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UNIVERSITY OF TRENTO 

Abstract 
CIMeC Center of Mind/Brain Sciences 

Italian Institute of Technology 

Doctor of Philosophy 
Methods for measuring directed functional connectivity in mouse fMRI networks using Granger 

causality 

By 

Md Taufiq Nasseef 

Resting-state functional magnetic resonance imaging (rsfMRI) of the mouse brain has 

revealed the presence of robust functional connectivity networks, including an antero-

posterior system reminiscent of the human default network (DMN) and correlations between 

anterior insular and cingulate cortices recapitulating features of the human “salience 

network”. However, rsfMRI networks are typically identified using symmetric measurements 

of correlation that do not provide a description of directional information flow within 

individual network nodes. Recent progress has allowed the measure of directed maps of 

functional connectivity in the human brain, providing a novel interpretative dimension that 

could advance our understanding of the brains’ functional organization. Here, we used 

Granger Causality (GC), a measure of directed causation, to investigate the direction of 

information flow within mouse rsfMRI networks characterized by unidirectional (i.e. frontal-

hippocampal) as well as reciprocal (e.g. DMN) underlying connectional architecture. We 

observed robust hippocampal-prefrontal dominant connectivity along the direction of 

projecting ventro-subicular neurons both at single subject and population level. Analysis of 

key DMN nodes revealed the presence of directed functional connectivity from temporal 

associative cortical regions to prefrontal and retrosplenial cortex, reminiscent of directional 

connectivity patterns described for the human DMN. We also found robust directional 

connectivity from insular to prefrontal areas. In a separate study, we reproduced the same 

directional connectivity fingerprints and showed that mice recapitulating a mutation 

associated to autism spectrum disorder exhibited reduced or altered directional connectivity.  
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Collectively, our results document converging directional connectivity towards retrosplenial 

and prefrontal cortical areas consistent with higher integrative functions subserved by these 

regions, and provide a first description of directional topology in resting-state connectivity 

networks that complements ongoing research in the macroscale organization of the mouse 

brain. 
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Chapter 1 :   Introduction 
 

1.1. Background 

Brain function is believed to reflect  the coordinated engagement of two seemingly 

competing processes (Friston 2011)(Lang et al. 2012): functional segregation (stating that 

specific functions are at least in part localized in specific areas of the brain) and  functional 

integration (stating that complex brain function ultimately require the integration and 

converge of information and specific functions of individual networks).  

Over the past two decades, a number of neuroimaging techniques permitting non-invasive 

measurements of massed neural activity from individual regions of the brain (Logothetis 

2008) have emerged as crucial tools to study the functional topology of the brain and the 

elusive boundary between functional segregation functional integration. The use of functional 

and diffusion-weighted Magnetic Resonance Imaging (MRI) (Ogawa et al. 2000) in particular 

has provided important insights into the large-scale connectional organization of the brain 

and its derangement in health and pathological states. The success of this technique lies in its 

widespread availability, ease of use, non-invasiveness, and ability to describe non-invasively 

and three dimensionally brain functional and morph anatomical features on a (sub)mill metric 

scale. 

To understand brain networks and their connectional organization both –MRI-based 

structural and functional connectivity have been applied. Functional connectivity mapping at-

rest, termed resting-state fMRI (rsfMRI) has highlighted the presence of spatially-correlated 

spontaneous signal oscillations exhibiting regional specificity which define distributed 

networks plausibly serving as functional integrators during cognitive tasks and function. A 
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number of reproducible networks have been reliably described in human rsfMRI studies, 

including the cortical somatosensory (Biswal et al.), visual (Cordes et al. 2000)and auditory 

systems (Cordes et al. 2000), the salience network as well as previously characterised 

subcortical systems such as the basal ganglia (Hacker et al. 2013) and thalamus(Zhang et al. 

2008). 

Of special interest is the default mode network (DMN) (Sforazzini et al. 2014b), a 

prototypical distributed rsfMRI network  (Seeley et al. 2007)which exhibits strong 

correlations in the absence of explicit tasks (i.e. at rest) and deactivates during active 

cognitive task. Much of the interest in these large networks lies in its aberrant connectivity 

profile in several neuropsychiatric patient populations(Liu et al. 2012)(Mingoia et al. 

2012)(Göttlich et al. 2013). 

One major limitation of the initial rsfMRI approaches is however related to that these 

networks were typically defined in correlational terms. Given that correlation measures are 

symmetric, they cannot determine the direction of communication among two correlated 

areas. Consequently, the initial rsfMRI results were yet unable to unravel the direction of 

flow of information within the default mode network. Recently, the attention in the rsfMRI 

field is turning to the development of computational methods that may enable to estimate and 

describe these networks in directional terms, a readout often referred to as “effective 

connectivity”(Gautama et al. 2003; Goebel et al. 2003; Ancona et al. 2004; Roebroeck et al. 

2005; Ding et al. 2006; Honey et al. 2007; Nalatore et al. 2007; Marinazzo et al. 2008; 

Zhuang et al. 2008; Liao et al. 2009; Zhou et al. 2009, 2011; Penke and Deary 2010; 

Deshpande et al. 2010; Vesna Vuksanovic, Mario Bartolo, Dave Hunter 2011; W. Liao, D. 

Marinazzo, Z. Pan 2011; Barnett and Seth 2011, 2014; Amblard and Michel 2012; 

Deshpande and Hu 2012; Detto et al. 2012; Friston et al. 2014a, 2014b; Ashrafulla et al. 

2013; Seth et al. 2013; Shim et al. 2013; Wen et al. 2013; Wu et al. 2013a, 2013c; Friston et 
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al. 2013; Hu and Liang 2014; Razi et al. 2014; Saleh 2014a). Despite the promises of this 

new approach, there are crucial unresolved issues that limit the inferences that can be drawn 

from effective connectivity rsfMRI studies. For one, the specific neuronal processes 

underlying spontaneous rsfMRI activity and the potential effectors of disease-related changes 

in rsfMRI networks (e.g. the DMN) remain undetermined, thus limiting the significance of 

these inferences. While there are human studies attempting to examine these issues, the 

multifactorial nature of these phenomena can only be disambiguated through the use of 

multimodal or invasive approaches in animal models.  

The main objective of this thesis is to focus mainly on functional and effective connectivity, 

i.e. on how the neural activity in one area affects or depends upon the neural activity in other 

areas.  

Recently, neuroimaging techniques have been coupled in animals with pharmacological 

manipulations (for example, pharmacological fMRI (phMRI) (Bifone and Gozzi 2011) or 

with genetic manipulations to study the effect of drugs, neurotransmitters and genetic factors 

on the communication among brain areas. phMRI-based method has proven a powerful tool 

to explore functional connectivity covariance networks in rodents in relation to a variety of 

different neurotransmitter pathways (Tononi et al. 1994; Schwarz et al. 2008; Bifone and 

Gozzi 2011).  

More recently cortical and subcortical resting state functional connectivity(rsFC) networks 

composed of contralateral homologues have been reliably observed in awake and 

anaesthetized primates (Rilling et al. 2007; Vincent et al. 2007).  A strong rationale exists for 

the implementation of rsfMRI also in the laboratory mouse. An extraordinarily rich repertoire 

of genetically modified mouse lines now exists to model the contribution of genetic 

alterations to the etio-pathology of various disorders of the central nervous system (Bogue 
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2003). Measures of directed functional connectivity in mouse models of brain pathology 

could be instrumental in validating this approach, and determining the neuro-pathological 

significance of rsFC alterations observed in analogous clinical populations. Similarly, a large 

collection of mouse optogenetic and pharmacogenetic tools has been recently developed to 

obtain cell-type specific manipulation of neuronal function with unprecedented spatio-

temporal specificity(Gozzi et al. 2010). These models provide a unique experimental 

platform that can be used to establish causal relations between neuronal activity and effective 

resting-state signals, thus facilitating the investigation of the elusive neuro-physiological 

underpinnings of rsFC. 

By employing rigorous control of motion and physiological artefacts (Ferrari et al. 2012), 

Alessandro Gozzi’s lab and his team at the CNCS recently demonstrated the presence of 

robust distributed rsfMRI networks in the mouse brain(Zhan et al. 2014), including plausible 

homologues of the human salience and the DMN(Sforazzini et al. 2014b). Specifically, 

independent-component analysis (ICA) revealed inter-hemispheric homotopic rsFC networks 

encompassing several established neuro-anatomical systems of the mouse brain, including 

limbic, motor and parietal cortex, striatum, thalamus and hippocampus. Seed-based analysis 

confirmed the inter-hemispheric specificity of the correlations observed with ICA and 

highlighted the presence of distributed antero-posterior networks anatomically homologous to 

the human salience network (SN) and DMN. Consistent with rsFC investigations in humans, 

BOLD and CBV-weighted fMRI signals in the DMN-like network exhibited spontaneous 

anti-correlation with neighboring fronto-parietal areas. Their findings demonstrate the 

presence of robust distributed intrinsic functional connectivity networks in the mouse brain, 

and pave the way for the application of rsFC readouts in transgenic models to investigate the 

biological underpinnings of spontaneous BOLD fMRI fluctuations and their derangement in 

pathological states. 
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The goal of my research project is to establish and carefully validate the analytical techniques 

for measuring directional connectivity in mouse rsfMRI networks.  When validated, the 

approach can be used in conjunction with genetically-manipulated mouse models to dissect 

the neurophysiological determinants of rsfMRI connectivity and its derangements in 

neuropsychiatric disorders. In the following sections, I review the concepts and tools 

necessary for this research endeavour.  

1.2. A formal definition of structural, functional and effective connectivity 

Structural connectivity refers to the presence of anatomical connections between regions, and 

it can be mapped to track white matter fibers reflecting the architectural infrastructure of the 

brain connected through polysynaptic or monosynaptic pathways of dendrites (Friston 

2011)(Deshpande and Hu 2012). To complement this approach, recently functional 

connectivity methods have been introduced to provide statistical dependencies among remote 

neurophysiological events (Friston 2011)(Lang et al. 2012). Precisely, these methods rely on 

temporal measures, for instance, correlation, co-variance, spectral co-variance or phase 

locking (Lang et al. 2012) to explore important insights into functional topology of brain 

networks. Modern neuroimaging methods, e.g., Electroencephalogram, (EEG), 

Magnetoencephalogram (MEG), and MRI have successfully provided global map of the brain 

using both connectivity concepts.  

Functional connectivity can therefore be broadly defined (Friston 2011) as statistical 

dependency among remote neurophysiological events. Measures of these correlations have 

provided important insights in rsfMRI (Sforazzini et al. 2014b)(Joel et al. 2011)(De Groof et 

al. 2013)(Smith 2012) . However, correlations can arise also in the absence of connections 

between regions because of a variety of confounding factors such as common inputs, shared 

neuromodulation or global covariations of activity. Thus, integration within a distributed 
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system is ideally better understood in terms of “effective connectivity” (Gautama et al. 2003; 

Goebel et al. 2003; Ancona et al. 2004; Roebroeck et al. 2005; Ding et al. 2006; Honey et al. 

