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Chapter 1: “What comes first? The understanding or 
the simulation?” 

Introduction 

Italians love coffee and drink several cups a day. Imagine you are Italian and you are 

visiting an Italian friend of yours. Most likely, he has a moka pot, a typical Italian coffee 

maker. When you see him holding the moka pot, you immediately understand his 

intention: he is about to make coffee. You make coffee yourself every day; it is easy for 

you to understand your friend’s intention, just by observing this simple grasping 

movement. He opens the moka, fills the bottom with water (not too much!), puts the 

ground coffee in the basket, places the basket in the pot, closes the moka and puts it 

on the stove. After about 5 minutes, the kitchen will be filled with the aroma of coffee. 

Now, consider another situation. Your friend has just bought a fancy new coffee 

maker, like the one that you always see at the cafe. It makes espresso. You have never 

made an espresso yourself, but you have seen the barista make it many times. Your 

friend knows all the steps needed to prepare espresso. You watch him put the ground 

coffee in the holder, tamp down the coffee, switch the machine on for 1 second just to 

remove the dirty water, twist the holder into place on the machine with a rotational 

movement, place the cups below the spout, and switch the machine on again. You 

know that after about 5 seconds the dark liquid will pour into the cups. Finally, 

consider yet another situation. Your friend has just visited France and he bought a 

French press to make French coffee. You know nothing about it. You see him holding 

the press, but you have no idea of what he is doing. You cannot even say that he is 

making coffee. Then, you see him putting the ground coffee in the glass container, now 

you understand what he is doing. He presses the plunger and after 4 minutes, the 

coffee is ready. 
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In all three scenarios described above, there is a common aspect: your friend’s more 

distal action (or intention) is to make coffee. The three ways of preparing the coffee 

are very different, but ultimately the goal is the same. This example shows how the 

same goal can be achieved by many different actions. Importantly, you can understand 

your friend’s intention because you can understand his actions. Different sources of 

information can be used to reach this goal. In the first scenario, you know how to 

perform those actions yourself (with the moka pot); in the second scenario, you have 

collected many visual experiences (watching espresso being made using a machine); in 

the last scenario, you have knowledge of the objects related to the action (ground 

coffee) that helps you to make sense of what you see. Understanding others’ actions is 

a fundamental human ability, especially in social situations (maybe you do not want a 

coffee, thus you can stop your friend from preparing it when you see him picking up 

the moka pot). An intriguing and still open question in neuroscience is how the brain 

allows us to understand situations like this. In other words, how is the brain able to 

relate many different ways of performing an action to one specific goal or intention 

(the many-to-one mapping problem)?  

During my PhD, I have investigated the neural bases of action understanding. This field 

of research has attracted a lot of interest in the last two decades both within the 

scientific community and in the media. There are at least two kinds of reasons why this 

is the case. First, there is the theoretical reason. The main aim of psychology and 

neuroscience is to understand how the mind and the brain work. Low-level processes, 

such as early vision and simple movements, have been described extensively and we 

have a fairly good understanding of their neural mechanisms. For example, it has been 

known since the 1950s that there are areas in the central part of the brain that will 

produce overt movements (Penfield & Boldrey, 1937) if electrically stimulated, and 

that oriented edges and gratings induce neurons in primary visual cortex to discharge 

(Hubel & Wiesel, 1959). On the other hand, higher-level processes such as action 

understanding, meaning the ability to discriminate and recognize observed actions, are 

more complex and still poorly understood. What are the neural bases of action 
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understanding? This is a still an open question and finding an answer is fundamental 

for building a theoretical framework of brain function.  

Why is studying action understanding and its neural bases important? We are social 

animals who interact with other people every day. Understanding others’ actions is 

fundamental for appropriate social behaviour. Recognizing others’ actions is 

considered a necessary ability for extrapolating their mental states (Frith & Frith, 1999) 

and predicting their intentions (Blakemore & Frith, 2005). Action understanding is also 

important for coordinating our own actions with those of other people (Kokal et al., 

2009). It becomes obvious that action understanding has important consequences for 

everyday life when this ability does not function any more, either because it was 

impaired e.g. due to a stroke, or because it never developed properly. For example, it 

has even been proposed that action understanding impairment is at the basis of 

mental diseases such as autism (but see Hamilton, 2009; Williams et al., 2001). 

Investigating the neural bases of action understanding can provide us with profound 

knowledge about such diseases and the appropriate treatments. 

The second reason for the widespread interest in this topic was the discovery of the 

so-called mirror neurons in the early 1990s by Rizzolatti’s group in Parma (Italy). These 

cells were observed in the monkey brain and have the property of discharging both 

during action execution and during the observation of this same action being 

performed by others (di Pellegrino et al., 1992). Because of this interesting property, 

many researchers have suggested that mirror neurons are involved in action 

understanding. According to this view, we are able to understand others’ actions 

because we activate those neurons that are active when we perform the same action 

ourselves. Since we know what we do when we perform the action, we also know 

what other people intend to do when we observe them performing the same action 

(Rizzolatti et al., 2001). Despite considerable support for this appealing theory, not 

everyone in the scientific community agrees with this view. An active debate on the 

role of mirror neurons in action understanding has emerged over the last few years 

(Caramazza et al., 2014; Csibra, 2007; Hickok, 2009; Mahon & Caramazza, 2008).  
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In the next sections of this chapter, I am going to introduce the two main classes of 

theories, which I will refer to as cognitive and motor theories (Figure 1.1), which 

attempt to explain the mechanisms underlying action understanding. Then, I will 

describe the different levels of action representations and why studying these 

different levels can help in investigating action understanding. Finally, I am going to 

describe why it is important to investigate the temporal aspects of action observation, 

and how this issue has been addressed in previous studies. 

Theoretical background: models for action recognition 

Behavioural studies have shown that motor knowledge is automatically retrieved 

during action observation. The kinematics of an action, namely the trajectories of 

vertical/horizontal arm movements, are affected if a performer observes an actor 

doing similar but incongruent actions (Kilner, Paulignan, & Blakemore, 2003). Evidence 

of motor knowledge retrieval has also been observed during sentence reading, 

demonstrating that motor representations are also activated when action-related 

concepts are triggered through language. Glenberg and Kaschak (2002) designed an 

experiment in which participants had to judge if action-related sentences were 

sensible or nonsense. For example, the sentence “close the drawer” is a sensible 

sentence and implies a movement away from the body. In half of the experimental 

blocks, participants could indicate that a sentence was sensible by pressing a button 

that was distal from the body (congruent movement); in the remaining blocks, the 

“sensible” button was more proximal to the body (incongruent movement). The 

reverse button-response mapping was assigned for sentences such as “open the 

drawer”. Participants’ response time was faster if the response movement was 

congruent with the implied action in the sentence. Glenberg and Kaschak (2002) called 

this phenomenon the action-sentence compatibility effect (ACE) and argued that motor 

representations are automatically recruited in these kinds of tasks. 
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Figure 1.1. Models of action understanding. Schematic representation of the two major 
theories of action recognition. Cognitive theories (e.g. Mahon & Caramazza, 2008) state 
that action concepts are represented in a semantic system distinguishable from the motor 
system. Conversely, motor theories (Rizzolatti et al., 2001) claim that action semantics are 
directly encoded in the motor system. The two types of theories predict different neural 
dynamics of action understanding. Motor theory hypothesize a direct access to the motor 
system and consequently an early access to action semantics (Hauk et al., 2008). By 
contrast, cognitive theories predict a post-conceptual encoding of action semantics in the 
motor system.  

The majority of the experimental contributions showing motor-related activity during 

action observation come from studies that used neurophysiological and neuroimaging 

techniques such as direct single-unit recording in monkeys and functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), magnetoencephalography 

(MEG), and transcranial magnetic stimulation (TMS) in humans. Motor-related regions 

were found to be active during action observation, both in monkeys with direct 

neuronal activity measurement (di Pellegrino et al., 1992; Gallese et al., 1996) and 

humans using TMS (Fadiga et al., 1995). Interestingly, other areas are also recruited 

during action observation, including the parietal (in monkeys, Fogassi et al., 2005; and 

in humans, Shmuelof & Zohary, 2007) and temporal regions (in monkeys, Jellema, 
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Baker, Wicker, & Perrett, 2000; Perrett et al., 1989; in humans Decety et al., 1997; 

Lingnau & Petris, 2013; Oosterhof, Tipper, & Downing, 2012a; Oosterhof, Wiggett, 

Diedrichsen, Tipper, & Downing, 2010; Giacomo Rizzolatti, Fadiga, & Gallese, 1996; 

Wurm, Ariani, Greenlee, & Lingnau, 2015; Wurm & Lingnau, 2015; see also Caspers, 

Zilles, Laird, & Eickhoff, 2010). More specifically, these regions include the ventral 

premotor (PMv) cortex, the inferior parietal lobule (IPL) and the posterior middle 

temporal gyrus, and have been identified as the action observation network, or AON 

(see Caspers et al., 2010 for a detailed meta-analysis of fMRI studies). Figure 1.2 shows 

the regions typically reported in action observation studies. 

 

Figure 1.2. The action observation network (AON). Regions typically recruited during 
action observation tasks. The network includes temporal, parietal and frontal areas. The 
image shows the results of a meta-analysis of 139 fMRI studies (Caspers et al., 2010). 
BA44/BA45, inferior frontal gyrus; BA6, dorsal premotor cortex; SMA, supplementary 
motor area; SI, primary somatosensory cortex; 7A, superior parietal area; PFt, inferior 
parietal area; hIP3, intraparietal area; pMTG, posterior middle temporal gyrus; V5, visual 
area 5; FFA/FBA, fusiform face area/fusiform body area. Left panel, added in black, 
alternative labels used in this thesis: vPM, ventral premotor; IFG, inferior frontal gyrus; 
dPM, dorsal premotor; SPL, superior parietal lobule; IPS, intraparietal sulcus; LOTC, lateral 
occipitotemporal cortex. Figure modified from (Caspers et al., 2010). 

Both motor and cognitive theories are compatible with the behavioural results 

previously described and they both predict the recruitment of motor and nonmotor 

regions (Mahon & Caramazza, 2008; Rizzolatti et al., 2001). The debate arises when 

assigning the central role in action understanding to one or another of these regions. 

The motor theory argues that the motor system plays a crucial role in action 

understanding, whereas the cognitive theory claims that the meaning of an action is 
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processed outside the motor system and the involvement of motor regions is a 

consequence of action understanding (see Figure 1.1).  

Motor theories of action understanding 

The motor theory is part of a larger group of embodied theories of cognition, also 

known as grounded cognition theories, which claim that higher cognitive abilities are 

the result of the reactivation of those areas that are directly dedicated to primary 

sensory processing or to action execution (Barsalou, 2008; for a critical assessment see 

Caramazza et al., 2014). At the neural level, higher-level cognition is not due to 

computation within amodal or abstract brain regions that are independent of the 

perceptual and motor system. Cognition is grounded in the low-level perceptual and 

motor systems. One classical example of embodied theory is the motor theory of 

speech perception (Liberman et al., 1967), which claims that speech is perceived and 

understood through internal motor simulation of those articulatory gestures used 

during the production of the same speech sounds. 

Similarly, motor theories claim that we understand others’ actions by means of the re-

enactment of those neural substrates and simulation of the same processes that are 

active when we perform the same actions (Pulvermüller, 2013; Rizzolatti & Sinigaglia, 

2010; Rizzolatti et al., 2001). For example, when we observe a person grasping a cup, 

we activate the same brain regions (hand-related motor and premotor areas) that are 

active when we grasp a cup; when we see someone kicking a ball, we activate the 

same brain regions (foot-related motor and premotor areas) that are active when we 

kick a ball. These shared neural representations between observed and executed 

actions are considered to contain the knowledge (we know what we do when we are 

grasping or kicking) that allows us to understand the observed actions (Pulvermüller, 

2005; Rizzolatti et al., 2001). Action semantics (or action knowledge in general) are 

grounded in the motor system.  

This logical and simple explanation received strong support from the discovery of 

mirror neurons (di Pellegrino et al., 1992). In fact, these theories are sometimes 

referred to as the mirror neuron theory of action understanding. The core assumption 
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of motor theories is that there is no need for an intermediate cognitive step between 

action perception and action understanding: once the observed action is mapped onto 

our own motor representation, we grasp the meaning of this action. It has been 

argued that this mapping occurs quite quickly, within 200 milliseconds (Boulenger et 

al., 2006; Hauk & Pulvermüller, 2004), which has been taken as a support for the idea 

that motor-related regions are necessary for action comprehension.  

Similar evidences are provided by the language domain. According to the embodied 

account, action words are strictly linked to the motor system, because words refers to 

the action semantics located in motor-related areas (Pulvermüller, 2005). Therefore, 

when we read or listen to effector-specific action words, effector-specific brain areas 

get involved and provide us access to the word semantics. For example, reading the 

word ‘kick’ activates foot motor regions and we can thus understand the meaning of 

the word.  

From an experimental point of view, the five main predictions of the motor theory of 

action understanding are: 1) action observation leads to activation of motor-related 

regions, specifically those areas involved when the observer performs the same action; 

2) the action representation encoded in motor-related areas generalizes across 

different action implementations; 3) the motor system has an early access to abstract 

action representations; 4) impairment of motor-related regions affects action 

recognition; 5) impairment of non-motor-related regions does not affect action 

recognition. 

In this thesis, I will not cover the predictions related with impairment of motor and 

nonmotor regions (point 3 and 4). Patient studies have provided mixed results on this 

matters, but recent studies appear to consider motor-related regions not necessary for 

action understanding (Negri et al., 2007; Tarhan et al., 2015).  Detailed information are 

provided elsewhere (e.g. Buxbaum & Kalénine, 2010; Hickok, 2009; Kalénine et al., 

2010; Negri et al., 2007; Pazzaglia et al., 2008; Tarhan et al., 2015). 
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Cognitive theories of action understanding 

An alternative explanation is that activation of motor-related areas during action 

observation is a consequence of action understanding that occurs in so-called abstract 

nonmotor regions, as stated by the cognitive theory of action perception. The basic 

idea is that such regions would contain action-related information (action knowledge) 

that is not linked to specific motor programmes (Caramazza et al., 2014; Hickok, 2012; 

Mahon & Caramazza, 2008). These regions form a sort of conceptual system, 

distinguishable from the perceptual and motor systems, from which action information 

is retrieved any time an action concept is needed. Cognition occurs through 

computation within amodal and abstract regions. However, the semantic system is 

highly interconnected with the perceptual and motor systems such that activating a 

specific concept might lead to re-activation of the interconnected systems. For 

example, the concept grasping would be active during action execution, action 

observation of grasping actions and reading of action-related word. In all cases, we 

understand the action we are performing or observing and we activate the same 

concept. The difference concerns how the concept is recruited: through internal 

processing in the case of action execution and by visual external stimuli during action 

observation. The question is if re-enactment of motor-related regions has a functional 

role. In the last several years, several different, but not mutually exclusive, 

explanations have been suggested. Heyes et al. (2010) and Catmur et al.(2007) 

proposed an association learning account: action execution and perception mostly co-

occur in everyday life and this automatically creates sensory-motor associations. This 

account could explain why motor system activity correlates with motor experience 

(Calvo-Merino et al., 2005, 2006; Cross et al., 2006; for a review see Turella et al., 

2013). Furthermore, it has been suggested that mirror neurons might be helpful for 

selecting appropriate actions (Hickok & Hauser, 2010), similar to canonical neurons 

which discharge for objects according to their manipulation properties (Rizzolatti et al., 

1988). Finally, mirror neurons might be part of a two-pathway (dorsal and ventral) 

system and their function could be to generate the sensory consequences of concrete 

actions that are understood within temporal regions where abstract action 
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representations are encoded (Kilner, 2011). In any case, the cognitive theory makes 

similar predictions to the motor theory: action observation leads to activation of 

motor-related regions. 

However, the cognitive theory predicts no impairments in action recognition in those 

patients that have deficits in action production. Some experimental evidence is in line 

with this prediction. The most famous example is Broca’s aphasia. People with damage 

in Broca’s area (within the inferior frontal gyrus), which is directly related to speech 

production, can still understand action words, and words in general, even if they are 

unable to reproduce those words (Broca, 1861). In the action observation domain, a 

recent patient study by Buxbaum’s group (Tarhan et al., 2015) using voxel-based lesion 

symptom mapping on 131 chronic left-hemisphere stroke patients found that 

impairment of action recognition is related to damage within lateral-occipitotemporal 

areas, whereas  damages to primary motor and somatosensory cortices and inferior 

parietal lobule accounted for action execution deficit. Furthermore, an anterior section 

of LOTC was related to impairment in both action execution and recognition. These 

results suggest that actions can be represented at different levels of abstractions in the 

brain.  

