
 
 

 
 

 

 

 

Verbs and nouns in awake neurosurgery 

needs and answers 

 

 

by 

Adrià Rofes 

 

 

A Doctoral thesis submitted in partial fulfillment of the requirements 

for the degree of Doctor in Philosophy 

  

 

 

at the International Doctorate for Experimental Approaches to Language and Brain 

(IDEALAB) 

 

 

October, 2015 



 
 

 
 

 



 
 

iii 
 

 

Under the supervision of  

Prof. Dr. Gabriele Miceli, University of Trento 

Prof. Dr. Roelien Bastiaanse, University of Groningen 

Prof. Dr. Lyndsey Nickels, Macquarie University 

 

Assessment committee 

Prof. Dr. Antoni Rodríguez Fornells, University of Barcelona 

Prof. Dr. Jenny Crinion, University College London 

Prof. Dr. Roberto Zamparelli, University of Trento 

 

 

 

 

 

 

              

 

                                                  
m 



 
 

iv 
 

  



 
 

v 
 

TABLE OF CONTENTS  

 

ACKNOWLEDGEMENTS     ix 

LIST OF TABLES     xi 

LIST OF FIGURES     xiii 

 

Chapter 1 - General Introduction     1  

 

Chapter 2 – Language mapping with verbs and sentences in awake surgery: A Review      5 

 2.1. Introduction     6 

  2.1.1. Language mapping tests in awake surgery     9 

  2.1.2. Why use verbs in intraoperative language mapping?    11 

 2.2. Methods    13 

 2.3. Results    14 

  2.3.1. Tasks with verbs and sentences    14 

  2.3.2. Language processes assessed by each task    17  

  2.2.3. Areas where cortico-subcortical stimulation inhibited language processing 

  and types of errors elicited by stimulation    20 

 2.4. Discussion    23 

  2.4.1. Towards a differentiated approach to language mapping    24 

  2.4.2. Design of intraoperative tasks    26 

  2.4.3. Relevance of standardized and customizable tasks    28 

  2.4.4. Other neurocognitive components of intraoperative language mapping    29 

 2.5. Conclusion    31 

 

Chapter 3 - A minimal standardization setting for language mapping tests:  

  An Italian example    33 

 3.1. Introduction    34 

 3.2. VISC (verb production in sentence context)    39 

  3.2.1. Picture-name agreement and cut-offs    39 

  3.2.2. Norming of the stimuli    40 

 3.3. ECCO (object naming test)    41 

  3.3.1. Picture-name agreement and cut-offs    42 

  3.3.2. Norming of the stimuli    42 

 3.4. Validation on a clinical population    43 

  3.4.1. Participants    43 

  3.4.2. Materials and procedure    43 

  3.4.3. Analyses and results    44 

  3.4.4. Example of data usage in a single-case setting using hypothetical scenarios    45 

 3.5. Discussion    46 

 

Chapter 4 - Verb production tasks in the measurement of communicative abilities  

  in aphasia    49 

 4.1. Introduction    50 

  4.1.1. Differences between verbs and nouns    51 

  4.1.2. Language properties involved by picture-naming paradigms    54 



 
 

vi 
 

  4.1.3. Impairment-level and functional-level measures    55 

  4.1.4. Questions and hypotheses    57 

 4.2. Methods    59 

  4.2.1. Participants    59 

  4.2.2. Materials    60 

     4.2.2.1. Picture naming tasks    60 

     4.2.2.2. Functional measures of language    62 

  4.2.3. Procedure and scoring    63 

 4.3. Results    64 

 4.4. Discussion    66 

  4.4.1. An advantage for producing a finite verb in sentence context over other  

  tasks?    67 

  4.4.2. Both object and action naming tasks may be relevant in clinical practice    70 

  4.4.3. CADL-2, CETI, and CAL as measures of communicative abilities in  

  aphasia    72 

  4.4.4. Relevance and limitations of the study    73 

 4.5. Conclusion    75 

 

Chapter 5 - Advantages and disadvantages of intraoperative language tasks in awake  

  surgery    77 

 5.1. Introduction    78 

  5.1.1. Language testing in awake surgery    79 

  5.1.2. Models of language processing    80 

  5.1.3. Advantages and disadvantages of tests reported in the literature    82 

     5.1.3.1. Non-semantic processes    83 

     5.1.3.2. Lexico-semantic processes    85 

     5.1.3.3. Grammatical processes    91 

  5.1.4. Administration of tasks during surgery    95 

 5.2. A three-task approach for prefrontal tumors    97 

  5.2.1. Participants    97 

  5.2.2. Materials and procedure    98 

  5.2.3. Results    99 

 5.3. Discussion: future steps of language tests in awake surgery    101 

 5.4. Conclusion     103 

 

Chapter 6 - Surgical mapping of language production in sentence context 

  A single case series    105 

 6.1. Introduction    106 

  6.1.1. Aims and predictions    112 

 6.2. Methods    113 

  6.2.2. Participants    113 

  6.2.3. Materials    113 

  6.2.4. Procedure    115 

 6.3. Results    116 

  6.3.1. Quantitative results    116 

  6.3.2. Error analyses    121 



 
 

vii 
 

 6.4. Discussion    124 

  6.4.1. DES v no-DES (collapsing across nouns and verbs)    124 

  6.4.2. Object naming and finite verbs (independently of stimulation site)    125  

  6.4.3. Object naming and finite verbs (by stimulation site)    127 

  6.4.4. Error analyses    129 

 6.5. Conclusion    131 

 

 

Chapter 7 - General discussion    133 

 8.1. Applying language knowledge to functional neurosurgery    136 

 8.2. Developing new and standardized tasks in awake surgery    148 

 8.3. The production of finite verbs (in awake surgery)    141  

 8.4. Conclusion    144 

 

REFERENCES    145 

 

APPENDICES    181 

APPENDIX A: Cortico-subcortical areas where language processing was detected and error  

types during electrical stimulation mapping (Chapter 2)    181 

APPENDIX B Description of psycholinguistic variables of the tests, instructions for on-line 

questionnaires, and  MATLAB code to calculate the H-STATISTIC (Chapter 3)    184 

APPENDIX C: Matcihng for linguistic variables, post-hoc tests, and individual results  

(Chapter 4)    198 

 

EPILOGUE    203 

 ABOUT THE AUTHOR    203 

 PUBLICATIONS, PUBLISHED ABSTRACTS, AWARDS    204 

 

  



 
 

viii 
 

 

 

 

  



 
 

ix 
 

ACKNOWLEDGEMENTS 

 

I express my deepest gratitude to Prof. Dr. Gabriele Miceli for his enthusiasm and honest support 

on this project, for his networking knack, and for the finest advice and revisions - working with 

you provided me strong means to become an independent researcher, with robust problem-

solving capacities, and with resilient aptitude to work in group-based environments. I sincerely 

thank Prof. Dr. Roelien Bastiaanse for supporting my application to this program, providing an 

excellent continuation of my career, and fuelling my interest in the academic conversation - 

neither verbs or clinical linguistics would have passed through my mind without your input. I am 

indebted to Prof. Dr. Lyndsey Nickels for the clearest feedback, organizational skills, and 

extensive support on single case methodology and cognitive neuropsychology - I will certainly 

keep all that knowledge in a good place.   

 I will not forget working with Dr. Barbara Santini - thank you for paving the way to join 

forces with the Hospital Borgo Trento in Verona, and for being critically open to new assessment 

methods. I thank Prof. Andrea Talacchi and Prof. Giampietro Pinna, for their work in the 

operation room, and Dr. Pasquale Mirtuono, Dr. Giuseppe Kenneth Ricciardi, Dr. Giada 

Zocatelli, and Dr. Franco Alessandrini, for all the radiological insights. I feel very rewarded to 

have worked with Dr. Giannantonio Spena - you have always received me with open arms and 

have been very available. I am grateful to Dr. Antonio Miozzo for his efficiency following 

patients at the Hospital in Brescia, to Prof. Sergio Carlomagno for helping me with functional 

language assessment materials in Italian, and to Dr. Rita Capasso for following patients in Rome 

and welcoming me in Rovereto with a huge booklet of articles! I will not forget the very valuable 

opportunities that Dr. Silvio Sarubbo and Dr. Monica Dallabona brought me at the Hospital 

Santa Chiara in Trento. I am also very thankful to Dr. Emmanuel Mandonnet and Prof. Stephney 

Whillier to allow me to sit in their neuroanatomy and brain dissection courses at the Lariboisière 

Hospital in Paris and at Macquarie University in Sydney. To Prof. Dr. Angelika Lingnau for 

following my intern work on fMRI data acquisition and analysis - it was certainly a pleasure to 

learn from you. I am grateful to Prof. Dr. Gabriella Vigliocco and to Prof. Dr. Judit Druks for 

welcoming me at their labs in London and to discuss parts of this thesis with me. I am indebted 

to Prof. Marco Baroni, Dr. Alberto Abad, Germán Kruszewksi, and Vânia de Aguiar for passing 

on useful computational programming skills, and for fuelling the scientific discussion. I also 

thank Giovanna Cappelletti for being an excellent master's student - 110 e lode!  

 I thank the academic staff of the consortium of universities from the International 

Doctorate for Experimental Approaches to Language and Brain (IDEALAB), all the scholars and 

colleagues that were interested in this work and who have put me to test in conferences and 

colloquia, and the administrative personnel in Trento, Groningen, and Macquarie; in particular, 

Anja Papke, Ulla Behr, Lesley McKnight, Alice Poomstra, and Leah Mercanti. Last but not least, 

I thank all my friends and family - life would have been much more difficult without you! 

 

 



 
 

x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work has been funded by the Erasmus Mundus PhD Program IDEALAB (Macquarie 

University, Newcastle University, University of Groningen, University of Trento and University 

of Potsdam: agreement number 2014-0025). 



 
 

xi 
 

  



 
 

xii 
 

LIST OF TABLES 

 

Table 2.1 Language processes assessed by each task        19 

Table 3.1 Age-based cut-off scores VISC and ECCO        40 

Table 3.2 Convergent and divergent validation: summary of results        44 

Table 4.1 Language processes assessed by each task        55 

Table 4.2 Main demographic and neurological features of participants        59 

Table 5.1 Language processes assessed by each task         83 

Table 6.1 Subject characteristics and tumor variables      113 

Table 6.2 Preoperative differences in psycholinguistic dimensions (subsets)       116 

Table 6.3 Individual comparisons per condition      120 

Table A2.1 Cortical areas in language dominant hemisphere where language processing was 

detected with each task and error types per area and per test      181 

Table A2.2 Subcortical areas in the language-dominant hemisphere where language processing 

was detected by action naming and error types produced by patients during stimulation of  

that area      183 

Table C4.1 Matching of the tests for relevant linguistic variables including imageability      198 

Table C4.2 Individual behavioral data (percentage correct)       199 

Table C4.3 Post-hoc tests of picture-naming tasks (Z and FDR corrected p-values)       200 

Table C4.4 Spearman correlations of picture-naming tasks and functional-measures  

(rho and p-value)       200 

Table C4.5 Comparisons of overlapping correlations (Steiger’s Z)       201 

Table C4.6 Paired tests on picture-naming tasks (Fisher Exact – two tailed)       201 

Table C4.7 Major error types per task and participant      202 



 
 

xiii 
 

 

 

 

  



 
 

xiv 
 

LIST OF FIGURES 

 

Figure  2.1. Greater implication of the left inferior frontal regions in verb processing         13 

 

Figure 2.2. Cortical and subcortical structures in which DES interfered with language processing 

and error types        22 

 

Figure 3.1. The use of picture naming tasks in awake surgery        35 

 

Figure 3.2. Examples of picture stimuli         36 

 

Figure 3.3. The indicative value of psycholinguistic variables detecting damage to language 

and the brain         38 

 

Figure 4.1.Examples of items from each of the tasks structure of experimental trial        63 

 

Figure 4.2. Spearman correlations between CADL2 and picture-naming tasks        69 

 

Figure 4.3. Performance patterns in individual participants        71 

 

Figure 5.1. Schematic representation of language components.         81 

 

Figure 5.2. Summary of language maps        99 

 

Figure 6.1. Significant DES sites per subject      117 

 

Figure 6.2. Error types during DES per subject      121 

  



 
 

xv 
 

 
 

 

 

 

  



 
 

xvi 
 

To my dearest wife 

  



 
 

xvii 
 

 



 
 

1 
 

Chapter 1 

General introduction  

Awake neurosurgery (henceforth, awake surgery) is a medical procedure recommended for 

patients with brain tumors or pharmacologically intractable epilepsy. It borrows its name from 

the intraoperative stage in which patients are awake, so that neuropsychological and/or language 

tasks can be administered (e.g., Berger 1996; Duffau et al. 1999; Huncke, Van de Wiele, Itzhak, 

& Rubinstein, 1998; Kilbride, 2013; Ojemann & Mateer, 1979; Penfield & Boldrey, 1937). 

Awake surgery has gained popularity over the last years, because in more classical approaches - 

where patients are not awake and language tests cannot be administered - less tumor tissue may 

be removed and worse cognitive outcomes may be obtained (see, for a meta-analysis, De Witt 

Hamer, Gil-Robles, Zwinderman, Duffau, & Berger, 2012). Language testing is usually also 

performed shortly before and after surgery (the so-called “perioperative stages”). Awake surgery 

finds its way within a multidisciplinary field that includes a range of specialists – radiologist, 

anesthesiologist, neurosurgeon, neuropathologist, neurophysiologist and neuropsychologist (or 

speech/language therapist or clinical linguist). All these professionals have a specific role in the 

assessment and treatment of each individual patient. As researchers, we should strive to 

understand the needs of these professionals, and provide answers that help them reach their 

goals, while enabling us to gain knowledge on language and the brain, and to improve current 

standards of patient care.  

A recurrent topic throughout this dissertation is that the language capacities of patients 

with brain tumors have been traditionally assessed with few tasks, and sometimes with non-

standardized materials (e.g., Finch & Copland, 2014; Rofes & Miceli, 2014). Object naming 

tasks have been a key component of these assessments (for a review see De Witte & Mariën, 
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2013). Object naming has much to commend it, as seeing a picture and producing a noun 

(“apple”) or a determiner phrase (“the apple”) engages lexico-semantic input and output 

processes that are indispensable for everyday communication (Goodglass & Wingfield, 1997). 

For example, perioperative processing speed on object naming has been shown to correlate with 

postsurgical chances of return to work in patients undergoing this type of surgery (Moritz-

Gasser, Herbet, Maldonado, & Duffau, 2012). Furthermore, object naming tasks were introduced 

by pioneers in the field and have maintained their role as a gold standard in the identification of 

areas relevant for language processing during surgery (Hamberger & Tamny, 1999; Ojemann & 

Mateer, 1979; Ojemann, Ojemann, & Lettich, 2002; Sanai & Berger, 2009).  

Despite these positive results, having object naming as the main component of 

assessment in awake surgery may not be always sufficient. This is because (1) the language 

capacities required for object naming may be relatively spared in spite of damage to other 

language abilities such as reading, writing, comprehension, or naming of actions (Santini, 

Talacchi, Squintani, Casagrande, Capasso, & Miceli, 2012; Satoer et al., 2014); (2) there are 

language processes typically used in everyday language (e.g., for sentence formulation, to refer 

to actions, or to moments in time) that cannot be assessed with object naming (e.g., Rofes & 

Miceli, 2014; for a review); and (3) the neural correlates of object naming may be partially 

segregated from those of other processes such as action-naming (e.g., Mätzig, Druks, Masterson, 

& Vigliocco, 2009; Vigliocco, Vinson, Druks, Barber, & Cappa, 2011; for reviews). These are 

important issues in aphasiology, neurolinguistics, and cognitive neuroscience, which we revisited 

to work on critical improvements for awake surgery: the use of standardized tasks for language 

mapping, more specifically, the use of verbs as isolated words and finite verbs in sentences.  
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Verbs differ from nouns in a number of ways: they typically refer to actions (Gentner, 

1982), and may weigh differently on psycholinguistic variables that affect performance in 

individuals with aphasia and non-brain-damaged people (e.g., Whitworth, Webster, & Howard, 

2005; Vigliocco, Vinson, Druks, Barber, & Cappa, 2011). Verbs also entail a predicate-argument 

and a thematic structure (Carlson & Tanenhaus, 1989), and when they are used in the context of 

a sentence they require that agreement relations between the subject and the verb be fulfilled 

(Hale & Keyser, 1998). Verbs also allow the positioning of events in time and reference to 

events within a specific time frame (Bastiaanse, Bamyaci, Hsu, Lee, Yarbay Duman, & 

Thompson, 2011). Furthermore, they may be processed in different brain regions compared to 

nouns. It has been shown that verb processing elicits activation in the frontal and inferior-parietal 

lobe, whereas nouns trigger more activation in the temporal lobe (e.g., subjects KJ-1360, AN-

1033 and Boswell in Damasio & Tranel, 1993; Lubrano, Filleron, Démonet, & Roux, 2014; 

Miceli, Silveri, Noncentini, & Caramazza, 1988).  

Overall, earlier research suggests that the current assessments in awake surgery are 

pertinent but not sufficient. In this dissertation, we contribute to the efforts that are underway to 

meet the needs of awake surgery, both in terms of behavioral and anatomical knowledge. We 

approach the issue from the perspective of aphasiology, neurolinguistics and cognitive 

neuroscience (e.g., Coltheart 2011; Withworth et al., 2005). The chapters of this thesis each 

correspond to an article published in an international peer-reviewed journal or to a final draft that 

is (or will be) submitted for publication.  

The thesis begins with a review of language mapping with tests that use verbs and 

sentences (Chapter 2). This chapter serves as a critical introduction to some of the needs that 

neurosurgeons and people responsible for the assessment of language skills in individuals with 
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brain gliomas face in everyday practice. More specifically, it talks about renewing the 

consideration of tasks that use verbs, an approach already tackled in classical papers such as 

Ojemann and Mateer (1979). After this introduction, we deal with the design and development of 

an object naming task and a task with finite verbs in sentences, specifically designed to assess 

Italian-speakers undergoing awake surgery (Chapter 3). Such tools did not exist for the Italian 

language. The standardization of the tasks is described so that both the task methodology and the 

standardization of the tasks can be easily adopted by other research or awake surgery teams.  

In Chapter 4, the validity of the noun and verb picture-naming tasks are assessed, as well 

as two other tasks typically used to assess language deficits in communicative contexts. By 

evaluating the performance of people suffering from post-stroke aphasia, we assess how well 

these naming tasks correlate with the ability to use language in an everyday context. The next 

two chapters describe the implementation of these tasks in surgical rooms and report the 

neurofunctional results of perioperative tests, their relation to the current neuroscience of 

language literature, and a critical review of the advantages and disadvantages that language 

mapping tasks may entail for awake surgery (Chapter 5 and Chapter 6).  

We finish the dissertation with a general discussion, aimed at describing theoretical and 

clinical reasons way a rigorous approach may improve awake surgery procedures. We also 

discuss some future implications of this line of work (Chapter 7).   
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Chapter 2 

Language mapping with verbs and sentences in awake 

surgery: A Review1  

 

 

Abstract 

 

Introduction: Intraoperative language mapping in awake surgery is typically conducted by 

asking the patient to produce automatic speech and to name objects. These tasks might not map 

language with sufficient accuracy, as some linguistic processes can only be triggered by tasks 

that use verbs and sentences. Verb and sentence processing tasks are currently used during 

surgery, albeit sparsely.  

 

Methods: Medline, PubMed, and Web of Science records were searched to retrieve studies 

focused on language mapping with verbs/sentences in awake surgery. We review the tasks 

reported in the published literature, spell out the language processes assessed by each task, list 

the cortical and subcortical regions whose stimulation inhibited language processing, and 

consider the types of errors elicited by stimulation in each region.  

 

Results: Eight types of tasks that use verbs and sentences were found in 20 studies. These are 

action naming, producing a finite verb in sentence context, sentence comprehension, sentence 

completion, verb generation, naming objects to oral description, reading sentences aloud, and 

translating paragraphs.  

 

Discussion: We argue that using verb tasks allows a more thorough evaluation of language 

functions. We also argue that verb tasks are preferable to object naming tasks in the case of 

frontal lesions, as lesion and neuroimaging data demonstrate that these regions play a critical role 

in verb and sentence processing. We discuss the clinical value of these tasks and the current 

limitations of the procedure, and provide some guidelines for their development. Future research 

should aim toward a differentiated approach to language mapping – one that includes the 

administration of standardized and customizable tests and the use of longitudinal neurocognitive 

follow-up studies. Further work will allow researchers and clinicians to understand brain and 

language correlates and to improve the current surgical practice. 

 

Keywords: awake surgery; language mapping; sentence processing tasks; verb processing tasks; 

review. 

 

  
                                                           
1 Published manuscript. Rofes, A. & Miceli, G. (2014). Language mapping with verbs and sentences in awake 

surgery: A Review, Neuropsychology Review, 24(2), 185-99. doi:10.1007/s11065-014-9258-5 
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2.1. Introduction 

Awake surgery is a procedure administered to patients with brain tumors or intractable epilepsy 

in functionally relevant areas (Berger, 1996; Duffau et al., 1999; Hunke, Van de Wiele, Itzhak, & 

Rubbinstein, 1998; Ojemann & Mateer, 1979). The procedure requires the patient to be awake 

and cooperative, in order to perform relevant cognitive tasks during electrical stimulation of 

cortical and subcortical structures (Bello et al., 2007; Benzagmout, Gatignol, & Duffau, 2007; 

Duffau et al. 2003; Ojemann, Ojemann, Lettich, & Berger, 1989; Skirboll, Ojemann, Berger, 

Lettich, & Winn, 1996). This approach permits an accurate resection of pathological tissue, 

while at the same time allowing surgical teams to avoid iatrogenic language injury and to 

improve or at least preserve (in the case of surgery for brain tumors) the patient”s quality of life 

(De Witt Hammer, Gil-Robles, Zwinderman, Duffau, & Berger, 2012; Sanai, Mirzadeh, & 

Berger, 2008). 

Over the past 20 years, the interest of the scientific and clinical community for the 

procedure has steadily increased. A Google search shows that between 1994 and 2013 

publications dealing with awake surgery both for brain tumors and epilepsy have increased more 

than 5 times (from 3070 to 17500 publications per year). The interest for the cognitive outcome 

of the procedure has grown even more, as in the same time span publications investigating 

cognitive deficits in general have shown an eightfold increase (from 385 to 3720 publications per 

year), and studies dealing with language functions have increased by 15 times (from 152 to 1810 

publications per year). 

The characterizing feature of awake surgery is the electrical stimulation of cortical and 

subcortical structures during the performance of cognitive/linguistic tasks. The assumption 

underlying the approach is that, since electrical stimulation disrupts neurocognitive functions, the 
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procedure allows surgical teams to identify and spare brain structures involved in critical 

cognitive (e.g., language) processes (Desmurget, Song, Mottolese, & Sirigu, 2013).  

Even though this rationale is firmly established in the current practice (Kayama, 2012), a 

debate exists on whether electrical stimulation should be considered as the gold standard for 

language mapping in awake surgery. For one thing, it is still unclear whether the effects triggered 

by electrical stimulation of a specific area are the same to those that would emerge after resection 

of the same brain area. Borchers, Himmelbach, Logothetis, & Karnath (2011) suggested that the 

deviant behavioral responses triggered during surgery do not necessarily reflect a causal relation 

between electrical stimulation and the function(s) of the stimulated area. As an example, the fact 

that a patient shows an anomic state or produces a paraphasia after cortico-subcortical 

stimulation may be related to a temporary and reversible imbalance in the language network, of 

which the stimulated area may or may not be a necessary component.  

In an attempt to overcome this limitation, fMRI protocols have been designed to pre-

surgically assess language laterality and to predict and minimize post-surgical language deficits. 

Foki, Gartus, Geissler, & Beisteiner (2008) asked patients to read sentences aloud in an 

intraoperative task similar to some of those reviewed later in this manuscript. Other studies 

investigated neurobehavioral fMRI measures such as resting state, verb generation, 

semantic/tone decision, and passive listening to words or tones for the same purpose (Binder, 

Swanson, Hammeke, & Sabsevitz, 2008; Mehdorn, Giebel, & Nabavi, 2013). These studies 

mostly focused on surgery for epilepsy, and were used as an alternative to Wada testing (e.g., 

Sabsevitz et al., 2003).  

Despite the excellent contribution of these studies, fMRI measures are still regarded as 

insufficiently sensitive and specific for an accurate mapping of language functions in patients 
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undergoing awake surgery, when compared to electrical stimulation. For example, FitzGerald et 

al. (1997) indicated a sensitivity of 83% and a specificity of only 53% when comparing areas 

showing preoperative BOLD responses to those showing interference during surgery. Giussani, 

Roux, Ojemann, Sganzerla, Pirillo, and Papagno (2010) provided similar results in a recent 

review of the literature. Navigated transcranial magnetic stimulation (nTMS) has also been used 

for similar purposes and compared with findings during intraoperative stimulation. Picht et al. 

(2013) showed a sensitivity of 90% but a specificity of just 24% for this technique, compared 

with electrical stimulation.  

On the whole, electrical stimulation is still the technique that allows the most reliable 

localization of language functions. In a recent meta-analysis, De Witt Hammer, Moritz-Gasser, 

Gatignol, and Duffau (2012) showed that, when compared to surgeries where it is not used, 

electrical stimulation leads to maximal tumor resection and to better preservation of cognitive 

functions – hence, of quality of life. For these reasons, electrical stimulation is recommended 

over other methods to detect function in the brain during surgery and therefore to guide surgical 

decisions (Kayama, 2012).  

Another grey area is provided by the undefined role played by the subject”s profile (e.g., 

age, education, language spoken, preoperative language problems, etc.) and pathology (e.g., type 

of tumor, volume, cortico-subcortical extension, brain plasticity phenomena, associated 

psychological problems, etc.). Bizzi et al. (2008) indicated that patients with gliomas in the left 

ventral precentral sulcus are more likely to present preoperative language deficits than patients 

with gliomas in the inferior frontal gyrus. Santini, Talacchi, Squintani, Casagrande, Capasso, & 

Miceli (2012), Satoer, Vincent, Dirven, Smits, and Visch-Brink (2011) and Satoer, Work, Visch-

Brink, Smits, Dirven, and Vincent (2012) recently showed that tumor histology, but not the 
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extent or resection or demographic variables, correlates with cognitive outcome after surgery in 

language areas. Santini et al. (2012) documented anxiety and depression in almost half of the 

patients. In a bilingual patient, Roux and Trémoulet (2002) documented a language-specific 

disturbance after surgery, resulting in the recommendation that multilingual patients be 

intraoperatively assessed in all languages they normally speak.  

Even though numerous outstanding questions still surround the awake surgery procedure, 

the present review wishes to draw attention on issues that concern the evaluation of the 

neurocognitive status of the patient (with a brain tumor or epilepsy). Neuropsychological testing 

is part and parcel of awake surgery, pre-, intra- and post-operatively. Therefore, one way to 

contribute to improving the procedure is to develop increasingly sensitive and dedicated tasks. 

We first briefly discuss the language tasks typically used in awake surgery, to then concentrate 

on intraoperative tasks that tap verb and sentence processing. We review the tasks reported on in 

the literature, the brain areas shown to be involved in these tasks, and the types of errors 

observed during electrical stimulation. We then examine the relationships between intraoperative 

testing, and pre- and post-operative language evaluations with a focus on their clinical value. We 

provide theoretical considerations and empirical evidence from the neuroscience of language that 

justify a more systematic use of verb and sentence processing tasks as tools for intraoperative 

language mapping. Finally, we propose a rationale that might improve, enhance and constrain the 

use of language (especially verb) tasks in awake surgery. 

 

2.1.1. Language mapping tasks in awake surgery 

The tasks traditionally used to map language during awake surgery are automated speech and 

object naming (Hamberger & Tamny, 1999; Ojemann & Mateer, 1979; Ojemann, Ojemann, & 

Lettich, 2002; Sanai et al., 2008; for a review see De Witte & Mariën, 2013). Automated speech 
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tasks such as counting or reciting the days of the week are administered to assess articulation, as 

they pose little demands on semantic and lexical knowledge (Bookheimer, Zeffiro, Blaxton, 

Gaillard, & Theodore, 2000). Object naming tasks are used to assess also semantic and lexical 

retrieval, as they require patients to produce nouns in response to pictures. Good performance on 

these latter tasks is positively correlated with quality of life and return to work (Moritz-Gasser, 

Herbet, Maldonado, & Duffau, 2012). 

These tasks were introduced by the pioneers of awake surgery procedures, and have 

deservedly maintained their role, as they are simple, fast, and accurate in detecting speech arrest 

and object naming impairments. There is a vast literature on these tasks, showing that they are 

sensitive to electrical stimulation of many different brain loci (e.g., Benzagmout et al., 2007 and 

Sanai et al. 2008 for Broca”s area, the inferior frontal gyrus, and related subcortical areas; 

Ojemann et al., 1989 for the superior temporal gyrus, the middle temporal gyrus, postcentral 

gyrus, and inferior parietal lobe; Leclercq et al., 2010 and Papagno et al., 2011 for recent studies 

on long association fiber pathways). However, the everyday use of language poses greater 

demands on the cognitive system (e.g., an ecological use of language requires the ability to 

produce sentences). If the goal of an intraoperative task is to detect subtle language deficits 

during electrical stimulation, automated speech and object naming may not be the most sensitive 

tools. To mention but one issue, object naming can be spared in the face of damage to action 

naming or to grammatical processing (e.g., Miceli, Silvieri, Villa, & Caramazza, 1984; Hillis, 

Tuffiash, & Caramazza, 2002; see Pillon & D”Honinchthun, 2009 for a review), and production 

of nominal morphology can remain intact in the presence of severe difficulty producing verbal 

morphology (e.g., Shapiro, Shelton, & Caramazza, 2000; Tsapkini, Jarema, & Kehayia, 2002). 

Other tasks, just as simple and fast as automated speech or object naming, could be administered 
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during surgery, to assess a broader range of linguistic abilities and to better prevent their 

disruption. Thoughtful consideration should be given to tasks that use verbs and sentences.  

 

2.1.2. Why use verbs in intraoperative language mapping? 

Verbs and nouns engage distinct types of knowledge and play distinct roles in connected speech. 

Nouns typically provide a written or spoken label to physical characteristics and functions of 

objects. For instance, the word “table” refers to a discrete entity with a rectangular, round or oval 

shape, four or more legs, made of wood or other robust material and with specific uses (eating, 

studying, playing, etc.). Verbs, on the other hand, both as isolated words and as predicates in 

sentences, refer to actions and project their properties (e.g., argument structure, thematic roles, 

reference of time and person) to other word categories, such as nouns. As an example, when we 

want to say that “someone” (John) completed the action of making “something” (the table) clean 

in the past, we do so by producing the sentence “John cleaned the table”. In the sentence, the 

verb “cleaned” glues together the different words and indicates what happened, when, and to 

whom (or to what).  

Even though the precise nature of the differences between nouns and verbs is still a 

matter of debate (for contrasting views, see Shapiro & Caramazza, 2003; Vigliocco, Vinson, 

Druks, Barber, & Cappa, 2011), there is agreement that the two word types differ at the 

semantic, lexical and lexical-grammatical level. From the semantic standpoint, verbs are on 

average less referential, more abstract and less imageable than nouns. They also differ at the 

lexical-grammatical level (e.g., they take different sets of inflections). In many languages, 

differences at this latter level typically result in greater processing demands for verbs than for 

nouns. For example, English verbs have four possible inflections and nouns have two. In Italian, 
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verbs have about 46 inflected forms, and nouns only two or, in very rare cases, four (e.g., 

ragazzo, ragazzi, ragazza, ragazze, boy, boys, girl, girls). In other languages, like Chinese, the 

reverse is the case, as nominal morphology is more complex than verb morphology (Bastiaanse, 

Bamyaci, Hsu, Lee, Yarbay Duman, & Thompson, 2011).  

Lesion studies have also repeatedly shown that verbs and nouns are processed by at least 

partly separable neural substrates, and that left prefrontal structures are critical for verb 

processing (Bastiaanse & Jonkers, 1988; Damasio & Tranel, 1993; Miceli, Silvieri, Nocentini, & 

Caramazza, 1988; Pillon & d”Honincthun, 2011; Shapiro & Caramazza, 2003; Woods, Carey, 

Tröster, & Grant, 2005; Zingeser & Berndt, 1990; for review see Mätzig, Druks, Masterson, & 

Vigliocco, 2009). Similar data were obtained in neuroimaging studies that revealed stronger 

activation of left inferior frontal sources during EEG for unambiguous verbs (Federmeier, Segal, 

Lombrozo, & Kutas, 2000), during MEG for inflectional verb affixes (Pulvermüller & Shtyrov, 

2009; Tsigka, Papadelis, Braun, & Miceli, 2014), and greater and more widespread BOLD 

activation in the left Inferior Frontal Gyrus (IFG) for inflected verbs than for inflected nouns 

(Davis, Meunier, & Marslen-Wilson, 2004; Den Ouden, Fix, Parrish, Thompson, 2009; Den 

Ouden, Hoogduin, Sowe, & Bastiaanse, 2008; Finocchiaro, Basso, Giovenzana, & Caramazza, 

2010; Tyler, Bright, Fletcher, Stamatakis, 2004; Yokoyama et al. 2006). In a recent study on a 

large stroke population, six verb processing tasks were administered (Kemmerer, Rudrauf, 

Manzel, & Tranel, 2012). The poorest performance was observed in participants suffering from 

damage to the left inferior frontal gyrus or to prefrontal areas (Figure 2.1).  
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Figure 2.1. Kemmerer et al. (2012). Greater implication of the left inferior frontal regions in verb 

processing. The scale indicates the number of impaired tasks from 1 (orange) to 6 (red). 

Reproduced with permission. 

 

The message we wish to convey is clear: in the context of intraoperative language 

mapping, verb processing tasks would tap articulation, just like automatic speech and object 

naming. They would also engage semantics and lexical retrieval like object naming, but would 

do so by recruiting neural and cognitive mechanisms at least partially different to those involved 

in noun processing. In addition, and also differently to object naming, they would tackle the 

grammatical processes that allow the speaker to combine words into sentences, to indicate when 

the action happened, to make reference to the person performing the action, etc. For this reason, 

tasks that use verbs would increase the sensitivity, specificity and predictive values of 

intraoperative language mapping procedures. This would be particularly evident in the case of 

surgery on the frontal lobe, as very processing is typically impaired following damage to this 

region. 

 

2.2. Methods 

MEDLINE, PubMed, and Web of Science records were searched for studies of language 

mapping with verbs and sentences in awake surgery. The following search terms were used: 
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actions, action naming, awake surgery, auditory naming, comprehension, (direct) electrical 

stimulation, language, language mapping, neurosurgery, production, reading, sentences and 

verbs. The reference section of each study was examined to identify further relevant research. 

For each study, the following aspects were considered: type of task, standardization, type of 

stimuli, task design, number of stimulations, error categorization, number of participants, type of 

electrical stimulation, sites of electrical stimulation, areas that inhibited language processing 

(cortical and subcortical), etiology, tumor grade and methods used for language localization. 

Studies in which verb and sentence processing tasks had not been administered were 

excluded. In these studies, patients either were operated under general anesthesia, or completed 

other cognitive tasks (e.g., object naming, calculation, naming famous people, semantic decision 

or line bisection) during awake surgery procedures.  

