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Abstract

Abstract and concrete concepts are generally considered fundamentally distinct cate-

gories. However, many concepts have both concrete and abstract senses, for instance

book can refer to both a physical object (as in a torn book) and the abstract content

(as in an interesting book). How is the meaning of such concepts represented in the

brain? In this thesis, we address this question in the light of Pustejovsky’s dot-object

hypothesis (Pustejovsky, 1995, 2011). According to the hypothesis, words such as

book and lunch are dot-objects: a class of logically polysemous words which have

multiple senses that are closely bound together. As a result of the close binding, both

senses can be accessed simultaneously (as in read the book), however sometimes only

a single aspect is emphasised by the context (e.g. the book burned, he summarised

the book).

We argue that the complex meanings of the dot-objects are represented and ma-

nipulated in semantic hubs in the brain, where all aspects of conceptual knowledge

converge and are represented in a modality-independent manner (thus accommodat-

ing diverse aspects of knowledge such as that cakes are made of pastry and are related

to both birthdays and diabetes).

We present three experiments investigating the neural representation of three dot-

object categories with clear concrete and abstract senses: print matter such as book

(OBJECT • INFORMATION), meal concepts such as lunch (FOOD • EVENT), and

institution such as church (BUILDING • ORGANISATION). In all the experiments,

participants read the dot-objects in a minimal context which elicited either the con-

crete or the abstract interpretation (e.g. open the book / consult the book, cook the

lunch / organise the lunch). We found the neural distinction between the concrete

and abstract interpretations of the dot-objects differed from the concrete-abstract

distinction observed for mono-sense nouns; instead the differential effect was most

evident in the anterior temporal lobe (ATL), an area argue to be the semantic hub.
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The result suggests that 1) the distinct senses of a dot-object are associated with a

single, unspecified structure in the mental lexicon, thus aligning with the dot-object

theory; 2) when in context, the semantic representation is specified by instantiation

to a particular sense. In addition, we also observed variations between the book -like

and the lunch-like dot-objects, suggesting a graded representation mechanism within

the ATL. Finally the third experiment showed that the MEG gamma-band frequency

power could distinguish the neural correlates of the concrete and abstract interpre-

tations; notably the divergence occurred 400ms and later post-stimulus onset. Given

the established role in the literature of the gamma-band in integration processes, we

conclude that the meaning instantiation only occurred at the later integration stage.
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Chapter 1

Introduction

1.1 Problem description

Entities in the world generally fall into two categories: concrete and abstract. Con-

crete concepts (e.g. chair, apple) usually have rich sensory-motor properties and are

easy to imagine, whereas abstract concepts (e.g. justice, idea) are considered to be

heavily dependent on our language experience (Paivio, 1986, 1991; Schwanenflugel

& Stowe, 1988; Wiemer-Hasting & Xu, 2005; Vigliocco et al., 2009). Neuroimaging

studies support this intuition: the areas most activated by concrete concepts are re-

gions related with processing multimodal information, while the neural correlates of

abstract concepts largely overlap with the areas involved in general language process-

ing (D’Esposito et al., 1997; Wise et al., 2000; Jessen et al., 2000; Grossman et al.,

2002; Noppeney & Price, 2004; Binder et al., 2005; Sabsevitz et al., 2005; Wang et

al., 2010, 2012).

Yet one subtlety which has been largely neglected thus far is that many so-called

polysemous words have both concrete and abstract senses. A well-known example

is the word book, which can refer to both a physical object (e.g. burn the book)

and its abstract content (e.g. believe the book) (Pustejovsky, 1995; Jackendoff, 1997).
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Caramazza & Grober (1976) identified twenty-six senses of another polysemous word,

line, including a concrete and continuous mark sense, as in gas line, a line of trees,

and many other abstract senses, as in line of reasoning, line of business.

In fact, malleable concepts such as book and line are pervasive in daily life. In

particular for some of them like book, the multiple senses are linked by certain logical

relations and exhibit ambiguity in a systematic manner, a phenomenon termed logical

polysemy (or regular polysemy, systematic polysemy) in linguistics (e.g. Apresjan,

1973; Cruse, 1986; Copestake & Briscoe, 1995; Pustejovsky 1995; Jackendoff, 1997).

For instance, the concrete and the abstract sense of book, along with others such

as catalogue and magazine, are linked by the relation that the print matters hold

information (Pustejovsky, 1997). Some other words such as church, hospital, school,

can in turn refer to the organisation and/or the building/location the organisation is

located. Other examples include words refer to food and/or the event of eating (e.g.

lunch, dinner), to the livestock and/or the meat (e.g. chicken, lamb), among many

others.

Interestingly for some logically polysemous words, the distinct senses are even

more closely related and can be perfectly accessed in one expression, a phenomenon

called co-predication in the linguistic parlance. This phenomenon is intensively

studied in Pustejovsky’s Generative Lexicon (GL) framework. Considering the

examples (1a-1c) below taken from Asher & Pustejovsky (2006). By contrast, some

words refer to utterly unrelated things, i.e. homonyms. For instance the word bank

cannot refer to both the financial institution and the river bank at the same time,

thus the sentence of example (1d) is not acceptable. What is more, for some other

logical polysemous words like lamb and chicken, co-predication is also problematic

(1e).

(1)
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a. The book was a huge pain to lug home and turned out to be very uninteresting.

b. Lunch was delicious but took forever.

c. The Sunday newspaper weighs 5 lbs and documents in depth the economic news of

the week.

d. *The bank specializes in IPO’s and is being quickly eroded by the river.

e. *The lamb is cute and delicious.

In order to account for the co-predication phenomenon, Pustejovsky proposed

that such words as in (a-c) are dot-objects: the distinct senses are coherently

bound together via a “dot” operator, resulting in a complex concept that allows for

co-predication (i.e. both senses can be accessed simultaneously) as well as meaning

shifting (i.e. only one aspect of the meaning is emphasised) (Pustejovsky 1995,

2011; Asher & Pustejovsky, 2006). The meaning of book, for instance, can be seen

as a dot-product of a concrete object component and an information component

(OBJECT • INFORMATION). When the context selects a more specific sense (e.g.

the book burned, or I summarized the book for her), a process called coercion-by-dot-

exploitation takes place. Some other classic examples of dot-objects are listed below

adapted from Pustejovsky’s work.

(2)

a. PHYSICAL OBJECT • INFORMATION: book, catalogue

b. FOOD • EVENT: lunch, dinner

the lunch was delicious but took forever.

c. LOCATION • SOCIAL GROUP: hospital, church

People gathered in front of the church to protest against its decision.

d. PHYSICAL OBJECT • LIQUID: bottle

John grabs the bottle and drinks it.

3



e. PROCESS • STATE: examination, arrival

The party will begin after John’s flamboyant arrival.

It is not yet known whether all polysemous words are treated in the brain in the

same way, but the phenomenon of co-predication strongly suggested that the different

senses of a dot-object are associated with a single lexical entry in the mental lexicon.

A handful of psycholinguistic studies have looked at the intricate relation between the

sense components of the dot-objects. Srinivasan & Snedeker (2011) studied four-year-

old children who had only limited meta-linguistic abilities (e.g. they were unable to

count the number of words in a sentences; they do not realise the relation between a

word form and the meanings), and found the children could understand the concrete

and abstract senses of the book -like concepts equally well. As a result they argued

that the two senses had a common mental representation. Frisson (2015) conducted a

reaction-time and an eye-tracking experiment on comprehending the book -like words

in a concrete or an abstract context. The results also suggested that the concrete

and abstract senses were equivalent. For instance in the eye-tracking experiment,

no facilitating effect was found when a sense was repeated as in typical ambiguity

resolution, implying that the two senses of book -like words had an even closer relation

than other typical polysemy.

What are the neural representations of the dot-objects such as book and lunch?

In this thesis, we examined three dot-object categories which contain both a con-

crete and an abstract sense component using functional magnetic resonance imaging

(fMRI) and magnetoencephalography (MEG). We positioned the dot-objects in a

minimal concrete or abstract context, i.e. a verb-noun phrase (e.g. open the book /

consult the book ; cook the lunch / organise the lunch). The information print mat-

ter category (i.e. the book -like concepts) and the meal category (i.e. the lunch-like

concepts) were examined in two fMRI experiments respectively. Specifically, we com-

4



pared the neuroanatomical distinction between the dot-objects that were coerced into

the concrete and the abstract interpretation to the typical, mono-sense concrete and

abstract concepts. In another experiment, we investigated the oscillatory neural dy-

namics of reading those verb-noun phrases through MEG, with an emphasis on the

timing of coercion.

The central question addressed by the fMRI experiments is whether the coerced

concrete and abstract senses of dot-objects are represented in the brain differently

to mono-sense concrete and abstract concepts. And if so, what are the differences?

First, if the neural distinction between the coerced dot-objects is similar to the typical

concrete-abstract distinction, we can speculate that the mental representation of a

dot-object is a simple combination of the two sense components, and each component

can be accessed independently a mental representation more close to the one of

homonyms (Fig. 1.1). Conversely, if the concrete- and abstract-coerced dot-objects

yield a different neural distinction from the typical one, it is more likely that the

meaning of a dot-object is represented as a whole in semantic memory and a biasing

context will render the on-line meaning shift into different directions (Fig. 1.1).

The single lexical entry hypothesis pertaining to polysemy indeed predicts the

second scenario. Furthermore according to the Generative Lexicon theory of Puste-

jovsky, word meanings are encoded as an underspecified structure, i.e. the qualia

structure, which contains the essential meaning components and enables flexible in-

terpretations of the word in different contexts. In the case of dot-object and coercion-

by-dot-exploitation, it can be seen as a more specific interpretation is unpacked by

selecting a subset of the concepts qualia (Fig. 1.2). In terms of neural representation,

this underspecified structure seems to mirror the general, overall semantic knowledge

about entities, including not only the sensory-motor properties but also the abstract

knowledge about facts, associations with other entities in the world, and so forth.

5



Figure 1.1: The graphical depictions of the two hypothetical models for the mental
representation of the dot-objects. A. The dot-object book is a simple combination
of the two sense components, and each component can be accessed independently
(similar to the multiple-lexical-entry model pertained to homonyms). B. The dot-
object is represented as a single underspecified structure, as the single-lexical-entry
hypothesis predicts. Both senses can be accessed simultaneously and a biasing context
will render the on-line meaning shift into different directions.

It has been recently proposed in neuroscience that there are some semantic hubs

in the brain that are responsible for this high-level, modality-independent concept

knowledge (Patterson et al., 2007; Binder & Desai, 2011; Lambon Ralph, 2014). The

anterior temporal lobe (ATL) has been the spotlight in this line of arguments. The

ATL is initially noted in studies with semantic dementia (SD) patients. Lesions in the

bilateral ATL lead to loss of concept knowledge across all categories and all modal-

ities. Interestingly one of the typical symptoms of SD is the impairment of specific

conceptual knowledge, for instance the SD patients usually have more difficulty in

basic-level concepts like dog, chair compared to the more general concepts like ani-

mal, furniture (e.g. Hodges et al., 1996; Rogers, et al., 2006; Patterson et al., 2007;

Wright et al., 2015). The sensitivity of the ATL to specific concept knowledge has

6



Figure 1.2: Left: The sample schema of the book dot-object in the Generative Lexicon
Framework (adapted from Pustejovsky, 1997). Right: The depictions of the concrete
and the abstract coercion (cit. Pustejovsky).

also been found with healthy subjects in neuroimaging experiments (e.g. Tyler et al.,

2004; Rogers et al., 2006; Clarke & Tyler, 2014).

In this thesis, we also would like to emphasise the interaction between semantic

composition and lexical semantics. The meaning representation of a word in the

long-term memory and the on-line meaning retrieval are typically treated as separate

components. Yet we argue that the word meaning in fact largely determines what

compositional processing can happen. As to dot-objects, the semantic composition

plays an even more defining role than to the unambiguous concepts. To illustrate, book

can be an object and/or the abstract information, and the appropriate interpretation

has to be determined in the context (e.g. a torn book / a difficult book, pick up the

book / explain the book). By contrast, meanings of the simple concepts (e.g. pick up

the flower / explain the plan) rely less on semantic composition, in other words, the

meaning of flower or plan in the above examples rarely depends on the context.

1.2 Thesis outline

In this thesis we investigated the implications of the single lexical entry hypothesis in

regard to the neural representations of both concrete and abstract concepts. We use

functional magnetic resonance imaging (fMRI) as well as magnetoencephalography

(MEG) to probe the meaning representation of dot-objects as well as the coercion
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mechanism in the brain. FMRI gives snapshots based on the oxygen level of the blood

in the brain. The snapshot images of the brain can have millimetre spatial resolution,

which allows us to paint a fine-grained picture of the neuroanatomical profiles of the

meaning representation. However the hemodynamic responses fMRI measures are

rather slow, therefore the time resolution of fMRI is usually about several seconds.

MEG, on the other hand, measures the electro-physiological activities of the neurons.

It has a temporal resolution of millisecond, which provides a different angle to answer

the research question.

Given the prominent distinction between concrete and abstract concepts, we se-

lected the dot-object categories which clearly had a concrete and an abstract sense.

Firstly we studied the most representative category, information print matter (OB-

JECT • INFORMATION), such as book and magazine. During the fMRI experiments,

participants read the polysemous words in a minimal context, i.e. a verb-noun phrase,

which elicited either the concrete or the abstract interpretation (e.g. open the book

/ consult the book). The second fMRI experiment investigated another classic dot-

object category, meal concepts (FOOD • EVENT) including lunch and dinner. We

followed the same approach of the first experiment that the dot-object words were put

in a concrete or an abstract verbal context (e.g. cook the lunch / organise the lunch).

The results of both experiment are consistent with the linguistic hypothesis that that

the meaning of a dot-object concept is stored as a single complex structure, or qualias

in Pustejovsky’s word; when in context, the meaning is coerced into a more specific

representation. Finally we examined three dot-object categories together in the MEG

experiment. Besides the two categories examined with fMRI, we chose another dot-

object category, institution (BUILDING • ORGANISATION), including words such

as school and church. We focused on the oscillatory neural dynamics during reading

the dot-object words in context.
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We probe the concrete-abstract distinction by examining where, when, and how

(i.e. in which frequency band) the abstract and the concrete senses of dot-objects

can be discriminated using multivariate pattern analysis (MVPA). In the two fMRI

experiments, we examined where in the brain they could be distinguished. Despite

some discrepancies between the two categories, both experiments pointed to the an-

terior temporal lobe (ATL). Given the role of ATL in modality-independent concept

representation and concept specification, we argue that the results are compatible

with the linguistic hypothesis that, (1) the representation of those concepts involves

a single, underspecified structure; (2) in context, the representation instantiates to a

more specific one.

The MEG experiment, in turn, highlighted the gamma-band frequency in dif-

ferentiating the different kinds of semantic composition (i.e. concrete vs. abstract,

coercion vs. non-coercion). The gamma-band has been indicated in a variety of com-

binatorial processes, including sentence comprehension (Weiss et al., 2003; Hald et

al., 2006; Penolazzi et al., 2009), world knowledge retrieval (Hagoort et al., 2004),

perceptual and conceptual feature binding (Matsumoto & Lidaka 2008; Friese et al.,

2012), and so forth. Moreover the gamma-band activity patterns of the concrete- and

abstract-coerced dot-objects diverged not before 400ms post-stimulus onset, suggest-

ing that coercion took place not only after the lexical knowledge retrieval but also

the initial semantic integration.

1.3 Road-map

The next chapter gives a comprehensive review on related research about 1) concept

representation, focusing on the neural distinction between concrete and abstract con-

cepts and the semantic-hub theory; and 2) the neural mechanism of comprehending

polysemy and semantic composition. We also briefly introduce the background of
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neuroimaging and multivariate pattern analysis (MVPA). In chapter 3, we present

the fMRI experiment on the dot-object category of OBJECT • INFORMATION.

Chapter 4 presents the second fMRI experiment on the other dot-object category,

FOOD • EVENT. In chapter 5 we present the MEG experiment in which three dot-

object categories were examined. At last we conclude our investigation in chapter 6

and provide a general discussion.
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Chapter 2

Related Work

How word meanings are represented in the brain is a central topic of concept represen-

tation. In this thesis we address this issue by investigating the meaning representation

of logical polysemy in the brain. First, we review the research on the neural repre-

sentation of concepts and the more semantic hub theory, followed by a throughout

overview in section two of the neural distinction between concrete and abstract con-

cepts in psychology, neuropsychology and cognitive neuroscience. In section three we

turn to the psycholinguistic research on comprehending polysemy and coercion, then

in section four we extend the review into semantic composition as it is the crucial

mechanism of ambiguity resolution. In the last section we provide a brief introduction

of neuroimaging methods and multivariate pattern analysis (MVPA).

2.1 The neurobiology of concept representation

How entities are organised in the mind has also been the central issue of cognitive sci-

ence since its early times (e.g. Rosch 1973, 1975; Rosch et al., 1976; Rosch & Mervis,

1975, 1981; Medin & Smith, 1984; Murphy & Medin, 1985). Early psychologists have

identified the basic level categories that have a superior status in human conceptual

system (Brown 1958, 1965; Kay 1971, Rosch et al., 1976). Basic level entities, such
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as dog, chair, are first learned by children, most frequently used in everyday life, and

possesse “an ideal balance between internal similarity and external distinctiveness”

(cit. Ungerer & Schmid, 2006). Following Wittgenstein’s family resemblances theory,

Rosch & Mervis (1975) proposed the prototype theory that objects in the world were

organised as clusters centred on prototypes, e.g. robin as the prototype for bird, apple

as the prototype for fruit.

Patients with category-specific deficits have shed great light on the neural basis

of human concept system. Warrington & Shallice (1984) documented four patients

that showed a discrepancy between their ability to identify inanimate objects, living

things, and food, and they reasoned that the concepts were categorised in the mind

based on features. For instance living things are mostly represented by their visual

features whereas inanimate objects such as hammer and chair are characterised more

by their functional features. The author further argued that features of different

modalities were stored in modality-specific sub-systems in the brain. By contrast,

some have argued for a domain-specific account, stating that these category-specific

deficits arise from the evolutionary value of the categories themselves (Caramazza &

Shelton, 1998; Caramazza & Mahon 2003; Capitani et al., 2003).

This issue has also been intensively examined in neuroimaging experiments with

healthy subjects. Although the underpinning mechanism remains a matter of debate,

a concept knowledge map in the brain starts to emerge (Martin et al., 1995; Chao et

al., 1999; Ishai et al., 1999; Martin & Chao, 2001; Haxby et al., 2001; Bookheimer,

2002; Thompson-Schill, 2003; Martin, 2007; Mahon et al., 2007; Binder et al., 2009;

Fairhall & Caramazza 2013; Bruffaerts et al., 2013). Studies contrasting living and

non-living things consistently showed that living things tended to activate the medial

ventral temporal lobe while non-living things were more lateral (e.g. Chao et al., 1999;

Perani et al., 1999). Among non-living things, the tool category reliably activated

the posterior lateral temporal lobe, and it has been showed that this regions is also
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sensitive to knowledge of action and verb reading (Martin et al., 1995; Chao et al.,

1999; Perani et al., 1999; Bedny et al., 2008; Binder et al., 2009; Peelen et al., 2012).

Two highly specific areas were also identified: the fusiform face area (FFA), which is

a small area in the medial fusiform gyrus that is particularly sensitive to face stimuli

(Kanwisher et al., 1997), and the parahippocampal place area (PPA), an area in the

posterior parahippocampus that shows high sensitivity to building as well as large

objects (the parahippocampal place area, PPA) (Aguirre et al.,1996; Ishai et al., 1999;

Konkle & Oliva, 2012).

Nevertheless the research above emphasises the sensorimotor aspects of concept

knowledge but does not take into account the extremely rich body of high-level,

modality-independent knowledge about entities as well as abstract concepts. With

respect to the neural basis of such knowledge, the semantic hub theories have achieved

much progress recently (Rogers et al., 2004; Patterson et al., 2007; Binder & Desai,

2011; Lambon Ralph, 2014). The core of the theories is that there is a “hub” (or

hubs) in the brain in which such modality-independent knowledge is stored and ma-

nipulated.

The anterior temporal lobe (ATL) has been the centre of the semantic hub hy-

pothesis. Lesions in the ATL lead to loss of concept knowledge across all categories

and modalities, and severely impair specific concept knowledge (Hodges et al., 1996;

Warrington, 1975; Breedin et al., 1994; Damasio et al., 1996; Hodges & Patterson

1996; Mummery et al., 2000; Nestor et al., 2006; Lambon Ralph et al., 2010a, 2010b;

Wright et al., 2015). Similar effects have been replicated with healthy subjects using

fMRI and TMS (e.g. Gorno-Tempini & Price, 2001; Tyler et al., 2004; Rogers et al.,

2006; Spitsyna et al., 2006; Pobric et al., 2007; 2010a; 2010b; Binney et al., 2010;

Visser et al., 2010; Peelen & Caramazza, 2012). To account for this phenomenon,

some proposed the “spokes-and-hub” model (Rogers et al., 2004; 2006; Patterson

et al., 2007; Lambon Ralph, et al., 2010a; Lambon Ralph, 2015). As the name
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suggests, the “spokes-and-hub” model consists of multiple modality-specific yet inter-

connected subregions distributed in the brain, i.e. the spokes, and the single “hub”,

i.e. the ATL, that is shared by the spokes and represents modality-independent con-

cept knowledge. The authors argued that this model could account for the various

observations of semantic deficits that a a-hub model would fail to explain. Rogers

et al. (2004) constructed a computational model based on this framework and it

could predict the patient data. The model learned a variety of features such as vi-

sual, functional, and encyclopedic, and the features were fused in the hub to form

a modality-independent representation. Critically, cross-modality generalisation was

done via the hub, for instance when given an object name, the system has to go

through the hub to retrieve the other information such as the shape, colour, function,

and so on. Lambon Ralph et al. (2010) also highlighted the computational nature of

the ATL. The authors tested six semantic dementia patients ranging from mild to se-

vere semantic impairment, with a new assessment which emphasising the underneath

modality-independent knowledge rather than surface similarity. As the semantic hub

theory predicted, they found the more severe the semantic impairment was, the more

the patients relied on the surface similarity.

Another potential hub location is the angular gyrus, which rests on the junction

of the parietal, temporal, and occipital lobe. Similar to the “spokes-and-hub” model,

Binder & Desai (2011) proposed a multi-level representation architecture which in-

cluded a high-level, modality-independent convergence hub. The authors examined

a large number of neuroimaging studies; in the meta-analysis of Binder et al., 2009,

the authors examined 120 neuroimaging studies of semantic processing, and revealed

seven major semantic regions across the brain. For instance the left inferior frontal

gyrus (IFG) was shown to play a crucial role in language production and various

combinatory processing, and the posterior cingulate cortex (PCC) and the precuneus

were related to the episodic memory retrieval and mental imagery during language
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processing. Different from the “spokes-and-hub” architecture, however, their hub in

Binder & Desai (2011) stretched from the angular gyrus (AG), the posterior middle

temporal lobe, to the ATL. In particular, they underlined the role of the angular gyrus

in receiving and integrating information from various modality-specific cortices, and

it might played a crucial part in representing complex event concepts like birthday

party.