2007; Nalatore et al. 2007; Marinazzo et al. 2008; Zhuang et al. 2008; Liao et al. 2009; Zhou 

et al. 2009, 2011; Penke and Deary 2010; Deshpande et al. 2010; Vesna Vuksanovic, Mario 

Bartolo, Dave Hunter 2011; W. Liao, D. Marinazzo, Z. Pan 2011; Barnett and Seth 2011, 

2014; Amblard and Michel 2012; Deshpande and Hu 2012; Detto et al. 2012; Friston et al. 

2014a, 2014b; Ashrafulla et al. 2013; Seth et al. 2013; Shim et al. 2013; Wen et al. 2013; Wu 

et al. 2013a, 2013c; Friston et al. 2013; Hu and Liang 2014; Razi et al. 2014; Saleh 2014a).,a 

definition that refers explicitly to the influence that one neural system exerts over another. To 

measure effective connectivity, techniques such as Granger causality (Roebroeck et al. 2005; 

Ding et al. 2006; Seth 2010; Bressler and Seth 2011; Zhou et al. 2011; Deshpande and Hu 

2012; Barnett and Seth 2014; Seth et al. 2015) measuring the directed effect of a neural 

population onto another population have been proposed (discussed below).  

1.3. Functional and effective connectivity in fMRI  

An important objective in brain research is to understand and describe how information 

dynamically propagates and link different brain regions, generating maps of brain functional 

connectivity [40]. Although many neuroimaging methods can be used to infer functional 

connectivity  resting-state fMRI has been deemed one of the most popular techniques in 

comparison to other methods (Ashrafulla et al. 2013) because of its non- invasiveness, 

absence of radiation exposure, relatively wide availability, three-dimensional maps, high 

special resolution together with whole brain coverage (Beckmann et al. 2005)(Jolliffe 2005). 

RsfMRI measurements (e.g. fMRI measurements in absence of explicit tasks) detect 

spontaneous fluctuations in the blood oxygen level dependent (BOLD) fMRI signal and the 

correlational measurements that are thus generated reflect complex (and yet poorly 
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understood) hemodynamic oscillations that have however been shown to be tightly coupled 

with the underlying metabolic activity(Schwarz et al. 2008)(Bifone and Gozzi 2011). 

Different computational approaches been developed to map fMRI connectivity. Indeed, this 

has been one of the hottest topics in computational neuroscience over the last few years. In 

the following, I discuss some of the most known techniques.  

Seed-based analysis (SCA) is a simple bivariate measure of correlation with respect to a 

preselected region of interests (ROIs).  This approach entails selecting ROIs and correlating 

the average BOLD time course of voxels within these ROIs with each other and with the time 

courses of all other voxels in the brain. Typically, a threshold is determined to identify voxels 

significantly correlated with the region of interest. A limitation (but also the main utility) of 

this approach is that it requires a priori selection of ROIs (Lee et al. 2013).  

As an alternative to this, is to use blind source separation approaches that decompose the 

multivariate neural data into a set of subcomponents (or modules) than can be interpreted as 

indicators of the networks that tend to be co-activated over time. These decomposition 

techniques include independent component analysis (ICA) (Sforazzini et al. 2014b)(Joel et al. 

2011)(Beckmann et al. 2005), that separates the data in a predefined number of statistically 

independent components, or  Principal Component Analysis (PCA), that decomposes the data 

into a number of components that are uncorrelated (or equivalently, that are orthogonal to 

each other in the space of the data covariance) (Jolliffe 2005). These methods have the 

strength that they are hypothesis independent (as the analysis does not require the scientist to 

commit to any hypothesis about the ROIs involved in the network). However, they are 

limited by the need to select a suitable number of components, and the need to qualitatively 

label and classify biologically plausible networks from those reflecting noise or spurious 

physiological contributions. In this respect the seed approach and the blind separation 
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approaches are often considered complementary, and are jointly or individually used 

depending on the experimental question at hand.  

Overall, all these standard connectivity mapping methods rely on the use of (indirect) 

correlations as an index of connectivity, thus preventing inferences on the topological 

relationship of the regions composing a network. To overcome these limitations, theoretical 

frameworks originally employed in neuronal electrophysiology and permitting an estimation 

of directed functional (effective) connectivity (e.g. the influence that one neural system exerts 

over another, either in the synaptic or population level (Friston 2011)) have been recently 

extended to rsfMRI. According to this definition, neuronal flow of information could be 

unidirectional (Di and Biswal 2014), bi-directional (Bitan et al. 2010) or dominant-directional 

(difference of directions) (Roebroeck et al. 2005). Initial applications of these approaches to 

explore directional connectivity in human brain networks using fMRI have produced 

encouraging results both in task-based (Friston et al. 2013)(Roebroeck et al. 2005) and 

resting state fMRI networks (Di and Biswal 2014). 

1.4. How to estimate direction of effective connectivity in fMRI: model-based 

approaches 

Efforts to ascertain causal influence from fMRI have relied primarily on mode-driven and 

model-free approaches such as Dynamic causal modelling (DCM) (Friston et al. 2003) and 

Structural Equation Modelling (SEM) (Penke and Deary 2010)(Zhuang et al. 2008). SEM, a 

static approach examines causal relationships by minimizing the difference between observed 

covariance and those have implied by a structural or path model(Penke and Deary 

2010)(Zhuang et al. 2008). 

DCM has been invented by Friston and colleagues(Friston et al. 2003) .  It has developed to 

make it applicable to a variety of experimental paradigms, including task-based and resting 
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state protocols for almost all the neuroimaging methods (fMRI, MEG, EEG, etc.) (Friston et 

al. 2003, 2014c; Razi et al. 2014). Briefly, DCM fits the data to a model that includes the 

activity and state of the underlying neural population generating the neuroimaging signal at 

each location, as well as a model of the generation of the neuroimaging signal (the 

hemodynamic response in case of fMRI based DCM). The model fitting procedure can 

include prior information about the model parameters. Inversion of the model and fitting to 

the data is performed with a variational Bayesian technique - known as Deterministic 

Expectation Maximization (EM) - that evaluates the model evidence and maximizing the 

posterior density of the data over model parameters.    Importantly for my purposes, the DCM 

for rsfMRI has been released as an open source toolbox that includes the generation of 

spontaneous activity through an autoregressive input process (a model parameter). For the 

rsfMRI, the generative model is estimated by specifying the probabilistic relationship 

between the sampling and expected cross spectra (i.e. cross-covariance, cross-spectral 

density, autoregression coefficients) and prior assumptions about the model structure and 

parameters (Razi et al. 2014)(Friston et al. 2014c). The strength of DCM is that it provides an 

explicit and detailed model representation of the data, and so provides all the explicit 

parameters of the communication pathways – including their directionality – that best explain 

the data. The drawback of this approach is that if the model makes wrong assumptions about 

the data or the dynamics of the underlying neural processes or of the hemodynamic response, 

then it may lead to misleading conclusions. This is a particular concern when analysing data 

recorded form animals, as many DCM parameters and assumptions have been fine-tuned with 

human fMRI data in mind.  
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1.5. How to estimate directed functional connectivity in fMRI: data-driven 

approaches 

An alternative to the model-based approaches to study effective connectivity is to use 

approaches that are model free and try to rely only on the data and as small as possible 

number of assumptions. One prime example of these data-driven approaches is Granger 

causality (GC) (Friston et al. 2013)(Amblard and Michel 2012).  

The primary idea of GC has been first described by Wiener(Wiener 1956), and later on 

formalized by Granger in form of linear autoregressive modelling of the stochastic processes 

in context of Economic theory (Ding et al. 2006). The basic idea of Wiener is very simple, 

and is summarized in the following in a neuroscientific language. Consider X and Y are two 

time series of neural activity extracted from different regions of the brain. If the knowledge of 

the past of X allows a better prediction of the current value of Y than the one that can be 

obtained simply relying on the knowledge about the past of Y then X Granger causes Y 

(Wiener 1956).   

In neuroscience, Ding and colleagues has presented an expository introduction to the concept 

of Granger causality manipulating mathematical frameworks for both bivariate and 

conditional Granger causality (Ding et al. 2006). However this approach has already 

evidenced pragmatic for broad applications with its capability in the context of brain 

mapping, sensory-neural response, tracking interdependencies and researching brain disease. 

Vector autoregressive (VAR) modelling demonstrates crucial theory in computing Granger 

causality. Seth and his group has already launched two well renowned open source toolboxes 

under the title ‘Granger Causal Connectivity analysis (GCCA)’ (Seth 2010) and ‘Multivariate 

Granger Causality (MVGC)’ (Barnett and Seth 2014).  
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In the following, I review a number of recent mathematical advances on the calculation of 

GC that will be important in developing my work.  

In practice, GC is often estimated by first fitting Vector autoregressive (VAR) models to the 

data. These are statistical models that model the next time point of a time series from a 

number of previous values of the time series. The number of previous time points taken into 

account by the VAR model is called the order of the autoregression(Barnett and Seth 2014). 

This is a free parameter of the analysis, and its best value is usually determined on statistical 

considerations such as the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) have been introduced to estimate best model order(Barnett and Seth 2014) 

(Seth 2010).  

Importantly, Seth and his group recently released open source toolboxes under the title 

‘Granger Causal Connectivity analysis (GCCA)’ (Seth 2010) and ‘Multivariate Granger 

Causality (MVGC)’ (Barnett and Seth 2014). These toolboxes allow the calculation of both 

GC in standard form and also important extensions such as the Pairwise-conditional Granger 

causality (PCGC), a new approach in which all universal variable are conditioned except 

bivariate pair of variables (source and sink).  

The estimation of GC purely based on autoregressive models is unable to capture non-linear 

dependencies in the data (Hu and Liang 2014). To overcome these limitations, approaches 

based on non-linear regressions are currently under investigation (Ancona et al. 2004; 

Marinazzo et al. 2008; Liao et al. 2009; Seth 2010; W. Liao, D. Marinazzo, Z. Pan 2011; Hu 

and Liang 2014). A simple solution has been proposed by Seth and his group. This solution 

consists in fitting autoregressive coefficients of nonlinear regressions by Taylor expansions 

of the real data but it generally requires estimating a large number of parameters (Seth 2010). 

