent material determines the type of interaction with the compounds, while the particle 

size and the column size determine the number of those interactions. Stronger interactions mean longer 

retention times, so compounds that have a higher affinity with the absorbent material should have 

longer retention times. A higher amount of column/analytes interactions increases the separation of the 

compounds with similar (but not identical) affinity to absorbent material. Therefore, longer column and 

smaller particle size determine a better-separated and more resolved chromatogram. 

 

 

 

 Numerous types of different columns exist, and depending on the aim of the analysis, the more 

appropriate column must be chosen. In this thesis, I only focused on the study of polar to mid-polar 

metabolites of the grapes; as previous researchers in our lab established a chromatographic method to 

Image 1: A schematic 

representation of an HPLC 

system. A solvent (eluent) is 

pumped by a pump through the 

system. The sample is injected 

in the solvent flow by an injector 

connected to an auto-sampler. 

The flow is pushed through the 

Column, where the analytes are 

separated. At the end, a detector 

register the specific signal given 

by the analyte. All the signals 

are recorded by the computer as 

chromatographic peaks. 

Source: www.waters.com “how 

does liquid chromatography 

work?” 

http://www.waters.com/
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separate many mid-polar metabolites with a reverse phase column, I used such method. The column 

and the chromatographic method used will be described in section 3.1.1.2. In the next section, the 

extraction method necessary before injection will be described and discussed. 

3.1.1.1 The extraction method 
Many extraction methods exist to extract polar and mid-polar metabolites. Usually water in a 

mixture with an organic solvent like methanol, ethanol, acetonitrile or ethyl acetate is used in 

metabolomics, because they can be injected directly in the LC-MS instrument (Vuckovic, 2012). In this 

work, the extraction of grape polar and mid-polar metabolites was performed following the slightly 

modified protocol established by Theodoridis et al. (2012) . Grape berries were pulverized (1 gram per 

sample) under liquid nitrogen; 1.2 ml of methanol, 0.8 ml of chloroform, 20 μl of internal standards 

(indole 3-propionic acid 80 mM, 4-stilbenol 40 mM and gentisic acid 20 mM) and 2 μl of formic acid 

were added to the grape powder. The extract was vortexed for 30 seconds, sonicated for 10 minutes and 

agitated in an orbital shaker for 15 minutes. Then it was centrifuged for 5 minutes at 5000 rpm and 5° 

centigrade. The upper water/methanolic phases was collected, filtered through a Millipore filter 

(WHATMAN 0.22 um) and injected into LC-MS instrument. 

 

Image 2: A scheme of the extraction 

method used in my thesis. The grape has 

been ground under liquid nitrogen, 

extracted with Methanol/Water/Chloroform 

2:1:2, 0.1% Formic acid. After vortex, 

sonication, and centrifugation the phases 

separated in two layers. The upper layer 

(Methanol/Water) was collected, filtered 

and injected in the UPLC-TOF-MS. 

 The method can also be used forlipids 

analysis, but has not been performed in my 

work. (Theodoridis et al. 2012) 
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3.1.1.2 The UHPLC instrument and the chromatographic method 
A reversed phase chromatographic column consists of a non-polar stationary phase, usually 

consisting of straight chains of alkyl groups often bound to silica particles. The mobile phases used in 

this kind of columns are often polar (like water) and mid-polar (like methanol or acetonitrile); 

switching the gredient from to mid-polar solvents increase the solubility of mid-polar analytes trapped 

in the column, eluting it in different times (retention times).  

The chromatographic separation of the analytes during my work on this thesis was performed 

using an ACQUITY UPLC system (WATERS, Manchester, UK). The instrument schematic is 

displayed in image 3. From the bottom to the top we can observe: A) pumps; B) the auto sampler; C) 

column heater/cooler; D) UV-vis PDA detector (Photo-Diode-Array). At the bottom of the instrument 

there are two pumps, each one dedicated to each eluent (eluent A and B); the pumping system is 

dedicated to the creation of the eluents flow. The second shelf is dedicated to the auto sampler, in 

which the samples are stored at 5° C. The samples are automatically injected in the eluent flow. The 

column heater/cooler is an instrument dedicate to the setting of the appropriate temperature for the 

column The PDA detector is a non-destructive detector that measures the UV-Vis absorbance of the 

analytes.   

Arapitsas et al. (2014) developed the chromatographic method used in the analyses described in 

chapters 5 and 7. The method uses a HSS-T3 1.8 um x 2.1 x 15 cm column coupled with a dedicated 

pre-column. This is a silica bond column; it has an interface slightly polar that elongates the retention 

times of polar metabolites. This column has been used because it has proven to have a good retentivity 

for many different metabolites and is very stable after thousands of injections (>4000 injections). The 

mobile phases used in this work were Eluent A = acidified water with 0.1%  formic acid and Eluent B 

= acidified methanol, with 0.1% of formic acid. The gradient used in the analysis was: from 0 to 1.5 

minutes 100% eluent A, 10% eluent B up to 3 minutes, then an gradient up to 40% of B in 18 minutes, 

then up to 100% of B in 21 minutes, hold at 100% of B up to 25 minutes and then back to 100% A for a 

total run of 28 minutes. The column was kept at 40 °C during the analysis.  
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Image 3: Two pictures of the same instrument. In the picture on the left, the UPLC pumps are visible. The LC instrument is 

composed of three parts: the pumps, the auto-sampler and the column heater/cooler. The forth component is the  UV-vis 

detector (Photo-Diode-Array, PDA).  

3.1.1.3 The retention time: a tool to separate metabolites based on their 

physico-chemical properties. 
The retention time of a compound is determined by the nature, strength and number of 

interactions that such compound is able to have with the mobile phase (eluents) and the stationary 

phase (column). The developed chromatographic method needs to assure the ruggedness, robustness of 

the analysis and the repeatability injection after injection. Whether these parameters are assured, the RT 

is stable and repeatable. This is a basic parameter to identify the compounds and make comparisons 

between samples. 

During the development of a new method, we need to take in consideration that only few eluents 

can be coupled with ESI ion source: Water, Methanol, Ethanol, Isopropanol, Acetonitrile (I will talk 
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about ESI in the next section). Furthermore, numerous stationary phases are available on the market, 

but only few of them can be used in metabolomics analysis. In facts, the stationary phase need to assure 

the broadest versatility possible to analyze multiple different species of metabolites in a single run.  

The stationary phases used in metabolomics need to be universal for the kind of metabolites under 

analysis, and stable during hundreds of injections. In the metabolomics studies of polar compounds, 

like sugars, organic acids and amines, usually HILIC columns are used (Hydrophilic Interaction Liquid 

Chromatography). Indeed, Hilic technology is based on hydrophilic interactions between the analytes 

and the water layer in the stationary phase, increasing the separation of the analytes according to the 

water-affinity. Amide columns (Gika et al. 2012) and Zic Hilic columns (Zwitterionic, having both 

positive and negative interaction sites) are the main Hilic columns used in metabolomics. In mid-polar 

metabolites studies (like aromatic compounds), reversed phase columns are preferred, e.g. classical 

C18/silica bond columns, which assure the best separation for this kind of metabolites, with gredient 

moving from water to organic phases (acetonitrile or methanol.. In lipidomics studies, C18 or C30 

columns are used coupled with mid-polar solvents like acetonitrile and isopropanol.  

To understand how the separation of the different analytes is achieved and what the specific 

influence of the mobile phase and the stationary phase are, some parameters are here introduced. The 

main parameter determining the effect of the eluents on the analytes is their logP. LogP is the 

coefficient of partition of a compound in Octanol/Water mixture. It is measured as the logarithm of the 

amount of solute dissolved in Octanol divided by the amount of solute dissolved in water 

 

 

 

Across the pH range, most of the metabolites tend to assume ionized or un-ionized forms, 

according to their pKa. To consider this fact,  the parameter logD is introduced (coefficient of 

distribution), that takes in account also the ionized form of the solvent/solutes. Indeed pH has a big 

effect on the solubility of the compounds. Therefore, the log D is measured as 
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This equation can also be applied to the relationship between the stationary phase and the mobile 

phase. To give an example, if a non-polar column is used as stationary phase and polar solvents are 

used as mobile phases, the partition of the analytes between the two phases can be described as the 

logP = solute in the stationary phase / solute in the mobile phase. The ratio between the partition is 

obviously dependent on the ionization of the solute (logD), so changing the pH and/or the polarity of 

the mobile phase, quickly changes the ratio, eluting the analytes.  

The efficiency of a chromatographic method in the separation of the analytes and resolution of 

the peaks is described by the Van Deemter equation. In this equation, many different factors 

contributing to the retention time of the analytes and the peak broadening are taken in account (Van 

Deemter et al. 1956), although is not described here, because is beyond the aim of this thesis. The only 

parameter used in this work has been the logD. In facts, in the chromatographic method used, only the 

polarity of the mobile phase was changing, passing from Water 0.1% Formic acid to Methanol 0.1% 

Formic acid; with good approximation (±3 minutes) we can assume that the main parameter 

determining the retention time is the logD, as demonstrated by Creek et al. (2011), Boswell et al. 

(2011) and Silvester (2013). The logD is a parameter that can be calculate from the structure of 

compound, and some commercial software are present on the Internet and aloud the calculation of the 

theoretical logD (“ACD/Lab® 12.0 ChemSketch” and “ChemAxon® Marvinview 5.3.9”). 
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3.2  Mass spectrometry 
Mass spectrometry (MS) is an analytical chemistry technique that measures the mass to charge 

ratio (m/z) of the ions generated by the application of strong electric fields to compounds mixture. 

Ionization is the starting step of every mass spectrometric analysis, and can be achieved in many 

different ways. Every compound during ionization creates a specific ions cluster (spectrum); the type 

and intensities of the ions produced by a compound depends on the ionization technique and the 

instrument used. This means that a compound ionized under the same analytical conditions creates the 

same spectrum. This fact implies that comparing the spectra of the chemical standards to the spectra of 

the samples, whether two spectra matches at the same RT, the sample contains such analyte.  

A mass spectrometer is an instrument consisting of three different parts: 1) ion source, 2) mass 

analyzer, 3) detector. Many different instruments exist and are used currently by mass spectrometers. A 

brief description of the most common instruments used in metabolomics will follow, with a deeper 

description for the ones used in this thesis. 

Basic parameters used in mass spectrometry will be introduced here:  

A) Sensitivity: detection of as many ions as possible. Higher sensitivity means more ions 

detected by the instrument 

B) Mass accuracy: Accuracy in the determination of the m/z ratio of a compound.  

C) Mass resolution: is the ability to distinguish two ions with slight difference in mass to charge 

ratio. It is calculated as                          where R = resolution, M  = the m/z of the 

second ion, and ∆M is the difference in m/z of the two ions.  

D) Molecular ion: “an ion that results from the loss of an electron by an organic molecule”, 

according to “The free dictionary”, http://encyclopedia2.thefreedictionary.com. 

 



48 
 

 

3.2.1 Ion sources 
Multiple ion sources exist in mass spectrometry, but only few of them are widely used and are 

available for metabolomics analysis. Here a list of the main sources used in metabolomics studies: 

electron ionization (EI), chemical Ionization (CI), electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI). 

 

 

 

Image 3:  A Schematic representation of a Mass spectrometer. 

The inlet introduces the sample in the source, where the 

analytes are ionized. Electric fields drive the ions through the 

mass analyzer where they are separated according to their m/z 

ratio. At the end of the path, a detector, detects the passage of 

ions. All the information are collected by a data system 

(computer), that sorts the data and gives a graphical 

representation of the signals collected by the mass 

spectrometer. Every part of the mass spectrometer is under 

vacuum, but the pressure in the distinct compartments is 

different. 

Image 3: In the image, the 

different kind of 

metabolites that is 

possible to analyze with 

the different techniques is 

displayed. The X axis is a 

theoretical scale of the 

polarity of the compounds, 

while in the Y axis the 

molecular weight (in 

Dalton) is displayed. The 

area of the compounds 

that is possible to study by 

NMR is also displayed; 

indeed it can be 

considered as 

complementary 

technology to MS.  
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3.2.1.1 Electron ionization 
Electron ionization (EI) is an ionization technique used together with gas chromatography. It 

applies a strong electron beam to gaseous molecules that add or subtract electron from the gas phase 

according to the  formula  

 

The energy applied during the ionization is very high, 70 KeV; this maximizes the ionization of 

the gas phase molecules, but at the same time the high energy breaks some bonds in the molecular 

structures, creating numerous ionized fragments. The main advantage of this ionization technique is 

that the created spectrum is very similar between different instruments, and it is peculiar for every 

compound. A huge database of EI spectra exists (NIST mass spectral library), where is possible to 

compare the personal results obtained in the laboratories to many millions of molecules analyzed using 

EI ionization. The disadvantage of such technique is that the fragmentation is so strong that there is no 

signal for the molecular ion. Furthermore, strong fragmentation decreases the instrumental sensitivity. 

To overcome this problem, different sources are available for Gas chromatography, like CI (chemical 

ionization that will be treated next), APGC (atmospheric pressure gas chromatography) or GC-APCI 

(gas chromatography atmospheric pressure chemical ionization). The two latter did not become yet of 

standard use in metabolomics and will not be described in this thesis. 

3.2.1.2 Chemical ionization 
In chemical ionization (CI), the ionization is obtained using a gas (usually methane, isobutane or 

ammonia) that is in a larger amount in the source than the analytes. In the source, the gas is bombarded 

with electrons that charge the gas phase. The gas phase reacts with the analytes creating four different 

possible ions, according to the formulas 

 

 

 

 

The advantage of this technique is that the fragmentation is soft, the pseudo-molecular ion is 

intact, while a simpler spectrum is produced. Chemical ionization is considered a soft ionization 

technique compared to EI, but its use is enclosed to few specific studies. 
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3.2.1.3 Electrospray ionization 
Electrospray ionization (ESI) is the main ionization technique used in my thesis and will be 

described in its basic principles here (for a deeper description, ESI development has been reviewed by 

Ho et al. 2003). ESI is a soft ionization technique that was invented in late 80s and become the standard 

in liquid chromatography analysis. ESI is able to ionize liquid mixtures through the application of an 

electric field coupled with massive heating. It is the preferred choice for liquid chromatography 

although it is able to work with capillary electrophoresis and direct infusion (Dunn et al. 2013).  

In ESI, the liquid phase containing the analytes is driven through a heated stainless steel capillary 

(at temperature between 100° to 150° centigrade) where an electric field from 1 to 5 kV is applied. 

Even if the process is not perfectly understood, it is assumed that the electric field passes electric 

charges to the liquid into the capillary. Whenever the liquid exits from the capillary, it encounters a 

chamber with higher temperature (between 250° to 500° centigrade); the pressure inside the capillary, 

due to the heat, creates a liquid spray. When each singular spray droplet enters the hotter chamber, it 

tends to evaporate faster, donating its charge to the remaining liquid molecules. As none of the analytes 

dissolved is evaporating faster than the liquid, analytes will receive the charge form the liquid droplets 

(Dole et al. 1968). At this point, the charged analytes are driven by electric fields to the mass analyzer. 

The addition of acids or salts to the mobile phase increases the conductivity, decreases the droplets 

size, therefore facilitate the evaporation (desolvation). Evaporation is a key factor; solvents that 

evaporate easily tend to give a better ionization. Conversely, water is not an optimal solvent due to its 

relatively high boiling point, and its direct injection limits ionization. 

Many version of the electrospray ionization exist, for example nanospray, or cold-electrospray. 

Nevertheless, the original version is the most versatile and it is the preferred ionization source in 

metabolomics LC-MS analysis.  
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The ESI source is a soft-ionization device and it creates little fragmentation during ionization. It 

can be used in both positive and negative mode. In positive, it forms mostly pseudo-molecular ions 

[M+H]
+
, but it can form also adducts with atoms present in the solvents, like [M+Na]

+
 and [M+K]

+
. In 

negative, it gives a pseudo-molecular ion of [M-H]
+
, and adducts with chlorine [M+Cl]

-
, or with the 

ionized forms of the acids present in the solvents, like Formic Acid = [M+FA]
-
 or Acetic Acid = 

[M+AA]
-
. Adducts with the solvents or with combined ions are also possible. Even fragments can 

ionize binding to adducts. Multiply charged ions are frequent in ESI; this phenomenon can be used to 

study entire proteins or their peptides. 

Due to the multiple variables implicated, the ionization process varies between different sources 

and between the different solvents. Thus, it is not so reproducible, which means, for example, that 

every instrument from a different producer creates different spectrum for the same compound. This has 

been the main limit to the formation of extensive mass spectra libraries like the one existing for 

Electron ionization, even if some smaller libraries are now available, like Massbank 

(www.massbank.jp) and Metlin (http://metlin.scripps.edu).  

3.2.1.4 Atmospheric pressure chemical ionization (APCI) 
APCI is a complementary technique to ESI. Even if ESI is very versatile, less polar compounds 

do not ionize in ESI, while APCI  is a better solution for non-polar metabolites. 

APCI is similar to CI; usually it gives mono-ionized pseudo-molecular ions ([M+H]
+
, [M-H]

+
). 

Ionization occurs in two different steps: in the first step, the solvent coming from the LC evaporates 

very quickly due to a counter-current Nitrogen gas flow at maximum 600° centigrade. The vapor 

Image 3: A schematic representation 

of an ESI source. The capillary (yellow 

cilinder in the picture), gives a charge 

to the liquid solvent containing the 

analytes. The hot temperature and the 

pressure inside the capillary form a 

spray, where every droplet quickly 

evaporates, transferring its charge to 

the analytes. The ions enter the cone 

attracted by an electric field (cone 

voltage).  

http://www.massbank.jp/
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droplets are then ionized by a corona pin discharger or a β-particles emitter. APCI ionizes the 

molecules in the gas phase, while in ESI the charge is given in the liquid phase, before spraying. This 

also allows using non-polar solvents, while in ESI it is not possible. It produces fewer fragments than 

ESI, and the fast desorption helps to prevent decomposition of the analytes in the source. Due to its 

structural similarity to an ESI source, the two sources are interchangeable (reviewed in Covey et al. 

2008). 

In this work, I tentatively used the APCI source to look at the ionization pattern of volatile 

compounds injected in liquid chromatography and to see if this technique can be applied to real 

samples. Even if the results were not encouraging, they will be discussed in chapter 5. 
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3.2.2 Mass analyzers 
The mass analyzer is the instrumental part where the research has focused more during the last 30 

years. This part of the instrument is dedicated to separation of the ions produced by the source, 

according to their mass-to-charge ratio (m/z). The theory behind the mass analyzers argues that 

applying the same force (usually electric or magnetic field) to multiple ions with the same charge, the 

acceleration of each singular ion depends only on their mass. This is stated in Newton’s second law,  

 

Where F = force, m = mass, and a = acceleration. 

To be more precise, the exact formula describing this process would be the Lorentz force law, 

which is the basic law of the motion of charged particles in vacuum.  

 

F = force, Q = ion charge, E = electric field, v = ion velocity, B = magnetic field 

Transforming F in ma and moving Q to the left side we obtain the classic equation of motion of the 

charged particles in vacuum:  

 

If we use the elementary charge number z in the equation (z = Q/e), we obtain the measure of the mass 

to elementary charge ratio m/z.  

The m/z can be measured in several ways: for example, as the spatial shift while an ion passes in 

a curved electromagnetic field (sector instrument); as the ability to pass a radio-frequency filter 

(quadrupole and ion trap instruments); as the time to pass through a drift tube (time of flight 

instruments); as the Fourier transform of the frequency of ions turning around electric or magnetic traps 

(Orbitrap or Ion Cyclotron Resonance instruments). In the next section, the mass analyzers applied in 

metabolomics studies will be described, focusing on the ones used in this thesis. 

3.2.2.1 Quadrupole mass analyzers 
Quadrupole mass analyzer consists of four parallel metal rods. Radio frequency (RF) voltage is 

applied to the rods, while a second current voltage is superimposed to the RF. Selecting the proper RF, 

only specific ions with a given m/z will be able to pass through the quadrupole, resonating inside the 

quadrupole rods. The ones with a different m/z than the selected one, will be deflected out of the path. 

Switching the RF voltage, it is possible to select ions with different m/z. 
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With quadrupole mass analyzer it is possible to select ions with a single m/z, or to scan in a given 

range continuously varying the RF voltage. The instrument works as a mass filter and is very fast. In 

the quadrupole, the selection of masses is dependent mostly on the rods position and on the applied RF 

voltage, so it needs little calibration. When a single m/z is selected the sensitivity for such ion is the 

maximum possible. On the other hand, the mass resolution of the instrument is low, because in a given 

RF multiple ion species may resonate and pass the quadrupole filter.  

Due to the versatility of the quadrupole instrument it can be used in series like in triple 

quadrupoles (triple quad). In addition, combinations with different mass analyzers are possible, like 

quadrupole-time of flight (Q-TOF), or together with ion trap instruments. The triple quad and the Q-

TOF have been used in my experiments, therefore they will be discussed in the MS/MS section of this 

chapter (section 3.3). 

3.2.2.2 Time of flight mass analyzer 
A Time of Flight mass analyzer (TOF) is an instrument that measures the time that an ion needs 

to fly from a starting point to the detector (Guilhaus, 1995). In the last generation of TOF mass 

analyzers, the ions produced from the source are forced by an electric field to fly from the starting point 

to the detector inside the flight tube. They enter the instrument in perpendicular way with respect to the 

flight tube, and a pulser pushes them inside. At around half of the flight tube, the ions are deflected at 

180° (or more) by the reflectron and towards the detector. As the electric force applied is the same, the 

acceleration of the particles through the flight tube depends only on the mass to charge ratio. For 

example, if the source creates only single-charged-ions, the acceleration will depend only on the mass 

(this is the case for MALDI sources, while ESI tends to create also multiply charged ions). 

 

Image 4: An example of quadrupole. The 

ions coming from the ion source are driven 

through the quadrupole, where the are 

subject to an RF voltage. The ones able to 

resonate inside the quadrupole, go through 

the whole path, reaching the detector. The 

others are deflected against the quadrupole 

bars. Source: www.chromedia.org “Mass 

analyzers”. 

http://www.chromedia.org/
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The ions produced in ESI source have a momentum and initial speed different from each other. 

While entering the TOF tube, they need to be focused in a small spatial position (1-2 millimeters). In 

order to achieve it, they collide with a residual inert gas in the RF guide. When the ions are all in the 

same spatial position, they are pushed through the TOF tube. The TOF tube is in perpendicular position 

in comparison to the initial direction of the ions. Starting the flight path with the same initial speed, the 

resolution is sharply increased in comparison to ions entering with different speeds.  

The reflectron also increases sharply the resolution. It uses an electrostatic field to deflect the 

ions at 180°; the lighter ions switch their direction faster than the heavier ions. This increases the 

separation between ions of different m/z. The presence of a single reflectron is called V-mode, while 

also multiple reflectrons can be used to increase the difference between the ions. The latter setting is 

called W-mode. 

 

Image 5: A comparison between a TOF drift 

tube, an electromagnetic sector and a 

Quadrupole. In the TOF, ion separation is 

achieved by the different acceleration of the 

ions under the same electric field. In the 

electromagnetic sector, ion separation is 

achieved through a curved sector that gives a 

short path to lighter ions and a longer to 

heavier ones. In the quadrupole, a radio 

frequency determine the ions able to resonate 

inside the quadrupole path and the ones 

forced to walk out the path.. 

The electromagnetic sector mass analyzer is 

not described in the thesis, because is not 

used in metabolomics experiments. 

Nevertheless, also TOF instruments take 

advantage of the separation that a curved 

electromagnetic field can give to the ions. A 

part of the TOF, called Reflectron, deflects 

the ion of about 180° during their route 

inside the flight tube and improves ion 

separation in the TOF instrument. Better ion 

separation = Better resolution. Source: Glish 

and Wachet, (2003). 
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First TOF patents appeared in the 50s, but the first prototypes were not so sensitive, and their 

dynamic range (ability of detect diverse orders of magnitude of ion current) was very low. TOF 

instruments had a very low diffusion up to the 90s, when the invention of new sources (ESI and 

MALDI) and new detectors, allowed the use of the TOF. Modern TOF instruments have a dynamic 

range of five orders of magnitude, maximal resolution of 50 thousands and sensitivity slightly lower 

than triple quad instruments. The application of new sources and new technologies, permitted the use 

of TOF instruments also with Gas chromatography and Capillary Electrophoresis. Nevertheless, their 

main application is coupled to Liquid Chromatography.  

3.2.2.3 Fourier transform mass analyzers 
Fourier transform mass analyzers are instruments that use the mathematical Fourier transform to 

convert the signal of the machine to m/z spectrum. Two instruments use this tool: FT-Orbitrap and FT-

ICR-MS. Orbitrap is a trap mass analyzer able to trap the ions around its central fuse in elliptical 

trajectories in harmonic mote. It has been designed by Makarov in 2000 (Makarov et al. 2000) and its 

patent has been acquired by Thermo-Fisher scientific, that is the only producer and vendor in the world. 

The m/z measurement is based on the detection of the trajectories of the ions through the image current 

Image 6: A schematic 

representation of a V-mode 

TOF mass analyzer. The 

ions enter perpendicularly 

to the flight tube. They are 

focused in a specific 

position and then pushed 

through the tube. At half of 

the path, the reflectron, 

deflect the ions of about 

180° and they reach the 

detector (an electron 

multiplier in this case) , 

where the signal is 

transmitted to the computer. 

The TOF is in extreme 

vacuum, because interfering 

molecules decrease the 

mass resolution.  
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induced to an outer electrode, which works as an electrical amplifier. To improve the resolution, the 

signal must be detected many times, so the Orbitrap cannot work in continuous mode. To inject the 

ions in the Orbitrap, a C-trap interface is used to trap and inject ion-packets in the Orbitrap. Then, the 

Fourier transform converts the signals to an m/z spectrum. The nominal max resolution of the newest 

version of the Orbitrap reaches now 280.000. 

 

 

 

FT-ICR-MS has a concept similar to the Orbitrap, whereas it is rather complex. In FT-ICR, the 

ions are introduced in the instrument applying a quadrupolar electric field that drives the ions towards 

the magnet. The perpendicular constant magnetic field makes them rotate in harmonic trajectories 

around the magnet, all together. If the magnetic field is constant, the ions rotate in constant cyclotron 

frequencies. These frequencies are measured by metal plates and the signal is back converted to m/z 

through Fourier transform, according to the equation:  

 

 

 

This equation is just an approximation to let the reader understand the relationship between the 

magnetic field and the m/z (Glish and Wachet, 2003). Increasing the magnetic field, the Cyclotron 

frequency of the ions increases as well. In higher frequencies, even ions with very similar m/z separate, 

increasing mass resolution and mass accuracy. This is the reason why, with very strong magnets, the 

ICR can achieve sub-ppm mass error and millions in mass resolution. 

 

Image 7: Scheme of an Orbitrap mass analyzer. The ions are firstly 

trapped in the C-trap, and then are sent in packets to the Orbitrap. While 

entring, the voltage is decreased, up to let the ions reach the orbit, then 

increased to make them spin around the fuse. Turning around the fuse, 

the current transmitted by every singular ion is registered and amplified 

by the detector. The Fourier transform algorithm converts the signal to 

m/z. Source: Thermo Fisher Scientific. 
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3.2.3 Detectors 
The detector is the last instrument present in a Mass spectrometer and converts the signal of the 

ions to an electric signal readable by the computer station. Many different detectors exist, but they can 

be classified in two classes: the ones hit by the ions that multiply the signal, and the ones that measure 

the ion frequency (FT-MS instruments). In the first class there are Faraday’s cups, Ions to photon 

detectors and electron multipliers (and its derivatives).  

A “Faraday’s cup” works as following: the ion hits the metal cup and the charge (electron) is 

passed to the metal where it is transmitted producing electricity. The amount of electricity produced is 

proportional to the amount of ions hitting the metal plate. The system is not very sensitive, as single 

ions produce electricity of one single charge (electron). However, the proportion between the signal 

and the amount of charges is very high, thus Faraday’s cups are used to quantify the signals. 

In the “ion to photo detectors” the ions hit a scintillator compound (a compound able to emit 

photons), and the compound emits photons that are then detected by a light detector. Usually the 

scintillator compound is interfaced with a microchannel plate; the ions hit the microchannel plate that 

releases electrons targeting the scintillator compound. The Ion-to-photo-detectors have good 

sensitivities, especially if interfaced with microchannel plates although they may result noisy. 

The electron multipliers take advantage of the fact that an ion or electron hitting a secondary 

emissive material can liberate from one to three electrons. In the electron multipliers, the emitted 

electrons are further accelerated by an electric field to emit more electrons. At the end, from one single 

charge, thousands of electrons are emitted. Microchannel plate detectors are simply multiple Electron 

multipliers that are spatially divided. They can also provide spatial resolution, for a better measurement 

of the m/z.  



59 
 

  

 

For a wider description of all the detectors developed for mass spectrometric analysis, I suggest the 

review of Neetu et al. (2012).  

Image 8: an electron multiplier. The ions 

enter in the electron multiplier and hit the 

surface. The surface releases from 1 to 3 

electrons that re-hit the surface that again 

releases from 1 to 3 electrons. At the end 

a big amount of electrons are released 

from the instrument. The current 

produced is directly correlated to the 

amount of ions entering in the detector. 

Source: 

http://www.webapps.cee.vt.edu/ewr/envir

onmental/teach/smprimer/icpms/icpms.ht

m 
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3.3 Tandem mass spectrometry (MS/MS analysis) 
Tandem mass spectrometry consists of two or more mass analyzers, both performing 

measurements during the same analysis to improve identification and/or quantification of the analytes. 

This combination of mass analyzers is often called “Hybrid MS”. The tandem MS/MS analysis is a 

generic name of a process in which an ion formed in an ion source is mass-selected in the first stage of 

analysis, reacted, and then the charged products from the reaction are analyzed in the second stage of 

analysis (Glish et al. 2008). 

Many combinations of different mass analyzers are possible, and in general, the smaller and 

simpler mass analyzers (quadrupoles and ion traps) can easily be coupled with any of the other mass 

analyzers; the same holds true with slightly different versions of themselves. As the subject is very 

vast, I will describe only the “hybrid” mass spectrometers used in this work, referring to the literature 

for the other existing and future hybrid possibilities.  

3.3.1 Triple quadrupole (QqQ) 
A triple quad (QqQ in this case), is an instrument where three different quadrupoles are in series 

one after the other. In the common scheme, the first (Q1) and the third (Q3) quadrupoles work as mass 

filters, like a singular quadrupole would do, scanning or selecting singular ions according to the RF 

voltage applied to their rods. The second quadrupole, instead, is set to act as a collision cell, where a 

gas (usually Helium, Argon or Nitrogen) is present, and an electric field is applied. The electric field 

excites the gas, increasing exponentially the probability of accidents between the gas molecules and the 

analytes ions. Because of the “crashes”, the analytes structure collapses, forming fragments that are 

successively measured by the third quadrupole. This kind of fragmentation is called CID (collision-

induced dissociation).  

Summarizing, the first quadrupole either selects or scans the ions coming from the source, the 

second quadrupole generates fragments from the ions filtered by the first quadrupole, and the third 

quadrupole selects or scans the fragments obtained. Different combinations of the selection or scanning 

in the first and third quadrupole allow performing different experiments.  
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In my thesis, I only used the LC-ESI-QqQ-MS instrument with the MRM method (multiple 

reactions monitoring) to precisely quantify some metabolites (described in chapter 7). In the MRM 

method, the first quadrupole selects only the ion of interest, discarding all the other ones; the second 

quadrupole is set to perform the best fragmentation for such ion, to obtain few relevant fragments. The 

third quadrupole is set to select only the expected fragments, discarding the remaining ions. In one 

MRM experiment, usually at least three ions are selected: one in the first quadrupole and two in the 

third quadrupole. The one higher in intensity between the two detected in the Q3 is called quantifier, 

because it is directly correlated with the one detected in the Q1 and it is used to quantify the signal. The 

other one is called the “qualifier” because its detection serves only as further evidence that the selected 

analyte is the right one and is producing the expected fragments.  

When analyzing the data, the computer shows a peak, if and only if, all the selected ions are 

generated in the mass spectrometer. The peak area is directly correlated with the concentration of the 

analytes in the sample. The quantification is generally done creating a calibration curve with multiple 

injections under the same conditions of the chemical compound in analysis with different dilutions. If 

the signal falls in the linear range of the instrument, a linear calibration curve is generated and it is used 

to quantify the signal peak obtained from the sample analysis at the same retention time, giving the 

absolute concentration of the metabolite in the sample. 

3.3.2 Quadrupole-Time of Flight-Mass spectrometer (Q-TOF-MS) 
A Q-TOF is an hybrid mass spectrometer that takes advantage of the selectivity of the quadrupole 

and the scanning properties of the TOF, in order to improve the mass resolution (in MS mode) and to 

fragment selected ions to be scanned in the TOF mass analyzer (MS/MS mode). This setting has also a 

collision cell that often is a quadrupole, either a Hexapole or an Octapole. Despite the different number 

of rods, their function does not differ from a quadrupole, they are selected only because at the same RF, 

an Octapole can transport a wider mass range of ions in comparison to a quadrupole.  

Image 9: A schematic representation 

of the triple quad. On the right is 

displayed a typical MS/MS spectra 

in Q3 scan mode.  Source: 

http://www.particlesciences.com/ne

ws/technical-briefs/2009/mass-

spectrometry-bioanalysis.html 
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In the MS/MS mode, the quadrupole is used as a mass filter to select ions of a specific m/z. In the 

collision cell, the selected ions are fragmented through CID and analyzed in the TOF sector. The use of 

the TOF allows having high-resolution MS spectra and high-resolution MS/MS spectra; high-resolution 

spectra help in compound identification. On the other hand, in MS/MS mode, during the fragmentation, 

the impacts decrease differentially the ions’ speeds, generating an ion beam delayed in time and space. 

The focus of the fragment ions in the TOF pusher is lower than in the MS mode, so the resolution and 

the mass accuracy will be lower. Sometimes, because the quadrupole selects the ions with a mass range 

of about one Dalton, it is possible that parent ions with a slightly different m/z might be selected 

together for the same MS/MS analysis, and in the collision cells fragments from both parent ions are 

produced. This effect confuses the MS/MS spectrum obtained in the Q-TOF. The interpretation of such 

spectrum may be not possible. 

In my work, I used a “Synapt G1 HDMS” (WATERS, Manchester UK, Image 10), that is an 

Electrospray Ionization-Quadrupole-Ion Mobility Shift-Time of Flight-Mass Spectrometer (ESI-Q-

IMS-TOF-MS). In SYNAPT the ions produced in the source are guided through a Z-shaped path, to 

eliminate the un-ionized molecules that entered the path by chance. The ions are then driven to the 

quadrupole, where they are scanned (in MS mode) or selected (in MS/MS mode). After the quadrupole, 

the ions are driven to the TOF, where they are pushed in the flight tube in the orthogonal direction. 

There are two operative modes for the TOF: the V mode, where ions are deflected by the Reflectron 

directly to the detector, and the W mode, where the ions are deflected three times from two different 

Reflectrons before reaching the detector. While the V mode has higher sensitivity and a resolution of 

about 10000, the W mode has a lower sensitivity and a resolution of about 17500 with an increased 

mass accuracy.  In MS analysis, I used the W mode, to have a clear measurement of the ion masses, 

while in the MS/MS analysis I used the V mode, to detect the major number of fragments possible. In 

MS/MS mode, the ions were fragmented in the “transfer”, using a CID fragmentation similar to the one 

described in the section 3.3.1. 
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As shown in image 10, this instrument has also a third mass analyzer, the Ion Mobility Shift 

(IMS), which is a very promising technology, orthogonal to RT and to m/z measurement. In basic 

principles, IMS separates the ions according to their structural shape, forcing them to pass through a 

tridimensional grid formed through an inert gas that delays in time ions with different shapes. In this 

work I am not going to describe further the IMS because I did not use it, due to the fact that the version 

installed on this machine is the first launched on the market by WATERS, and it was not suitable for 

Metabolomics analysis (Franceschi et al. 2011). Its limit was that it could not cover all the whole mass 

range of 50 to 1500 Dalton used in my experiments (50 to 1500 Dalton is the common mass range for 

metabolomics analysis). A wider description of the IMS is demanded to literature (Kanu et al. 2008). 

 

Image 10: The Synapt HDMS 

instrument used in my thesis. 

In the Synapt, the ions 

produced from the source are 

guided to the quadrupole 

where they are scanned. After 

passing the triwave (IMS), the 

ions are guided to the TOF, 

where the flight tube separates 

the ions and the time to flight 

from the entrance to the 

detector is registered. In 

MS/MS mode, the ions are 

selected in the quadrupole and 

fragmented in the transfer, 

before entering the TOF. 

