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Introduction

In the study of complex algebraic surfaces, which is a classical topic in algebraic
geometry, rational and ruled surfaces turned out to be very special, and, in some
sense, the simplest to understand. Going to higher dimensions, the situation be-
comes different and much more complicated. For instance, rationality of a variety
is a very difficult property to establish. Moreover, many varieties that behave very
similarly to ruled (respectively rational) varieties fail to be ruled (respectively ra-
tional). Thus, from many points of view, rational and ruled varieties are not the
right higher dimensional analogues of rational and ruled surfaces.

At the end of the last century, the two new concepts of uniruled and ratio-
nally connected varieties were introduced as suitable higher dimensional analogues
of ruled and rational surfaces. Uniruled varieties are algebraic varieties that are
covered by rational curves, i.e. varieties that contain a rational curve through a gen-
eral point. Among uniruled varieties, those that contain a rational curve through
two general points are especially important. Varieties satisfying this property are
called rationally connected and were introduced by Kollar, Miyaoka and Mori in
[KMM92¢], and independently by Campana in [Cam92].

Uniruled and rationally connected varieties have intensely been studied since
their introduction. A natural problem about rationally connected varieties is to
characterize them by means of bounding degrees of rational curves connecting
points. This is the main topic of this dissertation and our main tools are taken
from the theory of rational curves on varieties (see [Kol96] or [Deb01] for a general
reference).

Recently Ionescu and Russo have studied this problem, and in particular they
focused their attention on conic (or conically) connected manifolds embedded in
projective space, i.e. projective manifolds such that two general points may be
joined by a rational curve of degree 2 with respect to a fixed very ample line bundle
L.

In [IR07], they proved a classification theorem for these manifolds. Their result
shows that conic connected manifolds X C PV of dimension n are Fano and have
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Introduction

Picard number px less than or equal to 2. Additionally, if px = 1, then, unless X is
projectively equivalent to the Veronese variety vo(IP"), the Picard group is generated
by the hyperplane section and the index of the manifold is at least ”T“; if px =2,
they obtained the following list of possibilities: Segre products of two projective
spaces and their hyperplane sections, or the inner projections, from a linear space,
of the Veronese variety vy (P™).

In this thesis, we will reconsider the work of Tonescu and Russo, proving that their
classification result holds true assuming just the ampleness of the fixed line bundle
L, and, as we will seen later, we will carry on a similar investigation for rationally

connected manifolds with respect to rational curves of degree 3.

Conic connected manifolds were studied also by Kachi and Sato who character-
ized a special subclass of these manifolds.
More precisely, in [KS99], Kachi and Sato considered projective varieties with at
worst (Q-factorial singularities such that a fixed non-singular point x € X and two
general points of X may be joined by an irreducible rational curve on X of degree
2 with respect to a fixed ample Cartier divisor on X. It is clear from the defini-
tion that projective varieties that satisfy the above property are conic connected,
and a Kachi-Sato’s theorem states that the only possibilities are (P™, Opn(1)) or
(Q™, Ogn (1)), where Q" is a (possibly singular) hyperquadric in P"*1,
Only for the smooth case, we will give a different proof of Kachi-Sato’s result using
the theory of rational curves on projective varieties.

After conic connected manifolds, as already said before, we will consider smooth
complex projective varieties X which are rationally connected by rational curves of
degree 3 with respect to a fixed ample line bundle L, or equivalently which admits
a covering family V' of rational curves of degree 3 with respect to L such that two
general points of X may be joined by a curve parametrized by V. We will call X
rationally cubic connected.

The study of rationally cubic connected manifolds is the main subject of this thesis.
A first step towards the understanding of these manifolds could be to establish a
bound on the Picard number.

First of all we will study rationally cubic connected manifolds that are covered by
“lines”, i.e. by rational curves of degree 1 with respect to L. For these manifolds it
is possible to find an upper bound on their Picard number, namely we will prove
that the Picard number is equal to or less than 3.

Among these manifolds we will concentrate on those which have the Picard number
equal to 3; we will show that if px = 3 then there is a covering family of “lines”
whose numerical class spans a negative extremal ray of the Kleiman-Mori cone of

X.

Unfortunately, for rationally cubic connected manifolds which don’t admit a cove-
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ring family of “lines” there isn’t an upper bound on the Picard number.

In fact, for every positive integer m we can construct a rationally cubic connected
manifold which is not covered by “lines” and whose Picard number is equal to m;
these rationally cubic connected manifolds are obtained by the blow up of P" at
(m—1) distinct points and they are such that if their Picard number is greater than
3 and n > 2 then they are not Fano.

For that reason we will consider rationally cubic connected manifolds which are
not covered by “lines” but are Fano. We will show that up to a few exceptions in
dimension 2 also the Picard number of these manifolds is equal to or less than 3.
More precisely, we will prove that either the Picard number is equal to or less than
2 or X is the blow up of P along two disjoint subvarieties that are linear subspaces
or quadrics.

The thesis is organized as follows:

In the first chapter we recall the terminology and the main results of intersection
theory. Moreover, we define Fano manifolds and we briefly discuss what is known
about their classification.

Chapters 2 to 4 are dedicated to the theory of rational curves on projective
varieties. In Chapter 2, we introduce the parameter spaces of rational curves on
a projective variety and we define uniruled, rationally connected and rationally
chain connected varieties. In the following chapter, we gather the basic results of
Mori’s theory, bend and break lemmas and the Cone Theorem, and we describe
Fano-Mori contractions. In chapter 4, we talk about families of rational curves and
Chow families of rational 1-cycles, and we prove some important estimates for the
dimension of the locus of a family of rational curves or of the locus of chains of
rational curves.

The aim of Chapter 5 is to define a relation of rational connectedness with re-
spect to k Chow families (we claim that two points are equivalent with respect to
this relation if there exists a chain of rational 1-cycles, parametrized by the fixed
Chow families, which joins the points) and to study this relation. We call this rela-
tion re(V1, ..., V¥)-relation.

Rational connectedness was introduced by Kollar, Miyaoka, and Mori and indepen-
dently by Campana, and so, we introduce the two different notations and we cite
their fundamental results.

Their main theorem claim that to the re(V!, ..., V¥)-relation we can associate a
fibration at least on an open subset of variety. To understand how the fibration
is defined, in the last section, we give a sketch of Campana’s construction of the
fibration.
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In Chapter 6 we list some conditions under which the numerical class of every
curve lying in some subvariety S of a projective variety X is contained in a linear
subspace of Ni(X) or in a subcone of NE(X). Moreover we prove some proper-
ties of fibrations associated to the rc(V?, ..., V¥)-relation. These results give some
important informations about the structure of the Kleiman-Mori cone of the va-
riety and about the extremality of quasi unsplit Chow families considered for the
fibration.

Chapter 7 deals with conic connected manifolds. First of all, we generalize the
classification theorem of Tonescu and Russo without assuming that conic connected
manifolds are embedded in projective space, and we show a different proof of Kachi-
Sato’s theorem in the smooth case.

In Chapter 8 we study rationally cubic connected manifolds.

In the first section we consider rationally cubic connected manifolds that admit
a covering family of rational curves of degree 1 with respect to a fixed ample line
bundle. As already said before, we give the proof of the existence of an upper
bound on the Picard number of these rationally cubic connected manifolds, and, in
particular, we prove that px = 3 if and only if X is rc(W, W, W")-connected with
respect to three families of “lines”, W, W' and W".

Theorem Let (X, L) be a polarized manifold. Assume that X is rationally cubic
connected by a family V and admits a covering family of lines. Then px < 3,
equality holding if and only if there exist three families of lines W, W' S W" with
V] = [W]+ W'+ [W"] such that W is covering, W' is horizontal and dominating
with respect to the rc(W)-fibration and W" is horizontal and dominating with respect
to the re((W, W')-fibration.

Moreover we show that if px = 3 then there is a covering family of “lines” whose
numerical class spans a negative extremal ray of the Kleiman-Mori cone of X.

The last section is devoted to the study of Fano rationally cubic connected
manifolds that are not covered by lines. After having proved that every Del Pezzo
surface is rationally cubic connected, we assume that manifolds have dimension
greater than 2. We prove that the Picard number is less than or equal to 3 and if
the equality holds we obtain a precise classification of manifolds.

Theorem Let (X, L) be a polarized manifold. Assume that X is rationally cubic
connected by a family V' and doesn’t admit a covering family of lines. Assume that
X is a Fano manifold and has dimension n > 2. Then either px < 2 or we have
the following list of possibilities:

(1) (X,L) ~ (Bla, 0, (P"),3H — Ey — E5), where Bla, p,(P") is the blow up of P"
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along two linear subspaces A1, Ay such that
AMNA =0, dimA; +dimAy, =n —2
and Ey, Ey are the exceptional divisors of the blow up w, H = 7*Opn(1);
(2) (X,L) ~ (Blp, z (P"),3H — Ey — Es), where Bly, z,(P") is the blow up of P"

along a linear subspaces A and along a quadric Z; C Ay ~ PImZi+l gych
that
ANAy=0, dimZ; > 5—1, dimA; +dimZ; =n—2

and Fy, Ey are the exceptional divisors of the blow up w, H = 7*Opn(1);

(3) (X,L) ~ (Bly, z,(P"),3H — Ey — E,), where Bly, z,(P") is the blow up of P
along two quadrics Z1 C Ay >~ P% and Zy C Ay ~ P2 such that

dlmAlﬂAQ :O, dlle = d1mZ2 == % —1

and Ey, Ey are the exceptional divisors of the blow up w, H = n*Opn (1) (clearly
n is even).

Finally, we study the Kleiman-Mori cone of rationally cubic connected manifolds
that are listed in the previous theorem. Moreover, after having described N E(X),
we characterize the family V' and we show how cycles parametrized by the Chow
family V associated to V' can split.

Unless otherwise stated, we work over the field C of complex numbers, and our
notation is consistent with the usual one, as for instance in [Har77], [Kol96] and
[Deb01].

vii






Chapter 1

Background material

For all the material in this chapter the main references are the first chapters of
[Kol96] and [Deb01].

1.1 Intersection number

Let X be a proper scheme of dimension n and let Dy, ..., D, be Cartier divisors on
X with r > n.
Definition 1.1. The intersection number Dy -...- D, is the coefficient of my - - - m,

in the polynomial
X(X,m1 Dy + ... +m,D,) = S;(—1)"h"(X,m Dy + ... +m,D,)
If Y is a closed subscheme of X of dimension at most s, we also set
Dy-...-Dy-Y =Dyy-...- Dyy
Remark 1.2. If r >nthen D;-...- D, = 0.
Remark 1.3. If D is a Cartier divisor and C'is a complete curve on X (i.e. C'is a
integral proper one-dimensional subscheme of X'), we can consider the intersection

number D - C' which is the leading coefficient of the polynomial x(X, mD¢). Note
that the Riemann-Roch theorem ([Har77, IV.1.3])

X(X,mDc) =mdeg(Oc(D)) + x(C, Oc)

implies
D - C = deg(Oo(D))




1.1 Intersection number

Definition 1.4. A I-cycle I' on X is a formal linear combination of irreducible
curves with integral coefficients:

=1

In particular, if all the coefficients are nonnegative the 1-cycle I' is called effective.

Notation 1.5. We denote by Z;(X) the free abelian group of the 1-cycles on X
and by Div(X) the group of the Cartier divisors on X.

Definition 1.6. Two Cartier divisors D, D’ € Div(X) are numerically equivalent
if D-C=D"-C for every curve C' C X. We write D = D’.

The quotient of Div(X) by this equivalence relation is denoted by N1(X)z, and we
can also consider the R-vector space

NY(X):=N'(X);®R

Definition 1.7. Two 1-cycles I', " € Z,(X) are numerically equivalent if D - T" =
D' -T for every Cartier divisor D € Div(X).

The quotient of Z;(X) by this equivalence relation is denoted by N;(X)z, and we
can also consider the R-vector space

N(X)=NM(X)z®R

Definition 1.8. Let f : X — Y be a proper morphism, let I' an irreducible 1-cycle
on X and set IV := f(I).
We define the push-forward f.: Z,(X) — Z1(Y) as follows:

0 if dimI” =0
Sl =
deg(f|p)1“’ if dimI" =1

Remark 1.9. If D € Div(Y) and C' is a curve on X, we have so-called projection
formula:

f*D-C=D- f.C
where f*: Div(Y) — Div(X) is the pull-back.

Definition 1.10. Let S be a normal surface and X a proper scheme.

Two effective 1-cycles A, A" € Z1(5) are effectively algebraically equivalent if there
exist a proper flat morphism p : S — C onto a smooth curve C' and two points
z,2' € C such that A = p~!(z) and A’ = p~! (/).

Two effective 1-cycles I, T" € Z;(X) are effectively algebraically equivalent if there
exist a normal surface S, a proper morphism ¢ : S — X and two effectively alge-
braically equivalent 1-cycles A; A" € Z;(S) such that I' = g.A and IV = g, A’

The transitive hull of this relation defines an equivalence relation on Z;(X), which
we call effective algebraic equivalence.

2



1.1 Intersection number

Definition 1.11. Two effective 1-cycles I', TV € Z;(X) are algebraically equivalent
if there exists a 1-cycle E such that I' + F and IV + E are effectively algebraically
equivalent.

Remark 1.12. Note that if I',I" € Z;(X) are algebraically equivalent then they
are also numerically equivalent.

The intersection form induces a nondegenerate pairing
N{(X)x N(X) — R

which makes these vector spaces canonically dual. Moreover, they are finite-dimen-
sional by the Néron-Severi theorem, and the number

px = dim N'(X) = dim N;(X)
is called the Picard number of X.

Definition 1.13. The cone of curves NE(X) C N;(X) is the convex cone gen-
erated by the numerical equivalence classes [I'] of effective 1-cycles I' on X. The
Kleiman-Mori cone N E(X) is the closure of the cone of curves.

Notation 1.14. If D € N'(X) is a Cartier divisor, we set
NE(X)pso = {I' € NE(X)|D-T > 0}
and similarly NE(X)DS(), NE(X)D>0, NE(X)D<(), NI(X)DZOa etc.

For a projective variety, we have the following numerical characterization of ample-
ness:

Theorem 1.15. (Kleiman’s Criterion) Let X be a projective variety.

(D) A_Cartier divisor D on X is ample iof and only if D -z > 0 for every z €
NE(X)\{0}.

(2) For every ample divisor H and for every integer k, the set
{e NE(X): H-2<k}

is compact, hence it contains a finite number of numerical classes of irreducible
curves.

Definition 1.16. A Cartier divisor D on a proper scheme X is numerically effective,
or nef, if D-T" > 0 for every I' € NE(X)\{0} or equivalently D - C > 0 for every
curve C C X.




1.2 Fano manifolds

The Kleiman’s criterion implies that ampleness is a numerical property, and so is
nefness, so we talk about ample and nef classes of Cartier divisors in N*(X).
Moreover, it follows easily from Kleiman’s criterion that the ample classes generate
an open cone in N*(X), which is called the ample cone and whose closure coincides
with the nef cone, i.e. the cone generated by the classes of nef divisors on X.

Corollary 1.17. The Kleiman-Mori cone NE(X) of a projective variety X con-
tains no lines, i.e. it is entirely contained in an open half-space plus the origin.

1.2 Fano manifolds

Definition 1.18. A smooth complex projective manifold is called Fano if its anti-
canonical bundle —Kx is ample.

Definition 1.19. Let X be a Fano manifold of dimension n. We define the index
of X as
ry =max{t e N: —Ky =tL}

where L is a ample divisor on X. We also define the pseudoindezr of X as
ix = min{m € N| —Kx - C = m for some rational curve C' C X}

Remark 1.20. Since X is smooth, Pic(X) is torsion free and therefore the divisor

H satistying — Kx = rx L is uniquely determined and called the fundamental divisor
of X.

It is easy to see that rx divides ix, and that ixy < n + 1.
The characterization of Fano manifolds of index ry > n is due to Kobayashi and
Ochiai:

Theorem 1.21. ([KO73]) Let X be a Fano manifold of dimension n and let L be
the fundamental divisor of X. Then:

1. rx §n+1,
2. ry=n+1e (X,L) = (P",Op:(1));
3 ry=n<s (X,L) = (Q",0g:(1)).

In particular, Fano manifolds of index n — 1 are called Del Pezzo manifolds and
have been classified in [Fuj90] using the Apollonius method, i.e. proving that the
linear system |L| contains a smooth divisor and constructing a ladder down to the
well-known case of surfaces.

By the classification of Fano manifolds of dimension 3, due to Fano, Iskovskikh

4



1.2 Fano manifolds

([Isk77], [Isk78]), Mori and Mukai ([MM82],[MMO03] and [Muk04]), using the same
method, Fano varieties of index n — 2, called Mukai varieties, have been classified;
in [Muk89] Mukai announced the classification assuming the existence of a smooth
member in |L|, and this is proved by Mella in [Mel99].







Chapter 2

Rational Curves on Varieties

In this chapter we introduce the theory of rational curves on varieties, and we define
uniruled and rationally connected varieties.

2.1 Parameter Spaces

In order to study the geometry of rational curves on a variety X, it is crucial to
consider some space parametrizing such objects. There are several notions of “pa-
rameter space for rational curves on X”. We can view rational curves as subschemes
of X, effective 1-cycles or even as morphisms from P! to X.

2.1.1 Chow Schemes

Let X be a projective variety. The Chow scheme Chow(X) is a scheme parame-
trizing effective cycles on X. There is a subscheme uChOW(X) C Chow(X) x X
satisfying the following properties.

e Every connected component V' of Chow(X) is a reduced, projective scheme
and V X Chow(x) uChOW(X) is an effective cycle on V x X.

e For any normal scheme 7', and any family C — T of effective cycles on X
parametrized by 7', there is a unique morphism 7" — Chow(X) such that C is
the pullback of UChOW(X) toT x X.

To study rational curves, we want to consider the subset of Chow(X') which para-
metrizes effective 1-cycles on X.

Theorem 2.1. There ezists a projective scheme Chowy(X), which parametrizes
effective 1-cycles on X, with the property that if two 1-cycles belong to the same
irreducible component of Chow,(X) then they are effectively algebraically equivalent.

7



2.1 Parameter Spaces

2.1.2 Hom Schemes

Let Y and X be varieties. If Y is projective and X is smooth and quasi-projective,
then there exists a locally Noetherian scheme Hom/(Y, X)) parametrizing morphisms
f Y — X (we denote by [f] the corresponding points in Hom(Y, X)). This scheme
has the following universal property:

e for any scheme T and for every morphism F' : Y x T" — X there exists a
unique morphism F’ : T'— Hom(Y, X) such that the diagram

e

Y x Hom(Y, X) X
Idx F' ’ /
Y xT

commutes, where e : Y X Hom(Y, X) — X denotes the evaluation map which
sends (y, [f]) to f(y).

In general the scheme Hom(Y, X) has countably many components, but each irre-
ducible component is in fact a quasi-projective variety.

The following theorem ( [Kol96, 11.1.7]) provides very important informations about
its local structure:

Theorem 2.2. Let fy : Y — X be a morphism from a projective variety Y to a
smooth quasi-projective variety X. Then

(1) the Zariski tangent space to Hom(Y, X) is
TijgHom(Y, X) ~ H°(Y, fiTX)

where T'X denotes the tangent bundle of X ;
(2) dimys, Hom(Y, X) = WY, fiTX) — h(Y, fiTX);
(3) if HY(Y, fiTX) = 0 then Hom(Y,X) 1is smooth at [fo] and has dimension

HOY, f;TX),
The same construction holds if we consider morphisms from Y to X which fix a
closed subscheme B C Y'; more precisely, if g : B — X is a given morphism we can
consider the scheme Hom(Y, X; g) which parametrizes morphisms f : Y — X such

that f|B =4dg.
Clearly Hom(Y, X; g) is a subscheme of Hom(Y, X), and it has similar properties:

(1) TipyHom(Y,X;g) ~ H°(Y, fiTX ® Ip) where Zg denotes the ideal sheaf of B
inY;

(2) dimyg,) Hom(Y, X; g) > WY, i TX @ T) — WM (Y, [TX ® Tp);

(3) it HY(Y, ffTX®Zp) = 0 then Hom(Y, X; g) is smooth at [fy] and has dimension
RO(Y, fiTX @ Ip).




2.1 Parameter Spaces

2.1.3 Parametrizing curves on varieties

Now we consider the scheme Hom(Y, X) in the special case when Y is a proper
curve C' without embedded points. In this case the previous theorems get simpler:

Theorem 2.3. Let X be a smooth quasi-projective variety, C a proper curve without
embedded points of genus g(C), and f: C — X a morphism. Then

(1) TipHom(C, X) ~ H(C, f*TX);
(2) dimpg Hom(C, X) > —=Kx - f.C +dim X (1 — g(C)).

Theorem 2.4. Let X be a smooth quasi-projective variety, C a proper curve without
embedded points of genus g(C), and f : C — X a morphism. Let B be a closed
subscheme of C' of finite length [(B) and g : B — X a morphism. Then

(1) TipHom(C, X;g) ~ H(C, f*TX ®Ip);

(2) dimy Hom(C, X;9) > —Kx - f.C +dim X(1 — g(C) — I(B)).

2.1.4 Parametrizing rational curves

Let X be a normal projective variety and let Hom(P!, X) be the scheme parame-
trizing morphisms f : P* — X.

We consider Homy,;, (P, X) C Hom(P!, X), the open subscheme corresponding to
those morphisms f : P* — X which are birational onto their image, and its nor-
malization Hom?, (P!, X).

By the Liiroth theorem, every nonconstant morphism f : P! — X can be written
as

P' %P5 P

where ¢ is birational onto its image. Thus, at least set-theoretically, Hom}; (P!, X)
contains all information about Hom(P', X).

Moreover, if h is any automorphism of P! and f € Hom}. (P', X), then f o h is
counted as a different morphism, while for our purposes they should be considered
as the same rational curve. For this reason we consider the group action of Aut(P!)
on Hom}, (P!, X) and we define the quotient:

Definition 2.5. The space Ratcurves™(X) is the quotient of Homp, (P!, X) by
Aut(P'), and the space Univ(X) is the quotient of the product action of Aut(P!)
on the space Hom}. (P, X) x P!

There is a natural commutative diagram




2.2 Uniruled and rationally connected varieties

Hom® (P1,X)x P! —L—  Univ(X)

l lp (2.1)

Homp, (P', X) —%— Ratcurves™(X)

where u and U are principal Aut(P')-bundles and p is a P!-bundle.

If we fix a point x € X, then we can consider the scheme Hom(P!, X;0 — z)
which parametrized morphisms f : P! — X sending 0 € P! to z. Again we have a
commutative diagram

Homp, (P, X;0— z) x P! v, Univ(X, x)

l lp (2.2)

Hom}, (P!, X;0+—z) —— Ratcurves"(X,z)

Remark 2.6. For every integer d > 0 we can consider the quasi-projective scheme
Homg(P!, X) which parametrizes morphisms P! — X of degree d with respect to a
given ample divisor, and the space Hom(P', X) can be written as the disjoint union

| Homa(P', X).

d>0

This implies that on a projective variety X there exist only countably many numer-
ical classes of rational curves. Moreover, for every positive integer d and any ample
divisor H there exists only finite number of numerical classes of rational curves of
H-degree < d.

2.2 Uniruled and rationally connected varieties

In this section we briefly discuss the theory of uniruled, rationally connected and
rationally chain connected varieties.
We refer to [Kol96, IV] and to [Deb01, Chapter 4] for proofs.

Definition 2.7. A variety X of dimension n is called uniruled if there exist a variety
Y of dimension n — 1 and a dominant rational map P! x Y --» X.

If X is a proper variety defined over an algebraically closed field k£, X uniruled
obviously implies that X is covered by rational curves, and the converse holds if k&
is uncountable; in particular, we can give this equivalent definition:

10



2.2 Uniruled and rationally connected varieties

Definition 2.8. Let X be a proper variety of dimension n over an uncountable
algebraically closed field k. X is called uniruled if there is a rational curve through
a general point.

Moreover, if we assume that X is a smooth projective variety over an uncountable
algebraically closed field of characteristic zero, there is another characterization of
uniruledness in terms of rational curves on X, i.e. the uniruledness is equivalent
to the existence of a single rational curve over which the tangent bundle T'X is
generated by global sections.

Let X be a smooth projective variety of dimension n and let f : P* — X be a
morphism. By Grothendieck’s theorem, the vector bundle f*7T'X decomposes as a
sum of line bundles

f*TX ~ OPI (al) EB @ OPI (an)

where we assume a; > ... > a,. If f is nonconstant, then there is a sheaf inclusion
Op (2) 2 TP! — f*TX, and thus a; > 2.

Remark 2.9. Note that f*T'X is generated by its global sections if and only if
ap, >0

Definition 2.10. Let r be a nonnegative integer. A rational curve f : P* — X on
a smooth variety X is r-free if f*T'X ® Op:(—r) is generated by its global sections,
ie. if a, > r.

If f is O-free (respectively 1-free), then f is called free (respectively very free).

Proposition 2.11. Let X be a smooth projective variety over an uncountable alge-
braically closed field of characteristic zero. X s uniruled if and only if X admits a
free rational curve.

Another important notion is that of rational connectedness. Rationally connected
varieties were introduced by Kollar, Miyaoka and Mori in [KMM92¢|, and indepen-
dently by Campana in [Cam92].

