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1. INTRODUCTION 

The primary goal of this dissertation is to explore modality-general aspects of perceptual 

decision making in the human brain. Primarily, however, one must fully recognize a) the 

conceptual difference between deciding and acting and b) the importance of investigating 

perceptual decisions with the same “bottom-up” rigor as seen within the monkey 

neurophysiology literature. Upon the success of these two points, the field will be capable of 

designing paradigms to systematically remove confounds related to non-decision making 

processes; thus increasing our understanding of the neural representations of core decision 

making processes and improving our ability to study other, related theoretical cognitive 

mechanisms. 

BACKGROUND 

Perceptual decision making (PDM) is commonly described as a scenario in which an observer 

must recognize who or what s/he is perceiving, while fog, rain, or some other kind of 

environmental noise is obscuring the setting, rendering the recognition process more difficult. 

This process has generally been theorized to consist of the accumulation of sensory evidence 

over time and has led to various attempts to link relevant model parameters to neural activity. 

For example, within a diffusion model framework, this accumulation is linked to increased 

neural firing, which eventually arrives at a firing threshold, representing the “decision 

boundary”, the point in time at which the evidence is sufficient for a decision to be reached, 

regardless of the accuracy of the decision (Gold & Shadlen 2007, Heekeren et al. 2008). 

Alternatively, in an attractor network framework, the accumulation is explained through strong 

recurrent connections within a pool of selective excitatory neurons, whose activation by an 

external stimulus will drive the system from a spontaneous to a stable state (Deco et al. 2013, 
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Wang 2002, Wong & Wang 2006). Nevertheless, the results of such perceptual decisions are 

categorical outcomes, which has raised the argument that categorization is a fundamental, 

abstract computation of the decision making process (Freedman & Assad 2011). 

MONKEY NEUROPHYSIOLOGY 

VISUAL DECISION MAKING 

Traditionally, the study of PDM at the neural level was carried out with monkeys trained to 

discern the direction of a patch of somewhat coherently moving dots on a screen, subsequently 

indicating their responses with an eye movement (saccade), while recordings were taking from 

neurons in either the middle temporal (MT) region of the brain (Britten et al. 1996, Newsome et 

al. 1989) or the lateral intraparietal (LIP) region (Shadlen & Newsome 1996, Shadlen & 

Newsome 2001). As the decision making process was theorized to include a “decision variable”, 

which accumulated evidence over time (Shadlen et al. 1996), candidate regions to house such a 

variable would require neuronal spike rates that increased until a decision threshold has been 

reached. 

It was discovered that the spike rate of LIP not only correlated with the percent 

coherence of the dot motion patch (i.e., signal quality) but also increased over time, until the 

monkey signaled his decision (Shadlen & Newsome 2001). Additionally, the neurons of the 

frontal eye fields (FEF) showed a similar spike rate accumulation, whose interruption with 

microstimulation also gave insight into a motor preparation stage of the process (Gold & 

Shadlen 2000). Consequently, the framework was laid out supporting the idea that regions such 

as LIP and FEF contained evidence integrators, which played key roles in perceptual decisions 

(Gold & Shadlen 2001, Gold & Shadlen 2007). 
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However, the paradigms often used tended to contain a major confound: namely that 

the monkey’s decision regarding the stimulus was always linked to a predictable motor act: i.e., 

the way in which the response was signaled. As such, one could merely explain the spike rate 

accumulation as motor preparation (Schwarzbach and Caramazza, in prep.). This issue resulted 

in the need for a paradigm that dissociated perceptual decisions from motor acts (Freedman & 

Assad 2006). To this end, the researchers championed the delayed match-to-category paradigm, 

which essentially provides a subject with two back-to-back stimuli (separated by a delay), the 

first being a sample stimulus and the second being a test stimulus. The subject must then 

determine if the test matches the sample in terms of some feature (e.g., category membership), 

after which a motor act signaling the decision is executed, if the two stimuli do in fact match. By 

employing two stimuli per trial and requiring that any potential motor act depend on a 

combination of characteristics from the first and second stimuli,  the first stimulus becomes 

essentially uncoupled from any systematic motor act,  With this paradigm, Freedman and Assad 

(2006) led the way to a series of experiments, which demonstrated that categories of arbitrarily 

grouped visual stimuli could be represented by spike rates of LIP neurons (Fitzgerald et al. 

2011, Swaminathan & Freedman 2012, Swaminathan et al. 2013). Shortly thereafter, Rishel et 

al. (2013) showed that such representations in LIP spike rates persisted through task-irrelevant 

saccades, despite LIP neurons also taking part in those saccades! Discussing their previous 

work and incorporating a study by Bennur and Gold (2011), Freedman and Assad put forth the 

idea that decisions may, thus, be represented by classifying stimuli into abstract categories: a 

process distinct from motor production and characterized by differences in LIP spike rates 

(2011). Although these PDM theories had been built on studies involving the visual system, 

non-visual domains had not been completely ignored. 
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NON-VISUAL DECISION MAKING 

In the meantime, a set of experiments was attempting to discover neural representations of 

tactile perceptual decisions by using a paradigm that tasked monkeys with discriminating and 

comparing the frequencies at which two back-to-back tactile stimuli fluttered along the 

fingertip (i.e., the monkeys indicated which stimulus’ frequency was higher). In one such study, 

Salinas et al. (2000) probed neurons from primary somatosensory cortex and discovered that 

the resulting spike rates primarily represented simple stimulus encoding. However, shortly 

thereafter, when recording from secondary somatosensory cortex, the resulting spike rates 

appeared to represent a combination of the frequencies of the first and second stimuli (Romo et 

al. 2002). Unfortunately, these studies contained a similar confound in that the monkey’s motor 

response was systematically correlated with one of the two stimuli, which possibly accounts for 

further studies demonstrating PDM processes within the medial and ventral premotor cortices 

(Hernandez et al. 2002, Romo et al. 2004). 

With respect to the auditory domain, as mentioned by Heekeren et al. (2008), 

unfortunately no studies have robustly investigated auditory perceptual decisions in monkeys, 

with the exception of demonstrations that the primary auditory cortex of monkeys does not 

seem to play a role in auditory decisions beyond that of early stimulus encoding (Lemus et al. 

2010, Lemus et al. 2009). 

HUMAN NEUROIMAGING 

VISUAL DECISION MAKING 

Investigations of perceptual decision making within human cortex have produced a slew of 

neuroimaging studies, which have tried to link evidence accumulation, categorization, and other 
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decision making processes to regions such as dorsolateral prefrontal cortex (Heekeren et al. 

2004, Heekeren et al. 2006, Philiastides et al. 2011), insular cortex (Grinband et al. 2006, Ho et 

al. 2009), and inferior and posterior parietal cortices (Hebart et al. 2012, Ploran et al. 2007). 

One primary issue within much of the human PDM literature, analogous to that of the monkey 

literature, is that motor confounds have not been robustly addressed. Often these functional 

magnetic resonance imaging (fMRI) studies have tasked participants with a simple 

discrimination of a visual stimulus (Heekeren et al. 2004, Heekeren et al. 2006, Ho et al. 2009) 

and a subsequent corresponding motor response to indicate his/her choice. This motor 

confound is potentially even more dangerous for an accurate interpretation of results given the 

poor temporal resolution of fMRI. 

NON-VISUAL DECISION MAKING 

Moreover, although perceptual decision making studied in humans has delved further into the 

auditory and tactile domains than monkey studies, the paradigms used have often fallen into 

the same trap of insufficiently dissociating deciding from acting. As a result, similar regions of 

frontal cortex have also been, potentially erroneously, implicated in these auditory (Binder et al. 

2004, Kaiser et al. 2007, Myers et al. 2009) and tactile studies (Pleger et al. 2006, Preuschhof et 

al. 2006). 

Nevertheless, auditory PDM has been explored much further in humans than in 

monkeys, possibly attributable to the overwhelming use of audition for language. Thus, it seems 

reasonable to study auditory decisions through the lens of language: the exact route taken by 

many investigators who employed paradigms that required discrimination of linguistic 

syllables (Binder et al. 2004, Kaiser et al. 2007, Lee et al. 2012, Myers et al. 2009) or natural 

categories (De Lucia et al. 2012, Noppeney et al. 2010). 
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One immediate inconsistency arises in that the previously mentioned visual and tactile 

studies required participants to make decisions along some dimension of random-dot motion 

patches, faces/houses, or tactile frequency flutters: “lower-level” stimuli with relatively simple 

characteristics or stimuli with reliable activation patterns (e.g., face/house representations in 

the fusiform gyrus/parahippocampal cortex, respectively). In this way, researchers attempted 

to study aspects of decision making with less influence from “higher-level” cognitive processes. 

In contrast, by employing linguistic or natural categories as stimuli, the previously mentioned 

auditory studies may, in fact, be tapping into linguistic or semantic processes rather than only 

mechanisms of auditory decision making. Given that earlier studies have shown the recruitment 

of frontal regions during tasks that involve language or semantic processing (Lee et al. 2012, 

Roskies et al. 2001, Siok et al. 2003, Thompson-Schill et al. 1997), lower-level components of 

the auditory PDM process may be overlooked or undetectable when such linguistic or 

semantically-charged stimuli are present in a paradigm. 

Importantly, recent studies have looked into auditory category representations (Leaver 

& Rauschecker 2010, Staeren et al. 2009) or made use of “lower-level” stimuli, such as 

frequency-modulated sweeps (Hsieh et al. 2012). However, such studies contain two pitfalls: 

the paradigms required no decision making from the participants regarding the stimuli, and the 

investigations bias themselves toward the temporal lobes. Although studies of this sort 

(including those containing linguistic stimuli) are interesting in their own regard and do 

contain their merits, exploring general mechanisms of decision making will require, firstly, 

paradigms optimized for decision making1, an issue made more clear by McKee et al. (2014), 

who showed that certain brain regions only carried task-relevant information during decision 

                                                             

1 Here I implicitly stress the difference between deciding and acting 
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making but not during passive viewing, and, secondly, whole-brain analyses, following the 

possibility that general decision making processes need not reside near sensory cortices. 

PRESENT WORK 

The neuroimaging experiments presented in this dissertation are organized into three 

experiments within two chapters and encompass perceptual decisions based on audition and 

somatosensation, following the observation that these sensory systems are far less represented 

in the neuroimaging literature than studies based on vision. The experiments of chapter two 

attempt to challenge the idea that the frontal lobes are the main seat of category-specific 

information in perceptual decision making in a twofold manner: first, by putting emphasis on 

the need to disentangle deciding from acting—via a paradigm that dissociates stimulus 

categorization from predictable motor responses (Freedman & Assad 2006)—and, secondly, by 

utilizing relatively simple stimuli (i.e., auditory and tactile frequency sweeps) that are not 

“semantically charged” or otherwise linked to natural categories. 

While the second chapter touches upon and makes claims about domain-general 

characteristics of abstract categorization in the human brain, the third chapter contains a 

follow-up experiment specifically designed to investigate such domain-generality. This second 

study sought to equate the auditory and tactile sensory modalities at an abstract level with the 

intention of uncovering which brain regions whose underlying information processing may be 

inherently supramodal. To this end, the dissertation ultimately changes direction and focuses 

on “supramodality”. In doing so, both experiments are taken into consideration in an attempt to 

theorize that underlying processes within the framework for PDM may abstract away from both 

in the input channel (the sensory modality from which stimuli originate) and the output 

channel (the eventual overt motor act). 
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Our methodology-of-choice was functional magnetic resonance imaging (fMRI) coupled 

with multivariate pattern analysis (MVPA)(Haxby et al. 2001, Kriegeskorte et al. 2006, 

Oosterhof et al. 2011) in order to try to understand how spatially distributed patterns of 

observed data may represent potentially supramodal information that pertains to the 

categorization process.  
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2. PARIETAL REPRESENTATIONS ALLOW AUDITORY AND 

TACTILE PERCEPTUAL DECISIONS 

ABSTRACT 

Perceptual decision making is the process that makes a rich environment manageable by 

compartmentalizing stimuli into various categories. Parietal cortex is involved in many tasks 

that require perceptual decisions. While much work in both the human and monkey domains 

has investigated processes related to visual decision making in the frontal and parietal lobes, 

relatively little research has explored auditory and tactile perceptual decisions. As such, we 

wanted to know whether these regions also play a role in auditory and tactile decision making. 