2.2 The distinction between abstract and concrete

concepts

2.2.1 Hypotheses in psychology

The concreteness effect is a well-established phenomenon in psychology: concrete con-

cepts are easier to remember, learned earlier by children, and processed faster with

different psychological experiment paradigms. There are two major hypotheses that

have been proposed to account for the concreteness effect. One is the influential Dual-

Coding Theory (DCT), which was initially framed by Paivio in the 1970s based on a

series behavioural experiment. DCT ascribes the concreteness effect to the fact that

concrete concepts are more prone to evoke mental imagery and supported by their rich

sensorimotor properties and real world experience (Paivio, 1986, 1991). Alternative

to DCT, Schwanenflugel and colleagues proposed the Context Availability hypothesis,

arguing that abstract concepts relied more on their contextual associations whereas

the concrete concepts depended more on their intrinsic properties. Therefore when

given sufficient contextual information, the concreteness effect could be eliminated

(Schwanenflugel & Stowe, 1988; Schwanenflugel et al., 1992). These two hypotheses

have been subjected to numerous investigations in psychology and cognitive neuro-

science (e.g. Breedin et al.1994; Kounios and Holcomb, 1994; Holcomb et al., 1999;
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Altarriba 1999; Jesson et al., 2000; Binder et al., 2005; Wiemer-Hastings and Xu,

2005; Crutch & Warrington 2005; Adorni & Proverbio,2012). Although they are not

mutually exclusive, the majority results corroborate the claims of the Dual-Coding

theory.

Opposed to the viewpoint that abstract concepts are elusive and fully depen-

dent on language, the embodied view of concept representation argues that abstract

concepts are also underpinned by concrete knowledge. The pioneering embodied the-

ory toward abstract concept is the metaphor account described in Lakoff & Johnson

(1980). They analysed the linguistic usage of abstract words, and argued that the

way we comprehend abstract concepts is we projecting the abstract concepts into the

concrete domain so as to draw inference from our concrete experience. According

to this theory, for example, we understand time as property thus it can be lost and

gain, and anger is something can be built up, explode and distinguish. This theory is

also supported by some neuroimaging evidence (Borodistsky & Ramscar, 2002; Gibbs

2006; Desai et al., 2011, 2013). Another influential embodied theory, the Grounding

cognition views conceptual knowledge as multimodal and dynamic (Barsalou, 2003,

2008). For instance, the meaning of dog consists of not only the look, the barks,

the touch of the fur, but also our life experiences with them and the encyclopedic

knowledge we learned about dogs. Therefore the mental representation of the con-

cept dog is a result of all those multimodal information and involves a widespread

distribution of brain regions. Taken this approach, the embodied theory extends the

DCT, suggesting that abstract concepts are also represented in a multimodal fashion,

albeit the internal states such as introspective properties and situational information

play a more important role (Barsalou 1999, 2003, 2008; Barsalou & Wiemer-Hastings,

2005; Wiemer-Hastings & Xu, 2005). For example in the property-generation exper-

iment reported in Wiemer-Hasting & Xu (2005), participants generated more prop-

erties about mental experience and social context for abstract concepts compared

16



to concrete concepts. Vigliocco and colleagues focused the affective factor for ab-

stract concepts. According to their hypothesis, experiential information, language

and emotion all serve as crucial dimensions of concept knowledge. Given the fact

that abstract concepts are lack of reliable sensorimotor properties, they argued that

emotion played the principal role in representing abstract concepts (Vigliocco et al.,

2009, 2014; Kousta et al., 2009, 2011).

2.2.2 Evidence from cognitive neuropsychology

Evidence from lesion studies supports the intuition that concrete and abstract con-

cepts differ qualitatively. Double-dissociation of concrete and abstract concepts has

been found in patients with semantic deficit (Warrington 1975, 1981; Warrington &

Shalice, 1984). A reversed concreteness effect with semantic dementia (SD) patients

has been frequently reported (e.g. Breedin et al., 1994; Yi et al., 2007; Bonner et al.,

2009; Macoir 2009; Pagagno et al., 2009). Many ascribed the reversed concreteness ef-

fect to the gross lost of sensorimotor concept features due to the lesions in the anterior

temporal lobe. Yet Crutch & Warrington (2005) found patient evidence supporting

an alternative account that the concrete-abstract distinction lied in their different

organising principles. The patient of Crutch and Warrington suffered from semantic

refractory access dysphasia, a neuromodulatory disorder; the typical phenomena in-

cluded response inconsistency, reversed word frequency effect, and greater sensitivity

to the semantic relatedness. Crutch and Warrington observed a double-dissociation:

the patient seemed to lose the ability of perceiving semantic relatedness among ab-

stract concepts (e.g. deceit, trick, steal, cheat) whereas this effect was preserved for

concrete concepts (e.g. goose, pigeon, crow, sparrow), on the other hand the reversed

pattern was seen with semantic associations (e.g. abstract: exercise, healthy, fitness,

jogging ; concrete: farm, cow, tractor, barn). This finding mirrored the results from
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studies with healthy subjects that concrete concepts are more self-sustained whereas

abstract concepts more rely on associations (e.g. Wiemer-Hastings & Xu, 2005)

2.2.3 Evidence from cognitive neuroscience

The distinction between concrete and abstract concepts has also been found with

healthy subjects in cognitive neuroscience studies. Consistent to the Dual-Coding

theory, the overall result suggests that concrete concepts involve a wide distribution

of multimodal brain areas while the abstract concepts largely overlap with the

language areas. Nevertheless the observations seem to vary significantly across

studies depending on the specific experimental design and stimulus, implying that

this neural distinction is the result of the interplay of many factors.

EEG/ERP

The N400 component is the main manifestation of the concreteness effect in ERP.

Compared to abstract concepts, concrete concepts typically evoke an anterior-

distributed N400, sometimes accompanied by a late frontal negativity and/or N700.

N400 is the most consistent ERP component associated with language process and

particularly with the semantic respect. Initially it was identified with processing

semantic violation (Kutas & Hillyard, 1980, 1984), but it also showed in various

paradigms including referring real world knowledge (e.g. Hargoot, 2003; Kuperberg

et al., 2008); animate violation (e.g. Paczynski et al., 2006). The typical N400

effect is widespread across the scalp with a central-parietal tendency; however the

N400 for concreteness has a more anterior distribution (e.g. Kounios & Holcomb,

1994; Holcomb et al., 1999). West & Holcomb (2000) found that the late negativity,

namely N700, was most eminent when participants were instructed to generate

mental imagery, arguing that the N700 effect was associated with mental imagery.

Welcome et al. (2011) and Adorni & Proverbio (2012) also demonstrated that
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imagery-based, multimodal knowledge had a crucial contribution to the concreteness

effect (but see Barber et al. (2013) for a different argument that N400 and N700

observed for concrete concepts reflected the difference in the level of processing and

meaning activation).

Neuroimaging

Neuroimaging experiments (fMRI as well as PET) demonstrated that concrete and

abstract concepts are underpinned by at least partially different neural circuits. By

and large abstract concepts are mainly associated with language system, including

the left inferior frontal gyrus and the superior temporal lobe, whereas concrete

concepts activate a distribution of bilateral multimodal brain regions that are

responsible for representing object knowledge and mental imagery. For instance,

DEsposito et al. (1997) found the left posterior inferior temporal gyrus (pITG)

was more activated when the participants actively imagined concrete objects than

when they passively listened to abstract words. Wise et al. (2000) examined with

PET the neural activities associated with viewing and hearing nouns that varied in

imageability, and found the activity in the left mid-fusiform gyrus increased with

increasing noun imageability regardless of the presentation modality, whilst the right

Superior Temporal Gyrus (STG) showed the reversed effect. Grossman et al. (2002)

used abstract words as a neutral probe to investigate the animate vs. inanimate

distinction, and found both words for implements and abstract concepts recruited

the left posterolateral temporal cortex and the left prefrontal cortex, whereas animal

words activated the ventral-media occipital area. The results imply that abstract

concepts contain little sensorimotor information and rely tremendously on the verbal

system. Jesson et al. (2000) used an encode-recall paradigm to examine the con-

creteness effect. The left inferior frontal gyrus (IFG), namely Brocas area, was shown

to be activated by abstract concepts while concrete concepts recruited a broader
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bilateral network including the left anterior IFG (more anterior than the Brocas

area identified in the same study), the lower bilateral parietal lobe, the posterior

cingulated gyrus and the precuneus. Binder et al. (2005) also compared the fMRI

activities of reading concrete and abstract words with a lexical decision task, and

the results corroborated the Dual Coding theory: reading concrete concepts involved

both hemisphere while abstract concepts was almost confined in the left hemisphere.

Moreover concrete concepts recruited the bilateral posterior cingulate gyrus and

the precuneus, which were associated with mental imagery. Yet the temporal lobe

was surprisingly absent in that study. Sabsevitz et al. (2005) later conducted a

similar experiment but in which participants judged the semantic similarity instead

of judging word or non-word, and indeed the concrete concepts additionally activated

the ventral temporal lobe. Therefore they argued that the lexical decision task in

Binder et al. (2005) did not elicit sufficient semantic knowledge to activate the

temporal lobes (see similar proposal in Kan et al. (2003) with property verification

task).

Indeed different task demands and stimulus choices seem to influence the observed

neural activities. For example, though there is little dispute over the role of the pre-

cuneus in mental imagery (hence for concrete concept representation), DEsposito et

al. (1997) identified the precuneus was more activated by the abstract condition. The

reason seems to lie in their task manipulation that actively generating mental images

of objects in fact de-activated the precuneus, since the precuneus is also part of the

neural default-mode network which is more active during mind-wandering. Fiebach

& Friederici (2004) argued that the different strategies adopted by the participants

for concrete and abstract concepts resulted in the neural distinction. Consequently

they conducted a lexical-decision experiment (by which they argued the task demands

were equal for both concrete and abstract conditions), and found effects in the left

hemisphere only. Pexman et al. (2007) looked into the issue of ambiguity based on
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the hypothesis that abstract concepts are intrinsically more ambiguous. They in-

cluded both ambiguous and unambiguous words. In contrast to typical findings, the

abstract condition activated a more widespread activation and no regions was found

for the concrete > abstract comparison.

To our knowledge, there are two meta-analyses concerning the concrete-abstract

neural distinction. Binder et al. (2009) analysed 120 neuroimaging studies of se-

mantic processing. The contrast between concrete / perceptual vs. abstract / verbal

knowledge revealed a widespread distribution of perceptual foci, including the bilat-

eral angular gyrus, the left mid-fusiform gyrus, the left dorsomedial prefrontal cortex

(DMPFC), the left precuneus / posterior cingulate cortex (PCC); on the other hand

the verbal foci included the left inferior frontal gyrus (IFG) and the left superior

temporal sulcus (STS). Wang et al. (2010) conducted a meta-analysis with 19 neu-

roimaging studies on the topic of concrete-abstract neural distinction. They found the

traditional language processing regions were robustly activated more by abstract con-

cepts, including the left IFG, mid-superior temporal gyrus (M/STG). Meanwhile the

left precuneus, posterior cingulated gyrus, fusiform gyrus, and the parahippocampal

were identified for the concrete > abstract effect. Wang and colleagues further carried

out a study with multivariate analysis (MVPA), a more sensitive analysis approach,

and showed that the concrete-abstract distinction could be found across the whole

brain, suggesting that the distinction was more profound than previous presumed.

2.3 Polysemy and coercion

So far we have summarised the research on neurobiology of concept representation and

the neural distinction between concrete and abstract concepts. As the review shows,

most experiments in this field are done with simple concepts and on the single-word

level. In this thesis, we look into a more complex scenario in which concept meanings
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shift depending on the context. Specifically we investigate this issue by means of

logical polysemy, i.e. dot-objects. In the current section, we review neurolinguistic

evidence about polysemy comprehension and coercion. And in the next section,

we extend the review to the neural mechanism of semantic composition in general,

including not only language processing but also concept combination.

2.3.1 Polysemy and homonymy are represented differently in

the brain

Most words in nature language are ambiguous but in many different ways. Linguists

and lexicographers have made an important dichotomy between two types of ambigu-

ity. Homonyms like bat have multiple unrelated meanings (e.g., nocturnal mouse-like

mammal with forelimbs modified to form membranous wings and a club used for

hitting a ball in various games). In such cases, the distinct meanings are taken to be

the expression of distinct entries in the mental lexicon, i.e. different words that ac-

cidentally share the same word form. Such cases are contrasted with polysemies like

mouth, that also have multiple, but related senses (e.g., the opening through which

food is taken in and vocalizations emerge and an opening that resembles a mouth,

e.g., of a cave). The distinction between homonymy and polysemy is not always easy

to make, but linguists and lexicographers agree that at least in the clearest cases,

polysemous words are associated with a single lexical entry whose conceptual mean-

ing encodes the different senses (Lyons, 1977; Cruse, 1986; Ravin & Leacock, 2000;

Taylor, 2003).

There is quite a bit of psychological evidence supporting the single lexical entry

hypothesis concerning the meaning representation of polysemy; conversely the dif-

ferent meanings of homonyms are considered as multiple separate entries (Frazier &

Rayner, 1990; Williams et al., 1992; Klepousniotou, 2002; Rodd et al., 2002; Beretta

et al., 2005; Pylkkanen et al., 2006; Bedny et al., 2007; Srinivasan & Snedeker, 2011).
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Note that following the convention, we say a polysemous word has multiple SENSES

whereas a homonymous word has multiple MEANINGS. Frazier & Rayner (1990)

showed their subjects homonyms like bank or polysemous words like newspaper fol-

lowed by disambiguating context. They observed lexical garden paths (manifested by

longer reading time) if the following context was not consistent with the most frequent

interpretation of the homonym; however no such effect was observed for polysemous

words. The result was taken as evidence that the multiple senses of a polysemous

word were associated with a single lexical entry, as opposed to homonyms that con-

sist of multiple entries and all but one of which were discarded after disambiguation

(Swinney, 1979; Tanenhaus et al, 1979). Rodd et al. (2002) observed an ambiguity

advantage that ambiguous words were processed faster and easier; importantly the

advantage was only for polysemy and absent for homonymy. The authors reasoned

that polysemy was facilitated by the rich semantic associations linked to one lexical

entry, on the other hand the multiple lexical entries of homonyms generated com-

petition. Evidence for this single lexical entry hypothesis was also obtained using

magnetoencephalography (MEG) with a priming paradigm (Pylkkanen et al., 2006).

One meaning/sense of the homonyms or polysemies was selected by a modifying

word, and the targets were primed by the same ambiguous word but with the other

meaning/sense selected (e.g. river bank - savings bank, lined paper liberal paper).

The authors measured the M350 component which had been associated with lexical

activation, and found that the polysemous targets elicited a left hemisphere M350

latency reduction, suggesting that the selected sense of the target polysemy (liberal

paper) was already activated to certain degree even the prime had a different sense

selected (lined paper). By contrast, homonyms resulted in a M350 delay, indicating

higher competition between the different meanings.
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2.3.2 Complement coercion

Within polysemy, coercion has been argued to be an important mechanism of resolving

various kinds of ambiguity and meaning mismatch (Partee & Rooth, 1983; Moens &

Steedman, Jackendoff 1997; Pustejovsky 1993, 1995, 2006, 2011). One of the most

studied kinds of coercion in psycholinguistics is complement coercion, exemplified by

Mary began the book . In the VP construction, a event-selected verb begin is combined

with an entity noun, thus the object book is said to be coerced into an event such as

writing the book, reading the book. The neural mechanism(s) of this process has been

investigated in a considerable number of psycholinguistic studies. Most experiments

found an additional cognitive cost. Many proposed that this cost was attributed

to the noun undergoing a type-shifting process, i.e. the entity-denoting noun was

coerced into an event interpretation, rather than other factors such as ambiguity and

pragmatic inference (McElree et al., 2001; Traxler et al., 2002, 2005; Pickering et al.,

2005; Frisson & McElree, 2008; Katsika et al., 2012). Frisson et al. (2011) also found

the coercion effect when an eventive-adjective was combined with an entity-noun (e.g.

a difficult mountain), compared with the cases in which the eventive-adjective was

paired with an eventive noun (e.g. a difficult exercise).

On the neural level, it has been showed that complement coercion qualitatively

differs with typical semantic or syntactic violation. In an MEG study, Pylkkanen &

McElree (2007) contrasted complement coercion (e.g. the author began the book) with

non-coercion and animacy-violation (the author wrote the book / disgusted the book).

They found increased amplitudes in the anterior midfield (AMF) which was gener-

ated by a mid-line source in the ventromedial prefrontal cortex (vmPFC). Importantly

this effect was only present in coercion and was not sensitive to the animacy-violation

sentences. Following this work, Baggio et al. (2010) and Kuperberg et al. (2010)

adopted similar experimental design and examined the ERP effect. Both coercion

and anomaly sentences elictied the N400 component, but complement coercion dis-
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played dissimilarities in both studies. In Baggion et al. (2010) complement coercion

additionally evoked a later sustaining negativity. In Kuperberg et al. (2010) anomaly

elicited a later component P600 as well while this effect was absent for complement

coercion. Using fMRI, Husband et al. (2011) underlined the effect in the left IFG,

the classic language locus, in comprehending complement coercion, implying a higher

semantic composition demand.

2.3.3 Novel metonymy

Another similar mechanism that too involved context-induced meaning is novel

metonymy. Though disputable, metonymy generally refers to expressions in which

the salient aspect of an entity is used to indicate the whole or other part of the entity,

e.g. the Dickens on the bookshelf, Hollywood is making a big profit (Nunberg, 1995,

2004; Lakoff 1987; Jackendoff 1997). As to novel metonymy, the interpretation has

to be fully inferred from the context. For instance the Needham published in 1977 is

on the bookshelf is a novel metonymy because Needham is a made-up name.

The comprehension mechanism(s) of several kinds of metonymy have been ex-

plored in psycholinguistic studies, showing that only novel metonymy elicits a pro-

cessing cost compared to familiar metonymy. Frisson & Pickering (1999) exam-

ined two kinds of metonymic expressions PLACE-FOR-INSTITUTION and PLACE-

FOR-EVENT. The eye-movement patterns suggested that in both cases, the familiar

metonymy (e.g. rejected by the college, protest against Vietnam) did not incur a pro-

cessing cost whereas constructing a novel metonymy (e.g. rejected by the pyramid,

protest against Finland) did. Likewise, Frisson & Pickering (2007) found the process-

ing cost using eye-tracking when readers needed to construct the producer-product

metonymy with a pseudo-name (e.g. read Needham) compared to a well-known name

(familiar metonymy, e.g. read Dickens). More recently, the ERP effect associated with

metonymy such as that ham sandwich in the corner wants to pay was investigated,
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and a late positivity effect was identified regardless of the contextual information

(Schumancher 2011, 2014).

2.3.4 Inherent polysemy and dot-objects

Inherent polysemy differs from novel metonymy in that the potential interpretation

already exists in the word’s semantics itself, i.e. they are inherent, rather than newly

introduced by the context (Pustejovsky 2006, 2011; Pustejovsky & Jezek, 2008). The

dot-objects are inherently polysemous by definition. Some aforementioned studies

indeed included inherent polysemy stimuli. For instance, the stimulus words used

in Frisson & Pickering (1999) such as college and convent were actually dot-objects

of building/location and social group. And there was no additional processing cost

associated with reading these words. Well-known writers like Dickens and Aristotle

can also been seen as dot-objects of the person and their work. In McElree et al.

(2006) and Frisson & Pickering (2007), the authors tested those well-known names

and found that, given supporting contexts, there was no difficulty in interpreting the

proper names as their writings. Thus the authors argued that for familiar metonymy

the literal sense and the metonymic sense are equally accessible. In another study of

Schumancher, 2013, the author found no additional effect for the content-container

meaning shift (e.g. he dropped the beer, she put the soup). As a matter of fact

according to the Generative Lexicon theory, concepts like beer is a dot-object of

LIQUID and DRINK; the predicate, e.g. put, selects the physical sense, i.e. LIQUID,

via coercion-by-dot-exploitation (Pustejovsky, 2011). In sum, the empirical evidence

strongly suggested that accessing the embedded senses of inherently polysemous words

does not incur a processing cost.
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2.4 Semantic composition

2.4.1 Studies on conceptual combination in Psychology

Coercion is achieved by semantic composition. In psychology, how meanings are com-

bined has also been a central issue. The strong compositional approach, which dates

back to Frege and Montagues grammar based on formal logic, had inspired a number

of logic-based models for combinatory concepts in the early days of cognitive science

(Zade, 1982; Fodor & Pylyshyn, 1988; Smith et al., 1988). However those models

failed to capture the flexibility and diversity of semantic composition. Later research

on this topic turned to a weak compositional approach that allows more flexibility

and resembles more how the brain works. For instance, Hampton (1991) attempted to

generalise the successful prototype theory put forward in Roscha & Mervis (1975) to

model combinatory concept meanings, proposing a composite prototype model which

incorporated some rule-based modification mechanism to account for meaning shift

and emergent properties. Conceptual combination is also an ideal testing ground for

embodied theorists who often argue that simulation is the crucial mechanism for con-

ceptual combination (Barsalou 2003, 2005; Wu & Barsalou, 2009). Wu & Barsalou

(2009) conducted a series of property generation experiments, taking into account

the factors of experiment instruction, familiarity of the combinations, and the mod-

ifier kinds. They showed that manipulating the visibility of the visual features (i.e.

occlusion) greatly affected the generated properties. For example participants did

not normally generate the root feature for lawn, however they did generate the root

feature for roll-up lawn, of which the root was visible both in the neutral and the

mental imagery instruction. Notably that this effect disappeared when the instruc-

tion explicitly required generating associated words. Therefore the authors concluded

that people spontaneously use perceptual simulation to generate properties.

27



2.4.2 The neural basis of semantic composition

Semantic composition is usually investigated in the form of sentence processing, fo-

cusing on how a target word fits into the sentential or phrasal context. High temporal

resolution methods such as EEG and MEG prove to be valuable tools to study this

on-line meaning construction process (e.g. Kuperberg 2007, Pylkkanen 2008). Ku-

perberg (2007) gave a throughout review on ERP studies on this topic. The author

claimed that the P600 ERP component denoted a prolonged analysis that went be-

yond a simple semantic violation. Based on this assumption and data from a large

number of ERP studies, the author further proposed that the P600 effect was the

neural signature of the combinatory mechanism(s). Pylkkanen (2008) reviewed psy-

cholinguistic and neurolinguistic evidence on the topic of syntax-semantic mismatch.

To illustrate, both complement coercion (e.g. the author began the book) and aspec-

tual coercion (e.g. the clown jumped for 10 minutes) are typical examples because

the mismatches occur only on the semantic level. Note that these mismatches cannot

be resolved by a strong composition account but require the brain to flexibly generate

coherent interpretations. The author emphasised the role of the mid-frontal lobe in

resolving such mismatches. The mid-frontal lobe, nonetheless, has been shown to be

closely associated with social cognition and theory of mind, indicating that semantic

composition may involve more than just language but also other general cognitive

mechanisms.

Some recent works directly addressed the combinatory process; the left inferior

frontal gyrus (LIFG) and the left lateral temporal lobe (LATL) are the two important

cerebral foci identified (e.g. Hagoort, 2005; Fiebach et al., 2007; Grave et al., 2010;

Bemis & Pylkkanen, 2012, 2013; Westerlund & Pylkkanen, 2014; Zhang & Pylkkanen,

2015). In a review article, Hagoort (2005) emphasised the pivotal role of the LIFG

in the unification operation of language processing based on the Memory-Unification-

Control (MUC) model. With fMRI, Fiebach et al., (2007) adopted a novel concep-
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tual combination paradigm which required participants maintaining several concepts

in the working memory, and combined them in order to make a property judgment

(e.g. egg, boiled, long -> hard). Although this study focused on the maintaining

of semantic working memory, the results showed that the LIFG and the posterior

temporal area played an essential role in this combinatory task. Grave et al., (2010)

compared the fMRI activities when participants comprehended the typical, highly

meaningful noun-noun phrases (e.g. lake house) and the non-typical ones (e.g. house

lake). The non-typical phrases were derived from reversing the word order of the typ-

ical phrases, thus they required a more demanding combinatory process meanwhile

the effect could be isolated from the lexical level-process. A left-lateralised neural

network was recruited by the non-typical phrases, including the IFG, IPS, lpITG,

suggesting smooth and successful combination; on the other hand the typical phrases

mainly recruited the right hemisphere, indicating a different mechanism of the novel

combination scenario. Bemis & Pylkkanen (2013) used MEG to examine the neural

basis of basic linguistic combinatory process. They presented adjective-noun combi-

nations that are in the canonical order (e.g. red cup) and the reversed order (e.g.

cup red), assuming that the reversed order would not automatically incur the com-

binatory processing unless the task required. By manipulating the task demand, the

authors found effects in the left anterior temporal lobe (LATL) and the ventromedial

prefrontal cortex (vmPFC) for comprehending the canonical combinations regard-

less of whether the task required combination, meanwhile for the reversed order the

the effect in the LATL and vmPFC only occurred in the combination-required task.