Definition 2.12. A variety X of dimension n is called rationally connected if it is
proper and if there exist a variety M and a rational map e : P! x M --» X such
that the rational map

P!xP'x M --» X x X
(t,t,2) — (e(t, 2),e(t', z))

is dominant.

As before, if we assume that the ground field k is algebraically closed and uncount-
able, the definition of rationally connected variety becomes very simple:

11



2.2 Uniruled and rationally connected varieties

Definition 2.13. Let X be a variety of dimension n over an uncountable alge-
braically closed field k. X is called rationally connected if it is proper and there is
a irreducible rational curve through a general pair of points.

Indeed, over C or over any other uncountable algebraically closed field of character-
istic zero, there is a relationship between rational connectedness and the existence
of a very free rational curve:

Theorem 2.14. Let X be a smooth projective variety over an uncountable alge-
braically closed field of characteristic zero.
X is rationally connected if and only if X contains a very free rational curve.

Now we study and define rationally chain connected varieties over an algebraically
closed field:

Definition 2.15. Let X be a variety of dimension n over an algebraically closed
field k. X is rationally chain connected if it is proper and there exist a variety T
and a subscheme C of T' x X such that:

e the fibers of the projection C — T are (connected proper) 1-cycles with only
rational components;

e the projection C x7 C — X x X is dominant.
If the ground field £ is uncountable, we have the following equivalent definition:

Definition 2.16. Let X be a variety of dimension n over an uncountable alge-
braically closed field k. X is rationally chain connected if and only if for very
general closed points x1, 29 € X there is a connected 1-cycle I' C X which contains
21 and x5 such that every irreducible component of I' is rational.

Note that being rationally connected is stronger that being rationally chain con-
nected. But if we consider an uncountable algebraically closed field of characteristic
zero (for example k = C), and if X is a smooth proper variety, these definitions are
equivalent:

Theorem 2.17. Let X be a smooth proper variety over an uncountable algebraically
closed field of characteristic zero. Then X s rationally chain connected if and only
if X is rationally connected.

12



Chapter 3

Mori theory for smooth varieties

3.1 Bend and Break technique

Mori’s “bend and break” argument was originally introduced in his famous paper
[Mor79] in order to prove Hartshorne’s conjecture about varieties with ample tan-
gent bundle. His techniques have turn out to be a very powerful tool for investigating
the birational geometry of algebraic varieties.

Mori’s main idea is the following: if a curve (of positive genus) on a variety X
deforms nontrivially while keeping a point fixed, then it breaks up into an effective
1-cycle with a rational component passing through the fixed point.

The first bend and break lemma (Lemma (3.1)) proves exactly that, given a curve,
if its space of deformations is sufficiently big, then a rational curve is produced.
Moreover, the second bend and break lemma (Lemma (3.2)) says that a curve de-
forming nontrivially, while keeping two point fixed, must degenerate into an effective
1-cycle with rational components.

Lemma 3.1. (Bend and Break I) Let f : C' — X be a smooth curve on a
projective variety X, and let ¢ be a point on C. If

dimm Hom(C’, X; f|{c}) Z 1

then there exists a curve f' : C' — X and a connected effective nonzero rational
I-cycle T" on X which passes through f(c) and satisfies

LC~ O+ T

According to Theorem (2.4), when X is smooth along f(C), the hypothesis is ful-
filled whenever

—Kx- f,C—g(C)dimX >1

13



3.2 The Cone theorem

Lemma 3.2. (Bend and Break II) Let X be a projective variety and let f :
P! — X be a rational curve. If

dimyy Hom(]P’l, X; f\{O,oo}) > 2

then there exists a connected nonintegral effective rational 1-cycle I' passing through
f(0) and f(o<) and such that f.P* ~T. In particular they are numerically equiva-
lent.

According to Theorem (2.4), when X is smooth along f(P'), the hypothesis is
fulfilled whenever

—Kyx - f,P'—dimX >2

The bend and break lemmas are very important to the study of Fano manifolds.
In fact, using the bend and break lemmas, Mori proved that a Fano manifold X is
covered by rational curves.

Theorem 3.3. Let X be a smooth projective variety of dimension n such that —Kx
is ample. Then through any point of X there exists a rational curve I’ C X satisfying
—KX - <n+1.

3.2 The Cone theorem

In this section we state Mori’s theorem on the structure of the Kleiman-Mori cone
of a smooth projective variety X.

Mori showed that the part of cone contained in Ni(X) g, <o is generated by count-
able many extremal rays and that these rays can only accumulate on the hyperplane
N1 (X)KX —0-

This result is known as the Cone theorem and it was proved by Mori in [Mor82].

Theorem 3.4. Let X be a smooth projective variety of dimension n. Then there
exist on X countably many rational curves {C;}ien such that

0<—-Kx-C;<n+1

and
NE(X) = NE(X)ky0+ Y R'[C)]
ieN
where the R*[C;] are all the (distinct) extremal rays of NE(X) that meet the half-
space of N1(X) given by {z € Ni(X) | Kx -z < 0}. These rays are locally discrete
in that half-space.

14



3.2 The Cone theorem

K

KX>0

NE(X)

Remark 3.5. Since the Kleiman-Mori cone of a Fano manifold is entirely contained
in the half-space N1(X)g,<o by definition, the Cone theorem immediately yields
that the Kleiman-Mori cone of a Fano manifold is polyhedral.

Definition 3.6. A subcone ¢ of NE(X) is called an extremal face if it satisfies the
following condition:

a,b€ NE(X) and (a+b) €Eoc=a,bEo

An extremal face of dimension one is called an extremal ray, and a curve whose
numerical class belongs to an extremal ray is called a extremal curve.

Definition 3.7. An extremal face o of NE(X )k, <o is called a negative extremal
face of NE(X); a negative extremal face of dimension one is called a negative
extremal ray.

3.2.1 Fano-Mori contractions

Definition 3.8. A contraction f : X — Y is a proper morphism with connected
fibers between two normal varieties X and Y.

If X and Y are projective, we define the relative cone of f as the convex subcone
NE(f) of NE(X) generated by the classes of curves contracted by f. Since Y is
projective, an irreducible curve C' on X is contracted by f if and only if f.C = 0.
It follows that NE(f) is the intersection of N E(X) with the vector space ker(f,).
Moreover, by [Deb01, Proposition 1.14], NE(f) is extremal and the morphism f is
uniquely determinated by NE(f) up to isomorphism.

Definition 3.9. A Fano-Mori contraction ¢ : X — Y of a smooth variety X is a
contraction such that —Kx - C' > 0 for any contracted curve.

Remark 3.10. Note that if ¢ is a Fano-Mori contraction, then the relative cone
NE(yp) is a negative extremal face of NE(X).

Theorem 3.11. (Rationality Theorem) Let X be a smooth complex projective
variety such that Kx is not nef. Let H be a nef and big Cartier divisor on X. Then
the number

r=sup{t € R | H+tKx is nef}

1s rational.

15



3.2 The Cone theorem

Corollary 3.12. Let X be a smooth projective variety and let o be a negative
extremal face of NE(X). Then there exists a nef divisor H on X such that:

(1) o ={2€ NE(X): H-z=0};
(2) the divisor mH — Kx is ample for all integers m > 0.
The divisor H 1is called a supporting divisor of the face o.

Theorem 3.13. (Base-point free Theorem) Let X be a smooth projective va-
riety and let H be a nef divisor on X such that aH — Kx s nef and big for some
positive integer a. Then the linear system |mH| is base-point free for all integers
m > 0.

Combining these two results, we have that to a negative extremal face o of NE(X)
we can associate a nef divisor H, one multiple of which induces a morphism ¢, x| :
X — Y C PV, The part with connected fibers of the Stein factorization of PimH| 1S
a Fano-Mori contraction; namely the following theorem holds:

Theorem 3.14. (Contraction Theorem) Let X be a smooth variety and let H
be a nef divisor on X such that

o:=H"NNE(X)

is entirely contained in {z € N1(X): Kx -z <0} (i.e. H is a supporting divisor of
o). Then there exists a projective morphism

p: X —-Y

onto a normal projective variety Y, which is characterized by the following proper-
ties:

(1) a curve C C X is contracted to a point by ¢ if and only if H - C' = 0;
(2) ¢ has connected fibers;
(8) H = p*A for some ample Cartier divisor A € Div(Y').

The map ¢ is usually called the Fano-Mori contraction (or the extremal contraction)
associated to the face o and the Cartier divisor H s called a supporting divisor of
the map ¢ (or of the face o).

Definition 3.15. An extremal contraction associated to a face of dimension one,
i.e. a negative extremal ray, is called an elementary contraction.
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3.2 The Cone theorem

Notation 3.16. Since the Cone theorem and Contraction theorem give us no infor-
mations about positive part of NE(X)g, >0 of NE(X), we will focus our attention
on negative extremal faces and rays, and from now on we will simply call them
“extremal”.

Definition 3.17. We denote by
E = E(p) ={r € X : dim(p 'p(z)) > 0}

the exceptional locus of ¢; it coincides with the union of all curves in X which are
contracted by ¢, and from this reason it is sometimes called locus of .

Definition 3.18. If £ = X, ie. dimX > dimY, then ¢ is called of fiber type.
Moreover, if dim X = dim Y, ¢ is called birational. In particular:

e if the codimension of F is equal to 1, then ¢ is divisorial,;
e if the codimension of F is at least 2, then ¢ is small.

Definition 3.19. let X be a smooth complex projective variety. Let ¢ : X — Z be
an elementary extremal contraction of fiber type. ¢ is called a scroll (respectively
a quadric fibration) if there exists a line bundle L € Pic(X) such that it is p-ample
(i.e. L-C > 0 for any curve contracted by ¢) and Kx + (dim X —dimZ + 1)L
(respectively Kx + (dim X — dim Z)L) is a supporting divisor of ¢.

@ is called a P-bundle if Z is smooth and there exists a vector bundle F of rank
(dim X —dim Z + 1) on Z such that X ~ Py(F).

Remark 3.20. An equidimensional scroll is a P-bundle by [Fuj87, Lemma 2.12].
Moreover some special scroll contractions arise from projectivization of Banica
sheaves; a Banica sheaf is a coherent sheaf ¢ of rank r > 2 over a normal vari-
ety Y whose projectivization is a smooth variety.

In particular, if ¢ is a scroll such that every fiber has dimension < dim X —dim Z+1,
then Z is smooth and X is the projectivization of a Banica sheaf on Z ([BW9G6,
Proposition 2.5]). We will call these contractions special Banica scrolls.
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Chapter 4

Families of rational curves

Let X be a smooth complex projective variety of dimension n.

4.1 Families of rational curves

Definition 4.1. A family of rational curves V on X is an irreducible component
of the scheme Ratcurves™(X).

Given a rational curve f : P! — C C X, a family of deformations of that curve
is any irreducible component of Ratcurves™(X) containing the point parametrizing
that curve.

We define the locus of the family V to be the set of points of X through which there
is a curve among those parametrized by V. We denote it by Locus(V).

We say that V' is a covering family if Locus(V) = X and that V' is a dominating
family if Locus(V') = X.

We denote by V, the subscheme of V' parametrizing rational curves passing through
a point x € Locus(V) and by Locus(V;) the set of the points of X through which
there is a curve among those parametrized by V..

Definition 4.2. Let V be a family of rational curves on X. Then

(1) V is unsplit if it is proper;

(2) V is locally unsplit if, for a general point = € Locus(V), V, is proper;
(3) V is generically unsplit if the fiber of the double-evaluation map

m: V. —»  XxX
/] = (f@), f(p))

over the general point of its image has dimension at most 0.
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4.1 Families of rational curves

Remark 4.3. By [Kol96, I1.2.11], Ratcurves™(X) has a natural inclusion into the
scheme Chow(X ), so we can consider the image of V' in Chow(X). We denote it by
V.

By [Kol96, 11.2.2], V is proper if and only if V is closed in Chow(X).

We denote by V the closure of V in Chow(X). A point w € V' \ V corresponds
to a l-cycle Y a;[C;] where C; are (irreducible) rational curves on X, a; € N and
Z a; Z 2.

Then, if V' is not an unsplit family, the general rational curve in V' degenerates and
in the limit it splits up into a reducible 1-cycle.

Remark 4.4. Note that (1) = (2) = (3).

Remark 4.5. If V is an unsplit dominating family of rational curves, then it is
covering.

Notation 4.6. By abuse of notation, given a line bundle L € Pic(X), we denote
by L-V the intersection number L -C, with C' any curve among those parametrized
by V.

Definition 4.7. Let U be an open dense subset of X and 7 : U — Z a proper
surjective morphism to a quasi-projective variety; we say that a family of rational
curves V' is a horizontal dominating family with respect to m if Locus(V') dominates
7/ and curves parametrized by V' are not contracted by .

Remark 4.8. Let R be an extremal ray of NE(X) and let C' be an extremal curve
such that [C] € R and the anticanonical degree of C' is minimal in R; C' is often
called a minimal extremal rational curve.

If we denote by V' a family of deformations of C', then V is unsplit: in fact, if
C degenerates into a reducible cycle, its components must belong to the ray R,
since R is extremal; but in R the curve C' has the minimal intersection with the
anticanonical bundle, hence this is impossible.

Proposition 4.9. Let V be a family of rational curves on X and x € Locus(V') a
point such that every component of V,. is proper. Then

dim V' < dim Locus(V') + dim Locus(V;) — 2

Proof. Let x be a point of Locus(V') satisfying our assumptions. Diagram (2.1) can
be restricted to the family V', and we obtain the basic diagram

p Y (V)=:U
p

X (4.1)

Vv
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4.1 Families of rational curves

where i is the map induced by the evaluation map e : Hom}, (P!, X) — X and p is
a PL-bundle.
Then V, = {[f] € V : f(0) = 2} = p(i"'(x)), and since i doesn’t contract any fiber
of p we have

dim V, = dimi~*(z).

By upper semi-continuity of the fiber dimension,

dimi~!(x) > dim U — dim Locus(V)

= dimV, = dimi *(z) dim U — dim Locus(V)

>
> dimV — dim Locus(V') + 1.

Similarly, if y € Locus(V,,), we can consider

Vay =A{lf1€V: f(0) =, f(o0) = y}

and the pointed version of the previous diagram

ig

Us
Pz
Ve
Then V,, = p.(i;'(y)) and, as before

Locus(V,) C X

dimV,, = dimi,'(y) > dimV, —dim Locus(V,) + 1
= dimV,, > dimV, —dimLocus(V;) +1
> dimV — dim Locus(V') — dim Locus(V},) + 2

If V, is proper or if V' is generically unsplit and x, y are general points in Locus(V),
then dimV, , = 0, so it follows that

dim V' < dim Locus(V') 4+ dim Locus(V;) — 2
[l

Proposition 4.10. (Ionescu- Wisniewski Inequality) Let V be a family of
rational curves on X and x € Locus(V') a point such that every component of V, is
proper. Then

(1) dim X — Kx -V < dim Locus(V') + dim Locus(V,) + 1;

(2) every irreducible component of Locus(V'), has dimension > —Kx -V — 1.
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4.2 Chow families of rational 1-cycles

Proof. By Theorem (2.3), if V' is a family of deformations of f, we have
dimy Hom(P', X) > —Kx - V + dim X.

But
dimiyy Hom(P', X) = dim V + dim Aut(P') = dimV + 3

so, by the previous proposition, we conclude that
dimX — Kx -V <dimV + 3 < (dim Locus(V') 4+ dim Locus(V,) — 2) + 3

= dim X — Kx - V < dim Locus(V') + dim Locus(V,) + 1.
The second inequality follows from dim Locus(V) < dim X. O

Remark 4.11. If V is locally unsplit and —Kx - V = dim Locus(V,) + 1 for a
general x € Locus(V), then V is a dominating family.

Proposition 4.12. (Fiber Locus Inequality) Let o be an extremal face of
NE(X) and let ¢ be the Fano-Mori contraction associated to o. Denote by E
the exceptional locus of ¢ and let F' be an irreducible component of a (non trivial)
fiber of ¢. Then

dmFE+dimF >dimX +1—-1

where
| =min{—Kx - C| C is a rational curve s.t. [C] € o}

If ¢ is the contraction of an extremal ray R, then | = I(R) is called the length of
the ray.

Proof. Note that if V' is the family of deformations of a rational curve C' which
is contained in F' then E contains Locus(V') and F' contains Locus(V,) for some
point z € X. Thus dim Locus(V') 4+ dim Locus(V'), < dim E+dim F', and the claim
follows from the Ionescu-Wisniewski inequality. [

4.2 Chow families of rational 1-cycles

Definition 4.13. A Chow family of rational 1-cycles V is an irreducible component
of Chow(X') parametrizing rational and connected 1-cycles.

We define Locus(V) to be the set of points of X through which there is a cycle
among those parametrized by V.

Notice that Locus(V) is a closed subset of X ([Kol96, 11.2.3]). We say that V is a
covering family if Locus(V) = X.

Definition 4.14. If V is a family of rational curves, the closure of the image of V
in Chow(X), denoted by V, is called the Chow family associated to V.
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4.2 Chow families of rational 1-cycles

Definition 4.15. Let V' be a family of rational curves and let V be the Chow family
associated to V. We say that V' (and also V) is quasi unsplit if every component
of any reducible cycle parametrized by V has numerical class proportional to the
numerical class of a curve parametrized by V.

Definition 4.16. Let V be a Chow family of rational 1-cycles.

Let I' = Zle I'; be a reducible cycle in V. We denote the family of deformations
of the irreducible component I'; of I' by V; for every 1.

The families {V;},—1__x are called fellow families with respect to V.

The families {V;},;; are called fellow families of V; with respect to V.

4.2.1 Chow families and prerelations

In the language of [Ko0l96, 11.4], a Chow family of rational 1-cycles V defines a proper
prerelation and an algebraic relation.

Definition 4.17. Let U, V, X be schemes. The collection of schemes and morphisms
(V <& U % X,V -5 U) such that s o 0 = Idy is called a prerelation.
A prerelation is called proper if the morphisms s, w,w o o are all proper.

Definition 4.18. Let X/S be a scheme. An algebraic relation on X is a scheme R
together with a pair of morphism w: R — X and u : R — X.

Set R :=Im[R WY X % X]C X x X and R(z) == u(w™!(z)) C X for z € X.

R is the set-theoretic relation generated by R, and R(z) is the relation class of x.
Let X be a smooth complex projective variety and let V be a Chow family of rational

1-cycles on X. We can consider the following diagram, coming from the universal
family over Chow(X):

U —— x (4.2)
p

1%

where 7 is the map induced by the evaluation and the fiber of p are connected and
have rational components. Both i and p are proper ( [Kol96, 11.2.2]).
Taking the normal form, defined in [Kol96, IV.4.4.5], we obtain a proper prerelation

v Ew Xy
i/

u =u Xvu X
P’ o
V' =U
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4.3 Chains of rational curves

Moreover, (R =U',w =14 oo op,u=1") is an algebraic relation.

Remark 4.19. In particular, if V' is an unsplit family of rational curves, then V
corresponds to the normalization of the associated Chow family V, and V' itself
defines a proper prerelation.

4.3 Chains of rational curves

Let X be a smooth complex projective variety and Y an irreducible subset of X.
Let V!, ..., V* be Chow families of rational 1-cycles on X.

Definition 4.20. Locus(V!, ..., V¥) is the set of points which belong to a connected
chain of k 1-cycles belonging respectively to the families V!, ..., V¥.

r € Locus(V', ..., V) < 3 Ty € V', ... T\ € V¥ such that
FiﬁFiH#@, XEI‘1UUI‘k

In particular, Locus(V', ..., V¥) ¢ U, Locus(V?).

Definition 4.21. Locus(V!, ..., V¥)y is the set of points that can be jointed to YV
by a connected chain of k 1-cycles belonging respectively to the families V', ..., V¥,

r € Locus(V, ..., V")y < 3 Ty eV, ... TV such that
FiﬂFiH%@, leY%@, x eIy

In particular, Locus(V!, ..., V¥)y C Locus(V*).

Remark 4.22. If Y is a closed subset, then Locus(V?, ..., V¥)y is closed.
Since

Locus(V*, ..., Vk)y = LOCUS(Vk)Locus(vl 77777 Pho1yy

it is enough to prove that if Y is a closed subset then Locus(V)y is closed.

Let Vy = p(i~' (Y NLocus(V))) be the subset of V parametrizing cycles of } meeting
Y. Then Locus(V)y = i(p~*(Vy)), so it is closed by the properness of the morphisms
7 and p.

Remark 4.23. Analogously we define Locus(V?, ..., V¥)y for V1 ... V¥ families
of rational curves. Notice also that from our definition it follows that Locus(V,) =

Locus(V),.

If we consider unsplit families V!,..., V¥ on X and Y is a point of X, there exists
an lower bound for the dimension of Locus(V!, ... V¥),:
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4.3 Chains of rational curves

Theorem 4.24. ([BCDDO03, Théoréme 5.2]) Let V1, ... . V¥ be k unsplit families
of rational curves on X. If the corresponding classes in N1(X) are independent,
then either Locus(V1,...,V¥), is empty or

k
dim Locus(V*,..., V"), > Z —Kx -Vi—k
i=1

Using the same techniques as in proof of Theorem (4.24), we can show the following:

Lemma 4.25. ([ACO04, Lemma 5.4]) Let Y C X be an irreducible closed subset
and let V' be an unsplit family of rational curves.

Assume that curves contained in'Y are numerically independent from curves para-
metrized by V, and that Y N Locus(V') # 0.

Then for a general point y € Y N Locus(V)

(1) dim Locus(V')y > dim(Y N Locus(V')) + dim Locus(V'),;
(2) dim Locus(V)y > dimY — Kx -V — 1.

Moreover, if V1, ..., V¥ are numerically independent unsplit families such that curves
contained in'Y are numerically independent from curves parametrized by V!, ..., V¥
then either Locus(V',...,V¥)y =0 or

(8) dim Locus(V?', ..., VF)y > dimY + 35 (—Kx - V) — k.

Proof. Consider the diagram (4.1). Since V is unsplit, for a point y € Y NLocus(V)
we have

dimi~!(y) = dim V,, = dim Locus(V), — 1.
We define Vy := p(i~*(Y)) and Uy := p~*(V), and we denote by n the dimension
of X. For a general y € Y N Locus(V'), we obtain that

dimUy = dim(Y NLocus(V)) + dim Locus(V),
> (dimY + dim Locus(V') — n) + dim Locus(V),

But, by the Ionescu-Wisniewski inequality, we have that
dim Locus(V') — n + dim Locus(V), > —Kx -V — 1
= dimUy >dimY — Ky -V — 1.

Since Locus(V)y = i(Uy), it is enough to prove that ¢ : Uy — X is generically
finite.

To show that we take a point x € i(Uy) \ Y and we assume that, by contradiction,
i~!(x) N Uy contains a curve C’ which is not contained in any fiber of p. Let B’
be the curve p(C”) C Vy and let v : B — B’ be the normalization of B’. By base

change we have the following diagram:
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4.3 Chains of rational curves

Sp—L— x
PB

B

Let C'y be a curve in Sp which dominates B and whose image via j is contained in
Y'; such a curve exists since the image via j of every fiber of pg meets Y.

We observe that j(Cy) is a point or is a curve in Y N Locus(V),.

If j(Cy) is a point, we have a one-parameter family of curves passing through two
fixed points, and it is impossible because V' is an unsplit family.

If j(Cy) is a curve in Y NLocus(V),, then from Corollary (6.7) it follows that there
exists a curve in Y such that it is numerically proportional to a curve parametrized
by V', against the assumptions.

To prove the claim (3) it is enough to recall that

Locus(V!, ..., V¥)y = Locus(V*)
[

Remark 4.26. If in the previous theorem V! is not a covering family and moreover
Locus(V1, ..., V¥), is nonempty, then

k
dim Locus(V', .., V¥), > > —Ky - Vi—k+1

i=1
In fact, by definition

LocuS(Vl, N Vk)x = LOCUS(VQa e Vk)LOCUS(Vl)z

k
= dim Locus(V*, ..., V¥), > dim Locus(V'), + Z ~Kx-Vi—(k—1)
i=2

But from Remark (4.11) it follows that dim Locus(V1), > —Kx - V! because V! is
not covering.

Definition 4.27. ChLocus,,(V?,...,V¥)y is the set of points that can be jointed
to Y by a connected chain of at most m rational 1-cycles belonging to the families
Vi L VR

x € ChLocus,,(V', ...,Vk)y & 3Ty, ...,Ty(s < m) such that I'; € V'
FiﬁFiH#@, Fle#Q, XEFS
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4.3 Chains of rational curves

In particular

ChLocus,,(V!, ..., V¥)y = U Locus(V'®, ..., Vi),

1<i(j)<k

1<s<m

and if Y is a closed subset, then ChLocus,,(V!, ..., V*)y is closed.
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Chapter 5

Rational connectedness with
respect to £ Chow families

If X is rationally chain connected, then any two points can be connected by a chain
of rational curves. In general we can define a relation of rational connectedness with
respect to k Chow families V', ..., V* in the following way:

Definition 5.1. Two points x,y € X are in the rc(V!, ..., V¥)-relation if there
exists a chain of rational l-cycles in V!, ..., V¥ which joins = to y, ie. if y €

ChLocus,,(V!, ..., V¥), for some m.

