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Abstract

Spoken language systems (SLS) communicate with users in natural lan-

guage through speech. There are two main problems related to processing

the spoken input in SLS. The first one is automatic speech recognition

(ASR) which recognizes what the user says. The second one is spoken lan-

guage understanding (SLU) which understands what the user means. We

focus on the language model (LM) component of SLS. LMs constrain the

search space that is used in the search for the best hypothesis. Therefore,

they play a crucial role in the performance of SLS.

It has long been discussed that an improvement in the recognition per-

formance does not necessarily yield a better understanding performance.

Therefore, optimization of LMs for the understanding performance is cru-

cial. In addition, long-range dependencies in languages are hard to handle

with statistical language models. These two problems are addressed in this

thesis.

We investigate two different LM structures. The first LM that we inves-

tigate enable SLS to understand better what they recognize by searching

the ASR hypotheses for the best understanding performance. We refer to

these models as joint LMs. They use lexical and semantic units jointly

in the LM. The second LM structure uses the semantic context of an ut-

terance, which can also be described as “what the system understands”,

to search for a better hypothesis that improves the recognition and the

understanding performance. We refer to these models as semantic LMs



(SELMs). SELMs use features that are based on a well established theory

of lexical semantics, namely the theory of frame semantics. They incorpo-

rate the semantic features which are extracted from the ASR hypothesis

into the LM and handle long-range dependencies by using the semantic

relationships between words and semantic context. ASR noise is propa-

gated to the semantic features, to suppress this noise we introduce the use

of deep semantic encodings for semantic feature extraction. In this way,

SELMs optimize both the recognition and the understanding performance.

Keywords

[Language Models, Automatic Speech Recognition, Spoken Language Un-

derstanding, Neural Networks, Deep Autoencoders]
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To my parents, Hülya Bayer and Ersin Bayer





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contribution of the Thesis . . . . . . . . . . . . . . . . . . 3

1.3 Publications Relevant to the Thesis . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . 5

2 Background and Relevant Problems 7

2.1 Automatic Speech Recognition . . . . . . . . . . . . . . . . 7

2.1.1 Acoustic Model . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Language Model . . . . . . . . . . . . . . . . . . . 9

2.1.3 Evaluation of ASR Systems . . . . . . . . . . . . . 12

2.2 Spoken Language Understanding . . . . . . . . . . . . . . 13

2.2.1 Meaning Representation . . . . . . . . . . . . . . . 14

2.2.2 Statistical SLU . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Using Multiple Hypotheses . . . . . . . . . . . . . . 16

2.2.4 Cross-Language SLU porting . . . . . . . . . . . . . 17

3 Statistical Language Modeling 19

3.1 N-gram LMs . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Class-Based LMs . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Maximum Entropy LMs . . . . . . . . . . . . . . . . . . . 23

i



3.5 Structured LMs . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Semantic LMs . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Neural Network LMs . . . . . . . . . . . . . . . . . . . . . 27

3.8 Combining LMs . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Evaluation of LMs . . . . . . . . . . . . . . . . . . . . . . 30

4 Spoken Language Understanding 31

4.1 Spoken Language Understating . . . . . . . . . . . . . . . 33

4.1.1 Semantic Representation . . . . . . . . . . . . . . . 34

4.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . 36

4.2 Data Driven Approaches to SLU . . . . . . . . . . . . . . . 37

4.2.1 Generative Models . . . . . . . . . . . . . . . . . . 37

4.2.2 Discriminative Models . . . . . . . . . . . . . . . . 38

4.2.3 Neural Network Models . . . . . . . . . . . . . . . 39

4.2.4 Using Multiple Hypotheses . . . . . . . . . . . . . . 40

4.3 Frame-Semantic Parsing . . . . . . . . . . . . . . . . . . . 41

5 Neural Network Models 43

5.1 Single Layer Networks . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Multi-Class Classification . . . . . . . . . . . . . . 44

5.1.2 Activation Function . . . . . . . . . . . . . . . . . . 46

5.2 Feed Forward Neural Network LMs . . . . . . . . . . . . . 46

5.2.1 Training of FFLMs . . . . . . . . . . . . . . . . . . 49

5.3 Recurrent Neural Network LMs . . . . . . . . . . . . . . . 51

5.3.1 Training RNNLMs . . . . . . . . . . . . . . . . . . 51

5.3.2 Class-Based RNNLMs . . . . . . . . . . . . . . . . 53

5.3.3 Maximum Entropy Features . . . . . . . . . . . . . 53

5.3.4 Context-Dependent RNNLMs . . . . . . . . . . . . 55

5.4 Deep Autoencoders . . . . . . . . . . . . . . . . . . . . . . 55

5.4.1 Unsupervised Pretraining . . . . . . . . . . . . . . 57

ii



5.4.2 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . 60

5.4.3 Semantic Hashing . . . . . . . . . . . . . . . . . . . 60

5.4.4 Deep Autoencoder for Semantic Context . . . . . . 61

6 Data Description and Baselines 63

6.1 LUNA Human-Machine Corpus . . . . . . . . . . . . . . . 64

6.1.1 ASR Baseline . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 SLU Baseline . . . . . . . . . . . . . . . . . . . . . 66

6.2 LUNA Human-Human Corpus . . . . . . . . . . . . . . . . 66

6.2.1 ASR Baseline . . . . . . . . . . . . . . . . . . . . . 67

6.2.2 FrameNet Semantic Parsing . . . . . . . . . . . . . 68

6.3 Wall Street Journal Corpus . . . . . . . . . . . . . . . . . 68

6.3.1 ASR Baseline . . . . . . . . . . . . . . . . . . . . . 69

6.3.2 FrameNet Semantic Parsing . . . . . . . . . . . . . 70

7 Joint Models for Spoken Language Understanding 71

7.1 Optimization of Joint LMs for SLU . . . . . . . . . . . . . 72

7.1.1 Joint RNNLMs . . . . . . . . . . . . . . . . . . . . 73

7.1.2 ASR Baseline . . . . . . . . . . . . . . . . . . . . . 74

7.1.3 Baseline for Recognition . . . . . . . . . . . . . . . 75

7.1.4 Re-scoring by Using Joint RNNLMs . . . . . . . . . 76

7.1.5 Parameter Optimization of the Joint Model . . . . 77

7.1.6 Statistical Significance of the Results . . . . . . . . 78

7.1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 On-line Adaptation of Semantic Models . . . . . . . . . . . 79

7.2.1 On-line Adaptation for SLU . . . . . . . . . . . . . 80

7.2.2 Instance-Based On-line Adaptation . . . . . . . . . 81

7.2.3 LUNA HM Experiments . . . . . . . . . . . . . . . 84

7.2.4 Statistical Significance of the Results . . . . . . . . 87

7.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 88

iii



7.3 Application of Joint LMs to SLU porting . . . . . . . . . . 88

7.3.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 SMT Systems . . . . . . . . . . . . . . . . . . . . . 91

7.3.3 Style Adaptation . . . . . . . . . . . . . . . . . . . 91

7.3.4 Domain Adaptation . . . . . . . . . . . . . . . . . . 92

7.3.5 SLU Performance . . . . . . . . . . . . . . . . . . . 93

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Semantic Language Models 97

8.1 The Linguistic Scene . . . . . . . . . . . . . . . . . . . . . 98

8.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 101

8.3 SELM Structure . . . . . . . . . . . . . . . . . . . . . . . . 102

8.4 Penn-Treebank Experiments . . . . . . . . . . . . . . . . . 102

8.5 Wall Street Journal Experiments . . . . . . . . . . . . . . 105

8.5.1 ASR baseline . . . . . . . . . . . . . . . . . . . . . 105

8.5.2 Re-scoring Experiments – A First Attempt . . . . . 105

8.5.3 Error Pruning for a Better Semantic Context . . . . 108

8.5.4 Further Analysis . . . . . . . . . . . . . . . . . . . 109

8.6 LUNA Human-Human Experiments . . . . . . . . . . . . . 112

8.6.1 ASR Baseline . . . . . . . . . . . . . . . . . . . . . 113

8.6.2 Re-scoring Experiments . . . . . . . . . . . . . . . 113

8.6.3 Error Pruning . . . . . . . . . . . . . . . . . . . . . 114

8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9 Deep Encodings for Semantic Language Models 117

9.1 Deep Autoencoders for Encoding Semantic Context . . . . 119

9.1.1 Training Deep Autoencoders . . . . . . . . . . . . . 120

9.2 SELM Structure . . . . . . . . . . . . . . . . . . . . . . . . 124

9.3 Wall Street Journal Experiments . . . . . . . . . . . . . . 125

9.3.1 Experimental Setting . . . . . . . . . . . . . . . . . 126

iv



9.3.2 Deep Semantic Encodings . . . . . . . . . . . . . . 127

9.3.3 The Accuracy of Semantic Encodings . . . . . . . . 128

9.3.4 Re-scoring Experiments . . . . . . . . . . . . . . . 131

9.3.5 Understanding Performance . . . . . . . . . . . . . 133

9.3.6 Combination of Models . . . . . . . . . . . . . . . . 134

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10 Conclusion and Future Work 139

Bibliography 143

v





List of Tables

6.1 Annotation level statistics for LUNA HM corpus . . . . . . 64

6.2 Splits and statistics for LUNA HM corpus . . . . . . . . . 65

6.3 Baseline ASR performance for LUNA HM corpus . . . . . 65

6.4 Baseline SLU performance for LUNA HM corpus . . . . . 66

6.5 Splits and statistics for LUNA HH corpus . . . . . . . . . 67

6.6 Baseline ASR performance for LUNA HH . . . . . . . . . . 67

6.7 Frame accuracy on LUNA HH . . . . . . . . . . . . . . . . 68

6.8 Target accuracy on LUNA HH . . . . . . . . . . . . . . . . 68

6.9 Splits and statistics for WSJ . . . . . . . . . . . . . . . . . 69

6.10 Baseline ASR Performance for WSJ . . . . . . . . . . . . . 70

6.11 Frame accuracy on WSJ . . . . . . . . . . . . . . . . . . . 70

6.12 Target accuracy on WSJ . . . . . . . . . . . . . . . . . . . 70

7.1 ASR baseline for WER and CER on LUNA HM . . . . . . 75

7.2 Recognition model baseline . . . . . . . . . . . . . . . . . . 75

7.3 Performance of joint RNNLMs . . . . . . . . . . . . . . . . 77

7.4 Statistical significance of ASR and SLU optimizations . . . 79

7.5 LUNA HM baseline for semantic model adaptation . . . . 84

7.6 CER lower bounds with the reference transcription on LUNA

HM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.7 CER lower bounds with the oracle hypothesis on LUNA HM 86

7.8 CER performance of the on-line adaptation for the LUNA

HM corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



7.9 Statistical significance of SLU adaptation on LUNA HM . 87

7.10 SLU porting with style adapted SMT . . . . . . . . . . . . 94

7.11 SLU porting with domain adapted SMT . . . . . . . . . . 94

8.1 Word prediction example with semantic language models . 100

8.2 Perplexities on the Penn-Treebank . . . . . . . . . . . . . . 104

8.3 Baseline ASR Performance for WSJ . . . . . . . . . . . . . 105

8.4 WSJ re-scoring performance with full semantic context . . 107

8.5 SELMs with error pruning . . . . . . . . . . . . . . . . . . 109

8.6 WSJ erroneous frame pruning statistics . . . . . . . . . . . 110

8.7 SELM on Frames with various error pruning rates . . . . . 112

8.8 Baseline ASR for LUNA HH . . . . . . . . . . . . . . . . . 113

8.9 Re-scoring on LUNA HH with SELMs . . . . . . . . . . . 114

8.10 Error pruning for LUNA HH . . . . . . . . . . . . . . . . . 115

9.1 Baseline ASR Performance for WSJ . . . . . . . . . . . . . 126

9.2 Re-scoring with semantic encodings . . . . . . . . . . . . . 132

9.3 Re-scoring with interpolated SELMs . . . . . . . . . . . . 136

viii



List of Figures

1.1 A typical spoken dialogue system . . . . . . . . . . . . . . 2

2.1 IOB representation . . . . . . . . . . . . . . . . . . . . . . 15

4.1 A typical ATIS system . . . . . . . . . . . . . . . . . . . . 34

4.2 Semantic frames in ATIS . . . . . . . . . . . . . . . . . . . 34

4.3 An instantiation of a semantic frame . . . . . . . . . . . . 35

5.1 Neural network diagram of the linear discriminant function 44

5.2 Neural network diagram for multi-class classification . . . . 45

5.3 Feed forward neural network language model architecture . 47

5.4 RNNLM architecture . . . . . . . . . . . . . . . . . . . . . 52

5.5 Backpropagation through time (BPTT) . . . . . . . . . . . 52

5.6 The class-based RNNLM architecture . . . . . . . . . . . . 54

5.7 The context dependent RNNLM architecture . . . . . . . . 55

5.8 Deep autoencoder . . . . . . . . . . . . . . . . . . . . . . . 56

5.9 Restricted Boltzmann machines . . . . . . . . . . . . . . . 57

5.10 Contrastive divergence . . . . . . . . . . . . . . . . . . . . 59

5.11 Constrained Poisson model . . . . . . . . . . . . . . . . . . 61

7.1 SLU Module for Joint Models . . . . . . . . . . . . . . . . 72

7.2 Joint RNNLMs . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Parameter optimization for joint RNNLMs . . . . . . . . . 78

7.4 Distribution of concepts in the LUNA HM corpus . . . . . 81

ix



7.5 Instance retrieval process for SLU systems . . . . . . . . . 82

7.6 The diagram of instance-based on-line adaptation scheme . 84

7.7 Test-on-Source SLU porting pipeline . . . . . . . . . . . . 90

8.1 Linguistic scene for a Penn-Treebank sentence . . . . . . . 99

8.2 Semantic feature extraction for SELMs . . . . . . . . . . . 101

8.3 SELM structure for direct semantic features . . . . . . . . 103

8.4 SELM re-scoring diagram . . . . . . . . . . . . . . . . . . 107

8.5 Error pruning analysis on WSJ . . . . . . . . . . . . . . . 111

9.1 Scatter plot of WER versus Target error rate. . . . . . . . 118

9.2 Deep autoencoders used for the semantic context . . . . . 121

9.3 Unsupervised pretraining of the semantic autoencoder . . . 122

9.4 Fine-tuning of the semantic autoencoder . . . . . . . . . . 123

9.5 SELM structure for deep semantic encodings . . . . . . . . 125

9.6 The SELM re-scoring diagram with semantic encodings . . 127

9.7 Histogram of frame encodings . . . . . . . . . . . . . . . . 129

9.8 Histogram of target encodings . . . . . . . . . . . . . . . . 130

9.9 Joint TER and WER performance of the SELMs. . . . . . 131

9.10 Detailed understanding performance with reference encodings134

9.11 Detailed understanding performance with ASR encodings . 135

x







Chapter 1

Introduction

“A computer would deserve to be called

intelligent if it could deceive a human

into believing that it was human.”

Alan Turing

Alan Turing, after the invention of digital computers brought the

possibility of thinking machines [124] to the agenda. He designed a game

called “imitation game”, in which a human interrogator asks questions

to two players, a machine and a human, to find out which one is the

human and which one is the machine. Turing designed the game so

that all the information that is passed between the interrogator and the

players is through typing. He must have set the communication in this

way, probably because at the time, machines communicating through

natural speech were seemed infeasible. However, 65 years after Turing

designed the imitation game, we can talk about intelligent systems that

can recognize and understand human speech.

Still far from being intelligent in the sense Turing implies1, these ma-

1A state-of-the-art spoken dialog system may not be able deceive a human, since by putting a little
effort one can easily break a spoken dialog system.

1
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chines started to take an important role in our lives with the increasing

use of mobile devices. Among these systems, intelligent personal assistants

may be among the most widely used applications, which can communicate

through speech. Also, voice search is very satisfactory and efficient, espe-

cially on mobile phones where typing is more error prone and cumbersome.

This thesis concentrates on the two modules of spoken dialogue systems

(SDS) and spoken language systems (SLS): the automatic speech recogni-

tion (ASR) and the spoken language understanding (SLU). A diagram of

a typical SDS system is given in Figure 1.1 [89].

Figure 1.1: A typical spoken dialogue system. The typical system uses a cascaded archi-
tecture.

ASR is the problem of recognizing what words are uttered by the user.

ASR systems base their hypotheses on two different information sources

which work in combination: acoustic models and language models. Acous-

tic models focus on the recognition of the speech sound sequences, and

language models (LMs) estimate the probability of word sequences. This

thesis focuses on the LM component of the ASR module.

Although a system that recognizes each word the user utters can be

considered to be successful, a system that is able to communicate through

speech also needs to understand what the user means. Therefore, spoken

language understanding (SLU) plays a crucial role in SLS. SLU is the main
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component that understands what the user expects from the system. In

this way, the system could act accordingly to satisfy user’s needs.

1.1 Motivation

Most often the two problems, ASR and SLU are approached separately

when building SLS as shown in the cascaded architecture in Figure 1.1.

First an ASR module is trained and it is optimized for the recognition

performance. Then an SLU module that uses the output of the ASR is

trained and optimized for the understanding performance. However, as

it has been pointed out many times, the hypothesis that gives a better

recognition performance does not always yield a better understanding per-

formance [108, 127, 38]. If the end goal of SLS is to understand what

the user means and respond accordingly, both modules can be optimized

jointly such that the system “understands better what it recognizes” and

“recognizes better what it understands”.

We believe that LMs that satisfy lexical and semantic constraints jointly

would have a better joint performance of recognition and understanding.

Therefore, we focus on joint LMs which are constrained by lexical and

semantic structures at the same time.

1.2 Contribution of the Thesis

This thesis aims at incorporating semantic features into LMs for a bet-

ter joint performance of recognition and understanding, and for handling

long-range dependencies. We use neural network LMs that use distributed

representations of words. In this manner, they estimate word probabilities

better. We investigate two different LM structures. The first model is the

“joint LM” that uses word-concept pairs as the units of language modeling.



4 1.3. PUBLICATIONS RELEVANT TO THE THESIS

We show how to train and optimize joint LMs for recognition and under-

standing. The second model is the “semantic LM” that uses features that

are based on the theory of frame semantics [46]. We train semantic LMs

by using features extracted from the semantic context. Also, we introduce

the use of deep autoencoders to extract more robust semantic features.

This thesis makes the following contributions:

• Training of joint LMs by using lexical and semantic information and

optimizing LMs for recognition and understanding.

• On-line adaptation of joint LMs for improving the understanding per-

formance.

• Application of joint LMs to cross-language SLU porting.

• Training semantic LMs by exploiting the theory of frame semantics.

• Noisy representation of semantic (linguistic) scene by means of deep

autoencoders.

1.3 Publications Relevant to the Thesis

The following publications are relevant to this thesis. They are revised and

extended in the preparation of the thesis.

• Bayer A.O. and Riccardi G., “Joint Language Models for Auto-

matic Speech Recognition and Understanding”, December 2 - 5, 2012,

IEEE Workshop on Spoken Language Technology (SLT 2012), Miami,

Florida, USA. [5]

• Bayer A. O. and Riccardi G., “On-line Adaptation of Semantic Mod-

els for Spoken Language Understanding”, December 8 - 12, 2013,

IEEE Workshop on Automatic Speech Recognition and Understand-

ing (ASRU 2013), Olomouc, Czech Republic. [6]
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• Stepanov E., Kashkarev I., Bayer A. O., Riccardi G. and Ghosh A.,

“Language Style and Domain Adaptation for Cross-Language Port-

ing”, December 8 - 12, 2013, IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU 2013), Olomouc, Czech Re-

public. [119]

• Bayer A.O. and Riccardi G., “Semantic Language Models for Au-

tomatic Speech Recognition”, December 7 - 10, 2014, IEEE Work-

shop on Spoken Language Technology (SLT 2014), South Lake Tahoe,

USA. [7]

• Bayer A.O. and Riccardi G., “Deep Semantic Encodings for Language

Modeling”, September 6 - 10, 2015, Interspeech 2015, Dresden, Ger-

many. [8]

1.4 Structure of the Thesis

This thesis is structured as follows.

Chapter 2 gives an overview of the ASR and SLU modules and discusses

the problems that are addressed in this thesis.

Chapter 3 describes the details of statistical language modeling. The

chapter starts with the introduction of the n-gram models and also presents

the advanced LM models that uses neural network architectures.

Chapter 4 introduces the problem of spoken language understanding and

discusses meaning representations. In addition, it presents computational

models for spoken language understanding.

Chapter 5 describes the computational models that are used in this

thesis. This chapter is devoted to neural network architectures.

Chapter 6 presents the corpora that is used in the experimental work

and gives the baseline models and their performance on these corpora.
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Chapter 7 describes the training of joint LMs and their optimization for

recognition and understanding. Also, on-line adaptation of these semantic

models are presented. Finally, applications of joint LMs to cross-language

SLU porting is described.

Chapter 8 introduces semantic LMs that are based on the theory of

frame semantics. This chapter presents which semantic features are ex-

tracted and how these features are integrated to LMs to obtain an accept-

able performance.

Chapter 9 presents the use of deep autoencoders for high-level semantic

encodings that can be used by semantic LMs.

Chapter 10 concludes this thesis by discussing the contributions and

possible future work.



Chapter 2

Background and Relevant Problems

Using speech as the medium of human-computer interaction enables users

to communicate easily with computer systems. However, this introduces

many research challenges for building spoken language systems (SLS) that

function successfully. One of the main problems related to SLS is the

recognition of what the user says, namely, automatic speech recognition

(ASR). Another main problem is the understanding of what is being meant.

Although these two problems may seem like two separate problems, in this

thesis, we show that both recognition and understanding may benefit from

each other and can be approached jointly.

2.1 Automatic Speech Recognition

The recognition problem aims at correctly transcribing every utterance it

encounters. Therefore, the main goal of an ASR system is to increase the

transcription performance of each word the user utters. The first auto-

matic speech recognizer were built in 1950s for the recognition of digits

that were spoken by a single individual [33]. Therefore, it was a speaker

independent system. This first device could be adapted to another individ-

ual by performing manual analysis on that individual’s speech, and it could

recognize digits by using spectral resonances of the vowels. The foundation

7
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of statistical speech recognition, which the current systems are based on,

was introduced in 1970s by Jelinek [67] and Baker [4].

The statistical speech recognition approach models the speech recogni-

tion problem as follows [68]. A recognizer hypothesis is a string of words,

W, which are drawn from a finite vocabulary based on some acoustic evi-

dence A. The word string Ŵ, that maximizes the conditional probability

of word strings given that acoustic evidence, P (W|A) is the hypothesis

that the recognizer searches for:

Ŵ = argmax
W

P (W|A)

Using the Bayes’ formula of probability theory, the above equation can

be written as:

Ŵ = argmax
W

P (W)P (A|W)

P (A)
(2.1)

The denominator in equation 2.1 can be ignored during maximization

for a given input utterance. Therefore, a statistical speech recognition

system uses two knowledge sources:

1. P (W): the probability of a word sequence in a language and it is

computed by a “language model”

2. P (A|W): the probability of the acoustic observations given a word

sequence which is computed by an “acoustic model”.

Briefly, an ASR system bases its hypothesis on the information com-

ing from the “language model” and the “acoustic model”. This thesis

focuses on the “language model” and uses the traditional approaches for

the “acoustic model”.
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2.1.1 Acoustic Model

Acoustic models are not within the scope of this thesis, therefore they will

not be treated in detail. A good overview of traditional acoustic modeling

can be found in [135]. Traditionally, acoustic models are based on hidden

Markov models (HMMs) that model each phoneme in the language. The

phonemes can also be modeled considering the preceding and the succeed-

ing phonetic context, in which case they are called “context-dependent

phonemes”.

The current improvements in training deep neural networks have been

resulted in significant improvements also in acoustic modeling. An

overview about acoustic models based on deep neural networks can be

found in [57, 55]. However, in this thesis we employ the traditional HMM

acoustic models with more recent techniques that Kaldi [105] speech recog-

nition toolkit provides.