Source: www.waters.com 
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.  

Image 11: The UPLC-SYNAPT 

(UHPLC-ESI-Q-IMS-TOF-MS) 

instrument used in my experiments. The 

UPLC is directly connected to the ESI 

source of the mass spectrometer. Both 

UV-vis spectra and MS spectra were 

acquired during the analysis. UV-vis was 

scarcely used in my experiments, and data 

is not shown. As you can notice from the 

picture, also a second pump is connected 

to the ESI source: indeed internal 

calibrant Leucine-enkephaline 10ug/L is 

pumped in continuous flow of 0.1 ml/min 

in the instrument. The resulting m/z 

556.2780 (in positive) and 554.2615 (in 

negative) were used to perform on-line 

calibration of the acquired spectra. The 

use of the internal calibrant has be proven 

to be a very effective method to maintain 

the calibration of the TOF stable for days. 

TOF calibration is very sensitive, 

especially to temperature, because 

temperature shift, affects the kinetic 

energy of the ions in the flight tube, 

increasing or decreasing their flight time. 

Leucine-enkephaline calibration can cope 

to temperature change up to ± 4° 

centigrade.  
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4. Metabolomics: the basic concept, experimental design and data analysis 

 

The definition of Metabolomics is not an easy task and this word is mostly unknown to the 

public. According to the Oxford dictionary, Metabolomics is “The scientific study of the set of 

metabolites present within an organism, cell, or tissue”. This means that Metabolomics aims to 

individuate what metabolites and how much of them are present in an organism, cell and tissue, under 

specific conditions. In a typical metabolomics experiment two groups are compared: the first group 

(group A) as a control, and the second group (group B) as a treatment. The metabolomics analysis aims 

to find the metabolites that have different concentration between the group A and the group B. Often 

metabolomics results are coupled with previous knowledge (Physiology, Genetics or Morphology) 

and/or other omics sciences (Transcriptomics, Proteomics and Genomics) to give a physiological 

understanding of the differences found between A and B. 

 

 

 

In MS-based metabolomics, two different kinds of analysis are possible, targeted and untargeted, 

and the choice of one or the other determines a different experimental approach, in both sample 

preparation and data analysis (reviewed by Patti et al. 2013). In targeted MS metabolomics analysis, the 

compounds that are going to be measured in the samples are previously chosen (targeted)based on their 

availability on the market, their detectability on the LC-MS instrument and their importance in the 

Image 1: The relationship between the four main “OMIC” 

sciences. The whole set of the genes (genome), transcribe to 

the whole set of the transcripts (Transcriptome) that are 

translated to the whole set of the proteins (Proteome), which 

determine the presence and amount of the whole set of 

metabolites (Metabolome). Source: 

http://schaechter.asmblog.org/schaechter/2009/05/of-terms-in-

biology-metabolomics-and-metabonomics.html 
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experimental design. To detect the chosen compounds, their injection as pure standards under the same 

instrumental conditions is performed before and during the analysis, to determine their detectability and 

to create a calibration curve that will be used to give a precise quantitation of each metabolite. The 

chosen compounds are often representative of few specific metabolic pathways, already known to be 

present in the biological sample under analysis. During the analysis, only the targeted compounds are 

going to be detected. The preferred instruments to perform this kind of analysis are “triple quads”, due 

to their high sensitivity, robustness, and precision in compound quantification. This analysis allows 

describing to which extent there is a difference in concentration of the given metabolites between the 

group A and the group B. It allows seeking whether any of the given metabolites shows a clear 

different pattern between the two sample sets. When enough known compounds are present in the 

method, it is possible to describe the metabolic pathways regulation and to infer about the physiological 

status of the two sample sets.  

In untargeted MS metabolomics analysis, there is no previous choice of the compounds measured 

in the experiment. The goal of this experiment is to collect all the signals (ions) obtained from the 

samples, comparing two sample sets and finding which signals are significantly different between the 

two sets. Each ion generated from a metabolite is part of a spectrum of ions obtained from the same 

metabolite. The data are acquired by instruments able to collect spectra for a wide mass range(Q-TOF, 

Orbitraps). The diverse ions obtained in different sample chromatograms are first aligned sample by 

sample, grouped in pseudo-molecular spectra and then analyzed statistically to find the differences 

between sample sets. The resulting biomarkers need to be validated and then identified. The last step is 

the inference on the biological meaning of the results. 

The two analyses have very different approach to the data: in the targeted analysis, the 

measurement of the metabolites is limited - only tens to few hundreds can be measured in the same 

analysis (generally no more than 150). Their detection and quantification is compared to the relative 

pure chemical standard previously injected under the same analytical conditions, therefore a 

concentration curve is built to provide a precise (absolute) quantification of the metabolites in the 

sample set. The data analysis is then straightforward, because statistical inference is achievable through 

common univariate methods; the experimental design is not complex, and it can be easily adequate to 

the needs of the experiment. In the untargeted analysis, the number of the measured metabolites is 

unknown, the number of signals collected is very high, and their quantification is relative. The data 

analysis in this case requires many steps, and it needs to be carefully handled. The success of this kind 

of experiment is determined by the experimental design that needs to take in account the possible 
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variability present in the samples. Because of the huge amount of data obtained in a single experiment, 

the data analysis is the main bottleneck of this approach. 

In my thesis I used untargeted MS metabolomics analysis. The approach to this methodology will 

be extensively described in this chapter. To perform an experiment involving untargeted MS 

Metabolomics analysis multiple steps are required to achieve interpretable data, listed here:  

1) Adequate experimental design 

2) Untargeted analysis: instrumental requirements. 

3) Data analysis: pre-processing 

4) Statistical analysis 

5) Compound identification: spectral matching and putative identification. 

6) Data mining 

7) Data sharing  

The seven step listed here will be developed in this chapter of my thesis, both from the theoretical 

point of view and describing the application that I have been developing in my experiments. 

4.1 Adequate experimental design 
As mentioned earlier, the experimental design is a very important step in untargeted MS analysis. 

Hundreds of metabolites can be measured in an untargeted analysis, and each metabolite can generate 

up to tens of ions in the MS-source, for a total amount of more than ten thousands of signals. Due to the 

high amount of variables (signals) detected in a single experiment, multiple factors can influence the 

outcome and create troubles in the statistical analysis. A first step to improve the quality of the data is 

to select the adequate number of samples (observations) per group, to allow a clear statistical result. 

The ratio variables/observations is extremely unfavorable to the statistical tests, and the risk of finding 

false positives and false negatives arises with the increase of the variables/observations ratio. 

Moreover, the average accuracy of the untargeted data is usually lower in respect to well-designed 

targeted methods, since the calibration of unknown compounds cannot be finely tuned metabolite by 

metabolite. The classical approach (3 vs 3 observations) is not the right choice in untargeted MS 

experiments. In theory, higher the number of observations, more reliable the result of the statistical 

tests. 

On the other hand, the samples need to be analyzed all together in short periods, to avoid that 

technical/instrumental variability and sample degradation may influence the outcome of the analysis 

(systematic variability). The factors influencing the results can be multiple: the operator (different 
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operators may prepare the samples in slightly different ways), the stability of the instrument (stability 

of the stationary phase and stability of the MS instrument, especially the cleanliness of the source) and 

the stability of the samples (degradation processes might happen during the analysis). Other minor 

factors can also influence the outcome: slightly different preparation in the mobile phase, different 

atmospheric conditions (in particular fluctuation of the temperature is challenging) during analysis and 

others. Nevertheless, this may happen in every experiment and precautions to prevent these problems 

are part of the good laboratory practices, so they will not be discussed here.  

The goal is to A) prevent all possible biases and B) provide indicators that are able to signal when 

something goes wrong. A) Preventing all the biases due to poor experimental design or sample 

preparation and analysis is a key step to achieve good results. First, the adequate number of samples 

need to be selected. This number ought to be maximum possible according to these parameters: 

1. Availability of the materials: Many times, the availability of the materials is limited, 

especially for the group of samples under treatment. The golden rule is to analyze all the 

samples under treatment and to keep a comparable number of samples for the controls. 

Indeed, selecting a very different number of samples for the two groups, increases the 

false positives in the group over-represented, and gives a higher number of false negatives 

in the group under-represented. 

2. Preparation times: samples prepared in different days might show an inter-day variability, 

due to the fact that the conditions of extraction are mutated (different temperatures, 

humidity, operators). The stability of the extraction method needs to be proved and 

validated, injecting multiple times the same sample and assuring that the analytical 

outcome of such sample is the same, day after day. 

3. Analysis time: the stability of the instruments is a key parameter. Usually the analytical 

method needs to be validated and the stability time needs to be assured, to understand 

when the instrument may need cleaning and resetting of the initial conditions. 

4. Consider the expected difference between the two groups in order to estimate the power 

of the experiment: if the control and the treatment are very different, few samples are 

enough to extrapolate the right biomarkers, while if the difference is very small, hundreds 

of samples might be necessary to avoid false negatives.    

 

As example, I will describe the experimental design of my own experiment (chapter 7):  
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1. 14 different grape varieties  have been comparatively studied. I collected three different 

clusters per each grape variety for a total of 42 clusters. From each grape berry, I 

manually separated three main tissues (skin, pulp and seeds). Out of the 42 samples, 21 

were representative of my “control” group (vinifera grapes), 12 were representative of the 

“treatment” group (American grape species) and nine were hybrid grapes that have been 

kept out of the statistical analysis. The limiting factor was, in my case, the number of 

ripening American grapes. Only four of them reached the correct ripening stage, so the 

selection of the number of samples was due to this parameter. 

2. The diverse berry tissues have been separated before extraction. As the comparison was 

intra-tissues, I have extracted every tissue from all the samples the same day. The 

extraction method has been previously validated (Theodoridis et al. 2012). 

3. The samples from all the tissues have been randomized and injected in the instrument in 

random order, both in positive and negative ionization mode. The LC-MS method has 

been previously validated (Arapitsas et al. 2013). 

4. The number of samples depended on the number of ripening American grapes. This might 

have been a big limit in my analysis. Nevertheless, the expected difference between the 

samples was high, because I was comparing different species. On the other hand, 

comparing different species might be a limit, because their ripening stage could be very 

distinct between the samples. The maturation of the grape is the main parameter to 

consider when measuring the concentration of different metabolites: Sugars level 

increases during veraison (Coombe & McCarthy, 2000), while acids level decreases; 

tannins decrease in amount and became softer at taste, while aroma precursors are 

accumulated during ripening (Robinson and Davies, 2000, Conde et al. 2007). Therefore, 

the goal is to collect the grapes when they have the most similar maturation stage 

possible.  

In grape physiology, there are some methods to establish grape maturity. In my 

experiment, I used the measurement of the soluble solids (brix°) in the grape juice, 

because it is the easiest, quickest and it has been used for decades. This measurement is 

performed with a refractometer and this value is directly correlated with the sugar content 

of the grape; often it is coupled with the measurement of the acidity to evaluate the 

organic acids level. I collected the grapes when they reached a level of 18° brix.  
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A second method would have been to collect the grapes when the seeds turn brown; the 

change of the color is an indicator of maturity and edibility of the grapes. This method is 

destructive of the samples, and since I had very few grape berries for some of the 

American Vitis, it was discarded. A third option would have been to collect the grapes at 

the same “days after full blooming” (DAFB) or “days after pollination” (DAP). As my 

samples were located in fields and I needed numerous different berries, from different 

species (this is also a very limiting factor, because different species have very different 

maturation process), the measurement of these parameters was practically infeasible and 

this method was discarded. 

B) The need of indicators able to signal whenever something goes wrong is necessary in every 

experiment. In metabolomics multiple types of indicators can be used to eye-catch eventual drifts.  

1. Blanks: as every laboratory practice, a negative control is required to detect the presence 

of false signals. 

2. Standard mixes (STDmix): injection of a mixture of known standards every 10 to 20 

sample analyses may indicate if there is any drift in RT, MS calibration or peak 

intensities. Pure standards are very different from sample matrix, therefore STDmix 

samples are not considered a good indicator for the quality of the analysis. 

3. Internal standards: samples can be spiked with standards not commonly present in the 

matrix (radiolabeled standards or non-common metabolites). They can be very useful to 

evaluate extraction efficiency, although their use as normalizer for data analysis is not 

suggested, because theoretically we would need to have a standard for each chemical 

class, across the whole RT. Too many internal standards would be necessary. 

4. Quality control samples (QCs): QCs are a mixture of the extracted samples under 

analysis. They are injected every 6 to 10 samples, and their stability can be evaluated both 

with EIC of single metabolites and with Multivariate data analysis, as described in section 

4.4. Their use is recommended by Gika et al. (2012) and Dunn et al. (2012). 

4.2 Untargeted analysis: instrumental requirements. 
Untargeted LC-MS metabolomics analysis requires the contemporaneous measurement of 

hundreds of metabolites. To aloud the identification and quantification of the metabolites, the 

instrument should be able to obtain separated signals for each metabolite. Technically, this is translated 
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in chromatographic and mass spectrometric peak resolution. Resolution is the ability of an instrument 

to separate two close-by peaks. Higher the ability, higher the instrumental resolution.  

In chromatography, the chromatographic resolution is the ability of having two separated peaks 

closely eluting from the column. It can be calculated by the formula: 

Rs = (TR2 – TR1) / ((0.5 * (w1 + w2)) (1) 

Where the R is the resolution, T is the time of the two peaks and w is the width at half peak 

(Snyder et al. 2010). Higher the resolution, higher the capability of the instrument to obtain separated 

peaks. In the last years, many improvements have been done in the separation techniques, especially 

with the introduction of UHPLC (ultra-high-pressure-liquid-chromatography) which uses smaller 

particle size to improve peak resolution and with the commercialization of numerous columns that 

might be used at high temperatures and wide pH range. On the other hand, the perfect separation 

technology does not still exist; indeed it is not possible to perfectly separate metabolites from multiple 

chemical classes, so Metabolomics LC-MS method are built taking in account the highest number of 

known metabolites and the best separation possible.  

 

 

 

In LC-MS based metabolomics, instruments with very high MS resolution are needed to 

overcome the limitation given by the limited chromatographic separation. Indeed, if the metabolites are 

not separated chromatographically, their separation can be achieved from a mass spectrometric point of 

view. The theory behind mass resolution has been described previously in chapter 3.  The importance 

of the mass resolution is somehow the same of the chromatographic resolution. The goal is to 

Image 2: The difference in H 

(height of the theoretical 

plate) between different 

column particle size. A lower 

H value indicates an higher 

number of theoretical plates 

per length of the column. 

Column with the same length 

will have an higher number of 

theoretical plates when their 

particle size is smaller.  
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distinguish signals coming from diverse metabolites and to be able to identify each of them. Only high-

resolution instruments can be successfully used in untargeted analysis, TOF, Orbitrap and FT-ICR. 

TOF instruments can have a resolution of 5.000 up to 60.000. Modern Orbitrap instruments can achieve 

up to 280.000 of resolution, while FT-ICR can reach up to 10.000.000 (Knolhoff et al. 2014).  

When the resolution is higher than 100.000, the isotopes with the same nominal mass can 

separate according to their elemental composition. This happens because the mass defect of the 

isotopes of a compound can be different depending on the distribution of the isotopes in their formula. 

Therefore, the isotope of a compound having a Carbon 13 in its formula would have the same nominal 

mass but a different mass defect from the isotope having an Oxygen 17. With a resolution of over 

100.000, is possible to see two distinct signals for the two distinct isotopes. When resolution is lower 

than 100.000, the instrument measures the different isotopes as a unique signal, averaging their mass 

defect accordingly to their content in the molecular formula. Even if it looks trivial, in presence of high 

mass accuracy, the averaged value can be used to improve formula calculations (Thurman & Ferrer, 

2010).  

 

 

 

4.3 Data analysis: pre-processing 
After the instrument acquires the data, this is stored as chromatographic raw data files (one per 

sample) containing the information about the m/z detected, their retention time, and their signal 

intensity. To aloud a comparison between the different samples, the data need to be pre-processed to 

enclose all the information in a readable two-dimensional peaktable. This step is crucial for a correct 

interpretation of the data.  

Image 3: The relative 

isotopic mass defect of 

some elements. Picture 

from the publication of 

Thurman & Ferrer, 

(2010). 
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The first step is the peak picking; it tries to allocate all the chromatographic peaks per each m/z 

value. Their area is then integrated and it is (in theory) proportional to the corresponding compound 

concentration in the samples. Therefore, every integrated peak is defined by its m/z and RT and it is 

called feature. Peak picking needs to be performed on every sample and then the list of mz/RT features 

from a sample needs to be merged to the ones from all the other samples. 

 

 

 

 

 In theory, it is enough to sub-divide the whole range of m/z in bins obtaining the EIC per each 

bin, integrate it in every sample, and then group the features detected. This approach has been 

demonstrated to be error-prone, because of the instrumental error and the noise signal that is always 

present in LC-MS analysis. In facts, the chromatographic peaks are often miss-aligned and the MS 

detection suffers of error, which might be of several ppms in the different instruments (Shahaf et al. 

2013, Knolhoff et al. 2014). For example, in the instrument used in my experiment, the average error is 

Image 4: A graphical 

representation of the peak 

picking process. In this 

process, the tridimensional 

information obtained from 

the chromatograms is 

transformed to bidimensional 

tables of features. Every 

features has is unique m/z, 

RT and intensity value per 

each sample. Due to the 

errors that are possible in 

peak elution and peak mass 

measurement from the LC-

MS instruments, the picked 

peaks need to be aligned, 

grouped and eventually  

filled by an automatic 

binning step. 
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around 5 ppms, but it is likely to have errors up to 30 ppms, and sometimes it can reach up to 100 ppms 

(Shahaf et al. 2013).  

Many software have been released to perform peak picking: In my case, the vendor (Waters) 

supplied us with “Markerlynx” (Frederiksen, 2011), an automatic software for peak detection. 

Nevertheless, the outcome of such software was not directly usable with other tools for statistical 

analysis and peak identification, so I decided not to use it. In our laboratory, an automated pipeline for 

peak picking, alignment, gap-filling and pseudo-spectra construction has been developed by Franceschi 

et al. (2014). The pipeline is based on XCMS (Smith et al. 2006) and CAMERA (Kuhl et al. 2012). To 

perform the analysis with such software, the raw data files need to be first converted to NetCDF files 

using the Dbridge software supplied by Waters. The NetCDF files are then peak picked using XCMS 

with settings dedicated to the instrument used.  

After peak picking, the next important step is to match the ions produced by the same metabolites 

across samples. This is called “alignment”. XCMS uses the matched features to create a correction 

model for the retention time, to correct eventual RT shifts across samples. Last step is the filling-peak 

process: during peak picking, the peaks are detected above a given threshold; this would result, in a 

table with some zero values where the intensity was below the given threshold. For this reason, XCMS 

uses the detected features as bins to collect the EIC of the bins in the samples with zero values. After 

the fill-peaks function, the XCMS software gives to the user a so-called “peaktable”, containing the 

values m/z, RT and intensity for every feature detected. This table do not contain information regarding 

the relationships between the different features. Indeed the co-eluting features might be originated from 

the same metabolite. 

CAMERA software is dedicated to the discovery of the various relationships between the 

detected features. First, it divides the “peaktable” in RT bins, then it tries to relate the features each 

other through correlation analysis, and finally it calculates the various relationships between the 

features according to the m/z differences between them. Isotopic patterns and adducts are detected and 

labeled in the “peaktable”. In the pipeline developed by Franceschi et al. (2014), the last step of the 

analysis is the automatic detection and matching of features corresponding to compounds already 

analyzed in the same instrument under the same conditions. At the end of the analysis, the peaktable 

contains all the detected features, their grouping, their putative relationships (adducts/isotopes) and the 

automatically identified compounds labeled with their “ChemSpider” code and putative names. 
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4.4 Statistical analysis 

4.4.1 Systematic variation assessment and data normalization. 
The first step to perform statistical analysis is to evaluate if there is presence of systematic 

variation, due to the instrument or to the experimental design. To assess the systematic variation some 

methods exist. The classical approach used in every MS experiment is to have technical replicates; the 

variability within the technical replicates needs to be lower than the 25% of the %CV, to assume that 

no systematic variation or drifts are present in the analysis. This method is very reliable, but in practice 

is not applicable to the untargeted analysis, because the number of variables to consider in the 

comparison is too high. A compromise of this method is to spike every sample with “internal 

standards”, a mixture of compounds that are not naturally present in the samples under analysis (Sysi-

Aho et al. 2007). The spiked compounds are then evaluated for their percentage CV with a threshold of 

25%, as reported above. The problem of this approach is that we would need an internal standard 

representative per each chemical class present in the sample; this means that we need several internal 

standards. In my experiment I used 3 different internal standards (3-Indole-propionic acid, 4-stilbenol 

and Gentisic acid), but their use in the stability assessment has been secondary in comparison to the 

assessment based on the quality control samples (QCs) evaluation method developed in our lab. 

The approach applied in our laboratory is based on the multivariate evaluation of quality control 

samples. Quality control samples (QCs) are a mixture of the various samples present in the 

Image 5: an example of the 

peaktable outcome from the 

pipeline published by 

Franceschi et al. (2014). In 

the example the first 

columns represent 

respectively the chemspider 

code for the putatively 

assigned compounds, their 

names, the CAMERA 

group, the possible adducts 

and isotopes. 
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experimental design that were injected several times in the LC-MS system during the analysis. Their 

chromatograms were evaluated like normal samples, extracted with the pipeline described in the 

section 4.3 and the data visualized in a PCA plot in the first two components (PCA will be described in 

the following section). The stability of the analysis is assured by the fact that the QCs need to be all 

plotting in the same area, without diverging around in the PCA plot. As the QCs has been injected 

across the entire sample list, if they plot all together, most likely the systematic variation is null or very 

low. Otherwise, the presence of QCs in different positions means that analytical drifts may have 

occurred during the analysis. The 25% percentage of CV threshold can be coupled with the multivariate  

approach, using some known metabolites from the QCs. This method is very convenient especially 

because this analysis – using the described pipeline - can be directly performed during data acquisition: 

it is enough to convert the up-to-date acquired data in NetCDF files, to submit the files to the pipeline 

and to perform PCA statistical analysis, to see whether drifts are occurring. Since systematic variations, 

due to the operator, materials, and extraction method, have been previously avoided, drifts are more 

likely from the LC-MS instrument. A restore of the initial analytical conditions of the instrument (like 

LC cleaning, MS source cleaning and calibration) is often more than enough to restore the initial 

performance and continue with the data acquisition (Arapitsas et al. 2012).  

This method, if performed correctly, eliminates the necessity of normalization. In the experiment 

performed in chapter 7, I did not perform any data normalization; indeed, due to experimental 

constrains, normalization has been used in the experiment described in chapter 5. Normalization 

methods are comparatively revised by De Livera et al. (2012).  

4.4.2 Multivariate statistical analysis 
Metabolomics data is multivariate by its nature, namely because multiple variables are often 

correlating, and may have both linear and non-linear distributions. Metabolomics data is often analyzed 

using multivariate statistical analysis (MVA). Many MVA methods exist; here I will briefly describe 

only the more common ones, focusing on their use in metabolomics. 

The most common MVA in metabolomics is Principal components analysis (commonly called 

PCA; for a wider description on PCA I suggest the tutorial of Jolliffe, 2002). PCA aims to individuate 

and extract the main patterns in a dataset. A linear combination of the correlating features is extracted 

in a given number of so-called components, ordered according to the amount of variability explained 

by each component (the components are calculated according to the NIPALS algorithm developed by 

Herman Wold in 1975). This means that the first component always includes a higher amount of 
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variability than the second component, the second more variability than the third, and so on. In the 

image 6, an example of PCA plot. As you can notice, the first component (on the x-axis) represents 

more than 50% of the variability, while the second component (on the y-axis) less than 10%. As the 

goal was to distinguish the American Vitis grapes from Vitis vinifera ones, the plot clearly shows a 

separation between the two groups along the first component. In the green set, there are five red dots 

indicating the plotting of the QCs. As shown, they plot very close each other, meaning that there was 

not a systematic variation across injections. In the second plot on the right, it is possible to read the 

names of some samples. In my experiments I had three “technical replicates” (three different berry 

clusters per grape variety), and in the PCA they plot closer than other samples, indicating that 

reproducibility of the analysis was high. 

 

 

 

 

 

 

Nevertheless, the scope of this work was not to demonstrate that the American Vitis berries are 

different from the Vitis vinifera berries, but to find the variables that determine this difference. As in 

PCA plot the two groups were not uniform (the samples were from different species and different 

varieties), I needed a statistical method to focus only on the difference between American vs vinifera. 

Image 6: On the left, the PCA plot of the injections of the grape skins of all the samples plus the QCs (in red). 

QCs plotting all together indicate lack of systematic drift during the analysis. The true groups (red and blue set) 

were separating along the first component which included the highest amount of variability. On the right, the 

same PCA plot with the names of the samples. 
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In MVA metabolomics, the common practice is the use of Orthogonal Projection to latent structures 

discriminant analysis (O-PLSda) also called Orthogonal Partial Least Squares discriminant analysis 

(Bylesio et al. 2007, Rosipal 2007). In O-PLSda, the user defines the categories of the samples that are 

stored as a matrix of zero and one (the so-called Y matrix, where the samples assigned to 0 are not part 

of such category, and to 1 if they are part of it) and the variability orthogonal to the categories will be 

excluded. The original PLS algorithm finds a linear regression model between the variables matrix (X 

matrix) and the categories matrix (Y matrix) projecting them into new spaces. The point is to find the 

multidimensional direction of the X matrix that explains better the multidimensional directions in the Y 

matrix. Modern PLS algorithm are also able to take in account the non-linear relationship between X 

and Y matrices (Wold et al. 1989, Wold et al. 2001).  

The main difference between PLS-da and PCA is that the former tries to fit the components 

focusing on the variables, which determine the highest difference between the two chosen groups. It 

can be represented as a shift in the hyper plane, determining a focus on the space where the highest 

distance between the two groups exist (image 7). If the goal of the PCA is to group the variability of 

the X matrix in components, in PLS-da the goal is to focus the main difference between the groups into 

the first component. Its second component rather describes the variability intra-groups. 

 

  

Once the PLS-da focused on the variability between the groups, it is possible to extrapolate the 

variables that determine such variability (biomarkers). The PLS-da loadings would be enough to 

extrapolate such data, but a more accurate harvest of the biomarkers can be achieved using the S-plot. 

Image 7: An explanatory scheme of the 

plane shifting happening between OPLS-da 

and PCA. The goal of OPLS-da is to group in 

the first component all the variables  that 

determine the highest difference between the 

two groups. This image is from the Umetrics 

training course on SIMCA-P+ 12.0.0 
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The S-plot is a graphical representation of the loadings according to their correlation and covariance; 

plotted on the bases of their significance in the groups. Marker variables are at the extremes of the 

plots, while non-significant variables are plotting in the center of the plot (Image 8). In this plot, there 

is not a threshold level, because the significance of the variables is dependent on the data and on the 

number of samples.  

 

 

 

4.4.3 Univariate statistical analysis 
Despite of the multivariate nature of the metabolomics data, the use of easier univariate methods 

is possible, at some expenses. The number of variables taken in accounts needs to be limited as much 

as possible to increase the power of the test, and to decrease the false positives and negatives. A good 

method to limit the variables is to select only the ones overcoming a selected threshold (for example 

MS/MS experimental threshold), and the ones not respecting the 80% rule. After this step, univariate 

tests can be successfully applied to the data. A key point is to select the adequate test to analyze the 

data. In table 1 I summarize the test choice according to data pairing and distribution.  

 

Image 8: S-plot of some spectrometric data. The 

horizontal axis indicates the covariance of the 

variables, while the vertical axis indicates the 

correlation of the variables across the samples. 

This image is from the Umetrics training course 

on SIMCA-P+ 12.0.0 
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In my experiment I chose the Wilcoxon t-test (Wilcoxon, 1945), because the distribution of the 

data was expected to be not normal for most of the metabolites, due to the distinct nature of the samples 

(especially in the American group different species have been considered as part of the same group). 

The selected p-value was 0.05. Although this is considered a good approximation in many experiments, 

a threshold of 0.05 means that a 5% of variables are expected to be false positives, which in my case of 

thousands of variables corresponds to a huge number of false positives. A numerous correcting 

methods can be used to overcome this problem, like Bonferroni, Holm, Hockenberg and Šidák 

(reviewed in Feise, 2002). Nevertheless, all these approaches become too stringent when a high number 

of variables is introduced in the test, increasing the risk of producing false negatives. The best choice in 

this cases is the so-called “false discovery rate” FDR (Benjamini & Hochberg, 1995). After the 

univariate test, the distribution of the variables in the range 0 to 0.05 of the p-value (the positive 

variables) is over-represented if compared to the rest of the distribution (negative variables), and this 

over-representation is expected to be the “true positives”. This is then used to calculate a new cutoff 

value called q-value, which is the result of the following equation: 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
 

 

This means that when I used a cutoff of 0.05 and I obtained 500 positive variables, my new cutoff 

(q-value) is 0.05/500= 0.0001. This is then applied to the original data. Applying the FDR, it is 

assumed that a 0.05 of the positive variables are allowed to be false positive ones. This method is less 

stringent than the correction methods and can be easily used with metabolomics data (Vinaixa et al. 

2012). An example of the use of the univariate methods is given here, reporting the statistical analysis 

performed in chapter 7 (Image 9). The corrected p-values of the numerous markers can be coupled with 

the fold change parameter, which is calculated as the difference in folds between medians of the two 

Table 1: the univariate 

tests suggested 

according to the data 

structure. The table was 

taken from the work of 

Vinaixa et al. (2012) 
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groups. Coupling these two parameters, it is possible to obtain a so-called volcano plot, where the 

variables are plotted according to their fold change (on the x-axis) and to the corrected p-value (on the 

y-axis). Common fold change thresholds are considered two or three. In my experiment, I decided to 

select 10 (one order of magnitude difference between compounds accumulation), to be able to focus on 

the compounds that are systematically diverse between the two groups and to exclude the differences 

due only to morphological or physiological status of the berries. Indeed, the berry shape, the distinct 

texture of the tissues across the samples and the physiological status might affect the accumulation and 

detection of the metabolites, with two or three fold changes due only to these differences. A very high 

threshold has been chosen to avoid intrinsic differences between the materials.  

 

 

 

4.5 Compound identification: spectral matching and putative identification 
Compound identification is considered the bottleneck in untargeted metabolomics experiments. 

To face the discussion is necessary first to delimit the identification concept. According to the 

metabolomics society initiative (MSI) there are four levels of identification (Sumner et al. 2007): 

1. MSI level 1: compound identification through the direct comparison of at least two 

orthogonal characteristics with a reference standard. 

2. MSI level 2: putative compound identification through spectral matching with a reference 

spectrum from spectral database. 

3. MSI level 3: compound classification in a unique chemical class through spectral 

comparison with in-silico simulators. 

4. MSI level 4: unassigned compound (only mz/RT signature). 

Image 9: A volcano plot, with 

the comparison between the 

vinifera berry fleshes and 

American berry fleshes. The 

red dots represent the variables 

below the threshold selected 

for the corrected p-values 

(0.05) and the fold change 

(10). The blue dots are the 

positive variables considered 

as putative biomarkers. 
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The goal of the identification process is simply to move upward in the present scale. The outcome 

of the data processing is a peaktable consisting of thousands of features. Each feature has an mz/RT 

signature and the measured intensity across the samples. When also CAMERA analysis is performed, 

they are grouped according to their RTs and Pearson correlation of their area, known relationships 

between the features are labeled (isotopes and adducts). In Franceschi’s pipeline there is also an 

automatic matching of the compounds with the in-house-build standards database present in our lab. 

The automatic matching is an important step for the identification of MSI level 1; indeed, the method 

uses “two orthogonal characteristics”, like the retention time and at least two-reference m/z, and it 

compares them to reference standards. Even if the automatic matching needs a manual check to 

confirm its findings, it speeds up the identification process.  

However, the remaining number of unidentified features is extremely high. The identification of 

all the compounds present in the data is beyond the metabolomics analysis, which aims only to 

individuate all the metabolites that differ between two groups of samples. Therefore, the aim of the 

analysis is to focus on the identification of the biomarkers. The statistical analysis delimits the 

importance of the variables to a restricted number of features. The next step used in metabolomics 

experiment is to individuate the “known” biomarkers, the features that can be easily identified 

comparing their spectrum to the one of a reference standard. In my experiments, Franceschi’s pipeline 

identifications speed up the individuation of the “known” biomarkers.  

The remaining un-matching biomarkers are labeled as unknowns and go to further identification 

steps. The identification path is generally composed of these steps:  

1. Acquisition of the MS/MS or MS
n
 spectra and comparison of the spectra with external 

spectra databases or MS/MS spectra simulators.  

2. Determination of the chemical formula based on the mass accuracy and isotopic pattern 

(Kind & Fiehn, 2007) and eventually MS/MS data. 

3. Retention time prediction of the suggested structures through the construction of 

regression models using the calculated physico-chemical properties of such compounds 

(Creek et al. 2011, Bosweel et al. 2011), or through the direct comparison of the retention 

times with another external RT database where the suggested structures have been already 

injected (Stanstrup & Vrhovsek, 2014). 

4. Biological meaning of the suggested compound structures: compound structures similar to 

metabolites already present in the matrix under analysis (or part of their metabolic 
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pathway), are more likely to be present in such matrix than compounds with no-biological 

evidence. 

Nowadays, all the steps here described can be performed with computer-assisted strategies, with 

open source software like R. A deeper description of this strategy is given by Stanstrup et al. (2013), 

who has been my reference during data analysis. Indeed, a similar strategy with some modifications has 

been performed in the experiment described in chapter 7, and it will be described there. On the other 

hand, every step of this strategy has some limitations, listed here: 

1. Acquisition of clear MS/MS spectra is not straightforward, especially in hybrid TOF 

instruments where multiple ions may be selected as precursors before fragmentation, 

falsifying the spectral interpretation. This problem is very limiting when ions with similar 

m/z are co-eluting. Poor MS/MS spectrum means no identification.  

2. Calculation of the chemical formula sometimes might become not feasible. Poor isotopic 

pattern assessment (>5% of error in isotopic ratios is troubling), scarce mass accuracy (>5 

ppm error is already a problem) and the presence of multiple elements in the formula, 

make this task very complex and sometimes unfeasible (Kind & Fiehn, 2006). For 

example, TOF instruments have been demonstrated to acquired data with up to 30 ppms 

error (Shahaf et al. 2013), while Orbitrap instruments are reported to have problems in the 

measurement of the second and third isotopes intensities, giving a misleading isotopic 

pattern ratio. 

3. Prediction of retention times through regression model has been demonstrated to be 

reliable but not very helpful, because the range of RT predicted by the model is too wide 

to exclude all the structures similar to the right one. On the other hand, the use of direct 

comparison with the retention times from another chromatographic method has been 

proved to work a lot better, but it requires that the suggested compound has been already 

injected in another LC system. 

4. The biological meaning of the data is not usable when none of the compounds of the same 

biosynthetic class has been analyzed previously in the same matrix with the same 

instruments. 

In the near future, new instrumentation will probably solve the problems and break the limits here 

listed. Instruments with higher mass accuracy, better estimation of the isotopic patterns and higher 

chromatographic resolution are already in the market and will become of common use in the next 
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years. From my point of view, a different approach could be used and it has been developed in this 

thesis in chapter 6.  

4.6 Data mining 
Data mining is the last step of a metabolomics analysis. It differs from all the other steps because 

it is experiment-dependent, and it is different across the distinct experiments, according to the goals. 

The idea is to use the data obtained from the analysis, to understand what the physiological differences 

between the two subsets are. So, the goal of the data mining is decided during the experimental design 

and the means to achieve this goal depend on the final aim of the study.  

To mine the data, statistical analysis is necessary. Statistical analysis performed before the 

identification can be coupled with further analysis to infer on the biological meaning. Usually, 

Pearson’s correlation between metabolites, hierarchical clustering between samples (Everitt, 1993) or 

Bayesian inference on the metabolites relationships (Suvitaival et al. 2014, McGeachie et al. 2014) are 

performed to determine which of the identified biomarkers are related to each other and infer on their 

inner relationship. Graphical representation of the statistical relationships between metabolites can be 

done through Heatmaps, or using dedicated graphical software like Cytoscape (www.cytoscape.org).  