Using functional magnetic resonance imaging on humans and a paradigm specifically designed 

to avoid motor confounds and minimize linguistic processing, we found that one area in the 

right intraparietal sulcus, rather than any frontal regions, contained high-level abstract 

representations of auditory and tactile category-specific information. A further analysis 

revealed that encoding of information within this region is spatially distributed rather similarly 

between the auditory and tactile modalities, suggesting the presence of an underlying modality-

general function. Whereas recent human neuroimaging studies have focused on the role of 

frontal areas in decision making and parietal areas in action selection, our findings advance the 

idea that parietal cortex represents information that abstracts away from both the input and 

output domains. 

INTRODUCTION 

Parietal cortex seems to be involved in many different perceptual tasks (Hebart et al. 2012, 

Simanova et al. 2014, van Kemenade et al. 2014, Woolgar et al. 2011). So what is the role of the 
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parietal cortex in decision making? One stance posits that all decisions eventually lead to motor 

acts, and, therefore, the neural activity observed in frontoparietal areas represents motor 

intentions (Cisek & Kalaska 2005, Gold & Shadlen 2001, Shadlen & Newsome 2001), which do 

not distinguish between deciding and acting, and therefore is theoretically inseparable (Cisek & 

Kalaska 2010, Shadlen et al. 2008). However, this view has been criticized by studies that have 

expressly sought to decouple decisions from motor acts (Filimon et al. 2013, Freedman & Assad 

2006). 

Alternatively, one can posit that the role of parietal cortex in perception is to represent 

stimuli on different levels that abstract away from low-level properties, stimulus modalities 

(i.e., supramodal representations), and/or motor intentions (Eger et al. 2003, Freedman & 

Assad 2006, Rishel et al. 2013). This raises the question of whether parietal cortex contains 

different compartments for different sensory modalities, or whether it contains supramodal 

representations or even supramodal functions, such as categorization (Freedman & Assad 

2011). We tested these ideas in the auditory and tactile domains with functional magnetic 

resonance imaging (fMRI) and multivariate pattern analysis (MVPA) (Haxby et al. 2001). 

To investigate abstract auditory (aud) and tactile (tac) categorization in human cortex, 

we conducted two different fMRI experiments in which participants (naud = 21, ntac = 19) 

performed a delayed match-to-category task (Figure 2.1B) that consisted of categorizing the 

direction (up or down) of frequency-modulated (FM) auditory or tactile sweeps of various 

magnitudes (Figure 2.1B). A given trial comprised a sample stimulus, a variable delay, and then 

a test stimulus. Participants were instructed to push a button when the sweep direction of the 

sample (S1) and test (S2) matched. This paradigm actively engages participants in decision 

making (McKee et al. 2014) and dissociates the overt response from stimulus categorization 

(Freedman & Assad 2006). 
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Figure 2.1. Behavioral task and performance 

(A) Example trial of the auditory delayed match-to-category task. 'Weep' and 'woop' portray up- and down-sweeps. 
The fixation dot disappeared during the intertrial interval (1000–4000 ms). (B) FM-sweep stimuli in the experiment. 
For each experiment, stimulus frequencies began at their respective y-axis intercepts and swept upward (blue, red, 
and purple lines) or downward (green, cyan, and gold lines) for 200ms. S2 (solid lines) maintained constant sweep 
speeds, while those for S1 (dashed lines) were determined for each participant using an adaptive procedure31. 
Depicted S1’s are average fast sweeps (red and cyan lines, A: ~70 Hz/s, T: ~12 Hz/s), average slow sweeps (purple 
and gold lines, A: ~40 Hz/s, T: ~9 Hz/s), and flat tones (black lines, 0 Hz/s). (C) Group-level probability that 
participants perceived S1 as an up-sweep for each of the stimulus velocities. Dashed lines denote chance-
performance; error bars represent within-subjects 95% confidence intervals. 

MATERIALS AND METHODS 

PARTICIPANTS AND EXPERIMENTAL SESSIONS 

Twenty-two (12 females and 10 males, 29.7±8.7 (µ±σ) years old) and 20 (11 females and 9 

males, 29.3±7.8 years old) healthy subjects participated in the auditory and tactile experiments, 
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respectively, after providing written consent. All procedures followed safety guidelines for MRI 

research in the Laboratory for Functional Neuroimaging at the Center for Mind/Brain Studies 

(CIMeC) and were approved by the ethics committee of the University of Trento. Subjects 

engaged in a threshold acquisition session prior to the main experiment. One participant’s 

auditory dataset was removed from analyses due to the participant having allegedly fallen 

asleep during experimentation, and one participant’s tactile dataset was removed from analyses 

due to unusually poor behavioral results (Z(d’) < -1.65). Six participants took part in both 

experiments. 

AUDITORY AND TACTILE STIMULI 

The frequency sweeps were created using MATLAB (The Mathworks, Natick, MA, USA). Each 

sweep y was generated by the equation 

y=sin(2πf ∙ t) 

where f is a vector of the sweep's frequencies at a given time point, taud is a 200 ms vector 

sampled at 44.1 kHz while ttac is a 500 ms vector sampled at 1Khz, and f ∙ t is the element-wise 

product of vectors f and t. Each sweep's initial frequency at taud = 0 ms was either 250 Hz or 500 

Hz (alternating between runs), while at ttac = 0 ms they were either 25 Hz or 35 Hz 

(pseudorandomized across trials). The sweeps’ final frequencies at taud = 200 ms and ttac = 500 

ms were determined by the condition of the trial (i.e., sweep direction: up/down and sweep 

speed: fast/slow/flat). All auditory stimuli had a 5 ms rise/fall amplitude envelope. Refer to 

Figure 1B for a visual depiction of the stimuli. 
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STIMULUS PRESENTATION 

Auditory, tactile, and visual stimulation were carried out using ASF (Schwarzbach 2011), built 

on the Psychophysics toolbox (Brainard 1997) for MATLAB. Visual stimuli (black fixation dots 

on a gray background) were projected behind participants in the MR scanner onto a 

semitransparent screen by means of an LCD projector (Epson EMP 9000) at a frame rate of 60 

Hz and a resolution of 1280 x 1024 pixels and were viewed via a mirror positioned above the 

head coil. Auditory stimuli were presented binaurally through MR-compatible headphones 

(SereneSound, Resonance Technology, Northridge, CA, USA). Tactile stimuli were presented to 

the tip of the left index finger using a piezoelectric stimulator (Piezostimulator, QuaeroSys, 

Schotten, Germany), which contained a 2 × 4 matrix of pins (each 1 mm in diameter) that 

extended and retracted from a flat surface measuring 4 mm × 8 mm. 

EXPERIMENTAL PROTOCOL 

The main experimental sessions were rapid event-related designs. The auditory experiment 

was organized into 6 runs (3 runs of stimuli at 250 Hz, 3 runs at 500 Hz) each containing 44 

trials. A given trial (Figure 2.1A) contained a jittered, pre-stimulus fixation dot of 1000-5000 ms 

(geometrically distributed, p = 0.2), followed by a 200 ms sample sweep (S1), followed by a 

jittered delay of 3000-6000 ms (uniformly distributed, in steps of 750 ms), and then a 200 ms 

test sweep (S2), after which the participant was to immediately press a button with the right 

index finger if S2's sweep direction matched that of S1. Otherwise, no motor action was 

performed. In the case of S1's speed being 'flat', a response was considered correct when no 

button was pressed. There was a jittered, intertrial interval of 1000-4000 ms (uniformly 

distributed, in steps of 500 ms) during which the fixation dot disappeared. 
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Although similar in design, the timing of the tactile experimental differed slightly from 

that of the auditory experiment. Because we conducted the tactile experiment after the auditory 

experiment, we were able to improve the timing scheme for each trial, which was intended to 

decrease experimental time for the comfort of the participants.  

Each run of the tactile experiment contained 56 trials and was similar to the auditory 

experiment, although the trial protocol made use of more efficient timing (Figure 2.1A). A given 

trial comprised a jittered, pre-stimulus fixation dot of 1000-4500 ms (geometrically distributed, 

p = 0.2), followed by a 500ms sample sweep (S1), followed by a jittered delay of 3000-4500 ms 

(uniformly distributed, in steps of 500 ms), and then a 500 ms test sweep (S2); the response 

logic was identical to that of the auditory experiment. The fixation dot disappeared during the 

intertrial interval, which also lasted 1000-4000 ms, but was uniformly distributed in steps of 

750 ms. For technical reasons, two subjects performed the tactile task with a high-frequency 

condition of 40 Hz instead of 35 Hz. 

PSYCHOPHYSICS 

The threshold acquisition session was composed of the same paradigm used in the main 

experiment but was a faster, non-jittered version using an adaptive procedure that converged 

on a participant’s ~80% psychophysical threshold (García-Pérez 2000). Thresholds were 

acquired in the MR scanner in order to account for the background noise produced by the 

echoplanar imaging (EPI) sequence. The adaptive procedure consisted of 200 trials for the 

auditory experiment (100 trials of 250 Hz; 100 trials of 500 Hz) and 160 trials for the tactile 

experiment (80 trials of 25 Hz; 80 trials of 35 Hz), which was conducted second and adjusted 

for timing efficiency. Neuroimaging data acquired during the threshold acquisition session were 

not used. 
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EXPERIMENTAL DESIGN 

A given run of the auditory experiment was pseudorandomized and followed a 2 × 2 × 2 design: 

S1 direction × S1 speed × S2 direction, which broke down into Up/Down × Slow/Fast × 

Up/Down. S2 sweep speeds were held constant at 100 Hz/s (Figure 2.1B), while S1 slow 

sweeps corresponded to each subject's 80% threshold (42.3±10.6 Hz/s (µ±σ)), and S1 fast 

sweeps were half the distance between the slow sweep and the magnitude of S2. Each condition 

was repeated 5 times per run. Four trials (~10%) per run were control conditions, unknown to 

the participants, in which S1's sweep direction was flat (i.e., no frequency modulation), 

producing 2 flat trials when S2 swept upward and 2 flat trials when S2 swept downward. 

Each run of the tactile experiment followed a 2 × 2 × 2 × 2 design: Base frequency × S1 

direction × S1 speed × S2 direction, which broke down into Low/High × Up/Down × Slow/Fast 

× Up/Down. S2 sweep speeds were held constant at 15 Hz/s (Figure 2.1B), while S1 slow 

sweeps corresponded to each subject's 80% threshold (8.8±2.8 Hz/s (µ±σ)). Again, S1 fast 

sweeps were half the distance between the slow sweep and the magnitude of S2. Each condition 

was repeated 3 times per run, and 8 trials (~14%) per run were control conditions, in which S1 

contained no frequency modulation. 

NEUROIMAGING DATA ACQUISITION 

Data acquisition was carried out using a 4T Bruker MedSpec Biospin MR scanner and an 8-

channel birdcage head coil. Functional images were acquired with a T2*-weighted gradient-

recalled EPI sequence. At the beginning of each run we acquired a Point Spread Function (PSF) 

scan in order to reduce distortion in regions of high-field inhomogeneity (Robinson & Jovicich 

2011, Zaitsev et al. 2004). We acquired 32 slices per volume in ascending interleaved order 

with a repetition time (TR) of 2250 ms (voxel resolution: 3-mm3 in-plane, echo time (TE): 33 
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ms, flip angle (FA): 75°, gap-size: 0.45 mm). Of the 22 participants in the auditory experiment, 

17 completed 6 runs of the experiment, 2 completed 5 runs, and 3 completed 4 runs (as a result 

of time constraints or fatigue/discomfort). Of the 19 participants in the tactile experiment, 1 

completed 6 runs, 17 completed 5 runs, and 2 completed 4 runs. 