Levels of action representations 

Actions can be described at different levels (Figure 1.3). If we reconsider the initial 

example about making coffee, we can identify a low-level description of the action 

(e.g. the actual movements/steps required to make coffee using the moka pot) and 

move along a continuum towards an abstract description (making coffee). We can 

even distinguish proximal actions (filling the moka-pot) from distal ones (drinking the 

coffee). It is likely that these different levels of representations are also reflected at 

the neural level (Grafton & Hamilton, 2007; Hamilton & Grafton, 2008; Kilner, 2011).  

It is important to note that the activation of the same motor-related regions during 

action observation is a necessary but not sufficient condition for proving that action 

knowledge resides within the motor system. In fact, fMRI studies have reported many 
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regions, also outside the classical action observation network, that seem to show a 

shared common code during action observation and execution (Gazzola & Keysers, 

2009). However, is this activation really reflecting action comprehension? Other 

cognitive processes, such as attention, response selection or task engagement can 

explain this functional neural overlap (Dinstein et al., 2008).  

A region that is involved in action understanding should encode abstract 

representations of actions (Hamilton & Grafton, 2008; Hickok, 2012; Oosterhof et al., 

2013). In other words, a region dealing with action meaning does not need to 

discriminate between the ways in which an action is performed (e.g. the kinematics). 

For example, grasping can be performed in many different ways (e.g. with the right or 

the left hand) and can be observed from a potentially infinite number of perspectives, 

but the goal always remains the same. Which region contains information concerning 

the meaning of actions? Neuroimaging studies have shown that abstract actions are 

represented in temporal and parietal regions (Oosterhof et al., 2010, 2012a; Wurm & 

Lingnau, 2015; Wurm et al., 2015), but also in frontal areas, specifically in premotor 

regions (Cattaneo et al., 2010). 
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Figure 1.3. Hierarchical organization of actions. Action representations considered as a 
concrete to abstract hierarchy of representations. The lowest level describes the concrete 
aspects of an action (e.g. the effector used, the position of the object, the perspective of 
the scene, etc.). Increasingly abstract representations arise at intermediate levels of the 
hierarchy while the highest level represents the action concept.  

 

Looking for brain regions that encode abstract information on actions can help to 

reveal the role of the areas typically involved in action observation. For example, some 

regions might be encoding specific low-level features of observed actions (e.g. the 

effector used, or movement direction). Other regions might ignore this type of 

information and instead encode the goal associated with them. Recent methods of 

data analysis such as multivariate pattern analysis (MVPA) applied to fMRI can 

contribute to this type of investigation by extrapolating the informational content of a 

brain region (Haxby et al., 2001; Kriegeskorte et al., 2006; see Haxby, 2012 for a 

historical perspective). Recently, multivariate analyses have also been applied to MEG 

data (King & Dehaene, 2014). In the studies I am going to describe in this thesis, I 

adopted both MVPA of MEG data (Study 1 and Study 2) to investigate abstract action 
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representations over time and MVPA of fMRI data (Study 3) to characterize what is 

encoded within regions involved in action observation.  

Temporal aspect of action observation 

Action understanding occurs in at least two separate and sequential stages (Figure 

1.1): 1) visual analysis of the action information, and 2) action semantics retrieval. 

According to the motor theory, the second step coincides with motor information 

retrieval. According to the cognitive account, motor system activity is a third step 

subsequent to the retrieval of action semantics. The temporal aspect of action 

understanding, together with the hierarchical organization of action information in the 

nervous system, provides a powerful tool for testing the two theories. If abstract 

action representations are directly mapped to the motor system of the observer, it 

would be hard to reconcile with cognitive theories of action understanding. On the 

other hand, if we observe a two-step process (action semantics retrieval followed by 

motor representations), then we have to reject the motor account. In the literature, 

several studies have investigated neural dynamics during action observation, but to 

date none has focused on the dynamics of abstract action representations.  

Ritta Hari’s group conducted the first studies that aimed at investigating the temporal 

dynamics of action observation. They used MEG to measure the magnetic activity 

generated by neural sources involved during action observation and to track their 

temporal recruitment. They observed different event-related field (ERF) components 

emerging at different latencies for different sources. The earliest ERF peak started in 

left lateral occipital areas (around 250 milliseconds before the hand touched the 

object) followed by premotor ventral regions (around 100 millisecond before the hand 

touched the object) and finally to primary motor regions (just after the hand touched 

the object). This kind of temporal pattern was observed both during hand-related 

(Nishitani & Hari, 2000) and mouth-related (Nishitani & Hari, 2002) actions. These 

studies confirmed that motor regions are recruited during action observation, adding 

important information about the temporal dynamics of such recruitment. Moreover, 
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these studies reveal a temporal profile that is similar to the one described in the 

monkey brain during action observation (Fabbri-Destro & Rizzolatti, 2008). However, 

they do not provide much information about when action understanding occurs or 

which region might be responsible for action recognition. To do so, one needs to test 

which of the involved region encodes abstract action information (see previous section 

Levels of action representations). 

In addition to event-related components, EEG and MEG allow us to measure brain 

oscillatory activity. Neuronal activity generates different spontaneous rhythms that 

can be measured at the scalp. These rhythms can be classified according to their 

frequency, topography and modulation due to external stimuli or internal brain states. 

The frequency bands that are typically modulated during action observation range 

between 8-12 Hz (alpha band) and between 18-25 Hz (beta band) and are usually 

observed at sensors located over sensorimotor regions (they are also called mu 

rhythms; see Pineda, 2005 for a review). The perturbation due to the presentation of 

action-related stimuli is usually referred to as mu-band activity. It is considered an 

induced response that has been suggested to reflect “the changes in activity of the 

local interactions between main neurons and interneurons” (Pfurtscheller & Lopes da 

Silva, 1999). In studies investigating oscillatory brain activity during action observation, 

the main dimension of interest is the power of the frequencies elicited at specific time 

points during measurement. The idea is that mu rhythms are the neural correlates of 

the motor system at rest (Pfurtscheller, Stancàk, & Neuper, 1996; but see Engel & 

Fries, 2010) and the decrease in power (event-related desynchronization or ERD) 

observed during action observation would indicate motor system activation, whereas 

power increase would be the neural marker for motor system inhibition (event-related 

synchronization or ERS) (Hari, 2006; Pineda, 2005). 

It has been shown, using EEG, that observation of a grip action causes mu 

desynchronization (Muthukumaraswamy & Johnson, 2004) and that this 

desynchronization is stronger when the action targets an object (Muthukumaraswamy 

et al., 2004). These studies corroborate the idea that the motor system is active during 
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action observation and suggest that brain oscillatory activity is a suitable tool to study 

action observation. However, the authors focused only on the frequency dimension of 

the mu-band activity without considering the temporal aspect of the suppression. 

When the motor system is involved in the process of action observation and how the 

other regions of the AON are recruited is still a matter of debate. Three recent studies 

have started directly investigating the temporal dynamics of action observation in 

more detail. In 2008, Koelewijn and colleagues (2008) investigated the oscillatory 

activity correlated with the observation of an apparent movement of the hands and 

reported that sources located in premotor regions were modulated by the 

incorrectness of the observed action. Pavlidou et al. (2014a) explored the temporal 

dynamics associated with the observation of actions simulated by point-light displays 

(PLD). PLD stimuli are generated by recording biological movements using motion-

capture devices positioned on the major joints of the body of an actor. In this way, it is 

possible to create human-like figures performing actions where only the essential 

features necessary to perceive the biological movement are maintained (Johansson, 

1973). By contrasting action stimuli with scrambled PLDs, Pavlidou and colleagues 

found alpha- and beta-activity over premotor regions, as expected, and over parieto-

occipital and temporal regions. They were able to describe in more detail the process 

of action observation as actions unfolded, exploring the neural correlates that are 

likely associated with the activity of the AON. Source analysis revealed many regions 

typically considered to form part of the AON aside from low-level sensory regions like 

V1 and M1. Interestingly, temporal regions, such as the superior temporal sulcus and 

middle temporal areas, were modulated earlier than frontal regions. However, their 

results show that these regions are somehow involved in action observation, but do 

not say which region encodes an abstract representation of the action.    

Multivariate analysis in combination with MEG can be a powerful tool for studying 

abstract action representations. Oscillatory activity might contain information related 

to different aspects of an action (e.g. the goal) and these different representations can 

be decoded using MVPA. This is exactly what I did in my work (Study 1 and Study 2). 



“What comes first? The understanding or the simulation?” 

16 
 

Current work 

During my PhD, I have investigated the neural dynamics of abstract action 

representations during action observation with a particular focus on temporal regions 

with the aim of revealing the action-related properties encoded within these regions. 

In this thesis, I am going to present three studies (two MEG and one fMRI) that I have 

conducted in these four years. These three experiments aimed at answering three 

main questions: 1) When, and in which brain regions, are abstract action 

(grasping/pointing) representations encoded (Study 1, in Chapter 2)? Do the results 

observed in Experiment 1 generalize across other actions (Study 2, in Chapter 3)? 

What aspect of an action is encoded within temporal regions (Study 3, in Chapter 4)? 

To anticipate my findings, the MEG experiments revealed that lateral occipitotemporal 

cortex (LOTC) has the earliest access to abstract action representations (Study 1,) and 

that this result is generalizable to different types of actions (Study 2). Furthermore, 

LOTC seems to encode different aspects of actions (such as the state of a manipulable 

object), making this region a good candidate for hosting the semantics of actions 

(Study 3).  
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Chapter 2: MEG-MVPA demonstrates that LOTC 
encode abstract action representations earlier than 
frontal regions 

 

Adapted from: 

Tucciarel l i  R.,  Turel la  L. ,Ooste rhof N.N. ,  Weisz N.,  and Lingn au A.(2015).  MEG mult ivar iate analysis  
reveals  ear ly abstract action  representations  in lateral  occipitotemporal  cortex . Journal  of  Neuroscience.   

 

Introduction 

How do we assign meaning to actions performed by other people? One of the most 

dominant views in the literature is the idea that action concepts are grounded in the 

motor system (Kiefer & Pulvermüller, 2012; Rizzolatti et al., 2001). By contrast, 

according to classical cognitive theories (Caramazza et al., 2014; Mahon & Caramazza, 

2008), the ability to understand the meaning of other people’s actions draws on 

conceptual representations stored outside the motor system, such as posterior 

temporal regions.  

A region involved in action understanding should be able (a) to discriminate between 

different actions (action specificity), and (b) to generalize across different possible 

instances of a particular action (Caramazza et al., 2014; Dinstein et al., 2008; Oosterhof 

et al., 2013). For example, grasping has the same meaning for an observer irrespective 

of whether the movement is performed with the left or right hand, or towards the left 

or right side of visual space. In other words, a region important for action 

understanding should represent the action while generalizing across concrete 
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instantiations such as the underlying effector or reach direction. Previous fMRI and 

TMS studies in humans have reported abstract action representations in parietal, 

frontal and occipital regions (Cattaneo et al., 2010; Hamilton & Grafton, 2006, 2008; 

Oosterhof et al., 2010, 2013), making it difficult to draw firm conclusions regarding the 

ongoing debate between motor and cognitive theories. The underlying temporal 

profile of action understanding is an important factor which is not yet fully 

understood. Such information is crucial since the two theories lead to opposite 

predictions: according to motor theories, motor areas should have the earliest access 

to abstract action representations (Pulvermüller, 2005). By contrast, according to 

cognitive theories, areas outside the motor system should have the earliest access to 

such abstract action representations.  

Here we use MVPA of MEG data to examine where in the brain and at which point in 

time it is possible to distinguish between observed pointing and grasping irrespective 

of reach direction (left, right) or effector (left, right hand). In contrast to motor 

theories of action understanding, we show that abstract action representations are 

encoded in lateral occipitotemporal cortex earlier than in precentral regions.  

Materials and Methods 

We carried out two separate experiments with two different groups of participants: 

one behavioural experiment to identify the time point at which the videos contained 

enough information to allow participants to discriminate between pointing and 

grasping, and an MEG experiment. The same stimuli were used for the two 

experiments. 

Participants. Fourteen students (7 females; mean age: 23.13; sd: 2.253; all right-

handed) from the University of Trento took part in the behavioural experiment and 

received a reimbursement of €6, at the end of the session. A different group of 

seventeen students (11 females; mean age: 23.3; sd: 2.1; all right-handed) from the 

University of Trento with normal or corrected-to-normal visual acuity and with no 

neurological disorders took part in the MEG experiment. All participants received a 
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reimbursement of €25,- at the end of the MEG session. All of them gave informed 

consent in accordance with the Declaration of Helsinki. The experimental procedures 

were approved by the Ethics Committee for research involving human participants at 

the University of Trento. 

Stimuli. Stimuli consisted of short video-clips (833 ms) depicting simple center-out 

hand movements (Figure 3.1A). Each clip started with the hand of the actor touching 

the central object (a polystyrene semi-sphere) with the index finger resting in the same 

position. After a variable amount of time (median: 183 ms; range: [67 – 367 ms]), a 

center-out movement towards one of the other semi-spheres started. Movement 

onset was defined as the time point in which the rest position was released and hand 

preshaping was initiated. The video ended as soon as the hand reached one of the 

peripheral semi-spheres (see Figure 3.1A for an example trial sequence). The actions 

were recorded from four different actors (1 male) using a digital video camera. Only 

the hands (and part of the forearm) of the actors were visible in the field of view. We 

instructed the actors to keep the velocity and kinematics of the movements as similar 

as possible across the two different movements. We discarded, based on our 

perceptual judgment, videos in which the velocity or kinematics were too dissimilar 

from the others and videos in which the preshaping of the hands before movement 

onset could give information regarding the upcoming action, keeping a total of 80 

videos (five exemplars for each combination of actor x movement type x direction). We 

obtained movements performed with the left hand creating specular copies of the 

right hand movement videos via software (Matlab, Mathworks, Natick, NA), for a total 

of 160 videos. On each video, we superimposed a small white cross (0.88 x 0.88°) 

above the central semi-sphere to enable fixation and thus to avoid possible noise in 

the MEG signal due to eye movements.  
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Figure 2.1. Example of a trial sequence and experimental design. During MEG recording, 
N = 17 participants watched video clips of simple ‘reach-to-point’ or ‘reach-to-grasp’ 
movements (duration: 833 ms). Participants were instructed to fixate on a central fixation 
cross while attentively observing the entire video without performing any movements. To 
ensure that participants paid attention to the videos, different types of questions were 
asked during occasional catch trials that were later discarded from the analysis (for details, 
see Material and Methods). The green fixation cross indicated the period during which 
participants were allowed to blink. Eye movements were recorded using an MEG-
compatible eye-tracker. B: We used a 2x2x2 design, manipulating the type of movement 
(pointing/ grasping), reach direction (left/ right), and effector (left/right hand). 

 

Behavioural experiment 

Procedure. To identify the minimum video duration required to be able to distinguish 

between observed pointing and grasping, we presented participants with videos 

depicting pointing or grasping movements directed towards the left or right side, 

performed with the left or right hand. The duration of the videos was parametrically 

varied (167, 200, 233, or 333 ms). Participants had to classify the type of observed 

movement by pressing one of two possible buttons while ignoring the other two 

dimensions (reach direction, effector). A trial started with a fixation period (white 

cross) of 2 seconds. Then the video appeared for a variable duration. As soon as the 

video ended, the fixation cross appeared again, and participants had to indicate by 

button press which movement they had observed. Participants were instructed to 

respond as accurately as possible. Video duration, type of movement, effector and 
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reach direction were randomized. Each participant completed four experimental runs 

of approx. 5.5 min, for a total of 512 trials (64 repetitions per conditions). Stimuli were 

presented on a CRT monitor (ViewSonic Graphic Series G90fB; screen resolution: 

1280x1024, refresh rate: 60 Hz) placed approx. 64 cm in front of the participants. 

Statistical analysis. The aim of the behavioural experiment was to individuate the 

point in time in which the two actions started to perceptually diverge. To compute the 

accuracy for discriminating between the two observed actions as a function of video 

duration, we divided the number of correct classifications by the total number of trials, 

separately for each video duration and each participant, collapsing across effector 

(left, right hand) and reach direction (left, right). We then used a chi-squared test to 

assess at which video duration the accuracy was higher than chance level (50%). 