The aim of this chapter is to study this relation, that was introduced by Kollar,
Miyaoka, and Mori and independently by Campana, and to construct a quotient of
the variety by this relation.

We will introduce the two different notations (Kollar, Miyaoka, and Mori work in
the algebraic category, while Campana works in the analytic context). Moreover
we will recall the main results that are due to Kollar-Miyaoka-Mori ([KMM92al,
[KMM92b] and [Kol96, IV.4] for proofs) and to Campana ([Cam94] for proofs). In
particular, we will give a sketch of the Campana’s construction of the quotient.

5.1 Kollar-Miyaoka-Mori’s construction

. P A )
Since every Chow family 17 defines a proper prerelation (V'; «— U'; — X,V; Z,

U';), as we have already observed in the section 4.2.1, we can define the rational
connectedness with respect to V..., V¥ using the language of [Kol96, IV.4.8]:
Definition 5.2. Let (V'; <= U'; — X,V'; 25 U';), j = 1,...k be a collection
of prerelations and U’y = X, pf, = i, = 09 = Idx the identity prerelation.

Fix an integer m > 0. Let z;,z9 € X be points. We say that x; and x5 can be
connected by a (U'y, ... ,U'x)-chain of length m if and only if there are
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5.1 Kollar-Miyaoka-Mori’s construction

e points y1 = T1,Y2, -+, Ym, Yms1 = T3 € X
e a function 7: {1,...,m} — {0,1,...,k}, and

e points vy(s) € V'r(5) such that

Ys = Zf,-(s) O Or(s) (U‘r(s))
Vs=1,...,m

Ys+1 € ulT(S) (UT(S))
where L?’T(S)(UT(S)) = i’T(s)((p’T(s))’l(vT(s))) is called the relation class of v, ()

We say that x; and x5 can be connected by a (U'y, ... ,U'y)-chain if and only if z,
and xo can be connected by a (U'y,...,U',)-chain of length m for some m.
Theorem 5.3. Let (V' il U'; b, X,V 7, U;), j =1,...k be prerelations.
For every k,m there is an algebraic relation Chain,(U'y,...,U'y) such that for
every x1,xs € X, x1 and x4 can be connected by a (U'y, ... ,U'y)-chain of length at
most m if and only if

—~——

(21, 3) € Chaing, (U'y,. .., U'L).

Proof. If m = 1, we set R; := Chain,(U';) = U'; with morphisms w; = i; 0 0 0 p}
and u; = 7. Ry denotes the identity relation.
Ifm>1, to construct Chain,,(U'y, ..., U';) we have to define the product R; * R,
of R; := Chainl(u’j) and R, := C’haz'nl(le’s).
R; * Ry is the fiber product R; x x Ry, and R; x Ry := R; x x Ry with the morphisms

w; © ujws and u, o wiu; is an algebraic relation which is called the product of R;

and R,.
R *R _R XxRS

qu \{u]
u]\ A

In particular this relation is such that R * Ry = R *k Rs, i.e. (z,y) belongs to the
set-theoretic relation generated by R; x R ((z,y) € R, * Rs) if and only if there

exists z € X such that (z,2) € R; and (2,y) € R;.
Now, let 7 : {1,...,m} — {0,1,...,k} be any function. By induction on m we
obtain that there is an algebraic relation

R-r(l) * RT(Q) EE 3 RT(m).
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5.2 Campana’s construction

It is clear that the following relation has the required properties:

ChLocus,, (U, ..., Uy) := U Rray * Ry % ... % Re(m)
7{1,...,m}—{0,1,....,k}

]

Thus the re(V!, ..., V¥)-relation is the set-theoretic relation Chain(U'y,. .., U";) as-
sociated to the proper proalgebraic relation

ChainU'y, ..., U'"y) = | ] Chaing (U, ..., U).

meN

To the rc¢(V?, ..., V¥)-relation we can associate a fibration, at least on an open subset,
and we will call it re(V, ..., V¥)-fibration:

Theorem 5.4. Let V', ..., V¥ be Chow families of rational curves on a normal proper
variety X. Then there exist an open subvariety X° C X and a proper morphism
with connected fibers w: X — Z° such that

(1) the re(VY, ..., V¥)-relation restricts to an equivalence relation on X°;
(2) the fibers of ® are equivalence classes for the rc(VY, ..., V¥)-relation;

(3) for every z € Z° any two points in 7~(z) can be connected by a chain of at
most 24mX—dimZ _ 1 cycles in VU, ..., VE,

Definition 5.5. In the above assumptions, if 7 is the constant map, we say that
X is re(V?, ..., V¥)-connected.

5.2 Campana’s construction

In [Cam81], Campana considers not necessarily compact Kéhler manifolds and his
setting is different from the one presented in [KMM92a], [KMM92b] and [Kol96].
For this reason, first of all we introduce the Campana’s notation.

For all the material in this section the main reference is [Cam04].

Definition 5.6. Let X be a complex space and d € N. A d-cycle on X is a finite
linear combination Z = > n;Z; where n; € N (n; is called the multiplicity of Z;
in the cycle Z) and the Z;’s are compact irreducible analytic subsets of X of pure
dimension d which are pairwise distinct. The support of Z, denoted |Z|, is the union

of the (reduced) Z;’s.
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5.2 Campana’s construction

Definition 5.7. Let S be a normal complex space and (Z)scs be a family of d-
cycles of X parametrized by S (i.e. for each s € S, Z; is a element of Chowy(X)).
Let

|Gs| :={(s,t):x € |Zs]} €S x X

The set |G| is called the incidence graph of the family S. We denote by pg and by
px the restriction of the first and second projections of S x X to Gg.
Then this family is said to be analytic if:

(1) the incidence graph |Gg| is a closed analytic subset of S x X;

(2) the restriction of the first projection pg of S x X to |Gg| is proper, surjective
and its fibers have pure dimension d;

(3) for any irreducible component |G%| of |G|, there exists a positive integer n/
such that for s generic in S7 := pg(|Gg;]) all irreducible components of |Zs],
contained in |G%|, have multiplicity n/. (The closed analytic cycle Gg =
> n/GY is called the graph of the analytic family parametrized by S).

(4) for any s € S, any j, and any local multisection o : S — |G%], defined on a
small open neighborhood S’ of s in S, if the image of o meets Z, at a single
point x, contained in a unique irreducible component Z¢ of Z, the multiplicity
of |ZY in Zs is m - n?, where m is the degree of the restriction of px to the
image of o.

In particular, by the following theorem, an analytic family .S corresponds to a subset
of the Chow scheme Chow(X):

Theorem 5.8. Let G C S x X be an irreducible compact analytic subset such that
the restriction p : G — S is surjective. There exists a unique meromorphic map
f:S --» Chow(X) sending a generic s € S to the reduced cycle of X with support
p~Y(s). In particular, the image of f is compact since S is. If moreover the fibers
of p are all of the same dimension, and if S is normal, then f is holomorphic.

Definition 5.9. Let X be a compact connected normal complex space. Then
S C Chow(X) is said to be a covering family of X if the following conditions are
satisfied:

(1) S is an at most countable disjoint union of compact irreducible subvarieties

(2) if s € S; is a generic point, then Z; is irreducible and reduced, this for any
irreducible component S; of S

(3) X is the union of all |Z,|’s for s € S.
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5.2 Campana’s construction

Remarks 5.10.

(a) Our conditions on X and on Z, imply that X is irreducible and that the
multiplicity n? associated to |G%| will be equal to one (it is not necessary to
distinguish between |G| and Gg).

(b) We can replace conditions (2), (3) equivalently by: the restriction of the pro-
jection pg (respectively px) to the incidence graph has irreducible reduced
generic fibers (respectively is surjective).

(c) If S is a covering family, then at least one of its irreducible components is a
covering family.

(d) We could prove that Z, is connected for s € S and that the incidence graph
Gg, of S; is irreducible and compact for every .

We give the Campana’s definition of the chain connectedness:

Definition 5.11. Let S C Chow(X) be a covering family of X. For s1,...,s, € S we
say that Zs,, ..., Zs, form an n-chain of S if the union of their supports is connected.
Two points z, 2" € X are called S-equivalent if and only if x and 2’ can be joined
by a n-chain for some n € N, depending on x,2z’. In which case we say that x and
x' are n-equivalent.

As every point x € X is connected to itself by a 1-chain, this defines an equivalence
relation R(S) on X.

X is called S-connected if R(S) has a single equivalence class (i.e. any two points
can be connected by some n-chain).

We define

R,(S) :={(z,y) € X x X : x,y are n-equivalent}, R(S):= ZRn(S).

neN

In particular, let R° be an irreducible component of R, (S). Then R? is said to be
significant if it contains Ax (Ax is the diagonal of X x X). We denote by R2 the
union of the significant irreducible components of R,,(.5).

Remarks 5.12.

(a) Campana’s relation is not the rational connectedness which we defined at the
beginning of this chapter. In fact the families that Campana considers are not
strictly contained in Chow;(X), but they can parametrize effective d-cycles
with d > 1.

However, if S is contained in Chow;(X), the two definitions are equivalent.
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5.2 Campana’s construction

(b) If Z; is a member of the family S, that does not meet any other member of the
family S (i.e. |Zs| N |Zy| # 0 = s = &), then |Z,] is an equivalence class for
R(95).

(c) For an irreducible covering family, the non-significant components have no in-
fluence on the graph of the equivalence relation.

(d) If S is not normal, let v : S” — S be its normalization. Then the morphism
v corresponds to an analytic family of n-cycles parametrized by S’. In fact
this family contains the same cycles as S, but the same cycles Z, will appear
several times, if s € S is not a normal point. This also shows that normalizing
does not change the equivalence relation R(S) induced on X.

Definition 5.13. Let X be a compact connected normal complex space, S an
irreducible covering family for X and Gg the incidence graph. Then S is said to be
stationary if

(1) px : Gs — X is a modification
(2) dim(R{(S)) = dim(R$(S))
Now we define the fibrations in the analytic context:

Definition 5.14. A fibration f : X --+ Y is a surjective meromorphic map between
irreducible compact complex spaces such that the generic fiber of f is irreducible.

Remark 5.15. A fibration induces an equivalence relation on X in the following
way: two points x,2’ € X are l-equivalent if there exists a y € Y such that
z,2' € f~Y(y), where f~!(y) is a fiber of f ([Cam04, Definition 1.2]).

As every point x is connected to itself, the graph of 1-chain R;(f) € X x X is
symmetric and contains the diagonal, hence induces an equivalence relation on X,
whose graph will be denoted R(f) C X x X

Definition 5.16. Let S be a covering family for a compact connected normal
complex space X, and let S; C S be an irreducible compact component.

A fibration f : X --» Y on a compact connected normal complex space Y is
S-subordinate if a general fiber of f is contained in an S-equivalence class. We
denote by F(X,S) the set of S-subordinate almost holomorphic fibrations of X.
For f € F(X,S), S; is called f-covering if f o pl : G, --+ Y is surjective, where
G, is the incidence graph of S; and p’y : G5, --» X is the projection to X.

Remark 5.17. Notice that the fibration f is subordinate to S if and only if R(f) C
R(S). Moreover, S; is f-covering if and only if a general fiber of f meets some cycle
parametrized by S;.
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5.2 Campana’s construction

Campana proves the following result:

Theorem 5.18. Let X be a compact connected normal complex space and let S C
Chow(X) be a covering family for X. Then there exists a fibration qs : X --+ Xg
such that its general fiber is an equivalence class for R(S).

Furthermore qs 1s almost holomorphic and unique up to equivalence of meromorphic
fibrations. The map qs is called the S-quotient of X.

It is the analytic version of Theorem (5.4). We don’t show the proof, but we give a
sketch of the construction of the S-quotient.
Step 1. S is an irreducible stationary covering family for X.

Since S is an irreducible covering family for X, we have the following base diagram:

Ggp—X>X

|

S

In this particular case, Campana shows that

Theorem 5.19. The map qs := ps o (px)~' : X --+ S is an almost holomorphic
fibration which is the S-quotient of X.

Step 2. S is an irreducible covering family for X, but it is not stationary.

Campana constructs an irreducible stationary compact covering family S’ that in-
duces the same equivalence relation of S on X, so he can apply the previous result
and find the S-quotient. The S-quotient is the S’-quotient.

In particular, the generic member of this stationary family consists of the set R, (z)
of all y € X which are n-equivalent to x, for a general point x € X, and n sufficiently
large, but independent of = (see [Cam04, Section 1.6]).

Step 3. S is a covering family for X.

By definition, S is an at most countable disjoint union of compact irreducible sub-

varieties S; C Chow(X), i.e. S =, S

Consider a S-subordinate almost holomorphic fibration f : X --» Y and define
S:={S; C §|S;isa f-covering irreducible component of S}

Then there are two possibilities:

(a) For every S; € S, a general cycle of S; is contained in a fiber of f. Then f is
the S-quotient.
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5.2 Campana’s construction

(b) Assume that there exists S; € S such that a general cycle of S; is not contained
in a fiber of f. Then Campana constructs an irreducible compact covering
family S’ of X such that the S’-quotient gs : X --+ X satisfies the following
properties:

eJg:Y --» Xg an almost holomorphic mapping such that g5 = go f (i.e.
f is subordinate to S’);

e R(S;) C R(S") and R(S") C R(S).

In particular, g € F(X,5), so he can replace f by g and repeat the con-
struction.

Campana continues until all f-covering irreducible components satisfy the case (a).
Then the “last” f is the S-quotient.

Now, following the Campana’s steps, we define the quotient in a particular case: we
consider two quasi unsplit families of rational curves and we construct the rationally
connected fibration with respect to them.

Example 5.20. Let X be a smooth complex projective variety.

Let V,W € Ratcurves™(X) be quasi unsplit families of rational curve on X. We
consider the Chow families V, W C Chow(X) associated to V,W: in particular,
V, W are irreducible components of Chow(X).

We assume that V' is a dominating family and W is a horizontal dominating family
with respect to the re(V)-fibration (or V-quotient), and we define

S =VUW.

Using the Campana’s method, as already said, we want to construct qg, the S-
quotient (in the language of [Kol96], ¢g is the re(V, W)-fibration).

Note that V is an irreducible covering family of X, so we can consider the V-quotient
(or re(V)-fibration) gy:

bx
Gy

7

X (5.1)

by s qv

Ve
¥

VI

qy = Py © (px)f1 is the V-quotient

By Campana’s construction, )’ is an irreducible stationary compact covering family
of X such that the generic member of V' consists of the set R,,(z) of all y € X which

36



5.2 Campana’s construction

are n-equivalent to x with respect to V, for a general point x € X, and n sufficiently
large, but independent of z.

We denote by I, the indeterminacy locus of gy.!

The V-quotient is a S-subordinate almost holomorphic fibration because R(qy) C
R(S).

Moreover, since W is a horizontal dominating family for the V-quotient, the general
fiber of ¢,y meets some cycle parametrized by W, i.e. W is a qy-covering irreducible
component of S.

Hence we can construct an irreducible compact covering family S* of X such that
the S'-quotient gg1 : X --+» Xgi is the S-quotient.

By our assumptions, for a generic w € W, dim(qy(|Z,|)) > 0 and the generic cycle
Z, is not contained in I, nor in any exceptional fiber of the fibration qi. We set
\Z%| = |Zw| \ 1, and we define qy(|Z,]) = qv(|Z%]). By construction, gy (|Z,|)
is an irreducible compact cycle in V' and up to restricting to a Zariski open set
W* C W we can suppose the family of cycles to be equidimensional.

In particular, {qy (| Zy|) }wew~ is an analytic family in V'

If ' € W x V' is the closure of the incidence graph of this family, then the general
fibers of the projection of I' on W are equidimensional, hence there exists a mero-
morphic map ¢ : W --» Chow(V').

Let W* be the normalization of the closure of the image of p. W* parametrizes an
analytic family on V' which is irreducible, compact and covering.

If we restrict W* a bit further, we can prove that Z' := ¢, (qv(|Z,|)) for w € W*
defines an analytic family in X. As before, it follows that there exists a meromor-
phic map ¢ : W --» Chow(X).

Normalizing its image, we obtain an irreducible analytic family S* which is compact
and covering.

In particular, Z! = q¢;*(qv(|Zs|)) is a generic member of the family S, and the
Sl-quotient is the S-quotient.

Since S! is not necessary stationary, we consider the associated irreducible station-
ary compact covering family S* C Chow(X) (see the second step of the Campana’s
construction). So we have that

bx

G X (5.2)

Ps1 . qst
7
Vs

Sl

gst = pst © (px)_1 is the S-quotient

In [Cam04], the indeterminacy locus of gy is the set of points # € X where the fiber of the
first projection p}l(m) C T (T is the closure of the graph of ¢y) is not a singleton.
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5.2 Campana’s construction

such that

(1) px is birational (i.e. px is a modification) and gs: is almost holomorphic;
(2) a general fiber of gs1 is a S'-equivalence class;

(3) a general fiber of gs1, hence of pg1, is irreducible.

Remark 5.21. Note that this example is very helpful to understand the general
case: let V1, ..., V¥ (k € N) be k quasi unsplit families on X such that V1! is
dominating and V' is horizontal and dominating with respect to the (V'U...UV*™1)-
quotient (or the rc(VY, .- V¥)-fibration) and we want to construct the quotient
with respect to these families.

Since we assume that V' is horizontal and dominating with respect to the (V' U
..UV h-quotient ggi—1 for every i = 2,...,k, V' is gsi-1-covering.

So, to construct the (W' U ... U V¥)-quotient, it is enough to iterate (k — 1) times
the construction. In particular, we obtain an irreducible compact stationary family
S C Chow(X) such that

bx
Gs

X (5.3)

bs < gs

S

¥

qs = ps © (pX)*1 is the S-quotient
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Chapter 6

Families of rational curves and the
Kleiman-Mori cone

In this chapter we list some conditions under which the numerical class of every
curve lying in some subvariety S of a projective variety X is contained in a linear
subspace of N;(X) or in a subcone of NE(X).

Moreover we will prove some properties of the rationally connected fibrations with
respect to k£ quasi unsplit Chow families.

The results that we will show will give some important informations about the
structure of the Kleiman-Mori cone of the variety and about the extremality of the
quasi unsplit families which we consider for the fibration.

Notation 6.1. Let X be a smooth complex projective variety.

If ' is a 1-cycle on X then we will denote by [I'] its numerical equivalence class
in Ni(X); if V is a family of rational curves, we will denote by [V] the numerical
equivalence class of any curve among those parametrized by V.

If V is a Chow family of rational 1-cycles, we will denote by [V] the numerical class
in NE(X) of the general cycle of the family V.

If S ¢ X, we will denote by N;(S,X) € N;(X) the vector subspace generated
by numerical classes of curves of X contained in S; moreover, we will denote by
NE(S,X) € NE(X) the subcone generated by numerical classes of curves of X
contained in S.

Let V1,..., V¥ be k unsplit family of rational curves. We write by abuse of notation

N(S,X) = ([V'],.... [V¥]) or Ni(S,X) = ([T1],....[Tk])

if the numerical class in X of every curve I' C S can be written as [I'] = ). a,[I';]
with a; € Q and T is a curve parametrized by V¢, and similarly

NE(S,X) = ([VY],...,[V*]) or NE(S,X) = {([T4],..., [T
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6.1 Chow families and the Picard number

if the numerical class in X of every curve I' C S can be written as [I'] = ). a,[I';]
with a; € Q¢ and T; is a curve parametrized by V.

6.1 Chow families and the Picard number

Let X be a smooth complex projective variety of dimension n.

Lemma 6.2. Let Y C X a closed subset and V a Chow family of rational 1-
cycles. Then every curve contained in Locus(V)y is numerically equivalent to a
linear combination with rational coefficients of a curve contained in'Y and irredu-
cible components of cycles parametrized by V which intersect Y .

Proof. We define Vy := p(i~'(Y N Locus(V))) and Uy := p~*(Vy), and we consider
the following diagram

7

Uy
p

X

Vy

Let C' be a curve in Locus(V)y which is not an irreducible component of a cycle
parametrized by V. Then i~!(C') contains an irreducible curve C” which is not con-
tained in any fiber of p and dominates C' via 1.

Let B := p(C") and let S be the ruled surface p~(B).

Let C§ be a curve in S which dominates B and whose image via ¢ is contained in
Y’; such a curve exists since the image via 7 of every fiber of pjg meets Y.

By [Kol96, 11.4.19] every curve in S is algebraically equivalent to a linear combina-
tion with rational coefficients of C§, and of the irreducible components of fibers of
Pis-

Thus any curve in i(S), and in particular C| is algebraically equivalent in ¢(Uy) =
Locus(V)y (and hence in X) to a linear combination with rational coefficients of
i.(C} ) and of irreducible components of cycles parametrized by Vy. ]

Corollary 6.3. Let Y C X be a closed subset, V', ..., V¥ Chow families of rational
1-cycles, m a positive integer.
Then every curve contained in ChLocus,(V',...,V¥)y is numerically equivalent to

a linear combination with rational coefficients of a curve contained in'Y and irre-
ducible components of cycles parametrized by V', ..., V¥,

Proof. Recalling that
ChLocus,,(V', ..., V¥)y = U Locus(V'D . Vi),

1<i(5)<k
1<s<m
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we have that every irreducible component of ChLocus,,(V!, ..., V¥)y is contained in
Locus(V'), ..., V®)y for some s-uple (i(1),...,i(s)).

Thus we must describe the numerical classes of the curves contained in the locus
Locus(V'® ... Vi{))y. Applying s times Lemma (6.2) to Locus(V'M ... Vi),
with Yy = Y and Y; = Locus(V'V, ..., Vi))y we obtain that every curve contained
in Locus(V'™, ..., V®))y is numerically equivalent to a linear combination with
rational coefficients of a curve contained in Y and irreducible components of cycles
parametrized by Vi) . Vi), O

Proposition 6.4. Let V', ..., V¥ be Chow families of rational 1-cycles on X and let
7: X% — Z° be the re(VY, ..., V¥)-fibration.

Let Y C X be a closed subset which dominates Z° via w; then every curve in X is
numerically equivalent to a linear combination with rational coefficients of a curve
contained in Y and irreducible components of cycles in V', ..., V*.

Proof. By Theorem (5.4), every pair of points in a general fiber of m can be con-
nected by a chain of l-cycles belonging to V',...,V* of length at most M =
2dimX7dimZ —1.

Then, since Y is closed and dominates Z° via 7, ChLocusy (VY. .., V¥)y is dense
in X and is closed.

Thus X = ChLocusy/(V!,...,V*)y and the statement follows from the previous
corollary. O]

Corollary 6.5. Suppose that X is rationally connected with respect to some Chow
families V1, ..., V¥, then every curve in X is numerically equivalent to a linear com-
bination with rational coefficients of the irreducible components of cycles parametri-
zed by V1, ..., VF. In particular, if X is rationally connected with respect to k quasi
unsplit families then px < k.

Proof. Since the rc(V!, ..., V¥)-fibration 7 : X — {x} is the constant map, the claim
follows from Proposition (6.4) taking Y to be any point of X. To show the second
part it is enough to recall that all cycles parametrized by a quasi unsplit family are
numerically proportional by definition. O

6.2 Unsplit families and the Picard number

Let X be a smooth complex projective variety of dimension n.

Lemma 6.6. Let Y C X be a closed subset and V' an unsplit family of rational
curves. Then every curve contained in Locus(V)y is numerically equivalent to a
linear combination with rational coefficients

Ay + ul'y
where 'y is a curve in'Y, 'y belongs to the family V and A > 0.
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Proof. Let ' be a curve contained in Locus(V)y. If ' C Y or I is a curve parame-
trized by V' we have nothing to prove, so we can suppose that this is not the case.
Using the notation of diagram (4.1), we define V3 := p(:~*(Y N Locus(V)) and we
have that i~!(I") contains an irreducible curve I'" which is not contained in a fiber of
p and dominates I' via . Let B := p(I") C Vy, let v : B — B’ be the normalization
of B’ and let S be the normalization of B xy U.

By standard arguments (see for instance [Wis89, 1.14]), it can be shown that S is
a ruled surface over the curve B. Then, we can consider the following diagram:

J

S X

B

Let f be a fiber of m and let I'y be a curve in S which dominates B and whose
image via j is contained in Y’; such a curve exists since the image via j of every
fiber of p meets Y.

Since S is a ruled surface, every curve in S is algebraically equivalent to a linear
combination with rational coefficients of I'y and f.

Therefore every curve in j(.S) is algebraically, hence numerically, equivalent in X
to a linear combination with rational coefficients

where j,(I'y) is a curve in Y or is the zero cycle, and j.(f) is a curve of the family
V.

Note that the proof actually yields that A > 0; in fact, let I's be an irreducible curve
in S which dominates I' via j. In S we can write I's = A\I'y 4+ 0 f and, intersecting
with f we have A > 0. ]

Corollary 6.7. Let V' be a family of rational curves and x a point in X such that
V. is proper. Then Ny(Locus(V),, X) = ([V]) and NE(Locus(V),, X) = ([V]).

Corollary 6.8. Let V! be a locally unsplit family of rational curves and V2,... V¥
unsplit families of rational curves. Then, for a general point x € Locus(V') either

Locus(VY,....VF), =0 or
Ni(Locus(V,...,V*) ., X) = ([V'],...,[V*]).