Westerlund & Pylkkanen (2014) also focused on the LATL in semantic composition,

but aiming at bridging the semantic composition hypothesis and the hypothesis that

the ATL as a semantic hub. The authors compared low- or high-specificity concepts

(e.g. boat/canoe) either in the combinatorial context (combined with adjectives, e.g.

blue boat) or a non-combinatorial context (e.g. xlqd boat). The result showed an in-
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teraction between concept specificity and composition in the left ATL, such that the

activation of the left ATL was modulated mostly by the low-specificity adjective-noun

combinations. They argued that when in a combinatorial context, the low-specificity

concepts required a greater degree of specification and thus it yielded the largest effect

in the ATL; therefore the effect of concept specificity and the semantic composition

might stem from a shared mechanism.

2.5 Neuroimaging and MVPA

2.5.1 A brief introduction of the main brain imaging tech-

niques

Functional Magnetic Resonance Imaging (fMRI) has developed rapidly during the last

decades and become the most popular functional neuroimaging technique to date. It

can give snapshots based on the oxygen level of blood in the brain, precisely the

Blood-Oxygenation-Level-Dependent response (BOLD), which has been showed to

be correlated with neural activity (Boynton et al., 1996; Logothetis et al., 2001; Ban-

dettini and Ungerleider, 2001). During functional scanning, the magnetic gradients

posit a three-dimension grid on the brain, segmenting it into tens of thousands of

cells called voxels, and the BOLD signal is measured at each voxel. Thus fMRI image

can measure the whole brain with millimetre spatial resolution. However the hemo-

dynamic responses fMRI measures are rather slow, therefore the time resolution of

fMRI is usually about several seconds.

On the other hand there are techniques that directly measure the electrical signal

generated from neurons. Electroencephalograpy (EEG) is among the earliest tech-

niques to measure neural activities (Berger, 1929), and it has been widely used as a

clinical tool as well as in research. EEG mainly measures the post-synaptic poten-

tials by locate electrodes on the scalp; hence its spatial resolution is poor although
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it has a millisecond time resolution. Moreover it suffers the inverse problem that is

theoretically impossible to reconstruct the original generators from the observed sig-

nal. More recently the magnetoencephalography (MEG) technique seems to provide

a promising solution to the resolution dilemma: it has a high time resolution as EEG

and a high spatial resolution as fMRI. MEG measures the magnetic field caused by

the electric currents that are also generated from the post-synaptic potentials; it is

much more precise and sensitive than EEG but it also endures the inverse problem.

However the ample MEG data points allow mathematical models to reconstruct the

source more accurately.

2.5.2 Neural decoding and Multivariate Analysis (MVPA)

The General Linear Model (GLM), which adapted from multiple regression analysis,

has been the traditional analysis method for fMRI. GLM allows decomposition of the

usually overlapped BOLD signal based on the per-defined experimental contrasts.

Specifically, the actual signal of one voxel is treated as a linear superimposition of

multiple BOLD activities with an assumed shape (Fig. X). The regression analysis

then finds the voxels whose responses correlate the best to the pre-defined model. The

regression is done with each voxel individually, hence the result has to be corrected for

multiple comparisons, which poses an obstacle given the number of voxels is usually

tens of thousands.

In contrast to the univariate-based GLM, the multivariate pattern analysis

(MVPA) considered values from multiple voxels simultaneously. This more recent

approach, which was adopted from the Machine Learning community, has been

gaining popularity since the first explicit demonstration by Haxby et al., (2001).

They recorded the fMRI data of the participants viewing eight categories of object

pictures, and showed that the multi-voxel patterns can be recognised with a nearest-
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neighbour classifier (Haxby et al., 2001). The key assumption of this method is that

it is the distinct patterns that contain the crucial information.

Following the seminal study, more and more machine learning techniques have

been introduced in analysing neuroimaging data. For instance more powerful classi-

fiers such as the Support Vector Machine classifier (SVM) were explored (e.g. Cox &

Savoy, 2003; Kamitani & Tong, 2005; Halchenko & Hanson, 2007, Formasino et al.,

2008). Furthermore MVPA offers novel experiment designs that go beyond traditional

condition-contrasting. For example Mitchell et al. (2008) developed a computational

model that could use model built from large text-corpus to predict fMRI activities.

Kriegeskorte and colleagues introduced into fMRI data analysis the Representational

Similarity Analysis (RSA), which is a highly data-driven approach and can access the

interrelationship among conditions, bridge data from diverse modalities, and flexibly

incorporate various models to interpret the brain data (Kiani et al., 2007; Kriegesko-

rte et al., 2008a, 2008b; Peelen et al., 2010; Kriegeskorte, 2011; Carlin et al., 2011;

Connolly et al., 2012; Fairhall & Caramazza, 2013).
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Chapter 3

The Neural Representation of

Dot-objects: The Case of Book

3.1 Introduction

The word book is probably the most cited term of dot-object. It represents the

“information print matter” category of which the concepts refer to artefacts used

to stored information; and they exhibit a systematic ambiguity between a concrete

interpretation as the physical object and an abstract information interpretation

(consider, e.g., a wet book / an influential book). As a result, in the General Lexicon

framework, those words are considered as dot-objects of OBJECT • INFORMATION.

As described in the Section 1.1, the two senses could be accessed simultaneously in

a single expression, as in (3.1a). Furthermore some context would select only one

aspect of the meaning, a process called coercion-by-dot-exploitation (Fig. 3.1), such

as (3.1b) and (3.1c) (cf. Pustejovsky, 2011)

(3.1)

a. The police burnt the controversial book.
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b. Jess almost dropped the book, then hastily replaced it on the shelf.

c. The author will be discussing her new book.

According the dot-object theory, meanings of those words should be represented by

a single lexical entry, to which the multiple senses are systematically related. In this

experiment we investigated the implications of the single lexical entry hypothesis with

respect to theories of the neural distinction between concrete and abstract concepts.

The question we address is, how is the meaning of the dot-object words such as book

represented in the brain? Specifically we probe the issue that whether the coerced

concrete and abstract senses of dot-objects are represented in the brain differently

to mono-sense concrete and abstract concepts. If so what are the differences? To

answer this question, we used functional magnetic resonance imaging (fMRI) to

examine the neural activation patterns originated by reading the book-like dot-object

words in a minimal context, i.e. a verb-noun phrase, that coerce them into either the

concrete or the abstract interpretation (e.g. open the book / consult the book). As a

comparison, we also examined the neural correlates of reading phrases that contained

monosense, typical concrete and abstract concepts. This experiment design allows

us 1) to compare the neural representations of the coerced concrete and abstract

concepts to the typical concrete-abstract neural distinction, 2) to look into the neural

representation of complex concepts and semantic composition (Fig. 3.2).

We adopted the multivariate pattern analysis (MVPA) approach to examine in

which brain areas the neural activity patterns associated with the abstract and the

concrete interpretations of dot-objects can be discriminated. One prediction is that

this discrimination is carried out by the same areas found to be involved in the

traditional concrete-abstract distinction, such as the angular gyrus, the precuneus

(concrete > abstract) and the left inferior frontal gyrus (abstract > concrete). How-
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Figure 3.1: The schematic representations of coercion by dot-exploitation (c.f. Puste-
jovsky). The physical object or the information component is selected by the verbal
context respectively.

ever, if the meaning of words like book really is a complex concept covering both the

abstract and the concrete interpretations as Pustejovskys dot-object theory states,

then we should expect to find a different discrimination effect for these further speci-

fied (i.e. coerced) interpretations. Another prediction of the dot-object theory is that

we will not observe a typical semantic disambiguation effect found in homonym and

polysemy comprehension, which usually involves a network of the language-related

areas such as the inferior frontal gyrus (IFG), the posterior inferior temporal lobe,

and the superior/middle temporal gyrus (e.g. Rodd et al, 2005; Thompson-Schill et

al., 2005; Bedny et al., 2007; Gennari et al., 2007). This is again because, according

to the theory, words like book are not ambiguous between a concrete and an abstract

interpretation, so the coercion process would not involve selecting one among distinct

interpretations but going from an underspecified interpretation to a more specific one.

On the other end, we expect an involvement of the anterior temporal lobe (ATL) in

discriminating the concrete and abstract dot-objects on two distinct grounds. On the

one hand this area has been proposed to store the high-level, modality-independent

knowledge of concepts (e.g. Peelen & Caramazza, 2012) and has been associated

with the concept specific effect (e.g. Tyler et al., 2004; Patterson et al, 2007). Sec-

ondly the ATL also has been shown to play an essential part in semantic combination

(e.g. Lambon Ralph et al., 2010; Bemis & Pylkkanen, 2012; Westerlund & Pylkka-
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nen, 2014). Interestingly Westerlund & Pylkkanen (2014) also found an interaction

between concept specificity and composition in the ATL, suggesting that the two

aspects were closely related.

Figure 3.2: Experimental design. The three vertical lines indicate the three concrete-
abstract contrasts. In the target contrast, dot-object, the dot-object words are com-
bined with verbs that coerce the meaning into either the concrete or the abstract
interpretation. The simple contrast contains typical concrete and abstract words
combined with generic verbs. In the verb-control contrast, the same coercing verbs in
the dot-object contrast are used but paired with unambiguous concrete and abstract
nouns.

3.2 Methods and materials

3.2.1 Participants

Nineteen volunteers were recruited. Three of them were excluded from the analysis

because they failed to respond or respond incorrectly in more than 10% of the trials,

leaving sixteen participants for the analysis (8 female, mean age 22.5, SD: 3.42). All

participants were native Italian speakers, right-handed, and had normal or corrected-

to-normal vision. All procedures were approved by the ethics committee of University

of Trento, and participants received a small monetary compensation.
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3.2.2 Materials

All experiments were conducted in Italian. We considered 4 words from a class of dot-

object concepts, informational print matter book, magazine, catalogue, sketch, and

used verbs to coerce the meaning into either the concrete or the abstract sense. We

first came up with a pool of verbs that could potentially coerce the dot-objects into

either the concrete object sense or the information sense, and then we constructed all

combinations of all the nouns and verbs, excluding the meaningless and ambiguous

ones. Following the procedure proposed in Barca et al. (2002), thirty-eight native

speakers were recruited to rate the familiarity, concreteness and imageability of each

verb-noun combination. Based on the norming result, we then selected 3 concrete

(open, pick, give (as a present)) and 3 abstract (explain, consult, present) verbs as

the coercing verbs. We refer to this target contrast with the coercing verbs and the

dot-object nouns as the dot-object contrast.

Two additional contrasts were constructed in order to 1) compare the coerced con-

crete and abstract dot-objects to typical unambiguous concrete and abstract concepts;

2) control for the semantic contribution from the verbs. First of all we constructed a

simple concrete-abstract contrast, henceforth referred to as simple contrast that con-

tained unambiguous nouns similar to those used in other concrete-abstract semantic

knowledge studies. Specifically we chose the categories of furniture and information

to approximate the partial senses of the dot-objects; we chose common household

furniture such as desk and sofa because they are frequently seen with the dot-objects

in real world scenarios. To keep the grammatical form the same across all the con-

ditions, nouns of both the two categories were combined with some generic verbs

(have, give, change) to form the verb-noun phrases. Because the verbs were constant

and semantically general, the distinction of this contrast should be predominantly

driven by the nouns. The second contrast, the verb-control contrast, was set up to

verify that concrete and abstract discrimination in the dot-object contrast was not
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solely due to differences in verbs between conditions. Phrases in this contrast had

the same coercing verbs as in the dot-object conditions, but the verbs were combined

with their common complement words drawn from various concrete or abstract cat-

egories (e.g. open the door, open the parcel / explain the problem, explain the plan).

Therefore this contrast should most reflect the verb semantics. Hence if the effect

of the dot-object contrast were driven by the verbs only, the same effect should be

picked up by this verb-control contrast too. The verb-noun combinations of these two

additional contrasts were rated in the same norming experiment as described above.

The experiment design and the list of stimuli can be found in Fig. 3.2 and Table 3.1.

After the norming, we selected 7 concrete and 7 abstract phrases for each

contrast, resulting in 42 phrases in total (7 phrases * 2 categories * 3 contrasts).

The stimuli in Italian and the English translation are listed in Table X. Phrases

of each contrast were matched in length and the number of phonemes (number of

letters: tDot-object(12)=-0.46, p=0.65; tSimple(12)=0.8, p=0.44; tVerb-control(12)=-1.36,

p=0.2. number of phonemes: tDot-object(12)=-0.27, p=0.79; tSimple(12)=-1.15, p=0.27;

tVerb-control(12)=1.16, p=0.7). All categories matched familiarity (F(5,36)=0.27,

p=0.93). For each concrete-abstract contrast the concreteness and the image-

ability ratings differ significantly (concreteness: tDot-object(12)=-3.82, p=0.0025;

tSimple(12)=-16.12, p=1.7e-09; tVerb-control(12)=-7.94, p=4.06e-06. Imageability:

tDot-object(12)=-2.3, p=0.0402; tSimple(12)=-6.86, p=1.7544e-05; tVerb-control(12)=-8.05,

p=3.5184e-06). The detailed results are in Table 3.2 and Fig. 3.3. None of these

subjects of the norming experiment participated in the fMRI experiment.

3.2.3 Procedure

Participants were instructed to attentively read verb-noun phrases and judge whether

the verb-noun combinations were meaningful. About 10% were catch trials which

38



Figure 3.3: Ratings of familiarity, concreteness, and imageability of each category.
Two-sample t-tests were calculated for each concrete-abstract contrast. The con-
creteness and imageability ratings are significantly different for all three contrasts.

contained meaningless combinations (e.g. open the sun). We adopted a slow-event

design. Each trial started with a fixation cross for 500ms, followed by a verb and then

an article-noun phrase, each of them was present for 450ms with a 100ms interval.

A black cross then remained on the screen for 1500ms to encourage participants

to form an elaborate mental representation, then a question mark was displayed for

1000ms at which point participants responded by pressing the left or right button box

(counterbalanced across participants). The next trial started after 6 second fixation

time (Fig. 3.4). During one scanning session, all 42 verb-noun phrases along with

5 catch trials (around 10% of all trials) appeared once in a random order. Each

participant completed 6 sessions.

3.2.4 Data acquisition

All of the fMRI experiments were conducted with a 4T Bruker MedSpec MRI scanner.

Structural images were acquired using a T1 weighted MPRAGE sequence with resolu-

tion 1*1*1mm. A T2*weighted EPI pulse sequence was used to acquire the functional

images with parameters TR 1000ms, TE 33ms, and 26 flip angle, FoV1000*1000. Each

acquisition volume contains a 64*64 matrix and 17 slices with a gap of 1mm. Voxel

dimensions are 3mm*3mm*5mm.
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Table 3.1: Stimulus words used in the three concrete-abstract contrasts. Each con-
trast contains seven concrete and seven abstract verb-noun phrases. The original
Italian stimuli are showed below the English translation. The dot-objects are high-
lighted in bold font.

English:

dot-objects simple verb-control

ABSTRACT

consult the book have the idea consult the expert

consult the magazine have the opinion present the request

consult the catalogue change the story present the problem

present the book change the judgement present the plan

present the sketch change the idea explain the motive

explain the book give the judgement explain the expression

explain the sketch give the idea explain the reason

CONCRETE

open the book have the table open the parcel

open the catalogue have the chair open the envelop

pick up the book have the desk pick up the flower

pick up the magazine change the closet pick up the coin

pick up the catalogue change the table pick up the ball

give (as a present) the book change the desk give (as a present) ticket

give (as a present) the sketch give the chair give (as a present) flower

Italian:

dot-objects simple verb-control

ABSTRACT

consultare il libro avere la idea consultare l’esperto

consultare la rivista avere l’opinione presentare la domanda

consultare il catalogo cambiare la storia presentare il problema

presentare il libro cambiare il giudizio presentare il programma

presentare il disegno cambiare la idea spiegare il motivo

spiegare il libro dare il giudizio spiegare la parola

spiegare il disegno dare la idea spiegare la ragione

CONCRETE

aprire il libro avere il tavolo aprire il pacco

aprire il catalogo avere la sedia aprire la busta

raccogliere il libro avere la scrivania raccogliere il fiore

raccogliere la rivista cambiare l’armadio raccogliere la moneta

raccogliere il catalogo cambiare il tavolo raccogliere la palla

regalare il libro cambiare la scrivania regalare il biglietto

regalare il disegno dare la sedia regalare il fiore
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Figure 3.4: During the experiment, participants performed a semantic meaningfulness
judgement task and responded by pressing the button boxes with the left or the right
hand (counterbalanced across participants). In one scanning session, all the 42 verb-
noun phrases along with 5 catch trials (around 10% of all trials) appeared once in a
random order. Each participant completed 6 sessions.

Table 3.2: The psycholinguistic parameters of the stimulus phrases in each condition.
Familiarity, concreteness, and imageability are obtained from the norming experiment
with thirty-eight participants. Standard deviations are showed in parentheses.

Category familiarity concreteness imageability letters phonemes

abstract Dot-object 3.9(0.51) 3.65(0.33) 3.86(0.39) 18.71(1.58) 7.57(0.90)

concrete Dot-object 4.1(0.50) 4.32(0.28) 4.34(0.34) 18.14(2.59) 7.43(0.90)

abstract Noun 4.08(0.44) 2.22(0.14) 3.24(0.26) 14.43(2.92) 6.14(0.64)

concrete Noun 4.09(0.36) 3.65(0.17) 4.04(0.11) 15.71(2.60) 6.71(1.03)

abstract Verb 4.12(0.29) 3.32(0.22) 3.85(0.10) 19.14(1.81) 7.43(0.49)

concrete Verb 4.14(0.23) 4.41(0.25) 4.53(0.18) 17.43(2.50) 7(0.76)

3.2.5 Univariate analysis

We also conducted the univariate analysis to calculate the activation maps of each

of the three concrete-abstract contrasts. All the steps were carried out with FSL5.0

(http://fsl.fmrib.ox.ac.uk). Prior to the statistical analysis the functional images were

corrected for motion and smoothed with a 5mm Gaussian kernel. For each scanning

session of each participant, a general linear model was created to model all the six

experimental conditions. The trials that the participant missed or gave a wrong

response were discarded. Then the models were convolved with a double-gamma

function to model the hemodynamic response. The six scanning sessions of each
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participant were combined with the fixed-effects single-group average method (one

sample t-test). The group-level activation maps of the three contrasts were computed

using a two-sample paired t-test that the concrete and the abstract conditions were

modeled within-subject. The ordinary least square (OLS) mixed-effects model was

applied. The z-value maps (Gaussianised T/F) were thresholded using the cluster-

based method provided by the FSL software. The primary voxel-wise threshold was

set to Z>2.3 (corresponding to p<0.05) and a (corrected) cluster significance threshold

of P=0.05 was used. The activation maps of each participant were registered to the

MNI-standard brain (2mm resolution) to form the final group map.

3.2.6 Regions-Of-Interest (ROIs)

We focused on seven left hemisphere Regions-Of-Interest (ROIs) which have been

consistently shown to discriminate between concrete and abstract concepts, and/or

to play a role in semantic interpretation processes such as disambiguation or seman-

tic composition. The seven ROIs are 1) the anterior inferior frontal gyrus (aIFG), 2)

the angular gyrus (AG), 3) the precuneus/posterior cingulate cortex, 4) the posterior

ventral temporal lobe (pvTL), 5) the posterior lateral temporal cortices (PLTC), 6)

the ventral anterior temporal lobe (vATL), and 7) the superior anterior temporal lobe

(sATL). The ROI masks were derived from the Harvard-Oxford atlas, a probabilistic

atlas that divided the whole cerebral cortex into 48 bilateral cortical subregions (De-

sikan, et al., 2006). We obtained each ROI mask by merging several subregions with

the 25% probabilistic threshold; the MNI co-ordinates reported in other studies were

also taken into account (Table 3.3, Fig. 3.5).

The functional roles of these brain regions are reviewed in detail in chapter 2, thus

in this section we only recapitulate the most relevant points. The anterior inferior

frontal gyrus (aIFG), the angular gyrus (AG), the precuneus/posterior cingulate gyrus
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Table 3.3: Details of the seven Regions-Of-Interest (ROIs). The ROIs are derived from
merging several subregions from the Harvard-Oxford probability atlas with cut-off
probability threshold 25%. The extent shows the resulting number of voxels (resultion
2mm). The MNI coordinates indicate the centre of the subregion in the atlas. AG:
angular gyrus, PCC: posterior cingulate cortex, pvTL: posterior ventral temporal
lobe, PLTC: posterior lateral temporal cortices, vATL: ventral anterior temporal
lobe, sATL: superior anterior temporal lobe

Extent Merged subregions MNI coord (x,y,z)

AG

6148 Angular Gyrus (-21, 37, 55)

Lateral Occipital Cortex, superior division (-60, 28, 57)

Precuneus/PCC

4199 Precuneous Cortex (-45, 31, 55)

Posterior Cingulate Gyrus, posterior division (-44, 42, 54)

aIFG

1039 Inferior Frontal Gyrus, pars triangularis (-20, 77, 40)

Frontal Operculum Cortex (-66, 74, 37)

pvTL

2463 Occipital Fusiform Gyrus (-33, 23, 30)

Temporal Occipital Fusiform Cortex (-62, 37, 29)

Inferior Temporal Gyrus, temporooccipital part (-70, 35, 29)

PLTC

2485 Middle Temporal Gyrus, temporooccipital part (-72, 35, 38)

Superior Temporal Gyrus, posterior division (-75, 52, 35)

Planum Temporale (-74, 53, 40)

vATL

958 Temporal Fusiform Cortex, anterior division (-62, 61, 15)

Parahippocampal Gyrus, anterior division (-57, 62, 18)

sATL

1115 Superior Temporal Gyrus, anterior division (-56, -8, -8)

Middle Temporal Gyrus, anterior division (-58, -8, -20)

Planum Polare (-50, -6, 0)
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Figure 3.5: The left hemisphere region-of-interest (ROI) masks used in the ROI-
based analysis. Yellow: anterior inferior frontal gyrus (aIFG); green: posterior lateral
temporal cortices (PLTC); blue: angular gyrus (AG); light-blue: precuneus and the
posterior cingulate gyrus; dark-blue: posterior ventral temporal lobe (pvTL); red-
yellow: ventral anterior temporal lobe (vATL); pink: superior anterior temporal lobe
(sATL).

and the posterior ventral temporal lobe (pvTL) are among the most typical regions

found in the literature to distinguish concrete-abstract concepts (D’Esposito et al.,

1997; Chao et al., 1999; Jesson et al., 2000; Wise et al., 2000; Martin & Chao, 2001;

Grossman et al., 2002; Binder et al., 2005; Sabsevitz et al., 2005; Wang et al., 2012,

2014). We extend our AG ROI to the more posterior part of the parietal lobe (e.g.

MNI coordinate y < -60) because this part is frequently indicated in neuroimaging

studies contrasting concrete and abstract concepts and also usually referred as the

angular gyrus (e.g. Jesson et al., 2000; Binder et al., 2005; Sabsevitz et al., 2005;

Bonner et al., 2013; Seghier, 2013). The meta-analysis of Binder et al. (2009) also

showed the inclusion of this area. The posterior lateral temporal cortices (PLTC)

should exhibit the most prominent effect for the verb-control contrast, since this area

is particularly dedicated to action and/or verb knowledge (Chao et al., 1999; Perani

et al., 1999; Bedny et al., 2008; Binder et al., 2009; Peelen et al., 2012). We define

the PLTC ROI based on Bedny et al. (2008) and Peelen et al. (2012) in which the
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ROI was showed to be activated by all verbs and not sensitive to the verb type (e.g.

verbs referred to action, motion, or event).