2.1.2 Language Model

Language models (LMs) estimate the probability of occurrences of word

sequences in that language. Therefore, they play an important role dur-

ing the search for the most likely hypothesis. Chapter 3 gives a detailed

overview of statistical language modeling. In this section we focus mainly

on the problems related to the current approaches, and our approach to

language modeling.

Currently, the most widely used LMs are n-grams, because they are

simple models with good baseline performance. N-grams estimate prob-

abilities of words by simply counting them in a fixed history, i.e. they

assume that the probability of a word is only dependent on the previous

n−1 words [109]. In n-grams, the probability of a word, wi given a history

hi is estimated by the equation 2.2.
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P (wi|hi) ≈ p(wi|wi−n+1, · · · , wi−1) (2.2)

In this respect, n-gram LMs are based on limited size of words occurring

together. They treat words as a sequence of symbols and do not exploit

the fact that they model a language [109]. Also, one of most important

weaknesses of n-grams is the assumption that a word only depends on pre-

vious n−1 words and it is independent of the other words [109]. Therefore

it is trivial that n-grams fail to capture long-range dependencies that occur

naturally in language.

Bellegarda [10] refers to this problem as the locality problem and explains

the problem with the following example. Consider that the LM is trying to

predict the word “fell” from the word “stocks” in the following sentences:

stocks fell sharply as a result of the announcement (2.3)

stocks, as a result of the announcement, sharply fell (2.4)

In Sentence 2.3 “fell” can be predicted with a bi-gram LM. However,

in 2.4 a 9-gram model would be needed for this prediction which is not

feasible. In addition, one can embed more words in between the commas

in 2.4 without making the sentence ungrammatical, in this case even a

9-gram would not be sufficient. Hence, models that are based on fixed

histories cannot handle long-range dependencies.

The locality problem can be solved by extending the span of the LM

to handle the long-range dependencies of the language (span extension).

There are two linguistically motivated approaches to extend the span. The

first approach is to use the structural information, i.e. the syntax and the

second one is to use the semantic information.

The attempts to incorporate syntactic structure into LM started with

the usage of hand-written context free grammars (CFGs), which are used
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to parse the word lattice that is generated by the ASR [27]. In [137], LMs

are trained by generating syntactically plausible sentences by using a natu-

ral language component. Jurafsky et al. [71] use stochastic CFGs (SCFGs)

to extend the corpus for training and interpolates SCFG probabilities with

bi-gram probabilities. Chelba et al. [24] use a dependency grammar frame-

work with maximum entropy models to constrain word prediction by the

linguistically related words in the past. The most important instance of

LMs that use syntactic structure is presented in [25]. This model incremen-

tally parses hypothesis in a left-to-right manner and assigns a probability

to a word considering its parses. However, structured LMs rely on syntactic

parsers, therefore, affected by the errors made by the parser [9].

The problem of handling long-range semantic dependencies is ap-

proached by trigger pairs in Lau et al. [82]. In this approach, signifi-

cantly correlated word sequences are considered as trigger pairs and the

occurrence of a triggering sequence causes the probability estimate of the

triggered sequence to change. The trigger pairs are modeled by means of

feature functions of maximum entropy models. The identification of trig-

ger pairs is an issue and in [110] it has been shown that self triggers are

powerful and robust. Bellegarda [10, 11] applies latent semantic analysis

(LSA) to LMs for handling long-range semantic dependencies. LSA [35, 16]

is used as an indexing mechanism in information retrieval, where the span

of the history is a document which is larger than a sentence.

In this thesis, we consider incorporating semantic relations in LM by

using the theory of frame semantics [46]. This approach applies a linguistic

semantic theory to language modeling and constructs a linguistic scene by

using the information coming from frames evoked in the utterance.

Another problem related to n-gram LMs is the curse of dimensional-

ity [14]. In traditional LMs words are treated as discrete variables. As

Bengio et al. [14] point out, curse of dimensionality would be an issue
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when one wants to model a joint distribution between many words that

are represented by discrete random variables. In addition, this kind of

representation never considers the similarity between words [14]. For a

traditional LM a cat to a dog is no more similar than a cat to a room. One

of the solutions to this problem is to represent words in a continuous space,

such that each word is represented with an m dimensional vector and these

vectors are more closer to each other as the words they represent are more

similar. As proposed by Bengio et al. [14], in this approach, each word is

associated with a distributed word feature vector and joint probabilities of

word sequences are expressed in terms of these feature vectors.

The problem of “curse of dimensionality” is solved by using distributed

word representations, where each word is represented by a feature vec-

tor [14] on a continuous space. Bengio et al. [14] introduce how LMs that

uses distributed representations are modeled, and how these representa-

tions are learned by a feed-forward neural network. They have shown

significant improvements in perplexity. Schwenk [116] uses neural network

LMs for re-scoring multiple ASR hypotheses. Distributed representations

have also attracted attention and have been applied to various natural

language processing problems [28], in which they were also called “word

embeddings”.

Another significant improvement in the recognition performance is ob-

tained by the use of recurrent neural networks (RNNs) [96, 80, 94]. RNNs

use recurrent connections, which resemble a short-time memory that re-

members the state of the model, in this way they can model theoretically

infinite histories i.e. long-range dependencies.

2.1.3 Evaluation of ASR Systems

ASR systems conduct a search on the possible hypothesis by using acous-

tic models and LMs. This search is also referred to as decoding. ASR
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systems, rather than outputting a single hypothesis (1st-best hypothesis),

can output multiple hypotheses by using lattices, or n-best lists extracted

from these lattices. These lattices or n-best lists can then be re-scored by

different models to improve the performance. The evaluation of ASR can

be done over the 1st-best or over the oracle hypothesis, which is the best

hypothesis in the lattice with respect to the reference transcription.

The statistical speech recognition uses the noisy channel approach. In

this approach, the system may make three kinds of errors [2]:

1. : Deletions (D): The hypothesis of the system misses some of the

words.

2. : Insertions (I): The hypothesis of the system inserts some extra

words.

3. : Substitutions (S): The hypothesis of the system misrecognizes some

words and confuses them with similar words.

After the hypothesis of an ASR system is aligned with the reference

transcription, these errors are computed and the overall error of the system,

word error rate (WER), is calculated as in Equation 2.5, where N refers

to the number of words in the reference transcription.

WER =
D + I + S

N
(2.5)

2.2 Spoken Language Understanding

The spoken language understanding problem, on the other hand, aims at

correctly interpreting what the utterance means. SLU has common goals

with natural language understanding as both systems aim at obtaining a

meaning representation for the user input which is in natural language.
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However, in general it is a harder problem, because of the noisy nature

of speech in terms of the ASR word error as well as the variability of the

ungramaticality of the conversational speech. [34].

The term SLU defines a very broad research area, the possible set of

problems that can be considered in the scope of SLU contains intent deter-

mination, spoken utterance classification, topic identification, and speech

summarization. This thesis focuses on the semantic frame-based SLU,

which is one of the main building blocks of spoken language systems.

Semantic-frame-based SLU works on a task specific limited domain which

is usually defined by an ontology and aims at correctly recognizing the

frames evoked and correctly filling the slots of these frames [130].

As stated in Wang et al. [130], the studies on SLU were started in 1970s

with the Defense Advanced Research Projects Agency (DARPA) tasks on

speech understanding and resource management. The interest in SLU re-

search accelerated with the evaluations on the Air Travel Information Sys-

tem (ATIS) which was also sponsored by DARPA in 1990s [106]. In the

ATIS domain the SLU task is to respond to user queries about air travel in-

formation which are in spontaneous speech. The system responds to queries

by converting these queries to SQL statements and by retrieving the in-

quired information. Two different approaches emerged from these studies,

knowledge-based approaches and statistical approaches. Knowledge-based

approaches are based on hand-crafted grammars and not in the scope of

this thesis. On the contrary, we focus on statistical systems that can learn

from annotated data which are more robust and scalable [130].

2.2.1 Meaning Representation

In semantic-frame-based SLU, the semantic information is represented by

semantic frames [129]. Semantic frames are defined with respect to the

domain of the application and each frame contains slots that needs to be
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filled with the required information. For instance, the following sentence

in the ATIS domain triggers two frames: “Show me flights from Seattle to

Boston” [129].

In addition to the semantic frame representation, the meaning can also

be represented as a sequence of basic units. [104] uses keyword-value

pairs, (kj, vj), where keywords (kj) represent the conceptual categories like

destination city and values (vj) are the words which were assigned to these

categories like Boston in the above example. This representation is also

called attribute-value pairs or flat concept representation. We adopt the

attribute-value pair representation in the scope of this thesis.

The SLU models used in this thesis use the flat concept representation

with in/out/begin (IOB) representation to handle the concepts mappings

that span multiple words. In this approach, the concept tags have addi-

tional attributes; “-B” marks the beginning of the concept alignment, and

“-I” marks the rest of the alignment. Figure 2.1 gives an example of this

representation from the Italian LUNA corpus [41].

Figure 2.1: The flat concept representation with (IOB) representation.

In this example, which means “Good morning, I have a problem with

the printer”, the “Peripheral.type” concept is aligned with the phrase “con

la stampante”.
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2.2.2 Statistical SLU

The SLU problem can also be approached as a sequence labeling problem

i.e. the problem of labeling a sequence of words with the correct concept

tags. A comparison of various statistical models are given in [53]. The

statistical approach can be a generative approach or a discriminative ap-

proach. In this thesis we have used the generative approaches that are

based on stochastic finite state transducers (SFSTs) [107]. and discrimina-

tive approaches that are based on conditional random fields (CRFs) [81].

SFSTs model finite state transducers for making alignments between word

sequences and concepts [107] by modeling the joint probability P (W,C),

where W represents the word sequence and C represents the concept

sequence. CRFs, on the other hand, model the conditional probability

P (C|W ) by log-linear models with feature functions. CRFs perform sig-

nificantly better than SFSTs [53].

The current state-of-the-art uses neural network models that exploit the

distributed word representations as in language modeling [122, 90, 133, 132,

131]. Using distributed word representation improves the performance of

SLU in general.

2.2.3 Using Multiple Hypotheses

Usually SLU systems use a cascaded approach where the ASR 1st-best

hypothesis is fed into the SLU module and the semantic representations

are extracted from this single hypothesis. However, a system that uses

multiple hypotheses for SLU would be more robust to ASR noise. Word

confusion networks that are extracted from ASR lattice have been used

in [54, 123]. A joint decoding algorithm is proposed for jointly performing

recognition and understanding in [38]. Re-ranking models that re-ranks the

multiple hypotheses of a generative SLU system by using support vector
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machines is given in [40].

In this thesis, we employ a similar approach to [136]. We use joint

neural network LMs that are trained on word-concept pairs (joint LMs)

to re-score the output of a baseline SLU model that is built by SFSTs and

CRFs. We also address the issue of adaptation of this joint model to the

context of the utterance.

2.2.4 Cross-Language SLU porting

Cross-language porting is the problem of transferring the semantic knowl-

edge obtained in one language (the source language) to a new language

(the target language) when there is no semantic annotation available for

the target language [65, 117]. Cross-language porting uses statistical ma-

chine translation (SMT) for translating and aligning the resources. The

methodology is divided in two categories with respect to the direction of

translation: Test-on-Source and Test-on-Target [64]. Test-on-Source uses

SMT to translate the utterance to the source language and uses the SLU

model in the source language to extract the semantic representation. Test-

on-Target, on the other hand, first transfers the semantically annotated

resource to the target language and builds an SLU model on the target

language.

In this thesis, we apply joint LMs to cross-language SLU porting on the

Test-on-Source setting. In this application, multiple hypotheses generated

by the SMT system are re-scored by using the joint LM.
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Chapter 3

Statistical Language Modeling

Statistical language models, which will be referred to as language mod-

els (LMs) in this thesis, are one of the knowledge sources ASR systems.

LMs estimate the probability of utterances in a language by capturing the

statistical regularities in that language.

The problem of estimating the probability of an utterance, P (U ) is

formulated as given in [68]:

The transcription of an utterance U is denoted by W as a sequence of

words which are elements of a finite vocabulary V :

W = w1, w2, w3, . . . , wn ∀wi ∈ V

The probability of W is factorized as in Equation 3.1. The preceding

words (w1, w2, . . . , wi−1) that the current word (wi) is conditioned on are

referred to as the history. Histories may be further mapped into equivalence

classes. This mapping leads to an approximate but a simple probabilistic

model which would otherwise suffer from data sparseness.

P (w1, w2, w3, . . . , wn) =
n
∏

i=1

P (wi|w1, w2, . . . , wi−1) (3.1)

19
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3.1 N-gram LMs

The idea of having equivalence classes on histories leads to the most com-

monly used LMs, n-gram LMs. In n-gram LMs, equivalence classes are

constructed based on the most recent words in the history. Therefore,

n-gram models use the most recent n − 1 words to build the equivalence

classes. Hence, n-gram LM is represented as in Equation 3.2.

P (w1, w2, w3, . . . , wn) ≈
n
∏

i=1

P (wi|wi−n+1, . . . , wi−1) (3.2)

Each factor in Equation 3.2 estimates a probability of each word, wi,

in the utterance given a limited window size of n − 1 words. As can

be seen, n-gram LMs make the independence assumption that a word is

only dependent on the previous n − 1 words. These probabilities may be

estimated by taking the relevant counts in the training corpus [52]. The

maximum likelihood estimates of tri-grams are given as in Equation 3.3,

where C(x) denotes the count of the n-gram x.

P (wi|wi−1, wi−2) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
(3.3)

Estimating probabilities by just using the counts would not give good

estimates and the estimates would be noisy. In addition, since some n-

grams would not be observed in the training data they would be assigned

zero probabilities. To improve the quality of estimation several, smooth-

ing methods have been introduced and important ones are described in

Section 3.2.
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3.2 Smoothing

In this section, an overview of some of the important smoothing techniques

are given, a more detailed overview of various smoothing techniques can

be found in [26].

Katz [72] proposes the idea of redistributing the over-estimated observed

n-gram probabilities to the n-grams that do not occur. This is based on

Good-Turing formula [51]. Assume that nr denotes the number of n-grams

that occur in the corpus r times. The count is discounted to r∗ or disc(x),

as seen in Equation 5.1.

disc(x) = r∗ = (r + 1)
nr+1

nr

(3.4)

Katz smoothing distributes the discounted amount to the n-grams that are

never seen. Therefore, the discounted counts, r∗, are used when estimating

the probabilities for seen n-grams. The probabilities for unseen n-grams

are given by backing-off to a lower order n-gram. The Katz probability

estimates are given in Equation 3.5, where α(x) is a normalization factor

for obtaining a probability distribution.

PKATZ(wi|wi−n+1, . . . , wi−1) =






disc(wi−n+1,...,wi−1,wi)
C(wi−n+1,...,wi−1)

if C(wi−n+1, . . . , wi−1) > 0

α(wi−n+1, . . . , wi−1)PKATZ(wi|wi−n+2, . . . , wi−1) otherwise

(3.5)

Kneser-Ney smoothing uses a different back-off distribution by consid-

ering the number of contexts a word occurs rather than the occurrence of

that word [74]. Therefore, the back-off distribution for a word that occurs

in higher number of contexts would be higher than the back-off distribution
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for a word that occurs in lower number of contexts. Kneser-Ney smoothing

uses a single discount, D, which is optimized over a held-out set. Kneser-

Ney smoothing can be described by the following formula in Equation 3.6

for a bi-gram model [52], where |{v|C(vwi) > 0}| represents the number of

distinct context wi occurs in. The factor α(x) is a normalization factor for

obtaining a probability distribution.

PKN(wi|wi−n+1) =







C(wi−1,wi)−D

C(wi−1)
if C(wi−1, wi) > 0

α(wi−1)
|{v|C(vwiy)>0}|

∑

w |{v|C(vw)>0}| otherwise
(3.6)

Chen and Goodman [26] improve Kneser-Ney smoothing by interpolating

higher order and lower order counts rather than backing-off to a lower order

count when the higher order count is not found. Therefore, interpolated

models combine higher order and lower order counts at every occasion.

The interpolated Kneser-Ney smoothing for a bi-gram model is given in

Equation 3.7.

PIKN(wi|wi−n+1) =
C(wi−1, wi)−D

C(wi−1)
+ λ(wi)

|{v|C(vwiy) > 0}|
∑

w |{v|C(vw) > 0}|
(3.7)

Chen and Goodman [26] make further improvements to the interpolated

Kneser-Ney smoothing by using multiple discounts; one for single counts,

one for double counts, and one for triple or more counts. This is referred as

the modified Kneser-Ney smoothing and shown to be the best smoothing

technique for large data sets. In this thesis, we have used this smoothing

technique when training n-gram models.

3.3 Class-Based LMs

It is possible to cluster words into classes with respect to their semantic or

syntactic similarities. In this way, more reliable estimates of probabilities
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can be calculated for unseen histories based on these classes [21]. The

class-based n-grams use a partition function, which maps a word, wi into

a class, ci and they are defined by Equation 3.8.

P (wn|wn−1, . . . , w1) = P (wn|cn)P (cn|cn−1, . . . , c1) (3.8)

The clustering on words can be performed by using a knowledge base

or by using data-driven techniques. The knowledge-based approaches may

use part-of-speech (POS) tags or even hand-crafted classes like “DATE”,

“NAME”, “COMPANY”, etc. [66, 56]. Data-driven approaches cluster

words to minimize the overall perplexity of the corpus by a greedy ap-

proach [21, 75]. It has been shown that data-driven approaches outperform

classes based on POS tags [102].

Neural network LMs (NNLMs) may also use class-based factorization

of the probability estimates. The most important reason for that is the

training complexity of NNLMs, especially when the vocabulary size is very

large [97]. In the NNLMs we have used in this thesis, we use word classes

that are based on the unigram frequencies of the words [97], our main pur-

pose to use classes is to reduce the computational complexity of NNLMs.

3.4 Maximum Entropy LMs

The principle of maximum entropy models is to find the most uniform

distribution, i.e., the distribution that maximizes the entropy that is con-

sistent with all the constraints that are imposed on the model [15]. The

constraints are imposed on the model by defining binary feature functions

or features, fi. These features return 1 if a constraint is satisfied and 0 oth-

erwise. Maximum entropy models are introduced to LM by Rosenfeld [110].

Maximum entropy LMs are in the form given by Equation 3.9 [52].
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P (wn|wn−1, . . . , w1) =
exp(

∑

k λkfk(wn, wn−1, . . . , w1))

z(wn−1, . . . , w1)
(3.9)

The denominator is a normalization factor that is given by Equa-

tion 3.10.

z(wn−1, . . . , w1) =
∑

w

exp(
∑

k

λkfk(w,wn−1, . . . , w1)) (3.10)

The weights, λk, are learned by using a learning algorithm like general-

ized iterative scaling [31]. The features may represent n-grams, caches, and

skipping models. Maximum entropy models are reported not to improve

much with respect to comparable interpolated n-gram models [52]. And

also they are reported to be very time consuming to train and test.

One of the contributions of maximum entropy LMs is the use of trigger

pairs as features [82]. Trigger pairs are defined by a trigger function be-

tween words, therefore if a word sequence A is significantly correlated with

a word sequence B, they constitute a trigger pair. Then, A is referred to as

the trigger and B as the triggered sequence. Rosenfeld [110] reports that

self triggers are very powerful and robust. Also trigger pairs of frequent

words have more potential than the trigger pairs of infrequent words. Trig-

ger pairs are determined by using the average mutual information between

the trigger and the triggered sequence. Trigger pairs are very effective to

handle the long-range dependencies.

Another type of maximum entropy LMs is the whole sentence model

given in [111]. This model predicts the probability of the whole sentence

by using feature functions over the entire sentence. However, the training

of these models require sampling methods which makes the model very

complex.
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3.5 Structured LMs

Structured LMs aim at exploiting the syntactic structure of utterances

to handle long-range dependencies better than a fixed context. The first

attempts are based on using context free grammars (CFGs) [27, 137, 71].

The main contribution of structured LMs is started with Chelba et al. [24]

in which a dependency grammar framework with maximum entropy models

is used to constrain the word prediction by the linguistically related words

in the past.

The most notable work in structured modeling is the work presented

by Chelba and Jelinek [25]. This model uses incremental parsing to as-

sign probabilities to words and parses in a left-to-right manner. This LM

creates a binary branching parse of the sentence with its POS tag assign-

ments, head-word annotation, and non-terminal label; and it assigns a

probability for “word sequence and parse” pairs. This LM consists of three

modules, “word-predictor” which predicts the next word, “tagger” which

predicts the POS tag of the next word, and “constructor” which grows the

existing binary branching parse tree. Since the word prediction is based

on the current parse of the sentence, it takes the syntactic structure into

consideration. It is reported to improve perplexity and word error rates,

however, the major drawback of structured models is the fact that they

depend on the performance of the syntactic parser. In addition, for spoken

language, which contains hesitations and repetitions, the performance of

a syntactic parser would be questionable. The structured LMs are also

modeled by neural networks [45, 44], which benefit from the distributed

representations. The neural networks model the “word-predictor” module

and take word and non-terminal tag features as input. They are reported

to improve perplexity and word error rate significantly.
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3.6 Semantic LMs

Semantic LMs consider the semantic dependencies in the language. One of

the approaches that incorporates semantic information into LM is the topic

model [49, 114]. The topics may be selected from a hand-crafted set or can

be learned by data-driven approaches. Topic LMs model the probability of

a word in a topic and do not consider the local structure of the language.

Therefore they are combined with n-gram models.

Trigger pairs as introduced in Section 3.4 may also be considered as

a form of a semantic LM since they consider the significant correlations

between trigger pairs. The performance of trigger pairs are dependent

mostly on the selection of pairs.

Bellegarda [10, 11] uses latent semantic analysis (LSA) to extend the

trigger pair approach. LSA [35, 16] is used as an indexing mechanism in

information retrieval, it maps the discrete space of words and documents1

to the same continuous space. Therefore, each word and document is

represented as a vector in this space. A word-document matrix, in which

each column represents a document and each row represents a word, is

constructed by populating the matrix values by normalized counts of the

words in the documents. The normalization is done with respect to the

number of documents in which the word occurs. Because of computational

requirements, singular value decomposition is applied to this matrix. The

final representation conceptually represents each word and document as

a linear combination of abstract concepts, which is very similar to the

distributed representations the neural network LMs use. At the final step,

LMs are modeled over the LSA history of the word. Combining LSA with

n-gram models resulted in significant improvements in perplexity and word

error rate [10, 11].

1A document refers to a group of sentences that are semantically related, i.e., have the same topic.
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3.7 Neural Network LMs

N-gram LMs represent the words on a discrete space where it is not possible

to model any relationships between words, regarding their position in this

space. Neural network LMs (NNLMs) address this issue which suffers

from curse of dimensionality. During training, NNLMs learn distributed

representations, i.e., continuous valued vectors of words. Hence, NNLMs,

associate a distributed representation (also known as a word embedding)

with each word in the vocabulary and model the joint probability of word

sequences over these vectors [14].

NNLMs are first started to be used in [14] and they were reported to

reduce the perplexity. The first application of NNLMs to ASR is presented

in [116] which is reported to drop the WER by linear interpolating NNLMs

with back-off n-gram LMs. The detailed structure of NNLMs and their

training procedure is presented in Chapter 5. The structure of feed-forward

NNLMs is given in Figure 5.3 [14].

The input to feed-forward NNLMs is given as 1-of-n encoding, in which

the index of the word is set to 1 and the rest is set to 0. The words are

mapped to a continuous space by using a shared matrix, the projection

matrix. The projection layer concatenates word vectors and it is fully-

connected to the hidden layer. The hidden layer uses a non-linear activation

function (the sigmoid function or tanh) and it is fully-connected to the

output layer. The output layer, outputs a probability estimate for every

word in the vocabulary by using a softmax function. The main complexity

comes from the connections between the hidden layer and the output layer.