On the other hand, the statistical analysis is not sufficient alone; random relationships between 

metabolites and samples may happen, the relationship alone is not sufficient to mine the data. To give a 

complete biological meaning to the data, it is necessary to add biological knowledge on the analyzed 

metabolites and to their anabolic and catabolic pathways, to understand if the found relationships are 

due to the metabolic pathways cascade, to indirect causes or are completely random.  External 

databases, like BioCyc (http://biocyc.org) and Kegg (http://www.genome.jp/kegg) can be used for this 

purpose. Their use can be coupled with statistical software and packages to improve pathway analysis.  

Metabolomics data can be often coupled with other types of data, like Trascriptomics, Genomics 

and Proteomics, to give an insightful meaning to the metabolites levels. The combined use of multiple 

dataset is called Data Fusion (Smilde et al. 2005). It is based on multivariate statistical analysis of 

different datasets, and infers on the inner relationships between the datasets.  

Deeper description of the data mining process is demanded to literature (Banimustafa & Hardy, 

2012). 

 

http://www.genome.jp/kegg
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4.7 Data sharing 
In metabolomics, sharing of the data is a key step to strengthen the results found in the laboratory 

experiment. The validation of the findings of the metabolomics experiments passes through the test of 

multiple experimental conditions, different kind of analysis, huge amount of observation and variables, 

different data analysis approaches and data interpretations. Not all these steps can be performed in 

single studies, which often cover only partially the question under analysis. Furthermore, data analysis 

approaches are quickly evolving and the same data produced now, might be used for better and more 

insightful data analysis in the future.  

Back in 2007, the Metabolomics Standards Initiative (MSI, Sansone et al. 2007, Fiehn et al. 

2007) came out with a call for standardization of the metabolomics studies under precise  guidelines for 

the metabolomics community. One of the suggested procedures was to share the raw data and/or 

metadata of the experiments with the external reader/researchers, to aloud  external researchers to 

compare, contrast and make inferences from the results they obtain in their experiments (Goodacre et 

al. 2004). For example, I can report my own experience: I had access to the grape metabolome 

experimental data, acquired in our lab (Mattivi et al. unpublished data); the design of all the 

experiments described in this thesis have been all inspired from this data.  

The European Bioinformatics Institute (EBI) recently established a database for metabolomics 

data (Haug et al. 2013). It is called “Metabolights” (http://www.ebi.ac.uk/metabolights/), and it is based 

on data sharing of the metabolomics data under certain standard procedures. Before storing the data, 

the analysis must be described in deep using a Tab-based software (ISA-Tab); in this file, all the 

samples, the methods, and the instruments are described. Raw data and metadata can be stored in the 

database, together with their Tab file describing how this data has been generated. 

The results of the work described in chapter 7 will be stored in Metabolights database, as soon as 

it will be accepted as manuscript. In our laboratory, the storage of the data is already an automatic 

process as described by Franceschi et al. (2014). Indeed, information about the data in our lab is stored 

through ISA-Tab files and after data acquiring, the data is processed through an automatic pipeline 

specifically designed to work smoothly with Metabolights. 
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5. Fusion of GC/MS and LC/HRMS data to improve the identification 

and confirmation of the unknown Volatile-Aroma-compound 

precursors’ in Grape 
 

Volatile-aroma-compound precursors (or volatile precursors) are a very important class of 

chemical compounds that determine the quality of the grapes, and their potential in wine production. 

Despite their importance, their presence in the spectra of the untargeted Reverse Phase LC-MS 

methods is often not taken in consideration. In this work, using the untargeted LC-MS method 

developed in our lab (Arapitsas et al. 2013), I demonstrated that many peaks present in the spectra can 

be identified as volatile precursors at MSI level 2, and that their presence can be at least semi-

quantified.  

This project has been developed in collaboration with Manoj Ghaste and it is reported in the 

paper: “Ghaste M.; Narduzzi L.; Carlin S.; Vrhovsek U.; Shulaev V.; Mattivi F, (2015) Chemical 

Composition of Volatile Aroma Metabolites and their Glycosylated Precursors Uniquely Differentiates 

Individual Grape Cultivars” (in press). The part of the project here described has been carried out 

completely by me; in the project, I use as reference the data from  the GC-MS analysis produced by 

Manoj Ghaste. Dr. Fulvio Mattivi supervised this project. 

 

5.1 Introduction 
Volatile-aroma-compounds are a set of multiple classes of organic compounds that contribute 

together to the formation of the aroma of the grape berry. Every grape is very rich in Volatile-aroma-

compounds, and the ratio between the concentrations of these compounds determines the specific 

aroma of the different grape varieties. These compounds may play very different roles in plants, like for 

example as attractant for insects/mammals. They are also reported to be a signaling answer to biotic 

and abiotic stresses and to be involved in inter-plant signaling (Lund & Bohlmann 2006, Baldwin et al. 

2006). 

In general, plants tend to accumulate such compounds also in “bound” forms, to store them in the 

vacuole, ready to be released whenever they would be necessary. In facts, in their “free” form, they 

cannot be long-term stored, because of their high volatility. The most common way to store these 

compounds is to bind the “free” form to glycosides. One of the main important roles of the glycosides 

is the storage of “secondary” metabolites (within there are volatiles too). Indeed, Glycosides increase 
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the water solubility of the “bound” compounds, binding through a hydrolytic bond to the “free” 

volatiles (generally called Glyco-conjugated volatiles GCVs). The hydrolytic bond is generally 

considered weak, because it requires low kinetic energy to be broken, and the reaction carries out 

without modifying the chemical structure of the released compounds. In grape, the concentration of the 

volatiles in “bound” glycosidic forms has been reported to be between 2-8 higher than the 

concentration of their “free” counterparts (Wang et al. 2008, Sarry & Gunata 2004). This means that 

grape has a very high aroma potential stored in the vacuole of the cells in the berry, especially in the 

skin, and in minor extent, in the flesh (Robinson et al. 2013).  

In winemaking, the reservoir of aroma precursors is one of the most important parameter for the 

production of quality wines. Indeed, if the free forms get mostly lost during the various step of the 

vinification, their bound counterpart supply to their loss, continuously releasing new free volatiles. The 

hydrolysis of the bound forms is not a random process, but it is due in minor extent to the mild-acidic 

conditions of the vinification process, and overall driven by the hydrolytic enzymes produced by the 

yeast and bacteria, during fermentation. This means that the final aroma of a specific wine is a 

combination of the reservoir of the volatiles precursors and the ability of the microbes to hydrolyze the 

bonds of the glycosidic forms. In some extent, starting from the same grape material, different yeasts 

may give different aroma, especially if they are from different species (Ciani et al. 2010). Therefore, to 

study the aroma potential of a grape variety, we need to know the composition of the intact “bound” 

fraction in grape, and their hydrolysis from the various yeast strains.  

Many studies have been performed on the bound fraction of the volatiles precursors in grapes but 

not in in their intact form; indeed researchers were mostly using an indirect method: bound fraction 

hydrolysis followed by GC-MS analysis to study the released free fraction (Maicas et al., 2005; Esti & 

Tamborra, 2006). The glycosidic part has also been studied using GC-MS, through derivatization. 

These methods have been the state of the art for many years, but they have two main limits: it is 

impossible to study many conjugated volatiles together, and, being an indirect method, the formation of 

artifacts is common (Little et al. 1999, Esti & Tamborra, 2006). 

Recently, two direct methods have been developed to determine the amount of conjugated 

volatiles (Schievano et al. 2013, Flamini et al. 2014), using LC-MS used in combination respectively 

with NMR and GC-MS. The two methods reported were very efficient; both were able to identify more 

than ten precursors in their intact forms. On the other hand, the first method had a very long process of 

sample preparation, and the isolation necessary for the NMR analysis of the compounds is a time 

consuming step, which has not been considered in my work. The second method is conceptually similar 
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to the work reported here. However, differently from this work, the authors focused only on a chemical 

class of compounds (terpenoids), developing specific extraction and chromatographic methods to 

achieve their goals, excluding from the analysis all the other volatile compounds that might be 

accumulated in the grapes.  

The aim of this work was to use the information about the hydrolyzed volatiles contained in the 

analyzed grapes from the GC-MS analysis (after hydrolysis), to putatively identify their glyco-

conjugated precursors through LC-HRMS and MS/MS analyses and confirm the identifications through 

intensities correlation between the two analytical platforms. This method can be considered as an 

untargeted analysis to identify putatively unreported volatile precursors in grape.  
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5.2 Materials and Methods 

5.2.1 Grape samples: 

The grapes used in this experiment are shown in table 1. All the samples have been 

collected in the experimental fields of the “Fondazione Edmund Mach” in San Michele all’Adige 

(TN) Italy, during the season 2013. They were harvested at technical maturity, 18° brix, 

immediately frozen under liquid nitrogen and stored at -80° until analysis. 1 Kg of healthy grape 

were powdered in liquid nitrogen using an analytical mill (IKA® -Werke GMbH & Co. Staufen, 

Germany) prior to sample preparation. Every sample has prepared in triplicate. 

No Prime name Berry Color  Origin Short name 

1 Riesling  White Vinifera RIE 

2 Gewürztraminer Pink Vinifera GWT 

3 Moscato rosa Red Vinifera MOR 

4 Iasma ECO 1  White Vinifera F3P30 

5 Iasma ECO 2 White Vinifera F3P63 

6 Iasma ECO 3 White Vinifera F3P51 

7 Nero Red Hybrid variety NERO 

8 Isabella  Red Hybrid variety ISA 

9 Vitis arizonica Red American  VAT 

10 Vitis cinerea Red American  VCI 

5.2.2 Chemical reagents: 
Methanol, dichloromethane, formic acid and pentane were purchased from Sigma Aldrich 

(Milan, Italy). Sodium sulphate anhydrous and citric acid were purchased from Carlo Elba (Milan, 

Italy). The water used in the experiments was purified with a Milli-Q water purification system from 

Millipore (Bedford, MA, USA), SPE cartridges Isolute ENV+ (1g, 6mL) were obtained from Biotage 

(Uppsala, Sweden), Rapidase® AR2000 enzyme was purchased from DSM Food Specialties B.V. 

(Delft, The Netherlands). 

5.2.3 Sample preparation: 
The experimental design is summarized in Image 1. The method used is the same of Vhroscek et 

al. (2014) slightly modified. 30 g of grape powder, 80 mL water and 0.5 g of gluconolactone were 

taken and 25 µL of 1-Heptanol was added as internal standard (1257 mg/L). The solution was then 

homogenized for 3 min at 20000 rpm using an ultra-Turrax homogenizer, followed by centrifugation 

for 5 min. at 10000 rpm at 5 °C. The supernatant obtained was then filtered through filter paper and the 

Table 1: The grape material 

used in this experiment. All 

the material is from the 

experimental field of the 

Fondazione Edmund Mach in 

San Michele all’Adige, (TN) 

Italy. 
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extract was further used for the SPE procedure. Isolute ENV+ cartridges were conditioned with 20 mL 

each of methanol and equilibrated with 20 ml of milliQ water, then the grape extract was loaded and 

eluted through cartridges and the cartridges were washed with 20 mL of water to remove water soluble 

impurities. Free volatiles were eluted with 20 mL of dichloromethane, the elute was collected in a glass 

tube and 40 mL of pentane was added to it. This solution was dried with anhydrous Na2SO4 and 

concentrated to 200µL as described in (Boido et al., 2003) and successively injected in the GC-MS. 

The conjugated volatile precursors were eluted with 30ml of Methanol and 1mL of methanol was 

diluted with 1 ml of water and injected in the LC-MS system for the precursor’s analysis; the rest of the 

fraction was evaporated to dryness. Then the flask containing it was rinsed with 10 mL of 

dichloromethane to remove any leftover free volatile compounds. The bound fraction was then re-

dissolved in 5 mL of citrate buffer at pH 5 and 200µL of enzyme AR2000 (70 mg/mL, supply by: 

“Oenobrands”) was added and kept in a 40°C water bath for 48 Hrs. Later, 10µL of internal standard 1-

Heptanol was added; 1 ml of this fraction was diluted with 3 ml of Methanol and injected in the LC-

MS system while with the remaining fractions, free volatiles were extracted with 3mL of 

pentane/dichloromethane 2:1, v/v, three times, all organic phase containing hydrolyzed volatiles being 

concentrated carefully to a volume of 200µL for GC-MS analysis. All samples were prepared and 

measured in three replicates.  

 

 

Image 1: the diagram displays the experimental design. 

The basic principle behind this experiment is that The 

LC-MS analysis (before hydrolysis) is used to 

individuate the glycosidic precursors of the volatiles 

measured by the GC-MS analysis (after hydrolysis). 

Then, in the LC-MS analysis (after hydrolysis) the 

compound identified as putative precursors, should 

disappear or at least decrease in concentration in a 

manner relative to the amount measured in the GC-MS 

instrument.  
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5.2.4 LC-MS analysis and data extraction 
LC-HRMS analysis was performed using the “UPLC-Synapt” instrument (UHPLC-ESI-Q-IMS-

TOF-MS) described in the section 2.3.2 of this thesis. 1 ml of Methanolic elute (before hydrolysis) was 

diluted with 1 ml of water and filtered through 0.22 um Millisart filters (Whattman, Milano, Italy) and 

injected in partial loop needle overfill mode. 0.5 mL of aqueous samples (after hydrolysis) was diluted 

with 1.5 ml of methanol filtered and injected as for the previous samples. All LC and MS instrumental 

settings were kept the same as described in the chapter 2 of this thesis. Raw data was extracted using 

the MetaDB and MetaMS pipeline described by Franceschi et al. (2014) based on XCMS software 

coupled to the CAMERA package (Smith et al., 2006, Kuhl et al. 2012). The data was normalized 

using the Total ion current normalization (Alfassi et al. 2004). 

5.2.5 MS/MS analysis 
One sample per each variety was re-injected under the same chromatographic condition in the 

UPLC-Synapt instrument. LC-MS/MS analysis was performed selecting the precursor ions in the 

quadrupole and fragmenting them in the transfer sector, as described in chapter 2. Fragmentation was 

obtained using a collision energy profile from 20 to 25 eV; low collisional energy has been adopted 

because the hydrolytic bond is a weak bond and glycoside cleavage is obtained at low CID. Acquired 

MS/MS spectra were manually integrated and queried in MetFrag (Wolf et al. 2010) against KEGG 

(www.kegg.jp), PubChem(https://pubchem.ncbi.nlm.nih.gov/) or Chemspider (www.chemspider.com) 

databases, or using the GCV structure database described in section 5.3.1.  

5.2.6 Pearson correlation analysis 
Pearson correlation analysis has been performed between the LC-MS putative identified peaks, 

and their corresponding released volatile forms from the GC-MS analysis (Flamini et al. 2014). The 

area of the putative identified peaks measured after hydrolysis was subtracted from the area of the same 

peak before hydrolysis, obtaining the hydrolyzed amount of such peak. The obtained values, have been 

correlated to their corresponding volatiles previously measured in GC-MS.  
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5.3 Results and discussion 

5.3.1 Filtering the data 
The list of volatiles released (after hydrolysis) from GC-MS analysis (Ghaste et al. 2015 and 

table 2) was used to build all the possible structures of the glyco-conjugated volatiles (GCV structures 

database) using the literature (Fernandez-Gonzalez & Di Stefano 2004, Sarry & Gunata 2004) to select 

the proper glycosides to bond to the volatiles and build an in-silico library of GCV structures. For all 

the GCV structures, the mono-isotopic masses (MM) were calculated, here reported in table 2. From 

the MM, all the m/z adducts in positive mode (+H
+
, +Na

+
, +K

+
), and in negative mode (-H

-
, +Cl

-
, +FA

-

) were calculated. This GCVs m/z list has been used to select XCMS peaktable features as described 

below.  

The selection of the peaktable features was obtained applying multiple filters here listed: 1) RT 

filter, 2) m/z range, 3) only odd m/z ions (Nitrogen rule) 4) relative mass defect range (RMD), 5) 

intensity threshold, 6) de-isotoping.  

1) The GCV structures are composed of an hydrophobic part (the volatile) and an hydrophilic 

one (the glycosides); so their logD cannot be extremely different and most likely they elute 

only inside a given RT range (relationship between logD and RT is explained in chapter 2). 

Comparing their calculated logD with the ones of known metabolites, was possible to 

establish a broad range RT filter. LogD have been calculated using the “ACD/Labs 12.0 

Percepta Platform - PhysChem Module” setting as pH 2.87 (measured pH for 0.1% formic 

acid in water); Benzyl-primeveroside showed the lowest calculated logD value: -0.17 which 

was similar to the one calculated for Epicatechin (-0.10), that has a RT of 12.7 minutes in our 

chromatographic method. So, considering the error, the lowest limit of the RT filter was 

settled at 10 minutes. Geranyl-arabinopyranosyl-glucoside was showing the highest logD 

value, 1.27, similar to the one calculated for quercetin-glucoside (1.3) that has a RT of 19.8 

minutes. So the highest limit was settled at 23 minutes.  

2) m/z range was simply calculated from the GCV m/z list, taking as limits the lowest and the 

highest possible m/z. The selected range was from 250 to 600 Dalton.  

3) The features with an even m/z mass have been excluded, because all the compounds did not 

contain Nitrogen in their formula, so, according to the Nitrogen rule, their MM cannot be odd 

(and their ion cannot have an even m/z). 
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4) RMD range was simply calculated from the GCV m/z list as well, taking as limits the lowest 

and the highest possible RMD. The lowest bond was 300 ppm, while the highest bond was 

600 ppm. Theory about the RMD is explained in chapter 6 and in literature (Sleno, 2012). 

5) An intensity threshold is necessary to perform MS/MS analysis. Ions below 1000 counts/sec 

are not suitable for fragmentation in the “Synapt” and were discarded. 

6) Ions being part of the same isotopic pattern of other ions have been excluded, keeping only 

the mono-isotopical ions in the final list. The “Isotopes” have been recognized using the 

isotope list produced by CAMERA, and a further manual checking.  

In the XCMS peaktable there were around ≈13 thousands features. Among these, only 403 

features matched the filtering requirements described above. The rest of the features have been 

excluded. I took in account that the exclusion of some data based on arbitrary filters may lead to false 

negative exclusions. On the other hand, the selection of a limited number of features allows performing 

a user-dependent MS/MS analysis that can enforce or exclude putative GCV features.  

A different selection of the putative features has been described in literature (Tikunov et al. 

2011); in that work, the authors selected the features fusing the data from the GC-MS on aroma 

released from the tomatoes and the features measured in LC-MS. After fusion they performed a PCA 

and they selected for MS/MS analysis only the features displaying a small Euclidean distance from the 

Aroma compounds measured from the GC-MS. This choice allowed the authors to identify multiple 

precursors of tomato volatile aroma compounds and to identify the different kinds of possible 

glycosylation. 

Nevertheless, in my work their approach was not possible. They had a more favorable samples to 

features ratio (94/1000) in comparison to mine (30/13000) and in their experiment the hydrolysis was 

complete, while in my experiment the hydrolysis was the bottleneck of the experiment, and will be 

discussed deeper in the section 5.3.7. 
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Table 2: The list of all the possible GCV monoisotopic masses, obtained coupling the volatiles list from Ghaste et al. 

(2015) and the conjugated glycoside reported in literature. 

 

Component Name MM glucose malonyl-glucose pentosyl-glucose deoxy-glycosyl-glucose Glycosyl-glucose

2-Hexenol 100.0888 262.1412 348.1416 394.1840 408.1982 424.1931

trans 3-hexenol 100.0888 262.1412 348.1416 394.1840 408.1982 424.1931

n-hexanol 102.1044 264.1568 350.1572 396.1996 410.2138 426.2087

benzyl alcohol 108.0575 270.1099 356.1103 402.1527 416.1669 432.1618

Hexanoic acid 116.0837 278.1361 364.1365 410.1789 424.1931 440.1880

beta Phenyl ethanol 122.0731 284.1255 370.1259 416.1683 430.1825 446.1774

Anisyl alcohol 124.0524 286.1048 372.1052 418.1476 432.1618 448.1567

Furaneol 128.0473 290.0997 376.1001 422.1425 436.1567 452.1516

ethyl- 3 hydroxy-butanoate 132.0786 294.1310 380.1314 426.1738 440.1880 456.1829

Chavicol 134.0732 296.1256 382.1260 428.1684 442.1826 458.1775

Cinnamyl alcohol 134.0732 296.1256 382.1260 428.1684 442.1826 458.1775

α-Cumyl alcohol 136.0888 298.1412 384.1416 430.1840 444.1982 460.1931

4-Methoxyphenethyl alcohol 152.0837 314.1361 400.1365 446.1789 460.1931 476.1880

4-vinylguaiacol 152.0837 314.1361 400.1365 446.1789 460.1931 476.1880

Hotrienol 152.1201 314.1725 400.1729 446.2153 460.2295 476.2244

4-terpineol 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

alpha-terpineol 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

cis Geraniol 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

linalool 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

p-Menth-8-en-3-ol 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

trans Geraniol 154.1357 316.1881 402.1885 448.2309 462.2451 478.2400

β-Citronellol 156.1514 318.2038 404.2042 450.2466 464.2608 480.2557

Ethyl 3-hydroxyhexanoate 160.1095 322.1619 408.1623 454.2047 468.2189 484.2138

eugenol 164.0837 326.1361 412.1365 458.1789 472.1931 488.1880

Acetovanillone 166.0629 328.1153 414.1157 460.1581 474.1723 490.1672

Homovanillyl alcohol 168.0786 330.1310 416.1314 462.1738 476.1880 492.1829

Geranic acid 168.1150 330.1674 416.1678 462.2102 476.2244 492.2193

7 OH geraniol 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

8 OH linalool cis 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

8 OH linalool trans 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

exo-2-Hydroxycineole 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

lilac alcohol A 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

lilac alcohol B 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

lilac alcohol C 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Linalool oxide A 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Linalool oxide B 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Linalool oxide C 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Linalool oxide D 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

OH nerol 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

p-menth-1-ene-7,8-diol 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Terpendiol I 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

Terpendiol II 170.1306 332.1830 418.1834 464.2258 478.2400 494.2349

hydroxy Citronellol 172.1463 334.1987 420.1991 466.2415 480.2557 496.2506

Coniferol 180.0786 342.1310 428.1314 474.1738 488.1880 504.1829

Homovanillinic acid 182.0579 344.1103 430.1107 476.1531 490.1673 506.1622

3,4,5-Trimethoxyphenol 184.0735 346.1259 432.1263 478.1687 492.1829 508.1778

Scopoletin 192.0423 354.0947 440.0951 486.1375 500.1517 516.1466

3 hydroxy beta damascone 208.1463 370.1987 456.1991 502.2415 516.2557 532.2506

4-oxo beta ionol 208.1463 370.1987 456.1991 502.2415 516.2557 532.2506

3,4-dihydroactinidol 210.1619 372.2143 458.2147 504.2571 518.2713 534.2662

Dihydro-3-oxo-beta-ionol 210.1620 372.2144 458.2148 504.2572 518.2714 534.2663

vomifoliol 224.1412 386.1936 472.1940 518.2364 532.2506 548.2455

3-4-dihydro-3-oxoactinidiol I 226.1563 388.2087 474.2091 520.2515 534.2657 550.2606

3-4-dihydro-3-oxoactinidiol II 226.1564 388.2088 474.2092 520.2516 534.2658 550.2607

3-4-dihydro-3-oxoactinidiol III 226.1565 388.2089 474.2093 520.2517 534.2659 550.2608
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5.3.2 Matching 
The 403 features have been matched back to the GCV m/z list, to match each m/z to its 

corresponding putative GCV structure. An error of ± 0.005 Dalton has been considered acceptable. A 

total amount of 147 features were matching with one or more GCV structures; these features were 

selected for MS/MS analysis. Within the remaining non-matching features, 20 of them with the highest 

Intensity value have been selected as well for the MS/MS analysis, for a total of 167 MS/MS analysis. 

Many of the remaining ions have been manually checked. Most of them were noisy, with an unclear 

peak shape different sample by sample.  

5.3.3 MS/MS analysis 
All the MS/MS spectra acquired in the experiments have been firstly checked for correctness. As 

stated in chapter 2, the main limit of the Q-TOF is that the ion filtering done by the quadrupole is able 

to select ions only with a mass range of ± 0.5 Dalton (1 Dalton window in total). This means that co-

eluting ions with m/z inside this mass range, could be selected and analyzed together with the ions of 

interest (image 2), contaminating their MS/MS spectrum. For this reason the checking was necessary.  

 

 

Image 2: An incorrect MS/MS spectrum. The target ion had an m/z of 417.21, but in the chromatogram is clear that the 

fragments obtained are from both 417.21 and 417.1053 precursor ions. This MS/MS spectrum is not interpretable.  
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The clean spectra have been queried in MetFrag against KEGG, ChemSpider and PubChem 

databases. Even if the composition of the volatiles precursors in the plant kingdom is mostly known, 

their exact structure is still underdetermined in most cases, and these compounds cannot be found 

largely in the databases. Indeed the query against online databases gave, in many cases, structures very 

different from the expected ones, mostly because the expected structures are not in such databases. To 

overcome this problem I queried the MS/MS spectra also against the GCV structures database; 

whenever a structure from the GCV database was showing clearly a higher number of possible 

fragments and a higher mass accuracy, the compound was labelled as putative identification. After 

MS/MS analysis, I obtained 52 positive matching spectra. Every MS/MS spectrum has been acquired 

from the sample that was showing the highest intensity for the precursor ion in LC-MS analysis. 

5.3.4 Post-hydrolysis sample analysis 
All the in-silico analysis described previously, have been performed on the samples before the 

enzymatic hydrolysis. Here I describe how the samples after the enzymatic hydrolysis have been used 

to understand the hydrolysis efficiency, in two main ways: 1) evaluate the “disappearance” of the signal 

of hydrolyzed compounds, and 2) explore the possibility of the “appearance” of new peaks in the 

chromatograms. For appearance, I mean the possibility that the released volatiles could be analyzed 

directly in LC-MS, using specific techniques to improve their ionization and observe their signals in the 

chromatograms. Pure chemical volatile standards have been injected in the LC-MS system, to develop 

the method, and then the same analysis has been performed on the samples after hydrolysis. Results are 

shown below. 

1) The hydrolysis of volatiles precursors showed to be incomplete in many cases, indeed the 

peaks were not disappearing after hydrolysis, but often only reducing their peak area and 

showed also to have a distinct efficiency between the different putative precursors. A 

clear example is shown in the image 3: the three colored peaks showed a similar MS/MS 

spectra and were identified as putative benzyl-pentosyl-glucosides. After hydrolysis, the 

peaks at minute 12 and 13.20 were disappearing, while the peak at 12.95 had a smaller 

peak area, but still was clearly present in the chromatogram. As AR2000 is a mixture of 

α-Arabinosidase, Apiosidase, Rhamnosidase, and β-glucosidase (www.oenobrands.com), 

I supposed that the peak at 12.95 is a benzyl-xylosyl-glucoside and that the enzyme had 

only a side effect on the hydrolysis of such metabolite (a xylosidase would be required for 

direct effect on the metabolite). Nevertheless, the hydrolysis performed by the Rapidase 
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AR2000 is only a compromise between different strategies and it is known to be not the 

golden hydrolyzing technique (that does not exist currently). The implications will be 

discussed in section 5.3.7. 

 

 

Image 3: A comparison of the EIC of the ion 401.145 before and after hydrolysis in two different samples, VCI (Vitis 

cinerea) and ISA (Isabella). The peak at 12, 12.95 and 13.25 showed similar spectra and were identified all as 

Benzyl_pentosyl-glucosides. Nevertheless the hydrolysis efficiency was different between the first and third peak versus the 

second peak.  

 

2) The direct analysis of volatiles in LC-MS is not reported anywhere, because naturally 

their analysis has been carried out with GC-MS. Personally I was very curious to see if 

the analysis of free organic volatiles was technically possible with an LC-MS instrument. 

In theory there should not be barriers in the ionization and detection, since the organic 

volatiles often resemble structurally smaller versions of bigger analytes already detectable 

in LC-MS. For example, Hexanoic acid can be considered a short chain version of longer 

lipidic acids that are currently analyzed in lipidomics analysis (e.g. palmitic acid, oleic 

acid). The same Benzyl-alcohol can be considered as precursors of more complex 

metabolites like Benzoic acid, hydroxy-Benzoic acid, Gallic acid and many others, with 

the only difference that such acids have a scarce volatility. So, the difference in their 
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detection is imputable to the scarce volatility of the latter, and, as we will see next, in their 

low concentration in the samples of the former. 

As reported by Shahaf et al. (2013), simple Terpenols and their modified versions can be 

detected in LC-MS chromatograms when their concentration is above 10 mg/L. The first 

step performed was to observe their possible ionization and the choice of the best 

ionization method. A Standard mixture of 98 different volatiles (Vhrovsek et al. 2014) 

have been injected in the LC-MS system using the chromatographic method of 

Theodoridis et al. (2012), in positive and negative ionization mode (Image 4). APCI ion 

source has been also tested to analyse these compounds: the idea was that analysing low 

polarity metabolites, theoretically APCI could improve ions formations of the volatiles as 

reported in the Image 3 in Chapter 2. So first I tried with Direct Infusion of the volatiles, 

to observe the ionization performance of the APCI source (Image 5).  

 

 
Image 4: Chromatogram of the injection of the volatiles standards mix injected in the UPLC-Synapt system, containing 98 

different volatiles commonly analyzed in GC-MS, with concentration ranging from 10 to 100 mg/L. The chromatogram shows  

ESI+ mode is able to ionize these compounds. The list of the compounds is reported by Vhrovsek et al. (2014). The same STDmix 

was used to develop a targeted GC-MS method for the detection and quantification of hundreds of grape, strawberry and raspberry 

metabolites. 
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Image 5: The spectrum obtained in the APCI+ source after injecting the volatiles standard mix in direct infusion in the Synapt 

mass spectrometer. The list of the compounds is reported by Vhrovsek et al. (2014). The same STDmix was used to develop a 

targeted GC-MS method for the detection and quantification of hundreds of grape, strawberry and raspberry metabolites. 

 

Only positive ion source was able to create clear MS spectra for both ESI and APCI ion 

sources, while in negative mode, no signal was detected.  

The second step was to observe their possible presence in the samples under analysis. The 

analysis of the samples after hydrolysis with the ESI ion source did not show any clear 

ion from the volatile compounds. So, I decided to perform the injections also using the 

APCI source, because it was able to ionize volatile standards and showed a lower signal 

for polyphenols, which might be suppressing the signal for the volatile compounds in the 

ESI ion source. APCI was used as source to analyse the samples after hydrolysis using the 

method of Arapitsas et al. (2014), slightly modifying source settings to adapt it to the 

APCI. In facts, in the Synapt instrument the interchangeability of the ESI source and 

APCI source is assured, and most of the settings do not need tuning during source 

switching. Only the gas flow and gas temperature need to be slightly increased to obtain a 

slightly better ionization. 

The results of this analysis were discouraging; almost none of the STDmix peaks were 

corresponding to the ones observed in the sample (Image 6); whenever a peak was 

matching, its intensity was too low to perform a successful MS/MS analysis to confirm 

the identification. I personally think that this is due to the low amount of free volatiles 

present in the samples. Indeed, in Ghaste’s analysis (Ghaste et al. 2015), the amount of 
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the compounds was in the range of 10 to 1000 μg/Kg, so around 1000 times less than in 

the STDmix. Even if I proved that the analysis of volatiles is possible in positive mode 

with LC-MS instruments both with ESI and APCI source, their direct detection in the 

samples is far to be achieved, due to sensitivity limits. 

 

 
Image 6: A comparison between the chromatograms of the STDmix (up) and the QC (down). The picture shows that despite of the 

high amount of compounds in the standards mix, none of them could be found in the QC. The figure is only an example. Almost 

none of the peaks of the sample is exactly matching the RT of the peaks from the STDmix. This was only shown to give a visual 

impact of the difference between the sample and the STDmix, the two solutions having completely different compositions. 

5.3.5 Pearson correlation analysis and peak identification. 
The peak area of the 52 putatively identified peaks has been integrated in both samples before 

and after hydrolysis. In facts, if the peak was present still after the hydrolysis, it meant that was not 

subject to any clear hydrolysis, and its identification could not be confirmed correlating the area with 

the GC-MS data and might be wrong. Out of 52 peaks, only 31 corresponded to a unique peak having a 

clear hydrolysis (at least partial). In most of the cases, the hydrolysis was not complete, and some 

signal could be observed in the samples after hydrolysis. The reasons why this could happen will be 

discussed in the section 5.3.7. 

To strengthen the identifications, the idea was to correlate the putative identified peaks with their 

corresponding derivatives, across the whole sample set (30 samples). To overcome the lack of complete 

hydrolysis, I subtracted the area of the peaks before hydrolysis to the ones after hydrolysis. In total, I 
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found 15 peaks with a Pearson correlation superior to 0.8. The correlating compounds are displayed in 

table 3. 

 

 

 

During the correlation analysis, the putative precursors corresponding leading to the same volatile 

have been summed. Also singular correlation have been attempted for such metabolites, but the 

grouping showed a better results in all cases, expect for the terpenyl_pentosyl-glucoside that had a 

better correlation with Linalool (0.9) than with the same of all of them (0.826). Nevertheless, the 

contribution of undetected, unidentified peaks cannot be excluded.  

The m/z 485.1859 (-ve mode) showed a unique moiety in its MS/MS spectra, 127.0425, 

corresponding to Furaneol-H (table 4). Its peak area matched perfectly with the Furaneol concentration 

in GC-MS (R>0.99). Nevertheless, it was not possible to understand its structure, which shows the 

typical fragmentation pattern of glycoside moieties, but does not correspond to any previously found in 

the Vitis. The highest concentrations of terpendiols in GC-MS analysis were represented by cis-

hydroxy linalool and trans-hydroxy linalool; both were found to correlate strongly with two conjugates 

identified as cis Hydroxyl-linalool_Pentosyl-Glucoside (R=0.96) and trans-hydroxyl-

Linalyl_Rhamnosyl-Glucoside (R=0.97) respectively. A third putative terpendiol conjugate was 

strongly correlated with trans-linalool oxide (R=0.97) and was putatively assigned as trans-

Linalyloxide_Glucosyl-Glucoside. Two peaks clearly showed  MS/MS spectra corresponding to 2 

different geranic acid conjugates, and the sum of their area also correlated with the concentration 

N° Conjugate name Correlation Released volatile

1 β-phenyl_ethyl_glucosyl-glucoside 

2 β-phenyl_ethyl_arabinosyl-glucoside 0.91 β-phenyl-ethanol

3 β-Phenyl_ethyl_xylosyl-glucoside

4 benzyl_arabinosyl-glucoside

5 benzyl_xylosyl-glucoside 0.93 Benzyl-alcohol

6 benzyl_apiosyl-glucoside

7 furaneyl_deoxyhexosyl-glucoside_conjugate 1.00 Furaneol

8 trans linalyloxide_hexosyl-glucoside 0.98 Trans-linalool-oxide

9 terpenyl_deoxy-hexosyl-glucoside 0.83 Terpenol

10 terpenyl_pentosyl-glucoside

11 trans hydroxy-linalyl_deoxy-hexosil-glucoside 0.97 Trans-hydroxy-linalool

12 cis hydroxy-linalyl_pentosyl-glucoside 0.96 Cis-hydroxy-linalool

13 geranic acid_deoxyhexosyl-glucoside 0.88 Geranic acid

14 geranic acid_pentosyl-glucoside

15 vomifolyl_glucoside 0.88 Vomifoliol

Table 3: The 

correlating precursors, 

the R value and the 

correspondent volatile 

are displayed. 

