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Chapter 1

Introduction

1.1 Historical perspective

A large portion of the field of materials science is focused on under-
standing and exploiting underlying patterns in relative atomic posi-
tions within solid materials. For reasonably ordered materials, such
understanding and exploitation rests firmly on the pillars of crystallog-
raphy and diffraction, which together provide the theory and practical
tools to measure and decode these patterns.
Phenomena characterized by diffraction, or the scattering and result-
ing interference or superposition of waves, are pervasive within the
natural world. In fact, the color blue as seen in vertebrates can be
attributed solely to diffraction of visible light[1]. This suggests that
Mother Nature has been exploiting diffraction phenomena long before
Homo Sapiens even contemplated the wave nature of light.
Although diffraction can arise when any type of waves are involved,
this work focuses on the diffraction of X-rays, a subset of light with a
wavelength from roughly 0.01 to 10 nm. First systematically studied
by Wilhelm Röntgen in 1895 [2], X-rays or “Röntgenstrahlung” were
initially exploited for medical imaging. Later, following a conversation
with Peter Ewald, Max von Laue used this new type of rays to col-
lect the first X-ray diffraction photographs with Walter Friedrich and
Paul Knipping in 1913 [3]. von Laue used his understanding of crys-
tallography to offer an interpretation of this image [4]. On the basis of
this work, the father-son pair, Bragg and Bragg correctly interpreted
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1.2. Goals and motivations

the new diffraction phenomena, and provided a simple mathematical
relationship to compute inter-atomic spacings based on the position of
what would soon be called “Bragg spots” [5]. With these pioneering
experiments, von Laue and the Braggs launched the field of X-ray crys-
tallography and earned themselves separate Nobel Prizes in physics.
Many of the theoretical underpinnings of crystallography, or the study
of how objects or atoms fill space, were actually known before diffrac-
tion facilitated the measurement of atomic positions. In 1892, a com-
plete list of the 230 three-dimensional space groups, based on argu-
ments of group theory and including rigorous mathematical descrip-
tions, was enumerated in personal communications between the math-
ematicians Fedorov and Schönflies. This work laid the foundation for
the future of diffraction based crystallography.
In the years since the inception of diffraction and crystallography, 29
Nobel Prizes have been awarded for work related to these topics. It is
also evident that the field of materials science, fueled largely by crys-
tallography and diffraction, has quite literally been the driving force
behind many of the technological leaps and bounds of the last century,
from Moore’s law to modern medicine. The importance of these topics
is then clear, from both a practical and theoretical perspective.

1.2 Goals and motivations

The novel components of this work are focused largely on the close
investigation of diffracted X-ray intensity distributions from nanopow-
ders showing stacking disorder (or one-dimensional disorder). Addi-
tionally, a general goal of this work is also to give a broader overview
of what can be considered an emerging field of diffraction techniques in
general: modeling of diffracted intensity distributions without empiri-
cal assumptions on the constituent profile shapes, positions, or relative
intensities.
With the exception of total scattering studies, the first goal of most
diffraction experiments is to accurately measure the position and rela-
tive intensity of Bragg diffraction peaks so as to understand the unit
cell shape and contents (the lattice and the basis of the structure). A
alternate goal is often the careful analysis of the shape of these Bragg
diffraction peaks. The advent of modern personal computers and the

2



1.2. Goals and motivations

resulting availability of pattern decomposition softwares have largely
simplified and expedited these processes [6–8]. Such whole pattern fit-
ting approaches are based on the hypothesis that diffracted intensity
distributions can be modeled as a sum Bragg peaks, or line-profiles,
with shapes, positions, and relative intensities constrained by simple
models [9–11].
The recent interest in nanomaterials, however, gives justification for
abandoning such a hypothesis. These materials often show novel and
useful properties and are characterized by spatially anisotropic and
inhomogeneous order on nanometer scales. This complex structure,
along with instrumental optics, act as a convolution [12] on an instru-
ment source profile to create a similarly complex diffracted intensity
distribution frequently at odds with the previously mentioned simple
models [13, 14]. The failure of traditional crystallography based as-
sumptions in this case has been called “the nanostructure problem”
[15]. It represents a significant roadblock for materials scientists and
engineers [16], and its solution requires a new approach.
The first true steps away from traditional assumptions were made by
Cheary and Coelho in the fundamental parameters (FP) approach [9].
This technique uses the physical parameters of the diffractometer, such
as the divergent slit angle, the length of the X-ray anode, or the angular
aperture of the Soller slits, directly within physical models to compute
the instrumental effect on the measured intensity distribution. These
models provide a complete and physical description of the instrumental
line-profile shape, position-shift, and relative intensity across the full
angular range of the diffractometer. A FP instrumental line-profile
then shows all the anisotropy and asymmetry entailed by the specific
diffractometer set-up without the need to invoke empirical profiles.
While the work of Cheary and Coelho as implemented in the TOPAS
software package [8] has allowed crystallographers to physically model
the instrumental effect on diffracted intensity distributions, simple em-
pirical models are still frequently used to represent the sample-related
contribution to these intensity distributions. The trend in full width at
half maximum (FWHM) or integral breadth β (the ratio of the peak in-
tensity to the peak area) associated with the fitted sample signal is then
often related to the microstrain and the average size of the coherently
scattering domains (CSDs) through rather simple models [17–19]. The