Therefore, the vocabulary size plays a crucial rule in the complexity of

NNLMs.

The complexity of NNLMs can be handled by using a shortlist of

words [115]. In this approach, a shortlist is created from the most frequent
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words and NNLMs are trained only for this shortlist. During prediction,

NNLMs are used only for predicting probabilities of the words that are in

the shortlist, the probabilities for the other words are estimated by using n-

gram models. The hierarchical NNLM [101, 100] adopts a binary clustering

of the words at the output layer to reduce the computational complexity.

Structured output layer NNLMs [83, 84] use another tree representation at

the output layer. In this approach, all words except a shortlist of words are

clustered based on the distributed representations learned at the projection

layer. A class-based output layer is presented in [97]. In this approach,

word probabilities are factorized into class membership probabilities and

class probabilities. The clustering is done based on the unigram frequen-

cies of the words. All clustering techniques degrade the performance of

NNLMs, however, for large vocabularies they make NNLMs feasible. In

this thesis, we use the class-based output approach.

Feed-forward NNLMs are based on fixed histories, therefore they also

suffer from the problems related to fixed histories. Recurrent NNLMs

(RNNLMs) [96, 93] overcome this problem by using recurrent connections,

which represent the state of the network. This can be thought of as a

short-term memory, which in theory, enables the network to model infinite

size of histories. RNNLMs are shown to improve perplexities and WERs

better than any feed-forward NNLM [94]. In [92], a feature layer is added

to RNNLMs, where topic features are used as additional context to the

NNLM. In addition, Mikolov et al. [91] present the training of maximum

entropy features jointly with the RNNLM. The maximum entropy features

are over n-grams and they are implemented with a hash-based implementa-

tion, where n-grams are clustered based on hash functions. The RNNLMs

that are trained jointly with maximum entropy models are referred to as

RNNME.

Learning long-range dependencies with gradient descent is not possible
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because the gradients of errors become smaller and smaller; this is known as

the vanishing gradient problem [13]. Mikolov et al. [95] address the problem

of vanishing gradients by comparing Long Short Term Memory (LSTM)

networks [62] with structurally constraint recurrent networks (SCRNs) that

have a hidden layer that is designed to capture long term dependencies.

Authors report that the performance of the two architectures are similar

and they outperform RNNLMs.

3.8 Combining LMs

The most widely used method for combining LMs is the linear interpolation

method given by Equation 3.11.

p(w|h) =
∑

i

λipi(w|h) (3.11)

The mixture weights λi sum to 1 so that it gives a probability distribu-

tion. The weights are adjusted over a development data by minimizing the

overall perplexity either by using the expectation maximization algorithm

or empirically over WER.

Log-linear interpolation can also be applied for combining LMs. Log-

linear interpolation has the following form given in Equation 3.12 [73].

p(w|h) =
1

Zλ(h)

∏

i

pi(w|h)
λi (3.12)

Log-linear interpolation does not impose any explicit constraint over

the mixture weights, however, the normalization factor Zλ(h) is needed

to make the interpolation a probability distribution. This factor needs to

be computed for every possible history. Although log-linear interpolation

is reported to perform better than linear interpolation, since it requires

normalization for every history, it is more complex.
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In this thesis, we apply linear interpolation to combine multiple neural

network language models.

3.9 Evaluation of LMs

LMs are evaluated by using two different metrics. The first one is the

measure of how well it captures the unseen data, perplexity. Perplexity is

closely related to cross entropy from information theory. The second one

measures how well LMs perform in ASR tasks, word error rate (WER),

which is the basic evaluation metric for ASR systems.

Perplexity (PPL) is calculated on an evaluation corpus of N words as

in Equation 3.13 [52]. Perplexity is proportional to the cross entropy2 of

the evaluation corpus given the model. Therefore, the lower the perplexity

is, the better the LM models the evaluation data.

PPL = N

√

√

√

√

N
∏

i=1

1

P (wi|w1 . . . wi−1)
(3.13)

As described in Chapter 2, WER is calculated by first aligning the ASR

hypothesis with the reference transcription and then dividing the errors

made (insertions, deletions, and substitutions) to the number of tokens in

the reference transcription.

Both metrics have advantages and disadvantages. Computing perplex-

ity is easy and it correlates with the system performance, however, may

mislead the comparison between two models if one relies on future infor-

mation. WER, on the other hand, requires a full ASR system and does

not discriminate between type of errors. However, it gives an idea about

the actual performance of the LM for the specific task at hand.

2Cross entropy is log2 of perplexity.



Chapter 4

Spoken Language Understanding

“The noblest pleasure is the

joy of understanding.”

Leonardo da Vinci

Language is far more than strings of words. As Fillmore [46] points out,

when speakers want to greet someone, they consider the utterance “Good

morning, sir.” as one of the options to greet the addressee. Speakers also

know that this utterance is appropriate when the addressee is an adult

male and only during a certain time in the day. Therefore, utterances have

several complexities beyond being composed of lexical units; on one hand

they have the function they serve, greeting in this case, and, on the other

hand, they have their appropriate context.

Language understanding, in addition to the analysis of compositional

meaning of lexical units, deals with finding out the function and the con-

text of an utterance. Semantic-frame based understanding addresses the

function and the context of an utterance based on the notion of frames.

Spoken language understanding (SLU) is most often performed by us-

ing a semantic-frame approach [130]. Its goal is to correctly identify the

31
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semantic frames in the utterance and extract the values for the slots asso-

ciated to the frames.

The notion of a “frame” [99] is proposed as a data structure to represent

knowledge with a stereo-typed situation. In this framework, upon encoun-

tering a situation, one selects an appropriate frame from the memory and

changes the details if necessary. The frame is represented as a network

of nodes and relations. The frame has top levels which are always fixed

and low levels which have “slots” that need to be filled by an instance

of a situation. The theory of frame semantics is based on the notion of

frames and consider semantics as the set of relations between linguistic

forms and their meanings [47]. For instance, in a situation where there

is a commercial event, i.e., when the commercial event frame is evoked,

this frame contains roles or slots like the buyer, the seller, the goods, and

the money. The linguistic units that evoke these frames are called lexical

units, target words or targets which can be one of the following words,

“buy”, “sell”, or “charge” [46]. FrameNet [48] is a project that extracts re-

lations about the semantic and syntactic properties of English words from

large text by means of manual semantic annotations and automatic pro-

cessing. FrameNet project constructs a relational network of frames, and

includes the list of lexical units and the frames they evoke with respect to

their senses. The following example is taken from the FrameNet project

that demonstrates the frame of “Commerce Scenario”:

My local grocery store raised prices on meat

In this example, the lexical unit or the target word prices evokes the frame

“Commerce Scenario”. In this case, two slots of this frame “Seller” and

“Goods” are filled with the phrases “My local grocery store” and “meat”

respectively.

This chapter presents semantic-frame based SLU in detail. In addition,
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an overview of frame-semantic parsing is given that is required by the

semantic models which are described later in the thesis.

4.1 Spoken Language Understating

Spoken language understanding is the problem of extracting meaning rep-

resentations from user utterances [129, 34]. The application domains of

SLU are spoken dialog systems, speech information retrieval, and speech

translation [34]. SLU and natural language understanding (NLU) is closely

related. The focus of NLU is extracting meaning representations from a

generic domain written text. On the other hand, SLU focuses on applica-

tion specific domains and works on speech signals. The nature of speech

brings additional difficulties that are not present in NLU. These difficulties

are defined as: [130]

• The syntactic structure of spoken utterances are not well-formed as

written-text.

• Disfluencies (hesitations, corrections, or repetitions) occur in speech.

• SLU relies on the ASR output, and ASR errors are propagated to

SLU. Therefore, SLU systems must be trained to be robust to this

noise.

• Out-of-domain utterance cannot be modeled well.

The research on SLU is started to gain interest with the Air Travel

Information System (ATIS) evaluations [106]. ATIS evaluations resulted in

systems that process spontaneous speech queries for air travel information

and that bring back the relevant information from a database. A typical

ATIS system is shown in Figure 4.1 [129].

This section focuses on the structure of the semantic representations

and on the evaluation of SLU systems.
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Figure 4.1: A typical ATIS system uses a cascaded approach. The SLU uses the ASR
hypothesis and produces a semantic representation. This semantic representation is con-
verted to a SQL query to retrieve the relevant information from the database.

4.1.1 Semantic Representation

In semantic-frame based SLU, semantic information is represented by se-

mantic frames. Semantic frames are similar to the frames in the theory of

frame semantics and they contain typed slots that need to be filled with

respect to the semantic information. Figure 4.2 gives an example of three

frames taken from the ATIS domain [129].

Figure 4.2: Three semantic frames from the ATIS domain. The frames and the database
are designed together so that they represent the same information. For example, the flight
frame has slots “DCity” which represents the destination city, “ACity” which represents
the arrival city, and “DDate” which represents the date of departure. The frames are
simplified in this example.

Semantic frames are designed together with the database regarding the

slots they contain. Therefore, a flight would contain destination and arrival
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cities and also the departure time. An instantiation of the flight frame for

the user query “Show me flights from Seattle to Boston.” is given in

Figure 4.3 [129].

Figure 4.3: An instantiation of the “flight” frame with for the user query “Show me flights
from Seattle to Boston.”. The departure and arrival city slots are filled respectively.

Semantic frames use a hierarchical approach to represent meaning rep-

resentations. Another representation scheme is a simplified attribute-value

pair representation or a keyword pair representation [104]. Attribute-value

pairs use a flat representation scheme and do not possess a hierarchical

structure. For the same user query, “Show me flights from Seattle to

Boston.”, we may have the following attribute-value pair representation

in the ATIS domain: “(Command DISPLAY) (Subject FLIGHT) (DCity

SEA) (ACity BOS). In addition, if an attribute spans multiple tokens of

values, in/out/begin (IOB) representation can be used. For instance, in

“Show me flights from Seattle to New York” the arrival city “New York”

is represented with the following attribute-pairs “(ACity-B New) (ACity-I

York)”.

The representations presented for semantic-frame based SLU also have

an impact on the definition of the SLU problem. In this respect, SLU may

be defined as recognizing the correct frames and filling the slots in the

semantic frame representation. On the other hand, it may also be defined

as the alignment between the attributes and values. Considering these,

SLU is also referred to as “slot filling”.
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4.1.2 Evaluation Metrics

The evaluation of SLU is performed on the semantic representation it out-

puts. The common evaluation metrics are [130]:

• Concept Error Rate (CER): Also known as slot error rate (SER).

It measures the concept/slot performance of the SLU system. SLU

hypothesis is aligned with the reference semantic annotation. Inser-

tion (I), deletion (D), and substitution (S) errors are determined and

CER is computed by Equation 4.1, where N represents the number of

concepts/slots in the reference annotation.

CER =
I +D + S

N
(4.1)

• Slot Precision/Recall/F1 Score: Precision/Recall/F1 scores are

also used to assess the slot performance of the SLU system. They are

calculated as follows:

Precision =
Number of correctly recognized slots

Number of total slots recognized by the system
(4.2)

Recall =
Number of correctly recognized slots

Number of total slots in the reference annotation
(4.3)

F1 =
2× (Precision×Recall)

Precision+Recall
(4.4)
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4.2 Data Driven Approaches to SLU

SLU approaches are categorized into two; knowledge-based approaches and

data driven approaches. Knowledge-based approaches use hand-crafted

grammars, which are not easy to tune and scale. Data driven approaches,

on the other hand, learn SLU models from semantically annotated training

examples [130]. This thesis focuses on data driven approaches, therefore,

we do not present knowledge-based approaches.

In a statistical framework, the semantic frame-based SLU problem is

formalized as finding the most likely semantic representation, Ĉ, given a

sequence of words, W . It corresponds to finding the semantic representa-

tion that maximizes the probability P (C|W ).

4.2.1 Generative Models

Generative models, maximize the joint probability P (W,C) by using the

training data. They are described by Equation 4.5 [98, 130, 53].

Ĉ = argmax
C

P (C|W ) = argmax
C

P (W |C)P (C) (4.5)

Therefore, generative models use two different models; the semantic

prior model P (C) which assigns a probability to semantic representations,

and lexical realization model P (W |C) which assigns a probability to word

sequences given a semantic representation. A simple generative model can

be implemented by hidden Markov models (HMMs), where states bear

semantic meanings, and emissions from the states model the lexical real-

izations. Therefore, state transition probabilities model the semantic prior

model and emission probabilities model the lexical realization model [130].

The SLU problem may also be modeled as a sequence labeling problem

when attribute-value pair representation is used [107]. In this setting, each

word is assigned a concept or a slot. The null concept/slot is assigned to
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words which are not assigned to any slots. Therefore, the joint probability

of a sequence of words, W = {w1, · · · , wn} and a sequence of concepts

C = {c1, · · · , cn} are modeled by the joint probability P (W,C), which is

computed as in Equation 4.6.

P (W,C) =
k
∏

i=1

P (wici|wi−1ci−1, · · · , w1c1) (4.6)

Stochastic finite state transducers (SFSTs) are used as a generative

SLU model [107]. In this framework, the transducer that models SLU

takes words as input and outputs the concept tags. The SLU transducer,

λSLU is composed of three other SFSTs. λW is used for representing the

input, λw2c models all word to concept mappings that are hand-crafted or

learned from a training corpus, λSLM is a language model over the concepts

represented as a SFST. The SLU model, λSLU , which is the composition

of the three SFSTs is given in Equation 4.7.

λSLU = λW ◦ λw2c ◦ λSLM (4.7)

4.2.2 Discriminative Models

Discriminative approaches that are used for sequence labeling, model SLU

by directly the conditional probability P (C|W ) [130, 107, 128, 53]. Con-

ditional random fields (CRFs) [81] are reported to be more robust when

the training data size is small compared to other discriminative models

like perceptron [128]. CRFs use a log-linear model with feature functions

that are defined on the observation sequence (words) and the label se-

quence (concepts). The formulation of SLU models with CRFs are given

in Equation 4.8 [130].
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P (C|W,Λ) =
exp(

∑

k λkfk(C,W ))

Z(W,Λ)
(4.8)

fk(C,W ) denotes the kth feature function that is defined over the se-

quences of words and concepts. Λ = {λ1 ..., λk ..., λn} is a set of parameters

that are learned during training and Z(W,Λ) is the partition function that

normalizes the probability distribution. Training CRFs are very inefficient

because feature functions are defined over the entire label sequence. Fea-

tures functions can be constrained to be defined on the immediate states

which makes training and inference more efficient [128].

Feature functions for CRF SLU models are typically n-gram features to

capture the relationship between the label and the current and previously

observed words, transition features which model the current label with

the predicted previous label, and class member features which models the

clustering for the words [130]. Trigger pairs are introduced as features to

handle long-range dependencies in [69]. They are similar to the trigger

pairs introduced in [82].

4.2.3 Neural Network Models

The continuous space neural network models are also applied to SLU. Deep

convex networks (DCN) [37], which stack classifiers on top of each other

to learn complex functions of classifiers, are applied to SLU in [36]. DCNs

perform slightly better than linear CRFs and the combination of two mod-

els perform better than both models. Recurrent neural networks (RNNs)

are applied to SLU in [90, 133]. The Elman architecture [43], in which pre-

vious hidden layer activations are used for recurrent connections, and the

Jordan architecture [70] in which output posterior probabilities are used

for recurrent connections are investigated in [90]. Mesnil et al. [90] re-

port inconclusive results for the comparison of CRFs and RNNs; for ATIS,
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RNNs outperform CRFs, however, for another dataset CRFs outperform

RNNs. Yao et al. [133] build models using word embeddings and named

entity features; the authors report that RNNs outperform CRFs on the

ATIS dataset. In [132], long short-term memory (LSTM) [62] models are

used for SLU modeling. LSTM models use a memory cell to store informa-

tion and they are reported to model long-range dependencies better than

RNNs [132]. Deep belief networks are applied to SLU in [39], and convolu-

tional neural networks are jointly trained with CRFs for slot filling [131].

As can be seen, with the increased interest on neural networks, SLU has

started to be approached by different architectures of neural networks. The

use of distributed representations of words and concepts provide leverage

also for the SLU problem.

4.2.4 Using Multiple Hypotheses

SLU systems may also make use of multiple hypotheses generated by the

ASR. Hakkani-Tür et al. [54] present an algorithm to construct word confu-

sion networks (WCNs) from ASR lattices and use WCNs for named-entity

recognition. Deoras et al. [38] present a joint decoding algorithm, for jointly

performing speech recognition and slot filling. The authors report that this

approach outperforms CRFs. WCNs are used to train CRFs for slot-filling

in [123]. In this approach, rather than training with manual annotations,

WCNs that are obtained from ASR lattices are used to train CRFs; in this

way SLU models are built to be more robust to ASR noise. A cache neural

network architecture that is based on word-concept units is proposed for

handling long-range dependencies [136]. The cache neural network is used

for re-scoring n-best list that ASR outputs. A re-ranking approach that

first generates multiple hypotheses by using a generative model and then

uses support vector machines (SVMs) with tree kernels is proposed in [40].

In this thesis, we focus on re-scoring multiple hypotheses by using RNNs.
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In that respect, we use n-best ASR hypotheses and feed it into the baseline

SLU model and obtain the multiple SLU hypotheses. Then, we re-score

these SLU hypotheses by using RNN models.

4.3 Frame-Semantic Parsing

Frame-semantic parsing is the problem of automatically assigning the

frame-semantic structure to natural language sentences. Frame-semantic

parsing has been most often applied to written text and in generic domains

(e.g. news text). Statistical domain independent frame-semantic parsing

is started with the task of “semantic role labeling” in which the semantic

roles are defined with frame elements of semantic frames [50]. The CoNLL

shared tasks [23] on semantic role labeling also contributed to this research.

Although, semantic role labeling deals only with filling frame elements a

full pipeline for frame-semantic parsing needs to handle all of the following

subtasks [32]:

• Target Recognition: This subtask decides which words evoke se-

mantic frames in a sentence.

• Frame Identification: This task identifies the correct frame that

a target evokes. Since, a word can evoke more than one frame with

respect to the context, this is a multi-class classification task given

the frame evoking word.

• Frame Element (Argument) Detection: This task detects which

frame elements are filled in the sentence and finds the correct span of

the frame elements over the phrases.

The reader may refer to [32] for a more detailed overview of frame-

semantic parsing. In this thesis, we have used frame-semantic parsing as

a black box to extract features for semantic language models. We use
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the state-of-art frame-semantic parser, SEMAFOR [32], for English. SE-

MAFOR relies on the output of a statistical dependency parser. The target

recognition is performed with a rule-based system. And for frame identifi-

cation and frame element detection, exponential models are used. Italian

LUNA frame-semantic parser [29], which we have used for frame-semantic

parsing in Italian, has a rule-based target recognition model and a simple

statistical frame identification model. The Italian LUNA semantic parser

mostly focuses on frame element detection by using SVMs. The parser

relies on the output of a statistical constituency parser.
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Neural Network Models

This chapter gives a detailed explanation of the neural network architec-

tures used in this thesis. The first section introduces the related termi-

nology of neural networks on single layer networks. In Section 5.2, feed

forward neural network LMs are presented. Section 5.3 continues with re-

current neural network LMs. Finally, deep autoencoders that are used for

semantic feature extraction are described in Section 5.4.

5.1 Single Layer Networks

This section presents the building blocks of multi-layer neural networks

and introduces the related terminology. The reader may refer to [19] for a

detailed explanation of the concepts, from which this section is compiled.

A classification problem on two categories may be performed by using a

discriminant function, y(x) such that the value of the function determines

which class the m dimensional vector x belongs to. A decision rule as-

signs y(x) to class C1 if y(x) > 0 and to class C2 if y(x) < 0. A simple

discriminative function is given in Equation 5.1.

y(x) = wTx+ w0 (5.1)

43
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Figure 5.1: Neural network diagram of the linear discriminant function. The bias w0 is
represented as an additional weight with an input value of 1.

The m dimensional vector w is referred to as the weight vector and the

scalar w0 is referred to as the bias. The decision boundary is given by

y(x) = 0 and corresponds to a (m − 1) dimensional hyperplane in m

dimensional space. Since this decision boundary is linear, it is appropriate

for the classification problems that are linearly separable. The classification

that is performed with such a discriminative function is referred to as linear

classification.

The linear discriminant function in Equation 5.1 can be represented by

a network diagram as given in Figure 5.1. This figure represents the weight

vector as the concatenation of the bias w0 with w and the input vector as

the concatenation of 1 with x.

5.1.1 Multi-Class Classification

The classification can be extended to c classes by using a linear discriminant

function yk(x) for each class Ck. Then the decision is made by assigning

the input to Ck if yk(x) > yj(x) for all j 6= k. The linear discriminant

function is given in Equation 5.2 and the corresponding network, which

uses c nodes for c classes, is shown in Figure 5.2.
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Figure 5.2: Neural network diagram for multi-class classification

yk(x) =
m
∑

i=0

wkixi (5.2)

The weights of the network can be learned by minimizing an error func-

tion over training data of size N , X = {x1, . . . ,xN}, where each element,

xi is a vector of size m. The target value at node k for the input xi is

given by tik. Also we represent the output of node k with the weights w for

the input xi as yk(x
i;w). Then the sum-of-squares error function that is

defined over the parameters of the network, is written as in Equation 5.3.

E(w) =
1

2

N
∑

n=1

c
∑

k=1

{yk(x
n;w)− tnk}

2 (5.3)

Then the optimal values of weights can be determined by gradient descent,

i.e., by iteratively going over the training data and updating the weights

as given in Equation 5.4 for the time step τ + 1. w0
kj denotes the initial

weights.

w
(τ+1)
kj = w

(τ)
kj − η

∂E(w)

∂wkj

∣

∣

∣

∣

w
(τ)
kj

(5.4)

The parameter η is called the learning rate and usually determined empir-
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ically.

5.1.2 Activation Function

The discriminant function given in 5.2 is a linear function of the input, x.

A monotonic non-linear function g(.) may also be used. In this case, the

function g(.) is called the activation function. A discriminant function that

uses an activation function can be given as in Equation 5.5. The decision

boundary generated by such a discriminant function is still linear.

yk(x) = g(ak), where ak =
m
∑

i=0

wkixi (5.5)

The sigmoid activation in Equation 5.6 is one of the most widely used

non-linear functions because of its nice derivative, and it maps the interval

(∞,−∞) onto interval (0, 1).

If we want to model the conditional probability distribution P (Ck|x)

that estimates the probability of input x belonging to class Ck, the softmax

function that is given in Equation 5.7 can be used.

g(ak) =
1

1 + e−ak
(5.6)

g(ak) =
eak

∑c
k′=1 e

ak′
(5.7)

5.2 Feed Forward Neural Network LMs

Feed forward neural network LMs (FFLMs) were first introduced in [14].

The main contribution of FFLMs is their ability to learn the distributed

representation of words (they represent words as vectors in a continuous

space). FFLMs estimate LM probabilities over this continuous space. The
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Figure 5.3: Feed forward neural network language model architecture. The input layer
takes the history by 1-of-n encoding of words. The projection layer, project the word
vectors onto a continuous space by using a shared projection matrix. The output layer
estimates the probability of the next word. The projection layer is also fully connected
to the output layer, however, it is not shown in the illustration.

structure of an n-gram FFLM is given in Figure 5.3. FFLMs usually are

composed of four layers.

The input layer represents the words with 1-of-n encoding. In this rep-

resentation each word is represented by a vector where only the index of

the designated word is set to 1 and the others are set to 0. Therefore, the

dimension of the input word vector is equal to the vocabulary size, |V|.