Correaltion has been 

performed across the 

whole sampleset. The 

p-values were always 

p-value < 0.00001. 
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detected using GC-MS (R=0.879). Nevertheless, the hypothesis that other undetected minor peaks may 

contribute to the accumulation of this compound cannot be discarded.  
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 NAME RT PARENT 

ION 

MS/MS Formula Fragment PARENT 

ION 

MS/MS formula Fragment PARENT ION MS/MS formula 

1 Benzyl-

alcohol_apiosyl-

glucoside 

12.10 401.1453 

([M-H]-) 

 C18H25O10  447.1503 

([M+FA]-) 

 C19H27O12     

    269.11 C13H17O6 [M-H-Apiose]  401.14 C18H25O10 [M-FA-H]    

    161.06 C6H9O5 [Glucose – 
H2O-H] 

 269.11 C13H17O6 [M-H-FA-
Apiose] 

   

    159.03 C10H7O2   161.05 C6H9O5 [Glucose-

H2O-H] 

   

    143.04 C6H6O4   159.04 C10H7O2     

    131.03 C5H7O4 [Apiose-H2O-

H] 

 131.03 C5H7O4 [Apiose-H2O-

H] 

   

    128.00 C5H404   113.03 C5H5O3     

    113.03 C5H5O3         

    101.03 C4H5O3         

2 Benzyl-

alcohol_xylosil-

glucoside 

12.90 401.1448 

([M-H]-) 

 C18H25O10  447.1500 

([M+FA]-) 

 C19H27O12     

    269.11 C13H17O6 [M-H-Xylosyl]  401.14 C18H25O10 [M-FA-H]    

    161.06 C6H9O5 Glucose-H2O-
H] 

 269.11 C13H17O6 [M-H-FA-
xylose] 

   

    159.03 C10H7O2   161.06 C6H9O5 [Glucose-

H2O-H] 

   

    143.04 C6H6O4   159.03 C10H7O2     

    131.03 C5H7O4 [Xylose-H2O-

H] 

 131.03 C5H7O4 [Xylose-H2O-

H] 

   

    113.03 C5H5O3   113.03 C5H5O3     

    101.03 C4H5O3   101.03 C4H5O3     

3 Benzyl-

alcohol_arabinosyl-

glucoside 

13.35 401.1443 
([M-H]-) 

 C18H25O10         

    269.11 C13H17O6 [M-H-
Arabinosyl] 

       

    161.06 C6H9O5 [Glucose-H20-

H] 

       

    159.03 C10H7O2         

    131.03 C5H7O4 [Arabinose-

H2O-H] 

       

    113.03 C5H5O3         

    101.03 C4H5O3         

4 β-phenyl-ethanol-

glucosyl-glucoside 

13.04 445.1710 

([M-H]-) 

 C20H29O11         

    243.05 C10H11O7 [M-H-

C10H18O4] 

       

    162.07 C10H10O2 [M-H-phenyl-

ethanol-CH4O] 
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    161.05 C6H9O5 [Glucose-H2O-
H] 

       

    149.05 C5H9O5         

    143.04 C6H7O4         

    119.05 C8H7O1         

    101.02 C4H5O3         

              

5 β-phenyl-ethanol-

arabinosyl-glucoside 

15.40 415.1606 

([M-H]-) 

 C19H27O10  461.165 

([M+FA]-) 

 C20H29O12     

    191.06 C7H11O6 [Arabinose+C2
H4O] 

 415.16 C19H27O10 [M-H-FA]    

    179.07 C10H11O3 [Phenyl 

ethanol+C2H4

O] 

 149.03 C5H9O5 [Pentose-H]    

    161.05 C6H9O5 [Glucose-H2O-

H] 

 131.04 C5H7O4 [Pentose-H-

H2O] 

   

    151.04 C8H7O3   119.04 C8H7O1     

    149.05 C5H9O5 [Arabinose-H]  101.02 C4H5O3     

    132.04 C5H8O4  [Arabinose-H-
H2O (A+1)] 

       

    131.04 C5H7O4 [Arabinose-

H2O-H] 

       

    119.05 C8H7O1 [Phenyl-
ethanol-2H-H] 

       

    113.02 C5H5O3         

    103.04 C4H7O3         

    102.03 C4H6O3         

    101.02 C4H5O3         

6 β-phenyl-ethanol-

xylosyl-glucoside 

15.90 415.1606 
([M-H]-) 

 C19H27O10         

    191.06 C7H11O6 [Xylose+C2H4

O] 

       

    179.07 C10H11O3 [Phenyl 
ethanol+C2H4

O] 

       

    161.05 C6H9O5 [Glucose-H2O-

H] 

       

    149.05 C5H9O5 [Xylose-H]        

    131.04 C5H7O4 [Xylose-H2O-
H] 

       

    119.05 C8H7O1 [Phenyl-

ethanol-2H-H] 

       

    113.02 C5H5O3         

    101.02 C4H5O3         
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7 furaneol-deoxy-

hexosyl-glucose 

derivative 

13.40 485.1859 
([M-H]-) 

 C19H33O14         

    436.16  C18H28O12         

    353.12 C17H21O8 [M-H-Pentose]        

    352.12 C17H20O8         

    266.10  C10H18O8         

    205.07  C8H13O6 [Rhamnosyl+C

2H4O] 

       

    163.06  C6H11O5 [Rhamnosyl-H]        

    145.05  C6H9O4 [Rhamnosyl-H-

H2O] 

       

    143.04  C6H7O4 [Rhamnosyl-H-

H2O-2H] 

       

    127.04 C6H7O3 [Furaneol-H]        

    125.02  C6H5O3 [Furaneol-H-
2H] 

       

    103.04  C4H7O3         

              

8 trans-linalool-

oxide_hexosyl-

glucoside 

14.80 539.235 

([M+FA]-
) 

 C23H39O14         

    493.23  C22H37O12 [M-FA-H]        

    331.18 C16H27O7 [M-FA-H-
Glucoside] 

       

    179.06  C6H11O6 [Glucose-H]        

    163.06  C6H11O5 [Glucose-H-O]        

    161.05  C6H9O5 [Glucose-H2O-

H] 

       

    145.05  C6H9O4 [Glucose-H2O-

O-H] 

       

    119.04  C4H7O4         

    103.04  C4H7O3         

    101.02  C4H5O3         

9 trans-hydroxy-

linalool-rhamnosyl-

glucoside 

19.90 523.2399 

([M+FA]-

) 

 C23H40O13         

    477.24 C22H38O11 [M-FA-H]        

    331.18 C16H27O7 [M-FA-H-
Rhamosyl] 

       

    247.08 C10H15O7 M-FA-H-trans-

linalool-CH2O] 

       

    205.07 C8H13O6 [Rhamnosyl+C
2H4O] 

       

    163.06 C6H11O5 [Rhamnose-H]        
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    161.05 C6H9O5 [Glucose-H-
H2O] 

       

    145.05 C6H9O4 [Rhamnose-H-

H2O] 

       

    143.04 C6H7O4         

    113.02 C5H5O3         

    103.04 C4H7O3         

    101.02 C4H5O3         

10 cis-hydroxy-linalool-

pentosyl-glucoside 

20.11 463.218 

([M-H]-) 

  C21H35O11  509.225 

([M+FA]-) 

 C22H37O13     

    331.18  C16H27O7 [M-H-
Pentosyl] 

 463.22  C21H35O11 [M-FA-H]    

    233.07  C9H13O7 [Glucose+Pent

osyl fragment] 

 331.18  C16H27O7 [M-H-FA-

Pentosyl] 

   

    161.05  C6H19O5 [Glucose-H-
H2O] 

 161.05  C6H10O5 [Glucose-
H2O-H] 

   

    149.05  C5H9O5 [Pentose-H]  149.05  C5H9O5     

    143.04  C6H8O4   101.06  C5H9O2     

    131.04  C5H9O4 [Pentose-H2O-

H] 

       

    119.04  C4H8O4         

    113.02  C5H6O3         

    101.02  C4H6O3         

              

11 Terpenol_pentosyl-

glucoside 

21.00 447.223 

([M-H]-) 

 C21H36O10  493.22 

([M+FA]-) 

 C22H38O12  471.22 

([M+Na]+) 

 C21H36O10Na 

    315.18 C16H27O6 [M-H-Pentose]  316.16 C16H28O6   311.10 C11H19O10 

    233.07 C9H13O7 [Glucose-

Pentose 
fragment-H] 

 315.18 C16H27O6 [M-H-FA-

Pentose] 

 309.17 C17H25O5 

    191.06 C7H11O6 [Pentose+C2H

4O-H] 

 191.07 C7H11O6 [Pentose+C2H

4O-H] 

 293.17 C17H25O4 

    161.05 C6H9O5 [Glucose-H2O-
H] 

 179.07  C6H11O6 [Glucose-H]  229.07 C10H13O6 

    159.03 C6H7O5   161.05 C6H9O5 [Glucose-

H2O-H] 

 203.06 C8H11O6 

    149.05 C5H9O5 [Pentose-H]  159.04 C6H7O5   201.08 C9H13O5 

    143.04 C6H7O4   149.05 C5H9O5 [Pentose-H]  193.16 C13H21O1 

    131.04 C5H7O4 [Pentose-H-
H2O] 

 143.04 C6H7O4   163.06 C6H11O5 

    119.04 C4H7O4   131.04 C5H7O4 [Pentose-H-

H2O] 

 157.05 C7H9O4 

    113.02 C5H5O3   119.04 C4H7O4   155.03 C7H7O4 

    101.02 C4H5O3   113.03 C5H5O3     

12 Terpenol_Rhamnosyl

-glucoside 

21.30 461.2388 

([M-H]-) 

 C22H37O10   101.04 C4H5O3     
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    315.18 C16H27O6 [M-H-
Rhamnose] 

       

    205.07 C8H13O6 [Rhamnosyl+C

2H4O] 

       

    163.06 C6H11O5 [Rhamnose-H]        

    161.05 C6H9O5 [Glucose-H2O-

H] 

       

    113.02 C5H5O3         

    103.04 C4H7O3         

    101.02 C4H5O3         

13 Geranic 

acid_pentosyl-

glucoside 

20.80 507.2224 
([M+FA]-

) 

 C22H35O13         

    461.20 C21H33O11 [M-FA-H]        

    191.06 C7H11O6 [Pentose+C2H

4O-H] 

       

    167.11 C10H15O2 [Geranic acid-

H] 

       

    149.05 C5H9O5         

    131.04 C5H7O4 [Pentose-H-
H2O] 

       

    125.02 C6H5O3         

    113.02 C5H5O3         

    101.02 C4H5O3         

 

14 Geranic 

acid_rhamnosyl-

glucoside 

21.05 475.22 
([M-H]-) 

 C22H35O11  521.2217 
([M+FA]-) 

 C23H37O13     

    167.12 C10H15O2 [Geranic acid-
H] 

 475.22 C22H35O11     

    103.00 C4H7O3   307.10 C12H19O9     

    101.03 C4H5O3   247.08 C10H15O7 Glucose+Rha
mnose 

fragment] 

   

        205.07 C8H13O6 [Rhamnosyl+
C2H4O] 

   

        167.11 C10H15O2 [Geranic acid-

H] 

[Geranic acid-H]   

        163.06 C6H11O5 [Rhamnose-H]    

        145.05 C6H9O4 [Rhamnose-H-

H2O] 

   

        143.04 C6H7O4     

        103.04 C4H7O3     

        101.02 C4H5O3     

15 vomifolyl-glucoside 13.90 431.19 

([M+FA]-
) 

 C20H32O10         



115 
 

    385.19 C19H31O8 [M-H-FA]        

    223.13 C13H19O3 [Vomifoliol-H]        

    205.12 C13H17O2 [Vomifoliol-H-

H2O] 

       

    179.06 C6H11O6 [Glucose-H]        

    161.045 C6H9O5 [Glucose-H-

H2O] 

       

    153.09 C9H13O2 [Vomifoliol-no 

side chain] 

       

    152.08 C9H13O2         

    113.02 C5H6O3 -H         

    101.02 C4H5O3         

Table 4: The MS/MS spectra of the 15 peaks described in the section 5.3.5. Some of the precursors were adducts or ions from both positive and negative 

ionization modes  representing the same peak and are listed in the same lines. 
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5.3.6 Un-correlating putative identifications 
Ten MS/MS spectra corresponding to 17 peaks were putatively identified as Terpendiol 

conjugates. Nevertheless, their peaks area did not show unambiguous hydrolysis and they did not 

correlate with any of the remaining Terpendiols measured in the GC-MS analysis, so they remained 

unassigned. One peak was showing a fragmentation pattern corresponding to Vomifoliol-Pnetosyl-

glucoside but it did not show any hydrolysis. One further peak was putatively identified as oxo-alpha-

ionol_glucoside, but did not correlate with the 2 forms of oxo-alpha-ionol found using GC/MS. Two 

peaks were putatively identified as Hydroxy-Citronellol_Pentosyl-Glucoside, but they did not show any 

correlation with Hydroxy-Citronellol quantification. One peak was putatively identified as 

HomoVanillyl-alcohol-Pentosyl-Glucoside, but no correlations were found with HomoVanillyl-

alcohol. One peak was putatively identified as Hotrienol-pentosyl-glucoside, but again no correlation 

with the GC/MS data of the bound fraction after hydrolysis was found. For all the latter 4 peaks 

described, other unidentified/unexpected conjugates may contribute to the accumulation of the volatile 

form after enzymatic hydrolysis. 

One peak was identified as putative hydroxy-Geranic acid-Rhamnosyl-Glucoside, on the basis of 

the presence of a marker peak (183.0999, Image 7), already reported in another work as putative 

conjugated hydroxy-geranic acid (Yang et al. 2011). Three different peaks were identified as putative 

Terpentriol-Rhamnosyl-Glucosides, mostly because they showed clear fragmentation spectra of 

rhamnosyl-glucoside and a peak of 185.1170 (Image 8), corresponding to a Terpentriol-H. Both 

Terpentriol and hydroxy-geranic acid are expected to have a very high boiling point and were not 

expected to be seen in GC-MS. The MS/MS spectra of all the compounds described in this section are 

in the supplementary table 4 attached at the bottom of the thesis. 
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Image 7: MS/MS spectrum of the putative hydroxy-geranic acid_rhamnosyl-glucoside peak (FA adduct). Parent ion 

537.2205 

 

Image 8: MS/MS spectrum of the putative terpentriol_rhamnosyl-glucoside (FA adduct). Parent ion: 539.235 

 

5.3.7 AR2000 enzyme efficiency: post-experimental considerations 
The Rapidase AR2000 (Oenobrands) was used for the enzymatic hydrolysis of the glyco-

conjugated volatiles. The choice was made based upon several previous studies (Wightman et al. 1997; 

Baek et al. 1999; Schneider et al. 2004; Vrhovsek et al. 2014). A “golden hydrolysis procedure” has 
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still to be established, and any choice has some advantages and disadvantages. We ruled out the 

hydrolysis with strong acids, since it is known to produce several artefacts and because it is not similar 

to the hydrolysis happening in wine, where the pH is over 3. The enzyme-based strategy with AR2000 

was chosen as a milder approach. In a recent study by Flamini et al. (2014) demonstrated the potential 

of AR2000 for the complete hydrolysis of grape monoterpene glycosides. Nevertheless, we found that 

AR2000 had a non-specific effect on releasing glycosylated polyphenols (Image 9), as has also been 

reported in previous papers (Wightman et al., 1997). Furthermore, the data suggests that not all the 

possible precursors may have been hydrolysed by AR2000, as shown in Image 3; the three peaks 

before hydrolysis are three different Benzyl-pentosyl-glucosides: after hydrolysis the ion currents of 

two of them disappear, while one decreases but does not disappear. This indicates that AR2000 has a 

specific effect on the hydrolysis of some glycosylated precursors and could have a minor effect (or no 

effect) on other glycosides. The data suggests that the potential bound aroma released, measured using 

GC/MS after enzymatic hydrolysis, is only part of the overall potential bound aroma of our cultivars. 

To our knowledge, this is the first time that the efficiency of hydrolysis on several different classes of 

conjugates has been thoroughly tested against their quantitative release measured by GC-MS. 

 

 

Image 9: Formation of free Quercetin after enzymatic hydrolysis.  
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5.4 Conclusion 
The aim of the work described in chapter 4 was to putatively identify the Glyco-conjugated 

volatiles in the intact form using LC-MS analysis. Through features filtering (section 5.3.1), MS/MS 

analysis (section 5.3.3) and correlation of the LC-MS data with GC-MS data (section 5.3.5), I was able 

to identify 15 previously unreported glyco-conjugated volatiles. Moreover another 17 different glyco-

conjugated volatiles have been putatively identified.  

Even if some of the compounds showed to be unique to some grape varieties, the differences 

between the samples have not been studied in this work, because a better planned experiment to 

explore varietal differences has been performed and it is described in chapter 7. This work must be 

considered as a step forward in the exploration of the grape metabolome and as a basic work to the 

comparative analysis of grape species described in chapter 7. 
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6. The compound characteristics comparison method (CCC): current 

identification strategies, method development and its integration 

with state-of-the-art methodologies. 
The main bottleneck of the untargeted metabolomics analysis is the identification of the m/z 

spectra obtained from the LC-MS analysis. The putative number of metabolites creating MS spectra 

shown in the chromatogram is over one thousand, and their identification is very difficult. There are 

several problems in the identification of the compounds, which have been described in chapter 4. In 

this “proof of principles” study, I tried to overcome the limits of the analysis, developing a new method 

to establish a regression model between different metabolites, trying to demonstrate that metabolites 

showing similar features have also a similar structure, and a comparable chemical class. The coupling 

of this information with the MS/MS spectra helps to individuate the correct chemical formula and the 

most putative structure. 

This project has been carried out by me, under the supervision of Dr. Fulvio Mattivi and Dr. 

Pietro Franceschi. In this project, isotopic intensities extraction has been obtained using the script 

developed by Dr. Jan Stanstrup, to which I give credits in the description. R scripts development has 

been also supervised by Dr. Jan Stanstrup. 

6.1 Introduction 
In current untargeted metabolomics experiments, the identification of the metabolites is a key 

step to give a biological meaning to the experiment. Indeed, the identification of all the metabolites that 

show a different pattern between the control group (group A) and the treatment group (group B) would 

be the perfect condition in a metabolomics experiment. Unfortunately, this is not the case: 

identification of all the metabolites is far to be achieved, and if automating spectral matching between 

samples and chemical standards is slowly becoming a reality (Wehrens et al. 2014), the identification 

of the unknown metabolites is still a time-consuming and error-prone process. 

According to the metabolomics society, there are four accepted levels of identification, reported 

by Sumner et al. (2007). MSI level one corresponds to complete identification through comparison of 

two or more orthogonal characteristics (e.g. RT and MS spectra). MSI level 2 and 3 are putative 

identification of the compound name or the compound class respectively, while MSI level four is the 

raw RT and m/z signature. If the MSI level four sounds unpleasant to be presented in a scientific paper, 

achieving the MSI level 3 based only on the molecular ion (without having any further information) is 

already hard. There are four steps that allow achieving, or at least improving, the identification of a 
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compound: Chemical Formula calculation, MS/MS spectra interpretation, RT prediction and 

biosynthetic pathway comparison. 

The easiest and quickest way to achieve the MSI level 3 is to obtain the Chemical Formula. In the 

1950, a researcher named Van Krevelen, demonstrated that compounds with a similar H/C and O/C 

ratios are more likely part of the same chemical class (Van Krevelen, 1950). It displayed the results in  

a bidimensional plot, and dividing the plot in different parts, was possible to separate the dots in 

different chemical classes. Furthermore, the plot allows describing the reactions undergoing in the 

samples (Werner et al. 2008). Three-dimensional and multidimensional Van Krevelen diagrams exist 

(Wu et al. 2004), adding as further dimensions the ion intensity, the N/C and S/C ratios, etcetera. This 

diagram is valid for every matrix, and found large application in the oil and organic matter research. 

The main limit of the diagram is that it needs as input all the chemical formulas of all the signals 

obtained in the mass spec, which is achievable only with ultra-high resolution mass spectrometers (like 

FT-ICR-MS), and only up to 7-800 Daltons, with a limited number of elements. Formula calculation is 

a factor dependent from the accuracy in the determination of the m/z and isotopic pattern of the 

metabolites. In the instrument used in my experiment (“Synapt”) mass error can reach 30 ppm (Shahaf 

et al. 2013), and is in average around five ppm. The error in the detection of the isotopic clusters is 

usually low in the TOF instruments, but can be very high, when disturbing ions are detected at the same 

RT of the analytes of interest (Thurman & Ferrer, 2010). Therefore, it is not an easy task to calculate. 

MS/MS spectra acquisition and interpretation is probably the older and more reliable method to 

improve the identification of a compound. In the MS/MS spectrum, every ion signal in the spectrum 

represents a fragment of the selected parent ion. Because fragmentation is not a random process but 

follows common rules (at least in the same instruments), the MS/MS spectra can be compared with 

experimental spectra from databases (Massbank, Metlin)and assigned to putative structures. It also can 

be queried against in silico-fragmentation simulators like MetFrag, Metfusion and Sirius (Wolf et al. 

2010, Gerlich et al. 2013, and Rasche et al. 2010).  

On the other hand, MS/MS spectra acquisition is not a straightforward process: in Q-TOF, 

instruments there are mostly two ways to perform MS/MS spectral acquisition: 1) selecting the 

precursor ions (so-called MS/MS analysis) and 2) fragmenting all the precursors together, (MS
e
) using 

a ramp of collision energy and rebuilding the ion relationships with dedicated software. The first 

method is the one used in this thesis, and its limit (the possibility of selecting multiple distinct parents) 

has been already discussed in chapter 2. The second method works very well with very intense ions, 

but with medium to low intensity, ions the spectral reconstruction might become confuse.  
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The RT time prediction is based on the construction of regression model between the calculated 

physico-chemical properties of a set of compounds and their retention time (Boswell et al. 2011, Creek 

et al. 2011). If the model is stable, the retention time detected for an unknown metabolite can be used to 

filter out all the putative structures unlike to have such RT. A second approach would be the injection 

of the same standard set in different LC-MS method, and a successive alignment of the obtained RT to 

allow to predict the RT of the compounds inject in one of the method, with an acceptable confidence 

interval (Boswell et al. 2011, Stanstrup et al. 2013). 

The previous three steps allow the analyst to have one (or few) putative structures for an 

unknown biomarker. The predicted structures are further integrated in the metabolic pathways of the 

organism under analysis, to confirm their structure and explain their biological meaning. Probabilistic 

methods to assign the correct formula has been developed by Rogers et al. (2009), while Bayesian 

methods to assign structures based on spectrometric data coupled with pathway analysis has been 

established by Silva et al. (2014).  

The identification of the compounds is based on these four steps that are generally considered as 

independent filters, used one after another. Being used as independent “filters”, the measurement errors 

are affecting very much their filtering properties; big measurement error means broad filter or no-

filtering at all. On the other hand, these “filters” are describing a unique entity, the chemical structure.  

In literature, there are not methods that use the four “filters” as a whole. The interpolation of the 

information of the four “filters” together may overcome the effects that the error has on each of the 

“filters”, improving the confidence in the identification. However, how is that possible to combine four 

independent or semi-dependent characteristics? To what we compare eventually, the results obtained 

from a combined analysis of their characteristics?  

The answers to these two questions are the aim of this project and will be described and discussed 

in this “proof of principles” study. 

6.2 Basic concepts 

6.2.1 Multivariate statistics to predict the model performance 
In the introduction, we underlined the necessity of the treatment of the numerous characteristics 

of a compound as a whole. Many physico-chemical characteristics of the compounds are inter-

correlated and in some cases might have a nonlinear regression with the characteristics that we are 

trying to predict (the chemical structure and the chemical formula). This means that we need to apply a 
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regression model that is able to manage correlated predictors and eventually transform the values to 

have a linear model. To understand if this step was feasible, I subdivided the standards of our database 

according to their chemical classes and I used it as training set for my model (the list of the standard 

used is the same of Shahaf et al. 2013). The compounds have been subdivided in the following classes:  

1) Organic acids,  

2) Amines,   

3) Amino acids,  

4) Phenols (compounds containing a phenolic group),  

5) Polyphenols (compounds containing more than a phenolic group),  

6) Aromatic amines (compounds containing phenolic groups and amino groups) 

7) Polar lipids (lipids having a hydrophilic substituent) 

8) Apolar lipids 

9) Sugars 

To predict the chemical classes of the compounds a very useful method might be the Partial Least 

Squares discriminant analysis (PLS-da, Stahle & Wold, 1987). In this classification method, two inputs 

of data must be given to build the model: the X predictor’s matrix (independent variables) and the Y 

classification matrix (dependent variables). In the next section, which prediction variables and why 

these variables have been chosen will be explained.  

6.2.1.1 The predictors matrix (X matrix) 
For predictors, I intend the X independent variables that are measurable in a common high-

resolution LC-MS instrument. The most common predictors of a chemical structure are the 1) 

Retention Time (RT) and the 2) Monoisotopic Mass (MM). In reverse phase, the RT has a direct 

correlation with the hydrophobicity of the compound, which intrinsically depends on the chemical 

structure of the compound. Aromatic groups, aliphatic chains, and methilic substituents tend to increase 

hydrophobicity of a compound, while amino groups, acidic and alcoholic substituents increase the 

hydrophilicity. Being the RT a separation parameter, is obvious that different classes have different RT 

ranges as shown in the box plot of the image 1.  
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The 2) Monoisotopic Mass (MM) is calculated as the exact molecular weight of the most 

common isotopes of the ions present in the structure. In my model, it can be considered as a predictor 

of the complexity of the structure: higher the m/z, higher is the number of atoms and the number of 

subunits composing the chemical structure. In the Image 2 is shown the graph for this parameter of our 

in-house standard database; only few chemical classes have compounds with MM above 450 Dalton. 

The third parameter used is the 3) odd mass. This choice is based on the Nitrogen rule: in organic 

chemistry, at the basal level of valence of the atoms, the only atom having an even mass and odd 

valence is the Nitrogen. This means that all the structures having an even monoisotopic mass number 

will have an even number of Nitrogens (including 0), while the ones having an odd monoisotopic mass 

will have an odd number of Nitrogens in their formulas. So, whenever an odd monoisotopic mass is 

detected, an odd number of Nitrogens must be expected (one, 3, 5 and so on); obviously, an odd 

monoisotopic mass produces ions with even m/z. Some exceptions exist to this rule, but they regard 

only statistically 5% of the cases and few chemical classes (Vessecchi et al. 2007). This parameter 

helps in understanding the presence/absence of Nitrogen in the studied structures. 

 

Image 1: RT box plot grouped per 

classes.  As you may notice, some 

classes have a strict RT while 

others can have a broader value. 

The graph has been realized with 

STATISTICA 9 (StatSoft). 
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Another very important predictor is the  4) mass defect (md); for mass defect, is intended the 

decimal after the MM comas different from the zero value. It can be calculated by the formula  

 

𝑴𝑴 –  𝒏𝒎 =  𝒎𝒅 

 

With nm being the Integer mass (nominal mass chemically speaking). Indeed this value is 

independent of the number of Carbons in the Formula (because Carbon has 0 mass defect by IUPAC 

definition), but is a good indicator of the number of ions with positive mass defect (H and N) and 

negative mass defect (O, P, S). A filter build on the nominal mass and the mass defect has been already 

proposed by Zhang et al. (2003), to screen the presence of drug in human liquids (urine, blood, serum). 

In Image 2 is displayed the box plot of our home-build standards database. The md range is similar in 

many classes, except for polar and apolar lipids and for organic acids.  

 

Image 2: MM box plot grouped per 

classes. Only few classes go beyond 

450 Dalton. The graph has been 

realized with STATISTICA 9 

(StatSoft). 
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Next important predictor is the 5) Relative Mass Defect (RMD): it is calculated as the ratio 

between the mass defect divided by the nominal mass (nm) multiplied per 1000000  (expressed in 

ppm).  

 

𝒎𝒅/𝒏𝒎 ∗ 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 =  𝑹𝑴𝑫 

 

RMD has been demonstrated to be representative of the oxidation status of soils (Kramer et al. 

2001), and it is, in general, a scale to divide different metabolites in different chemical classes (Sleno, 

2012). In facts, RMD can be considered as the ratio of (H+N)/(C+O+P+S). According to Sleno (2012), 

“alkanes have RMD >1000 ppm, membrane lipids and steroids fall within 600 and 1000 ppm, sugars 

between 300 and 400 ppm, and organic acids with less than 300 ppm”. In the image 4, RMD of the 

different chemical classes of our internal database has been compared. The values reported from Sleno 

are respected from my classification; furthermore, it is very interesting to observe that some classes 

have peculiar ranges, like polyphenols (that in our dataset were the most represented class, with 125 

distinct compounds). On the other hand, this parameter is useless with amines that have a very broad 

range. 

Image 3: md box plot grouped per 

classes. The graph clearly shows that 

lipids may have a wide range of md, 

while the rest of the classes are 

generally not so variable. The graph 

has been realized with STATISTICA 

9 (StatSoft). 
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The 6) carbon content or number of Carbons (nofC) is an extremely important parameter. The 

amount of Carbons in facts is the main parameter that determines the number of bonds in an organic 

molecule structure and its inner complexity. In the Image 5, the box plot with the nofC of our internal 

standard database is displayed; generally, organic acids, amines, and phenols have a limited amount of 

Carbon in their formula. To calculate the amount of Carbons present in a structure, we need to take in 

consideration that the isotopic distribution of the Carbon is 98.9% for C12 and 1.1% for C13. 

Therefore, the ratio between the second isotope and the first is directly correlated with the number of 

Carbons. The number of Carbons can be calculated building a linear regression curve between the 

theoretical isotopic ratio between the first isotope and the second isotope and applying this curve to the 

data. The experimental error in Q-TOF instruments is generally very low with an error in the range of 

the ± √(correct value). Low molecular weight compounds have low A+1 intensity, but the elemental 

composition calculations is considered problematic only for masses above 300 Da (Kind & Fiehn, 

2006; Knolhoff et al. 2014). The number of Carbons is a direct indicator of the complexity of the 

Image 4: RMD box plot grouped per 

classes. The graph clearly shows that 

polyphenols and organic acids have a 

strict range of possible RMD, despite 

of their wide variability. The graph 

has been realized with STATISTICA 

9 (StatSoft). 
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structure and the number of bonds that a structure may have. The construction of a linear regression 

curve for nofC calculation is discussed below. 

 

 

 

The 7) percentage of Carbon mass (pC) is simply the fraction of the monoisotopic mass 

represented from the amount of Carbon content. This value is obtained by the formula  

 

(𝒏𝒐𝒇𝑪 ∗ 𝟏𝟐)/𝑴𝑴 =  𝒑𝑪 

 

This parameter is indicating somehow the ratio between all the other elements and Carbon, and it 

is a good indicator of the chemical class of the compounds. For example a compound containing only 

Carbon and Hydrogen will have a very high pC, because the ratio between Hmass/Cmass is 1/12. On 

the other hand, compounds rich in other elements like Oxygen, Nitrogen, Sulfur and Phosphorous have 

a very low pC (for example acids or sugars). In the image 6 the pC of our home-build database is 

displayed. As shown in the graph, sugars, organic acids and apolar lipids have very narrow ranges, 

while all the other classes have a wider range. Interestingly, amino acids show a wide range, shifted in 

comparison to almost all the other classes. 

Image 5: nofC box plot grouped per 

classes. In the graph, some classes 

have a very narrow range, while 

others very wide. The graph has been 

realized with STATISTICA 9 

(StatSoft). 
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From the rmass is possible to calculate the 8) residual Relative Mass Defect (rRMD), that is 

calculated as the RMD of the residual mass (rmass) after the subtraction of the Carbon mass. This 

value is calculated like  

 

𝑴𝑴 − (𝒏𝒐𝒇𝑪 ∗ 𝟏𝟐) =  𝒓𝒎𝒂𝒔𝒔 

𝒎𝒅(𝒓𝒎𝒂𝒔𝒔)/𝒏𝒎(𝒓𝒎𝒂𝒔𝒔) ∗ 𝟏𝟎𝟎𝟎𝟎𝟎𝟎 =  𝒓𝑹𝑴𝑫 

 

 This value is intended to separate classes that have an inconstant elemental ratio the classes with 

constant elemental ratio. A clear example can be found in image 7. The box plot shows that 

polyphenols, despite of the class size (125 different metabolites), show a very narrow range, while 

polar lipids, show a very wide range, but it is almost not overlapping with the polyphenolic one. 

 

Image 6: pC box plot grouped per 

classes. Sugars, organic acids and 

apolar lipids have very narrow 

ranges. The graph has been realized 

with STATISTICA 9 (StatSoft). 
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The last parameter used is the 9) third Isotope Mass Defect and Pattern (tIMDP), that basically 

takes in consideration the influence of the third isotope in formula calculations. It is well know that 

many elements have peculiar isotopic patterns (i.e. Sulfur, Potassium, and Chlorine). The peculiar 

pattern is helpful to understand when these kinds of  compounds are present in the formula or not. If for 

Potassium, Chlorine, Bromine and others, the intensity shift of the third isotope is quite evident and can 

be used directly as marker of their presence, this is not the case for Sulfur. Sulfur has a unique isotopic 

distribution, with 95% of the first isotope, 0.7% of the second isotope and 4.2% of the third isotope. 

The 4.2% at the third isotope can be confused with high amount of Oxygen in the formula, especially 

because usually intensity errors are frequent in low intense ions. This often confuses the formula 

calculations. The tIMDP combines the isotopic pattern with the mass defect of the isotopes: the third 

isotope of a molecule containing Sulfur has a mass defect inferior to the mass defect of the first isotope 

(Thurman  & Ferrer, 2010) . This means that when in the formula there is Sulfur, the third isotope 

shows a higher intensity and a decreased mass defect. Combining these two informations is possible to 

assess the presence/absence of Sulfur in the formula. 

 

Image 7: rRMD box plot grouped 

per classes. In the graph, lipids show 

very different ranges from all the 

other classes.. The graph has been 

realized with STATISTICA 9 

(StatSoft). 
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Sulfur mass S(32) 31.972072    

 

S(33) 32.971459      S(34) 33.967868    S(36) 35.967079  

Isotopic distribution 95.02 0.75 4.21  0.020 

Image 8: In the picture, the isotopic mass defect of the Sulfur34 is underlined. IMD of Sulfur34 is lower than the one 

from Chlorine and Bromine. The picture is from Thurman & Ferrer, 2010. In the table, Isotopic distribution and masses are 

displayed. The data displayed is from http://www.sisweb.com/referenc/source/exactmas.htm 

6.2.2 The responses matrix (Y matrix) 

6.2.2.1 Classification approach 

The next step of a model building is to choose the responses that we want from the model (the 

questions we are asking to the model). As shown in the previous section, each of the X independent 

variables can work as a singular classifier, giving a more or less stringent classification of the different 

chemical classes. The first approach tested in this work, was to use the potential of the Soft 

Independent Modeling of Class Analogy approach (SIMCA), coupled with PLS-da analysis to take 

advantage of the classificative properties of each of the X predictors (Wold, 1976, Wold et al. 1989), to 

predict the chemical classes of the different metabolites. In the SIMCA approach, the classification of 

the observations is achieved determining the principal components of the X matrix. The observations 

are geometrically mapped in a components-driven hyper plane and the class of the observations is 

assigned according to their Euclidean distance with a confidence interval of 95%, determined through 

cross-validation (CV) with PLS-da algorithm. This classification method has been demonstrated to be 

very valuable and versatile, being adaptable to different datasets and different principal component 

analysis (Branden & Hubert 2005, Bylesio et al. 2007). 
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The subdivision done by the SIMCA approach is not sharp; if an observations falls in an area 

between two classes, it can be assigned to both, according to the confidence intervals (previously 

calculated with CV). This classification method was thought to be used to assign a chemical class to 

every metabolite according to the X matrix and their respective classes. I developed this part using 

SIMCA-P+12.0.0 software (Umetrics). First a PCA analysis is performed to see if the components can 

describe the variability hold in the X matrix. The PCA plot is shown in image 9. The software returned 

two components, accounting for 68% of the total variability. The Different classes have been colored, 

to observe their plotting. It is obvious that components can describe the variability present in the X 

matrix. 

 

 

Image 9: A PCA plot of the X matrix of all the 446 compounds from the internal standards database. The first two 

components account for about 68% of the variability. Some class separated clearly after two components (amines, apolar 

lipids and polyphenols), while others were overlapping. 
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The next step was to fit a PLS-da model, to see if the partial least square analysis could predict 

the classes. Unfortunately this was not the case. In the image 10, the histograms indicate the total 

amount of variability explained by the model after fitting the next component. The model had eight 

components, and in total they could account for the 36% of the total variability of classes as shown in 

the image 10. 

 

Image 10: The cumulative amount of Y variance explained (classes) from the X matrix after eight components. A good 

prediction is usually above the 0.5 value.  

 

To better evaluate the classificative properties of the model and try to understand why the fit was 

not so promising I performed the misclassification analysis. In the misclassification analysis, using CV, 

all the compounds present in the model are assigned to one class, according to the highest classification 

value obtained by the model. The results are displayed in table 1. 