Other approaches include nonlinear kernels for instance radial basis functions (Ancona et al. 
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2004), geometry based reproducing Kernel Hilbert spaces (Marinazzo et al. 2008) applied in 

both fMRI (Liao et al. 2009) and rsfMRI (W. Liao, D. Marinazzo, Z. Pan 2011). Recently a 

copula based nonlinear Granger causality has been proposed to reveal high-order moment 

causality where condition marginal distribution has been introduced to estimate empirical 

conditional density by manipulating Bernstein approximation (Hu and Liang 2014). 

Another important line of research has been about identifying and eliminating potential 

confounding effects in GC estimation from fMRI data. These factors include regression of 

global signal (Wu et al. 2013a), variation of Hemodynamic Response across regions 

(Deshpande et al. 2010)(Wen et al. 2013), low temporal sampling rate which may wash out 

fast neural interactions (Deshpande et al. 2010)(Wen et al. 2013)and noise (Nalatore et al. 

2007)(Friston et al. 2014a)(Wen et al. 2013). GC could become unreliable when the 

underlying dynamics is dominated by slow (unstable) modes and in the presence of 

substantial measurement noise (Friston et al. 2014a). Importantly, GC of fMRI BOLD signals 

is invariant under hemodynamic convolution but not to downsampling (Seth et al. 2013). This 

implies that deconvolving the fMRI data with the hemodynamic response function to obtain 

an estimate of the original neural signals that gave rise to the fMRI response could actually 

help the estimation of GC especially in cases of low sampling rates of the fMRI signal. This 

deconvoluation can be performed for example using the canonical Hemodynamic Response 

Function (HRF) and Finite Impulsive Response (FIR) model (Wu et al. 2013a).  

My goal is to take existing GC methods for measuring the directed effective connectivity[14-

41] and then perform the necessary steps to validate these techniques in mice, and then 

discover the putative resting-state connectivity patterns. My aim is to first compare these 

patterns in healthy rodents to those found in higher mammals (Beckmann et al. 2005)(Fox et 

al. 2005)(Seeley et al. 2007), and finally to use these directed connectivity tools to understand 
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how the direction of information flow is perturbed in specific brain dysfunctions and 

diseases. 

1.5. Outline of the thesis 

This thesis is organized into 3 chapters. Chapter 1 contains brief review about the 

background, motivation, focus and goal of this thesis. Chapter 2 describes the research work 

done on Granger causality on resting-state fMRI mice including the results of a separate 

study containing group comparison between transgenic and control mice. Finally, chapter 3 

draws the discussion of this thesis.  
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Chapter 2 : Directional connectivity in mouse brain 

resting-state fMRI networks  

 

This chapter provides a detailed methodological account of the approach employed for 

directional mapping of spontaneous fMRI signals in the mouse brain, followed by a 

description of the main experimental findings in two independent experimental datasets, 

including a transgenic mouse line harbouring a mutation associated to autism spectrum 

disorder.  

3.1 Experimental Methods  

RsfMRI image acquisition and preprocessing 

Imaging data were acquired in a previous study (Liska et al., 2015) and reprocessed for the 

purpose of this study. A short description of the experimental procedures employed is 

reported below. Briefly, MRI experiments were performed on male 20-24 week old 

C57BL/6J (B6) mice (n=41). The animal preparation protocol was recently described in great 

detail (Ferrari et al., 2012). Mice were anaesthetized with isoflurane (5% induction), 

intubated and artificially ventilated (2.5% surgery). The left femoral artery was cannulated 

for continuous blood pressure monitoring and blood sampling. Surgical sites were infiltrated 

with a non-brain penetrant local anaesthetic (Ferrari et al., 2010). At the end of surgery, 

isoflurane was discontinued and substituted with halothane (0.7%), an anaesthetic 

characterised by preserved cerebral blood flow auto-regulation  (Gozzi et al., 2007). 

Functional data acquisition commenced 45 min after isoflurane cessation. Arterial blood 

gases (paCO2 and paO2) were measured at the end of the functional time series (20±5 and 

257±33 mmHg, respectively).  All in vivo experiments were performed using a 7.0 Tesla 

MRI scanner (Bruker Biospin, Milan). Transmission and reception were achieved using a 72 
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mm birdcage transmit coil and a saddle-shaped solenoid coil for signal reception. Single-shot 

BOLD rsfMRI time series were acquired using an echo planar imaging (EPI) sequence with 

the following parameters: TR/TE 1000/15 ms, flip angle 30°, matrix 100 × 100, field of view 

2 × 2 cm2, 24 coronal slices, slice thickness 0.50 mm, 300 volumes and a total rsfMRI 

acquisition time of 6 min.  

Image preprocessing was carried out as previously described  (Sforazzini et al., 2014b). 

Briefly, rsfMRI time series were despiked, corrected for motion and spatially normalized to 

an in-house C57Bl/6J mouse brain template, head motion traces and mean ventricular signal 

(averaged fMRI time course within a manually-drawn ventricle mask) were regressed out of 

each of the time series. All rsfMRI time series were then spatially smoothed (Gaussian kernel 

of full width at half maximum of 0.6 mm) and band-pass filtered to a frequency window of 

0.01-0.08 Hz.  

Seed-based correlation maps and Granger Causality ROI location  

To illustrate the anatomical distribution of the rsfMRI networks probed, and guide anatomical 

placement of ROI for GC analyses, seed-based correlation maps were generated using 

bilateral 3 × 3 × 1 voxel seeds as previously described (Sforazzini et al., 2014b). The mean 

rsfMRI timecourse in each seed was used to generate a whole-brain correlation map, which 

were then transformed into normally-distributed Z scores before assessing group level 

connectivity distributions using a one sample t-test. The resulting group T statistic maps were 

thresholded at a Z > 3 (ventro-hippocampal, and insular –cingulate/prefrontal network) or > 4 

(DMN-like network) to highlight most prominent network features. The Z score levels 

employed correspond to a significance level of p<0.0025 and p<0.0005 respectively. All 

maps were then subject to cluster-level thresholding correction for family-wise errors, with a 

statistical cluster significance level p = 0.01 (Worsley et al., 1992).  
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Seed location was guided by prior investigations of distributed rsfMRI networks in mice and 

rats (Schwarz et al., 2013; Sforazzini et al., 2014b; Zhan et al., 2014; Sforazzini et al., 2014a) 

and referred to known neuroanatomical structures based on correspondence with a mouse 

brain stereotaxic atlas (Paxinos and Franklin, 2003). For each probed network, seed location 

is reported in each of the figures overlaid on the original MRI anatomical template space 

using red lettering.  Bilateral ventral hippocampal seeds (vHC) were selected to probe 

posterior the CA1/subicular areas, a region rich in direct monosynaptic projections to the 

medial prefrontal (prelimbic) cortex (Hoover and Vertes, 2007). These regions have been 

suggested to be part of the rodent homologue of the human prefrontal hippocampal network 

(Schwarz et al., 2013; Sforazzini et al., 2014b).  Bilateral insular seeds were used to probe an 

insular –cingulate/prefrontal network, a neural systems that we could reliably map in 

anesthetized mice  (Sforazzini et al., 2014b; Sforazzini et al., 2014a) and that exhibits 

neuroanatomical features reminiscent of a similar human  brain network involved in salience 

attributions (Seeley et al., 2007). This networks is characterized by the presence of reciprocal 

axonal projections (Vertes, 2004; Hoover and Vertes, 2007; Zingg et al., 2014). To probe the 

directional topology of the mouse DMN, we first identified a putative DMN component ICA 

(15 components) as previously reported (Sforazzini et al., 2014b). The analysis highlighted a 

distributed network comprising prefrontal, orbital, cingulate and retrosplenial cortices, plus 

associative temporal cortical regions, consistent with previous rsfMRI mapping of this 

network (Sforazzini et al., 2014b; Liska et al., 2015). Bilateral seeds placed in temporal 

association cortex were used to corroborate the identified network using seed-correlation 

maps  (Lu et al., 2012b; Sforazzini et al., 2014b). The regions belonging to the mouse DMN 

are characterised by complex and reciprocal axonal projections (Vertes, 2004; Hoover and 

Vertes, 2007; Zingg et al., 2014).  
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GC analysis was carried out on signal extracted on unilateral 3 × 3 × 1 voxel ROIs and 

processed as described below. ROI location was constrained by the spatial extension of the 

networks identified with seed-correlation mapping, and referred to known neuroanatomical 

structures based on correspondence with a mouse brain stereotaxic atlas (Paxinos and 

Franklin, 2004). To ensure maximal correspondence between the patterns of directional 

connectivity identified and the rsfMRI networks mapped, for each network, the seed-regions 

used for correlation mapping were also employed as unilateral ROIs in GC analysis.  To 

ensure robustness of our directional connectivity findings within the mapped networks, 

multiple sets of ROIS covering different slice locations within the same rsfMRI network were 

probed.  

Power spectral density and center frequency analysis without deconvolution 

To characterize the time scales of BOLD variations in each ROI, for each subject and ROI we 

computed  power spectral densities using Welch’s method (Welch, 1967).  We divided the 

whole recording time into Hamming windows of 256 data points with 50% overlap between 

windows, and we then averaged the periodograms so obtained. To estimate the typical 

frequency of spontaneous fMRI signal within  each ROI we  computed the center frequency 

of the periodogram  as the average of frequency weighted with the ratio between the 

periodogram at given frequency and the sum of the periodogram across frequencies.   

Granger Causality Analysis 

Granger causality (GC) quantifies the extra predictive power provided by the activity of 

network node Y (in our case, the BOLD signal expressed in an ROI) onto the activity of a 

node X (in our case, the BOLD signal expressed in another ROI). In particular, the Wiener-

Granger principle states that if the knowledge of the past of Y allows a better prediction of 

the current value of X than the one that can be obtained simply relying on the knowledge 

about the past of X and of any other node, then Y Granger causes X  (Wiener, 1956; Granger, 
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1980). Accordingly, GC has been widely applied in neuroscience to characterize the 

directional functional connectivity between neural populations, and potentially to infer causal 

interactions between them (Friston et al. 2013; Chicharro and Panzeri 2014). Its applications 

comprise both electrophysiological recordings (Bernasconi and K+¦nig, 1999) and fMRI 

(Goebel et al., 2003; David et al., 2008). 

A ubiquitous challenge in the estimation of Granger causality measures regards the trade-off 

between incorporating the maximum amount of information about the past of X and other 

nodes, and avoiding the curse of dimensionality, which impairs the estimation of the 

measures. The former is required not to overestimate the predictive power of Y, while the 

latter results from the necessity to estimate all the influences from time series of limited 

length. Bivariate Granger causality, which ignores other nodes apart from Y and X, usually 

leads to the false positive detection of interactions, reflected in significant nonzero values of 

Granger causality that are actually caused by indirect interactions or common influences of 

other nodes. Conditional Granger causality (Ding et al. 2006), which uses information from 

the past of other nodes, attenuates these effects, but can lead to a loss of statistical power for 

Granger causality from Y to X because the limited data may be insufficient to estimate the 

measures with the precision required to detect small predictability improvements due to Y 

after conditioning on all other nodes.  