 

2.3. Results 

2.3.1. Tasks with verbs and sentences  

Eight types of tasks using verbs and sentences during surgery were found in 20 studies. We 

describe each task separately: 

Action naming (Bello, Acerbi, Giussani, Baratta, Taccone, & Songa, 2006; Bello et al., 

2007; 2008). Patients see the black-and-white drawing of an action. They are asked to produce 

the infinitival form of the verb depicted in the drawing. For instance, for a picture of “a man 

running”, English-speaking patients are expected to say the verb “run” or “to run”, and Italian-

speaking patients the verb “correre”.  

Producing a finite verb in sentence context (Lubrano, Filleron, Démonet, & Roux, 2014). 

Patients see a black-and-white drawing of an action. They are asked to produce the verb in the 
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correct inflected form, preceded by the subject of the sentence. For example, for a drawing of a 

man cutting, patients have to say “he cuts”. 

Sentence comprehension (Bello et al., 2007). Patients are shown two black-and-white 

drawings and then hear a sentence that corresponds to one of them. Their task is to indicate 

which of the two images correctly represents the stimulus sentence. For example, a subject sees 

the drawing of “a boy pushing a girl” and another one of “a girl pushing a boy”. Then he hears 

the sentence “the boy is pushing the girl” and must point to the corresponding drawing. A correct 

interpretation of the verb and its arguments is necessary for the correct response.  

Sentence completion (Ojemann & Mateer, 1979). Patients read incomplete sentences of 8 

to 10 words. They are required to complete each sentence with the appropriately inflected verb 

form. For example, for the sentence “If it”s sunny next Saturday she ... beach”, the target is the 

future form “will go”.  

Verb generation (Bizzi et al., 2008; Herholz et al., 1997; Ojemann et al., 2002; Papagno 

et al., 2011; Roux, Boulanouar, Lotteri, Mejdoubi, LeSage, & Berry, 2003). Patients see black-

and-white drawings of objects (Papagno et al., 2011; Roux et al., 2003) or written names of 

objects (Herholz et al.,1997; Ojemann et al., 2002). They are expected to say an action that can 

be performed with these objects, using a verb in the infinitival form. For example, for a drawing 

of an apple or for the written word “apple”, patients are expected to say “eat” or “to eat”, in 

English; and “mangiare”, in Italian.  

Naming objects to oral description (Hamberger, McClelland, McKhann, Williams, & 

Goodman, 2007; Hamberger, Seidel, Goodman, Perrine, McKhann, 2003; Hamberger, Seidel, 

McKhann, Perrine, & Goodman, 2005). Patients hear a sentence describing an object, and are 

asked to produce the name of the object. For a sentence like “an instrument you beat with 
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sticks”, the expected answer is “drum”. Even though this task does not exclusively (or mainly) 

tap verb processing, correct responses require comprehension of the stimulus sentence, which 

includes a lexical verb relevant to access the representation of the target noun (cf. “It is used to 

make coffee” and “It is used to drink coffee”). 

Reading sentences aloud (Ojemann et al., 1989; Roux & Trémoulet, 2002; Roux, 

Lubrano, Lauwers-Cances, Trémoulet, Mascott, & Démonet, 2004; Sacko, Lawers-Cances, 

Brauge, Sesay, Brenner, & Roux, 2011). Patients are asked to read sentences presented on screen 

(e.g., “The chair is beautiful”; “Take the book and read it!”). As in the previous task, verbs are 

not the only target words, as they appear in sentence context. However, correct responses require 

that the verb in the sentence be read accurately.  

Translating paragraphs (Borius, Giussani, Draper, & Roux, 2012). This task is applicable 

to bilingual patients only. Patients are given short paragraphs, written in their second language, 

from newspapers. They are required to translate the paragraphs into their first language. Also in 

this case, verbs are not the only target, but they must be processed correctly in order to produce 

the correct response.  

Administration and design of these tasks share some features. The typical subject to 

whom they are administered is a right-hander with a lesion in the left (dominant) hemisphere. 

The types of lesions operated upon are low-grade or high-grade gliomas of the frontal, temporal 

or parietal lobe. Studies with patients suffering from intractable epilepsy are also reported 

(Hamberger et al., 2003, 2005, 2007; Ojemann et al., 1998; Ojemann et al., 2002). Patients 

affected by meningiomas, vascular malformations, mesial temporal sclerosis and 

dysembryoplastic neuroepithelial tumors in the left hemisphere also completed these procedures 

(Hamberger et al., 2003; Ojemann et al. ,1998, Ojemann et al., 2002; Roux et al., 2004; Sacko, 
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Lawers-Cances, Brauge, Sesay, Brenner, & Roux, 2011). Across studies, stimulation parameters 

and number of stimulations per brain site are roughly the same. A bipolar dipole that uses 

rectangular pulses and a biphasic current and allows the exact delimitation of an area is used. 

Electrical stimulation does not exceed 4 seconds, to make sure that the behavioral disruption is 

caused by electrical stimulation and not by language impairment. Electrical stimulation is 

applied before stimulus onset, 2 to 4 times per brain site, never consecutively to the same site 

and with a control test without stimulation between two stimulations. The number of stimuli in 

each task ranges from 22 to 80. These details do not differ from those reported in the guidelines 

for awake surgery (Kayama, 2012). 

 

2.3.2. Language processes assessed by each task  

The discussion we present here is based on the cognitive neuropsychological approach (Coltheart 

2001, Whitworth, Webster, & Howard, 2005). The language components putatively addressed by 

each task and sketched here are largely agreed upon scholars who described speech processing 

models (i.e., box-and-arrow diagrams that are used to operationalize a theory and test its 

viability) within this approach (Caramazza, 1997; Levelt, 1989). Models agree that linguistic 

information about a word is represented at three independent levels: a semantic, a lexical, and a 

lexical-grammatical or syntactic level. Regardless of the specific functional architecture of the 

system (for contrasting views see Caramazza, 1997 and Levelt, 1989) these components are 

thought of as long-term memory stores. 

Models typically include a central semantic level where word meaning is stored and 

accessed. An intact semantic level is necessary both to understand a word and to select it for 

production. Its assessment during surgery is crucial, as damage to meaning representations 
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interferes with word comprehension and production, and has a negative effect not only on 

language skills but also on quality of life (Goodglass & Wingfield, 1997). 

Peripheral to the semantic level, the lexical system is a multi-component representational 

level with input and output subcomponents. It is critical for recognizing spoken (phonological 

lexicon, input) or written words (orthographic lexicon, input), thus allowing access to their 

meaning, and for retrieving words from semantics in speech (phonological lexicon, output) or 

writing (orthographic lexicon, output).  

The syntactic level is needed to process grammatical features of words. These are 

necessary to produce and comprehend articulated discourse (Bastiaanse & Jonkers, 1998). This 

level must be assessed during surgery, as its damage may disrupt the ability to understand and/or 

produce the action corresponding to the verb, as well as the time and person of the action. 

Further description of these processes can be found in single-word processing models (Patterson 

& Shewell, 1987; Whitworth et al., 2005). In Table 2.1 we provide a list of the language 

processes assessed by each task. The list is not exhaustive and does not necessarily correspond to 

the order in which language processes occur.  
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Table 2.1  

Language processes assessed by each task 

 

Notes. ACTN = Action naming; VSC = Producing a finite verb in sentence context; NOOD = Naming objects to oral description; 

RSEN = Reading sentence aloud; SCOMPL = Sentence completion; SCOMPR = Sentence Comprehension; TRANSLP = Translating 

Paragraphs; VGEN = Verb Generation. Check marks (✓) indicate that the process is assessed in the task. Asterisks (*) indicate that 

the process may be assessed in the task. A blank space indicates that the process is not assessed by the task. Phonological lexicon 

(input/output), Structural stimulus description (input), Orthographic lexicon (input/output) are independent components, whose 

engagement depends on the type of task administered. For instance, naming objects to oral description uses oral input. Hence, it 

involves the Phonological lexicon (input) but not the retrieval of visual-structural stimulus descriptions, which is needed when the 

stimulus is a drawing, or the Orthographic lexicon, that is used when the stimulus is a written word/text. The list is not exhaustive and 

does not necessarily correspond to the order in which language processes occur. However, it provides an overview of the components 

engaged by each task. 

 ACTN VSC NOOD RSEN SCOMPL SCOMPR TRANSLP VGEN 

Phonological lexicon (Input)   ✓      

Structural description (Input) ✓ ✓    ✓  ✓ 

Orthographic lexicon (Input)    ✓ ✓  ✓  

Semantic level  ✓ ✓ ✓ * ✓ ✓ ✓ ✓ 

Phonological lexicon (Ouput) ✓ ✓ ✓ * ✓  ✓ ✓ 

Orthortographic lexicon (Ouput)    * ✓  ✓  

Syntactic level (morphosyntactic features)  ✓ ✓ * ✓ ✓ ✓  
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Each task in the list poses a unique computational problem and taps several components of the 

language system. These should be regarded in terms of the language processes assessed, the 

modalities tested (i.e., written vs. oral), the time necessary to perform the task, and the patient’s 

profile.  

 

2.3.3. Areas where cortico-subcortical stimulation inhibited language processing, and types 

of errors elicited by stimulation 

In Figure 2.2 (upper half) we indicate the cortical and subcortical areas of the language-dominant 

hemisphere in which language processing was detected by each task during intraoperative 

stimulation. Detailed information is reported in Tables A1 and A2, in the Appendix. In most 

reviewed studies sample size is small, and subject-specific factors and stimulation parameters are 

addressed only inconsistently. Consequently, the data represented in Figure 2.2 are suggestive 

and therefore warrant replication. 

Each task elicited speech errors in a wide range of left frontal, temporal, and parietal 

cortical areas. Only two studies (Bello et al., 2006; 2007) carried out subcortical mapping. These 

indicate that verb processing involves different portions of long association fiber pathways (i.e., 

Superior Longitudinal Fasciculus, the Arcuate Fasciculus, Uncinate Fasciculus, Inferior fronto-

occipital fasciculus, etc.). We did not report on the results of stimulation of right hemisphere 

areas, as these were hardly ever assessed. Bello et al. (2007) and Sacko et al. (2010) operated on 

patients with right hemisphere tumors, but did not discuss data from individual participants.  

Figure 2.2 (lower half) shows the types of errors elicited by stimulation during each task. 

Purely perceptual (visual or auditory) or purely motor (articulatory) errors were disregarded.  
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Figure 2.2. Cortical (right) and subcortical (left) structures in which intraoperative stimulation interfered with language processing 

(upper half), and types of errors elicited by stimulation of each area during each task (lower half). Colored dots indicate involvement 

of a gross anatomical structure (e.g., Superior Frontal Gyrus, Arcuate Fasciculus) and not a specific location within it. The absence of 

dots of a given color means that the area/error was not reported or unaffected during stimulation. See also Tables A1 and A2.  
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The focus is on incorrect responses due to linguistic impairment, such as anomias, semantic and 

phonemic paraphasias, and syntactic errors (see also Tables A1 and A2 in the Appendix). 

The term anomia indicates the failure to produce a response, in the absence of damage to 

perceptual or articulatory mechanisms. Errors of this type arise at the semantic and/or lexical 

level. Some authors distinguish anomia that persists after the end of stimulation from anomia that 

only occurs during stimulation (Hamberger et al., 2003; 2007). An example of anomia in a 

reading task is the sudden arrest when reading a sentence like “the car is blue and…”. It should 

be stressed that a speech arrest is scored as an anomia only if it does not result from a peripheral 

motor impairment – during stimulation no face or tongue contraction is visible and the patient 

succeeds in reading the sentence as soon as stimulation is interrupted (Roux et al., 2004). 

Another issue is controlling for effects in motor programming (e.g., apraxia of speech) which 

nobody has reported up-to-date. Anomias are the most frequent error in aphasic speakers 

(Williams & Canter, 1987), and have limited localization value (Kertesz & McCabe, 1977). Data 

from awake surgery make no exception: failures to name were reported in all the tasks reviewed 

here, and in association to the stimulation of a variety of cortical and subcortical structures 

(Figure 2.2).  

The term paraphasia denotes erroneous responses to words, resulting from incorrect 

production of their segments (phonemic paraphasia – e.g., “sunny” > “sucky”; Ojemann & 

Matter, 1979) or from uttering a word related in meaning to the target (semantic paraphasia – 

e.g., “chair” > “table”; Marshall & Newcombe, 1996). Paraphasias were elicited by stimulation 

during action naming, reading sentences aloud, sentence completion and verb generation tasks. 

Interestingly, subcortical stimulation yielded only phonemic paraphasias in dorsal associative 

pathways such as the Arcuate Fasciculus, the Superior Longitudinal Fasciculus, and the 

Subcallosal Fasciculus, whereas semantic paraphasias were elicited during stimulation of more 
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ventral pathways such as the Inferior Frontal-Occipital Fasciculus, the Inferior Longitudinal 

Fasciculus, and the Uncinate Fasciculus. These observations suggest that these two sets of 

fasciculi (and the structures they connect) have a different impact on processes involving 

phonology as opposed to semantics.  

Incorrect responses of the syntactic type result from errors or omissions that involve 

morphological and sentence-building elements. An example of a syntactic error is reading and 

completing the sentence “If my son is late for class again he… [will see] the principal” as “If my 

son will getting late today he’ll see the principal”. Errors of this type were elicited by stimulation 

during sentence completion tasks that overtly assess syntactic processes (Ojemann & Mateer, 

1979). They were not reported when subjects were engaged in the production of finite verbs 

(Lubrano et al., 2014), which also requires syntactic processing. Ojemann and Mateer (1979) 

reported grammatical errors during stimulation in six scattered areas in the frontal and 

temporoparietal cortex. 

 

2.4. Discussion 

The clinical value of any intraoperative test is determined by its sensitivity, specificity, and 

predictive values. Evaluating these dimensions is relevant to decide which tasks are best suited to 

detect eloquent areas at risk during surgery, and to choose the items to be used intraoperatively. 

We reviewed eight different tasks with verbs and sentences that have been used during surgery, 

as reported in 20 studies. Both functional and anatomical considerations lead to expect that verb 

and sentence processing tasks would be a useful addition to the repertoire of testing tools for 

intraoperative language mapping. This could be true already if verb processing tasks are 

considered in isolation (i.e., as standalone tasks for intraoperative mapping). Verbs involve a 
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broader range of cognitive/linguistic resources than nouns. They refer to events that project their 

properties into other words (noun typically refer to discrete entities), and the processing costs of 

time reference, argument structure and thematic role assignment pose demands at the 

grammatical level that do not apply to nouns (Bastiaanse & Van Zonneveld, 2004; Caramazza 

1997; Kemmerer & Tranel, 2000; Levelt 1989; Whitworth et al. 2005). The mere fact that verb 

processing engages a larger number of language components makes verb tests a potentially more 

sensitive instrument for intraoperative language mapping than object naming tasks. 

The relevance of verb processing tasks for accurate intraoperative language mapping is 

even more compelling if they are considered in combination with object naming tasks. Verb 

tasks are not simply more “complex”, due to the involvement of a greater number of processing 

resources – they tap different abilities to those recruited by noun processing tasks, and involve at 

least partially distinct neural substrates. Therefore, combining object and verb processing tasks 

would ensure a more accurate and thorough mapping of language. Assessing a patient with these 

two tests is feasible as demonstrated by Lubrano et al. (2014). The risk for extending testing time 

was not reported by the authors as a problem. In our own group, this procedure increases testing 

time by about 5 minutes for cortical mapping and 5 minutes for subcortical mapping (total = 10 

minutes) provided that we use our whole list of 70 items (70 items x4 seconds per item = 280 

seconds = 4.7 minutes). So far this extension of time has not yet triggered any issue during 

surgery, as patients respond to the tasks normally. 

 

2.4.1. Towards a differentiated approach to language mapping 

In the current literature there is no clear indication for using specific tasks as a function of the 

affected brain region (see Fernández Coello, Moritz-Gasser, Martino, Martinoni, Matsuda, & 
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Duffau, 2013 for review). As a case in point, verb processing tasks may be particularly useful in 

the event of frontal lobe gliomas. Currently, the only criterion for using verb processing tasks is 

the presence of a lesion in the language-dominant hemisphere. Such an “undifferentiated” 

approach is reasonable: language localization is still an unresolved issue; patients have different 

language profiles and brain morphology; and plasticity may modify the neural underpinnings of 

language representations/processes (e.g., Borchers et al., 2011; Desmurget et al., 2007; 

Desmurguet, Bonnetblanc, & Duffau, 2013; Duffau, 2004).  

Published results favor verb production over verb comprehension tasks for intraoperative 

mapping. Sentence comprehension and, partly, naming objects to description (that relies on verb 

comprehension) were mostly disrupted by temporal lobe stimulation (Bello et al., 2007; 

Hamberger et al., 2003; 2007). In contrast, production tasks such as action naming and verb 

generation were disrupted by both temporal and frontal lobe stimulation (Bello et al., 2006, 

2007; Ojemann et al. 2002; Roux et al., 2003). This could be because production engages more 

anterior regions and comprehension more posterior regions, or because the two processes engage 

distinct language networks with different intensities (Hickok & Poeppel, 2007). Only a thorough 

understanding of the computational demands of each task will eventually provide firm theoretical 

motivations for preferring some tasks over others. However, production tasks have a clear 

advantage already. They require that the stimulus be analyzed at the perceptual and conceptual 

level, and that lexical forms (possibly inflected) be retrieved and produced. Therefore, they 

engage a larger number of cognitive and neural mechanisms. The need for overt spoken 

responses facilitates on-line monitoring and error detection during surgery; and online error 

classification allows surgical teams to identify the linguistic processes interfered with. 
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2.4.2. Design of intraoperative tasks  

Considering that a goal of language mapping is to decide how far a successful resection can 

proceed without damaging relevant language processes (Berger, 1996; Fernández Coello et al., 

2013; Miceli, Capasso, Monti, Santini, & Talacchi, 2012; Ojemann et al., 1989), the greatest care 

should be taken in designing intraoperative tasks. For example, all intraoperative tasks should be 

reasonably short, as time for language mapping is restricted and patients cannot be overwhelmed 

with tasks during surgery. Stimuli should be selected so as to ensure that in each case a response 

can be produced by a healthy individual in less than 4 seconds. (Duffau, 2004; Kayama, 2012). 

When administering and interpreting the task, the limitations of the stimulation procedure should 

be taken into account – e.g., the spatial resolution of the bipolar probe, the variation of sensitivity 

in relation to current intensity, inaccuracies in localizing an already stimulated area, time 

differences between electrical stimulation and stimulus onset, etc. Across-patient variability, 

possible effects of anesthetics (Adhikary, Thiruvenkatarajan, Babu, & Tharyan, 2011; Lotto & 

Schubert, 2008) and other intraoperative, non-surgical and non-neuropsychological monitoring 

procedures should also be considered (Borchers et al,. 2011; Talacchi et al., 2012)  

Intraoperative tasks should also be sufficiently sensitive to pinpoint fine-grained deficits. 

To this end, the materials could be black-and-white line drawings as in many current tests 

(Bastiaanse, Edwards, Maas, & Rispens, 2003; Howard, Swinbum, & Porter, 2010; Metz-Lutz et 

al. 1991) or videos that require fewer inferences than drawings or pictures (Corina, Gibson, 

Martin, Poliakov, Brinkley, & Ojemann, 2005; Den Ouden et al., 2009). Also, the stimuli should 

be checked for visual complexity (i.e., the amount of visuo-perceptual processing they require) 

and name agreement (i.e., their capacity to elicit the expected word from all participants). 
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Careful analysis of the responses collected from healthy volunteers is needed to prevent 

significant response variability. 

Intraoperative tasks should be based on current knowledge in the cognitive neuroscience 

of language. Relevant lexical variables to control for in selecting target verbs are frequency of 

usage (Whitworth et al., 2005), age of acquisition (Bell, Davies, Hermann, & Walters, 2000; 

Morrison, Ellis, & Quinlan, 1992), imageability (Berndt, Haendiges, Burton, & Mitchum, 2002; 

Luzzatti, Raggi, Zonca, Piastrini, Contardi, & Pinna, 2002), word length in phonemes (Nickels & 

Howard, 2004) and instrumentality (Jonkers & Bastiaanse, 2007). Grammatical variables to 

control for are transitivity (De Bleser & Kauschke, 2003; Luzzatti et al., 2002), actionality 

(Finocchiaro & Miceli, 2002), number of internal arguments (Bastiaanse & Van Zonneveld 

2004; Thompson, Lange, Schneider, & Shapiro, 1997) and regularity (Morrison et al., 1992; 

Sach, Seitz, & Indefrey, 2004). These variables should be checked for, as they can affect 

response accuracy and reaction times (Bastiaanse & Van Zonneveld, 2004; Bell et al., 2002; 

Berndt et al. 2002; De Bleser & Kauschke, 2003; Finocchiaro & Miceli 2002; Jonkers & 

Bastiaanse, 2007; Luzzatti et al., 2002; Morrison et al., 1992; Sach et al., 2004; Thompson et al., 

1997; Whitworth et al., 2005). In addition, tasks should be language-specific, as concepts may be 

expressed differently across languages (e.g., the same action is expressed in English by the verb 

“cycling” and in Italian by the object-based circomlocution “andare in bicicletta”, literally, to go 

on bike). When using sentence items in tasks that are adapted to bilingual or multilingual 

populations, the sentences should be matched for morpho-syntactic complexity. Some languages, 

such as Dutch require extra syntactic operations that add further costs (e.g., Verb Second in main 

clauses), and that do not exist in others such as English or Italian (Den Ouden et al., 2008). Other 
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languages, such as Chinese do not express tense through morphological inflection like Turkish, 

or English do (Bastiaanse et al., 2011).  

 

2.4.3. Relevance of standardized and customizable tasks  

Our strategy aims at building standardized and customized tasks with psycholinguistically 

controlled content, and at using these tasks as part of the longitudinal neurocognitive follow-up 

of each patient. So far, only few studies that mapped verb/sentence processing have used 

standardized stimuli (Bello et al., 2006; 2007; 2008; Hamberger et al., 2003; 2005; Santini et al. 

2012). It may be still legitimate to administer non-standardized items, considering that during 

surgery patients are typically presented with stimuli they responded to correctly in preoperative 

baselines, and that therefore each subject acts as his/her own control case (Benzagmout et al., 

2007; Duffau et al., 1999; Ojemann et al., 1989). However, administering stimuli that are not 

standardized (i.e., not fully controlled for psycholinguistic and stimulus-specific variables) is not 

satisfactory, for at least two reasons. In the first place, it prevents the careful diagnosis of 

intraoperative errors, beyond the mere statement that verb processing was affected by electrical 

stimulation. Secondly, it prevents the possibility to compare, contrast and generalize conclusions 

across studies – all critical steps to establishing the usefulness of specific materials (e.g., nouns, 

adjectives, verbs, sentences, etc.) during surgery.  

With this respect, it cannot be stressed enough that intraoperative tasks are part of a 

longitudinal neurocognitive follow-up that includes preoperative, intraoperative and 

postoperative testing. Preoperative testing should identify the components of verb processing 

spared and impaired by the tumor, provide the baseline against which to compare data from 

follow-up evaluations, and constrain the selection of the stimuli to be presented during surgery. 
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A viable strategy would be to build a large dataset of standardized verb items. These stimuli 

should be administered preoperatively, in order to measure the variables (if any) that influence 

performance in each subject. Results should lead the neurosurgical team to set up for each 

subject the appropriate intraoperative task, that would consist of standardized stimuli. For 

example, in different subjects it may be relevant to include transitive rather than intransitive 

verbs, or one-argument rather than multiple-argument verbs, or regular rather than irregular 

verbs, etc. This is because in the face of disproportionate preoperative damage/sparing, a verb 

type may be excluded from (or selected for) intraoperative assessment, in order to reduce the 

probability of false positives during brain mapping. During surgery, such a custom-made task 

would lead to identify eloquent areas, thus allowing the largest possible resection while avoiding 

post-operative language deficits (other than those already present before surgery). At follow-up 

evaluations, exhaustive knowledge of preoperative deficits gathered from administering 

standardized materials permits careful longitudinal evaluations of the linguistic status of the 

patient that may support decisions on clinical management at each stage. Needless to say, such 

an approach would also provide the experimental data needed to establish whether verb and 

sentence processing, as opposed to object naming tasks, are more accurate predictors of better 

quality of life and communicative abilities in specific groups of subjects.  

 

2.4.4. Other neurocognitive components of intraoperative language mapping 

We recommended the intraoperative use of verb tasks in addition to noun tasks. Applying the 

suggested approach to the neurocognitive component of intraoperative language mapping would 

yield better data during surgery and would allow for more systematic and informative follow-up 

neuropsychological evaluations. Having said that, many issues related to intraoperative language 
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mapping would still remain open. One such obvious issue concerns the relative weight of 

functional, oncological and radiological indices in surgical decisions. There is no recommended 

conduct in this case (De Benedictis & Duffau, 2011; Duffau, 2013). In the last instance, surgical 

decisions will have to rely on tumor location and classification, as well as on the 

neuropsychogical profile and intraoperative performance, based on each surgical team”s 

experience and individual patient”s needs. Another critical question is how to proceed when 

contrasting results emerge, during surgery. Intraoperative tests have dichotomous outcomes – an 

area is judged to be functional or not. Given the lack of explicit recommendations, at this stage, a 

conservative conduct is preferable – if a test indicates that a specific area is functional, and 

another that it is not, the area should be considered as functional, and therefore should not be 

removed.  

Many other issues are still unsolved (see Talacchi et al., 2012 for review). For example, 

there are very few randomized clinical trials to show that awake surgery is preferable to fully-

anesthetized surgery (e.g., Duffau et al., 2005). Little is known about which prognostic factors 

should lead to opt for a specific surgical goal (i.e., stereotactic biopsy; partial/subtotal/total tumor 

removal; e.g., Sanai & Berger, 2009). The electrical protocol to decide when an area is eloquent 

has not been fully discussed (how many stimuli should be delivered? how many of these should 

interfere with function to consider that area eloquent?). Similar considerations apply with regard 

to the factors to be considered when choosing stimulation modality (same or different intensity 

for cortical and subcortical mapping? how to establish a reliable threshold? how to select 

stimulation frequency? etc.). Needless to say, solutions to technical problems will impact on the 

neurocognitive component. Be this as it may, outstanding problems can only encourage further 

research in this area.  
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2.5. Conclusion 

In established practice, patients undergoing awake surgery are still largely tested on nouns. We 

reviewed eight different tasks that use verbs and sentences during surgery, in 20 different studies. 

Theoretical considerations and empirical evidence suggest that tasks using verbs and sentences 

may be a useful addition to intraoperative testing in general, but particularly in patients with 

frontal lobe lesions. These tasks should fulfill general requirements (standardization, reasonable 

duration, ease of administration). They should be carefully controlled for the relevant 

psycholinguistic variables, as well as for stimulus-specific features. Their addition to the 

repertoire of neurosurgical teams would constitute a step toward a differentiated approach to 

intraoperative language mapping, and carefully controlled, neurocognitive follow-up studies – 

both primary goals for awake surgery procedures.  

Ideally, for each case intraoperative testing should be based on tasks that use standardized 

items and that, based on lesion site, are most likely to be affected by surgery. Developments in 

the neurocognitive component of awake surgery should be marked by constant revisions and 

updates of available tools, driven by knowledge in the cognitive neuroscience of language. If 

possible, testing should not be restricted to just one language domain, and should be strategically 

devised so as to include as many at-risk functions as possible. This would provide each patient 

with the language mapping procedure most appropriate for his/her needs, including the needs of 

multilingual patients. It would also give clinicians and neuroscientists critical information on the 

neural underpinnings of language functions, which could complement those that can be obtained 

by neuroimaging studies or by the analysis of lesion cases. 
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Chapter 3  

A minimal standardization setting for language 

mapping tests: An Italian example2  

 

Abstract 

 

Introduction: During awake surgery, picture-naming tests are administered to identify brain 

structures related to language function (language mapping), and to avoid iatrogenic damage. 

Before and after surgery, naming tests and other neuropsychological procedures aim at charting 

naming abilities, and at detecting which items the subject can respond to correctly. To achieve 

this goal, sufficiently large samples of normed and standardized stimuli must be available for 

preoperative and postoperative testing, and to prepare intraoperative tasks, the latter only 

including items named flawlessly preoperatively.  

 

Methods: We discuss design, norming and presentation of stimuli, and describe the minimal 

standardization setting used to develop two sets of Italian stimuli, one for object naming and one 

for verb naming, respectively. The setting includes a naming study (to obtain picture-name 

agreement ratings), two on-line questionnaires (to acquire age-of-acquisition and imageability 

ratings for all test items), and the norming of other relevant language variables.  

 

Results: The two sets of stimuli have >80% picture-name agreement, high levels of internal 

consistency and reliability for imageability and age of acquisition ratings. They are normed for 

psycholinguistic variables known to affect lexical access and retrieval, and are validated in a 

clinical population.  

 

Discussion: This framework can be used to increase the probability of reliably detecting 

language impairments before and after surgery, to prepare intraoperative tests based on sufficient 

knowledge of pre-surgical language abilities in each patient, and to decrease the probability of 

false positives during surgery. Examples of data usage are provided. Normative data can be 

found in the Supplementary materials. 

 

Keywords: norming, picture-naming, test, awake surgery, verbs, nouns  

 

  

                                                           
2 Published manuscript. Rofes, A., de Aguiar, V., & Miceli, G. (2015). A minimal standardization setting for 

language mapping tests: an Italian example. Neurological Sciences, 36(7), 1113-9. doi:10.1007/s10072-015-2192-3 
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3.1. Introduction 

Neurosurgery teams administer picture-naming tests during awake surgery (Berger, 1996; 

Duffau et al., 1999; Ojemann & Mateer, 1979). The patient names items, while the neurosurgeon 

stimulates a specific cortical or subcortical structure to identify areas that play a role in language 

processing (e.g., Bello et al., 2007; Ojemann & Mateer, 1979) This procedure is called language 

mapping. Areas detected by electrical stimulation are usually not removed, in order to avoid 

postoperative language deficits (Miceli, Capasso, Monti, Santini, & Talacchi, 2012). This 

technique allows the resection of more neoplastic tissue and a better preservation of the patients" 

quality of life than surgeries that do not employ it (De Witt Hammer, Gil Robles, Zwinderman, 

Duffau, & Berger, 2012). 

Object naming tests were successfully introduced to assess the lexical-semantic 

properties of nouns (Moritz-Gasser, Herbet, Maldonado, & Duffau, 2012; Ojemann & Mateer, 

1979; Papagno, Casarotti, Comi, Gallucci, Riva, & Bello, 2012). Some neurosurgical teams 

introduced tests with verbs and sentences to assess the lexical-grammatical or syntactic levels of 

language (Rofes & Miceli, 2014). These tests could be more sensitive than nouns tasks, 

particularly in patients with frontal lesions, considering the role that anterior regions play in verb 

processing (Lubrano, Filleron, Démonet, & Roux, 2014).  

Naming tasks are administered before surgery as part of a larger language evaluation, to 

decide if a patient is eligible for language mapping, and to identify spared items to be 

administered during surgery (Bello et al., 2007; Miceli et al., 2012). The intraoperative 

presentation of items that the patient named flawlessly is argued to reliably pinpoint eloquent 

areas and to prevent false positives during electrical stimulation (Berger, 1996; Duffau et al., 

1999; Kayama, 2012; Ojemann & Mateer, 1979). Naming tasks are administered after surgery to 
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monitor the patients" abilities and to recommend language therapy, if necessary. Postoperative 

results may indicate the overall quality of the surgical procedure, and provide insights into 

neuropsychological and methodological developments (Santini, Talacchi, Squintani, Casagrande, 

Capasso, & Miceli, 2012; Satoer, Work, Visch-Brink, Smits, Dirven, & Vincent, 2012). See 

Figure 3.1. 

 

Figure 3.1. The use of picture naming tasks in awake surgery. Materials and goals are 

schematically represented. Only items that are correctly named during preoperative testing are 

used intraoperatively.  
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In clinical practice, home-made tasks are commonly used to detect preoperative language 

deficits (Kayama, 2012). Such tasks are not normed for language variables, and do not contain 

structured information on the performance of healthy subjects. This renders the results of the 

assessments difficult to interpret, impossible to compare with previous or ensuing evaluations 

and impedes a careful selection of the intraoperative items.  

Much attention should be paid to the design of naming tasks for awake surgery. These 

tasks should be easy to answer and to score. Black-and-white line drawings, colored pictures, or 

simple videos can be used as stimuli (Catricalà, Della Rossa, Ginex, Mussetti, Plebani, & Cappa, 

2013; Corina, Gibson, Martin, Poliakov, Brinkley, & Ojemann, 2005; Metz-Lutz et al., 1991; 

Snodgrass & Vanderwart, 1980). If text is required, a sans-serif font is preferable, as it easily 

readable (Moret-Tatay, & Perea, 2011). Stimulus presentation is reduced to 4 seconds (i.e., the 

duration of intraoperative electrical stimulation), as longer electrical stimulation may induce 

epileptic discharges (Bello et al., 2007; Ojemann & Mateer, 1979). A computer program with 

specialized software may be used to show each item preceded by a beep, to inform the patient 

that a new item is going to appear. See Figure 3.2.  

  

 Figure 3.2. Examples of picture stimuli. 
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  Tests should be controlled for lexical-grammatical and visual complexity variables, to 

permit fine-grained analyses of language deficits. The current neuroscience of language literature 

offers some guidelines as to the variables that may affect lexical access and retrieval, particularly 

in patients with language deficits (Whitworth, Webster, & Howard, 2005). Among other 

particularities, deficits may be of semantic nature as indicated by low scores on low Imageability 

items (Luzzatti, Raggi, Zonca, Piastrini, Contardi, & Pinna, 2002), Biological/Artifactual entities 

and Semantic category (Catricalà et al., 2013). Deficits may affect the lexical level as indicated 

by lower scores related to the H-statistic3 (Snodgrass & Vanderwart, 1980), written word 

Frequency (Carrol & White, 1973) Age of acquisition (Carroll & White, 1973), word Length in 

phonemes/syllables (Nickels & Howard, 2004), Instrumentality and Name-relatedness to a noun 

(Jonkers & Bastiaanse, 2007) or affect sublexical processes as shown by effects of word Length 

(Nickels & Howard, 2004). Effects can also be grammatical as indicated by contrasts in 

Regularity (Howard et al., 1992), Transitivity (De Bleser, & Kauschke, 2003), Number of 

arguments (Thompson, Langue, Schneider, & Shapiro, 1997). Other variables to consider when 

mapping specific brain regions are Manipulation (Tranel, Kemmerer, Adolphs, Damasio, 

Damasio, 2003) and Action-related verbs (Hauk, Johnsrude, & Pulvermüller, 2004). Visual 

complexity variables may be used to match items within the same category (Transitive vs 

Intransitive verbs) or between categories (Objects vs Actions). 

                                                           
3 We provided a MATLAB script to calculate the H-Statistic (see Supplementary materials)  
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Figure 3.3. The indicative value of psycholinguistic variables detecting damage to language and 

the brain.  