 
Table 1: The misclassification table of the compound classes. The number of compounds assigned to the correct class is 

underlined in green, the ones assigned to the wrong class in yellow.  
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In the misclassification table, five of the chemical classes have prediction accuracy above 80%, 2 

above 55% and 2 below 40%. The overall accuracy is 76%, that is, so far, not so bad. On the other 

hand, I must consider that the suggested thresholds for assignment to a class (0.3) and to unique 

assignment to a class (0.5) have not been used. This means that this data is over-estimated. This was so 

far the best achievement in classification that I have obtained from the PLS-da. I tried to classify the 

metabolites according to different parameters (biosynthetic pathway, or using wider or narrower 

chemical classes) but for many reasons not discussed here, it was impossible to me to go beyond this 

value. The idea I got from the model is that the classification of the metabolites in different classes is 

too weak; many metabolites are structurally similar to each other, and their separation in different 

chemical classes makes no sense. As example, I report the structure of Amygdalin: according to the 

rules of the classification stated above, amygdalin falls in the aromatic amine group. Nevertheless, 

from its structure, it is obvious that it is very similar to other phenolic compounds, with the only 

difference of having an immino group (image 11).  

 

 

Seems legit that for this kind of compounds the proposed classification strategy is misleading, 

and that the classification approach should be inclusive (one metabolite could be part of multiple 

classes), but this would not be so informative from my point of view. One of the explored solutions 

would be to create narrower classifications, but then the problem of number of replicates arises. On the 

other hand, the use of wider classification is useless. Furthermore, the main idea of this method was to 

improve the identification of the metabolites and not to have a dry classification, which could not really 

help on the identification. So this strategy was abandoned, and a wiser approach was used: the 

regression approach. 

Image 11: Amygdalin, An Immino-phenol diglucoside 

commonly found in the seeds of many fruits.  The structure 

here reported is from the ChemSpider repository: 

www.chemspider.com 
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6.2.2.2 Regression approach 
In the regression approach, the goal of the model is not the direct classification of the 

metabolites, but the creation of a regression model between the X matrix and the subunits that form the 

structure of metabolites. Indeed every chemical structure is composed of multiple substructures, like 

phenolic groups, aliphatic chain, and acidic substituents and so on. In this approach, the subunits are 

the Y matrix of the model. To create a regression model, a Partial Least Squares regression (PLSr) is 

performed using the “pls” R package from Mevik et al. (2013). The first step is to create a Y matrix of 

the compounds dataset according to their chemical subunits. Thirteen distinct Y variables have been 

chosen according to the variability present in our in-house dataset, here listed:  

1) Polymeric structure (pol.str.)  the presence in the structure of two clear distinguishable 

subunits 

2) Aliphatic chain (ali.cha.)  an aliphatic chain with a length included between 4 to 12 CH2 

units 

3) Long aliphatic chain (l.ali.cha.)  an aliphatic chain longer than 12 CH2 subunits 

4) Aromatic ring (aro.gro.)  the presence of  resonating rings of whichever nature 

5) Homo-cycles (hom.cyc.)  the presence of phenolic rings in the structure 

6) Hetero-cycles (het.cyc.)  the presence of resonating rings containing different atoms than 

Carbon and Hydrogen 

7) Presence of Nitrogen (pre.nit.)  the presence of Nitrogen in the structure 

8) Number of Nitrogens (n.N.)  the number of Nitrogens in the structure 

9) Presence of Sulfur (pre.Sul.)  the presence of Sulfurs in the structure 

10) Presence of Phosphorous (pre.Pho.)  the presence of Phosphorous in the structure 

11) Glycosidic moieties (gluc.)  the number of glycosides present in the structure 

12) Acidic group (Ac.gro.)  the presence of an acidic group in the structure 

13) Aliphatic substituent (Sho.cha.)  a side aliphatic substituent of length minor than 4 CH2 

Starting from these 13 parameters, I created a Y matrix for all the metabolites manually checking 

their structure from the repository ChemSpider (www.chemspider.com). An automatic attempt of 

extraction of the substructures from the SMILES code has been also attempted. The results of this 

approach are the goal of this chapter and are described deeper in the next section. 

http://www.chemspider.com/
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6.3 Results: validation, error influence and external validation. 

6.3.1 Data pre-treatment 
The PLSr statistical test was used in this analysis. A straightforward description of necessary 

steps to achieve a reliable and robust data description is given in the paper of Wold et al. (2001); the 10 

steps descripted have been used as reference in my work. One important point is to exclude the outliers 

in the analysis, which may weak the statistical power of the test. To mine the outliers, a useful tool is 

the Robust PCA analysis from the package “rrcov” (Todorov & Filzmoser, 2009), a PCA method that 

determines the distances of the observations according to the median, instead of the mean. After Robust 

PCA analysis, The compounds with a score value about 30 have been excluded (Image 12). 

 

  

 

6.3.2 Method validation 
PLS regression analysis have been performed using the X and Y matrices from the remaining 

compounds. The dataset of 439 metabolites have been fit in the model using the o-score-pls function of 

the “pls” package (the diverse algorithm have been tested and o-score-pls gave the best results). The 

method gave in automatic 9 different components; to avoid data over fitting, the RMSEP of every Y 

has been tested and I concluded that the exclusion of the last component, does not affect the accuracy 

of the predictions. The model run with the 8 components gave good explained variances for many Ys, 

Image 12: Robust PCA of the 

whole dataset of standards, 

injected in my LC-MS 

instrument. The compounds 

above 30 in the score distance 

have been considered as outliers 

and excluded from the further 

analysis. 
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reported in table 2. The total variance of the X matrix explained by the model is 99.51%. The Y 

responses with values above 50% are considered well predicted. The “pls” package enforces these 

results performing Cross-validation on the dataset, and the cross-validated results were not different 

from these ones, indicating that the model is robust and more likely is not suffering of over-fitting. 

Nevertheless the 50% threshold is just a conventional level and not an absolute value; moreover cross-

validation is a reliable tool, but it can be biased (Hall & Marron, 1987). So the dataset must be tested 

with a validation set, to evaluate better the absence of over fitting and the prediction properties of the 

model. 

 

TRAINING: % variance explained after each component    

 1° comp 2° comp 3° comp 4° comp 5° comp 6° comp 7° comp 8° comp 

X 30.50904 67.981 76.13 87.503 95.469 98.56 99.03 99.51 

pol.str 52.0689 55.608 55.894 56.261 56.497 56.54 56.6 59.18 

ali.cha 0.04208 66.886 69.906 70.029 70.032 74.19 74.41 74.67 

l.ali.cha 2.7304 55.724 63.402 63.507 64.449 73.56 74.1 78.2 

aro.gro 55.78775 64.322 75.949 78.686 79.528 85.08 89.84 90.61 

Hom.cyc 58.74286 64.525 76.253 78.206 79.437 85.4 93.13 94.71 

Het.cyc 2.51668 4.367 6.705 11.926 12.356 13.56 19.21 19.24 

pre.nit 30.51252 31.669 31.872 64.045 65.416 65.65 65.68 65.84 

n.N 9.88755 11.964 14.975 25.923 26.646 26.74 27.36 29.84 

Pre.sul 0.73801 1.614 23.256 43.891 97.616 99.98 99.98 100 

pre.Pho 0.08192 3.992 4.974 5.817 10.95 13.73 14.84 18.41 

gluc 11.55042 19.335 30.113 30.357 42.645 43.49 50.75 66.07 

Ac.gro 4.16389 4.7 7.788 7.869 8.363 15.81 15.82 17.64 

Sho.cha 1.11194 19.627 19.722 20.642 21.033 24.95 24.97 25.14 

Table 2:  The explained variance after each component of the X matrix (first value) and of every Y response. In PLSr 

analysis, the threshold indicating good regression is 50%.  

 

In the validation analysis, the dataset of compounds splits in two, a training set and a validation 

set. The validation set is composed of 30 random compounds from the whole set, and the remaining 

409 are used as training set. In this test, training set is used to train the model, and the validation set Y 

responses are then predicted from the model and compared to the original values. The difference 

between the predicted values and the real ones gives an estimation of the model prediction power. A 

more appropriate validation test consists in the iteration of the random splitting per 1000 times, trying 

to predict the Y responses every time and measuring the average and the standard deviation of the 

percentage of correct predictions performed by the model.  
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The model built with the PLSr statistical test has been evaluated with the test described above. 

1000 random validation sets have been created and they have been evaluated according to the 

prediction values for each Y response. As the predictions were not integer numbers, the values have 

been round to the closest integer.  The predicted values were subtracted from the real values and 

averaged across the 1000 predictions; it was thus calculating the average of correct assignments across 

the 1000 iterative tests (parameter A). It showed good prediction properties (table 3).  

  

 8 components  

Y matrix average % σ%  

pol.str. 89.43 5.68 

ali.cha. 95.85 3.56 

l.ali.cha. 99.52 1.22 

aro.gro. 86.31 6.07 

Hom.cyc. 90.17 5.28 

Het.cyc. 89.71 5.61 

pre.nit. 91.65 4.97 

n.N. 68.68 8.34 

Pre.sul. 100.00 0.00 

pre.Pho. 97.32 2.90 

gluc. 82.22 6.87 

Ac.gro. 68.79 8.02 

Sho.cha. 80.50 6.82 
 

The table 3 clearly shows that the there is a relationship between the X and Y matrices. Anyways, 

during the evaluation of a new model, it is necessary to consider the probability that the existing 

relationship is due to chance or is only apparent. To evaluate the performance of the model in this test, 

it is necessary to know how the model would perform when there is not relationship between X and Y 

matrices in the validation set. To break the supposed relationship between X and Y matrices, 

permutation test has been performed (Lindgreen et al. 1996). In the permutation test, the Y matrix is 

confused, scrambling the Y values of the variables. The result is that if relationship between X and Y 

matrices exists, this relationship disrupts after scrambling the variables. In the image 12, a comparison 

between the permuted and un-permuted data is shown. 

 

  

Table 3: Percentage of the averaged 

correct values predicted by the model 

during 1000  iterative rounds. In the table 

also the standard deviation is reported.   
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The different distributions have been tested with Mann-Whitney U test to see if the differences 

are statistically relevant or not. Results are shown in table 4. As shown in the table, two responses did 

not pass the test, the statistical test could not refuse the null hypothesis (distribution is the same for 

both data).  

 

% un-permuted data permuted data 

pol.str. 89.10 51.53 

ali.cha. 95.47 71.19 

l.ali.cha. 99.62 83.38 

aro.gro. 88.03 32.51 

Hom.cyc. 92.45 34.71 

Het.cyc. 89.77 89.84 

pre.nit. 91.44 65.59 

n.N. 69.93 51.75 

Pre.sul. 100.00 94.44 

pre.Pho. 97.47 97.58 

gluc. 83.32 58.76 

Ac.gro. 68.58 49.59 

Sho.cha. 80.50 69.33 

A 

B 

Image 12: A comparison between un-

permuted (A) and permuted (B) percentage 

of correct values for the phenolic rings 

(homocycles). The distributions are 

reported as histogram of correct values, 

across 1000 times test replicates. The data 

shows clearly that the permuted data has a 

normal distribution and random accuracy, 

while the un-permuted data has not a 

normal distribution and is one-side tailed.  

Table 4: A comparison of the number of correct 

predictions between un-permuted and permuted data. 

The yellow labeled data indicates the responses that 

do not show any difference in the distribution 

between the permuted and un-permuted data.  
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Nonetheless, the values obtained from the permuted test did not correspond to the random 

prediction of the values of the Y matrix. For example, “l.ali.cha.” has two possible values: “0” 

(absence) and “1” (presence), therefore, the expected random assignment would have an accuracy of 

about 50%. In my case, the permuted accuracy was in average 83.38% (table 4). Due to the high 

number of 0 in the values of the responses of “l.ali.cha”, I suspected that the model was assigning 

always “0” and it had false predictive properties. Therefore, the estimation reported in table 4 based on 

the parameter A is necessary to demonstrate that there is prediction power in the model, but it is non-

sufficient. It needs other parameters to understand better the predictive power of the model.  

To overcome this limit, I performed another test, calculating the number of non-zero response 

values predicted correctly from the model (parameter B). Results are shown in table 5. As shown, the 

ability of the model to predict the non-zero values is a lot higher than in the permuted data, indicating a 

good prediction behavior. As observed in the previous test, the model is not able to predict the 

heterocycles and the presence of Phosphorous. Nonetheless, there are another two parameters scarcely 

predicted: the number of Nitrogens and the short aliphatic substituent, which have a prediction value 

below 50% (it is more effective to give random chances than to use the model in this case).  

 

% un-permuted data permuted data 

pol.str. 78.18 38.40 

ali.cha. 78.77 15.77 

l.ali.cha. 97.73 10.26 

aro.gro. 85.51 23.69 

Hom.cyc. 95.92 23.67 

Het.cyc. 0.44 0.13 

pre.nit. 69.27 19.28 

n.N. 40.57 20.00 

Pre.sul. 100.00 4.90 

pre.Pho. 0.00 0.00 

gluc. 66.54 21.98 

Ac.gro. 63.15 40.67 

Sho.cha. 37.16 13.67 

 

On the other hand, I would like to underline the extremely good performance on the prediction of 

the presence of long aliphatic chains, the phenolic rings (homocycles) and the presence of Sulfur, 

indicating that the X predictions strongly relate with these Y responses. In particular, the phenolic rings 

Table 5: A comparison of the number of correct 

predictions of the non-zero responses between un-

permuted and permuted data. The yellow labeled data 

indicates the responses that do not show any difference in 

the distribution between the permuted and un-permuted 

data. The bold numbers indicate very good predictive 

power of the model. 
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is very interesting; in the model there are up to 9 possible values that the model can predict, and out of 

these 9 answers it gets the correct one in the 95% of the cases.  

In table 6, I performed the same test, calculating the average of wrong prediction of zero values 

(parameter C). In this test, higher the value, lower is the prediction power of the zero Y responses. As 

shown, the model has good capacity to predict the absence of “pol.str.”, “ali.cha.”, “l.ali.cha.”, 

“pre.nit.” and “Pre.sul.”. The bad predictions for Het.cyc and Pre.Pho confirmed also in this test.  

 

% un-permuted data permuted data 

pol.str. 0.67 38.24 

ali.cha. 0.21 15.56 

l.ali.cha. 0.26 9.24 

aro.gro. 8.62 57.45 

Hom.cyc. 11.23 55.60 

Het.cyc. 0.06 0.08 

pre.nit. 0.55 18.45 

n.N. 19.63 38.01 

Pre.sul. 0.00 2.92 

pre.Pho. 0.00 0.00 

gluc. 10.81 28.52 

Ac.gro. 27.16 44.46 

Sho.cha. 5.36 12.70 

 

Next step in the analysis was to consider the error in the measurements that the LC-MS 

instruments make during data acquisition. The error in the measurements is multifactorial, and 

instrument-specific. There are some general considerations on the error that needs to be taken in 

account, according to the type of instrument used. In my experiments, I used SYNAPT G1 mass 

spectrometer (WATERS, Manchester, UK). It is a Q-TOF with a maximum resolution of 17.500 

measured on the (M + 6H)^6+ isotope cluster from bovine insulin (m/z 956) in negative and maximum 

resolution of 17.500 measured on the (M - 4H)^4- isotope cluster from bovine insulin (m/z 1431) in 

positive. The vendor accuracy of above assures an error less than 2 ppm in mass accuracy, in absence 

of 1) interference and 2) enough intensity.  

1) Interfering analytes can be whichever analyte has an ion of m/z close enough to the ion of 

interest under analysis (Thurman & Ferrer, 2010). “Close enough” depends from the 

resolution of the instrument. Due to the untargeted nature of the untargeted analysis, in theory 

Table 6: A comparison of the number of wrong 

predictions of the zero responses between un-permuted 

and permuted data. The yellow labeled data indicates the 

responses that do not show any difference in the 

distribution between the permuted and un-permuted data. 

The bold numbers indicate very good predictive power of 

the model. 
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interference can be everywhere in the chromatograms and MS spectra, it is not possible to 

avoid it, and very difficult to recognize.   

2) Shahaf et al. (2013), reported the construction of a mass accuracy error surface according to 

ion intensity, based on the same instrument here used. In their work, they report that in most 

cases the error is around 5 ppm, has a 95% confidence interval below 30 ppm, but can reach 

very high values (100 ppm) when very low intensity ions are measured. Even in new 

instruments, including last version of Orbitrap, errors over 10 ppm are reported when the 

intensity is low (Knolhoff et al. 2014). 

Isotopic intensities measurements also suffer of error in their estimation. The error is instrument-

specific. Generally TOF instruments are reported to have a better estimation of the intensities (Kind & 

Fiehn, 2006) with an error around 2%, while Orbitrap can have errors above 5%. Nevertheless, the 

error in the real data can be bigger (Knolhoff et al. 2014). 

In this study, I evaluated the effect of both mass accuracy error and Carbon content prediction 

error on the regression model. Results displayed below. First, the mass measurement error has been 

evaluated. The mass values of the validation set have been added of ± 5, 10, 30, 50, 100 ppm of mass 

error, and a curve has been built using the values of correct Y predictions. In this test, the model 

showed three main behaviors: 1) Mass error dependent predictions. 2) Mass error independent 

predictions. 3) bad predictions. Examples of the three behaviors are reported in the Image 13.  

The mass error dependent predictions showed a very interesting result. The prediction power of 

the model was not dropping with ten ppm error, and it was still acceptable with 30 ppm error. This is 

probably the main finding of this study: the combined use of multiple predictors can overcome the error 

in single or few of them. In this case, the mass error was affecting the predictors 4 (mass defect), 5 

(relative mass defect) and 8 (residual relative mass defect). Despite of three out of nine predictors had 

wrong values, the predictions were correct for up to 90% of the cases when ppm error was 10 ppm. It is 

redundant to say that with 10 ppm error, it is already very difficult (if not impossible), calculate the 

chemical formula (Kind & Fiehn, 2007). 

If the first and the third group were clearly expected, the presence of a group of responses not 

affected by the mass error was unexpected. The presence of this group indicates that some Y responses 

are orthogonal to some X predictors. This important finding will be demonstrated in the next section.  
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Polymeric structure, presence of Nitrogen, presence of Sulfur, Glycosidic moieties, Acidic groups 

and Short chain were mass error independent responses. Aromatic rings, aliphatic chain, long aliphatic 

chain and Phenolic rings were mass error dependent responses, and the remaining ones (heterocycles, 

number of Nitrogens, and presence of Phosphorous) were bad predicted. 

Image 13: The curves represent the 

amount of correctly predicted non-zero 

values across 1000 iterations of the 

test (parameter A & B), with error 

value ranging from -100 ppm to 100 

ppm. The dashed line indicates the 

standard deviation of the predictions, 

the green lines indicate the 30 ppms 

limits. The red lines are the average, 

minimum and maximum values 

obtained from the permutation tests. 

 

The phenolic.rings (A) is a good 

example of “mass error dependent 

response”, with the amount of 

predictions dropping with mass errors 

superior to 30 ppms.  

The aliphatic chains (B) is an example 

of “mass error independent response”, 

having the prediction value slightly 

varying across the mass errors.  

The heterocycles (C), and the presence 

of Phosphorous showed to be 

unpredictable from the model. 

A 

B 

C

B 
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The same test has been performed on the Carbon estimation errors Cees (the calculation of the 

Carbon content will be described in the next section). It showed similar results to the mass 

measurement error. The accuracy in the determination of the number of Carbons is necessary to predict 

many responses. Some of the responses showed a peculiar trend, shown in the Image 14. 

 

  

 

 

 

Image 14: The curves represent the 

amount of correctly predicted non-zero 

values across 1000 iterations of the test 

(parameter B), with error value ranging 

from -5 to + 5 Cees (Carbon Estimation 

Errors). The dashed line indicates the 

standard deviation of the predictions, the 

green lines indicate the 1 Carbon limits. 

The red lines are the average, minimum 

and maximum values obtained from the 

permutation tests. 

The aromatic rings (A) is a good example 

of Carbon estimation error dependent 

response, with the error increasing in both 

sides of the error surface. 

 

The presence of Nitrogen (B) is a good 

example of Carbon estimation error 

independent response, with the predictions 

unaffected or slightly affected by the error. 

The long aliphatic chain (C)  is an example 

of high positive error depndent response. 

In this class the estimation was dropping 

with values above 3 Carbons.  

A 

B

A 

 A 

C

B

A 

 A 
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The aromatic rings, phenolic rings, Glycosidic moieties, and the short chains were Carbon 

estimation error dependent responses. The presence of Nitrogen, short chain and the presence of Sulfur 

were carbon estimation error independent responses. The heterocycles and the presence of Phosphorous 

were bad predicted response. In this test, there were also responses that showed a peculiar trend; their 

predictability was dropping only in one side of the Carbon estimation error. The Polymeric structure, 

aliphatic chain and long aliphatic chain were dropping with Carbon estimation error above 3, probably 

because the values were overtaking the maximum number of carbons (calculated as Nominal mass/12), 

and were creating impossible combinations. The number of Nitrogens and the acidic group were 

dropping with Carbon underestimation of two units.  

RT error has been evaluated as well. Errors in the predictions have been found with values above 

10 minutes. In real chromatographic conditions, 10 minutes shift is impossible, so I concluded that the 

error in RT shift is not a limiting factor.  

In conclusion, I found that errors below 10 ppm in the mass measurement, and below ± 1.5 

Carbons in the carbon estimation allow the model to have good prediction properties and error in 

estimation of the substructures below 20% of the cases (apart for the ones bad predicted). Last in this 

section, an experimental condition like estimation has been performed, using as errors the normal 

distribution around the correct values of 10 ppm and 1 carbon error as standard deviation. Results are 

displayed in table 7. 

 

% Parameter A permuted 

data 

Parameter B permuted 

data 

Parameter C permuted 

data 

pol.str 88.67 51.53 77.78 38.40 1.22 38.24 

ali.cha 95.53 71.19 80.38 15.77 0.78 15.56 

l.ali.cha 98.85 83.38 97.35 10.26 1.01 9.24 

aro.gro 76.62 32.51 71.49 23.69 16.21 57.45 

Hom.cyc 81.21 34.71 76.61 23.67 13.99 55.6 

Het.cyc 89.91 89.84 4.08 0.13 0.58 0.08 

pre.nit 91.38 65.59 68.82 19.28 0.72 18.45 

n.N 68.35 51.75 40.80 20.00 21.85 38.01 

Pre.sul 100.00 94.44 100.00 4.90 0.00 2.92 

pre.Pho 97.44 97.58 0.00 0.00 0.07 0 

gluc 82.38 58.76 63.78 21.98 11.00 28.52 

Ac.gro 65.43 49.59 59.66 40.67 30.05 44.46 

Sho.cha 80.24 69.33 37.50 13.67 5.81 12.7 

Table 7:  The results of the test with normal distributed error in mass measurement and Carbon content estimation. 
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The table 7 shows that the model suffers a slight loss of predictability when the normal 

distributed error is applied. The main parameters suffering from the error are the number of aromatic 

rings, the number of phenolic rings and the number of glycosides. The first two parameters have both 9 

possibilities (from 0 to 8), so this means that when the error is applied, an increased number of 

compounds are predicted with the wrong amount of rings. The third one has 3 different possibilities. 

On the other hand, I also calculated the average of difference between the predicted number of these 

responses and the real number, and I found that the average error is 1.10, indicating that most of the 

times, the difference between predicted and the real number is only 1.  

The remaining predicted responses showed non-significant differences with the ones from the 

previous tests, because as shown earlier they are unaffected by the errors, especially if the error is 

small. The orthogonality between these X predictors and Y responses is shown in the next sections. 

6.3.3 Carbon content prediction  
One of the main parameter of this model is the calculation of the number of Carbons present in 

the chemical formula of the compounds. Due to its peculiar isotopic distribution, Carbon results to be 

one of the easiest element to be calculated. In nature, there are only two isotopes of carbon stable: 

Carbon
12

 and Carbon
13

. The distribution of the isotopes is 98.9% for the first one and 1.10% for the 

second one. To give an example and show how precise this relationship is, in image 15 is shown the 

theoretical linear regression between the number of carbons and the ratio between the first and the 

second isotope of the whole compound set used in this experiment. As you can see, the regression is 

linear, with a R
2
 of 0.9969 and a standard error of 0.4851.  

 

Image 15: The theoretical regression 

between the number of carbons (Y 

axis) and the ratio between the two 

carbon isotopes (X axis). The R
2
 = 

0.9969 and the standard error is only 

0.4851. 
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In this model, I needed a method to calculate quickly and reliably the number of Carbons. To 

extract the isotopic intensities from the peaktable, I used the script developed by Dr. Jan Stanstrup 

based on the intensity-weighted means, described by Stanstrup et al. (2013). This method is very 

reliable in the data extraction and has been demonstrate to have an average error of 2.34% in 

comparison to the theoretical ratio. As I needed only the number of Carbons, I used the linear model 

showed in Image 15 to calculate the number of Carbons, using the values from the intensity weighted 

mean method.  

6.3.4 Orthogonal factors of the model 
As shown in section 5.3.3, some of the Y responses were unaffected from the error in the mass 

measurement and carbon content. To confirm this finding, the model has been rebuild excluding the 

values from the mass accuracy, i.e. mass defect, relative mass defect and residual relative mass defect 

(md, RMD, rRMD) and the values from the Carbon content, i.e. number of Carbons, percentage of 

Carbons and residual relative mass defect (nofC, pC, rRMD). The values from the training of these 

models have been compared to the original one, to see which Y responses are affected by these X 

predictors. Results are shown in table 8. 

 

 original data no mass accuracy no carbon content 

Y responses 8 comps 6 comps 6 comps 

pol.str 59.18 53.96 58.01 

ali.cha 74.67 48.32 71.29 

l.ali.cha 78.20 46.02 75.75 

aro.gro 90.61 59.59 67.75 

Hom.cyc 94.71 62.60 65.94 

Het.cyc 19.24 14.90 14.10 

pre.nit 65.84 62.82 65.77 

n.N 29.84 25.97 25.63 

Pre.sul 100.00 100.00 100.00 

pre.Pho 18.41 20.27 8.17 

gluc 66.07 60.89 41.26 

Ac.gro 17.64 14.62 11.50 

Sho.cha 25.14 19.46 23.82 

 

The table shows that some of the responses are almost unaffected from the lack of some of the X 

predictors. This means that their information is orthogonal or almost orthogonal to the responses. On 

Table 8: In the table, the Y 

variance explained from the 

X are compared between the 

original model (2
nd

 row), the 

model with md information 

(3
rd

 row) and the model 

without Carbon content 

informations (4
th

 row). The 

red color underlines the 

values that drop after the 

exclusion of some x 

predictors from the model. As 

you may notice, some of the 

Y responses are not affected 

by the absence of some X 

predictors, indicating that this 

information is orthogonal to 

the Y responses 
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the other hand, the aromatic rings and the phenolic rings are very affected from the lack of some 

predictors. 

6.3.5 Predictability of the test set. 
In model building, the last step is to evaluate the performance of the model on an independent 

test set (Szymanska et al. 2012), a set not used for the creation of the model. In this project, my idea 

has been to obtain a test set from real data (grape samples), instead of in-silico data. In facts, I wanted 

to evaluate also if the model is capable to predict structures in real cases and how big is the error of 

prediction in the real samples. 

In the experiment described in chapter 6, I identified the unknown compounds using their 

MS/MS spectra, their sum formula and the results from this model. Nevertheless, 19 of the metabolites 

identified were already reported to be present in grape, so their presence was expected and their 

identification at MSI level 2 was achieved simply comparing their spectra to the one stored in external 

databases. These 19 metabolites have been used to see how the model here described predicts their 

substructures (Y responses). Parameter A has been used in this analysis. Results are in table 9.  

The table shows that in most of the cases the Y predicted corresponds to the Y real responses. 

“Polymeric structure”, “long aliphatic chain”, “presence of Nitrogen”, “presence of Sulfur” and 

“presence of Phosphorous” did not suffer of any error (the reason why presence of Phosphorous had no 

error is because there were not compounds with phosphorous in their formula, but we know that this 

parameter cannot predict the “1” in its response). “Aliphatic chain” had an error of 5.26%, “Aromatic 

group” of 26.5% and “Phenolic rings” of 15.76%. “Glycosidic moieties” and  “Acidic Group” had an 

error of 21%, while “Short chain” had an error of only 5.26%. “Number of Nitrogen” had a 36% of 

error, and showed to be completely unreliable. It is interesting to notice that, apart from “number of 

Nitrogen”, all the other ones showed an error of estimation of only 1. This is a good result for the 

responses that have multiple choices (“Aromatic rings”, “Phenolic rings” and “glycosidic moieties”), 

indicating that even if the number is not correct, it is not misleading completely. It is interesting to 

notice that some of the parameters have a similar value to the normal distributed test (table 7). 

The results here showed are not statistically relevant; the number of compounds under analysis is 

too low. It is intended to give an idea to the performance of the model on real data. Further tests are 

required to understand how far can the model go, which metabolites can be predicted and if there is any 

way to improve the model. 
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 pol.str ali.cha l.ali.cha aro.gro Hom.cyc Het.cyc pre.nit n.N Pre.sul pre.Pho gluc Ac.gro Sho.cha 

laricitrin 3 -glucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

phenyl-alanine 0 0 0 0 0 0 0 0 0 0 0 1 0 

Caftaric acid_glutathione 0 0 0 0 0 0 0 0 0 0 1 1 0 

malvidin-3,5 diglucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

eriodictyol-7-glucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

terpenol-pentosyl-glucoside 0 0 0 0 0 0 0 2 0 0 1 0 0 

geranic acid-rhamnosyl-

glucoside 

0 1 0 1 0 0 0 0 0 0 1 0 0 

ampelopsin D+quadrangolarin A 0 0 0 1 1 0 0 0 0 0 0 0 0 

quercetin-rhamnoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

quercetin-glucuronide 0 0 0 1 1 0 0 2 0 0 0 1 0 

terpendiol-rhamnosyl-glucoside 0 0 0 0 0 0 0 0 0 0 0 1 0 

delphinidin-arabinoside 0 0 0 1 0 0 0 0 0 0 0 0 0 

cyanidin-arabinoside 0 0 0 0 0 0 0 1 0 0 0 0 0 

cyanidin-p-coumaroyl-glucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

malvidin-diglucoside-acetate 0 0 0 0 0 0 0 0 0 0 0 0 1 

p-coumaroyl-peonidin-

diglucoside 

0 0 0 1 1 0 0 2 0 0 1 0 0 

myricetin 0 0 0 0 0 0 0 0 0 0 0 0 0 

dihydrosyringetin-glucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

catechin-glucoside 0 0 0 0 0 0 0 0 0 0 0 0 0 

Percentage of error 0.00% 5.26% 0.00% 26.32% 15.79% 0.00% 0.00% 36% 0.00% 0.00% 21.05% 21.05% 5.26% 

Table 8: The predicted Y for these nineteen compounds has been subtracted from the real Y responses and the results are summarized in this table. At the bottom, the 

percentage of wrong assignments. It is interesting to notice that the wrong assignment are always 1 and do not go beyond this value. Exception can be notice for n.N, 

which is a bad predicted parameter. The MS/MS spectra are shown in the supplementary table 4. 
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6.4 Conclusions and future outlooks 
In this “proof of principles” study, I demonstrated that the combined use of multiple parameters 

in a regression model, built on compound database, is able to predict some substructures of the 

molecules under analysis. The regression model, built using Partial Least Squares regression was able 

to assign in most of the cases the right number of substructures, contributing on the classification of the 

compounds. Moreover, I demonstrated that the use of multiple parameter together in multivariate 

regression improve the model robustness, allowing the model to be almost unaffected in mass 

measurement error of ±10 ppm and isotopic intensities ratio errors of ±1.5 estimated Carbons. This 

result is not achievable with the standard measurement procedure described in the introduction (section 

5.1).  

In the study shown in chapter 6, I used this method manually with the MS/MS spectra and the 

formula calculated by the Rdisop package (Bockler & Liptak, 2007), to assign structures to the 

unknown biomarkers. It was very helpful to me; whenever I did not have a reliable candidate for the 

structure of one unknown biomarker, and the chemical formula from Rdisop was misleading, the 

combined use of the model and the MS/MS spectrum allowed me to sketch a putative structure and 

compare the in-silico fragmentation of such structure with the one suggested by the Chemspider 

database in MetFrag. I had only 50% of the biomarkers in my standard database, but I was able to give 

a reliable identification to 90% of them. 

On the other hand, there are multiple limits in this method, and in the future, the development 

needs to solve the following problems:  

1) The Y matrix has been manually built. This is not the ideal case, and it should be built in an 

automatic manner. One R package able to detect substructures in SDF files exists, “fmcsR” 

(Wang et al. 2014), which works in couple with “ChemmineR” (Cao et al. 2008). They have 

been tested. It is not able to detect all the substructures used in this work, it uses exclusively 

SDF files, while databases often furnish only Smiles and InChi codes and their translation to 

SDF is not straightforward. 

2) I used the internal FEM database of compounds. The ideal case would be to use databases 

richer of compounds, to enforce the statistical power of the model. I tried to use external 

databases, but I had only access to Plantcyc grape compounds database (www.plantcyc.org), 

which is not ideal for this test, because it also contains proteins, metal ions, some formulas 
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are missing, some smiles are missing (some are wrong), therefore I did not achieve any result 

from it.  

3) As stated above, the results from the model can be used manually coupling the outcome with 

the MS/MS spectra and any other information. This is not ideal. Any information should be 

integrated in the model, including MS/MS spectra. Therefore, the ideal would be to integrate 

all the informations possible in the model, to enforce its predictability. For example, in 

MS/MS spectra Phosphate, glycosides, and acidic group give specific fragments, which might 

enforce the prediction of these substructures. The UV spectra could be also very interesting to 

integrate in the model. The perfect database to use would be Massbank in this case 

(www.massbank.jp), where MS/MS spectra are stored.  
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7. Untargeted comparative analysis of the metabolomes of Vitis 

vinifera and four American Vitis species reveals big differences in 

the accumulation of polyphenols and aroma precursors 
The lack of natural selection for Vitis vinifera grapes makes them increasing susceptible to pests. 

Massive use of pesticides is therefore required for their cultivation, increasing environmental and 

economic costs. Hybrids obtained from repeated backcrossing of high quality Vitis vinifera genotypes 

with different species of the Vitis germplasm have been shown to be a viable solution in terms of 

introducing natural resistance characteristics to new cultivars suitable for the production of wines. 

However, lack of knowledge about the genomic and metabolomic resources available for each Vitis 

species makes the hybridization process very lengthy and not cost-effective.  

In this proof of principle study, we analyzed the metabolome of some Vitis species berries, 

including Vitis vinifera, with the scope of identifying the metabolites that differentiate vinifera grapes 

from others. The results show that several metabolic differences exist and that some American Vitis 

have interesting characteristics, including some undesirable traits that should be taken into account in 

the design of breeding programs. The method suggested in this study could be considered in order to 

improve the design of new breeding programs, lowering the risk of retaining undesirable characteristics 

in the chemical phenotype of the offspring. 

This work is part of the paper: Narduzzi L., Mattivi F. (2015) “Untargeted comparative analysis 

of the metabolomes of Vitis vinifera and four American Vitis species reveals big differences in the 

accumulation of polyphenols and aroma precursors” (In preparation) 

7.1 Introduction: 
Most of the grapes produced globally are Vitis vinifera. This species has its origin in the Near 

East, as the domesticated progeny of Vitis sylvestris around 8000 years ago (Myles et al. 2011). Due to 

domestication, valuable varieties of this specie have spread throughout the Mediterranean, mostly by 

vegetative propagation. Because of vegetative propagation and the consequent lack of evolution, Vitis 

vinifera is generally susceptible to many pests, and its cultivation requires grafting onto rootstocks 

resistant to Phylloxera (a pathogenic insect imported from North America). It also needs to be sprayed 

frequently with large amounts of pesticides, in particular against fungal pathogens not native to Europe. 

Pollution due to pesticides is related, inter alia, with an increased risk of developing neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s disease (Zaganas et al. 2012, Hayden et al. 2010, Baldi et 

al. 2003). The recurrent use of pesticides is becoming environmentally and economically unsustainable 
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and could cause concern in densely populated areas such as western Europe, where France, Italy and 

Spain together produce most of the world grapes and represent the main winemakers in the world (OIV 

annual report, 2014). Moreover, in some cultivated areas, massive use of fungicides is leading to 

fungicide resistance by powdery mildew (Gadoury et al. 2012). 

The main grape pathogens were imported to Europe from America: according to Levadoux 

(1966) Oidium arrived in 1852, Phylloxera in 1868, powdery mildew in 1876 and “black rot” in 1885. 

Since then, breeders (especially the French), have focused on the creation of resistant hybrids of Vitis 

vinifera and some American Vitis species, commonly called French-American hybrids (This et al. 

2006). In the 1950s, as a result of chemical pesticides able to quickly resolve pathogenic infections, the 

interest of grape producers in hybrids largely evaporated, as these hybrids are generally less productive 

and of lower quality than pathogen-susceptible Vitis vinifera varieties.  