The functions of the anterior temporal lobe (ATL), on the other hand, seem to

be more intricate. It forms part of the posited semantic hub in semantic memory

that contributes to concept specification (e.g. Tyler et al., 2004; Patterson et al,

2007; Pobric et al., 2010; Peelen & Caramazza, 2012); it also plays a pivotal role in

semantic composition (e.g. Mazoyer et al., 1993; Lambon Ralph et al., 2010; Bemis &

Pylkkanen, 2012; Westerlund & Pylkkanen, 2014). As a result we anticipate that the

left ATL is the most likely candidate to reflect the distinction between the concrete

and abstract interpretations of the dot-object concepts, given their complex internal

structure and the more complicated compositional processing they may incur. We

further divide the ATL into the superior (sATL) and the ventral subdivision (vATL)

because there is evidence showing that the two subdivisions have different functional

specialisation to a certain degree [being bold for our own attention]. The sATL tends

to be activated more to sentence comprehension and syntactic processing (Mazoyer

et al., 1993; Hickok & Poeppel, 2004; Humphries et al., 2005). The activation of

the superior temporal lobe for verbal processing, including processing abstract con-

cepts, sometimes also extends to the sATL (e.g. Noppeney & Price, 2004; Binder

et al., 2009; Ghio & Tettamanti, 2010). Conversely, the vATL has been linked to

high-level processing of visual features; therefore sometimes is activated by concrete

concepts (e.g. D’Esposito et al., 1997; Wise et al., 2000; Fiebach & Friederici 2004;

Mestres-Misse et al., 2008; Pobric et al. 2009). Patients of semantic dementia (SD),

a neurodegenerative condition that involves losses of everyday concept knowledge but

episodic memory and speech ability are usually preserved, have atrophy more pro-

found in the ventral ATL (Warrington, 1975; Breedin et al.,1994; Damasio et al.,

1996; Hodges & Patterson 1996; Mummery et al., 2000; Nestor et al., 2006; Mion et

al., 2010).
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3.2.7 Pattern Classification

We employed multivariate pattern analysis (MVPA) to investigate the different kinds

of concrete-abstract contrast in each ROI. Specifically we used a statistical classifier

to distinguish between brain activity patterns associated with comprehending the

concrete and abstract phrases of each contrast, i.e. the simple contrast, the dot-

object contrast, and the verb-control contrast. MVPA considers the values of multiple

voxels simultaneously; thus it has high sensitivity and has been successfully applied

to decode a variety of neural activities (e.g. Haxby et al., 2001; Cox & Savoy, 2003;

Wang et al., 2013). Within each ROI, a support vector machine (SVM) classifier was

used to distinguish between concrete and abstract conditions for each of the three

contrasts.

Prior to classification, each voxels time-series within each scanning session was

linearly detrended to remove signal drift, then z-scored to normalize inhomogeneous

neural activations. For each trial a single averaged volume was obtained by collapsing

the 4 seconds of volumes that are 4 seconds after the target stimulus onset in order

to account for the delay in hemodynamic response. These averaged volumes are the

exemplars which were to be classified in the following classification analysis, thus for

one participant one contrast contains 84 exemplars ((7 concrete + 7 abstract) * 6 ses-

sions). The exemplars in which the participant missed or gave a wrong response were

excluded in further analysis. Classification was carried out using a Support Vector

Machine (SVM) classifier with a linear kernel. The within-participant classification

accuracy was calculated with a Leave-One-Pair-Out cross-validation procedure: in

each cross-validation iteration, one concrete exemplar and one abstract exemplar (i.e.

one pair) were taken to form the test set, and the rest were used as the training set

(Mitchell et al., 2004). The final accuracy was the average of all the iterations, and

the chance level for classifying two categories with this cross-validation procedure is

50
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P-values for the classification accuracy were calculated with a one-sample t-test

against the 0.5 chance level. We calculated one-tail p-values because, if there was no

difference between the two categories, the aforementioned cross-validation procedure

should yield a chance level classification accuracy (a result that was considerably

lower than chance level usually implied that there were pitfalls in the cross-validation

procedure), and here we wanted to test whether the accuracy was better than chance.

The p-value threshold was set to 0.05 and control for false discovery rate (FDR)

following the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995).

3.2.8 Whole-brain parcellation analysis

To look for potential effect outside the ROIs, we ran a whole-brain parcellation anal-

ysis in addition to the ROI-based analysis. The identical classification procedure and

statistics as in the ROI-based analysis were carried out in all the 96 subregions defined

by the Harvard-Oxford probabilistic atlas. Following the same strategy in the ROI-

based analysis, each subregion was extracted with the 25% probabilistic threshold.

3.3 Results

3.3.1 Behaviour

The mean error rate of all the sixteen participants included in the analysis was 0.05,

SD=0.0204. Because we wanted participants to concentrate on forming a rich mental

representation rather than responding quickly (and responses were delayed until a

question mark was presented), we did not analyse reaction times. Trials without a

response in 5 seconds were considered as missed trials.
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3.3.2 Univariate analysis

Four clusters were identified for the OBJECT > INFORMATION comparison in the

simple contrast. The clusters were located in the 1) left posterior fusiform gyrus

and the precuneus lateralised to the left, 2) the left superior parietal lobe, 3) the

left inferior parietal lobe that extends to the posterior middle temporal gyrus, and

4) the bilateral anterior cingulate gyrus and the right frontal orbital cortex. For the

dot-object contrast one cluster encompassing the anterior cingulate cortex and the

mid-to-right frontal lobe was found for the CONCRETE > ABSTRACT comparison.

No significant effect was found for the verb-control contrast (Fig. 3.6. Table 3.4).

3.3.3 ROI-based Multivariate Pattern Analysis (MVPA)

The simple contrast could be discriminated in five out of all the seven ROIs except

the superior and the ventral ATL. The verb-control contrast could be discriminated

in three of the ROIs and the highest accuracy was found in the PLTC (mean ac-

curacy=0.5604, t(15)=4.47, FDR-corrected p=0.0021). By contrast, the dot-object

contrast could be most reliably distinguished in the ventral anterior temporal lobe

(vATL) (mean accuracy=0.5609, t(15)=3.05, FDR-corrected p=0.0122), in which the

other two contrasts were distinguishable. The dot-object contrast also yield a smaller

effect in the AG (mean accuracy=0.5404, t(15)=2.46, FDR-corrected p=0.0349) and

the sATL (mean accuracy=0.5402, t(15)=1.7778, FDR-corrected p<0.1). The de-

tailed result is showed in Fig. 3.7 and Table 3.5.
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Table 3.4: Univariate analysis result. The significant clusters were calculated by the
cluster-based inference using the Gaussian random field (GRF) method, using the
cluster-level threshold p<0.05 (FWER corrected). The MNI coordinates show the
voxels with the local maxima z-values (Gaussianised T/F) within the cluster.

Region Extent Cluster p MNI coord Z

(1) Simple contrast

concrete>abstract

Left inferior-posterior fusiform gyrus & bi-
lateral PCC/precuneus

1517 1.67e-06

temporal fusiform cortex, posterior divi-
sion

(-32,-40,-16) 4.64

cingulate Gyrus, posterior division (-8,-38,14) 4.19

parahippocampal gyrus, posterior divi-
sion

(-22,-34,-20) 3.78

Right frontal obital cortex & bilateral ACC 1515 1.67e-06

frontal orbital cortex (16,22,-16) 3.97

cingulate gyrus, anterior division (0,40,12) 3.74

subcallosal Cortex (2,10,0) 3.53

Left inferior parietal lobe & pMTG 879 0.000343

supramarginal gyrus, posterior division (-54,-50,14) 4.47

middle temporal gyrus, temporooccipi-
tal part

(-50,-52,12) 4.38

lateral occipital cortex, inferior division (-48,-68,4) 3.75

Left superior parietal lobe 819 0.0006

lateral occipital cortex, superior division (-34,-70,40) 3.87

supramarginal gyrus, posterior division (-38,-72,28) 3.37

abstract>concrete

– –

(2) Dot-object contrast

concrete>abstract

Mid-right prefrontal cortex 542 0.0141

cingulate gyrus, anterior division (4,26,12) 3.68

middle frontal gyrus (26,30,24) 3.56

frontal pole (20,62,22) 3.32

paracingulate gyrus (6,40,22) 3.23

abstract>concrete

– –

(3) Verb-control contrast

– –
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Table 3.5: Classification accuracy for the three concrete-abstract contrasts in each
ROI. P-values were calculated with one-sample t-test (dof=15) against the 0.5 chance
level, FDR corrected.

ROI Accuracy(SEM) P-value

Angular gyrus

Simple 0.6095 (0.0287) 0.0038

Verb-control 0.5584 (0.0150) 0.0038

Dot-object 0.5404 (0.0164) 0.0299

Precuneus

Simple 0.5749 (0.0224) 0.0068

Verb-control 0.5377 (0.0211) ns

Dot-object 0.5112 (0.0183) ns

anterior Inferior Frontal Gyrus

Simple 0.5993 (0.0123) 7.25e-06

Verb-control 0.5559 (0.0234) 0.0308

Dot-object 0.5189 (0.0151) ns

Posterior ventral Temporal Lobe

Simple 0.5495 (0.0219) 0.0352

Verb-control 0.5349 (0.0224) ns

Dot-object 0.5304 (0.0226) ns

Posterior Lateral Temporal Cortices

Simple 0.5562 (0.0168) 0.0068

Verb-control 0.5604 (0.0135) 0.0018

Dot-object 0.5163 (0.0135 ns

ventral Anterior Temporal Lobe

Simple 0.5249 (0.0183) ns

Verb-control 0.5166(0.0138) ns

Dot-object 0.5609 (0.0200) 0.0104

superior Anterior Temporal Lobe

Simple 0.5092 (0.0218) ns

Verb-control 0.5184 (0.0152) ns

Dot-object 0.5402 (0.0226) ns
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Figure 3.6: Univariate analysis result. The concrete and the abstract conditions of
each contrast were compared with a two-sample paired-test. The colour bars indicate
the voxel-wise Z (Gaussianised T/F) statistics thresholded by Z>2.3 (p<0.05). The
significant clusters were calculated with the cluster-based method provided by the
FSL software (cluster p<0.05, FDR-corrected). The individual maps were registered
to the MNI-standard brain (2mm resolution) to form the final group map. Significant
effects were found for the object > information comparison in the simple contrast,
and the concrete > abstract in the verb-control contrast. No other significant effect
was found for other comparisons.

3.3.4 Effects in the right hemisphere

We further explored the effect in the right hemisphere (RH) given that, first, the

univariate analysis showed some RH effect for the dot-object contrast; moreover there

is also evidence suggesting that the RH plays some parts in processing ambiguous

words, although its exact role is still unclear (Chairello, 1988; Kircher et al., 2001;

Chan et al., 2004; Zempleni et al., 2007; Pobric et al., 2010).

We carried out the same classification analysis in the RH counterparts of the seven

ROIs, and indeed the result showed a trend that the RH was better in distinguishing

the concrete and abstract dot-objects (Fig. 3.8). For the five ROIs outside the ATL,
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Figure 3.7: Classification accuracy for the three types of contrast in each ROI. Error
bars indicate SEMS. P-values of the classification accuracy were calculated with one-
sample t-test (dof=15) against the 0.5 chance level (one-tailed p-value, FDR corrected,
*****p<0.00001, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05).

the RH ROIs achieved higher classification accuracy than their LH counterparts; one-

sample t-test on the group-level accuracy showed that the right aIFG, AG, and the

pvTL had p < 0.05 (uncorrected). To the contrary, the opposite pattern was found

for the two ROIs in the ATL that the left ROIs outperformed the right ones. However

the right vATL also showed a significant effect p < 0.05 (uncorrected).

3.3.5 Whole-brain parcellation MVPA

The dot-object contrast yielded four subregions with p<0.05 after correcting for mul-

tiple comparison (Table 3.6). One of them, the left anterior temporal fusiform

cortex, was also within the vATL ROI. The other three subregions were in the right

hemisphere, including regions in the frontal and the occipital/posterior temporal cor-

tex. For the simple contrast, one subregion in the left anterior frontal gyrus was

found. No region was found significant for the verb-control contrast after correcting

for multiple comparison. This may be due to the possibility that the relevant neu-

ral activity patterns straddle across the boundaries of the atlas’s subdivisions and

a larger individual difference among participants. In fact three subregions showed a

marginal effect (p<0.1, FDR-corrected) to the verb-control contrast, including two

subregions locate in the PLTC ROI. The three marginal-effect subregions are the left

middle temporal gyrus (mean accuracy=0.5476, t(15)=2.79), the left superior tempo-
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ral gyrus (mean accuracy=0.5577, t(15)=3.39), and the right superior parietal lobe

(mean accuracy=0.5293, t(15)=2.74).

Figure 3.8: Comparing the classification accuracy for the dot-object contrast of each
ROI in the left and the right hemisphere. Error bars indicate SEMS. P-values of
the classification accuracy were calculated with one-sample t-test (dof=15) against
the 0.5 chance level (one-tailed p-value, uncorrected, *****p<0.00001, ****p<0.0001,
***p<0.001, **p<0.01, *p<0.05).

Table 3.6: Significant subregions (corrected p<0.05) identified in the whole-brain
parcellation MVPA. The identical classification procedure and statistics as in the
ROI-based analysis were carried out in all the 96 subregions defined by the Harvard-
Oxford probabilistic atlas. The MNI coordinates show the center of the subregion.
P-values were calculated with one-sample t-test (dof=15) against the 0.5 chance level,
FDR corrected.

Subregion Accuracy(SEM) p MNI coord

(1) Simple contrast

Left inferior frontal gyrus, pars triangularis 0.5734 (0.0174) 0.0354 (-50, 28, 8)

(2) Dot-object contrast

Left temporal fusiform cortex, anterior division 0.5679 (0.0188) 0.0306 (-34, -4, -42)

Right intracalcarine cortex 0.5672 (0.0157) 0.0311 (4, 80, 8)

Right frontal operculum cortex 0.5620 (0.0164)) 0.0261 (42, 22, 2)

Right temporal fusiform cortex, posterior division 0.5610 (0.0151) 0.0295 (38, -32, -24)

(3) Verb-control contrast

– –
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3.4 Discussion

In this experiment, we investigated the neural representation of the archetypal class of

dot-objects: artefacts that are used to stored information, such as book and magazine.

Those words fall under the definition of logical polysemy that they have multiple but

systematically related senses; they can refer to the concrete object (e.g. a heavy

book) or the abstract information they carry (e.g. an influential book). It is generally

assumed that logical polysemy words have a single entry in the mental lexicon; on

the other hand, it has been showed that concrete and abstract concept knowledge is

represented in different ways in the brain.

So how are these dot-object concepts represented in the brain? To probe this ques-

tion, we have healthy participants scanned with fMRI while reading the dot-object

nouns in combination with verbs which coerced the meaning into either the concrete

or the abstract interpretation (e.g. open the book vs. consult the book). Multivariate

pattern analysis (MVPA) was used to compare the neural correlates of the coerced

concrete and abstract dot-objects to those elicited by typical concrete and abstract

concepts (e.g. desk vs. idea). Our results revealed that the coerced concrete-coerced

abstract distinction particularly engaged the ventral anterior temporal lobe (vATL),

in which the typical concrete-abstract distinction was not distinguishable. Given the

role the vATL plays in high-level concept representation as well as semantic compo-

sition, we argue that this effect reflects accessing the specific conceptual knowledge

of the dot-objects. Accordant with the dot-object theory proposed in the Generative

Lexicon of Pustejovsky, we hypothesise that the knowledge representations of the

dot-objects involve an underspecified complex structure, i.e. the qualia; moreover

when put in context, the representation instantiates to a more specific one.

The simple contrast, which consisted of simple concrete object and information

concepts, replicated the typical effect found in studies on the concrete-abstract neural

distinction. The object category (specifically the furniture category) could be differ-
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entiated from the information concepts such as idea and opinion in the ROIs that

were often found in the literature: the angular gyrus (AG), the precuneus, the ante-

rior inferior frontal gyrus (aIFG), the posterior ventral temporal lobe (pvTL) and the

posterior lateral temporal cortices (PLTC). The univariate analysis also identified the

left AG and the precuneus/posterior cingulate cortex (PCC) for the OBJECT > IN-

FORMATION comparison, regions that have been closed related to concrete objects

and mental imagery (e.g. Jessen et al., 2000; Binder et al., 2005; Sabsevitz et al.,

2005). Moreover the OBJECT > INFORMATION comparison revealed the posterior

parahippocampus, an area known as the parahippocampal place area (PPA) because

it was shown to be specifically activated by seeing building pictures (Aguirre et al.,

1998; Ishai et al., 1999) as well as large unmanipulable objects (Konkle & Oliva, 2012;

He et al., 2013). Thus it is unsurprising that we found the PPA given the furniture

category we used here. This comparison also identified the anterior cingulate cortex

(ACC), which we attribute to a joint effect of concreteness and composition. We will

discuss it in more detail in the later section.

We further demonstrated that it was the dot-object words per se, rather than

the coercing verbs alone, that drove the discriminating effects found in the vATL.

This is established by the observed dissociation in activation patterns between the

dot-object contrast and the verb-control contrast, which consists of phrases with the

same verbs but simple nouns. First the verb-control contrast was not distinguishable

in the vATL. On the other hand, the verb-control contrast had the most reliably

effect in the posterior sup/middle temporal lobe, an area that has been consistently

found sensitive to action knowledge and verb reading (e.g. Martin et al., 1996; Chao

et al., 1999; Perani et al., 1999; Grossman et al., 2002; Noppeney et al., 2005; Bedny

et al., 2008; Binder et al., 2009; Peelen et al., 2012), while the dot-object contrast

did not show such effect. Therefore we argue that it is the semantics of the dot-

objects themselves and their interaction with the context that give rise to the neural
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distinction between the concrete and the abstract interpretation, rather than the

verbs per se.

3.4.1 Polysemy, underspecification, and the mental represen-

tation of dot-objects

Why do the dot-object contrast and the typical concrete-abstract contrasts yield

dissociated effects and why does this representation of dot-objects crucially involve

the ventral anterior temporal lobe (vATL)? Our answer is that this dissociation is

what we will predict on the basis of Pustejovskys refinement of the single lexical

entry hypothesis which we call here the dot-object hypothesis (Pustejovsky 1995,

2011; Asher and Pustejovsky, 2006). We argue that this special nature of the dot-

objects makes the underpinning neural mechanism(s) different from the one for the

simple concrete and abstract concepts. And the reason that the dot-object contrast

particularly engaged the vATL (which includes the anterior parahippocampus and

the anterior fusiform gyrus, see Fig. 3.5), we argue, can be traced to the two roles the

vATL plays which until recently have been considered distinct: as a “semantic hub”

and as the centre of semantic composition.

The “semantic hub” account is initially proposed based on studies of semantic de-

mentia (SD), arguing that the ATL is where conceptual knowledge converges (Dama-

sio et al., 1996; Patterson, 2007). SD is a neurodegenerative condition that usually

involves losses of everyday conceptual knowledge irrespective of modality; and its neu-

roanatomy signature is the focal damage in the anterior and ventral divisions of the

temporal lobe (Warrington, 1975; Breedin et al.,1994; Damasio et al., 1996; Hodges

& Patterson 1996; Mummery et al., 2000; Nestor et al., 2006). Neuroimaging studies

on healthy subjects also identified the ATL as a key region for modality-independent

semantic representation (e.g. Spitsyna et al., 2006; Pobric et al., 2009; Visser et

al., 2010; Peelen & Caramazza, 2012). Therefore semantic hub theorists argue that
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although conceptual knowledge is represented in several distinct modality-specific

systems across the brain (e.g. action, colour, etc.), the brains conceptual system also

includes a component in which high-level, modality-independent conceptual knowl-

edge is stored, i.e. the hub. The aforementioned evidence from both SD patients and

healthy subjects led some to argue that the vATL contributes this storage. Impor-

tantly, activation in the vATL appears to be sensitive to the degree of specificity of

a concept. One of the most robust findings about SD is the specificity effect: SD

patients typically have more difficulty in tasks that require accessing more specific

conceptual knowledge. For instance, SD patients usually show a reversed basic level

effect: in contrast to normal subjects, SD patients perform better with tasks involv-

ing concepts at the superordinate level (e.g. animal) than with concepts at the basic

level (e.g. dog) (Hodges & Patterson 1996; Rogers, et al., 2006; Wright et al., 2015).

Moreover, SD patients’ ability to recognise famous people and buildings is usually

impaired (Damasio et al., 1996; Snowden et al., 2004). This sensitivity of the vATL

to specificity has also been found in healthy subjects in neuroimaging experiments

(Gorno-Tempini & Price, 2001; Tyler et al., 2004; Rogers et al., 2006). For instance,

Tyler et al. (2004) examined the fMRI activation patterns of healthy subjects nam-

ing common object pictures, and found that the vATL was more activated in the

basic-level naming compared to the superordinate-level; conversely the effect of the

superordinate-level was restricted to the posterior temporal lobe. The authors rea-

soned that the vATL was activated when there was a need to access more specific

properties and integrate information in order to make a detailed discrimination.

Echoing this conclusion, we argue that this sensitivity to specificity of the vATL

also provides an explanation for our results. According to the dot-object theory, the

coercion process involves coercing the concept going from a more general, underspec-

ified representation to a more specific one. Thus, interpreting the dot-object stimuli

in a specific context requires accessing conceptual knowledge at a more specific level.
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In contrast, interpreting simple concepts does not usually involve such a specifica-

tion process; their interpretations in a simple situation are at the basic level to begin

with and remain at that level. As a consequence the simple contrast did not yield a

discriminatory effect in the vATL.

The role of the ATL in semantic composition has been indicated in studies of

sentence comprehension and speech processing (e.g. Mazoyer et al., 1993; Hickok &

Poeppel, 2004). More recently a series of MEG studies also highlighted the role of the

left ATL in a minimal semantic composition scenario, i.e. two-word combination (Be-

mis & Pylkkanen, 2012; Westerlund & Pylkkanen, 2014; Pylkkanen et al., 2014, Zhang

& Pylkkanen, 2015). Importantly those studies demonstrated that the sensitivity of

the left ATL to specificity and its role in semantic composition are not independent.

In Westerlund & Pylkkanen (2014), the authors compared low- or high-specificity con-

cepts (e.g. fish/trout) when the words were put in a combinatorial (i.e. combined with

adjectives) or a non-combinatorial context. The result showed an interaction between

concept specificity and composition in the left ATL, in that the activation of the left

ATL was modulated mostly by the low-specificity adjective-noun combinations. They

argued that when in a combinatorial context, the low-specificity concepts required a

greater degree of specification and thus it yielded the largest effect in the ATL; there-

fore the effect of concept specificity and the semantic composition might stem from

a shared mechanism. Although this MEG study identified a more broadly defined

ATL and they could not pinpoint the effect in the subdivisions due to the limitation

of MEG spatial localisation, their result is consistent with a ventral effect (personal

communication). In another study, Zhang & Pylkkanen (2015) attempted to further

disentangle the contribution from concept specificity and semantic composition to

the effect found in the ATL. Using a similar setting that single-word specificity was

manipulated in a two-word combinatorial phrase (e.g. tomato/vegetable soup/dish),

they found the largest left ATL effect when a specific modifier was combined with a
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general head noun (e.g. tomato dish) whereas specificity only had a marginal effect

in the non-combinatorial condition. This study further supports the conclusion that

concept specificity and semantic composition are closely related, and the ATL plays a

critical role in this mechanism. Our findings parallel these results. In our study, dis-

crimination was observed in the left vATL for the dot-object contrast only, by which

we speculate that the dot-objects require further specification when put in context.