Corollary 6.9. Let R be an extremal ray of X, Wr a family of deformations of a
minimal extremal curve in R, x a point in Locus(Wg) and V' an unsplit family of
rational curves, numerically independent from Wg.

Then N E(ChLocus, (V) Locusowp.: X) = ([V], [Wg]).
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Proof. Note that

ChLocus,, (V) = Locus(V)

Locus(wg). ChLOCUSm—l(V)LocuSMR)z

Then, iterating Lemma (6.6) m times, we have that any curve I, which is contained
in ChLocusm(V)LOCUS(WR) , is algebraically equivalent to a linear combination with

rational coeflicients
I' =)' 4+ 0y

where [I'1] € Wg, [I'v] € V and A > 0. We want to prove that § > 0.

Suppose that 6 < 0. Then we can write I'y = ol'y 4+ 6C with o, 3 > 0.

But, since I'; is extremal, it follows that both [['] and [I'y] belong to the extremal
ray R, and this a contradiction. O]

Remark 6.10. More generally, if o is an extremal face of NE(X), F' is a fiber of
the associated contraction and V' is an unsplit family whose numerical class doesn’t
belong to o, then N E(Locus(V) g, X) = ([V], o).

Lemma 6.11. Let Z C X be a closed subset and let V', ..., V¥ be unsplit families
of rational curves.

Then every curve contained in ChLocus(VY, ..., V¥)y is numerically equivalent to a
linear combination with rational coefficients

)\FZ + pval —I— e —f- Mkrvk

where Tz is a curve in Z, Uy is a curve parametrized by V' (i = 1,...,k) and
A>0.

6.3 Properties of rationally connected fibrations

In this section, we will use the Campana’s notation (see Example (5.20)). For all
the material in this section the references are the articles [BCDO07], [NOO0S8], where
the following results are proved for a covering quasi unsplit Chow family of rational
1-cycles.

Let X be a normal irreducible complex projective variety.

Let V1, ..., V¥ be k quasi unsplit families of rational curves. Let V', ..., V* be the
Chow families of rational 1-cycles associated to V!,... V¥,

We define S = V' U...UV*.

Assume that V1! is dominating and V? is a horizontal dominating family with re-
spect to the (V' U ... UV Y)-quotient (or the re(V!, ..., Vi~1)-fibration) for every
i=2.. . .k

Then, as already observed in Remark (5.21), we can construct an irreducible com-
pact stationary family S C Chow(X) and the (V' U ... U V¥)-quotient
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bx
Gs

X (6.1)

bs < 4gs

Y
¥

S

gs = pso (px)*1 is the S-quotient

such that

(1) px is birational (i.e. px is a modification) and gs is almost holomorphic;
(2) a general fiber of ¢s is a S-equivalence class;

(3) a general fiber of ¢s, hence of pg, is irreducible.

Notation 6.12. Now, we fix the following notation:

€ =DpPx, P=Ds, q:=(s.

We denote by E the exceptional locus of e := px and B := px(E) = e(F) C X.

We denote by fs the dimension of the general fiber of q.
Note that fs = dim X — dim S.

Definition 6.13. A subset Z of X is S-rationally connected if every connected
component of Z is contained in some S-equivalence class.

Lemma 6.14. Let X be a normal projective variety. Let V',..., V¥ be k quasi
unsplit families of rational curves such that V' is dominating and V' is horizontal
and dominating with respect to the (V' U...U V™) -quotient for everyi=2,...,k.
Consider the diagram (6.1). Then e(p~'(s)) is S-rationally connected for any s € S.

Proof. (See [BCDO07, Lemma 1.]) Let R(S) C X x X the graph of the equivalence
relation defined by S: by [Cam04, Lemma 1.14] it is a countable union of Zariski
closed and compact subsets. The fiber product Gs xs Ggs is irreducible and from
the properties (1),(2),(3) of the S-quotient it follows that (e x e)(Gs xs Gs) C
R(S). Therefore, for any = € e(p~!(s)), the cycle e(p~'(s)) is contained in the
S-equivalence class of x. O

Proposition 6.15. Let X be a normal and Q-factorial projective variety.

Let VY, ..., V¥ be k quasi unsplit families of rational curves such that V' is dominat-
ing and V' is horizontal and dominating with respect to the (V*U.. .UV 1)-quotient
for everyi=2,... k.

Consider the diagram (6.1). Then:
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(1) e(p~'(s)) is a S-equivalence class of dimension fs Vs € S\ p(E);

(2) B is the union of all S -equivalence classes of dimension greater than fs.

Proof. (See [BCDO7, Proposition 1.]) Set X? := X\ B and §° := §\ p(E). Choose
a very ample line bundle L on S, and let U C |L| be the open subset of divisors
H that are irreducible and such that H N 8% # (). For any H in U, we define
H = q—l(H N SY), which is a Weil divisor in X. Since X is Q-factorial, some
multiple of H defines a line bundle L on X.

Let now N := h°(L), and let g1, ..., gn be general global sections generating L. For
each j =1,...,N, let H; € |L| be the divisor of zeros of g; and PA[]- in X as defined
above.

We want to prove that B = ﬁl Nn..N }A[N.

(D) If ¢ B, then e~! is defined in x and so, by definition, ¢ = poe™! is deﬁned in
x. Moreover there is some jy € {1,..., N} such that ¢(x) ¢ Hj,. Then = ¢ H,,,
xz g H1 n...N HN

(C) Let z € B and fix j € {1,..., N}. Then e~!(x) has positive dimension.

Let C' C Ggs be an irreducible curve such that ¢(C') = z. Then p(C) is a curve in
S, hence H; Np(C) # 0 and p~*(H;) N C # 0.

Since p~*(H;) doesn’t contain any component of F, e(p~(H;)) is a divisor in X
which coincides with ﬁj over X \ B. This implies that }AIJ- =e(p ' (Hj)) and x € fl\]
for every j. Then we have that x € ]?h Nn..N fIN.

Let C be a irreducible curve in X such that H-C =0 for some H € U. We want
to prove that either C C B, or C N B =0 and ¢(C) 1is a point.

Suppose that C' € B. This 1mphes that there is some j € {1 ., N} such that C
is not contained in H Then, as H-C= 0, we have that H C’ = 0, and hence
C’ﬂHj =(. AsB=H,N..NHy, we have CN B = (.

Now we want to prove that ¢(C) is a point. Suppose by contradiction that ¢(C') is
a curve. Then there exists Hy € U such that Hy intersects ¢(C') in a finite number
of points. Then ﬁo intersects C' without containing it. Hence f-\IO .C > 0. But H
and ﬁfo are numerically equivalent, so H-C> 0, and this is a contradiction.

Now we want to prove that B is closed with respect to S-equivalence.

To show this statement, first of all, we claim that ?[j Vi=0foreveryi=1,..., k.
Observe that V!, ..., V¥ are quasi unsplit and a general cycle of the family S is
contained in a fiber of ¢ disjoint from H;. In particular, by the definition of S, for
every ¢ a general cycle parametrized by V’ is contained in a fiber of ¢ disjoint from
H This implies that H Vi=0 for every i = 1,...,k and, as V' is quasi unsplit,
we have that every 1rredu01ble component C' of a cycle parametrized by V' is such
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We consider an_irreducible component C; of a cycle of V' such that C; N B # 0.
We know that H - C; = 0 and so, by what we proved above, we can conclude that
C C B.

Hence B is is closed with respect to S-equivalence, and in particular, for a S-
equivalence class I, either F C B or N B = ).

Let F' be a S-equivalence class such that ¥ N B = (). Consider an irreducible
component C of a cycle of V¢ for some ¢ such that ¢ C F.

Since V1, ..., V¥ are quasi unsplit, we have H - C = 0, hence ¢(C) is a point by
what we proved above. By definition of S-equivalence, we get ¢(F') = sg € S and
F C e(pi(s0)).

But, from Lemma (6.14) it follows that e(p~'(sp)) is contained in a S-equivalence
class, and then we have that F' = e(p~'(sg)). Clearly sy € Sy because F' N B = ),
and so F'is a proper fiber of ¢ of dimension fs.

For any =z € X, we define S, := p(e~'(x)) be the family of cycles parametrized by
S and passing through z, and we consider e(p~1(S,)).

Notice that, for any s € S, € e(p~'(s)) and e(p~'(s)) is contained in a S-equi-
valence class. Hence e(p™(S,)) is S-rationally connected for any = € X.

Note that dim S, = dim e~!(z). By Zariski’s Main Theorem

dimS, >0 x € B

Hence, if x € B, then
dime(p™(S,)) > fs +1

Now let F' be a S-equivalence class contained in B, and x € F. Then e(p~(S,))
has dimension at least fs + 1 and is contained in F', hence dim F' > fs + 1, i.e. B
is the union of all S-equivalence classes of dimension bigger than fs. m

Proposition 6.16. Let X be a normal and Q-factorial projective variety.

Let V', ..., V¥ be k quasi unsplit families of rational curves such that V' is dominat-
ing and V' is horizontal and dominating with respect to the (V*U.. .UV 1) -quotient
for every i =2,... k. Consider the diagram (6.1).

If B is S-rationally connected, then [V, ... [V*] belong to an extremal face ¥ of
NE(X) and dim ¥ = k.

Proof. (See [BCDO7, Proposition 2.]) Set X?:= X\ B and S§° := S\ p(E). Choose
a very ample line bundle L on S, and let U C |L| be the open subset of divisors
H that are irreducible and such that H & p(F). For any H in U, we define
H:=q¢ ' (HNSY).

Recall that, as already proved in the proof of Proposition (6.15), B = HiN...nHy for
some Hy,...,Hy € U. We want to prove that H is nef. Suppose by contradiction
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6.3 Properties of rationally connected fibrations

that there exists an irreducible curve ' C X such that H-C<0.

This implies that H;-C' < 0 for every j = 1,..., N, and so we can conclude that C' C
B. By hypothesis, B is S-rationally connected, hence C' is numerically equivalent to
a linear combination of irreducible components of cycles parametrized by the Chow
families V', ..., V¥ which are quasi unsplit. Therefore [C] € ([V!],...,[V*]). From
this it follows that H-C=0 because, as already shown in the proof of Proposition
(6.15), H-V* =0 for every i = 1,...,k. But this is a contradiction.

Finally, we show that

H-C=0s[Cle(VY,....[V¥).

Note that if /- C = 0, then, by the proof of the previous proposition, C' C B or
C' is contained in a fiber of ¢, both are S-rationally connected. Then, as already
observed before, [C] € ([V],..., [V*]). O

Lemma 6.17. Let X be a normal and Q-factorial projective variety.

Let V1, ..., V¥ be k quasi unsplit families of rational curves such that V1 is dominat-
ing and V' is horizontal and dominating with respect to the (V*U.. .UV 1)-quotient
for everyi=2,... k.

If dim B = fs + 1, then every connected component of B is a S-equivalence class.

Proof. (See [BDCO7, Lemma 3]). O

The previous results can be summarized in the following proposition:

Proposition 6.18. Let X be a normal and Q-factorial projective variety.

Let VY, ..., V¥ be k quasi unsplit families of rational curves such that V' is dominat-
ing and V' is horizontal and dominating with respect to the (V*U.. .UV 1)-quotient
for everyi=2,... k. Then

(1) either B=10 ordim B > fs+1;

(2) if B=0 orifdim B = fs+ 1 then [V],... [V*] belong to an extremal face %
of NE(X) and dim X% = k.

Theorem 6.19. Let X be a normal and Q-factorial complex projective variety. Let
V..., V¥ be k quasi unsplit families of rational curves such that V' is dominating
and V' is horizontal and dominating with respect to the (V' U ... U V1) -quotient
for everyi=2,... k.

If fs > n — 3 then [VY],... [V*] belong to an extremal face 3 of NE(X) and
dim> = k.

Proof. Suppose that B is not empty. By Proposition (6.18) (1), we have that
dmB > fs+1>n—2.

But, since X is normal, dim B < n — 2. Hence dim B =n — 2 = fs + 1. Then, by
Proposition (6.18) (2), [V1],...,[V¥] belong to an extremal face 3 of NE(X) and
dim ¥ = k. ]
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Lemma 6.20. Let X be a smooth complex projective variety. Let V1 ..., V* be
k quasi unsplit families of rational curves such that V' is dominating and V' is
horizontal and dominating with respect to the (V' U ... U V™) -quotient for every
i=2,.. k

Consider the diagram (6.1). Let D be a very ample divisor on q(X \ B) and let
D :=q'D. Then

(1) D-Vi=0 for everyi=1,...,k;

(2) if C ¢ B is a curve whose numerical class doesn’t belong to ([V!], ..., [V*]),
then D -C > 0;
(3) if [VY,...,[V*] don’t belong to a k-dimensional extremal face ¥ of NE(X),

then there exists a curve C C B such that

[C]¢ (VY,....,[V¥]) and D-C <0

Proof. (See [NOO08, Lemma 2.2]) By Campana’s construction, a general cycle of V*
is contained in a fiber of ¢ disjoint from ZA?, so D-Vi=0 for every i =1,... k.

If C is as in (2), then ¢(C) is a curve in S and the result follows from projection
formula.

Finally, if [VAl], L[V don’t belong to a k-dimensional extremal face X of NE(X),

then either D is not nef or D is nef but
Dy N NE(X) 2 (V'],...,[V*)).

In both cases there exists a curve C' C X such that [C] &€ ([V!],...,[V*]) and
D-C < 0. This curve must be contained in B by the proof of Proposition (6.15). [J

Lemma 6.21. Let X be a smooth complex projective variety. Let V', ..., V¥ be
k quasi unsplit families of rational curves such that V' is dominating and V' is
horizontal and dominating with respect to the (V' U ... U V™Y -quotient for every
1=2,...,k.

Consider the diagram (6.1). Let Z C X be an irreducible subvariety such that
(VY,...,[V})NNE(Z,X) = {0}.

Then there exists an irreducible component Xz of ChLocus(V', ..., V¥), containing
Z and such that

(1) if Z ¢ B, then dim Xz > dim Z + fs;
(2) if Z C B, then dim Xz > dim Z + fs + 1.

Proof. (See [NOO08, Lemma 2.4]). O
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Proposition 6.22. Let X be a Fano manifold. Let V',... V¥ be k quasi unsplit
families of rational curves such that V' is dominating and V' is horizontal and
dominating with respect to the (W U ... U V1) -quotient for everyi =2,... k.
Let q: X --» S be the (V' U...UVF)-quotient and suppose that dim S > 0.

Then either [V, ... [V*¥] are contained in a k-dimensional extremal face of NE(X)
or there exists a small extremal ray R whose exceptional locus is contained in the
indeterminacy locus of q.

Proof. Let D be a divisor as in Lemma (6.20). Suppose that [V1], ..., [V¥] are not
contained in a k-dimensional extremal face of NE(X). Since X is Fano, by Lemma
(6.20) (3), there exists an extremal ray R, whose exceptional locus is contained in
B and such that D - R < 0.

Note that dim B < n — 2, and so R is a small extremal ray. O

Remark 6.23. Denote by F' the general fiber of the extremal contraction associated
to R. By the Fiber Locus inequality, dim F' > (ix + 1). In particular ' C B, and
we can consider ChLocus(V!, ..., V¥)p.

By Lemma (6.21), we have

dim ChLocus(V', ..., V*)p > (ix + 1) + fs + 1.
By Proposition (6.15), B is closed with respect to S-equivalence, and so
ChLocus(V',...,V¥)r C B.
This implies that
dim ChLocus(V', ..., V¥)p < dim B <n — 2
= fs<n—4—ix

Corollary 6.24. Let X be a Fano manifold. Let V',...,V* be k quasi unsplit
families of rational curves such that V' is dominating and V' is horizontal and
dominating with respect to (V' U ... U V' 1)-quotient for every i = 2,... k. Let
q: X --+8 be the VY U...UV¥)-quotient and let fs the dimension of the general
S-equivalence class.

If fs >n—3—ix, then [V1],... [V¥] belong to a k-dimensional negative extremal
face 3 of NE(X).
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Chapter 7

Conic connected manifolds

In this chapter, we will study polarized manifolds (X, L) which are rationally con-
nected with respect to rational curves of degree 2 with respect to a fixed ample line
bundle L. These manifolds are called conic connected.

Conic connected manifolds were studied by Paltin Ionescu and Francesco Russo in
[TRO7]. They considered conic connected manifolds embedded in PV i.e. the line
bundle L which give the polarization is taken to be very ample. The main result of
their paper is a classification theorem for these manifolds.

We want to show that their classification result holds true assuming just the am-
pleness of L.

Moreover, in the last section, we give a different proof of a theorem due to Kachi
and Sato; this result characterize a special subclass of conic connected manifolds.

7.1 Conic connected manifolds

Definition 7.1. Let (X, L) be a polarized manifold (X is a smooth complex pro-
jective variety of dimension n and L is an ample line bundle on X). Suppose that
two general points z, 2’ € X may be joined by a rational curve C C X, i.e. X is a
rationally connected manifold. Define d := L - C.

e If d =1 then X is called line connected.
o [f d =2 then X is called conic connected.
e if d = 3 then X is called rationally cubic connected.

Remark 7.2. X is line connected if and only if (X, L) ~ (P™, Opn(1)).

For conic connected manifolds, assuming L to be very ample, as already said,
Ionescu and Russo proved the following classification result:
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Theorem 7.3. ([IR07, Theorem 2.2]) Let X C PN be a smooth irreducible linearly
normal non-degenerate conic connected manifold of dimension n.
Then either X C PY is a Fano manifold with Pic(X) ~ Z{Ox (1)) and of index

rx > ”T“, or it is projectively equivalent to one of the following:

(1) the Veronese variety vo(P") C P@;

(2) the projection of va(P"™) from the linear space (vo(P*)), where P C P" is a linear
subspace; equivalently X ~ Blps(P") embedded in PN by the linear system of
quadric hypersurfaces of P" passing through P*; alternatively X ~ Ppr () with
e~ Opr (1) @ Opr(2), r = 1,2,...,n — 1 embedded by |Op(1)|. Here
N — n(n+3) (s+2

2

5 ) and s is an integer such that 0 < s <n — 2;

(3) a hyperplane section of the Segre embedding P* x P* C PN*1. Here n > 3 and
N=ab+a+b—1, where a > 2 and b > 2 are such thata+b=n+1;

(4) Pe x P* C P+t Segre embedded, where a,b are positive integers such that
a+b=n.

Now we give a generalization of Theorem (7.3): we consider polarized manifolds
which are conic connected, and we show that we obtain the same classification of
Tonescu and Russo.

Theorem 7.4. Let (X, L) be a polarized manifold of dimension n. Assume that X
is a conic connected manifold. Then either X is a Fano manifold with Pic(X) ~
Z{Ox (1)) and of index rx > " and L ~ Ox (1), or

2 7

(1) (X, L) = (P, Op(2));
(2) (X,L) ~ (]P)]pnf'ﬂrl(O]pnf'rJrl(].)eB(ril) @ Opn-r+1(2)), Ox (1)) where 2 < r < n;

, ~ (Pps @ Ops =), Ox where s < ==, r > 2,5 > 2 an
3) (X,L) ~ (Pps(TP* & Op: (1)), Ox(1)) wh adl 2 2 and
r+s=n+12>4;

(4) (X, L) >~ (P"xP*, Opryps (1)) where r, s are positive integers such that r+s = n.

Proof. By Remark (2.6) there exists a dominating family V' of rational curves such
that two general points z, 2’ € X may be joined by a rational curve parametrized
by Vand L-V = 2.

Let z € X be a general point and let V, be the subscheme of V' parametrizing
rational curves among those parametrized by V' passing through z.

By [Deb01, Proposition 4.9], if f : P! — X is a general curve parametrized by V,
then f is a 1-free curve, i.e.

f*TX >~ O]pl (al) D...D O]pl (an)
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with a1 > ay > ... > a, and a; > 2, a,, > 1.
This implies that

—Kx - f.P! :Zai >n+1.
1

But —Kx - f,P! = —Kx -V, then the anticanonical degree of the family V is greater
than or equal to n + 1.

Suppose that V' is locally unsplit: for the general point x € X, V, is proper.
Since Locus(V,) = X, every curve C' C X is numerically proportional to V| and so
px = 1. Moreover, by Proposition (4.10), we have

—Kx -V <dimLocus(V), +1=n+1

:>—KXV:n+1

In [Keb02] Kebekus proved that P is the only projective variety which admits a
dominating locally unsplit family of rational curves which has anticanonical degree
equal to n + 1. Thus, if V' is locally unsplit, then (X, L) ~ (P", Opa(2)).

Suppose that V' s not locally unsplit but it s quasi unsplit.

Let V be the Chow family associated to V. Since Locus(V), = X and V is quasi
unsplit, from Lemma (6.2) it follows that every curve C' C X is numerically pro-
portional to V', and so px = 1. In particular, since —Kx -V >n+ 1, X is a Fano
manifold. Note that —Ky = rx L, and hence

n—f-lS—KX'V:TxL'V:QTX

1
:>’I“in—2i_ .

Thus, if V is not locally unsplit but is quast unsplit, then X is a Fano manifold with
Pic(X) ~ Z{Ox (1)) and of index rx > 5L,

Suppose that V' is not locally unsplit and not quasi unsplit.
Now we divide the proof into three steps:

Step 1. Bound on px

Let {(W}, W2)}iz1..x be pairs of fellow families with respect to V: every family
VVij is a family of deformations of an irreducible component of a reducible cycle of
V and, since L-V = L- (W} + W2) = 2, W/ is unsplit.

For every i € {1,...,k} we consider the following subsets of X:

Locus(W;") U Locus(W?)

Locus(w?) Locusw})
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As W} and W7 are unsplit, Locus(W;') and Locus(W}?) are closed subset of X, and
therefore

Locus(W;") U Locus(W}?)

Locus(w?) Locusw})

are closed subset of X for every i € {1,...,k}.
Since V' is not locally unsplit, we have

X = U (LOCUS(Wz‘1>LocuS(W3) U LOCUS(Wf)Locus(W}))
i=1,k

Then there exists a pair of fellow families, which we denote by (W', W?), such that
X = LOCUS(Wl)LocuS(vW) or X = Locus(WW?)

Locusw)-
Assume without loss of generality that

X = Locus(Wl)LocuS(W2).
In particular, W' is covering. We can consider the rc(WW!)-fibration 7 : X --» Z.
Since V is not quasi unsplit, dim Z > 0 and, as X = Locus(WW!) W2 is a
horizontal dominating family with respect to .

Hence, we can consider the re(W?! W?)-fibration 7’ : X --» Z'.

Since W', W?2 are fellow families with respect to V, the map 7’ contracts curves
parametrized by V', and so 7’ is the constant map. Then, by Corollary (6.5), px < 2,
and, since we are assuming that V' is not quasi unsplit, this implies that px = 2.

Locusmw2):

We proved that py = 2, and now we study the Kleiman-Mori cone of X.
Step 2. Extremality of W1

We want to prove that an extremal ray of NFE(X) is generated by the numerical
class of the family W1

Let 2 be a point in Locus(W?), and we consider Locus(W™)1 ocusw), -
Take Y = Locus(W?),. By Lemma (6.6), every curve in Locus(W!)y is numerically

equivalent to a linear combination with rational coefficients
)\Fy + /Lrwl

where I'y is a curve contained in Y, I'yy1 belongs to Wt and A > 0.
From Corollary (6.7), NE(Y, X) = ([IW?]), and so every curve in X is numerically
equivalent to a linear combination with rational coefficients

Oérw2 + /l,rwl

where I'yy2 is a curve parametrized by W2, I'yy1 belongs to W' and o > 0.

This implies that [W?!] belongs to an extremal ray of N E(Locus(W1) X))

Locusw?2)
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Note also that

n > dim LocuS(Wl)Locus(WQ)I > dim Locus(W?), — Kx - W' —1
> (-Kx - W?=1)—Kyx -W'-1
> (n+1)—2=n-1

= dim Locus(W7) ="
M LOCUS\W ) Locus(w2), =\ n— 1

If dim LOCHS(Wl)LocuS(Wm = n, then the numerical class of W! belongs to an

extremal ray of NE(X).
Remark 7.5. If W? is not covering, from Remark (4.26), it follows that

dim Locus(W1) n

Locusw?2), —

and —Kx -V =n-+1.

Therefore, we suppose that dim LOCUS(Wl)Locus(W% = n — 1. This implies that
—Kx -V =n+1, and from Remark (4.11) it follows that 7?2 is covering.

Set D = Locus(W')[ocugapay,- D is an effective divisor and, since W', W? are
covering, D - W' >0 and D - W?2 > 0.
If D-W?' >0, then

X = ChLocus,(W1) = Locus(W)

Locusw?2), Locus(

Wl)LOCUS(WQ)x '
Thus, by Lemma (6.6) and Corollary (6.7), every curve in X is numerically equiv-
alent to a linear combination with rational coefficients

)\Fw2 + Mrwl

where I'yy2 belongs to W2, 'y is parametrized by W' and A > 0. This implies
that the numerical class of W! belongs to an extremal ray of NE(X).

Assume now that D - W1 = 0.

Recalling that every curve in D is numerically equivalent to a linear combination

arw2 -+ [l,le

with a > 0, a, p € Q, we can conclude that D)p is nef.