The recent problems caused by pesticide pollution and pesticide-resistant pathogens have again 

stimulated research into hybrid varieties. Indeed, inter-specific hybrids may represent a long-term and 

eco-friendly solution to pathogenic infections, being in many cases the result of stringent selection 

processes aimed at producing varieties resistant to multiple pathogens. Starting from French breeders’ 

material, since the 1970s new hybrids have been established, especially in Hungary and eastern 

Germany (e.g. PIWI grapes), a few of which have been registered for wine production. Nevertheless, 

during the breeding process, many of the experimental hybrids carry the defects originating from their 

American parents, such as poor sugar content, “foxy” taste (Sale and Wilson, 1926, Acree et al. 1990), 

offset flavors (Sun et al. 2011) and poor tannin content and availability (Harbertson et al. 2008). The 

production of quality hybrids therefore requires decades, in order to allow the breeder to further 

eliminate the undesired traits and obtain marketable varieties. Undesired characters can be perceived 

only in some vintage making it particularly difficult to spot the problem in the resulting wine.  

According to Myles (2013) and Borneman et al. (2013) the recent advances in grape genomics 

(Jaillon et al. 2007, Velasco et al. 2007), genotypization (Myles, 2011; Emanuelli et al. 2013), 

proteomics, metabolomics (Mattivi et al. unpublished data), and pathogen-host interaction (Peressotti et 

al. 2010, Rouxel et al. 2013) allow breeders to obtain new set of varieties through hybridization or 

GMOs. It is now possible to take advantage of the huge number of markers published and the new 

technologies available. Wild grapes represent the main source of variability in the Vitis genus, but they 

have been little studied in comparison to Vitis vinifera. The first phenotypic studies on wild grapes date 

back to the 19
th

 century and the first decades of the 20
th

 century (Ravaz, 1902; Galet, 1952). The 

development of SSR markers for Vitis genotypization has been achieved only recently (Goto-
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Yamamoto et al. 2013), while comparative targeted studies of the metabolites in Vitis germplasm 

berries have only been performed by Liang et al. (2012a, 2012b).  

Conversely, explorative untargeted analysis of the metabolomes of wild grapes is lacking. From 

our point of view, it is necessary to extend knowledge about the metabolites present in wild grape 

berries and try to understand which undesirable (and desirable) traits are present in these species. It 

may be the case that wild grapes have metabolic pathways not present in Vitis vinifera, producing 

“interesting” classes of metabolites. For example, hydrolysable tannins are present in Vitis rotundifolia 

(Lee et al. 2005, Sandhu et al. 2010) and lignans are accumulated in Vitis thunbergii (Tung et al. 2011). 

These classes of metabolites might be present in other species, or different classes might be 

accumulated in unstudied Vitis. It would be very “interesting” to transfer such desirable traits to new 

hybrids. 

In the “Fondazione Edmund Mach”, the institute where this research was carried out, we have a 

huge collection of grape varieties, including inter-specific hybrids and wild grapes, recently 

genotypizated by Emanuelli et al. (2013) and uploaded to the Vitis international variety catalogue 

repository (www.vivc.de). In this “proof of principles” study, the aim was to study comparatively the 

metabolic profiles of the berry tissue of four different American wild grapes as compared to seven 

famous Vitis vinifera varieties, through untargeted LC-MS analysis, with three different goals: 1) to 

find differences in the metabolomes of the American Vitis and Vitis vinifera. 2) to evaluate their 

importance in terms of grape quality (especially for wine production). 3) to evaluate the genetic basis 

of the differences found.  Three interspecific hybrids were included in the study. Two of them are first 

generation inbreeds (41B and Isabella), while the third, NERO, is a PIWI variety obtained after 

numerous backcrosses with vinifera material. The inclusion of these three varieties was targeted at 

understanding how the differences found between the two groups are transferred to the hybrids. The 

inclusion of Nero, a variety registered for vinification in 1993, made it possible to understand whether 

selection performed without the use of molecular markers was able to eliminate all the undesirable 

traits and keep the desirable ones.   

  

http://www.vivc.de/
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7.2 Materials and methods 

 

7.2.1 Reagents: 
Acetonitrile, methanol and formic acid of LC-MS grade were purchased from SIGMA-Aldrich 

(Milan, Italy). Water was Milli-Q grade. Phloroglucinol was purchased from SIGMA-Aldrich. The 

entire standard set was purchased from SIGMA-Aldrich or Extrasynthese, and injected in the same 

conditions described by Theodoridis et al. (2012). Each standard spectrum was manually extracted and 

used to automatically assign the name to the compounds from the sample analysis. The whole standard 

set used in this experiment has already been reported by Shahaf et al. (2013), in their supplementary 

materials. 

 

7.2.2 Sample preparation: 
Grapes at technical maturity (18° brix) were collected from the germplasm collection of the 

“Fondazione Edmund Mach” at San Michele all’Adige (TN) Italy. The skin, pulp and seeds of fresh 

berries were manually separated, ground under liquid nitrogen and stored at -80° C until analysis. A list 

of the grapes analyzed in this work is available in Table 1. 

Extraction for untargeted analysis was performed according to the method of Theodoridis et al. 

(2012), slightly modified. Briefly, one gram of ground tissue was extracted with 

methanol/water/chloroform 2/1/2 using 0.1% of formic acid, vortexed, sonicated for 10 minutes and 

agitated in an orbital shaker for 15 minutes and then centrifuged at 5000 rpm per 5 minutes; the upper 

organic phase was collected and filtered through 0.22 μm PTFE “WHATMAN” filters before injection. 

Sample preparation for the quantification of the condensed tannin fraction was performed using 

the protocol described by Fortes Gris et al. (2011). Briefly, 1 gram of tissue was extracted and dried in 

a Rotavapor, and then reconstituted with 10 ml of Water. The water extract was loaded onto a C18 Sep-

pak, washed with 40 ml of water and eluted with 30 ml of methanol. The elute was dried in a 

Rotavapor and reconstituted with 1 ml of methanol. 900 μl of this extract was diluted 1:1 with 

methanol, filtered and injected into the LC-MS system. The remaining 100 μl of the elute were added 

to 100 μl of phloroglucinol (100g/L) at a reaction temperature of 50°. After 20 minutes, the reaction 
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was stopped with 1 ml of sodium acetate (40 mM), diluted 1:5 with water/methanol and injected for 

targeted tannin analysis. 

 

Accession name Short name Original pedigree Species Class Country of 

origin 

Merlot MER Magdeleine noire des 

Charentes x Cabernet 

Franc 

Vitis Vinifera Vinifera France 

Moscato Rosa MOR unknown Vitis Vinifera Vinifera Greece 

Gewürztraminer GWT unknown Vitis Vinifera Vinifera Italy 

Moscato ottonel MOT Chasselas x Muscat 

d'Eisenstadt 

Vitis Vinifera Vinifera France 

Iasma Eco 3* ECO Moscato ottonel x 

Malvasia Bianca di 

Candia 

Vitis Vinifera Vinifera Italy 

Riesling RIE (Vitis Sylvestris x 

Traminer)(?) x 

Heunisch weiss 

Vitis Vinifera Vinifera Germany 

Sauvignon Blanc SAU unknown Vitis Vinifera Vinifera France 

Nero NER Eger 2 x Gardonyi 

Geza 

Seibel derivative 

hybrid 

Hybrid Hungary 

Isabella ISA Vitis Vinifera x Vitis 

Labrusca 

American/Europe

an Hybrid 

Hybrid USA 

Millardet et Grasset 

41 B 

41B Chasselas x Vitis 

berlandieri 

American/Europe

an Hybrid 

Hybrid France 

Vitis Cinerea VCI Vitis Cinerea 

Engelmann 

Vitis Cinerea American USA 

Vitis Californica VCA Vitis Californica Vitis Californica American USA 

Vitis Arizonica 

Texas 

VAT Vitis Arizonica 

Engelmann 

Vitis Arizonica 

Texas 

American USA 

Kober 5 BB K5BB Vitis Berlandieri x Vitis 

Riparia 

American Hybrid American Germany 

Table 1: Sample names: A list of the samples used in this experiment. All the samples were collected at 18° brix during the 

season 2013. Sample names are from the Vitis international variety catalogue website www.vivc.de; the institute collection 

is reported at the website with the number ITA362. 

7.2.3 LC/MS workflow, analysis and data treatment: 
Untargeted LC/MS analysis was performed using a “UPLC”, interfaced to a “Synapt” (UHPLC-

ESI-Q-TOF-MS), supplied by Waters, Manchester, UK, through the ESI source. We used the same LC 

separation method reported by Arapitsas et al. (2013): briefly, starting with 100% eluent A (0.1% 

formic acid in water), switching at 1.5 min to 10% of eluent B (0.1% formic acid in methanol) up to 3 

min, then a gradient of up to 40% eluent B in 18 min, passing to 100% eluent B in 21 min, holding for 

up to 25 min and then re-equilibrating back to 100% eluent A for a total run of 28 minutes. The MS 

settings were the same as for Theodoridis et al. (2012).  
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All the samples of the three different tissues were injected together. The analysis workflow 

consisted of a starting queue of 1 Blank, 1 Standard mix and 3 QCs, while during the analysis we 

injected a standard mix every 20 analyses and a QC representative for each tissue after every 8 sample 

injections. The acquired spectra were directly converted into NETcdf files using Databridge software 

(Waters). Peak picking, alignment and principal component analysis (PCA) were performed using the 

internal data analysis pipeline built at our institution, using the automated data analysis pipeline 

recently published (Franceschi et al. 2014), based on the “XCMS” (Smith et al. 2006), “CAMERA” 

(Kuhl et al. 2012) and “MetaMS” (Wehrens et al. 2014) R packages.  

Targeted LC-MS/MS analysis was performed using an UPLC-adapted version of the method 

described by Fortes Gris et al. (2011). The samples were injected into a UPLC chromatographer, 

interfaced to a TQ mass spectrometer (UHPLC-ESI-QqQ-MS, Waters, Manchester, UK) through an 

ESI source. The eluents used were: water with 0.1% formic acid (eluent A) and acetonitrile with 0.1% 

FA (eluent B). The gradient was as follows: starting from 95% of A, to 20% of B in 3 minutes; 

isocratic flow up to 4.3 minutes, and then ramping to 45% of B at 9 minutes. Then 100% of B at 11 

minutes, holding up to 13 minutes, and then returning to the initial conditions of 95% of A for a total 

run of 17 minutes. The quantification of catechin, epicatechin, procyanidin B1, B2, gallocatechin, 

epigallocatechin and epicatechin gallate was done using a linear regression curve built on the injection 

of pure chemical standards, in the same analytical conditions through MRM. Quantification of 

phloroglucinol-bound flavanols was done as for epicatechin, epigallocatechin and epicatechin gallate 

equivalents respectively.  

7.2.4 Statistical analysis: 
The stability of the analysis was assured during the workflow, checking the repeatability of the 

QCs and STD mix injections manually by integrating representative peaks and through PCA analysis. 

We also checked that the CV% of the internal standards (gentisic acid, 3-indole propionic acid and 4-

stilbenol) was below 25%. The metabolic differences between the different grape species were 

underlined using different statistical tests. Group discrimination was obtained using 1) univariate 

Welch’s t-test analysis with corrected p-values using the “fdr” function (Vinaixa et al. 2012), setting 

0.05 corrected p-value and 10 fold change as thresholds; 2) multivariate statistical analysis using 

SIMCA-P+12.0 software performing OPLS-da analysis, using 1 VIP-value and 0.0001 coefficients 

value as thresholds (Wold et al. 2001).  
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7.2.5 Compound identification 

7.2.5.1 Database matching 

The retention times of all the injected standards in the chromatographic conditions established by 

Theodoridis et al. (2012) were aligned with the chromatographic conditions used in this work through 

the website (predret.org), according to the method developed by Stanstrup and Vrhovsek (2014). The 

list of bio-markers was matched against the XCMS peak table using the db.comp.assign function in the 

R package “Chemhelper”, with 30 ppm mass accuracy and a 1 min retention time window. The 

identified biomarkers were checked for correctness and eventually assigned as MSI level 1 (Sumner et 

al. 2007). 

7.2.5.2 MS/MS analysis 
MS/MS analysis was performed using the capabilities of the Q-TOF instrument. All the analysis 

was done in V mode (improved sensitivity, nominal resolution 10000); precursor ions were selected in 

the quadrupole and fragmented in the collision cell through a collision energy profile ranging from 20 

eV to 35 eV, with leucine enkephaline as internal calibrant. Collected MS/MS spectra were queried in 

MetFrag (Wolf et al. 2010) and MetFusion (Gerlich and Neumann, 2013) using KEGG, Chemspider or 

Pubchem as compound databases, and MassBank-EU as the spectral database. 

7.2.5.3 Isotopic pattern recognition and formula assignment 
The isotopic patterns of all the biomarkers were obtained using the strategy described by 

Stanstrup et al. (2013), based on intensity weighted means of the isotopes automatically identified by 

CAMERA. Putative chemical formulas were obtained using these isotopic patterns through the 

getFormula function of the Rdisop  Package in a R environment (Boecker and Liptak, 2007). 

7.2.5.4 Compound Characteristics Comparison 
An important identification step was “Compound Characteristics Comparison” (CCC): This 

method was established in our group and is currently being prepared for further publication. The idea 

behind the method is that the characteristics (RT, m/z, isotopic pattern, etc.) of the pseudo molecular 

ion of a compound detected in LC-MS are typical of its structure, so comparing the characteristics of 

the standards in our database with those from unknown biomarkers allows us to refer its structure to a 
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few possible ones (Narduzzi et al. unpublished data). A more in-depth description of the method is 

present in the results. 

  7.2.5.5 Compound identification strategy 
The following identification strategy is described in Image 1. After database matching, the 

remaining unknown markers were subjected to MS/MS analysis. The acquired spectra were queried 

against MetFrag/MetFusion and the chemical structure list obtained was compared to the putative 

chemical formula and the CCC method and manually checked for correctness. If any of the structure 

matched all the characteristics, this biomarker was considered to have been identified at MSI level 2. 

Otherwise, if no match was found, a tentative structure was sketched, based on the putative class 

predicted by the CCC method, the putative formula calculated by both Rdisop and CCC method, and 

the losses and neutral losses observed in MS/MS analysis. The putative structure was queried again 

against MetFrag; when a higher score was found for the sketched structure in comparison to the 

previous ones, the biomarker was labelled as MSI level 2 or 3, depending on how likely the spectral 

matching was. The list of the identified compounds is available in supplementary table 1 (skin), 2 

(seeds) and 3 (flesh). 

7.2.5.6 Data mining 
Hierarchical clustering analysis was conducted using the heatmap.2 function of the gplot 

package, scaling the data, using “Canberra” as distance function and Ward.D2 as the hierarchical 

clustering function, with blue as the low intensity color and red as the high intensity color. The short 

names indicated in the plots correspond to the identified compounds as reported in supplementary table 

1(skin), 2 (seeds) and 3 (flesh). 

 

Tissue Ionization 

mode 

Feature

s 

Vv 

Marker 

features 

AV 

Marker 

features 

Vv pseudo-

molecular ions 

AV pseudo-

molecular 

ions 

Identified 

Vv  

Identified 

AV 

Flesh Positive 7726 20 117 6 24 3 21 

Flesh Negative 8906 14 88 8 18 5 14 

Seeds Positive 12607 32 44 12 10 10 9 

Seeds Negative 12624 57 52 23 5 23 2 

Skin Positive 13332 44 106 9 37 7 35 

Skin Negative 15826 36 280 13 29 12 29 

Table 2: Markers and identified pseudo-molecular ions: Number of total features detected, total biomarkers in each tissue, 

total pseudo-molecular ions and identified compounds are reported in this table. 
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7.3 Results and discussion 

7.3.1 Statistical analysis 
Ten to fifteen thousand "features" were detected in each tissue, both in positive and negative 

ionization mode. Such a high number can affect statistical analysis, so we eliminated all the "features" 

that did not respect the 80% rule (Smilde et al. 2006), and those with an intensity threshold of below 

1000 counts*sec (Vinaixa et al. 2012). In the data analysis we used both the univariate and multivariate 

statistical test: the tests are not mutually exclusive, while their combined use is suggested especially 

when the “curse of dimensionality” arises (Goodacre et al. 2007, Vinaixa et al. 2012). Ten to hundreds 

of "features" were recognized as markers in the different tissues. The marker lists were merged and 

duplicates were excluded. Features in the same CAMERA group were excluded, keeping only the 

supposed pseudo-molecular ions; the pseudo-molecular ions were subsequently integrated using 

Targetlynx® to manually supervise the data and eliminate false positives and wrong XCMS peak-

picking. The results of statistical analysis are shown in Table 2. 

7.3.2 Compound identification strategy 
Identification of compounds is one of the main bottlenecks in untargeted LC-MS analysis, due to 

the multiple signals coming from the same metabolite in the MS spectrum. An automatic identification 

pipeline based on injected standards has been established in our institution (Franceschi et al. 2014), but 

the whole standard set was injected in a chromatographic gradient that we did not use in this 

experiment. To overcome this problem, we aligned the two chromatographic runs using standards 

injected in both runs and we performed retention time prediction using the website predret.org 

(Stanstrup and Vhrovsek, 2014). The predicted retention times were used to identify biomarker features 

through db.comp.assign in the R package “Chemhelper”, with 30 ppm mass accuracy and a 1 min 

retention time window. Further manual checking allowed us to undoubtedly assign MSI identification 

level 1 (Sumner et al. 2007) to all the matching biomarkers. In total, we were able to identify 32 

metabolites in the flesh, 26 in the seeds and 44 in the skin at MSI level I, differently accumulated. The 

rest of the markers were considered “unknowns” and underwent further identification steps, as 

described in M&M sections 4.2, 4.3, 4.4 and 4.5.  

The unknown biomarkers underwent a similar identification approach to the one published by 

Stanstrup et al. (2013), with the contribution of an in-house method for metabolite classification 

(Narduzzi et al. unpublished data). This classification method, called “compound characteristics 



168 
 

comparison” (CCC) is a multivariate regression model built on RT, m/z and the isotopic intensities of 

standard collection that predicts the main substructures present in the chemical structure of a 

compound. So the values of these parameters are used together to validate the prediction properties of 

the model and estimate the presence of particular substructures in the compound (phenolic groups, 

aliphatic chains, acidic groups, glycosides and so on). From the predicted substructures, the structure is 

further rebuilt and makes it possible to exclude all the non-matching structures proposed by MS/MS in-

silico analysis. 

This method gives a putative structural composition, it improves calculation of the putative 

chemical formula and, coupled with MS/MS data, it assigns putative structures to the unknown signals. 

The whole identification strategy is described in Image 1. In total we could identify 13 compounds as 

MSI level 2 in the flesh, 13 compounds as MSI level 2 and 6 as MSI level 3 in the seeds, 42 

compounds as MSI level 2 and 1 as MSI level 3 in the skin. All the MS/MS spectra of the compounds 

of class 2 and 3 are showed in the supplementary table 4 at the bottom of this thesis. 
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Image 1: Schematic representation of the strategy used to identify the metabolites in this paper. 
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7.3.3 Comparative analysis 
All the identified metabolites were grouped according to their biosynthetic pathway and 

hierarchical clustering analysis was performed on all the samples using this data. The results are shown 

in Images 2 and 3 (skin and seeds respectively) and Image 4 (flesh). Procyanidins, hydrolysable 

tannins, aroma precursors, polar lipids, sugars, organic acids, anthocyanins, flavonols, and stilbenoids 

showed different accumulation in the two groups. The three latter compound classes have already been 

reported  to be differently accumulated in Vitis vinifera and wild grapes in previous papers (Liang et al. 

2012, Poudel et al. 2008, Hilbert et al. 2015)  and will be discussed only briefly below. In the following 

section, we focus on the first three compound classes, as their behavior has not been reported 

previously and it is very interesting from the oenological and biological points of view.  

7.3.3.1 Flavan-3-ols and Procyanidins  
Flavan-3-ols are a very important class of polyphenols in grape and wine production, especially 

in their polymeric forms, as procyanidins. Procyanidins are a type of condensed tannins responsible for 

astringency in wine and constitute the body of the wine, together with alcohol content and some lipids. 

Their content is very important, especially in red wine production: lack of procyanidins means poor 

quality wines. Procyanidins are also recognized as the main antioxidants accumulated in grapes, and 

have multiple health-related characteristics (Chung et al. 1998, Bak et al. 2012). Unfortunately, the 

whole accumulation and polymerization pathway of procyanidins is still unknown. 

Differences were found in the accumulation of Flavan-3-ols and procyanidins in the skin and the 

seeds of the two groups. In the skin, Vitis vinifera was richer in catechin, epicatechin, catechin-

rhamnoside and procyanidin B3 (Image 2). It is also richer in other dimeric, trimeric and tetrameric 

forms of procyanidins, but this difference did not exceed the selected threshold (10-fold). Surprisingly 

American Vitis accumulated higher levels of catechin-gallate and epicatechin-gallate. Vitis vinifera 

seeds were richer in all the flavan-3-ols and procyanidins that we could identify directly in untargeted 

analysis (Image 3). A similar result was reported by Liang et al. (2012): Vitis vinifera contained a 

higher level of monomeric, dimeric and trimeric procyanidins in the seeds, in comparison to many 

different Vitis species except Vitis palmata. Fuleki et al. (1997) obtained a similar result when 

comparing Vitis vinifera with Vitis Labrusca seeds. 
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Image 2: Heat map of biomarkers from the skin. The upper legend on the left indicates the biosynthetic class of the 

compounds, while the bottom legend indicates the sample group. 
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Image 3: Heat map of biomarkers from the seeds. The upper legend on the left indicates the biosynthetic class of the 

compounds, while the bottom legend indicates the sample group. 
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As stated earlier, the accumulation of procyanidins is related to many desirable characteristics; 

we therefore decided to perform targeted analysis of procyanidins, to quantify the difference between 

the two groups precisely, using the method described by Fortes Gris et al. (2011). The results obtained 

from targeted analysis are summarized in Image 4. Vitis vinifera varieties showed a higher 

accumulation of both free flavanols and polymeric procyanidins, especially the latter. The amount of 

procyanidins accumulated in Vitis vinifera varieties was on average 30 times higher (from 5500 to 

17000 mg/Kg) in comparison to wild grapes (200-650 mg/Kg). The difference in free flavanols was 

about 8 times higher in Vitis vinifera, while American grapes accumulated a higher percentage (≈3%) 

of galloylated forms in comparison to vinifera grapes (≈1%). As expected, the mean degree of 

polymerization (mDP) was higher in Vitis vinifera (25-52 units), in comparison to wild grapes (4-17 

units). The hybrid varieties showed a different pattern: Isabella and 41B had a higher percentage of 

galloylated units (5-7%) in comparison to all the other samples. Nero had a slightly higher level of free 

flavanols, polymeric procyanidins comparable to Sauvignon Blanc (5000 mg/Kg), and a mDP similar 

to that of the Vitis vinifera group. Isabella had mDP superior to that of Nero (around 39 units). 

Vitis vinifera varieties accumulated more free flavanols and polymeric procyanidins in the seeds, 

but the difference was not so clear as in the skin. Indeed, Vitis cinerea accumulated a level of catechin 

and epicatechin comparable to the vinifera varieties, while it had a lower amount of dimeric forms. 

Vitis cinerea’s level of polymeric procyanidins (10,000 mg/Kg) was lower than the level in Vitis 

vinifera (40,000 mg/Kg), but not as low as for the rest of the wild grapes (2000 mg/Kg). This data 

indicates that the accumulation of procyanidins in the seeds may vary considerably between different 

species. Of the hybrids, Nero showed an accumulation pattern similar to those of the vinifera varieties, 

while 41B and Isabella both had a level of polymerization degree and accumulation lying between the 

two groups. 

Wines produced from French-American hybrids were reported to be poor in terms of mouthfeel, 

due to a lack of astringency, indicating the scarcity of condensed tannins (Harbertson et al. 2008). 

Previous authors have attributed the scarcity of condensed tannins in wines to the low availability and 

solubility of procyanidins from hybrid grape berries (Springer & Sacks, 2014), due to the procyanidin-

binding properties of pectin and proteins. In our opinion, low extractability and low availability may 

together represent the main explanation for the notable difference in the detection of procyanidins in 

the American Vitis and Vitis vinifera. Recently, one MYB-regulatory-gene affecting procyanidin 

accumulation has been characterized by Huang et al. (2014). Studies of the different alleles of this gene 

in the Vitis germplasm may help to understand the procyanidin accumulation process and availability. 
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A more in-depth study into the reasons for such a marked difference between the two groups 

(especially in the skin) was outside the scope of this study, and was not investigated further. On the 

other hand, it is very interesting to note that the accumulation level in Nero (a recent hybrid variety) 

was more similar to Vitis vinifera than 41B and Isabella (old hybrid varieties), indicating that multiple 

backcrosses with Vitis vinifera increase the extractability and availability of procyanidins, and that their 

availability is a characteristic controlled by multiple factors. 

 

 

Image 4: Box plots of oligomeric procyanidin content in the skin and seeds of different classes of grapes (1 & 2) and 

mean degree of polymerization (mDP) of procyanidins (3 & 4). Procyanidin content is expressed as epicatechin equivalents 

(ECAE), while mDP is expressed as average units. 
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7.3.3.2 Hydrolysable tannins, precursors and their derivatives  
Hydrolysable tannins are polymeric compounds constituted by gallic acid subunits bound through 

a glycosidic moiety. The gallic acid unit can create C-C bonds, joined  to each other to create HHDP 

(hexahydroxydiphenoyl) subunits and/or hydrolyze their acidic moiety to form ellagic acid subunits. 

The different combinations of gallic acid, HHDP, ellagic acid and glycosides create the separate 

hydrolysable tannins. The accumulation and degradation pathway of these metabolites is still unknown.  

From an oenological point of view, hydrolysable tannins are considered good quality markers. 

These metabolites are not found naturally in red wines from Vitis vinifera, indeed red wines are often 

aged in oak or acacia barrels, where the wine alcohol extracts lignans and hydrolysable tannins from 

the wood, improving wine body. Furthermore, hydrolysable tannins and their catabolic derivatives 

(ellagic acid and its conjugates) have many health-related properties (reviewed in Landete, 2011). For 

these reasons, their accumulation is welcome in wines. To our knowledge, only gallic acid, galloyl-

glucose, digalloyl-glucose and ellagic acid have been reported in Vitis vinifera grapes. Of the Vitis 

germplasm, only Vitis rotundifolia has been reported to accumulate some hydrolysable tannins and 

derivatives in its skin and seeds (Sandhu et al. 2010, Lee et al. 2005).  

In our experiment, we found that American grapes accumulated many hydrolysable tannin 

precursors such as gallic acid, galloyl-glucose, di-galloyl-glucose, ellagic acid, methyl-gallate, galloyl-

syringic acid and galloyl-ethyl-gallate in the skin (Image 2). Oligomeric hydrolysable tannins were also 

found in the skin of American grapes, especially K5bb and Vitis Arizonica Texas. They accumulated in 

a total of eight oligomeric compounds in this class, reported here: ellagic acid-arabinoside, ellagic acid-

glucoside, galloyl-ellagic acid,  3 different isomers of HHDP-galloyl-glucose, a punicalin-like 

compound, HHDP-digalloyl-glucose and ellagic acid conjugate 1 (MSMS spectra in Table 3). We did 

not observe any hydrolysable tannin, precursor or derivative signal in Vitis vinifera skins, except for 

those already reported in the literature (gallic acid, galloyl-glucose, di-galloyl-glucose and ellagic acid). 

Moreover, American grapes showed a concentration of ellagic acid around 1000 times higher than 

vinifera grape skin. Ellagic acid is the catabolic product of hydrolysable tannins.  

We could not confirm any of the oligomeric hydrolysable tannin structures, because there are no 

commercial standards available on the market; the presence of many putative compounds in the same 

class makes us confident about the identification. Interestingly, when looking selectively for previously 

reported ellagitannins, we observed that K5bb and Vitis Arizonica Texas also had a m/z of 933.0692,  

with the same mass and many fragments in the MS/MS spectrum the same as castalagin and 

vescalagin, with different intensities and a very different retention time (5 and 6 min vs 12 minutes, 
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data not shown). In this experiment, the signal for this ion was too low and was excluded from the 

statistical analysis, due to the intensity threshold selected, but was clearly present in the chromatograms 

of K5bb and Vitis Arizonica Texas. 

As shown in Image 2, of the hybrids, only 41b showed some accumulation of these compounds in 

the skin, while Nero and Isabella did not accumulate it, as for vinifera grapes. The genetic basis of 

hydrolysable tannin accumulation is still unknown, so it is difficult to understand why there is a 

different behavior in the hybrids.  

The situation became more complex when observing the accumulation of these compounds in the 

seeds. All the American grapes also showed accumulation of this class of compounds in the seeds but 

in lower intensities in comparison to the skin. Of the vinifera grapes, only Moscato Rosa showed a 

signal for many hydrolysable types of tannin, usually higher than that from wild grapes. This is 

extremely interesting, because no other vinifera showed any clear signal. These hydro-tannic units were 

also observed in a pilot experiment conducted last year (data not shown); in that experiment Moscato 

Rosa and the intraspecific hybrid Pinot X Merlot showed a clear accumulation of such compounds. 

Their presence in Moscato Rosa seeds is the reason why this class of compounds was not recognized as 

a marker for American grapes in seeds.  

Hydrolysable tannins have been reported in numerous fruits and plants (reviewed in Arapitsas et 

al. 2012) but this is the first time that they have been reported in a species other than Vitis rotundifolia 

within the Vitis genus. From a physiological point of view, this characteristic is very interesting to us, 

and may be the object of a further research project. 



177 
 

Compound NAME mz RT Spectra intensity 

HHDP-galloyl-glucose 633.073 4.5 300.999 [C14H6O8 -H]-(-11.0 ppm) 13900.00 

   275.0197 [C13H8O7 -H]-(-11.6 ppm) 7814.00 

   169.0142 [C7H5O5]-(-13.0 ppm) 5512.00 

   302.0068 [C14H8O8-2H]-(-3.6 ppm) 2254.00 

   249.0405 [C12H9O6]-(-12.0 ppm) 1721.00 

   463.0518 [C20H17O13-2H]-(-19.4 ppm) 1325.00 

   481.0624 [C20H17O14]-(-13.1 ppm) 1203.00 

     
HHDP-galloyl-glucose 633.073 5.3 300.999 [C14H6O8 -H]-(-11.0 ppm) 13900.00 

   275.0197 [C13H8O7 -H]-(-11.6 ppm) 6650.00 

   169.0142 [C7H5O5]-(-13.0 ppm) 5154.00 

   302.0068 [C14H8O8-2H]-(-3.6 ppm) 2254.00 

   463.0518 [C20H17O13-2H]-(-19.4 ppm) 1971.00 

   481.0624 [C20H17O14]-(-13.1 ppm) 1600.00 

     
HHDP-galloyl-glucose 633.073 9.07 300.999 [C14H6O8 -H]-(-9.6 ppm) 7825.00 

   275.0197 [C13H8O7 -H]-(-11.3 ppm) 7311.00 

   463.0518 [C20H17O13-2H]-(-6.0 ppm) 2209.00 

   302.0068 [C14H8O8-2H]-(-3.3 ppm) 1244.00 

   481.0624 [C20H17O14]-(-1.7 ppm) 685.30 

     

Tellimangradin I 785.089 10.47 300.999 [C14H6O8 -H]-(+3.6 ppm) 1896.00 

   275.0197 [C13H8O7 -H]-(+10.4 ppm) 565.40 

   463.0518 [C20H17O13-2H]-(-6.0 ppm) 284.60 

     
Punicalin 781.0551 11.53 463.0518 [C20H16O13 -H]-(-7.3 ppm) 27040.00 

   754.0659 [C33H22O21]-(9.0 ppm) 23640.00 

   737.0632 [C33H22O20 -H]-(9.5 ppm) 10060.00 

   299.9912 [C14H4O8]-(-34.3 ppm) 9511.00 

   719.0526 [C33H20O19 -H]-(-2.5 ppm) 8817.00 

   736.0553 [C33H20O20]-(5.2 ppm) 7156.00 

   753.0581 [C33H22O21 -H]-(0.1 ppm) 5405.00 

   735.0475 [C33H20O20 -H]-(-1.0 ppm) 3091.00 

   746.0397 [C34H19O20 -H]-(6.0 ppm) 2499.00 

   745.0319 [C34H19O20-2H]-(3.2 ppm) 2017.00 

   763.0424 [C34H21O21-2H]-(3.8 ppm) 1964.00 

     
Ellagic acid-arabinoside 433.0403 19.16 300.999 [C14H5O8]-(-5.6 ppm) 47720.00 

   299.9912 [C14H5O8 -H]-(-5.3 ppm) 37940.00 

     
Ellagic acid-glucoside 463.0514 15.9 299.9912 [C14H5O8 -H]-(-1.3 ppm) 121100.00 

   300.999 [C14H5O8]-(2.3 ppm) 120600.00 

   89.0244 [C3H6O3 -H]-(-14.6 ppm) 2690.00 

   275.0197 [C13H8O7 -H]-(+2.8 ppm) 1789.00 

     
Galloyl-ellagic acid 469.005 13.97 300.999 [C14H5O8]-(-8.3 ppm) 7047 

   299.9912 [C14H5O8 -H]-(-7.3 ppm) 4859 

   298.9833 [C14H5O8-2H]-(-31.4 ppm) 919.3 

   271.9963 [C13H5O7 -H]-(-10.7 ppm) 802 

   270.9884 [C13H5O7-2H]-(-9.6 ppm) 775 

   425.015 [C20H9O11]-(5.9 ppm) 641.6 

   273.0041 [C13H5O7]-(9.9 ppm) 166.4 

Table 3: MS/MS spectra of hydrolysable tannins. The MS/MS spectra from Vitis Arizonica Texas skin are shown. Only 

ions identified by metFrag are reported in this table. A more complete MS/MS spectra analysis is reported in supplementary 

table 4. 
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7.3.3.3 Aroma precursors 

Aroma precursors are all the volatile metabolites stored in the vacuole through glycosylation and 

they serve as a reservoir for biotic and abiotic stress response. Many of these glycosylated volatiles 

undergo hydrolysis during vinification, determining most of the wine aroma (Fernandez-Gonzales et al. 

2004). For this reason, is important to study the intact aroma precursors found in the berries, to 

understand the aroma potential of grapes. These metabolites are mostly accumulated in the skin, and to 

a lesser extent in the flesh. 

American grapes are often reported to have a different range of aromas, including the undesirable 

“foxy” taste (Acree et al. 1990) and some herbaceous flavors (Sun et al. 2011). The goal was to 

establish whether the putative precursors of these volatiles can be found in any of the tissues of 

American grapes. Surprisingly, none of the markers obtained in this work corresponded to a putative 

precursor of this kind of metabolite. This means that none of the MS/MS spectra could be associated 

with one of the known off-flavors typical of the wild American grapes. 

On the other hand, it was interesting to see whether Vitis vinifera accumulates precursors with a 

pleasant aroma, such as terpenols, differentially (Image 2). Our experiment showed that viniferas 

accumulated a huge amount of glycosilated-terpenoids in the skin, while American grapes did not 

accumulate any. Nevertheless, high concentrations were found in Iasma Eco 3, Moscato Ottonel, 

Gewürztraminer and Moscato Rosa, which are commonly recognized as aromatic varieties. Aromatic is 

a phenotypic definition: a fruity smelling variety of grape is “aromatic”. Recently, a single locus 

(VvDXS), encoding for a 1-deoxy-D-xylulose-5-phosphate enzyme, has been found to be responsible 

for the aromatic qualities of grapes (Battilana et al. 2011). This locus is involved in the accumulation of 

isoprenoid precursors; isoprenoids are the building blocks for mono-Terpenoids. The remaining 

vinifera varieties showed a lower accumulation of these aroma precursor volatiles, similar to American 

grapes. We can conclude that this difference is due more to the locus VvDXS, as reported in the 

literature, than to a difference between species. On the other hand, this locus was selected during 

domestication of the Vitis vinifera (Emanuelli et al. 2013), so it is common in the vinifera grapes and 

probably very rare in wild grapes. We noticed the same pattern in the flesh (Image 5), with a lower 

concentration in comparison to the skin, as reported in previous works (Luan & Wust, 2002). Hybrids 

showed a level of accumulation of these metabolites similar to that shown by non-aromatic Vinifera 

and wild grapes, indicating that they probably do not have the active allele of the VvDXS gene. 