3



1.2. Goals and motivations

choice of which empirical profile to use is however quite arbitrary, and
could bias the result of the analysis [19, 20]. Furthermore, the exact
details of the sample nanostructure are hidden subtly in profile asym-
metries, shifts, and other fine details, which are themselves masked by
the effect of the instrument. Assuming an empirical profile shape to
represent the sample signal can obscure these details completely. Using
more complex models including asymmetric and shifted (but still em-
pirical) profiles introduces further complications, as the relationship be-
tween asymmetries/position shifts and structure/microstructure must
be arduously derived explicitly for each material [21].
Surprisingly, the theoretical foundations for computing sample-related
diffracted intensity distributions directly without empirical approxima-
tions have existed for many years. In general each is based on express-
ing how a physical phenomena perturbs the ideal crystal lattice or unit
cell, and then propagating the perturbation to the Fourier transform
(FT) of the crystal. In 1940 Ewald first suggested directly evaluating
the FT of a crystal to obtain the diffracted intensity [22]. Shortly
after, Stokes and Wilson presented a strategy (and several formulas)
for directly computing the anisotropic line-profiles due to finite crystals
with various morphologies and arbitrary atomic structure [23]. Wilkens
later provided expressions for the anisotropic line-profile shapes asso-
ciated with microstrain due to dislocations [24]. In his book originally
published in 1969, Warren outlined an approach to computing the line-
profile associated with planar defects in close packed structures [21].
A more general approach for one-dimensional disorder was outlined
even earlier by Hendricks and Teller [25]. Probably owing to a lack of
computational power, most of these approaches have been used only to
arrive at explicit expressions for the change in profile position, FWHM,
or asymmetry associated with these phenomena. These changes are
extracted from powder diffraction data by pattern decomposition (em-
pirical profile fitting) and then fed into the explicit expressions.
Recently in a series of papers, Scardi and Leoni outlined the collection
and implementation of many of these approaches in what they have
called whole powder pattern modelling (WPPM), where parameters of
the sample, such as the shape of the CSDs and the associated CSD
size distribution, are used directly within the above physical models
to compute the sample line-profile without invoking empirical profile
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functions [20, 26, 27]. This was followed quickly by a similar approach
proposed by Ribárik et al. [28]. The two techniques have been imple-
mented in the PM2K [29] and MWP-fit [28] software packages and have
proven to be rather useful at extracting real microstructural informa-
tion from materials [30–38], but are unfortunately not yet as pervasive
as the FP approach.
Within this work, Chapter 2 gives a review of some above-mentioned
strategies to derive direct expressions for diffracted intensity distri-
butions from nanocrystalline or one-dimensionally disordered samples.
The general paths followed there can be used to derive intensity distri-
bution equations considering other perturbations to ideal crystal struc-
tures. This is in fact the route taken at the end of this chapter, where
a new generalized model is presented for polydisperse nanocrystalline
materials showing extensive stacking disorder.
In Chapter 3 the direct expressions presented in Chapter 2 are tested
in several virtual diffraction experiments. The methods of virtual pow-
der “synthesis” are outlined, along with the approach for carrying out
a virtual diffraction experiment using the Debye scattering equation
(DSE). The synthetic powder diffraction patterns from virtual powders
with various nano and microstructures are compared and discussed.
These powder patterns are then characterized following different ap-
proaches from Chapter 2 to assess the validity and accuracy of those
different models.
In Chapter 4, a number of different samples of industrially relevant
boron nitride are considered. Two different hypotheses regarding the
nature of the nanostructure of these samples are tested, entailing the
use of two different diffraction data fitting approaches from Chapter
2. This chapter provides for the first time clear conclusions regarding
the nature of the nanostructure of these samples. After suggesting a
most probable model for nanostructure, this model is used to track the
details of the boron nitride phase transformation under high pressure,
as a function of synthesis temperature.
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Chapter 2