For coregistration of the functional images to high-resolution anatomical images, we 

acquired a T1-weighted scan using a Magnetization-Prepared Rapid Gradient Echo sequence 

(MP-RAGE, 176 axial slices, field of view 256mm x 224mm, 1-mm3 isotropic voxels, Generalized 

Autocalibrating Partially Parallel Acquisition (GRAPPA) with acceleration factor = 2, TR = 2700 

ms, TE = 4.180 ms, TI = 1020 ms, FA = 7°) for each participant. 

BEHAVIORAL DATA ANALYSIS 

A two-way analysis of variance was computed on the participants' accuracies using ezANOVA 

(Rorden, mccauslandcenter.sc.edu/mricro/ezanova) with factors base frequency (auditory: 250 

Hz, 500 Hz; tactile: 25 Hz, 35 Hz) and sweep velocity (Down-Fast, Down-Slow, Flat, Up-Slow, 

Up-Fast) (Figure 2.1C). Only the trials in which participants correctly categorized the stimuli 

were included in the neuroimaging analyses. 

NEUROIMAGING DATA ANALYSIS 

Analysis of the acquired neuroimaging data was carried out with Brainvoyager QX 2.8 (Goebel 

et al. 2006) and the Neuroelf software package (Weber, neuroelf.net).  

PREPROCESSING 

The acquired PSF data were used to apply distortion correction to the EPI images (Zaitsev et al. 

2004). Next, the first three volumes of each functional scan were discarded to account for signal 

http://mccauslandcenter.sc.edu/mricro/ezanova
http://support.brainvoyager.com/
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saturation. Preprocessing of the functional data included, in the following order, slice time 

correction (cubic spline interpolation), motion correction with respect to the first (remaining) 

volume in the first run (estimation with trilinear, resampling with sinc interpolation), and 

temporal highpass filtering (cutoff: 3 cycles within the run). For each participant, functional 

data were then co-registered to high-resolution, de-skulled anatomical scans in native space; 

subsequently, echo-planar and anatomical volumes were transformed into standardized space 

(Talairach & Tournoux 1988). 

CORTEX BASED ALIGNMENT 

Due to high variability in cortical anatomy between subjects, we performed a cortex-based 

alignment in an effort to increase the accuracy of the localization of effects at the group-level 

(Fischl et al. 1999). The cortical surface of each participant was segmented from the rest of the 

brain, and the resulting mesh surface was morphed into a sphere, after which the gyral/sulcal 

folding pattern was aligned to a group-average template sphere. This sphere-to-sphere 

alignment was then applied to each participant's functional data, such that further group-level 

statistics could be carried out on a standard 2D cortical surface constructed from participants in 

both experiments. 

UNIVARIATE ANALYSIS 

Data were analyzed with a random-effects (RFX) general linear model (GLM). Regressors of 

interest, which were all combinations of features for S1 (Up/Down × Fast/Slow/Flat), all 

combinations of features for S2 (Up/Down × Match/Non-Match), the onset of the fixation dot, 

and the button press (whose onset was calculated from the reaction time), were modeled with a 

dual-gamma hemodynamic response function (HRF; onset = 0, time to peak = 5 s, dispersion = 

1, undershoot ratio = 6, undershoot peak = 15 s, undershoot dispersion = 1). Motion correction 
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parameters for 6 directions (3 translational, 3 rotational) were modeled as regressors of non-

interest. 

MULTIVARIATE PATTERN ANALYSIS 

Conditions of interest (i.e., up-sweeps and down-sweeps) for a surface-based searchlight 

analysis (Kriegeskorte et al. 2006, Oosterhof et al. 2011, Oosterhof and Connolly, 

cosmomvpa.org) were selected, and single-trial GLMs were computed in volume space to 

produce maps of the resulting beta-weights’ t-scores using the same parameters as in the 

previous GLM computation for the univariate analysis. Within each direction-of-interest (i.e., up 

or down sweep), these t-score patterns were then collapsed across sweep speed 

(fast/slow/flat), base frequency (low/high), and sample/test stimuli. These volume maps were 

sampled using the surfing toolbox (Oosterhof et al. 2011) in order to morph the functional data 

into surface maps, which were then passed to a linear support vector machine (SVM) 

implemented with LIBSVM (Chang & Lin 2011). The SVM (c = 1) attempted to classify the two 

conditions based on the pattern of t-scores across the vertices of the searchlight (r = 8 mm). 

Training/testing of the SVM followed a leave-one-run-out cross-validation procedure, and 

classification accuracy was computed for each permutation of the cross-validation. The 

resulting classification accuracy for a given vertex was the mean of the all the permutations’ 

accuracies. This process was repeated at each vertex of the map. Accuracies were then 

converted to d’-values, and an 8-nearest neighbor smoothing kernel (~3.5 mm FWHM) was 

applied to individual subject d’ maps before running group-level t-tests.  

CLUSTER-BASED THRESHOLDS 

Given the importance of the cluster over the single voxel in neuroimaging data analysis (Penny 

& Friston 2003), for all tests we employed a cluster-based threshold (Friston et al. 1994) to 
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correct for multiple comparisons. As suggested by Woo et al. (2014), we employed an initial 

two-tailed threshold at p < 0.001 (This threshold proved too conservative for the multivariate 

analyses, which consequently made use of a slightly relaxed initial threshold of p < 0.005) and 

then ran a bootstrapping algorithm in which, for each subject’s statistical parameter map, the 

sign of the d’-values was flipped with a probability of 0.5, the t-test across subjects was 

recomputed, and the conjunction across modalities was performed. This process was repeated 

104 times for each hemisphere. On each iteration, the number of contiguous vertices of the 

largest cluster present in the map was computed to correct for the family-wise error rate 

(FWER) (Hayasaka & Nichols 2003), resulting in a null distribution of 104 cluster areas (N.B.: 

the smallest observable p-value for a cluster area is 0.0001). 

LOGICAL CONJUNCTION 

In order to rule out brain areas that were involved in modality-specific processing, we 

computed the conjunction (Nichols et al. 2005) of auditory and tactile group-level maps by 

taking the smaller absolute value of the two t-scores at each vertex (which already 

independently surpassed a given threshold) and using the smaller of the two degrees of 

freedom for subsequent statistical analyses. 

PATTERN SIMILARITY ANALYSIS 

To understand if there was any similarity between the two modalities within the right IPS 

region, we correlated patterns of category sensitivity distributed across the vertices of the 

region. Within a given modality, all participants’ vectors of 51 unsmoothed d’-values pertaining 

to the right IPS patch were demeaned (participant-wise) and then pairwise correlations were 

computed vertex-wise, resulting in a 51 × 51 matrix of Pearon’s r values (symmetric over the 

main diagonal; Figure 2.6A). The lower triangle (ignoring the main diagonal) was then extracted 
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from each modality’s correlation matrix (Figure 2.6B), and we computed another Pearson’s 

correlation of these two lower triangles (Figure 2.6C). 

MODALITY CORRELATION ANALYSIS 

In order to see if there was a general relationship between the decoding of the auditory and 

tactile modalities within the region of the right IPS revealed by the conjunction analysis, we 

extracted the unsmoothed group-level mean d’-values at each of the region’s 51 vertices for 

both modalities and calculated Pearson’s r between them. 

RESULTS 

BEHAVIORAL RESULTS  

Participants successfully discriminated up-sweeps from down-sweeps (Figure 2.1C). For the 

auditory results, a two-way analysis of variance confirmed that performance varied as a 

function of sweep velocity (F(4, 80) = 339, p < 10-6) but not of base frequency (F(1, 20) = 3.17, p < 

0.09). However, regarding the tactile results, the correct categorization of higher-frequency 

down-sweeps was partially diminished, and the ANOVA revealed main effects of both sweep 

velocity (F(4, 72) = 349, p < 10-6) and base frequency (F(1, 18) = 42.7, p < 4x10-6) and also an 

interaction between them (F(4, 72) = 16, p < 10-6). 
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NEUROIMAGING RESULTS 

TASK ACTIVATES FEW REGIONS; NO UNIVARIATE BOLD DIFFERENCE FOR SWEEP 

DIRECTION 

To discover cortical regions generally involved in stimulus categorization, we computed the 

univariate conjunction of all S1 and S2 predictors collapsed [S1 ∩ S2] (Nichols et al. 2005) on 

cortex-based aligned (Fischl et al. 1999) surfaces individually for the auditory and tactile 

modalities (Figure 2.2). We then computed the conjunction of these maps across modalities and 

applied a cluster-based threshold, revealing several areas (Figure 2.3, Table 2.1), whose BOLD 

amplitude changes and cluster areas survived their respective thresholds (t(18) = 3.922, punc. < 

0.001; pcluster < 0.01, family-wise error rate corrected (FWER)). Although the univariate contrast 

[S1 Up > S1 Down] did yield clusters containing differences in BOLD amplitude for both 

modalities independently, these effects disappeared after the conjunction. 
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Figure 2.2. Univariate results 

Uncorrected (from p < 0.05) group-level activation map revealed by the conjunction [S1 ∩ S2] visualized on a 
partially-inflated, cortex-based aligned, group-average brain. Transparency scales with the magnitude of the t-score. 

 

Figure 2.3. Univariate conjunction results 

Uncorrected (from p < 0.05) group-level map revealed by the conjunction of each modality’s univariate conjunction 
[S1 ∩ S2]. The light blue outlines depict regions that survived the cluster-based threshold (pcluster < 0.01, FWER). 
Transparency scales with the magnitude of the t-score. 
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Region Hemisphere Talairach coordinates (x, y, z) # of vertices pcluster t-score pactivation 

PT L (-49, -42, 20) 112 10-4 4.78 1.5×10-4 

MFG L (-7, 3, 57) 91 10-4 5.37 4.2×10-5 

aIns L (-26, 20, 12) 59 10-4 5.05 8.3×10-5 

PreCG L (-42, -6, 44) 28 10-4 4.21 5.3×10-4 

PrCv L (-53, 1, 23) 24 10-4 4.29 4.4×10-4 

aIPL L (-54, -22, 24) 18 10-4 4.45 3.1×10-4 

aIns R (29, 21, 15) 61 10-4 5.08 7.9×10-5 

MFG R (8, 8, 48) 26 10-4 4.54 2.6×10-4 

Table 2.1. Regions obtained from univariate analyses 

Descriptive statistics, after the conjunction between modalities, of the six left-hemisphere regions (medial frontal 
gyrus (MFG), planum temporale (PT), anterior insula (aIns), precentral gyrus (PreCG), ventral precentral sulcus 
(PrCv), anterior intraparietal lobule (aIPL)) and two right-hemisphere regions (medial frontal gyrus (MFG), anterior 
insula (aIns)) revealed by the univariate contrast [S1 ∩ S2], and the one right-hemisphere region (intraparietal 
sulcus (IPS)) revealed by multivariate SVM-decoding of up-sweeps versus down-sweeps. Multiple comparisons 
corrections were computed with a cluster-based threshold. Coordinates refer to the location of the peak t-score 
within a cluster.  
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LOCAL PATTERNS OF ACTIVITY IN IPS REPRESENT SWEEP DIRECTION 

We employed MVPA (Haxby et al. 2001) to uncover category representations distributed across 

multiple vertices (Oosterhof et al. 2011). Within each modality, a linear support-vector machine 

(SVM; Chang and Lin, 2011), implemented via surface-based searchlight (Kriegeskorte et al. 

2006, Oosterhof et al. 2011), decoded up- from down-sweeps (collapsed across sweep speed, 

base frequency, and S1/S2) from a distributed network for both the auditory and tactile 

modalities (Figure 2.4). However, their conjunction revealed that only the intraparietal sulcus 

(IPS) of the right hemisphere (Figure 2.5, Table 2.2) contained category-specific information 

irrespective of sensory modalities (t(18) = 3.197, punc. < 0.005; pcluster < 0.01, FWER). 