In the seeds (Image 3), we were able to identify two aroma precursors with accumulations ten 

times higher in vinifera seeds than in American seeds: vanilliyl-glucoside, and benzyl-alcohol-
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rhamnosyl-glucoside. Both compounds are catabolic derivatives of the lignin production pathway. In 

this tissue, hybrid grapes showed similar levels to the vinifera grapes. 
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Image 5: Heatmap of biomarkers from the flesh. The upper legend on the left indicates the biosynthetic class of the 

compounds. While the bottom legend indicates the sample group 
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7.3.3.4 Anthocyanins and stilbenoids 
 Anthocyanins are the main pigments found in grapes, determining the visual impact of both 

grapes and wines. Anthocyanins are accumulated in the vacuole of the cells after glycosydation and are 

believed, inter alia, to defend the cells from oxidative damage due to exposure  to sunlight (Matus et al. 

2009). Anthocyanidins (i.e., the aglycones) cannot be found in grapes, because the aglycone form is 

very reactive and unstable. They share most of their metabolic pathway with flavan-3-ols, and probably 

compete for the substrates during the accumulation process.  

A differential accumulation of anthocyanins in wild grapes and Vitis vinifera has been reported 

for many years; indeed, wild grapes tend to accumulate mostly di-glycosidic anthocyanins, while Vitis 

vinifera contains almost exclusively mono-glycosydic anthocyanins (Burns et al. 2002). Recently Yang 

et al. (2014) reported that the gene encoding for an 5-O-glycosyl-transferase (5-UFGT) has different 

alleles in Vitis vinifera and wild grapes, and that the alleles present in the vinifera grape are almost all 

non-functional, so they do not produce the 5-UFGT enzyme able to bind glycosides to the 5 terminal 

end of anthocyanins. This differential accumulation has been used historically to determine whenever a 

wine has been blended with non-vinifera or hybrid grapes. 

In our experiment, five different basic units of anthocyaninins were found to be differently 

accumulated in the skin and the flesh of the two groups (Image 2 and Image 5): cyanidin, peonidin, 

petunidin, delphinidin and malvidin. In the skin, vinifera berries accumulated only anthocyanins 

glycosilated at position 3, sometimes with a p-coumaroyl or caffeoyl moiety attached to the glucoside; 

American Vitis was richer than vinifera in all the anthocyanins identified, including 3-glucosylated 

forms from ten to hundreds of times. Furthermore, the American Vitis also accumulated anthocyanins 

di-glycosylated in positions 3 and 5, as shown in Image 5. As expected, all the hybrids showed a lower 

accumulation of di-glycosilated anthocyanins than the wild American grapes.  

 The flesh of the vinifera grapes did not accumulate anthocyanins, while all the American Vitis 

showed the typical red color in their flesh, indicating the presence of a high number of anthocyanins 

(Image 5). Tenturier (red-fleshed) vinifera do exist, but they are a minority in the vinifera germplasm, 

while white-fleshed American grapes exist only in Vitis riparia and Vitis berlandieri. The anthocyanin 

accumulation pattern seems to be similar in the flesh and skin of wild grapes, but the relative amount 

was lower in the flesh. Of the hybrids, only NERO showed a certain degree of accumulation of 

anthocyanins in the flesh, due to a red layer on the external part of the flesh, but this is due to the cold 

storage effect more than physiological accumulation.  
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Stilbenoids are polyphenolic compounds that have a strong anti-fungal activity in plants and 

health-related characteristics in humans (e.g. resveratrol belongs to this class). Their accumulation is 

reported to be directly correlated with the accumulation of anthocyanins during ripening stages. As 

expected, due to the high concentration of anthocyanins in the skin and flesh of American grape 

berries, these were also richer in stilbenoids, especially Vitis Arizonica Texas and Vitis Californica, We 

found larger amounts of isorhapontin, cis-epsilon-viniferin, trans-resveratrol, trans-piceide, and cis-

resveratrol in the skin (Image 2). Higher amounts of trans-resveratrol, trans-piceide and cis-resveratrol 

were also found in the flesh. As hybrid flesh is colorless (without anthocyanins), both 41b, Nero and 

Isabella showed very small amounts of stilbenoids in the flesh. Despite the strong anthocyanin color in 

their skin, the accumulation of stilbenoids in the skin of 41b and Isabella was poor, while Nero skin had 

a pattern similar to Vitis cinerea, which contains the lowest amount of the American grapes. 

7.3.3.5 Flavonols and dihydro-flavonols 
Flavonols are very strong antioxidants (Burda et al. 2001), and have health-related properties 

(reviewed in de Pasqual-Teresa et al. 2010). Flavonols are yellow pigments and determine white grape 

and wine color. In plants, they are believed to defend the tissues from oxidative damage by UV-B rays 

(Matus et al. 2009). 

 In our experiment, we were able to identify four basic units of flavonols differently accumulated 

in the two groups: quercetin, myricetin, laricitrin, and syringetin. These were present in glycosylated or 

rutinosylated forms. The main differences were found in the skin, where Vinifera tended to accumulate 

more quercetin-glucoside and galactoside than American grapes, while American grapes accumulated 

more myricetin, laricitrin and syringetin-glucoside. Nevertheless, considering grape color, and 

comparing the American varieties only with Merlot and Moscato Rosa, the differences were not so big, 

being only 2.5 times more concentrated. As reported by Mattivi et al. (2006), white grapes do not 

accumulate flavonols trihydroxylated in the B ring (myricetin, laricitrin and syringetin), while red ones 

do. So this difference seems to be due mostly to grape color rather than to grape species.  

Interestingly, we could observe a similar pattern for dihydro-flavonols. This class of compounds 

has only recently been reported in grapes (De Rosso et al. 2014), and seemed to follow the same pattern 

as flavonols in our results, with the American grapes, Merlot and Moscato Rosa accumulating the 

trihydroxylated forms (dihydro-syringetin, dihydro-laricitrin and dihydro-myricetin) while the 

remaining vinifera accumulated only dihydro-quercetin. As dihydro-flavonols are the direct precursors 

of flavonols and considering that the hydroxylation of the B ring happens earlier in the metabolic 
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pathway (Winkel-Shirley, 2001), a similar pattern for dihydro-flavonols and flavonols would seem to 

be legitimate. Nevertheless, further investigations with a wider population of red and white grapes 

(similar to the experiment performed by Mattivi et al. 2006) are necessary to confirm these important 

results. 

7.3.3.6 Other identified metabolites  
Many other classes of metabolites were found to accumulate differently in wild American grapes 

and Vitis vinifera. Some sugar precursors, polar lipids, (putative) lignans, flavones and some organic 

acids showed a different accumulation in the two groups. Nevertheless, it was not possible to determine 

the difference found in these classes of metabolites, because many of the identifications were putative, 

under-represented and with a non-unique accumulation pattern.  

The putative identified polar lipids were all accumulated in larger amounts in vinifera tissues. 

Hydroxy-hexanoate-glucoside, decyl-pentosyl-glucoside, mascaroside-like and hexyl-rhamnosyl-

glucoside accumulated more in the seeds of the vinifera group than in the wild grapes, with Nero 

having similar levels to the vinifera group. A similar pattern was observed in the skin for the 

compounds hydroxy-decanoic acid-pentosyl-glucoside, undecanoic acid-pentosyl-glucoside and 

undecadioic acid-pentosyl-glucoside, with Nero again accumulating similar levels to those of vinifera. 

Of the remaining compounds, lignans stand out as an interesting class: two signals, 505.2080 and 

491.1940, were found exclusively in the American group, specifically in Vitis Arizonica Texas and 

Vitis cinerea.  Their identification is merely putative, but their fragmentation spectra were very similar 

to lariciresinol with a xyloside and rhamnoside moiety respectively (data not shown).  These 

metabolites have been previous identified in Vitis thunbergii (Tung et al. 2011), and are considered to 

be a very desirable marker, because of health benefits related to lignans.  

7.4  Concluding remarks 
The aim of this work was to find the metabolic differences that make vinifera suitable for wine 

production, in comparison to some American Vitis that are not ideal for quality wine production. The 

results clearly show that method adopted (untargeted analysis), allowed us to have a broad picture of 

many different metabolic pathways in the three different berry tissues. Having an overall view of 

metabolites, especially in phenolics, aroma precursors and acids, also allowed us to correlate the data to 

the specific metabolic pathways, in some cases revealing different metabolic pathways in the two 
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groups, speculating on pathway regulation and confirming already known metabolic differences 

between the species. The presence of hybrid grapes also improved knowledge about specific compound 

accumulation and behavior in different hybrids. As shown in the hierarchical clustering of images 2, 3 

and 5, hybrids seem to have intermediate characteristics in relation to the two groups, with Nero (as 

expected) being the most similar in all tissues, and conversely 41B the most American-like, especially 

in terms of the skin and seeds. This work is a key step in our efforts to build up a grape berry 

metabolome database including metabolite localization in the different berry tissues. 
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8. Conclusions and perspectives 

The hypotheses generated during the observation of the data from the grape metabolome project 

have been tested and verified in my thesis. I succeeded in confirming both of the experimental 

hypotheses regarding the identification of the volatile precursors through LC-MS analysis (chapter 5) 

and the individuation of further markers distinguishing the wild American grapes from the some 

domesticated Vitis vinifera varieties (chapter 7).  

The strength of the method developed in chapter 5 is that it can be applied to any LC-MS method, 

allowing every laboratory to analyze the volatile precursors with their own chromatographic method, 

without the use of dedicated methodologies, which is cost-ineffective and duplicates both data 

acquiring and data analysis. The results of the chapter 7 are, from biological and oenological points of 

view, the most interesting of my thesis, demonstrating that the difference across the Vitis germplasm is 

very wide and it has not been completely exploited yet.  This finding opens new possibilities in the 

development of grape hybrids, which may lead to novel products on the market in the next years.  

On the contrary, the method developed in chapter 6 is unfortunately incomplete. The method is 

itself very innovative, but its integration with the state of the art methodologies for data analysis is not 

straightforward. It relies on features grouping, which is now the bottleneck in data analysis. It needs 

further development based on public databases that, at the moment, are not available to be directly 

used. Furthermore, the kind of relationship found is non-linear, and the development of non-linear 

PLSr is not an easy task. 

The compounds identified in chapter 5 and chapter 7 point to a future where the entire metabolic 

space of the grape berry and its distribution across its tissues will be known. The application of modern 

spectrometric methodologies is closing the gap, allowing to dream that one day the path good-grape to 

good-wine will be completely understood.  

Lastly, the method developed in chapter 6 pursued the classification and identification of the 

metabolites, reducing data analysis time and simplifying the identification process. Even though it did 

not reach a complete goal, it demonstrated that not all the combination of the selected parameter (X 

matrix) are possible, clearly indicating that different substructures of the metabolites have a 

recognizable influence on the molecular structure. This effect might be the case of further studies.  
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Mode Chemical class Compound name Short-name RT exp MM Cal MM ppm Formula MS

I 
-ve organic acid L-malic acid L-mal-ac 1.5 134.0193 134.0215 -16.59 C4H6O5 1 

-ve tannins methyl gallate met-gal- 9.9 184.0370 184.0372 -0.85 C8H8O5 1 

-ve organic acid citric acid cit-aci- 3.2 192.0259 192.0270 -5.74 C6H8O7 1 

-ve Organic acid Oxalyl-benzoic acid esc-- 11.6 194.0213 194.0215 -1.15 C9H6O5 2 

-ve stilbenoid trans-resveratrol tra-res- 19.7 228.0784 228.0786 -1.07 C14H12O3 1 

-ve tannins ellagic acid ell-aci- 19.9 302.0057 302.0063 -1.88 C14H6O8 1 

-ve flavan-3-ols (-)-epigallocatechin (-)-ep 12.0 306.0742 306.0740 0.82 C15H14O7 1 

-ve flavonol myricetin myr-- 20.2 318.0367 318.0376 -2.77 C15H10O8 1 

-ve dihydroflavonol

s 

dihydro-myricetin dih-myr- 6.8 320.0526 320.0532 -1.93 C15H12O8 2 

-ve flavonol laricitrin lar-- 20.9 332.0534 332.0532 0.62 C16H12O8 1 

-ve tannins galloyl-syringic acid gal-syr-ac 8.6 350.0633 350.0629 1.14 C16H14O9 2 

-ve tannins galloyl-ethyl-gallate gal-eth-ga 14.0 350.0633 350.0638 -1.43 C16H14O9 2 

-ve stilbenoid trans-piceide tra-pic- 15.8 390.1311 390.1315 -1.00 C20H22O8 1 

-ve stilbenoid isorhapontin iso-- 16.8 420.1420 420.1420 -0.05 C21H24O9 1 

-ve flavone apigenin-7-O-glucoside api-7-O- 18.8 432.1050 432.1056 -1.44 C21H20O10 1 

-ve flavonol quercetin-rhamnoside que-rha- 16.9 448.0985 448.1006 -4.60 C21H20O13 2 

-ve flavone orientin ori-- 16.3 448.0985 448.1006 -4.60 C21H20O11 1 

-ve flavone luteolin 7-O glucoside lut-7-O- 19.0 448.0998 448.1006 -1.70 C21H20O11 1 

-ve stilbenoid cis epsilon viniferin cis-eps-vi 20.6 454.1419 454.1416 0.58 C28H22O6 1 

-ve flavan-3-ols (-)-epigallo-catechin gallate (-)-ep 11.8 458.0842 458.0849 -1.48 C22H18O11 1 

-ve tannins ellagic acid-glucoside ell-aci-gl 15.9 464.0586 464.0591 -1.06 C20H16O13 2 

-ve tannins galloyl-ellagic acid gal-ell-ac 14.0 470.0122 470.0121 0.13 C21H10O13 2 

-ve dihydroflavonol
s 

dihydro-syringetin-glucoside dih-syr-gl 16.4 510.1354 510.1315 7.71 C30H22O8 2 

-ve tannins HHDP-galloyl-glucose HHD-gal-gl 4.5 634.0802 634.0806 -0.65 C27H22O18 2 

-ve tannins HHDP-galloyl-glucose HHD-gal-gl 5.3 634.0802 634.0806 -0.65 C27H22O18 2 

-ve tannins HHDP-galloyl-glucose HHD-gal-gl 9.1 634.0802 634.0806 -0.65 C27H22O18 2 

-ve tannins punicalin-like pun-lik- 11.5 782.0623 782.0603 2.59 C34H22O22 2 

-ve tannins HHDP-digalloyl-glucose HHD-dig-gl 10.5 786.0962 786.0916 5.89 C34H26O22 2 

-ve flavonol heteronoside het-- 13.3 790.1975 790.1956 2.35 C36H38O20 2 

+ve organic acid caffeic acid caf-aci- 11.9 180.0437 180.0423 8.19 C9H8O4 1 

+ve coumarins Hydroxy-benzodioxine-carboxylic acid tri-cou- 9.8 194.0235 194.0215 9.97 C9H6O5 2 

+ve organic acid benzoic acid derivative ben-aci-de 11.9 222.0542 222.0528 5.99 C11H10O5 2 

+ve stilbenoid cis-resveratrol cis-res- 15.8 228.0796 228.0786 4.24 C14H12O4 1 

+ve tannins ellagic acid conjugate ell-aci-co 3.6 302.0088 302.0063 8.43 C14H6O8 2 

+ve dihydroflavonol
s 

dihydro-myricetin dih-myr- 10.0 320.0542 320.0532 2.96 C15H12O8 2 

+ve dihydroflavonol

s 

dihydro-laricitrin dih-lar- 9.2 334.0695 334.0689 1.89 C16H14O8 2 

+ve dihydroflavonol

s 

dihydro-laricitrin dih-lar- 13.2 334.0710 334.0689 6.49 C16H14O8 2 

+ve dihydroflavonol dihydrosyringetin cat-ace- 11.8 348.0860 348.0845 4.33 C17H16O8 2 

+ve anthocyanin cyanidin-3-arabinoside cya-3-ar 15.6 419.0973 419.0978 -1.26 C20H19O10 2 

+ve flavone apigenin-7-O-glucoside api-7-O- 18.7 432.1067 432.1056 2.50 C21H20O10 1 

+ve tannins ellagic acid-arabinoside ell-aci-ar 19.1 434.0499 434.0485 3.24 C19H14O12 2 

+ve anthocyanin delphinidin-3-arabinoside del-3-ar 13.9 435.0944 435.0927 3.72 C20H19O11 2 

+ve anthocyanin cyanidin 3-glucoside cya-3-gl 12.6 449.1087 449.1078 2.00 C21H21O11 1 
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+ve anthocyanin delphinidin 3-glucoside del-3-gl 11.1 465.1036 465.1033 0.62 C21H21O12  1 

+ve anthocyanin petunidin-3-glucoside pet-3-gl 13.2 479.1192 479.1190 0.52 C22H23O12 1 

+ve anthocyanin malvidin-3-glucoside mal-3-gl 14.7 493.1349 493.1346 0.61 C23H25O12 1 

+ve anthocyanin caffeic acid derivative caf-aci-de 11.9 511.1463 511.1470 -1.32 C9H8O4 3 

+ve anthocyanin cyanidin 3-p-coumaroyl-glucoside  cya-3-p- 20.2 595.1462 595.1452 1.74 C30H27O13 1 

+ve anthocyanin cyanidin 3 caffeoyl-glucoside cya-3-ca 20.0 611.1425 611.1401 3.92 C30H27O14 1 

+ve anthocyanin Cyanindin 3,5 diglucoside Cya-3,5-di 6.5 611.1618 611.1612 0.99 C27H31O16 1 

+ve anthocyanin Cyanindin 3,5 diglucoside Cya-3,5-di 8.9 611.1627 611.1612 2.44 C27H31O16 1 

+ve anthocyanin peonidin 3-caffeoyl-glucoside peo-3-ca 20.2 625.1572 625.1557 2.41 C31H29O14 1 

+ve anthocyanin peonidin 3,5 diglucoside peo-3,5-di 10.7 625.1777 625.1769 1.34 C28H33O16 1 

+ve anthocyanin delphinidin 3-caffeoyl-glucoside del-3-ca 18.9 627.1370 627.1350 3.20 C30H27O15 1 

+ve anthocyanin delphidin 3,7 diglucoside del-3,7-di 8.4 627.1573 627.1561 1.86 C27H31O17 1 

+ve anthocyanin delphidin 3,5 diglucoside del-3,5-di 7.6 627.1582 627.1561 3.31 C27H31O17 1 

+ve anthocyanin Petunidin 3-caffeoyl-glucoside Pet-3-ca 19.8 641.1542 641.1506 5.55 C31H29O15 1 

+ve anthocyanin petunidin 3,5 diglucoside pet-3,5-di 9.4 641.1734 641.1718 2.51 C28H33O17 1 

+ve anthocyanin malvidin-glycosyl-glucoside mal-gly-gl 8.8 651.1562 651.1561 0.06 C29H31O17 2 

+ve anthocyanin malvidin-3,5-diglucoside mal-3,5-di 11.6 655.1880 655.1874 0.88 C29H35O17 1 

+ve anthocyanin malvidin-3,5-diglucoside mal-3,5-di 11.5 655.1888 655.1874 2.10 C29H35O17 1 

+ve anthocyanin malvidin 3-acetoyl-5 diglucoside mal-3-ac 14.0 697.2012 697.1980 4.59 C31H37O18 1 

+ve anthocyanin peonidin-diglucoside-p-coumaroyl peo-dig-p- 19.7 771.2170 771.2136 4.33 C37H39O18 2 

+ve anthocyanin delphinidin 3 p-coumaroyl- 5 diglucoside del-3-p- 17.4 773.1954 773.1980 -3.43 C36H41O19 1 

-ve flavan-3-ols D-(+)-Catechin D-(+)-Ca 9.6 290.0782 290.0790 -2.89 C15H14O6 1 

-ve flavan-3-ols (-)-epicatechin (-)-ep 12.6 290.0784 290.0790 -2.20 C15H14O6 1 

-ve dihydroflavonol

s 

dihydro-quercetin dih-que- 18.3 304.0579 304.0583 -1.35 C15H12O7 1 

-ve polar lipid steroid like ste-lik- 21.0 354.2408 354.2406 0.37 C20H34O5 3 

-ve flavan-3-ols catechin-rhamnoside cat-rha- 12.2 436.1361 436.1369 -1.92 C21H24O10 2 

-ve aroma precursor terpenyl-pentosyl-glucoside ter-pen-gl 21.2 448.2315 448.2308 1.68 C21H36O10 2 

-ve aroma precursor terpenyl-rhamnosyl-glucoside ter-rha-gl 21.0 462.2089 462.2101 -2.69 C21H34O11 2 

-ve flavonol quercetin-3-galactoside que-3-ga 19.4 464.0950 464.0955 -1.03 C21H20O12 1 

-ve aroma precursor geranic acid-rhamnosyl-glucoside ger-aci-rh 21.1 476.2272 476.2258 3.02 C22H36O11 1 

-ve flavonol quercetin 3-O-glucuronide que-3-O- 19.0 478.0739 478.0747 -1.76 C21H18O13 1 

-ve flavonol laricitrin-derivative lar-der- 18.3 518.1033 518.1060 -5.29 C24H22O13 2 

-ve flavan-3-ols procyanidin B3 pro-B3- 8.3 578.1419 578.1424 -0.91 C30H26O12  1 

+ve aroma precursor terpendiol-glucoside ter-glu- 17.6 332.1842 332.1835 2.04 C16H28O7 3 

+ve aroma precursor terpendiol-glucoside ter-glu- 20.3 332.1847 332.1835 3.46 C16H28O7 2 

+ve polar lipid hydroxy decanoic acid pentosyl-glucoside hyd-dec-ac 12.3 482.2375 482.2363 2.44 C21H38O12 2 

+ve aroma precursor cis-linalyloxide-glycosyl-glucoside cis-lin-gl 14.7 494.2374 494.2363 2.16 C22H38O12 1 

+ve anthocyanin malvidin-3-glucoside methyl acetate mal-3-gl 19.6 535.1442 535.1452 -1.87 C25H27O13 1 

Supplementary table 1: a list of the identified compounds from the grape skin in the chapter 7.  
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Mode Chemical class Compound name Short-name RT exp MM Cal MM ppm Formula MSI 

-ve aminoacid L-tryptophan L-try- 8.3 204.0892 204.0899 -3.43 C11H12N2O2 1 

-ve sugar phosphohexonoic acid pho-aci- 1.5 276.0272 276.0246 9.42 C6H13O10P 2 

-ve flavan-3-ols D-(+)-Catechin D-(+)-Ca 9.5 290.0782 290.0790 -2.76 C15H14O6 1 

-ve flavan-3-ols (-)-epicatechin (-)-ep 12.6 290.0782 290.0790 -2.76 C15H14O6 1 

-ve flavonol myricetin myr-- 20.2 318.0371 318.0376 -1.42 C15H10O8 1 

-ve tannins gallic acid derivative gal-aci-de 15.0 464.0720 464.0743 -4.96 C24H16O10 3 

-ve flavonoid lariciresinol-xyloside fla-glu- 18.9 492.2037 492.1995 8.56 C25H32O10 3 

-ve flavonoid lariciresinol-rhamnoside fla-glu- 17.8 506.2132 506.2152 -3.95 C26H34O10 3 

-ve flavonoid Lariciresinol-rhamnoside fla-glu- 18.3 506.2153 506.2152 0.20 C26H34O10 3 

+ve aminoacid aminoacid derivative ami-der- 16.7 373.1534 373.1525 2.41 C20H23NO6 3 

+ve stilbenoid isorhapontin iso-- 18.2 420.1403 420.1420 -4.05 C21H24O9 1 

-ve phenolic acid gallic acid gal-aci- 6.8 170.0202 170.0215 -7.65 C7H6O5 1 

-ve polar lipid hydroxy-hexanoate-glucoside hyd-hex-gl 11.4 294.1309 294.1315 -2.04 C12H22O8 2 

-ve phenolic acid galloyl-shikimic acid gal-shi-ac 7.1 326.0631 326.0638 -2.02 C14H14O9 2 

-ve flavan-3-ols Galloyl-catechin A Gal-cat-A 20.5 440.0733 440.0743 -2.27 C22H16O10 3 

-ve flavan-3-ols catechin-glucoside cat-glu- 10.1 452.1301 452.1319 -3.98 C21H24O11 2 

-ve polar lipid decyl-pentosyl-glucoside dec-pen-gl 20.8 466.2774 466.2778 -0.86 C22H42O10 2 

-ve polar lipid mascaroside-like mas-lik- 18.9 524.2249 524.2258 -1.72 C26H36O11 3 

-ve flavan-3-ols procyanidin B4 pro-B4- 10.5 578.1423 578.1424 -0.17 C30H26O12 1 

-ve flavan-3-ols procyanidin B3 pro-B3- 8.2 578.1426 578.1424 0.35 C30H26O12 1 

-ve flavan-3-ols procyanidin B1 pro-B1- 9.3 578.1427 578.1424 0.52 C30H26O12 1 

-ve flavan-3-ols galloyl-procyanidin B gal-pro-B1 11.0 730.1539 730.1534 0.68 C37H30O16 1 

-ve flavan-3-ols galloyl-procyanidin B gal-pro-B2 11.8 730.1544 730.1534 1.37 C37H30O16 1 

-ve flavan-3-ols procyanidin C pro-C- 5.3 866.2075 866.2058 1.96 C45H38O18 1 

-ve flavan-3-ols procyanidin C2 pro-C2- 9.2 866.2075 866.2058 1.96 C45H38O18 1 

-ve flavan-3-ols procyanidin C3 pro-C3- 12.0 866.2078 866.2058 2.31 C45H38O18 1 

-ve flavan-3-ols procyanidin C1 pro-C1- 8.5 866.2084 866.2058 3.00 C45H38O18 1 

-ve flavan-3-ols galloyl-procyanidin C gal-pro-C1 14.0 1018.2202 1018.2168 3.34 C52H42O22 1 

-ve flavan-3-ols galloyl-procyanidin C gal-pro-C2 11.5 1018.2212 1018.2168 4.32 C52H42O22 1 

-ve flavan-3-ols galloyl-procyanidin C gal-pro-C3 16.5 1018.2212 1018.2168 4.32 C52H42O22 1 

-ve flavan-3-ols galloyl-procyanidin C gal-pro-C4 17.2 1018.2222 1018.2168 5.30 C52H42O22 1 

-ve flavan-3-ols Procyanidin D1 Pro-D1- 10.1 1154.2762 1154.2692 6.06 C60H50O24 1 

-ve flavan-3-ols Procyanidin D2 Pro-D2- 12.2 1154.2762 1154.2692 6.06 C60H50O24 1 

-ve flavonoid Procyanidin D Pro-D3- 8.1 1156.2912 1156.2848 5.53 C60H52O24 1 

+ve alkaloid trigonelline tri-- 1.5 137.0475 137.0477 -1.46 C7H7NO2 1 

+ve aroma precursor vanilliyl-glucoside van-glu- 11.4 316.1127 316.1158 -9.81 C14H20O8 2 

+ve polar lipid hexyl-rhamnosyl-glucoside hex-rha-gl 20.0 394.2203 394.2203 -0.35 C18H34O9 2 

+ve aroma precursor benzyl-alcohol-rhamnosyl-glucoside ben-alc-rh 12.0 416.1688 416.1682 1.44 C19H28O10 1 

+ve dihydro-flavonol dihydrokaempferol-glucoside dih-glu- 12.4 450.1176 450.1162 3.11 C21H22O11 2 

+ve flavan-3-ols procyanidin B2 pro-B2- 12.2 578.1433 578.1424 1.56 C30H26O12 1 

+ve flavan-3-ols procyanidin B3 pro-B3- 9.2 578.1436 578.1424 2.08 C30H26O12 1 

+ve flavan-3-ols procyanidin B4 pro-B4- 10.4 578.1442 578.1424 3.11 C30H26O12 1 

+ve flavan-3-ols galloyl-procyanidin B gal-pro-B3 17.7 730.1569 730.1534 4.79 C37H30O18 1 

Supplementary table 2: a list of the identified compounds from the grape seeds in the chapter 7.  
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Mode Chemical class Compound name Short-name RT exp MM Cal MM ppm Formula MSI 

-ve organic acid citric acid cit-aci- 1.6 192.0252 192.0270 -9.37 C6H8O7 1 

-ve sugar phosphohexonoic acid pho-hex-ac 1.5 276.0280 276.0246 12.32 C6H13O10P 2 

-ve flavan-3-ols D-(+)-Catechin D-(+)-Ca 9.6 290.0784 290.0790 -2.07 C15H14O6 1 

-ve flavan-3-ols (-)-epicatechin (-)-ep 12.6 290.0785 290.0790 -1.72 C15H14O6 1 

-ve flavan-3-ols (-)-epigallocatechin (-)-ep 9.4 306.0735 306.0740 -1.74 C15H14O7 1 

-ve flavonol myricetin myr-- 20.2 318.0372 318.0376 -1.23 C15H10O8 1 

-ve phenolic acid galloyl-rhamnose gal-rha- 4.4 318.0559 318.0587 -8.80 C12H14O10 2 

-ve stilbenoid trans-piceide tra-pic- 15.8 390.1314 390.1315 -0.33 C20H22O8 1 

-ve stilbenoid cis epsilon viniferin cis-eps-vi 20.5 454.1420 454.1416 0.88 C28H22O6  1 

-ve sugar phospho-dihexonic acid pho-dih-ac 4.4 482.0630 482.0673 -7.22 C13H23O17P 2 

-ve flavonol syringetin-3-galactoside syr-3-ga 20.4 508.1181 508.1217 -7.15 C23H24O13 1 

-ve dihydro-flavonol dihydro-syringetin-glucoside dih-syr-gl 16.5 510.1376 510.1372 0.78 C23H25O13 2 

+ve alkaloid trigonelline tri-- 1.5 137.0473 137.0477 -2.92 C7H7NO2 1 

+ve aminoacids phenyl-alanine phe-ala- 6.0 165.0780 165.0790 -5.93 C9H11NO2 1 

+ve phenolic acid gallic acid gal-aci- 4.5 170.0200 170.0215 -8.82 C7H6O5 1 

+ve stilbenoid trans-resveratrol tra-res- 19.6 228.0801 228.0786 6.58 C14H12O3  1 

+ve aminoacids L-glutathione L-glu- 3.0 307.0851 307.0838 4.23 C10H17N3O6S 1 

+ve anthocyanin cyanidin 3-glucoside cya-3-gl 12.7 449.1085 449.1084 0.22 C21H21O11 1 

+ve anthocyanin peonidin-3-glucoside peo-3-gl 14.6 463.1243 463.1240 0.65 C22H23O11 1 

+ve anthocyanin delphinidin-3-glucoside del-3-gl 11.3 465.1043 465.1033 2.15 C21H21O12  1 

+ve anthocyanin petunidin-3-glucoside pet-3-gl 13.3 479.1191 479.1190 0.21 C22H23O12  1 

+ve anthocyanin cyanidin 3-acetyl-glucoside cya-3-ac 18.2 491.1197 491.1190 1.43 C23H23O12 1 

+ve anthocyanin malvidin-3-glucoside mal-3-gl 14.8 493.1345 493.1346 -0.20 C23H25O12  1 

+ve anthocyanin delphinidin-3-acetyl-glucoside del-3-ac 16.8 507.1144 507.1139 0.99 C23H23O13 1 

+ve anthocyanin petunidin 3 acetyl-glucoside pet-3-ac 18.4 521.1310 521.1295 2.88 C24H25O13 1 

+ve flavan-3-ols procyanidin B3 pro-B3- 8.2 578.1446 578.1424 3.81 C30H26O12 1 

+ve anthocyanin cyanidin 3-p-coumaroyl-glucoside  cya-3-p- 20.2 595.1469 595.1452 2.86 C30H27O13 1 

+ve anthocyanin delphinidin 3-p-coumaroyl-glucoside  del-3-p- 20.0 611.1417 611.1401 2.62 C30H27O14 1 

+ve anthocyanin cyanidin-3,5-diglucoside cya-3,5-di 9.0 611.1625 611.1612 2.13 C27H31O16 1 

+ve anthocyanin peonidin 3-caffeoyl-glucoside peo-3-ca 20.2 625.1571 625.1557 2.19 C31H29O13 1 

+ve anthocyanin delphinidin 3,5-diglucoside  del-3,5-di 8.3 627.1568 627.1561 1.12 C27H31O17 1 

+ve anthocyanin malvidin 3-p-coumarylglucoside mal-3-p- 20.3 639.1728 639.1714 2.19 C32H31O14 1 

+ve anthocyanin petunidin 3,5 diglucoside  pet-3,5-di 9.4 641.1733 641.1718 2.34 C28H33O17 1 

+ve anthocyanin malvidin-3,5-diglucoside mal-3,5-di 11.3 655.1888 655.1874 2.14 C29H35O17  1 

-ve sugar sucrose suc-- 1.5 342.1153 342.1162 -2.63 C12H22O11 1 

-ve sugar cellobiose cel-- 2.2 342.1155 342.1162 -2.05 C12H22O11 1 

-ve sugar phospho-diglucose pho-dig- 1.4 440.0906 440.0931 -5.68 C12H25O15P 2 

-ve aroma precursor terpenyl-pentosyl-glucoside ter-pen-gl 21.2 448.2309 448.2308 0.22 C21H36O10 3 

-ve aroma precursor geranic acid-rhamnosyl-glucoside ger-aci-rh 21.1 476.2276 476.2258 3.79 C22H36O11 1 

-ve aminoacids caftaric acid-glutathione caf-aci-gl 7.5 617.1162 617.1163 -0.16 C23H27N3O15S 2 

+ve aroma precursor terpendiol-glucoside ter-glu- 20.4 332.1849 332.1835 4.29 C16H28O7 2 

+ve aroma precursor geranic acid-arabinopyranosyl-glucoside ger-aci-ar 21.0 462.2134 462.2101 7.14 C21H34O11 1 

+ve aroma precursor cis-hydroxy-linalyl-arabinosyl-glucoside cis-hyd-li 20.1 464.2268 464.2258 2.15 C21H36O11 1 

Supplementary table 3: a list of the identified compounds from the grape flesh in the chapter 7.   
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Name 
Rt 
(min) 

Formula 
Theo. MWa 

ID Level 

m/z(Relative 
Intensity) 

Annotation 

Mode MS/MS2 spectra 

MAX Peak 
explained 
(ChemSpider/
PubChem) 

Peak 
explained 
proposed 
structure 

phosphohexonoic 
acid 

1.5 
C6H13O10P 
276.0246 (9.62 
ppm) 

275.0208 (100) 
274.0160 (30) 
159.0140 (15) 

[M-H]-; 
NEG 

MS/MS2 275: 159.0155 [M-H-C4H5O2P] 158.0195 [M-H-C4H6O2P] 116.0064 [M-H-
C6H7O5] 115.0079 [M-H-C6H6O5] 96.9661 [M-H-(GLC-H)]- 71.0167 61.0118 

3 
 
5 

galloyl-rhamnose  8.0 
C12H14O10 
318.0559  
(8.62 ppm) 

317.0487(100)  
169.0150 (25) 
318.053 (13) 
147.0293 (15) 

[M-H]-; 
 

NEG 
MS/MS2 317.0487: 205.0313 [M-H-C5H4O3] 175.0525 169.0125 [M-H-RHA] 147.0338  
[M-H-Gallic] 130.0240 [M-H- C7H7O6] 129.0236 [M-H-C7H8O6] 97.0107 [M-H-
C11H8O5] 87.0091 [M-H-C9H10O7] 85.0319 72.9957 71.0160 

2 

 
 
7 

dihydro-syringetin-
glucoside 

16.34 

C23H25O13 
510.1376 (0.78 
ppm) 
 

509.1298 (100) 
510.1331913 (25) 
511.1364398 (5) 
347.0781877 (5) 

[M-H]-; 
 
 
 

NEG 

MS/MS2 509:347.0772 [M-H-GLC] 346.0694 [M-H_GLC-H] 330.0794 [M-H-GLC-OH] 
329.0728 [M-H-GLC-H2O] 315.0584 [M-H-GLC-CH4O]  314.0493 [M-H-GLC-CH5O] 
303.0912 299.0263 261.0831 193.0198 [M-H-C14H20O8]   192.0125 [M-H-
C14H21O8] 180.0504 [M-H-dihysro-syr] 167.0405 166.0349 165.0236 [M-H-C15H20O9] 
153.0611 [M-H-C15H16O10] 149.0305 137.0294 

4 

 
 

11 

phospho-
diglucose 

 

4.2 

C12H25O15P 
440.0931 (5.61 
ppm) 

439.0833663 (100)  
440.087824 (13) 
205.0353502 (20) 

[M-H]- 

NEG MS/MS2 439: 96.9725 [Phosphate] 78.9615 [Phosphate-H2O] 0 

 
 