MEG experiment  

Procedure. We presented participants (N = 17) with short videos (833 ms) of reach-to-

point and reach-to-grasp movements performed with either the left or right hand 

towards peripheral targets on the left or right side (Figure 3.1A) while measuring their 

brain oscillatory activity. We used a 2x2x2 factorial design (Figure 3.1B), varying the 

type of movement (pointing/grasping), the effector (left/right hand), and reach 

direction (left/right). Each trial consisted of the following events (Figure 3.1A): a green 

fixation cross (blink phase: 800 ms), a white fixation cross (fixation phase: randomly 

jittered within 2000-2500 ms), the video (video phase: 833 ms), and a white fixation 

cross (resting phase: 1000 ms). Trial duration varied from 4633 ms to 5133 s depending 

on the duration of the fixation phase. The blink phase at the beginning of each trial 

allowed participants to blink during a controlled time window and thus reduced the 

probability of blinking during the fixation phase or during video presentation. 

Participants were instructed to blink every time they saw the green cross. During the 

fixation phase, participants had to maintain fixation on the white cross. We jittered the 

fixation phase to prevent participants from predicting the appearance of the video 

since this could cue a neural response. When the video appeared, participants were 

asked to keep fixating on the cross and to pay attention to the ongoing movement. In 
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particular, in contrast to the task used in the behavioural experiment, we asked them 

to attend to all three dimensions we manipulated, i.e. movement type, effector, and 

reach direction. During the resting phase, participants had to keep fixating and to wait 

for the green cross that indicated the beginning of a new trial.  

To ensure that participants were paying attention to the video, we introduced catch 

trials (10% of all trials) during which we presented a question regarding one of the 

three dimensions (e.g. 'was the direction to the left?'). Catch trials were presented 

occasionally with the following constraints: 1) if trial N was a catch trial, trial N+1 could 

not be a catch trial; 2) no catch trial during the first trial of a run. A catch trial was 

identical to an experimental trial except for the question that appeared at the end of 

the catch trial (1 sec after video offset). Since participants did not know when a catch 

trial would appear, and what the question would be, they had to pay attention to each 

video and to each of the three dimensions to perform the task correctly. The answer 

was always binary (yes or no) and participants had MEG-compatible buttons for 

answering to the questions. The assignment of the response to the two buttons 

changed randomly for each question to avoid any potential confounds related to 

motor preparation. Eye movements were monitored using the OEM system (OEM eye 

tracker, SMI; 60 Hz sampling rate). After each response, feedback was provided (a 

smiling or a sad cartoon face). 

Each participant performed 10 runs, consisting of 64 trials, plus 6 catch trials, for a 

total of 640 experimental trials and 60 catch trials. The number of repetitions for each 

factorial combination (movement type x effector x reach direction) per participant was 

80. Before entering the shielded room, participants were familiarized with the stimuli 

and the task. Each run lasted from 4.9 to 5.5 minutes, depending on the duration of 

the fixation phase, for a total session duration of approximately 52 minutes. At the end 

of each run, participants were allowed to rest for a few minutes before a new 

acquisition started. 

Stimuli were projected on a screen (1280 x 1024 pixels screen resolution, 60 Hz refresh 

rate) that was placed about 130 cm in front of the participant. The screen was visible 
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as a rectangular aperture of about 21.7 x 13.16°. We controlled visual stimulation 

during the behavioural and the MEG sessions using ASF (Schwarzbach, 2011), a toolbox 

for Matlab (Mathworks, Natick, MA) based on the Psychtoolbox (Brainard, 1997). 

MEG data acquisition and analysis. At the beginning of the MEG session, the head 

shape of each participant was digitally acquired using the Polhemus system (Polhemus, 

Colchester, VT). Moreover, we placed three coils at the participant's forehead and two 

behind the ears to acquire the head position of each participant within the MEG 

helmet at the beginning of each run. Prior to entering the shielded room containing 

the MEG system, participants were asked to remove all magnetic materials that could 

distort the measurement.  

We measured neuromagnetic brain activity using a 306-channels whole head MEG 

system (Neuromag Elekta Oy, Helsinki Finland) at a sampling rate of 1000 Hz. The 

system consists of 204 planar gradiometers and 102 magnetometers arranged in a 

helmet configuration. Here, we only report the results of the gradiometers. Triggers 

were sent at video onset to synchronize stimulus presentation with neural activity. To 

check for the correct timing of the stimuli, and to take into account possible delays of 

the stimulus presentation with respect to the triggers, we used a photodiode on the 

stimulation screen inside the shielded room. 

MEG data preprocessing. We analysed data using the open source Matlab-based 

Fieldtrip toolbox (Oostenveld et al., 2011). Continuous data were cut into epochs from 

-1 to 1.3 sec relative to video onset. Epochs were high-pass filtered at 1 Hz to remove 

very slow frequencies and Direct Current (DC) offset. Frequencies due to the electrical 

system were also filtered out using a band-stop filter (Butterworth IIR filter) at 50 Hz 

and its harmonics (100 and 150 Hz). Trials with blinks or eye movements during the 

presentation of the video or during the baseline period were discarded on the basis of 

the information from the eye tracker. In addition, we visually inspected trials for 

artifacts, blind to the condition, and rejected trials that were clearly affected by 

external noise or spike current. On average, we rejected 13% of the trials per 

participant. If a sensor was very noisy for the entire experimental session, it was 
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rejected. In order to have the same number of sensors for each participant, missing 

sensors were reconstructed by interpolation from neighbours. 

Time-frequency analysis. To obtain a time-frequency representation of the oscillatory 

activity associated with movement observation, we applied Fourier transformation to 

sliding time windows with fixed length of 500 milliseconds. The sliding window moved 

in steps of 50 ms; power was calculated for frequencies in a range from 2 to 40 Hz in 

steps of 2 Hz. To avoid spectral leakage and to control for frequency smoothing, a 

Hanning taper was applied prior to Fourier transformation. Subsequently, for the 

univariate analysis only, power was averaged across effector and reach direction, and 

the spectral power was normalized relative to baseline (-0.5 to -0.3 s with respect to 

the onset of the video, i.e. during a sub-period of the fixation phase).  

Source analysis. Neural sources were found using dynamic imaging of coherent 

sources (DICS), a frequency domain beamforming technique (Gross et al., 2001). We 

chose the frequencies and times of interest based on the sensor level analysis. 

Specifically, we considered the sensor with the greatest accuracy of the classifier 

(multivariate analysis) to distinguish between pointing and grasping, generalizing 

across effector and reach direction, in those frequency bands that survived the 

multiple comparison tests. Note that, given the way the sensors were selected, source 

analysis merely served as a visualization of the sources. 

For each participant we used a volume conductor model using the single-shell method 

(Nolte, 2003). The models were built warping a dipole grid based on a MNI template 

brain to fit the individual head shape of each participant. We proceeded with DICS for 

each separate condition using a common spatial filter computed from the combination 

of the two conditions. In this way, any difference between the two conditions cannot 

be ascribed to differences between the filters. 

MEG Statistical analysis (sensor level). We carried out both uni- and multivariate 

analyses in sensor space, followed by a beamforming analysis (Gross et al., 2001) to 

identify sources explaining any observed effects. Univariate analysis was conducted in 

order to observe the classical decrease in power in alpha and beta bands (Cochin et al., 
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1999; Hari, 2006; Pineda, 2005). Importantly, to identify at which sensors and at which 

point in time it is possible to distinguish between the two movements on the basis of 

the MEG signal, we applied multivariate analysis on the computed power and the 

sources adopting an algorithm developed for the analysis of fMRI data (Oosterhof et 

al., 2012a).  

Behavioral analysis (MEG experiment). Participants’ accuracy in answering the 

questions in the catch trials during the MEG experiment was evaluated online by 

observing the feedback provided after each catch trial. All participants were able to 

answer the questions and typically made two or three mistakes within the entire 

session (mostly at the beginning of the experiment). We are thus certain that 

participants were attending to the videos.  

Univariate analysis. Note that in contrast to the multivariate analysis, in which we 

specifically targeted regions that show movement selectivity generalizing across 

effector and reach direction, the purpose of the univariate analysis was to identify 

areas with less specific properties. In particular, as a quality control, we examined 

whether we obtained the typical decrease in the alpha and beta band during action 

observation (Cochin et al., 1999; Hari, 2006; Pineda, 2005). Furthermore, we aimed to 

determine which frequency bands and which sensors were modulated differently 

during pointing and grasping when collapsing across effector and reach direction.  

All the experimental conditions were baseline corrected by subtracting the fixation 

period (from -0.5 to -0.3) from the post-stimulus period (from 0 to 1.3 s). To assess the 

difference between pointing and grasping, we used a non-parametric method 

(permutation test), with a cluster method for multiple comparison correction (Maris & 

Oostenveld, 2007) with participants as units of observation. In brief, we computed t 

scores between the two movements for each sensor-frequency-time bin. The observed 

cluster-level statistic was obtained by summing the t scores of neighboring bins (in 

time, frequency and sensors) exceeding an a priori defined critical value (p<0.05). We 

repeated the procedure 1000 times by swapping the condition labels and we obtained 

the distribution of permuted cluster-level statistics. At each iteration, the maximum 
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cluster-level statistic was considered to control for type I error. The p value was the 

proportion of permuted cluster-level statistics that exceeded the observed cluster-

level statistic. If the p-value was less than 0.05, the cluster was taken as significant.  

Multivariate analysis. The assumption behind multivariate analysis in MEG is that the 

processing of each stimulus category is associated with a specific neural activity that 

induces an oscillatory signal (or neural pattern) consisting of a unique combination of 

sensor, time, and/ or frequency. Multivariate analyses exploit differences in terms of 

these patterns of activations. By contrast, univariate analyses do not consider such 

patterns, but address whether two conditions differ in terms of the average response 

of a single variable (e.g. averaged frequency over time). This is why multivariate 

analyses are more sensitive than univariate analyses (Haxby et al., 2001; Kriegeskorte 

et al., 2006). Importantly, multivariate analysis allows analyzing whether the 

representational content of an area – examined via the underlying neural pattern - 

generalizes across low-level features. In our case, we aimed to identify regions in 

which the unique neural patterns associated with pointing and grasping generalized 

across effector (left or right hand) and reach direction (left or right; for a schematic 

overview, see Figure 3.2). We trained a classifier to discriminate between the two 

types of movements using the spatio-spectral-temporal MEG signal (for details, see 

next paragraph) related to movements performed with one of the two effectors and 

towards one of the two directions. We then tested on the opposite combination of 

effector and direction. For example, we trained a classifier to distinguish between 

observed grasping and pointing actions performed with the left hand towards the left, 

and tested the classifier to distinguish between observed grasping and pointing 

performed with the right hand towards the right. In this way, above chance 

classification could only be due to information related to the type of movement, and 

not to low-level perceptual features.  

Analyses were performed using CoSMoMVPA, an MVPA toolbox in Matlab (Oosterhof 

et al., in preparation). The toolbox provides an adapted version of the multivariate 

searchlight approach (Kriegeskorte et al., 2006), an information-based algorithm that 
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allows analyzing the neural contents adopting a multivariate approach at each location 

in the brain. In this analysis, we used local ‘neighbourhoods’ of features in channel-

time-frequency space. We used a sensor radius of 1, a time radius of 100 ms, and a 

frequency radius of 8Hz. For a given ‘centre’ feature [a (sensor, time, frequency)-triple], 

its neighbours consisted of features for which its sensor, time, and frequency where all 

within the corresponding radii.  

The main steps used in the multivariate analysis (for a schematic illustration, see Figure 

3.2) were: 1) compute the time-frequency representation separately for each sensor 

and each trial (Figure 3.2A); 2) select the ‘central’ feature and its neighbours in time-

frequency-sensor space (dashed rectangles in the insets in Figure 3.2A; for an enlarged 

view, see Figure 3.2B); 3) create a feature vector for each trial by selecting all features 

in its neighbourhood (Figure 3.2C) and normalize (z transform) the data; 4) create 

independent partitions for training and testing the classifier (see Table 2.1); 5) train the 

classifier; 6) test the classifier. We repeated the steps from 2 to 5 for each sensor and 

for each time and frequency bin, and the classification result for each central feature 

was assigned to its corresponding location in time-frequency-sensor space. For 

classification, we used a Support Vector Machine (SVM) algorithm, a type of classifier 

that looks for linear combinations of features to create a decision boundary to 

discriminate between two classes or stimuli (e.g. Mur et al., 2009; Pereira et al., 2009). 
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Figure 2.2. Feature selection. Schematic representation of the method we adopted for 
selecting the features used for the multivariate analysis. Here we show one specific step of 
the algorithm with the selected central sensor (black dotted circle) with one neighboring 
sensor only (gray dotted circle) for illustrative purpose. Panel A shows the time-frequency 
representations (colors indicate power intensity) in the posterior sensors of the MEG 
helmet in two conditions of interest (condition A and B). The arrows starting from the 
circles indicate the corresponding magnified sensors. Panel B shows enlarged views of the 
two example sensors for condition A and B. The dotted rectangles illustrate an example 
time-frequency bin (2 neighboring bins per side for the time dimension; 4 neighboring bins 
per side for the frequency dimension; see the Methods section for details). For feature 
selection, for each time-frequency bin, we scanned each individual sensor with its 10 
neighboring sensors. Panel B shows a matrix representation of the specific 
sensor/frequency/time bins. We then rearranged the dimensions of the matrix from 3D to 
1D to obtain the corresponding feature vectors for condition A and B (Panel C). The 
feature vectors were used as input for the decoding analysis over sensors, frequency, and 
time. Specifically, the feature vectors were partitioned in independent chunks and used 
for training and testing the classifier. In the depicted example, each feature within the 
matrices was assigned with a number to show the same feature within the feature vectors 
for visualization purposes. 
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To create subsets of trials to feed the classifier with the aim of differentiating between 

neural responses related to the observation of grasping and pointing actions 

irrespective of effector and reach direction, for each subject we divided the dataset 

into two independent halves, each containing only movements with a complementary 

combination of effector and reach direction. The first half included left hand 

movements to the right and right hand movements to the left, and the second half 

included left hand movements to the left and right hand movements to the right. We 

further divided the data into independent chunks, each of which contained at least 136 

trials (depending on the number of trials remaining after artifact rejection) of a specific 

condition of interest. Then, for each half, we adopted a leave-one-chunk-out cross-

validation method. We used 3 chunks associated to a specific condition for training, 

and a corresponding chunk with the complementary effector and direction for testing 

(cross-condition classification). This procedure was repeated for all chunks. Note that 

within a chunk the only dimension that differed across trials was the type of 

movement: grasping vs pointing. Thus, we assumed that the classifier learnt to 

discriminate between these two classes of stimuli. For example, if the training dataset 

contained the conditions grasping to the right with the right hand and pointing to the 

right with the right hand, the testing dataset contained the conditions grasping to the 

left with the left hand and pointing to the left with the left hand. For this type of 

classification, the classifier had to rely on differences between the two types of 

movements. If the model was able to discriminate between the two movements in the 

independent subset, this indicates that it had learnt the difference between the two 

types of movements using the previous training subset, generalizing across effector 

and reach direction. We adopted this approach for each possible factorial combination 

(for a complete list, see Table 1).  
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 Training: pointing vs grasping Testing: pointing vs grasping 

1 left hand, rightwards right hand, leftwards 

2 right hand, rightwards left hand, leftwards 

3 left hand, leftwards right hand, rightwards 

4 right hand, leftwards left hand, rightwards 

Table 2.1. Cross-comparisons used for training and testing. Classifiers were trained and 
tested in the following cross-comparisons: (1) training: distinguish between observed 
grasping and pointing actions performed with the left hand towards the left; testing: 
distinguish between observed grasping and pointing actions performed with the right 
hand towards the right; (2) training: distinguish between observed grasping and pointing 
actions performed with the right hand towards the right; testing: distinguish between 
observed grasping and pointing actions performed with the left hand towards the left; (3) 
training: distinguish between observed grasping and pointing actions performed with the 
right hand towards the left; testing: distinguish between observed grasping and pointing 
actions performed with the left hand towards the right; (4) training: distinguish between 
observed grasping and pointing actions performed with the left hand towards the right; 
testing: distinguish between observed grasping and pointing actions performed with the 
right hand towards the left. In this way, the classifiers could use information related to the 
type of movement only. The four accuracies determined with 1), 2), 3), and 4) were then 
averaged  

The testing phase provided accuracy maps for each participant reflecting the 

classifiers’ performance in discriminating between the two observed movements 

irrespective of effector and reach directions [in a similar way as traditional fMRI 

searchlights (Kriegeskorte et al., 2006), except that the features consist of (sensor, time, 

frequency)-triples rather than voxels]. We thus had information regarding where, 

when, and at which frequency band it was possible to distinguish between the abstract 

neural representations of the two movements.  