 

Figure 2.4. Multivariate results 

Uncorrected (from p < 0.05) group-level t-scores of SVM classification of up-sweeps vs. down-sweeps. Same 
conventions as in Figure 2.2. 
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Figure 2.5. Multivariate conjunction results 

Uncorrected (from p < 0.05) group-level t-scores of SVM classification of up-sweeps vs. down-sweeps, after the 
conjunction across modalities. The yellow outline depicts the only cluster that survived the cluster-based threshold 
(pcluster < 0.01, FWER). Note the lack of overlap between the surviving clusters revealed by the multivariate and 
univariate (see Figure 2.3) analyses. 

Region Talairach coords. (x, y, z) # of vertices pcluster Decoding range: d’ (%) t-score pdecoding 

IPS (31, -53, 38) 51 3.9×10-4 
A: [0.05, 0.15] ([51.04, 52.98]) 6.01 3.5×10-6 

T: [0.06, 0.14] ([51.28, 52.86]) 4.30 2.1×10-4 

Table 2.2. Regions obtained from multivariate analyses 

Descriptive statistics, after the conjunction between modalities, of the one right-hemisphere region (intraparietal 
sulcus (IPS)) revealed by multivariate SVM-decoding of up-sweeps versus down-sweeps. Multiple comparisons 
corrections were computed with a cluster-based threshold. Coordinates refer to the location of the peak t-score 
within a cluster. ‘A’ and ‘T’ under the ‘Decoding range’ column refer to auditory and tactile, respectively.Patterns of 
category sensitivity within IPS are similar across modalities. 

PATTERNS OF CATEGORY SENSITIVITY WITHIN IPS ARE SIMILAR ACROSS 

MODALITIES 

A region-of-interest analysis sought out any patterns of information present within the 

sensitivity maps of the IPS. The degree to which multivariate decoding correlated across 

different vertices of the IPS exposed distributed patterns of information for both modalities 

(Figure 2.6A). Most interestingly, however, these patterns distributed across rather similar 

vertices for both modalities (Pearson’s r = 0.55, p = 9.8 × 10-103; Figure 2.6C). 
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Figure 2.6. Patterns of category sensitivity. 

(A) Correlating patterns of SVM classification sensitivities (d’) within the IPS reveals a striking similarity between 
modalities in how the category information is decoded across the region. To quantify this similarity, (B) the lower 
left triangles were extracted from each matrix (ignoring the main diagonal) and (C) a linear correlation was 
computed on these vectors, revealing a rather high degree of agreement between the modalities (Pearson’s r = 0.55) 
in how information was decoded within the region. The red line represents a least-squares best fit. 

IPS SHOWS NO PREFERENCE FOR MODALITY 

A further region-of-interest analysis on the IPS, which attempted to uncover any modality bias 

within the region, showed no correlation (Pearson’s r = -0.23, p = 0.11) between group-level 

mean auditory and group-level mean tactile d’-values of each vertex. 
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CONCLUSIONS 

A whole-brain multivariate searchlight exposed information encoded in patterns of activity and 

identified a single area in the right IPS that categorized FM-sweep direction. Given that the up 

vs. down categories that were fed into the SVM (and that participants learned) contained 

stimuli characterized by different base frequencies (Aud: 250 Hz or 500 Hz, Tac: 25 Hz or 35 

Hz) and different sweep magnitudes (i.e., slow, fast, superfast sweep speeds), the categorical 

information learned by the SVM is unlikely to be linked to such physical stimulus properties. 

Furthermore, the conjunction between two independent experiments (i.e., one tactile, one 

auditory) removed regions that were inherently modality-specific from the analysis and 

consequently revealed a common area for representing high-level perceptual information. If 

these two sensory modalities were processed by two distinct perceptual decision making 

mechanisms in different regions, then we would not expect to find commonalities. 

However, the SVM did not strongly decode up- from down-sweeps in regions revealed 

by the univariate conjunction [S1 ∩ S2] (Figure 2.4), despite these regions’ activity likely 

reflecting task-relevant processing (Woolgar et al. 2011, Fedorenko et al. 2013). Not relying on 

univariate changes of BOLD differentiates our approach from earlier work on auditory (Binder 

et al. 2004, Noppeney et al. 2010, Tamber-Rosenau et al. 2013) and tactile (Pleger et al. 2006, 

Preuschhof et al. 2006, van Kemenade et al. 2014) processing of perceptual categories. 

Previous reports on the involvement of frontal cortex in decision making (Binder et al. 

2004, Pleger et al. 2006, Preuschhof et al. 2006, Philiastides et al. 2011) did not disentangle 

predictably associated motor acts from the decision process. By deconfounding motor acts from 

perceptual decisions, our findings suggest that, independent of coding actions and motor 

intentions (Shadlen et al. 2008), parietal cortex is involved in representing high-level abstract 
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information (Freedman and Assad, 2006, 2011). Collapsing the datasets across all dimensions 

except sweep direction ensured that physical stimulus properties within categories were 

different (reducing the likelihood that these properties influenced the SVM), while those 

between categories were similar. As a result, sweep direction was the predominant between-

category difference yielding successful SVM training. 

Given that previous work regarding the IPS has investigated supramodal numerosity 

(Eger et al. 2003), spatial processing (Yantis et al. 2002, Lehnert and Zimmer, 2008), category 

switching (Serences et al. 2004), and attention-based rehearsal in spatial working memory 

(Postle et al. 2004), our results allow us to set up a general theory that the IPS represents 

abstract information, independent of sensory modalities. However, because our findings are 

restricted to the right IPS, one possible explanation adheres to the idea of temporal information. 

Previous discussions by Battelli et al. (2007) have proposed that the right inferior parietal 

lobule is involved in temporal attention. While our results reveal categorical information, rather 

than mere task-related activation, one could argue that frequency sweeps (in either the 

auditory or tactile domain) inherently contain temporal features that exist in their cortical 

representations. Consequently, it is conceivable that the function of the right IPS is to represent 

temporal categories. Although converging evidence from physiological (Fitzgerald et al. 2011) 

and neuroimaging work (Heekeren et al. 2004, Hebart et al. 2012) has demonstrated the 

parietal lobe to be involved in visual categorization, a crucial test of our theory would consist of 

finding that the right IPS also encodes non-temporal visual categories. Testing beyond 

modality-general aspects of categorization (e.g., category flexibility) in the IPS will require 

future work to investigate a larger number of different arbitrary categories with alterable 

category boundaries. 
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Moreover, while the conjunction analysis indicates that the right IPS contains at least 

multimodal representations that are independent of motor acts, we ran two further correlation 

analyses to explore information within this region-of-interest. The first analysis revealed that 

patterns of category-sensitive information were distributed across rather similar vertices for 

both modalities (Figure 2.6), which speaks to a supramodal (rather than only a multimodal) 

interpretation of the role of the IPS. Furthermore, the second analysis revealed no correlation 

between mean auditory and mean tactile d’-values of each vertex, suggesting no particular 

compartmentalization of modalities within this region. One could further scrutinize the idea of 

supramodality by testing for cortical representations of inherently supramodal categories 

within this region, an analysis that is not possible with the current between-subjects design. 

Taken together, our results reveal high-level abstract information encoded in the right 

IPS from two different sensory modalities. This finding, supported by previous work in the 

visual domain from monkey neurophysiology (Freedman and Assad, 2006, Fitzgerald et al. 

2011) and human neuroimaging (Ploran et al. 2007, Hebart et al. 2012), suggests that, 

irrespective of motor affordances, the role of parietal cortex in decision making goes beyond 

that of general involvement (Ploran et al. 2007, O'Connell et al. 2012, Tamber-Rosenau et al. 

2013) and instead leads to the working hypothesis that the right IPS is a categorizer that 

abstracts away from both the input and output domains.  
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3. DECODING SUPRAMODAL INFORMATION IN HUMAN CORTEX 

ABSTRACT 

Perceptual decision making is the cognitive process whereby the brain parcels stimuli into 

abstract categories. Most prior work has probed the underlying processes in a unimodal 

fashion, leaving the question of supramodal categorization open to speculation. To investigate 

supramodal categorization, one must ensure that supramodal information exists at some level 

of the functional architecture by abstractly equating different sensory modalities—independent 

of temporal or spatial information. We employed a delayed match-to-category paradigm 

requiring participants to categorize auditory and tactile frequency-modulated (FM) sweeps 

according to learned, supramodal categories. While participants performed this task, we 

measured their blood-oxygenation-level dependent signal using functional MRI. To detect 

cortical representations of supramodal information, we used whole-brain multivariate pattern 

analysis implemented via linear discriminant analysis (LDA) classification. With three different 

analyses we showed that a) learned categories were best decoded within the right anterior 

parietal lobe and the medial frontal gyrus, b) supramodal representations of “up- vs. down-

sweeps” were localized to the left parietal-temporal-occipital junction, and, most 

consequentially, c) cross-modality decoding of category membership was strongest in the left 

posterior insula and precuneus. Given our choice of paradigm, such results appear to 

demonstrate that the information representations in the posterior insula and precuneus are 

independent of motor and language processing and instead reflect supramodal or modality-free 

mechanisms that underlie the categorization process. 
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INTRODUCTION 

Interacting with the environment stimulates all of our senses. Although this may seem 

overwhelming, cognition makes life manageable by breaking down sensory stimulation into 

simple categories. The functions that the brain utilizes to integrate such sensory information 

over time (Gold & Shadlen 2007, Heekeren et al. 2008) and parcel it into abstract categories 

(Freedman & Assad 2011) are part of the process known as perceptual decision making. 

However, the extent to which this process abstracts away from the sensory domain remains 

unknown. 

Previous neuroimaging work in humans has used visual (Grinband et al. 2006, Hebart et 

al. 2012, Heekeren et al. 2004, Ho et al. 2009, Ploran et al. 2007), auditory (Binder et al. 2004, 

Kaiser et al. 2007, Lee et al. 2012, Myers et al. 2009), and tactile (Pleger et al. 2006, Preuschhof 

et al. 2006, van Kemenade et al. 2014) stimulation to probe the cortical mechanisms that 

underlie the process of categorization. Furthermore, some investigations have even sought to 

understand perceptual decisions irrespective of sensory modalities (Ivanoff et al. 2009, 

Noppeney et al. 2010, O'Connell et al. 2012, Simanova et al. 2014, Tamber-Rosenau et al. 2013, 

Levine & Schwarzbach under review). However, no study so far has tried to explicitly equate 

sensory modalities within the perceptual task, effectively ensuring modality-general 

information processing at some level of the functional architecture. 

To this end, we employed a delayed match-to-category task that contained inherently 

“supramodal” categories whose members were frequency-modulated (FM) sweeps of different 

sensory modalities. A given trial contained two stimuli (S1 and S2) separated by a short delay, 

and the participant was instructed to press a button if S2 belonged to the same category as S1 

(Figure 3.1A). Participants learned to classify auditory down-sweeps (A↓) and tactile up-sweeps 
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(T↑) as members of the one category and auditory up-sweeps (A↑) and tactile down-sweeps 

(T↓) as members of another category (Figure 3.1B and C). The advantages of this paradigm are 

threefold: disentanglement of the eventual motor response (Freedman & Assad 2006), task-

relevant equation of the sensory modalities, and dissociation of the abstract category from the 

natural “up vs. down” semantics potentially evoked by a single FM sweep stimulus. 