Modeling diffraction

The diffracted intensity distribution from a collection of atoms can be
computed directly by following two general routes. With what are typ-
ically called direct-space (DS) approaches, all atomic positions within
each domain are specified explicitly and used directly to build the in-
tensity distribution without any assumptions regarding long-range or-
der. While DS approaches allow for true atomic scale control over
the intensity distribution, the required computational overhead scales
quadratically with the number of scatterers (atoms) [39] and with the
sixth power of the domain linear dimensions. This can lead to in-
tractable computation times if the mean domain size is large and the
atomic-configuration space of the sample is broad, as with broad crys-
tal size distributions or complex stacking disorder. DS approaches are
explored in Chapter 3.
The presence of three-dimensional translational periodicity such as
that characterizing traditional crystals can be exploited to achieve sig-
nificant mathematical simplifications and a reduction of computational
overhead. This entails working in a Fourier transformed space, or
reciprocal-space (RS), where the elastic scattering of periodic objects
can be represented more simply. Imperfections can be treated as per-
turbations to the crystal lattice or unit cell, and their effect on the
diffracted intensity distribution can be treated. Understanding such
perturbations is the primary focus of this chapter.
In both DS and RS approaches, the starting point is the elastic scat-
tering of X-rays from an electron, reviewed in Section 2.2, yielding the
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2.1. Practical examples: Nickel

polarization correction. Following this, in Section 2.3 a review of X-ray
scattering from an isolated atom is given, leading to the typical atomic
form factor description. Next, a mathematical description of a perfect,
spatially infinite crystal, and its associated kinematic diffraction behav-
ior is presented in Section 2.4. It is here that the traditional structure
factor of the unit cell appears, as well Bragg’s law [5] for calculating
line-profile positions. Following this, a review of the mathematical
description of otherwise perfect, spatially finite crystal is given in Sec-
tion 2.5, along with the elastic scattering and interference that results
from such objects. A general approach for representing an ensemble-
averaged crystal showing disorder in one direction is shown in Section
2.6, with expressions for computing the associated diffracted intensity
distribution. This section offers some novel extensions to previous work
in the field. In Section 2.7 the general and physical models for crystal
size, elaborated in Section 2.5, are used with the models for stacking
disorder, outlined in Section 2.6, to give a novel and general RS de-
scription of diffraction from polydispersed, nanocrystalline materials
showing extensive linear disorder.
Any of the above described scattering models can be used to un-
derstand real samples. By assuming a specific model with appro-
priate initial parameters, a theoretical intensity distribution can be
computed. An attempt can be made to minimize the total (weighted
and/or squared) difference between the observed and calculated inten-
sity distributions by refining the model parameters as constrained by
the model assumptions. If a suitable solution is found, it can provide
a best guess for the crystal structure (Rietveld analysis [11]) or the
sample microstructure and defect content (line-profile analysis (LPA)
[12, 17–19]). If a suitable solution is not found, it can be necessary
to start the process over, altering or abandoning some of the initial as-
sumptions regarding crystal structure, unit cell symmetry, or empirical
profile shape.

2.1 Practical examples: Nickel

Throughout the next two chapters various highly theoretical concepts
are explored. To cast these abstract concepts in a more concrete man-
ner, following a general treatment, many are presented in the specific
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2.1. Practical examples: Nickel

case of metallic nickel. This choice was made based on the relative
simplicity of the nickel structure, as complex abstract concepts can be
demonstrated without introducing additional structural complications.

Figure 2.1: A perspective view of the face-centered cubic (fcc) unit cell for
metallic nickel.

In the bulk form, metallic nickel adopts the fcc structure, with space
group Fm3̄m and a lattice parameter of 3.52 Å[40, 41]. A perspec-
tive view of a bulk nickel unit cell is shown in Figure 2.1. Interest-
ingly, nanocrystalline nickel is stable in both the fcc and hexagonal
close packed (hcp) polytypes [42], strongly suggesting the possibility
of both polytypes existing simultaneously interlayered within single
nanocrystals.
Such polytype interlayering is an extreme case of stacking disorder

which manifests in close-packed structures in a more dilute form as
stacking faults, namely twin or deformation faults. Projections of the
fcc unit cell and an idealized hcp unit cell along the [2̄20] or [310] direc-
tions are shown in Figures 2.2a or 2.2c, respectively. From these views,
it is simple to identify a common layer structure: Warren [21] pointed
out that both the fcc and hcp polytypes are composed of layers of
atoms arranged in a primitive hexagonal lattice, with bi-dimensionally
periodic unit cell vectors al, and bl, and layer thickness cl that can be
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2.1. Practical examples: Nickel