 

Here we present a minimal standardization setting for language mapping tests developed 

for Italian-speakers that should be easily adapted to other languages. We built two sets of stimuli: 

an object naming test and an action-naming test. The setting includes a 4-second picture-name 

agreement task, norming of relevant language variables including imageability and age of 

acquisition, and a validation in a clinical population. Norms for each test are reported in 

Supplementary materials.  
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3.2. VISC (verb production in sentence context) 

This task includes 70 stimuli to which non-brain-damaged people can respond to in less than 

4000msec. It is an adaptation to Italian of the original Dutch test developed by Rofes, De Witte, 

Mariën, & Bastiaanse (2012). Stimuli consist of black-and-white line drawings representing 

actions. A graphic designer created the drawings anew. Above the drawing, the subject of the 

sentence is provided in the pronominal form ("He/She…"; Lui/Lei…). The participant is asked to 

produce the verb in the correct inflected form. For example, for a picture of "a man eating", 

subjects are expected to say "He eats" (Lui mangia). All verbs are action verbs (i.e., they have an 

agent as the subject). Unaccusative or reflexive verbs were not included. Items are divided in 10 

subsets to facilitate the study of Action relatedness, Frequency, Instrumentality, Length in 

phonemes (two subsets), Manipulation, Name-relatedness to a noun, Regularity, Transitivity, and 

to contrast the items of this test with those of the ECCO. It follows a description of the picture-

name agreement, the cut-offs, and the norming of stimuli.  

 

3.2.1. Picture-name agreement and cut-offs  

Seventy-five people participated in this study. To assess picture quality, a first group of 10 

university students (5 female) rated 68 pictures of actions without time constraints. A second 

group named the 60 pictures to which the first group had provided more than 80% of correct 

answers. This time, pictures were presented for 4 seconds, as specified in awake surgery 

procedures (Kayama, 2012). The second group included 65 subjects (30 female), ranging in age 

between 21 and 85 years (21-34 years: n=14; 35-54 years: n=14; 55-64 years: n=12; 65-74 years: 

n=17; 75-85 years: n=8). Education ranged between 5 and 18 years (5 years: n=7; 8 years: n=7; 

13 years: n=26; 16-18 years: n=25). All participants scored within the norm on the Mini-Mental 
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State Examination (Measso et al., 1993), provided informed consent and were paid to participate. 

Seventy action drawings had a name agreement greater than 80% (mean=94.4, sd=5.23) and 

were responded to in less than 4000ms. Within the 70 drawings, we found a significant 

difference between age groups (X2=25,492; df=4; p=0.000). Post-hoc tests revealed significant 

differences between people 75-85 compared to all groups (p<0.05). We also encountered 

differences between people aged 21-34 and 35-54 compared to people 65-74 years (p<0.05). 

Significant differences were also found for education (X2=18,584; df=3; p=0.000). Post-hoc 

tests revealed significant differences between people who had received 5 years of education 

compared to 8 years, 13 years, and 16-18 years (p<0.05). Provided these results we calculated 

cut-off accuracy scores per age range (i.e., the first score below which a performance is 

significantly different from that of a control sample at p<.05, 2-tailed). We used modified t-tests 

(Crawford, Garthwaite, & Porter, 2010), as these reduce Type 1 error rates in the face of skewed 

control data. Cut-offs are reported in Table 3.1.  

 

Table 3.1 

 

Age-based cut-off scores VISC and ECCO  

 21-34 35-54 55-64 65-74 75-85 

VISC 64 53 59 49 29 

ECCO 52 48 49 48 39 

Note. People with 5-8 years of education may produce two items less than people with 16-18 

years of education. 

 

3.2.2. Norming of the stimuli  

Norms for Imageability and Age-of-acquisition were obtained with two on-line questionnaires. 

Imageability was rated by 16 male and 34 female participants (N=50). Age ranged between 19 
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and 66 years (mean=27.8, sd=10.26), and education between 13 and 18 years (13 years=16; 16-

18 years=34). A different group of subjects rated the items for Age-of-acquisition. Age-of-

acquisition was rated by 16 male and 34 female subjects (N=50). Age ranged between 19 and 66 

years (mean=28.9, sd=10.51) and education between 13 and 18 years (13 years=12; 16-18 

years=38). All participants had normal or corrected-to-normal vision; none had neurological or 

neuropsychological problems or history of drug abuse. They all volunteered for the study. The 

number of participants is sufficient for measuring group differences based on current standards 

(Wilson VanVoorhis, & Morgan, 2007). Results indicate that internal consistency and inter-rater 

reliability were excellent: imageability (73 items, α=0.971; 50 raters, α=0.937); age-of-

acquisition (73 items, α=0.967; 50 raters, α=0.975). Frequency norms were extracted from an 

Italian database (Bertinetto et al., 2005). H-statistic was calculated based on the formula from 

Snodgrass and Vanderwart (1980) and Visual complexity through a process of GIF lossless 

compression (Forsythe, Mulhern, & Sawey, 2008). Transitivity, Instrumentality, Name-

relatedness to a noun, Action-relatedness, Manipulability and Regularity were discussed by the 

three authors until consensus was reached. A full set of norms, descriptions of the subsets, and 

further methodological details is reported in the Supplementary materials. 

 

3.3. ECCO (object naming test) 

It consists of 57 drawings of objects to which non-brain-damaged people can respond to in less 

than 4000msec. Subjects are asked to produce a noun phrase. For example, for the picture of a 

"pear", participants are expected to say "Ecco la pera" (Here [is] the pear). The ECCO is based 

on the current gold standard (Metz-Lutz et al., 1991). It includes pictures of the Snodgrass and 

Vanderwart battery (Snodgrass & Vanderwart, 1980). Items are divided in 5 subsets of items to 
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facilitate control over biological/artifactual entities, Frequency, Length in phonemes (two 

subsets), and to contrast the items of this test with those of the VISC.  

 

3.3.1. Picture-name agreement and cut-off scores 

The same participants than in the VISC participated in this study. Fifty-seven drawings of 

objects showed >80% name agreement (mean=96.8, sd=4.31) and were responded to in less than 

4000ms. Within the 57 drawings, we found a significant difference in accuracy between age 

groups (X2= 14,450; df=4; p=0.006). Post-hoc tests revealed significant differences between 

people +75 compared to all groups (p<0.05). Significant differences were also detected between 

education groups (X2= 24.183; df=3; p=0.000). People who had received 5 years of education 

fared worse compared to 8 years, 13 years, and 16-18 years (p<0.05). People who had received 8 

years of education scored two items worse than people that had 16-18 years of education, 

differences were significant (p<0.05). We indicated age range cut-offs in Table 3.1. 

 

3.3.2. Norming of the stimuli  

The same procedure than in the VISC was followed. Imageability raters included 15 males and 

35 females (N=50). Age ranged between 20 and 62 years (mean=27.7, sd=8.32), and education 

between 13 and 18 years (13 years=11; 16-18 years=39). A different group of Age-of-acquisition 

raters included 13 males and 37 females (N=50). Age ranged between 20 and 62 years 

(mean=27.9, sd=9.62) and education between 13 and 18 years (13 years=11; 16-18 years=39). 

All participants had normal or corrected-to-normal vision; none had neurological or 

neuropsychological problems or history of drug abuse. They all volunteered for the study. 

Internal consistency was excellent for both variables: imageability (57 items, α=0.968); age-of-
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acquisition (57 items, α=0.967). Inter-rater reliability was fair for imageability (50 raters, 

α=0.599) and excellent for age-of-acquisition (50 raters, α=0.985). Frequency, H-statistic, Visual 

complexity, Length in phonemes, Biological/Artifactual entities, and Semantic Category were 

calculated in the same way than in the VISC (see Supplementary materials)  

 

3.4. Validation on a clinical population  

3.4.1. Participants 

Fourteen right-handed subjects (6 female) with post-stroke aphasia participated in this study. Six 

subjects were non-fluent, and 8 were fluent. Age ranged between 44 and 91 years (mean=62, 

sd=0.14), and education between 5 and 18 years (mean=11.43, sd=4.4). Ten subjects presented 

with a single lesion in the left hemisphere, four presented with two left-hemisphere lesions. All 

were at least 6 months post-onset (mean=39.71, sd=46.67). A population of stroke patients is 

typically chosen when evaluating the merits of similar tasks for analogous purposes, as language 

production deficits in these subjects are more severe than in subjects undergoing surgery for 

brain tumors (Anderson, Damasio, & Tranel, 1990) 

 

3.4.2. Materials and procedure 

Thirty items from the ECCO and thirty from the VISC were chosen, as they had at least 80% of 

picture-name agreement and were matched for Age-of-acquisition (p=0.424), Frequency 

(p=0.396), and Length in phonemes (p=0.171). We included two scores that potentially predict 

language abilities (language predictors) and one that focuses on cognitive functions other than 

language (non-language predictor). The language predictors are the Italian adaptation of the The 

Communicative Abilities in Daily Living Two (CADL2, Carlomagno et al., 2013), and the subset 
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of reading, writing and calculation from the same test (CADL2_RWC). The Attentive Matrices 

test was used as a non-language predictor (Spinnler & Tognoni, 1987). 

 

3.4.3. Analyses and results  

Convergent validity measures were calculated by correlating the ECCO and the VISC with the 

CADL2 and CADL2_RWC subset score. ECCO scores did not significantly correlate with either 

predictor (p>0.05). VISC scores correlated with both CADL2 (R=0.0692, p=0.006) and 

CADL2_RWC (R=0.620; p=0.018). Divergent validity measures were calculated by correlating 

the ECCO and the VISC with the non-language predictor. No significant correlation was found 

between the Attentive Matrices and the two naming tasks (p>0.05). Finally, ECCO and VISC 

scores showed a significant correlation (R=0.718; p=0.018). Correlations between the language 

predictors and the non-language predictor failed to reach significance (p>0.05). 

 

Table 3.2  

Convergent and divergent validation: summary of results 

 CADL2 CADL2_RWC ECCO VISC AM 

CADL2  
R=0.911* 

p=0.000 

R=0.181 

p=0.535 

R=0.692* 

p=0.006 

R=0.231 

p=0.427 

CADL2_RWC 
R=0.911* 

p=0.000 
 

R=-0.006 

p=0.984 

R=0.620* 

p=0.018 

R=0.280 

p=0.331 

ECCO 
R=0.181 

p=0.535 

R=-0.006 

p=0.984 
 

R=0.718* 

p=0.004 

R=-0.051 

p=0.863 

VISC 
R=0.692* 

p=0.006 

R=0.620* 

p=0.018 

R=0.718* 

p=0.004 
 

R=0.317 

p=0.269 

AM  
R=0.231 

p=0.427 

R=0.280 

p=0.331 

R=-0.051 

p=0.863 

R=0.317 

p=0.269 
 

Notes. AM=Attentive Matrices. Pearson's R and p-value. N=14 for all factors. The asterisk (*) 

indicates significant correlations. 
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3.4.4. Example of data usage in a single-case setting using hypothetical scenarios 
 

Scenario 1. Scores within the normal range in the naming tasks, effects of one or more language 

variables. Preoperative assessments show that a 53-year-old patient performs within the normal 

range in both tests (ECCO=52/57, 91.3% correct, cut-off=49; VISC; N=63/70, 90% correct, cut-

off=59). Analyses of specific subsets show significantly worse performance on transitive than 

intransitive verbs (transitive 7/23, intransitive 23/23; Fisher exact p<0.001). Regarding language 

performance alone (i.e., other non-linguistic factors may be considered), preoperative 

assessments indicate that the patient is eligible for awake surgery (naming accuracy>80%). For 

the intraoperative procedure, the ECCO stimuli that the patient failed to name are removed 

(N=5), but no further manipulation of intraoperative noun stimuli is necessary. As regards 

intraoperative verbs, all transitive stimuli are removed (N=23), because preoperatively they were 

named significantly less successfully than transitive verbs, and therefore may yield errors not 

related to the electrical stimulation. The whole set of verbs is administered postoperatively, to 

obtain as much information as possible on the subject"s language profile.  

 Scenario 2. Performance below non brain-damaged controls" values in one of the tests, 

confirmed by performance on the matched subsets of actions and objects (see Ob_balanced and 

Ac_balanced, in Supplementary materials), but no effects of language variables. Preoperatively, 

a 32-year-old patient might fare significantly worse than controls in object naming (N=41/57, 

72%, cut-off=52). Further analyses might show that objects are significantly more impaired than 

actions (Ob_balanced=13/20, Ac_balanced=19/20; Fisher"s Exact p=0.044), and scrutiny of 

language variables might fail to demonstrate specific damage to language variables (p>.05 two-

tailed). In this example, the verb test may be more suitable than the noun test for intraoperative 

use. In our routine, at this stage language mapping is performed by means of both tests, as noun 
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tests are more commonly used and still better known. The final decision on whether a given area 

plays a specific functional role in noun vs verb naming becomes a clinical issue in which both 

language and surgical factors (extent of the resection, tumor type, surgical aim, etc.) are carefully 

pondered. All items of both tasks are used after surgery.  

Scenario 3. Deficits in both tests, no effects of one or more language variables. On 

preoperative assessment, a 71-year-old patient might fare below normal in both tasks 

(ECCO=20/57, 35% correct, cut-off=49; VISC=30/70; 43% correct, cut-off=48). Further 

analyses might fail to reveal effects of measurable language variables (p>.05 two-tailed). 

Mapping language by electrical stimulation may not be profitable, as a large number of errors 

unrelated to stimulation is likely to occur. Further research should be devoted to the possibility of 

using non-linguistic tasks or tasks that may be useful to map other relevant cognitive domains.  

 

3.5. Discussion 

We presented a minimal standardization setting to develop language tests for language mapping. 

Two picture-naming tasks were purposely designed and standardized for language mapping. In 

preparing stimulus sets, we selected items with at least 80% picture-name agreement that could 

be named in less than 4 seconds by cognitively unimpaired participants. Items were also normed 

for relevant psycholinguistic variables (Whitworth, Webster, & Howard, 2005). The two sets of 

stimuli have excellent internal consistency and excellent inter-rater reliability for age-of-

acquisition and imageability, with the exception of imageability ratings for the noun test (ECCO) 

which were only fair, in agreement with Cicchetti (1994). Cut-off scores for each test and a 

validation on a clinical population is included. People over 75 with 5-8 years of education may 
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perform poor in both tasks compared to younger people (21-64) or people with more years of 

education (16-18).  

We take these data to indicate that these two tasks (and particularly the VISC) are 

sensitive enough to be used to map language functions during awake surgery. We do not 

disregard their use for language mapping in people with epilepsy or post-stroke assessments. The 

VISC is the first of its kind in Italy. As regards object naming, the test by Catricalà et al. (2013) 

has proven beneficial in awake surgery, as it is carefully controlled for variables relevant for 

biological vs non-biological entities, and allows in-depth lexico-semantic analyses (Rofes & 

Miceli, 2014). The ECCO is based on the current gold standard and contains imageability 

ratings, which are key for noun-verb comparisons (Luzzatti et al., 2002). The novelty of the tests 

reported here relies on the fact that each stimulus is normed for psycholinguistic dimensions 

known to affect (aphasic) naming (see Supplementary materials), and specifically designed for 

awake surgery (e.g., all items can be produced in less than 4 seconds by non-brain-damaged 

speakers). As indicated in the three examples, when administered before surgery, the two tasks 

allow the identification of fine-grained preoperative language deficits, and the selection of items 

for intraoperative testing based not only on raw accuracy, but also on the effects of 

psycholinguistic variables. These tests should stimulate research onto what is the minimum 

possible number of items/subsets usable while avoiding false positives, and whether it possible to 

exert an exquisite item-control for people with low naming to undergo language mapping. 
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Chapter 4  

Verb production tasks in the measurement of 

communicative abilities in aphasia4
  

 

 

Abstract 

 

Background: The neurofunctional correlates of verbs and nouns have been the focus of many 

theoretically oriented studies. In clinical practice, however, more attention is typically paid to 

nouns, and the relative usefulness of tasks probing nouns and verbs is unclear. The routine 

administration of tasks that use verbs could be a relevant addition to current batteries. Evaluating 

performance on both noun and verb tasks may provide a more reliable account of everyday 

language abilities than an evaluation restricted to nouns.  

 

Aims: To assess the benefits of administering verb tasks in addition to noun tasks, and their 

relation to three functional measures of language.  

 

Method and procedure: Twenty-one subjects with poststroke language disorders completed four 

picture-naming tasks and a role-playing test (Communicative Abilities in Daily Living, Second 

Edition, CADL–2), commonly used as measure of everyday language abilities. Two 

questionnaires (Communicative Effectiveness Index, CETI, and Communicative Activity Log, 

CAL) were completed by caregivers. Picture-naming tasks were matched for psycholinguistic 

variables to avoid lexicosemantic and morphosyntactic confounds.  

 

Results: No significant differences emerged across picture-naming tasks. Scores on the role-

playing test and the two questionnaires differed; scores between the two questionnaires did not. 

The four naming tasks correlated significantly with CADL–2, CETI, and CAL. The strength of 

the correlation with CADL–2 was significantly greater for Producing a finite verb in sentence 

context than for Object Naming. Thirteen participants showed no differences in performance 

between tasks, 6 fared significantly worse on verb tasks than on Object Naming, 1 fared better at 

Producing a finite verb in sentence context though his performance was poor overall, and 1 was 

significantly more impaired on verbs.  

 

Conclusions: Performance on tasks that use verbs, and especially Producing a finite verb in 

sentence context, may provide a more accurate estimate of language abilities in daily living than 

Object Naming alone. Administering both verb and noun tasks may be recommended in clinical 

practice. 

  

                                                           
4 Published manuscript. Rofes, A., Capasso, R., & Miceli, G. (in press). Verb production tasks in 

the measurement of communicative abilities in aphasia. Journal of Clinical and Experimental Neuropsychology, 

37(5), 483-502.  doi:10.1080/13803395.2015.1025709 



 

50 

 

4.1. Introduction 

Aphasic disorders can affect the subject’s ability to communicate, to various extents and in 

various forms. A well-known phenomenon in aphasic speech is the separability of noun and verb 

processing (for reviews, see Black & Chiat, 2003; Damasio & Tranel, 1993; Kiefer & 

Pulvermüller, 2012; Mätzig, Druks, Masterson, & Vigliocco, 2009; Pulvermüller, 2005; Shapiro 

& Caramazza, 2003b; Vigliocco, Vinson, Druks, Barber, & Cappa, 2011). Such distinction is the 

object of a growing and controversial body of neuropsychological investigations, trying to 

establish the neurofunctional correlates of the two word types. Studies have reached contrasting 

conclusions, and the patterns of associations/dissociations documented in language-impaired 

individuals have been attributed to lexical variables (e.g., Shapiro & Caramazza, 2003b), to 

supramodal semantic variables (e.g., Bird, Howard, & Franklin, 2000), or to sensorimotor 

semantic properties (e.g., Pulvermüller, 2005). Regardless of where they locate the critical 

distinctions, however, these experimental studies have devoted comparable attention to nouns 

and verbs and have contributed to a better understanding of the representation/processing of 

nouns and verbs, and of their neural underpinnings (e.g., Damasio & Tranel, 1993).  

By contrast, in clinical practice object naming is part-and-parcel of most aphasia 

screening tests (e.g., Goodglass & Kaplan, 1983; Huber, Poeck, & Willmes, 1983; Kertesz, 

1982; Swinburn, Porter, & Howard, 2004; Riddoch & Humphreys, 1993) but relatively little 

attention has been devoted to verbs (Bastiaanse, Edwards, Maas, & Rispens, 2003; Conroy, 

Sage, & Lambon Ralph, 2009; de Aguiar, Paolazzi, & Miceli, 2015; Rofes & Miceli, 2014). As a 

consequence, to date information on the relative usefulness of noun and verb production tasks in 

assessing communicative abilities in everyday life is still scarce. To evaluate the benefits of 

systematically administering verb tasks in clinical evaluations, especially when measuring 
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communicative difficulties in everyday life, we studied the performance of people with aphasia 

on four picture- naming tests that use verbs and nouns (Object Naming, Verb Generation, 

Producing a finite verb in sentence context, and Action Naming) and the relation of such tasks 

with three functional measures of language—a role-playing test administered to the patient, and 

two questionnaires filled by the caregiver. 

 

4.1.1. Differences between verbs and nouns 

Verbs and nouns contain many lexicosemantic variables that must be controlled to avoid 

unwanted confounds (Kemmerer & Tranel, 2000; Whitworth, Webster, & Howard, 2005; for a 

review). For example, verbs used in experimental designs typically refer to actions and are less 

referential than nouns, which refer to objects (Gentner, 1982). The different distributions of 

nouns and verbs as regards frequency and imageability values have also been the source of a 

recurrent argument in the neuropsychological literature (Bird et al., 2000; Luzzatti et al., 2002; 

for contrasting results see Berndt, Haendiges, Burton, & Mitchum, 2002; Black & Chiat, 2003). 

When nouns and verbs are studied in the context of language disorders, further problems may 

arise. In the case of nouns, an additional difficulty may stem from the overlap of deficits for the 

grammatical category “noun” with semantic category-specific effects, selectively affecting or 

sparing conspecifics, animals, plant life, or tools (Damasio, Grabowski, Tranel, Hichwa, & 

Damasio, 1996; Hart, Berndt, & Caramazza, 1985; Warrington & McCarthy, 1983; Warrington 

& Shallice, 1984). In the case of verbs, difficulties may arise from diverse syntactic structure 

complexities (transitive vs. intransitive verbs) or from similarity to a noun (Jonkers & 

Bastiaanse, 2007; Thompson, 2003). Additional issues may arise with verbs denoting actions 

performed with specific body parts (Finocchiaro & Miceli, 2002; Pulvermüller, 2005), or with 



 

52 

 

nouns referring to a manipulable object (Aggujaro, Crepaldi, Pistarini, Taricco, & Luzzatti, 

2006; Bub & Masson, 2012; Rueschemeyer, van Rooij, Lindemann, Willems, & Bekkering, 

2010). Number of phonemes, stress patterns (Black & Chiat, 2003; Nickels & Howard, 2004), 

and age of acquisition (Bell, Davies, Hermann, & Walters, 2000; Morrison, Ellis, & Quinlan, 

1992) may also play a relevant role. 

Verbs and nouns also differ along morphosyntactic dimensions. Verbs are the main 

component of the predicate: They entail a complex argument structure (Thompson, 2003), 

thematic role assignment (Carlson & Tanenhaus, 1989), subject–verb agreement (Hale & Keyser, 

1998), and other processes relevant to communication, such as time reference (Berndt, 

Haendiges, Mitchum, & Sandson, 1997). By contrast, nouns typically function as arguments of 

the predicate: They complete its meaning by filling in the grammatical requirements of the verb 

(e.g., subject/agent, object/theme, locative/goal). For example, in order to convey that “someone” 

(“the boys”) finished the action ofmaking “something” (“the car”) clean, we may use the 

sentence “The boys have washed the car,” where the verb “have washed” indicates what 

happened (verb meaning) and when it happened (time reference), and tells who performed the 

action and to whom or what (reference to person, number, argument structure, thematic roles). 

The nouns “boys” and “car” indicate the agent and theme of the action, as projected by the 

grammatical properties of the verb. Another potentially critical difference between nouns and 

verbs is that different languages may take very diverse sets of verbal and nominal inflections. For 

example, English verbs have four possible inflections, but English nouns only have two. Italian 

verbs have 46 inflected forms, and nouns two, or in rare cases four (e.g., bambino, bambini, 

bambina, bambine; boy, boys, girl, girls). The opposite is the case in Chinese, where verb 

morphology is less complex than noun morphology (Bastiaanse et al., 2011; Tsapkini, Jarema, & 
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Kehayia, 2002). Other morphosyntactic variables with potential impact on performance are the 

number of internal arguments (Bastiaanse & Van Zonneveld, 2004; Thompson, Lange, 

Schneider, & Shapiro, 1997), transitivity (De Bleser & Kauschke, 2003; Luzzatti et al., 2002), 

and regularity (Morrison et al., 1992; Pinker & Prince, 1994; Sach, Seitz, & Indefrey, 2004).  

Verb and noun differences have behavioral, neuroanatomical, and neuroimaging 

correlates. Verbs are associated with longer reaction times than nouns in psycholinguistic 

paradigms, including picture naming (Arévalo, 2002; Székely et al., 2005; cf. Tsigka, Papadelis, 

Braun, & Miceli, 2014). People with aphasia frequently fare worse at production tasks that use 

verbs than at tasks that use nouns (Bastiaanse & Jonkers, 1998; Kemmerer, Rudrauf, Manzel & 

Tranel, 2012; Luzzatti et al., 2002; Mätzig et al., 2009; Tranel, Adolphs, Damasio, & Damasio, 

2001; Vigliocco et al., 2011), although the opposite pattern has also been documented (e.g., 

Miceli, Silveri, Nocentini, & Caramazza, 1988; Miceli, Silveri, Villa, & Caramazza, 1984; 

Damasio & Tranel, 1993; Goldberg & Goldfarb, 2005). Dissociations between verbs and nouns 

raised the question of whether these word categories may be represented in at least partly 

separable neural networks. In neuroimaging studies, large sources of activity in the left inferior 

frontal gyrus have been detected in processing unambiguous verbs as compared to nouns 

(Federmeier, Segal, Lombrozo, & Kutas, 2000) and inflectional verb affixes as compared to 

noun affixes (Den Ouden, Fix, Parrish, & Thompson, 2009; Finocchiaro, Basso, Giovenzana, & 

Caramazza, 2010; Pulvermüller & Shtyrov, 2009; Tsigka et al., 2014; Tyler, Bright, Fletcher, & 

Stamatakis, 2004; Yokohama et al., 2006). A greater involvement of frontal regions for verbs 

than nouns has also been reported in several brain-damaged populations, including stroke, 

frontotemporal dementia, Alzheimer’s disease, HIV-1 inflection, brain tumors, and epilepsy 

(Conner, Chen, Pieters, & Tandon, 2014; Corina et al., 2005; Damasio & Tranel, 1993; Hillis & 
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Caramazza, 1995; Kemmerer et al., 2012; Kemmerer & Tranel, 2000; Lubrano, Filleron, 

Démonet & Roux, 2014; Miceli, Silveri, Romani, & Caramazza, 1989; Shapiro & Caramazza, 

2003a, 2003b; Tranel et al., 2001; Woods, Carey, Tröster, & Grant, 2005). 

 

4.1.2. Language properties involved by picture-naming paradigms 

Response accuracy on a given task can be differentially affected by many variables, including 

the types of knowledge (semantic vs. lexical) tapped by the stimuli, the lexicosemantic and 

morphosyntactic characteristics of the target words, and whether the target word appears in 

isolation or in sentence context (Nickels & Howard, 1995). The picture-naming tasks used in the 

present study require participants to respond to drawings of actions by producing the name of the 

action with a verb in the infinitive form (i.e., Action Naming), or with a finite verb in the third 

person singular (i.e., Producing a finite verb in sentence context). We also administered tasks 

that require participants to generate verbs in response to object drawings (i.e., Verb Generation), 

or by producing the article and the corresponding noun (i.e., Object Naming). Each of these tasks 

taps on related, yet distinguishable, language levels. The language processes assessed by each 

task are schematically represented in Table 4.1. 
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Table 4.1 

Language processes assessed by each task 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb in 

sentence context; Vgen: Verb generation. Check marks (✓) indicate that the process is assessed 

in the task. Asterisks (*) indicate that the process may be assessed in the task. A blank space 

indicates that the process is not assessed by the task.  

 

4.1.3. Impairment-level and functional-level measures 

In brain-damaged individuals, language abilities may be measured with a focus on diagnosing 

the processing/representational level(s) affected by the lesion, or with emphasis on the subject’s 

ability to use language to communicate. Picture-naming tasks are typically used to obtain 

impairment-level measures, since they provide objective quantitative (and sometimes qualitative) 

measures of specific linguistic processes (Katz et al., 2000), such as the ability to retrieve a target 

word in response to its visual portrayal. In aphasic patients, performance accuracy is usually 

higher on picture-naming tasks than on tasks that require linguistically more complex responses. 

For example, Barton, Maruszewksi, and Urrea (1969) showed that people with aphasia fare 

better in picture naming and sentence completion than in naming to verbal description. 

 ObNam VGen FinVerb ActNam 

Phonological lexicon (Input)     

Structural description (Input) ✓ ✓ ✓ ✓ 

Orthographic lexicon (Input)     

Semantic level  ✓ ✓ ✓ ✓ 

Phonological lexicon (Ouput) ✓ ✓ ✓ ✓ 

Orthortographic lexicon (Ouput)     

Syntactic level (morpho-syntactic features) *  ✓  
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Goodglass and Stuss (1979) reported that individuals with aphasia respond more accurately to 

picture naming than to naming to description. 

Role-playing tests, rating scales, and questionnaires are functional-level measures, 

frequently administered to chronic outpatients. They provide the examiner with a broad picture 

of the subjects’ ability to use language in everyday life (Katz et al., 2000). Role-playing tasks 

require participants to act out in several fictitious circumstances, mimicking everyday-life 

events. They may be used to assess how proficiently the patient looks up a number in an agenda, 

dials a phone number, reports a message, and so on, and how effectively the aphasic speaker uses 

language when responding to a threat, in a humorous situation, when making a doctor’s 

appointment, or writing down a grocery list. A well-known example of these functional tests is 

the Communicative Abilities in Daily Living (CADL, Holland, 1980; Second Edition, CADL–2, 

Holland, Frattali, & Fromm, 1999), which has been shown to measure the severity of language 

impairment (Fromm & Holland, 1989) and its improvement following treatment (Aten, Caligiuri, 

& Holland, 1982; see the section Materials). Examples of questionnaires are the Communicative 

Effectiveness Index (CETI, Lomas et al., 1989) and the Communicative Activity Log (CAL, 

Pulvermüller et al., 2001). Functional-level measures are valuable tools for language assessment, 

as the context in which language is produced and the purpose of the communicative interaction 

affect the choice of words and syntactic structures (Williams & Canter, 1982). The use of 

synonyms and circumlocutions, or just knowing that responses can be provided without time 

constraints, may also ease language production or mask a specific deficit, while allowing 

successful communication (Williams, 1983, for review). Context effects are also reported when 

using picture-naming tests (Zingeser & Berndt, 1988) and in comparisons between picture 

naming and spontaneous speech (Herbert, Hickin, Howard, Osborne, & Best, 2008).  
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Some work has been directed to finding relations between impairment-level and 

functional-level measures. Aftonomos, Steele, Appelbaum, and Harris (2001) and Bakheit, 

Carrington, Griffiths, and Searle (2005) found a significant correlation between the patients’ 

scores on the Western Aphasia Battery (WAB; Kertesz, 1982) and caregivers’ opinion on their 

language abilities at different stages of speech and language therapy protocols, as measured by 

the CETI (Lomas et al., 1989). Best, Greenwood, Grassly, and Hickin (2008) argued for a 

relationship between the outcome of therapy targeting word retrieval and the patients’ opinions 

on their communicative abilities. In subjects with acquired dysgraphia, Carlomagno, Pandolfi, 

Labruna, Colombo, and Razzano (2001) showed that improvement of writing performance after 

treatment correlated with better performance on the reading and writing subtest of the CADL 

(Holland, 1980). Fucetola et al. (2006) found a positive correlation between comprehension tasks 

that require semantic processing and the CADL–2 (Holland, Frattali & Fromm, 1998). In a less 

direct manner, other studies suggested that difficulties producing verbs significantly interfere 

with connected speech in aphasia (e.g., Bastiaanse & Jonkers, 1998; Crepaldi et al., 2011; Miceli 

et al., 1989; Saffran, Berndt & Schwartz, 1989; Zingeser & Berndt, 1990). 

 

4.1.4. Questions and hypotheses 

To evaluate the potential benefit of administering verb tasks, we asked (a) whether three 

commonly used verb tasks provide a sensitive account of (i.e., significantly correlate with) 

functional measures of language abilities in daily living; and (b) whether any of these tasks 

provide a more sensitive account of language abilities in daily living than an object naming task 

matched for difficulty (i.e., if the strength of the correlation between any of the verb tasks and 

communicative abilities is significantly different to the strength of the correlation between 
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Object Naming and communicative abilities). To verify that our subject sample was not biased 

by the inclusion of a greater than normal number of language-impaired individuals with noun- or 

verb-specific deficits, we compared each individual’s accuracy on Object Naming to that on 

Verb Generation, Producing a finite verb in sentence context, and Action Naming. To ensure that 

findings could be attributed to the impairment of different processing levels and/or sources of 

information engaged by verbs and nouns, rather than to an imbalance between psycholinguistic 

variables shared by these two word categories, stimuli included in all tasks were matched for 12 

lexicosemantic and morphosyntactic variables (see Table C4.1). 

We predicted that verb tasks would provide a sensitive account of communicative 

difficulties, as measured by CADL–2 and by the two questionnaires. In addition, we expected 

that the task requiring the production of finite verb forms would measure language difficulty 

more reliably than Object Naming and other verb production tasks. This is because only 

Producing a finite verb in sentence context entails morphosyntactic operations (e.g., argument 

structure, thematic role assignment, time reference, verb inflection, etc.) in addition to 

lexicosemantic processes. Morphosyntactic operations are essential for sentence formation (e.g., 

Berndt et al., 1997; Carlson & Tanenhaus, 1989; Hale & Keyser, 1998; Thompson, 2003) and are 

frequently affected in aphasia (e.g., Bastiaanse & Jonkers, 1998; Mätzig et al., 2009; Rofes, 

Bastiaanse, & Martínez- Ferreiro, 2014; Vigliocco et al., 2011). Of course, we did not expect 

verb tasks to be systematically more impaired than Object Naming. Worse performance on 

objects than on actions has been reported in patients with temporal lobe lesions (e.g., subjects 

AN-1033 and Boswell, in A. R. Damasio & Tranel, 1993; see also Daniele, Giustolisi, Silveri, 

Colosimo, & Gainotti, 1994), while patients with prefrontal lesions frequently show greater 

difficulty with verb tasks (e.g., subject KJ-1360 in A. R. Damasio & Tranel, 1993; Finocchiaro et 
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al., 2010; Kemmerer & Tranel, 2000; Lubrano et al., 2014; Rofes, De Witte, Mariën, & 

Bastiaanse, 2013; Tranel, Kemmerer, Adolphs, Damasio, & Damasio, 2003). This study reports 

the first attempt to correlate action and object picture-naming tasks, matched for lexicosemantic 

and morphosyntactic variables, with functional measures of language. 

 

4.2..Methods 

4.2.1..Participants  

Twenty-one adult, right-handed Italian-speaking aphasic volunteers were recruited (10 female; 

mean age = 63 years, sd = 15; mean years of education = 13, sd = 4). They were all at least 6 

months post onset of a left-hemisphere stroke (mean months = 40, sd = 47) and had moderate-to-

severe naming impairment, as shown by performance on the naming subtests of the Battery for 

the Analysis of Aphasic Disorders (BADA; Miceli, Laudanna, Burani, & Capasso, 1994). 

Subjects were excluded if they were under age 18, completed fewer than 5 years of formal 

education, had psychiatric disorders, or were taking drugs that could affect cognitive 

performance. Participants were relatively heterogeneous as for age, education, lesion site, and 

time post onset. They were tested as outpatients. Table 4.2 provides information on the main 

demographic and neurological features of participants. This study was approved by the Ethics 

Committee of the University of Trento. 
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Table 4.2  

 Main demographic and neurological features of participants 

 Gender Age Years of 

schooling 

Etiology MPO Lesion site 

AL m 40 17 ICVA 20 LH FT 

BL m 75 18 ICVA 6 LH O 

BS f 43 18 CVST + HCVA 24 LH OT 

CB f 52 13 ICVA 19 LH FTI 

CC f 77 8 HCVA 12 LH P 

CK f 76 19 HCVA 46 LH NB 

ES f 72 8 ICVA 10 LH IC, RH F 

FT f 42 15 ICVA 153 LH FTP 

GC m 68 8 ICVA 30 LH FTPO 

GM f 62 10 ICVA 50 LH FTPB 

LF m 44 15 2 ICVA 40 LH FT, RH OC 

OS f 71 13 ICVA 42 LH TPI 

OT m 65 8 ICVA 7 LH FTI 

PG m 73 10 ICVA 176 LH FTPI 

PI f 51 8 HCVA 6 LH TP 

PS m 76 18 ICVA 15 LH TP 

RA m 57 14 ICVA 8 LH FTP 

RG m 76 14 HCVA 29 LH TP 

RL f 44 13 ICVA 100 LH TI 

TG m 91 11 ICVA 18 LH TPI CR 

UA m 58 13 HCVA 29 LH F, RH FP 

m(sd)  63(15) 13(4)  40(47)  

Notes. MPO: Months post-onset. ICVA: ischemic cerebrovascular accident; HCVA: 

hemorrhagic cerebrovascular accident; CVST: Cerebral venous sinus thrombosis; LH: left-

hemisphere; CR: Corona radiata; F: frontal; I: insular; NB: Nucleus basalis; O: occipital; P: 

parietal; T: temporal. m(sd): mean and standard deviation. 