Regarding this balance between false positive detection and statistical power, several issues 

specific of the analysis of fMRI data should also be considered for the Granger causality 

principle implementation and its interpretation (Friston et al. 2013; Chicharro and Panzeri 

2014). These comprise the effect of using indirect signals of neural activity (BOLD signals) 

and the effect of temporal aggregation due to low sampling rates, which also lead to false 

positive detections. Indeed, it has been shown (Roebroeck et al., 2005) that differences in the 

strength of GC across directions for two considered nodes are more robust to these effects 
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and tend to correlate more clearly to causation at the neural level. Accordingly, we here 

focused on the difference of GC measures across directions, instead of on the individual 

values themselves. As detailed below, we implement Granger causality following a 

modelling approach which favors the preservation of statistical power above the elimination 

of false positive GC values. 

In its linear and most common implementation, the Granger Causality  principle is tested by 

quantifying predictability using   a vector autoregressive (VAR) model of the times series  

(Granger, 1969, Ding et al., 2006), and thus is intimately related to the structural analysis of 

VAR processes (Lütkepohl 2005).  In a VAR model, the future values of the time series are 

determined by the past, with time lags up to p, the model order. In contrast to the original 

formulation of Granger causality, in which the predictive power gained by adding Y is 

assessed after using the (potentially) infinite past of X, in the modelling approach a finite 

order p is determined with some criterion to avoid the overfitting of the model. For VAR 

processes of finite order, the principle of Granger causality can strictly be reformulated as a 

set of constraints regarding the existence of nonzero coefficients in the VAR model(Sims 

1972). Following this modelling approach, we started our analysis by selecting, for each 

subject separately, the optimal VAR model that fits together the time series of all the nodes 

under study. All computations were performed using the  ‘Multivariate Granger Causality 

(MVGC)’ toolbox (Barnett and Seth, 2014). We determined the order of the VAR model by 

applying the Akaike information criterion(AIC) , see (Barnett and Seth, 2014). Subsequently, 

Granger causality measures were calculated varying the number of nodes used for prediction, 

from bivariate GC measures to conditional measures calculated from a set of four nodes. 

 The first step in the calculation of Granger causality from Y to X is the selection of the nodes 

included in the information set, i.e., the nodes which pasts is used to predict X. In general this 

set is formed by X, Y, and Z, where Z can be multivariate. To compute Granger causality two 
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autoregressive models are fitted the full model which includes Y, and the reduced model 

which excludes Y. The full and reduced autoregressive models of X are respectively 

expressed as: 
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We then computed GC as the log likelihood ratio of the variance of the residuals of the full 

and reduced models: 
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Where 
xx

 and '
xx

 are the variance of the residuals of the full and reduced model 

respectively. Note that the order of the reduced model is constrained to be equal to the one of 

the full model, so that the reduced model has p degrees of freedom less. This generally leads 

to an overestimation of the predictability improvement with Y and thus of the magnitude GC 

measures. However, given that we are interested in the comparison of GC measures across 

directions, and considering the limited length of the time series available to fit the VAR 

models, this option is preferable than considering a longer past history for prediction in the 

reduced model, which would lead to smaller values of the GC measures, below the precision 

attainable from the sample size, thus rendering more difficult the comparison across 

directions. 

The first measure we computed is the unconditional Granger Causality (abbreviated to U-GC) 

from node Y to node X, which considers an empty set Z. However, a drawback of this 
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approach is that if there is no casual influence Y to X but there are lagged dependencies of X 

and Y on a third variable (or group of variables Z), then a spurious causation can be reported 

by a measure like U-GC than does not consider Z (Wen et al., 2013; Barnett and Seth, 2015). 

Given that in this study we examined networks of up to four nodes, we will also calculate two 

variants of conditional GC (abbreviated as C-GC). The first one is denoted as 1C-GC and 

conditions on a single variable Z. In networks of 3 nodes, 1C-GC between two nodes was 

computed conditioning on the other node. In networks of 4 nodes, 1C-GC between two nodes 

was computed conditioning on either of the other nodes and then averaging the value over the 

two possible choices of conditioning nodes. In network of 4 nodes, for each pair of nodes we 

also examined a 2C-GC quantity, obtained conditioning over the activity of two other nodes 

in the network.  

Given that the different GC measures are differently affected by the limited data size, we 

carried out simulations to evaluate their robustness and validity for a sample size comparable 

to the one of the experimental data. For that purpose, we chose the PFC-RS-vHC network 

and, for each subject, we generated time-series of varying length using the full VAR model 

fitted to all 4 nodes. Sample sizes were selected from 100 to 2000 data points, with steps of 

100 data points. For each sample size, a total of 100 simulations were generated. For each of 

them, the three types of GC measures were estimated and averages across simulations of the 

mean and standard deviation across subjects were calculated. Furthermore, their significance 

was evaluated at the population level, like for the original data (see results for details of the 

significance analysis). In particular, averages across simulations of p-values (paired t test 

across subjects) were also obtained.        

Finally, apart from focusing on the difference of GC values across directions, additional pre-

processing steps were considered to attenuate the confounders affecting the analysis of 

directional functional connectivity between neural populations using fMRI data. For each 
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ROI, we computed the mean BOLD signal across the whole volume, and performed Granger 

Causality analysis between each pair of ROIs. We took advantage of recent methodological 

advances (Wu et al., 2013) and blindly deconvolved the fMRI time series with a canonical 

hemodynamic response function (HRF)(Friston et al., 1994). We used a canonical two-

gamma HRF including  its time-dispersion derivative to capture the effect of shift in lag of 

HRF due to e.g. changes in power of neural activity (Magri et al., 2012). The deconvolved 

time series is more closely related the underlying sequence of variations of neural activity and 

as such it is expected to be more sensitive to the presence or absence of directed neural 

interactions. In pilot computations, we computed all GC values from non-deconvolved and 

deconvolved time series. We verified that in the case of connectivity from ventral 

hippocampus to the prefrontal cortex (which is known to have a unidirectional anatomical 

connectivity and is thus a suitable test case for our methodology, see Results) the GC analysis 

from the deconvolved time series revealed much more robustly  a pattern of directed 

connectivity reflecting axonal projections  than the corresponding GC analysis based upon 

non-deconvolved data, suggesting that the blind HRF deconvolution increased the statistical 

power of the GC analysis (results not shown). After these pre-processing steps, we then 

computed GC for each ROI pair within specific ROI sets (i.e. network nodes) identified with 

seed-based correlation maps. Furthermore, to account for a potential confounding effect of 

non-linearity in functional signal to noise across brain regions related to the use of quadrature 

surface coil for rsfMRI data acquisitions, we also recomputed GC adding pink noise to the 

data such as to obtain a constant temporal signal-to-noise across the brain (Liska et al., 2015). 

Population level significance analysis of Granger Causality 

We determined the statistics of individual GC values for each node at the population level 

using a Student t test. However, in this study we were principally interested in evaluating, for 

each pair of nodes, the statistical significance of the difference between GC in the two 
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opposite directions. At the population level, the significance of the asymmetry in GC for a 

given node (i.e. the presence of directional connectivity) was computed using a Student t 

tests. 

Subject level significance analysis of Granger Causality 

To test for the existence of a direction with a predominant Granger causality value at a single 

subject level we used a non-parametric surrogates’ construction method (Schreiber and 

Schmitz 2000) which allows generating surrogate time series which preserve the spectrum, 

cross-spectrum, and amplitude distribution of the original ones. In more detail, we used the so 

called Iterative Multivariate Amplitude Adjustment Fourier Transform (iMAAFT) surrogates 

(Schreiber and Schmitz 2000), which are generated as following: starting from a random 

shuffle surrogate from each of the two original time series, an iterative procedure is applied 

which alternates two steps, to preserve the spectrum and cross-spectrum, and the amplitude 

distribution, respectively. In the first step, the surrogates are Fourier-transformed and, at each 

frequency separately, the power coefficient is preserved while a phase shift common to both 

surrogates is introduced in order to randomize the phase across bands under the constraint of 

maintaining the relative phase differences between the two time series. In the second step, the 

amplitude distribution is preserved by mapping back the surrogate time series obtained from 

the previous step according to their amplitude rank order. This procedure is iterated until 

convergence.   

Note that our use of the surrogates differed from their most common application (Schreiber 

and Schmitz 2000). Usually, the surrogates only preserve some of the properties of the 

original data, while other properties relevant for the measures studied (here GC) are 

destroyed, and the distribution of values obtained from the surrogates is compared to the 

value obtained from the original data that is, the surrogates are associated with a null 
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hypothesis against witch the original data are tested. Oppositely, in this case, since the 

estimation of linear Granger causality measures only relies on the covariance matrix, GC 

measures estimated from the original time series can be considered as a particular sample 

from the distribution of GC measures obtained from the surrogate data. What is tested is how 

compatible this distribution is with a zero difference of the GC measures in opposite 

directions. Significance at a given level was established non-parametrically given the 

percentage of generated samples that were above zero. We generated 1000 surrogates for 

each pair of ROIs and we selected significance at p<0.05, FDR corrected. 

3.2 Results  

Directional connectivity of hippocampal-prefrontal network  

GC measures have been applied many times to neuroimaging data in an attempt to infer 

directed functional connections from recordings of spontaneous haemodynamic fluctuations 

(Deshpande et al., 2009; Liao et al., 2010) . However, GC analysis can be performed in 

various ways and under different computational assumptions. Attempts to validate the 

statistical power of these measures on real networks data with known directional connectivity 

remain very limited (David et al., 2008). Before applying this methodology to networks 

whose direction of information flow is largely unknown, we fine-tunes our GC analysis by 

applying it study directed connectivity within the ventro-hippocampal-prefrontal network 

(Fig. 2.1). This neural system is characterised by the presence of direct mono-synaptic 

projections from subicular/CA1 regions to prelimbic cortical areas (Hoover and Vertes 2007) 

that appear not to be reciprocated by direct return projection from medial prefrontal cortical 

areas (Hurley et al. 1991; Takagishi and Chiba 1991; Vertes 2004). The simple axonal 

configuration of this network suggests that, under the stationary conditions of the present 

work (e.g. resting-state under light anaesthesia), neural information should flow primarily 

from hippocampal/subicular nodes to prefrontal cortex. By investigating this network, we 
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could therefore assess whether directional connectivity patterns replicating mono-synaptic 

axonal projection can be detected under the experimental condition employed here. 