written as
al = −ac

2
+

bc

2
(2.1a)

bl = −bc

2
+

cc

2
(2.1b)

cl =
1

3
∥ac + bc + cc∥ , (2.1c)

where ac, bc, and cc are the typical cubic unit cell vectors. This layer
does not have a third lattice vector, as it shows only two-dimensional
periodicity. It is however a three-dimensional object with a layer thick-
ness cl. The symmetry of this new layer unit cell is best described
with the sub-periodic layer group p6/mmm (number 80) [43], with one
nickel atom at Wyckoff position 1a. This layer unit cell is shown in
Figure 2.2b.

(a) fcc unit cells (b) common layer unit
cell (c) hcp unit cells

Figure 2.2: In (a), a projected view of several fcc nickel unit cells is shown,
with the Warren layer type identified at left, and relative translation identi-
fied at right. The same is shown in (c) for several idealized hcp nickel unit
cells. In (b), the layer unit cell common to both polytypes is shown, both in
a top and front view. The indicated directions are with respect to the lattice
of the closest pictured structure. Forward or backward relative translations
are indicated by the color blue or red, respectively

If only the relative horizontal positions of two adjacent layers are con-
sidered, it is clear that there are only two possibilities: either the layers
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2.2. A single scattering center

are related by a “forward” shift, represented by the relative position
vector Rf = al

3 − bl

3 + clẑ, or the layers are related by a “backward”
shift, represented by the relative position vector Rb = −al

3 + bl

3 + clẑ.
This description is consistent with the Hägg approach [44], where “for-
ward” and “backward” are represented by “+” and “-,” and can be
contrasted with the work of Warren, who described the two polytypes
based on the three absolute positions of the atomic scale layers, de-
scribing the fcc polytype as an . . . ABCABC . . . sequence and the hcp
polytype as an . . . ABAB . . . sequence [21]. These relative and absolute
notations are also shown in Figure 2.2.

2.2 A single scattering center

To begin, scattering from a single free electron is considered, as de-
picted schematically in Figure 2.3. If a plane-wave of X-ray radiation
with wavelength λ and wave-vector k0, where ∥k0∥ = k0 = 1/λ, inter-
acts with a free electron, the electron oscillates due to the electric field
E0 of the incident X-ray and radiates X-rays with electric field Ef . If
the spherical wave is observed at a distance r and scattering angle 2θ
with respect to k0, then it appears as a plane-wave with wave-vector kf

and electric field Ef/r. The momentum transfer vector or scattering
vector s can be defined as the difference between the final and initial
wave-vectors, s = kf−k0. If the interaction is purely elastic (Thomson
scattering) then k0 = kf , with ∥s∥ ≡ s = 2 sin θ

λ . In the elastic case,
the electric field of the scattered radiation can be written in terms of
E0 and the Thomson scattering cross section, Ef = e2

mec2r
E0. Inelastic

(Compton) scattering is not considered in this work.
The degree and direction of linear polarization of the incident beam
Q can be written in terms of components of the time averaged squared
electric field, or intensity, that are parallel (∥) and perpendicular (⊥)
to the plane of incidence

Q =
⟨E0⊥⟩2 − ⟨E0∥⟩2

⟨E0∥⟩2 + ⟨E0⊥⟩2
=

I0⊥ − I0∥

I0⊥ + I0∥
=

I0⊥ − I0∥

I0
. (2.2)

Q ranges from -1 (linearly polarized parallel to the incident plane) to
1 (linearly polarized perpendicular to the incident plane).
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2.2. A single scattering center

Figure 2.3: An X-ray with wave-vector k0 and electric field E0 impinging on
a free electron with charge -e and mass me. The radiation, with electric field
Ef , is elastically scattered to kf . The geometric meanings of the scattering
vector s and of the scattering angle 2θ are also shown.