The size of the input layer is also proportional to the size of the history,

n− 1 for an n-gram model. The projection layer, is the layer where word

representations are projected onto a continuous space in R
m. The size of

the projection layer is determined by the projection dimension, m, and the

history size, n− 1. The projection of the words onto the continuous space
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is performed by using a shared matrix, C. C is a |V|×m matrix, where each

row represents a feature vector for each word, hence C(i) ∈ R
m represents

the feature vector for the word with index i. In the actual FFLM imple-

mentation, the input layer is omitted and the ith row of the shared matrix

is copied to the projection layer for the word that has index i. Therefore,

the input layer is just presented in the conceptual model but not in the

actual implementation.

The projection layer is fully connected to the hidden layer that has a

dimension h by a h × (n − 1)m weight matrix H . The hidden layer has

a non-linear activation and the possible choices are tanh function or the

sigmoid function. Bengio et al. [14] use tanh as the non-linear activation

function, however, in all the experiments that are conducted in this thesis

the sigmoid function is used.

The output layer of FFLMs is a probability distribution, hence, it out-

puts a probability estimate for every word in the vocabulary V . Therefore,

its size is equal to the vocabulary size, |V|. The output layer is fully con-

nected to the hidden layer by a |V| × h weight matrix U and also to the

projection layer1 by a |V| × (n− 1)m weight matrix W . The softmax acti-

vation function is used to output a probability distribution at the output

layer. The FFLM n-gram model can be written as in Equation 5.8, where

ai shows the total input to the output unit at index i.

P (wt|wt−n+1, · · · , wt−2, wt−1) =
eak

∑|V|
i=0 e

ai
, k = index of wt (5.8)

The total input for all the nodes at the output layer, a, is computed as in

Equation 5.9, where b refers to the biases of the output layer, W refers to

the weight matrix from the projection layer to the output layer, U refers to

1For the sake of simplicity the connections from the projection layer to the output layer are not shown
in Figure 5.3



CHAPTER 5. NEURAL NETWORK MODELS 49

the weight matrix from the hidden layer to the output layer, d refers to the

biases of the hidden layer, H refers to the weight matrix from the projection

layer to the hidden layer, and x refers to the activations at the projection

layer. These activations are composed by concatenating the feature vectors

of the words in the history, i.e., < C(wt−n+1), . . . , C(wt−2), C(wt−1) >.

a = b+Wx+ Usigmoid(d+Hx) (5.9)

5.2.1 Training of FFLMs

The training of FFLMs is performed by minimizing the cross-entropy error

function, E, over the training data by using the backpropagation algo-

rithm [112]. For instance, when training a 4-gram FFLM, for each 4-gram

(wi−3, wi−2, wi−1, wi) in the training data, the history (wi−3, wi−2, wi−1) is

given as input and the probability estimate P (wi|wi−3, wi−2, wi−1) is ob-

tained at the output layer by using the softmax function. Then the cross-

entropy for this training instance is calculated by using Equation 5.10 [19],

where the target, t (for word wi) is represented by 1-of-n encoding2, i.e.,

tk is 1 if k = i and 0 otherwise. The n given in the equation refers to the

nth instance of the training data.

En = −

V
∑

k=1

tkyk (5.10)

The error at the output node k (denoted as δok), which is equal to the

gradient of this error function with respect to the total input (ak) at the

output unit k, is given in Equation 5.11

δok =
∂En

∂ak
= yk − tk (5.11)

2The target is a binary vector, in which the component at index i is set to 1 and the rest is set to 0
for the ith word wi.
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Backpropagation of Errors

The backpropagation algorithm propagates the error at a layer l+1 (δl+1
k )

to a lower layer that is connected to this layer by the weights w using the

general backpropagation formula [19] that is given in Equation 5.12, where

K refers to the size of the layer l + 1, j refers to the jth unit at layer l,

and g′(.) refers to the gradient of the activation function.

δlj = g′(aj)
K
∑

k=1

wkjδ
l+1
k (5.12)

The weights between the node j at layer l and the node i at layer l− 1

are updated by using the following formula, where η denotes the learning

rate:

∆ji = −ηδjg(ai) (5.13)

The weight update rule for biases is similar to Equation 5.13, where the

activation function for the node at the lower layer, g(.) is replaced with 1.

Using this algorithm all the errors are computed at each layer and the

corresponding weights are updated. The shared projection matrix is up-

dated by just updating the row that corresponds to the given word in the

history.

Practical Issues

The training of neural network LMs are performed by using stochastic

gradient descent, i.e., the parameters of the network is updated for each

training instance one by one.

The neural network models may overfit the training data, therefore to

avoid overfitting the training procedure must be performed by considering

the performance of the network on a held-out data or development data.
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Therefore after each epoch of training (one pass over the whole training

data), the cross entropy of the model over the development data is calcu-

lated and the learning rate is decreased if the cross entropy increases or

the training stops if the improvement of the cross entropy is less than a

threshold (early stopping).

5.3 Recurrent Neural Network LMs

Recurrent neural network LMs (RNNLMs) were introduced in [96].

RNNLMs are based on the Elman architecture given in [43]. The basic

idea of RNNLMs is to save the state of the network by recurrent connec-

tions, which aim at handling unlimited size of histories. RNNLMs predict

the probability of a word by using the immediate history (the previous

word) and the hidden layer activations at the previous time step. The

structure of RNNLMs is given in Figure 5.4. Therefore, RNNLMs model

the probability of a word wt given the history as in Equation 5.14, where

st refers to the hidden layer activation at time step t.

P (wt|history) = P (wt|wt−1, st−1) (5.14)

5.3.1 Training RNNLMs

The training of RNNLMs is also done by performing error backpropaga-

tion. However, because of the recurrent architecture, the network must be

unrolled in time. Figure 5.5 shows the unrolled network for 3 time steps

back. After unrolling the network, the standard backpropagation algo-

rithm is applied. This is also known as the backpropagation through time

(BPTT) algorithm [20].

Because of the vanishing gradients, the network is unrolled at most 4, 5
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Figure 5.4: The basic recurrent neural network LM architecture. st represents the acti-
vation of the hidden layer at time step t.

Figure 5.5: The backpropagation through time algorithm unrolls the network for N time
steps back. In this figure, the network is unrolled for 3 time steps back.
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time steps back practically.

5.3.2 Class-Based RNNLMs

The main complexity of neural network LMs comes from the size of the

vocabulary. As the vocabulary size increases the size of the weight matrix

between the hidden layer and the output layer becomes the dominant factor

in the complexity of training. There are strategies like using a shortlist of

words [115] or a hierarchical representation of words [101, 100, 83, 84] that

reduce this complexity. In this thesis, we use the class-based RNNLM ar-

chitecture that is introduced in [97]. The class-based approach divides the

output layer into two, where one part computes the class probability, and

the other part computes the class membership probability of the word. In

this setting, the training is done by first updating the connections between

the “class” part (that estimates the class probabilities) of the output layer

and the hidden layer. Then, only the weights between words that belong

to the given class and the hidden layer is updated. The factorization of

the output is given in Equation 5.15, where clt denotes the class for word

wt, and st denotes activations of the hidden layer when predicting wt.

P (wt|wt−1, st−1) = P (clt|wt−1, st−1)P (wt|clt, wt−1, st−1) (5.15)

5.3.3 Maximum Entropy Features

The maximum entropy LMs are introduced in [110]. In [91], a joint train-

ing procedure for RNNLMs with n-gram maximum entropy features is

introduced. The resulting architecture is referred to as RNNME. RNN-

MEs represent maximum entropy features as direct connections between

the output layer and the nodes that represent n-gram histories. Therefore,
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Figure 5.6: The class-based RNNLM. The output layer factorizes the conditional proba-
bility into class and class membership probabilities.

each possible n-gram is represented by a cluster of nodes and these nodes

are fully connected to the output layer. If an n-gram in the history exists

that node is activated with the value 1 and the weights between that node

and the output layer are updated with the weight update formula.

The size of all possible n-gram histories could be very large for tri-grams

and higher order n-grams when the vocabulary size is large, which makes

building RNNME models impossible. To overcome this problem [91] uses a

hash-based implementation, where each n-gram history is passed through a

hash function and is mapped to the node in the maximum entropy feature

layer. In this setting, a node may represent more than one n-gram history

if there are collisions in the hash function. In addition, for class-based

RNNLMs half of this layer is connected to the word nodes at the output

layer and the other half is connected to the “class” part. The implemen-

tation details are given in [93].
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Figure 5.7: The context dependent RNNLM with a class-based implementation. ft−1

represents the features for the context of wt.

5.3.4 Context-Dependent RNNLMs

Context dependent RNNLMs are introduced in [92], where an additional

input layer (feature layer) is added to represent the additional context for

the model. The proposed architecture is given in Figure 5.7. The feature

layer is originally used to represent the topic for LM [92].

5.4 Deep Autoencoders

In general, deep learning aims at learning high-level representations of data

that can be used in classification tasks [12]. One of the architectures that

is used for representation learning is autoencoders. Autoencoders employ

two functions; the first one is the encoder function that computes a feature

vector from the input, and the second one is the decoder function that maps

the feature back to the input space. The autoencoder is trained to minimize
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the reconstruction error, i.e., the error between the input vector and the

reconstructed image of the input [12].

Deep autoencoders that use multiple hidden layers are used to reduce

the dimension of the data in [58] and they are reported to outperform

other approaches like principal components analysis. They also outper-

form latent semantic analysis for document similarity tasks. In addition,

an autoencoder that outputs binary codes are used for efficient document

retrieval [113]. The training of deep autoencoders can be done by us-

ing gradient descent, however, with random initialization of weights they

tend to converge to a poor local minima. To overcome this problem the

weights must be initialized close to a good solution [58]. In this respect,

the training of deep autoencoders are performed at two steps: the unsu-

pervised pretraining phase, and the fine-tuning phase [58] as described in

Figure 5.8.

Figure 5.8: Deep autoencoder and training phases. The weights of the autoencoder
are initialized with the unsupervised pretraining phase by using a greedy layer-by-layer
approach. The weights are then fine-tuned on the unrolled network.
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5.4.1 Unsupervised Pretraining

Unsupervised pretraining is done by using a greedy layer-by-layer approach

that is given in [61]. In this approach, each pair of layers is represented by

a restricted Boltzmann machine (RBM) and the weights of the RBMs are

learned by contrastive divergence [60].

Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) consist of two layers, a visible

layer and a hidden layer, that are connected with each other using undi-

rected connections [118, 60]. In addition, there are no connections between

the nodes that are at the same layer. The structure of a RBM which has

3 nodes at the visible layer and 2 nodes at the hidden layer is given in

Figure 5.9. The visible layer is the layer that is observed and the hidden

layer is the layer that holds hidden representations of the observations.

Figure 5.9: The structure of a RBM that has 3 nodes in the visible layer and 2 nodes at
the hidden layer. The nodes are connected by using undirected weights.

The joint configuration (v,h) is represented by the energy of the network

that is given in Equation 5.16, where vi is the binary state of the ith visible

node, hj is the binary state of the jth hidden node, bk is the bias of the

kth unit and wij is the weight of the undirected connection between ith

visible node and the jth visible node [59].
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E(v,h) = −
∑

i∈visible

bivi −
∑

j∈hidden

bjhj −
∑

i,j

vihjwij (5.16)

Every state of the network, i.e., every pair of visible and hidden vector

is assigned a probability by Equation 5.17

p(v,h) =
1

Z
e−E(v,h), where Z =

∑

v,h

e−E(v,h) (5.17)

Then the probability of the network to assign the visible vector v is

calculated by marginalizing Equation 5.17 over h as in Equation 5.18.

p(v) =
1

Z

∑

h

e−E(v,h) (5.18)

The probability of the visible vector (the input) can be increased by

lowering the energy for that input. The derivative of the probability func-

tion with respect to the weights is given in Equation 5.19, where 〈vihj〉data

denotes the expectation of {vi, hj} pair with respect to the data, and

〈vihj〉model denotes the expectation of {vi, hj} pair with respect to the

model.

∂logp(v)

∂wij

= 〈vihj〉data − 〈vihj〉model (5.19)

The expectation with respect to the data can be obtained easily by just

feeding the input into the network through the visible layer and computing

the probabilities of the hidden states3 to turn on (having state 1) by using

the sigmoid activation function, as given in Equation 5.20. In addition, the

probability of a visible state to be 1 is computed similarly by Equation 5.21.

P (hj = 1|v) =
1

1 + e−bi−
∑

i viwij
(5.20)

3Hidden states are modeled by stochastic binary units.
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P (vi = 1|v) =
1

1 + e−bj−
∑

j hjwij
(5.21)

The expectation with respect to the model can be approximated by

performing alternating Gibbs sampling. Hinton [60] introduces contrastive

divergence for approximating the gradient of the log probability. The ap-

proximate learning procedure works by: (1) obtaining the hidden states

from the input, (2) reconstructing the image of the hidden states at the

visible layer, (3) repeating this sampling procedure with this reconstructed

image n times, as given in Figure 5.10. This is denoted as CDn. RBMs

learn better as n increases, however, even CD1 works well practically, for

a good initialization of weights.

Figure 5.10: Contrastive divergenceT (CDT ) procedure for learning the weights.

Contrastive Divergence

The CD1 procedure is performed as follows when stochastic binary units

are used:

• The probability of the hidden layers (h0) is computed by Equation 5.20

by using the training data (v0), which gives 〈v0i h
0
j〉.

• The states of the hidden units are determined by comparing the prob-

abilities with random numbers that are distributed uniformly between
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0 and 1. The state is 1 if the probability is greater than the random

number, 0 otherwise.

• The probability of the visible units is computed by using the hidden

states found in the previous step by Equation 5.21.

• The probabilities of the visible units (v1) are used to compute the

probability of the hidden layers (h1) once more by Equation 5.20,

which is used for 〈v1i h
1
j〉.

• The weights are updated by using the rule: ∆wij = η(〈v0i h
0
j〉−〈v1i h

1
j〉)

5.4.2 Fine-tuning

The fine-tuning of the weights can be done by first unrolling the network

as shown in Figure 5.8 and then by minimizing the reconstruction error at

the output layer by using the backpropagation algorithm.

5.4.3 Semantic Hashing

Semantic hashing [113] encodes documents as binary vectors, where the

similarity between two documents is measured by using the Hamming dis-

tance between these binary vectors. Semantic hashing is a deep autoen-

coder that is trained over the normalized bag-of-words (BoW) vectors of

the documents. In addition, during fine-tuning Gaussian noise is added

to the inputs of the code layer. In this way, the codes are enforced to be

binary.

During the pretraining phase the bottom RBM is modeled by the con-

strained Poisson model [113] that is defined as follows. The activations at

the visible and hidden layers are defined by the Equation 5.22 and 5.23

respectively, where n represents the BoW count for a specific words and N

represents the total number of words in the document.
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P (vi = n|v) = Ps(n,
ebi+

∑

j hjwij

∑

k e
bk+

∑

j hjwkj
N) (5.22)

P (hj = 1|v) =
1

1 + e−bj−
∑

i wijvi
(5.23)

where Ps(n, λ) defines the Poisson distribution:

Ps(n, λ) = e−λλ
n

n!

This model is equivalent to using normalized BoW vectors at the visible

layer and multiplying the weights by N when the hidden layer probabili-

ties are computed. Visible layer probabilities are computed by using the

softmax activation function, which reconstructs the normalized BoW rep-

resentations as given in Figure 5.11 [113].

Figure 5.11: Constrained Poisson model. The input is represented as normalized BoW
vectors. When activating the hidden layer the weights are multiplied by the words in
the document (N). When the hidden state is used to activate the visible layer softmax
activation function is used.

5.4.4 Deep Autoencoder for Semantic Context

In Chapter 9, we have used the autoencoder model that is described in

semantic hashing [113] for encoding semantic context. Semantic hashing is

designed to work on documents, i.e., written text, therefore it is appropriate

to encode semantic information for utterances. We have trained “semantic

hashing” autoencoders with semantic BoW features. The pretraining step
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for encoding semantic context uses the same constrained Poisson model

for the input layer. During fine-tuning the codes are made binary by using

stochastic binary units at the the code layer. The state of a node at this

layer is computed by comparing the activation of that node (the sigmoid

activation function is used) with a random value between 0 and 1 that

is generated at run time. The state is set to 0 if the activation is smaller

than the random value and set to 1 otherwise. This state is used during the

forward-pass, on the other hand, during backpropagation, actual activation

values are used. In this manner, we enforce the autoencoder to output

binary vectors.



Chapter 6

Data Description and Baselines

This chapter describes the data that is used in the experiments presented

in the thesis. The data is analyzed and the related baselines in ASR and

SLU are given. We have three different types of recorded speech:

• LUNA Human-Machine: Domain specific conversational speech be-

tween a human and a machine.

• LUNA Human-Human: Domain specific conversational speech be-

tween two humans.

• Wall Street Journal: Read speech of newspaper articles on a broad

domain.

The Italian LUNA corpus is a collection of Italian conversational speech

which consists of Human-Machine (HM) and Human-Human (HH) di-

alogs [41]. The conversations are recorded by a customer care and technical

support center, and the domain of conversations is software/hardware trou-

bleshooting. The dialogs in the LUNA corpus are annotated at a multi-level

scheme. The levels of annotation are:

• Word level annotation: It consists of lemmas, part-of-speech tags

and morpho-syntactic information following EAGLES corpora anno-

tation. [85]

63
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• Attribute-value annotation: It specifies concepts and their relations

based on a predefined ontology.

• Predicate argument annotation: It is based on the FrameNet model [3].

• Dialog act annotation: It is inspired by DAMSL [30], TRAINS [121],

and DIT++ [22] and marks the intentions in an utterance.

The Wall Street Journal (WSJ) speech recognition corpus contains the

read WSJ articles, which is designed to be the first general purpose, large

vocabulary speech recognition corpus [103]. The corpus is designed for

speech recognition tasks, hence it is annotated only with the transcription

of the utterances.

6.1 LUNA Human-Machine Corpus

The Italian LUNA Human-Machine (HM) corpus is a conversational speech

corpus [41]. The corpus contains 723 human-machine dialogs in the hard-

ware/software help desk domain. The dialogs are conversations of the users

involved in a problem solving scenario collected by using the Wizard of Oz

(WOZ) technique: the human agent (wizard) reacts to user requests and

follows one of the ten scenarios identified as the most common scenario by

the help desk service provider. Text-to-speech synthesis is used to provide

responses to the users. The statistics about the level of annotation for the

LUNA HM corpus is given in Table 6.1.

Table 6.1: The annotation level statistics for the LUNA HM corpus.
Annotation Level Number of Dialogs
Word level 723
Attribute-value 723
Predicate argument structure (FrameNet) 129
Dialog act 224
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In this thesis we work on the word level annotations for ASR and

attribute-value annotations for SLU. The whole corpus is annotated at

these levels. The statistics about the training, development, and evalua-

tion splits are given in Table 6.2.

Table 6.2: The splits and the statistics of the LUNA HM corpus.
Training Development Evaluation

No. of Utterances 3171 387 634
Words Concepts Words Concepts Words Concepts

No. of Tokens 30470 18408 3764 2258 6436 3783
Vocabulary Size 2386 44 777 38 1059 38
OOV rate - - 4.2% 0 3.7% 0

6.1.1 ASR Baseline

The Loquendo ASR system is used to obtain the ASR baseline for LUNA

HM corpus. This system uses hybrid ANN/HMM acoustic models that are

adapted to the LUNA HM corpus. It uses a tri-gram LM that is trained on

the training split of the corpus with modified Kneser-Ney smoothing. The

ASR performs finite state transducer decoding and outputs lattices, 100-

best lists for re-scoring are compiled by using those lattices. The WER

performance of the baseline system with the oracle performance1 of the

100-best list is given in Table 6.3.

Table 6.3: The WER performance of the baseline ASR for the development (Dev) and
the evaluation (Eval) splits of the LUNA HM corpus.

Dev Eval
ASR 1st-best 21.9% 22.3%
Oracle on 100-best 14.1% 15.6%

1The best possible performance that can be obtained from the n-best list.
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6.1.2 SLU Baseline

We present two different SLU baselines. The first one is a generative model

that is built by using stochastic finite state transducers (SFSTs) and the

second one is a discriminative model that is constructed by conditional

random fields (CRFs).

The SFST model creates a SFST for a statistical LM over word-concept

pairs, a SFST for mapping words to word-concept pairs. Concept tagging

is then done by feeding the input into the composition of these SFSTs.

The CRF model uses the following features. The first type of features is

the orthographic feature. These features consider the first or last i letters

of the word, where i changes between 1 and 5. Next, bi-gram features

are used that are on the “previous word and current word”, “current word

and next word”, and “previous word and next word”. In addition to these

features we have used binary features which label numerical expressions.

We have also considered the value of the previous concept when predicting

the current one. All these features are independent of each other in the

window of [-1, +1].

The baseline SLU performances are given both for the reference tran-

scription of the test set and for the ASR 1st-best hypothesis in Table 6.4.

Table 6.4: The CER performance of the SLU baselines on the reference transcription and
the ASR hypothesis of the Test set.

Model Ref. Trans. ASR 1st-best
SFST 29.6% 46.3%
CRF 21.5% 26.7%

6.2 LUNA Human-Human Corpus

LUNA HH corpus consists of human-human dialogs that are recorded be-

tween a customer and an operator that supplies technical service. The
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dialogs are recorded on a single channel. Because of the nature of human-

human conversations these dialogs contain overlapped segments2 which are

discarded. The statistics on LUNA HH corpus is given in Table 6.5.

Table 6.5: The splits and the statistics of the LUNA HH corpus.
Training Development Evaluation

No. of Utterances 14465 1656 4006
No. of Tokens 116178 11668 28476
Vocabulary Size 6840 1957 3269
OOV rate - 3.8% 4.0%

6.2.1 ASR Baseline

The ASR baseline for LUNA HH is constructed by using the Kaldi [105]

speech recognition toolkit. The ASR uses mel-frequency cepstral coeffi-

cients (MFCC) that are transformed by linear discriminant analysis (LDA)

and maximum likelihood linear transform (MLLT). These features are then

spliced in the window of [−3,+3]. The acoustic models are trained by

advance training approaches such as “speaker adaptive training”. The

speaker adaptation during decoding is performed by feature-space maxi-

mum likelihood linear regression (fMLLR) [87]. The LM for the ASR is a

modified Kneser-Ney tri-gram model that is built over the training data.

The ASR and the oracle WER performances on the 100-best list is given

in Table 8.8.

Table 6.6: The WER performance of the baseline ASR on LUNA HH corpus. The oracle
performance is given for 100-best lists.

Dev Test
ASR 37.7% 36.7%
Oracle on 100-best 25.3% 24.4%

2Two speakers are speaking at the same time.
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Table 6.7: The frame accuracy of the ASR with respect to the reference transcriptions.
Density shows the ratio between the number of frames evoked and the number of tokens
occur in the data.

Development Evaluation

Density 17.7% 14.9%

Precision 73.2% 76.1%
Recall 70.6% 73.2%
F1 71.9% 74.6%

Table 6.8: The target accuracy of the ASR with respect to the reference transcriptions.
Development Evaluation

Precision 73.1% 74.5%
Recall 74.3% 75.1%
F1 73.7% 74.8%

6.2.2 FrameNet Semantic Parsing

In this section, we present the performance of the ASR baseline on frame

accuracy and target accuracy by using the Italian LUNA semantic-frame

parser [29]. The evaluations are done by taking the output of the parser

on the reference transcriptions as the gold standard. The Italian LUNA

frame-semantic parser is trained with domain specific frames, and the frame

vocabulary of the training data is 143 and the target vocabulary is 679.

The frame accuracy is given in Table 6.7 with the frame densities, i.e., the

ratio between the number of frames evoked and the number of tokens occur

in the data. The target accuracy is given in Table 6.8.