Specifically, we decided to evaluate the statistical power of each approach, and eventually 

select which approach to take, by assessing different directed functional connectivity 

measures against reference asymmetric connection from the hippocampus to the prefrontal 

cortex.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 
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Figure 2.1: (A) Ventral hippocampus(vHC) and Prefrontal Cortex (PFC)  Network with 

seed-voxel correlation maps(T>3, cc=0.001, N=41) for selected seeds(in red) with strong 

anterior-posterior connectivity; (B) vHC and PFC seed location(A partial location of 3d slices 

on the top); (C) Mean +/- SEM across 41 mice of GC(Right U-GC and left C-GC). Black 

stars and section signs denote statistical significance ( paired t-test ( ***p<0.0001)); (D) 

Graphical illustration of the dominant directional functional connectivity inferred from C-GC 

analysis; (E) single subject level analysis by C-GC( Red : dominant directional percentage of 

significant number of subjects ). 

We first examined seed-based mapping and, consistent with previous rsfMRI findings 

(Schwarz et al. 2013; Sforazzini et al. 2014b) we found robust correlation between ventro 

hippocampal and prefrontal regions (Fig 2.1A,B). We thus defined a 3-node network made of 

left and right ventro-hippocampal regions, and a prefrontal (prelimbic) ROI and we then used 

Granger causation to map the direction of information flow within network.  

We compared two measures characterized by distinct potential computational advantages: 

pairwise unconditional GC (U-GC) computes causation only examining the time series of two 

nodes and ignoring the other nodes, and as such it has the advantage that it is simple and data 

robust but on the other hand it is more prone to missing the detection of spurious causation 

due to the confounding effect of other neglected variables (see Methods). Conditional GC (C-

GC), on the other hand, has the advantage that it can remove spurious causations due to the 

effect of the variable that is conditioned upon and so can add more information to the 

unconditional calculation, but its inherent complexity makes it more data-intensive and may 

have less statistical power in conditions where data are scarce. Which approach is better may 

depend on the experimental conditions. Given that the network we tested was made of 3 

nodes, in computation of C-GC we conditioned GC between two nodes on the activity of the 

other node (we call this conditioning on a single variable 1C-GC, see Methods).  
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We found that pairwise U-GC did not highlight any dominant connectivity direction between 

any of the ROI pairs, (Fig. 2.1C) whereas pairwise C-GC revealed a robust dominant 

connectivity pattern between ventral hippocampal and prefrontal ROIs (***p<0.0001) along 

the direction of projecting ventro-subicular-prefrontal neurons, but not within left and right 

hippocampal areas. Thus, under the present conditions, C-GC was the marker of directed 

functional that – under the present experimental conditions - better matched the strong 

expectations set by anatomy. These findings highlight the ability of C-GC to unmask robust 

directional connectivity between rsfMRI node pairs.  Based on this result subsequent analyses 

of 3-node networks were carried using C-GC only.  

To assess inter-subject variability for GC-based directional connectivity readouts, single 

subject analysis was performed using a nonparametric surrogate test (Schreiber and Schmitz, 

2000). Statistically significant (p < 0.05, FDR corrected) hippocampal-prefrontal directional 

connectivity was detected in 63% and 63% of the subjects for left and right hippocampal 

ROIs, respectively (Fig. 2.1E, 95% CI).   

To probe network specificity of our findings, we repeated C-GC analysis employing different 

sets of ROIs within the hippocampal-prefrontal network. Specifically, we chose to probe sets 

of regions covering caudal ventro-hippocampal locations as well as rostral prefrontal regions 

(prelimbic) that are neuroanatomical components of this network, but that may be more prone 

to air-tissue susceptibility effects owing to their vicinity to ear canals and olfactory turbinates. 

The results for two representative sets of regions are reported in Fig 2.2. Seed-voxelwise  
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Figure 2.2 

Figure 2.2: Represents two different sample sets of vHC-PFC network,((A)-(E) posterior 

vHC and dorsal PFC; (F)-(J) posterior vHC and anterior PFC; (A) & (F) seed-voxel 

correlation maps(T>3, cc=0.001, N=41) for selected seeds(in red) with strong anterior-

posterior connectivity; (B) & (G) seed location including 3d slices; (C) & (H) Mean +/- SEM 

across 41 mice of C-GC. Black stars and section signs denote statistical significance ( paired 

t-test (*p<0.05 & **p<0.001)); (D) & (I) Graphical illustration of the dominant directional 

functional connectivity inferred from C-GC analysis; (E) & (J) Single subject level analysis 

by C-GC( Red : dominant directional percentage of significant number of subjects). 

correlation mapping revealed robust hippocampal-prefrontal rsfMRI connectivity patterns 

(Fig 2.2A,B and F,G).  Consistent with our previous findings, GC causation was highly 

significant for all the three ROI pairs (Fig 2.2C, H, *p< 0.05 & **p< 0.001) and conditional 

(but not pairwise) GC revealed statistically-significant dominant ventral-hippocampal 

prefrontal connectivity for both the ROIs sets (Fig 2.2C,D and H,I). Single-subject analysis 

also produced evidence of dominant hippocampal-prefrontal connectivity in a large-

proportion of subject for both ROI sets (Fig 2.2E,J), although the effect was smaller when 
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more distal brain slices were covered (56% and 59%, Fig 2E, 71% and 44% Fig 2J, 

respectively). Taken together, these findings highlight robust directional connectivity patterns 

within the hippocampal-prefrontal rsfMRI network along the direction of projecting ventro-

hippocampal neurons, and support the use conditional GC to dissect dominant connectivity 

patterns in three-node ROIs sets. 

Directional connectivity of insular-cingulate(“salience”) network  

We next probed the presence of directional connectivity within the insular-prefrontal 

network, a set of regions previously described in the mouse to encompass the anterior insular 

cortex , dorsal and anterior cingulate cortex (Sforazzini et al. 2014b) that recapitulate general 

anatomical features of an analogous human rsfMRI network (“salience network”) involved  

in the attribution of salience to environmental and behavioural stimuli (Seeley et al. 2007).  

 

 

Figure 2.3 

Figure 2.3: Represents two different sample sets of Salience network;(A)-(E) anterior Insular 

and  PFC; (F)-(J) posterior Insular and dorsal PFC; (A) & (F) seed-voxel correlation 

maps(T>3, cc=0.001, N=41) for selected seeds(in red) with strong anterior-posterior 

connectivity;(B) & (G) seed location including 3d slices; (C) & (H) Mean +/- SEM across 41 

mice of C-GC. Black stars and section signs denote statistical significance ( paired t-test 
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(*p<0.05,**p<0.001 & ***p<0.0001));(D) & (I) graphical illustration of the dominant 

directional functional connectivity inferred from C-GC analysis; (E) & (J) Single subject 

level analysis by C-GC( Red : dominant directional percentage of significant number of 

subjects). 

The underlying axonal connectivity of this network involves complex, reciprocal projections 

between cortical areas (Vertes 2004; Hoover and Vertes 2007; Zingg et al. 2014) which as 

such do not permit to predict a putative preferential direction of causation solely based on its 

structural architecture.  

Voxelwise seed-mapping highlighted robust correlations between insular and dorso- 

prefrontal areas (Fig. 2.3A), replicating previous findings (Sforazzini et al. 2014a, 2014b). An 

effect associated to robust dominant insular-prefrontal connectivity observed in both left and 

right insular ROIs (Fig 2.3D, **p< 0.001 & ***p< 0.0001). No significant dominant inter-

hemispheric connectivity was observed. In keeping with these findings, subject level analysis 

revealed dominant insular-prefrontal directional connectivity in 66% and 66% of the subjects 

(left and right insular cortex, respectively).  

Conditional GC analysis employing a different set of ROIs covering more posterior insular 

locations confirmed the observed topological organization of this network (Fig 2.3F-J).  

Statistically significant directional connectivity between insular and anterior cingulate was 

observed both at the group level (Fig. 2.3H,I), and subject level in 54-63% of the subjects 

(Left and right insular ROI, respectively, Fig. 2.3J). These results highlight the presence of 

dominant antero-posterior functional connectivity patterns within the mouse insular-cingulate 

network reminiscent of directional features recently described for the human insular-cingulate 

(salience) network  (Sridharan et al. 2008; Deshpande et al. 2011).  
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GC analysis of four-node rsfMRI networks 

Directional connectivity mapping of the human DMN has typically entailed the use of four-

node ROI sets permitting simultaneous probing of midline and latero-cortical antero-posterior 

seed locations  (Jiao et al. 2011; Miao et al. 2011; Zhou et al. 2011; Di and Biswal 2014). To 

establish how to best compute directed connectivity with GC measures in   four-node 

networks under the present experimental conditions, we integrated our previous 

hippocampal-frontal network ROI set (Fig. 2.1) with a fourth additional node (retrosplenial 

cortex) exhibiting significant connectivity with ventral hippocampal areas (Schwarz et al. 

2013; Sforazzini et al. 2014b), and computed  for each pair of nodes pairwise GC (Fig 4). As 

stated above, we used the hippocampal-prefrontal network to validate our approach because 

of its simple connectional configuration.  
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Figure 2.4 

Figure 2.4: Represents validation of four nodes network by vHC-PFC network with adding 

Restrospenial(Rs) seed in Figure 1 network; (a) seed correlation maps in Rs slice(T>4, 

cc=0.0001, N=41) , location including 3d slice and position; (b) U-GC; (c) 2C-GC; (d) 1C-

GC; ((b)-(d) right: Mean +/- SEM across 41 mice of GC; Black stars and section signs denote 

statistical significance ( paired t-test (*p<0.05)), middle: Graphical illustration of the 

dominant directional functional connectivity inferred from GC analysis and left: Single 

subject level analysis by GC( Red : dominant directional percentage of significant number of 

subjects)).   
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We examined the robustness in retrieving this expected directional connectivity with three 

possible ways to compute GC: U-GC where causation between two nodes is computed only 

using those two nodes and ignoring the others; 1C-GC where causation between two nodes is 

computed by conditioning on one of the other two nodes at a time and then averaging the so 

obtained values across the two different choices of conditioning nodes; and 2C-GC where 

causation between two nodes is computed by conditioning on the other two nodes. For each 

of these computational strategies and pair of nodes, we did observe robust causation (Fig. 2.4, 

*p<0.05). Among these measures, 1C-GC, but not pairwise U-GC and 2C-GC revealed 

statistically significant bilateral directional connectivity between ventro-hippocampal and 

prefrontal areas consistent with what observed using three-node ROI sets (Fig 4B, C and D). 