By geometrical arguments (Figure 2.3) the scattered intensity compo-
nents can be written in terms of the incident intensity components as
If∥ = e4

me
2c4r2 I0∥ cos

2 2θ and If⊥ = e4

me
2c4r2 I0⊥. The total scattered in-

tensity If can then be written as a sum of its components as a function
of the scattering vector or angle,

If (θ) = If⊥ + If∥

=
e4

me
2c4r2

I0⊥ +
e4

me
2c4r2

I0∥ cos2 2θ

=
e4

me
2c4r2

(
I0⊥ + I0∥ cos2 2θ

)
=

e4

me
2c4r2

I0

(
(1 +Q) + (1−Q) cos2 2θ

2

)
. (2.3)

The last factor in equation 2.3 is typically called the polarization
factor PF , and it indicates that the elastically scattered intensity is not
dependent on the wavelength, but rather on both the scattering angle 2θ
and the degree and direction of linear polarization of the incident beam
Q. When the incident radiation is completely unpolarized, the case for
most laboratory X-ray sources, then Q = 0 and PF = 1+cos2 2θ

2 . Here
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2.3. An isolated atom

PF is initially 1 at θ = 0, decreasing to a minimum of 1/2 when θ =
45◦, and increasing again to 1 at θ = 90◦. When the incident radiation
is polarized completely perpendicular to the plane of incidence, such as
in most synchrotron X-ray sources, then Q = 1 and PF = 1, showing
no dependence on the scattering angle.
While these results are absolutely essential for correctly interpreting
diffraction data, they generally lead to fluctuations in the diffracted
intensity distribution which are dependent only on the experimental
configuration. These dependencies include the initial beam intensity
or polarization rather than the atomic, nano, or microstructure of the
sample. It is however precisely this sample-specific information that is
the focus of this work. For the sake of compactness then, the polariza-
tion factor, initial beam intensity, and Thomson cross section terms
are omitted from the equations within the following sections, where
the elastically diffracted intensity distributions from various different
types of crystals are elaborated. In practice, only factors that vary
with scattering angle, such as the polarization factor, need be consid-
ered explicitly. The other constant terms involving the Thomson cross
section can be effectively absorbed into a general scale factor.

2.3 An isolated atom

While an individual electron can often be handled as an isolated point
charge, an atom is a collection of electrons best described in terms of
a number density function U (r), where r is a position vector relative
to the origin, here taken as the center of the atom. The total number
of electrons contained in a volume element dV at position r of such
an atom is U (r) dV , while the total charge in this volume element is
eU (r)dV . Figure 2.4 shows a hypothetical two-dimensional projection
of a possible electron density function along with a scattering event.
If an X-ray with wave-vector k0 scatters elastically from the charge
element eU (r) dV to a new wave-vector kf , the scattering event is
again characterized by the scattering vector s as in Section 2.2. The
phase difference of the scattered X-ray, relative to an X-ray scattered
with the same scattering vector s from the atom origin, is a function
of the total path difference between the two X-rays. If the scattered
waves are both observed at point rP , and ∥rP∥ ≫ ∥r∥, then the path
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2.3. An isolated atom

Figure 2.4: A schematic depiction of an X-ray with wave-vector k0 im-
pinging on an isolated atom. The X-ray scatters elastically from the charge
element eU (r) dV at position r to the new wave-vector kf .

difference can be approximated by considering only the spatial distance
r between the two charge elements. Through geometric arguments,
the phase difference is then −2πr · s. It is much more convenient to
adopt the time-invariant complex phasor notation and write the phase
difference as e−2πır·s. This allows the scattered wave amplitude as
observed at rP , resulting from the superposition of the two scattered
waves, to be written as eU (r) e−2πır·sdV . As mentioned at the end of
Section 2.2, a factor including Thomson cross section and polarization
effect has been suppressed for brevity.
The electron density function is extended in space, so the phase differ-
ence from all volume elements must be considered by integration. In
this way, the scattered wave amplitude as a function of the scattering
vector is

φ (s) =
∫

U (r) e−2πır·sdV . (2.4)

and can be recognized as the FT of the electron density F [U (r)] (s),
explicitly specifying the functional dependence on s, the scattering
vector. This explicit notation is suppressed in further equations. This
definition of the wave amplitude scattered from an isolated atom is
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2.3. An isolated atom

typically called the atomic form factor f (s) ≡ φ (s). If the atom is
spherically symmetric, then the atomic electron density depends only
on the magnitude of the position vector, ∥r∥ = r, and the atomic form
factor depends only on the magnitude of the scattering vector.
It should be mentioned that the treatment of the atom in this way
assumes classical scattering. In reality, atoms are quantum objects with
sharp absorption lines at well-defined energies, associated with intra-
atomic electronic excitations. These absorption lines necessitate what
is called anomalous scattering and dictate that the atomic form factor
formally depends on both the scattering vector s and the energy of the
incident X-rays ℏω. This phenomena can be handled by introducing
a perturbation to the amplitude and phase of the atomic form factor.
The new anomalous atomic form factor can be written as