In order to assess the reliability of the performance of the classifier, we used a non-

parametric method (permutation test, similar to the procedure described above for 

the univariate analysis; see Maris and Oostenveld, 2007). In this case, we used the 

difference between the obtained classification accuracy and chance level accuracy (the 

accuracy expected under the null-hypothesis of no difference between the two 

conditions, meaning 50%) to compute the test statistic used in the permutation steps 

(see univariate method).  
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Any effect observed at sensor level has to be generated by neural sources. To visualize 

the sources underlying the cross-decoding effects for the frequency bands and time 

windows observed at the sensor level, we conducted a multivariate analysis at the 

source level, adopting the same searchlight approach as before (Kriegeskorte et al., 

2006). Note that multivariate analysis was necessary here to identify which regions of 

the brain represented actions at an abstract level (i.e., generalizing across effector and 

reach direction). We reconstructed the source activity for the frequency bands and 

time windows that were significant at sensor level and expected to identify which 

regions of the brain were able to decode between grasping and pointing across 

effector and reach direction. We obtained estimates of frequency power at each grid 

point using a beamformer algorithm (see previous section) on a single trial basis. A 

searchlight was defined taking the power values at each grid point with its neighbours 

in a circle of 2 cm radius. For each participant, we found the accuracy maps indicating 

the performance of the classifier in discriminating between the two observed 

movements (irrespective of effector and reach direction). For descriptive purposes, we 

report the clusters showing the greatest classification accuracy. 

Results 

Behavioural experiment 

We computed a chi-square test to evaluate at which time point participants’ 

performance was significantly higher than chance level (50%). We found that 

performance of the participants was not different from chance level at 167 ms (X-

squared = 11.7307, df = 13, p = 0.5498) and at 200 ms (X-squared = 21.4835, df = 13, p 

= 0.0639).  Performance was significantly higher than chance level from 233 ms 

onwards (X-squared = 58.0318, df = 13, p = 1.178e-07). This means that participants 

were unable to distinguish the two actions if videos were shorter than 233 ms. Since 

mean movement onset in the videos (defined as the time point at which the rest 

position was released and hand preshaping was initiated; see Stimuli) was 191 ms (SD: 
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90 ms; median: 183 ms), this indicates that the two actions were perceptually 

indistinguishable before movement onset.  

 

 

Figure 2.3. Behavioral results in action classification.Behavioral performance (% correct) 
for categorizing the two observed movements (grasping, pointing) as a function of video 
duration, collapsed across effector and reach direction. As expected, participants 
responded more accurately with increasing video duration. Statistical analysis confirmed 
that participants reached above chance performance in classifying the two movements 
from 233ms onwards (for details, see Material and Methods, Statistical Analysis: 
Behavioral Experiment). Each dot represents data from a single participant. The 
continuous line indicates the linear model that best fits the data. 

 

MEG experiment 

Univariate analysis. We first analysed the MEG signal using classical univariate 

methods to assess whether the stimuli induced a modulatory activity in the ongoing 

oscillations relative to rest. Low frequency bands such as alpha- and beta-bands are 

typically characterized by a decrease in power presumably due to neuronal activity 

synchronization in specific brain regions (Pfurtscheller & Lopes da Silva, 1999), 

indicating neural processing of the stimulus. Univariate analyses comparing the 
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activation period (after video onset) with the baseline (before video onset) 

demonstrated that passive observation of pointing and grasping modulates alpha- (8 – 

12 Hz) and beta- (15 – 25 Hz) band power over posterior, parietal and frontal sensors, 

as well as the theta-band (4 - 7 Hz). Figure 2.4A shows one central sensor for 

illustrative purposes. In the depicted sensor, the alpha and beta rebounds related to 

post-observation processes are evident. Dotted lines approximately indicate the 

different stages of the movement (see Figure captions for details). 

The decrease in power that we observed in the alpha and beta bands is in line with 

previous studies (Hari, 2006; Pineda, 2005) and has been suggested to reflect 

sensorimotor system activity. Further, the increase in power in the theta- and low 

alpha- (4– 8 Hz) band has been observed during memory tasks (Jensen & Tesche, 

2002). In addition, modulation of these low frequencies has been reported during 

action observation, both in humans (Frenkel-Toledo et al., 2013; Pavlidou et al., 2014a, 

2014b) and monkeys (Caggiano et al., 2014; Kilner et al., 2014).  
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Figure 2.4. Theta-, alpha- and beta-band activity during action observation and 
univariate contrast.A, Time-frequency representation of the difference (expressed in t 
scores) between grasping and pointing (collapsed across effector and reach direction) for 
the sensor highlighted in the head model. The four dotted lines indicate the following 
events, from left to right: (1) video onset, (2) median movement onset, (3) approximate 
time at which the hand touches the object (around 550 ms), (4) video offset (833 ms). B, 
Same as A, but those time-frequency bins that did not survive the permutation test with 
Monte Carlo and cluster-based method for multiple comparisons correction were set to 
zero. C, D, Topography representation of the two frequency-bands observed in B. E, Power 
change during action observation relative to baseline (fixation cross) over a representative 
sensor. The power change was calculated as (activation – baseline)/baseline, such that 1 
indicates 100% increase respect to baseline and -1 indicates 100% decrease respect to 
baseline. The classical power decrease in alpha and beta bands following observed 
movement onset (at t=0s) is evident.  
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A direct comparison of grasping and pointing movements (collapsing over effector and 

reach direction; see Materials and Methods, Univariate Analysis) showed a significant 

differential modulatory activity in beta (central frequency: 24 Hz) and alpha (central 

frequency: 16 Hz) band power over sensorimotor sensors at a late latency only (from 

around 750 to 1100 ms, and from around 500 to 750 ms, respectively). Figure 2.4B 

illustrates this effect for the same representative significant sensor as in Figure 2.4A 

over central regions. Bluish colours indicate that the power decrease is greater for 

grasping than for pointing; reddish colours indicate the opposite.  Figure 2.4C-D shows 

the topography representations of the significant sensors in two selected subsets of 

frequency bands and time windows that were all located over central and right central 

sensors. These results show that (a) the brain processes underlying the two actions are 

different, and that (b) sensorimotor areas might be involved. The fact that grasping 

induces a greater decrease than pointing could be due to the higher complexity of this 

movement, which in turn is likely to recruit more neural resources. However, this 

differential activity appears quite late (at around 600 ms), long after the two 

movements are perceptually distinguishable. Thus, there must be another, earlier, 

process that allows for discriminating between the two movements, which the 

univariate analysis did not reveal. 

Multivariate analysis. Figure 2.5A-C shows the results of the multivariate analysis at 

the sensor level. Two types of representations are provided: 1) a time-frequency 

representation, to show the dynamics of all the considered frequencies at each time 

point in a specific subset of sensors (panel A); 2) a topographical representation, to 

show the spatial information at specific time points and frequency bands (panel B, C). 

The inset of Figure 2.5A shows the two time-frequency clusters that survived the 

multiple comparisons correction. The lateral plots show the averaged t values over the 

sensors highlighted on the two topoplots in the middle. We observed that the classifier 

was able to significantly (p<0.05; corrected for multiple comparisons using a cluster-

based method; maximum accuracy: 53.46%) discriminate between the two observed 

movements, generalizing across effector (left and right hand) and reach direction (left 

and right) over posterior sensors as early as 150 ms up until 550 ms in the low 
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alpha/theta range (see Figure 2.5A, left panel; for a direct comparison with univariate 

analysis, see Figure 2.7). By contrast, significant discrimination over more anterior 

sensors was possible only within a window of 550 – 1200 ms, i.e. at a late stage of the 

video, when the hand interacts with the object (see Figure 2.5A, right panel). Figure 

5B-C show the topographies at different times and frequencies, selected according to 

the following criteria:  

1) As times of interest, we selected the central point of the time windows selected 

based on the significant clusters that survived the significance test, i.e. 400 ms [200 - 

600ms] for the cluster obtained in the earlier time window, and 900ms [600 - 1200ms] 

for the cluster obtained in the later time window.  

2) Frequency bands were chosen based on previous studies showing a modulation of 

the low alpha (8-10 Hz) and high-theta (6-8 Hz) bands (Frenkel-Toledo et al., 2013) and 

the high alpha- (8-14 Hz) and beta- (15-25 Hz) bands during action observation (e.g. 

Pineda, 2005). For each time of interest (400ms and 900ms), we selected the peak 

frequency within each considered frequency band (i.e., 6, 8, 10, and 18Hz).  

To examine the cortical sources of the effects shown in Figure 2.5A-C, we carried out 

another multivariate analysis at source level, adopting the same cross-comparisons as 

we did for the sensor analysis (see Materials and Methods for details). To find the 

sources at 400 ms for the frequencies 6Hz and 8Hz, we used temporal smoothing of 

4Hz and time windows of 50ms to 650ms and 212ms to 587ms, respectively. Figure 

2.5D-E shows the decoding accuracies of all the sources projected on surface template 

MNI brains, thresholded to retain only those voxels with the 10% of the highest 

accuracies (for the corresponding mean and individual decoding accuracies, see Figure 

2.6). For the 6 Hz signal, the highest decoding accuracies were found bilaterally in the 

LOTC, extending into the inferior temporal gyrus and the superior temporal gyrus in 

the right hemisphere, and the left superior parietal cortex, extending into the inferior 

parietal cortex (Figure 2.5D, left panel; see Table 2.2 for MNI coordinates of the peak 

voxel in each cluster). The highest decoding accuracies for the 8Hz signal were located 
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in the left LOTC (Figure 2.5D, right panel), slightly anterior to the source identified at 

6Hz.  

Regarding the sources related to the decoding obtained in the late time window, we 

chose 900 ms as time of interest for the frequencies 10Hz and 18Hz (time windows: 

600-1200ms and 678-1122ms, respectively; smoothing: 3Hz). For the 10 Hz signal, we 

obtained the highest decoding accuracies in right precentral gyrus (Figure 2.5E, left 

panel). For the 18Hz signal, we obtained highest decoding accuracies in the right 

inferior frontal gyrus (Figure 2.5E, right panel). 
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Figure 2.5 Results of the neural spatiotemporal decoding. To identify abstract action 
representations of the observed actions (e.g. observing “grasping” irrespective of whether 
it was performed with the left or the right hand), we trained the MVPA classifier to 
discriminate between pointing and grasping using one effector (e.g. the left hand) and one 
reach direction (e.g. towards the left), and tested the performance of the classifier using 
an independent data set, using pointing and grasping movements performed with the 
other hand towards the opposite reach direction. We decoded the observed movements 
over time bins, frequency bins and sensors using a time-frequency-channel searchlight 
analysis. A, The lateral plots show the time-frequency representation of the decoding in 
sensors depicted in the inset topoplots. Reddish colours indicate higher classification. 
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Sensors were selected on the basis of the highest decoding accuracy at the frequency of 
interest. The central inset shows the two clusters that survived the correction for multiple 
comparisons (cluster obtained at early time point: 200 to 600ms; cluster obtained at late 
time point: 600 to 1200ms). B, Topography of the decoding at 400 ms and low frequencies 
(6Hz and 8Hz; smoothing: 4Hz). C, Topography of the decoding at 900 ms and higher 
frequencies (10Hz and 18Hz; smoothing: 3Hz). D-E, Sources accounting for the decoding 
effect found at sensor level, thresholded to retain only those voxels with the 10% highest 
decoding accuracies. For sensor level analysis only, significant differences were computed 
using permutation analysis and Monte Carlo methods and results are cluster corrected for 
multiple comparisons. Maps were projected on the PALS altas (Van Essen, 2005), using 
Caret software (Van Essen et al., 2001). 

 

 

Figure 2.6. Maximum accuracy within each region.Within each identified source, the 
voxel with the maximum mean accuracy was selected and plotted with individual 
accuracies (black dots). Left MTG: Middle Temporal Gyrus (MNI: -50 -64 12); Left SPL: 
Superior Parietal Lobule (MNI: -20 -56 48); Right PCG: Precentral Gyrus (MNI: 28 -6 28); 
Right IFG: Inferior Frontal Gyrus (MNI: 20 24 28). Refer also to Table 2.  

  



MEG-MVPA demonstrates that LOTC encode abstract action representations earlier 
than frontal regions 

40 
 

Area 
Frequency 

(Hz) 
Time 

(msec) 
X Y Z 

Left pITG 6 200 -52 -56 -12 

Left SPL 6 400 -20 -56 48 

Left pMTG 8 400 -50 -64 12 

Right PCG 10 900 28 -6 28 

Right IFG 18 900 20 24 28 

Table 2.2. MNI coordinates of sources. MNI coordinates of the sources (clusters) found in the 
two different frequency bands, with the respective labels taken from the Anatomical Automatic 
Labeling (AAL) database (Tzourio-Mazoyer et al., 2002). pITG: posterior portion of the Inferior 
Temporal Gyrus; pMTG: posterior portion of the Middle Temporal Gyrus; SPL: Superior Parietal 
Lobule; IFG: Inferior Frontal Gyrus (triangular part); PCG: Precentral Gyrus.  Table 2. MNI 

coordinates of the sources. MNI coordinates of the sources (clusters) found in the two 
different frequency bands, with the respective labels taken from the Anatomical Automatic 
Labeling (AAL) database (Tzourio-Mazoyer et al., 2002). pITG: posterior portion of the Inferior 
Temporal Gyrus; pMTG: posterior portion of the Middle Temporal Gyrus; SPL: Superior 
Parietal Lobule; IFG: Inferior Frontal Gyrus (triangular part); PCG: Precentral Gyrus.  
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Figure 2.7. Comparison between univariate and multivariate analyses. Comparison 
between univariate (top row) and multivariate (bottom row) analyses in two time 
windows ([200 – 600ms] and [600 – 1200ms]). The upper topoplots show the sensors that 
survived the permutation test when comparing grasping vs pointing (collapsing across 
effector and reach direction). The lower topoplots show the sensors that survived the 
permutation test when comparing the observed accuracy of the classifier to distinguish 
between pointing and grasping (generalizing across effector and reach direction) against 
chance level (50%). Multivariate analysis was more sensitive in detecting the subtle 
differences between the neural signals induced by observation of the two movement 
types in the earlier time window. All shown clusters are corrected for multiple 
comparisons (p<0.05). 
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To show a complete overview of the temporal dynamics of the neural decoding at 

sensor space, we plotted the decoding accuracy (expressed in t values) for separate 

time bins (50-150, 150-250, 250-350, 350-450, 450-550, 550-650 ms for the early 

observed decoding, Figure 2.8A; 350-450, 450-550, 550-650, 650-750, 750-850, 850-

950, 950-110 ms for the late observed decoding, Figure 2.8B), averaged across 

frequency bands (theta: 2-6 Hz; low alpha: 7-9; alpha: 9-11; beta: 17-19). This figure 

shows how the effect over posterior sensors evolves over time, and that anterior 

sensors do not show up before around 700 ms. 

 

 

Figure 2.8. Neural decoding over time.The topoplots show the dynamics of above-chance 
accuracy (expressed as t scores) of the classifier in discriminating observed grasping and 
pointing (generalizing across effector and reach direction) for specific frequency bands 
(theta: 5-7 Hz; low alpha: 7-9 Hz; alpha: 9-11 Hz; beta: 17-19 Hz). The earliest significant 
decoding occurs in the posterior part of the configuration helmet in the lower frequency 
bands.   
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To further evaluate the reliability of the classifier, we also used a simulation approach. 

Specifically, we ran a Monte Carlo simulation to estimate the probability of finding an 

accuracy of 53.46% under the null hypothesis of chance accuracy. The cross-validation 

partitioning scheme divided the data into two independent halves (see Table 1 and 

Methods), with the first half containing left hand rightwards and right hand leftwards 

trials, and the second half containing right hand rightwards and left hand leftwards 

trials. In each independent half, there were two folds, with a minimum of 136 trials 

(across participants and halves) after rejecting trials with artifacts and balancing the 

partitions so that each of the two actions occurred equally often. For each participant 

separately, we found that the correlation of classification accuracies for the test sets in 

two folds to be r=0.3289 (median across participants and the two independent halves). 

Thus, in our simulation we used the same value as follows. For each permutation, 

uniformly distributed (on the interval [0, 1]) random data was generated for two 

independent halves, two folds, 136 samples, 17 participants. To assess the effect of 

dependency we used 3 sets of independently normally distributed data i1, i2 and 

icommon. To match the correlation between accuracies, for each independent half of the 

data, data was made dependent through d1= i1* γ + icommon*(1- γ) and d2= i2* γ + 

icommon*(1- γ), with γ=0.415 found through binary search to match the correlation 

(r=0.3289) across dependent folds as observed in the original data. For each iteration, 

classification accuracy was simulated by dividing the number of samples that exceeded 

0.5 in d1 and d2 by the number of samples. 0.5 was subtracted to obtain classification 

accuracies relative to chance. 