This results shows that also in this case, the 1C-GC measure gives an optimal trade-off 

between the need to discount confounders and the need to keep the model as simple as 

possible to increase data robustness and statistical power. Therefore, in all subsequent 

analyses of 4-node networks we used 1C-GC as a measure of directed causation among 

nodes. Although the result obtained with 1C-GC were fully consistent with those found in the 

corresponding 3-node network (Fig. 2.1), the effect was weaker when using 4-node ROI sets 

(*p<0.05), suggesting that under our experimental conditions, statistical power is strongly 

node-number limited.  
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Figure 2.5 

Figure 2.5: Simulations to investigate the most efficient calculation of GC on this data; (A), 

prefrontal cortex and left ventral Hippocampus, (B), prefrontal cortex and Right ventral 

Hippocampus, (C), right ventral Hippocampus and left ventral Hippocampus; [ Left panels: 

location of the ROIs where blue cube represents paired ROIs and green cube represents the 

confounders to compute GC, middle panels: mean +/- SEM GC difference across subject and 

right panels: p-values obtained by paired t test].  

To examine the robustness of the different GC measures (U-GC,1C-GC,2C-GC) to the 

sample size, we generated simulated time series from the full VAR model selected for each 

subject (see Methods). Given that the models fit the original data, the GC values obtained in 

the limit of a big data size will match the ones obtained for these data. The degree to which 
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GC values estimated for smaller data sizes differ from that limit will indicate how robust the 

estimates are. In particular, we are interested in examining the changes that occur for a 

sample size equal the actual sample size of the fMRI data, i.e., 300 data points. In Figure 2.5 

we can see, for the PFC-RS-vHC network, how GC differences and p-values (paired t test 

across subjects) change with the sample size. For the GC differences that were found 

significant when using 1C-GC on the original data, that is, from PFC to vHCL and from PFC 

to vHCR (Figure 2.5A, B, respectively), we see that 1C-GC is the most robust GC measure, 

with an almost invariant GC difference value as a function of sample size down to sample 

sizes smaller than 300 data points. Similarly, p-values remain robustly significant for 1C-GC 

for our experimental data size. In the case of GC differences from vHCL to vHCR, they 

remain small and insignificant in the whole range of sample sizes examined, in agreement 

with the values obtained for the original data. These results support that 1C-GC is the most 

suitable GC measure given the sample size of our recordings and the dynamics of the fMRI 

time series. 

Directional connectivity of the mouse “default mode network”   

ICA revealed the presence of significant rsfMRI correlation between prefrontal and 

orbitofrontal regions, cingulate and retrosplenial cortex, as well as temporal cortical areas 

(Fig 2.6A, Z >1), thus recapitulating rodent patterns of spontaneous correlated activity that 

have been postulated to represent a rodent homologue of the human DMN (Lu et al. 2012; 

Sforazzini et al. 2014b) . Analogous rsfMRI network features were obtained using seed-based 

correlation mapping (Fig. 2.6B).  
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Figure 2.6 

Figure 2.6: Default mode network(DMN); (A) independent component analysis(ICA) (Z 

>1);  (B) Temporal Association cortices (TeAL & TeAR,), Restrospenial(Rs) and Prefrontal 

Cortex (PFC) seed-voxel correlation maps(T>4, cc=0.0001, N=41) for selected seeds(in red) 

with strong connectivity, (C) seed location including partial position of 3d slices; (D) Mean 

+/- SEM across 41 mice of 1C-GC. Black stars and section signs denote statistical 

significance ( paired t-test (***p<0.0001));(E) Graphical illustration of the dominant 

directional functional connectivity inferred from 1C-GC analysis; (F) Single subject level 

analysis by 1C-GC( Red : dominant directional percentage of significant number of subjects). 

GC analysis of key DMN nodes (i.e. temporal association, retrosplenial and prelimbic 

cortices) revealed a symmetric pattern of robust directional connectivity between temporal 

association cortex and retrosplenial and prefrontal areas(Fig. 2.6D and E, ***p<0.0001). No 

significant directional inter-hemispheric connectivity was observed between homotopic 

temporal cortical regions. In keeping with these findings, subject level analysis revealed 
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analogous dominant directional connectivity in the majority of the subjects examined (85-

76%, temporal association to prefrontal cortex; 76-73% temporal association to retrosplenial, 

Fig. 2.6F). Similar patterns of directional connectivity could be obtained using separate 4-

node ROI sets covering different locations. The results of GC in a representative set covering 

more anterior temporal cortex locations, and more posterior retrosplenial cortex placement is 

depicted in Figure 2.7. GC analysis of this ROI set revealed similarly robust dominant 

connectivity signatures (Fig. 2.7D and E), together with a higher incidence of individual 

subjects showing significant directional connectivity patterns (68-85%, temporal association 

to prefrontal cortex; 82-82% temporal association to retrosplenial, Fig. 2.7F). These results 

highlight the presence of robust directional functional connectivity between temporal 

associative cortical regions and prefrontal regions, together with a “sink effect” of 

retrosplenial cortex with respect of temporal cortical areas.  

 

 

 

 

Figure 2.7 
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Figure 2.7: Another circuit of default mode network(DMN); (A) independent component 

analysis(ICA) (Z >1);  (B) Temporal Association cortices (TeAL & TeAR,), 

Restrospenial(Rs) and Prefrontal Cortex (PFC) seed-voxel correlation maps(T>4, cc=0.0001, 

N=41) for selected seeds(in red) with strong connectivity; (C) seed location including partial 

position of 3d slices; (D) Mean +/- SEM across 41 mice of 1C-GC. Black stars and section 

signs denote statistical significance ( paired t-test (***p<0.0001));(E) Graphical illustration 

of the dominant directional functional connectivity inferred from 1C-GC analysis; (F) Single 

subject level analysis by 1C-GC( Red : dominant directional percentage of significant number 

of subjects ). 

More broadly our results highlight the possibility of applying GC-based methods to infer 

robust directional connectivity patterns in the living mouse brain. The robustness and 

specificity of our findings was corroborated by the results of two additional control analyses. 

First, it has been reported (Quiroga et al., 2000) that interactions or causality measures 

between time series tend to be biased in the direction from low to high frequencies (see e.g. 

Quiroga et al. 2000, Fig. 2). We therefore computed the spectral properties (spectral power 

density and center frequency) of the fMRI time course within all ROIs examined within our 

networks (Fig. 2.8). We found that in all networks the node receiving causation (PFC or Rs 

had the slowest (**p < 0.001 &***p < 0.0001) center frequency. (Fig. 2.8A-C).  Since our 

experimental results report positive strongest causality in the direction from high to low 

frequencies, these considerations suggest that the experimental findings do not trivially 

reflect frequency differences in the signals. 
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Figure 2.8 

Figure 2.8: Subject average Power spectral density (PSD) & center frequency(CF) of three 

different networks from preprocessed data; (A) vHC-PFC network of figure 2(top sample); 

(B) Salience Network of figure 3(top sample) (C) DMN of figure 5; ((A)-(C) right: average 

PSD between 0.01 to .08 Hz; left: average center frequency (black star: paired t-test between 

ROIs’(**p<0.005 & ***p<0.0005)) 

Second, to account for potential bias induced by surface coil-induced regional variation in 

temporal signal to noise ratio (tSNR), we repeated GC analyses on rsfMRI timeseries 

corrupted with random pink noise such to achieve homogenous tSNR levels equalling values 

observed in deep subcortical areas (≈ 25). The results of this analysis (Fig. 2.9A, B,C and D)  



Chapter 2: Directional connectivity in mouse brain resting-state fMRI networks 
 

40 
  

confirmed original directional connectivity signatures of the network (*p < 0.05, ***p < 

0.0001 , FDR corrected) thus ruling out a significant contribution of coil-related bias on the 

identified dominant connectivity patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 
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Figure 2.9: GC analysis with added pink noise over different networks; (A) vHC-PFC 

network of figure 1; (B) SN of figure 3;(C) vHC-Rs-PFC network of figure 4; (D) DMN of 

figure 5; ((A)-(D) right: Mean +/- SEM across 41 mice of GC, black stars and section signs 

denote statistical significance ( paired t-test (*p<0.05 & ***p<0.0001)), middle: Graphical 

illustration of the dominant directional functional connectivity inferred from GC analysis and 

left: Single subject level analysis by GC( Red : dominant directional percentage of significant 

number of subjects)). 

An autism-related mutation alters directional connectivity in the mouse SN & DMN   

Human imaging studies have consistently revealed altered rsfMRI connectivity across brain 

regions of autism spectrum disorder (ASD) patients (Anagnostou and Taylor 2011). 

However, fundamental questions as to the origin and interpretation of these findings remain 

unanswered. For one, the neurophysiological underpinnings of these connectional 

derangements are largely unknown, and a causal etiopathological contribution of specific 

genetic variants to impaired connectivity in ASD remains to be established. 

Mouse models harboring mutations with robust ASD-association can provide novel insights 

into the pathogenesis of such aberrant connectivity. The use of rsfMRI in mouse lines 

characterised by high confidence ASD-associated mutation can be used to establish causal 

relationships between specific genetic aetiologies and aberrant macroscale connectivity.  

To assess the potential of using directional connectivity mapping in models displaying 

connectivity aberrations, we used GC mapping of rsfMRI in contactin-associated protein like-

2 (Cntnap2) “knock-out” mice  (Peñagarikano et al. 2011). Human homozygous carriers of 

aCntnap2 bnormal alleles exhibit reduced long-range rsfMRI connectivity and aberrant white 

matter microstructure (Scott-Van Zeeland et al. 2010; Clemm von Hohenberg et al. 2013). 

Cntnap2-/- mice show behavioural phenotypes relevant to ASDs and impaired local cortical 
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synchrony (Peñagarikano et al. 2011). Moreover, human homozygous carriers of Cntnap2 

abnormal alleles exhibit reduced long-range rsfMRI connectivity and aberrant white matter 

microstructure (Scott-Van Zeeland et al. 2010; Clemm von Hohenberg et al. 2013) thus 

hinting at the possible presence of functional connectivity alterations in this strain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 

Figure 2.10: Comparison of C-GC results in the salience network obtained with either a 

sample of 14 control subjects (left panels ) or a sample of 13 transgenic subjects (right 

panels). The same set of ROIs was used in both conditions; (a), mean +/- SEM of C-GC for 

all ROI pairs  reveal significant directional effects (*p<0.05 & **p<0.001 asymmetry in GC, 

paired t-test). (b), graphical illustration of the dominant directional functional connectivity 

inferred from GC analysis.  
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Consistent with our previous findings GC analysis revealed significant directional 

connectivity in the salience network of control mice (wild type – WT). Interestingly, no 

dominant connectivity direction was observed in Cntnap2-/- mutants (KO)(Fig 2.10). 