f0 (s, ℏω) = f0 (s) +Δf ′ (ℏω) + ıΔf ′′ (ℏω) , (2.5)

where f0 (s) represents the typical, spherically symmetric atomic form
factor, while Δf ′ (ℏω) and ıΔf ′′ (ℏω) indicate the effect of anomalous
scattering on the magnitude and phase of the form factor, respectively.
Energy dependent values for Δf ′ (ℏω) and ıΔf ′′ (ℏω) for various iso-
lated atoms and ions can be found tabulated in the International Ta-
bles for Crystallography Volume C [45] or, perhaps more conveniently,
online [46].
Practically, the spherically symmetric atomic form factor is approxi-
mated analytically in the scattering vector range 0 < s < 25

2π Å−1 as
a sum of s dependent Gaussian functions following Cromer and Mann
[47]. Using this approach, the atomic form factor can be can be written
as

f (s) =
4∑

i=1

aie
−bi

s2

4 + c. (2.6)

Equation 2.6 has been fit using spherically-averaged electron density
maps computed with quantum theory for the most common isolated
atoms and ions [48–50]. Tabulated values for ai, bi, and c are used
throughout this work [45], without anomalous scattering corrections.
An example of the spherically symmetric atomic scattering factor of a
nickel atom as represented by equation 2.6 is shown in Figure 2.5. For
forward scattering, the scattering factor evaluates to the total number
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2.4. Defect free, spatially infinite crystals

of electrons in a nickel atom (f (s = 0) = 28). The scattering factor
then decreases monotonically with increasing scattering vector s or
scattering angle θ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

25

s = 2 sinHΘL�Λ HÞ-1L

fH
sL

Figure 2.5: The spherically symmetric atomic form factor f (s) of an isolated
nickel atom, as approximated by equation 2.6

2.4 Defect free, spatially infinite crystals

In this section, a mathematical description for kinematic diffraction
from spatially infinite (unbounded) perfect crystals is outlined. It is
clear that truly infinite objects do not exist practically, but in the
context of this work, a crystal can be considered “spatially infinite”
if it is much larger than the coherence length of the probe radiation.
For typical laboratory diffractometers, this is about 100 nm, while
for synchrotron X-ray sources, the coherence length varies by beam-
line. While it may seem impractical a discussion of this type helps to
introduce some general topics such as DS and RS lattices, Bragg’s law,
the structure factor of the unit cell, and the so-called powder averaging
of the diffracted intensity distribution. In general these concepts alone
are sufficient in some cases to interpret diffraction data.

2.4.1 Electron density

To mathematically represent the electron density of an infinite, perfect
crystal, the first step is to represent a three-dimensionally periodic crys-
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2.4. Defect free, spatially infinite crystals

tal lattice. The Dirac delta distribution δ(r) facilitates this description,
and it is useful to review some properties of these distributions:∫ ∞

−∞
g (r) δ (r − T) dV r = g (T) (2.7a)

∫ ∞

−∞
aδ (r − T) dV r = a (2.7b)

g (r) ∗ δ (r − T) =

∫ ∞

−∞
g (τ ) δ (r − T − τ ) dV τ = g (r − T) , (2.7c)

where ∗ represents the convolution operation, a is a scalar, T is a real
valued position vector, and dV r indicates that the integration is over
volume elements with respect to the spatial coordinate r.
Ewald conveniently represented a lattice function as an infinite sum
of these distributions, where each term represents one lattice point and
is translated by a scaled lattice vector, ua + vb + wc [22], where u, v,
and w are integers. The lattice function is written with this description
as

z (r) ≡
∞∑

u=−∞

∞∑
v=−∞

∞∑
w=−∞

δ (r − ua − vb − wc) =
∑
uvw

δ (r − ruvw) ,

(2.8)
and represents a three-dimensionally periodic lattice that is described
by one of the 14 possible three-dimensional Bravais lattices. The lattice
function in equation 2.8 evaluates to one of two values, either

z (r ̸= ua + vb + wc) = 0

or

z (r = ua + vb + wc) = δ (0) ,

Further, each term in the lattice sum of equation 2.8 obeys the integra-
tion properties outlined in equations 2.7a, 2.7b, and 2.7c, properties
that will be exploited in the following.
Equation 2.8 represents only a crystal lattice. To represent a spatially
infinite crystal, the lattice must be “dressed” or tiled with scattering
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2.4. Defect free, spatially infinite crystals

potential; for X-ray scattering, this is electron density. The block used
to dress the lattice is called the unit cell electron density, and contains
n atoms. It can be represented as a sum of the electron densities
Up (r) of each isolated, spherically symmetric atom p, translated by the
position vector of the atom rp = xpa + ypb + zpc where xp, yp, andzp
are fractional coordinates. Using this approach, the electron density of
the unit cell can be written as

n∑
p=1

Up (∥r − rp∥) . (2.9)