Using functional magnetic resonance imaging (fMRI) and multivariate pattern analysis 

(MVPA; Haxby et al. 2001), we aimed to uncover which regions of the brain, if any, contained 

such supramodal information within their local patterns of activity. With this strategy, we hope 

to take investigations of perceptual decision making one step further by touching upon 

mechanisms that may be truly flexible with respect to the information that they process. 
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Figure 3.1. Trial protocol and stimulus categories 

(A) Example trial of the delayed match-to-category task. 'Weep' and 'woop' depict up- and down-sweeps. The 
fixation dot remained hidden during the intertrial interval (1000–3250 ms). (B) Intuitive definition of the arbitrary 
categories that participants learned prior to the experiment. The category names “II” and “IV” derive from (C) a 
geometric definition of the stimuli and categories (see Stimulus categories). (D) A visual representation of the FM-
sweep stimuli used in the experiment (see Auditory and tactile stimuli). (E) A simple decision tree portraying the 16 
possible trial types (ignoring stimulus’ initial frequency) and their correct behavioral outcomes. 

MATERIALS AND METHODS 

PARTICIPANTS AND EXPERIMENTAL SESSIONS 

Twenty-nine (18 females and 11 males, ~28±7 (µ±σ) years old) healthy subjects participated in 

the experiments after providing written consent. All procedures followed safety guidelines for 

MRI research in the Laboratory for Functional Neuroimaging at the Center for Mind/Brain 

Studies (CIMeC) and were approved by the ethics committee of the University of Trento. Eight 

participants’ datasets were removed from analyses due to poor task performance (range(d’) = 
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[0.38, 0.83]), as determined by a k-means clustering algorithm, which systematically clustered 

these eight participants d’s together using a k of 4, 5, 6, and 7.  

EXPERIMENTAL PROTOCOL AND DESIGN 

A given trial (Figure 3.1A) of the task contained a jittered, pre-stimulus fixation dot of 1000-

4500 ms (geometrically distributed, p = 0.2), followed by a 400 ms sample sweep (S1), and then 

a jittered delay of 3000-4500 ms (geometrically distributed, p = 0.2), followed by a 400 ms test 

sweep (S2), after which the participant had to press a button with the right index finger if S2 

was a member of the same category as S1; otherwise, no motor act was performed. There was a 

jittered, intertrial interval of 1000-3250 ms (uniformly distributed, in steps of 750 ms) during 

which the fixation dot disappeared. 

The experiment was a rapid, event-related design that followed a factorial structure of 2 

(S1 modality: auditory, tactile) × 2 (S1 frequency: high, low) × 2 (S1 direction: down, up) × 2 (S2 

modality: auditory, tactile) × 2 (S2 frequency: high, low) × 2 (S2 direction: down, up). Trial 

presentation was pseudorandomized, and trials containing identical initial frequencies for both 

S1 and S2 were removed. Each condition was repeated once per run, resulting in a given run 

containing 48 trials. 

AUDITORY AND TACTILE STIMULI 

The frequency sweeps were created using MATLAB (The Mathworks, Natick, MA, USA). Each 

sweep  ⃑ was generated following the equation 

 ⃑         ⃑   ⃑  
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where  ⃑ is a vector of a sweep's frequency at a given time point,  ⃑ is a 400 ms vector sampled at 

44.1 kHz (aud) or 1Khz (tac), and  ⃑   ⃑ is the element-wise product of vectors  ⃑ and  ⃑. Each 

sweep's initial frequency (f0) at t0 was 250 Hz (aud low), 500 Hz (aud high), 25 Hz (tac low), or 

35 Hz (tac high), which was pseudorandomized across trials. The sweeps’ final frequencies at 

t400 were f0 ± 20 Hz (aud) and f0 ± 13 Hz) ∥ 23 Hz (tac low ∥ tac high, respectively). All auditory 

stimuli had a 5 ms rise/fall amplitude envelope. Refer to Figure 3.1D for a visual depiction of 

the stimuli. 

STIMULUS CATEGORIES 

The two task-relevant categories that participants learned were designed to equate sensory 

modalities, sweep directions, and initial frequencies, such that the category boundary 

abstracted away from all three of these features. One category (category II) contained auditory 

down-sweeps and tactile up-sweeps, while the other (category IV) contained auditory up-

sweeps and tactile down-sweeps (Figure 3.1B). 

The naming scheme derives from a geometric definition of these abstract categories, 

whereby one maps the two sensory modalities onto a Cartesian plane: auditory on the abscissa 

and tactile on the ordinate (Figure 3.1C). Vectors projecting from the origin along either of the 

two axes represent auditory or tactile sweeps, and their signs (i.e., +/−) determine the sweeps 

directions (up/down). Two additional vectors that project from the origin into quadrants II and 

IV (at 135° and 315°, respectively) represent the two categories: hence the names II and IV. 

Thus, a stimulus (s) is a member of a particular category (c) when the cosine of the angle 

between vectors  ⃑ and  ⃑ (  ⃑ ⃑) produces a positive value, or mathematically 

         ⃑ ⃑        
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STIMULUS PRESENTATION 

Auditory, tactile, and visual stimulation were carried out using ASF (Schwarzbach 2011), built 

on the Psychophysics toolbox (Brainard 1997) for MATLAB. Visual stimuli (black fixation dots 

on a gray background) were projected behind participants in the MR scanner onto a 

semitransparent screen by means of an LCD projector (Epson EMP 9000) at a frame rate of 60 

Hz and a resolution of 1280 × 1024 pixels and were viewed via a mirror positioned above the 

head coil. Auditory stimuli were presented binaurally through MR-compatible headphones 

(SereneSound, Resonance Technology, Northridge, CA, USA). Tactile stimuli were presented to 

the tip of the left index finger using a piezoelectric stimulator (Piezostimulator, QuaeroSys, 

Schotten, Germany), which contained a 2 × 4 matrix of pins (each 1 mm in diameter) that could 

protrude from a flat surface measuring 4 mm × 8 mm. 

NEUROIMAGING DATA ACQUISITION 

Data acquisition was carried out using a 4T Bruker MedSpec Biospin MR scanner and an 8-

channel birdcage head coil. Functional images were acquired with a T2*-weighted gradient-

recalled EPI sequence. At the beginning of each run we acquired a Point Spread Function (PSF) 

scan in order to reduce distortion in regions of high-field inhomogeneity (Robinson & Jovicich 

2011, Zaitsev et al. 2004). We acquired 32 slices per volume in ascending interleaved order 

with a repetition time (TR) of 2250 ms (voxel resolution: 3-mm3, in-plane, echo time (TE): 33 

ms, flip angle (FA): 75°, gap-size: 0.45 mm). Of the 21 participants whose datasets entered into 

neuroimaging analyses (see Participants and experimental sessions), 1 completed 7 runs of the 

experiment, 16 completed 6 runs, 3 completed 5 runs, and 1 completed 4 runs (as a result of 

time constraints or fatigue/discomfort). 
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For coregistration of the functional images to high-resolution anatomical images, we 

acquired a T1-weighted scan using a Magnetization-Prepared Rapid Gradient Echo sequence 

(MP-RAGE, 176 axial slices, field of view 256mm x 224mm, 1-mm3 isotropic voxels, Generalized 

Autocalibrating Partially Parallel Acquisition (GRAPPA) with acceleration factor = 2, TR = 2700 

ms, TE = 4.180 ms, TI = 1020 ms, FA = 7°) for each participant. 

BEHAVIORAL DATA ANALYSIS 

Resampling tests were used to generate null distributions from the behavioral data in order to 

determine if group-level accuracies for the two categories differed from chance (in addition to 

potentially differing from each other). For each of the two tests against chance, values from 

each category were randomly permuted with values from a theoretical distribution of chance-

level values (i.e., 50%) and subsequently divided into two pools, from which the test statistic—

the difference of the pools’ means—was calculated. For the test of category differences, the 

values for each category were permuted with each other. This procedure was repeated 105 

times, resulting in 3 null distributions (one for each test), from which exact p-values were 

computed as the number of values in the null distribution that were more extreme than the 

originally observed test statistic divided by the total number of iterations (i.e., 105), adding 1 to 

both the numerator and denominator (to account for the original dataset being a possible 

permutation). 

NEUROIMAGING DATA ANALYSIS 

Analysis of the acquired neuroimaging data was carried out with Brainvoyager QX 2.8 (Goebel 

et al. 2006), the Neuroelf software package (Weber, neuroelf.net), and CoSMoMVPA (Oosterhof 

& Connolly, cosmomvpa.org). Note that only the trials in which participants correctly 

categorized the stimuli were included in the neuroimaging analyses. 

http://support.brainvoyager.com/
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PREPROCESSING 

The acquired PSF data were used to apply distortion correction to the EPI images (Zaitsev et al. 

2004). Next, the first three volumes of each functional scan were discarded to account for signal 

saturation. Preprocessing of the functional data included, in the following order, slice time 

correction (cubic spline interpolation), motion correction with respect to the first (remaining) 

volume in the first run (estimation with trilinear, resampling with sinc interpolation), and 

temporal highpass filtering (cutoff: 3 cycles within the run). For each participant, functional 

data were then co-registered to high-resolution, de-skulled anatomical scans in native space; 

subsequently, echo-planar and anatomical volumes were transformed into standardized space 

(Talairach & Tournoux 1988). 

CORTEX BASED ALIGNMENT 

Due to high variability in cortical anatomy between subjects, we performed a cortex-based 

alignment in an effort to increase the accuracy of the localization of effects at the group-level 

(Fischl et al. 1999). The cortical surface of each participant was segmented from the rest of the 

brain, and the resulting mesh surface was morphed into a sphere, after which the gyral/sulcal 

folding pattern was aligned to a group-average template sphere. The transformation matrices 

that resulted from this alignment were then applied to each participant's functional data, such 

that further group-level statistics could be carried out on a standard 2D cortical surface 

constructed from all participants. 

UNIVARIATE ANALYSIS 

Data were analyzed with a random-effects (RFX) general linear model (GLM). Regressors of 

interest, which were all combinations of features for S1 (i.e., aud/tac × up/down; collapsed 
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across f0), all combinations of features for S2 (i.e., aud/tac × up/down; collapsed across f0), the 

onset of the fixation dot, and the button press (whose onset was calculated from the reaction 

time), were modeled with a dual-gamma hemodynamic response function (HRF; onset = 0, time 

to peak = 5 s, dispersion = 1, undershoot ratio = 6, undershoot peak = 15 s, undershoot 

dispersion = 1). Motion correction parameters for 6 directions (3 translational, 3 rotational) 

were modeled as regressors of non-interest. 

MULTIVARIATE PATTERN ANALYSIS 

Conditions of interest (e.g., II and IV) for a surface-based searchlight analysis (Kriegeskorte et 

al. 2006, Oosterhof et al. 2011) were selected, and single-trial GLMs were computed in volume 

space to produce maps of the resulting beta-weights’ t-scores using the same parameters as in 

the previous GLM computation for the univariate analysis. These volume maps were sampled 

using the surfing toolbox (Oosterhof et al. 2011) in order to morph the functional data into 

surface maps, which were then passed to a linear discriminant analysis (LDA) classifier 

implemented with CoSMoMVPA. The LDA attempted to classify the two conditions based on the 

pattern of t-scores across the vertices of the searchlight (r = 8 mm, 12 mm). Training/testing of 

the LDA followed a leave-one-run-out cross-validation procedure, and classification accuracy 

was computed for each permutation of the cross-validation. The resulting classification 

accuracy for a given vertex was the mean of the all the permutations’ accuracies. This process 

was repeated at each vertex of the map. Accuracies were then converted to d’-values, and a 1-

nearest neighbor smoothing kernel was applied to individual participants’ d’ maps before 

running group-level statistics. 

With respect to the cross-decoding analysis (i.e., training on A↓ vs. A↑; testing on T↑ vs. 

T↓), rather than applying a leave-one-run-out cross-validation scheme, all the training data 
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patterns were lumped together from all runs, and all the test data patterns were lumped 

together from all runs (and vice versa) for a given participant before applying a 2-fold cross-

validation scheme. In short, having four experimental conditions of interest, we trained on 1 vs. 

2, tested on 3 vs. 4, obtained classification accuracies, then trained on 3 vs. 4, tested on 1 vs. 2, 

obtained classification accuracies, and finally averaged the two sets of accuracies in order to 

obtain a single classification accuracy for a given vertex. 