 

4.2.2..Materials 

4.2.2.1. Picture-naming tasks 

Each participant completed four picture-naming tasks: 

Object Naming. Patients see a black-and-white drawing of an object or an animal. The 

introductory sentence “Here . . . ” (Ecco . . .) is written above the drawing. Participants are asked 

to respond by producing its corresponding noun, with the appropriate determiner. For the picture 
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of an “apple,” participants are expected to say “Here the apple” (Ecco la mela). This structure is 

commonly used and fully grammatical in Italian. A Google search for the structure “Ecco la 

mela” resulted in 17,000 hits. 

Verb Generation. Patients are shown the black-and-white drawing of an object and must 

name an action that can be performed with the object, using a verb in the infinitival form. For 

example, for a drawing of a book, patients are expected to say “to read” (leggere).  

Producing a finite verb in sentence context. Patients are shown a black-and- white 

drawing of an action. The subject of the sentence “He/she . . . ” (Lui/lei . . .) is written above the 

drawing. Patients are asked to read the pronoun and finish the sentence with the verb in the 

correct inflected form. For the drawing of “a woman painting,” patients have to say “She paints” 

(Lei dipinge).  

Action Naming. A black-and-white drawing of an action is presented. Patients are asked 

to produce the infinitival form of the verb represented in the drawing. For example, for a picture 

of “a man kicking a football,” patients are expected to say the verb “to kick” (calciare, in Italian).  

Each task contained 20 items with more than 80% picture name agreement, as assessed 

by the responses of 30 Italian-speaking healthy adults (15 male, 15 female) matched to brain-

damaged participants for age (mean = 53.43 years, sd = 15.2) and years of education (mean = 

13.93, sd = 3.35). Across tasks, items were matched for lexicosemantic and morphosyntactic 

variables that affect language production (see Table C4.1 in the Appendices; and the section on 

the differences between verbs and nouns for a description). These variables may affect 

processing at the semantic level (imageability, frequency, whether or not objects correspond to 

biological vs. nonbiological entities, manipulability), at the lexical level (length in phonemes, 

age of acquisition, name relation to a noun), at the lexical–grammatical level (instrumentality, 
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transitivity, regularity), and at other levels (e.g., actions performed with face, arm, or leg 

muscles). 

 

4.2.2.2. Functional measures of language 

Three functional measures of language were used: 

Communicative Abilities in Daily Living, Second Edition (CADL–2; Carlomagno et al., 

2013, Italian version). This role-playing test consists of 50 questions revolving around fictitious 

environments (e.g., going to the doctor’s office, grocery shopping, making a phone call, looking 

for directions, driving a car). It is used to assess skills such as reading, writing, and calculation; 

social interactions; divergent communication; contextual communication; nonverbal 

communication; humor and metaphors; and sequential relations. For example, participants are 

asked to read a notice and complete a form, to write down three things they may need from a 

supermarket, and to buy a medicine with the change left after buying a drink.  

Communicative Effectiveness Index (CETI; Lomas et al., 1989). This questionnaire is 

completed by the caregiver. It contains 16 questions that resulted from a study in which patients 

with aphasia and their spouses were asked which communicative situations were relevant in their 

everyday life. Caregivers rate whether “never, rarely, sometimes, often, or always the patient is 

able to” get somebody’s attention, participate in conversations, communicate emotions, 

understand writing, describe or discuss something in depth, and so on.  

Communicative Activity Log (CAL; Pulvermüller et al., 2001). This questionnaire is also 

completed by the caregiver. It contains 18 questions that revolve around how frequently the 

patient communicates with friends, in a group, and with one or more strangers; how frequently 
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she or he uses the phone, listens to or watches the news, writes notes, does simple mathematical 

operations (e.g., getting change at the supermarket), asks/answers questions appropriately, etc. 

 

4.2.3. Procedure and scoring 

Test administration was balanced following a Latin square design. The assessment lasted one 

hour on average. The CADL–2 was administered and scored following recommendations 

(Carlomagno et al., 2013). The picture-naming tasks were administered on a laptop computer. To 

ensure consistent stimulus presentation across tasks, each item was shown for 4000-ms, preceded 

by a 500-ms beep. This paradigm is used in clinical practice (Brookshire, 1971; Kayama, 2012; 

Rofes & Miceli, 2014). See Figure 4.1. 

 

 

Figure 4.1. (a) Examples of items from each of the tasks (20 items per task). (b) Structure of an 

experimental trial: Each image is shown for 4000 ms; a beep is played 500 ms before picture 

presentation. 
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Four practice items were included at the beginning of each picture-naming task, to ensure that 

participants understood the procedure. Incorrect responses were classified as lexical errors 

(semantic paraphasias were included in this category), part/whole errors (patient says “wheel” 

instead of car), anomias, circumlocutions, and unrelated words. Formal errors included 

fragments (“medit… ” instead of “meditate”), phonemic paraphasias, and neologisms. 

Morphosyntactically incorrect responses included errors of time, person, and number, and 

morphologically decomposable, derivational neologisms (e.g., “*fooding” for “eating” where 

“*fooding” can be interpreted as being derived from “food”; *pietanzare for mangiare in Italian). 

Since subjects had been instructed to produce verbs in the infinitival form in Action Naming and 

Verb Generation, responses consisting of a verb in the third singular form were counted as errors 

in these tasks. Additional error types included incorrect responses produced outside the 4-s 

window. Conduites d’approche (effort to approximate to the target item) and hesitations were 

not scored as errors, as long as the target word was produced within the allotted response time. 

Morphosyntactic errors with correct semantic andlexical information were counted as 

incorrect—for example, “*Lui mangiare” (*He to eat) where the verb is in the infinitive instead 

of the correct inflected form (i.e., Lui mangia, He eats), or *Ecco laf.sg. piedem. sg. (This is thef.sg. 

footm.sg.) where a feminine instead of a masculine determiner is used. 

 

4.3..Results 

Scores were normalized to 100. Nonparametric Friedman’s test χ2 was used to check for 

differences across conditions. Post hoc two-tailed Wilcoxon signed rank tests were also used, 

when needed. False discovery rate (FDR)-adjusted p-values were systematically calculated to 

correct for multiple comparisons (Benjamini & Hochberg, 1995). At the group level, correct 
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response rates on the naming tasks were significantly different (50% for Object Naming, 41% for 

Verb Generation, 48% for Producing a finite verb in sentence context, and 37% for Action 

Naming), Friedman’s test χ2(3) = 8.18, p = .042. However, post hoc tests revealed no significant 

differences between conditions (p < .05). Also at the group level, the patients’ performance on 

CADL–2 was 81% (range = 49–100%)—where lower values denote diminished or poor 

communicative abilities. On the same scale, the caregiver’s opinion of the communicative 

abilities of the patient’s was 72% (range = 42.5–93.8%) for CETI and 71% (range 41.1–96.7%) 

for CAL. Significant differences were detected between CADL–2, CETI, and CAL, Friedman’s 

test χ2(2) = 12.10, p = .002. Post hoc tests revealed significant differences between CADL–2 and 

CETI (Z = 2.36, p = .036) and between CADL–2 and CAL (Z = 2.43, p = .036), but not between 

CETI and CAL (Z = 0.24, p = .808). The four naming tasks correlated significantly with CADL–

2, CETI, and CAL (p ≤ .05). Spearman nonparametric correlations were used instead of multiple 

regression, due to sample size (VanVoorhis & Morgan, 2007; Wampold & Freund, 1987). Even 

though both Producing a finite verb in sentence context and Object Naming correlated 

significantly with CADL–2, the strength of the correlation was significantly different (Steiger’s 

Z = –2.34918, p = .028), being greater for Producing a finite verb in sentence context. No other 

differences in correlation strength were detected (p < .05). Test scores and correlation values are 

reported in the Appendices (Tables A2 to A5). 

Three main response patterns were detected at the individual level. In 13/21 participants 

(A.L., B.L., B. S., C.C., E.S., F.T., G.M., O.S., P.G., P.I., R.A., R. G., and R.L.), or 61.9% of the 

sample, performance across tasks was statistically indistinguishable. Subjects A.L., B.S., C.C., 

E.S., F.T., O.S., P.I., and R.L. performed with relatively high accuracy, and patients B.L., G.M., 

P.G., R.A., and R.G. fared rather poorly, in all picture-naming tests. Six out of 21 subjects (C.B., 
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C.K., O.T., P.S., T.G., and U.A.), or 28.6% of the sample, scored significantly higher on Object 

Naming than on the verb-naming tasks. P.S. is a clear example of this pattern: He scored 13/20 

correct in Object Naming, but scored below 4/20 correct for the three verb tasks. By contrast, 

one subject (G.C.) performed relatively better on verb tasks than on Object Naming. He provided 

5 to 8/20 correct responses in the three verb tasks, but only 1/20 in Object Naming. A last subject 

(L.F.) performed relatively poorly in all tasks, although he scored significantly better in 

Producing a finite verb in sentence context than in Verb Generation. Significance tests for each 

participant are reported in the Appendices (Table C4.6). 

Qualitative analysis reveal five major error types. Anomias are the most frequent error 

type across tasks. Phonemic and semantic paraphasias and responses produced after more than 4 

s were also common. Category substitution errors (from verb to noun) were the second most 

common error type for the Verb Generation task. Error frequency varied slightly across tasks. 

The major error types per task and participant are reported in the Appendices (Table C4.7). 

 

4.4. Discussion 

The anatomical and behavioral correlates of verbs and nouns have been the focus of many 

studies in the neuroscience of language (e.g., Black & Chiat, 2003; Shapiro & Caramazza, 

2003b; Damasio & Tranel, 1993; Daniele et al., 1994; Mätzig et al., 2009; Pulvermüller, 2005; 

Vigliocco et al., 2011). This knowledge has made its way in clinical practice only occasionally, 

and greater attention is still being paid to noun than to verb tasks (Bastiaanse et al., 2003; Conroy 

et al., 2009; de Aguiar, et al., 2015; Rofes & Miceli, 2014). In this study, we assessed the benefit 

of administering verb tasks in relation to three functional language measures: the CADL–2 
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(Carlomagno et al., 2013), the CETI (Lomas et al., 1989), and the CAL (Pülvermuller et al., 

2001). Individual analyses were also carried out to check for noun- or verb-specific deficits.  

All verb tasks (Verb Generation, Producing a finite verb in sentence context, and Action 

Naming) significantly correlated with CADL–2, CETI, and CAL (p ≤ .05). Object Naming also 

correlated with the three functional level measures (p ≤ .05). Thus, both verb and object picture-

naming tasks would seem to provide reliable indices of language abilities in daily living. More 

specifically, the processes required to understand a structural description of a picture, to access 

the corresponding word meaning at the semantic level, and to retrieve its sound elements in the 

phonological lexicon are good predictors of communicative abilities in everyday life. These 

processes are shared by the four naming tasks, are commonly used in everyday language, and are 

typically damaged in people with aphasia (Damasio & Tranel, 1993; Miceli et al., 1988; Miceli 

et al., 1984; Nickels & Howard, 1995; Tsapkini et al., 2002). 

 

4.4.1. An advantage for producing a finite verb in sentence context over other tasks? 

Interesting differences emerge from the analysis of the relative sensitivity of verb tasks in 

measuring language difficulties. Producing a finite verb in sentence context strongly correlates 

with the CADL–2, while only a moderate correlation with CADL–2 is observed for Verb 

Generation, Action Naming, and Object Naming (see Figure 4.2). In light of the differences 

between verbs and nouns, it is worth enquiring whether the strength of the correlation between 

each task and the CADL–2 also differs. As expected, the strength of the correlation between 

CADL–2 and Producing a finite verb in sentence context is significantly greater than the strength 

of the correlation between CADL–2 and Object Naming. This indicates that the processes 

involved in Producing a finite verb in sentence context (i.e., verb retrieval and the 
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morphosyntactic processes required by naming verbs in sentence context) are better predictors of 

functional communication skills than the language processes required by Object Naming (see 

Table 4.1). This is because producing an inflected verb requires lexicosemantic and overt 

morphosyntactic processes that are not required (at least, not overtly) by Object Naming. For 

example, producing “Lui mangia” (He eats) in the Producing a finite verb in sentence context 

task involves at least four steps that are not necessary for Object Naming. The participant must 

compute (a) a predicate- argument structure indicating which arguments the verb requires to bear 

out of its meaning (in the example, a subject and an implicit object); and (b) a thematic structure 

(Carlson & Tanenhaus, 1989) to indicate that the subject position is filled by the agent 

performing the action (e.g., “He” in “He eats”). Furthermore, the participant is required (c) to 

establish an agreement relation (Hale & Keyser, 1998) between subject and verb, which in Italian 

is overtly marked by the morpheme “–a” in “Lui mangia” (i.e., the “–s” in “He eats”); and (d) to 

locate the action in time by considering tense and time reference (e.g., Bastiaanse et al., 2011). In 

addition, all these steps also involve working memory processes (Hartsuiker & Barkhuysen, 

2006). 
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Figure 4.2. Spearman correlations between Communicative Abilities in Daily Living, Second 

Edition (CADL–2) and picture-naming tasks. All tasks correlate with the CADL–2. The 

correlation value of Producing a finite verb in sentence context and CADL–2 is significantly 

different to that of Object Naming and CADL–2 (p = .0324*). 

 

On these premises, the need to use overt morphology could be a key factor in making Producing 

a finite verb in sentence context a better predictor of language abilities in daily living than Object 

Naming and the other verb production tasks. Finding a great number of subject–verb agreement 

errors in Producing a finite verb in sentence context would strengthen this hypothesis. However, 

qualitative analyses indicate that overt morphology per se may not be the main factor, as only 3/ 

21 participants produced a maximum of two morphosyntactic errors in this task. Therefore, it is 

likely that the sensitivity of the Producing a finite verb in sentence context task stems from the 

need to carry out the complex set of computations listed above (retrieving predicate-argument 
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structure, assigning thematic roles, encoding agreement relation, tense and time reference, while 

engaging working memory processes), rather than exclusively or mainly from difficulty with 

morphosyntactic processes.  

However, the strength of the correlations between naming tasks and CADL–2 results 

from the specific nature of the processes engaged by each naming task, rather than merely from 

their number. This is suggested by the fact that the correlation between Verb Generation and 

CADL–2 is strong (ρ = .649) but not significantly different to that between Object Naming and 

CADL–2. If engaging a greater number of steps were sufficient to yield stronger correlation with 

the CADL–2, Verb Generation should be differentially linked with the CADL–2 as compared 

with Object Naming, since it requires not only processing of the portrayed object (just like 

Object Naming), but also the ability to retrieve an action related to the object. 

 

4.4.2. Both object and action naming tasks may be relevant in clinical practice 

Individual-level analyses indicate that the results obtained in our sample do not stem 

from recruiting a biased number of subjects with noun- or verb specific deficits. Overall, 13/21 

participants (61.9%) failed to show significant differences across tasks. Of these, 8 fared 

relatively well, and 5 relatively poorly in all tasks. Of the participants showing across-task 

differences, only G.C. was particularly inaccurate in Object Naming (1/20) when compared to 

Producing a finite verb in sentence context (8/20) and Action Naming (8/20; see Figure 4.3). L.F. 

scored significantly better at Producing a finite verb in sentence context, although his 

performance was low overall. The remaining six subjects fared worse on at least one of the verb 

tasks than on Object Naming.  
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Figure 4.3. Performance patterns in individual participants. Subjects P.I. and P.G. present no 

difference across tasks (Figures 4.3a and 4.3b). G.C. fares worse in Object Naming than in the 

other three tasks (Figure 4.3c). P.S. fares worse in the three verb tasks than in Object Naming 

(Figure 4.3d). ObNam = Object Naming; VGen = Verb Generation; FinVerb = Producing a finite 

verb in sentence context; ActNam = Action Naming. 

 

These findings alert us to the possibility that clinical language assessments restricted to noun or 

to verb tasks yield misleading results (e.g., Rofes et al., 2013), by failing to identify individuals 

whose impairments are limited to one word type, and/or by underestimating communicative 

problems in a sizeable proportion of aphasic individuals. More sensitive assessments of language 

functions may be granted by test batteries that tap both noun and verb processing. In the present 

study, production of finite verbs proved to be a particularly useful addition. 
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4.4.3. CADL–2, CETI, and CAL as measures of communicative abilities in aphasia 

In the present study, all the functional measures (CADL–2, CETI, and CAL) significantly 

correlated with all the picture-naming tasks. CADL–2 scores differed from CETI and CAL 

scores, which in turn did not differ from each other. Furthermore, even though all the picture-

naming tests significantly correlated with CADL–2, CETI, and CAL, differences in correlation 

strength between Producing a finite verb in sentence context and Object Naming reached 

significance only for CADL–2. Consideration of the structure of CADL–2 leads us to prefer this 

task to CETI and CAL as a functional measure of everyday communicative abilities. This is 

because the participant’s score relies on an objective analysis of his or her 

linguistic/communicative skills as they emerge in a number of tasks that are not directly tied to 

performance in any specific cognitive area (e.g., reading, writing, speech, etc.). This is in 

contrast with the scores that can be obtained from CETI and CAL, which are based on the 

subjective opinion of an observer, emotionally involved in the subject’s difficulties.  

Contrary to our conclusions, other researchers argued that questionnaires such as CETI 

and CAL are better measures of functional impairment than CADL, because scores are provided 

by someone who is familiar with the patient’s premorbid communicative style (Aftonomos et al., 

2001; Bakheit et al., 2005). It could be argued that in our study there was an intrinsic bias for 

CADL–2 to provide a better fit than CETI and CAL. In the first place, naming accuracy and 

CADL–2 scores are often collected in the same testing session, and by an external observer who 

does not have prolonged experience with the subject’s current (as opposed to premorbid) 

communicative difficulty. Secondly, 32/50 questions in CADL–2 use picture stimuli, just like 

object and action naming tasks. These two objections, however, fail to account for the 

significantly greater correlation between CADL–2 and Producing a finite verb in sentence 
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context than between CADL–2 and Object Naming— both tasks are collected essentially 

simultaneously by an external observer and use picture stimuli. Different correlation strength is 

likely due to the different linguistic demands of the two naming tasks. 

 

4.4.4. Relevance and limitations of the study 

This investigation is open to questions related to task choice, especially considering that the 

relative value of the three functional measures used in this study is not established. For example, 

one might question whether CADL–2 or the two questionnaires provide the more adequate 

measure of communicative abilities in everyday life. Of course, CADL–2 is not the only 

objective functional measure of everyday language difficulties—although both CADL and 

CADL–2 have been frequently used for this purpose (see Fromm & Holland, 1989; Fucetola et 

al., 2006, for studies on CADL; and Carlomagno et al., 2001, for studies on CADL–2).  

Measuring several variables that may influence the narratives elicited during picture 

description (e.g., Cookie Theft; Goodglass & Kaplan, 1972) could be a suitable alternative, as 

spontaneous speech would diminish the need for impersonation inherent in CADL–2 (the patient 

is required to pretend being at the doctor’s office, at the supermarket, etc.). Different methods for 

collecting and analyzing spontaneous speech have been proposed (Craig et al., 1993; Miceli et 

al., 1989; Nicholas & Brookshire, 1993; Prins & Bastiaanse, 2004; Saffran et al., 1989; Yorkston 

& Beukelman, 1980), with heterogeneous conclusions. Yorkston and Beukelman (1980) probed 

the validity of different variables in the spontaneous speech of an aphasic individual, showing 

that the participant conveyed information informatively (as indicated by the total number of 

content units), but less efficiently than controls (as indicated by the number of syllables and 

content units per minute). Similarly, Nicholas and Brookshire (1993) showed that people with 

aphasia produce fewer words, words per minute, content units, and content units per minute than 
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non-brain-damaged participants. Jacobs (2001) found a correlation between such measures and 

the ratings of naïve listeners on the informativeness, efficiency of communication, and listening 

comfort of spontaneous speech samples before and after specific language treatment. Herbert et 

al. (2008) found significant correlations between picture-naming accuracy and the proportion of 

content words as speech units. Berndt et al. (1997) found that people with verb deficits relied on 

simple sentence structures with light verbs (e.g., give, do, have, be, etc.) and on verbs that do not 

require inflections (or require zero inflection). Bastiaanse and Jonkers (1998) and Crepaldi et al. 

(2011) reported that people with nonfluent aphasia produce a lower proportion of verb types in 

spontaneous speech than non-braindamaged speakers. Goral and Kempler (2009) indicated that 

naïve listeners perceived a positive change (e.g., less stress, less awkwardness) in the 

communicative abilities of a person with chronic nonfluent aphasia after training of verb 

production. 

Thus, CADL–2 and spontaneous speech analyses can be considered as good predictors of 

the patient’s communicative abilities in daily life, as both rely on objective measures of the 

patient’s behavior and therefore provide more reliable results than subjective rating scales, 

exposed to potential biases on the examiner’s part. On the other hand, both are exposed to the 

same criticism— namely, that it is not yet completely understood whether they provide sufficient 

information on functional communicative abilities. Our (slight) preference for CADL–2 stems 

from the fact that scores on this task are obtained via a procedure shared by the users of this test. 

By contrast, further work is needed to establish which features of spontaneous speech provide 

the most sensitive measure of effective communication in daily life (e.g., content units, fluency, 

mean length of utterance, proportion or ratio of specific word categories, number of syllables, 

type–token ratio, proportion of inflected verbs, etc.).   
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 Regarding impairment-level measures, we administered four picture-naming tasks that 

require the ability to produce nouns that refer to objects (e.g., apple, arm, trumpet) and verbs that 

refer to actions (e.g., to count, to moo, to squeeze). Further work could be directed towards 

finding correlations of functional-level measures with nouns that do not refer to objects (e.g., 

month, future, realm) or verbs that do not refer to actions (to love, to trust, to shine). Other tasks 

requiring spoken output, such as repetition and connected speech, or comprehension tasks could 

be administered in addition to picture-naming tasks.  

As in any correlational study, results are indicative. The statistics employed were 

adequate in the light of sample size and number of items included in each task (Benjamini & 

Hochberg, 1995; VanVoorhis & Morgan, 2007; Wampold & Freund, 1987). Further work on a 

larger subject sample should correlate the patterns observed here with lesion site and with the 

underlying language deficit. Most participants in this study suffered from single focal lesions in 

the middle cerebral artery territory (e.g., middle and inferior frontal gyrus, insula, inferior 

parietal lobule, superior and middle temporal gyrus). Further insights on this issue may be gained 

by studying subjects who fare worse in Object Naming than in verb tasks (such as our case 

G.C.), whose lesions typically affect the posterior cerebral artery territory, thus damaging 

inferomesial temporo-occipital areas (cases B.L., B.S.), or subjects with etiologies other than 

stroke (e.g., degenerative or slowly growing lesions, in which brain plasticity may modify 

anatomo-behavioral.correlates). 
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4.5..Conclusion 

Verb tasks correlated with abilities in daily living, as measured by CADL–2. Producing a finite 

verb in sentence context and Object Naming differently correlated with CADL–2. More subjects 

fared worse on one or more verb tasks than on Object Naming, but the opposite pattern was also 

reported. These patterns should be further investigated by focusing on lesion site, etiology, and 

underlying language deficit. Results strongly encourage the use of both verb tasks and noun tasks 

in clinical practice, when evaluating subjects with language disorders. 
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Chapter 5  

Advantages and disadvantages of intraoperative 

language tasks in awake surgery: a three-task 

approach for prefrontal tumors5
  

 

Abstract 

 

Introduction: Multidisciplinary efforts are being made to provide surgical teams with sensitive 

and specific tasks for language mapping in awake surgery. Researchers and clinicians have 

elaborated different tasks over time. A fair amount of work has been directed to study the 

neurofunctional correlates of some of these tasks, and there is recent interest in their 

standardization. However, little discussion exists on the advantages and disadvantages that each 

task poses from the perspective of the cognitive neuroscience of language. Such an approach 

may be a relevant step to assess task validity, to avoid using tasks that tap onto similar processes, 

and to provide patients with a surgical treatment that ensures maximal tumor resection while 

avoiding postoperative language deficits. An understanding of the language components that 

each task entails may also be relevant to improve the current assessments and the ways in which 

tasks are administered, and to disentangle neurofunctional questions.  

 

Methods: We review 17 language mapping tasks that have been used in awake surgery. We 

provide examples of a three-task approach we are administering to patients with prefrontal 

lesions.  

 

Results: Overt production tasks have been a preferred choice over comprehension tasks. Tasks 

tapping lexico-semantic processes, particularly object naming, maintain their role as gold 

standards. Automated speech tasks are used to detect speech errors and to set the amplitude of 

the stimulator. Comprehension tasks, reading and writing tasks, and tasks that assess 

grammatical aspects of language may be regularly administered in the near future.  

 

Conclusions: Future advances in this area are contingent upon reviewing gold standards and 

introducing new assessment tools. Our three-task approach is feasible and useful.  

 

Keywords: brain mapping, language tests, semantics, quality of life 

  

                                                           
5 Published manuscript. Rofes, A., Spena, G., Miozzo, A., Fontanella, M.M., & Miceli, G. (in press). Advantages 

and disadvantages of intraoperative language tasks in awake surgery: a there-task approach for prefontal tumors. 

Journal of Neurosurgical Sciences. 
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5.1. Introduction 

There is increasing interest in the neurocognitive components of language mapping in awake 

surgery: efforts are being directed towards providing surgical teams with appropriate assessment 

tasks (De Witte, Satoer, Robert, Colle, Verheyen, Visch-Brink et al., 2015; Połczyńska 2009; 

Rofes, de Aguiar, Miceli, 2015); literature exists regarding the selection of tasks based on lesion 

localisation and functional networks (e.g., Chang, Raygor, & Berger, 2014; Coello, Moritz-

Gasser, Martino, Martinoni, Matsuda, & Duffau, 2013; Hamberger, 2015; Mesulam, 1990); and 

relevant work has been devoted to studying the neural correlates of language tests in relation to 

direct electrical stimulation (DES) and brain plasticity (e.g., Binder, Swanson, Hammeke, & 

Sabsevitz, 2008; Desmurget, Song, Mottolese, & Sirigu, 2013; Foki, Gartus, Geissler, & 

Beisteiner, 2008; Kristo, Raemaekers, Rutten, de Gelder, & Ramsey, 2015; Picht, Krieg, 

Sollmann, Rösler, Niraula, Neuvonen, et al., 2013; Zacà, Nickerson, Deib, & Pillai, 2012; Zacà, 

Jarso, & Pillai, 2013). The field is blooming with new and increasingly refined approaches, 

encouraged by the fact that language mapping in awake surgery provides better outcomes for the 

patient than fully-anesthetized surgeries (De Witt Hamer, Gil-Robles, Zwinderman, Duffau, & 

Berger, 2012). However, little discussion exists on the advantages and disadvantages that 

currently used tasks entail for the assessment of language during surgery.  

Here we review 17 language mapping tasks commonly reported in the literature. This 

may help awake surgery teams to choose which task(s) may better suit their surgical needs, to 

avoid administering tests that assess too similar processes, and to preserve the patient’s language 

abilities and quality of life. We discuss the language components assessed by each task from a 

cognitive neuropsychological perspective (Coltheart, 2001; Whitworth, Webster, & Howard, 

2005). We take into account language components that are typically agreed-upon in language 



 

79 

 

processing models (e.g., Caramazza 1997; Levelt 1989). We consider the semantic level as a 

central component, as its damage may affect production and comprehension processes, with 

consequent impact in the patient’s quality of life (Goodglass & Wingfield, 1997; Weitzner, 

Meyers, & Byrne, 1996). We also discuss the order of administration of tasks and provide an 

overview of an intraoperative three-task approach we are successfully implementing. Finally, we 

point toward some future directions in this field.  

Discussion over non-language factors such as type and timing of electrical stimulation, 

histological factors, lesion localisation, extent of tumor resection, patient's profile, variability, 

anxiety, responsiveness, etc. is outside the scope of this paper. Attention has been often paid to 

these issues (e.g. Borchers, Himmelbach, Logothetis & Karnath, 2011; Gil-Robles & Duffau, 

2010; Hamberger 2015; Ojemann & Mateer, 1979; Ruis, Wajer, Robe, & van Zandvoort, 2014; 

Santini, Talacchi, Squintani, Casagrande, Capasso, & Miceli, 2012; Skirboll, Ojemann, Berger, 

Lettich, & Winn, 1996; Talacchi, Taphoorn, & Miceli, 2012). Similar work could be aimed at 

reviewing tasks that are used to assess memory (Feudio & Van Buren, 1975; Ojemann, 1978; 

Ojemann & Dodrill, 1985; Teixidor, Gatignol, Leroy, Masuet-Aumatell, Capelle, & Duffau, 

2007), executive functions (Wager et al., 2013), visual processing (Duffau, Velut, Mitchel, 

Gatignol, & Capelle, 2004), mentalizing (Herbet, Lafargue, Moritz-Gasser, Bonnetblanc, & 

Duffau, 2014), numerosity and calculation (Roux, Boukhatem, Draper, Sacko, & Démonet, 

2009), etc.  

 

5.1.1. Language testing in awake surgery 

 Before being operated upon, patients undergoing awake surgery may be assessed with 

batteries that allow an evaluation of language in its different input and output components (e.g., 
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reading, writing, speaking, and listening). Tasks prepared for intraoperative use are administered 

at this stage to decide which items or item-categories can be used during surgery. Only those 

items (or subsets of items) that patients can produce flawlessly before surgery are administered 

intraoperatively, as this is thought to minimize false positives (i.e., instances in which the patient 

is unable to answer in the absence of electrical stimulation) and to provide reliable language 

maps (Rofes, de Aguiar, & Miceli, 2015). During surgery, low-intensity electrical trains are 

directly applied to the cortex and subcortical areas, while the patient is asked to respond to each 

language stimulus (e.g., Ojemann & Mateer, 1979). The intraoperative occurrence of speech 

errors (i.e., anomia, paraphasias, latencies, etc.) during language mapping is taken as an 

indication that the stimulated region is a relevant part of the language network (see Borchers et 

al., 2011, Desmurget et al., 2013, for contrasting opinions). The types of errors that emerge 

during electrical stimulation of an area may reveal the role that area plays in the language 

network. For example, stimulation to the superficial layer of the inferior fronto-occipital 

fasciculus (IFOF) may trigger semantic errors in production (e.g., saying “tiger” in response to 

the picture of a lion) and in comprehension (e.g., stating that “pyramid” is related with “palm 

tree”, but not with “pine tree”), suggesting that this fiber bundle plays a role in semantic 

processing (Moritz-Gasser, Herbert, & Duffau, 2013).  

 

5.1.2. Models of language processing  

Models of language processing are the operationalization of theories of language 

production and comprehension. They are based on studies in healthy people and on behavioral 

dissociations documented in neurological populations (e.g., patient A is worse at writing nouns 

than producing nouns aloud, while patient B has the opposite profile). The articulation of these 
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models may be schematically represented in box-and-arrow diagrams, where boxes represent 

separable memory/language components and arrows correspond to connections between these 

components. A schematic representation of one of such model can be found in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Schematic representation of language components. The schema includes input and 

output phonological and orthographic lexical components that revolve around a semantic level. It 

also includes a visuo-perceptual, and a (lexico-) syntactic component.  
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On a broad level, input lexical components ensure that the subject recognizes 

orthographic or phonological sequences as familiar (i.e., as words stored in 

orthographic/phonological long-term memory). The output lexicons provide access to 

orthographic or phonological sequences that are familiar to the subject. The semantic system 

represents meanings (i.e., the word /dog/ stands for a typically domesticated mammal that has a 

good sense of smell, howls and barks, has a long snout, etc.) and is accessed both for production 

and for comprehension. Syntactic processes allow us to glue words into sentences to express 

complex meanings, to refer to time and place, etc. (i.e., “My wife has two dogs”). Visuo-

perceptual processes are needed for the interpretation of pictorial stimuli (e.g., Gibson, 2013). 

Finally, articulatory processes allow the production of speech sounds through the correct 

movement of the speech organs (e.g., tongue, lips, larynx, etc.).  

 

5.1.3. Advantages and disadvantages of tests reported in the literature  

The language processes and modalities tested, the time needed to perform the task (ideally, no 

more than 4 seconds per item), and the patient's pre-surgical profile (cognitive abilities, age, 

education, pathology, etc.) determine advantages and disadvantages of intraoperative tasks. We 

briefly describe each task, with a focus on the language processes and modalities tested. We 

comment on other factors and contrast various tasks, where necessary. We discuss the tasks in 

subgroups, according to whether they pose greater demands on non-semantic/sublexical, lexico-

semantic, or grammatical processes. This does not imply that some tasks grouped among those 

tackling lexico-semantic processes, for example, may not be useful to assess also grammatical 

processes (e.g., action-naming). A summary of the language processes assessed by each task can 

be found in Table 5.1. 
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Table 5.1 

 

Language processes assessed by each task. 

 
PhL 

(Input) 

StrD 

(Input) 

OrL 

(Input) 
SemL 

PhL 

(Output) 

OrL 

(Output) 
SynL  

Non-semantic processes        

Automated speech     * ✓   

Phonemic identification ✓    ✓   

Word/non-word repetition ✓   * ✓   
Lexico-semantic processes        
Action-naming  ✓  ✓ ✓   

(Visual) Object naming  ✓  ✓ ✓   

(Auditory) Object naming ✓   ✓ ✓   

Naming famous faces  ✓  ✓ ✓   

PPTT (with drawings)  ✓  ✓    

PPTT (with written words)   ✓ ✓    

PPTT (with words and drawings) ✓ ✓ ✓     

Reading words/non-words aloud *  ✓ ✓ ✓   

Verb generation  ✓  ✓ ✓   

Writing words   ✓ ✓  ✓  

Grammatical processes        

Naming actions with finite verbs  ✓  ✓ ✓  ✓ 

Reading sentences aloud   ✓ * ✓  * 

Sentence completion   ✓ ✓ ✓  ✓ 

Sentence repetition ✓   * ✓  ✓ 

Translating paragraphs   ✓ ✓ ✓  ✓ 

Writing sentences   ✓ ✓  ✓ ✓ 

Writing sentences (to dictation) ✓  ✓ ✓  ✓ ✓ 

Notes. Check marks (✓) indicate that the process is assessed in the task, asterisks (*) that it may be 

assessed, and blank spaces that it is not assessed. PPTT = Pyramids and Palm Trees test, PhL = 

Phonological lexicon, StrD = Structural description, OrL = Orthographical lexicon; SemL = Semantic 

level; SynL = Syntactic level (morphosyntactic features). 

 

5.1.3.1. Non-semantic processes 

Automatic speech tasks require motor planning and articulatory processing. Patients can 

be asked to count from one to ten, to recall the months of the year, the days of the week, etc. 