The symmetry within the unit cell outlined in equation 2.9 is described
by one of the 230 three-dimensional space groups. A spatially infinite
crystal is then represented mathematically as the convolution of the
unit cell and crystal lattice, written as

ρ (r) =
n∑

p=1

Up (∥r − rp∥) ∗ z (r) . (2.10)

The convolution in equation 2.10 exploits the convolution property
of the Dirac distributions shown in equation 2.7c to translate one unit
cell to each lattice point, and creates a perfect, spatially infinite crystal.
With this, the electron density can be written as

ρ (r) =
∑
uvw

n∑
p=1

Up (∥r − rp − ruvw∥) . (2.11)

In the next section the elastic scattering behavior of this object is
investigated.

2.4.2 Scattering

The wave amplitude elastically scattered from the object represented
in equation 2.11 is found by the same process as outlined in Section
2.3. By integrating the product of the crystal electron density and the
associated phasor term over all space, the scattered wave amplitude is
written as the FT of equation 2.11, or as

φ (s) = F

[∑
uvw

n∑
p=1

Up (∥r − rp − ruvw∥)

]
. (2.12)
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Recalling that F [f (∥r − a∥)] = F [f (r)] e−2πıa·s, equation 2.12 can be
written as

φ (s) =
∑
uvw

n∑
p=1

F [Up (r)] e
−2πırp·se−2πıruvw·s. (2.13)

However, F [Up (r)] is the scattered amplitude from an isolated atom
or the atomic form factor fp (s) as presented in equation 2.4 in Section
2.3, while

∑n
p=1 F [Up (r)] e

−2πırp·s represents the FT of the unit cell
electron density in equation 2.9. This FT is usually called the structure
factor of the unit cell F (s), and is defined as

F (s) ≡
n∑

p=1

F [Up (r)] e
−2πırp·s =

n∑
p=1

fp (s) e
−2πırp·s. (2.14)

With this definition, the scattered wave amplitude in equation 2.12
can be rewritten as

φ (s) = F (s)
∑
uvw

e−2πıruvw·s. (2.15)

The diffracted intensity distribution is the squared modulus of this
complex wave amplitude, and can be written as

I (s) = |φ (s)|2 =

(
F (s)

∑
uvw

e−2πıruvw·s
)(

F (s)
∑
uvw

e−2πıruvw·s
)∗

= |F (s)|2
(∑

uvw

e−2πıruvw·s

)( ∑
u′v′w′

e2πıru′v′w′ ·s

)

= |F (s)|2
∑

u′v′w′

∑
uvw

e−2πı(ruvw−ru′v′w′ )·s, (2.16)

where the superscript * indicates the complex conjugate, and the sums
in each factor are explicitly over different sets unit cell translation in-
dices, either uvw or u′v′w′. The double lattice summation of phase
terms in equation 2.16 can be transformed into a new RS lattice func-
tion following Guinier [51], defined as

Z (s) ≡
∞∑

h=−∞

∞∑
k=−∞

∞∑
l=−∞

δ (s − ha∗ − kb∗ − lc∗) =
∑
hkl

δ (s − shkl) ,

(2.17)
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where the triple sum is abbreviated
∑

hkl, and ha∗ + kb∗ + lc∗ is
defined as shkl, or the scattering vector associated with the hkl RS
lattice point. By convention, the integers h, k, and l are called Miller
indices, and each shkl point is often called a Bragg point. The RS
lattice vectors, a∗, b∗, and c∗ are defined as cyclic cross products of
the DS lattice vectors, normalized by the unit cell volume, and can be
written explicitly as

a∗ ≡ b × c
(b × c) · a , b∗ ≡ c × a

(c × a) · b , c∗ ≡ a × b
(a × b) · c . (2.18)

With this, the intensity distribution in equation 2.16 can be written
as

I (s) = |F (s)|2
∑
hkl

δ (s − shkl) . (2.19)

Typically this equation is separated into the sum of intensity contribu-
tion arising from each individual hkl Bragg point, and equation 2.19
is written as

I (s) =
∑
hkl

Ihkl (s) (2.20)

where

Ihkl (s) = |F (s)|2 δ (s − shkl) .