MULTIPLE-COMPARISONS CORRECTION 

To correct for multiple comparisons, we employed threshold-free cluster-enhancement (TFCE; 

Smith & Nichols 2009) as it is implemented in CoSMoMVPA with default parameters (h0 = 0, E = 

0.5, H = 2, dh = 0.1). CoSMoMVPA then followed a bootstrapping procedure, in which the sign of 

a participant’s d’ map was flipped with a probability of 0.5, the t-test across participants was 

performed, each vertex’s TFCE score was computed, and the resulting map’s largest TFCE score 

was stored. This process was repeated 104 times, resulting in a null distribution of 104 TFCE 

scores. Vertices of the surface mesh pertaining to subcortical structures were excluded from 

this analysis using a mask based on the cortical parceling described by Yeo et al. (2011). 

FUNCTIONAL CONNECTIVITY ANALYSIS 

Functional connectivity (Friston 2011) was calculated using the nine regions that resulted from 

the three multivariate analyses. For each participant, the timecourses for all vertices within a 

region were averaged, and Pearson’s correlation was computed across the regions. The 

resulting 36 correlations were then Fisher transformed, permitting a t-test across participants, 

in order to determine which regions’ correlated activation levels were different from zero. 
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RESULTS 

BEHAVIORAL RESULTS 

The task proved to be challenging as participants performed on average (± S.E.M.) at 73.4 (± 

3.88) % for category II and 66.2 (± 3.69) % for category IV. Nevertheless, participants 

performed better than chance (p = 9.9 × 10−6; p = 3.0 × 10−5: II and IV, respectively), while 

performance appeared not to differ between the two categories (p = 0.09), as revealed by 

resampling procedures (see Behavioral data analysis). Overall mean task sensitivity (±σ) was 

2.2 (±0.8). 

NEUROIMAGING RESULTS 

TASK ELICITS GENERAL BOLD CHANGE ACROSS A DISTRIBUTED NETWORK; NO 

DIFFERENCE BETWEEN ABSTRACT CATEGORIES 

To seek out regions that were generally involved in the delayed match-to-category task, we 

computed the mass-univariate conjunction of all S1 regressors with all S2 regressors. 

Correcting for multiple comparisons using threshold-free cluster enhancement (TFCE) yielded a 

variety of regions whose BOLD signal change survived the threshold of pFWER < 0.01 (Figure 3.2, 

Table 3.1). While the bilateral superior temporal gyrus (STG) and right parietal operculum (Par 

Op) yielded up-regulated BOLD signal, we observed down-regulated BOLD signal in the 

bilateral medial frontal gyrus (MedFG) and the right anterior cingulate gyrus (ACC). 

However, computing the mass-univariate contrast of category II vs. category IV, 

conjoining S1 and S2 regressors (i.e., [S1II > S1IV] ∩ [S2II > S2IV]) resulted in no voxels 
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surviving any acceptable threshold following whole-hemisphere multiple comparisons 

correction (LH: pTFCE > 0.33; RH: pTFCE > 0.34). 

 

Figure 3.2. Univariate results 

Uncorrected (from p < 0.05) group-level t-scores of activation revealed by the conjunction [S1 ∩ S2] visualized on a 
partially-inflated, cortex-based aligned, group-average brain. Transparency scales with the magnitude of the t-score. 
White contours represent regions whose TFCE scores survived a multiple-comparisons correction (pTFCE < 0.01, 
FWER). 

Region Hemisphere Peak Tal. coords. (x, y, z) Vertex count TFCE p-value t-score p-value 

STG/PT L (-47, -40, 18) 972 2.0 × 10-4 4.92 8.2 × 10-5 

MedFG L (-9, 50, 23) 3 3.0 × 10-3 -5.96 8.0 × 10-6 

STG R (56, -28, 11) 950 2.0 × 10-4 6.15 5.0 × 10-6 

Par Op R (49, -14, -16) 357 7.0 × 10-4 5.42 2.6 × 10-5 

ACC R (5, 23, 22) 45 3.9 × 10-3 -4.45 2.5 × 10-4 

MedFG R (11, 44, 22) 7 6.2 × 10-3 -5.97 8.0 × 10-6 

Table 3.1. Regions obtained from the univariate analysis 

Descriptive statistics of the six regions depicted in Figure 3.2. Regions are abbreviated as superior temporal 
gyrus/planum temporale (STG/PT), medial frontal gyrus (MedFG), parietal operculum (Par Op), anterior cingulate 
cortex (ACC). Coordinates refer to the location of the peak t-score within a cluster. 
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TASK-RELEVANT CATEGORIES ENCODED IN A RIGHT-LATERALIZED NETWORK 

In order to determine which brain regions encoded the supramodal categories that participants 

learned for the task, we trained and tested a linear discriminant analysis (LDA) classifier on 

patterns of activity from stimuli that pertained to category II (A↓ and T↑) vs. category IV (A↑ and 

T↓). A searchlight analysis revealed a variety of regions (Figure 3.3A, Table 3.2), all lateralized 

to the right hemisphere, from which the LDA could decode these categories better than chance 

following TFCE-based, multiple-comparisons correction (pFWER < 0.01) 

SUPRAMODAL CONCEPT OF “UP VS. DOWN” LOCALIZED TO LEFT ASSOCIATION 

CORTEX 

Additionally, we sought to reveal cortical representations of “up” and “down” independent of 

the sensory modality and the task-relevant category. To this end, we split the data in an 

“orthogonal” manner to the II vs. IV analysis, by training and testing the LDA on patterns of 

activity from category I (A↑ and T↑) vs. category III (A↓ and T↓). Surprisingly, the LDA very 

strongly decoded this information in only the parietal-temporal-occipital junction (PTOJ) of the 

left hemisphere (pFWER < 0.01; Figure 3.3B, Table 3.3). 
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Figure 3.3. Multivariate results 

Uncorrected (from p < 0.05) group-level t-scores of LDA classification of (A) II vs. IV (i.e., learned categories) and (B) 
I vs. III (i.e., supramodal up-vs. down-sweeps). In both cases, transparency scales with the magnitude of the t-score, 
and yellow contours depict regions whose TFCE scores survived a multiple-comparisons correction (pTFCE < 0.01, 
FWER). 

Region Peak Tal. coords. (x, y, z) Vertex count TFCE p-value 
Decoding d’ 
(% correct) 

t-score p-value 

IPS (34, -41, 37) 110 5.1 × 10-3 0.14 (52.75) 4.68 1.4 × 10-4 

Par Op (48, -27, 22) 97 6.0 × 10-3 0.09 (51.91) 4.21 4.3 × 10-4 

pIns (46, -35, 19) 61 4.3 × 10-3 0.10 (52.00) 4.90 8.7 × 10-5 

MedFG (8, 10, 44) 10 5.8 × 10-3 0.12 (52.37) 6.03 7.0 × 10-6 

aMedFG (8, 29, 40) 5 7.6 × 10-3 0.09 (51.86) 6.46 3.0 × 10-6 

SPL (27, -45, 46) 3 9.6 × 10-3 0.10 (51.96) 4.52 2.1 × 10-4 

Table 3.2. Regions obtained from the multivariate analysis of category II vs. category IV 

Descriptive statistics of the six right hemisphere regions depicted in Figure 3.3A. Regions are abbreviated as 
intraparietal sulcus (IPS), parietal operculum (Par Op), posterior insula (pIns), [anterior] medial frontal gyrus 
([a]MedFG), and superior parietal lobule (SPL). Here coordinates also refer to the location of the peak t-score within 
a cluster. 

Region Peak Tal. coords. (x, y, z) Vertex count TFCE p-value 
Decoding d’ 
(% correct)  

t-score p-value 

PTO Junction (-40, -65, 13) 18 2.8 × 10-3 0.14 (52.75) 7.26 1.0 × 10-6 

Table 3.3. Regions obtained from the multivariate analysis of category I vs. category III 

Descriptive statistics of the single, left hemisphere region depicted in Figure 3.3B. Same conventions as in Table 3.2. 
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PRECUNEUS AND POSTERIOR INSULA REPRESENT CATEGORY MEMBERS SIMILARLY 

ACROSS MODALITIES 

Crucially, we aimed to uncover from which regions of the brain, if any, information from one 

modality could be decoded from information of another modality. Thus, we trained an LDA 

classifier on between-category auditory-sweeps and tested on the corresponding within-

category tactile sweeps (i.e., train on A↓ vs. A↑; test on T↑ vs. T↓), and vice versa. This 

searchlight analysis revealed that such cross-modality information was encoded in the left 

posterior insula and the left precuneus (pFWER < 0.05; Figure 3.4, Table 3.4). 

 

Figure 3.4. Cross-modality decoding results 

Uncorrected (from p < 0.05) group-level t-scores of LDA classification of category-membership across different 
modalities. In short, the LDA was trained on A↓ vs. A↑ and then tested on T↑ vs. T↓, and vice versa. Again, 
transparency scales with the magnitude of the t-score, and yellow contours depict regions whose TFCE scores 
survived a multiple-comparisons correction (pTFCE < 0.05, FWER), showing that truly supramodal information is 
present and decodable within the posterior insula and precuneus of the left hemisphere. 
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Region Peak Tal. coords. (x, y, z) Vertex count TFCE p-value 
Decoding d’ 
(% correct)  

t-score p-value 

pIns/Claustrum (-40, -65, 13) 83 1.0 × 10-2 0.11 (52.21) 5.64 1.6 × 10-5 

Precuneus (-6, -66, 7) 49 3.0 × 10-2 0.12 (52.40) 4.82 1.0 × 10-4 

Table 3.4. Regions obtained from the cross-modality decoding analysis 

Descriptive statistics of the regions depicted in Figure 3.4. Same convention as in Table 3.2 

RELATIVELY STRONG FUNCTIONAL CONNECTIVITY BETWEEN POSTERIOR REGIONS, 

BUT NOT FRONTAL REGIONS  

To assess the level of potential communication among the regions obtained from these three 

multivariate analyses, we performed a follow-up functional connectivity analysis. Despite the 

regions carrying different information, functional connectivity can allow us to infer potential 

commonalities in information processing. The group-level analysis (Figure 3.5, Table 3.5) 

revealed stronger connectivity predominantly among the posterior regions (t(19) > 2.54, p < 

0.01) and, interestingly, not within the frontal regions (t(19) < 2.2, p > 0.02). 

 

Figure 3.5. Functional connectivity results 

Group-level, correlation-based functional connectivity from the nine regions revealed by the three multivariate 
analyses. Edge color scales with the value of Pearson’s r, and edge thickness scales with the magnitude of the t-score. 
Unbroken edges are those that survived a statistical threshold of p < 0.01. See table 5 for regions that correspond to 
each abbreviation. 
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Network edge Pearson’s r t-score p-value 

Pos Ins (RH), Par Op 0.75 13.27* 2.3 × 10-11 

SPL, IPS 0.51 4.53* 1.1 × 10-4 

Pos Ins (RH), Pos Ins (LH) 0.47 3.80* 6.1 × 10-4 

Par Op, Pos Ins (RH) 0.46 3.78* 6.3 × 10-4 

Par Op, IPS 0.46 3.74* 6.9 × 10-4 

Pos Ins (RH), IPS 0.44 3.41 1.5 × 10-3 

Precuneus, IPS 0.42 3.20 2.4 × 10-3 

Precuneus, PTO Junction 0.37 2.74 6.5 × 10-3 

Table 3.5. Functional connectivity 

Descriptive statistics pertaining to the edges of the group-level functional connectivity analysis that survived a 
statistical threshold of p < 0.01. Asterisks in the t-score column indicate edges that also survived the Bonferroni 
threshold (t(19) < 3.43, pBonf < 0.0014). Regions are abbreviated as follows: posterior insula (Pos Ins), parietal 
operculum (Par Op), superior parietal lobule (SPL), intraparietal sulcus (IPS), parietal-temporal-occipital (PTO). 
Where necessary, the hemisphere to which the region belongs is denoted in parentheses. 