These language stimuli do not pose high demands on linguistic knowledge as they typically 

contain overlearned sequences of words (Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 
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2000). Such tasks are administered to set the intensity of the electrical stimulator and to check 

for effects on the peripheral nervous system (Duffau et al., 1999). Some teams have asked 

patients to count from one to fifty (e.g., Sanai, Mirzadeh, & Berger, 2008; Chacko et al., 2013). 

Oral diadochokinesis or fast naming of sequences of phonemes (e.g., pa-ta-ka, pa-ta-ka, pa-ta-ka) 

could also be used, as they do not pose high demands on lexico-semantic processes (e.g., 

Hukrmans, Jonkers, Boonstra, Stewart, & Reinders-Messelink, 2012). Ojemann and Mateer 

(1979) asked patients to make orofacial movements, such as mimicking postures of lip protrusion 

when seeing the action performed on a picture. Special attention may be paid to the rate at which 

the patient is asked to produce automatic speech, as a fast speech rate may induce undesired 

spontaneous errors, leading intraoperatively to false positives. 

Phonemic identification was used by Ojemann and Mateer (1979). Patients were 

presented with plosive consonants embedded in a nonsense syllable (e.g., a[p]ma vs a[b]ma), and 

were asked to decide which plosive consonant they heard. The task may detect the inability to 

recognize and isolate phonemes within a word, which may in turn prevent access to phonological 

word forms (e.g., [b]all vs [t]all), and hence, their comprehension. We are not aware of other 

studies administering this task during awake surgery. Caplan, Gow and Makris (1995) reported 

the scores of people with acoustic-phonetic processing deficits after stroke. They reported that 

patients with lesions in the left posterior supramarginal gyrus as well as in the parietal operculum 

are more likely to present poor phonemic identification. The question remains as to whether it 

may be useful to modify the original task proposed by Ojemann and Mateer (1979), and ask 

patients to identify target phonemes in different word positions (e.g., onset vs coda position), or 

to assess specific contrasts (e.g., voicing, manner and place of articulation, etc.).  
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Word/non-word repetition may be useful to tap on language routes that do not require 

semantic access or to identify the language level(s) affected by electrical stimulation. Tomasino 

et al. (2015) asked Italian-speaking patients to repeat non-words such as “bolata”. Moritz-Gasser 

and Duffau (2013) asked patients to repeat the target word whenever they produced it incorrectly 

in an object naming context during stimulation mapping. Successfully repeating the target word 

after a previous naming error during stimulation may indicate a temporary failure to access the 

phonological output lexicon. Similarly, an inability to name the target word may signal 

disruption in processing its structural description (if images are used), or in accessing the 

phonological/orthographic input lexicon or the semantic level (if spoken/written words are used 

as stimuli). This may be particularly useful in perioperative assessments.  

 

5.1.3.2. Lexico-semantic processes  

Action-naming assesses the ability to produce a verb as the label for the action depicted in 

a drawing/picture. The task has been used, although not extensively (see Rofes & Miceli, 2014 

for a review). Patients are given a black-and-white drawing or a video of an action, and they are 

asked to answer with a verb in the infinitive (e.g., “to jump”) or in the progressive form 

(“jumping”). Bogka et al. (2003) ran three studies on healthy people and showed that naming 

actions may be slower than naming objects – but, still within the 4-second window allowed in 

awake surgery (e.g., mean=1051 milliseconds, sd= 171 milliseconds). The processes engaged by 

action-naming are similar to those of object naming. The main limitation of action-naming 

resides in the fact that it does not require the production of inflectional features which, in many 

languages, encode time and person information, and are involved in lexical and grammatical 

processes in discourse (Tyler, Bright, Fletcher & Stamatakis, 2004). This relevant linguistic 
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information may be left unassessed when an action-naming task is used instead of a task that 

requires production of a finite verb (see later in this section).  

Visual object naming assesses the ability to produce a noun (e.g., “book”) as the label for 

the object depicted in a drawing/picture. This task has been used by the pioneers of awake 

surgery (Ojemann & Mateer, 1979), is mentioned in current surgical guidelines (Kayama, 2012), 

and has been reported as a good predictor of the patient’s likelihood to go back to work, and of 

overall quality of life (Moritz-Gasser, Herbet, Maldonado, & Duffau, 2012). In versions of this 

test for Dutch, English, French, Italian, and Japanese an introductory sentence has been added 

above the image to induce the production of the determiner with the noun (e.g. “This is... an 

apple” instead of “apple”). As a result, patients are asked to produce a sentence with a light verb 

“to be” (This is… an apple) or a determiner phrase (Ecco la mela, Here the apple). This latter 

task requires the overt production of grammatical information, as the selection of the appropriate 

determiner requires the patient to encode number (i.e., an apple vs some apples), reference to the 

noun in previous discourse (i.e., the apple vs an apple), and in some languages the noun’s 

grammatical gender (i.e., “la.f.sg. mela” instead of “the.m.sg. apple”). As stressed by Ojemann and 

Mateer (1979), the introductory sentence “this is” allows to distinguish anomic errors (patients 

read the introductory sentence but are unable to produce the determiner and the noun) from 

speech arrest, in which patients are unable to speak. Similar arguments are found in recent 

reports (e.g., Zemmoura, Herbet, Moritz-Gasser, & Duffau, 2015). This interpretation is open to 

discussion, as the inability to produce the introductory sentence is not necessarily due to 

problems in motor production or planning. It can also result from other problems, such as the 

inability to read the introductory sentence, due to difficulty accessing the orthographic input 

lexicon. 
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Auditory object naming (or naming objects to visual description) is similar to visual 

object naming, insofar as the response required of the patient is the name of an object. However, 

instead of being presented with a drawing/picture, patients hear a spoken description of an 

object, of which they have to provide the name (e.g., “a hand-held instrument used for cutting 

paper” for scissors). This task requires accurate auditory word and sentence comprehension (not 

necessary in visual object naming), and the ability to retrieve the target name that matches the 

stimulus sentence. It may be particularly sensitive in patients with left temporal lobe epilepsy, 

compared to visual object naming (Hamberger & Tamny, 1999; Hamberger et al., 2005). Bird, 

Howard and Franklin (2000) successfully used this task in people with post-stroke aphasia. By 

not using visual stimuli, the task can be relevant to assess the semantic level in patients who 

cannot read, or when the patient position may difficult the presentation of visual stimuli such as 

in midline (sub)occipital craniotomies. Also, it is suitable to assess word types that cannot be 

easily depicted (e.g. ego, welfare, attractive, deny, promote, scent, noticeably, etc.) 

Naming famous faces requires similar processes to object naming, as well as facial 

feature encoding and accessing semantic/biographic information of the person that is portrayed. 

The final output required from the patient is a proper name such as “Chaplin” or “Madonna”. 

Giusanni et al. (2009) used a task with 30 famous faces during surgery. The authors argue that 

famous faces are more complex than objects, as the visual and lexico-semantic characteristics 

required to process a famous face correspond to a unique entity, while those required for the 

correct processing of an object correspond to a category. As any other task, a standardization 

process is required to decide which famous figures are better known to patients – age and 

cultural background may influence these results. Giusanni et al. (2009) were able to find specific 

areas for this task compared to object naming in the left frontal and anterior temporal gyri, and 
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propose that naming tasks should be adapted to the brain region studied. In perioperative studies 

of people with brain tumors, temporal lobe epilepsy, and other neurological disorders, damage to 

the left anterior temporal lobe can disrupt access to the names of famous people, particularly 

when damage extends to the uncinate fasciculus (e.g., for a review, see Papagno, 2011) 

The Pyramids and palm trees test assesses “the person’s ability to access detailed 

semantic representations from words and from pictures” (Howard & Patterson, 1992). The test 

consists of triads of pictures or written/spoken words. A stimulus item is presented, centered at 

the top of the page (e.g., a pyramid) and two alternatives are presented below it: a target (e.g., 

palm tree) and a distracter (e.g., pine tree). The patient’s task is to choose which of the two items 

is associated with the item presented on top. To do so, patients need to access information from 

the three items in each triad (i.e., recognize the items, retrieve information, perform the 

association). Moritz-Gasser et al. (2013) and Motomura, Fujii, Maesawa, Kuramitsu, Natsume, 

and Wakabayashi (2014) used the version containing three images during stimulation of the 

IFOF and as a complement to object naming. The authors argue that this task allows the 

identification of brain regions related to non-verbal semantic memory. They report that during 

DES patients were unable to make a semantic choice, looked startled and perplexed, and 

sometimes answered with sentences like “I don’t know at all”, “I do not understand anything” 

“what do I have to do?”. Howard and Patterson (1992) indicated that six other versions of the test 

are possible (three written words, three spoken words, and combinations of those with pictures as 

stimuli or as alternative choices). These authors emphasize that patients may not be assessed 

with all versions routinely. Rather, a specific version may be selected depending on which 

language level must be further assessed. For example, the version with three auditorily presented 

words may be recommended to evaluate access to semantics via the phonological input lexicon. 
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This version of the task should be used in patients with good phonological short-term memory, 

as it requires the subject to hold information from the three words in memory in order to provide 

the correct answer.  

Reading words/non-words aloud requires access to the orthographic input lexicon. Sanai 

et al. (2008) used this task during surgery. Similarly to auditorily presented tasks, reading tasks 

can be useful to assess words that are difficult to depict. The task allows the assessment of very 

specific types of words, if needed, while allowing to control for psycholinguistic variables such 

as frequency, age of acquisition, imageability (see Brendt, Mitchum, Haendiges, & Sandson, 

1997; for an example in people with post-stroke aphasia). Zemmoura et al. (2015) asked patients 

to read 20 single words shown on a computer screen for 4 seconds, after a beep presented 500ms 

before item presentation. The task includes regular words (i.e., words with a transparent 

phoneme-grapheme relationship: bilatéral, bilateral), irregular words (i.e., words with opaque 

orthography-to-phonology relationship: for example, the word oignon, onion, is read out /ɔ.ɲɔ̃/) 

and non-words/pseudowords (i.e., letter sequences that are not represented in the vocabulary: 

bafiko). The three types of stimuli were presented randomly. The patients’ performance allowed 

the assessment of both non-lexical reading mechanisms (non-words) and reading mechanisms 

that required lexical-semantic processing (irregular words). Since the task uses individual 

stimuli, pre-stimulus triggers may be administered during electrical stimulation. 

Verb generation tasks require comprehending a noun in order to produce a conceptually-

related verb in the infinitive. Patients are shown the picture or told the name of an object (e.g., 

“book”) to which they have to associate the first verb that comes to mind (e.g., “to read”). Verb 

generation involves language processes that impact on the semantic level and can be perturbed 

by stimulation in multiple brain areas (Ojemann, Ojemann, & Lettich, 2002; Roux, Boetto, 

http://fr.wiktionary.org/wiki/Annexe:Prononciation/fran%C3%A7ais
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Sacko, Chollet & Trémoulet, 2003). However, this task does not assess syntactic processes. In 

addition, if electrical stimulation disrupts performance, it is difficult to establish if it interfered 

with noun comprehension, verb retrieval, or both. This distinction has relevant implications for 

mapping language processes, as nouns and verbs may have a partially segregated representation 

in the brain, also as suggested by studies using DES (Corina, Gibson, Martin, Poliakov, Brinkley, 

& Ojemann, 2005; Havas et al., 2015; Lubrano, Filleron, Démonet, & Roux, 2014). Verb 

generation tasks should not be confounded with word generation or fluency tasks, in which 

patients are given one minute to produce as many words as possible starting with one specific 

letter or referring to a specific semantic category (Goldstein, Obrzut, John, Hunter, & Armstong, 

2004). These latter tasks may be appropriate for perioperative testing, as a way to assess 

cognitive control and executive functions in general (Moritz-Gasser & Duffau, 2013). However, 

the use of fluency tasks to map language during surgery is questionable, as it is hard to establish 

an appropriate stimulation time to trigger specific language errors. Furthermore, in normal 

settings subjects do not produce a continuous flow of words, probably due to word search 

processes. 

Writing words to dictation may be useful to tap lexical-semantic knowledge of words that 

are difficult to depict. Since this is a one-stimulus task, instead of a sentence-production task, 

electrical stimulation may be applied right after word dictation, before the patient provides an 

answer. The task may be easier to perform and to administer than writing sentences. Magrassi, 

Bongetta, Bianchini, Berardesca, Arienta (2010) reported on a patient who wrote words correctly 

under dictation or spontaneously, but was unable to write simple sentences. In some languages, 

this task can be used to assess different writing systems. Motomura et al. (2014) took advantage 

of the Japanese writing system and asked a participant to write kanji (morphograms) when cued 
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with kana (syllabograms). For example, the patient read the word grass in kana (クサ - /kusa/) 

and was asked to write it down in kanji (草). Similar work could be performed in languages like 

Serbian, which is normally written in both Latin and Cyrillic alphabets. 

 

5.1.3.3. Grammatical processes  

Naming actions with finite verbs requires the patient to retrieve an inflected verb – i.e., 

the verb root that corresponds to the action and the specific morphosyntactic features that relate 

the subject of the sentence and the verb. Patients are presented with a picture or video of an 

action. An introductory sentence may be added above the image, consisting either of a 

determiner phrase referring to the object (i.e., “the woman”) or of a pronoun (“she”). Patients are 

required to read the introductory sentence and to produce a verb in its correct inflected form. 

This task targets verb production, involves semantics, lexical retrieval and the syntax required to 

establish the agreement relation between subject and verb, time reference, etc. Importantly, these 

processes can be performed within the 4-second window allowed by current electrical 

stimulation procedures (Kayama, 2012). Rofes, Capasso and Miceli (2015) showed that this task 

is a good predictor of language abilities in daily living, based on data of individuals with post-

stroke aphasia. The authors recommend to associate this task to object naming when assessing 

language functions, as the production of nouns and verbs may dissociate, even when items are 

matched for relevant psycholinguistic variables.  

 Reading sentences aloud has typically been implemented by asking patients to read 

sentences of 8 to 10 words slowly (e.g., Ojemann, Ojemann, Lettich, & Berger, 1989; Roux, 

Lubrano, Lawers-Cances, Trémoulet, Mascott, & Démonet, 2004). Lubrano et al. (2004) asked 

patients to read two unrelated sentences that were not semantically related and that had not been 
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previously trained (e.g., La chaise est jolie. Le vent du nord souffle fort; The chair is pretty. The 

north wind blows hard). A caveat of this task is that the stimulation point is hard to establish. 

Roux et al. (2004) reported that “stimulation was applied randomly on the cortex while [patients] 

were reading”. Other than that, due to the non-semantic grapheme-to-phoneme conversion route, 

patients may perform well on this task without accessing semantics. And obviously, this task is 

not appropriate for patients who cannot read. 

Sentence completion involves similar processes to Naming actions with finite verbs. 

Patients are given a string of 7 to 8 words forming a sentence, in which one component is 

missinOjemann and Mateer (1979) presented sentences of this kind: “If it’s sunny next Saturday 

she … to the beach”, where the target is “will go”. When the missing word is the lexical verb 

(e.g., “to go”), this task directly taps lexical-semantic and syntactic mechanisms, as it requires 

the ability to retrieve the appropriate verb for the context provided by the sentence. This task also 

allows the assessment of verb inflection, as well as of different time frames (e.g., past, present, 

future) and agreements between subject and verb (i.e., first person, second person, etc.). Patients 

could also be asked to produce a noun (e.g., “If it’s sunny next Saturday she will go to ...; where 

the target could be “the beach”). The task is not suitable for people who cannot read. Stimulation 

may be applied before the production of the target word, as at this point in time the processes 

necessary to complete the sentence may be engaged. The fact that patients need to complete the 

task with one word poses greater demands on lexico-semantic processing than reading sentences 

aloud.  

Sentence repetition adds the grammatical processes that are required in sentence 

processing to those engaged by word repetition. Tomasino et al. (2015) asked patients to repeat 

active and passive sentences from an Italian language battery (BADA, Miceli, Capasso, 
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Laudanna, & Burani, 1994). Patients produced phonemic paraphasias that extended to more than 

one word in the sentence (*il cavàno incine il cane instead of il cavallo insegue il cane; the horse 

chases the dog). Errors like these raise the possibility that electrical stimulation affects speech 

output not only at the single-word level but also at the sentence level, similar to other tasks that 

use sentences. Also in this case it is difficult to establish when in time (and where in the brain) 

electrical stimulation should be applied.  

Translating paragraphs is only applicable to proficient bilinguals. Borius et al. (2012) 

asked patients to translate paragraphs from newspapers from L2 to L1 and reported no specific 

sites for translation (as compared to naming or sentence reading). Stimulation during this task 

may lead to relevant but difficult-to-interpret results, as translation requires many language 

processes to be concomitantly activated (i.e., reading and understanding in L2; finding the 

appropriate words, building the correct syntactic frame, and reading it out in L1). Further work is 

needed to establish the relevance of this task in mapping protocols with proficient polyglots. 

Until then, it may still be profitable to assess patients with similar tasks, or parallel versions of 

the same task, in the two languages (e.g., object naming in French and Occitan).  

Writing sentences can be used to trigger errors at various stages of written output 

(semantic level, syntactic level, orthographic word forms, orthographic short-term memory, 

graphomotor routines, etc.). Since the task requires reading of the text that is being written, in 

addition to engaging the orthographic input lexicon. Errors arising at this latter level may be 

difficult to detect, as written word form recognition processes are covert. Stimuli similar to those 

used in sentence reading tasks can be administered. Patients are asked to write sentences of seven 

or eight words. They may be active sentences (e.g., La chaise est jolie; The chair is pretty; 

Lubrano et al., 2004; Roux et al. 2003; 2014), or more syntactically-complex constructions (i.e., 
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Quando il gatto non c’è i topi ballano; When the cat is away the mice will play; Luca mangia un 

panino e abbraccia Carlino; Luca eats a sandwich and hugs Carlino; Magrassi et al., 2010). 

Sentences are typically dictated by the examiner, thus engaging the phonological input lexicon 

and allowing in principle the task to be performed without accessing semantic-lexical 

information (via conversion routes). Roux et al. (2014) reported that in rare cases patients may 

present difficulty understanding the task. In such instances, the authors complemented it with 

other tasks tapping the phonological output lexicon and conversion routes (e.g., word repetition), 

and with tasks that require access to the semantic system such as choosing one picture (e.g., a 

flower, a dog, a hammer, a boat) and is asked to indicate “where is the boat?” Similar to sentence 

reading, writing sentences to dictation poses the problem to decide when to apply electrical 

stimulation. The types of errors that may be encountered during electrical stimulation are: 

irregular handwriting, drift from the initial line of the sentence, disorganization of the text in 

space, letter/phoneme displacements or substitutions, repetitions, using upper-case letters instead 

of lower-case letters within words, inability to write (i.e., writing arrest). Roux et al. (2014) 

divide errors in two categories: semantic or verbal paragraphias and phonological paragraphias. 

Further work is needed to improve task administration, as in order to write while being operated 

upon, patients may need to take an uncomfortable position. Lubrano, Roux, & Démonet (2004) 

report that “patients used a pencil to write horizontally on A4 sheets of paper, which lay on a 

stiff pad that a nurse had presented to them vertically”.  

All the tasks that require producing sentences, orally or in writing, can be influenced by 

disorders of working memory. These might be diagnosed in perioperative stages by 

administering cognitive tasks such as the Digit Span, the Corsi’s block-tapping test (e.g. Orsini, 
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Grossi, Laiacona, Papagno, & Vallar, 1987), the Immediate Visual Memory test (Gainotti, 

Caltragione, & Miceli, 1978), etc. 

 

5.1.4. Adminsitration of tasks during surgery 

Little research exists onto the order in which the tasks are administered. Automatic speech tasks 

may be used first to assess non-linguistic motor processes, and to regulate the amperage of the 

electrical stimulator (e.g., Duffau et al., 1999). Subsequently, the patient may be presented with 

language tasks (typically object naming) during cortical stimulation, in order to delineate a 

cortical language map. During tumor resection, some groups engage the patient in naming tasks 

in the absence of any electrical stimulation. These tasks may be paired with a motor task, such as 

moving the right arm to obtain further on-line feedback (e.g., Gil-Robles & Duffau, 2010). 

Another possibility is to engage the patient in a spontaneous conversation. Patient may be asked 

questions about their lives that may have been learned by the examiner in the preoperative 

assessment (e.g. “You told me that you have two children. Which is the one who is married?”). 

Questions related to whether the patient feels pain, is comfortable, thirsty, etc. may also be 

asked. Language-driven approaches may also be used in which patients are engaged in semi-

structured interviews instead of spontaneous conversations, as these allow further control on 

speech production and can be contrasted with the same patient’s preoperative assessments, and 

with those of a non-brain-damaged control group (Prins & Bastiaanse, 2004; Saffran, Berndt & 

Schwartz, 1989). Finally, the same tasks used for cortical stimulation may be used for subcortical 

stimulation. Some groups used the Pyramids and Palm trees test for subcortical mapping (e.g., 

Moritz-Gasser et al., 2013; Motomura et al., 2014). Other groups (De Witte et al., 2015) propose 
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a fast-sequencing of different language and non-language tasks (i.e., word and sentence 

repetition, naming, calculating, and line bisection). 

 The ordering of tasks may become relevant when a patient does not respond to one task 

but responds to the other. For example, Magrassi et al. (2010) asked the patient to write words, 

as she was unable to write sentences. It could be argued that the task the patient is more 

respondent to may be used first for language mapping. This raises the question of whether any 

other task may be more sensitive or specific (either because of the localization of the lesion, or 

because of the nature of the tasks). If a patient performs poorly in a specific modality (e.g., oral 

production), another modality may be used (e.g., written production). Whenever the patient 

unexpectedly fails to respond to all the tasks that engage semantic and lexical processes (e.g., 

object naming, action-naming by finite verbs), it may be relevant to consider the results of tasks 

that do not require semantic processing, such as automated speech tasks, non-word repetition, 

non-word reading, etc. These procedures may diminish the number of spontaneous errors, while 

increasing the sensitivity and specificity of DES mapping. 

Another example where task order may become relevant is when tasks with verbs and 

sentences are used together with object naming tasks (see below). Task order may differ 

depending on lesion location and on the hypotheses the surgical team has. Surgical teams can 

choose to use verb tasks first in the case of prefrontal lesions, as aphasiological and lesion 

studies indicate a greater involvement of the prefrontal cortex in the processing of verbs, as 

opposed to the processing of nouns (e.g., Mätzig, Druks, Masterson, & Vigliocco, 2009). The 

opposite considerations apply in the case of temporal tumors, where object naming may be used 

first. Irrespective of any considerations on task order, the results of the various tests should be 

interpreted together. 
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5.2. A three-task approach for prefrontal tumors  

Our current approach to intraoperative language mapping includes an automated speech task 

(counting from one to ten) and two overt language production tasks: naming objects (determiner 

+ noun) and naming actions by producing finite verbs (pronoun + finite verb). The two naming 

tasks have been standardized for Italian and validated on an aphasic population (Rofes et al., 

2015). The approach builds on modern surgical procedures (Duffau et al., 1999; Hamberger & 

Tamny 1999; Kayama, 2012; Ojemann & Mateer 1979; Ojemann et al. 2002; Sanai et al. 2008), 

and stresses the need to administer standardized tasks. The choice of the two naming tasks was 

driven by current knowledge in the cognitive neuroscience of language, and may be particularly 

efficient in patients with prefrontal lesions (Kemmerer, Rudrauf, Manzel, & Tranel, 2012; 

Mätzig et al., 2009; Rofes & Miceli, 2014). The approach we advocate is conservative, insofar as 

it does not implement too many tasks. At this stage, it is also suitable, as there are no 

standardized Italian versions available for all the tasks that could be used for language mapping. 

A good understanding of which tasks are preferable during surgery may require rigorous 

analyses and contrastive results pointing to the sensitivity, specificity, and predictive values of 

newer tests. In the final section of the study we describe our experience with this three-task 

approach. 

 

5.2.1..Participants 

Three Italian-speaking subjects (all male) with supratentorial glial lesions in left-dominant 

prefrontal areas were included. Age ranged from 37 to 63 years, education from 8 to 17 years. 

TT was operated for an anaplastic astrocytoma (WHO III) occupying the superior frontal gyrus 

(SFG) and middle frontal gyrus (MFG). PR was operated for a fronto-polar astrocytoma (WHO 
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III) extending to the MFG. MG was re-operated for an oligodendroglioma (WHO III) in the 

precentral gyrus and posterior part of the SFT, MFG, and inferior frontal gyrus (IFG). 

 

5.2.2. Materials and procedure 

Object naming and naming actions with finite verbs were administered intraoperatively. These 

were also administered preoperatively, to decide which items could be administered during 

surgery. The tasks were part of a broader perioperative language and cognition screening 

protocol. Detailed information on the tasks is reported elsewhere (Rofes et al., 2015). Items were 

presented for 4 seconds, as proposed in current surgical protocols (Kayama, 2012). Trains of 

electrical stimulation (60Hz, 0.2msec) lasting 4 seconds were delivered with a bipolar electrode. 

The amperage of the stimulator was regulated with an automated task (i.e., counting from one to 

ten). It varied for each participant and ranged from 2.5-4.5mA. All surgeries were video-

recorded. We report areas where brain stimulation induced at least two errors out of three 

stimulations during language mapping with object naming, naming actions with finite verbs, and 

with both tasks. These areas were considered as critical for language processes and were not 

removed during surgery. Post-hoc two-tailed Fisher’s exact tests (FE) were calculated to assess 

whether the number of correct and incorrect responses differed between the stimulation and non-

stimulation condition in each stimulated area.  
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5.2.3. Results 

Results for each patient are summarized in Figure 5.2. 

Figure 5.2. Summary of language maps. Areas where cortical stimulation induced a significant 

representative amount of errors and that were therefore considered as responsive during surgery are 

indicated. Blue squares indicate areas where errors were triggered during DES and object naming; 

Orange squares areas where errors were triggered during finite verb naming; and Green squares areas 

where errors were triggered with both object naming and finite verb naming. The area occupying the 

tumor is marked in red.  

 

 

In patient TT errors appeared with both object naming and naming actions with finite verbs 

during stimulation of the posterior part of the MFG. In a more superior area of the MFG, errors 

where only detected during DES with finite verbs. At the cortical level, 2 errors in 21 

stimulations appeared during object naming (p=0.1364) and 4 errors in 20 stimulations during 

naming actions with finite verbs (p=0.2213). At the subcortical level, 6 errors in 13 stimulations 

were elicited during object naming (p=0.08) and 6 errors in 16 stimulations during naming 

actions with finite verbs (p=1.000). Response latencies longer than 4 seconds were the most 

common error type, followed by anomia.  

In patient PR, DES to the posterior part of the MFG triggered 2 errors with object 

naming. These were semantic paraphasias that where self-corrected within the 4-second time 

window (i.e., ecco la sedia, il tavolo – here the chair, the table; ecco la chitarra, il violino – here 
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the guitar, the violin). A more superior area within the MFG was detected during DES with both 

object naming and naming actions with finite verbs. Incorrect responses resulted in latencies that 

resolved after removing the electrical dipole. Errors in the posterior part of the SFG were only 

triggered when naming actions with finite verbs. PR produced the introductory sentence, but 

failed to produce the verb in the correct inflected form (i.e., lui… lui…; he… he…). Subcortical 

stimulation was delivered to areas corresponding to the fronto-polar cortex. During DES with 

object naming the patient produced a semantic paraphasia (ecco la prugna for ecco il peperone – 

“Here the plum” for “Here the pepper”) and two anomias (non mi ricordo – “I don’t remember”). 

During the task with finite verbs the patient perseverated, while producing the pronoun in the 

incorrect gender in the introductory sentence (lui lei pettina, lei pettina, lei lui pettina, lei lui 

pettina, lui pettina – he she combs, she combs, she he combs, she he combs, he combs – the 

target is “she combs”). Statistical analyses are not provided, as this surgery could not be fully 

videotaped.  

In patient MG no errors were triggered during naming actions with finite verbs. During 

object naming, errors occurred in 3/12 stimulations of the middle part of the IFG (p=0.001) and 

3/10 stimulations of the MFG (p=0.005). Errors were phonological in nature. The patient 

produced a phonemic paraphasia or a fragment of the target, always followed by the correct 

response (e.g., ecco la cigliere, ciliegia – here the cherry; ecco la gira, giraffa – here the giraffe; 

ecco il pf, peperone – here the pepper). Stimulation to the subcortical area corresponding to the 

inferior part of the prefrontal cortex during naming actions with finite verbs induced a 

phonological error and anomias, that persisted when no stimulation was applied.  

To sum up, mapping with object naming and naming-finite verbs seemed relevant in this 

population. Post-hoc analyses do not indicate a superiority for any of the tasks. The two tests can 
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complement each other: in TT and PR areas in the posterior MFG and STG were only detectable 

when naming actions with finite verbs and/or object naming, while in MG errors were triggered 

only during object naming.  

 

5.3. Discussion: future steps of language tests in awake surgery 

We reviewed 17 different task types that have been used in awake surgery. These tasks cover 

non-semantic, lexico-semantic, and grammatical processes, mostly for overt production. The fact 

that such a wide range of tasks already exists indicates both the interest and the need to provide 

surgical teams with sensitive and specific tasks for intraoperative language mapping. In the next 

years, we expect to see a large number of tests, carefully controlled and standardized for each 

specific language. In fact, some surgery groups are already using standardized tests instead of 

home-made tasks (e.g., De Witte et al., 2015; Moritz-Gasser et al., 2012; Połczyńska 2009; 

Rofes et al., 2015). We also expect to see an increase in the variety of tasks.  

Sufficient discussion of the different tasks will need to rise, so that surgical teams have an 

adequate understanding of the benefits and risks that each task entails. We believe that progress 

in this area requires that awake surgery teams add one or two new tasks to their current 

protocols, so that it is possible to learn whether new methodologies provide more specific and 

reliable results than the current gold standard. Roux et al. (2014), for example, administered 

three tasks in their patients provided that “brain mapping in awake surgery can be rather time 

consuming and some patients can obviously be tired (with some loss of attention) after several 

tasks”. Our team is also administering two-language tasks and an automated speech task. This is 

similar to the regular surgical procedure adopted by other teams (e.g., Lubrano et al., 2014; 
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Motomura et al., 2014; Moritz-Gasser et al., 2014; Tomasino et al., 2015). Further discussion on 

the tasks and paradigms used is essential. 

 The question arises of whether new tasks may give a direct oncological benefit by 

enhancing the patient’s quality of life and survival time. Certain new tasks may be given priority, 

since they are more sensitive and specific, and of greater predictive value than the old ones. 

Histopathological, demographic, neurofunctional and many other factors may play a role in 

answering this question. Research into relations between functional and impairment-based scores 

could reveal the extent in which damage to specific components of the language system may 

affect language abilities in everyday life and, therefore, quality of life (e.g., Moritz-Gasser et al., 

2012; Rofes et al, 2015). Further work may also be devoted to understanding the extent in which 

mild postoperative language damage may be tolerable or acceptable by an individual patient 

(e.g., Sanai et al., 2008).  

At this stage, overt production tasks are more widely used than comprehension tasks. 

This could be because they are easier to score and provide better on-line feedback (Gil-Robles & 

Duffau, 2010). Other production tasks (e.g., writing words, producing sentences, naming actions 

with finite verbs) may be put to regular use in the near future. Reading individual words as well 

as sentence completion tasks may provide a bridge from the current, noun-centered processing 

approaches to tasks that require reading and writing, while controlling the timing of electrical 

stimulation. At the same time, given the paucity of comprehension tasks (note that the Pyramids 

and Palm Trees task is the only one used currently), we expect researchers and clinicians to be 

also interested in them. Of course, we do not expect nor wish that automatic speech or object 

naming tasks be left aside. The former are necessary to establish the amperage of the stimulator, 
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and the latter will probably maintain their prominent role in tackling semantic and lexical 

processing. 

Irrespective of the specific task(s), advances in this area are contingent on reporting for 

each task detailed information on its theoretical background and internal structure. We refer to 

the types of stimuli used, whether or not stimuli were standardized, which language processes 

were tapped by the task, etc. Efforts may also be devoted to describing test administration and 

scoring procedures, such as how long the stimulus was available on-screen, when stimulation 

was applied, the statistical methods used to identify specific brain areas (e.g., comparison of 

stimulation sites between two tests, comparison of correct and incorrect responses, etc.), and 

which error types emerged during stimulation.  

   

5.4. Conclusion 

We reviewed tasks currently used in awake surgery. Advantages and disadvantages of these tasks 

were assessed within a theoretical framework based on language components that are largely 

agreed upon in cognitive neuropsychology models of language processing. We reviewed our 

current approach, based on three tasks for prefrontal gliomas and showed that a task that uses 

object naming and naming actions with finite verbs is relevant. Progress in this area will be 

forthcoming if surgical teams work on the standardization of tasks in their respective languages 

and report their experiences when administering new tasks, compared to current gold standards. 

This work should involve the collaboration of different professional figures in the surgical team 

and researchers working in the neurobiology of language.  
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Chapter 6 

Surgical mapping of language production in sentence 

context: a single-case series6
 

 

 

Abstract 

 

Introduction: Object naming has been traditionally used to map language production in patients 

undergoing awake surgery procedures. Tests that use verbs in sentence context can be an 

appropriate addition to reach the same goal, as they use actions instead of objects and assess 

lexical verb retrieval mechanisms and sentence formation processes that cannot be tapped by 

object naming alone. 

 

Aim: To investigate the contribution of finite verb production in sentence context for language 

mapping in awake surgery. Emphasis is placed on individual results, on subcortical mapping and 

on the types of errors elicited during DES, for which consistent information is currently scarce. 

Methods: Six Italian-speaking participants with gliomas in the left, language-dominant 

hemisphere. Two overt production tests were administered: an object naming task (noun task) 

and a task requiring the production of finite verbs in sentence context (verb task). Factors 

affecting correct and incorrect responses were evaluated by non-parametric statistics. We 

contrasted the performance in all sites during DES v no-DES collapsing across nouns and verbs, 

or considering performance on nouns and verbs separately. Also, we contrasted noun and verb 

production during DES independently of site, and for each stimulation site separately. 

Results: More errors were detected during DES v no-DES. The cortico-subcortical representation 

of nouns and verbs and the error types observed during DES are partially consistent with the 

current literature. In four participants we detected language-relevant areas only with object 

naming, in one participant only with the verbs task, and in one participant with both tasks. 

Conclusions: The production of finite verbs in sentence context may provide complementary 

information to object naming, as it may permit to map language production when object naming 

is unaffected by DES. 

 

Keywords: brain mapping, language production, verbs, nouns 

 

 

  

                                                           
6Submitted to Acta Neurochirurgica. Rofes, A., Spena, G., Talacchi, A., Santini, B., Miozzo, A., & Miceli, G. 

Surgical mapping of language production in sentence context: a single-case series.  
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6.1. Introduction 

Direct electrical stimulation (henceforth, DES) is the current gold standard for language mapping 

in individuals undergoing surgery for glial tumors in left perisylvian areas (e.g., Desmurget, 

Song, Mottolese, & Sirigu, 2013). Patients are kept awake under local anesthesia and are asked 

to perform cognitive tasks, while short trains of electricity are delivered in cortical or subcortical 

structures structures (e.g., Ojemann & Mateer, 1979; patient 22 in Penfield & Boldrey, 1937). 

Brain tissue in which DES triggers reproducible errors is not excised, as it is deemed that its 

removal may affect relevant cognitive functions (cf. Borchers et al., 2011). Keeping the patient 

awake during surgery offers advantages over fully asleep procedures, as it allows obtaining 

direct feedback on the patient’s cognitive abilities, thus shedding light on the integrity of the 

underlying representations and processes (e.g., Surbeck, Hildebrandt, & Duffau, 2015). 