We observe that D - C' > 0 for every curve C' such that C' meets D but it is not
contained in D. Thus D is nef, and therefore the numerical class of W generates
an extremal ray of the Kleiman-Mori cone of X.
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We claimed that [W?!] generates an extremal ray of the Kleiman-Mori cone of X,
and now we want to describe X.

Step 3. Classification

To describe X, we divide our study into two cases:
1. W?2 is covering;

2. W2 is not covering,.

Case 1. We suppose that W? is a covering family.

From our assumptions, as already observed for W1, it follows that the numerical
class of W? generates an extremal ray of the Kleiman-Mori cone of the variety X.
Therefore W, W? are covering unsplit families of rational curves whose numerical
classes span the extremal rays of NE(X) (NE(X) = ([W?], [W?])).

Rwl !

(W2 Ry
Since W1, W? are covering, by [Deb01, Corollary 4.11] we have that
—Kx -W'>2and — Kx-W?>2

and so X is a Fano manifold.

Let ¢ be the Fano-Mori contraction of fiber type associated to the extremal ray Ry,
and let ¢ be the Fano-Mori contraction of fiber type associated to the extremal ray
sz .

Ysy X\be

Denote by F, a fiber of ¢ and by FJ a general fiber of . Analogously, denote by
Fy a fiber of ¢ and by F] a general fiber of 1.
By the Fiber Locusinequality, we have that

dimF, > —Kx - W' -1

dlme Z _KX ‘VV2 -1
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= dim F, + dim F, > —Kx - (W' + W?) -2
=dimF, +dimF, > (n+1)-2=n-1
Note that
dimY = dimX —dim F}
dimZ = dimX —dim F]
Moreover, dim F, < dim Z and dim F, < dimY because, if these inequalities are

not true, then there exists a curve whose numerical class belongs to Ry and Ryy2,
and it is impossible. Thus

n > dimF(p—l-dimFlg > dimFg—I—dimFi >n—1

=dmZ-1< dimFg <dim F, < dim Z

Therefore either ¢ is an equidimensional Fano-Mori contraction or there exist special
fibers such that dim F, = dim FJ + 1.
Similarly, we can prove that

dimY —1< dimeZ <dim F, < dimY

It follows that at least one of these elementary extremal contractions must be equidi-
mensional: suppose that ¢ is not equidimensional. We want to show that v is
equidimensional. N B

Let F' be a fiber of ¢ such that F' dominates Z (dim F' = dim Z and dim F =
dim Z —1). Then F meets every fiber of v, but the dimension of the intersection
Fn Fy, must be equal to 0. Therefore

n > dimﬁ%—dime = dim Z + dim Fy
(n — dim F) 4 dim F
= dim F, — dimFg <0
= dim Fyy = dim F]
i.e. ¥ is equidimensional.
Case 1.1 We assume that - Kx -V > n + 2.
We consider Locus(W*)p,. From Lemma (4.25) it follows that

dimFd,—KX-Wl—l

n > dim Locus(Wl)Fw >
> (—Kx - W?=1)—Kx-W'—1=n

:>dimF¢:—KX-W2—1and —Kx-V=n+2.
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Similarly, if we consider Locus(W?)r ., We can prove that
dimF, = —Kx - W' -1
Now, note that
Kx+ (dimF,+1)L=Kx+ (n—dimZ + 1)L
is a supporting divisor of 1) and
Kx + (dimF,+1)L =Kx+ (n—dimY +1)L

is a supporting divisor of ¢.

Then, by Definition (3.19), ¢ and ¢ are two equidimensional scrolls, and therefore,
by Remark (3.20), ¢ is a P-bundle onto a smooth variety Z ((X, L) ~ (P(ez), Ox(1))
where £ is an ample vector bundle on Z) and ¢ is a P-bundle onto a smooth variety
Y ((X,L) ~ (P(ey),Ox(1)) where ey is an ample vector bundle on Y').

Thus X is a smooth variety endowed with two different P-bundle structures, ¢ and
. Since fibers of different extremal ray contractions can meet only in points we
have that dim X < dimY + dim Z. But

dimY +dimZ = (n—dimF,)+ (n—dim Fy)
on — (—Kx - W' — Kx -W? -2)
= 2n—(n+2-2)=n

ie. dim X = dimY 4+ dim Z, and this is possible if and only if X = P" x P*, where
r=dimY and s = dim Z (it is a corollary of [La84, Theorem 4.1]). Hence we get
case (4) of the theorem.

Case 1.2 From now on we can assume that - Kx -V =n + 1.

Suppose that ¢, ¥ are equidimensional and dimF, = dimZ — 1.
Then

dimF, +dimFy = (dimZ —1)+dimF,
= n-—1
= dimF, =n—dimF, -1 =dimY —1

Note that dimY 4 dim Z = n 4+ 1 and in particular, since —Kx -V = n + 1, we
know that
dimF, = —Kx -W'—1

dlmFd,I —KX'W2—1
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In particular, we have that
dimY =dimFy, +1 > 2

dimZ =dimF, +1>2
=dmX =dimY +dimZ —1> 3.

As already proved in the case 1.1, ¢ is a P-bundle onto a smooth variety ¥ and ¢
is a P-bundle onto a smooth variety Z.
By [OW02, Theorem 2|, we have two possibilities:

1. Y = Z =P" with m = dmX4 = ntl anq ¥ = P(TP™) = P(TP*7);

X
N
P

+1
P*

2. Y, Z have a P-bundle structure over a smooth curve C' and X =Y x¢ Z:

X — 7
! l
Y — C
But, since px = 2, the second case is ruled-out, and hence X = P(T IP”TH).

Consider the Euler sequence
0— O[plm — Opm(1)®(m+1) — TP — 0.

Set &€ = Opn (1)®™*+D . The surjection & — TP™ induces the inclusion P(TP™) —
P(e) = P™ x P™ and X = P(TP™) is a divisor of degree (1,1) of the product of
projective spaces P x P™ ([Sa85, Lemma 1.15]). This leads to case (3) of the
theorem.

Suppose that ¢, 1 are equidimensional and dim F, = dim Z.
Then

dim F, +dim F;, = dimZ + dim F),

n

= dim Fy, =n —dim F, = dimY
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Note that dimY + dim Z = n.
In particular, since —Kx -V =n + 1, this implies that

dim F, = —Kyx - W! dimF, = —Kx - W' —1
dmF, =Ky -W2—1 % dimF, = —Ky - W?

Suppose that
dimF, = —Kyx - W!
dlme == —KX . W2 —1

Then v is a P-bundle onto a smooth variety Z ((X, L) ~ (P(ez), Ox(1)) where e
is an ample vector bundle on Z), and for every fiber F,

(Kx + (dim F,)L) - W' =0

By adjunction we have Kp, = (Kx)|r,, s0 Kp, = —(dim F,) L, .

Since L is ample, F, is Fano and 7, = dim Fi,. From Theorem (1.21), (F,, Lr) ~
(Qdim F“’, OQdim Fy (1))

Since a fiber of ¢ dominates Z, from [NOO07, Lemma 4.1] it follows that X o~
P’ x Z ~P" x Q° where r =dimY and s = dim Z.

Note that it is impossible, because if X = P" x Q, then there exist pairs of points
of X such that they can not be joined by a rational curve of degree 2 with respect
to L ~ Oprygs(1).

Suppose that ¢ is not equidimensional, i.e. there exist special fibers F,
of y such that dimZ = dimF, = dim F§ + 1.
This implies that

dimFJ = —Kx - W' -1

dlmFd, = _KX : W2 -1

Recalling that W1, W? are covering, we have that
dmF{=—-Kx -W'=1>1=dimZ > 2

dmF,=-Kx -W?*—-1>1=dimY >2
=>dmX=n=dmY +dimZ —-1>3

Denote r = dimY and s = dim Z.
Then 1 is a P-bundle onto a smooth variety Z ((X, L) ~ (P(ez), Ox (1)) where €4
is an ample vector bundle of rank r on Z), and ¢ is a scroll because ¢ is supported
by

Kx + (dim Fg + 1)L = Kx + (dim X —dimY + 1)L.

60



7.1 Conic connected manifolds

Since every fiber of ¢ has dimension < dim X —dimY 4+ 1, Y is a smooth variety
and X is the projectivization of a Banica sheaf on Y.
Moreover, by [AW93, Proposition 4.3], every fiber of ¢ is a projective space:

g~ =T 7~ n—r4+1
FS PV F, =P

and the dimension of ﬁp is less then or equal to 7, ie. r > § + 1.

Note that there exists a surjective morphism from ]*Nj(p to Z. Then by [La84, Theorem
4.1], Z ~ P! ~ P where s < %:

X
P G
N

As (X, L) ~ (P(ez),Ox(1)), we want to describe the ample vector bundle €, on Z.
By the canonical bundle formula

Kx +1r& =" (K7 + dete)
Let [ be a curve parametrized by W?. Then

Kx-l+r& 1=Ky -l4+rL-1 = ¢*(Kz+dete)-1

= Kz - () + ¢ (dete) - 1
Since dim Z = —Kx - W' and Z ~ IP*, it follows that
Ky -l+7r=(Kx-1—1)Op:(1)th,(I) + ¢p*(dete) - T

=dete- Y (l)=r+1

Let I C Z be a line and let ¢; be the restriction of €5 to . &; is a vector bundle on
P! and then it is decomposable in the direct sum of line bundles on P*:

gl = Opl (al) D...D Opl(ar)

Since ¢ is ample and dete - 1,(I) = r + 1, we have
1= On(1)*V @ 0n(2),

i.e. € is a uniform vector bundle on P* of rank r with the splitting type (1,...,1,2).
Since r > s, from [Wi93, Proposition 1.9] it follows that:

£~ Ops (D)0 @ Ops(2) or e~ TP @ O(1)%9),

Suppose that € ~ Ops(1)®"~) @ Ops(2). Then X is the blow up of P along a linear
subspace A of dimension r — 2. But it is impossible, because we are assuming that
there are two elementary extremal contractions of fiber type.

Therefore ¢ ~ TP* @ O(1)®~*), and hence X ~ P(TP* @ O(1)% ) is a divisor
of degree (1,1) in P" x P* and
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X
N
Pr P?
So we get case (3) of the theorem.

Case 2. We suppose that W? is not a covering family.

We consider the Fano-Mori contraction ¢ : X — Y associated to the extremal ray
Ry which is generated by the numerical class of W1,

Since W' is covering, ¢ is of fiber type. Denote by F, a fiber of ¢.

By the Fiber Locus inequality, we have that

dimF, > —Kx - W' —1.

We consider Locus(W?)g, C Locus(W?) ¢ X. By Remark (7.5), —Kx -V =n—+1,
and then, from Lemma (4.25), it follows that

n > dim Locus(W?)p, > dimF, — Kx-W? -1
> (—Kx W'—1)—Kx -W?—1=n-1.

Therefore dim Locus(W?)r, = n — 1 and dim F, = —Kx - W' — 1. Hence ¢ is an
equidimensional Fano-Mori contraction, and

Kx+ (dimF,+1)L =Kx+ (n—dimY + 1)L

is a supporting divisor of ¢. By Definition (3.19), ¢ is a equidimensional scroll,
and so, by Remark (3.20), ¢ is a P-bundle onto a smooth variety Y: (X, L) ~
(P(ey), Ox(1)) where ey is an ample vector bundle of rank » = (n —dimY + 1) on
Y.

Note that 2 < r < n. In fact dimY > 0 and so » < n. Moreover, since W' is
covering, by [Deb01, Corollary 4.11] we have that —Ky -W*' > 2. Hence dim F}, > 1
and so

r=dimF,+12>2.

Now we want to describe ey.

Let x € X be a point that doesn’t belong to the union of the loci of the fellow
families of W such a point exists because we are assuming that the fellow families
of W' are not covering.

Since X is conic connected, there is a irreducible curve I' such that x € I" and T is
parametrized by V.

Let o(T') =1’ C Y and let [ be the normalization of I/, [ ~ P* % ['.

Let ey be the restriction of € to . Note that I' C P(ey).

Let X; — [ ~ P! be the projectivization of the pull-back of the vector bundle. We
have the following diagram:
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N

X

]P)(gl/)

v

[ ~ P! 'cY

The variety X; is a projective bundle over P! (X; ~ Ppi (v*¢)), so its cone of curves
NE(X)) is generated by the class of a line (denote it by f) in a fiber of the natural
projection X; — P! and the class of a section (denote it by Cp) whose intersection
with the tautological line bundle £, is minimal: NE(X;) = ([f], [Co]).

Since we have an identification NE(X;) ~ NE(P(ey), X), the numerical class of
[ belongs to the extremal ray of NE(X) generated by [W!] and we can write
[['] = a[Co] + b[f] with a,b € ZT.

Since I' is not contracted by ¢, the numerical class of I' can not be a multiple of
[f], and so a # 0.

To show that b # 0, suppose by contradiction that b = 0. Then [I'] is a multiple of
[Co] and the cone of X has the following structure:

i NE(X)) ,*

But in P(ey) there are curves whose numerical classes are multiple of [IW?], and
thus [W? € NE(X;) ~ NE(P(er), X). Therefore, [['] is not a multiple of [Cp] and
b # 0.
Since L - f = 1, we have that

9= L-T=aL-Cy+bL-f—=aL-Cy+b

As a,b> 0 and L-Cy > 0, this implies that a =b=1and L - Cy = 1.

Hence [I'] = [Cy] + [f] and [Cy] = [W?2].

v*e is a vector bundle on P! and then it is decomposable in the direct sum of line
bundles on P

vie=0pi(a1)®... D Op(a,)
Since dim Locus(W?)p, =n — 1, we have
vie = Op (1)) @ Opi (c)
Consider the following exact sequence
0— Opi(c) = v'e — Op (1) 50

Denote by p the natural projection X; — P'. Let D := &,«. @ p*Opi1(—c¢).
Note that
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51/*5'0021 {p*OPl(_C)'COZ_C
d
{sy*s-le WEL pOn(—)- f=0

:{g:?o:ll_c =D.-I'=2—c¢

Since I' ¢ D, ¢ < 3. In fact, if ¢ > 3 then D -T" < 0.

Hence ¢ =1 or ¢ = 2. If ¢ =1 then X, is the product of two projective spaces and
so there exists a horizontal line with respect to the extremal contraction ¢ passing
through x. But it is a contradiction of our assumptions.

Therefore ¢ = 2 and

Ve = Opi (1)20D @ Op (2).

By the canonical bundle formula, we have that
Kx +ré = ¢p"(Ky + dete)
Then

Kx -T'+r&-I' = Ky-p ' +dete- @,
= Ky -U'4dete !l
= Ky -I'+(r+1)

Since —Kx -I'=—Kx -V =(n+1) and & - I = 2, it follows that

—(n+1)+2r=Ky-I'+(r+1)

=-Ky-l'! = (n+1)—r+1
= n+1l)—(n—dimY +1)+1
= dimY +1

Now we want to prove that [’ belongs to an unsplit family of rational curves of
Y. Let Vi be a family of rational curves of Y such that I’ is parametrized by Vy.
Suppose by contradiction that Vi is not unsplit and let (I; +15) be a reducible cycle
in Vy. As ¢ is ample, it follows that

r+1=dete-l=dete-lj+dete-log >r+r=2r

Thus r < 1, but it is impossible because r > 2.

Therefore Vy is unsplit, its anticanonical degree is equal to dimY + 1 and it is
covering. This implies that Y ~ P*~"*! and I’ is a line.

Then ¢ is a uniform vector bundle on P*~"*! of rank r with the splitting type
(1,...,1,2).
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By [Wi93, Proposition 1.9], € is either decomposable into a sum of line bundle or
(if r > n — r + 1) isomorphic to & ~ TP" "+ @ O(1)®r—n-1),

(1) If € = Opnrs1(1)®"D @ Opn—r41(2), X is the blow up of P* along a linear
subspace A of dimension r — 2 and there are two elementary extremal contractions:

BIA(P")

YN

]Pm ]Pm—r—i-l

1 is divisorial and the extremal ray associated to v is generated by the numerical
class of curves which are contracted by the blow down along A. ¢ is of fiber type
and the extremal ray associated to ¢ is generated by the numerical class of the
strict transforms of lines of P" which meet A in a point.

The family of the strict transforms of lines of P" which meet A in a point is W1,
and the family of curves which are contracted by the blow down along A is W? and
therefore [IW?] belongs to an extremal ray.

We get the case (2) of the theorem.

(2.) Suppose that e ~ TP"~"*1 @ O(1)®* =1 where r > 2H.
Then X = P(TP* "+ @ O(1)®?—=1) ig a divisor of degree (1,1) in P*7+! x P
and there are two extremal contractions of fiber type:

X
@ (&
I[Dnr+f/ \IEDT’

We want to prove that it is impossible. First of all we show that the numerical class
of W2 belongs to an extremal ray.

Consider the following nef divisors: ¢*Opn-r+1(1) and ¥*Opr(1).

Let v be a minimal extremal rational curve of the extremal ray associated to 1.

Note that

@*OpnfrJrl(].) . Wl =0 L- Wl =1

* and

P Opr(1)-7y=0 L-yv=1
Then L — CIO*O[Fan’rJrl(].) + Q/J*Opr(l)
Since L - W? =1 and ¢*Opn—r+1(1), ¥*Opr(1) are nef, the numerical class of the
family W? must belong to an extremal ray and [IW?] = [v].
It is a contradiction because we are assuming that W? is not covering and the
Fano-Mori contraction associated to the extremal ray generated by [IW?] is of fiber
type. O

Corollary 7.6. If X is a conic connected manifold, then X is a Fano manifold
whose Picard number is equal to or less than 2.
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7.2 Kachi-Sato’s Theorem

In [KS99], Kachi and Sato found an exact condition that isolates P" and Q™ within
the class of conic connected manifolds.

They proved that (P", Ops (1)) and (Q™, Ogr(1)) are the only polarized manifolds
that satisfy the following property: a fixed point z € X and two general points of
X may be joined by an irreducible rational curve on X of degree 2 with respect to
a fixed ample line bundle.

More precisely, they showed a slightly more general result; they considered pro-
jective varieties with at worst QQ-factorial singularities such that through a fixed
non-singular point € X and through two general points of X there is an irreduci-
ble rational curve on X of degree 2 with respect to a fixed ample Cartier divisor on
X, and they proved that these projective varieties are isomorphic to (P™, Opx (1))
or (Q", Ogn (1)), where Q™ is a (possibly singular) hyperquadric in P"™ (see [KS99,
Theorem 5.1]).

In this section, we show a different proof of Kachi-Sato’s result in the smooth case.

Theorem 7.7. ([KS99, Theorem 5.1]) Let (X, L) be a polarized manifold. Let
x € X be a point. Assume that for two general points y1,y. € X there is a rational
curve C' C X passing through x,vy,,ys such that L - C'= 2. Then

(X, L) = (B", O (1) or (X, L) = (Q", Ogn(1))

Remark 7.8. If n = 2 then by Theorem (7.4) X is a Del Pezzo surface whose
Picard number is equal to or less than 2, and so the statement of previous theorem
can be easily proved.

Proof. We can assume that n > 3.

By Remark (2.6) it follows that there exists a dominating family V' of rational
curves such that L -V = 2, and x,y;,y> € X may be joined by a rational curve
parametrized by V for every general points y;, 42 € X.

By [Deb01, Proposition 4.9], if f : P! — X is a general curve parametrized by V,
then f is a 2-free curve, i.e.

f*TX >~ O]pl (al) D...D O]pl (an)

with a1 > a3 > ... > a, and a,, > 2.
This implies that

n

—KX-f*IP’1 :Zai > 2n.

1

But —Kx - f.P! = —Kx -V, then the anticanonical degree of the family V is greater
than or equal to 2n.
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Let V be the Chow family associated to V. Note that every reducible cycle in
V has two irreducible components. We consider a pair (V! V?2) of fellow families
with respect to V (V! and V? are families of rational curves which are families of
deformations of two irreducible components of a reducible cycle in V).

Since [V +[V?] = [V]and L -V = 2, V! and V? are unsplit families such that
L-VI=L-V?*=1.

By Proposition (4.10) for any = € Locus(V?) (j = 1,2) we have

dim Locus(V?), > —Kx - V? — 1

= —Kx - V?/ <dimLocus(V’), +1 <n+1

Since —Kx - (V' +V?) > 2n and —Ky - V7 < (n+ 1) with j = 1,2, there are the
following possibilities:

—Kx-V'| —Kx-V?
n+1 n+1, n, n-1
n n, n+1
n-1 n+1

Therefore we can divide the proof into two cases.
Case 1. At least one family of deformations of a irreducible component
of a reducible cycle of V has anticanonical degree equal to n + 1.

Denote by V this family. From Proposition (4.10) it follows that

dim Locus(V),, = n.

Applying Corollary (6.7) we obtain that px = 1.
Note that —Kx = (n+ 1)L. Then X is a Fano manifold, and by the classification
of Kobaiashi-Ochiai (Theorem (1.21)) we have that (X, L) ~ (P™, Opn(1)).

Case 2. Every family of deformations of a irreducible component of a
reducible cycle of V has anticanonical degree equal to n.

Consider a pair (V1,V?) of fellow families with respect to V. V1 and V? are unsplit
and covering.
Moreover, for a general point x € X and for j = 1,2, we have that

dim Locus(V7), > n — 1.
Hence, since n > 3, we get

dim(Locus(V'), N Locus(V?),) > 1.
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This implies that there exists a curve such that is numerically proportional to V!
and V? because by Corollary (6.7) we have that NE(Locus(V1'),, X) = ([V!])
and NE(Locus(V?),, X) = ([V?]). Then the families V! and V? are numerically
proportional.

But [V] = [V1]+[V?], so every component of any reducible cycle in V is numerically
proportional to V', i.e. V is a quasi unsplit family.

We can consider the rc(V)-fibration, 7 : X --+ Z. By the properties of V', 7 is the
constant map, and so by Corollary (6.5) px = 1.

Note that —Kx = nL, and this implies that X is Fano. By Theorem (1.21), we can
conclude that (X, L) ~ (Q™, Ogn(1)). O
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Chapter 8

Rationally cubic connected
manifolds

In this chapter we will consider rationally cubic connected manifolds.

A first step towards the understanding of these manifolds could be to establish a
bound on the Picard number. Unfortunately, differently from the case of conic
connected manifolds, there isn’t an upper bound on the Picard number. In fact, as
we will shown in the following example, for every integer m > 0 we can construct a
rationally cubic connected manifold whose Picard number is equal to m.

Example 8.1. Let P, ..., P, be general points of P" and let X be the blow up of
P" at Py, ..., P,, with n > 2 and

0<k< (";3)—(2n+2).

Let ¢ : X — P" be the blow up and let {E; = ¢ *(P;)}i=1._x be the exceptional
divisors. X is rationally connected with respect to the family V' of deformations of

the strict transform of a general line in P".
By [Cop02], the line bundle

K
L =¢"Opn(3) — (Z Ez)

is very ample and L -V = 3. Then X is rationally cubic connected and px =k + 1.

However we will prove that if rationally connected manifolds are covered by “lines”,
i.e. by curves of degree 1 with respect to a fixed ample line bundle, then the Picard
number is equal to or less than 3.

In particular this implies that for n > 3 and k£ > 3 rationally cubic connected
manifolds described in Example (8.1) are not covered by “lines” because they have
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Rationally cubic connected manifolds

Picard number greater than 3. Moreover, we observe that these manifols are not
Fano. In fact, if we consider the strict transform [ of a line in P passing through
two points P, and P, that are centers of the blow up, then, by the canonical bundle
formula of the blow up, —Kx -1 < 0.

For that reason we will consider rationally cubic connected manifolds which are
not covered by “lines” but are Fano. We will show that up to a few exceptions
in dimension 2 the Picard number of these manifolds is equal to or less than 3;
moreover, if it is equal to 3 we will obtain a precise classification of these manifolds.

First of all, we recall the definition of rationally cubic connected manifolds.

Definition 8.2. Let (X, L) be a polarized manifold. X is rationally cubic connected
- RCC for short - if two general points x, 2’ € X may be joined by a rational curve
v C X of degree 3 with respect to L, or equivalently, if there exists a dominating
family V' of rational curves such that L -V = 3 and through two general points of
X there is a curve parametrized by V.

Remark 8.3. Let z € X be a general point and let V, be the subscheme of V'
parametrizing rational curves among those parametrized by V' passing through z.

By [Deb01, Proposition 4.9], if f : P! — X is a general curve parametrized by V,
then f is a 1-free curve, i.e.

f*TX ~ OPI (al) EB @ OPI (CLn)

with a; > ay > ... > a, and a1 > 2, a,, > 1.
This implies that

n

~Kx - fP'=) a;>n+1

1

But —Kx - f,[P! = —Kx -V, then the anticanonical degree of the family V' is greater
than or equal to n + 1.

If V is locally unsplit, for the general point x € X, V. is proper.
Since Locus(V,) = X, every curve C' C X is numerically proportional to V| and so
px = 1. Moreover, by Proposition (4.10), we have

—Kx -V <dimLocus(V), +1=n+1

= -—-Kx-V=n+1

In [Keb02] Kebekus proved that P is the only projective variety which admits a
dominating locally unsplit family of rational curves which has anticanonical degree
equal to n + 1. Thus, if V' is locally unsplit, then (X, L) ~ (P", Opx(3)).