Similarly, a pattern of robust directional connectivity was observed in the DMN both at 

single subject and population level in control (WT) mice. However, no significant dominant 

directional flow of information was found in Cntnap2 mutants between lateral temporal and 

prefrontal areas, and intriguingly, in this cohort the causal influence between temporal 

association and retrosplenial cortices was reversed(Fig 2.11).  The presence of a no or 

reversed causal inference in mutants could be related to the presence of altered cortical 

layering observed in these mice, a finding that may give rise to abnormal macroscale 

oscillatory dynamics (Peñagarikano et al. 2011). This dataset is also important as it represent 

a confirmation of the reproducibility of the directional patterns observed in a different 

experimental cohort.    
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Figure 2.11 

Figure 2.11: Comparison of 1C-GC results in the default mode network obtained with either 

a sample of 14 control subjects (left panels) or a sample of 13 transgenic subjects (right 

panels). The same set of ROIs was used in both conditions; (a), mean +/- SEM of C-GC for 

all ROI pairs  reveal significant directional effects (*p<0.05 & **p<0.001 asymmetry in GC, 

paired t-test). (b), graphical illustration of the dominant directional functional connectivity 

inferred from GC analysis.  
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Chapter 3 : Discussion 
 

 

 

A major goal of current brain research is to understand and describe how information 

dynamically propagates and link different brain regions, generating maps of brain functional 

connectivity. Prevalent functional connectivity approaches, such as the use of spontaneous 

BOLD rsfMRI signal fluctuations, have been successfully applied to describe the large-scale 

functional organization of the human brain. The extension of this approach to laboratory 

animals such as the mouse has been recently proposed, highlighting encouraging cross-

species neuroanatomical correspondences between rsfMRI networks identified (Sforazzini et 

al. 2014b). However, rsfMRI-based connectivity typically relies on measurements 

intrinsically insensitive to the direction of information flow among affected regions, thus 

limiting the possibility of effectively describing their interaction and communication. By 

using GC we show that distributed mouse brain rsfMRI networks, such as the DMN, are 

characterised by robust directional connectivity patterns exhibiting convergent information 

flow towards integrative mouse brain regions, thus shedding new light on the brain’s 

functional organization.  

Similar attempts to map the direction of information flow within human brain rsfMRI 

systems have been recently described using different computational approaches, including 

GC(Deshpande et al. 2011; Uddin et al. 2011; Zhou et al. 2011), Bayesian networks (Wu et 
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al. 2011), partial directed coherence and dynamic causal modelling (Li et al. 2012; Razi et al. 

2014; Crone et al. 2015). Despite large heterogeneity in the methodological approaches 

employed, conserved directional features within distributed human rsfMRI systems are 

emerging. For example, directional connectivity patterns linking lateral (e.g. 

temporal/parietal associative areas) and midline (e.g. prefrontal and posterior 

cingulate/retrosplenial cortex) nodes of the human DMN have been described by several 

independent investigators (Jiao et al. 2011; Miao et al. 2011; Silfverhuth et al. 2011; Zhou et 

al. 2011; Di and Biswal 2014; Razi et al. 2014; Crone et al. 2015). Preliminary evidence for a 

casual influence of anterior insular regions on anterior cingulate and prefrontal areas has also 

been recently described (Sridharan et al. 2008; Deshpande et al. 2011; Chen et al. 2015). 

These initial results suggest the presence conserved directional signatures defining a 

hierarchical relationship between brain regions also in task-free “resting-state” conditions.  

The rsfMRI networks probed in the present work recapitulate prominent neuroanatomical 

features of known human rsfMRI systems that justify a tentative cross-species comparison of 

the directional pattern identified. For example, the insular-cingulate network mapped in this 

work and in previous studies (Sforazzini et al. 2014a, 2014b) presents significant 

involvement of anterior cingulate and dorsal prelimbic cortices, two neuroanatomical regions 

that display cyto-architectural properties of human brain Brodmann area 24 (Vogt and 

Paxinos 2014), the key prefrontal node of the human salience network (Seeley et al. 2007). 

Although at present it is unclear whether the mouse homologue of this network exerts a 

similar role in salience attribution, and notwithstanding possible topological differences in 

rodent and primate insular organization, the observation of analogous insular-prefrontal 

directional connectivity patterns in mice and human is suggestive of a possible evolutionary 

relationship between the two rsfMRI systems. In the case of the mouse DMN, despite the 

presence of apparent neuroanatomical similarities between rodent and human DMN 
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organization (Lu et al. 2012; Sforazzini et al. 2014b), cross-species comparison between 

directional connectivity findings are complicated by the lack of mouse cyto-architectural 

homologues for human DMN nodes in which directional connectivity has been probed (e.g. 

inferior parietal lobule, or lateral temporal cortex), and by the unknown (and at present 

largely speculative) evolutionary trajectory of this network in the mammal brain.  Despite 

these limitations, and the great heterogeneity in the approaches so far employed for human 

effective connectivity mapping, the observation of dominant connectivity between lateral 

temporal regions and retrosplenial cortex (precuneus in humans) reproduces a directional 

feature consistently observed by several directional investigations of the human DMN (Jiao et 

al. 2011; Miao et al. 2011; Zhou et al. 2011; Di and Biswal 2014; Razi et al. 2014; Wu et al. 

2014; Crone et al. 2015). Evidence for a directional influence of lateral temporal regions on 

medial prefrontal areas has similarly been reported by a number of investigators (Deshpande 

et al. 2011; Jiao et al. 2011; Di and Biswal 2014; Razi et al. 2014; Wu et al. 2014), although 

some reports have described opposite connectivity patterns (Zhou et al. 2011). Other 

directional features, such as the presence (or lack thereof) of directional connectivity between 

prefrontal and precuneus/retrosplenial areas have not been consistently replicated (Di and 

Biswal 2014; Razi et al. 2014; Crone et al. 2015). Collectively, some degree of convergence 

exists in the directional patterns of rsfMRI connectivity between temporal cortical areas and 

midline DMN structures of the human and mouse brain, supporting the hypothesis of a 

conserved topological organization of these networks across species. Independent of the 

evolutionary relationship between these systems, the presence of intrinsic directional 

connectivity between antero-lateral insular and posterolateral temporal sub networks involved 

in large-scale sensory integration (Zingg et al. 2014) and medial prefrontal area involved in 

higher cognitive functions is consistent with hierarchical models of cortical function (Badre 

2008; Holroyd and McClure 2014). 
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The identification of robust directional connectivity between subicular regions and prelimbic 

areas is of interest, because the dominant direction identified follows the putative 

unidirectional axonal connectivity between these two regions (Hurley et al. 1991; Takagishi 

and Chiba 1991; Vertes 2004). This observation suggests that GC-based directional 

connectivity mapping of rsfMRI networks may reveal causal relationship between neural 

systems that are constrained by underlying anatomical connectivity, in the same way 

analogous information theory approaches are utilized to established causal relationship using 

integrative electrophysiological readouts (e.g. local field potentials – LFP (Kamiński et al. 

2001). However, further research employing interventional approaches aimed at modulating 

both neuronal activity (e.g. by inhibiting subicular neurons) and underlying connectional 

projection (e.g. via lesions or altered connectional wiring) are required to substantiate this 

link and disambiguate the neural drivers and connectional foundations of the directional 

effects mapped. It should also be emphasized that directional connectivity as inferred from 

neuronal signals is highly dynamic and strongly affected by behavioural and brain states 

(Adhikari et al. 2010; Brockmann et al. 2011), and as such may not directly translate into 

analogous rsfMRI directional patterns. In this respect, the implementation of GC and rsfMRI 

mapping in the mouse represent a major step forward toward a better comprehension of the 

neural bases of these directional signals, owing to the large repertoire of interventional 

approaches and genetic models that can be readily implemented to validate or disprove some 

of the assumptions underlying directional mapping via statistical inferences. Our subject level 

analysis demonstrate the possibility of detecting significant directional connectivity in 

individual subjects, although the lack of significant effects in all the imaged subjects suggest 

that cross-sectional designs could be more appropriate than longitudinal studies to probe 

directional connectivity in this species.  
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Importantly, we were able to confirm our directional connectivity signatures in an 

independent cohort of animals, as part of a study aimed at elucidating the presence of 

directional alteration in a transgenic mouse model of high translational relevance for autism 

research(Peñagarikano et al. 2011). The replicability of our directional findings in a separate 

cohort of mice is an important confirmation of the presence of region-specific intrinisic 

causal relationship between rsfMRI fluctuations originating in functionally-connected brain 

districts. The presence of altered directional connectivity in mice exhibiting autism related 

alterations leads us to speculate that some of the altered behavioural phenotypes (and 

possibly symptoms in patients) associated to this disorder may reflect altered or inefficient 

integrative function in high order cognitive systems. Further investigations into the origin and 

determinants of these connectional signatures are required to understand their neurobiological 

significance. 

The fact that our experiments were performed under light anesthesia raises the question as to 

the whether the directional connectivity identified reflects the functional architecture of the 

mouse brain under conscious quite wakefulness (e.g. the resting-state).  The challenges in 

implementing motion-sensitive readout like rsfMRI in awake/restrained mice prevent a 

straightforward answer to this experimental question. However, the anesthetic regimen 

employed in this study preserves cerebral blood flow autoregulation (Gozzi et al. 2007), 

cortical electrical responsiveness (Orth et al. 2006) , and has been show to lead to the 

identification of networks remarkably similar to those seen in conscious (and lightly 

anesthetised) rats and primates (Vincent et al. 2007; Hutchison et al. 2010; Lu et al. 2012; 

Schwarz et al. 2013). Importantly, we recently demonstrated excellent spatial correspondence 

between rsfMRI signals obtained during light halothane anaesthesia and electrophysiological 

coherence signals in freely-behaving mutant mice, suggesting that the anaesthetic protocol 

preserves fundamental neural signatures underlying intrinsic rsfMRI connectivity profiles 
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(Zhan et al. 2014). The empirical correspondences between directional connectivity patterns 

identified in the present work and analogous directional signatures in human rsfMRI 

networks are encouraging and argue against a substantial confounding role of anesthesia. The 

implementation of rsfMRI in awake habituated mice (e.g. under head-fixed conditions) may 

help disambiguate the effect of anesthesia. The use of alternative anaesthethic protocols 

leading to the identification of analogous networks (e.g. medetomidine,(Shah et al. 2015)) 

may also help identify the presence of anaesthesia-specific directional patters. More broadly, 

the parallel implementation of multisite electrophysiological coherence measurements (e.g. 

LFP) between the nodes probed in our study under similar anesthesia conditions and in 

behaving mice using wireless implants (Zhan et al. 2014) could in the meantime shed light on 

the neural origin of the robust directional signatures observed and to assess their relationship 

with brain states.  

The mathematical method that we chose here to map directed connectivity is based on 

Granger Causality. There are many possible ways to estimate the direction and strength of 

connectivity from simultaneous time series of brain recordings, and the relative strengths and 

weaknesses of each method are under serious debate (Patel et al. 2006; David 2011; Friston 

2011; Roebroeck et al. 2011a, 2011b, 2011c; Smith et al. 2011; Friston et al. 2014a; Liu et al. 