6.3 Wall Street Journal Corpus

Wall Street Journal (WSJ) speech recognition corpus we have used is the

publicly available WSJ0/WSJ1 (DARPA November’92 and November’93

Benchmark) sets. We have used the following split as development and

evaluation sets. All the development data under WSJ1 for speaker inde-
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pendent 20k vocabulary is used as the development set (“Dev 93” - 503

utterances). The evaluation is done on the November 92 CSR Speaker

independent 20k NVP test set (“Test 92” - 333 utterances) and on the

November 93 CSR HUB 1 test set (“Test 93” - 213 utterances). The

vocabulary is the 20K open vocabulary word list for non-verbalized punc-

tuation that is available in WSJ0/WSJ1 corpus. The data that is used for

LM training is the whole WSJ 87, 88, and 89 sets. The statistics on the

WSJ setting we have used is given in Table 6.9.

Table 6.9: The splits and the statistics of the Wall Street Journal corpus.
LM Training Dev93 Test92 Test93

No. of Sentences 1.6M 503 333 213
No. of Tokens 37M 8206 5643 3446
Vocabulary Size 165K 2461 1836 1314
OOV rate 2.7% 0.2% 0.0% 0.1%

6.3.1 ASR Baseline

The baseline ASR system is built by using the Kaldi [105] speech recogni-

tion toolkit. The language model that the baseline system uses is the base-

line tri-gram back-off model for 20K open vocabulary for non-verbalized

punctuation that is also available in the corpus.

The acoustic models are trained over the SI-284 data by using the pub-

licly available Kaldi recipe with the following settings. MFCC features

are extracted and spliced in time with a context window of [−3,+3]. Lin-

ear discriminant analysis (LDA) and maximum likelihood linear transform

(MLLT) are applied. Tri-phone Gaussian mixture models are trained over

these features.

The ASR baseline performs weighted finite state decoding. We have

extracted 100-best lists for each development and evaluation set. The

(WER) performance of ASR and oracle hypotheses are given in Table 6.10.
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Table 6.10: The WER performance of the ASR baseline system on Dev 93, Test 92, and
Test 93 sets of the Wall Street Journal corpus.

Dev 93 Test 92 Test 93
ASR 1-best 15.3% 10.2% 14.0%
Oracle on 100-best 8.3% 5.1% 7.3%

6.3.2 FrameNet Semantic Parsing

This section presents the frame and target accuracy of the ASR baseline.

The semantic frames and targets are extracted by using the semantic-frame

parser SEMAFOR [32]. The ASR performance is evaluated against the

output of the semantic parser on the reference transcriptions. WSJ speech

recognition corpus has 841 distinct frames and 29043 distinct targets on

the LM training data. The density shows the ratio between the number of

frames evoked and the number of tokens occur in the data. The accuracy

of the frames is given in Table 6.11 and the accuracy of the targets is given

in Table 6.12.

Table 6.11: Frame accuracy of the ASR baseline on the development and evaluation sets.
Density shows the ratio between the number of frames evoked and the number of words
occur in the data.

Dev 93 Test 92 Test 93

Density 41.9% 42.4% 43.0%

Precision 88.3% 91.1% 90.1%
Recall 90.6% 93.3% 89.3%
F1 89.5% 92.2% 89.7%

Table 6.12: Target accuracy of the ASR baseline on the development and evaluation sets.
Dev 93 Test 92 Test 93

Precision 88.5% 91.6% 90.7%
Recall 90.8% 93.8% 89.8%
F1 89.6% 92.7% 90.2%



Chapter 7

Joint Models for Spoken Language

Understanding1

Spoken language understanding is the problem of extracting semantic

structures from utterances. Therefore, spoken language systems (SLS)

that aim at understanding what the user means consist of two main mod-

ules. The first module is the ASR and the second module is the SLU. The

SLU module relies on the output of the ASR module, therefore, the errors

introduced in the ASR module are propagated to the SLU module. One

solution to this problem is to use multiple ASR hypotheses. In this chap-

ter, first we show how LMs can be optimized either for their recognition

performance or for their understanding performance. Then, we present

how semantic models can be adapted to the current dialog by means of

instance-based adaptation. Finally, we present an application of joint LMs

to cross-language SLU porting.

The SLU module we present in this chapter takes the n-best list of ASR

hypotheses from the ASR module. It has two components; the first compo-

nent is the alignment model, this model outputs word-concept alignments

for each hypothesis in the n-best list. The second component is the scoring

model, which scores these word-concept alignments by joint LMs that is

1The work presented in this chapter is the revised version of the publications [5, 6, 119].
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introduced in this chapter. The structure of the SLU module is depicted

in Figure 7.1.

Figure 7.1: The structure of the SLU module. The SLU module consists of an alignment
model and a scoring model. The alignment model extracts word-concept alignments for
each hypothesis in the n-best list and the scoring model assigns posterior probabilities for
these alignments.

7.1 Optimization of Joint LMs for SLU

This section addresses the training and optimization of joint LMs for ASR

and SLU tasks and provides a procedure for training joint LMs and se-

lecting its best parametrization. We show how to optimize joint LMs by

re-scoring experiments on the LUNA HM corpus.

Joint LMs use word-concept pairs as the modeling unit for incorporating

semantic information into the LM. This type of a model is first used in [136]

for cache neural network LMs that also use the previous turns of the dialog

in the cache component. They are reported to improve concept error rate.

We show an example of word-concept pairs for the following utterance

from the LUNA HM corpus: “Buongiorno io ho un problema con la stam-

pante da questa mattina non riesco piu a stampare”.

We have the following semantic annotation where concepts are shown in

bold: “null{Buongiorno io ho} HardwareProblem.type{un problema}

Peripheral.type{con la stampante} Time.relative{da questa mattina}

HardwareOperation.negate{non riesco} null{piu} HardwareOpera-

tion.operationType{a stampare}”.

The word-concept pairs that joint LMs use are constructed by using a
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one-to-one mapping of words with their annotated concepts. For exam-

ple the first five pairs are: “buongiorno - null, io - null, ho - null, un -

HardwareProblem.type, problema - HardwareProblem.type”.

7.1.1 Joint RNNLMs

We use class-based RNNLMs as the architecture of joint LMs. The

RNNLM structure we have used is a modified version of the class-based

RNNLM structure given in Mikolov et al. [97], which is available as a

toolkit2. The toolkit automatically assigns words to classes with respect to

the frequencies of the words. We have modified the toolkit to handle man-

ual clustering of the LM units (words or word-concept pairs). Joint LMs

are constructed over word-concept pairs. We have clustered word-concept

pairs with respect to concepts they evoke. Therefore, word-concept pairs

which are semantically related, i.e. that have the same concept label, are

mapped to the same class. The input layer has a node for each word-

concept pair (wi, ci). Each word-concept pair is fed into the network using

1-of-n encoding. The LM probabilities at the output layer is factorized into

class probabilities given the history and the class membership probabili-

ties as in Equation 7.1, where (wi, ci) denotes the ith word-concept pair,

hi denotes the history for the ith pair, cli denotes the ith class, which is

the class that (wi, ci), the ith word-concept pair, is assigned to.

P ((wi, ci)|hi) = P (cli|hi)P ((wi, ci)|cli, hi) (7.1)

The training of the RNNLM is done by using back-propagation through

time (BPTT), in which the error is propagated through recurrent connec-

tions up to a certain previous time step. As given in [97], in this way it

is guaranteed that the RNNLM learns the history. When calculating the

2Available at http://www.fit.vutbr.cz/∼imikolov/rnnlm/
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activations of the layers, the input layer and the recurrent layer is directly

fed into the hidden layer. The activation of the hidden layer is computed

by using the sigmoid function, and the output probabilities are computed

by using the softmax function to guarantee a valid probability distribution.

The structure of the joint RNNLM is given in Figure 7.2.

Figure 7.2: Joint RNNLM structure. The input layer has as many nodes as the number
of distinct word-concept (wi, ci) pairs. The output layer estimates probabilities for all
the classes and word-concept pairs. The classes are determined manually by mapping
each word-concept pair that has the same concept label to the same class. The previous
word-concept pair is fed to the input layer using 1-of-n encoding. (wi, ci) denotes the ith
word-concept pair, cli denotes its class hi denotes the history for that pair.

7.1.2 ASR Baseline

The baseline system is the system we have described for the LUNA HM

corpus in Section 6.1. The ASR system is trained by using the Loquendo

speech recognition system. It uses a modified tri-gram Kneser-Ney LM.

The SLU model is based on stochastic finite state transducers that are

presented in [107]. The SLU has 29.6% concept error rate (CER) on the
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reference transcription of the test set. The WER and CER performance of

the ASR output and the 100-best list is given in Table 7.1.

Table 7.1: The baseline recognition (WER) and understanding (CER) performance of the
baseline system. The oracle performance is on the 100-best list generated by the ASR.

WER CER
ASR 1st-best 22.3% 46.3%

Oracle on 100-best 15.9% 35.2%

7.1.3 Baseline for Recognition

The baseline system that maximizes the recognition performance uses a

word-based LM. In this setting, we have re-scored the 100-best list that

the ASR outputs by using a class-based RNNLM that was constructed only

over the words. The number of classes were given as a parameter, and the

words were assigned to the classes with respect to their frequencies as given

in [97]. We have found out that 150 classes with 100 hidden units were

performing the best for the development set. The re-scoring was also done

with linear interpolation of the RNNLM and the same tri-gram LM that

was used by the ASR. The results are given in Table 7.2.

Table 7.2: Performance of the baseline system that maximizes the recognition perfor-
mance. The class-based RNNLM is constructed over words. The RNNLM+ngram refers
to the linear interpolation of the RNNLM with the tri-gram that is used in the ASR.

WER CER
RNNLM 21.5% 47.0%

RNNLM+ngram 21.5% 47.2%

As can be seen from the results; although we are able to reduce WER

by performing re-scoring, there is a reduction in the understanding perfor-

mance and in general SLU performance will not be predictable as WER is

perturbed.



76 7.1. OPTIMIZATION OF JOINT LMS FOR SLU

7.1.4 Re-scoring by Using Joint RNNLMs

We have optimized our system for SLU by using semantic components in

the LM, i.e., we have built a joint LM that uses word-concept pairs as the

LM unit. The training of the LMs is performed by using the reference

ontology annotations in the training data. By using these annotations

word-concept pairs are extracted for each utterance. We have trained an

n-gram joint LM, and several RNNLMs with different sizes of hidden layers.

We only report the results for the one which has the hidden layer size of

150, which gives the lowest perplexity on the reference word-concept pair

annotation of the development set.

The joint RNNLM has 3639 nodes in the input layer, which is equal to

the number of distinct word-concept pairs in the training set and a spe-

cial token that denotes the end of utterance. The output layer consists

of 45 classes; 44 for concepts and 1 for the null concept. In addition, it

has 3639 nodes for each word-concept pair and the end of utterance token.

The size of the hidden layer and the recurrent layer is 150. The network

was trained for 14 iterations, by using the development set for setting the

learning rate and for early stopping to avoid overfitting. Also a conven-

tional n-gram model was trained by using the word-concept pairs. It is a

tri-gram model with Kneser-Ney smoothing. The performance of 100-best

re-scoring experiments with RNN, n-gram, and their linear interpolation

is given in Table 7.3. As can be seen from the results, we have obtained

an improvement in CER by using the joint RNNLM. The WER, on the

other hand, has increased with respect to the baseline. Alternatively, the

transcription performance can be improved by reducing the concept space.

Therefore, the joint LM that is based on word-concept pairs is appropriate

to optimize systems for understanding tasks. N-gram LM has suffered from

data sparseness and performed worse than the baseline both for CER and
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for WER. Better generalization ability of NNs makes them more robust to

data sparseness, and makes them applicable to joint LMs.

Table 7.3: Performance of the joint RNNLMs after re-scoring the 100-best list. RNNLM
and n-gram were trained on word-concept pairs from the reference transcription.
RNNLM+n-gram refers to the linear interpolation of the two models.

WER CER
RNNLM 23.0% 44.1%
n-gram 26.7% 47.3%

RNNLM+n-gram 25.8% 46.8%

7.1.5 Parameter Optimization of the Joint Model

To see the effect of different amount of semantic information on the perfor-

mance of ASR and SLU, we have trained RNNLMs with various samplings

of the concepts to be included in the joint model parameters. We have

selected 1, 2, 4, 8, 16, and 32 concepts from the set of concepts and map

the other concepts to null. The concepts were grouped into 5 sets with

respect to their frequencies. It was guaranteed that the concepts from all

of these sets were selected randomly, while favoring the most frequent ones,

i.e. when 8 concepts were selected, 2 concepts were selected from each of

the most frequent 3 sets; and 1 each, from the rest. This randomization

was performed for 5 times for each sampling. The mean and standard de-

viation of WER and CER for each of the samplings are given in Figure 7.3.

As can be seen from the figure as the number of concepts incorporated into

the LM increases there is a significant drop in the CER. On the other hand,

WER increases initially as small number of concepts are included in the

model and then as more concepts are added to the model WER is slightly

affected.
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Figure 7.3: WER and CER for different number of SLU concepts. For each concept
number we have sampled over the entire concept space and plot the mean and the standard
deviation for 5 random concept draws.

7.1.6 Statistical Significance of the Results

In this section we show the statistical significance of the results by using

two different methods. We have used the bootstrap method that is given

in [18] to calculate the confidence intervals. We have calculated bootstrap-t

confidence intervals using 104 bootstrap replications. The p-value is cal-

culated using the randomization method given in [134]. The results are

given in Table 7.4. It can be seen that the improvements are statistically

significant.

7.1.7 Conclusion

In conclusion, we have presented LMs that are built over word-concepts

pairs and aimed at increasing the understanding performance while com-

promising for higher WER. By performing re-scoring experiments over 100-
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Table 7.4: WER and CER of the two systems that are optimized for ASR and SLU one
by one. 90% confidence intervals using 104 bootstrap replications are given in brackets.
Also p-values for WER and CER of the systems are presented. The results show that the
improvements are significant.

WER CER
Best ASR 21.5% [20.2 - 22.7] 47.0% [44.2 - 49.7]
Best SLU 23.0% [21.7 - 24.4] 44.1% [41.3 - 46.7]
p-value 1.99e-4 9.99e-5

best lists, we have obtained 6% relative improvement in CER over the

RNNLM that gives the best WER. The improvement is statistically sig-

nificant. We have also shown that a better transcription performance does

not always yield a better understanding performance. Spoken language

systems may be tuned either for transcription or understanding task. The

lexical-semantic relations used in the LM is very important when optimiz-

ing the system for a specific task. By searching over the lexical-semantic

relation space, we may control the system with respect to its performance

metric.

7.2 On-line Adaptation of Semantic Models

In this section, we present an instance-based on-line adaptation scheme for

SLU scoring models. In this approach relevant instances are retrieved from

the training data with respect to their similarity to the SLU hypothesis for

that utterance. The background RNNLM scoring model is adapted on-line

by using these instances. The n-best list for that utterance is re-scored by

using the adapted scoring model.

LM adaptation has long been applied to ASR systems to improve their

performance on a targeted domain. The process involves adapting a back-

ground LM by using domain specific data. In general, LM adaptation is

applied to conventional n-gram LMs. However, recently there have been
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studies that apply LM adaptation to neural networks (NNs). One of the ap-

proaches that has been applied to RNNLMs is to train the NN for one more

iteration with the adaptation data [79]. Information retrieval approaches

that use tf and idf statistics for selecting the relevant documents [1, 42]

have been applied to LM adaptation.

Instance-based approaches solve a new problem by remembering similar

problems that were encountered before [1]. Therefore, extracting the rel-

evant instances from previous experience plays a crucial role. In addition

to retrieval, how to use the retrieved instances for improvement is also im-

portant. The first step in instance-based learning cycle is the retrieval of

the most similar instance or instances [1]. The process involves selecting

instances from a collection of previous instances that are similar to the new

instance at hand.

7.2.1 On-line Adaptation for SLU

SLU systems may benefit from adaptation as much as ASR systems. LM

adaptation has been successfully applied to ASR systems for improving the

performance of domain independent LMs on specific domains. Figure 7.4

shows the distributions of concept frequencies within dialogs that are ran-

domly selected from the training set of the LUNA HM corpus. It can be

seen that except for a few concepts that occur very frequently, the general

concept distribution is very sparse. Due to this sparsity a general model

may fail to capture the distributions well, and adaptation of the general

model to the target dialog may yield improvements in the performance.

The adaptation is applied to the scoring model component of the SLU

module which is depicted in Figure 7.1. The scoring model is a joint

RNNLM that is presented in Section 7.1.1. with structure given in Fig-

ure 7.2. The adaptation procedure is applied to a background joint

RNNLM model that is trained over the whole training data. Adaptation
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Figure 7.4: The concept frequencies within dialogs for the LUNA HM corpus. The di-
alogs are randomly selected from the training set. The darker areas show more frequent
concepts, whereas the lighter areas show less frequent concepts. The concepts are rank
ordered on the x-axis with respect to their frequencies in the training data.

procedure we adopt involves constructing the adaptation data for an utter-

ance, and further training of the background model for 5 more iterations

only with the adaptation data.

7.2.2 Instance-Based On-line Adaptation

The main component of instance-based adaptation is to retrieve the most

similar instances from the training data for each test utterance. The re-

trieved instances are then used as the adaptation data for the target test

utterances. This section first presents the instance retrieval process in

detail especially for SLU systems. Then, two different similarity metrics

are proposed. Finally, we provide the on-line adaptation architecture, and

show how it can be applied to spoken language systems.
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Instance retrieval

Instance retrieval searches for the most similar instances in the training

data for each hypothesis that the system produces. Therefore, it computes

a similarity score between the system hypothesis and each training set in-

stance. The errors that the system introduces in the hypotheses decrease

the precision of the similarity scores when these scores are computed on

the reference transcription. Thus, to increase the precision, the training

data is passed through the SLU system and similarity scores are computed

on the system hypotheses for the training data. However, the instances are

retrieved from the corresponding reference transcription. In addition, since

in general ASR is more precise on meaning bearing words, the words that

map to null concepts are pruned before the similarity scores are computed.

For the adaptation procedure the comparison is performed over three differ-

ent tokenizations; word-concept pairs, words, and concepts. This process

is depicted in Figure 7.5.

Figure 7.5: Instance retrieval process for SLU systems. To compensate errors that SLU
produces similarity scores are computed between the SLU hypothesis of the test utterance
and the SLU hypotheses of the training set. However, the instances are retrieved from
the reference transcription of the training data.
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Similarity metrics

We have used the following metrics for computing the similarity for instance

retrieval. The first metric is the edit distance in which the hypothesis is

aligned with every utterance in the training data and the total number

of errors (deletions, insertions, and substitutions) are computed for each

alignment. Then, the instances are sorted in ascending order with respect

to the number of errors and they are retrieved from the reference transcrip-

tion of the training data.

The second metric is the n-gram match score, which computes the sim-

ilarity by considering n-grams. To compute the similarity, each system

hypothesis is aligned with the hypotheses of the training data. The score

is computed by using Equation 7.2, where n refers to the number of words

in the system hypothesis, ug, bg, and ng refer to matching uni-gram count,

matching bi-gram count and matching n-gram count respectively, and ins

refers to the number of insertions. The instances are sorted in descending

order and instances are retrieved from the reference transcription of the

training data.

score = (
ug

n
+

bg

n− 1
+ ...+

ng

1
−

ins

n
)/n (7.2)

Instance-based on-line adaptation scheme

The instance-based on-line adaptation procedure can be applied at the SLU

output. The general flow of instance-based on-line adaptation is as follows.

The first step is to retrieve the relevant instances from the training data.

Then, the background model is adapted by using these instances. The

n-best hypotheses of the system are re-scored by combining the posterior

probabilities of the adapted model with acoustic scores. The general flow

is depicted in Figure 7.6.
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Figure 7.6: The diagram of instance-based on-line adaptation scheme. The relevant in-
stances are selected by using the spoken language system (SLS) hypothesis. The back-
ground model is adapted by using the retrieved instances. N-best SLS hypotheses are
re-scored by using the adapted model.

7.2.3 LUNA HM Experiments

The baseline system has two modules; an ASR system and a SLU model

that are described in Section 6.1.1 and Section 6.1.2 respectively. The ASR

system is built by the Loquendo speech recognition system and the SLU

alignment model is built with conditional random fields (CRFs). The CER

performance of this model with the performance of the baseline system is

given in Table 7.5.

Table 7.5: Baseline SLU performance (CER). Oracle CER is given for the 100-best list.
The baseline performance of the background RNNLM scoring model is given for 100-best
list re-scoring.

CER
1-best 26.7%

Oracle on the 100-best list 18.3%
100-best re-scored with the RNNLM model 26.1%

Lower bounds for instance-based on-line adaptation

This section presents the lower bounds by using both the reference tran-

scription of the test set and the oracle hypothesis of SLU system. The

instance retrieval process differs at the similarity computation for these
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experiments. The utterances do not include any errors when the reference

transcription is used or they are at minimum when the oracle hypothesis

is used. Therefore, similarity scores are computed with the reference tran-

scription of the training data rather than the SLU hypotheses. Table 7.6

gives the performance of the system with the reference transcription and

Table 7.7 presents the performance for the oracle hypothesis.

As can be seen from the results a significant improvement can be

achieved when instance-based on-line adaptation is applied to the SLU

model. In general we can see that the performance is best when similarity

is computed at concept tokens. Additionally, using the oracle hypothesis

yields better performance than using the reference transcription. We can

obtain 10.8% relative (2.9% absolute) improvement on CER with respect

to the baseline when oracle hypothesis is used and similarity is computed

at the concept level with n-gram match score.

Table 7.6: CER lower bounds when using the reference transcriptions as input to instance
retrieval. “Ins.” refers to the number of instances that are retrieved; 3, 9, 16, 31, and 158
corresponds to 0.1%, 0.3%, 0.5%, 1.0%, and 5.0% of the number of training utterances.
“wc pr.” refers to word-concept pairs. “conc.” refers to concept tokenization.

Ins. Edit distance n-gram match score
wc pr. words conc. wc pr. words conc.

1 25.2% 25.7% 25.0% 24.9% 25.6% 25.4%
3 24.8% 24.8% 25.1% 25.3% 25.3% 24.8%
9 24.8% 25.1% 24.4% 25.2% 25.8% 24.4%
16 24.9% 25.6% 24.4% 25.2% 25.4% 24.7%
31 24.9% 25.1% 24.7% 25.3% 25.2% 24.7%
158 24.5% 25.6% 25.2% 25.7% 26.1% 25.3%

Actual performance of instance-based on-line adaptation

In this section we present actual performance of the instance-based on-line

adaptation on the SLU model. Therefore, instance retrieval is performed

by using the SLU hypothesis of the system. As we have mentioned, to
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Table 7.7: CER lower bounds when using the oracle hypotheses as input to instance
retrieval. “Ins.” refers to the number of instances that are retrieved; 3, 9, 16, 31, and 158
corresponds to 0.1%, 0.3%, 0.5%, 1.0%, and 5.0% of the number of training utterances.
“wc pr.” refers to word-concept pairs. “conc.” refers to concept tokenization.

Ins. Edit distance n-gram match score
wc pr. words conc. wc pr. words conc.

1 25.3% 25.3% 25.1% 24.8% 25.1% 25.6%
3 24.6% 25.1% 25.2% 24.7% 24.7% 25.1%
9 24.6% 25.3% 24.1% 24.6% 24.9% 24.7%
16 24.7% 25.1% 24.2% 24.6% 25.0% 24.2%
31 24.8% 24.7% 24.3% 24.8% 24.9% 23.8%
158 24.8% 25.1% 24.8% 25.4% 25.7% 25.3%

compensate for the errors that SLU hypothesis possesses we have used the

SLU hypotheses of the training data when computing the similarity scores.

The performance of this approach is given in Table 7.8.

Table 7.8: CER on-line adaptation performances. The instances are retrieved by using
the SLU hypothesis of the system for each utterance. “Ins.” refers to the number of
instances that are retrieved; 3, 9, 16, 31, and 158 corresponds to 0.1%, 0.3%, 0.5%, 1.0%,
and 5.0% of the number of training utterances. “wc pr.” refers to word-concept pairs.
“conc.” refers to concept tokenization.