To assess the effect of independence, we also ran the same analysis setting γ=0 

(corresponding to r=0, i.e. full independence between folds), and γ=1 (corresponding 

to r=1, i.e. full dependence between folds). 

We used 100,000 iterations and found that the maximum classification accuracies 

found in the data (using r=0.3289 for fold correlation) was significant, PMC,sensor, 

r=0.3289<0.00001; for the latter, no iteration showed a higher mean than that observed 

in the data (Figure 2.9). We obtained similar results for the additionally simulated 
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cases of fully independent folds (r=0), psensor, r=0.00<0.00001, and dependent folds (r=1), 

psensor, r=1.00<0.00001.  

 

 

Figure 2.9. Simulation analysis.Illustration how ‘low’ classification accuracy (53.46% for 
sensor data; 50% is chance level) can be highly significant, using normal distribution 
probability plots of Monte Carlo simulated classification accuracy distribution (relative to 
chance, 50%). The simulation uses the same parameters as used in the study (17 
participants, minimum after trial rejection 544 trials per participant, same cross-validation 
scheme as used in original data). Dependency across cross-validation folds was set to 
r=0.3289 (green crosses) to match the value observed in the original data; for comparison, 
also results are shown for the cases of no dependence (r=0.00; blue) and full dependence 
(r=1.00; orange). The maximum classification accuracy above chance as observed in the 
original data is indicated by a black line.  
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Discussions 

Using MVPA of MEG data, we found that LOTC has the earliest access to abstract 

action representations. By contrast, precentral regions, though recruited relatively 

early, have access to abstract action representations substantially later than LOTC. 

Behavioral data indicated that participants were not able to distinguish between the 

two actions before 233 ms, and this latency is comparable with the one observed in 

LOTC. 

Early abstract action representations in occipito-temporal and parietal regions 

Although MEG has a lower spatial resolution than fMRI, we can confidently say, based 

on the topographical results and source analysis, that the source that accounted for 

the decoding effect we found at the early stage was located within the left and right 

LOTC. LOTC hosts regions sensitive to body parts, kinematics, body postures, 

manipulable objects, and observed movements (Buxbaum et al., 2014; Downing & 

Peelen, 2011; Lingnau & Downing, 2015; Pavlidou et al., 2014a, 2014b; Valyear & 

Culham, 2010). LOTC has been shown to be modulated when participants are required 

to process the meaning, in comparison to the effector, involved in an action (Lingnau & 

Petris, 2013). Moreover, LOTC is recruited during the semantic processing of verbs 

(e.g. Papeo et al., 2014), and lesions to this region are associated with impairments in 

action recognition (Kalénine et al., 2010; Urgesi et al., 2014). In line with this view, a 

recent lesion study demonstrated that lesions to primary motor, somatosensory and 

inferior parietal lobule were accompanied by impaired action performance. By 

contrast, lesions to posterior LOTC were associated with impaired action recognition, 

whereas lesions to anterior LOTC were accompanied by impairments in both tasks 

(Tarhan et al., 2015). Taken together, these studies suggest that LOTC is well suited to 

integrate various sources of information that are crucial for action understanding.  

Neuroimaging studies using MPVA of fMRI data have recently shown that LOTC also 

contains abstract representations of observed actions, e.g. action representations that 

generalize from action execution to action observation and vice versa (Oosterhof et al., 

2010), that generalize across viewpoint (first person, third person; see Oosterhof et al., 
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2012a), kinematics (Wurm & Lingnau, 2015), and the object involved in the action 

(Wurm & Lingnau, 2015; Wurm, Ariani, Greenlee, & Lingnau, 2015). Importantly, our 

study shows that such abstract representations are available before observing this kind 

of representation in precentral regions, around the time when there is enough 

information in the stimuli to distinguish between the two types of actions. Our findings 

are compatible with cognitive theories of action understanding that predict the earliest 

encoding of the meaning of an action outside the motor system. By contrast, our 

results are not compatible with motor theories of action understanding that would 

predict the earliest access to abstract action representations in precentral regions.  

The fact that we observed abstract action representations in LOTC earlier than in 

precentral regions is compatible with a framework suggested by Kilner (2011). 

According to this view, the middle temporal gyrus (MTG) in the LOTC and the anterior 

portion of the IFG (aIFG) encode the most likely goal or intention of an action (e.g. 

grasping an object), which is communicated to the posterior portion of the IFG, where 

the most likely action is selected. In this framework, the role of the posterior IFG would 

be to generate a concrete instance of the action (e.g. grasping an object on the left 

using the right hand) through motor simulation. In contrast to motor theories of action 

understanding, the role of this motor simulation would not be to provide access to the 

meaning of the action, but rather to contribute to the generation of the predicted 

sensory consequences of the most likely action.  

We observed abstract action representations at around 400 ms in the left SPL as well, 

extending into the inferior parietal lobule (IPL). This result is in line with previous 

monkey (Fogassi et al., 2005; Rizzolatti et al., 2014) and human fMRI studies (Grafton 

& Hamilton, 2007; Leshinskaya & Caramazza, 2015; Oosterhof et al., 2010, 2012b; 

Wurm & Lingnau, 2015; Wurm et al., 2015)  suggesting that, similar to LOTC, this 

region contains abstract action representations. The observation that IPL/SPL has 

access to abstract action earlier than precentral regions, raises the possibility that this 

region might play an intermediate role between LOTC and precentral regions (see also 

Wurm et al., 2015). In line with this view, Pavlidou et al (2014b) demonstrated that the 
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difference between plausible and implausible actions is first obtained over left 

temporal sensors, followed by parieto-occipital and sensorimotor sensors.  

Late abstract action representations in precentral regions 

The contrast observation vs baseline showed a modulation of the high alpha and beta 

frequency bands over central sensors during passive action observation (Figure 2.4E), 

an effect that has been suggested to be related to sensorimotor processing in motor 

and premotor regions (Pineda, 2005). Although we observed an early modulation of 

high alpha and beta frequencies in precentral regions for observation versus baseline, 

these regions had access to abstract representations of the observed actions 

substantially later than the time at which the actions were distinguishable. This finding 

makes a determinant role of precentral regions in action understanding implausible. In 

line with this view, damage to precentral regions does not necessarily impair the ability 

to understand actions (Negri et al., 2007; Kalénine et al., 2010; but see Pazzaglia et al., 

2008). If precentral regions do not play a determinant role in action understanding, 

what could be the alternative role of the late abstract action representations we 

obtained in these regions? Since LOTC and precentral regions are functionally 

interconnected (Engel et al., 2013; Kilner, 2011; Nelissen et al., 2011; Papeo et al., 

2014; Turken & Dronkers, 2011), higher-level representations in precentral regions 

have been suggested to be a result of information spreading throughout the network 

(Mahon & Caramazza, 2008). Instead of providing access to the meaning of an action, 

precentral regions thus might be recruited to plan an appropriate movement in 

response to the observed action as a consequence or in parallel to the process of 

action understanding. 

Potential caveats 

One potential limitation regarding the interpretation of our results is related with the 

fact that one of the main distinctions between pointing and grasping, next to the pre-

shaping of the hand, is the number of fingers involved. It is therefore difficult to 

disentangle whether our classification is based on the number of fingers involved in 

the movement, the pre-shaping of the hand while approaching the target, or a 
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combination of the two. Note that pointing and grasping movements are defined both 

by the number of fingers involved and by the hand configuration; in other words, 

understanding actions could rely on the number of used fingers as well as on an 

examination of the pre-shaping of the hand. 

Another possible criticism could be that we were able to distinguish between the two 

movements based on the MEG signal as early as 150 ms, which seems counterintuitive 

given that the mean movement onset in the videos was around 191 ms. There are 

several not mutually exclusive explanations for this observation. First, movements 

started before 150 ms in 43.8% of the videos (see Material and Methods). By contrast, 

the peak of decoding from the MEG signal was obtained at around 300 ms. Second, we 

had to apply a certain amount of temporal smoothing during time-frequency 

computation and during the searchlight analysis (see Materials and Methods). 

Consequently, when the algorithm analyzes the time bin at 150 ms, it also considers 

information present at 200 and 250 ms, which contained more information about 

movement type. This means that the absolute latency at which the two actions can be 

distinguished based on the MEG signal has to be interpreted with a grain of salt. 

Importantly, we do not aim to draw strong conclusions regarding the absolute onset at 

which movements can be decoded in the different regions, but rather about the 

relative difference between putative regions involved in action understanding. Thus, 

our conclusion still holds: LOTC encodes abstract representation of actions earlier than 

precentral regions. 

One might argue that although we observed the strongest source in the early time 

window within LOTC, the source analysis also revealed a small left frontal region. This 

frontal source is very likely generated by a single temporal source, in line with the 

observation that no frontal sensors showed significant decoding in this early time 

window (Figure 2.8). Note that the absence of a frontal source in the early time 

window does not proof that such a source does not exist. What we can state with a 

certain confidence, though, is that the same analysis that revealed a strong and 

reliable source in LOTC did not reveal any frontal source in the early time window. 
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Conclusion 

Our results demonstrate that LOTC has access to abstract action representations 

substantially earlier than precentral regions, in line with the idea that action 

understanding occurs outside the motor system, with subsequent activation of 

precentral regions due to information provided from LOTC. Our results therefore 

provide important constraints for biologically plausible models of action 

understanding. 
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Chapter 3: Early abstract and concrete action 
representations in LOTC 

 

Adapted from: 

Tucciarel l i  R.,Weisz  N. ,  and Lingn au A.( in preparation).  Neural  decoding of osci l latory  patterns dur ing  
action observation:  investigating effector - independent and ef fector -dependent action  representations .  

 

Introduction 

The study described in the previous chapter (chapter 2) revealed that lateral occipito-

temporal regions (LOTC) have access to abstract action representations in a time 

window immediately following the initiation of the observed action. Specifically, 

action-related information that is independent of the specific action implementation is 

encoded in LOTC. Crucially, this abstract information was available earlier in temporal 

regions than in frontal regions. We interpreted these results as evidence that LOTC 

plays a fundamental role in action understanding.  

Our results and interpretation are in not line with the motor theory of action 

recognition (Pulvermüller et al., 2005; Rizzolatti et al., 2001), which would have 

predicted motor-related regions to have the earliest access to abstract action 

representations in view of the fact that involvement of brain areas in action 

comprehension “[…] occur early after stimulus presentation (e.g. within 200-300 ms).” 

(Hauk et al., 2008). Our result can instead be explained by cognitive theories which 

claim that action understanding occurs outside the motor system (Caramazza et al., 
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2014; Mahon & Caramazza, 2008), more specifically in higher visual regions (Hickok, 

2012; Lingnau & Downing, 2015).  

Study 1 raises two fundamental questions: 1) how selective are the temporal and 

frontal regions that showed abstract action encoding? Specifically, are other types of 

actions, aside from grasping and pointing, also represented in temporal and frontal 

regions in an abstract fashion and with a similar temporal profile? In addition, 2) Do 

temporal and frontal areas also show a generalization from hand- to foot-related 

actions (and vice versa), and to which degree do the underlying neural dynamics differ 

from effector-specific representations? 

To follow up on these questions, we designed a new MEG study. In order to test if 

frontal regions encode actions in general and not only pointing vs grasping actions, we 

used four new actions: throwing, squeezing, kicking, and crushing. Notably, the first 

two actions are performed with the hand, whereas the latter two are performed with 

the foot. Nevertheless, the four actions are at some level comparable across effectors: 

squeezing with the hand and crushing with the foot are conceptually similar, as in both 

cases the goal of the action is to compress and thus destroy an object; also throwing 

with the hand and kicking with the foot are conceptually similar, as in both cases one is 

moving the object away from his own body. Thus, the different types of effectors 

involved allowed us to investigate the level of abstractness encoded in a certain 

region. An area encoding concrete information would be able to discriminate only 

within-effector actions; on the other hand, a region containing abstract action 

information would be able to discriminate between conceptually similar actions across 

effectors. Importantly, we used a high variety of stimuli (i.e. action implementations) 

to control for low-level features. In this way, we were able to rule out that actions 

were decoded on the basis of low-level properties of specific action exemplars, like the 

number of fingers used, the object involved, etc.  

To anticipate our results, in contrast to the predictions of motor theories of action 

understanding, we observed that during an early time window, following stimulus 

onset, most of the action information is encoded in lateral occipital regions, regardless 
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of whether the targeted information is abstract or concrete. A different pattern of 

results was observed at a later time window, with more concrete actions being 

represented also in frontal and prefrontal regions, notably also in the low-level areas 

specific for the effector used. Abstract information was also encoded in parietal 

regions at this late latency.  

Materials and Methods 

Participants 

Twenty students from the University of Trento with normal or corrected-to-normal 

visual acuity and with no neurological disorders took part in the MEG experiment. All 

participants received a reimbursement of €25 at the end of the MEG session. All of 

them gave informed consent in accordance with the Declaration of Helsinki. The 

experimental procedures were approved by the Ethics Committee for research 

involving human participants at the University of Trento. 

Stimuli 

Stimuli (Figure 3.1) consisted of still images of either actions or human bodies (only the 

torso). The actions consisted of a wide collection of either daily (squeezing a lemon, 

crushing a box) or sports-related actions (throwing a rugby ball, kicking a football) 

performed with either the hands or the feet. Despite the great variety of specific 

actions included, they could be classified into four subordinate categories (Figure 3.2): 

squeezing and throwing (hand actions); crushing and kicking (foot actions). At a higher 

level, these actions could also be divided into two main categories: moving something 

away from the body (e.g. throwing a baseball ball) and compressing something (e.g. 

squeezing a sponge).  

The images were either taken from the internet database Shutterstock 

(www.shutterstock.com) or were generated in-house using a Canon 5D Mark camera. 

Colours were reduced to grayscale, and the size cropped to 400x300 pixels using Gimp 

2 (www.gimp.org).  We took great care in choosing the images such that they varied as 
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much as possible with respect to low-level features (arm and leg positions, object 

positions, etc.) and contexts. This is because we were interested in abstract action 

representations irrespective of the ways in which these actions were implemented. We 

initially selected 24 exemplars each for the four categories. We then asked 15 (mean 

age ± std: 23.13 ± 2.53) people to rate how dynamic each action appeared on a scale of 

1 to 6 and selected the 15 most highly rated action exemplars in each category.  

 

Figure 3.1. Stimuli. Stimuli (images) used in the experiment organized according to the 
effector (hand, A,B and foot, C, D) and type of action (squeezing, A; throwing, B; crushing, 
C; kicking, D). We used torso images as control stimuli (panel E). The high variety of action 
implementations (12 exemplars per action/body parts) guaranteed that the classifier 
could not learn to discriminate between actions according to low-level features.  
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The images were presented to the participants inside the MEG room through a 

projector (Vpixx Propixx) onto a translucent rectangular screen (1280x1024 pixels 

screen resolution; grey background; 60 Hz refresh rate). Stimuli were sent to the 

projector through the device Vpixx Datapixx to ensure time synchronization. We 

controlled stimulus presentation with ASF (Schwarzbach, 2011), a Matlab toolbox 

based on Psychtoolbox (Brainard, 1997). 

Experimental procedure and design 

Each single trial (Figure 3.3) consisted of the following events: 1) a green cross for 1 

second (blink phase); 2) a white cross for 2-2.5 seconds (baseline period); 3) an 

experimental stimulus for 0.8 sec (image phase); 4) a white cross for 1 second (resting 

period). An MEG session consisted of eight runs. During each run, participants 

performed 75 experimental trials and 8 catch trials repeating the stimulus of the 

preceding trial. The total number of experimental trials per participant was 600 (75 

trials by 8 runs). Each category (the four actions and the bodies) was repeated 120 

times (15 exemplars by 8 runs).  
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Figure 3.2. Stimuli and MVP analysis. To individuate neural patterns elicited during 
observation of within-effector and across-effector actions, we conducted a sensor-based 
searchlight multivariate (MVP) analysis based on a support vector machine (SVM) 
algorithm using CoSMoMVPA (Oosterhof et al., in preparation). Time-frequency patterns 
containing information related to the type of actions should be similar when the same 
action is observed and dissimilar when a different action is observed. We also tested 
information related to the type of effector used (within-effector discrimination) or 
independent of the effector (across-effector discrimination). We adopted a leave-one-
chunk-out cross-validation approach. Specifically, for the within-effector analysis, a 
classifier was trained to discriminate between effector-specific actions (e.g. hand actions) 
and tested on actions performed with the same effector using trials from an independent 
dataset. For the across-effector analysis, we trained the classifier to discriminate actions 
performed either with the hand or the foot, and tested it using actions taken from a 
separate dataset.  
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Figure 3.3. Example trial sequence. A trial started with a green cross (1000 ms), indicating 
to the participant to blink, followed by a white cross (2000-2500 ms), indicating that a 
stimulus was about to appear. Then, the stimulus (an image) was presented for 800 ms, 
along with the white cross (to maintain fixation). The trial ended with a white cross 
presented for 1000 ms. Participants had to attend to the images and report catch trials 
(repetition of the same image twice in a row) by making a saccade to the white dot at the 
bottom of the screen and immediately returning to the fixation position. 