And if Pustejovsky is correct, semantic composition with dot-objects involves access-

ing the dot-object attributes the qualia in a specific way, which is not required for

the “simple” concepts.

Taken together, the observations that 1) there is dissociation between regions

discriminating concrete and abstract dot-objects and the typical concrete-abstract

distinction, 2) the vATL selectively discriminates coerced concrete and abstract dot-

objects, provide support to Pustejovskys dot-object theory: The lexical semantics of

dot-object concepts involves a single underspecified concept, which can be coerced

into more specific interpretations. The more specific representations elicit different

activation patterns in the vATL.

3.4.2 The general effect in the angular gyrus

The other left-hemisphere ROI in which the dot-object contrast also showed a smaller

but significant effect (p<0.05, FDR-corrected) is the left angular gyrus (AG); yet the

simple-contrast and the verb-control contrast were also distinguishable in this ROI

(p<0.01, FDR-corrected), indicating that the AG may serve a general function here.

Indeed the AG has been hypothesised to be another “convergence zone” where mul-

timodal information converges to form supramodal representations (Damasio, 1989;

Binder et al., 2009; Binder & Desai, 2011; Seghier, 2013; Bonner et al., 2013). In

particular Binder & Desai (2011) proposed that the AG might has a crucial role in

event concept representation, given the AG’s connections to other functional networks
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including the ones of spatial and action cognition. This proposal is consistent with

our result in the AG: most of our stimuli (i.e. verb-noun phrases) depicted some sort

of event, such as present the book, explain the reason, open the parcel. Therefore the

successful classification of all the three types of contrast suggests that the AG may

encode the event knowledge; and the difference between the concrete and abstract

events was picked out by the multivariate analysis.

Some recent studies tried to address the question that how the two “seman-

tic hubs”, the ATL and the AG, were functionally different (Kalenine et al., 2009;

Schwartz et al., 2011; Lewis et al., 2015). The overall picture suggests that the AG

plays a special role in thematic relation, which is also in line with its hypothesised role

in representing event knowledge (for instance, cake, candle, and balloon are themati-

cally related in a “birthday party” event). On the other hand, it has been suggested

that the ATL is specific to taxonomic relation, by which some argued that the con-

cept representation in the ATL was in fact feature-based. Therefore we postulate

that although they all evoked event knowledge, only the dot-object concepts in the

coercing context required accessing the specific features and consequently recruited

the ATL.

3.4.3 The implications to the neural representations of con-

cepts

In the current study we examined the neural basis of comprehending words that are

considered as associated with a single lexical entry in the mental lexicon. Taking a

step further, it is interesting to consider the deeper question that why some words

have multiple senses that share a single lexical entry in the mental lexicon. One

intuition is that those senses are so closely related that the alternative sense(s) may

be also important during comprehension. This is evidenced by the behaviour of the

dot-object words that both senses can be accessed subsequently in a single sentence,
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as in (3.2a), thus a single-entry representation is clearly an advantage. This is not

possible with homonyms, which are considered to have multiple entries, as in (3.2b),

and even for some polysemous words whose different senses are more distant, as in

(3.2c).

(3.2)

a. Mary found that book very boring so she put it back to the shelf.

b. *The bat hit the ball and flew away.

c. *The lamb is cute and delicious.

The single-entry phenomenon in (psycho)linguistics reflects the complexity of

the conceptual system. However, the empirical evidence in the field of concept

representation so far is largely from picture-viewing and single-word experiments;

hence the complexity is usually overlooked. Thanks to the recent advance in neu-

roimaging technique and computational method, more researchers start to explore

the complexity and the convergent evidence points to the anterior temporal lobes

(ATLs). As discussed in the introduction section, these studies found the ATLs

to be a semantic hub where the multimodal information converges and where a

coherent concept is formed (Patterson 2007; Clarke & Tyler, 2014; Lambon Ralph,

2014); furthermore this account can explain the effect seen in concept specificity

and semantic composition. Our result is in agreement to this trend of new findings

that complex concept representations involve a different neural mechanism and go

beyond the modality-specific brain regions. The specific category we look into in this

study presents an interesting case in which the concrete and the abstract senses are

closely tied together in a single word. It would be interesting to see that whether the

observed effect can be generalised to other such complex concepts, such as church
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(refer to the building and/or the institution) and lunch (refer to the food and/or the

event).

3.4.4 The effect in the right hemisphere

The dot-object contrast appeared to also engage the right hemisphere (RH). Several

ROIs had higher classification accuracy in their RH part than the LH counterparts.

The whole-brain parcellation MVPA and the univariate analysis also identified the

right frontal and temporal regions. There are two competing accounts about the

role of the RH in language comprehension. First, some have argued that regions

in the RH has a similar role to their left side counterparts and may be sensitive

to increased processing demands (e.g. Thompson-Schill et al., 1997; Kircher et al.,

2001; Stowe et al., 2005; Zempleni et al., 2007; Pobric et al., 2010). According to this

account, the effects found here could reflect the greater attentional and processing

demands of the dot-object contrast. On the other hand, some have argued that in

ambiguity resolution, the RH’s role is to maintain multiple meanings, whereas the left

hemisphere selects the appropriate one (Burgess & Simpson, 1988; Chiarello et al.,

1998; Stowe et al., 2005). As we speculated in the above section, even in the coercing

context, the sense of the other aspect of the dot-object may still somehow present

and be easily accessible. Hence the RH may hold a more holistic representation of

the dot-object concepts, i.e. the underspecified concepts spanning multiple senses of

meaning; and the coercing context imposes some subtle difference and the different

neural activity patterns can be discerned by MVPA.

The mid-to-right prefrontal cortex was more activated by the concrete interpreta-

tion of the dot-objects than the abstract interpretation, demonstrated by the univari-

ate analysis (Fig. 3.6). This prefrontal effect may be parallel to the anterior midline

field effect (AMF) found in MEG experiments with other kinds of coercion (Pylkkanen

& McElree, 2007; Brennan & Pylkkanen, 2008; Pylkkanen, 2008). The authors pro-
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posed that the AMF effect reflect the effort of resolving meaning shifts. For instance

Pylkkanen & McElree (2007) examined the neural correlates of complement coercion,

exemplified by Mary began the book in which the verb begin expects an event such

as writing and reading, but instead is combined with an entity noun, thus the object

is coerced into an event such as writing the book, reading the book. They contrasted

the coercion cases with non-coercion and animacy-violation sentences, and found the

AMF effect only with the coercion condition. According to this account, our result

may reflect the fact that the concrete-coercion (e.g. pick up the book, open the cat-

alogue) has a greater degree of meaning-shift and it requires more comprehension

effort than the abstract-coercion (e.g. consult the book, explain the book). However

it could also be the consequence of the verb contexts we chose here. The abstract-

coercing verbs (i.e. consult, present, explain) in fact expect some complement nouns

with informational content, whereas the concrete-coercing verbs (i.e. open, pick up,

give (as a present)) do not introduce such information therefore there may be more

information to fill in in the concrete-coercion condition. Note that this midline effect

should not be attributed simply to semantic expectancy because 1) in Pylkkanen &

McElree (2007), the effect was not sensitive to anomalous sentences which had the

lowest expectancy; 2) the expectancy effect typically occurs in the left hemisphere,

especially the left IFG, which lacked in our result.

3.4.5 The effect of phrase comprehension

Our stand is looking at concepts in context is essential to understand the nature of

concept representation. That being said, using phrases sets this study apart from the

more standard ones that used single words as stimuli. A likely byproduct of this is

that the neural activities associated with comprehending the phrase stimuli are nosier

than single words because the neural processing becomes more complicated, and the

effect becomes less salient. For instance, although our simple contrast (furniture vs.
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information) is the most distinguishable one, the classification accuracy we obtain is

lower than concrete-abstract decoding accuracies achieved in other single word MVPA

studies (e.g. Wang et al. (2013), albeit a possible caveat is that their stimuli included

many emotion words which could yield a stronger effect).

The phrase stimuli is also likely to be the reason that we found an unexpected

region, the anterior cingulate cortex (ACC), for the object > information comparison

in the simple contrast. The ACC, which is within the frontal attention network, has

been shown to play a central role in a number of cognitive functions including error

detection, conflict monitoring, decision-making, and emotion cognition (e.g. Carter

et al., 1998; Bush et al., 2000; Botvinick et al., 2004). We speculate that the presence

of the ACC may reflect the richer semantic information in the object category than

the information category given the generic verbs (have, give, change) we used in both

two categories. For instance in change the sofa / idea, the verb change carries more

sensorimotor information in the concrete condition, thus it may be more cognitively

engaging and/or incur a greater processing load. By contrast, the generic verbs in

the abstract condition are also more “abstract” that they only convey a general sense

of possessing or transfer.

3.4.6 Final remarks

We examined the mental representation of a class of logically polysemous words, “dot-

objects”, which are considered to have a single lexical entry but incorporate both a

concrete and ab abstract sense, exemplified by the word book. Our results showed that

the concrete and abstract interpretations of these words did not exhibit a “typical”

concrete-abstract distinction found in the brain; but the ventral anterior temporal

lobe (vATL) played a pivotal role of in representing the different interpretations.

We argue that the vATL is responsible for the mechanism that those words, when

in context, undergoing additional compositional processing to form a more specific
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interpretation, which supports the hypothesis that the meanings of such words are

represented as a complex structure in which properties are categorised into certain

fundamental types, i.e. the qualias (Pustejovsky 1995, 2011). Importantly, this is in

accordance with other hierarchical semantic memory theories that view conceptual

representation as a complex system within which the ATL serves as an integrating

hub (e.g. Damasio et al., 1989; Tyler et al., 2004; Patterson 2007; Lambon Ralph et

al., 2010; Lambon Ralph, 2014).
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Chapter 4

The Neural Representation of

Dot-objects: The Case of Lunch

4.1 Introduction

In the first fMRI experiment, we examined the neural representation of the classic

example of logical polysemy, book. Concepts of this category, information print mat-

ter, are considered dot-objects consisting of a physical object and an information

component (OBJECT • INFORMATION) in the Generative Lexicon framework of

Pustejovsky. Our result highlighted the left ventral anterior temporal lobe (vATL) in

differentiating the two interpretations; we interpreted the result as that the meaning

representation of dot-objects, when in context, instantiates to a more specific repre-

sentation, and the vATL plays a critical role in representing this complex conceptual

knowledge.

In the second fMRI experiment reported in this chapter, we tested whether the

effects observed with book -like dot-objects can be generalised to other dot-objects.

We looked at another dot-object category, meal concepts like lunch and dinner that

can refer to not only the aliment but also the event (and therefore are referred to as
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FOOD • EVENT) (Fig. 4.1). As in the case of the print matter category, the meal

concepts have a concrete and an abstract sense; the key characteristic is that both

senses are closely tied together and can be accessed in a single expression (4a), and

sometimes one aspect is more emphasised than the other depending on the context,

such as in 4b and 4c.

(4)

a. Lunch was delicious but took forever.

b. Don’t let your dinner get cold.

c. Mary will not be pleased to see a total stranger at her dinner.

Figure 4.1: The sample schemata of the two dot-object categories examined thus
far, print matter and meal, adapted from Pustejovsky, 1997. The lunch schema is
an adaptation of the dot-object exam, which also refers to both the objects and the
event.

We followed the same design as in Experiment 1. We set up three contrasts to 1)

compare the coerced concrete and abstract interpretations, i.e. the food sense and

the event sense, to typical unambiguous concrete and abstract concepts, and 2) to

verify that the discriminating effect in the dot-object contrast is not solely driven by

the verbs (Fig. 4.2). We applied the same ROI-based multivariate pattern analysis as
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in Experiment 1, focusing on the ROIs that showed discriminating effect to concrete

vs. abstract concepts and/or semantic composition.

Figure 4.2: Experimental design. The three vertical lines indicate the three concrete-
abstract contrasts. In the target contrast, dot-object, the dot-object words are com-
bined with verbs that coerce the meaning into either the concrete or the abstract
interpretation. The simple contrast contains typical concrete and abstract words
combined with generic verbs. In the verb-control contrast, the same coercing verbs in
the dot-object contrast are used but paired with unambiguous concrete and abstract
nouns.

We expect that telling apart the concrete and abstract interpretations of dot-

objects like lunch should engage the ATL as well because it also involves accessing

the specific concept knowledge. Despite the commonality, we expect to observe some

differences from the first experiment, as the meal category is different from the print

matter category semantically. First, the abstract component here, i.e. event, is a

distinctive notion viewed from both linguistic and psychological respects. And while

the print matter concepts (e.g. book, magazine) are usually seen as concrete objects in

isolation, the meal concepts like lunch and dinner are more likely to be considered as

events in the first place. Second, even the concrete sense of the meal concepts appears

to be more general and usually refers to a collection of food and drinks. Third, the

meal concepts may involve neural representations that are specific to their semantics

per se, for instance knowledge about food and social concepts (e.g. Simmons et al.,

2005, 2013; Zahn et al., 2007; Ross & Olson, 2010).
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With regard to those differences, we anticipate some variations of the ATL effect.

First of all, the superior ATL (sATL) may play a more important part in this ex-

periment given the event sense of the meal concepts. Both the vATL and the sATL

have been identified for high-level concept representation. Yet the sATL appears to

be more sensitive to speech processing and sentence comprehension (Mazoyer et al.,

1993; Hickok & Poeppel, 2004; Humphries et al., 2005; Visser and Lambon Ralph,

2011). The sATL has also been occasionally identified for abstract > concrete com-

parison (e.g. Noppeney & Price, 2004; Binder et al., 2009; Tettamanti et al., 2008;

Ghio & Tettamanti, 2010; Hoffman et al., 2015), which is usually ascribed to the

extension of effect in the superior temporal lobe. Interestingly many of those studies

which identified the sATL involved sentence stimuli that bear abstract event knowl-

edge. For instance in Ghio & Tettamanti (2010), participants passively listened to

short sentences describing action events such as I push the bottom or abstract events

such as I appreciate the loyalty. In a recent study, Hoffman and colleagues used

distortion-corrected fMRI to examine the concreteness effect with manipulating the

context (Hoffman et al., 2015). Participants made a synonymy judgement on a target

word against three options preceded by a sentence context (for instance the partici-

pant read The road is closed. We must look for an alternative, then they selected the

synonymy of the target word alternative among three choices, substitute, ambition,

discretion). The target word could be either concrete or abstract, and the sentence

context could be either relevant or irrelevant. Firstly they found, after correction for

fMRI signal loss, all the subdivisions of the ATL were activated by both concrete

and the abstract concepts. Secondly, there was a graded concreteness effect along

the vertical axis of the ATL: the superior division was more activated by abstract

words, whilst the ventral ATL was more activated by concrete words. Interestingly

the authors further found that, although both showed an abstract > concrete effect,

the sATL and the IFG reacted differently to the context manipulation: while the IFG
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had the greatest activation in the irrelevant context condition, the sATL gave the

greatest response when the context was coherent. This differentiation suggests that

the function of the sATL is enriching semantic representation rather than exercis-

ing semantic control. In all, we expect that the greater information and integration

demand that the event sense brings about will have an influence on the ATL effect,

especially it may give rise to a larger effect in the sATL.

4.2 Methods and Materials

4.2.1 Participants

Fifteen volunteers were recruited (8 female, mean age 23, SD: 2.9). All participants

were native Italian speakers, right-handed, and had normal or corrected-to-normal

vision. All procedures were approved by the ethics committee of University of Trento,

and participants received a small monetary compensation.

4.2.2 Materials

The experiment was conducted in Italian. We selected three words from the FOOD

• EVENT dot-object category: lunch, dinner, and aperitif, which is a very common

concept in Italy (aperitivo) that refers to a before-meal event with light alcoholic

drinks and snacks to open the appetite. It can be a formal reception as well as a

get-together among friends, in the meantime it also refers to the food and drinks,

especially the alcoholic beverage usually served.

Again we used verbs to coerce the meaning into either the concrete or the abstract

sense, following the same selection and norming procedure as Experiment 1. First

we came up with a pool of verbs that could potentially be the coercing verbs, then

we constructed the combinations that were to be rated familiarity, concreteness and

imageability. Thirty-three native speakers were recruited in the norming study and
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none of them participated in the fMRI experiment. Based on the norming result, we

selected 3 concrete (cook, bring, pack) and 3 abstract (cancel, reserve, organise) verbs

to form the phrases in the dot-object contrast. As Experiment 1, we constructed two

additional contrast, i.e. the simple and the verb-control contrast. The simple contrast

consisted of categories that approximated the partial senses of the dot-objects, i.e.

man-made food (e.g. pasta, pizza) vs. event concepts (e.g. trip, party). To keep the

grammatical form the same across all the conditions, nouns of both the two categories

were combined with some generic verbs (pay, prepare) to form the verb-noun phrases.

The verb-control contrast contained phrases with the same verbs as in the dot-object

conditions, but the verbs were combined with their common complement words drawn

from various concrete and abstract categories (e.g. pack the gift, bring the water /

organise the course, reserve the place). Each contrast had 6 concrete and 6 abstract

phrases, resulting in 36 phrases in total (6 phrases * 2 categories * 3 contrasts), the

full stimulus set is showed in Table 4.1.

Phrases of each contrast were matched in length and the number of phonemes

(number of letters: tDot-object(10)=-1.50, p=0.16; tSimple(10)=-0.26, p=0.80; tVerb-control(10)=1.31,

p=0.22. number of phonemes: tDot-object(10)=1.58,, p=0.14; tSimple(10)=0.0, p=1.0;

tVerb-control(10)=1.31, p=0.22). All categories matched familiarity (F(5,30)=0.85,

p=0.51). The concreteness and imageability ratings are significantly different for all

the three concrete-abstract contrasts except the imageability the dot-object contrast

(t(10)=-1.22, p=0.25). The detailed results are in Table 4.2 and depicted in Fig. 4.3.

4.2.3 Procedure

The procedure is identical to Experiment 1; we repeat the description here. Par-

ticipants were instructed to attentively read verb-noun phrases and judge whether
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Table 4.1: Stimulus words used in the three concrete-abstract contrasts. Each con-
trast contains seven concrete and seven abstract verb-noun phrases. The original
Italian stimuli are showed below the English translation. The dot-objects are high-
lighted with bold font.The simple contrast contains the simple, mono-sense concrete
and abstract concepts paired with the same generic verbs. The verb-contrast consists
of the same coercing verbs but paired with their common complement nouns.

dot-objects simple verb-control

ABSTRACT

cancel the dinner pay the travel cancel the decision

cancel the aperitif pay the trip cancel the enrollment

reserve the lunch pay the party reserve the concert

reserve the dinner prepare the travel reserve the place

organise the dinner prepare the party organise the course

organise the aperitif prepare the meeting organise the day

CONCRETE

pack the dinner pay the pasta pack the package

cook the lunch pay the pizza pack/wrap the present

cook the dinner pay the risotto cook the dish

bring the dinner prepare the bread cook the recipe

bring the lunch prepare the risotto bring the water

bring the aperitif prepare the pasta bring/fold the shirt

Original stimuli in Italian

dot-objects simple verb-control

ABSTRACT

annullare la cena pagare il viaggio annullare la decisione

annullare l’aperitivo pagare la gita annullare l’iscrizione

prenotare il pranzo pagare la festa prenotare il concerto

prenotare la cena preparare il viaggio prenotare il posto

organizzare la cena preparare la festa organizzare il corso

organizzare l’aperitivo preparare l’incontro organizzare la giornata

CONCRETE

confezionare la cena pagare la pasta confezionare il pacco

cucinare il pranzo pagare la pizza confezionare il regalo

cucinare la cena pagare il risotto cucinare il piatto

portare la cena preparare il pane cucinare la ricetta

portare il pranzo preparare il risotto portare l’acqua

portare l’aperitivo preparare la pasta portare la camicia

72



Figure 4.3: Ratings of familiarity, concreteness, and imageability of each category.
Two-sample t-tests were calculated for each concrete-abstract contrast. The con-
creteness and imageability ratings are significantly different for all three contrasts.

Table 4.2: The psycholinguistic parameters of the stimulus phrases in each condition.
Familiarity, concreteness, and imageability are obtained from the norming experiment
with thirty-eight participants. Standard deviations are showed in parentheses.

Category familiarity concreteness imageability letters phonemes

dot-object abstract 4.20(0.49) 3.58(0.19) 4.06(0.23) 18.33(2.13) 8.0(1.15)

dot-object concrete 4.34(0.14) 4.29(0.22) 4.33(0.43) 16.50(1.71) 7.0(0.82)

simple abstract 4.33(0.13) 3.95(0.31) 4.22(0.25) 16.33(2.29) 6.83(0.69)

simple concrete 4.31(0.30) 4.46(0.13) 4.53(0.15) 16.00(1.73) 6.83(0.69)

Verb-control abstract 4.20(0.24) 3,41(0.34) 3.86(0.30) 20.00(1.63) 8.17(0.69)

Verb-control concrete 4.31(0.22) 4.37(0.11) 4.50(0.16) 17.83(2.27) 7.33(1.25)

the verb-noun combinations were meaningful. About 10% were catch trials which

contained meaningless combinations. We adopted a slow-event design. Each trial

started with a fixation cross for 500ms, followed by a verb and then an article-noun

phrase, each of them was present for 450ms with a 100ms interval. A black cross then

remained on the screen for 1500ms to encourage participants to form an elaborate

mental representation, then a question mark was displayed for 1000ms at which point

participants responded by pressing the left or right button box (counterbalanced

across participants). The next trial started after 6 second fixation time (Fig. 4.4).

During one scanning session, all 36 verb-noun phrases along with 4 catch trials ( 10%

of all trials) appeared once in a random order. Each participant completed 6 sessions.

73



Figure 4.4: Experimental paradigm. Participants performed a semantic meaningful-
ness judgement task and responded by pressing the button boxes with the left or the
right hand (counterbalanced across participants).

4.2.4 Data acquisition

All of the fMRI experiments were conducted with a 4T Bruker MedSpec MRI scan-

ner. Structural images were acquired using a T1 weighted MPRAGE sequence with

resolution 1*1*1mm in the beginning of the experiment. A T2*weighted EPI pulse

sequence was used to acquire the functional images with parameters TR 1000ms, TE

33ms, and 26 flip angle, FoV1000*1000. Each acquisition volume contains a 64*64

matrix and 17 slices with a gap of 1mm. Voxel dimensions are 3mm*3mm*5mm.

4.2.5 Analysis

The same analyses as in Experiment 1 were applied. First we conducted the univariate

analysis to calculate the activation maps of all the three concrete-abstract contrasts.

Then we performed the multivariate pattern analysis (MVPA) in the seven ROIs

as in Experiment 1, and we also compared the effect in the left and right ROI. At

last we examined all subregions across the whole brain with MVPA. The seven ROIs

are: 1) the anterior inferior frontal gyrus (aIFG), 2) the angular gyrus (AG), 3)

the precuneus/posterior cingulate gyrus (PCC), 4) the posterior ventral temporal

lobe (pvTL), 5) the posterior lateral temporal cortices (PLTC), and 6) the superior

anterior temporal lobe (sATL) and 7) the superior anterior temporal lobe (vATL).
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The ROI details are in Table 3.3 and Fig. 3.5. All the technical details are the same

as Experiment 1 and can be found in chapter 3.

4.3 Results

4.3.1 Behaviour

The error rates of the fifteen participants range from 2.5% to 16% (mean error rate

0.07, SD 0.05). Because we wanted participants to concentrate on forming a rich

mental representation rather than responding quickly (and responses were delayed

until a question mark was presented), we did not analyse reaction times. Trials

without a response in 5 seconds were considered as missed trials.

4.3.2 Univariate analysis

Four clusters were identified for the food > event comparison in the simple contrast.