Ins. Edit distance n-gram match score
wc pr. words conc. wc pr. words conc.

1 26.0% 26.1% 26.0% 25.7% 25.9% 26.1%
3 26.3% 25.8% 26.6% 25.4% 25.2% 26.2%
9 25.3% 25.2% 25.7% 25.3% 25.3% 25.9%
16 25.3% 25.1% 25.9% 25.6% 25.8% 26.2%
31 25.5% 25.2% 26.1% 25.7% 25.6% 25.7%
158 25.3% 26.2% 26.0% 25.8% 26.1% 25.6%

The results show that when the instance-based on-line adaptation is

applied to the SLU model, it gives significant improvements on CER. When

these results are compared to the lower bounds we can see that there is still

a huge gap of possible improvement. In addition to that, when similarity

computation scores over word tokens give the worst performance with the

reference transcription and the oracle hypothesis, they perform the best
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when actual SLU hypothesis is used for instance retrieval. Also concept

tokens perform the worst which is not the case with the lower bounds.

This is most likely due to the fact that the SLU hypothesis has more errors

on concept tokens when compared to word tokens. We have obtained 6.0%

relative (1.6% absolute) performance improvement on CER with respect

to the baseline system.

7.2.4 Statistical Significance of the Results

This sections shows that achieved improvements on CER by using instance-

based on-line adaptation for the SLU model are statistically significant with

respect to the baseline system. We compare the performance of the baseline

system with the best performing on-line adaptation system (Table 7.8)

with the two similarity metrics on word tokens. The bootstrap-t confidence

intervals are calculated by using bootstrap method that is given in [18].

In addition, p-values are calculated by using the randomization method

given in [134] which is implemented in the toolkit3. As can be seen from

Table 7.9 the improvements on CER are statistically significant since p-

values are smaller than 0.05.

Table 7.9: The comparison of the baseline system with the instance-based on-line SLU
model adaptation. 90% confidence intervals using 104 bootstrap replications are given in
brackets. Also p-values for the comparison between the baseline and the two approaches
are given. The results show that the improvements are significant.

CER p-value
Baseline 26.7% [24.2 - 29.2] NA

Edit dist. best 25.1% [22.7 - 27.5] 0.01
n-gram match best 25.2% [22.8 - 27.7] 0.03

3The toolkit is available at http://www.nlpado.de/∼sebastian/software/sigf.shtml.
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7.2.5 Conclusion

In this section, we have presented an instance-based on-line adaptation

scheme that aims at improving the performance of SLU systems. The main

idea behind instance-based on-line adaptation is to select relevant instances

from the training data by using the hypothesis that the system outputs for

each utterance. These instances are then used to adapt the model that will

be used for re-scoring. We have achieved significant improvements on CER

for SLU by using word tokens with the edit distance and the n-gram match

score metrics. However, there is still a huge possibility of improvement as

the lower bounds show.

7.3 Application of Joint LMs to Cross-Language SLU

Porting

In this section, we show how joint models can be applied to cross-language

SLU porting by using statistical machine translation (SMT). The work

presented here is a collaborative work that also focuses on the details of

improving the performance SMT systems. However, in this section SMT

systems are not analyzed in detail and just an overview is given. The main

focus is on the use of joint models on cross-language SLU porting.

Cross language porting is the problem of transferring the semantic

knowledge obtained in one language (source language) to a new language

(target language) where there is no semantic annotation [65, 117]. Auto-

matic cross-language porting uses statistical machine translation (SMT)

for translating and aligning the resources. The methodology can be di-

vided in two categories with respect to the direction of translation: Test-

on-Source and Test-on-Target (also known as Train-on-Target) [64]. In

Test-on-source the direction of translation is from the target language to
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the source language i.e. user utterances are first translated to the source

language and the existing SLU model in the source language is applied. In

this manner, the SLU system is extended for the new (target) language. In

Test-on-Target, on the other hand, the direction of translation is from the

source language to the target language, i.e. the semantically annotated

data in the source language is translated and the annotation are trans-

ferred based on SMT alignments. A new SLU model is trained on the

target language. In both of the approaches, the quality of SLU porting de-

pends directly on the quality of the automatic translation. Test-on-Source

approach has been credited to have a better performance [65, 63, 64, 86].

In addition, it is simpler to implement compared to the Test-on-Target ap-

proach since no semantic annotation is transferred through SMT. In this

section, we present how joint LMs can be applied to the Test-on-Source

SLU porting pipeline.

The Test-on-Source approach presented in this section uses off-the-shelf

SMT systems with style adaptation and a manually trained SMT system

on out-of-domain data with domain adaptation. The corpora used for

domain adaptation is the in-domain corpus which is used to train the SLU

model. The style adaptation and domain adaptation take place in the

SMT pipeline. At the final step the semantic hypotheses of the translation

output are re-scored by using joint LMs. The complete Test-on-Source SLU

porting pipeline is given in Figure 7.7. We evaluate our approach on two

different language pairs on the LUNA HM corpus: Spanish-Italian, which

is a close language pair, and Turkish-Italian, which is a distant language

pair.

7.3.1 Corpora

The in-domain corpus used throughout the experiments is the LUNA HM

corpus. Multilingual LUNA corpus [120] is the translation of Italian LUNA
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Figure 7.7: Test-on-Source SMT based cross-language SLU porting pipeline. The target
language utterances are translated to the source language by using an SMT system that
output multiple hypotheses. Translation hypotheses are passed through the SLU module
in the source language. The SLU hypotheses are re-scored by using the joint LM model.

HM corpus to the target languages Spanish, Turkish, and Greek by profes-

sional translation services. The corpus is used to train the in-domain SMT

systems: Spanish-Italian and Turkish-Italian.

The out-of-domain Europarl Parallel Corpus [76] of the proceedings of

the European Parliament is the most popular corpus in machine trans-

lation community. It encompasses 21 European languages, including the

languages of interest: Spanish and Italian. Version 7 (from May 2012)

of the corpus is used to create Spanish-Italian parallel corpus of approx-

imately 1.8M sentence pairs. This parallel corpus is used to train the

out-of-domain Spanish-Italian SMT system.

Europarl is used for Spanish, and for Turkish Wikipedia dump is used to

train LMs for language style adaptation experiments. The Wikipedia text

was extracted and sentence split to result in approximately 3M sentences
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7.3.2 SMT Systems

Google Translate is a general-domain SMT system designed to provide

reliable translations of text in multiple genres. It is trained on a vast variety

of parallel written texts (as opposed to speech transcriptions). Since it is

targeted for a wide range of languages, the translations go through English

as an intermediate language, i.e. a sentence in Turkish or Spanish is first

translated into English and then to Italian.

Europarl Moses is an out-of-domain SMT system that is trained by

using Moses [77] SMT toolkit. The toolkit supports various translation

models: phrase-based and tree-based, as well as factored models; and input

of different levels of complexity from text to ASR lattices. Here we use a

phrase-based translation model on plain text. Prior to training, Europarl

corpus was pre-processed to be suitable for speech transcriptions: it was

tokenized, lowercased and all punctuation was removed.

LUNA Moses is an in-domain SMT system that is trained with the

Moses toolkit. Multilingual LUNA Corpus was used to train both Spanish-

Italian and Turkish-Italian systems. These systems represent a lower-

bound performance.

7.3.3 Style Adaptation

The use of off-the-shelf SMT enables users to obtain satisfactory transla-

tions without the need for the expertise in SMT, however, these systems are

general domain and trained on written text. Therefore, the performance

of this general domain systems drop when the style changes from written

text to spoken conversation. The performance of these systems can be im-

proved by pre-processing the input and then post-processing the output.

Therefore the following steps are applied to improve the performance of

SMT systems:
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SMT Output Post-Processing: The SMT output is tokenized,

converted to lowercase, and all punctuation except single quotes used

in contractions are removed.

Language Style Adaptation: The conversation style is converted

to the written text style. The steps include:

1. Automatic Punctuation Insertion: A language model is used for

inserting punctuation to the transcriptions of the conversations.

2. Automatic Case Restoration: Moses recaser is used that is avail-

able in the Moses toolkit to train translation models from lower-

cased to cased text.

3. De-tokenization: Punctuation marks and contractions are at-

tached to respective tokens with language based rules.

Entity Processing for SMT: Numerical expressions, which are

most frequent entities in the LUNA HM corpus, are converted to

digits in the target language before passing them to the SMT sys-

tem. Then, after the translations these entities are converted back

into their corresponding word forms.

7.3.4 Domain Adaptation

Training SMT systems require parallel corpora in the source and the tar-

get language, which is a limited resource. In addition, SMT systems are

sensitive to the differences in the domain the system is trained and tested.

There are variety of methods proposed for domain adaptation to improve

the performance of SMT systems that are trained on an out-of-domain

corpus [17, 78]. Simple approaches for domain adaptation are [78]:

1. Pooling large out-of-domain and small in-domain parallel corpora to-

gether for training the models.
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2. Using the out-of-domain corpus for the translation model and the in-

domain-corpus for the LM.

Domain adaptation is only applied to the Spanish-Italian data since

Europarl is not available for Turkish. Domain adaptation is applied by

using the in-domain corpus, i.e. LUNA HM corpus.

7.3.5 SLU Performance

In this section we present the Test-on-Source performance of several SMT

systems. First, results with style adapted SMTs are presented for Spanish-

Italian and Turkish-Italian language pairs. Next, the results with domain

adapted SMTs are given. Domain adaptation, is only presented for the

language pair Spanish-Italian since domain adaptation is applied to the

“Europarl Moses” SMT system which is not available for Turkish-Italian.

We use the same joint LM that is used for the instance-based on-line

adaptation experiments presented in Section 7.2. The SLU model we use

is also the same CRF model that is used for the instance-based on-line

adaptation experiments, that is described in Section 6.1.2. The re-scoring

scheme is similar to the ones we have presented in this chapter. The n-best

hypotheses that the SMT outputs are passed through the CRF SLU model

and word-concept alignments are obtained. The joint RNNLM is used to

re-score these word concept alignments. When off-the-shelf SLU systems

are used (“Google Translate”) only the posterior probability of the joint

RNNLM is used during re-scoring. On the other hand, for the trained SMT

systems, since we can obtain the translation scores, we combine translation

scores with the posterior probability of the joint RNNLM for re-ranking.

Table 7.10 shows the Test-on-Source performance for style adaptation.

The style adaptation improves the performance of the SMT systems, there-

fore, the SLU performance also increases (CER decreases) when style
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Table 7.10: The CER performance of Test-on-Source SLU porting with style adapted
SMT systems. Since LUNA Moses is trained on speech, no style adaptation is applied.
The Oracle performance of the n-best list is given in parentheses.

SMT System Baseline Style Adapted Re-scoring JLMs
Spanish - Italian

Google Translate 43.0% 36.1% 34.6% (31.1%)
Europarl Moses 39.2% 35.4% 31.3% (22.8%)
LUNA Moses 25.8% N/A% 25.3% (20.7%)

Turkish - Italian
Google Translate 56.9% 50.4% 49.2% (44.7%)
LUNA Moses 39.2% N/A% 37.9% (27.7%)

adapted systems are compared with their baselines. When performing the

re-scoring experiments, for the “Moses” SMT systems the joint LM scores

is combined with the translation scores, however, since “Google Translate”

is a closed system only joint LM scores are used for re-scoring. This affects

the contribution of re-scoring such that “Moses” SMT systems benefit from

re-scoring more than “Google Translate”. In addition, the “Moses” SMT

systems output 100 best hypotheses where as “Google Translate” outputs

4.5 hypotheses per sentence on average.

Table 7.11: The CER performance of Test-on-Source SLU porting with domain adaptation
for the language pair Spanish-Italian. The Oracle performance of the n-best list is given
in parentheses.
Translation Model Language Model SLU 1st-best Re-scoring JLMs

LUNA HM LUNA HM 25.8% 25.3% (20.7%)

Europarl Europarl 35.4% 31.3% (22.8%)
LUNA HM 31.2% 29.8% (23.6%)

Europarl + LUNA HM Europarl + LUNA HM 28.4% 27.2% (23.1%)

We present the CER performance of Test-on-Source SLU porting with

domain adaptation in Table 7.11 for Spanish-Italian language pair. We

observe that re-scoring with joint LMs improve the understanding perfor-

mance in general. For the in-domain SMT system (LUNA HM with LUNA

HM Table 7.11) the improvement is not significant. However, for the out-
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of-domain SMT systems re-scoring improves the SLU as much as domain

adaptation (comparison of bold CERs in the second group of Table 7.11).

In general, the improvement with re-scoring is proportional to the amount

of out-of-domain data that is present in the LM of SMT systems. Thus,

re-scoring achieves 11.6% relative (4.1% absolute) improvement on the out-

of-domain “Europarl Moses” system over the SLU 1st-best hypotheses.

7.4 Discussion

In this chapter we propose SLU module to be composed of two differ-

ent models for processing multiple hypotheses aiming at improving the

SLU performance. The first model (alignment model) assigns word-concept

alignments to n-best hypotheses of ASR and the second model scores each

alignment hypotheses. We mainly focus on the scoring model, where the

alignment model can be a standard generative model that is based on SF-

STs or a discriminative model that uses CRF for word-concept alignments.

We train joint RNNLM models, which use word-concept pairs as the unit

of modeling. In addition, they use the RNNLM architecture to exploit

distributed representations these architectures work on.

As previously mentioned, the best hypothesis that gives a better WER

does not necessarily lead to a better understanding performance. We have

shown that joint RNNLMs are appropriate architectures that can be tuned

either for recognition tasks or for understanding tasks. The optimization

can be done by incorporating different amount of semantic information in

these joint RNNLMs. In addition, we have shown that a joint RNNLM

has a significantly better understanding performance than a RNNLM that

is built over words.

We have also presented how this joint RNNLM scoring models can be

adapted to the context of the dialog by using instance-based on-line adap-
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tation. We have observed a huge gap of possible improvement when accu-

rate instances are retrieved for an utterance. On the other hand, we have

achieved significant improvements by performing instance-based adapta-

tion on joint RNNLMs.

Finally, we have applied the proposed SLU module to cross-language

SLU porting. In this task the SLU module rather than processing multi-

ple ASR hypotheses, processes multiple SMT hypotheses. In general we

have observed improvements over the SLU 1st-best hypothesis when mul-

tiple hypotheses are re-scored by using joint RNNLMs. The most impor-

tant contribution of joint RNNLMs is that they can replace the process of

domain-adaptation with almost same performance improvement. We have

observed that the amount of contribution the joint RNNLMs can supply is

inversely proportional to the amount of out-of-domain data that is present

in the LM of the SMT system.

In conclusion, joint RNNLMs are promising for improving SLU in spo-

ken language systems. A general model can also be adapted to the dialog

context. In addition, they perform well on other SLU tasks like cross-

language SLU porting.



Chapter 8

Semantic Language Models1

The task of language modeling is simply to predict words. The artificial

language processors can learn from humans, who are the most effective lan-

guage processors. Cognitive studies show that humans may be anticipating

words as they are incrementally processing a sentence. For instance, in

[125] human subjects were presented sentences like the following in Dutch:

“The burglar had no trouble locating the secret family safe. Of

course, it was situated behind a big but unobtrusive...”

which is expected to be completed by the word painting. In Dutch the

gender of the adjective big must agree with the gender of noun that is

not presented. When subjects were presented with prediction-inconsistent

adjectives, which did not agree with painting, a positive deflection was

observed in event-related brain potential (ERP) waveforms. This deflection

was observed because of the failed prediction that subjects came up with.

This effect was not observed in ERP when the sentences are presented

without the constraining discourse. This suggests that human language

processing involves a prediction process which benefits from discourse.

In this thesis, we are not trying to model human cognition, or emulate

human language processing. On the other hand, we believe that language
1The work presented in this chapter is the extended and the revised version of the publication [7].

97
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models can benefit from contextual information in a similar way. The con-

cept of contextual information can be very broad which can range from

simple semantic information like the topic of an utterance to any infor-

mation about the environment where the speech takes place, which would

be almost infeasible to capture. In this thesis, we restrict the contextual

information with the linguistic scene rather than any perceptual cues that

are in the environment. The linguistic scene is very much related to the

context of an utterance, as Fillmore [46] points out this is a pragmatic

knowledge and can be represented by frames. For example, the linguistic

scene related to the words “buy”, “sell”, or “pay” can be represented by

a commercial event scenario frame and the frame elements or slots of this

frame can be filled with the further relevant information in the sentence.

On the other hand, as Bellegarda [10] points out one way to overcome

the locality2 problem in language modeling is by performing span extension.

Span extension can be performed either syntactically or semantically. In

this chapter, we introduce semantic language models (SELMs) which per-

form semantic span extension in the direction Fillmore [46] points out, by

means of the theory of frame semantics.

8.1 The Linguistic Scene

The linguistic scene or the linguistic context can be considered as the prag-

matic knowledge about the utterance. In this respect, we use the theory of

frame semantics for modeling the linguistic scene. In the commercial event

scenario example by Fillmore [46] the target words like “buy”, “sell”, etc.

trigger the frame commercial event scenario. Figure 8.1 presents a similar

example from Penn-Treebank [88]. In this example, the frames “Commerce

Scenario” and “Commerce Sell” create a linguistic scene where the non-

2Locality problem refers to the deficiency of fixed histories in handling long-range dependencies.
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Figure 8.1: An example sentence from Penn-Treebank. The target or target words are
shown in red, the evoked frames are shown in blue. The linguistic scene constructed by
the frames (in bold blue) “Commerce Scenario” and “Commerce Sell” helps in predicting
the relevant non-target word “market”, which is shown in green.

target word “market” is an expected relevant word. Therefore, we expect

that a model that uses this pragmatic information that frames construct,

must have a high expectation for this relevant word, “market”. In addi-

tion, the target words “traders” and “selling” are also related with the word

“market” and must increase the expectation of the model for “market”.

In this thesis, we model and consider the linguistic scene or the semantic

context of a sentence as the set of frames evoked, or the set of targets that

occur in that sentence. Hence, SELMs exploit the semantic relationship

between the linguistic scene and relevant words that occur in the sentence.

Before going into the details of training SELMs, we present a working

word prediction example over the sentence given in Figure 8.1 by using

SELMs that will be described in detail. We compare probability estimates

of SELMs with n-gram models and RNNLMs. The prediction example is

on estimating a probability for the non-target relevant word “market” in

the context of the given sentence. Also, we replace the word “market”

with an irrelevant word, “computer”, in the same context and estimate

its probability by using the same models. For probability estimation, we

have trained the following LMs: a modified Kneser-Ney 5-gram model, a

RNNME model with a 4-gram maximum entropy model (RNNME), and a
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SELM that uses frames as the semantic context (SELM on Frames). The

probability estimates of these LMs for the words “market” and “computer”

in the same context are given in table 8.1.

Table 8.1: Probability estimates for the relevant non-target word market and the sub-
stituted irrelevant word computer in the same context. For the 5-gram LM, the history,
h is the fixed history of preceding words; for the RNNME the preceding word and the
hidden state. For the SELM, h is the preceding word, the hidden state and the set of the
semantic frames evoked in the utterance.

Model P(market | h) P(computer | h)
Modified Kneser-Ney 5-gram 4.2× 10−3 8.2× 10−4

RNNME 6.9× 10−3 1.8× 10−3

SELM on Frames 1.2× 10−2 1.9× 10−5

As can be seen in Table 8.1 the highest estimate for the relevant word

“market” and the lowest estimate for the irrelevant word “computer” is

given by the SELM. The 5-gram model estimates the probability by con-

sidering only the recent history of 4 words, therefore, it would not be able to

model any long-range dependencies in this sentence3. The RNNME models

long-range dependencies by using the recurrent connections, however, the

RNNME considers sentences as sequences of words and does not exploit

the semantic relationships between these words. The SELM, on the other

hand, uses the set of frames evoked in the sentence as the semantic context

and explicitly models the relationship between the frames that are evoked

and the words that occur in the sentence. Hence, it has a high expectation

for the semantically relevant word “market” and a low expectation for the

irrelevant word “computer”.

3In this example, a 5-gram would not be able to capture the dependency between the word “market”
and the relevant target word “traders” that evokes the “Commerce Scenario” frame.
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8.2 Frames and Targets as the Linguistic Scene: Fea-

ture Extraction

We choose to represent the linguistic scene or the semantic context of

sentences by the set of frames that are evoked and the set of targets.

Therefore, to recognize targets and identify which frames are evoked we

use the frame-semantic parser SEMAFOR [32] for English and the LUNA

FrameNet parser [29] for Italian.

The feature extraction process for an English utterance proceeds as fol-

lows. First,the utterance is fed into the SEMAFOR frame-semantic parser.

Then the set of frames or targets in that utterance is extracted as features

of the semantic context. We investigate two different way of construct-

ing the semantic context: one is based only on the set of frames, and the

other only on the set of targets. The feature extraction step for frames is

depicted in Figure 8.2.

Figure 8.2: Semantic feature extraction for frames. The utterance is fed into the semantic
parser, and the frames are extracted. The semantic feature is a binary vector over frames,
where the component at index i is set to 1, if the frame i occurs.
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8.3 SELM Structure

The SELM architecture we present is based on the context-dependent

RNNLM structure that is given in [92]. We aim at using distributed word

representations in SELMs by using neural networks. In addition, using the

RNNLM architecture will enable us to model long-range dependencies in

a better way. The semantic features that are presented in the previous

section4 are used as the context in the context-dependent RNNLM. The

structure of the SELM is given in Figure 8.3. Further, we also use n-gram

maximum entropy features that are trained jointly and implemented as

direct connections in RNNMEs [91]. N-gram maximum entropy features

are not shown in the figure.

8.4 Penn-Treebank Experiments

In this section we present the perplexity result on the Penn-Treebank [88]

part of the Wall Street Journal corpus. The experiments presented here

are performed on the same data with the same settings and by using the

same pre-processing steps as given in [44, 94, 92].

The pre-processing steps involve replacing numerical values with a spe-

cial token “N” and limiting the vocabulary to the most frequent 10K to-

kens. Out-of-vocabulary words are replaced with the ”<UNK>” token.

The following split is used as training, development, and evaluation splits.

Sections 0-20 are used as the training set, sections 21-22 are used as the

development set, and sections 23-24 are used as the evaluation set. These

sets have 930K, 74K, and 82K tokens respectively.

The semantic features are obtained from the raw data which are not pre-

processed. The semantic features, i.e., the binary vector over the frames

4The binary vector over frames or targets.
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Figure 8.3: The SELM structure that is based on the class-based RNNLM structure. The
network takes the current word wt and the semantic context sc for the current utterance
as input. In addition the previous hidden state is copied into the recurrent layer st−1.
The output layer estimates the probability for the next word wt+1 factorized into class
probabilities and class-membership probabilities (clt+1 denotes the recognized class for
the next word). Therefore these probabilities are conditioned on the current word wt,
the previous state st−1 and the semantic context sc. The direct connections from n-gram
histories to output layers are not shown.

and the targets, are extracted by using the semantic feature extraction step

described before. We have obtained 819 distinct frames and 11271 distinct

targets for the training set.

For comparison we have trained a 5-gram modified Kneser-Ney LM with

singleton cut-offs (KN5), a 4-gram feed forward NNLM that has 160 nodes

in the hidden layer, and a RNNME model that has 150 nodes in the hidden

layer and that uses maximum entropy model up to 4-grams with a size of

109 connections. The NNLMs use the same 200 word classes that are

obtained with respect to the frequencies of the words.

The SELMs are trained with the set of frames (“SELM on Frames”) and
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with the set of targets (“SELM on Targets”) separately. All SELMs use

the same word clusters as the other NNLMs to reduce the computational

complexity. They also use maximum entropy features up to 4-grams with

109 connections. They have a hidden layer size of 200. In addition to

these SELMs, we have also trained SELMs on the most frequent frames

that cover the 80% of the training set (“SELM on 80% Frames”) and on

the most frequent targets that cover the 80% of the training set (“SELM

on 80% Targets”). In this setting, the number of frames is 181 and the

number of targets is 1386. The perplexities of the development and the

test set are given in Table 8.2.