 

The total duration of a trial varied from 4.8 to 5.3 seconds (mean 5.05 sec) depending 

on the duration of the baseline period. Each run lasted around 7 minutes and each 

session about an hour. Between runs, participants were allowed to briefly rest before 

starting a new run. A longer break was typically taken after the fourth run.  

Task 

Participants were instructed to attentively observe the images presented on the 

screen. They were asked not to move and to fixate the white cross for the entire 

duration of the experiment. To ensure that they attended the images for the entire 

run, they had to report each time an identical image was repeated (catch trials) which 

occurred in 10% of the trials. In each run, any specific image could be repeated only 

once. We measured eye movements using an MEG-compatible eye-tracker (OEM eye 

tracker, SMI; 60 Hz sampling rate), and responses were given by a vertical saccade to a 

small dot below the image. After the saccade was performed and the response was 

reported, the participant had to return his gaze to the fixation cross. We decided to 

use eye movements to record the behavioural performance because we did not want 

any of the effectors of interest (foot and hand) being involved in the response. This 
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avoided any potential effect due to motor system activation (e.g. using only the hand 

to respond could have made the hand motor representation more active than the foot 

motor representation; using both effectors to respond could have made the task too 

confusing).  

Data acquisition 

Before entering the MEG room, one of the experimenters digitalized the head shape of 

the participant using a Polhemus system (Polhemus, Colchester, VT). We also placed 

three electrical coils at the participant’s forehead and two behind the ears to acquire 

the head position inside the MEG helmet. All metal and magnetic materials were 

removed from the participant before entering the shielded room. 

We measured neuromagnetic brain activity using a 306-channel (204 planar 

gradiometers and 102 magnetometers) whole head MEG system (Neuromag Elekta Oy, 

Helsinki Finland) at a sampling rate of 1000 Hz. Triggers were sent at stimulus onset 

and were used to create the epochs for data analysis.  

Data analysis 

MEG preprocessing 

Data were preprocessed using Fieldtrip (Oostenveld et al., 2011). Preprocessing 

consisted of: 1) high-pass filtering (1 Hz) using a two pass (forward and reverse) 

Butterworth IIR filter; 2) parsing the continuous data into epochs (from 1.6 before to 

1.6 after stimulus onset based on the triggers); 3) downsampling each epoch from 

1000 Hz to 350 Hz; 4) appending the eight runs to have a single dataset per participant.  

Artefact rejection 

Artefact rejection consisted of three steps: 1) clearly noisy trials and channels were 

initially selected based on global visual inspection of each channel and trial; for each 

channel, we also computed its variance with respect to the mean signal across trials 

and its max and min values; these statistics, when considered independently of other 

channels, are good indicators of noisy activity. We did the same for each trial (we 
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computed statistics across channels; 2) the selected trials and channels were 

individually inspected and evaluated; if a trial or a channel was judged too noisy, it was 

definitively rejected; otherwise it was included in the dataset for further analysis. 3) 

The dataset was globally visually inspected again to check for noisy channels or trials 

that were not visible in the first phase. 

Time-frequency spectrum estimation 

Oscillatory power for frequency over time was estimated using Fourier 

transformations in sliding time windows with a fixed length of 500 ms that moved in 

steps of 50 milliseconds. Frequencies were selected from 2 to 40 Hz in steps of 2 Hz. To 

control for spectral leakage and apply frequency smoothing, we used a multi-taper 

algorithm, but we used only one taper (Hanning taper).   

Multivariate analysis 

We analysed the data using a multivariate approach by employing a support vector 

machine algorithm (SVM; see Pereira et al., 2009). In the neuroimaging field, SVM is a 

data decoding technique that performs discrimination between neural patterns (e.g. 

groups of voxels or feature arrays) generated by experimental manipulation (e.g. 

neural patterns associated with condition A and neural patterns associated with 

condition B). The algorithm assigns numerical values to the patterns (dissimilar 

patterns have dissimilar numbers) and finds the optimal hyperplane that separates the 

two classes (condition A and B) of interest. The peculiarity of SVM is that it takes into 

account those patterns that are closer to the hyperplane more than those that are far 

away from it. One can select groups of voxels of interest (ROI approach) or scan the 

entire brain to look for pattern discriminability. The latter is known as the searchlight 

method (Kriegeskorte et al., 2006). Multivariate methods have been mainly used for 

fMRI studies (Haxby, 2012), and only recently have been started to be applied to MEG 

data (King & Dehaene, 2014). We performed multivariate analysis using CoSMoMVPA 

(Oosterhof et al., in preparation), an MVPA toolbox for Matlab that uses LIBSVM 

(Chang & Lin, 2011) that provides a searchlight method adapted for MEG data. The 

main difference from the fMRI approach is feature selection. In the case of MEG, a 
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neural pattern is the frequency-band intensity of a certain oscillatory activity over time 

and the sensors involved. Specifically, in the case of time-frequency representations, a 

neural pattern is a triplet of sensor-frequency-time power with its respective 

neighbours (for a more detailed explanation of the algorithm, refer to Chapter 2). Once 

the features have been selected, the SVM algorithm tries to differentiate the patterns 

associated with the conditions of interest.  

We decided to use multivariate methods for two main reasons: 1) they have been 

recognized to be more sensitive in discriminating between stimuli of the same class 

(e.g. distinguishing between two types of actions); 2) they allow investigation at 

different levels of abstraction by means of cross-condition methods. For example, one 

can discriminate between actions performed with different effectors, meaning 

between two actions performed with the hands and two actions performed with the 

feet (within-effector decoding); or one might be interested in a higher level of 

abstraction, in representations of actions that are independent of the way in which 

they are performed (across-effector decoding).  

We aimed at targeting neural representations with different levels of abstraction and 

thus used the cross-condition neural decoding method. Specifically, we designed the 

experiment for distinguishing between an abstract level (encoding actions irrespective 

of the way they are performed) and a more concrete level (encoding actions within a 

specific effector). To decode abstract actions, a classifier was trained on discriminating 

between two actions performed with one effector (e.g. discriminating between 

squeezing and throwing) and tested on discriminating between the two actions 

performed with the other effector (e.g. discriminating between crushing and kicking). 

To decode concrete actions, a classifier was trained to discriminating between two 

actions performed with one effector and tested at discriminating the same two actions 

performed with the same effector.  

Statistical significance was assessed using a permutation test, a nonparametric method 

based on Monte Carlo simulation and a cluster-method to control for multiple 
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comparisons (Maris & Oostenveld, 2007). A more detailed description of the method 

can be found in Chapters 2 

To evaluate the sources that accounted for any observed decoding effect at sensor 

level, we also run multivariate methods at source level. Frequency and time of interest 

were selected based on univariate contrasts between actions and body parts (torsos). 

Source power at each voxel and for each trial was estimated using the dynamic images 

of coherent sources, or DICS, (Gross et al., 2001) a beamformer method that looks for 

linear combinations of weights (spatial filters) that best explain the observed data at 

the sensor level. Thus, the resulting data resembled fMRI data and we could apply a 

searchlight approach.  

Results 

Effector-dependent representations of observed actions 

To look for neural oscillatory patterns that encoded information related to observed 

actions performed with a specific effector, we performed a within-effector 

multivariate analysis (see Materials and Methods). We conducted two separated 

analyses for foot and hand actions. In both cases, significant decoding accuracy was 

observed in low frequency bands (between around 2 to 12 Hz) in a time period that 

immediately followed the stimulus onset and was mainly localized in posterior sensors 

(see Figure 3.4). We evaluated the significance of the classification accuracy by a 

permutation test (see Materials and Methods). The statistical analysis confirmed 

significant decoding in low frequency bands in the early time window (Figure 3.4, 

panel C and G). Furthermore, significant differences were evident over time also at 

slightly higher frequency bands (between around 12 Hz and 18 Hz; see Figure 3.4, 

panel D and H), when posterior and frontal sensors appeared to show a preference for 

actions performed with the foot, whereas central sensors preferred actions performed 

with the hand. Topographical representations over time for the different frequency 

bands (see Figure 3.5, panel A for within-foot decoding and panel B for within-hand 
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decoding) helped at identifying which sensors were most sensitive for these two tests 

and highlighted bilateral decoding for actions performed with the foot, and a slight 

bias to posterior left sensors for actions performed with the hand. As is well known in 

the MEG community, topographical maps do not necessarily reflect the location of the 

underpinning neural sources because all sensors are somewhat modulated by the 

active neuronal population. Furthermore, from the topographical representation it is 

impossible to tell if the decoding effect was due to activity coming from parietal, 

occipital, or temporal regions, or even from a combination of all these regions. For this 

reason, we ran a multivariate analysis also at source level. Results for the earlier time 

window and the low frequency band are shown in Figure 3.8 (Panel A and B) and 

revealed a bilateral involvement of occipito-temporal regions in generating low 

frequency effects in the early time window in both tests. Sources accounting for the 

decoding effect observed at later time points at higher frequency bands (beta) were 

localized in parietal and frontal regions Figure 3.8 (panel D and E). Specifically, the 

within-foot test revealed sources located close to the hemispheric midline of the left 

and right central sulci, together with left prefrontal and right occipito-temporal cortex; 

the within-hand test showed the involvement of the left lateral and ventral sections of 

the central sulcus, along with right dorsal frontal cortex. 

Effector-independent representations of observed actions 

To evaluate the frequency bands that carried information related to effector-

independent action representations, we ran an across-effector multivariate analysis 

(see Materials and Methods). The accuracy maps (Figure 3.6) showed similarities with 

the within-effector analysis, since posterior sensors showed good classification 

accuracy at low frequency bands immediately after stimulus onset. Interestingly, the 

decoding accuracy seemed more condensed over the posterior sensors. The 

permutation test confirmed these observations (corrected p<0.05), whereas no 

significant classification was observed at later times and/or at higher frequency bands. 

In addition, the topographical representations pointed to a bilateral preference for this 

type of representation (Figure 3.7). The source analysis again revealed bilateral 

sources at lateral occipito-temporal cortices accounting for the low frequency band 
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classification effect observed at sensor level (Figure 3.8C, F). Sources at later time 

points were localized in left inferior parietal and right temporal regions. 

 

Figure 3.4. Accuracy and t-maps of the within-effector analyses. Time-frequency 
representations for the mean accuracy maps, and related masked t values, obtained from the 
within-foot analysis averaged from four groups of representative posterior (panel A and C) and 
frontal (panel B and D) sensors (see topoplots in the upper part of the figure). Similar plots were 
obtained for the within-hand analysis (posterior sensors: panel E and G; frontal sensors: panel F 
and H). To determine significant decoding (Panel C, D, G, and H), we ran a cluster-based Monte 
Carlo permutation test with 1000 iterations (Maris & Oostenveld, 2007). Zero indicates stimulus 
onset. 
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Figure 3.5. Neural dynamics of within-effector decoding. Topographic representations of 
classifier accuracy to discriminate between actions performed with the foot (panel A) or 
the hand (panel B) expressed as t values. The classifier was trained to discriminate within 
effector actions and tested on an independent dataset using actions performed with the 
same effector. Statistical tests (p-corrected < 0.05) were performed using a cluster size 
Monte Carlo permutation test (Maris & Oostenveld, 2007). Values that did not survive the 
multiple comparison correction are masked. 
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Figure 3.6. Accuracy and t-maps for the across-effector analysis. Time-frequency 
representations for the across-effector analysis which involved training and testing a 
classifier to discriminate between semantically related actions (compressing an 
object/moving something away from the body) performed with different effectors. Panel 
A and B show decoding accuracy in representative posterior and frontal sensors, 
respectively. Decoding accuracy at chance is 50%. Panels C and D show the corresponding 
t maps for t values that survived a Monte Carlo permutation test with 1000 iterations 
(Maris & Oostenveld, 2007). 
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Figure 3.7. Neural dynamics of across-effector decoding. Topographic representations of 
classifier accuracy to discriminate between actions performed with across effector 
expressed as t values. The classifier was trained to discriminate actions performed with 
one effector (e.g. foot) and tested on actions performed with the other effector. Statistical 
tests (p-corrected < 0.05) were performed using a cluster size Monte Carlo permutation 
test (Maris & Oostenveld, 2007). Values that did not survive multiple comparison 
correction are masked.  

 

Frequencies and sources overlap.  

To get a clearer idea of the topographical differences between the three different 

tests, we overlapped the three significant accuracy maps on a sensor layout (Figure 

3.9). The three tests mostly overlapped (orange colour in the image) in the posterior 

sensors at low frequencies and during the early time window, as expected. There was 

a preference for posterior and frontal sensors also for the within-foot test (green), 

especially at a late time window and a slightly higher frequency. Aside from posterior 

sensors, there were central and left frontal sensors at low and higher frequencies 

showing significant decoding for the within hand test (blue). The red colour, indicating 

across-effector decoding, is not very visible because it is almost entirely part of the 

overlap (orange colour) in the posterior sensors at low frequencies and the early 
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latency. These results suggest that the neural representations that these three tests 

are targeting are at least partially overlapping. The three source analyses we 

conducted for the three tests support this hypothesis given the similarity between the 

source representations observed in bilateral occipito-temporal regions. Such similarity 

was further exploited when we examined the overlap of the three source maps, which 

revealed common neural representations in bilateral occipito-temporal regions (Figure 

3.10).  

 

Figure 3.8. Accuracy maps in source space. To identify the sources that account for the 
decoding effects observed in sensor space, we ran multivariate analyses for the three tests 
in source space. We distinguished between an early (-50 to 450 milliseconds) and a late 
(474 to 825 milliseconds) time window. Based on the sensor results, we selected a low 
frequency band (centred around 6Hz, smoothed with 3Hz) for the early time window and 
a higher frequency-band (centred around 17Hz, smoothed with 3Hz) for the late time 
window. Only the top 10% accuracy values are depicted for visualization purposes. Maps 
were projected on the PALS atlas (Van Essen, 2005), using Caret software (Van Essen et al., 
2001). 
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Figure 3.9. Accuracy overlap between tests in sensor space. To show similarities and 
differences between the three tests, we overlaid the three masked t maps (see Figure 
3.4C, D and Figure 3.6G, H). Complete overlap between the three t maps (orange color) 
was observed in bilateral poterior sensors in the early time window. Main differences 
were observed between the within-hand (blue colour) and the within-foot (green colour) 
analyses over frontal sensors at later latencies. The across-effector analysis was confined 
to posterior sensors. 
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Figure 3.10. Overlap between the three tests in source space. The figure shows the 
overlap between the three accuracy maps obtained from the multivariate analysis 
performed in source space (Figure 3.8) to account for significant decoding effects 
observed at sensor level (Figure 3.4 for the within-effector analyses, and Figure 3.6 for the 
between effector analysis). A complete overlap between the three types of analysis was 
observed within lateral occipito-temporal regions. The maps are masked based on the top 
10% accuracy values. 

 

Discussion 

In this study (Study 2), we investigated the neural dynamics of action representations 

during observation of hand-related and foot-related actions. The main aim of this 

study was to follow up on important findings observed in Study 1 (chapter 2). In Study 

1, we observed that temporal regions, specifically LOTC, and parietal regions, most 

likely IPL/IPS, have an earlier access to abstract action representations than frontal 

motor-related regions. However, in Study 1, we only used two actions 

(grasping/pointing) and decoding generalization was across movement direction and 

hand used only, but a region involved in action recognition should be able to 

discriminate between a richer set of actions at higher abstract levels 
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Therefore, in Study 2, we used four new actions, two of which performed with the 

hand (squeezing/throwing) and the other two with the foot (crushing/kicking). These 

actions can be distinguished within effector (squeezing vs throwing/ crushing vs 

kicking) to investigate a concrete action representation (effector level). Furthermore, 

one can discriminate these actions across effectors (squeezing vs crushing/throwing vs 

kicking) as they share similar concepts (compressing an object/moving something 

away). In this way, one can target a more abstract level of representation. To this aim, 

we used MEG in combination with multivariate analysis to investigate the neural 

dynamics of abstract and concrete action representations. We observed abstract 

(effector-independent) and concrete (effector-dependent) action representations in 

LOTC in a time window immediately subsequent to stimulus onset; we also observed 

concrete (effector-dependent) representations only in frontal effector-specific motor-

related areas in a later time window.  