Three clusters were located in the bilateral frontal cortex, including both the dorso-

lateral part and the medial frontal cortex. The bilateral thalamus and insula were

also activated. Another cluster was found in the right angular gyrus. The abstract >

concrete comparison of the verb-control contrast identified two clusters in the mid-

precuneus /posterior cingulate cortex and the medial prefrontal cortex. No significant

effect was found for the dot-object contrast (Fig. 4.5, Table 4.3).

4.3.3 ROI-based Multivariate Pattern Analysis (MVPA)

We examined the same seven left-hemisphere (LH) ROIs as in Experiment 1. Again,

the simple contrast was the most distinguishable contrast; the classification accuracy

was significant in four ROIs: the aIFG, the AG, the PLTC, and the sATL. For the

dot-object contrast, in contrast to Experiment 1, we did not observe a significant
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effect in the left-hemisphere ATL, neither ventral nor superior. However, this contrast

could be distinguished in the AG, the precuneus/PCC, and the pvTL. Finally, the

verb-control contrast could be distinguished in the AG, the precuneus/PCC as well,

along with the PLTC (Fig. 4.6, Table 4.4).

Figure 4.5: Univariate analysis result. The concrete and the abstract conditions of
each contrast were compared with a two-sample paired-test. The colour bars indicate
the voxel-wise Z (Gaussianised T/F) statistics thresholded by Z>2.3 (p<0.05). The
significant clusters were calculated with the cluster-based method provided by the
FSL software (cluster p<0.05, FDR-corrected). The individual maps were registered
to the MNI-standard brain (2mm resolution) to form the final group map. Significant
effects were found for the food > event comparison in the simple contrast, and the
abstract > concrete in the verb-control contrast. No other significant effect was found
for other comparisons.
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Table 4.3: Univariate analysis result. The significant clusters were calculated by the
cluster-based inference using the Gaussian random field (GRF) method, with the
cluster-level threshold p<0.05 was used (FWER corrected). The MNI coordinates
show the voxels with the local maxima z-values (Gaussianised T/F)within the cluster.

Region Extent Cluster p MNI coord Z

(1) Simple contrast

concrete>abstract

Left frontal cortex 4090 1.07e-14

frontal pole (-22,42,32) 4.73

precentral gyrus (-44,2,20) 4.39

cingulate gyrus, anterior division (2,36,22) 4.21

thalamus (-10,-8,2) 4.16

middle frontal gyrus (-48,30,26) 4.11

inferior frontal gyrus, pars opercularis (-46,6,26) 3.95

Right dorsolateral frontal cortex 1691 1.19e-07

middle frontal gyrus (40,24,24) 3.85

precentral gyrus (36,6,30) 3.62

inferior frontal gyrus, pars triangularis (52,26,14) 3.58

Right medial frontal cortex & basal ganglia 939 9.36e-05

frontal orbital cortex (34,30,-4) 4.3

insular cortex (40,14,-6) 4.07

frontal pole (54,42,-8) 3.92

thalamus (6,-2,6) 3.26

Right posterior parietal lobe 382 0.0448

supramarginal gyrus, posterior division (54,-42,36) 4.09

superior parietal lobule (32,-46,42) 3.88

angular gyrus (44,-46,36) 2.79

abstract>concrete

– –

(2) Dot-object contrast

– –

(3) Verb-control contrast

abstract>concrete

Bilateral PCC/precuneus 637 0.0066

cingulate gyrus, posterior division (2,-44,32) 3.84

precuneous cortex (4,-48,42) 2.94

Medial prefrontal cortex 439 0.0495

frontal pole (0,56,18) 3.29

paracingulate gyrus (-2,56,14) 3.24

– –
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Table 4.4: Classification accuracy of the ROI-based multivariate pattern analysis.
Results are compared for the three types of concrete-abstract contrasts. P-values
were calculated with one-sample t-test (dof=14) against the 0.5 chance level of the
classification accuracy. Significant values are highlighted (FDR corrected). The target
dot-object contrast could be significantly distinguished in three left hemisphere ROIs
in the posterior parietal and temporal lobe, and in the two right hemisphere ATL
ROIs.

ROI Classification accuracy (SEM)

LH RH

Angular gyrus

Simple 0.5686 (0.0250) 0.5342 (0.0207)

Verb-control 0.5572 (0.0230) 0.5456(0.0176)

Dot-object 0.5466 (0.0183) 0.5290 (0.0224)

Precuneus/posterior cingulate cortex

Simple 0.5469 (0.0252) 0.5288 (0.0232)

Verb-control 0.5583 (0.0154) 0.5533(0.0250)

Dot-object 0.5583 (0.0190) 0.5500 (0.0200)

anterior inferior frontal gyrus (aIFG)

Simple 0.5630 (0.0221) 0.4995 (0.0239)

Verb-control 0.5155 (0.0247) 0.5604 (0.0271)

Dot-object 0.4945 (0.0187) 0.5380 (0.0208)

posterior ventral temporal lobe (pvTL)

Simple 0.5586 (0.0314) 0.5564 (0.0264)

Verb-control 0.5045 (0.0151) 0.5248 (0.0213)

Dot-object 0.5530 (0.0209) 0.5352 (0.0229)

posterior lateral temporal cortices (PLTC)

Simple 0.5828 (0.0268) 0.5157 (0.0256)

Verb-control 0.5458 (0.0206) 0.5401 (0.0230)

Dot-object 0.5393 (0.0234) 0.5363 (0.0207)

ventral ATL

Simple 0.5285 (0.0235) 0.5282 (0.0227)

Verb-control 0.4948 (0.0242) 0.5226 (0.0188)

Dot-object 0.4988 (0.0177) 0.5637 (0.0157)

superior ATL

Simple 0.5677 (0.0177) 0.5375 (0.0251)

Verb-control 0.4928 (0.0198) 0.5233 (0.0194)

Dot-object 0.5309 (0.0198) 0.5584 (0.0160)
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Figure 4.6: Classification accuracy for the three types of contrast in each ROI. Error
bars indicate SEMS. P-values of the classification accuracy were calculated with one-
sample t-test (dof=14) against the 0.5 chance level (one-tailed p-value, FDR corrected,
*****p<0.00001, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05).

The right-hemisphere (RH) ATL ROIs, on the other hand, clearly outperformed their

LH counterparts (Fig. 4.7). Specifically the classification accuracies of the right vATL

and the sATL, and the precuneus/PCC were significant (p<0.05, FDR-corrected);

we also observed a marginal effect between the left and right vATL (F(1,28)=-2.98,

p<0.1).

Figure 4.7: Comparing the classification accuracy for the dot-object contrast of each
ROI in the left and the right hemisphere. Error bars indicate SEMS. P-values of
the classification accuracy were calculated with one-sample t-test (dof=14) against
the 0.5 chance level (one-tailed p-value, uncorrected, *****p<0.00001, ****p<0.0001,
***p<0.001, **p<0.01, *p<0.05)
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4.3.4 Whole-brain parcellation MVPA

The simple contrast yielded thirty-seven subregions across the whole brain with

p¡0.05 after correcting for multiple comparison. Three of them had p<0.001 (FDR-

corrected), which are the left IFG, pars opercularis division, the left frontal medial

cortex, and the left posterior parahippocampal gyrus. For the dot-object contrast

only two subregions, the left juxtapositional lobule cortex and the left cuneal cortex

were significant after multiple comparison correction. No region was found to be

significant for the verb-control contrast.

4.4 Discussion

In Experiment 2, we investigated a second category of dot-objects: meal concepts such

as lunch and dinner. These words, as well, have been claimed to have a single entry

in the mental lexicon, just as the information print matter concepts, such as book and

magazine, discussed in the last chapter. And just as in the case of the information

print matter category, the meal category is considered as consisting of a concrete and

an abstract sense component: i.e. a food sense and an event sense. As with other

dot-objects, one aspect is more focused than the other sometimes, depending on the

context (e.g. a delicious lunch vs. a long lunch). Like what we argued with the print

matter category in the last chapter, we hypothesise that those words have a single

entry in the mental lexicon. When put in a coercing context, the word’s meaning

instantiates from an underspecified representation to a more specific one; and the

anterior temporal lobe (ATL) plays a key role in representing this complex meaning

representation.

As in Experiment 1, we used verbs to coerce the dot-objects into either the concrete

or the abstract interpretation (e.g. cook the dinner vs. cancel the dinner), and applied

classification analysis to distinguish between their neural representations. Consistent
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to our prediction, the dot-object contrast engaged the ATL. Nevertheless the meal

category here displayed three disparities from the print matter category. First, the

ATL effect was found in the right ATL instead of the left. Second, the effect also

extended to the sATL. Third, the dot-object contrast could be distinguished in the

other ROIs that have been associated with concrete object representation whereas

this effect was absent in the Experiment 1.

4.4.1 A shift of focus within the ATL

Given the fact that our materials are linguistic, one would expect the more reliable

effect to be in the left hemisphere. Yet we already observed minor right hemisphere

(RH) effects in the previous experiment; and in the current experiment, one of the

main findings is that the dot-object contrast engages the right ATL instead of its left

counterpart. Moreover, whereas the ventral division of the ATL was emphasized in

Experiment 1, both the superior and ventral divisions exhibited the discriminating

effect for the current dot-object category.

The relationship between the left and right ATLs has been a matter of debate.

Some argue that the LH and RH ATLs work in a similar way. Semantic dementia

(SD) patients normally suffer from bilateral ATLs damage. A more recent study with

twenty patients with unilateral ATL damage (Lambon Ralph et al., 2010) demon-

strated that although the left-unilateral cases were doing relatively worse in language

fluency, unilateral damage did not result in the profound disruption of semantic mem-

ory. The authors argued that the two ATLs functionally complement each other to

make a more robust system. Repetitive TMS studies with healthy subjects also lent

support to this account, showing that the temporal lesion produced by TMS in both

the left and right ATL had a similar effect to semantic processing (Pobric et al., 2009,

2010). On the other hand, divergence between the left and right ATL has been ob-

served, especially in social cognition. Overall evidence suggests that the left ATL is
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biased toward verbal stimuli while the right ATL favours pictorial stimuli, in partic-

ular famous faces (e.g. Snowden et al., 2004; Mion et al., 2010). Patients with right

ATL lesion may experience more difficulty with their social ability (e.g. Liu et al.,

2004; Irish et al., 2014). Moreover the right superior ATL has been associated with

reading words regarding social knowledge (Zahn et al., 2007, 2009; Ross & Olson,

2010 ).

In the brain as a whole, the LH and the RH show divergent functionality. Al-

though it is not uncommon to observe a bilateral network in language experiments,

the RH has been found to be more active with high comprehension demand (Mazoyer

et al., 1993; Humphries et al., 2001; Humphries et al., 2001; 2005; Bookheimer, 2002;

Menenti et al., 2008) and figurative language processing (e.g. Bottini et al., 1994;

Coulson & Wu, 2005; Mashal et al., 2007; Diaz & Hogstrom, 2011). In lexical am-

biguity resolution, it has been claimed that the LH’s role is said to be to select the

appropriate interpretation, whereas the RH maintains a representation of all alter-

native interpretations (Burgess & Simpson 1988; Chiarello, 1988; Jung-beeman 2005;

Pylkkanen et al., 2006). In a MEG study on polysemy, Pylkkanen and colleagues

measured the M350 component (equivalent of the EEG N400 component) with a

priming paradigm. As predicted from the single-lexical-entry hypothesis, they found

a facilitatory effect (decreased M350) in the LH for the related senses of a polysemous

word (e.g. lined paper liberal paper); by contrast, the M350 in the RH had a longer

latency, suggesting that the two senses might shadow each other in the RH. Admit-

ting that further evidence was needed, the authors speculated that the LH and the

RH work in a qualitatively different manner in polysemy comprehension (Pylkkanen

et al., 2006).

In the light of these findings summarised above, we interpret our findings as fol-

lows. We argue that 1) our finding about the lunch-like dot-objects being discrimi-

nated in the right ATL indicates that the interpretation of this type of dot-objects,
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as well, does not involve disambiguation, but reaching a more specific meaning rep-

resentation when in context; however, 2) the dissociation we observed between the

left and right ATLs supports the claims that the there is a division of labor between

the ATLs in the two hemispheres. One possible reason why further specification of

lunch-like dot-objects involves the right rather than the left ATL is that an event

such as lunch and aperitif usually is a social occasion; hence it has a right ATL bias

as the right ATL is shown to play a more important role in social knowledge.

With respect to the additional recruitment of the sATL, the answer might lie in two

threads of evidence. First, as described in the introduction, the sATL is sometimes

found to be more activated by abstract than concrete concepts (Noppeney & Price,

2004; Tettamanti et al., 2008; Binder et al., 2009; Ghio & Tettamanti, 2010; Wang

et al., 2010; Hoffman et al., 2015). The second thread of evidence is that the right

sATL is shown to be sensitive to reading words concerning social knowledge (Zahn et

al., 2007, 2009; Ross & Olson, 2010; Olson et al., 2013). In an fMRI study described

in Zahn et al. (2007), healthy subjects read pairs of words containing abstract social

knowledge (e.g. brave-honor). The authors found the right superior ATL (sATL)

activation among a number of social cogniton areas. Moreover they correlated the

brain activation to the descriptiveness (an index equivalent to specificity) of the social

behaviour, and found that the right sATL was the only region that showed a significant

correlation. A further study with frontotemporal dementia patients confirmed the

right sATL effect (Zahn et al., 2009).

To summarise, the ATL also plays a pivotal role in representing the meaning of

the meal category of dot-objects, corroborating the hypothesis that the related senses

of a dot-object are stored as an underspecified structure, and when in context, it

instantiates into a more full-fledged representation. Nonetheless the focus shifted

from the left ventral ATL to the right ATL, and additionally recruited the superior

division. We attribute this shift to the semantics of the meal category examined in the
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current experiment: concepts such as dinner and lunch contain a social component;

in addition, such concepts are more abstract than the book -like dot-objects; both of

these aspects would explain the involvement of the sATL.

4.4.2 The dot-objects are also distinguishable in ROIs out-

side the ATL

Outside the bilateral ATLs, the dot-object contrast could be distinguished in the left

angular gyrus (AG), the bilateral precuneus/posterior cingulate cortex (PCC), and

the left posterior ventral temporal lobe (pvTL). First, note that the left AG showed

the same result pattern in both fMRI experiments that it could discriminate all the

three contrasts. Thus it further strengthens our argument that the AG has a general

role in representing event knowledge.

The left precuneus/PCC, besides the dot-object contrast, also showed discriminat-

ing effect for the verb-control contrast; and this region was activated by the abstract

> concrete comparison of the verb-control contrast. Therefore we speculate that the

precuneus/PCC may be evoked by the specific verbs chosen here. Previous research

has linked this region to episodic memory and mental imagery, consequently it should

be more activated by concrete concepts (Jessen et al., 2000; Binder et al., 2005; Sab-

sevitz et al., 2005). We reproduced this effect with the simple object > information

comparison in Experiment 1; however, the abstract > concrete comparison of the

verb-control contrast in the current experiment recruited this region, along with a

cluster in the medial prefrontal cortex. We relate this observation to the other stud-

ies that also reported this effect (D’Esposito et al., 1997; Tyler et al., 2001; Tettamanti

et al., 2008; Ghio & Tettamanti, 2010). D’Esposito et al. (1997) explicitly compared

imagining objects and passively listening to abstract words. Compared to generating

object images, the abstract condition elicited the bilateral precuneus and the right

superior frontal gyrus. In a PET study, Tyler et al (2001) included both concrete
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and abstract verbs and nouns. The abstract > concrete comparison regardless the

word class identified the PCC. In Tettamanti et al. (2008), participants listened to

sentences referring to action or abstract events (e.g. I push the bottom, I appreciate

the loyalty), and the sentences were either affirmative or negative (e.g. I do not push

the bottom). Again the abstract condition activated the PCC more than the concrete

condition, or in their words, the concrete condition was more de-activated than the

abstract condition. Ghio & Tettamanti (2010) replicated this finding with a similar

design. Furthermore the dynamic causal modelling (DSM) analysis showed that the

left superior temporal gyrus (LSTG) propagated to the PCC in the abstract-sentence

reading condition. The authors reasoned that the abstract > concrete effect was in

fact the de-activation of the action-related sentence condition, owing to the fact that

the PCC is in the default mode network. Our observation is in agreement with this

explanation. Note that the abstract > concrete comparison of the verb-control con-

trast identified the PCC as well as the other main site of the default network, the

media prefrontal cortex. Moreover all the aforementioned studies (except D’Esposito

et al. (1997), however their concrete condition involved actively generating mental

images) used verb stimuli as our experiment. Hence verbs and/or event knowledge

might have a greater contribution to the de-activation of the PCC.

The other ROI that showed a distinguishing effect for the dot-object contrast is

the left pvTL, which contains the posterior part of the inferior temporal lobe and

the fusiform gyrus. We predicted that the pvTL should be sensitive to the concrete

conditions given this region’s central role in object knowledge (e.g. Thompson-Schill

et al., 1999; Chao et al., 1999; Martin & Chao, 2001; Haxby et al., 2001; Bookheimer

2002; Thompson-Schill, 2003; Martin, 2007); and indeed the effect was found with

the simple-contrast in Experiment 1 but absent in the target dot-object contrast. We

interpret the significant distinguishing effect here as the concrete-coerced dot-objects,

i.e. the food sense, resemble normal concrete concepts to a certain degree. There was a
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marginal effect for the simple-contrast but it fell short of reaching significance (p<0.1

after FDR-corrected). Yet it raises the question that why the concrete-coerced dot-

object in the first experiment (i.e. the object sense of, for instance, book) did not show

any such concreteness effect. One potential explanation is that the concrete and the

abstract interpretations of the book -like concepts are more close to each other, and

the notion of, say, “consult the book”, is more concrete than the notion of organise

the lunch. The norming results seemed to confirm this intuition: The concreteness

ratings for the concrete and the abstract phrases of the book -like dot-objects had

a difference with p<0.001 (independent two-sample t-test), while this value of the

lunch-like dot-objects was p<0.0001. Though not significant, the “abstract books”

were perceived slightly more concrete than the “abstract lunch” (mean concreteness

ratings 3.65+/-0.33 vs. 3.58+/-0.19).

Another possible explanation to the recruitment of the pvTL by the dot-object

contrast is that food concepts are remarkably salient in the brain. There are several

studies in concept representation that are specifically dedicated to the food category

(e.g. Ross & Murphy, 1999; Simmons et al., 2005, 2013; Martin, 2007). In an fMRI

study by Simmons et al. (2005), participants viewed pictures of high-caloric food such

as cheeseburgers and cookies. And they found that the food pictures reliably activated

not only the bilateral insula, which is within the primary gustatory cortex and is

responsive to taste, but also the pvTL compared to building pictures. Interestingly we

also found similar and even stronger effect here that the food concepts in the simple-

contrast (e.g. pizza, pasta, bread) activated large bilateral networks, in particular the

bilateral insular cortices; and the simple-contrast could be distinguished in thirty-

seven subregions in the whole brain classification analysis. It is in fact unsurprising

given the special role of food plays in life. Hence the food sense that was coerced

from the meal concepts (e.g. bring the lunch, cook the dinner) evoked sufficient

activities in the pvTL, a multimodal brain region that is crucial to object knowledge
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representation. Yet the effect was not strong or consistent enough across individuals

to be captured by the univariate analysis.

4.4.3 Final remarks

In this experiment, we investigated the other category of dot-objects: meal concepts

such as lunch and dinner. Likewise, we argue the meaning representation of these

dot-objects is associated with a single, unspecified meaning structure in the mental

lexicon, as the information print matter concepts in Experiment 1. This conclusion

is drawn on the distinguishing effect in the ATL for the concrete- and the abstract-

coerced interpretations, i.e. lunch as the food or as the event. However, the current

experiment highlights the right ATL, and additionally recruite the superior division

of the ATL (sATL). We attribute the variations to the more abstract and sociality-

related nature of the meal category.
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Chapter 5

Oscillatory MEG Gamma-band

Activity Dissociates Concrete and

Abstract Coercion: A Decoding

Study

5.1 Introduction

In the first two experiments we looked separately with fMRI at two categories of

dot-objects: print matter (OBJECT • INFORMATION) such as book and magazine,

and meal (FOOD • EVENT) such as lunch and dinner. The motivation for looking

at one category a time is that we expected distinct fMRI activation patterns for each

semantic category: clearly the concept book is quite different from the concept lunch.

Moreover, we were also interested in the question of whether the neural representation

of a dot-object could be seen as a simple combination of the neural representation of its

partial sense for example, whether the neural representation of abstract-coerced book
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resembled that of information concepts like story or opinion, or whether concrete-

coerced lunch is represented similarly to simple food concepts such as pizza or steak.

Although some variations were observed between the two categories, both experi-

ments highlighted the anterior temporal lobe (ATL), the key brain region in represent-

ing high-level concept knowledge. We argued that the result supported the hypothesis

that the multiple senses of dot-objects were stored as a single unspecified structure in

the mind; and the coercion process (e.g. open the book, consult the catalogue, organise

the dinner, bring the lunch) elicited a more specific meaning representation.

One question left unanswered is the temporal dynamics of accessing the specific

knowledge, i.e. coercion. In this Chapter, we discuss a third experiment in which we

used Magneto-Encephalo-Graphy (MEG) to examine address two limitations of the

previous two studies. fMRI has two major limitations due to the delay response of

the BOLD signal. First, we do not have a high enough temporal resolution to study

the temporal dynamics of coercion. Second, we do not have enough experiment

time to examine a wider range of concepts. MEG allows us to overcome these

shortcomings. Like EEG, MEG measures the electrophysiological signals generated

by the neurons with a high temporal resolution. Unlike EEG, however, MEG also

enjoys a high spatial resolution of several millimeters. In addition, using MEG,

stimulus presentation time is much shorter than with fMRI, which allowed us to

study, in addition to the two categories in the previous fMRI experiments, a third

dot-object category, institution (BUILDING • ORGANISATION) covering concepts

like school, church, hospital, government, and company, which also have one concrete

and one abstract sense component. The word church can refer in same cases to

the building/location, as in (5.1.a); in other cases, like (5.1.b), it can refer to the

organisation. Moreover, as with the other dot-objects, both senses can be accessed

simultaneously in a single expression as in (5.1c) and (5.1d).
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(5.1)

a. The church was burned down in the great fire of London.

b. The church owned and managed the majority of the schools in this area.

c. People gathered in front of the church to protest against its decision.

d. The school is located in a fancy neighbourhood and charges very expensive tuition

fee.

As in the previous experiments, we used verbs to coerce the dot-objects into the

concrete or the abstract interpretation. Given that our focus here is the coercion effect

that is in common to all the semantic categories, we examined only two concrete-

abstract contrasts: the target dot-object contrast and the verb-control contrast. The

three dot-object categories have an equal number of target concepts in each condition

(Table 5.1).

The high temporal resolution of EEG/MEG has provided unique insight to the

neural dynamics during language comprehension; particularly the oscillatory neural

dynamics, the ever-going rhythmic activities observed in EEG and MEG data, is

argued to be the key to understanding how the vast numbers of neurons work to-

gether. The theta (4-7Hz) and gamma (>40Hz) bands are the two main frequency

bands that have been identified to play crucial but disparate roles during language

comprehension: The slow theta rhythm has been linked to lexical memory retrieval

(Bastiaansen et al., 2005, 2008), whereas the rapid gamma rhythm is responsible for

variant combinatorial processes in language processing (Weiss et al., 2003; Hagoort

et al., 2004; Matsumoto & Lidaka 2008; Friese et al., 2012). Another frequency band

of interest for language comprehension is the lower-beta band (17-20Hz) because it

has been recently showed to be linearly related to the N400 ERP component (Wang

et al., 2012).
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What is the crucial rhythm for coercion? To address this issue, we adopted the

single-trial classification approach to examine in which frequency band the neural

activities of the concrete- and the abstract-coerced dot-objects can be distinguished.