Table 8.2: Perplexity (PPL) results on Penn-Treebank part of the Wall Street Journal
corpus on the development split (DEV PPL) and the test split (Test PPL). SELMs achieve
50% and 64% relative reduction in perplexity with respect to Kneser-Ney 5-gram model
when frames and targets are used as semantic context respectively.

Model Dev PPL Test PPL
KN5 148.0 141.2
FF4 165.9 156.3
RNNME 133.6 127.9
SELM on Frames 73.7 70.3
SELM on 80% Frames 84.6 81.4
SELM on Targets 53.8 51.1
SELM on 80% Targets 63.3 60.5

As can be seen from the results we have achieved 50% and 64% reduc-

tion in perplexity with respect to the modified Kneser-Ney 5-gram model.

However, these result may be misleading and should not be compared di-

rectly to the other LMs because SELMs use also the future information in

estimating probabilities. In addition, self information about a word is also

used if the predicted word is a target. Limiting the semantic context to the

most frequent 80% frames or targets also gives satisfactory results. There-

fore, to reduce the complexity we continue our re-scoring experiments with

frames and targets of 80% coverage.
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8.5 Wall Street Journal Experiments

As it is mentioned in the previous section perplexity results may be biased

because of the way SELMs employ semantic information. To assess the

performance of these models better, we present the WER performance on

N-best re-scoring experiments on the WSJ speech recognition task. All

of the experiments presented in this section are performed by using the

publicly available WSJ0/WSJ1 (DARPA November’92 and November’93

Benchmark) sets. The acoustic models are trained on the WSJ0/WSJ1

training utterances also known as SI-284. All the development data under

WSJ1 for speaker independent 20k vocabulary is used as the development

set (“Dev 93” - 503 utterances). The evaluation is done on the November

92 CSR Speaker independent 20k NVP test set (“Test 92” - 333 utterances)

and on the November 93 CSR HUB 1 test set (“Test 93” - 213 utterances).

8.5.1 ASR baseline

The baseline ASR system is built by using the Kaldi speech recognition

toolkit [105] that is given in Section 6.3.1. This system generates the N-

best lists that are used for re-scoring. The WER performance of the ASR

baseline is given once more in Table 8.3.

Table 8.3: The WER performance of the ASR baseline system on Dev 93, Test 92, and
Test 93 sets.

Dev 93 Test 92 Test 93
ASR 1-best 15.3% 10.2% 14.0%
Oracle on 100-best 8.3% 5.1% 7.3%

8.5.2 Re-scoring Experiments – A First Attempt

Re-scoring experiments are performed on the 100-best lists that are gen-

erated by the baseline ASR system. These 100-best lists are re-scored by
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using the SELMs. In addition, we have trained an n-gram LM. All LMs are

trained over the whole WSJ 87, 88, and 89 data with the vocabulary that

is limited to the 20K open vocabulary for non-verbalized punctuation. The

n-gram LM is a modified Kneser-Ney 5-gram model with singleton cut-offs

(KN5). The KN5 model is built on words without any classes.

We have trained SELMs that use frames and targets as semantic context

separately. The SELMs are also trained on the same data with the same vo-

cabulary setting. The semantic features for each utterance in the training

data are extracted by feeding them into the semantic parser SEMAFOR.

The training data has 841 distinct frames and 17736 distinct targets. We

have limited the number of frames and targets to the most frequent ones

that cover the 80% of the training data, which results in 184 distinct frames

and 1182 distinct targets. The SELMs use 200 word classes which are de-

termined with respect to word frequencies and use up to 4-gram maximum

entropy features with 109 connections. We have trained the SELMs by

using the back-propagation through time (BPTT) algorithm [20] on the

training data. We have used the reference transcription and the semantic

context of the reference transcription of the Dev 93 set as the validation

set for early stopping to avoid over-fitting.

The re-scoring experiments that use the SELMs are conducted by using

the following setting. The semantic context for the utterance that will be

re-scored can be extracted either from the reference transcription, oracle

hypothesis, or the ASR 1st-best hypothesis. The experiments that use the

semantic context of the ASR 1st-best hypothesis would reflect the actual

performance of SELMs. The others can be used to observe a lower bound

for WER. Therefore, we refer to the output of the semantic parser as

follows. The output of the semantic parser (frames and targets) on the

reference transcription are referred to as reference frames and reference

targets. The output of the parser on the ASR output are referred to as
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Figure 8.4: The diagram of re-scoring experiments for ASR frames and targets. The
test utterance is passed through the baseline ASR. The ASR 1st-best hypothesis is given
to the semantic feature extraction module, which extracts the semantic context for that
utterance. The N-best list is re-scored by using the SELM with the semantic context for
that utterance.

ASR frames and ASR targets. Finally, the output on the ASR oracle

hypotheses are referred to as oracle frames and oracle targets. We present

the results on reference frames/targets and on oracle frames/targets to

present a lower bound on WER performance of the SELMs, the actual

performance is given by the ASR frames/targets. The re-scoring procedure

for ASR frames/targets is depicted in Figure 8.4.

Table 8.4: The WER performance of the modified Kneser-Ney 5-gram model and the
SELMs. The bold WERs (ASR Frames and ASR Targets) present the actual performance.
Results on the reference and oracle frames/targets are given to show a possible lower
bound on WER.

Model Dev 93 Test 92 Test 93
KN5 14.6% 9.7% 13.3%
SELM on Frames
ASR Frames 14.5% 9.5% 13.9%
Reference Frames 13.4% 8.7% 12.3%
Oracle Frames 13.2% 8.7% 12.0%

SELM on Targets
ASR Targets 15.0% 10.0% 14.4%
Reference Targets 12.9% 8.4% 11.7%
Oracle Targets 12.9% 8.4% 11.6%

The result of the re-scoring experiments are given in Table 8.4. As can

be seen from the results, the SELMs performs significantly better than
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the modified Kneser-Ney 5-gram model when accurate semantic context is

used (as seen in Reference Frames and Oracle Frames). However, when

the ASR 1st-best hypothesis is used due to the ASR noise the performance

drops and SELM on Targets perform even worse than the n-gram model.

8.5.3 Error Pruning for a Better Semantic Context

The results in Table 8.4 show the potential performance of SELMs. When

SELMs are supplied with accurate semantic context, their performance

significantly improves. However, the noise on the ASR frames and targets

drops their performance to an unacceptable range. Therefore to improve

the actual performance, and to lower the noise on the semantic context, we

have pruned the frames and targets that have high error rate on the ASR

hypothesis. This error is computed on the ASR frames and targets with

respect to the frames and the targets of the reference transcription. We

have eliminated the frames and targets that have a more than 10% error

rate of on the development set (Dev93). After the elimination, we have

ended up with 60 distinct frames and 541 distinct targets. The SELMs

are trained from scratch by using this subset of frames and targets and re-

scoring experiments are repeated with these new SELMs. The performance

of the these models is given in Table 8.5.

As can be seen in Table 8.5, pruning erroneous frames and targets lower

the ASR noise and enable SELMs to perform better. Although, it improves

the performance of the SELMs with the frames and the targets, the SELMs

with targets do not perform well and they have a high performance gap be-

tween the evaluation with the ASR targets and with the reference targets.

This gap is larger especially on the evaluation sets, which are not consid-

ered when pruning the errors. On the other hand, SELMs with frames

benefit from pruning better. We do not observe a huge difference between

the SELMs with ASR frames and reference frames after pruning. In ad-
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Table 8.5: Improved WER performance of the SELMs by using low error frames and
targets. The results show that by eliminating erroneous frames and targets, we can get
significant improvements on WER with ASR frames and targets (given in bold). The
SELM on Frames achieve 12% relative improvement on Test 92 evaluation set and 7%
relative improvement on Test 93 evaluation set with respect to the ASR baseline.

Model Dev 93 Test 92 Test 93
KN5 14.6% 9.7% 13.3%
SELM on Frames
ASR Frames 13.8% 9.0% 13.0%
Reference Frames 13.6% 8.9% 13.0%
Oracle Frames 13.5% 8.9% 12.8%

SELM on Targets
ASR Targets 13.9% 9.5% 13.9%
Reference Targets 13.7% 8.9% 13.1%
Oracle Targets 13.7% 8.9% 13.0%

dition, the SELMs on target are computationally more complex models to

train since their context size is almost 9 times larger than the SELMs on

frames with error pruning. Therefore, we continue to make further analysis

only on the SELMs that use frames as the semantic context.

8.5.4 Further Analysis

We make further analysis by pruning erroneous frames at various error

rates. Also we randomize the training data when training the SELMs for

the stochastic gradient descent to converge to a better local minima. We

compare the SELMs on frames with a RNNMEmodel. The RNNMEmodel

is also trained with the same parameters, i.e., with 200 hidden layers and

up to 4-gram n-gram features that uses 109 connections. The RNNME

is also a class-based model that uses the same word classes and it is also

trained with the same randomization of the training data, and initialized

with the same random weights. We have pruned the frames which have an

error rate more than a threshold. For this purpose, the following thresholds

are used: 0%, 5%, 8%, 10%, 12%, 15%, 20%. Table 8.6 gives the number
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of distinct frames after the pruning is performed.

Table 8.6: The pruning thresholds and the corresponding number of distinct frames in
the development set for the WSJ corpus.

Pruning Error Rate No. of Frames
0% 37
5% 41
8% 52
10% 60
12% 69
15% 78
20% 92

We have trained SELMs on frames with the given pruning threshold and

we have re-scored the n-best lists. The WER performance of the SELM

on Dev93 with various thresholds of error pruning is given in Figure 8.5.

Also the WER performance of RNNME is given. As can be seen, when

the reference frames are used SELMs perform better than the RNNME

model. However, the ASR noise reduces the performance of SELMs when

the ASR frames are used. The error rate for the SELMs with ASR frames

has a general tendency to increase as the pruning error rate increases. In

addition, we can see that the difference between the performance of ASR

frames and reference frames increases as the pruning error rate increases.

We observe that for the given pruning thresholds, the SELM performs

better than RNNME for 0% and 8%.

We present the performance of SELMs with the thresholds 0% and 8%

also on the test set in Table 8.7. We do not present the results with

the “oracle frames” since they give lower bounds similar to the “reference

frames” on the WER performance of the SELMs. The linear interpolation

of the two SELMs are also presented. The linear interpolation is applied

with equal weights without performing any optimization.

We can see from the results in Table 8.7 that the SELMs with error

pruned frames can achieve slight improvement in WER over the RNNME
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Figure 8.5: The WER performance of SELM on frames on the Dev93 set with different
pruning error rates.

for Dev93, when the error pruning is applied. For the unseen test set

(Test92, Test93) we do not observe any consistent improvement. Therefore,

error pruning does not perform well for the unseen data. One way to

improve the performance of SELMs is to combine these models at different

pruning thresholds. The linear interpolation5 of the two SELMs perform

consistently better than the RNNME model on all the data sets. Therefore,

we see that linear interpolation can be a choice to combine the performance

of different semantic contexts. In the next chapter, we will also address

the understanding performance of these models.

5The linear interpolation uses equal weights in this case.
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Table 8.7: The WER performance of the SELMs with pruning thresholds of 0% and 8%.
The linear interpolation of the two SELM model with equal weights is also presented.
The results in bold show the actual performance of SELMs.

Model Dev 93 Test 92 Test 93
KN5 14.6% 9.7% 13.3%
RNNME 13.4% 8.8% 12.7%
(1) SELM Err = 0
ASR Frames 13.3% 8.7% 12.7%
Reference Frames 13.3% 8.7% 12.7%

(2) SELM Err < 8%
ASR Frames 13.3% 8.9% 12.7%
Reference Frames 13.1% 8.8% 12.6%

(1)+(2) Linear Int.
ASR Frames 13.2% 8.7% 12.1%
Reference Frames 13.2% 8.7% 12.0%

8.6 LUNA Human-Human Experiments

In this section, we present the performance of SELMs on the Italian LUNA

HH corpus [41]. As described in Chapter 6, LUNA HH corpus is composed

of human-human dialogs that are recorded by a hardware/software techni-

cal support company. The nature of human-human speech has a negative

impact on WER. Hence, the ASR performance is low, and ASR 1st-best

hypothesis contains more errors compared to the ASR hypotheses we have

used in WSJ experiments. The LUNA HH corpus is recorded with a sin-

gle channel, therefore, there are overlapping speech segments and these

segments are discarded.

The LUNA frame-semantic parser [29] is built on the semantic anno-

tations on the LUNA HH corpus. The frame-semantic annotations on

LUNA are in the domain of hardware/software technical support, there-

fore, the frames the parser identifies are domain dependent. This creates

more sparse features compared to WSJ.

We investigate the performance of SELMs by re-scoring experiments

under these two problems related to LUNA HH corpus, i.e., high error
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rates on the ASR hypotheses, and sparse semantic features.

8.6.1 ASR Baseline

The ASR baseline for LUNA HH is constructed by using Kaldi [105] speech

recognition toolkit. The baseline system is described in Section 6.2.1 and

its performance is given once more in Table 8.8.

Table 8.8: The WER performance of the baseline ASR on LUNA HH corpus. The oracle
performance is given for 100-best lists.

Dev Test
ASR 37.7% 36.7%
Oracle on 100-best 25.3% 24.4%

8.6.2 Re-scoring Experiments

The re-scoring experiments are performed by using the same setting as the

WSJ experiments. Therefore, 100-best lists are re-scored by using SELMs

trained over the frames and the targets that are extracted by using the

LUNA frame-semantic parser. We have removed the frames and targets

that just occur once in the training data and we have used 128 distinct

frames and 508 distinct targets. The SELMs use a hidden layer of size 100

and use up to 3-gram maximum entropy features that are implemented by

108 connections. Since the vocabulary size is small, no word classes are

used. In addition, an RNNME model is trained with the same settings.

All neural network models are initiated with the same random weights.

The results of the re-scoring experiments are given in Table 8.9. In this

table, “ASR Frames/Targets” means that we have given the ASR 1st-best

hypothesis to the semantic parser, and “Reference Frames/Targets” means

that we have given the reference transcription to the semantic parser. As

in the WSJ experiments, the actual performance is reported with “ASR
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Frames/Targets”. “Reference Frames/Targets” shows a lower bound to

WER. We omit the results with oracle hypotheses, since they behave sim-

ilar to the reference transcriptions.

Table 8.9: The WER performance of the re-scoring experiments on LUNA HH corpus by
using the SELMs that are trained over frames and targets. KN3 is the LM that ASR uses
therefore it gives the ASR baseline. The bold results (“ASR Frames/Targets”) show the
actual performance of the SELMs.

Model Dev Test
KN3 37.7% 36.7%
RNNME 36.8% 35.5%
SELM on Frames
ASR Frames 37.3% 36.2%
Reference Frames 35.0% 33.9%

SELM on Targets
ASR Targets 37.3% 36.0%
Reference Targets 35.4% 34.0%

We observe a similar situation for LUNA. When the accurate seman-

tic information (“Reference Frames/Targets”) is used, the SELMs have

a significant improvement on WER. However, although the SELMs with

“ASR Frames/Targets” perform better than the ASR baseline, they fail to

outperform the RNNME model.

8.6.3 Error Pruning

We perform error pruning similar to the WSJ experiments. For LUNA HH

corpus, we also prune the erroneous targets together with the erroneous

frames. The thresholds for pruning are 10%, 20%, and 30%. The results

are presented in Table 8.10.

The results show that error pruning also improve the results compared

to training with all the semantic features. Although, the best performing

SELMs have a performance close to RNNME, they fail to outperform RN-

NME. The interpolation of the best model on frames with the best model
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Table 8.10: The WER performance with error pruning at 10%, 20%, and 30% on LUNA
HH corpus. The number of distinct frames and targets with the corresponding thresholds
are given in parenthesis.

Model Dev Test

RNNME 36.8% 35.5%

SELM on Frames - Err. < 10% (12 Frames)
ASR Frames 36.9% 35.5%
Reference Frames 36.9% 35.4%

SELM on Frames - Err. < 20% (20 Frames)
ASR Frames 37.3% 35.8%
Reference Frames 37.1% 35.7%

SELM on Frames - Err. < 30% (28 Frames)
ASR Frames 37.1% 35.7%
Reference Frames 37.1% 35.5%

SELM on Targets - Err. < 10% (88 Targets)
ASR Targets 37.0% 35.5%
Reference Targets 36.9% 35.5%

SELM on Targets - Err. < 20% (104 Targets)
ASR Targets 37.1% 35.8%
Reference Targets 37.0% 35.5%

SELM on Targets - Err. < 30% (124 Targets)
ASR Targets 37.0% 35.6%
Reference Targets 36.9% 35.3%

on targets (not reported in the table) do not bring any improvements over

the individual models. The high error rate on the semantic information

and the sparse semantic features prevents SELMs to be totally optimized.

8.7 Discussion

In this chapter we have introduced SELMs that are based on the theory of

frame semantics. SELMs solve the locality problem by considering long-

range semantic dependencies. SELMs use frames that are evoked and the

targets that occur in a sentence as features. For this purpose, they rely on

the output of frame-semantic parsers.

The perplexity results on Penn-Treebank are encouraging, although as
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we have argued they are biased. A better assessment of SELMs are made

by performing n-best re-scoring experiments over WSJ speech corpus and

LUNA HH corpus. WSJ corpus consists of read news articles and therefore,

ASR baseline performance is acceptable. In WSJ experiments, we have

shown that a slight improvement compared to RNNMEs6 can be achieved.

On LUNA HH corpus, the ASR baseline has a high WER. This affects the

performance of SELMs and prevents them to be optimized as well as the

SELMs that are built for WSJ corpus.

The semantic context is based on the ASR hypothesis and suffers from

the ASR noise. To reduce the ASR noise on the semantic context we

propose to do error pruning. We have achieved a slight improvement over

RNNME with error pruning for the WSJ corpus. However, although error

pruning improves the performance of the SELMs, they cannot outperform

RNNMEs when there is too much noise in the ASR hypothesis as observed

in LUNA HH experiments.

6RNNMEs are the basic building blocks of SELMs.



Chapter 9

Deep Encodings for Semantic

Language Models1

The most important problem related to SELMs presented in the previous

chapter is the fact that they rely on the semantic information that is ex-

tracted from the output of ASR. Therefore, the ASR noise plays a crucial

role on the performance of SELMs. In addition to the ASR noise, the auto-

matic frame semantic parser also introduces noise which prevents SELMs

to fully capture the linguistic scene. One solution to this problem, as in-

troduced in the previous chapter, is to prune the erroneous frames on a

held-out dataset. However, this results in the loss of full semantic context

and does not perform well on unseen data. Because of these restrictions,

the full power of SELMs cannot be utilized.

SELMs are important because as it has been argued multiple times [108,

127] improving WER does not always yield an improvement on the under-

standing performance. This is especially important for spoken language

systems which extracts semantic structures out of the utterances. There-

fore, it is important to optimize LMs both in terms of recognition and

understanding performance.

The performance of ASR can be improved by re-scoring an n-best list

1The work presented in this chapter is the extended and the revised version of the publication [8].
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Figure 9.1: Scatter plot of transcription performance (WER) versus understanding per-
formance (TER) for random selections of hypotheses from the 100-best list of the devel-
opment set of Wall Street Journal corpus.

of hypotheses by using a more advanced LM than the one that is used for

decoding. There may be various ways to select the hypotheses during re-

scoring. Figure 9.1 shows the transcription versus the understanding per-

formance for possible different selections of hypotheses. We measure the

understanding performance by target error rate (TER), which is calculated

from the errors made on target words2, which are the main meaning bearing

elements of semantic frames. If the sole purpose of improving the perfor-

mance is to optimize with respect to the transcription performance (WER),

one may not improve the understanding performance (TER). Hence, LMs

that would be used for re-scoring must be built to jointly optimize the

transcription and the understanding performance.

SELMs play an important role in this joint optimization, because they

are trained by considering the semantic constraints. SELMs do not con-

sider sentences only as sequences of symbols, but they consider the linguis-

2TER is simply equal to the WER on the target words.
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tic scene, i.e., the semantic context which these words occur. In this way,

they incorporate high level semantic information in the model. This high

level information plays a crucial role in optimizing LMs both for recogni-

tion and understanding jointly. For this task, a fully semantics-aware LM

would be a better choice than an LM which semantic information is pruned

to get rid of erroneous frames. Hence, the whole semantic context of the

utterance can be taken into consideration and unseen data can be han-

dled more robustly. This chapter introduces the use of deep autoencoders

that encode the semantic context with a noisy representation, which would

not be significantly affected from the noise introduced by the ASR or the

semantic parser.

9.1 Deep Autoencoders for Encoding Semantic Con-

text

Hinton and Salakhutdinov [58] have shown that deep autoencoders can re-

duce the dimensionality of data with higher precision than principle com-

ponent analysis. In addition, the authors have observed that for document

similarity tasks deep autoencoders outperform latent semantic analysis.

Therefore, high-dimensional low-level semantic context, which contains

more than 1K target vocabulary, can be represented in a low-dimensional

space with a high-level representation by means of autoencoders. Deep de-

noising autoencoders are also shown to learn high-level representations of

the input. These high-level representations rather than hand-built features

improve the performance of digit recognition systems [126].

In addition to dimensionality reduction, SELMs suffer from the noise in-

troduced by the ASR and the frame semantic parser. We have shown that

the accurate semantic information3 improves the performance of SELMs

3The semantic parse of the reference transcription.
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significantly. We propose to handle the noise in the semantic representation

by building noisy representations of the semantic context. We have used

the method of semantic hashing [113] for this purpose. Semantic hashing

is a method in document retrieval that maps documents to binary vectors

such that the Hamming distance between the binary vectors represents the

similarity of documents. In this way, documents can be stored in the mem-

ory address represented by the binary vector and can be retrieved in a fast

manner. A binary vector that is used in semantic hashing [113], compared

to a continuous vector, introduces noise to the high-level representation of

the document. For that reason, it is suitable to be used as a noisy repre-

sentation of semantic context for utterances. This section describes how

the training of deep autoencoders is performed for obtaining deep semantic

encodings for utterances.

We employ 4-layer autoencoders for our experiments. The first layer

is the input layer, which is activated by the bag-of-words representation

of the frames or targets for an utterance. The final layer, encodes these

representations to a binary vector of desired size by means of stochastic

binary units. Therefore, the autoencoders have 2 hidden layers of the same

size. The structure of the deep autoencoders is depicted in Figure 9.2.

9.1.1 Training Deep Autoencoders

Training deep neural networks that have more than one hidden layer by

randomly initializing the weights, and then using gradient descent to learn

the weights, converges to a poor local minima [58]. However, if a good

initialization is done on the weights that is close to a good solution, gradient

descent can converge to a good solution. For that purpose, the training

of deep autoencoders are performed in two phases. The first phase of

training deep neural networks is the unsupervised pretraining step that

finds a good initialization of weights by greedy layer-by-layer training [61].
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Figure 9.2: The structure of the 4-layer deep autoencoder used for semantic encoding.
The input layer represents the input with a bag-of-words model. The output layer outputs
n-bit binary encodings by using stochastic binary units. The hidden layers are continuous
valued units. The weights between layers are represented with Wi.

At the second phase, a standard backpropagation algorithm can be used

to train deep neural networks in a supervised way [58].

We train deep autoencoders for semantic encodings of frames and targets

separately. The input given to the deep autoencoders is the normalized

“bag-of-words” (BoW) vectors of frames for frame encodings, and BoW

vectors of targets for target encodings. The deep autoencoder constructs

n-bit encodings from these BoW vectors.

Unsupervised pretraining

The first phase is the unsupervised pretraining phase as shown in Fig-

ure 9.3. For this purpose, the greedy layer-by-layer training [61] is per-

formed. In this approach, each pair of layers is modeled by restricted

Boltzmann machines (RBMs) and each RBM is trained from bottom to
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top. During the pretraining phase, the visible layer of the bottom RBM

(RBM 1) is modeled by a constrained Poisson model as given in [113].