These results corroborate and extend the findings of Study 1: they confirm that LOTC 

contain information related to abstract action representations and that this 

information is accessed earlier than frontal regions. Furthermore, encoding of action 

representations in frontal motor-related regions is modulated by the level of 

abstractness. Specifically, frontal regions appeared to encode for abstract action 

representations in the sense that they showed generalization across reach direction, 

and from one hand to the other. By contrast, the current study indicates that no such 

generalization is observed in frontal regions from hand to foot and vice versa. These 

findings are partially in line with two recent fMRI-MVPA studies that showed that 

frontal motor-related regions encode concrete action representations (Wurm & 

Lingnau, 2015; Wurm et al., 2015), whereas LOTC hosts abstract action 

representations, most likely because this region contains action concepts. However, 

the representation we observed in motor-related areas in our previous MEG 

experiment was abstract as it generalized across hand used and movement direction. 

What could explain the inconsistency between these fMRI experiments and the results 

of Study 1? There are two potential explanations. Following Wurm et al. (2015) and 

Wurm & Lingnau (2015), the way we addressed abstract action representations was 
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different from that of Wurm et al. (2015): instead of generalizing across the object on 

which an action was performed, Study 1 aimed to generalize across reach direction 

and effector (left vs right hand). The second explanation is related to the types of 

actions that we used. Grasping and pointing are very common actions, since we are 

exposed to these actions for most of our daily life. This means, following the 

association hypothesis of mirror neurons (Heyes, 2010), that these two actions are 

over-represented in the semantic and motor system and low-level processing might be 

triggered more automatically.  
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Chapter 4: Open object = Opening (Closed object) 

 

Adapted from: 

Tucciarel l i ,  R.,  Wurm, M.,  Roth, Z. ,  Zohary, E .,  and Lingnau, A . ( in preparation) .  Dissociating  action states  
and functions –  an  MVPA study.  

 

Introduction 

Think about the example provided in the general introduction: You are watching a 

friend making coffee. Which are the most salient features in the scene? Focus just on 

the initial part of the preparation, grasping and opening the moka. There are at least 

two important aspects here: the two actions (grasping and opening) and the object. If 

you think deeply, you will see more: the configuration of the object changes after the 

actions have been performed. ‘Grasping’, will bring the moka to a new position; after 

‘opening’, the moka will be not closed anymore.  

Generally speaking, we can define an object-related action as a function (Figure 4.1) 

that changes the state of an object. For example, opening a moka pot changes the 

object state from closed to open. In mathematical terms, an action is a relationship 

between a set of inputs (initial object states) and a set of possible outputs (end object 

states): 

𝑓: 𝑋 → 𝑌  or  𝑦 = 𝑓(𝑥) 

𝑜𝑝𝑒𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑜𝑝𝑒𝑛𝑖𝑛𝑔 (𝑐𝑙𝑜𝑠𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡) 
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Figure 4.1. Actions as functions that associate object states. An action can be described 
as a function that changes the state of an object. For example, the action opening will 
change the state of a moka moka pot from closed to open; the function closing will change 
the state of an open trash bin to close. 

 

Studies 1 (Chapter 2) and 2 (Chapter 3) showed that LOTC and IPL encode abstract 

action information. Specifically, neuromagnetic oscillatory activity generated within 

temporal and parietal regions contains information related to an observed action that 

generalizes across action movements and effectors (right, left hand, and foot). 

Notably, the high temporal resolution of MEG allowed us to show that such action 

representations are encoded in temporal regions earlier than in frontal regions, where 

concrete action representations are represented (see also Kilner, 2011 for a functional 

explanation of concrete encoding within motor-related regions). These findings 

suggest that LOTC and IPL play an important role in action concept encoding, and this 

view is supported by other fMRI (Binder et al., 2009; Fairhall & Caramazza, 2013; 

Hickok, 2012; Lingnau & Downing, 2015; Wurm & Lingnau, 2015; Wurm et al., 2015) 

and patient (Kalénine et al., 2010; Tarhan et al., 2015) studies. To date, however, it is 
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unclear whether LOTC and IPL encode the function underlying actions (e.g. opening 

something), the end state (e.g. the opened object), or both. In an fMRI adaptation 

study, Hamilton and Grafton (2008) presented participants with videos of actions (e.g. 

opening a sliding box) with same or different outcomes that used the same or different 

kinematics. They found that frontal (IFG) and parietal (aIPS) regions were sensitive to 

the outcomes of an action, with similar trends in the LOTC (p=0.053). Critically, both 

the action and the final state of the object were always presented in the same scene, 

making it impossible to disambiguate between object and action information at the 

neural level.  

The goal of Study 3 was thus to examine whether LOTC and IPL preferentially encode 

functions or object states. In two separate fMRI experiments, we used specific object 

categories (trash bins/window blinds/taps) of objects that allowed us to present 

different aspects of the scene: the object state only (Experiment 1) and the action only 

or both the action and the object state (Experiment 2). 

In Experiment 1, we investigated what brain regions contain information related to 

object states (open/close). Specifically, we were interested in abstract object state 

representations, that is, representations that generalize across specific objects or to 

low-level object features (e.g. perspective). In Experiment 2, we examined the 

representation of action functions with the object state either visible or not visible. 

This allowed us to distinguish the two types of representations at the neural level and 

individuate eventual overlaps. To this aim, we adopted a data-driven searchlight 

approach.  

We looked for areas where representations of action functions and action states either 

1) were dissociated at the neural level (no overlap); or 2) shared common neural 

substrates (partial or total overlap). These two possible outcomes directly address 

predictions made by the two theories of action understanding: the motor theory 

predicts motor regions will be involved in action functions and states, whereas the 

cognitive theory predicts this information will be encoded in temporal regions (Hickok, 
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2012; Lingnau & Downing, 2015) and/or parietal (Binder et al., 2009; Fairhall & 

Caramazza, 2013). 

We found no evidence that the ventral premotor cortex (PMv) encoded either abstract 

action functions or action states. LOTC encoded both action functions and object 

states, while IPL encoded action functions only. These findings provide important 

information regarding the organization of action semantics in the brain. 

Materials and Methods 

Participants 

Twenty-one participants took part in the experiment. All participants were right-

handed with normal or corrected-to-normal vision. None of them had history of 

neurological or psychiatric disorders. Participants gave their formal consent to 

participate to the study, which was approved by the Helsinki Ethics Committee of 

Hadassah Hospital, Jerusalem, Israel. 

Stimuli 

The stimulus set (see Appendix for the complete list) consisted of still images 

(Experiment 1) and videos (Experiment 2). We first filmed the actions in two 

conditions: either the entire scene (object state visible) or the action alone (object 

state invisible). The videos started in the moment in which the effector was already 

touching the object, just some millisecond before movement initiation and ended 

some millisecond after the movement finished. Therefore, a typical video with the 

object state visible contained both the initial (frame 1) and the final (frame 30) object 

states. We then extracted these two frames to create the images for Experiment 1. The 

frame was cropped in a way that only the critical part of the object showing the state 

was visible. The images depicted the three object categories (window blind/trash 

bin/and tap) in the two possible states (open/close). For each object category, there 

were three different exemplars in two different perspectives. Each specific 

image/video was repeated 18 times. Therefore, each object state was repeated 18 x 
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3(objects) x 2(perspectives) = 108 times. The videos contained actions related to the 

objects used in Experiment 1. Two actions were used (opening/closing). The actions 

were filmed from two different perspectives. The total number of videos was also 108. 

Images and videos were captured using a Canon 5D Mark II camera and edited in 

iMovie (Apple) and MATLAB (The MathWorks). Stimuli were in black and white, had a 

length of 2s (30 frames per second), and had a resolution of 400x300 pixels. 

To disentangle action functions from object states, we selected a set of items that 

allowed us to show these two aspects separately. We thus used objects whose state 

could be changed without directly manipulating the critical part that indicates whether 

it is opened or closed. For example, a trash bin can be opened or closed with a hand by 

directly acting on the lid, or one can open the lid by pressing the handle with the foot. 

Critically, the handle is relatively far from the lid. In Experiment 1, we thus showed 

only the part of the object defining its state. In Experiment 2, the videos were 

presented in two critical conditions: in one case, both the object state and the action 

were visible (state-visible condition); in the second case, only the action but not the 

object state was visible (state-invisible condition), as the field of view was restricted to 

the action. Since we aimed to target at abstract action and object state 

representations, we selected stimuli with high variability of low-level features 

(different objects/different perspectives/different location/different actors) such that 

the observed results cannot be explained as classification of low-level visual properties 

of the stimuli. Visual stimuli were projected via an MR-compatible projector onto a 

screen located 114 cm from the participants. The screen was made visible to the 

subjects via a tilted mirror, positioned above the subjects’ faces. The screen was 53 x 

30 cm (26.4° × 15.1°). The display resolution was 1920 × 1080 pixels. Stimulus 

presentation was controlled using ASF (Schwarzbach, 2011) a Matlab toolbox based on 

Psychtoolbox (Brainard, 1997). 

Experimental task 

To ensure participant’s alertness, participants had to detect the presence of 

ambiguous images or videos (catch trials). In Experiment 1, catch trials consisted of 
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images depicting objects that could not be classified as being in either an open or a 

close state such as a trash bin with the lid only slightly raised. Similarly, in Experiment 

2, catch trials were videos showing actions that could not be classified as neither 

opening or closing. Before entering into the scanner, participants familiarized with the 

images of Experiment 1. They observed all the stimuli at least one time and had to 

indicate by button press the state of the objects and the catch trials. During the 

anatomical scan (see Experimental design), participants observed the videos used in 

Experiment 2 and had to indicate the type of actions and the catch trials.  

Experimental design 

We adopted an event-related design with null-trials to guarantee optimal statistical 

power (Dale, 1999) using optseq2 (https://surfer.nmr.mgh.harvard.edu/optseq/). The 

proportion of null-trials was computed as the total duration of the experiment divided 

by the number of the conditions (experimental conditions and catch trials). The mean 

number of null trials per run was 38.11 (SE: 4.49). The order of trials was pseudo-

randomized. Each experimental trial consisted of a 2 second stimulus (either an image 

or a video) followed by a fixation cross (1 second). Null trial duration varied from 1 to 6 

seconds. The two experiments were conducted within one scanning session (Figure 

4.2). The session included nine functional runs and one anatomical run organized as 

follows: three functional runs (Experiment 1) + one anatomical run + six functional runs 

(Experiment 2). Five subjects performed only four functional runs in Experiment 2. The 

order of the experiments was kept the same for all participants to ensure that they did 

not activate previously seen action representation.  
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Figure 4.2. Experimental design.  In Experiment 1, we presented images of objects in two 
possible states (open/closed). In Experiment 2, participants watched video clips of actions 
performed with the objects presented in Experiment 1. In the videos, the object state was 
either visible (visible-state condition) or not visible (invisible-state condition). Note that 
the object states (images) were taken from the video clips (initial and final frames) after 
cropping the image. Participants had to attentively observe the stimuli and report catch 
trials, namely objects which were in neither an open nor a closed state (Experiment 1), or 
actions that were neither opening nor closing (Experiment 2).  

 

fMRI data acquisition 

The blood oxygen level-dependent (BOLD) fMRI measurements were obtained using a 

whole-body 3-T Magnetom Trio Siemens scanner and a 32-channel head coil. The 

functional MRI protocols were based on a multislice gradient-echo planar imaging and 

obtained under the following parameters: time repetition (TR) = 2 s, time echo = 30ms, 

flip angle = 90°, imaging matrix = 64 × 64, field of view= 192mm; 37 slices with 3-mm 

slice thickness and 0.35mm and were oriented in the oblique position, covering the 

whole brain, with functional voxels of 3 × 3 × 3 mm. In addition, high-resolution, T1-

weighted magnetization-prepared rapid acquisition gradient-echo (MPRAGE) images 

were acquired (1 × 1 × 1 mm resolution). 

Preprocessing 

Functional data were preprocessed using BrainVoyager 2.8 (BrainInnovation) in 

combination with Neuroelf (http://neuroelf.net/) and custom scripts. The first four 

volumes were discarded online to avoid T1 saturation. Data were 3D motion corrected 
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using the first retained functional volume as reference. Functional data were high-pass 

filtered (cut-off frequency of three cycles per run) and slice time corrected. Functional 

data were smoothed using a 8mm Gaussian kernel for univariate analysis only. The 

functional volumes were then aligned to the anatomy after Talairach transformation 

using trilinear interpolation.   

Univariate analysis 

Classical univariate analyses were conducted separately for the two experiments to 

localize regions modulated during the observation of images (Experiment 1; functional 

contrast: all images vs baseline) and videos (Experiment 2; functional contrast: all 

videos vs baseline). We computed a group random-effects general linear model (GLM) 

using a design matrix with 3 predictors of interest (action: open/close and catch trials) 

for Experiment 1, and 5 predictors (action x object state: visible-state opening/visible 

state closing/invisible-state opening/invisible-state closing and the catch trial) for 

Experiment 2. The two design matrices also contained the 6 motion parameters. Each 

predictor was convolved using a hemodynamic model (dual-gamma). Each trial was 2 

second long. This time course model was used to fit the fMRI signal for each voxel. We 

thus obtained a β-value for each voxel that were used to compute the functional 

contrasts. Results were corrected for multiple comparisons using the Bonferroni 

procedure.  

MVPA  

We conducted a multivariate volume-based searchlight analysis using a support vector 

machine (SVM) classifier using the LIBSVM (Chang & Lin, 2011) implementation 

embedded in CoSMoMVPA (Oosterhof et al., in preparation). We performed the 

multivariate analysis to individuate those regions that encode abstract action states 

(Experiment 1) and abstract action functions (Experiment 2). To this aim, we trained a 

classifier to discriminate open and close state (Experiment 1) or opening and closing 

action (Experiment 2) from a subgroup of stimuli (Figure 4.3 shows a schematic 

example of MVPA for Experiment 1). Then we tested the accuracy of the classifier in 

categorizing an independent subset of stimuli. The predictors used as input for the 
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multivariate analysis were estimated on the basis of three trials in a GLM analysis. In 

Experiment 1, for each of the seven runs we had six predictors (β-weights) per 

condition per run. In Experiment 2, there were three predictors per condition per run. 

The analysis was restricted to grey matter and the searchlight radius was 4 voxels 

(mean size: 219.5 ± 43.1 voxels). We adopted a leave-one-run-out cross-validation 

approach. All possible combination of training and testing patterns were conducted 

and the final accuracy was obtained averaging the accuracy maps resulted from the all 

iterations. The decoding analysis was performed at individual level and then the 

individual accuracy maps were averaged across subjects. 
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Figure 4.3. Schematic representation of MVPA. We looked for brain regions that 
contained neural patterns related to object states (Experiment 1) and action functions 
(Experiment 2) by running a volume-based searchlight (Kriegeskorte et al., 2006) 
multivariate pattern analysis (MVPA) using a support vector machine (SVM). The figure 
shows a hypothetical pattern elicited within temporal regions when observing object 
states (the example holds for video clips). If a region contains information about a certain 
condition (e.g. object state), the elicited patterns should be similar when the object states 
are the same (e.g. open) and dissimilar when the object states are different. Analyses 
were conducted using CoSMoMVPA (Oosterhof et al., in preparation). 

  

To assess statistical significance of the group accuracy maps, we run a one-sample t 

test, in which we compared the accuracies against chance level (50%). To account for 
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multiple comparisons, volume t maps were corrected at a cluster level (p=0.05) based 

on Monte Carlo simulation (1000 iterations). The initial voxelwise threshold was 

p<0.005. Accuracy and t volume maps were transformed to surface mesh vertex for 

visualization purpose.   

To show overlap between accuracy maps obtained in the different tests, a cluster-level 

test was run at the surface level for each map (initial threshold p<0.05). All significant 

vertices were assigned with a constant number and a different color. 

Results 

Behavioural results 

Sixteenth of the 21 participants (we could not collect behavioural responses of the first 

five subjects) identified the catch trials with high accuracy. The mean accuracy in 

Experiment 1 was 92.36% (SE: 1.4%), whereas in Experiment 2 it was 90.56% (SE: 1%). 