Decoding MEG data has been gaining momentum recently (e.g. Guimaraes et al.,

2007; Fuentemilla et al., 2010; Carlson et al., 2011) and a variety of machine learning

techniques have been successfully applied in decoding semantic representations (e.g.

Murphy & Poesio, 2010; Chan et al., 2011; Sudre et al., 2012; van de Nieuwenhui-

jzen et al., 2013; Clarke et al., 2012, 2014; Simanova et al., 2014). In this exper-

iment, we calculated the time-frequency representation (TFR) of every single-trial.

Instead of collapsing all the trials of one condition, we use a Support-Vector-Machine

(SVM) classifier to distinguish the single-trial TFRs of the concrete and the abstract

condition. We performed the classification with each frequency band separately to

investigate which one encoded the concrete-abstract distinction.

The gamma-band has been indicated in a variety of combinatorial processes, in-

cluding sentence comprehension (e.g. Hald et al., 2006; Penolazzi et al., 2009), world

knowledge retrieval (Hagoort et al., 2004), feature binding (e.g. Tallon-Baudry &

Bertrand, 1999; Friese et al., 2012). Hence we expect that the neural distinction

between the concrete- and the abstract-coerced dot-objects should lie in the gamma-

band activities. The effects in the other two frequency bands are less certain given our

current model. The theta-band seems to be involved in lexical retrieval at a rather

general level. For example theta-band was identified in experiments comparing real

words vs. pseudowords, open-class vs. closed-class words (Bastiaansen et al., 2005).

Therefore since our target words are equal at the lexical level, we expect to see no

theta-band difference. The lower beta-band has been associated with syntactic pro-

cessing: the power increases as the sentences are more syntactically complicated, and

the synchronisation breaks down when there is a syntactic violation (Haarmann 2002;
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Table 5.1: Sample stimulus words used in the two concrete-abstract contrasts, dot-
object and verb-control. Each contrast contains three semantic categories. The ex-
periment is conducted in Italian. The original Italian stimuli are showed below the
English translation. Dot-objects are highlighted in bold font.

dot-objects verb-control

abstract

PRINT MATTER consult the book consult the expert

consultare il libro consultare l’esperto

MEAL organise the lunch organise the course

organizzare il pranzo organizzare il corso

INSTITUTION evaluate the hospital evaluate the condition

valutare l’ospedale valutare la condizione

concrete

PRINT MATTER pick up the book pick up the coin

raccogliere il libro raccogliere la moneta

MEAL bring the lunch bring the water

portare il pranzo portare l’acqua

INSTITUTION build the hospital build the apartment

edificare l’ospedale edificare l’appartamento

Weiss 2005; Bastiaansen & Hagoort, 2015). As the syntactic structure did not differ

in the current experiment and coercion is usually considered as purely semantic, we

also predict that the lower beta-band will not differ among the experiment conditions.

Based on our conclusion drawn from the previous fMRI experiments about the

ATL in coercion, we further inspect the gamma-band activities in the bilateral ATLs.

Recently a series of MEG experiments have highlighted the left ATL in semantic com-

position (Bemis & Pylkkanen, 2012, 2013; Westerlund & Pylkkanen, 2014; Pylkkanen

et al., 2014, Zhang & Pylkkanen, 2015). These studies observed a general activ-

ity increase in the left ATL in the combinatorial conditions (the combinations were

two-word phrases such as blue boat, red cup, tomato soup). More interestingly, the

activity increase was proportional to the amount of semantic information required

in the combinatorial condition. For instance in Westerlund & Pylkkanen (2014), the
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authors found the combination-related signal increase in the left ATL only when the

concepts were at the general level, e.g. red boat, and the effect disappeared when the

concepts were specific, e.g. red canoe. They argued that the general concepts like

boat incurred greater demand of meaning specification in a combinatorial setting,

whereas such demand was not required for concepts that were already specific, e.g.

canoe.

The current dot-objects conditions seem to be analogue to the low-specificity

combinatorial cases in the studies of Pylkkanen and colleagues, that the dot-objects

are coerced into more specific representations. However it is unclear that whether the

specificity effect will be affected by concreteness in terms of gamma-band frequency.

Thus far, studies on feature binding have only focused on sensorimotor features (e.g.

Tallon-Baudry & Bertrand, 1999; Friese et al., 2012; Schneider 2008; Matsumoto &

Lidaka 2008; van Ackeren et al., 2014). Yet studies about the unification operations in

language suggested that the effect of the gamma-band frequency should be high-level

and supramodal (e.g. Weiss et al., 2003; Hagoort et al., 2004; Penolazzi et al., 2009).

Therefore we predict that 1) if the gamma-band frequency in the ATL is manipulated

by the type of the features (i.e. concrete vs. abstract), we would observe the concrete-

abstract distinction with both dot-object and verb control contrasts; 2) by contrast,

if it is related to semantic composition and the amount of semantic information, we

should see no effect for the verb-control contrast. Nevertheless the two aspects could

interact with a complicated mechanism beyond the scope of the current experiment

design.
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5.2 Methods and Materials

5.2.1 Participants

Twelve volunteers were recruited for the MEG experiment (7 female, mean age 24.58,

SD: 3.476). All participants were native Italian speakers, right-handed, and had

normal or corrected-to-normal vision. All procedures were approved by the ethics

committee of University of Trento, and participants received a small monetary com-

pensation.

5.2.2 Materials

This experiment was also conducted in Italian. The stimulus phrases were selected

by the same procedure as the fMRI experiments: firstly we came up with a pool

of verbs that could potentially be the coercing verbs, and then we constructed the

combinations that were to be rated familiarity, concreteness and imageability. The

ratings were from the same norming studies as describe in chapter 3 and chapter

4. Stimuli of the institution category were rated by thirty-three native speakers and

none of them participated in the MEG experiment.

After norming, ten concrete and ten abstract verb-noun phrases were selected from

each dot-object category, resulting in sixty phrases (30 concrete & 30 abstract) in the

dot-object contrast. The phrases contained fifteen dot-object nouns, five for each cate-

gory (PRINT MATTER: book, magazine, catalogue, sketch, diary ; MEAL: lunch, din-

ner, aperitif, banquet, feast ; INSTITUTION: hospital, office, school, church, hotel).

Sixty phrases were also selected to form the verb-control contrast in which the coerc-

ing verbs were combined with their common complement. Sample stimuli are shown

in Table X. The full list in Italian and the English translations can be found in the ap-

pendix. Phrases of each contrast were matched in length and the number of phonemes

(number of letters: tDot-object(58)=0.81 p=0.42; tVerb-control(58)=-1.36, p=0.2. number
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of phonemes: tDot-object(58)=-0.45, p=0.65; tVerb-control(58)=-1.68, p=0.10). All the 4

categories matched familiarity (F(3,116)=1.23, p=0.3). For each concrete-abstract

contrast the concreteness and the imageability ratings differ significantly (concrete-

ness: tDot-object(58)=9.03, p=1.2e-12; tVerb-control(58)=12.61, p=2.93e-18, Imageability:

tDot-object(58)=4.06, p=0.00015; ttextsubscriptVerb-control(58)=8.51,

5.2.3 Procedure

Participants were sitting comfortably in front of the screen and instructed to read

the verb-noun phrases. The task is to detect the anomal combinations (e.g. open the

sun) by pressing a button box with the left or the right hand (counterbalanced across

participants). One third was catch trials which contained the anomal phrases.

During one trial in the experiment, the verb and the article-noun were presented

in sequence for 500ms respectively, with a variable inter-stimulus interval (IST) from

550ms to 700ms. A question mark then appeared for 1000ms at which point partici-

pants pressed the button box if they saw an anomal phrase. No response was required

for target trials in order to reduce movement artefact. The next trial started after

1500ms (plus a time jittering from 250 to 500ms) fixation time (Fig. 5.1).

All the 120 target phrases (4 category * 30 phrases) were present at least once.

Three-fourths of them (i.e. 88) were present twice and half of them (i.e. 60) were

present three times, resulting 268 (120+88+60) times of showing target phrases. In

addition 134 catch trials were constructed, thus the participants read 402 phrases in

total during the experiment (1/3 catch trial). The 402 phrases were randomised and

split to six sessions, each session had 67 phrases and lasted 5 to 6 minutes.
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Table 5.2: The psycholinguistic parameters of the stimulus phrases in each condition.
Familiarity, concreteness, and imageability are obtained from the norming experiment
with thirty-eight participants. Standard deviations are showed in parentheses.

Category familiarity concreteness imageability n letters n phonemes

abstract-DotObject 3.69(0.52) 3.25(0.48) 3.59(0.47) 18.07(1.69) 7.67(0.79)

concrete-DotObject 3.73(0.49) 4.16(0.26) 4.07(0.43) 18.57(2.20) 7.77(0.88)

abstract-Verb 3.87(0.36) 3.12(0.48) 3.58(0.41) 19.33(1.76) 8.13(0.81)

concrete-Verb 3.87(0.47) 4.36(0.23) 4.38(0.29) 18.27(2.93) 7.63(1.17)

Figure 5.1: Experimental paradigm. Participants performed a semantic meaningful-
ness judgement task and responded by pressing the button boxes with the left or the
right hand (counterbalanced across participants) when they saw a meaningless com-
bination. No response was required for the target trials in order to reduce movement
artefact.

5.2.4 Data acquisition and preprocessing

MEG data was recorded with a 306-channel (204 first order planar gradiometers, 102

magnetometers) MEG system (Elekta-Neuromag Ltd., Helsinki, Finland), sampling

rate at 1KHz. Recoding was conducted in a magnetically shielded room (AK3B,

Vakuum Schmelze, Hanau, Germany). Prior to recording, three fiducials (nasion,

left and right preauricular) and five head position indicators (HPIs), and around 300

headshape points were recorded.

Preprocessing was carried out with the Matlab fieldtrip toolbox (Oostenveld et al.,

2011). The 204 gradiometers were analysed. Noisy sensors were visually inspected

and excluded from further analysis. One session continuous data were firstly re-

moved linear trend, and filtered by a Butterworth IIR filter with bandpass frequency
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[1,150]Hz. A notch filter was also applied to remove the 50Hz line noise. Secondly

we performed the Independent component analysis (ICA) to remove EOG, ECG, and

high frequency artefacts. After ICA, the continuous data were initially segmented

into 1200ms epochs, 200ms before the noun presentation onset and 1000ms after.

Epochs underwent visual inspection, the ones contaminated by artefacts as well as

the ones with wrong behaviour responses were discarded.

5.2.5 Wavelet decomposition and decoding analysis

Prior to wavelet decomposition, data of each sensor were centered to the mean and

scaled to unit variance. Wavelet decomposition was computed with MNE-python’s

build in function singletrialpower (Gramfort et al., 2013). For each epoch, the morlet

wavelet was calculated for 41 frequencies range from 2 to 112Hz, with a step of

3Hz. The numbers of cycles were set as half for each frequency. Baseline correction

was applied with the 100ms pre-onset interval. The results were a time-frequency

representation for all 204 sensors of every epoch.

We constructed the single-trial decoding datasets with 0-800ms post-stimulus on-

set of every epoch (i.e. one experiment trial of reading a verb-noun phrase) as one

exemplar (Fig. 5.2). The features were made of the power at the 800 time points

and averaged into three frequency bands of interest: theta (5-8Hz), lower-beta (14-

20Hz), and gamma (59-89Hz). One exemplar has 163,200 features (204 channels by

800 time-points). We further excluded the bad sensors of each participant, resulting

in around 150,000 features for each participant. The decoding analysis was carried

out with the three frequency band feature sets separately.

Firstly we conducted two two-way classifications to discriminate the concrete and

the abstract conditions of the two contrasts. A linear support vector machine (SVM)

classifier with C=-1 (i.e. soft margin) was used to distinguish the four categories.

Before classification, each feature was z-scored within one experiment session. Clas-
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sification was carried out for each participant with a Leave-One-Session-Out cross-

validation procedure: during one cross-validation iteration, the classifier was trained

with five sessions of data and tested on the left-out session; the final accuracy was the

average of the six iterations. One thousand features were selected in each iteration

using a one-way-ANOVA. Note that the feature selector was trained with the training

data only thus there was no double-dipping. One-tail p-values for the classification

accuracy were calculated with a one-sample t-test against the 0.5 chance level, bon-

ferroni corrected. In order to track the temporal dynamics, we performed the same

classification analysis but with data of every 100ms time window.

Figure 5.2: Process of constructing a single trial of the decoding datasets. Raw data
are segmented into 1200ms epochs for every trial (200ms before and 1000ms after
the noun presentation onset). Epoched data of each sensor are transformed to the
time-frequency representation (TFR) with the morlet wavelet decomposition. And
then the resulting power values are averaged for each pre-defined frequency band.
The final transformed data of one trial are represented as a sensor-by-time matrix.
We analyse 204 gradiometer sensors and 800ms time points.

We also tracked the weights that the SVM classifier assigned to every feature. The

mechanism of a SVM classifier is to find a hyperplane that can best separate the two

classes, and the separating hyperplane is actually a function. Thus the weights can be

interpreted as how important the feature is in differentiating the two classes. Or say

if a feature has a great weight, the feature exhibits clearly different values in the two
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classes. For each participant, we summed up the weights of the six cross-validation

iterations and selected the features with weight > 0.01; and then the individual weight

maps were added up to form the group weight map.

We further performed the four-way classification to ensure that all the four con-

ditions were distinguishable. If so, the difference between the concrete and abstract

dot-object conditions cannot be solely due to the verbs. For instance if the neural

responses of open the book and open the parcel (and likewise consult the book and

consult the expert) are distinctive from each other as well, we would be able to claim

that the difference between open the book and consult the book is not simply driven

by the different verbs.

5.2.6 Time-frequency analysis

At last we compared the mean temporal frequency representations (TFRs) of power of

the bilateral ATLs of each condition Specifically, the same wavelet decomposition as in

the decoding analysis was computed for each 100ms-preoneset to 800ms-poststimulus

single-trial epoch: the morlet wavelet was calculated for 41 frequencies range from

2 to 112Hz, with a step of 3Hz. Baseline correction was applied using the averaged

power of the 100ms preonset interval. And then the resulting single-trial TFRs of

each condition were averaged to produce a mean TFR.

The two ATL sensor clusters were shown in Fig. 5.3. Each cluster contained six

pairs of the gradiometer sensors irrespectively. We focused on two time windows:

100-400ms and 400-700ms after the critical word, i.e. the noun presentation onset.

For every participant, we calculated the averaged power of each cluster (the bad

sensors were excluded) and each frequency band (the same as defined in the decoding

analysis above), then the averaged powers were z-scored using the baseline value of

the 100ms pre-onset window. The mean powers of all participants were compared

with the random-effect ANOVA.
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Figure 5.3: The bilateral ATL sensors used in the time-frequency analysis.

5.3 Results

5.3.1 Behaviour

The overall error rates of all the twelve participants are no greater than 10% (mean

0.065, SD=0.024). The false negative, i.e. the participant detected the target concept

as a catch trial, is very low for all participants, ranging from 0 to 5%.

5.3.2 Two-way classification and sensitivity analysis

Both of the two concrete vs. abstract contrasts could be distinguished well above

chance with the gamma feature set (accuracyDot-object = 0.6327, t(11) = 3.47;

accuracyVerb-control = 0.6413, t(11)=8.53. Fig. 5.4A). The theta and the lower-beta

band did not show any effect.

The SVM weight maps from the gamma band feature sets demonstrated different

temporal-topographical profiles between the two contrasts (Fig. 5.4B). Visual inspec-

tion revealed that during the first 400ms, the left posterior temporal sensors were

important for both contrasts. However there are two major differences between the

100



Figure 5.4: Two-way classification of the dot-object and the verb-control contrast.
Both contrasts can be distinguished significantly above the 0.5 chance level marked by
the red line (one-sample t-test against the chance level, corrected). Error bars indicate
SEM. The effect is only present in the gamma band among the three frequency bands
of interest. The one-way ANOVA shows the gamma band accuracy is significantly
higher (p<1e-05) for both contrasts. The topographical graphs at the bottom show
the group-level SVM weight maps trained with the gamma band datasets. Plotted
weights are the sum of the individual participants. Visual inspection suggests that
the two contrasts rely on different temporal and topographical features. Particularly
the dot-object map shows that the most informative time period appears to be the
400-500ms, and notably during the 500ms the important features concentrate in the
right hemisphered.
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two contrasts. First for the dot-object contrast, the most informative time window

appeared to be the 400-500ms, and notably during the 500ms the important sensors

concentrated in the right hemisphere. To the contrary, for the verb-control contrast,

the later time periods, i.e. 600-700ms seemed to be more crucial, especially the pos-

terior sensors.

The result of the time-window analysis is showed in Fig. 5.5. The later time-

window (after 400ms) is critical to the dot-object contrast, suggesting that there was

an integration or specification process that occurred later. The verb-control contrast,

by contrast, did not show such a timing effect. Significant but minor effects were in

the 200-300ms and the 700-800ms time windows.

5.3.3 Four-way classification

The four conditions could also be distinguished with the gamma feature set (mean

accuracy 0.3523 (chance level 0.25), p=0.0212, bonferroni corrected). A repeated

measure ANOVA showed that the accuracy of the three frequency bands were sig-

nificantly different (p<10e-06). The result and the confusion matrix are depicted in

Fig 5.6.

5.3.4 Time frequency analysis

Finally we also examined the grand energy of the gamma-band frequency that aver-

aged across all the trials in the bilateral ATLs. We looked one early (100-400ms) and

one later time window (400-700ms) respectively. The only significant difference was

the abstract dot-object vs. concrete dot-object in the later time window (Fig. 5.7),

with the abstract condition elicited greater power (F(1,22) = 2.43, p=0.0335, un-

corrected). The repeated measures ANOVA gave a marginal effect among the four

conditions (F(3,33) = 2.42, p=0.08).
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Figure 5.5: Classification accuracy by every 100ms time window. P-values were
calculated by one-sample t-tests (dof=11), bonferroni corrected (****p<0.0001,
***p<0.001, **p<0.01, *p<0.05) The concrete and abstract dot-objects (left, in
green) could be most reliably distinguished after 400ms. The verb-control contrast
(right, in red), on the other hand, did not showed a clear time-window advantage.
Significant but minor effects were in the 200-300ms and the 700-800ms time windows.

5.4 Discussion

In the MEG experiment we investigated the meaning representation of dot-objects

through the oscillatory neural dynamics. Three kinds of dot-objects from different

semantic categories are included in this experiment: print matter (OBJECT • IN-

FORMATION), meal (FOOD • EVENT), and institution (BUILDING • ORGAN-

ISATION). We adopted the single-trial decoding approach to probe the time fre-

quency profiles of the coercion-by-dot-exploitation process across the three semantic

categories. Support-Vector-Machine (SVM) classifier was used to classify the neural

correlates of the concrete- and abstract- coerced dot-objects (e.g. pick up the book,
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Figure 5.6: The result of classifying all the four experiment conditions. As in the
two-way classification, only the gamma band dataset achieves significant accuracy
among the three frequency bands of interest (p<0.05, corrected). A repeated measure
ANOVA shows that the three accuracy values are significantly different (p<10e-06).
The right column depicts the 4-way confusion matrix of the gamma band dataset.

Figure 5.7: Result of the time-frequency analysis. The averaged gamma-band power
of the four conditions are compared at bilateral ATLs in two time windows. The
random effect ANOVA shows that the only difference is in the left ATL between
the abstract dot-object (dark blue) and concrete dot-object (light blue) in the later
time window (p<0.05, uncorrected). The effect can be seen in the time-frequency
representation plots on the right.
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consult the book) as well as the non-coercion concrete and abstract phrases as a com-

parison (e.g. pick up the coin, consult the expert). The result demonstrated that only

the gamma-band frequency (60-90Hz) showed a distinguishing effect to the different

types of verb-noun combinations. This finding aligns with the large body of evidence

that the gamma-band rhythm plays a pivotal role in various combinatorial processing

(Tallon-Baudry & Bertrand, 1999; Bertrand & Tallon-Baudry. 2000; Weiss et al.,

2005; Hagoort et al., 2004; Matsumoto & Lidaka 2008; Penolazzi et al., 2009; Friese

et al., 2012; van Ackeren et al., 2014; Bastiaansen & Hagoort, 2015).

Further time-window analysis showed that the gamma-band activity patterns of

the concrete- and abstract-coerced dot-objects diverged after 400ms poststimulus.

Comparatively the verb-control contrast did not have a clear timing bias; it displayed

a minor distinguishing effect as early as 200ms, which agrees with the observation

that the early stage of lexical retrieval can be seen in MEG as early as 170-250ms

(Pylkkanen & Marantz, 2003). Therefore the results support the hypotheses that

there is an extra operation, namely the coercion process, happening in the later

period.

Finally the left ATL exhibited a gamma-band power increase to the abstract-

coerced dot-object condition compared to the concrete-coerced condition after 400ms.

This effect was not present for the non-coercion conditions. We attribute the left

ATL effect to the greater amount of semantic composition and/or activated semantic

knowledge in the abstract-coercion condition.

5.4.1 The role of gamma frequency in combinatorial process-

ing

The hypothesis that the gamma band frequency is responsible for various linguistic

combinatorial processing has been tested comprehensively in a large body of experi-

ments (e.g. Hagoort et al., 2004; van Berkum et al., 2004; Hagoort, 2005; Hald et al.,
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2006; Penolazzi et al., 2009. And a recent review by Bastiaansen & Hagoort, 2015).

Hagoort and colleagues have been exploring the stages of language processing, ar-

guing that there are three main components: retrieval, unification, and control; and

the gamma-band has been emphasised in the unification processing (e.g. Hagoort

et al., 2004; Hagoort, 2005; Hald et al., 2006; Bastiaansen & Hagoort, 2015). In a

seminal study of Hagoort et al., (2004), they compared the EEG activities of read-

ing two types of violation sentences: violating the semantics and violating the world

knowledge. For instance the sentence the dutch trains are sour is clearly wrong in

terms of the semantics, whereas the dutch trains are white is a correct sentence but

it clashes with the common knowledge that the dutch trains are yellow. Interestingly

the gamma-band had the greatest power increase in the world knowledge violation

condition and a minor increase in the correct sentence condition, while the effect was

missing in the semantic violation condition. The authors interpreted the result as

considering the gamma frequencies an index of successful integration, and the real

world knowledge violation imposed the greatest integration demand.

The gamma band has also been highlighted in perceptual and conceptual feature

binding (Tallon-Baudry & Bertrand, 1999; Schacter 2007; Schneider et al., 2008;

Friese et al., 2012; van Ackeren et al., 2014). Tallon-Baudry & Bertrand (1999)

proposed an influential framework in which the induced gamma band activity (iGBA)

served as the pivotal mechanism in binding various aspects of information to form

a coherent object representation. In a recent study, Friese et al., (2012) examined

the MEG iGBA attenuations when participants viewed pictures or words of concrete

objects. Using a priming paradigm, the authors isolated two iGBA effects: one in the

posterior cortex that is sensitive to the presentation modality (picture vs. words),

and the other one in the anterior cortex that is sensitive to the concept semantics

regardless of the presentation modality.
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In summary, the convergent evidence demonstrates that the gamma-band have

a general integration role that operates in different domains and at different levels.

Those findings are compatible with our result that the different verb-noun combina-

tions yielded distinct gamma-band spatial-temporal activity patterns. In the following

analysis, we explored the crucial time period for coercion and the effect in the anterior

temporal lobe (ATL).

5.4.2 Coercion occurs in later in time

The time-window analysis showed that the gamma-band activity patterns of the

concrete- and abstract-coerced dot-objects diverged after 400ms poststimulus,

whereas the verb-control contrast did not have a clear timing preference (the clas-

sification accuracy was modestly above chance (p<0.05) at the 200ms and 700ms

time windows). The result is best accommodated by the hypothesis that coercion

occurs after the dot-object meaning is initially retrieved from the memory and meets

the verb context, which is also in agreement with our argument that the coercion

process involves accessing the specific concept knowledge to form a context-relevant

representation.