 Various cognitive processes can be assessed during surgery. In the language domain, 

object naming has been traditionally used to prevent functional damage (e.g., Hamberger & 

Tamny, 1999; Lubrano, Filleron, Démonet, & Roux, 2014; Ojemann & Mateer, 1979). This task 

has a long tradition in lesion studies. It is sensitive to lexical-semantic damage, which affects 

word production and comprehension, and is known to heavily impact on quality of life (Gainotti, 

Silveri, Villa, & Miceli, 1986; Goodglass & Wingfield, 1997; Moritz-Gasser, Herbet, 

Maldonado, & Duffau, 2012). Therefore, in all likelihood it will keep a central role in awake 

surgery. However, a mapping procedure based exclusively on object naming does not provide a 

sufficiently detailed intraoperative evaluation of language skills. From the strictly 

cognitive/linguistic viewpoint, object naming does not tap onto other relevant language 

functions, such as the processing of action words and morphosyntax, which are necessary for 

sentence formation and correlate with language abilities in daily living more strongly than object 
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naming itself (e.g., Rofes, Capasso, & Miceli, 2015). From the clinical perspective, it has been 

repeatedly shown that nouns and verbs can be selectively affected/spared by brain damage (for 

reviews, see Pillon & d'Honincthun, 2011; Vigliocco et al., 2011), and that difficulties with verbs 

may selectively affect verb retrieval or verb morphology (e.g., Shapiro & Caramazza, 2003; 

Miceli, Mazzucchi, Menn & Goodglass, 1983; Miceli, Silveri, Romani, & Caramazza, 1989), in 

the context of spared object naming. 

 A finer-grained mapping of language may be obtained by adding simple intraoperative 

tasks that require the ability to produce verbs in a phrasal context, such as completing or reading 

sentences, or producing verbs in sentential context. A test that requires the production of a finite 

verb in a sentence, in response to a pictured event, for example, requires interpreting the stimulus 

picture, retrieving the meaning of the verb, building its corresponding argument structure, 

assigning thematic roles (agent, theme, beneficiary, etc.) to the different components of the 

sentence, and producing the verb in its correct inflected form (e.g., in agreement with the 

preceding subject, and in the correct time frame). Adding a finite verb production task to an 

object naming task would allow us to evaluate intraoperatively, and in a short time, not only 

semantics, lexicon and phonology, but also lexical-grammatical properties and morphosyntax 

(for a discussion of intraoperative language tests, see Rofes, Spena, Miozzo, Fontanella, Miceli, 

2015). 

 Studies of neurological populations and of healthy volunteers with non-invasive 

neuroimaging techniques serve as a stepping stone for the introduction and development of 

mapping tools in awake surgery. Regardless of the origin of the differences between nouns and 

verbs, lesion studies indicated that verb processing is more frequently and severely impaired than 

noun processing (for reviews see Mätzig, Druks, Masterson, & Vigliocco, 2009; Pillon & 
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d'Honichthun, 2011). Analyses of the anatomoclinical correlates in these studies led to propose 

that deficits in producing nouns most likely arise from temporal damage, and deficits in 

producing verbs from frontal and (to a lesser extent) parietal and temporal damage (e.g., 

Damasio & Tranel, 1993; Goodglass, Klein, Carey, & Jones, 1966; Kemmerer, Rudrauf, Manzel, 

& Tranel, 2012; Miceli, Silveri, Noncentini, & Caramazza, 1988; Silveri & Di Betta, 1997). 

 Functional Magnetic Resonance Imaging (fMRI) studies of noun and verb production in 

healthy volunteers show activations in large perisylvian areas, that are more extensive and 

widely distributed than previously hypothesized (for reviews see, Cappa & Perani, 2003; 

Crepaldi, Berlingeri, Paulesu, Luzzatti, 2011; Vigliocco, Vinson, Druks, Barber, & Cappa, 

2011). Several accounts can be proposed for these findings. One possibility is that, since fMRI 

paradigms show task-correlated activation that may not be essential for naming, some 

hyperactive foci may not be specific to verbs. For example, Thompson-Schill, D'Esposito, 

Aguirre, and Farah (1997) found significant activation in the left inferior frontal gyrus (IFG) 

during several semantic tasks (i.e., verb generation, noun classification, noun comparison). They 

interpreted their results as evidence that the left IFG is critical for "selection of information 

among competing alternatives from semantic memory", rather than for the retrieval of semantic 

information, or for verb processing. It is also possible that verbs activate widely distributed 

neural networks because, unlike nouns, they also entail complex lexical-grammatical properties 

(e.g., argument structure, subcategorization restrictions, etc.), and are typically inflected for 

tense, aspect and person, thus playing a crucial role for morphosyntactic processes (e.g., the 

Italian form mangia, refers to a third person singular agent that performs the action of eating in 

the present moment). Each of these verb properties may involve at least partially distinct neural 

networks, and therefore be responsible for widespread activations in fMRI studies. Another 
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possibility is that these diverse observations result from the different focus of various 

investigations of the noun/verb distinction, and hence on how stimuli were selected in the 

original studies. For example, Saccuman et al. (2006) found no differences between nouns and 

verbs, but reported fronto-parietal activations in the contrast between manipulable or hand action 

words (e.g., the scissors/to comb) v non-manipulable words (e.g., the pyramid/to walk). By 

contrast, Bedny and Caramazza (2011) found a posterior region of the middle temporal gyrus 

(MTG) to be more activated by verbs than by nouns, and by syntactic properties of verbs, 

irrespective of motion properties. 

 Like fMRI studies, Transcranial Magnetic Stimulation (TMS) investigations failed to 

document the involvement of specific cortical regions in naming pictures of objects v actions, 

but demonstrated that object naming tasks are more sensitive than verb naming tasks when 

mapping language in the perisylvian cortex, and that both tasks induce errors as compared to a 

no-TMS condition (Hernandez-Pavon, Mäkelä, Lehtinen, Lioumis, & Mäkelä, 2014). Some TMS 

studies also highlight the role of psycholinguistic dimensions. For example, Oliveri, Finocchiaro, 

Shapiro, Gangitano, Caramazza and Pascual-Leone (2004) found no differences in the 

production of singular/plural nouns and third-person singular/plural verbs during TMS of the 

motor cortex, but reported differences in the production of action-related words, regardless of 

grammatical category (e.g., the axe/to bite v the cloud/to adore). 

 Even though agreement on the underpinnings of the noun/verb distinction is only partial, 

mapping the processes underlying noun and verb production during surgery, and understanding 

the neural mechanisms underlying such distinction would be relevant to surgical teams. In fact, 

DES of brain sites that are more (or, selectively) involved in processing one or the other word 

type may increase the probability to detect functionally relevant tissue in the periphery of the 
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tumor (Fernández Coello, Moritz-Gasser, Martino, Martinoni, Matsuda, & Duffau, 2013; Roux 

& Trémoulet, 2002; Rofes & Miceli, 2014). To support the relevance of this issue, in one of the 

few studies that used verbs intraoperatively, Lubrano et al. (2014) indicated that nouns and verbs 

may be represented in partially segregated networks. They compared the production of verbs in 

sentence context with that of object names, and found specific object naming sites in the 

temporal cortex and inferior frontal gyrus (IFG), and specific action naming sites in the IFG and 

posterior middle frontal gyrus (MFG). Similar data emerged from intraoperative studies that used 

non-finite verbs (e.g., to play, playing) (i.e., Bello et al., 2007; Corina, Gibson, Martin, Poliakov, 

Brinkley, & Ojemann 2005, Havas et al., 2015).  

 Knowledge gathered from studies on the cognitive neuroscience of nouns and verbs can 

be applied to construct or to refine assessment and treatment tools for patients with neurological 

damage, and to draw hypotheses on the sensitivity and specificity of brain regions involved in 

noun and verb processing (e.g., de Aguiar, Paolazzi, & Miceli, 2015; Vigliocco, Vinson, Druks, 

Barber, & Cappa, 2011). Neurosurgical studies are particularly useful to address these issues. In 

fact, the intraoperative sensitivity and specificity of DES in detecting functionally-relevant tissue 

are difficult to achieve preoperatively with non-invasive neuroimaging techniques, such as fMRI 

or TMS, due to aspects of the so-called brain shift such as drainage of cerebrospinal fluid, tissue 

swelling/damage, patient position, etc. (e.g., Nabavi, Stark, Dörner, & Mehdorn, 2012; Picht et 

al., 2013). 

 The neurosurgical approach to the intraoperative study of finite verb production (and of 

language mapping in general) may benefit from rigorous methodological approaches, in order to 

overcome some current limitations. A first step in this direction could be the systematic use of 

standardized tasks, developed specifically to meet the constraints of intraoperative mapping. So 
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far, many potentially relevant results were obtained with home-made tasks, that are exposed to 

the influence of nuisance factors and therefore pose obvious problems of duplicability of results. 

Another resource could be provided by careful quantitative and qualitative analyses of the 

responses produced by patients during DES.  

 In the operating room, patients’ responses are typically scored dichotomously, and only 

general qualitative information is provided (but, see e.g. Hamberger & Tamny, 1999; Lubrano et 

al., 2014, for exceptions). A response produced correctly within 4 seconds (i.e., the maximum 

duration allowed for DES to prevent seizures Duffau, 2004; Kayama, 2012) is taken to indicate 

that the stimulated structure has no role in the function tapped by the task. By contrast, any 

response that differs from the target or is produced later than the allowed response time counts as 

an error, and is taken to show that the stimulated site plays a relevant role in the cognitive 

function under exam. More detailed error analyses could lead to a better understanding of brain-

behavior relations and therefore to preventing functional damage during surgery. 

 Different types of incorrect responses can occur during intraoperative language mapping 

with both object and action naming, pointing to different underlying neurofunctional processes. 

For example, the fact that DES in the temporal lobe and/or along ventral associative pathways 

(e.g., the inferior fronto-occipital fasciculus, IFOF) may trigger whole-word errors (e.g., 

semantic paraphasias and failures to respond), has been taken to suggest that these brain 

structures are involved in lexical-semantic processes (e.g., Caplan, Vanier, & Baker, 1986; 

Caramazza, Papagno, & Ruml, 2000; Sarubbo et al., 2015). At segment-level errors (e.g., 

phonemic paraphasias) during DES of the prefrontal cortex and/or dorsal associative pathways 

(e.g., arcuate fasciculus, AF) may indicate that these latter structures play a role in retrieving and 
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producing segmental information (e.g., Binder, Desai, Graves, & Conant, 2009; Hickok & 

Poeppel, 2007; Lubrano et al., 2014). 

 

6.1.1. Aims and predictions 

The present study evaluates the relevance of tasks that assess language in sentence context. We 

sought to identify cortical regions involved in the production of nouns and in the production of 

verbs in sentence context, using similar methods to recent studies (Corina et al., 2005; Herbet, 

Lafargue, Moritz-Gasser, Bonnetblanc, & Duffau, 2014; Lubrano et al., 2014). To provide 

sensitive and specific surgical mapping results, we administered tasks designed and standardized 

for awake surgery (Rofes, de Aguiar, & Miceli, 2015), performed a rigorous preoperative 

examination, looked for significant DES sites on individual subjects, and contrasted the results of 

each individual in a single-case series fashion. To complement the current literature, we also 

provided data on subcortical DES and a careful examination of error types. 

 Based on the current literature, we expected the DES condition to yield more errors as 

compared to the no-DES condition. DES may interfere more with finite verb production than 

with noun production, when delivered to the prefrontal cortex, as suggested by some DES, TMS 

and lesion studies (e.g., Cappelletti, Fregni, Shapiro, Pascual-Leone, & Caramazza, 2008; 

Lubrano et al., 2014, cf. Crepaldi et al., 2011; Hernandez-Pavon et al., 2014 for more distributed 

representations in neuroimaging studies). As regards error types, DES of cortical and subcortical 

regions corresponding to dorsal pathways (e.g., frontal and parietal cortices; AF) should elicit 

mainly phonological paraphasias, and DES of cortical and subcortical regions corresponding to 

ventral pathways (e.g., infero-mesial and infero-lateral temporo-occipital cortices; inferior-

frontal occipital fasciculus, IFOF) should elicit mainly semantic paraphasias (Sarubbo et al., 
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2015, cf. Caplan et al., 1986; Caramazza et al., 2000, Lubrano et al., 2014). No specific 

predictions were formulated as regards anomias, since failure to name has been associated with 

damage to a largely distributed network including MFG, STG, IPL and corresponding 

subcortical sites (e.g., Lubrano et al., 2014; Rofes & Miceli, 2014; Sarubbo et al., 2015). 

 

6.2..Methods 

6.2.2..Participants 

Six Italian-speaking, right-handed subjects with supratentorial tumors in the left hemisphere 

participated in this study. Subject characteristics and tumor variables are summarized in Table 

6.1.  

 

Table 6.1  

Subject characteristics and tumor variables 

 
Age Gender Edu. Job Hand. Grade Type Site 

CRA 39 F  8 Homemaker Right II Oligodendroglioma Parietal (IPL) 

CRO 70 F 13 Retired Right IV Glioblastoma Prefrontal (MFG) 

MG* 63 M 17 Stock trader Right III Oligodendroglioma Prefrontal (SFG,MFG,IFG) 

PR 41 M 13 Builder Right III Astrocytoma Prefrontal (FP, MFG) 

SO* 45 M  8 Carpenter Right II Oligoastrocytoma Prefrontal (IFG, MFG) 

TT 37 M  8 Builder Right III An.astrocytoma Prefrontal (SFG, MFG) 

Notes. An. = anaplastic.; Hand.=handedness; Edu. = Education in years; FP = Fronto polar; IFG 

= Inferior frontal gyrus; IPL = Inferior parietal lobe; MFG = Middle frontal gyrus; STG = 

Superior temporal gyrus; *Subject had been previously operated at another institution. 

 

6.2..Materials 

A three-task intraoperative protocol was administered. It included an automated speech task 

(counting from 1 to 10) and two oral naming tests: an object naming task and a task that requires 

the production of finite verbs in a simple sentence context. Both tests are standardized and have 
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been specifically designed for awake surgery procedures. In the object naming task, patients are 

asked to produce a noun and a determiner phrase (Ecco la mela; “Here [is] the apple”7). In the 

production of finite verbs, patients produce a pronoun and an action verb in the correct inflected 

form (Lei abbraccia; “She hugs”). In the finite verb production task, 74% of the agents are 

masculine (e.g. "He irons") and 26% are feminine (e.g., "She sings"). For a detailed description, 

see Rofes et al., 2015a. To minimize errors not triggered by DES, intraoperative tests were 

constructed with items and item-categories to which patients responded flawlessly before 

surgery. The following psycholinguistic contrasts were implemented in the experimental lists 

administered pre-operatively: frequent v non-frequent words; long v short words (in phonemes); 

biological v non-biological nouns (“apple” v “table”); instrumental v non instrumental verbs (“to 

sew” v “to jump”); manipulable v non-manipulable verbs (“to type” v “to jump”); verbs name-

related to a noun v verbs not-name-related to a noun (“to brush” v “to sew”); regular v irregular 

verbs (“to play” v “to sing”); and transitive v intransitive verbs (“to cook” v “to walk”). These 

dimensions were considered in constructing the finite verb production task based on the evidence 

reported in the literature (for review, see Rofes & Miceli, 2014; Rofes et al., 2015a; Rofes et al., 

2015b). All stimuli were selected based on the controls’ ability to respond correctly in 4 seconds. 

This is standard practice in awake surgery, as it indicates a safe DES time that triggers language 

errors reliably and with minimal risk of intraoperative seizures (e.g., Duffau, 2004; Kayama, 

2012). A bipolar electrode delivering 4-second trains of DES (50~60Hz, 0.2msec) was used. The 

amperage of the stimulator ranged from 2.5-10mA.  

 

 

                                                           
7 This utterance is grammatical in Italian. 
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6.2.4..Procedure 

An awake craniotomy was performed to expose cortical structures. Sterilized tags were placed in 

the periphery of the tumor. The counting task was administered to detect areas relevant to oral 

movements and to set the amperage of the stimulator. Patients were asked to respond to the two 

picture-naming tasks to reveal areas relevant for language production. The naming tasks were 

administered intraoperatively at least twice: for cortical and for subcortical DES. Each stimulus 

was presented for 4 seconds on a computer laptop. Areas where at least 2 out of 3 instances of 

DES triggered errors were considered relevant for language production and were not removed.  

All surgical procedures (with the exception of subject PR's, see below) were video recorded to 

perform post-hoc quantitative and qualitative error analyses. Responses were counted as correct 

if the target item was produced within 4 seconds. Barnard’s tests were used to compare the 

number of correct/incorrect responses in the different conditions: DES v no-DES, object naming 

v finite verb production, by test and by area. This test is particularly powerful for data analysis in 

2x2 contingency tables. We used one-tailed statistics because we expected that DES would 

interfere with performance, and therefore that the number of correct responses in the DES 

condition would be lower. The types of errors observed during DES were also noted (e.g., 

anomia, phonological paraphasia, fragment, semantic paraphasia, latency, morpho-syntactic 

error). Stimulated areas were discussed with the neurosurgeon on the basis of sulcal and gyral 

anatomy (e.g., SFG, MFG, IFG, etc.). A similar methodology has been reported in the literature 

(e.g., Lubrano et al., 2014; Herbet et al., 2014). 
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6.3. Results 

 

6.3.1. Quantitative analyses 

In pre-operative assessments, none of the potentially relevant psycholinguistic dimensions (e.g., 

frequency, word length, semantic category, instrumentality, transitivity, etc.) significantly 

constrained performance in any participant (Table 6.2). Therefore, all categories were used for 

intraoperative testing, and for each category only the items to which patients had responded 

incorrectly in the preoperative assessment were eliminated from intraoperative mappining. 

Table 6.2 

Preoperative differences in psycholinguistic dimensions (subsets)  

  CRA CRO MG PR SO TT 

Nouns Bio_Sub FE=0,476 FE=0,737 FE=1,000 FE=1,000 FE=0,604 FE=1,000 

 Frequency FE=1,000 FE=0,741 FE=0,342 FE=1,000 FE=0,342 FE=0,605 

 Length FE=0,738 FE=0,065 FE=0,346 FE=1,000 FE=1,000 FE=1,000 

Verbs Tr_Sub FE=0,459 FE=1,000 FE=0,233 FE=0,489 FE=1,000 FE=1,000 

 Reg_Sub FE=1,000 FE=1,000 FE=1,000 FE=1,000 FE=0,484 FE=0,226 

 NRN_Sub FE=0,576 FE=0,153 FE=1,000 FE=0,471 FE=1,000 FE=1,000 

 MN_Sub FE=1,000 FE=0,088 FE=0,490 FE=1,000 FE=1,000 FE=0,189 

 Length FE=0,349 FE=0,258 FE=1,000 FE=1,000 FE=1,000 FE=1,000 

 Frequency FE=1,000 FE=1,000 FE=0,485 FE=1,000 FE=0,485 FE=1,000 

 Inst_Sub FE=0,666 FE=1,000 FE=0,234 FE=1,000 FE=0,489 FE=1,000 

Notes. FE = Fisher’s Exact Test for count data, p-value. Biol = biological v non-biological entities 

(“apple” v “table”); Frequency = frequent v non-frequent words; Length = long v short words (in 

phonemes); Inst = Instrumental v non instrumental verbs (“to sew” v “to jump”); MN= Manipulable v 

non-manipulable verbs (“to type” v “to jump”); NRN = Name related to a noun v non-name related to a 

noun (“to brush” v “to sew”); Reg. = Regular v non-regular verb (“to sing” v “to play”); Tran. = 

Transitive v intransitive verb (“to cook” v “to walk”). Each of the subsets is explained in Rofes et al. 

2015b. 

 

Intraoperative results for the different conditions are reported in Table 6.3. Figure 6.1 shows the 

brain areas where a statistical difference was found between the number of correct and incorrect 

responses during DES with object naming, production of finite verbs, or both. DES-positive 

cortical sites are reported in Figure 6.1A, subcortical DES sites in Figure 6.1B.  
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Figure 6.1. Significant DES sites per subject. A = cortical, B = subcortical. The number of stimulations is 

higher during cortical than subcortical DES in subjects CRA (68 v 17), SO (56 v 25), and TT (44 v 25). 

Cortical and subcortical stimulations were equal for CRO (14). Subcortical DES was not performed to 

MG. The number of stimulations could not be counted in PR. 

   

Subject CRA produced no errors in 32 stimulations during object naming (henceforth, 0/32 

errors, where the numerator indicates the total number of errors and the denominator the total 

number of stimulations per test) and 9/36 errors in the production of finite verbs. The difference 
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between the DES condition for objects and finite verbs was significant (Wald=2.752; 

Nuisance=0.414; p=0.003*). CRA produced a significantly greater number of errors during the 

DES v no-DES condition at the subcortical level (7/10 v 3/31, Wald=2.646; Nuisance=0.112; 

p=0.006*). Object naming triggered a significant number of errors during subcortical DES, 

possibly in the posterior part of the arcuate fasciculus (3/7 errors, Wald=1.922; Nuisance=0.223; 

p=0.037*). Mapping with the finite verb task fell just short of significance, at the subcortical 

level (4/10 errors; Wald=1.922; Nuisance=0.111; p=0.051). 

 In subject CRO, mapping with the finite verb task was not possible due to the large 

number of spontaneous errors (5/12) produced in the absence of DES. In object naming, this 

subject produced more object naming errors during DES as compared to no-DES (6/8 v 1/20 

errors, Wald=2.556, Nuisance=0.223; p=0.006*). This was particularly obvious following DES 

in the middle part of the MFG (3/4 errors; Wald=3.122; Nuisance=0.131; p=0.001*) and in the 

posterior part of the MFG (3/3 errors; Wald=3.521, Nuisance=0.182; p=0.001*), which also 

corresponded to a face motor area, as indicated by intraoperative motor mapping. No significant 

differences were observed during subcortical mapping.  

 Subject MG produced 0/11 errors during DES with finite verbs, and 7/33 errors during 

object naming. Error rate was greater in the DES than in the no-DES condition (Wald=4.062; 

Nuisance=0.061; p=0.001*), specifically for object naming (Wald=3.485; Nuisance=0.091; 

p=0.001*), and in the middle part of the IFG (3/11 errors; Wald=3.766; Nuisance=0.021; 

p=0.001*), the middle and posterior parts of the MFG (2/8 errors; Wald=3.503; Nuisance=0.041; 

p=0.003*; and 2/5 errors; Wald=4.311; Nuisance=0.031; p=0.002*, respectively). DES was 

applied three times to 2 subcortical areas corresponding to the middle and posterior MFG. The 

patient produced errors in 2 of 3 stimulations for a total number of 10 verb picture stimuli. 
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However, MG failed to respond to 3 stimuli in the no-DES condition. Therefore, the mapping 

procedure was interrupted.  

 Subject PR produced errors to both objects and finite verbs when DES was delivered to 

the dorsal premotor cortex, anterior to an area in the superior motor cortex where motor hand 

movements were affected. Object naming errors were only detected when DES was delivered to 

an area of prefrontal cortex anterior to the mouth area in the middle part of the premotor cortex. 

Errors with finite verbs were only detected when DES was delivered to a posterior part of the 

SFG. During subcortical DES, errors were elicited with both tasks, possibly when stimulating 

subcortical areas corresponding to the posterior part of the MFG and SFG. These areas were 

deemed significant for language processing, as errors were elicited 2/3 times during DES. It was 

not possible to run statistical analyses on the mapping data of this participant, as a full video of 

the surgical procedure could not be acquired.  

 Subject SO produced a significant number of errors when DES was applied to the IFG 

(pars opercularis), during the production of finite verbs in sentence context (2/9 errors; 

Wald=3.263, Nuisance=0.122; p=0.004*). In the same area, results of DES during object naming 

did not reach significance (2/4 errors; Wald=1.511, Nuisance=0.131; p=0.091). A significant 

number of errors was obtained during DES, particularly with finite verbs, in a subcortical area 

corresponding to the most anterior-medial part of the insula, possibly corresponding to the IFOF 

(2/3 errors; Wald=2.653, Nuisance=0.152; p=0.014*).  

 Subject TT produced a significant number of errors during object naming when 

subcortical DES was applied (4/13; Wald=2.267; Nuisance=0.0454; p=0.013*), particularly in 

two subcortical areas corresponding to the MFG, close to the premotor cortex: one posterior (3/3; 
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Wald=4.141; Nuisance=0.161; p=0.001*) and one inferior-posterior (1/3 errors; Wald=2.216; 

Nuisance=0.1212; p=0.033*). No significant differences were observed at the cortical level.  

  

Table 6.3 

Individual comparisons per condition. 

  CRA CRO MG SO TT 

Cortical S v NS W=0.449 

Np=0.021 

p=0.374 

W=1.288 

Np=0.04 

p=0.167 

W=4.062 

Np=0.061 

p=0.001* 

W=1.569 

Np=0.969 

p=0.078 

W=0.101 

Np=9.969 

p=0.494 

S Obj v NS Obj W=0.386 

Np=0.949 

p=0.397 

W=2.556 

Np=0.223 

p=0.006* 

W=3.485 

Np=0.091 

p=0.001* 

W=0.846 

Np=0.939 

p=0.218 

W=0.208 

Np=0.929 

p=0.454 

S Fv v NS Fv W=0.657 

Np=0.031* 

p=0.321 

NA W=1.191 

Np=0.031 

p=0.178 

W=0.902 

Np=0.02 

p=0.272 

W=0.267 

Np=9.929 

p=0.449 

S Obj v S Fv W=2.75 

Np=0.414 

p=0.004* 

NA W=1.103 

Np=0.888 

p=0.167 

W=0.687 

Np=0.08 

p=0.317 

W=0.716 

Np=0.04 

p=0.307 

Subcortical S v NS W=2.646 

Np=0.112 

p=0.006* 

W=0.522 

Np=0.07 

p=0.392 

NA W=3.821 

Np=0.141 

p=0.001* 

W=1.094 

Np=0.021 

p=0.218 

 S Obj v NS Obj W=1.922 

Np=0.223 

p=0.037* 

W=0.522 

Np=0.07 

p=0.392 

NA W=1.654 

Np=0.394 

p=0.091 

W=2.267 

Np=0.454 

p=0.013* 

 S Fv v NS Fv W=1.771 

Np=0.112 

p=0.051 

NA NA W=3.442 

Np=0.192 

p=0.002* 

W=0.716 

Np=0.939 

p=0.277 

 S Obj v S Fv W=0.127 

Np=0.787 

p=0.492 

NA NA W=0.422 

Np=0.323 

p=0.418 

W=0.716 

Np=0.939 

p=0.277 

Notes. Statistics per individual area are reported in the results. S = DES, NS = no-DES; Obj = object 

naming; FV = production of finite verbs in sentence context. Wald = Wald statistic, Np= Nuisance 

parameter, p= p-value (two-tailed).SFG = Superior frontal gyrus, MFG = Middle frontal gyrus; IFG = 

Inferior frontal gyrus; STG =Superior temporal gyrus; MTG = Middle temporal gyrus; ITG = Inferior 

temporal gyrus; IPL = Inferior parietal lobe. NA = Not applicable because DES in one of the conditions 

was not possible. Statistical analyses were not possible for patient PR. Significant results per area are 

indicated in text.  

 

  



 

121 

 

6.3.2. Error analyses 

The cortical (6.2A) and subcortical (6.2B) location of the various types of error produced by 

each subject are indicated in Figure 6.2. 

 
 

Figure 6.2. Error types during DES per subject. A = cortical, B = subcortical. The number of 

stimulations is higher during cortical than subcortical DES in subjects CRA (68 v 17), SO (56 v 

25), and TT (44 v 25). Cortical and subcortical stimulations were equal for CRO (14). 

Subcortical DES was not performed to MG. The number of stimulations could not be counted in 

PR. 
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Subject CRA asked for a break when responding to the test with finite verbs, while this did not 

happen while responding to object naming. She produced 5 semantic paraphasias in 32 

stimulations (henceforth, 5/32 semantic paraphasias, where the numerator indicates the number 

of specific errors and the denominator indicates the total number of stimulations per test) and 

3/32 anomias when the finite verb production task was administered during cortical DES. 

Subcortical DES elicited 2/7 semantic paraphasias and 1/7 unrelated word for object naming, and 

2/10 semantic paraphasias and 4/10 anomias during the production of finite verbs.  

 Subject CRO produced 4/7 latencies (i.e., responses produced beyond the allowed, 4-

second limit), 1/7 fragment, 1/7 anomia, and 1/7 semantic error (“hammer” for “cherry”), when 

stimulated in the MFG during object naming. No stimulation was applied during the finite verb 

production task, due to the high number of spontaneous errors (i.e., 7/12 errors), most of which 

were lexical-semantic: 3 anomias, 2 semantic paraphasias, 1 change of category (“He lion” for 

“He roars”), and 1 noun-centered circumlocution in response to a lexical verb (i.e., “She does 

gymnastics” for “She jumps”).  

 Subject MG produced phonological errors during cortical DES with object naming: 4/33 

fragments (e.g., “Ecco il pf peperone” “Ecco il po peperone” for “Here [is] the bell pepper”), 

2/33 phonological paraphasias (e.g., “Ecco il cia caccivite [target: cacciavite] for “Here [is] the 

screwdriver”), and 1/33 part/whole error (“Here [is] the foot, for “Here [is] the leg”). DES in the 

subcortical areas corresponding to the middle premotor cortex induced 1/3 anomia and 1/3 

fragment (“Lui stra…” for “Lui strappa”, he tears). 

 As for subject PR, we cannot provide error counts, as only a partial video of the surgery 

was available. This subject produced latencies and semantic paraphasias (e.g., “onion” for 

“tomato”) when DES was delivered to the middle premotor cortex, during object naming. 
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 Semantic errors and anomias were observed in object naming during subcortical DES. 

During cortical DES of the SFG, production of finite verbs yielded responses in which the 

correctly produced introductory pronoun was followed by an anomia (i.e., “He…” instead of “He 

jumps”). During subcortical DES of the same region, perseverative errors on the verb emerged, 

along with difficulty on pronoun gender (e.g., “He…, he she combs, he combs, he she combs, he 

combs” for “She combs). 

 Subject SO produced 1/6 latencies to finite verbs, and 2/6 latencies and 1/6 semantic 

paraphasias (i.e., guitar for violin) to object names, when DES was delivered to the IFG. During 

subcortical DES to an area corresponding to the IFG (possibly involving the IFOF, before it turns 

medially to the caudate nucleus), he produced 1/1 fragment (i.e., ca… for carciofo, artichoke) 

during object naming. During finite verb production, errors resulted in 1/3 change of category 

(“He hair.noun” for “He listens.verb”), and 1/3 error resulting in incorrect pronoun gender followed 

by a semantic paraphasia (i.e., “She writes” for “He licks”).  

 Subject TT complained of problems with his eyes, arm/hand, and face during DES in the 

posterior part of the IFG and MFG, close to the premotor cortex (i.e., “I cannot see”, “I cannot 

keep my eyes still”; “I cannot move the arm/hand”, “I did not feel it”; “I cannot feel my face”). 

He produced 2 errors during cortical DES (1/25 anomia during object naming and 1/19 latency 

during the production of finite verbs), and 5 anomic errors during subcortical DES in an area 

corresponding to the posterior part of the MFG, close to the premotor cortex (3/3 during object 

naming and 2/7 during the production of finite verbs).  
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6.4. Discussion 

We carried out quantitative and qualitative analyses of the performance on spoken production 

tasks in patients undergoing awake surgery for the removal of supratentorial tumors in the left, 

language-dominant hemisphere. We administered an automated speech task (i.e., counting from 

one to ten) and two overt picture-naming tasks (i.e., object naming and production of finite verbs 

in sentence context). Test items for intraoperative use were selected for each individual so as to 

minimize spontaneous errors during surgery. We assessed whether significant differences 

emerged when DES was applied as compared to when it was not applied, when DES was used 

during object naming as opposed to finite verb production (regardless of DES site), and when 

DES was directed to specific perisylvian areas. In all subjects, brain sites relevant for the 

production of object names, of finite verbs, or of both were detected. This is in agreement with 

studies in which DES allowed the mapping of language processes (e.g., Ojemann & Mateer, 

1979), and also with more recent investigations, specifically focused on noun and verb 

production (e.g., Bello et al., 2007; Corina et al., 2005, Havas et al., 2015; Lubrano et al., 2014). 

Critical DES sites and errors partially agreed with the current literature. 

  

6.4.1. DES v no-DES (collapsing across nouns and verbs) 

Three of five subjects showed significant differences between the DES and the no-DES 

condition. Subject MG showed differences when DES was delivered to cortical sites, and 

subjects CRA and SO during subcortical DES. The figures entered in this contrast correspond to 

the sum total of correct and incorrect responses, collapsed across word types, tasks and brain 

sites. Therefore, the fact that 2/5 subjects (CRO and TT) did not show significant differences 

between the two conditions does not indicate that DES failed to map language areas in these 
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patients. Rather, it stresses that significant differences between correct and incorrect responses 

are found only when DES is delivered to a specific brain site, and during a specific cognitive task 

– hence, that language mapping in the brain requires that an appropriate task be selected to map 

the brain site under investigation (e.g., Fernández-Coello et al. 2013, Rofes & Miceli, 2014). In 

our sample, this is indicated by subjects CRA and CRO (Table 6.3.). In these two subjects, no 

differences were observed between the cortical DES and no-DES conditions when data were 

collapsed across tasks, but a significant difference appeared during finite verb production (CRA) 

and during object naming (CRO), respectively. 

 From a methodological standpoint, the mere figures of the incidence of correct and 

incorrect responses across cumulated tasks in the DES v no-DES condition may be misleading. 

Results may be biased, as performance may be affected by several factors, such as task difficulty 

(i.e., one task may be intrinsically more difficult than the other and trigger errors that are not 

related to DES), order of task administration (i.e., the second task may trigger more errors than 

the first, because by the time it is administered the patient is more tired), brain site stimulated 

(i.e., one of the two tasks may trigger more errors than the other in a specific brain area), etc. 

Therefore, regardless of the results of this comparison, looking at differences between tasks and 

across brain sites provides more relevant information than collapsing across nouns and verbs. 

 

6.4.2. Object naming and finite verbs (independently of stimulation site) 

Data confirm that DES resulted in more incorrect responses than the no-DES condition, at the 

cortical and/or at the subcortical level. Subjects CRO and MG produced more errors in object 

naming during cortical DES. Subjects CRA and TT showed the same effects during subcortical 

DES. Subject CRA produced significantly more errors to finite verbs than to nouns when DES 
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was applied at the cortical level, even though no differences between specific brain sites were 

observed. Subject SO showed the same tendency during subcortical DES, but the number of 

stimulations was too small to allow strong conclusions. 

 These results show that neither the object naming task nor the finite verb production task 

is by itself more or less appropriate for language mapping, as in different subjects one or the 

other can be disproportionately impaired, regardless of DES site. However, the same observation 

shows that a finite verb production task does allow the detection of language areas that are not 

responsive during object naming. Therefore, the combination of the two tasks during awake 

surgery provides a more adequate language map during DES than object naming alone. In our 

study, as in others (e.g., Havas et al., 2015; Lubrano et al., 2014), using two intraoperative tasks 

did not noticeably increase fatigue in the patient, nor the time needed to complete surgical 

procedures, as compared to object naming alone. 