A pairwise t test did not show evidence for a difference between the accuracies of the 

two experiments (t(15); p-value=0.3659).  

Univariate fMRI results 

In both experiments, the univariate analyses revealed similar widespread activations 

within temporal, parietal and frontal regions, therefore classical regions of the action 

observation network (Caspers et al., 2010) were recruited. Specifically, for the images 

vs baseline contrast (Figure 4.4, panel A), we observed bilateral LOTC, bilateral IPS/IPL, 

left IFG and right LPFc. For the videos versus baseline contrast (Figure 4.4, panel B), we 

found bilateral LOTC, bilateral IPLS/IPL and bilateral IFG. In parietal and temporal 

regions, the two contrast maps were quite similar, as revealed by the overlap (Figure 

4.4, panel C).  
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Figure 4.4. Univariate analysis. Univariate analyses were performed to locate regions 
recruited while viewing the images (Experiment 1) and the videos (Experiment 2). We 
computed a random-effects (RFX) GLM contrast of all images versus baseline (panel A) and 
all videos vs baseline (panel B). Both contrasts (t maps) revealed widespread activations in 
temporal, parietal and frontal regions, resembling the typical action observation network 
(Caspers et al., 2010). In particular, in both experiments we observed a recruitment of 
bilateral lateral occipitotemporal cortex (LOTC) and bilateral IPS/IPL (see overlap in panel 
C, violet colour). Videos appeared to recruit a slightly wider network, also including 
bilateral inferior frontal gyrus (IFG). Images also recruited left IFG and right lateral 
prefrontal cortex (LPFc). Results are corrected for multiple comparisons using the 
Bonferroni procedure. 

 

Searchlight fMRI results 

Using a data-driven volume searchlight analysis, we looked for regions encoding either 

object states of an object (Experiment 1) or actions defined as functions that change 

the object states (Experiment 2). For visualization purpose, accuracy maps for the 
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three tests and the corresponding (not corrected) t maps projected on the surfaces are 

shown in Figure 4.5. Information related to the significant (cluster corrected) clusters 

related to the three tests are reported in Table 4.1. 

We found significant decoding accuracy in regions typically involved in action 

observation (see Univariate analysis). Specifically, a ventral bilateral portion of LOTC 

contained information related to object states (Figure 4.5A, D), whereas a more dorsal 

right section of LOTC and left IPL contained information relate to the actions when the 

object state was visible(Figure 4.5B, E). We could not find any significant encoding for 

actions when the state was not visible. We therefore decreased the threshold until 

p=0.02 and we found significant accuracy in right LOTC (Figure 4.5C, F).  

To show common neural substrates between processing actions and object states, we 

overlap the t maps related to the state and the action test in the state-visible 

condition. Functional overlap was observed in left LOTC. 

 

Region x y z Size t max t mean Accuracy  
States        

    Left LingG/LOTC -23 -81 5 437 5.842741 3.399395 54.63 

    Right Ins 44 3 10 72 4.766046 3.480899   56.48 

    Left CingG -4 17 29 63 4.730336 3.466814 56.48 

State-visible actions        

    Left MTG/LOTC -34 -70 24 172 6.392787 3.486930 59.23 

    Left STS/LOTC -50 -58 31 35 5.583564 3.511877 57.49 

    Left  AG 31 -62 30 106 4.721751 3.342583 54.29 

State-invisible actions         

    Right MTG/LOTC 43 -59 16 98 4.699485 2.771144 55.48 

Table 4.1. Table of significant clusters (size in mm3).Threshold p=0.005 for “Encoding States” 

and “Encoding Actions State Visible”; Threshold p=0.02 for “Encoding Action State Invisible”. 
Corrected cluster threshold p=0.05. LingG, Lingual Gyrus; Ins, Insula; CingG, Cingulate Gyrus; MTG, 
Middle Temporal Gyrus; STS, Superior Temporal Gyrus; AG, Angular Gyrus;  
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Figure 4.5. Accuracy and t maps for the three searchlight analyses. Mean accuracy maps 
(panels A, B, C) and related t maps (panels D, E, F) of the searchlight MVPA for the three 
tests of interest: discriminating object states (panel A and D; Experiment 1); discriminating 
actions when the object state is visible (panel B and E) and when the object state is not 
visible (panel C and F; Experiment 2). Chance accuracy level is 50%. For the t maps, 
threshold is p=0.02 (uncorrected). For corrected results refer to Errore. L'origine 
iferimento non è stata trovata.. 

 

 

Figure 4.6. Overlap of the statistical maps. The statistical maps of the two tests of 
interests (decoding object states and decoding actions when the object state is visible) 
were overlaid on a surface brain. The reported clusters survived cluster size correction at 
initial threshold p=0.05 and corrected cluster threshold p=0.05.  
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Discussion 

Action semantics refers to the knowledge related to actions, meaning “what the action 

is about, what its goal is, and how it is related to other objects” (Nelissen et al., 2005). 

An action can be defined as a function that changes the state of an object. To date, no 

previous study distinguished between two key features underlying the semantics of 

actions, namely, action functions and object states that typically co-occur. According to 

motor theories, mirror neurons subserve action semantics by using the observer’s own 

motoric action repertoire to access the meaning of an action (Rizzolatti & Craighero, 

2004). Therefore, encoding action functions should take place within motor-related 

areas. According to Nelissen’s definition, object states could be encoded in the motor 

system as well, because observing an object in a particular state might recruit action 

knowledge “related to” the object. For example, observing a closed box could activate 

the action opening. In our study, we aimed to disentangle these two aspects by 

showing either the object states (Experiment 1) or the action functions with and 

without the object states (Experiment 2). 

In a previous fMRI-adaptation study in which participants had to observe actions that 

had different object outcomes using the same or different kinematics, the inferior 

parietal lobule (IPL) and the inferior frontal gyrus (IFG) appeared to encode 

information related to action outcomes (Hamilton & Grafton, 2008).  It is worth noting 

that LOTC showed a similar but non-significant trend. However, the authors used 

videos of actions in which both object changes and actions were present, making it 

impossible to disentangle between the two aspects. 

In contrast to motor theory predictions, we did not find any evidence for encoding 

either action functions or object states in premotor regions. We observed that LOTC 

encodes information related to both action functions and object states, whereas IPL 

only contains representations of action functions.  

In our study, action semantics did not appear to be encoded in premotor regions, but 

rather within temporal and parietal regions. Involvement of these areas in the 

encoding of action concepts has been reported in several previous fMRI (Oosterhof et 
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al., 2010, 2012a; Wurm & Lingnau, 2015; Wurm et al., 2015) and voxel-based lesion 

symptom mapping studies (Kalénine et al., 2010; Tarhan et al., 2015). Furthermore, a 

number of studies suggested a concrete to abstract gradient of representations 

running from posterior to anterior LOTC (Lingnau & Downing, 2015). 

We were able to show that object states (open/closed) are encoded bilaterally in 

LOTC, whereas action functions with object states visible were encoded in left LOTC 

and bilateral IPL. We argue that IPL is most likely implicated in action function 

processing only, while left LOTC is involved in action semantics in general, irrespective 

of whether these semantics represent action-relevant object information or the 

function underlying the action.  

We were not able to decode any type of information when comparing the two actions 

(opening/closing) in the invisible object state condition in left LOTC. This was a rather 

unexpected result, most likely related to task difficulty. Some participants at the end of 

the experiment reported difficulties to discriminate between the two actions in this 

condition, without also observing the initial and final object states. In other words, it is 

possible that we did not find any type of significant classification in this condition 

because participants were unable to distinguish between the two targets of interest 

(opening and closing). Note that we did find a significant decoding accuracy in right 

LOTC in this condition when using a more liberal threshold. Further experiments are 

necessary to examine whether these two types of conditions are actually encoded in 

different regions and if it is possible to decode action types without viewing the object 

state when the task is made easier also in LOTC. 
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Chapter 5: General Discussion 

Which regions encode abstract action representations? Moreover, which are the 

neural dynamics of such representations? Using MVP analysis in combination with 

MEG and fMRI data, we found that temporal regions, specifically LOTC, encode 

abstract action information earlier than frontal regions. Furthermore, whereas LOTC 

showed generalization across reach direction, from left to right hand and vice versa, 

and from hand to foot and vice versa, frontal regions showed a late generalization 

across reach direction and from one hand to the other, but not across the type of 

effector. Finally, we found that LOTC encode both action functions and object states. 

Collectively, these results are hard to reconcile with a dominant role of motor-related 

frontal regions in action recognition. By contrast, our results indicate that LOTC might 

have a determinant role in action recognition. 

Many neuroimaging studies have shown involvement of motor-related regions during 

action observation both in monkeys (di Pellegrino et al., 1992; Gallese et al., 1996; 

Umiltà et al., 2001) and in humans (e.g. Cattaneo et al., 2010; Fadiga et al., 1995; 

Muthukumaraswamy et al., 2004; Rizzolatti et al., 1996). These studies have also 

shown that some degree of abstraction exists in motor-related regions. For example, 

Gallese et al. (1996) reported monkey mirror neurons discharging for actions, such as 

grasping, independently of the way this action was performed (precision grip vs whole 

hand). In humans, a TMS study by Cattaneo et al. (2010) showed that PMv contains 

action information (pushing, pulling) that generalizes across the effector (hand, foot) 

used. Furthermore, Kilner et al  (2009) reported a cross-modal (action execution to 

action observation and vice versa) adaptation effect in PMv. These results are 

seemingly in line with the claims made by motor theories that motor-related regions 

have a causal role in action recognition. 
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Our findings partially agree with these experimental evidences as we also observed 

motor-related regions being involved during action observation, but up to a certain 

degree of abstraction (e.g. across movement direction, but not across effector). We 

also extend those results as we added important information related to the neural 

dynamics of action abstract representations. We showed that abstract action 

information in motor-related frontal areas is provided only after action abstract 

encoding in temporal regions. These results conflict with motor theories which would 

have predicted early abstract action representations being instantaneously mapped 

within the motor system (Hauk et al., 2008).  

Furthermore, we showed that the encoding of action information in motor regions 

might depend on the degree of abstraction that the analysis is targeting. For example, 

we were able to decode within-effector action information in motor-related regions, 

but not across-effector action information. These findings are in line with previous 

studies that used MVPA in combination with fMRI data, which found a generalization 

across viewpoint (Oosterhof et al., 2012a), tasks (Wurm et al., 2015), kinematics 

(Wurm & Lingnau, 2015), and objects (Wurm & Lingnau, 2015) in LOTC, but not in PMv.  

At first, these results seem difficult to reconcile with the studies described reporting 

PMv being activated during action observation, but they can be explained in terms of 

the type of action representation investigated. For example, the cross-modal action 

information found in the study by Kilner et al. (2009) was related to observed actions 

presented in first-person perspective, but this result does not hold anymore when one 

tries to generalize across perspectives (Oosterhof et al., 2012a). Similarly, we did find 

abstract action information in motor-related regions in the first MEG experiment 

(Study 1), in which we presented actions in first-person perspective, but not in the 

second study (Study 2), in which the actions were mostly presented in third-person 

perspectives. Moreover, results of Study 1 can be explained following Wurm’s findings 

(Wurm & Lingnau, 2015) that reported action discrimination in PMv only when the 

object involved in the action remained the same, as it was the case in our studies. 

Finally, the familiarity with certain types of actions could determine the involvement of 
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motor-related regions, as stated by the  association hypothesis of mirror neurons 

(Heyes, 2010). The actions we used in Study 1 were highly familiar (grasping/pointing) 

and might have a special status in motor-related regions. Further investigation on this 

issue is needed to disentangle between these three aspects. 

To summarize, there is sufficient experimental evidence to state that motor-related 

regions do not encode high (conceptual) abstract representations of actions, but only 

intermediate representational levels. These results conflict with motor theories of 

action recognition (Pulvermüller, 2005; Rizzolatti et al., 2001). Our results are instead 

compatible with cognitive theories (Caramazza et al., 2014; Mahon & Caramazza, 

2008), which claim that action recognition occurs in nonmotor regions that form the 

semantic system in which action concepts are located. Activation of the motor system 

during conceptual processing might be due to the fact that the systems are highly 

inter-connected. Therefore, motor-related activity might be post-conceptual and 

reflect action understanding (Csibra, 2007). If this is the case, where does action 

understanding occur? 

Previous studies have shown that LOTC (Figure 5.1) is a well-suited region for hosting 

action information and related knowledge (for a review of the role of LOTC in action, 

see Lingnau & Downing, 2015). For example, fMRI studies reported that this region has 

a preferential response for hand-type stimuli (Bracci et al., 2010) and for body parts in 

general (Downing et al., 2001). LOTC shows stronger involvement when participants 

are required to discriminate between action types (e.g. punching vs kicking) than when  

they have to discriminate between effectors (Lingnau & Petris, 2013). Sources 

observed with MEG have also shown that LOTC is modulated during observation of 

point-light display (PLD) stimuli (Pavlidou et al., 2014a, 2014b). Moreover, this region is 

known to be recruited during the semantic processing of verbs (e.g. Papeo et al., 

2014), and lesions to this region are associated with impairments in the ability to 

recognize actions (Kalénine et al., 2010; Urgesi et al., 2014). In line with this view, a 

recent lesion study including 139 patients which required matching a written phrase 

describing an everyday action to one of two actions presented via video (Tarhan et al., 
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2015) demonstrated that lesions to primary motor, somatosensory and the inferior 

parietal lobule were accompanied by impaired action performance, whereas lesions in 

the posterior temporal region resulted in impaired action recognition. Furthermore, 

this region encodes abstract action information in monkeys (Jellema et al., 2000). The 

results reported in this thesis are perfectly in line with these findings and expand 

previous studies by adding the temporal dimension. Taken together, these studies 

suggest that LOTC is well suited to integrate various sources of information that are 

crucial for action understanding.  

Future directions 

As I have argued in this thesis, MEG in combination with MVPA is a suitable tool for 

investigating the neural bases underlying action representations. This technique is 

optimal in terms of temporal resolution and thus complementary to fMRI, which 

provides optimal spatial resolution. Together, these two neuroimaging methods can 

provide a strong contribution to this field. For example, an obvious follow up on my 

results would be to use fMRI to define the regions involved in the abstract encoding of 

action information. With MEG, I could determine when the action representation was 

available, but only provide an imprecise neural location. Knowing how information is 

spatially organized in a certain area, as LOTC, is determinant for building a model of 

action understanding that is biologically plausible.  

Many other questions remain unanswered. When does action understanding actually 

occur? What additional aspects of an action are encoded in LOTC? What are the 

functional roles of motor-related regions in action observation?  

To answer to these questions, it would be important to have a direct measure of action 

understanding. For example, one could design a study that investigates what happens 

in the instant before action understanding. This would help us to understand which 

sources are involved in building a percept of the observed action. MEG would be an 

ideal technique to investigate this issue. Finally, representational similarity analysis, or 
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RSA (Kriegeskorte et al., 2008), of fMRI and MEG data could help characterizing what 

type of action information is actually encoded in temporal regions. 

Conclusions 

The work presented in this thesis along with previous neuroimaging studies cast strong 

doubts on the claims that frontal motor-related regions, such as PMv, contain high-

level (e.g. conceptual) abstract action representations. Furthermore, intermediate 

levels of action representation (e.g. within effector) are available with PMv only at a 

late latency. This region is part of a brain network typically involved in action 

observation (the action observation network) and has been claimed to play a causal 

role in action understanding. However, a region involved in action understanding 

should be capable of discriminating between actions early, in particular at high levels 

of abstraction. The results presented in my thesis provide evidence that LOTC can 

discriminate between abstract action representations at an early latency, supporting 

the view that this area plays a crucial role for action understanding.  
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Figure 5.1. The lateral occipitotemporal cortex (LOTC).  The red line in panel A and B 
indicates the approximate border of LOTC. Panel B shows also peak activations (coloured 
dots) of various studies that reported involvement of LOTC in different domains. Figure 
taken from Lingnau and Downing (2015). 
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Appendix A 

Actions vs bodies 

To evaluate if the motor system is involved during action observation in a generic and 

unspecific fashion, we conducted a univariate contrast between actions and bodies 

that we assumed did not contain any implicit movement and thus we considered as 

stimuli with no action information. In this sense, we defined the contrast as actions vs 

non-actions. We observed significant (p<0.01) differential modulation at low 

frequencies, with a peak in the theta-band at around 350 milliseconds, and at higher 

frequencies with a peak in beta-bands at around 400 milliseconds. 
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