2 

terpenyl-pentosyl-
glucoside 

21.20 

C21H36O10 

448.2309 (0.22 
ppm) 
 

447.2230(100)  
448.2276547 (22) 
449.23 (3) 
493.229567 (60) 
494.232167 (15) 

[M-H]-; 
[M+FA]- 

NEG 

MS/MS2 447: 315.1850  [M-H-Pentose] 313.1965 311.1752 233.0665 [M-H-Linalool- 
C2H4O2] 191.0587 161.0490 [Glucose-H2O] 159.0353 149.0504 [Penstose-H] 
143.0430 131.0453 [Pentose-H2O] 125.0322 119.0400 115.0356 114.0417 
113.0295 101.9893 101.0293 99.0124 97.0298 95.0175   
MS/MS2 493: 448.2326  [M- Formic acid] 447.2284 [M-Formic acid-H] 316.1868[M-
Formic acid-Pentose] 315.1828 [M-H-Formic acid-Pentose]311.1740 233.0741 
191.0604 [Glucose +CH2O] 179.0623 [Glucose-H] 162.0404 161.0507 
[Glucose-H2O] 159.0334 149.0522 [Pentose-H] 143.0404 132.0590 
131.0406 [Pentose-H] 125.0315 119.0377 114.0183 113.0291 102.0198  

24 

 
 
 
 
 
 

Suggested 
by 

chemspider 

Caftaric acid-
glutathione   

7.76 

C23H27N3O15S 
617.1162 (-0.16 
ppm) 
 

616.1090 (100) 
617.1126982 (25) 
618.1117378 (10) 
619.1136888 (2.5) 
484.1032156 (4) 

[M-H]-; 
 

NEG 

MS/MS2 162: 616.1120 485.1040 [M-H-C3H3N2O4] 484.1076 [M-H-C3H4N2O4] 
467.0950 466.0965 441.1227 440.1166 273.1021 [M-H-Caftaric acid-S] 
272.0938 M-H-Caftaric acid-S-H] 254.0807 [M-H-Caftaric acid-S-H2O-H] 213.0047 
212.0230 211.0146 210.0911 193.0038 179.0535 169.0148 168.0268 
167.0231 150.0154 149.0140 146.0516 143.0510 128.0398  

6 

 
 
6 

terpendiol-
glucoside 

20.4 
C16H28O7 
332.1835, (4.29 
ppm) 

355.1741252 (100) 
356.1763053 (17) 
135.1177564 (12) 
357.1824086 (4) 
371.1574036 (39) 

[M+Na]+ 
 
 
 
[M+K]+ 

POS 
MS/MS2 355: 205.0514 [Glucose +Na(A+2)]  204.0535 [Glucose+Na(A+1)] 
203.0571 [Glucose+Na]  194.1161 Terpendion +Na(A+1)] 193.1231 [Terpendiol+Na] 
185.0478 [Glucose+Na-H2O] 175.1088 [Terpendiol+Na-H2O] 143.0378 

3 

 
 
7 

digalloyl derivative 15.01 
C24H16O10 
464.0746 (4.96 
ppm) 

463.0648 (100) 
464.0686025 (24) 
465.0637019 (3) 
927.1400991 (2) 

[M-H]- 
 
 
[2M-H]- 

NEG 

MS/MS2 463: 326.0472  325.0386 [M-H-tryhydroxy-phenol] 312.0643 311.0599 [M-
H-galloyl moiety] 300.0452 299.0569  295.0625 293.0488 [M-H-Gallic acid] 271.0654 
253.0503 243.0691 227.0490  225.0567  170.0238 [Gallic acid (A+1)] 169.0200 [Gallic 
acid] 168.0109 151.0046 [Gallic acid–H2O] 145.0336 137.0296 [Gallic acid-CH4O] 
126.0076 125.0292 [Trihydroxy-phenol] 124.0257 

4 

 
 
 
 
7 

lariciresinol-
rhamnoside 

17.8 

C26H34O10 
506.2132 (3.96 
ppm) 
 

505.2076 (100) 
506.2120384 (28) 
551.2121829 (3) 
569.2074749 (1) 

[M-H]-;   
 
[M+FA]- 
 

NEG 

MS/MS2 505: 475.1643  360.1628 [M-H-Rhamnoside(A+1)] 359.1536 M-H-
Rhamnoside] 345.1365 [M-H-Rhamnoside-CH2] 344.1304 342.1553
 341.1439 [M-H-Rhamnoside-H2O] 329.1067 327.1286 [M-
H_Rhamnoside-CH4O]  326.1220 187.0818  109.0339 101.0289 89.0264

4 

 
 

12 
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 85.0324 73.0307 59.0169 

lariciresinol-
rhamnoside 

18.3 

C26H34O10 
506.2153 (0.26 
ppm) 
 

505.2076 (100) 
506.2120384 (28) 
551.2121829 (3) 
569.2074749 (1) 
507.2150 (1) 

[M+H]+; 
 
[M+FA]- 
 

NEG 

MS/MS2 505: 360.1628 [M-H-Rhamnoside(A+1)] 359.1536 M-H-Rhamnoside] 345.1365 
[M-H-Rhamnoside-CH2]  344.1304 342.1553 341.1439 [M-H-Rhamnoside-H2O] 
329.1067 327.1286 [M-H_Rhamnoside-CH4O]  241.0566 [C14H9O4] 187.0818  
109.0339 101.0289  

4 

 
 

11 

lariciresinol-
xyloside  

18.9 
C25H32O10 
492.2037; (8.96 
ppm)  

491.1965122 (100) 
492.1956684 (24) 
493.1929945 (4) 

[M-H]-; 
 
 
 

NEG 
MS/MS2 491: 477.1759  [M-H-O] 476.1733 [M-2H-O] 461.1432[M-H-O2]  359.1525[M-
H-xyloside] 343.1223 [M-H-Xyloside-O] 329.1422 315.1174 314.1205 
299.0951 283.1020 281.0848 270.0887 

7 

 
 
8 

Aminoacid-
derivative 

16.7 
C20H23NO6 

373.1534 (2.41 
ppm) 

374.1606 (100) 
375.1650 (21) 

[M+H]+; 
 
 

POS 

MS/MS2 :  223.1196 222.1154 217.0830 205.0958 204.1022 [C12H14N1O2] 
202.0961[C12H12N1O2] 199.0737 187.0715 [C12H11O2] 177.0891 [C10H11N1O2] 
176.0825 [C10H10N1O2] 175.0797 C10H9N1O2] 163.0541 [C9H9N1O2] 151.0645 
150.0962 147.0637 124.0317 123.0490 

11 

 

hydroxy-
hexanoate-
glucoside 

11.4 
C12H22O8 
294.1309 (-2.4 ppm) 
 

 293.1247 (100)  
294.1280 (14) 
295.1300 (2) 
131.0740 (3) 

[M-H]-; 

NEG 
MS/MS2 293: 131.0737 [hydroxy-hexanoate-H] 113.0343 [Glucose fragment- H] 
101.0276 [Glucose fragment-H] 89.0255 85.9976 [Hydroxy-hexamoate 
fragment-H]  85.0572 83.0188 71.0172 59.0156 

6 

 
 

9 

galloyl-shikimic 
acid 

7.1 
C14H14O9 
326.0631 (-2.2ppm) 

325.056 (100) 
326.0600 (15) 
169.0150 (10) 
 

[M-H]-; 

NEG 

MS/MS2 325: 325.0718 170.0242 [gallic acid-H(A+1)] 169.0189 [gallic acid-H]  
168.0096 137.0260 [ shikimic acid- H4O2-H] 126.0303 [trihydroxybenzoic acid] 
125.0289 trihydroxy-benzoic acid-H] 124.0229 trihydroxy benzoic acid -2H] 123.0156 
111.0463 107.0187  

9 

 
Suggested 

by 
chemspider 

Galloyl-catechin A 20.5 
C22H16O10 
440.0733 (-2.27) 

439.0661 (100) 
440.0701 (20) 
441.0720 (3) 
288.0650 (10) 

[M-H]-; 

NEG 
MS/MS2 439: 289.0723 [catechin-H] 288.0634 [catechin-2H] 287.0544 [Catechin- 3H] 
275.0594 [Catechin –CH2] 259.0623 [Catechin-CH2-O-H] 

5 

Suggested 
by 

Chemspider 

decyl-pentosyl-
glucoside 

20.8 

C22H42O10 
466.2774 (0.86 
ppm)  
 

467.2702 (100) 
468.2750 (24) 
303.22 (15) 
161.0475 (4) 

[M-H]-; 

NEG 
MS/MS2 467.2702: 448.2695 [M-H-H20 (A+1)] 447.2636 [M-H-H2O] 405.2608 [M-
H-CH4O2] 303.2200 [M-H-Glucose-2H]  285.2112 [M-H-Glucose-H2O] 
243.1977 161.0525 [Glucose-H-H2O] 159.0325 113.0282 101.0276  

16 

Suggested 
by 

Chemspider 

mascaroside-like  18.9 
C26H36O11 
524.2249 (-1.71 
ppm) 

523.2177 (100) 
524.2200 (26) 
361.170567 (16) 
343.157367 (8) 

[M-H]-, 
 
 

NEG 
MS/MS2 523.2177:362.1693 [M-H-Glucose (A+1) 361.1716 [M-H-Glucose] 347.1563 [M-
H-CH2-Glucose] 346.1458 M-2H-CH2-Glucose] 343.1573 [M-H-Glucose-
H2O] 313.1487 165.0570 122.0492  

5 

 
9 

vanilliyl-glucoside 11.4 
C14H20O8 
316.1158 (-4 ppm) 

317.1220 (100) 
318.1246583 (16) 
339.1060 (20) 
 

[M+H]+; 
 
M+Na POS 

MS/MS2 317:205.0405 204.0688 203.0580 (Glucose+Na] 187.0155 186.0455 
185.0455 [Glucose+Na-H2O] 165.0574 157.0332 156.0775 [Vanillyl-alcohol-
H (A+1)]  155.0712 [Vanyllil-alcohol-H] 151.0431 149.0661 [Vanyllil-alcohol-O+CH2-
H] 145.0437 143.0357 127.0444 123.0470 109.0360 99.0520 
97.0342 91.0136 

10 

 
 

14 

hexyl-rhamnosyl-
glucoside 

20.0 
C18H34O9 
394.2203 (-0.35 
ppm) 

417.2093619 (100) 
418.21227462 (20) 
203.0586 (11) 

[M+Na]+ 

POS 

MS/MS 417: 297.1496 256.1774 255.1542 [M+Na-Glucose] 239.1199
 238.1434 [M+Na-Glucose-H2O (A+1)] 237.1446 [M+Na-Glucose-H2O]
 204.0571 203.0579 [Glucose+Na]  185.0475 [Glucose+Na-H2O]
 143.0417 

5 

 
Suggested 

by 
Chemspider 

dihydrokaempferol
-glucoside 

12.0 
C21H22O11 
450.1162 (3.11 
ppm) 

473.1068 (100) 
474.1108477 (23) 
489.0878 (14) 
 

M+Na 
 
M+K 

POS 
MS/MS 473:338.1057 337.0925 323.0742 314.0707 313.0886 312.0668 
[M+Na-Glucose (A+1)] 311.0560 [Dihydro-kaempferol+Na] 293.0517 [M+Na-Glucose-
H2O] 265.0542 185.0472 [Glucose-H20+Na] 97.0299 85.0335 

3 

 
5 

Oxalyl-benzoic 
acid 

11.4 
C9H6O5  
194.0213 (1.15 
ppm) 

193.0140 (100) 
194.017685 (10) 
 

M-H 

NEG 

MSMS 193: 175.0057 [M-H-H2O] 165.0229 163.9817 147.0123 [M-H-CH2O] 
138.0759 137.0287 [hydroxy-benzoic acid] 135.9881 135.0160 134.0417 
122.0441 121.0256 [benzoic acid]  119.0140 111.0110 110.0189 109.0318 
107.0147 [benzoic acid-O+2H] 93.0382 92.0184 91.0211 89.0295  

9 

 
Suggested 

by 
Chemspider 

dihydro-myricetin 6.8 C15H12O8 319.0454 (100) M-H NEG MS/MS 319: 215.0397 [C12H7O4] 194.0318 [C9H8O5] 193.0180 [C9H7O5] 19  
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320.0526 (-1.93 
ppm) 

320.0490746 (16) 
193.0180 (15) 

192.0440 191.0371 190.0242 187.0402 185.0423 167.0372  165.0238 
163.0273 159.0437 153.0176 151.0041 147.0149 145.0378 139.0445 
137.0271 [dihydroxy-benzoic moiety] 135.0307 126.0243 125.0275 123.0328 
121.0332 [benzoic moiety] 119.0245 110.0310 109.0312 107.0228 

 
 

Suggested 
by KEGG 

galloyl-syringic 
acid 

8.6 
C16H14O9 
350.0633 (1.14 
ppm) 

349.0561 (100) 
350.05087435 (18) 
169.0150 (12) 
197.0350 (9) 

M-H 

NEG 

MS/MS 349: 274.0334 273.0462 231.0352 227.0379 205.0528 203.0323 
199.0461 192.0065 191.0016 189.0483 187.0422 177.0295 [syringic acid-
H2O]] 175.0409 166.0250 165.0208 164.0143 163.0096 159.0519 
153.0218 152.0075 151.0089 145.0428 137.0259 135.0180 131.0513 
125.0256 124.0181 121.0364 109.0318 107.0239  

22 

 
 

Suggested 
by 

Chemspider 

galloyl-ethyl-
gallate 

14 
C16H14O9 
350.0633 (-1.43 
ppm) 

349.0550 (100) 
350.0550 

M-H 
NEG 

MS/MS 349: 197.0487 166.0276 165.0216 151.0073 [gallic acid-H2O-H] 138.0304 
137.0267 [hydroxy-benzoic acid] 123.0107 121.0319 [benzoic acid] 109.0332 
97.0307 95.0179 93.0338 83.0155 

19 
Suggested 

by 
Chemspider 

quercetin-
rhamnoside 

16.9 
C21H20O13 
448.0985 (-4.6 ppm) 

447.0878 (100) 
448.09237465 (23) 
315.054535 (10) 
301.0350 (20) 
300.02874356 (4) 
 

 

 

MSMS 447: 341.0685 316.0704 315.054 [M-H-dehidro-rhamnose]  314.0471 
301.0299 [Quercetin-H] 300.0309 [Quercetin-2H] 299.0235 [Quercetin-3H] 
297.0742 288.0624 287.0638 286.0515 285.0493 [M-H-Rhamnose-H2O] 
284.0398 273.0217 271.0374 269.0602 243.0345 241.067 229.047 
227.0652 217.0194 193.022 189.0311 177.0191 175.0124 165.0269 
163.0448 [Rhamnose-H] 161.0356 [Rhamnose-3H] 152.0114 
151.0065 [Gallic acid-H2O-H] 136.0451 135.0462 125.0249 109.0342  

51 

 
 

Suggested 
by 

Chemspider 

ellagic acid-
glucoside 

15.9 
C20H16O13 
464.0586 (-1.06 
ppm) 

463.0510 (100) 
464.05689364 (22) 
300.997653 (12) 
299.995654 (4) 

M-H 

NEG 
MS/MS 463:437.1108 [M-CO-H] 313.0951 303.0222 302.0057 [Ellagic acid] 
300.9983 [Ellgaic acid-H] 299.9916 [Ellagic acid-2H] 299.0925 
285.0426 275.0595 259.0651 152.0171 151.0233 125.0266 89.0257 

6 

 
Suggested 

by 
Chemspider 

galloyl-ellagic acid 14 
C21H10O13 
470.0122 (0.13 
ppm) 

469.0050 (100) 
470.0087654 (21) 
425.0125 (500) 
426.016758 (100) 
300.998756 (20) 

M-H 
 
M-CO2-H 

NEG 

MS/MS 469: 451.1294 425.0125 [M-H-CO2] 303.0112 302.0080 [Ellagic acid] 
301.0015 [Ellagic acid-H] 299.9934 [Ellagic acid-2H] 298.9927 
285.0057 [Ellagic acid-H-CH2] 283.9969 282.9954 273.0014 271.9992 
270.9910 257.0063 245.0154 243.0300 229.0212 219.0294 216.0098 
201.0220 200.0146 161.0298 125.0295 [Benzoic acid]   
MS/MS 425: 302.9927 301.9973 [Ellagic acid] 301.0002 [Ellagic acid-H] 299.9947 
[Ellagic acid-2H] 283.9972 [Ellagic acid-H2O] 282.9940 272.9931 
271.9967 245.0138 244.0061 243.0097 229.0238 227.0151 201.0567 
200.0225 187.0664 173.0143  

10 

 
 

Suggested 
by 

Chemspider 

dihydro-syringetin-
glucoside 

16.5 
C30H22O8 
510.1354 (7.71 
ppm) 

509.1282 (100) 
510.1299 (29) 
511.1310 (3) 
347.08756 (20) 

M-H 

NEG 

MS/MS 509 355.0693 348.0843 [dihydrosyringetin] 347.0771 ([dihydro-
syringetin-H] 346.0728 331.0714 330.0712 [dihydro-syringetin-H2O] 
329.0698 [dihydrosyringetin-H2O-H] 319.0854  315.0520 dihydrosyringetin-CH4O]  
314.0435 303.0898 299.0224 261.0791 220.0393 205.0171 193.0161 
192.0078 180.0456 [Glucose???] 167.0360 166.0272 165.0208 164.0142 
153.0580 150.0302 149.0258 138.0324 137.0264 [Hydroxy-benzoic acid] 
125.0259 [glucose fragment] 

6 

 
 
 

12 

HHDP-galloyl-
glucose 

4.5/5.3
/8.1 

C27H22O18 
634.0802 (-0.65 
ppm) 

633.073 (100) 
634.0776 (29) 
300.99764 (10) 
463.0654 (3) 

M-H 

NEG 

MS/MS 633:481.0687 [M-H-Galloyl]  463.0608 [M-H-Gallic acid] 421.0453 
419.0682 331.0718 303.0038 302.0079 301.0023 [Ellagic acid] 300.0663 
[Ellagic acid-H] 277.0198 276.0275 275.0229 273.0112 257.0088 
251.0579 250.0462 249.0435 231.0337 211.0278 169.0164 [Gallic acid-H]  
125.0280 [Glucose gfragment] 

13 

 
 

Suggested 
by 

Chemspider 

punicalin-like 11.5 
C34H22O22 
782.0623 (2.59 
ppm) 

781.0551 (100) 
782.0586735 (36) 
783.0612233 (6) 
300.9975634 (10) 
463.0543 (5) 
 

M-H 

NEG 

MS/MS 781:765.0464 [M-H-O] 764.0444 [M-2H-O] 763.0395 [M-H-H2O] 
754.0591 753.0580 [M-CO-H] 748.0308 747.0374  746.0352 745.029 
737.0562 M-CO2] 736.0515 735.0482 720.0582 719.0544 708.0523 
707.0560 701.0424 691.0585 479.0495 M-Ellagic acid]  463.0552 [M-
Ellagic acid-O]  462.0464 461.0379 M-Ellagic acid-H2O] 451.0526 445.0413 
443.0323 [M-HHDP] 417.0481 316.9964 303.0076 302.0067 [Ellagic acid] 
301.0020 [Ellagic acid-H] 300.0015 298.9863 291.0196 289.0012 
275.0233 274.0163 273.0083 [Ellagic acid fragment] 249.0442 247.0278

12 

 
 
 

Suggested 
by 

Chemspider 
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 245.0166 22 

HHDP-digalloyl-
glucose 

10.5 
C34H26O22 

786.0962 (5.89 
ppm) 

785.089 (100) 
786.093864 (35) 
787.010273 (5) 
300.989765 (10) 
 

M-H 

NEG 

MS/MS 785: 766.0676 [M-H2O-H] 625.1403 [M-Gallic acid] 589.0814 483.0812 
[Ellagic acid-glucoside+H2O] 463.0885 Ellagic acid-Glucoside-H] 419.0655 
302.0099 [Ellagic acid] 301.0025[Ellagic acid-H] 275.0262 [Ellagic acid fragment] 
249.0452 

4 

 
Suggested 

by 
Chemspider 

 

Heterenoside 13.3 
C36H38O20 
790.1975 (2.50 
ppm) 

789.1903 (100) 
790.19507365 (40) 
463.0878 (17) 
301.0334 (11) 
 

M-H 

NEG 

MS/MS 789:663.1583 643.1424 [M-H-Rhamnose] 629.1439 628.1417 
627.1370 [M-H-Glucose] 611.1267 610.1361 609.1273 M-H-Glucose-H2O] 
503.1160 502.1103 501.1051 483.0960 482.1046 481.1018 [M-H-
Rhamnosyl-glucoside] 477.1270 [Quercetin-glucoside+CH2] 476.1307 
475.1255 464.0935 463.0915 [Quercetin-glucoside] 355.0696 329.0889 
320.0546 319.0474 307.0843 302.0457 [Quercetin] 301.0379 [Quercetin-H] 
300.0346 284.0268 283.0292 [ Quercetin- H2O] 265.0738 193.0164 
192.0098 176.0021 175.0054 167.0376 149.0259 125.0272  

15 

 
 
 

Suggested 
by 

Chemspider 

Hydroxy-
benzodioxine-
carboxylic acid 

9.8 
C9H6O5 
194.0235 (9.97 
ppm) 

195.0306581 (100) 
196.033524 (10) 
121.0333454 (3) 

M+H 

POS 

MS/MS 195: 198.2060 177.0220 [M+H-H2O] 167.0644 [M-CO] 150.0410 [M-
CO2] 149.0274 [M-CO2+H] 140.0050 139.0414 [M-Hydroxy-benzoic acid] 
133.0361 123.0333 122.0076 121.0340 [M-benzoic acid-H] 111.0570 
107.0157 105.9884 105.0396 102.9831 95.0558  

14 

 
 

Suggested 
by 

Chemspider 

dihydro-myricetin 10 
C15H12O8 
320.0542 (2.96 
ppm) 

321.0613645 
322.06554 (17) 
139.034084 (4) 

M+H 

POS 

MS/MS 321: 229.0527 220.0361 219.0332 196.0342 195.0336 191.0387 
177.0228 167.0376 163.0437 154.9987 154.0153 153.0225 151.0383 
149.0275 143.0384 140.0371 139.0443 [hydroxy-benzoic acid] 133.0335 
127.0394 126.0162 125.0291 123.0429 121.0340 111.0349 107.0173 
105.0388 97.0336 93.0397  

16 

 
Suggested 

by 
Chemspider 

dihydro-laricitrin 9.32 
C16H14O8 
334.0695 (1.89 
ppm) 

335.0755 (100) 
336.079136 (16) 
 

M+H 
POS 

MS/MS 335: 233.0493 209.0496 194.0263 181.0545 177.0370 168.0376 
167.0387 153.0580 150.0357 149.0293 140.0386 139.0444 [Hydroxy-
benozic acid] 138.0403 111.0406 65.0440 

15 
 

17 

Dihydro-syringetin 11.8 
348.0860 (4.33 
ppm) 

349.0932234 (100) 
350.097765 (18) 
247.045362 (13) 

M+H 

 

MS/MS 349: 247.0654 223.0659 208.0401 195.0501 190.0322 183.0279 
182.0587 181.0542 177.0271 163.0390 162.0374 154.0573 153.0603 
149.0281 140.0401 139.0441 138.0376 125.0581 123.0320 121.0349 
111.0455 110.0380 108.0304 107.0544  

16 

16 

ellagic acid-
arabinoside 

19.2 
C19H14O12 
434.0499 (3.24 
ppm) 

435.0571335 (100) 
436.0610 (20) 
302.01112 (10) 

M+H 

POS 
MS/MS 435: 331.0601 305.0182 304.0201 [Ellagic acid +H (A+1)] 303.0198 
[Ellagic acid +H] 285.0123 [Ellagic acid-H2O+H] 275.0301 257.0262 
[Ellagic acid-CO2+H] 

4 

 
Suggested 

by 
Chemspider 

cyanidin-3-
arabinoside 

15.6 
C20H19O10 
419.0973 (-1.26 
ppm) 

419.0973 (100) 
420.10342 (20) 
287.0565 (14) 

M+H 

POS 
MS/MS 419: 373.0276 290.0519 289.0577 288.0650 [Cyanidin A+1)]
 287.0605 [Cyanidin] 147.0514 [Rhamnose-H2O+H] 

2 

 
Suggested 

by 
Chemspider 

delphinidin-3-
arabinoside 

13.9 
C20H19O11 
435.0944 (3.72 
ppm) 

435.0944 (100) 
436.0978645 (20) 
303.051123 (16) 

M+H 

POS MS/MS 435: 303.0530 [Delphinidin] 304.0627 [Delphinidin +H]] 305.0520 3 

 
Suggested 

by 
Chemspider 

malvidin-glycosyl-
glucoside 

8.8 
C29H31O17 
651.1562 (0.06 
ppm) 

651.1562 (100) 
652.1601(31) 
653.1634 (4) 
331.0876 (15) 

M+H 

POS 

MS/MS 651:635.1502 [M-O] 634.1542 [M-O-H] 633.1481 M-H2O] 
491.1102 [Malvidin-glucoside-2H] 490.1092 489.1054 474.0948 473.100 
472.1013 471.0943 331.0855 [Malvidin] 328.0587 327.0519 310.0512 
309.0421Malvidin-H2O] 

9 

 
Suggested 

by 
Chemspider 

peonidin-
diglucoside-p-
coumaroyl 

19 
C37H39O18 
771.2170 (4.33 
ppm) 

771.2170 (100) 
772.2213 (40) 
773.2235 (4) 
301.0745 (11) 

M+H 

POS 
MS/MS 771 611.1656 610.1657 609.1630 [M-Glucose] 463.1271 [P-coumaroyl-
peonidin] 303.0682 302.0848 [Peonidin+H] 301.0751 [Peonidin] 

5 

 
6 

catechin- 12.2 C21H24O10 435.1289079 (100) M-H NEG MS/MS 435: 313.0890 297.0961 289.0713 [Catechin-H] 271.0658 Catechin-H- 9  
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rhamnoside 436.1361 (1.92 
ppm) 

436.1329373 (24) 
437.1334 (2) 
289.0720 (19) 

H2O] 245.0837 [Catechin-H-CO2] 227.0715 Catechin-H-CH4O2] 221.0812 
205.0489 203.0765 187.0414 185.0568 179.0324 167.0398 166.0307 
165.0293 164.0126 163.0401 [Rhamnose-H] 161.0735 159.0434 
153.0129 152.0343 151.0412 150.0339 149.0276 146.0351 145.0331 
[Rhamnose-H-H2O] 139.0179 138.0242 137.0260 [hydroxy-benozic acid-H] 
126.0244 125.0261 123.0437 122.0488 121.0351 109.0334  

 
 

16 

terpendiol-
glucoside 

17.6 
C16H28O7 
332.1847 (2.4 ppm) 

355.1735 (100) 
356.1776 (18) 
 

M+Na 
POS 

MS/MS 355: 205.0313 204.0676 [Glucose+Na+H] 203.0574 [Glucose+Na]  
83.0864 71.0528 

0 
 
3 

hydroxy decanoic 
acid pentosyl-
glucoside 

12.3 
C21H38O12 
482.2375 (2.44 
ppm) 

505.2267052 (100) 
506.2301 (23) 
373.1856825 (80) 
374.1888 (16) 
521.2034 (11) 

M+Na 
 
M+Na-Pentosyl 
 
M+K 

POS 

MS/MS 505: 373.1861 [M+Na-Pentosyl] 336.1066 335.0998 334.0900 
333.0823  
MS/MS 373: 211.1455 M+Na-Glucose]  204.0597 203.0568 [Glucose+Na] 
201.0430 195.1261 [Decanoic acid+Na] 193.1286  

1 

 
 
4 

Terpendiol-
rhamnosyl-
glucoside* 

19.5 
C22H38O11 
478.2414 (0.13 
ppm) 

523.2400 (100) 
524.244762 (24) 
525.2477645 (3) 
477.2351 (43) 

M+FA- 
 
 
M-H 

NEG 

MS/MS 523: 479.2228 478.2369 [M-H (A+1)] 477.2343 [M-H] 331.1855 [M-
H-Rhamnose]  265.0771 247.0849 [Glucose+Rhamnose fragment] 206.1077 
205.0695 185.1301 [Terpendiol+H2O-H] 179.0371 [Glucose-H] 164.0797 
163.068 [Rhamnose-H] 161.0429 [Glucose-H-H2O] 149.0659 [Rhamnose-H-
H2O] 145.0542 143.0243 131.036 119.0416 113.0245 103.0419 
101.0325 

4 

 
 

12 

Terpendiol-
pentosyl-
glucoside* 

16.8 
17.9 
19.9 
16.2 
21.0 

C21H36O11 
463.2257 (1.5 ppm) 

509.2255 (100) 
510.2287654 (22) 
463.218676 (46)  
463.2200 (100) 
464.2245 (22) 
331.1754 (5) 

M+FA- 
 
M-H 
M-H NEG 

MS/MS 509: 465.183 464.2178 463.2182 [M-H] 332.1707 [M-H-Pentose 
(A+1)] 331.1744 [M-H-Pentose] 191.0867  179.0393 [Glucose-H] 161.0576 
[Glucose-H-H2O] 149.056 [Pentose-H] 101.0467 
MS/MS 463: 333.1836 332.1815 331.1783 [M-H-Pentose] 286.0136 233.0507 
[Glucose-Pentose fragment] 161.9618 161.0508 [Glucose-H-H2O] 159.0265 
149.0419 [Pentose-H] 143.0351 Glucose-H2O-H2O-H] 131.0437 Pentose-H2O-H] 
125.0253 

5 

 
 
 

11 

Hydroxy-
citronellol-
pentosyl-glucoside 

19.4 
20.2 

C21H40O11 
466.2414 (-2.3 ppm) 

489.2300 (100) 
490.2325 (24) 
491.2400 (2) 
357.18 (17) 
511.2473 (100) 
512.2534 (22) 
465.2349 (27) 

M+Na 
 
 
 
M+FA 

POS 

MS/MS 489: 413.0481 373.1477 358.1807 357.1808 [M+Na-Pentose] 356.1729 
355.1395 345.0293 340.9822 337.0691 336.1034 335.0938 
[Glucose+Pentose+Na] 334.0291 333.0687 329.0971 325.0584 304.0634 
303.0487 276.0602 275.0596 203.0573 [Glucose+Na] 201.074 185.0307 
[Glucose+Na-H2O] 
MS/MS 511:469.1476 468.257 467.2536 465.2313 [M-H] 336.1748 335.201 
333.1883 [M-H-Pentose] 289.0893 233.0618 [Glucose-Pentose fragment] 161.0433 
[Glucose-H2O-H]  149.0462 [Pentose-H] 113.0256 101.0245 

3 

 
 
 
8 

oxo-alpha-ionol-
glucoside 

19.9 
C19H30O7 
370.1991 (2.1 ppm) 

415.1987 (100) 
416.2011 (22) 
369.1889 (20) 
 

M+FA 
 
M-H 

NEG 

MS/MS 415:401.2591 399.0708 398.1806 369.1867 [M-H] 356.1707  
318.9537 312.175 299.9476 295.1591 [Glucose+C9H8O] 294.0438 
291.0456 288.1522 287.1559 [Glucose+C8H8] 285.8146 284.789 
229.0768 228.2395 227.1234 225.9824 225.137 223.1342 [Oxo-
alphaionol+O-H] 207.1432 [Oxo-alpha-ionol-H] 175.0081 173.0559 
170.0411 161.0415 [Glucose-H-H2O] 146.0767 144.1754 137.0207 
129.0435 128.0341  

5 

 
 
 
8 

Homovanyllil 
alcohol-pentosyl-
glucoside 

12.41 
C20H32O12 
462.1737 (6.8 ppm) 

461.1598 (100) 
462.1645 (22) 
329.117635 (11) 
 

M-H 
 

NEG 

MS/MS 461: 338.9826 329.1046 M-H-Pentose] 313.1206 [homovanillyil-alcohol-
Glucoside-O-H] 285.0401 271.0233 257.0353 256.027 241.0523 
217.0406 201.0254 199.0404 198.2018 197.1797 193.0133 192.0023 
179.0599 [Homovanillyil-alcohol+C-H] 175.046 167.0649 [Homovanillyil-
alcohol-H] 165.0347 [Homovanillyil-alcohol-H-2H] 149.0228 [Pentose-H]  
137.0259 [Homovanillyil-alcohol-CH2O-H] 125.0622  

5 

 
 
6 

Hotrienol-
Pentosyl-
glucoside 

20.6 
C21H34O10 
446.2151 (-0.45 
ppm) 

445.2087 (100) 
446.2136  

M-H 
NEG 

MS/MS 445:285.1362 284.139 283.1563 [M-H-Glucose]  265.1291 [M-
H-Glucose-H2O] 239.1744 222.0985 221.1524 210.1087 209.115 
[Hotrienol+Glucose fragment] 

2 
 
5 

 

Vomifoliol-
pentosyl-glucoside 

 
C24H38O12 
518.2363 (1.32 

517.2311 (50) 
518.2346 (13) 

M-H 
 

NEG 
MS/MS 517: 359.1458 205.1237 [vomifoliol-H2O-H] 191.0522 [Glucose-
H2O+CH2O] 161.0448[Glucose-H2O-H] 149.0418 [Pentose-H] 

5 
 
 



200 
 

ppm) 205.1411 (7) 
563.2368 (22) 
431.192 (100) 
432.19623 (20) 
 

 
M+FA 
M-Pentose+FA 

101.0238 
MS/MS 431: 385.1742 [M-Pentose-H] 363.1583 345.1869 223.1298 
[Vomifoliol-H]  217.0282  205.1242 Vomifoliol-H2O] 179.0578 
[Glucose-H] 161.0433 [Glucose-H2O-H]   153.096 
[Vomifoliol-fragment] 152.0783 151.0945 Vomifoliol-Fragment-2H] 119.0348 

 
12 

Terpentriol-
rhamnosyl-
glucoside 

20.1 
19.7 
 

C22H38O12 
494.2363 (3.24 
ppm) 

539.2339 (100) 
540.2387 (24) 
493.2301 (13) 

M+FA 

NEG 

MS/MS 539:497.2139 496.2522 495.2361 494.2461 [M-] 493.2288 [M-H]  
40.069 379.132 350.1853 349.183 [M-H-Rham nosyl+2H] 331.1492 [M-
H-Glucose] 325.0518 307.0744 [Rhamnosyl-glucoside-H] 266.0093 265.0947 
[Rhamnosyl-glucoside fragment] 247.0843 [Rhamnosyl-glucoside fragment] 
235.0804 205.0823 187.1315 185.117 [Terpentriol-H]  163.0651 [Rhamnosyl-H] 
161.0464 [Glucose-H-H2O] 119.0321  

5 

 
 
 

14 

Terpentriol-
pentosyl-glucoside 

17.29 
C21H36O12 
480.2206 (1.12 
ppm) 

479.2116 
480.2156 (23) 
185.1160 (9) 

M-H 

NEG 

MS/MS 479:316.0214 293.1028 [Pentosyl-glucoside-H] 289.1493  265.0949 
260.9919 235.0092 233.0637 [Pentosyl-glucoside fragment] 205.0721 
[Pentosyl glucoside fragment –CO] 191.0515 185.1162 [Terpentriol-H] 183.0969 
Terpentriol-H-2H] 179.0624 [Glucoside-H] 161.0570 [Glucose-H-H2O] 149.0360 
[Pentose-H] 143.0355  131.0327 [Pentose-H-H2O] 125.0230 
121.0366  

6 

 
 

12 

Hydroxy-Geranic 
acid-Rhamnosyl-
glucoside 

17.7 
C22H36O12 
492.2207 

537.2234 (100) 
538.2277 (22) 
491.2135 (20) 

M+FA 
 
M-H 

NEG 

MS/MS 537: 491.2155 [M-H] 308.1064 307.1035 [Rhamnosyl-glucoside-H] 
247.0844[Rhamnosyl-glucoside fragment] 184.1078 [Hydroxy-geranic acid] 183.1011 
[Hydroxy-geranic acid-H] 163.0522 [Rhamnose-H] 161.0476 [Glucose-H-H2O] 145.0402 
[Rhamnose-H-H2O]  

2 

 
9 

Supplementary table 4: MS and MS/MS spectra of the unknown biomarkers studied in this thesis. The spectra have been analyzed through MetFrag 

(http://msbi.ipb-halle.de/MetFrag/) using ChemSpider, PubChem or Kegg as reference databases. Every identification have been confirmed through further manual 

curation. 

 

http://msbi.ipb-halle.de/MetFrag/