 Differences between naming objects and producing finite verbs may be difficult to 

document in patients who are operated awake, as these subjects typically suffer from mild 

deficits and the items administered during surgery are those they named correctly in the 

preoperative assessment. This latter point raises the question of whether patients who score 

below the norm before surgery already should be considered for awake surgery. This issue is 

relevant, because functional language areas cannot be detected during fully asleep surgeries, and 

because subjects who currently are not operated awake may still benefit from an awake 

procedure, if intraoperative items are selected carefully. In the present study, the problem arose 

with CRO, who performed below the norm on both finite verbs (53% correct) and objects (70% 

correct) before surgery. Since her tumor affected the posterior part of the MFG, the awake 

surgery protocol was applied in order to spare as much critical tissue as possible. The 
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intraoperative use of finite verbs to map language in the brain was ruled out, because during 

surgery CRO produced 7/12 errors on verbs in the no-DES condition. However, language was 

successfully mapped by administering the object naming task. Two areas relevant for object 

naming were mapped in MFG, which would not have been detected if the patient had undergone 

a fully asleep surgery. One week after surgery, CRO’s scores in object naming were similar to 

those obtained in preoperative assessments object naming (70% v 76% correct, Barnard’s test 

z=0.527, p=0.263 one tailed), whereas a significant decline was observed on finite verbs (53% v 

29% correct, Barnard’s test z=2.924, p=0.001 one-tailed), which had not been presented during 

surgery. In our view, observations like this invite to increase efforts aimed at finessing the 

interpretation and exploitation of preoperative results, so as to set up the best possible 

intraoperative mapping (i.e., one that allows to map language in a minimal time even in the 

presence of abnormal baseline performance on language tasks).  

 

6.4.3. Object naming and finite verbs (by stimulation site) 

The cortical sites where object naming or finite verb production triggered a significant number of 

errors were highly variable, and in partial agreement with available lesion data (e.g., Kemmerer 

et al., 2012; Lubrano et al., 2014; Mätzig et al., 2009; Pillon & d’Honichtun, 2011; Rofes & 

Miceli, 2014; Rofes et al., 2015b). For example, patients in Lubrano et al. (2014) produced more 

errors when DES was applied in posterior areas of the MFG and SFG during finite verb 

production than during noun production. In subjects CRO and MG, significant areas were found 

only during object naming. They were distributed across different sites in the posterior part of the 

inferior, middle, and superior frontal gyri. In subject SO, a significant language site was found 

only in the pars opercularis of the IFG during DES with finite verbs. In subjects CRA and TT, no 
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significant DES sites were found during cortical DES with either language task. In subject PR, 

an area in the SFG could only be mapped during finite verb production, and a posterior area of 

the MFG elicited errors to both object names and finite verbs. Even though no specific area 

could be systematically tied to object naming or to finite verb production, our results confirm 

that nouns and verbs may be represented in partly separable neural substrates. In two subjects, 

only one task was affected during DES – object naming in CRA, finite verb production in MG. 

In subject PR, cortical DES to the dorsal premotor cortex yielded comparable results in the two 

tasks, but DES anterior to the middle motor cortex only interfered with object naming, whereas 

DES to the posterior part of SFG yielded errors in verb naming only. 

 Observations collected during subcortical DES are variable and do not show a specificity 

for object naming or finite verb tasks. Two subjects could not be mapped at all; CRA and TT 

could be mapped only during object naming; SO only during finite verb production, and PR 

during both tasks. One of the reasons for these less-than-satisfactory results is that subcortical 

DES is typically less exhaustive than cortical DES. When it is started, surgery has been 

underway for a long time already – the patient has undergone cortical DES with language 

monitoring during tumor resection, and is likely to be tired. Consequently, fewer brain sites can 

be stimulated and fewer data points can be obtained. In our sample, more sites were stimulated 

during cortical than subcortical DES in subjects CRA (68 cortical v 17 subcortical), SO (56 v 

25), and TT (44 v 25) and the same number was stimulated in CRO (14). Only 3 subcortical 

stimulations were applied to MG, due to a sudden cluster of anomias in the no-DES condition, 

possibly due to tiredness; and stimulated sites could not be counted in PR. 

 At a more theoretical level, it is worth asking to what extent the fact that we used picture 

naming paradigms to elicit nouns and finite verbs may have influenced results. In an object 



 

129 

 

naming task, the stimulus picture typically represents the corresponding object (e.g., an apple). In 

verb naming tasks, however, representing the to-be-named action often imposes constraints that 

may influence results. For example, representing the stimulus “to roar” involves a picture that 

includes an agent (e.g., a lion) who is performing that action. Responding “roars” requires not 

only selecting the target action word but also inhibiting the production of the name “lion”. In 

other words, executive control mechanisms must inhibit noun selection and focus on verb 

retrieval, to allow producing the target verb. When these mechanisms are interfered with by 

DES, patients may produce errors such as those of subject CRO who said “He lion” for “He 

roars”, or of subject SO who produced “He hair” for “He listens”. To circumvent these 

problems, one may choose to only use pictures of actions that do not include objects. This could 

be accomplished by selecting only stimuli that represent non-manipulable nouns and verbs (e.g., 

Saccuman et al., 2006), or by deleting objects from the action drawings that may require them 

(e.g. deleting or blurring the ball in the image corresponding to the verb "to kick"). Another 

possibility is to use paradigms based on naming to oral description (e.g., Hamberger & Tamny, 

1999). In this latter case, pictorial constraints are bypassed and the sentence describing the action 

may still include an agent/object (e.g., the stimulus sentence for the verb “to kick” could be “To 

strike with one’s foot”). 

 

6.4.4. Error analyses  

Anomias, fragments, and latencies were detected across subjects, during DES of the IFG and 

MFG. DES of the IFG also elicited pronoun gender errors (e.g., "She combs" for "He combs"), 

while DES of the MFG triggered phonological and semantic paraphasias. DES of the SFG 

triggered perseverations and change of pronoun gender, and DES of the IPL yielded anomic and 
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semantic errors. Subcortical DES elicited anomias in all cases. These resulted in failures to 

respond altogether, or in responses that included only the determiner in object naming (i.e., 

“The…”) or only the pronoun in finite verb production (i.e., “She…”). In subcortical areas 

corresponding to the IFG and MFG, phonological errors and fragments were elicited. Semantic 

paraphasias occurred during DES of subcortical areas corresponding to the IPL. DES of 

segments of the arcuate fasciculus elicited anomic errors in CRA and MG, and TT.  

 The current literature hypothesizes that dorsal networks are putatively more critical for 

phonological processing and ventral networks for semantic processing (e.g., Binder et al., 2009, 

Hickok & Poeppel, 2007; Sarubbo et al., 2015). In agreement with these claims, we found 

phonological errors when DES was applied to dorsal structures (e.g., to the posterior part of the 

MFG in subject MG), and semantic errors when DES was delivered to ventral structures (e.g., to 

the anterior part of the IFOF in subject SO,). Based on our overall data set and on the current 

literature, however, such a distinction is either too sharp or very difficult to replicate in 

neurosurgical studies. For example, stimulation to the prefrontal cortex elicited semantic errors 

in subjects CRO, PR, and SO. Similar results were found in a recent meta-analysis Sarubbo et 

al., 2015). Furthermore, although posterior temporal areas were not stimulated in our study, DES 

in the posterior part of the MTG elicited more phonemic than semantic paraphasias (Lubrano et 

al., 2014), and diffuse temporal lobe damage has already been reported to trigger phonological 

errors in the absence of semantic errors (subject DM, Caramazza et al., 2000). 

 The occurrence of semantic paraphasias in CRA during DES of the IPL is also at 

variance with some current observations. For example, DES of dorsal pathways elicited mainly 

phonological paraphasias (e.g., Sarubbo et al., 2015), and lesions extending to the posterior part 

of the arcuate fasciculus can yield phonological errors in the absence of semantic errors (e.g. 
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Caplan et al., 1986, Caramazza et al., 2000). In addition, Lubrano et al. (2014) reported 3/3 

phonological paraphasias but no semantic paraphasias, during DES of the supramarginal gyrus in 

the course of object naming and action naming. Having said that, semantic errors during IPL 

stimulation were described in other surgical mapping studies (for review, Rofes & Miceli, 2014). 

These errors may be due to the involvement of the IPL in semantic processing, as suggested by 

neuroimaging studies (Binder et al., 2009). 

 Anomic errors were ubiquitous. They occurred following cortical and subcortical DES 

regardless of task and of brain site, in accordance to other studies (e.g., Rofes & Miceli, 2014; 

Sarubbo et al., 2015). This was probably because failure to name a stimulus may result from an 

impairment of lexical and/or semantic knowledge, and therefore result from damage to a 

widespread neural substrate (Gainotti et al., 1986). Finally, pronoun gender errors are difficult to 

interpret. They could be artifactual, and result from a list bias, since 52/70 targets in our verb 

task are masculine. This could be the case in subject PR, who produced a masculine pronoun 

instead of the feminine target (i.e., "He combs" for "She combs"). However, this account is 

unlikely in subject SO, who produced the reverse error type (a feminine pronoun instead of a 

masculine pronoun), perhaps due to a genuine difficulty with pronoun selection. Clearly, more 

observations are needed to reliably interpret this observation. 

 

6.5..Conclusion 

An approach based on an object naming task and a finite verb production task allows the 

assessment of language production, within a safe time frame. Furthermore, it allows a more 

thorough mapping of the brain in patients with perisylvian gliomas than an object naming task 

alone. In subject SO, finite verb production was successfully used to map language function at 
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the cortical and subcortical levels, when object naming provided null results. In subject PR, it 

allowed the identification of language function in the SFG and MFG, and during subcortical 

DES. Errors varied across patients and were in partial agreement with the current literature. 

Further work should be directed at carrying out exhaustive neurocognitive diagnoses in subjects 

who are being considered for awake procedures, and at achieving a fine-grained understanding of 

preoperative results – patients who present with preoperative language deficits may still benefit 

from awake surgery. Current standards in language mapping during awake surgery can be 

steadily improved by interactions between neurosurgery and the neuroscience of language, and 

by the development of new, standardized tools. 
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Chapter 7 

General discussion 

This dissertation aimed to contribute to the effort to include current knowledge from 

aphasiology, neurolinguistics, and cognitive neuroscience in the practice of awake surgery. 

Awake surgery is a surgical procedure applied to people with brain tumors or pharmacologically  

intractable epilepsy (Berger, 1996; Duffau et al., 1999; Hunke, Van de Wiele, Itzhak, & 

Rubbinstein, 1998; Ojemann & Mateer, 1979). As the term implies, patients are kept awake 

during surgery, so that they can perform language tasks during electrical stimulation of cortical 

and subcortical brain structures (Bello et al., 2007; Benzagmout, Gatignol, & Duffau, 2007; 

Duffau et al. 2003; Ojemann, Ojemann, Lettich, & Berger, 1989; Skirboll, Ojemann, Berger, 

Lettich, & Winn, 1996). If the patient can respond correctly to a language stimulus when an 

electrical pulse is applied to the brain, it is concluded that the stimulated area is not relevant for 

that language function, and therefore, can be safely removed without inducing postoperative 

language deficits (cf. Borchers, Hummelbach Logothetis, & Karnath, 2011; Desmurguet, 

Bonnetblanc, & Duffau, 2013). By contrast, when the application of electrical pulses to the brain 

repeatedly triggers errors, this is taken as an indication that the area is critically involved in the 

language skills probed by the task, and therefore should not be removed, as this would result in 

postoperative language deficits (e.g., Penfield & Boldrey, 1937; Ojemann & Mateer, 1979, 

Duffau, 2004).  

 One impetus for this dissertation was the lack of tasks and standardized materials 

available for and used in the assessment of people with brain tumors (e.g., Finch & Copland, 

2014; Połczyńska 2009; Rofes & Miceli, 2014). Object naming is in many cases the only task 

used for intraoperative language mapping, and one of the few tasks regularly used to assess 
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language deficits before or after surgery (for a review see De Witte & Mariën, 2013). However, 

object naming tasks are not sufficient for thorough intraoperative testing. This is for several 

reasons: despite object naming being intact other language abilities can be impaired (Santini et 

al., 2012; Satoer et al., 2014; e.g., verb production can be impaired, Caramazza & Hillis, 1991); 

object naming tasks do not assess some everyday language processes such as sentence formation, 

reference to action, or to moments in time (e.g., Vigliocco et al., 201); and nouns and other word 

categories, such as verbs may be partially segregated in the brain (e.g., Mätzig et al., 2009, 

Kemmerer et al., 2012).  

 In addition, language skills are often evaluated using informal assessments. However, 

failure to control for critical psycholinguistic variables that may constrain performance may yield 

results that are difficult to interpret. Consequently, we developed a new set of standardized tasks 

for awake surgery. Such tasks may contribute to improving the sensitivity of intraoperative 

language mapping, as well as that of preoperative and postoperative assessments in this 

population. The novelty of the tasks we proposed is that they are standardized; controlled for 

linguistic variables that affect the performance of people with aphasia; validated in people with 

aphasia; and have been compared to current tests used in awake surgery.  

 We argued that tasks thus constructed allow the examiner to obtain better control over the 

patient’s performance, and ultimately help the neurosurgeon to reach their goals – more 

extensive tumor removal whilst ensuring preservation of language skills (e.g., De Witt Hammer 

et al., 2012; Sanai & Berger, 2009). Furthermore, information obtained with these tasks, and for 

example with the administration of object naming and a new task before, can contribute to more 

accurate language assessments before and after surgery. Moreover, it may lead to a better 

understanding of the neural underpinnings of language: through the use of controlled language 
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tasks in people with brain tumors, it may be possible to replicate results obtained in other lesion 

studies, as well as in work from aphasiology and neurolinguistics (e.g., Anderson, Damasio, & 

Tranel, 1990; Havas et al., 2015; Lubrano, Filleron, Démonet, & Roux, 2012; Moritz-Gasser & 

Duffau, 2013).   

 In this thesis we focused on the role of production tasks using finite verbs and the 

evaluation of their ability to assess language processing in comparison with the current gold 

standard (i.e., object naming). As a preliminary step in the development of novel, controlled 

object and verb production tasks, we critically reviewed the literature twice. First, we discussed 

published studies that proposed intraoperative tasks requiring the production of verbs in isolation 

and in sentences, and we graphically represented the stimulation sites and error types that were 

reported in each study (Chapter 2). Subsequently, we reviewed the tasks reported as used 

intraoperatively, and discussed the advantages and disadvantages of each from a cognitive and 

neurolinguistic perspective (Chapter 5). With this information in mind, we constructed and 

validated two naming tasks for native speakers of Italian undergoing awake surgery – an object 

naming task and a finite verb production task (Chapter 3). We administered the finite verb 

production task and other picture naming tasks to subjects with post-stroke aphasia, to establish 

which tasks showed the strongest correlation with communicative abilities in daily life (Chapter 

4). Also, we introduced and compared our standardized finite verb task in the operating theatre 

and compared it with an object naming task (Chapter 6).  

In this final section we discuss the results obtained in this dissertation with a focus on 

theoretical and clinical issues of importance in awake surgery. 
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8.1. Applying language knowledge to functional neurosurgery 

Chapters 2 and 5 included a review of the seminal work by Penfield in the 1930-40s, Ojemann, 

and Mateer in the 1970-80s, and more contemporary work of figures such as Berger, Bello, 

Duffau and Démonet. With few exceptions (e.g., Fernández Coello, Moritz-Gasser, Martino, 

Martinoni, Matsuda, & Duffau, 2013; Sanai, Mirzadeh, & Berger, 2008; Zemmoura, Herbet, 

Moritz-Gasser, & Duffau, 2015), contemporary practice in awake surgery focuses on production 

tasks, rather than comprehension or verification tasks. This approach is understandable from a 

neurosurgical perspective. In the most widely used production task (i.e., object naming), the 

patient is asked to produce the name of an object, thus providing the neurosurgeon and the 

neuropsychologist/clinical linguist with direct feedback on language abilities while surgery is 

carried out. Long response latencies, failures to respond, semantic or phonemic paraphasias, etc., 

all provide clear indication that linguistic skills are being interfered with. 

 Comprehension and verification tasks are less demanding than overt production tasks, as 

the patient is not required to speak. For example, in the Pyramids and Palm Trees Test (Howard 

& Patterson, 1992), patients see a stimulus picture/word and are asked to point to one of two 

pictures/words (a semantically related and a semantically unrelated alternative). In addition, in 

such comprehension tasks a correct response can be produced even if knowledge of the item 

under scrutiny is not entirely spared. For example, for an image of two hands, given the choice 

between a pair of gloves and a pair of shoes, the subject may respond correctly either because he 

knows what gloves are, or because he does not know what gloves are, but knows that shoes are 

not worn on hands. Furthermore, due to the intraoperative setup, only the person assessing 

language can see the response of the patient, whereas the neurosurgeon cannot. This may render 
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intraoperative comprehension tasks more cumbersome to administer and interpret, while also 

being less sensitive to language impairments. 

 As discussed in Chapters 2 and 5, and noted above, of the tasks proposed for 

intraoperative use, object naming is the most frequently implemented in regular practice, and the 

one regarded as best practice (i.e., the gold standard). The central role assigned to object naming 

accrues from the fact that producing the word that corresponds to a visually-presented object 

engages a number of cognitive and linguistic processes (e.g., Coltheart 2001; Whitworth, 

Webster, & Howard, 2005). It requires the ability to obtain an abstract structural representation 

of the stimulus, to retrieve its meaning representation and the corresponding phonological lexical 

information, and to program and produce the corresponding string of sounds. Since damage to 

any of these stages is very likely to have a disruptive effect on language production and/or 

comprehension (e.g., Goodglass & Wingfield, 1997), identifying the brain structures involved in 

these processes is necessary in order to prevent permanent post-operative damage. However, in 

this context an important contribution of chapters 2 and 3 to the current literature is the argument 

that object naming may not provide a sufficiently comprehensive evaluation of language skills, 

and therefore may not be sufficient to avoid language impairment during surgery.  

 Applying current knowledge from neurolinguistics, aphasiology, and cognitive 

neuroscience to tasks used during awake surgery entails spelling out the language processes 

engaged by each task and their neural correlates. This preliminary step should allow a principled, 

pre-operative evaluation of the benefits accruing from the use of a specific task in opposition (or 

in addition) to others. In this context, asking a patient to produce a noun when seeing a picture of 

an object, or a verb when seeing a picture of an action may seem to require very similar 

processes. This is because, prima facie, and regardless of the specific functional architecture of 
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the language system (for contrasting views see, for example, Caramazza, 1997 and Levelt, 1989), 

both tasks involve understanding the pictorial stimuli, accessing their meaning, finding the 

corresponding lexical form, and articulating it correctly. However, when the two tasks are 

considered more carefully from a neurolinguistic perspective, clear distinctions emerge. 

Verbs, and particularly verbs in sentence context, have certain characteristics that nouns 

lack. For example, they entail a predicate-argument and a thematic structure (Carlson & 

Tanenhaus, 1989), require agreement relations with their subject (Hale & Keyser, 1998), and 

allow reference to time and events within a specific time frame (Bastiaanse, Bamyaci, Hsu, Lee, 

Yarbay Duman, & Thompson, 2011). Nouns and verbs also differ from the neural perspective. 

Verb processing may mostly involve the frontal and inferior-parietal lobe, while noun processing 

may mainly recruit neural structures in the temporal lobe (Damasio & Tranel, 1993; Lubrano, 

Filleron, Démonet, & Roux, 2014; Miceli, Silveri, Nocentini, & Caramazza, 1988). Therefore, 

unsurprisingly, verbs and nouns may be differentially affected in people with aphasia 

(Whitworth, Webster, & Howard, 2005; Vigliocco, Vinson, Druks, Barber, & Cappa, 2011). In 

light of these contrasts, we developed two standardized tasks, specific to intraoperative language 

mapping (Chapter 3), in order to establish whether the neurofunctional distinctions between the 

two word categories resulted in dissociated performance during direct cortical stimulation 

procedures (Chapter 6).  

 

8.2. Developing new and standardized tasks in awake surgery 

At the end of Chapter 2, we argued that neurosurgery teams should carefully consider the tasks 

they implement. Tasks should be specifically designed for awake surgery, should be standardized 

for a specific language, and should be developed so as to allow an in-depth assessment of 

language – one that goes beyond the dichotomy of correct/incorrect performance on a specific 
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task or item. Some of these issues were considered and put to work in Chapter 3 where we 

provided new materials for language mapping in Italian: an object naming test similar to the 

current gold standard (e.g., DO-80; Metz-Lutz, Cremin, Deloche, Hannequin, Ferrand, Perrier, & 

Blavier, 1991), and a task for the production of finite verbs in sentence context.  

One of the purposes of Chapter 3 was to show that standardized protocols can be set up 

with relatively modest resources. Hopefully, this will encourage neurosurgical teams to apply the 

same or similar approaches. Amongst other things, the duration of picture presentation must be 

considered in test preparation. This is because naming must occur during electrical stimulation, 

which cannot be applied for more than 4 seconds in order to prevent epileptic discharges 

(Duffau, 2004; Kayama, 2012). Therefore, only stimuli that healthy volunteers name in less than 

4 seconds should be selected, even though from a neurolinguistic point of view a more prolonged 

presentation might be preferable (in fact, some studies indicate that in people with aphasia 

performance accuracy may peak when items are shown for 5 seconds or more; e.g., Brookshire, 

1971).  

In item selection, several psycholinguistic variables were considered. This was to make 

sure that items were easy to produce (i.e., that there was a high agreement between the expected 

name of the picture and the response provided by healthy volunteers), and to permit 

identification of critical dimensions that could be affected in each patient (e.g., low and high 

frequency words, transitive and intransitive verbs, objects and actions, etc.). A first objective of 

this procedure is to decrease the number of false positives by ensuring that not only the items that 

patients are unable to produce before surgery, but also item categories that patients have 

difficulty with preoperatively are not used intraoperatively. A second objective is to establish, 

before and after surgery, whether deficits in the tasks used during surgery (in this case, object 



 

140 

 

naming and finite verb production) are due to semantic, lexical, or grammatical deficits, while at 

the same time ruling out that differences between noun and verb production are due to a 

mismatch between the psycholinguistic characteristics of the two sets of stimuli. For example, in 

Chapter 4, we constructed four stimulus sets that were psycholinguistically matched in all 

respects, except that they were used for distinct tasks (i.e., producing a noun, an infinitive, a 

finite verb, or a noun-related infinitive). Keeping frequency, imageability, age of acquisition and 

other critical variables under control in the four experimental sets licensed the conclusion that 

finite verbs are more accurate predictors of language abilities in daily living than nouns. 

  In Chapter 6, the patients included in our sample did not show preoperative deficits for 

specific psycholinguistic variables. Therefore, a personal intraoperative test could be prepared by 

removing the items that a particular patient was unable to respond to, without needing to control 

for specific psycholinguistic variables (frequency, imageability, etc.). This lack of 

psycholinguistic effects - which contrasts with the effects often reported in other brain-damaged 

populations (e.g., Jonkers & Bastiaanse, 2007; Kemmerer & Tranel, 2000; Kittredge, Dell, 

Verkuilen & Schwartz, 2008; Lambon Ralph & Howard, 2000; Luzzatti, Raggi, Piastrini, 

Contardi, & Pinna 2002) - could be due to the fact that preoperative deficits in our subjects were 

very mild. This is generally true of patients undergoing awake surgery, as the lack of severe 

deficits is one of the inclusion criteria for this procedure (e.g., Bello et al., 2007). Replication of 

the results presented in Chapter 6 and further work in people with brain tumors will help to 

decide whether or not controlling the items for different variables is essential in the preoperative 

assessments of people with brain tumors. Nevertheless, the control of the variables described in 

Chapter 3 and used in Chapters 4 and 6 may allow development of stimuli for intraoperative 

assessment also in patients with more marked naming deficits, particularly if these can be 
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ascribed to specific items or item variables. For these patients, it should still be possible to select 

a sufficient number of correct items for intraoperative use (i.e., at least 3 items per stimulation 

site). 

While we did not consider this aspect, finer-grained results could be obtained from the 

same intraoperative materials by considering spoken response times (e.g., (Arévalo, 2002; 

Székely et al., 2005; cf. Tsigka, Papadelis, Braun, & Miceli, 2014). Reaction time measures may 

be a more sensitive index than mere error rates, and allow detection of mild language deficits in 

patients with brain tumors. If this is the case, items to which patients respond after longer delays 

before surgery can be removed from the intraoperative assessment, as a measure to minimize 

false positives. However, reaction times may also be more difficult to interpret, as they will be 

susceptible both to practice effects (leading to faster responses) and to potential interference 

from effects of anaesthesia (general slowing) or the surgical environment more generally. 

Consequently, our choice to use accuracy rather than reaction times is likely to lead to results 

that are both more straightforward to interpret and more reliable. 

 

8.3. The production of finite verbs (in awake surgery) 

In Chapter 4, we contrasted the impairments displayed on four different naming tasks (i.e., object 

naming, producing finite verbs, action naming with infinites and verb generation) with those of a 

role-playing test (CADL2, Italian version; Carlomagno et al., 2013). All picture-naming tasks 

were found to be sensitive probes of language abilities in everyday life, as they all correlated 

significantly with the CADL2. Importantly, however, the finite verb production task correlated 

more strongly with the CADL2 than object naming. This result might reflect the intrinsic 

differences between verbs and nouns discussed above and in chapters 2, 3, and 5. However, it 
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does not necessarily entail that finite verbs tasks are more sensitive per se than object naming 

tasks. In fact, the analysis of individual results showed that some patients scored worse on object 

naming than in verb tasks. Therefore, it is advisable to use object naming and the production of 

finite verbs to assess patients with aphasia (regardless of etiology), rather than to risk missing 

relevant data by restricting the evaluation to object naming or finite verb production only. 

 Based on theoretical and empirical knowledge of the mechanisms underlying the 

production of verbs and nouns, in Chapter 6 we studied the neurofunctional correlates of object 

naming and finite verb production during surgery - in Chapter 5 we piloted some of the analyses. 

The novelty of this work is that we tackled three issues that typically are not addressed in the 

literature: the subcortical mapping of finite verbs, an intraoperative analysis of error types, and a 

discussion of the effects of electrical stimulation. Similar to other studies, the investigation 

attests to the feasibility and usefulness of an approach to language mapping that uses both nouns 

and finite verbs (see also Lubrano et al., 2014; Havas et al. 2015): patients produced more errors 

during electrical stimulation than when naming in the absence of stimulation. Furthermore, some 

patients produced errors only in object naming, while for others the verb tests were more 

sensitive. 

From a neurofunctional perspective, the distinction between more fronto-parietal 

involvement in grammatical processes (and hence, in the production of finite verbs) and more 

temporal involvement in lexical processes (and hence, in the production of nouns) has been 

inconsistently documented (e.g., Damasio & Tranel, 1993; Mätzig et al., 2009; Vigliocco et al., 

2011, also Chapters 2 and 3). We worked with six people with brain tumors during surgery. Four 

of these participants produced more errors during stimulation mapping for object naming. In two 

cases this happened when stimulation was delivered to cortical frontal areas, and in two other 
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cases when stimulation was delivered to subcortical areas in the inferior parietal lobe, and in the 

posterior part of the middle frontal gyrus. In a fifth participant with a frontal tumor, stimulation 

yielded errors during both object naming and finite verb production at the cortical and 

subcortical levels. And in a sixth participant with a lesion in the inferior and middle frontal gyri, 

cortico-subcortical stimulation only yielded errors during finite verb production.  

Error types were inconsistent with the hypothesis that ventral networks are more involved 

in semantic processing and dorsal networks are more involved in phonological processing (e.g., 

Binder et al., 2009; Caplan, Vanier, & Baker, 1986; Caramazza, Papagno, & Ruml, 2000; 

Hickok & Poeppel, 2007; Sarubbo et al., 2015). Semantic paraphasias and phonological 

paraphasias were observed when stimulating dorsal networks (e.g., a subcortical area 

corresponding to the inferior parietal lobe, possibly a posterior segment of the arcuate 

fasciculus), and when stimulating cortical areas connected by ventral pathways, for example, as 

indicated by stimulation of a surgical marker of the inferior fronto-occipital fasciculus in the 

insula. 

Similarly to Chapter 4, the results of Chapter 6 lead us to conclude that an approach to 

intraoperative language mapping based on at least two tasks (finite verb production and object 

naming) is preferable to an intraoperative assessment that only includes object naming. Neither 

task alone provides a satisfactory evaluation of language skills. Since both tasks probe partially 

distinct types of knowledge and recruit partially distinct neural substrates, their joint use during 

surgery guarantees a more reliable assessment of language and a greater likelihood of language 

sparing. Hence, in order to improve the quality and the sensitivity of language assessment during 

awake surgery, we believe that at least these two standardized tasks are required. Surgical teams 

should be aware of the theoretical implications and intraoperative advantages of each task (e.g., 
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brain areas/networks where tasks may be more sensitive and specific, types of language errors 

that may emerge and what do they mean, what level of language is being tackled with the task 

and which other levels can be tested, etc.), based on current knowledge in aphasiology, 

neurolinguistics, and cognitive neuroscience.  

8.4. Conclusion 

New and more refined techniques are being applied to meet surgical needs such as 

removing more tumor tissue, improving survival rates, and preserving the patients' language 

processes and quality of life. This dissertation contributed to further the implementation of the 

production of finite verbs, which is a task that until now had not been routinely considered. Other 

than that, we strengthened the need of administering standardized tasks and comparing new tasks 

with gold standards.  

We are currently considering pairing naming tasks with other imaging methods during 

surgery an in the different follow-ups (e.g., electrocorticography, encephalography). We are also 

considering the introduction of tasks to assess writing, comprehension, and working memory 

processes. Simultaneously, we are working on a fast protocol of narrative speech that could be in 

part analyzed semi-automatically, and used in follow-up assessments and even during surgery. 

This is because formal testing cannot be administered too often, as it may result in test-retest 

effects and time constraints in clinical practice, and also because narrative speech integrates 

different language levels and comes closest to language use in daily life. Above all, efforts may 

be directed at understanding the attributes and neural underpinnings of each task, and the benefit 

that it may bring to each patient, possibly directing us towards clearer answers to questions posed 

in aphasiology, neurolinguistics, and cognitive neuroscience. 
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APPENDICES 

APPENDIX A: Cortico-subcortical areas where language processing was detected and error types during electrical stimulation 

mapping  (Chapter 2) 

Table A2.1  

Cortical areas in language dominant hemisphere where language processing was detected with each task and error types per area 

and per test 

 ACTN VSC NOOD RSEN SCOMPL SCOMPR TRANSLP VGEN Error type 

SFG Bello et al. 

2006, 2007 
a, c 

Lubrano et al. 2014 

 

    Borius et al. 2012 

g 

Ojemann et al. 

2002 

Anomia and 

paraphasias 

MFG Bello et al. 

2006, 2007 

Lubrano et al. 2014 

b, e 

 Roux et al. 2004 

e 

Ojemann & 

Mateer, 1979 
 

  Ojemann et al. 

2002 ; Roux et 

al. 2003 

Anomia and 

paraphasias 

IFG Bello et al. 

2006, 2007 

Lubrano et al. 2014 

b, h 

 Roux et al. 2004 

e 

Ojemann & 

Mateer, 1979 

 
 

 Borius et al. 2012 

h 
Ojemann et al. 

2002 ; Roux et 

al. 2003 

Anomia and 

semantic 

paraphasias 

PrG    Roux et al. 2004 

f 

Ojemann & 

Mateer, 1979 
 

 

  Ojemann et al. 

2002 ; Roux et 

al. 2003 

+ 

PoG    Roux et al. 2004 

f 

Ojemann & 

Mateer, 1979 

 

 

  Ojemann et al. 

2002 

+ 

SMG  Lubrano et al. 2014 
a 

 Roux et al. 2004 Ojemann & 
Mateer, 1979 

 

 

Bello et al. 
2007 

Borius et al. 2012 
 

Ojemann et al. 
2002 

Sentence 
comprehension 

error ; Phonemic 

and semantic 
paraphasias 
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Notes. ACTN = Action naming; VSC = Producing a finite verb in sentence context; NOOD = Naming objects to oral description; 

RSEN = Reading sentence aloud; SCOMPL = Sentence completion; SCOMPR = Sentence Comprehension; TRANSLP = Translating 

Paragraphs (No areas where detected where translation was the only language procedure affected); VGEN = Verb Generation. Cortical 

areas: SFG = Superior Frontal Gyrus, MFG = Middle Frontal Gyrus, IFG = Inferior Frontal Gyrus, PrG = Precentral Gyrus, PoG = 

Postcentragyrus, SMG =Supramarginal gyrus, AnG = Angular Gyrus, STG = Superior temporal gyrus, MTG = Middle temporal 

gyrus, ITG = Inferior temporal gyrus. References in boldface indicate that language processing was frequently detected with the test or 

that the language process was specific to that area (e.g., Naming to Oral description was specific for STG and MTG). The sign (+) 

indicates that the error types were not clearly specified per brain area. a = area common to object naming, b = area specific to verbs, c 

= area specific to the periphery of the tumor, e = area specific to the posterior part of the gyrus, f = area specific to the inferior part of 

the gyrus, g = area specific to the superior part of the gyrus, h = area specific to Broca’s area, i = area not frequent 

 

 

 

 

AnG    Roux et al. 2004 Ojemann & 

Mateer, 1979 
 

 

Bello et al. 

2007 

 Ojemann et al. 

2002 

Sentence 

comprehension 
error ; Phonemic 

and semantic 

paraphasias 

STG Bello et al. 

2007 

Lubrano et al. 2014 

a 
Hamberger et 

al. 2003, 2007 

 Ojemann & 

Mateer, 1979 
 

 

Bello et al. 

2007 

 Ojemann et al. 

2002 

Anomia; sentence 

comprehension 
error; semantic and 

phomemic 

paraphasias 

MTG Bello et al. 
2007 

Lubrano et al. 2014 
a 

Hamberger et 

al. 2003, 2007 

Roux et al. 2004 

e 
Ojemann & 
Mateer, 1979 

 

  Ojemann et al. 
2002 

Anomia and 
phonemic and 

semantic 

paraphasias 

ITG   Hamberger et al. 

2003, 2007 
i 

     Anomia 

Error  

type 

Anomia and 
semantic 

paraphasias 

Anomia; Phonemic 
and semantic 

paraphasias, 

neologism, 
hesitation 

Anomia 
Phonemic and 

semantic 

paraphasia 

Anomia. 
Hesitation, 

phonemic and 

semantic 
paraphasias 

Anomia, 
paraphasias, 

grammatical 

errors 

Sentence 
comprehension 

error 

Anomia 
 

Anomia, 
hesitation, 

paraphasias 
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Table A2.2 

 

Subcortical areas in the language-dominant hemisphere where language processing was detected by action naming and error types 

produced by patients during stimulation of that area 

 
 ACTN Error type 

AF Bello et al. (2006,2007) Anomia; Phonemic paraphasias 

IFOF Bello et al. (2007, 2008) Semantic paraphasias 

ILF Bello et al. (2007) Anomia; Reduction of spontaneous speech Semantic paraphasias. 

PV Bello et al. (2006)  

SLF Bello et al. (2008) Phonemic paraphasias 

SuF Bello et al. (2006, 2007) Anomia; Reduction of spontaneous speech; Phonemic paraphasias 

UNC Bello et al. (2007, 2008) Semantic paraphasia 

Notes. ACTN = Action Naming; Subcortical areas: AF = Arcuate fasciculus, IFOF = Inferior fronto-occipital-fasciculus, ILF = 

Inferior longitudinal fasciculus, PV = Periventricular white matter, SLF = Superior longitudinal fasciculus, SuF = Subcallossal 

fasciculus and UNC = Uncinate fasciculus.  
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APPENDIX B: Description of psycholinguistic variables of the tests, instructions for on-line 

questionnaires, and  MATLAB code to calculate the H-STATISTIC (Chapter 3) 

 

1. VISC subsets: description, number of items per condition, matching   

FAL_Sub 

Action-related verbs describe actions performed with face/mouth, arm/hand and leg/foot. 