DISCUSSION 

By employing a novel paradigm, in which auditory and tactile information were abstractly 

equated, we were able to investigate which regions of human cortex carried high-level 

information that abstracted away from the sensory modality during perceptual decision 

making. Using a whole-brain multivariate searchlight and three distinct manners of partitioning 

the neuroimaging data, a linear discriminant classifier analysis decoded the learned supramodal 

categories, the concept of “up/down”, and supramodal category membership from a variety of 

non-overlapping brain regions. Entering these regions into a follow-up functional connectivity 

analysis revealed a higher degree of communication between and within the parietal and 

insular regions, but not the frontal regions. In addition to revealing cortical representations of 

supramodal information, this connectivity pattern suggests a functional distinction in the 

information processing stream between the posterior and anterior regions. 

While our standard mass-univariate analysis exposed brain regions that are commonly 

associated with such perceptual tasks (Duncan 2010, Fedorenko et al. 2013, Woolgar et al. 

2011), one region in particular, the right parietal operculum, both activated for the task and 
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carried category-level information. It is thus possible that the parietal operculum play a more 

general role in the processing of auditory and tactile information, as past work has 

demonstrated auditory stimuli activated secondary somatosensory neurons in monkeys 

(Lemus et al. 2010). 

Previous work has shown the involvement of parietal cortex in representing high-level 

abstract information (Freedman & Assad 2006, Hebart et al. 2012, Rishel et al. 2013, Wurm & 

Lingnau 2015), and the present results corroborate our earlier claim that the right IPS encodes 

category-level information (Levine and Schwarzbach, under review). Although the current 

results demonstrate category-level information represented more anteriorly along the IPS than 

in our previous study, the task employed in our earlier experiments only required participants 

to make unimodal perceptual judgments, whereas the current study entails a supramodal 

decision. Thus, the cognitive functions employed to carry out these two tasks may have been 

slightly different and potentially represented in distinct parts of the IPS. 

Moreover, the current experimental design allowed us to explore representations of 

supramodal information more thoroughly than in previous studies. From this, we showed that 

the parietal-temporal-occipital junction (PTOJ: a.k.a. TPOJ) represents the semantic concept of 

“up” and “down” irrespective of the stimulus’ sensory modality and of the task-relevant 

categories. The PTOJ has been implicated in a slew of cognitive functions including language 

(Duffau et al. 2005), symbolic processing (Holloway et al. 2010), and working memory (Deprez 

et al. 2013) and has been considered an ideal hub for multimodal integration (Hubbard & 

Ramachandran 2005) due to its location and complex structural connectivity (De Benedictis et 

al. 2014). Additionally, the PTOJ is only slightly posterior to the lateral occipitotemporal cortex, 

a region that has recently been postulated to contain high-level representational spaces for a 

wide variety of cognitive functions (Lingnau & Downing 2015). Considered together, these 
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various perspectives provide evidence for the general area around the PTOJ (and its underlying 

white matter tracts) in potentially representing abstract information in a very general 

framework, irrespective of a stimulus’ original sensory modality and the relevant task at hand. 

Most critically, however, we performed a cross-modality decoding analysis, a suggestion 

brought up by Goebel and van Atteveldt (2009), through which we showed that the precuneus 

and posterior insula of the left hemisphere contain similar patterns of information across the 

auditory and tactile modalities. Previously, activity in the posterior insula has been implicated 

in “crossmodal matching” (Calvert 2001) and generally considered as a multimodal zone for 

merging sensory information (Chang et al. 2013), while activity in the precuneus has been 

linked to such tasks as attentional switching for different sensory modalities (Shomstein & 

Yantis 2004, Yantis et al. 2002), multimodal detection (Langner et al. 2012), and supramodal 

goal-recognition (Spunt & Lieberman 2012). Our results, however, extend the knowledge of 

these regions by demonstrating not only that they contain information specific to category 

membership, but that the representations of such information can likely be considered 

supramodal. It is possible that underlying these regions are cognitive resources that can flexibly 

engage regardless of the information’s original sensory modality. 

Interestingly, for the most part, our analyses did not reveal supramodal information 

encoded in regions of the frontal lobes, despite various regions in the prefrontal cortex being 

implicated in crossmodal/supramodal behavior (Klemen & Chambers 2012). The results of our 

functional connectivity analysis seem to suggest a functional split between the parietal and 

frontal supramodal regions, as most of the parietal areas revealed by the multivariate analyses 

correlated with one another, but the frontal areas did not. Taking into account our experimental 

design, which disentangled the motor response from the stimulus categorization and collapsed 

the category-level information across many dimensions, one possible explanation is that the 
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parietal and insular lobes may predominantly represent specific high-level (or categorical) 

abstract information, especially that which may be considered supramodal. Thus, the medial 

frontal gyrus, which has been shown to have to activate when multiple stimulus modalities are 

contextually congruent (Laurienti et al. 2003), may represent amodal information necessary for 

conflict resolution, such that motor-related processes can engage at a later stage of the 

functional architecture. 

In conclusion, by ensuring that supramodal processing must take place somewhere 

along the information processing stream, we demonstrated that 1) supramodal category-level 

information can be decoded from the right intraparietal sulcus, parietal operculum, posterior 

insula, and medial frontal gyrus, 2) a supramodal semantic concept of “up vs. down” is carried 

very focally in the parietal-temporal-occipital junction, and, most crucially, 3) category 

membership can be decoded across sensory modalities in the left posterior insula and 

precuneus. We believe that these results highlight the role of the parietal and insular cortices in 

abstractly representing high-level information during perceptual decisions, with an emphasis 

on potentially being loci of supramodal cognitive functions.  
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4. A NEW PERSPECTIVE FOR PERCEPTUAL DECISION MAKING 

RECAPITULATION 

The experiments described in this dissertation aimed to bring a new perspective into the 

studying of perceptual decision making by better understanding where in the human brain is 

non-visual information pertinent to the categorization process represented. The driving force 

behind this line of research sought namely to investigate the idea that effects often observed in 

regions of the frontal lobe (Binder et al. 2004, Heekeren et al. 2004, Philiastides et al. 2011, 

Pleger et al. 2006, Preuschhof et al. 2006) may be more concerned with eventual motor 

responses and cognitive control (Koechlin et al. 2003), whereas the parietal lobes (Freedman & 

Assad 2006, Hebart et al. 2012, O'Connell et al. 2012, Ploran et al. 2007, Rishel et al. 2013) may 

play a more fundamental role in abstraction during categorization. Many paradigms used to 

investigate mechanisms of perceptual decision making either failed to disentangle the motor act 

from the stimulus categorization and/or always resulted in some form of motor act. By knowing 

that motor processes will certainly engage at some point during a given task, it is unclear which 

cognitive processes associated with motor and pre-motor activity may consequently stay 

online, adding a series of potential confounding factors when interpreting observed effects 

within the framework of perceptual decision making. 

Moreover, the field of perceptual decision making has been dominated by investigations 

using the visual modality, which naturally led the progression of our line of research toward 

studying the auditory and tactile systems. Ultimately, though, one of the more interesting facets 

of perceptual decision making is whether its underlying mechanisms are modality-general 

rather than specific for each sensory modality. To this end, we wanted to not only supply the 
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field with auditory and tactile studies but also to look more deeply into the idea of modality-

general, or supramodal, cortical representations of information. 

While previous work has looked into the idea of supramodal representations of 

information using conjunction analyses (Beauchamp et al. 2004, van Atteveldt et al. 2004), the 

key result of our finding from chapter two is not whether the information represented in the 

right intraparietal sulcus is supramodal but rather the simple fact that such information seems 

not to be represented within the frontal lobes. Studies that have attempted to disentangle the 

motor response from the stimulus categorization have reported effects in parietal regions 

(Filimon et al. 2013, Hebart et al. 2012), which we also find using an audiotactile conjunction 

analysis, lending credence to the idea that the parietal lobes, regardless of the extent to which 

information processing therein is supramodal, carry abstract, task-relevant information during 

perceptual decisions. 

The experiment described in chapter three was expressly designed to dig deeper into 

the question of supramodal information representation within the cortex. Although prior work 

has made use of repetition suppression in an attempt to uncover supramodal representations 

(Tal & Amedi 2009, van Atteveldt et al. 2010), it has been argued that neither conjunction 

analyses nor repetition suppression are sufficient for claiming supramodality (Goebel & van 

Atteveldt 2009). Rather, the cross-modal decoding analysis we performed in the second 

experiment was essentially the strongest suggestion that Goebel and van Atteveldt (2009) put 

forth as a means of testing for supramodality. While the other decoding analyses we performed 

do contain supramodal stimuli, at most their results can build a modality-independent 

framework around the ideas that abstract concepts are represented within the right parietal 

lobe (Wurm & Lingnau 2015) and that semantics are represented in the vicinity of the left 

angular gyrus (Fairhall & Caramazza 2013). This limitation is due to the nature of the LDA 
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training/testing procedure we utilized for these analyses, which did not allow us to claim that 

the underlying processing is supramodal to the same extent as in the cross-modal decoding 

analysis. In essence, the cross-modal decoding analysis is the only analysis in which the LDA 

classifier’s decision boundary obtained from the training phase on one modality is directly 

tested on a different modality (Figure 4.1), implying that information from both modalities is 

similarly separable in a high-dimensional space and therefore similarly represented along those 

dimensions. It is for this reason that I focus predominantly on the representations within the 

precuneus and posterior insula when discussing supramodal representations from this 

experiment. 

 

Figure 4.1. Cross-modal separability as a criterion for supramodality 

(A) Given data from two sensory modalities with two arbitrary properties in an n-dimensional space, (B) training a 
machine learning algorithm to discriminate the two properties from one modality yields a decision boundary that 
can be used to (C) test whether the same properties from the other modality are separable with the same decision 
boundary. This is a crucial use of multivariate analyses for truly gauging the extent to which abstract representations 
of information may be considered supramodal (Goebel & van Atteveldt 2009). 

One observation worth noting is the seeming discrepancy between the results of the 

second and third chapters. At first glance it appears that category-level information in the first 

experiment is represented more posteriorly along the intraparietal sulcus than the category-
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level information representations revealed in the second experiment. There are three 

predominant responses to this ostensible inconsistency. First, and as mentioned in chapter 

three, the task participants engaged in during the first set of experiment was essentially 

unimodal, while the task participants engaged in during the experiment of chapter three was 

supramodal. The complexity of the second task with respect to the first can indicate that either 

a different or more varied set of cognitive processes was necessary for the second task. This 

difference can potentially require the participation of neurons from distinct aspects of the 

intraparietal sulcus. Secondly, the types of analyses carried out for the multiple-comparisons 

corrections were different. When analyzing the data from the first experiment, we obtained our 

statistical thresholds by performing a cluster-based analysis, whereas later, the threshold-free 

cluster enhancement technique (Smith & Nichols 2009) was implemented into the software 

package we were using, and thus we chose to make use of this more sensitive (and less 

arbitrary) analysis for the second experiment. The differences in analysis choices can lead to 

different levels of statistical sensitivity. Thirdly, the results obtained from the threshold-free 

cluster enhancement were quite widespread, and, as such, I chose to present the results of the 

second experiment at a more conservative threshold (p < 0.01, FWER) for purposes of spatial 

specificity and interpretability. However, when visualizing the results of the multivariate 

analyses (in the second experiment) at a more relaxed threshold (p < 0.05, FWER), one sees 

that much of the right intraparietal sulcus does in fact carry the supramodal, category-level 

information. Thus, at least with respect to this particular decoding analysis, the results from the 

first and second experiments can fall in line with one another.  

The interpretations from the two experiments, however, do differ. After completing the 

first experiment, we conjectured that “the right [intraparietal sulcus] is a categorizer that 

abstracts away from both the input and output domains”. To an extent, this may still be the case, 
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but I believe the results from experiment two improve our understanding of which regions 

carry supramodal information. Instead, we can more readily declare that the precuneus and 

posterior insula abstract away from the input domain, whereas the intraparietal sulcus no 

longer seems to meet the criteria for necessarily processing information in a supramodal 

fashion. 