The later discriminating effect strongly suggests that the divergence is driven by

post-lexical processing. It is well-established that the 400ms time window is critical

for semantic processing. The ERP N400 component is most prominently seen in

semantic violation (e.g. Kutas & Hillyard, 1980, 1984; Kutas & Federmeier, 2000;

Kuperberg et al., 2003; among the others), and it can be consistently found in various

paradigms including referring real world knowledge (e.g. Hagoort, 2004), animate

violation (e.g. Paczynski et al., 2006), and concreteness effect (Kounios & Holcomb,

1994; Holcomb et al., 1999; Barber et al., 2013). Its MEG equivalent M350 has been

identified as well (Embick et al., 2001; Halgren et al., 2002; Pylkkanen & Marantz,

2003; Pylkkanen et al., 2004; Simon et al., 2012). For instance, Halgren et al. (2002)
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replicated the N400 effect with MEG, showing a negative-going waveform in reading

incongruous sentences. Simon et al. (2012) compared the early response (¡ 200ms)

and M350 in reading ambiguous single words, and found the early response was most

sensitive to word length while deep semantic processing (e.g. meaning entropy) only

affected the later response. Hence the divergence between the concrete and abstract

the dot-objects, we argue, most likely took place after the initial meaning integrated

with the context in the brain, and the distinction was capture by the classifier in the

later time windows.

5.4.3 The ATL effect

Our previous fMRI experiments highlighted the bilateral anterior temporal lobes

(ATLs). In the light of the role of ATL as a semantic hub, we argued that coer-

cion involved accessing the specific concept knowledge of the dot-objects in semantic

memory. Interestingly a series of MEG experiments have underlined the left ATL in

semantic composition as well as in meaning specification. As already summarised in

the introduction section and discussed in chapter 2, those studies provided consistent

evidence that there was an interaction between semantic composition and concept

specificity. The result pattern is best explained by the possibility that semantic com-

position evoked ample information and specific concept knowledge. Friese et al.,

(2012) also found a dissociation between the posterior and anterior gamma-band ef-

fect: the posterior effect was sensitive to low-level perceptual features whereas the

anterior effect reflected the conceptual features.

In this experiment we also examined the averaged gamma-band power in the

bilateral ATLs. The left ATL showed a power increase in the abstract-coerced dot-

object condition in the 400-700ms time window. This enhanced gamma-band activity

suggests there might be more composition demand and/or richer semantic knowledge

in the abstract-coercion cases, which contained verbs that elicited the abstract aspect
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of the dot-objects (e.g. consult the book, organise the dinner, evaluate the hospital).

It is typically argued that abstract concepts have a relatively impoverished semantic

representation. However we speculate that is not the case for the abstract-coercion

condition, as the brain has to decide the appropriate in-context interpretation. Indeed

there was no gamma-band effect for the non-coercion cases. Regarding the question

we posed in introduction that whether the concreteness would make a difference,

our result are more in line with the account that the gamma-band in the left ATL

is not sensitive to the feature type (i.e. concrete or abstract); this observation also

aligned with the hypothesis that the ATL represents high-level, modality-independent

semantic knowledge.

5.4.4 Final remarks

In this MEG experiment we investigated the meaning representation of dot-objects

through the oscillatory neural dynamics. Three kinds of dot-objects from different se-

mantic categories are examined together. The single-trial decoding approach showed

that the gamma-band neural activities play a central role in verb-noun combination

in general.Importantly, the gamma-band activities associated with the concrete- and

abstract-coercion diverged in the later time-window (after 400ms), suggesting coer-

cion may happen after the initial lexical retrieval as well as the early stage of semantic

integration.
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Chapter 6

Discussion

6.1 Discussion

The present thesis examined the neural representation of dot-objects: a class of logi-

cal polysemy of which the meaning consists of distinct sense components, exemplified

by the word book (i.e. a dot-object of OBJECT • INFORMATION). Particularly,

we focused on categories of dot-objects that clearly have a concrete and an abstract

component, such as book, lunch (FOOD • EVENT), church (BUILDING • ORGANI-

SATION). The overarching research question of this thesis is: How are the dot-objects

that have distinct sense components represented in the brain? To answer this ques-

tion, we conducted three experiments. In all the experiments, healthy participants

read the dot-object words in a concrete or an abstract context, i.e. the meaning of

the dot-object was coerced into either the concrete or the abstract interpretation (e.g.

open the book / explain the book, pack the lunch / organise the lunch). Concrete and

abstract concepts usually activate different neural circuits in the brain. However,

we found the neural distinction between the concrete and abstract interpretations

of the dot-objects differed from the typical concrete-abstract distinction; instead the

differential effect was most evidenced in the anterior temporal lobe (ATL). Given the
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role of the ATL in high-level, modality-independent knowledge representation, the

result suggests that the distinct senses of a dot-object are associated with a single,

unspecified structure, in line with the dot-object theory in the Generative Lexicon

framework.

The first (book) and the second fMRI experiment (lunch), however, displayed

some discrepant effects within the ATL. The book -like dot-objects underlined the

ventral division in the left hemisphere (LH), the epicentre of the semantic hub. On

the other hand, the lunch-like dot-objects yielded the right hemisphere (RH) ATL,

both the ventral and the superior divisions. As discussed in more detail below, we

attribute this shift to the meaning differences between the two categories and the

grade representation mechanism within the ATL.

In the third experiment, we investigated the transient neural oscillatory activities

using MEG. The neural distinction between the concrete and abstract interpretations

of the dot-objects was found only in the gamma-band frequency power. Moreover

the divergence took place after 400ms post-stimulus onset. The gamma-band plays a

crucial role in integrating process in general, including sentence comprehension, world

knowledge integration, and feature binding. Therefore we conclude that the neural

correlates of the concrete- and abstract-coercion diverge at the later integration stage.

This observation further supports our argument that the meanings of dot-objects are

represented as a single unspecified structure. Specifically, the neural mechanism of

reading the dot-objects in context may involve retrieving this unspecified represen-

tation, which subsequently integrates with the context and instantiates to a more

specific representation.

The key conclusion of this thesis is the distinct senses of a dot-object are rep-

resented as a single, underspecified meaning structure in the brain. How did we

come to the conclusion exactly? Two threads of research provided important in-

sights. First, as neurolinguistic studies of polysemy suggest, the distinct senses of a
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dot-object should be linked to a single lexical entry. Ample empirical evidence demon-

strates that homonymy and polysemy are represented in different ways in the brain.

Homonyms are words that have distinct meanings; those meanings are not related but

only accidentally share the same word form. For instance the English word bank has

two distinct meanings: the edge of lake and river or the financial institution. In fact

the financial bank is believed to derive from the medieval Italian word banca which

literally means “table, counter”. By contrast, polysemous words are words that have

multiple but related senses. For instance the financial bank is also a polysemy as it

can refer to the organisation (e.g. bank is evil) or the actual location (e.g. the bank

is after the next traffic light), moreover it can be used as a verb referring to banking

activities. Consistent to the intuition, convergent neurolinguistic evidence suggests

that the related senses of a polysemous word are associated with a single lexical entry,

conversely the meanings of a homonym are stored in multiple lexical entries (Frazier

& Rayner, 1990; Williams et al., 1992; Klepousniotou, 2002, 2012; Rodd et al., 2002;

Beretta et al., 2005; Pylkkanen et al., 2006; Bedny et al., 2007).

The second line of insight comes from the research of semantic memory. It is

widely accepted that different concept categories are associated with at least par-

tially distinct neural circuits. For instance, although the underlying mechanisms re-

main controversial, contemporary neuroimaging experiments have consistently found

animal concepts activate the ventral and medial temporal lobe, whereas tools and

action concepts tend to recruit the more lateral and posterior temporal lobe (Chao

et al., 1999; Ishai et al., 1999; Martin & Chao, 2001; Haxby et al., 2001; Bookheimer

2002; Thompson-Schill, 2003; Martin, 2007; Mahon et al., 2007; Binder et al., 2009).

Also, the divide between concrete and abstract concepts has been manifested by neu-

roimaging experiments with healthy subjects as well as lesion studies, which generally

show that concrete concepts are associated with sensorimotor knowledge and men-

tal imagery; whilst abstract concepts mostly overlap with language comprehension
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(Warrington 1975, 1981; Warrington & Shallice, 1984; Kounios & Holcomb, 1994;

D’Esposito et al., 1997; Holcomb et al., 1999; West & Holcomb, 2000; Wise et al.,

2000; Jessen et al., 2000; Grossman et al., 2002; Noppeney & Price, 2004; Binder et

al., 2005; 2009; Sabsevitz et al., 2005; Wang et al., 2010, 2012; Welcome et al., 2011;

Adorni & Proverbio, 2012; Barber et al., 2013).

Nevertheless the case of dot-objects poses questions on this probably simplified

view. How does the brain represent concepts like the dot-objects, of which the mean-

ings encompass diverse concept categories? We argue that the answer lies in the

semantic hub theories, which claim that there is a hub (or hubs) in the brain that

represents the comprehensive knowledge about all the concepts (Rogers et al., 2004;

Patterson et al., 2007; Binder & Desai, 2011; Lambon Ralph, 2014). Concisely, we

argue that the single-entry to which the senses of a dot-object associate is most

likely represented by such semantic hub, and our experiment results also attest this

hypothesis.

6.1.1 The semantic hub theory and how it relates to the

meaning representation of dot-objects

The critical role that ATL plays in semantic memory was firstly brought to light by

studies of semantic dementia (SD). SD patients progressively lose concept knowledge

across all categories and modalities, and they have particular difficulty in specific

concepts (e.g. bird opposed to animal, robin opposed to bird) (Hodges et al., 1996;

Wright et al., 2015). Such effects were replicated with healthy subjects using fMRI

(e.g. Gorno-Tempini & Price, 2001; Tyler et al., 2004; Rogers et al., 2006; Spitsyna et

al., 2006; Visser et al., 2010; Peelen & Caramazza, 2012) as well as TMS (Pobric et al.,

2007; 2010a; 2010b), showing the ATL was sensitive to high-level concept knowledge

and concept specificity.
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Semantic hub theorists argue that the hub is an indispensable component to the

semantic system. First of all, humans have a rich collection of declarative knowledge

about entities in the world that is far beyond the sensorimotor attributes of objects. A

simple concept like apple, for example, contains an assortment of knowledge such as it

is used to produce cider, Melinda and Granny Smith are different types of apple, and

it is said to have played an important role in the discovery of gravity. Admittedly not

all of them is relevant depending on the context, however the brain must have certain

mechanisms to store and manipulate the various knowledge that is not associated

with a particular modality.

Strong embodiment and connectivity theorists argued that concept representa-

tion could arise from the distributed nodes and the complex interplay among them

(e.g. Elman, 2004, 2009; Pulvermuller, 2012). The hub theorists argued against this

view backed by evidence from both patients and healthy population. Patterson et al.

(2007) proposed a “spokes-and-hub” view based on a extensive review on both studies

of semantic dementia as well as related studies with healthy subjects. As suggested

by the name, the “spokes-and-hub” model consists of multiple modality-specific yet

interconnected regions and a shared, amodal hub. In particular, the authors argued

that only this convergence hub could account for the semantic impairment data, such

that the loss of all general concept knowledge and the concept specificity effect. Cru-

cially, the hub encodes the deep structure of concept knowledge, which allows us to

make generalisation about concepts across all modalities, such that pear is similar to

light bulb but also similar to banana. The “spokes-and-hub” view also obtained sup-

port from computational modelling. Rogers et al. (2004) built a theoretical model to

predict the neuropsychological data. The model learned features from different modal-

ities (e.g. visual, functional, and encyclopedic) and formed a modality-independent

representation in the hub. A key feature of this model is that the hub is essential

for cross-modality generalisation, for instance when given an object name, the system
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had to go through the hub to retrieve the other information such as the shape, colour,

function, and so on. In Lambon Ralph (2014), the author compared the hub, which

included the bilateral ATLs, to the “recipe” of baking a coherent concept; thus the

absence or distortion of the hub could lead to the break-down of the conceptual sys-

tem, like the same ingredients could result in a tasty pizza or a piece of hard bread.

Likewise, Binder & Desai (2011) proposed a multi-level representation architecture

which included a high-level, modality-independent convergence hub, supported by a

large body of evidence from neuroimaging studies. Different from the spokes-and-

hub architecture, however, their hub stretched from the angular gyrus, the posterior

middle temporal lobe, to the ATL.

In summary, we argue that our findings about the ATL in representing the dot-

objects are in line with the semantic hub theory. The complex meaning structures

and the consequent context-dependent meaning shifting resulted in the differentiating

effect in the ATL. Nonetheless we also observed variations within the ATL: the print

matter category underlined the left ventral ATL, whereas the meal category empha-

sised the right ATL. Theses variations and potential functional specialisations within

the subdivisions of the bilateral ATLs have also puzzled the semantic-hub theorists.

In this thesis, we try to provide some explanations regarding those variations based

upon our particular stimuli.

6.1.2 The differential functional specialisation within the se-

mantic hub

More and more neuroscientists start to see the brain as a graded system; this no-

tion has been repeatedly stated or implied in the semantic hub literature as well.

The convergence zone proposed in Binder & Desai (2011) consisted of a ribbon of

brain regions from the inferior parietal lobe to the ATL. However they also suggested

the inferior parietal lobe, mainly the angular gyrus (AG), might specialise in event
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knowledge while the temporal lobe might mainly store entity concepts. Lesion and

healthy subject studies showed that the ATL appeared to be primarily related to

taxonomic relation, implying that the guiding representation principle of the ATL

might be feature-based; meanwhile the inferior parietal lobe seemed to play a more

general role (Schwartz et al., 2011; Lewis et al., 2015). In fact in the current study,

the AG could distinguish all the concrete-abstract contrasts in both book and lunch

fMRI experiments and all the three contrasts (coercion or non-coercion), irrespective

of the type of the verb-noun combination. Thus we postulate that the AG is sensitive

to event knowledge and/or composition in general.

For the semantic hub theorists who consider the ATL as the only hub, the graded

effect within and between the bilateral ATLs is also in evidence. Although lesion

data strongly favour the view that the bilateral ATLs have similar functions and

serve as a redundant system (e.g. Hodges et al., 1996; Rogers et al., 2006; Lambon

Ralph et al., 2010), there is evidence even from studies from the same research group

suggesting a graded effect between the bilateral ATLs. For instance, Hoffman et al.,

(2015) found that all the subdivisions of the ATL were activated by both concrete

and the abstract concepts. Interestingly they also identified a graded concreteness

effect along the vertical axis of the ATL: the superior division was more activated by

abstract words, whilst the ventral ATL (vATL) was more activated by concrete words.

Visser & Lambon Ralph (2011) examined the bilateral ATL effect in processing both

pictures and auditory words. Though both the left and right ATL were activated

by both modalities, supporting the hypothesis that the bilateral vATLs function

similarly, the authors found the auditory words had a left ATL bias. In particular

the left superior ATL (sATL) responded not only to the auditory words but also the

environmental sounds. The authors concluded that their findings clearly showed that

the representation mechanism within the ATL was graded owing to the differences in

the brain connectivity.
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Another body of research emphasises the role of the right ATL in social cognition,

including viewing famous faces and reading social words (Liu et al., 2004; Snowden

et al., 2004; Zahn et al., 2007, 2009; Chan et al., 2009; Mion et al., 2010; Ross &

Olson, 2010; Olson et al., 2013; Irish et al., 2014;). In an fMRI study described in

Zahn et al. (2007), healthy subjects read pairs of words containing abstract social

knowledge (e.g. brave-honor). The authors found the right superior ATL (sATL) was

activated along with a number of social cognition areas. Moreover they correlated

the brain activation to the descriptiveness (an index equivalent to specificity) of the

social behaviour, and found that only the right sATL showed a significant correlation.

The finding strongly suggests that the right sATL is sensitive to semantic specificity,

as the other subdivisions of the ATL, but is also biased by other aspects.

To sum up, we argue that the meaning representations of both categories of dot-

objects are stored as a single and to-be-specified structure underpinned by the ATL.

However the effect variations reflect the differential functional specialisation within

the ATLs. Specifically, concepts like book might be primarily seen as objects and

the different sense components could be considered as the different intrinsic features

of book (e.g. physical or functional). On the contrary, concepts like lunch seem to

be more abstract in the concrete-abstract spectrum. For instance, even the concrete

sense of lunch as food is more general than concepts such as bread or apple. Moreover

the event sense component may trigger a more complicated mechanism, especially

with their social elements.

6.1.3 Interaction between the lexical semantics and semantic

composition

The final point we would like to stress in this thesis is the interaction between lex-

ical semantics and semantic composition. Meaning representation in the long-term

memory and the meaning retrieval / semantic control are normally treated as sepa-
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rate components in semantic memory literature (e.g. Hagoort, 2005; Lambon Ralph,

2014). While we do agree with this distinction, we argue that the word meaning

plays a pivotal role in determining the retrieval mechanism. For dot-objects, the

exact on-line interpretations rely on semantic composition to a greater degree than

the unambiguous concepts. For instance, the appropriate interpretation of book is

often determined in the context (e.g. a torn book / a difficult book, pick up the book

/ explain the book); by contrast, meanings of the simple concepts are usually less

altered by the context (e.g. flower and plan in pick up the flower / explain the plan).

This issue seems to be neglected in psycholinguistics. To our knowledge, only a

couple of MEG studies recently have systematically examined this interaction. West-

erlund & Pylkkanen (2014) tried to bridge the semantic composition hypothesis and

the concept specificity effect regarding the role of the ATL as the semantic hub. The

authors compared low- or high-specificity concepts (e.g. boat/canoe) either in the com-

binatorial context (combined with adjectives, e.g. blue boat) or a non-combinatorial

context (e.g. xlqd boat). The result showed an interaction between concept specificity

and composition in the left ATL, such that the activation of the left ATL was modu-

lated mostly by the low-specificity adjective-noun combinations (e.g. bolu boat rather

than blu canoe. They argued that when in a combinatorial context, the low-specificity

concepts required a greater degree of specification and thus it yielded the largest ef-

fect in the ATL; therefore the effect of concept specificity and the semantic compo-

sition might stem from a shared mechanism. In another study, Zhang & Pylkkanen

(2015) attempted to further disentangle the contributions from concept specificity

and semantic composition. Using a similar setting that single-word specificity was

manipulated in a two-word combinatorial phrase (e.g. tomato/vegetable soup/dish),

they found the largest left ATL effect when a specific modifier was combined with a

general head noun (e.g. tomato dish) whereas specificity of the head noun itself (e.g.

soup/dish) only had a marginal effect in the non-combinatorial condition. This study
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further supports the conclusion that concept specificity and semantic composition are

closely related, and the ATL plays a critical role in this mechanism. In conclusion, the

current findings in the thesis mirror their results that we observed the discriminating

effects in the ATL: the dot-objects can be seen as some initially general, unspecified

concept, and they require greater specification via semantic composition which is not

required for the simple concepts.
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Chapter 7

Appendix

The full stimulus list of Experiment 3 (English and the orginal Italian)

dot-objects verb-control

ABSTRACT PRINT MATTER consult the catalogue consult the expert

consult the book consult the list

consult the magazine consult the section

present the catalogue present the problem

present the diary present the plan

present the sketch/design present the programme

present the book present the question

present the magazine explain the situation

explain the design explain the reason

explain the book explain the word

MEAL cancel the banquet cancel the meeting

cancel the lunch cancel the concert

cancel the dinner cancel the decision

organise the lunch organise the corse

organise the dinner organise the day

organise the aperitif organise the service

reserve the feast reserve the place

reserve the lunch reserve the intervention
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reserve the dinner reserve the shipping

reserve the aperitif reserve the exhibition

INSTITUTION help the hospital help the people

help the office help the process

help the church help the growth

help the school help the development

support/sustain the hospital support/sustain the effort

support/sustain the church support the proposal

support/sustain the school support the economy

evaluate the hospital evaluate the effectiveness

evaluate the office evaluate the condition

evaluate the hotel evaluate the situation

CONCRETE PRINT MATTER buy the catalogue buy the chair

buy the diary buy the sofa

buy the magazine buy the table

pick up the catalogue pick up the wood

pick up the diary pick up the flower

pick up the sketch pick up the fruit

pick up the book pick up the coin

pick up the magazine pick up the ball

give the catalogue (as a present) give the ticket (as a present)

give the book (as a present) give the ring (as a present)

MEAL pack the lunch pack/fold the shirt

pack the dinner pack the vegetable

pack the aperitif pack the package

cook the lunch cook the meat

cook the dinner cook the dish

cook the banquet cook the food

cook the feast cook the recipe

bring the lunch bring the dress

bring the dinner bring the shirt

bring the aperitif bring the water
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INSTITUTION demolish the hospital demolish the wall

demolish the office demolish the house

demolish the school demolish the foundation

demolish the hotel demolish the tower

build the hospital build the villa

build the church build the flat

build the school build the fortress

renovate the hospital renovate the flat

renovate the office renovate the museum

renovate the church renovate the house

Original Italian stimulus set

dot-objects verb-control

ABSTRACT PRINT MATTER consultare il catalogo consultare l’esperto

consultare il libro consultare l’elenco

consultare la rivista consultare la sezione

presentare il catalogo presentare il problema

presentare il diario presentare il progetto

presentare il disegno presentare il programma

presentare il libro presentare la domanda

presentare la rivista spiegare la situazione

spiegare il disegno spiegare la ragione

spiegare il libro spiegare la parola

MEAL annullare il banchetto annullare l’incontro

annullare il pranzo annullare il concerto

annullare la cena annullare la decisione

organizzare il pranzo organizzare il corso

organizzare la cena organizzare la giornata

organizzare l’aperitivo organizzare il servizio

prenotare il cenone prenotare il posto

prenotare il pranzo prenotare l’intervento

prenotare la cena prenotare la spedizione

prenotare l’aperitivo prenotare la mostra
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INSTITUTION aiutare l’ospedale aiutare il popolo

aiutare l’ufficio aiutare il processo

aiutare la chiesa aiutare la crescita

aiutare la scuola aiutare lo sviluppo

sostenere l’ospedale sostenere lo sforzo

sostenere la chiesa sostenere la proposta

sostenere la scuola sostenere l’economia

valutare l’ospedale valutare l’efficacia

valutare l’ufficio valutare la condizione

valutare l’albergo valutare la situazione

CONCRETE PRINT MATTER comprare il catalogo comprare la sedia

comprare il diario comprare il divano

comprare la rivista comprare il tavolo

raccogliere il catalogo raccogliere la legna

raccogliere il diario raccogliere il fiore

raccogliere il disegno raccogliere la frutta

raccogliere il libro raccogliere la moneta

raccogliere la rivista raccogliere la palla

regalare il catalogo regalare il biglietto

regalare il libro regalare l’anello

MEAL confezionare il pranzo confezionare la camicia

confezionare la cena confezionare la verdura

confezionare l’aperitivo confezionare il pacco

cucinare il pranzo cucinare la carne

cucinare la cena cucinare il piatto

cucinare il banchetto cucinare il cibo

cucinare il cenone cucinare la ricetta

portare il pranzo portare l’abito

portare la cena portare la camicia

portare l’aperitivo portare l’acqua

INSTITUTION demolire l’ospedale demolire il muro

demolire l’ufficio demolire la casa
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demolire la scuola demolire le fondamenta

demolire l’albergo demolire la torre

edificare l’ospedale edificare la villa

edificare la chiesa edificare l’appartamento

edificare la scuola edificare la fortezza

ristrutturare l’ospedale ristrutturare l’appartamento

ristrutturare l’ufficio ristrutturare il museo

ristrutturare la chiesa ristrutturare la casa
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