Suppose that V' is not locally unsplit but for a general point € X every component
of any reducible cycle, which passes through x and is parametrized by the Chow
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8.1 RCC-manifolds covered by lines

family V associated to V', has numerical class proportional to the numerical class
of a curve parametrized by V.

Since Locus(V), = X, every curve 7 C X is numerically proportional to V| and so
px = 1. In particular, since —Kx -V >n+ 1, X is a Fano manifold.

Note that —Kx = rx L, and hence

n—f-lS—KX'V:TxL'V:?)TX

+1
:>7’in3 .

Thus X is a Fano manifold of Picard number one and of index ry > 2 with

3
fundamental divisor L.

From now on we can assume that V' is not locally unsplit and that through a general
point z € X there is a reducible cycle in V such that at least one of its irreducible
components is numerically independent to V. In particular this implies that V is
not quasi unsplit and px > 1.

Moreover, we observe that a cycle in V can split into two or three irreducible rational
components since L -V = 3; we will call a component of degree one a line and a
component of degree two a conic.

8.1 RCC-manifolds covered by lines

As said in the introduction of this chapter, we will start by considering RCC-
manifolds which are covered by lines and we will prove the following theorem:

Theorem 8.4. Let (X, L) be a polarized manifold. Suppose that X is RCC by a
family V' and that X admits a covering family of lines. Then px < 3, equality
holding if and only if there exist three families of lines W, W' W" with [V] = [W]+
(W] + [W"] such that W is covering, W' is horizontal and dominating with respect
to the rc(W)-fibration and W" is horizontal and dominating with respect to the
reOV, W')-fibration.

First of all, we state some results which will be used throughout the proof of the
theorem.

Lemma 8.5. Let (X, L) be a polarized manifold. Let Z C X be a closed subset
and let Wi be a covering unsplit family of rational curves. Suppose that N1(Z, X)
is two-dimensional and there is a irreducible curve T' whose numerical class [T'] is
extremal in NE(Z, X).

Moreover assume that [W'] & Ni(Z,X) and that for some integer m we have

X = ChLocus,,( W") .
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8.1 RCC-manifolds covered by lines

Then the numerical classes [W'],[T] lie in a (two-dimensional) extremal face of
NE(X) and [W1] spans a negative extremal ray.

Proof. By our assumptions, there is a curve I'" such that [I'] € N;(Z, X) and every
curve in Z is numerically equivalent to a linear combination al’ 4+ bI"” with b > 0.
Then, from Lemma (6.11) it follow that every curve contained in X is numerically
equivalent to a linear combination

al’y + Blyn

where I';, is a curve in Z and 'y is parametrized by W1, and o > 0; therefore the
numerical class of every curve in X can be written as

61[L] 4 02[I] + BTy ]

Let I'y and I'y be two curves in X; we can write

[[4] = an[Lz] + Bi[Twa] = 61[T] + 6, [T + B1[Tw]

and
L] = as[l] + Ba[Cwn] = 7[T] + 05[] + Ba[Tyn]

where ay, as > 0 and 03,05 > 0.

First of all we claim that [IW'], [['] belong to a (two-dimensional) extremal face of
NE(X).

To prove the statement it is enough to suppose that [['1] + [[o] € IT := ([W1],[T])
and to show that [I';] € IT and [I'y] € II.

Asking for [[';] + [['s] to be in IT amounts to impose 3 + d5 = 0, hence 63 = §5 = 0
and both [I'1] and [I'y] belong to II.

Now we want to prove that the numerical class [W!] generates an extremal ray. As
before, assuming that [['1] + [['2] € ([W?]) we must show that [['y], [[2] € ([W]).
If [Fl] + [FQ] c <[W1]> then Oél[rz] + OéQ[F/Z] = Q

We can assume that [I'z] # 0 and [I',] # 0. Clearly, if a3 = 0 or ay = 0 then
[T1] = B1[Tyn] and [Ty] = Bo[Tw1], and so we have that [['1], [['s] € ((W1]).

Hence we suppose by contradiction that a; > 0 and as > 0. We know that

a1[z] = 0[] + 6,[I], 9, >0

and
ay[] = &[]+ 65[I"], 05 > 0;

hence

a1[Tz] + ao[l] = (61 4 67)[] + (65 + 65)[I].
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8.1 RCC-manifolds covered by lines

Notice that 3 + 3 > 0, 42 > 0 and d; > 0.
From o![['z] + o?[I";] = 0, it follows that

S +05=0
and so we have that 5 = 3 = 0. Thus

a1[['z] = 0;[I'] and as[I'y] = 67[L]

and hence

6 = —63
Therefore 6;6? < 0 and we have that the line ([[']) is contained in NE(X). But it
is impossible. Thus [T],[T2] € ((W1]). O

Analogously we can prove the following lemma:

Lemma 8.6. Let (X, L) be a polarized manifold. Let W', W?2 W?3 be three unsplit
families of rational curves which are numerically independent. Assume that for
some x € X and some integers my, mo we have

X = OhLOCUSmI(W1>WZ)ChLocusm2 W9,

Then the numerical classes [W'],[W?] lie in a (two-dimensional) extremal face of

NE(X).
Proof. By Lemma (6.11) N;(ChLocus,,,(W?),, X) = ([W?]) and so
N E(ChLocus,,,( W?),, X) = ([W?]).

Then, again from Lemma (6.11) it follows that every curve in X is numerically
equivalent to a linear combination with rational coefficients 23:1 a; W7, with ag > 0.
Let II be the plane defined by [W?!] and [W?] and let T'' and I'? be two curves such
that [I'y] + [['y] € IT; write [I;] = 3 ¢j[W/], with ¢§ > 0.

To prove that [W!], [IW?] lie in a (two-dimensional) extremal face of NFE(X), we
must show that [I';] and [I's] belong to II.

Asking for [I'1] + [['s] to be in IT amounts to impose ¢} + ¢3 = 0, hence ¢} = ¢; =0
and both [I'1] and [I'y] belong to II. O

Proposition 8.7. Assume that (X, L) is RCC by a family V and that through a
general point of X there is a connected rational 1-cycle whose numerical class is
[V], consisting of three lines. Then px < 3. Moreover, if px = 3 then there exist
three families of lines W' W2 W3 with [V] = [W?'] + [W?] + [W?3] such that W* is
covering, W? is horizontal and dominating with respect to the rc(W?)-fibration and
W3 is horizontal and dominating with respect to the re(W?, W?)-fibration.
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8.1 RCC-manifolds covered by lines

Proof. Let P = {(W}!, W2 W3)}iz1.. s be the set of unsplit families such that

(W3] + W]+ [W7] = [V].

Denote by B; the set of points which are contained in a connected chain I} UIZ U7,
with I/ is parametrized by W7 and I/ N IJT" # () for j = 1,2. The set B; can be
written as the union of three closed subset:

B} = Locus(W?, W}

i Locusw?)
B = iz(py (p2(iy " (Locus(W}))) N pa(iy ' (Locus(W7)))))
B} = Locus(W7, I/Vz'g)Locus(W})

where iy, py are proper morphisms associated to the Chow family W?

19

U

J

W2

X

Notice that Bf is the set of points on curves parametrized by Wij belonging to the
chain. Since through the general point of X there is a reducible cycle consisting of
three lines, we have that

X:QBi:EJ(OBf).

i=1 \j=1

Since B/ are a finite number and each of them is closed there is a pair of index
(40, jo) such that X is contained in By := Bfg By construction the set Bf is con-
tained in Locus(W/), therefore the family Wfoo is covering.

To simplify notation we denote from now on by W1 W2 and W?3 the families cor-
responding to the index ig. Whitout loss of generality we also assume that j, = 1,
i.e. W1 is a covering family of rational curves.

Then we can consider the rc(W?')-fibration m : X --» Z;. If dimZ; = 0 then
px = 1 by Corollary (6.5); otherwise we claim that either W?2 or W? is horizontal
and dominating with respect to .

Notice that connected cycles (! U [? U3 are not contracted by 7, otherwise also
curves parametrized by V would be contracted, and Z; should be a point. Then at
least one of the irreducible components of [2UI? is not contracted by 7 and it meets
the general fiber F' of 7.

Suppose without loss of generality that this irreducible component is parametrized
by W2. Thus W?2 is a horizontal dominating family with respect to m;. Take the
re(W, W?)-fibration 9 : X --+ Zs.
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8.1 RCC-manifolds covered by lines

If dim Z5 = 0, from Corollary (6.5) it follows that py = 2; otherwise we can prove,
arguing as above, that W? is a horizontal dominating family for .

Thus we can consider the re(W?!', W? W3)—fibration m3. 73 contracts the cycles
I*' U2 U3, hence contracts curve parametrized by V. This implies that 75 is the
constant map, and so, by Corollary (6.5) we have that py = 3. O

Proof. (of Theorem (8.4)) As already observed before, we can assume that the
family V' is not locally unsplit and not quasi unsplit since otherwise we can conclude
that px = 1. We divide our proof into two cases.

Case 1. Assume that for two general points x,x' € X, there exists a
reducible cycle in )V passing through x,x’.
We consider the following sets:

o Gy = {(W7,C%)},-1. .k, the set of the fellow families with respect to V such
that L- W/ =1and L-C7 =2 ;

o Go = {(WL W2 W3)}_i ., the set of of the fellow families with respect to
V such that L - VV1 L- I/V2 L-W3=1;

e =G UG.

For every pair of fellow families in G, we denote by W7 the Chow family associated
to WY, with universal family ;, and by C/ the Chow family associated to CY, with
universal family F;.

We recall that, as already seen in section (4.2.1), these Chow families deﬁne proper

prerelations, (U] <—U’ l—>XLl LUy and (F; <—.7:' —>X}" —>}"’)
Uy ==U XWJUJ'—L X Fj = Fj Xes -7:1_;’ X

/

p; 9j Dpj

and algebraic relations, R ; and Ry ;:

Rl’]‘ :Z/{]‘ Xwi Z/lj RQJ —.7: Xc] j
w/ Nj / \J
X X X

Similarly, for every triplets of fellow families in G,, we denote by Wy the Chow

family associated to W/, with universal family M, ;, and by R, the algebraic
relations defined by WI (r =1,2,3 and s = 1,...,m):
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8.1 RCC-manifolds covered by lines

! P—
M, = M Xy M . ¢
/
Prs| |Ors
M,
Rr,s = Mr,s XW; Mr,s
wr/ \ur,s
X X

Since we are assuming that two general points x, 2/ € X may be joined by a reducible
cycle in V whose irreducible components belong to fellow families in G, we consider
Chaing(Uj, F;) and Chaing(M ,, M}, M3 ().

By Theorem (5.3), for every j and for every s, we know that

Chainy (U, F;) = U Rs* R,
7:{1,2}—{0,1,2}
. / ' N D 53 D
C’hamg( 1,80 2,59 375) = U Ra(l),s * RU(Q),S * Ra(3),s

0:{1,2,3}—{0,1,2,3}

where Ry ; and }~%075 denote the identity relations.

Set
vi=J U Ry * Rr2),
I rp2—2)
T injective
and

s o:{1,2,3}—{1,2,3}

o injective

Using these constructions, we want to prove that if we consider Y := Y; U Y, then
there exists a proper surjective morphism ¢ : ¥ — X x X.

Recalling that every algebraic relation which we are considering is a proper algebraic
relation, we have that every product of these relations is a proper algebraic relation
with proper morphisms into X. Hence there are two proper morphisms from Y to
X,q:Y —Xand u:Y — X, which make a commutative diagram:
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8.1 RCC-manifolds covered by lines

foq=fou

where {x} = Spec(C), and 7, 7" are the projection morphisms of the fibred product
onto its factors.

By the universal property of the fibred product, there exists a unique morphism
d:Y — X x X such that g =m0 ® and u = 7" 0 &:

Y

P
X

VT~

ﬁ\x
X

X

Therefore we constructed the morphism @ from Y to X x X, and now we want to
prove that ® is surjective and proper.

To show that ® is proper, it is enough to prove that 7 is separated.

In fact, since ¢ is proper, if 7 is separated, then from [Har77, Corollary 11.4.8] it
follows that & is proper.

By [Har77, Corollary 11.4.6], 7 is separated if fom : X x X — {} is separated.
Note that, since X x X is a separated scheme over C, the diagonal morphism
A: X xX — (X xX)x (X xX)is a closed immersion, and hence, by definition,
fom: X x X — {x} is separated.

To prove that ® is surjective, first of all we claim that & must be dominant. We
suppose by contradiction that ® is not dominant, i.e. (Im®) C X x X. Then for two
general points z, 2’ € X, there doesn’t exist a reducible cycle in V passing through
x,x’ whose irreducible rational components are parametrized by fellow families in
G. But it is impossible, and so ® is dominant.

We know that the image of a proper scheme is proper (see [Hart77, Exercise 11.4.4]),
and thus, as Y is the union of proper schemes, we have that the image of ® is a
closed subset of X x X. But this closed subset must be dense, hence it is X x X
and so @ is surjective.

In particular, this implies there exists a morphism from a product relation R C Y
into X x X which is surjective.

Suppose that this product relation R belongs to Y;. Then there is a pair, denoted
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8.1 RCC-manifolds covered by lines

by (W1 C1), of fellow families in G; such that at least one of these morphisms
(blZRl,i*RQ’iHXXX, ®2:R2,i*Rl,i—>XXX

is surjective. Actually, by construction, both ®; and ®, are surjective.
For (z,x') to be in the image of ®; (respectively ®5) means that there is a cycle (U~
with [ and 7 parametrized by W! and C! such that € [ and 2’ € v (respectively
' € l and © € 7). So, by the surjectivety of ®; and ®, we have that, for every
reX

X = Locus(W?',CY), = Locus(C', Wh),.

If C is not locally unsplit, then through a general point z € X there is a reducible
cycle with numerical class [C], consisting of two lines. But, since W is unsplit and
covering, there is a line parametrized by W which passes through x. Therefore,
since x is general, we have that X is covered by triplets of lines and so to conclude
we can apply Proposition (8.7).

If else C' is locally unsplit, then X = Locus(C?, W), for a general point = € X; by
Lemma (6.2) this implies that N;(X) = ([W1], [C1]), and px = 2.

If R belongs to Y, then there exists a triplet of families (W}, W2, W3) in G, such
that R is a product relation which is obtained from the algebraic relations associated
to WL W2 and W3. In particular, since this morphism is surjective, for a general
point z € X there is a reducible cycle in V whose three irreducible components
are parametrized by W}, W2 and W2; hence from Proposition (8.7) it follows that
either px = 2 or px = 3 and families W}, W2 and W3 satisfy the statement of the
theorem.

Case 2. Suppose that there is not a reducible cycle in V passing through
two general points x,x' € X.

This implies that

In fact, we assume by contradiction that —Kx -V >n +2. Let f: P! — X be a
general curve in V. Since X is smooth and —Kx -V > n + 2, we have that

dimpy Hom(P', X; floeey) = —Kx - f.P'—n
= —KX . V —n
2

v

From Lemma (3.2), it follows that there exists a reducible cycle in V passing through
£(0) and f(oc).

Hence, as V' is a dominating family, two general points x, 2’ € X may be joined by
a reducible cycle in V, but this is a contradiction.
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8.1 RCC-manifolds covered by lines

We can assume that, through a general point of X there is not a reducible cycle
consisting of three lines such that its numerical class is [V], since otherwise to con-
clude we can apply Proposition (8.7).

Consider the set B’ = {(W? C")} of pairs of fellow families (W* C?) with respect
to V such that L-W* =1, L - C* = 2 and through a general point of X there is a
reducible cycle £ Uy, with ¢ and  parametrized respectively by W* and C".

Let B = {(W?, C’i)}i:l,_._Jﬂ be a maximal set of pairs as above such that the fami-
lies V, W1 ... W are numerically independent (or equivalently V,C?!,... C* are
numerically independent).

As X = Locus(V), for a general point x € X, by Lemma (6.2)
N (X) = ([V], [W1]7 [Cl]v SRR [Wk]7 [Ck]> = ([V], [W1]7 SRR [Wk]>>

hence the Picard number of X is k& + 1.

If (W1, C") is the only pair of families which belongs to B, then we have that px = 2.
Hence we can assume k& > 2, and to prove the statement it is enough to show that
k = 2,1i.e. px = 3, and there exists three families of rational curves W, W’ , W" with
[V] = [W]+ [W'] 4+ [W”"] such that W is covering, W' is horizontal and dominating
with respect to the rc(W)-fibration and W” is horizontal and dominating with
respect to the re(W, W')-fibration.

First of all, we collect some properties of these pairs in B in the following lemmas;
we will used these results throughout the proof.

Lemma 8.8. For every i W' or C* is dominating.

Proof. Suppose that W is not covering. Since for a general point x € X there
exists a reducible cycle £U~, with ¢ and ~ parametrized respectively by W* and C*,
we have

X = Locus(W*) U Locus(C?).

As Locus(W') ¢ X, we get X = Locus(C?), i.e. C* is dominating.
Analogously, if C* is not dominating, W is covering. O

Lemma 8.9. If (W' C*) € B and W' is covering then C* is dominating and locally
unsplit, but not quasi unsplit.

Proof. If C* is quasi unsplit, then we can consider the rc(W?, C*)-fibration. This
map contracts curves parametrized by V', hence it is the constant map. This implies
that px = 2, a contradiction. Therefore we can assume that C* is not quasi unsplit.
Let © € X be general and consider Locus(W?*),. Notice that by our assumption
Locus(W?*), N Locus(C?) # ().

If there is a point y € Locus(W*), N Locus(C*) such that C! is not proper, then
through z there exists a reducible cycle with numerical class [C?], consisting of
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8.1 RCC-manifolds covered by lines

two lines. Clearly, as y € Locus(W?),, there is a line parametrized by W* that
passes through y. But it is a contradiction because we are assuming that through a
general point of X there is not a reducible cycle consisting of three lines such that
its numerical class is [V].

Hence we can suppose that, for every y € Locus(W?*), N Locus(C?), C} is proper.
As W" is covering, this implies that C" is locally unsplit.

By Lemma (6.2) we have that N;(Locus(W?*,C%),, X) = ([W], [C"]) and, recalling
the proof of Lemma (4.25), we get that

dim Locus(W*,C"), > n — 1.

Moreover, C* is not an unsplit family, but, since for every y € Locus(W?), N
Locus(C") Cj is proper, we can apply Lemma (6.6) and we have that [C’] is extremal
in NE(Locus(W*,C"),, X).

If X = Locus(W*, C%),, then px = 2, a contradiction; therefore an irreducible com-
ponent of Locus(W?*, C"), is a divisor, that we will call D.

Since W is covering we know that D! - W' > 0; if the intersection number is posi-
tive then we have that X = Locus(W")p: and so from Lemma (6.6) it follows that
px = 2, a contradiction.

Hence D - W* = 0; then every curve of W* which meets D' is contained in it, and
in particular this implies that x € D?.

This has two important consequences: the first one is that D’ -V > 0; in fact being
general, = can be joined to another general point 2/ ¢ D’ by a curve parametrized
by V. The second one is that, since z € D% C Locus(C") and z is general, then C"
is a dominating family. O]

Remark 8.10. From Lemma (8.8) and from Lemma (8.9) it follows that if C* is
locally unsplit then C* is dominating.

In fact if we suppose by contradiction that C* is not dominating then by Lemma
(8.8) W' is covering. But this implies that C* is locally unsplit and dominating, a
contradiction.

Lemma 8.11. Suppose that k > 2. If (W', C?) € B and C" is not locally unsplit
then W' is not covering and C* is dominating. Moreover, px = 3 and there exist
three families of lines W, W', W" with [V] = [W] + [W'] + [W"] such that W is
covering, W' is horizontal and dominating with respect to the rc(W)-fibration and
W" is horizontal and dominating with respect to the rc(WW, W')-fibration.

Proof. By Lemma (8.11) the family W* is not covering, and so from Lemma (8.8)
it follows that C? is dominating,.

As C' is not locally unsplit, for a general point # € X there is a connected 1-cycle
¢" U ¢" parametrized by the Chow family C¢ associated to C".
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8.1 RCC-manifolds covered by lines

This implies that there is a covering family 7" of lines which is a family of defor-
mation of a irreducible component of a reducible cycle in C* such that for a general
point x € X there is a reducible cycle ¢/ U ¢”, with ¢ and ¢” parametrized respec-
tively by T" and by the fellow family of 7" with respect to C.

Denote by T"” the fellow family of T7”. In particular [T"] + [T"] = [C"].

Notice that the family 7" is horizontal and dominating with respect to the rc(77)-
fibration, and so we can consider the rc(7”, 7")-fibration 7 : X --» Z that contracts
curves parametrized by C°.

If dim Z = 0 then px = 2 by Corollary (6.5), a contradiction. Hence dim Z > 0.
We claim that W is horizontal and dominating with respect to 7.

Curves parametrized by W' are not contracted by 7 since otherwise also curves
parametrized by V would be contracted, and Z should be a point.

Therefore, since we are assuming that through a general point of X there is a re-
ducible cycle v U, with v and | parametrized respectively by C* and W', a general
fiber of ™ meets a line | and does not contain it, and so W is horizontal and domi-
nating with respect to 7.

We can consider the rc(7’, 7", W?)-fibration 7’; 7' contracts curves parametrized
by V because [T"] + [T"] + [W*] = [V], and thus 7 is the constant map.

Then we have that px < 3 and if px = 3 there are three families of rational curves
T', T" W' such that T” is covering, 7" is horizontal and dominating with respect
to the rc(7”)-fibration and W* is horizontal and dominating with respect to the
rc(7’,T")-fibration, and [T"] + [T"] + [W'] = [V]. O

Now, we divide our proof into two cases:
(2.1) At least one of families W?, ..., W¥* is covering.

(2.2) For every i =1,...,k W' is not covering.

Case 2.1 At least one of families W',... , W¥* is covering.

Without loss of generality we can assume that W' is covering. By Lemma (8.9) C*
is a dominating family of conics which is locally unsplit and not quasi unsplit. In
particular, as already shown in the proof of Lemma (8.9), for a general point = € X
we can consider the divisor D! (D! is an irreducible component of Locus(W?, C1),).

Moreover, we can assume that n > 2. In fact if n = 2 then for a general point
r € X we can consider Locus(C*, W1),; by Lemma (4.25) we get that

dim Locus(C*, W), > dimLocus(C'), — Kx - W' -1
> 142-1=2

This implies that px = 2, a contradiction.

Therefore n > 3 and we consider the pair (W?, C?) in B.
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If C? is not locally unsplit, then to conclude we can apply Lemma (8.11).

Hence from now on we assume that C? is locally unsplit. From Remark (8.10) it
follows that C? is dominating.

Since z is general and C? is dominating, we have that D! meets a general curve
of C%. The intersection number D! - C? is nonnegative because C? is dominating
and it cannot be zero since otherwise D! would contain a general curve of C?, but
[C?] € Ny(DL X) = ((W1,[C']). Thus D! -C? > 0 and, by the same reason,
dim Locus(C?), = 1. Hence —Kx - C? = 2.

Recalling that —Kx - (C2+ W?) = —Kx -V =n+1, we have —Kx - W?=n — 1.

If W? is not covering then by Lemma (4.25)
dim Locus(W? W), = n

and by Lemma (6.6) px = 2, a contradiction.

If else W2 is covering, then we can consider Locus(W?), N D! that is not empty; as
—Kx -W? =n—1, we have that

dim(Locus(W?),NDL) > (—Kx -W?—=1)+(n—1)—n
= n=2)4(n—-1)—n
= n-—3.

But, dim(Locus(WW?), N D) = 0 because [W?] ¢ N;(D., X) = ([W?],[C]). Hence
if n > 3 we obtain a contradiction.

So we have just to study n = 3. First of all we observe that X = Locus(WQ)D}D; in
fact by Lemma (4.25)

dim Locus(W?)p1 > dimD, — Kx - W?—1
= 2+2-1
= 3.

Therefore by Lemma (6.6) we have that px = 3.

We recall that Ny(DL, X) = ([W!],[C']) and that the numerical class [C?] is ex-
tremal in NE(D., X). Therefore by Lemma (8.5) [W?] and [C'] lie in a two-
dimensional extremal face o of NE(X) and [IW?] spans a negative extremal ray of
NE(X).

By Lemma (8.9) the family C" is not quasi unsplit, and so there is a connected cycle
' U1" that belongs to the Chow family C' associated to C' such that [I'] € ([C'])
and [I"] € ([C']). Let T] be a family of deformations of I’ and let T} be a family
of deformations of {”. Clearly [T}] + [T}] = [C"]. Since [C"'] belongs to o, we have
that [17] € o and [17] € 0.
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8.1 RCC-manifolds covered by lines

Notice that either 7] or 77 is such that every curve parametrized by this family is
numerically equivalent to a linear combination with rational coefficients

arw2 + bFC1

where I'y2 belongs to W2, I'cn is a curve parametrized by C! and a,b > 0.
Without loss of generality assume that curves parametrized by 7" have this property.
Since —Kx - W? = —Kx - C' = 2, we have that —Ky - T| > 0.

First of all assume that b # 0.