2015). Some techniques, such as Dynamical Causal Modelling (DCM), estimate the direction 

of connections with a model based approach that makes strong assumptions about the 

underlying neural circuitry and about the coupling between neural activity and 

hemodynamics. The advantage of model based approaches is that they provide an explicit 

estimate of the circuit diagram of the considered neural network that takes into account 

possible difference in the “state” of each node of the network (due for example to differences 

in the balance between excitation and inhibition across nodes). The disadvantage of these 

model-based approaches is that they provide a potentially misleading picture of the circuit’s 
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connectivity if the assumptions of the model are wrong. Given that relatively little is yet 

known about the neural properties of the neural circuits that we investigated  and about 

neurovascular coupling in mice, we preferred here to take a safer approach using a techniques 

such as Granger Causality that does not make assumptions about neural and vascular 

mechanisms. However, and despite the relative generality of its assumptions, also the 

application of Granger causality presents elements of risk and of arbitrariness. In particular, 

the best way to maximize the sensitivity of Granger Causality calculations to asymmetries in 

the direction of communication depends on the nature of the data. We illustrated this point by 

investigating how the estimate of directional connectivity depends on the number of nodes 

we condition upon. The specific advantage of our work was that we used a double procedure 

to investigate the optimal number of conditioning nodes to detect asymmetries in Granger 

Causation. On the one hand, we produced simulate data with statistics close to the one of the 

real data and we investigated which conditioning method is more robust, finding 

unequivocally that conditioning on one node was the most robust procedure in this case. We 

then corroborated this finding by testing the different conditioning methods on a cortical 

network that has purely one-directional connections between two brain sites. In such 

condition, there is a clear plausible expectation of what the leading direction of causation 

should be. We found that also this validation confirmed that conditioning on one node was 

the most robust procedure in this case. Although testing algorithms of connectivity with 

simulations has been done before successfully (Honey et al. 2007; Smith et al. 2011; 

Deshpande and Hu 2012; Wen et al. 2013), the combination of testing with simulations and 

with plausible pieces of anatomical circuitry has not been done before to our knowledge. We 

suggest that such combined comparisons will be useful to contribute to perfection methods to 

estimate functional and effective connectivity for each dataset, and will ultimately contribute 
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to a better understanding of the functional and effective circuitry of the cerebral cortex in 

humans and animals.   

In summary, we demonstrate robust directional connectivity patterns in distributed rsfMRI 

networks of the mouse brain, including converging dominant connectivity between lateral 

cortical areas and medial prefrontal and cingulate regions, replicating topological features of 

known human  rsfMRI networks, and consistent with a higher integrative function subserved 

by these areas. Our work provides a first description of directional topology of mouse 

intrinsic connectivity networks, and sheds new light on the intrinsic functional organization 

of the mouse brain, thus complementing ongoing research in the macroscale functional 

architecture of this species. 
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Appendix: Control analysis on Granger Causality 

estimation from fMRI data 
 

This chapter reports some control analyses that we did to corroborate the main analyses of 

Granger Causality directionality from fMRI data that were presented in Chapter 2.  

 

Effect of deconvolution 

As  mentioned  earlier  in  Chapter  2,  previous  studies  have  proposed  that  when  

estimating Granger Causality from fMRI data it is useful to deconvolve the fMRI data with a 

canonical hemodynamic response function, so that we operate on signals that have time scale 

closer to those of neural  activity  and so we  may  more easily capture the neural  interactions  

happening at relatively  fast  time  scales  (Wu et al. 2013a).  The  canonical  deconvolution  

approach  (Wu et al. 2013a) presents several variants depending on how many of its 

derivatives are used. Here we  tested the  effect  of  using  different  variants  on  this  method  

on  the  default  mode  network that we used as a test bed for fine-tuning our methods (see 

Chapter 2). 

 

Most robust and consistent results  for one-node conditional Granger Causality (1C-GC)were 

observed  by  applying ‘canonical  +  time  derivative’  model  option  (Fig.  A.1).We thus 

followed this option for all networks reported in this Thesis. 
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Figure A.1 

Figure A.1: Effect of using different kinds of deconvolution on default mode network for 41 

mice BOLD data; (a) No deconvolution; (b) with only canonical deconvolution; (c) with 

canonical deconvolution & time derivative; Each left panel reports the results of 1C-GC 

(*p<0.05, **p<0.001, *** p<0.0001, asymmetry in GC, paired t-test) and each right panel 
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represents the corresponding graphical illustration of the dominant directional functional 

connectivity inferred from GC analysis. 

Effect of Global signal regression 

A number of previous studies have applied global signal regression to investigate directional 

connectivity patterns  in  resting  state  networks  (Wu et al. 2013b, 2013d).  However,  

several other studies did not remove the global signal (Di and Biswal 2014; Razi et al. 2014; 

Crone et al. 2015).  To  investigate  the  effect  of  Global  signal  in  measuring  directional  

connectivity patterns  for  resting  state  networks  in  mice,  we  applied  one-node  

conditional  Granger causality(1C-GC)  over  a  same  set  of  data  collected  from  41  

subjects  with  and  without  global  signal regression over the same set of seeds of DMN 

regions using same deconvolution approach.  

Results  of  this  control  analysis  are  reported  in  Figure  A.2  for  the  4-node  Default 

mode network  (DMN). Although,  the  overall  one-conditional  Granger  causality  (1C-GC)  

values varied  between  these  two  sets  of  the  same  data,  we  found  exactly  the  same  

pattern  of direction connections with and without regressing out the global signal. This 

suggests that the regression of the global signal is not crucial for the mapping of directional 

networks with our casualty measures.  The  reason  of  this  robustness  is  in  our  view  

because  the  global  signal  is partly  already  regressed  out  in  the  conditioning  over  one  

network  node  in  the  1C-GC calculation, because the global signal correlates with the node 

we condition upon.  
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Figure A.2 

Figure A.2: Conditional GC without(left panel) and with(right panel) global signal 

regression of default mode network with 41 mice BOLD data (a) with global signal 

regression (b) without global signal regression. (DMN 2nd set of ROIs presented in chapter 

2). Each top panel reports the results of 1C-GC ( *** p<0.0001, asymmetry in GC, paired t-

test) and each bottom panel represents the corresponding graphical illustration of the 

dominant directional functional connectivity inferred from GC analysis. 

Effect of removing first few data points 

Many studies remove the first few slices of functional data to get equilibrium magnetisation 

of the scanner (Wu et al. 2013c; Di and Biswal 2014; Saleh 2014b; Sforazzini et al. 2014b).   

The  number  of  slices  removed  varies  from  study  to  study,  however  removing  two  to  

five slices  is  a  common  procedure. To check if removing some data points affects our 
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results, we repeated the 1C-GC calculation in the Default Mode Network (DMN) after 

removing the first 10, 50 and 100 data points to check the variability of directionality. 

Interestingly, we did not find any evidence of changing significant dominant directionality 

(Fig. A.3). Thus our results seem to be robust to the inclusion or exclusion of the slices that 

may contain non-equilibrium magnetization effects, and see also robust to the number of data 

points used in the analysis. This latter finding is consistent with the computer simulations of 

Chapter 2.    

 

 

 

 

 

 

 

Figure A.3 

Figure A.3: Default mode network over 41 BOLD data with one node conditional GC(First 

set of DMN in chapter 2); after removing first (a) 10 data points, (b) 50 data points and (c) 

100 data points. Each top panel reports the results of 1C-GC ( *** p<0.0001, asymmetry in 

GC, paired t-test) and each bottom panel represents the corresponding graphical illustration 

of the dominant directional functional connectivity inferred from GC analysis. 

Effect of spatial upsampling of the anatomical templates 

In  all  the  cases  of  our  data  analysis  (chapter  2),  we  used  high  spatial  resolution  

anatomical template  (198*198*24)  to  register  the  data  in  the  preprocessing  pipeline.  To  
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understand whether  this  affects  our  measure  of  directional  connectivity,  we  registered  

our  41  subject BOLD fMRI mice data with a low-resolution template (99*99*24). Then we 

generated seeds of the 4-node Default Mode Network (DMN) (see Fig. A.4a)  and run the 

Granger Causality analysis as above (Fig. A.4).We found evidence that the proposed 

dominant directionality patterns were still observed (Fig. A.4b). 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 

Figure A.4: DMN with data registered with low resolution template; (a) seed location over 

anatomical template; (b) left panel represents mean  SEM of 1C-GC(*** p<0.0001, 

asymmetry in GC, paired t- test) and right panel represents the corresponding graphical 

illustration of dominant directionality inferred from GC analysis. 
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Effect of fMRI session length and number of subjects  

In  Chapter  2,  we  examined  the  Granger  causality  measures  obtained  from  a  sample  of  

41 subjects  whose  fMRI  signals  were  recorded  for  6  minutes.  To  evaluate  whether  

there could be artefacts in the estimation of GC due to the length of recorded time, we 

computed 1C-GC again  on  a  separate  and  smaller  number  of  14  subjects  recorded  for  

a  longer  time  (10 minutes). We found (Fig. A.5 & A.6) that the same structured of directed 

connections was found with  the  new  datasets  with  a  longer  recording  time,  again 

stressing  the  robustness  of  our results to variations in the experimental conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 

Figure A.5: Comparison of C-GC results in the salience network obtained with either a 

sample of 41 subjects whose BOLD signal was recorded for 6 minutes (left panels b& c) or a 

sample of 14 subjects whose BOLD signal was recorded for 10 minutes (right panels b & c). 
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The same set of ROIs was used in both conditions; (a), location of salience network ROIs 

used for GC in original image space and corresponding slices; (b), mean  SEM of C-GC for 

all ROI pairs  reveal significant directional effects (*p<0.05 & **p<0.001 asymmetry in GC, 

paired t-test). (c), graphical illustration of the dominant directional functional connectivity 

inferred from GC analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6 

Figure A.6: Comparison of 1C-GC results in the DMN obtained with either a sample of 41 

subjects whose BOLD signal was recorded for 6 minutes (left panels) or a sample of 14 

subjects whose BOLD signal was recorded for 10 minutes (right panels). The same set of 



Appendix: Control analysis on Granger Causality estimation from fMRI data 
 

61 
  

ROIs was used in both conditions. (a), location of default mode network ROIs used for GC in 

original image space and corresponding slices; (b), mean  SEM of 1C-GC for all ROI pairs 

reveal significant directional effects (*p<0.05 & **p<0.001 asymmetry in GC, paired t-test). 

(c), graphical illustration of the dominant directional functional connectivity inferred from 

GC analysis. 

In summary, session length and number of subjects for fMRI data analysis are important 

issues especially for directed functional connectivity analysis such as GC. Advanced 

developments of GC illustrate a way to overcome this limitation(Wen et al. 2013). 
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