Therefore, unnormalized BoW vectors are used as the input only when

the activations of the hidden layer are computed. The softmax activa-

tion function is used for the reconstruction of the input as the normalized

BoW vector. The other RBMs use the sigmoid function as the activation

function. The network is pretrained by using the single-step contrastive

divergence CD1 [60].

Figure 9.3: The unsupervised pretraining procedure. Each pair of layer is considered as a
restricted Boltzmann machine and the whole network is trained in a greedy layer-by-layer
approach.
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Figure 9.4: The fine-tuning phase of the deep autoencoder. The autoencoder unrolled
such that W T

i
corresponds to the transpose of the Wi weight matrix. The output layer

reconstructs the normalized BoW representation of the input. Stochastic binary units are
used to enforce binary encodings. The network is fine-tuned by using the backpropagation
algorithm over the reconstruction error.

Fine-tuning

In the second phase, the network is unrolled as shown in Figure 9.4. Here,

W T
i corresponds to the transpose of the Wi weight matrix, so that the

network reconstructs the input at the output layer. The output layer uses

the softmax function and reconstructs the normalized BoW input vector,

the other layers use the sigmoid activation function. The backpropagation

algorithm is used to fine-tune the weights by using the reconstruction error
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at the output layer. The codes at the “code layer” are made binary by using

stochastic binary units at that layer, i.e., the state of each node is set to 1 if

its activation value is greater than a random value that is generated at run

time; or set to 0 otherwise. This state value is used for the forward-pass.

However, when backpropagating the errors, the actual activation values

are used. After training the autoencoder, deep semantic encodings are

obtained by using only the bottom part of the network which corresponds

to the deep autoencoder given in Figure 9.2.

9.2 SELM Structure

The SELM structure that uses semantic encodings has the structure that

is depicted in Figure 9.5. This structure is different than the one pre-

sented in Chapter 8, because the semantic context used in this case is a

high-level hidden representation rather than a low-level representation of

the frames and targets. For this reason, we have removed the connections

between the semantic context and the hidden layer. Therefore, semantic

encodings are directly fed into the output layer. The SELMs we have used

in this chapter also have a class-based implementation that estimates the

probability of the next word by factorizing them into class and class mem-

bership probabilities. The current word is fed into the input layer by 1-of-n

encoding. The semantic layer uses the semantic encoding for the current

utterance. SELMs are trained by using the backpropagation through time

algorithm, which unfolds the network for N time steps back for the recur-

rent layer and updates the weights with the standard backpropagation [96].

SELMs also use n-gram maximum entropy features which are implemented

as direct connections between n-gram histories and the output layer. The

implementation applies hashing on the n-gram histories as given in [91].
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Figure 9.5: The class-based SELM structure for deep semantic encodings. The network
takes the current word wt and the semantic encoding for the current utterance as input.
The output layer estimates the probability for the next word wt+1 factorized into class
probabilities and class-membership probabilities (clt+1 denotes the recognized class for
the next word). The direct connections for the n-gram maximum entropy features are not
shown.

9.3 Wall Street Journal Experiments

We have performed n-best re-scoring experiments on the Wall Street Jour-

nal (WSJ) corpus to assess the performance of these models on the recogni-

tion performance and the understanding performance. Originally, the WSJ

corpus is designed for the speech recognition task. Therefore, the corpus

does not contain any semantic annotation. To assess the understanding

performance we use target error rate (TER), which measures the errors

made on target words. The WSJ corpus is not annotated also for target

words, therefore as a gold standard we have used the output of the SE-

MAFOR semantic parser on the reference transcription of the utterances.

Although this would not give us an exact evaluation, we would have a good

approximation to assess the understanding performance.



126 9.3. WALL STREET JOURNAL EXPERIMENTS

We have used the same training, development, and the evaluation set

that is presented in Section 6.3 the re-scoring experiments are performed

on (“Dev93” - 503 utterances), (“Test92” - 333 utterances), and (“Test93”

- 213 utterances) which are defined in Section 6.3.

9.3.1 Experimental Setting

We use the same ASR baseline that is described in Section 6.3.1. The

performance of the ASR baseline is presented here once more in Table 9.1.

Table 9.1: The WER performance of the ASR baseline system on Dev 93, Test 92, and
Test 93 sets.

Dev 93 Test 92 Test 93
ASR 1-best 15.3% 10.2% 14.0%
Oracle on 100-best 8.3% 5.1% 7.3%

The re-scoring experiments are performed on the 100-best lists that are

obtained from the ASR baseline system. We have re-scored these 100-best

lists by using the SELMs that are trained on frames and targets separately.

In addition we have trained a RNNLM model and a 5-gram model with

modified Kneser-Ney smoothing with singleton cut-offs. All models are

trained on the whole WSJ 87, 88, and 89 data with the vocabulary that is

limited to the 20K open vocabulary for non-verbalized punctuation. There-

fore, the LMs used for re-scoring also include a 5-gram modified Kneser-Ney

model with singleton cut-offs (KN5), a RNNLM model that has 200 nodes

in the hidden layer and uses a maximum-entropy model that has 4-gram

features with 109 connections (RNNME). RNNME uses 200 word classes

that are constructed based on the frequencies of words, however the KN5

does not contain any classes.

The SELMs are trained by using either frame encodings or target en-

codings that are obtained with the relevant autoencoders for various code

lengths. The SELMs have the same configuration with the RNNME model,
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Figure 9.6: The SELM re-scoring diagram. The test utterance is fed into the ASR. The
1st-best ASR hypothesis is passed through the semantic parser and BoW features are
given to the autoencoder for extracting semantic encodings for the test utterance. The
n-best list is re-scored by using the SELM that uses the semantic encoding as the semantic
context for the test utterance.

i.e., they have 200 nodes in the hidden layer and use a maximum-entropy

model that has 4-gram features with 109 connections. They also use the

same word classes. All NNLMs (RNNME and SELMs) are initialized with

the same random weights to make the experiments more controlled. In

addition to that, the training of all NNLMs are done by using the same

randomization of the training data. Since the training data is randomized,

we have built independent sentence models, i.e., the state of the network

is reset after each sentence. Dev93 is used for adjust the learning rate and

for early stopping.

The flow of the re-scoring experiments for SELMs is shown in Fig-

ure 9.6. The ASR 1st-best hypothesis is passed through SEMAFOR to

extract frames and targets, then deep semantic encodings are obtained by

feeding them into the relevant autoencoder.

9.3.2 Deep Semantic Encodings

The deep semantic encodings are constructed for the frames and targets

that evoke these frames separately. Therefore, we have two different seman-

tic encodings, one for the frames evoked and one for the targets that occur

in the utterance. The autoencoders are trained over the whole training
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data that is available for LM training, in addition, Dev93 development set

is used to avoid overfitting. To obtain the frames and the targets for these

data sets, the reference transcriptions are passed through the SEMAFOR

frame-semantic parser, and frames and targets are extracted. Then BoW

vectors of the frames and targets are created. Unsupervised pretraining is

performed for 20 iterations with a mini-batch size of 100 over the BoW vec-

tors of the frames and the targets on the training data. Then fine-tuning is

performed by using stochastic gradient descent over the training data also

by considering the reconstruction error on the development set (Dev93) to

avoid overfitting by adjusting the learning rate and by “early stopping”.

We have used the most frequent frames and targets that cover the 80% of

the training data. Therefore, we use 184 distinct frames and 1184 distinct

targets. The semantic encodings for frames are constructed by using a deep

autoencoder of size (184 − 200 − 200 − n) and for targets (1184 − 400 −

400− n), where n denotes the size of the binary semantic encoding.

9.3.3 The Accuracy of Semantic Encodings

To investigate the accuracy of encodings of various sizes, we compare ASR

encodings with reference encodings. Therefore, we treat reference encod-

ings as gold standards and assess the accuracy of ASR encodings with

respect to them. Since semantic encodings are binary vectors, we can use

the Hamming distance between the ASR and the reference encodings to

determine how accurate they are. Hamming distance measures at how

many bits the two representations differ. On the development set we plot

the histogram of Hamming distance between the ASR and the reference

encodings.

Figure 9.7 shows the histograms of frame encodings in the interval [1, 8]4.

4We do not present the full interval, [0, 24] for clear visualization. The interval [1, 8] covers the critical
part of the distributions.
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Figure 9.7: The histogram of Hamming distance between ASR frame encodings and refer-
ence frame encodings on the development data. The histogram is shown for the Hamming
distance in the interval [1, 8].

As can be seen, as the size of the increase the distribution moves to the

right, i.e., the proportion of encodings with higher number of errors in-

creases. We can see that, sizes of 8-bits and 12-bits have a similar dis-

tribution which has a better performance of suppressing the ASR noise.

However, especially the sizes of 20-bits and 24-bits are very much affected

by the ASR noise and show high discrepancy between ASR and reference

encodings.

The histograms for target encodings are given in Figure 9.8. It is clearly

seen that size of 8-bits has the lowest error distribution and size of 24-bits
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Figure 9.8: The histogram of Hamming distance between ASR target encodings and
reference target encodings on the development data. The histogram is shown for the
Hamming distance in the interval [1, 8].

has the highest error distribution. The others, sizes of 12-bits, 16-bits,

and 20-bits show almost a similar distribution. If both frame and target

histograms are compared, target encodings are expected to be more robust

to ASR noise, since they have a better error distribution (when comparing

the same sizes of frame and target encodings with each other).

We also present the performance of these encodings on the target error

rate (TER) and WER space by performing re-scoring experiments on the

development set. Figure 9.9 shows that both for frame encodings and tar-

get encodings, semantic encodings of size 12-bits perform the best. The
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semantic encodings of size 20-bits and 24-bits are not reliable since they

perform worse than RNNME for target encodings. 8-bit and 16-bit en-

codings have a better joint performance than RNNME. As seen in the

histograms, 8-bit encodings are more robust to noise than other encodings.

However, the SELMs using these encodings perform worse than the SELMs

that use 12-bit encodings. Therefore, it is possible that 8-bit encodings are

not sufficient to capture the semantic context on the WSJ corpus.
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Figure 9.9: The performance of the SELMs on the TER-WER space with various size of
frame and target encodings.

9.3.4 Re-scoring Experiments

In this section, we present the WER and TER performance of all of the

models. These models include the KN5 and RNNME model for compari-

son, SELMs with all sizes of frame and semantic encodings. In addition,

we present the results on the SELMs that use error pruned frames that are

given in the previous chapter. All of the results are presented in Table 9.2.
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Table 9.2: WER and TER performance of all of the models. The performance of SELMs
with all of the sizes of frame and target encodings. The best performing SELMs on
“Dev93” is given in bold. “DevP” refers to perplexity on “Dev93” In addition the SELMs
that use error pruning are given (“SELM - Frame Err Pruning”) are presented

Model DevP Dev93 Test92 Test93
WER(%) TER(%) WER(%) TER(%) WER(%) TER(%)

KN5 146.0 14.6 13.4 9.7 10.4 13.3 13.2
RNNME 117.2 13.4 12.7 8.8 9.6 12.7 12.6

SELM - Frame Enc.
8-bits 113.0 13.5 12.4 8.5 9.1 12.4 12.6
12-bits 111.7 13.2 12.2 8.6 9.3 13.0 13.2
16-bits 109.7 13.2 12.4 9.1 9.7 12.6 13.1
20-bits 110.8 13.2 12.6 8.5 8.9 12.5 12.6
24-bits 111.7 13.6 12.5 9.2 10.1 12.8 13.3

SELM - Target Enc.
8-bits 112.5 13.2 12.5 8.5 8.9 12.4 12.6
12-bits 110.6 13.1 12.3 8.5 9.3 12.4 12.4
16-bits 113.6 13.5 12.3 8.7 9.2 12.5 12.6
20-bits 111.4 13.6 12.6 9.0 9.7 12.7 12.8
24-bits 118.8 13.6 12.8 8.8 9.4 13.1 13.2

SELM - Frame Err Pruning
Err = 0 108.6 13.3 12.4 8.7 9.3 12.7 12.6
Err < 8% 101.1 13.3 12.4 8.9 9.5 12.7 12.6

We can see in Table 9.2 that the SELM with 12-bit target encodings

always performs better than RNNME. The SELM with 12-bit frame en-

codings, on the other hand, performs worse than RNNME only for Test93.

We also see that frame encodings are more noisy, since we observe that

for each data set a different encoding performs the best; but for target en-

codings this is more stable, the 8-bit and 12-bit target encodings perform

consistently better than other sizes. This result is consistent with the error

analysis on the encodings, i.e., target encodings are more robust to noise.

We also see that the SELMs that use error pruned frames perform well

in TER and better than RNNME except for the Test93 set. Therefore, we

can see that error pruning also helps for the understanding performance.
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9.3.5 Understanding Performance

In this section, we make deeper analysis on the understanding performance

of the SELMs. For this purpose, we compute TER for the most frequent

targets that cover the 20%, 40%, 60%, 80%, and 100% of the training

data. To present statistically significant results, we combine all the data

set (Dev93, Test92, and Test93) and make the error analysis on the combi-

nation5. We take the SELMs that have the best joint performance6 on the

development set. Therefore, we present results for the SELM with 12-bit

frame encodings, the SELM with 12-bit target encodings, and the SELM

with error pruning with a threshold of 0%. In addition, we present the

results on RNNME to make a comparison.

We also make analysis on how much the ASR noise degrades the per-

formance of SELMs. For this purpose, we present the results with both

semantic encodings of the ASR hypothesis (“ASR encodings”) and with the

semantic encodings of the reference encodings (“Reference encodings”).

Figure 9.10 shows the detailed understanding performance of reference

frame and target encodings. For the SELM that uses error pruned frames,

ASR and reference frames do not differ, since all erroneous frames are

pruned. Hence, ASR and reference frames are the same. We can see that

reference frame and target encodings have a similar performance and they

perform significantly better than RNNME. We also see that, the SELM

with error pruning performs consistently better than RNNME.

Figure 9.11 shows the detailed understanding performance for ASR en-

codings. We see that the performance of both frame and target encodings

degrade because of the ASR noise. We observe that the frame encodings

are affected more than the target encodings. Target encodings perform

5When TER analyzed on a single set the coverage below 60% does not make much sense.
6The joint performance may be simply given as the sum of WER and TER, considering both under-

standing and recognition have the same importance.
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Figure 9.10: Target error rate at different coverages of target words for reference encod-
ings.

consistently better than RNNME even with ASR encodings. Therefore,

they are more robust to noise.

9.3.6 Combination of Models

We combine the best performing SELMs on “Dev93” by using linear in-

terpolation with equal weights. We refer to the SELM with 12-bit frame

encodings as “SELM - Frame Enc.”, the SELM with 12-bit target encod-

ings as “SELM - Target Enc.”, and the SELM that prunes every erroneous

frame (threshold at 0%) as “SELM - Err. Prune”. We linearly interpo-

late the two SELMs with semantic encodings. And also combine all of the
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Figure 9.11: Target error rate at different coverages of target words for ASR encodings

SELMs with equal weights.

We also present the performance of two additional RNNMEs which are

initialized with different random weights, which are referred to as “RNNME

(2)” and “RNNME (3)”. We linearly interpolate our original RNNME

model (“RNNME (1)”) and the new RNNMEs with equal weights. The

purpose of presenting these results is to show that our improvements are

not result of a lucky random initialization.

The WER and TER performance of these models are given in Table 9.3.

“(1) + (2) + (3)” refers to the linear interpolation of all RNNME models.

“(5) + (6)” refers to the linear interpolation of SELMs that use semantic

encodings and “(5) + (6) + (7)” refers to the linear interpolating of all
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SELMs.

Table 9.3: WER and TER performance of all of linearly interpolated SELMs. The in-
terpolation is performed with equal weights. RNNME (1) is initialized with the same
random weights as all the SELMs.

Model Dev93 Test92 Test93
WER(%) TER(%) WER(%) TER(%) WER(%) TER(%)

KN5 14.6 13.4 9.7 10.4 13.3 13.2
RNNME (1) 13.4 12.7 8.8 9.6 12.7 12.6
RNNME (2) 13.3 12.5 8.6 9.0 12.7 12.6
RNNME (3) 13.3 12.5 8.7 9.3 12.7 12.8

(1) + (2) + (3) (Lin. Int.) 13.2 12.1 8.5 9.1 12.7 12.7

SELM - Frame Enc. (5) 13.2 12.2 8.6 9.3 13.0 13.2
SELM - Target Enc. (6) 13.1 12.3 8.5 9.3 12.4 12.4
SELM - Err. Prune (7) 13.3 12.4 8.7 9.3 12.7 12.6

(5) + (6) (Lin. Int.) 13.1 12.1 8.4 8.9 12.2 12.3
(5) + (6) + (7) (Lin. Int.) 13.1 12.2 8.5 9.4 12.1 11.8

We observe that the interpolation of the two SELMs with semantic en-

codings gives the best performance on both WER and TER. They achieve

a relative improvement of 4.5% in WER and 7.3% in TER for the “Test92”

set and 3.9% in WER and 2.4% in TER for the “Test93” set over the corre-

sponding RNNME (the RNNME that is initialized with the same random

weights), “RNNME (1)”. They still have a slightly better performance if

all of the RNNMEs are combined together. Combination of the SELMs

that uses semantic encodings with the SELM that uses error pruning brings

instability, it improves performance on “Test93”, however, reduces the per-

formance on “Test92”. The comparison of SELMs with different RNNMEs

shows that SELMs outperform RNNMEs in general. The SELMs with

semantic encodings are more stable when combined together with linear

interpolation.
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9.4 Discussion

In this chapter, we have introduced the use of deep semantic encodings as

the semantic context for SELMs. Deep semantic encodings overcome the

problem of the ASR noise in the semantic context of utterances. The deep

semantic encodings are built either from the BoW vectors of frames or

targets. These encodings are high-level binary representations of semantic

information. The binary representation is more robust to the ASR noise

than a continuous representation. We observe that target encodings are

more robust to ASR noise than frame encodings. In addition, as the size

of the encodings increases, the noise becomes more effective on encodings.

The SELMs that use deep semantic encodings as the semantic context

perform better than RNNMEs that do not consider any semantic informa-

tion. The re-scoring experiments on WSJ corpus show that SELMs with

semantic encodings outperform RNNMEs in general. The detailed analysis

on the understanding performance shows that even the ASR noise affects

the accuracy of semantic encodings, the SELMs have a slightly better un-

derstanding performance.

The SELMs that use different kind of semantic information can be com-

bined by linear interpolation. We observe that linearly interpolated SELMs

that uses frame encodings and target encodings perform the best even com-

pared to various RNNMEs interpolated together. Also, SELMs that use

error pruning on frames are combined with the other SELMs. We observe

an instability in this combination. Therefore, we prefer to combine only

the SELMs that use deep semantic encodings.

In conclusion, deep semantic encodings are noisy semantic representa-

tions that can be used to suppress the ASR noise on the semantic context.

The SELMs that use these deep semantic encodings outperform RNNME

in general. The SELMs show better understanding and recognition perfor-
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mance compared to their RNNME counterpart. Therefore, SELMs with

deep semantic encodings are appropriate for SLS that needs joint optimiza-

tion of recognition and understanding. SELMs can be made more robust

by linearly interpolating SELMs that use different semantic encodings.



Chapter 10

Conclusion and Future Work

Language models (LMs) are one of the most important components of

spoken language systems (SLS). They constrain the search space that the

SLS use for finding the best hypothesis. SLS, most of the time, use a

cascaded approach, in which the hypothesis of the ASR component is fed

into the SLU component and the ASR hypothesis is optimized to have a

better recognition performance. However, as it has been discussed, a bet-

ter recognition performance does not always yield a better understanding

performance. Therefore, for the ultimate goal of better understanding, an

optimization must be performed by considering the lexical-semantic rela-

tion space. In this thesis, we introduce two different LMs that consider

lexical and semantic constraints jointly when modeling the language: joint

LMs and semantic LMs.

Traditional LMs, cannot handle long-range dependencies because of the

limited histories they consider. Span extension can be done either by us-

ing the syntactic constraints or the semantic constraints. We investigate

semantic span extension by using semantic LMs (SELMs). SELMs use

semantic features that are based on a well-established theory of lexical se-

mantics, which is called the theory of frame semantics. By incorporating

semantic context in the LM, SELMs are able to handle long-range semantic

139



140

dependencies.

Joint LMs we have presented are built by using word-concept pairs

jointly. We have shown how these models can be optimized either for

recognition or for understanding by changing the amount of semantic in-

formation we place in the LM. In addition, we have shown how these models

can be adapted to the dialog context by means of on-line instance based

adaptation. On-line instance based adaptation creates the adaptation data

by considering what the ASR recognizes. Therefore, the adaptation of joint

models in SLS can be described as “the system understands better what

it recognizes”. We have achieved significant improvements in concept er-

ror rate (CER) by using instance-based adaptation. We have also shown

the performance of joint LMs in a cross-language SLU porting task. We

have shown that joint LMs can replace domain adaptation and also they

improve the SLU 1st-best hypothesis significantly.

SELMs address the problem of long-range dependencies by incorporat-

ing the semantic context in the LM by using semantic features extracted

from the ASR hypothesis. These semantic features are the frames and the

targets that are defined in the theory of frame semantics. The noisy ASR

hypothesis affects the accuracy of the semantic information and reduces

the potential high performance of these models. To raise the accuracy,

we propose to do error pruning on the erroneous frames. The re-scoring

experiments on two different corpora show that, error pruning improves

the performance of SELMs. However, when the WER of the ASR is very

high (as in the LUNA HH corpus), SELMs cannot perform as well as the

state-of-the-art LMs (RNNMEs). On the contrary, when ASR noise is low

(as in WSJ corpus), SELMs slightly outperform RNNMEs.

We also address the problem of ASR noise on semantic features by us-

ing deep autoencoders. We propose to use deep autoencoders that encodes

semantic features into binary vectors by introducing noise in the encoding
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process. Binary vectors, which are also called semantic encodings, lower the

discrepancy between the semantic encodings of the ASR hypotheses and

the semantic encodings of the reference transcriptions. We have shown that

SELMs that use semantic encodings outperform RNNMEs in the recogni-

tion performance (WER). The SELMs, in this manner, can be described as

“the system recognizes better what it understands”. In addition, we have

assessed the understanding performance of SELMs by measuring the WER

only on target words i.e. target error rate (TER). Target words are the

meaning bearing elements of semantic frames and they constitute a good

proxy for assessing the understanding performance. We have shown that

SELMs can be jointly optimized for a better recognition and understanding

performance and they outperform state-of-the-art RNNMEs in this joint

performance.

We believe that apart from the semantic information, LMs for spoken

dialog systems may benefit from the dialog context. As a future work we

plan to integrate the dialog context altogether with the semantic infor-

mation. The most important problem regarding SELMs is the problem

of noisy semantic features. We plan to apply SELMs to other tasks like

statistical machine translation, where there is no noise on the semantic

information extracted from the source language (not considering the noise

the frame-semantic parser introduces). We believe that, the improvements

SELMs achieve in these situations would be relatively higher.
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[86] Fabrice Lefèvre, Franois Mairesse, and Steve Young. Cross-lingual

spoken language understanding from unaligned data using discrimi-

native classification models and machine translation. In Proceedings

of Interspeech 2010, pages 78–81. ISCA, 2010.

[87] C. J. Leggetter and P. C. Woodland. Maximum likelihood linear re-

gression for speaker adaptation of continuous density hidden Markov

models. Computer Speech and Language, pages 171–185, 1995.

[88] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. Building a large annotated corpus of english:

The Penn Treebank. Computational Linguistics, 19(2):313–330,

1993.

[89] Michael F. McTear. Spoken dialogue technology: toward the conver-

sational user interface. Springer, 2004.
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