Suppose that —Ky - T} = 2. If T} is not covering then dim Locus(77, W?), = 3 and
so px = 2, a contradiction; if else 7] is covering then

X = Locus(T}, W', W?), = Locus(W?, T}, W'), = Locus(W*', W2 T}),;

hence from Lemma (8.5) it follows that the Kleiman-Mori cone has three negative
extremal rays which are spanned by [W!], [W?] and [T7].

This implies that [C1] € ([T}]), a contradiction.

Assume that —Kx - 7] = 1. Recalling that L - T] = 1, we have that

Ky T = 1 =2a+2
L-Ti= 1 =a+2b.

Therefore a = 0, i.e. curves parametrized by 77 is numerically proportional to
curves parametrized by C!, a contradiction.

If b = 0 then, since (W', C') and (W2 C?) have the same properties, we can
consider families 73, T3 that are families of deformations of irreducible components
of a reducible cycle in C?. Arguing as above, we have that [W1] and [C?] lie in a
two-dimensional extremal face of NE(X) and [IW'] spans a negative extremal ray.
As before, if [Ty] € ([IW']), we obtain a contradiction.

If else [Ty] = [W'] then [T]] = [TY] spans a extremal ray of NFE(X). Moreover we
can consider the re(W*, W?)-fibration 7 : X --+ Z; we observe that dim Z = 1 and
curves parametrized by 77" (or by T3') are not contracted by m. Moreover

(W2 + [1{]+ (W] = [CT] + (W] = [V].

Then T} is horizontal and dominating with respect to the re(W?!, W?)-fibration.
Therefore we have that the rc(W?!', W? T/")-fibration is the constant map.

Case 2.2 For every i = 1,...,k W' is not covering.

Since W* is not covering, C" is a dominating family of conics. Moreover, we recall
that by our assumption there is a covering family W of lines.

We can suppose that for every ¢ C* is locally unsplit, since otherwise we can apply
Lemma (8.11).
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For every i = 1,...,k denote by E* the set Locus(C", W?),; by Lemma (6.6) it has
dimension dim E; > n — 1; equality holds, since E; C Locus(W?*), so the inclusion
is an equality and E? is irreducible.

Denote by II; C Ny(X) the two-dimensional plane spanned by the numerical classes
of W* and C". s s

If [W] € 11, for every 4, then [W] € ([V]), and therefore the rc(W)-fibration is the
constant map and px = 1, a contradiction.

Hence there exists a plane II; such that [W] ¢ I1;; without loss of generality we can
assume that II;, = II;. s
Recalling that by Lemma (6.6) Ny(Ey, X) C ([W!],[C']), we have that F; - W >
0, and so W' is horizontal and dominating with respect to the rc(W)-fibration.
Consider the rc(W, Wh)-fibration, whose general fiber has dimension

dim Locus(W1), — Kx - w—1

—Ky W'— Ky -W-=1
— Ky -W'+1.

dim F' > dim Locus(W*, /I/Ivf)m

AVAR VALY,

Curves parametrized by C' are not contracted by the rc(VNV, W!)-fibration, since
otherwise the fibration goes to a point and px = 2.
But dim Locus(C'), > —Kx - C' — 1 and then

dim F + dim Locus(C"), (~Kx -W'4+ 1)+ (-Kx-C'—1)

>
> n+1

and this is a contradiction. O

8.1.1 Extremality of covering families of lines

This section will be devoted to the proof of the following:

Theorem 8.12. Assume that (X, L) is RCC by a family V. Suppose that px = 3
and X is covered by lines. Then there is a covering family of lines whose numerical
class belongs to a negative extremal ray of NE(X).

Proof. Recalling the proof of Theorem (8.4), since px = 3 there exist three families
of lines W1, W2 W3 with [V] = [W1] + [W?] + [W3] such that W' is covering,
W? is horizontal and dominating with respect to the rc(WW!)-fibration and W3 is
horizontal and dominating with respect to the rc(W?*, W?)-fibration.

Case 1. Suppose that W' W2 W?3 are covering.

We want to prove that at least one of families W, W2, W3 is such that its numerical
class spans an extremal ray.
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8.1 RCC-manifolds covered by lines

Assume that [IW!] doesn’t generate a negative extremal ray. We claim that [IW?]
and [IW3] belong to an extremal face of NE(X).

If [IW!] is not extremal, then by Proposition (6.18) there is an equivalence class with
respect to the re(W?)-relation of dimension greater that the general one. Since the
general equivalence class has dimension greater than or equal to —Kx - Wt — 1
because it contains Locus(W!),, there exists an irreducible component Z of this
special class of dimension

dimZ > —Kx - W
Consider Locus(W?2 WW?3)z; by Lemma (4.25)

dim Locus(W? W?), > —Kx-(W'4+W?+W?) -2

= n—1.

Moreover we observe that by Lemma (6.6) every curve in Locus(W? W?3)z is nu-
merically equivalent to a linear combination with rational coefficients

Oérwl +ﬁrw2 + (SFWL%

where I'yy1, Ty are curves parametrized by W' and by W2, I'yys belongs to W3
and o > 0.

If X = Locus(W?,W?3), then, as already observed in Lemma (8.6), [W?] and [IW?3]
belong to an extremal face and [W3] is extremal.

Therefore we can suppose that an irreducible component of Locus(W? W?3), is a
divisor D. Notice that D - W?* > 0 for every i because every family W* is covering.
If D is positive either on W2 or on W3 we have X = ChLocus,,, (W? W3)z; from
Lemma (8.6) it follows that [W?], [IW?] belong to an extremal face of NFE(X).
Hence D - W? = D - W? = 0. This implies that D)p is nef, and hence D is nef and
is a supporting divisor of a face which contains [IW?] and [IV?].

We can repeat the same argument starting from another family, say W?2; therefore
we prove that, if neither [W!] nor [IW?] span an extremal ray, then [I¥3] belongs to
two different extremal faces of NFE(X), hence it spans an extremal ray.

Case 2. Two families among W', W2 W3 are covering.

If W3 is a covering family, then it is horizontal and dominating with respect to
the rc(W?')-fibration; moreover, since X is rc(W!', W2, W3)-connected, W? will be
horizontal and dominating with respect to the rc(WW', W3)-fibration, so, without
loss of generality we can assume that W? is covering and W3 is not.

First of all we observe that

n—1

dim Locus(W?) = { "o
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In fact, if we suppose that dim Locus(W?) < n — 3, then for a general point z €
Locus(WW3), we have that

dim Locus(W?), > — Ky - W? 4 2
and therefore

dim Locus(W?3 W W?), > —Kx - W'+ W? + W?*) >n + 1.

Case 2.1 Suppose that dim Locus(W3) = n — 2.
This implies that dim Locus(W?), > —Kx - W? 4 1 and so

X = Locus(Wl)LocuS(Wg,,WQ)x.

We want to prove that [W!] and [I¥?] span two negative extremal rays that are
contained in a (two-dimensional) extremal face o of NE(X).

Set Z := Locus(W3 W?),. Z is a closed subset of X.

Moreover Ny(Z, X ) = ([W?3],[W?]) and [W?] is extremal in NE(Z, X).

Then by Lemma (8.5) [W!] and [IW?] lie in an extremal face o of NE(X) and [W!]
generates a negative extremal ray.

Now we observe that X = Locus(W?),qcuguws w1

follows that the numerical class of W2 spans a negative extremal ray of o.
Case 2.2 Suppose that dim Locus(W3) =n — 1.

This implies that dim Locus(W?3), > —Kx-W? for a general x € Locus(W?). More-
over, we know that —Kx - W3 > 0 since otherwise —Ky - (W' + W?) > n + 1 and
so dim Locus(W?3, W1, W?), > n.

Set H := Locus(W?). Since W', W? are covering, H - W' >0 and H - W? > 0.
Recalling that W3 is horizontal and dominating with respect to the rc(W*! W?)-
fibration, we have that H - W' > 0or H-W?2 > 0.

Assume without loss of generality that H - W?2 > 0.

We claim that the numerical classes of W' and W? belong to an extremal face o.
If this is not the case, then by Lemma (6.20) there is a divisor D such that
D-W'=D -W?=0and D-W?3 > 0.

Moreover, since [W1], [W?2],[W?3] € NE(X)g, <o, we have that there is a negative
extremal ray R such that D - R < 0 and it is small.

Denote by F' a fiber of the elementary contraction associated to R, which, by Propo-
sition (4.12) has dimension dim F' > 2. By Lemma (4.25) we have

dim Locus(W*, W?)p > —Kx - (W' 4+ W?),
Since H - W? > 0 for some z the intersection Locus(W?), N Locus(W!, W?)r is not
empty and moreover
dim(Locus(W?), N Locus(W', W?)p) > —Kyx-(W'+W?*+W?) —n
= 1.

. and so from Lemma (8.5) it
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8.1 RCC-manifolds covered by lines

Hence there is an irreducible curve v in X such that it is numerically proportional
to W3, ie. [y] = a[W3] with @ > 0, and it is numerically proportional to a linear
combination with rational coefficients

MFR + 5rwl +ﬂrw2

where 'y and I'yy2 are parametrized by W' and W2, [['g] € R and p > 0. But it
is impossible because
D-y=aD -W3*>0

and
D-yv=uD -Tr+0D -T'yr+ 3D -Ty2 <0.

Therefore [W'] and [W?] belong to an extremal face o of NFE(X).
Denote by R; and by R, two extremal rays that belong to o; at least one of these
two extremal rays belongs to NE(X) g, <o since —Kx -W! > 2 and —Kx -W? > 2.

Ry (W] [W?] R
g

(W3]

Assume that R; is a negative extremal ray; suppose by contradiction that [W'] &
Ry. Then by Lemma (6.20) there is a divisor D such that D-W?* =0, D-W? > 0,
D-W?*>0and D- Ry <0.

Therefore the exceptional locus of R; is contained in the indeterminacy locus of
the re(W?')-fibration and so it is small. Denote by F’ a fiber of the elementary
contraction associated to Ry, which, by Proposition (4.12) has dimension dim F’ >
2. By Lemma (4.25) we have

dim Locus(W*, W2 > —Kx - (W +W?).

Since H -W? > 0 for some x the intersection Locus(W?), N Locus(W*', W?) g is not
empty, and moreover

dim(Locus(W?), N Locus(W!' W?)) > —Kx-(W'+ W2+ W?%) —n
= 1.

But it is impossible because N E(Locus(W! W?)p, X) C 0 and [W3] & o.

If Ri € NE(X)ky <o then Ry is a negative extremal ray. Assume by contradiction
that [IW?] € R,. As above Ry is small because its exceptional locus is contained
in the indeterminacy locus of the rc(WW?)-fibration. Denote by F” a fiber of the
contraction associated to Ry. Then

dim Locus(W? W pn > —Kx - (W' + W?).
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As W' is covering, we have that Locus(W?) g C Locus(W?, W) gy, and so, recall-
ing that H - W? > 0, for some x Locus(W?3), N Locus(W? W1)p, # 0, getting a
contradiction as before. Thus Ry = ([IW?]).

Therefore we proved that either the numerical class of W* or the numerical class of
W? spans a negative extremal ray of NE(X).

Case 3. Only W' is covering.

Let Fy 5 be the general fiber of the re(W!, W?)-fibration ¢ : X --» Z and let = be
a general point of F} .
Clearly, Locus(W? W1), C Fy,. Hence, as W? is not covering

dimFLg Z _KX . (Wl —+ WQ) — 1.

Since W3 is a horizontal family with respect to ¢, we consider Locus(W?), that
is non empty. We know that dim Locus(W?), > —Kyx - W3 because W3 is not
covering, and so

dim Locus(W?), + dim Fiy —Kx - (W4 W2+ W3 —1
Ky V-1

n.

AVARAVARLYS

Notice that
dim(Locus(W?), N Fy5) =0

because N E(Locus(W?),, X) = ([W3]) and ¢ doesn’t contract curves parametrized
by W3. Therefore

dim Locus(W?), + dim F1 o = —Kx - W'+ W2+ W?) —1=n (8.1)

This implies that Locus(1W3), is a closed subset of X which dominates Z via .
Then by Lemma (8.6), [W1], [W?] belong to an extremal face o of NE(X). Denote
by R; and by Ry two extremal rays that belong to o.

By (8.1) we have that

dim F 5 = dim Locus(W? W), = —Kx - (W' + W?) — 1 (8.2)
and

dim Locus(W?), = —Kx - W?
dim Locus(W?), = —Kx - W?

In particular, from Proposition (4.10) it follows that

dim Locus(W?) = dim Locus(W?) = n — 1.
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Set D3 = Locus(W?) and consider Locus(W?)p,, C Locus(WW?). From Lemma
(4.25) and (8.1) it follows that

dim Locus(W?*)f, , —Kx - (W'+W? +W?) -2

n— 1.

AVARLY,

= D3 = Locus(W?) = Locus(W?)p, ,.

By Lemma (6.6) every curve in D3 is numerically equivalent to a linear combination
with rational coefficients
OéFFL2 —+ /6rwd

where I'r, , is a curve contained in Fi o, I'yys is parametrized by W3 and a > 0.
Since Fyo = Locus(W? W1),, by Lemma (6.6) Ny(Fi2, X) = ([W'],[W?]) and
moreover [W1] is extremal in NFE(F} 5, X).
Then every curve in Dj3 is numerically equivalent to a linear combination with
rational coefficients

uly2 + 00y + Bl

where I'yy1 and Iy are parametrized by W' and W2, 'y belongs to W32 and
p = 0.

(W]

Therefore we have that NE(Ds, X) C S. Since W' is covering, D3 - W' > 0.

If D3 - W' > 0, then W3 is a horizontal dominating family with respect to the
rc(W?')-fibration. Thus we can consider Locus(WW?), and the general fiber F} 3 of
the re(W?!, W3)-fibration ¢’ : X --+ Z’; we can prove that Locus(IW?), dominates
Z' via ¢'. Then from Lemma (8.6) it follows that [IW!], [IW?] belong to an extremal
face, and so [W1] belongs to two different extremal faces, hence it spans a negative
extremal ray.

If else D3 - W' =0, then D3 - W? > 0 since W3 is horizontal and dominating with
respect to the re(W?', W?)-fibration.

This implies that every curve v in D3 whose numerical class belongs to the extremal
face o is such that D3 -~y > 0.

Suppose by contradiction that [W?!] € R;. Then there exists an irreducible curve I'
in X such that [I'] € 0 and D3 -I" < 0. Hence I' C D3, a contradiction.

Thus the numerical class of W' generates the negative extremal ray R;. [
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8.2 Fano RCC-manifolds not covered by lines

Now we will study RCC-manifolds that are not covered by lines. As already observed
in the introduction, it is impossible to find an upper bound on their Picard number.
However assuming that they are Fano, we will prove that up to a few exceptions in
dimension 2 the Picard number is equal to or less than 3.

First of all we consider Del Pezzo surfaces and we will show that, choosing a suitable
polarization, every Del Pezzo surface is rationally cubic connected.

Clearly if X is a Del Pezzo surface then px < 9.

If X ~P?or X ~ Blp,  p(P?), where Blp, _p (P?) is the blow up of P? at k
general points Py, ..., P, (1 < k < 8), then X is rationally cubic connected with
respect to the family V' of deformations of the strict transform of a general line in
P? and L = —Kx.

If X ~ P! x P! then X is rationally connected with respect to the family V of
deformations of a smooth curve on X of bidegree (1,1) and L has type (1, 2).

-----

Therefore we have that

Proposition 8.13. (P?,0p:(3)), (Blp,,.p,(P?), —Kpip,  p @2) (with 1 <k <8)
and (P' x P, O(1,2)) are rationally cubic connected manifolds.

From now on we will assume that n > 2 and we will prove the following theorem:

Theorem 8.14. Let (X, L) be a polarized manifold. Suppose that X is RCC by a
family V' which doesn’t admit a covering family of lines. Assume that X is a Fano
manifold and has dimension n > 2.

Then either px < 2 or we have the following list of possibilities

(1) (X,L) ~ (Bla, A, (P"),3H — Ey — E5), where Bla, z,(P") is the blow up of P"
along two linear subspaces A1, Ny such that

Al ﬂAQ = @, dlmA1 —|—d1mA2 =n—2
and Ey, Ey are the exceptional divisors of the blow up w, H = 7*Opn(1);

(2) (X,L) ~ (Blp, z (P"),3H — Ey — Es), where Bly, z,(P") is the blow up of P"
along a linear subspaces A and along a quadric Z; C Ay ~ PImZi+1 gych
that

Al ﬂAz = @, dlle Z g - ]_, dll’IlAl —f-dlle =n-—2

and E1, Ey are the exceptional divisors of the blow up w, H = 7*Opn(1);

(3) (X,L) ~ (Blyg, z,(P"),3H — Ey — E5), where Bly, z,(P") is the blow up of P
along two quadrics Zy C Ay ~ P2 and Zy C Ay ~ P2 such that

dlmAlﬂAQ = 0, dlle = dlmZQ = % —1
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8.2 Fano RCC-manifolds not covered by lines

and E1, FEy are the exceptional divisors of the blow up m, H = 7*Opn (1) (clearly
n is even).

Proof. Recalling the proof of case 1. of Theorem (8.4), since we are assuming that
X is not covered by lines, we can suppose that through two general points z, 2’ € X,
there is not a reducible cycle in V, and so —Kx -V =n+ 1.

We can assume that V' is not locally unsplit and not quasi unsplit since otherwise
we have that px = 1.

Consider the set B = {(W* C")} of pairs of fellow families (W, C*) with respect
to V such that L-W* =1, L - C* = 2 and through a general point of X there is a
reducible cycle £ Uy, with ¢ and ~ parametrized respectively by W and C".

Let B = {(W* C")};=1._k be a maximal set of pairs as above such that the families
V, W1 ..., W* are numerically independent (or equivalently V,C', ... C* are nu-
merically independent).

Denote by II; € Ny(X) the two-dimensional plane spanned by the numerical classes
of W% and C".

Notice that for every ¢ W is not covering and C* is dominating and locally unsplit,
since otherwise there is a covering family of lines.

This implies that

~Kx-C">2 and — Kx-W'< (n—1).
But —Kx -V =n+1 and X is Fano, and so
2< -Kx-C'<n and 1< —-Kx-W'<(n—-1)

Moreover, for every ¢ = 1,...,k and for a general point + € X we can consider
Locus(C?, W), that is contained in Locus(W?); set E; = Locus(C*, W?),.

By Lemma (6.6) it has dimension dim F; > n — 1. Hence E; = Locus(W?") and E;
is irreducible.

Let us divide the divisors E; in the following way:

o if —Kx-Wi=n—1 we will call E; a divisor of the first kind;
o if —Kx-W'=1 we will call E; a divisor of the second kind;
o if 2< —Kx W' < (n—2) we will call E; a divisor of the third kind.

Notice that if E; is of the first kind, then E; = Locus(W*), for any z € Locus(W?)
and N;(FE;, X) = ([W1]); if else Ej is either of the second or of the third kind then
Ny (E;, X) = ([C"], [W?]) and moreover [IW'] is extremal in NE(E;, X) by Lemma
(6.6).

As Locus(V), = X, by Lemma (6.2) we have that
Ni(X) = (V] WL [C, . VR CR) = (VL [ [,
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hence the Picard number of X is k + 1.

Clearly if there exists only one pair of fellow families in B, then px = 2; hence we
can assume k£ > 2, and to prove the statement it is enough to show that £ = 2 and
X is the blow up of P™ along two disjoint subvarieties of degree 1 or 2.

First of all we observe that as £ > 1 and the families of conics are dominating, for
a general point x € X there are two rational curves 7; and 7; which pass through
x and are parametrized respectively by C* and by C?. But for every i # j

dim(Locus(C"), N Locus(C?),) = 0
since C* and C7 are numerically independent, and therefore
n > dim Locus(C"), + dim(Locus(C?), > —Kx - (C" + C7) — 2

= Ky - (C'"+C) <n+2 Vi#j (8.3)

In particular this implies that if there is a divisor of the second kind then all the
other divisors are of the first kind.

Case 1. There exists a divisor E; of the first kind.

Consider the line bundle Ky + (n — 1)L; if it is not nef, then it is not nef on an
extremal ray R which has length greater than or equal to n. By [Wi89, Proposition
2.4] this implies that px < 2, and it is a contradiction.

So Kx+(n—1)L is nef, and defines an extremal face o which contains the numerical
class of every W such that —Kx - W' =n — 1.

Let ¢ be the extremal contraction associated to . We claim that ¢ is birational.
Suppose by contradiction that ¢ is of fiber type. Then there is a dominating family
T of rational curves whose numerical class belongs to 0. We can assume that T is
locally unsplit; in fact, if 7" is not locally unsplit there exists a family 7" of defor-
mations of a irreducible component of a reducible cycle in 7 which is dominating
and [T] € o.

Set d := L -T. Then for a general point x € X we have that

dimLocus(T), > —-Kx-T-1
(n—1)L-T-1
= dn—1)—1

Notice that dim Locus(T"), < n; otherwise px = 1 and it is a contradiction. There-
fore d(n — 1) — 1 < n and so d = 1, namely T' is an unsplit covering family of lines
such that —Kx - T = n — 1. But this is a contradiction because we are assuming
that X is not covered by lines.

Thus we have proved that ¢ is birational, and so by [BS95, Theorem 7.3.2] and
[AO02, Theorem 1.2] all rays in NE(X) g+ (n-1)z-0 are birational and they can be

92



8.2 Fano RCC-manifolds not covered by lines

simultaneously contracted into a smooth variety X', with the morphism ¢ : X — X’
expressing X as blow up of X’ at a finite set of points Z.

Since X is a Fano manifold and we are supposing that px > 2, by [BCWOLI,
Théoreme 1] we have that X is the blow up of X’ ~ Bly(P") at a point a € X',
where Bly (P") is the blow up of P™ along a subvariety Y of dimension n — 2 and of
degree 1 < d < n which is contained in an hyperplane H such that a ¢ H.

Now, we want to prove that the subvariety Y has degree d equal to 1 or to 2.

As X is rationally cubic connected, there must exist a family V' of rational curves
such that two general points x, 2’ € X may be joined by a rational curve parame-
trized by this family, and an ample line bundle L such that L -V = 3.

In particular, we have that the anticanonical degree of V' must be equal to n+1, and
so, the family V' is the family of deformations of the strict transform of a general
line of P™.

Let m : X — P” be the blow up. Denote by E, and Ey the exceptional divisors and
set H = 7" Opn(1).

Since pxy = 3, the ample divisor L is numerically equivalent to a linear combination
L =an*Op(l) — BE, — uby

In particular, « = 3 because L -V = 3, and from the ampleness of L it follows that
6 =1and p =1, and d = 2. In fact if we denote by

e [', a minimal curve which is contracted by the blow down at a
e ['y a minimal curve which is contracted by the blow down along Y

e [ a curve which is the strict transform of a line of P which meets Y in a point
and passes through a

then
L-T,>0
L-Ty >0
L-1>0
and therefore
8 eN g-1
,uGN :>{ :1 :>LE37T*OPn<1)—Ea—Ey.
3-B—pu>0 o=

Moreover, if d > 1, we can consider a curve v which is the strict transform of a line
of P that is contained in the hyperplane H. Then

L-v = (37°Opn(1) — E, — Ey) -~
= 3—-d>0
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8.2 Fano RCC-manifolds not covered by lines

=d=2.

Therefore, if d = 1 we are in one of the cases described in (1), and, if d = 2 we are
in one of the cases described in (2) of theorem.

Case 2. Every divisor E; is either of the second kind or of the third
kind.

As we are assuming that px > 2, this implies that all the divisors are of the third
kind; in fact, as already observed before, if there is a divisor of the second kind then
all the other divisor are of the first kind, and this is impossible.
Hence every divisor is of the third kind and so for every ¢ = 1,...,k we have that
3< —Kx-C" <(n—-1)
{ 2< —Kx-W' <(n-2)

Step 1. The divisors E; are pairwise disjoint.

Suppose by contradiction that E; N E; # 0 for some 4,j. Then we can consider
Locus(W7), for z € E; N E; and it is such that

dim Locus(W?), > —Kx - W7 > 2.

This implies that dim(E; N Locus(W7),) > 1 and so there is an irreducible curve
which is numerically proportional to W7 and whose numerical class belongs to

Ny (E;, X) = ([C7],[W7]). But it is impossible because [W7] & II; = ([C], [W]).
Step 2. The numerical class of every family W* spans an extremal ray of NE(X).
First of all we show that from our assumptions it follows that for every i #£ j
(A) Let us start assuming by contradiction that there exist two pairs of fellow

families (W*, C%) and (W7 ,C7) in B such that E; - C? > 0. Then

dim E; + dim Locus(C?), > (n—1)—Kx-C? -1
> (n—1)+2=n+1
= dim(E; N Locus(CY),) > 1
But this is impossible because [C7] & II;.

(B) Now we assume that there exist two pairs of fellow families (W* C%) and

(W7,C7) such that E; - W7 > 0. Then
dim E; + dim Locus(W7), (n—1)— Kx - W/’

(m—1)4+2=n+1

(AVARVS
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8.2 Fano RCC-manifolds not covered by lines

= dim(E; N Locus(W7),) > 1
But this is impossible because [W7] & TI;.

Therefore we proved the statement, and so, from now on we have that for every
LF ‘
Ei . C] — 0

In particular, this implies that E; - V = 0 for every .