Hauk, Johnsrude and Pulvermüller (2004) argue that this type of actions (e.g., ‘to lick’, ‘to 

pick’ and ‘to kick’) activate the motor strip in a somatotopic manner (Leyton & Sherrington, 

1917; Penfield & Boldrey, 1937). These verbs are similar to manipulation verbs, but 

“manipulation” refers to hand actions that require an object (e.g., ‘to type’ needs a keyboard) 

whereas “arm/hand action” does not entail object use (e.g., ‘to point’ is not a manipulation 

action as it does not require an object, even though it is an action, typically performed with 

the hand). FAL_Sub includes 8 items per condition: face action (1), arm action (2), leg action 

(3). Items were matched for Picture Name Agreement (PNA<75), H-statistic (H-STAT), 

Visual complexity (Vcomplex), Age of Acquisition (AOA), Imageability (Imag), Frequency 

(Freq, Log10+1Freq, HighLowFq), Length in phonemes (LPh, LongShortPh), 

Instrumentality (Inst), Name-relatedness to a noun (NRN), Manipulation (MN) and 

Regularity (Reg_Sub). Items could not be matched for Transitivity (TR) and Number of 

Internal arguments (NIA) as no transitive verbs could be added in face actions (1).  

 

HighLowFqV_Sub 

Effects of frequency were described in the VISC subsets. HighLowFqV_Sub includes 17 

items per condition: high frequency (1) and low frequency (0) based on the median of the 

sample (median=6.28). Conditions were matched for Picture Name Agreement (PNA<75), 

H-statistic (H-STAT), Visual complexity (Vcomplex), Age of Acquisition (AOA), 

Imageability (Imag), Instrumentality (Inst)m Action relatedness (FAL), Manipulation (MN). 
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No matching was possible for Transitivity (Tr), Name-relatedness to a noun (NRN) and 

Regularity (Reg_Sub). 

 

Inst_Sub/NRN_Sub 

The term instrumental verbs refers to actions requiring the use of an instrument that is not a 

body part. Instrumental verbs are divided in two categories: name-related (i.e., verbs that are 

phonologically identical to the name of the instrument, for example ‘to brush’) and verbs that 

are not name-related to the instrument (e.g., ‘to sew’). Instrumental verbs are easier than non-

instrumental verbs for patients with aphasia (Jonkers & Bastiaanse, 2007), possibly because 

they activate two lemmas: one corresponding to the verb, one to the instrument. This 

coactivation may facilitate retrieval of the word form (the lexeme) but not necessarily of the 

lemma (Bastiaanse & Van Zonneveld, 2004). Inst_Sub contains 24 items per condition: 

instrumental verb (1), non-instrumental verb (0). Items were matched for picture name 

agreement (PNA<75), H-statistic (H-STAT), Visual complexity (Vcomplex), Age of 

Acquisition (AOA), Imageability (Imag), Frequency (Freq, Log10+1, HighLowFq), Length 

in phonemes (LPh, LongShortPh), Manipulation (MN) and Regularity (Reg_Sub).  Items are 

not matched for Transitivity (Tr), Name-relatedness (NRN), Action-related verbs (FAL). 

NRN_Sub contains 9 items per condition: verb that is related to a noun (1), verb that is not 

related to a noun (0). Items were matched for picture name agreement (PNA<75), H-statistic 

(H-STAT), Visual complexity (Vcomplex), Age of Acquisition (AOA), Imageability (Imag), 

Frequency (Freq, HighLowFq), Transitivity (Tr), Length in phonemes (LPh, LongShortPh), 

Action relatedness (FAL), Manipulation (MN) and Regularity (Reg_Sub). Matching for 

Picture Name Agreement was low (p=0.070). No matching was possible for Instrumentality 

(p=0.31), as all noun-related items were also instrumental.  
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LongShortPhV_Sub 

Effects of word length in naming were described in the ECCO subsets. LongShortPhV_Sub 

includes 25 items per category: short verbs (0) and long verbs (1) based on the median of the 

infinitive in the sample (median=6). Items are matched for Picture Name Agreement 

(PNA<75), H-statistic (H-STAT), Visual complexity (Vcomplex), Age of Acquisition 

(AOA), Imageability (Imag), Frequency (Freq, Log10+1Freq, HighLowFq), Instrumentality 

(Inst), Name-relatedness to a noun (NRN), Action relatedness (FAL), Manipulation (MN) 

and Regularity (Reg_Sub). 

 

MN_Sub 

The term manipulation refers to objects that are used with the hand (e.g., cellphone) and to 

actions that are performed by manipulating an object (e.g., to type). It is used to explain 

relations between body and mind. Some authors argue that words related to manipulation are 

represented (at least partially) in the motor strip, as suggested by studies using neuroimaging 

and motor evoked potentials (Willems & Hagoort, 2007, for review) as well as by lesion data 

(Saygin, Wilson, Dronkers, & Bates, 2004; Tranel et al., 2003). MN_Sub includes 25 items 

per condition: non-manipulable verb (0), and manipulable verb (1). Items are matched for 

Picture Name Agreement (PNA<75), H-statistic (H-STAT), Visual complexity (Vcomplex), 

Age of Acquisition (AOA), Imageability (Imag), Frequency (Freq, Log10+1Freq, 

HighLowFq), Length in phonemes (LPh, LongShortPh), Name-relatedness to a noun (NRN), 

and Regularity (Reg_Sub). Items were not matched for Transitivity (Tr), Instrumentality 

(Inst), and Action relatedness (FAL) as these variables correlate with Manipulation (MN). 

For example non-manipulable verbs (0) typically are non-instrumental, and vice-versa.  
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Reg_Sub 

Regular verbs follow a typical conjugation paradigm and do not change their stem. Irregular 

verbs, by contrast, either do not follow the typical conjugation paradigm or change their stem 

form. English examples of irregular verbs are ‘sing’ and ‘take’, that change their root form 

into ‘sang’ and ‘took’ in the past, and ‘sung’ and ‘taken’ in the past participle. The debate on 

regular and irregular verbs focuses on whether or not they are processed by the same 

cognitive mechanisms and represented in the same neural network. Connectionist models 

assume no differences in the processing and representation of regular and irregular verbs 

(Sach, Seitz, & Indefrey, 2003), whereas dual-process models argue for different cognitive 

mechanisms and localization (Pinker & Prince 1988; Ullman et al., 1997). On the latter view, 

irregular verbs are stored as whole lexical forms and hence engage more heavily lexical 

mechanisms located in the temporal lobe and right cerebellum. Forms of regular verbs, on the 

other hand, are not stored as lexical entries, and their inflectional processes are triggered by 

morphosyntactic operations located in the left frontal lobe and basal ganglia (Howard et al., 

1992; Ullman, 2004). According to dual-process models, a selective difficulty producing 

regular verbs is consistent with a disruption of grammatical processes, whereas deficits in 

retrieving irregular verb forms occur in the context of lexical damage. Reg_Sub contains 16 

items per condition. These refer to verbs that are regular in their whole conjugation (0) and 

verbs that have an irregular form in their conjugation (1). This form does not need to 

correspond to the third person singular. Items are matched for picture name agreement 

(PNA<75), H-statistic (H-STAT), Visual complexity (Vcomplex), Age of Acquisition 

(AOA), Imageability (Imag), Frequency (Freq, Log10+1Freq, HighLowFq), Transitivity (Tr), 

Length in phonemes (LPh, LongShortPh), Instrumentality (Inst), Action relatedness (FAL), 

Manipulation (MN) and Regularity (Reg_Sub). All items are not name-related to a noun 

(NRN)  
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Tr_Sub 

Transitive verbs are accompanied by a direct object (e.g., to cook, to kiss); intransitive verbs 

(e.g., to walk, to swim) cannot be accompanied by a direct object. Intransitive verbs are 

further divided in two categories: unergative verbs have one external argument that functions 

as an agent (e.g., to pray in ‘the nun prays’) and unaccusatives have one internal argument 

that functions as a theme and raises to subject position (e.g., to fall in ‘the kidi falls ti’). 

Therefore, a specific deficit for unaccusative verbs may denote difficulty with syntactic 

movement operations. People with aphasia typically fare worse with unaccusative and 

transitive than unergative verbs (e.g., Luzzatti et al., 2002); however, the reverse pattern is 

also on record (De Bleser & Kauschke, 2003). Tr_Sub contains 23 items per condition: 

transitive verbs (1), intransitive verbs (0). Items are matched for picture name agreement 

(PNA<75), H-statistic (H-STAT), Visual complexity (Vcomplex), Age of Acquisition 

(AOA), Imageability (Imag), Frequency (Freq, Log10+1Freq, HighLowFq), Length in 

phonemes (LPh, LongShortPh), Instrumentality (Inst), Name-relatedness to a noun (NRN), 

Action relatedness (FAL), Manipulation (MN) and Regularity (Reg_Sub).  

 

Ac_Balanced  

Differences between nouns/objects and verbs/actions were described in the ECCO subsets. 

Ac_Balanced includes 20 items matched with a subset of 20 items extracted from the ECCO 

(Ob_Balanced). The items are matched for picture name agreement (PNA<75, PNA+75), H-

statistic (H-STAT), Age of Acquisition (AOA), Imageability (Imag), Frequency (Freq, 

Log10+1Freq, HighLowFq), biological/artifactual entities (Bio), Length in phonemes (LPh, 

LongShortPh), and semantic category (SemCat). Items could not be balanced for objective 

Visual Complexity (Forsythe et al. 2008) as indicated in the Ob_Balanced section.  
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2. ECCO subsets: description, number of items per condition, matching 

Bio_Sub 

The term biological entities refers to conspecifics, animals, fruits, and vegetables: whereas 

non-biological entities correspond to inanimate objects (musical instruments, tools, means of 

transportation, furniture, etc.). Within biological entities, a further distinction is drawn 

between those provided (animals) and those not provided (plants) with self-generated 

movement. Selective impairment and sparing of these categories have been reported, and 

typically signify semantic damage (see Capitani, Laiacona, Mahon, & Caramazza, 2003, for a 

review). Bio_Sub includes 17 items per condition: biological (1) entities such as conspecifics, 

animals, fruits, vegetables and non-biological (0) or artifactual entities such as instruments, 

means of transportation, and furniture. Conditions are matched for Picture Name Agreement 

(PNA<75), H-statistic (H-STAT), Visual complexity (VcomplexGIF), Age of Acquisition 

(AOA), Imageability (Imag), Frequency (Freq, Log10+1Freq, HighLowFq), Length in 

Phonemes (LPh, LongshortPh), and Semantic category (SemCat). 

 

HighLowFqN_Sub 

Written frequency estimates can be obtained by counting the number of times that a word 

appears in a corpus (e.g., the CELEX database). Effects of frequency on response times and 

accuracy are reported in healthy populations (Oldfield & Wingfield, 1965) and in aphasia 

(Kemmerer & Tranel, 2000; Kittredge, Dell, Verkuilen, & Schwartz, 2008). Difficulty 

naming low-frequency items is generally attributed to deficits in lexical processing (Lesser & 

Milroy, 1993), but may be due also to semantic impairment or to a difficulty mapping 

semantic representations into lexical entries (Whitworth, Webster, & Howard, 2005). 

HighLowFqN_Sub includes 18 items per condition: high (1) and low (0) frequencies 

calculated based on the median of the sample (median=6.28). Conditions are matched for 
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picture name agreement (PNA<75), H-statistic (H-STAT), Visual complexity 

(VcomplexGIF), Age of Acquisition (AOA), Imageability (Imag), Length in Phonemes (LPh, 

LongshortPh), Biological/artifactual entities (Bio), and Semantic category (SemCat). 

 

LongShortPhN_Sub/LPhN_Sub 

Effects of word length in naming speed were found in healthy young individuals (Barry, 

Morrison, & Ellis, 1997), in elderly people (Hodgson & Ellis, 1998) and in aphasic speakers. 

Nickels and Howard (2004) disentangled ‘number of phonemes’ from ‘number of syllables’ 

and ‘syllabic complexity’, finding that number of phonemes (but not number of syllables) 

predicted word repetition accuracy in nine aphasic speakers showing effects of length. The 

typical length effects result in longer words being more difficult to process, usually as a 

consequence of post-lexical damage. The opposite pattern has been also occasionally 

reported (Lambon Ralph & Howard, 2000), and has been attributed to a difficulty accessing 

output phonology (Whitworth, Webster, & Howard, 2005) - longer words have fewer 

phonological neighbors and thus fewer competitors for activation. LongShortPhN_Sub 

includes 21 items per condition: long words (1) and short words (0) based on the median of 

the sample (median = 6). LPhN_Sub includes 10 items per condition: 0 = 4 phonemes; 1 = 5 

phonemes; 2 = 6 phonemes; 3 = 7 phonemes. The conditions in both subsets are matched for 

Picture Name Agreement (PNA<75), H-statistic (H-STAT), Visual complexity 

(VcomplexGIF), Age of Acquisition (AOA), Imageability (Imag), Frequency (Freq, 

Log10+1Freq, HighLowFq), Biological/artifactual entities (Bio) and Semantic category 

(SemCat).  
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Ob_Balanced 

 Differences between nouns and verbs exist along semantic and morphosyntactic dimensions. 

Verbs typically refer to actions while nouns to objects. Verbs entail thematic role assignment, 

subject-verb agreement, complex argument structure, time reference, while nouns function as 

arguments of the predicate (e.g., Rofes & Miceli, 2014). Accuracy, reaction times and 

electrophysiological measures may be different between verbs and nouns, particularly when 

verbs are used in sentence context (Mätzig et al., 2009; Vigliocco et al, 2011, for reviews). 

Ob_Balanced includes 20 items. These items are matched with a subset of 20 items extracted 

from the VISC (Ac_Balanced). Items are matched for Picture Name Agreement (PNA<75, 

PNA+75), H-statistic (H-STAT), Age of Acquisition (AOA), Imageability (Imag), Frequency 

(Freq, Log10+1Freq, HighLowFq), Biological/artifactual entities (Bio), Length in phonemes 

(LPh, LongShortPh), and Semantic category (SemCat). Items could not be balanced for 

objective Visual Complexity (Forsythe et al. 2008), as the lossless GIF compression 

measures we proposed for both tests were not comparable, as the drawings had been made by 

different authors, probably using different softwares and different compression measures.  

 

 

3. VISC: materials and procedure, imageability and age-of-acquisition ratings  

Materials and procedure 

Stimuli consist of 85 black-and-white drawings, similar to those of other tests (Bastiaanse, 

Edwards, Maas, & Rispens, 2003; Hammelrath, 2000; Metz-Lutz et al., 1991; Snodgrass & 

Vanderwart, 1980). Stimuli were presented by using Psychtoolbox for MATLAB. A beep 

was presented 500ms prior to stimulus presentation, and each stimulus was shown for 

4000ms. The Psychsound commands of Psychtoolbox were used to record the responses 

produced by each subject to each item. Responses that corresponded to the expected target or 
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were rated as plausible given the ratings of healthy participants in the first study, and that 

were produced within the 4000ms time frame, were rated as correct.  

 

Imageability and age-of-acquisition ratings 

Imageability and age-of-acquisition ratings were collected through an on-line questionnaire 

to obtain ratings for all test items. We assessed the AoA of the target objects and that of the 

synonyms produced by healthy participants in the first step of the picture-name agreement 

study. Participants were asked to estimate on a 5-point Likert scale at which age they thought 

they had learned the word in either its spoken or written form (0-3 years, 4-6 years, 7-10 

years, 10-12 years, older than 12 years). The procedure is similar to Carroll and White 

(1973). To assess Imageability, we asked participants to indicate on a 5-point Likert scale 

how difficult it was to imagine the object (very difficult, difficult, average, easy, very easy). 

A series of low-imageability action verbs was included in the list of to-be-rated words (e.g., 

categorize, deviate, define, tolerate). To the best of our knowledge, there is no exhaustive list 

of imageability of Italian verbs. Therefore, 65 low-imageability verbs from the list in Bird, 

Franklin and Howard (2001) were translated into Italian. Below we provided the instructions 

for each questionnaire, in English and Italian.  

 

3. ECCO: materials and procedure, imageability and age-of-acquisition ratings  

Materials and procedure 

Sixty-two object drawings from the Snodgrass and Vanderwart set (1980) were used. 

Stimuli were presented individually on a computer screen, and the starter word Ecco… (This 

is…) was shown above each stimulus. Participants were asked to produce the name of the 

object preceded by its determiner (e.g., Ecco la pera, ‘Here [is] the pear’).  
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Imageability and age-of-acquisition ratings  

The same procedure as for the VISC was followed. In addition to the 57 target items, 

all corresponding to concrete objects, the imageability questionnaire included 65 low-

imageability nouns (e.g., philosophy, consciousness, reputation, merit), that had been rated 

between 2 and 3 on a 7-point scale in a study by Della Rosa, Catricalà, Vigliocco, and Cappa 

(2010). In order to prevent list biases, the names of low-imageability items were pseudo-

randomly interspersed with those of the high-imageability, target objects. This ensured that 

stimuli in this task covered a wide imageability range, and prevented participants from 

inappropriately rating test items (all concrete objects) as being of low imageability. We 

followed the procedure of Paivio, Yuille and Madigan (1968).  
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5. Instructions for imageability and age of acquisition in English and in Italian   

Age-of-acquisition  

For an experiment regarding some properties of the memory of words, we need your 

opinion on the age-of-acquisition of some words. We are interested to know when you 

learned for the first time the meaning of a series of words, in the spoken or in the written 

form. In the following questionnaire, you will be asked to read some words. You are asked to 

answer on a scale from 1 to 5 if you estimate to have learned the word, in its spoken form or 

written form, when you were ‘0 to 5 years’, ‘4 to 6 years’, ‘7 to 9 years’, ’10 to 12 years’ or 

when you were ‘older than 12’.  

For example you will read the word ‘pasta’ (specific to ECCO)/ ‘to snow’ (specific to 

VISC), and will estimate when you learned that word. If you think you learned it when you 

were around 0 to 3 years, please tick the first box of the scale.  

ITALIAN. Per un esperimento che riguarda alcune proprietà della memoria di 

parole, abbiamo bisogno del tuo giudizio sull’età di acquisizione di alcune parole. Ci 

interessa sapere quando, nel corso della tua vita, hai imparato per la prima volta il 

significato di una serie di parole, in forma parlata o scritta. Nel seguente questionario ti 

viene chiesto di leggere alcune parole. Dovrai rispondere su una scala da 1 a 5 se ritieni di 

aver appreso la parola, verbalmente o in forma scritta, quando avevi dagli '0 ai 3 anni', dai 

'4 ai 6 anni', dai '7 ai 9 anni', tra i '10 e i 12 anni' o 'dopo i 12 anni'. 

Per esempio vedrai la parola ‘pasta’ (specific to ECCO)/ ‘nevicare’ (specific to 

VISC). Dovrai stimare quando l’hai imparata per la prima volta. Se pensi di averla imparata 

nella fascia d’età compresa tra 0 e 3 anni, dovrai segnare la prima casella della scala. 
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Imageability 

  

Words differ in their capacity to be imageable. Some words can be imagined very 

easily, others need more effort. The goal of this experiment is to estimate the difficulty to 

construct a visual image for each noun (specific to ECCO)/ verb (specific to VISC) on a list. 

You will answer on a scale from 1 to 5, indicating if constructing a mental image for each 

word is ‘very easy’, ‘easy’, ‘average’, ‘difficult’ or ‘very difficult’.   

(Specific to ECCO). For example, think about the nouns ‘house’ and ‘love’ (in Italian, 

the latter is indicated by an unambiguous noun). Probably it is easy to construct a mental 

image of ‘house’: you could think of the image of a building divided in different floors and 

rooms. Instead, constructing the mental image for ‘love’ is probably more difficult. Think of 

the feeling and of the instinct that unites two people.  

(Specific to VISC). For example, think about the verbs ‘to eat’ and ‘to know’. 

Probably, ‘to eat’ is easy to imagine: you could think of a man eating a piece of cake. Instead, 

constructing the mental image for ‘to know’ is probably more difficult. Think about what do 

you do when you ask yourself ‘Do I know that?’. You could touch your head and look 

surprised. Therefore, you could think of the image of a woman who touches her head in 

surprise.  

ITALIAN. Le parole differiscono per la loro immaginabilità. Alcune parole possono 

essere immaginate facilmente, altre richiedono un maggior impegno. Lo scopo di questo 

esperimento è di stimare la difficoltà di costruire un'immagine mentale per ogni nome 

(specific to ECCO) / verbo (specific to VISC) in una lista. Dovrai rispondere su una scala 

con valori da 1 a 5; dovrai stabilire se per ogni parola è ‘molto facile’, ‘facile’, ‘medio’, 

‘difficile’, ‘molto difficile’ costruire un'immagine mentale.  

(Specific to ECCO) Per esempio, pensa ai nomi ‘casa’ e ‘amore’. Probabilmente è 

facile costruire un'immagine mentale per ‘casa’: basta pensare all’immagine di un edificio 

suddiviso in piani e vani, adibito ad abitazione.  Invece per ‘amore’ è probabilmente più 

difficile. Pensa al sentimento ed all’istinto che lega due persone. (Specific to VISC) Per 

esempio, pensa ai verbi ‘mangiare’ e ‘conoscere’. ‘Mangiare’ probabilmente è facile da 

immaginare: basta pensare all’immagine di un uomo che sta mangiando un pezzo di torta.  

Invece ‘conoscere’ probabilmente è più difficile da immaginare. Pensa a cosa fai quando ti 

chiedi ‘questo lo conosco?’. Potresti toccarti la testa e sembrare sorpreso. Quindi potresti 

pensare all’immagine di una donna sorpresa che si tocca la testa.  
  



 

196 

 

6. MATLAB script to calculate the H-STATISTIC 

function H = StatisticH(p) 

% STATISTICH  

%   It computes the statistic H for a given set of proportions.  

%   It is based on the formula provided by Snodgrass & Vanderwart (1980) 

% 

% SCORING INSTRUCTIONS 

% a) Eliminate: do not know responses 

% b) Include with correctly name word: mispronunciations, diminutives 

% c) Include with unabbreviated forms: uncommon abbreviations (b carriage 

for 

%    baby carriage) 

% d) Count as separate words: not target word (vehicle for airplane, potato  

%    for carrot); commonly accepted abbreviations (TV for television),  

%    elaborations (bell pepper for pepper) 

% e) Count the first response only: when two correct names are used 

% f) Count the correct response: when two names are used within the given  

%    time 

% 

% EXAMPLES OF USAGE 

% I) For the picture "plane", 30 people said "plane" 30 times. The result 

is  

%    0 which indicates perfect agreement. 

%    StatisticH ([30/30])  

% 

% II)For the picture "plane", 15 people said "plane", and 15 people said   

%    "airplane". 

%    The result is 1. 

%    StatisticH ([15/30, 15/30])  

% 

% III)For the picture "plane", 10 people said "plane", 10 people 

"airplane",  

%    and 10 people said "I do not know" 

%    The result is 1 

%    StatisticH ([10/20, 10/20]) 

%   

% IV)For the picture "plane", 10 people said "plane", 10 people "airplane", 

5 

%    people "I do not know", and 5 people "vehicle".  

%    The result is 1.5219 

%    StatisticH ([10/25, 10/25, 5/25]) 

% 

% ------ Error handling ------ 

if(sum(p < 0) > 0) % We don't want negative p's 

    error('Input error: at least one p coefficient is negative'); 

end 

if(sum(p > 1) > 0) % We don't want p's greater than 1 

    error('Input error: at least one p coefficient is greater than one'); 

end 

pSum = sum(p); 

if(pSum ~= 1) % The sum is expected to be 1 

    disp('Warning: the p coefficients are not summing up to 1'); 

end 

% ------ Calculation ------ 

elementsToBeSummed = p.*log2(1./p); 

% 

% When some p is zero, the function will throw a NaN ... 

positionsOfZeros = find(p == 0); % ... so we find them ... 
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elementsToBeSummed(positionsOfZeros) = 0; % ... and use the limit when p 

tends to zero instead of direct evaluation 

% 

H = sum(elementsToBeSummed); 

% 

End 

 

 

  



 

198 

 

APPENDIX C: Matcihng for linguistic variables, post-hoc tests, and individual results 

(Chapter 4) 

Table C4.1 

 

Matching of the tests for relevant linguistic variables including imageability  
  FinVerb ActNam Vgen ObNam NVgen Significance 

Frequency 32.32(8.5) 44.01(19.2) 42.9(12) 34.73(13.26) 45(14.4) χ2(4,100)=1.203, 

p=1.616 

Imageability 1.19(0.02) 1.2(0.02) 1.18(0.02) 1.14(0.01)   χ2(3,80)=5.358,  

p= 0.147 

Age of 
Acquisition 

1.91(0.11) 1.84(0.09) 1.78(0.12) 1.98(0.12)   χ2(3,80)=1.883,  

p= 0.597 

Length in 

Phonemes 

5.65(0.25) 6.3(0.3) 5.75(0.3) 6.2(0.4) 6.3(0.48) χ2(4,100)= 1.616, 

p=0.806 

Manipulable 14 12 11 9 10   

Non-Manipulable 6 8 9 11 10   

Transitive 12 14 13     

Instransitive 8 6 7     

Internal 

Arguments 

12 14 13     

Instrumental 11 11 8     

Non-Instrumental 9 9 12    

Irregular 7 3 4     

Regular 13 17 16     

Name Related 4 3 4     

Non-Name 

Related 

16 17 16     

Face 3 1 0     

Arm 12 13 12     

Leg 3 3 3     

Face/Arm 1 2 3     

Arm/Leg 1 0 0     

Non-
Face/Arm/Leg  

0 1 2     

Biological    8 4   

Non-Biological    12 16   

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation; NVgen: Name of the picture for which the verb 

is produced in the Verb Generation task (e.g., ball > to play). Standard deviation is reported 

in parentheses. N=20 items per task. 
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Table C4.2 

 

Individual behavioral data (percentage correct). 

 

 

CADL-2 CETI CAL ObNam Vgen FinVerb ActNam 

AL 100 93.8 96.7 95 80 80 100 

BL 83 73.8 81.1 90 75 80 75 

BS 59 75 83.3 0 25 0 5 

CB 93 78.8 73.3 90 55 60 0 

CC 82 92.5 91.1 85 90 60 55 

CK 56 42.5 53.3 35 5 5 25 

ES 90 68.8 80 55 55 65 40 

FT 95 68.8 41.1 35 45 70 60 

GC 93 83.8 78.9 5 25 40 40 

GM 53 65 52 0 0 0 0 

LF 89 57.6 65.6 10 0 35 10 

OS 84 81.3 92.2 85 80 80 65 

OT 88 82.5 83.3 50 30 75 10 

PG 70 51.3 41.1 0 0 0 5 

PI 90 73.8 67.8 85 80 90 75 

PS 49 70 72 65 15 20 10 

RA 97 82.5 83.3 90 90 90 70 

RG 80 53.8 52.2 0.0 15.0 25.0 30.0 

RL 89 78.8 77.8 30 45 50 25 

TG 67 57.5 55.6 65 30 30 5 

UA 87 83.8 62.2 80 15 60 40 

 

m(sd) 81 (15) 72 (14) 71 (16) 50 (36) 41 (32) 48 (31) 37 (30) 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation. m(sd): mean and standard deviation.  
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Table C4.3 

 

Post-hoc tests of picture-naming tasks (Z and FDR corrected p-values).  

 

 VGen-

ObNam 

FinVerb-

ObNam 

ActNam-

ObNam 

FinVerb-

VGen 

ActNam-

VGen 

ActNam-

FinVerb 

 Z= -1.542 

p=0.1845 

Z=-0.308 

p=0.7577 

Z=-2.015 

p=0.0878 

Z=-2.017 

p=0.0878 

Z=1.073 

p=0.3399 

Z=-2.546 

p=0.0653 

 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation.  

 

Table C4.4  

Spearman correlations of picture-naming tasks and functional-measures (rho and p-value). 

 CADL-2 CETI CAL ObNam VGen FinVerb ActNam 

CADL-2 1 0.511* 0.324 0.441* 0.561* 0.727* 0.538* 

 p=0 p=0.0215 p=0.1516 p=0.0492 p=0.0129 p=0 p=0.0147 

CETI 0.511* 1 0.763* 0.541* 0.611* 0.564* 0.452* 

 p=0.021 p=0 p=0 p=0.0147 p=0.006 p=0.0129 p=0.0454 

CAL 0.324 0.763* 1 0.554* 0.701* 0.542* 0.437* 

 p=0.1516 p=0. p=0 p=0.0136 p=0 p=0.0148 p=0.0494 

ObNam 0.441* 0.541* 0.544* 1 0.779* 0.776* 0.577* 

 p=0.0494 p=0.0148 p=0.0136 p=0 p=0 p=0 p=0.0113 

VGen 0.561* 0.611* 0.701* 0.780* 1 0.830* 0.683* 

 p=0.0129 p=0.0064 p=0.0009 p=0 p=0 p=0 p=0.0014 

FinVerb 0.727* 0.554* 0.542* 0.776* 0.830* 1 0.793* 

 p=0 0.0129 0.0148 p=0 p=0 p=0 p=0 

ActNam 0.538* 0.462* 0.437* 0.578* 0.683* 0.792* 1 

 p=0.0148 p=0.0454 p=0.0495 p=0.0113 p=0.0013 p=0 p=0 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation. We calculated false discovery rate (FDR) 

adjusted p-values to correct for multiple comparisons. *Significant at p≤0.05 
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Table C4.5 

 

Comparisons of overlapping correlations (Steiger’s Z) 

 

 ObNam-Vgen ObNam-FinVerb ObNam-ActNam 

CADL-2 Z=-0.92509 

p=0.2662 

Z=-2.34918 

p=0.0282* 

Z=-0.53177 

p=0.2975 

CETI Z=-1.02434 

p=0.4290 

Z=-0.17940 

p=0.4290 

Z=0.49075  

p=0.4290 

CAL Z=-1.25967  

p=0.3120 

Z=0.09320 

p=0.4629 

Z=0.64510 

p=0.3891 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation. We calculated false discovery rate (FDR)-

adjusted p-values to correct for multiple comparisons. *Significant at p≤0.05  

 

Table C4.6 

 

Paired tests on picture-naming tasks (Fisher Exact – two tailed) 

 

 

ObNam vs 

Vgen 

ObNam vs 

FinVerb 

ObNam vs 

ActNam 

Vgen vs 

FinVerb 

Vgen vs 

ActNam 

FinVerb vs 

ActNam 

BL p=0.168 p=1 p=1 p=0.168 p=0.364 p=1 

CB p=0.004* p=0.078 p=<0.001* p=1.000 p=<0.001* p=<0.001* 

CC p=1 p=0.232 p=0.164 p=0.164 p=0.164 p=1 

CK p=0.003* p=0.003* p=0.8772 p=1 p=0.273 p=0.273 

GC p=0.04* p=0.04* p=0.04* p=0.601 p=0.601 p=1 

LF p=0.731 p=0.254 p=1 p=0.04* p=1 p=0.254 

OT p=0.333 p=0.282 p=0.028* p=0.028* p=0.282 p=<0.001* 

PS p=0.009* p=0.02* p=<0.001* p=1 p=1 p=0.992 

TG p=0.084 p=0.084 p=<0.001* p=1.000 p=0.109 p=0.084 

UA p=<0.001* p=0.045* p=0.044* p=0.002* p=0.186 p=0.343 

Notes. ActNam: Action Naming; ObNam: Object Naming; FinVerb: Producing a finite verb 

in sentence context; Vgen: Verb generation. = Fisher exact (two tailed). We calculated false 

discovery rate (FDR) adjusted p-values to correct for multiple comparisons. *Significant at 

p≤0.05  
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Table C4.7  

Major error types per task and participant 

 
AL BL BS CB CC CK ES FT GC GM LF OS OT PG PI PS RA RG RL TG UA TOTAL 

ActNam                      
 

AN 0 1 16 8 2 7 6 5 4 13 9 0 1 2 2 9 0 6 8 10 9 118 

PHON 0 0 0 0 0 1 0 0 0 4 0 2 0 1 2 0 3 1 1 0 1 16 

SEM 0 3 3 2 2 1 0 0 0 1 1 1 2 2 1 0 2 1 1 1 0 24 

LATE 0 0 0 0 2 2 1 0 1 0 2 3 0 0 1 0 0 0 4 0 0 16 

CAT/S 0 0 0 1 0 2 0 0 4 2 1 0 1 5 0 6 0 0 2 3 0 27 

MSYNT 0 0 0 9 0 0 0 0 0 0 4 0 17 4 1 3 0 0 0 3 0 41 

ObNam                       

AN 0 0 17 1 1 1 4 7 3 6 14 1 2 1 1 1 1 6 3 4 3 77 

PHON 1 0 0 0 0 0 0 2 1 3 1 0 1 6 0 1 1 0 0 1 0 18 

SEM 1 1 3 1 1 3 4 0 2 1 1 0 3 0 1 5 0 0 1 1 1 30 

LATE 0 1 0 0 0 1 0 0 5 2 0 2 0 0 1 0 0 0 9 0 0 21 

FinVerb                       

AN 1 0 18 4 1 10 1 5 4 6 7 2 0 1 1 5 1 6 4 5 8 90 

PHON 0 0 0 0 2 1 0 1 1 1 2 1 0 6 0 0 0 0 0 2 0 17 

SEM 1 2 1 2 2 5 2 0 0 3 1 0 4 0 0 1 0 0 1 1 0 26 

LATE 0 1 0 0 2 0 0 0 2 0 3 1 0 0 0 0 0 0 2 0 0 11 

CAT/S 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 6 1 0 0 3 0 14 

MSYNT 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 5 

Vgen                       

AN 0 0 13 6 2 9 4 3 7 12 11 1 2 1 1 11 0 2 7 3 11 106 

PHON 0 0 0 0 0 1 0 0 1 6 0 0 0 0 0 0 1 1 0 1 0 11 

SEM 2 3 2 0 0 0 2 1 1 0 0 0 1 0 2 1 1 3 0 2 0 21 

LATE 0 1 0 0 1 0 1 0 3 0 0 2 0 0 1 0 0 0 1 1 0 11 

CAT/S 0 0 0 2 0 8 1 0 0 7 8 0 8 4 0 5 0 1 0 8 5 57 

Notes. AN: Anomia; PHON: Phonemic paraphasia; SEM: Semantic paraphasia; LATE: Answer later than 4 seconds; Cat/S: Category substitution 

(e.g., “chair” instead of “sitting”); MSYNT = Morpho-syntactic errors (i.e., errors of name agreement between the pronoun and the noun, e.g. “She 

paint” instead of “She paints”; also omission of the infinitival suffix “-re”); ActNam: Action Naming; ObNam: Object Naming; FinVerb: Finite 

verbs; Vgen: Verb generation. 
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Rofes, A., Talacchi, A., Santini,B., Cappelletti, G.,& Miceli, G. (2015). Intraoperative language 
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Portugal [Talk] 
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12, Groningen, The Netherlands [Guest lecture at European Master's in Clinical Linguistics] 
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Macquarie University. Jan. 10, Sydney, Australia [Invited presentation] 
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Centre of Excellence in Cognition and its Disorders (CCD). Aphasia group, Macquarie 
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A case study. XII Science of Aphasia Conference, Sep. 01-05, Barcelona, Spain [Poster] 
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