SUPRAMODALITY 

The predominant theme that this dissertation has taken on regards the notion of supramodal 

procession in perceptual decision making. The definition, and even existence, of supramodality 

within the brain has been more popularly discussed in the field of multisensory integration. 

Gallese and Lakoff describe supramodality as something that “uses information coming from 

areas specialised for individual distinct modalities, but is not itself involved in the individual 

distinct modalities” (2005, p. 459). However, Gallese and Lakoff don’t believe in supramodality, 

and instead subscribe to a notion of multimodality positing that “[m]ultimodality does 

everything that supramodality has been hypothesised to do, and more” (2005, p. 459), but such 

fuzziness does not allow us to assess the extent to which both supramodality and multimodality 

may be present in the cortex. Klemen and Chambers, on the other hand, more recently 

described a reasonable difference between supramodality and multimodality in that 

“supramodal brain activation appears to be caused by the stimulation of one sensory modality, 

or by the simultaneous stimulation of several modalities” (2012, p. 112), while multimodality 

can describe a region in which unisensory neurons that process information from different 

modalities are in very close proximity, resulting in the observed epiphenomenon of both neural 

populations co-activating one another merely as a result of their vicinity. 
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Although neither the insula nor the precuneus appear in Klemen and Chambers’ review 

of supramodal brain regions (2012), both areas have been documented as being rather complex 

in that they project to various parts of the brain (Binder & Desai 2011, Cloutman et al. 2012, 

Margulies et al. 2009, Zhang & Li 2012) and may be sites for multimodal integration (Cavanna & 

Trimble 2006, Hadjikhani & Roland 1998, Naghavi et al. 2007). However, what we show here 

for the first time is the similarity in the pattern of information across both sensory modalities in 

these two regions of cortex. These results from the multivariate pattern analysis have profound 

implications for how we will eventually characterize the role of the precuneus and posterior 

insula within the perceptual decision making process. That is, considering theoretical functional 

architectures underlying perceptual decisions (Figure 4.2), the fact that we find this 

supramodal information representation in the precuneus and posterior insula (and that we 

disentangled the participants’ eventual motor act from the stimulus categeorization) indicates 

to us that model A is false; i.e., some supramodal process exists at some point in the functional 

architecture. Where precisely to place the precuneus and posterior insula within this functional 

architecture is still unclear. In other words, the exact cognitive function(s) underpinning these 

regions’ neural activity could be categorization (as seen in model B), an earlier function, such as 

resource allocation (model B’), or even the output of the categorization function itself. If these 

results represented the output of a categorization function, this would be an interesting case, as 

one might then argue that the representations output from a supramodal categorization 

function would likely be amodal, rather than supramodal. 
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Figure 4.2. Theoretical function architectures 

(A) A model architecture, which we believe is false, depicting unisensory information being processed entirely in 
parallel until after categorization has taken place. (B) An alternative theory stating that the categorization function 
itself is the supramodal function which integrates information from various sensory modalities. Given the 
experiments presented in this dissertation, this architecture is not discernible from another alternative, in which (B’) 
earlier possible functions, such as resource allocation, are the supramodal integrators. 

Additionally, it is worth noting that the aforementioned model architectures need not be 

serial. Certain functions, such as resource allocators or information integrators, could very well 

trigger in parallel to other functions, acting as amodal auxiliary functions that initiate only when 

necessary (Figure 4.3). 

 

Figure 4.3. Resource allocation as an amodal theoretical function 

(A) A model architecture, in which sensory information is categorized independently, but a common, modality-free 
function, such as resource allocation, engages in all cases. (B) Another possible architecture, in which categorization 
is a supramodal function, but resource allocation is an amodal auxiliary function. 
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Despite the inability to make finer-grained distinctions regarding the previously 

discussed functional architecture, one interesting addition arises from the results of the 

functional connectivity analysis of the second experiment (Figure 3.5). The first result to be 

aware of is the fact that the two frontal (MedFG and aMedFG) regions neither correlate with 

each other nor with the other regions. This division already allows us to posit that underlying 

these frontal regions may be cognitive processes that lie further downstream in the functional 

architecture (e.g., post-hoc error-checking). Secondly, however, one notices that the precuneus 

and left posterior insula do not correlate, although these were the only two regions that carried 

“truly” supramodal information, according to the multivariate analyses. This observation 

suggests that the supramodal cognitive functions housed within these regions are either 

situated at different levels of the functional architecture and/or dissimilar from one another. 

Nevertheless, beyond recognizing differences between cortical regions’ potential cognitive 

functions, we still remain unable to theorize more distinctly about the specific functions 

themselves, which is discussed in further detail in the next section. 

THE BIGGER PICTURE AND FUTURE DIRECTIONS 

To put these findings into a larger perspective, one overarching account of the cognitive 

functions associated with such supramodal brain regions comes from suggestions by 

Tenenbaum (21 April, 2015) in a keynote lecture, wherein he theorized that the brain contains 

a “physics engine”, similar to those found in modern video games. With respect to video games, 

physics engines use a set of parameters (usually physical parameters similar to those observed 

in the real universe) to determine how objects in the artificial world should move around and 

interact with one another. Through experience, the mental physics engine essentially learns 

what sensory stimuli can exist in the world and the physical laws that constrain them, 

consequently activating networks of all related knowledge to any particular incoming 
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information. Within such a framework, these arbitrary categories that I taught to participants in 

the second experiment would simply be considered “unusual” stimuli by the physics engine, 

which would quickly adapt and eventually activate the necessary networks for processing 

auditory, tactile, semantic, motor, etc. information. Thus, the supramodal regions discussed 

earlier would not necessarily be information integrators, but rather they could act either as 

hubs for moving information or general resource allocators, ensuring that any and all cognitive 

functions that should engage do engage. 

In order to tease apart a more precise role for these seemingly supramodal areas, a new 

experiment would call for the participants to be placed in the MR scanner before any training 

and then requiring them to learn the supramodal categories over time (e.g., via trial and error). 

In this way, the patterns of activity and/or regional connectivity can be monitored before and 

after the arbitrary supramodal categories acquire a subjective meaning or task-relevance to the 

participant. With such an experimental design, one could then understand whether  information 

is represented similarly across sensory modalities in the precuneus and posterior insula 1) 

regardless of the particular task at hand (supporting the idea that these regions are resource 

allocators) or 2) only after the supramodal stimuli have acquired a specific meaning 

(supporting the idea that these regions are part of a more specific semantic network, potentially 

the end result of the cognitive “physics engine”). 

There are, of course, future directions for more thoroughly investigating the cognitive 

functions underlying these supramodal cortical areas. For example, if these regions we 

discovered are information integration regions, then one might expect their activity to change 

as a function of some confidence or signal strength, such as the neuronal activity often in lateral 

intraparietal neurons of monkeys (Roitman & Shadlen 2002). The use of methods with superior 

temporal resolution, such as magnetoencephalography, would allow us to test such an idea. 
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Additionally, to discriminate whether the regions we found are indeed categorical, we could 

construct more complex categories with “higher-level” stimuli as members (e.g., arbitrary 

categories comprising pictures of animals and sounds produced by different musical 

instruments). This way, we would be able to train participants on different category boundaries 

within the same experiment (e.g., category A contains brass instruments and wild cats, while 

category B contains string instruments and reptiles), while maintaining arbitrary semantic 

relationships within each category, and determine whether the same pattern of effects is 

present in the same regions. Obtaining similar results after re-training on a different category 

boundary would lend support to the idea that these regions flexibly represent categorical 

information (Freedman & Assad 2006). Also, by using more complex stimuli, we could 

scrutinize whether the observed effects are linked to frequency sweeps or, more generally, 

temporal information (Battelli et al. 2007). As mentioned in chapter two, it is the case that 

frequency sweeps have an inherent temporal characteristic to them; thus, one possibility is that 

all effects discovered are linked to amodal, temporal decision mechanisms. Moreover, despite 

our results lining up with prior work that employed task-relevant visual stimulation (Fairhall & 

Caramazza 2013, Wurm & Lingnau 2015), another manner of testing the extent to which the 

discovered regions are supramodal would be to include visual stimuli in the same experiment 

as auditory and tactile stimuli. Because we did not directly test visual stimuli alongside the 

other modalities, there remains the possibility that within association cortex visual information 

is somehow processed distinctly from information that passed through other sensory cortices. 

Our current working hypothesis would state that this is not the case. 

Newer methods that explore cortical connectivity will also inform our notions regarding 

these supramodal brain regions. While the functional connectivity results from chapter three do 

allow us to make some inferences regarding communication within the network, the analysis 
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itself ultimately returns correlations that tell us no information about directionality (Friston 

2011). Instead, thanks to major computational improvements in number crunching, using 

diffusion information coupled with probabilistic fiber tracking (Basser et al. 1994, Mori & van 

Zijl 2002) and dynamic causal modeling (Friston et al. 2003)can show us which regions are 

anatomically connected and also allow us to infer the direction in which information may be 

flowing between such regions. By treating supramodal regions as seed regions in such a 

connectivity analysis, one could essentially infer to which other brain regions such supramodal 

information is projecting. Analyses of this nature can help us to restrict further analyses to 

specific brain regions and then test hypotheses regarding the extent to which information 

represented at each of these regions is supramodal. First of all, one analysis could indicate to us 

the directionality between the precuneus and posterior insula connections, or if the particular 

regions we discovered connect at all. Secondly, and more significantly, imagine that a fiber 

tracking analysis reveals that the precuneus projects to a completely different region of cortex. 

We could then use this data-driven approach to define a new region-of-interest and perform a 

series of multivariate analyses within the voxels in this newly discovered region rather than 

relying on searchlight analyses (Kriegeskorte et al. 2006, Oosterhof et al. 2011) and massively 

losing statistical power: i.e., a connectivity-based region-of-interest definition. 

Combining such analyses would also allow us to ask more specific questions regarding 

the relevant information processing. For example, fiber tracking combined with direct causal 

modeling might allow researchers to follow unisensory regions to multimodal or supramodal 

regions of cortex and expose potential differences in information representations. Then, by 

modeling projecting out of supramodal regions, one might discover either another supramodal 

region or even potentially an ‘amodal’ region, which would permit us to theorize more 

specifically about the functionality of supramodal regions: are supramodal regions merely hubs 
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for forwarding information or do they perform their own processing? Do supramodal regions 

process unimodal information congruently and output amodal representations? If so, do all 

supramodal regions share this behavior? What is the format of this information, and can we 

observe it dynamically changing? These are just a small sample of related questions that new 

analysis methods and increasingly powerful computing hardware can hope to answer. 

CONCLUSIONS 

While the process of categorization has been considered a fundamental function underlying 

perceptual decision making, the extent to which categorization is a supramodal process 

remains unknown. With two experiments, this dissertation attempted to reveal more 

information about the categorization process first by challenging the notion that the frontal 

lobes play the predominant role in categorization and secondly by exploiting decoding analyses 

in a new paradigm aimed at uncovering representations of information that are similar across 

different sensory modalities. 

Additionally, we attempted to provide a foundation for the field of perceptual decision 

making to take a renewed perspective toward the role of the human parietal cortex in 

perceptual categorization, both in terms of abstractly representing task-relevant information, 

regardless of sensory modality, and in terms of containing flexible, category-free resources. 

Furthermore, beyond merely mapping patterns of activity onto the structural architecture of 

the brain, more crucially from a cognitive science perspective, we demonstrated with pattern 

classification techniques that supramodal information representations do exist at some level of 

the functional architecture during perceptual decision making. 

By adding this work to the field of cognitive neuroscience, we hope to have pioneered a 

manner of investigating non-visual information in the human brain, in order to refine theories 
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pertaining to and start new discussions regarding the cognitive processes that underlie 

perceptual decisions and the anatomical structures in which they reside. 
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