We have thus proved that E; is trivial outside of the plane II; and in the plane
II; has intersection number zero with V. Being effective, E; cannot be trivial also
on II;, and, recalling that E; - C* > 0 since C" is a dominating family, we deduce
E-W'<O.

Since E; - W' < 0 and X is Fano, there is an extremal ray R; of NE(X) such that
E; - R; < 0. In particular, Locus(R;) C E; and so R; C NE(E;, X). Recalling that
(W] is extremal in NE(E;, X) we have that R; = ([W?]) and Locus(R;) = E;.

Step 3. For every i the elementary contraction associated to R; is the blow down of
a smooth divisor to a smooth subvariety.

Let ¢; : X — Z; be the elementary contractions associated to R;. Denote by F;
the general fiber of ¢; and let x be a general point of Fj; set ¢; = —Kx - C* and
w; = —KX . WZ

As Locus(W?), C F; and dim(F; N Locus(C?),) = 0, we get

dim F; + dim Locus(C"),
—Kx W' —Kx-C'—1

n

n =
>

= dim F; = dim Locus(W"), = —Kx - W' = w;

From [AW93, Theorem 4.1 (iii)] it follows that ¢ is a blow down of a smooth
divisor E; C X to a smooth subvariety of dimension (n — w; — 1) of Z;, with
I1<(n—w;—1)<n-3.

Moreover, we claim that E; - Wi = —1.

Since for a general point z € Locus(W?) dim Locus(W?), = w;, we know that

dim W =n + w; — 3.

Let f : P! — T' C E; be a curve of the family W* which intersects the smooth locus
of E;; since every element of Homp(P', E;) is also an element of Homp(P*, X)
and Locus(W*) = E; we can take an irreducible component of Homs(P', E;), call
it T, which is contained in W this implies that

dim7T < dimW* =n + w; — 3.
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8.2 Fano RCC-manifolds not covered by lines

Since E; is a divisor in a smooth variety, E; is a locally complete intersection and
so we can apply [Kol96, Theorem II.1.3] which gives

dim7 > —Kp, - I' + dim E; — 3;
combining the two inequalities we get

Recalling that E; - W* < 0, by the adjunction formula Kg, = (Kx + E;)g,, we have
that E; - T' = —1 and therefore E; - Wi = —1 and E; - C* = 1.

Step 4. All the extremal rays R; belong to an extremal face of NE(X) of dimension
(px —1).

Consider the divisor L + ) E;. We prove that it is nef and it vanishes only on
curves whose numerical class belong to one of the R;.

First of all notice that the properties are true by construction for the restriction of
L+ > E; to II; for every i.

Let v be an irreducible curve in X such that (L + > E;) -y < 0. Then there exists
an index j such that E; -y < 0; hence v C E; and [y] € II;. This implies that
[v] € TI; for every i # j and hence E; - v = 0.

Therefore we have that (L + Y E;) -y =0 and [y] € ([W]).

Thus (L + ) E;) is nef and there is a (px — 1)-dimensional face o of NE(X)
generated by the R;. Let ¢, : X — X’ be the associated contraction; the variety
X’ is smooth and ¢, is a blow up along smooth disjoint centers Y;.

Step 5. X is the blow up of P™ along two smooth disjoint centers Y;.

Consider the Fano-Mori contraction ¢, : X — X’ associated to the extremal face o.
As already proved before, ¢, is the blow up of a smooth variety X’ along k disjoint
centers Y;. As px =k + 1, we have that px, = 1.

We claim that X’ = P" and to show this statement we prove that there exists a
minimal dominating family of rational curves in X’ which has anticanonical degree
equal to dim X' + 1.

Let V' be a family of deformation of the image of a general curve parametrized by
V; clearly V' is a dominating family for X”.

The divisor L + > E; is nef and supports the face contracted by ¢,, hence there
exists an ample divisor L' on X’ such that L' =L+ > E,.

Notice that (L + ) E;) -V = 3, and so from the projection formula it follows that
L' -V’ = 3. Moreover, since F; -V = 0, by the canonical bundle formula we have
that

k
—Kx -V = —g;Kyx -V =) (codim(Y;) = 1)E; -V
=1

= ¢ ix V.
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8.2 Fano RCC-manifolds not covered by lines

Hence, again by the projection formula — Ky, - V' =dim X'+ 1=n+ 1.

Suppose by contradiction that V"’ is not minimal, i.e. there is a dominating family
V" of rational curves in X’ such that —Kx/ - V" <n+ 1.

Since pxs = 1, curves parametrized by V" are numerically proportional to curves in
V', and so we have two possibilities:

1. L'-V"=1and =Ky - V" = {(n+1);
2. L'-V"=2and —Ky - V' =2(n+1).

Let W be the dominating family of deformations of the strict transform of a general
curve in V”; since V" is dominating, a general curve parametrized by V" does not
meet UY;, hence F; - W = 0 for every ¢« and W is numerically proportional to V.
Moreover, L - W =L - V",

Since we are assuming that X is not covered by lines, we can suppose that L-W = 2
and W is locally unsplit.

First of all, we want to prove that there is a family of conics in B whose anticanonical
degree is equal to or greater than @

Since F; cannot contain curves of CV for j # i, but C” is dominating, it follows that
there exists a reducible cycle [; + l_] in C; such that E; - [; < 0.

Notice that L 4 E; is nef on II;, hence E; - I; = —1; both L and E; have the same
intersection number, then [I;] = [W].

From this it follows that —Kx - C7 > —Kx - W' + 1; hence

—Kx - (C74+CY > —Kx - (W +W") +2.

By equation (8.3) we have —Kx - (W7 + W*) < n. Recalling that for every i
—Kx - (C"+ W' =n+1, we get that

o if k=2then —Ky - (W'+W?)=nand —Kx - (C*'+C? =n+2;

e if k> 3 then for every i —Kx - W' =2 and —Ky - C* = 22,
In particular, there is a family of conics in B whose anticanonical degree is equal to
or greater than (nf), and without loss of generality we can assume that this family
is C1.
As W and C' are dominating families of X, for a general point x € X we can
consider Locus(C1), and Locus(W),, and we get

dim(Locus(C'), N Locus(W),) > dim Locus(C"), + dim Locus(W), —n
(n+2) 2
> 1) —2-
> 5t S(n +1)—2—n
1
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8.2 Fano RCC-manifolds not covered by lines

But n > 2 and so dim(Locus(C?), N Locus(W),) > 0, i.e. there is an irreducible
curve v which is numerically proportional to C* and to W; but this is impossible
because E;, - C' =1 and E, - W = 0.

Therefore we have proved that V' is a minimal dominating family of X', and so
X' ~P" and L' ~ Opx(3).

Step 6. There are only two centers Y1 and Ys such that dimY; + dim Yy =n — 2.

Let Y] and Y5 be two centers of the blow up ¢, : X — P". Consider the joint of Y}
and Y3 and denote it by J(Y7,Y5).
Recalling that dimY; =n — 1+ Kx - W*and — Ky - (VV1 -+ WQ) = n, we have that

dimY; +dimY;, =n—2
and this implies that J(Y7,Y3) has dimension n — 1.
Suppose by contradiction that there exists another center Y3 (or equivalently that

px > 3). Then J(Y1,Y5) meets Y3 since dimY3 > 1, and so there is a line ¢ C P
which meets Y7, Y5 and Y3. We consider its strict transform {’; then

L-1'=(p;0p(3) = > _E;)-1'<0,
contradicting the ampleness of L.

Step 7. Fori=1,2,Y; is a quadric or a linear subspace of P™.
Let S(Y1) be the secant variety of Y;. Suppose that dim S(Y;) > dimY; + 2. Then

dim(S(Y1) NY3) dimS(Y;) +dimY; —n
dimY; +24+dimY; —n

0

>
>

i.e. there is a line [ in P” which meets Y7 in two points and Y5 in a point.
Consider the strict transform I’ in X of [. Then L-I' = 0 contradicting the ampleness
of L. Therefore dimS(Y;) < dimY) + 1 and analogously dim §(Y2) < dim Y5 + 1.
We recall that a nonsingular variety Z C P™ of dimension k can be isomorphically
projected to P"! if and only if S(Z) # P", where S(Z) is the secant variety of Z,
and, the minimal number m such that Z can be isomorphically projected to P™ is
equal to the dimension of the secant variety of Z.

Moreover, by [Zak93, Corollary I1.2.11], if a nondegenerate nonsingular variety Z C
P™ of dimension k& can be isomorphically projected to P (m < n), then

2

Assume by contradiction that Y; is nondegenerate. Y; can be isomorphically pro-
jected to P™ where
m=dimS(Y;) <dimY; + 1
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8.2 Fano RCC-manifolds not covered by lines

and hence 5 5
dimY; < g(m -1 < gdiin.

Clearly it is impossible. Therefore Y; is a degenerate subvariety of P".

In particular, if dim §(Y;) = dim Y; then Y; is a linear subspace of P".

Otherwise, if dim S(Y;) = dim Y;+1 then Y] is a hypersurface of A; ~ PdmYitl c pr,
Notice also that from the ampleness of L it follows that there cannot exist trisecant
lines of ¥; in P, and hence Y] is a quadric, and we can prove that dimY; > 3 — 1.
In fact, considering the strict transform [ of a secant line of Y; and recalling that X
is Fano, by the canonical bundle formula, we get

= w; = codimY; — 1 <

|3

:&mﬁzg—L
Therefore

e if dimS(Y]) = dimY; and dimS(Y2) = dim Y3, then X is the blow up of P”
along two disjoint linear subspaces Y7, Y5 such that

1 <dimY; < (n—3)
dimY; +dimY, =n—2

This leads to case (1).

o If dimS(Y)) = dimY; and dimS(Y;) = dim Y2 + 1, then X is the blow up of
P along a linear subspaces Y; and along a quadric Yo C Ay ~ P4m Y241 gych
that

1 <dimY; < (% -1)
(& 1) < dim¥; < (n—3)
dimY; +dimY;, =n—2

Moreover A, and Y; must be disjoint, because there cannot exist lines in P
which meet Y in a point and Y, in two points. Thus we get case (2) of the
theorem.

o IfdimS(Y;) =dimY; + 1 and dim S(Y;) = dim Y5 + 1, then X is the blow up
of P™ along two quadrics Y7, Y5 such that dimY; = dimY; = (g — 1) (clearly
n is even). Notice also that Y; C A; ~ P2, and dim(A;NA,) = 0 because there
cannot exist trisecant lines of Y7 U Y3. Then we get case (3) of the theorem.

]
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8.2.1 Description of Blow-ups

Now we study Fano RCC-manifolds which are not covered by lines and have Picard
number equal to 3; in particular we want to describe the Kleiman-Mori cone and
the family V', and to find the fellow families with respect to V that we used in the
proof of Theorem (8.14).

X isthe blow up of P™ along two linear subspaces A; ~ P", A, ~ P* such that
AMNAy=0andr +s=n—2.

Canonical Bundle
Kx=7m"0Opn(—n— 1)+ (n—r—1)E1 +(n—s—1)Ey
where m : X — P" is the blow up of P”, F; and E5 are the exceptional divisors.

Description of the Kleiman-Mori cone of X

Denote by

e [; a minimal curve which is contracted by the blow down along Ay;
e /5 a minimal curve which is contracted by the blow down along As;

e [ a curve which is the strict transform of a line of P that meets A; in a point
fori=1,2;

L1 = @;Opn—r-1(1), where p; : X — P71

o Ly = 0iOpn—s-1(1), where @y : X — P51
X
/ \
Bla, (P") Bl (P")
\ \ 7T‘/
Pniril Pn P'n,fs—l

Note that H, £, and Ly are nef divisors on X, and we have that:
H11:O £1'l2:0 £2‘l1:0
H-ly=0 Li-1=0 Ly-1=0

and hence H, £1 and L, are the supporting divisors of the extremal faces of NE(X):
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N foy 30—

NE(X)

R3
L1=0 Ly=0

[ll] € Ry [lg} € Ry [l] S Rg

Clearly the elementary contraction 1; associated to the extremal ray R; is the blow
down of Ej, and the elementary contraction 1/ associated to the extremal ray Rs
is the blow down of E,. Moreover, the elementary contraction 13 associated to Rs3
is divisorial, and it is the blow up of P*"~! x P"=*~1 along a smooth subvariety
Y ~ P2 x Pres2

IPm—r—l

TN

Bl/\l (Pn) ]Pm—r—l X H]m—s—l

NP

X = Bll\l,/\z (Ipm)

™ (2
Bly, (P™)
/ \

Ipmfsfl

P

Description of fellow families with respect to V

As already observed in the proof of Theorem (8.14), the family V' is the family of
deformations of the strict transform of a general line of P"* which has anticanonical
degree equal ton + 1, and L = 3H — F; — Es.

By Kleiman’s criterion L is ample and such that L -V = 3.

Now we study how cycles in V can split. There are three possibilities:

e a cycle in V splits into two irreducible components, I'y and ~;, where I'; is
parametrized by a family C! of deformations of the strict transform of a line
of P* which meets A; in a point, and 7; is parametrized by a family W*' of
deformations of a minimal curve [y;

e a cycle in V splits into two irreducible components, I's and 7, where I'y is
parametrized by a family C? of deformations of the strict transform of a line
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of P* which meets Ay in a point, and 7, is parametrized by a family W? of
deformations of a minimal curve [;

e a reducible cycle in V can have three irreducible components 71, 72, v, where
71 is parametrized by a family W' of deformations of a minimal curve Iy, ¥,
is parametrized by a family W? of deformations of a minimal curve I, and v
belongs to a family W of deformations of the strict transform of a line of P”
that meets A; in a point for i = 1, 2.

Therefore

o W' C! are fellow families with respect to V; in particular C! is dominating
and locally unsplit, and W1 is unsplit but not covering. Moreover, they are
such that

—KX'01:T+2 —KX'len—T—l
o W2, C? are fellow families with respect to V; in particular C? is dominating

and locally unsplit, and W? is unsplit but not covering. Moreover, they are
such that

—KX'02:S+2 —KX-W2:n—5—1
{L-C’2:2 {L-W2:1
o WL W2 W are fellow families with respect to V; in particular W is unsplit
but not covering and
—Kx -W=1
{ L-W=1

Notice also that W, W? are fellow families with respect to the Chow family associ-
ated to O, and W, W are fellow families with respect to the Chow family associated
to C2.
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X isthe blow up of P" aong alinear subspaces A; ~ P" and aquadric Z; ~ Q°
wChthatzlCAQZ]P)S_H,AlmAQ:@,SE%—1and7’+$:n—2.

Canonical Bundle

Kx=7m"0Opn(—n— 1)+ (n—r—1)E1+(n—s—1)Ey

where 7 : X — P" is the blow up of P, F; and Es are the exceptional divisors.

Description of the Kleiman-Mori cone of X

Denote by

[1 a minimal curve which is contracted by the blow down along A; and by W!
a family of deformations of /;

l; a minimal curve which is contracted by the blow down along Z; and by W?
a family of deformations of ly;

[ a curve which is the strict transform of a line of P” that meets A; in a point
and meets Z; in another point, and by W a family of deformations of [;

~ a curve which is the strict transform to a line of P” that is contained in A,
and by T a family of deformations of ~;

I'; a curve that is the strict transform of a line of P" which meets A; in a
point, and by C! a family of deformations of I'y;

I'y; a curve that is the strict transform of a line of P" which meets Z; in a
point, and by C? a family of deformations of I'y;

E - gOTOPTL*T*l(l); where Y1 - X — Pn—r—l;

numbers:

Note that H, £ and F are nef divisors on X, and we have the following intersection
wt w2 w | T|C|C?
E,| -1 0 110 11]0
Ey| 0 |11 2] 0]1
H| O 0 1111 1
L 1 0 O]11 011
F |10 1 1101 2|1
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and therefore H, L and F are the supporting divisors of three extremal faces of

NE(X).

AV LU\

=0

We want to prove that there is an extremal face of NFE(X') which contains [W] and
[T].

Consider the joint of A; and Z; and denote it by J(Ay, Z1); J(A1, Z1) is the union
of the lines of P" jointing A; to Z; and it is a projective variety of dimension n — 1
and of degree 2.

Let E be the strict transform of J(A1, Z;) under 7; E is an effective divisor in X.
We observe that

E = Locus(W)g, = Locus(W)g,.

Since Ey = Locus(Wh)[ ocus(on), and Ep = LOCUS‘(W2)LOCUS(02)Z7 from Lemma
(6.6) it follows that Ny (FE;, X) = ([W’],[C"]) and [W"] is extremal in NE(FE;, X) for
i =1,2. Then Ny(E, X) = ([W],[W?!], [W?])

and by Lemma (8.6) NE(E,X) C S.
Now we want to prove that £ = 2H — 2E; — E5. Consider the following maps:

X = Bly, z(P™)

3

Bly, (P™)
2 ‘ G
P~ ]merfl

104



8.2 Fano RCC-manifolds not covered by lines

and denote by E’ the strict transform of J(A1, Z) under ¢.

Fix a point x € Z;. Then the union of the lines of P"* which pass through x and
meet A; in a point is a linear subspace of P" of dimension r + 1 that contains A;.
Recalling that fibers of ¢ are the strict transforms of the linear subspaces of P" of
dimension r 4+ 1 which contain A;, we have that

El = w*O]}Bn—r—l(Z)
and therefore

E = &F - E
— €*<1/}*O[Pn—r—l(2)) — E2
— 2H - Ey) - B,
= 2H —2F, — Fs.

From this it follows that £ -T = E - C' = 0, and hence

A7) Wi\ _

H=0

Let R be an extremal ray of NE(X) such that £ - R < 0. Then there is an
irreducible curve [ whose numerical class belongs to R and which is contained in F.
But this implies that [I] € NE(E, X), and so R = ([W]). Hence we can conclude
that R = ([W]) is the only extremal ray which is contained in Ny(X)g<o and that

there is an extremal face of NE(X) which contains [W] and [T7].

R2\ Rl\ H=0

NE(X)

WHeR [W}eRy [W]eRy [Il€Ry
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Clearly the elementary contraction 1, associated to the extremal ray R; is the blow
down of Ei, and the elementary contraction 15 associated to the extremal ray Ro
is the blow down of E,. Moreover, the elementary contraction 13 associated to Rs3
is divisorial because its exceptional locus is E.

Instead, the exceptional locus of the elementary contraction ¢, associated to R4 has
dimension equal to s + 1; hence if dim Ay = 0 1) is divisorial, otherwise it is small.

Description of fellow families with respect to V

As already observed in the proof of Theorem (8.14), the family V' is the family of
deformations of the strict transform of a general line of P"* which has anticanonical
degree equal ton + 1, and L = 3H — Fy — Es.

By Kleiman’s criterion L is ample and such that L -V = 3.

Now we study how cycles in V can split. There are three cases:

e a cycle in V splits into two irreducible components, I'; and 7, where I'; is
parametrized by C' and ~, is parametrized by W

e a cycle in V splits into two irreducible components, I's and 7, where I'y is
parametrized by C? and -y, is parametrized by W1;

e a reducible cycle in V can have three irreducible components 71, 72, v, where
7 is parametrized by W1, 74 is parametrized by W? and ~ belongs to W.

Therefore

o WL C! are fellow families with respect to V; in particular C! is dominating
locally unsplit and W is unsplit but not covering. Moreover, they are such
that

—Kyx -Cl=r+2 —Ky Wl=n—-r—-1
{L'Cl—Q {L~W1—l

e W2, C? are fellow families with respect to V; in particular C? is dominating
locally unsplit and W? is unsplit but not covering. Moreover, they are such
that

— Ky -C?=5+2 —Ky W?=n—-—s5-—1
{L-02:2 {L~W2:1

o WL W2 W are fellow families with respect to V; in particular W is unsplit
but not covering and

Ky W =1
L-W=1
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8.2 Fano RCC-manifolds not covered by lines

Notice also that W, W? are fellow families with respect to the Chow family associ-
ated to Ct. Moreover, (W, W) and (T, W?) are two pairs of fellow families with
respect to the Chow family associated to C?.

W2

X isthe blow up of P along two quadrics Z;, Z, suchthat Z; ¢ A; ~ P% (i = 1, 2),
dimA;NA; =0anddim Z; = dim Z; = 2 — 1 (n iseven).

2

Canonical Bundle

n n
KX = W*Opn(—n— ].) + §E1 + §E2

where 7 : X — P" is the blow up of P, F; and FE5 are the exceptional divisors.

Description of the Kleiman-Mori cone of X

Denote by

[; a minimal curve which is contracted by the blow down along Z; and by W*!
a family of deformations of [;;

I, a minimal curve which is contracted by the blow down along Z, and by >
a family of deformations of [;

~1 a curve which is the strict transform of a line of P™ that is contained in A;
and by T a family of deformations of 7;;

~9 a curve which is the strict transform of a line of P" that is contained in A,
and by T2 a family of deformations of v;;

ﬁl = 2H - El;
£2 = 2H — EQ,
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8.2 Fano RCC-manifolds not covered by lines

® F:2H_E2_E1

Note that H, £; and L, are nef divisors on X, and we have the following intersection
numbers:

wtiw? |1 T1?
E,|-1] 0 210
Ey| 0 | =1] 0] 2
H | 0 0 11
L£y] 1 0 0| 2
Ly| 0O 1 210
F |1 1 010

and therefore H, £, and L, are the supporting divisors of three extremal faces of
NE(X). We want to show that F is nef, and hence it is a supporting divisor of the
last extremal face of NE(X).
Suppose by contradiction that there is a irreducible curve [ C X such that F -1 < 0.
Then (H—E;)-l<0or (H—E,)-1<0.
Assume without loss of generality that (H — E;) -1 < 0, and consider the following
maps:

X = Blyz, z,(P™)

&

Blgz, (P™)
4

]P)TL

Let H be an hyperplane of P" which contain A; and let H' be the strict transform
of H under ¢. In particular, we have that

H — E1 = €*H,
and hence, by the projection formula, we get
(H—FEy)-l=H"¢l<0.

This implies that the curve [ is not contracted by € and that ¢(I) is contained in
H'. Then ¢(e(l)) C Ay and so | C /Tl U E, where /A\I is the strict transform of A;
under the blow up 7 : X — P". Thus [I] € NE(A;, X) U NE(Ey, X).

We observe that Ay = Locus(T"), and, by Lemma (6.6), we have that NE(A, X) =
([T"]). Moreover Locus(W?')z. C E; and we get

dim Locus(W')5 > dimA, — Kx - W' —1
T |
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8.2 Fano RCC-manifolds not covered by lines

Therefore F; = Locus(W'); and so, NE(Ey, X) = ([T"],[W']) (both [T"] and
[W1 are extremal in NE(Ey, X) = ([T'],[W'])).
This implies that [I] € Ni(X)z>o and it is a contradiction. Hence F is nef and the

numerical classes of W', W2 T' and T? belong to four extremal rays of NE(X):

R R,
' =2 H =0
NE(X)
R4 R3
/ \ F=0
Lo=0 L1=0

[Wl] €R, [W?eRy, [TY€R; [T’ €R

Clearly the elementary contraction associated to the extremal ray R; is the blow
down of Fj, and the elementary contraction associated to the extremal ray R is
the blow down of Es.

Moreover, the elementary contractions associated to R3 and to R, are small because
their exceptional loci have dimension 7, and the Fano-Mori contraction whose sup-
porting divisor is F is of fiber type.

Description of fellow families with respect to V

As already observed in the proof of Theorem (8.14), the family V' is the family of
deformations of the strict transform of a general line of P"* which has anticanonical
degree equal ton + 1, and L = 3H — Fy — Es.

By Kleiman’s criterion L is ample and such that L -V = 3.

Now we study how cycles in V can split. There are three cases:

e a cycle in V splits into two irreducible components, I'; and i1, where I'; is
parametrized by a family C! of deformations of the strict transform of a line
of P* which meets Z; in a point, and [; is parametrized by W1;

e a cycle in V splits into two irreducible components, I'y and l~2, where I'y is
parametrized by a family C? of deformations of the strict transform of a line
of P* which meets Z, in a point, and [, is parametrized by W?;

e a reducible cycle in )V can have three irreducible components l~1, l~2, [, where L
is parametrized by the family W', [, is parametrized by the family W?2 and
[ belongs to the family W of deformations of the strict transform of a line of
P" that meets Z; in a point for i = 1, 2.

Therefore

o W1 C* are fellow families with respect to V; in particular C! is dominating
and locally unsplit, and W? is unsplit but not covering. Moreover, they are
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8.2 Fano RCC-manifolds not covered by lines

such that
—KX-C’1:%+1 —KX-leg
L01:2 LW1:1

o W2 C? are fellow families with respect to V; in particular C? is dominating
and locally unsplit, and W2 is unsplit but not covering. Moreover, they are
such that

{ —Kx-C*=%+1 { —Kx -W?=12
L-C?*=2 L-W?=1

o WL W2 W are fellow families with respect to V; in particular W is unsplit
but not covering and
—Kx -W=1
{ L-W=1

Moreover F - W = 0 and so the numerical class of W is equal to a linear
combination a[T"] + b[T?]; by the intersection numbers we have that [W] =
2T+ 5(77).

Notice also that (W, W?) and (T, W1) are two pairs of fellow families with respect

to the Chow family associated to C*. Moreover, (W, W) and (T? W?) are two
pairs of fellow families with respect to the Chow family associated to C2.

W
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