By equation 2.20, the diffracted intensity distribution in RS due to
a spatially unbounded perfect crystal can be visualized as an infinite,
periodic RS lattice of Dirac distributions, where each distribution is
weighted by the squared magnitude of the structure factor of the unit
cell, evaluated at the lattice point shkl. The periodicity of the RS
lattice describing the intensity distribution is dependent upon the DS
lattice describing the crystal, while the total intensity weighting each
lattice point is dependent upon the type and arrangement of atoms in
the crystal unit cell.

2.4.3 Powder averaging

Equation 2.20 gives the diffracted intensity in three-dimensional RS
resulting from a perfect, oriented, spatially infinite crystal. Materials
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scientists are often more interested collections of many independently
scattering crystals, such as a polycrystalline body or a powder. The
following section will assume an ideal powder sample composed of the
objects described in the previous section. In the context of this work an
ideal powder is composed of many crystals showing a smooth uniform
distribution of spatial orientations.
The diffracted intensity from such a powder represents the average
intensity over all possible crystal orientations. Rather than averaging
the electron density of the crystal as expressed in equation 2.11, the
orientation average is typically performed on the diffracted intensity
distribution itself, as expressed in equation 2.20. The intensity dis-
tribution obtained from a powder then retains no information on the
direction of the scattering vector s, and depends only on its magnitude
s.
The averaging is done by evaluating the surface integral of equation
2.20 over a sphere with constant radius s. This is easiest in spherical co-
ordinates, where the differential surface element is dS = s2 sin θ dθ dϕ.
The integration surface is typically called the powder diffraction sphere.
The maximum radius of the sphere is determined by the wavelength of
radiation used, and gives the portion of reciprocal space that can be
explored with a given diffraction experiment. It is found by setting the
scattering angle to 180◦, smax = 2/λ. Within the powder integration,
a weighting factor of 1/4πs2 is used to account for the decreasing like-
lihood of a diffraction event occurring as s increases. This weighting
term is often called the Lorentz factor, but it is not usually maintained
in this form following integration. The powder intensity is then written
as

I (s) =
1

4πs2

∫∫
S

I (s) dS

=
1

4πs2

∫ 2π

0

∫ π

0

I (s) s2 sin θ dθ dϕ

=
1

4π

∑
hkl

∫ 2π

0

∫ π

0

δ (s − shkl) |F (s)|2 sin θ dθ dϕ (2.21)

The Dirac distribution δ (s − shkl), can be rewritten in spherical co-
ordinates as 1

s2 sin θ δ (s− shkl) δ (θ − θhkl) δ (ϕ− ϕhkl). With this, the
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2.4. Defect free, spatially infinite crystals

integration on θ and ϕ is analytic, and equation 2.21 can be rewritten
as

I (s) =
1

4π

∑
hkl

∫ 2π

0

∫ π

0

δ (s − shkl) |F (s)|2 sin θ dθ dϕ

=
1

4π

∑
hkl

∫ 2π

0

∫ π

0

|F (s)|2

s2 sin θ δ (s− shkl) δ (θ − θhkl) δ (ϕ− ϕhkl) sin θ dθ dϕ

=
1

4πs2

∑
hkl

δ (s− shkl) |F (shkl)|2 (2.22)

This gives the result that the diffracted intensity of an ideal powder of
perfect, spatially infinite crystals is a sum of Dirac delta distributions
with positions given by the RS lattice. The diffracted intensity is in-
finite when s = shkl, while it is exactly zero at all other points, when
s ̸= shkl, that is

I (s) =
{
δ (0) |F (shkl)|2

4πs2 , if s = ha∗ + kb∗ + lc∗ = shkl
0, if s ̸= shkl

. (2.23)

This is not particularly useful, but is a direct result of considering a
powder of perfect infinite crystals completely bathed in X-rays.
Speaking more empirically, it is known that instrumental aberrations
and deviations from perfect crystallinity both act as convolutions to
smear the diffracted intensity [12], leading to measured powder diffrac-
tion data that never contains Dirac delta distributions. If an empirical
profile function P (s) is adopted to approximate this effect, the smeared
powder intensity distribution can be written as

Iempirical (s) = P (s) ∗ I (s) =
∑
hkl

|F (shkl)|2

4πs2hkl
P (s− shkl). (2.24)

Physically this implies that the total observable intensity of a Bragg
point is finite and proportional to the squared magnitude of the struc-
ture factor evaluated at the Bragg point.
The factor of 1/s2hkl is a different form of the Lorentz factor, resulting
from the convolution with an empirical profile. It is more frequently
expressed in terms of the scattering angle as λ2/4 sin2(θhkl). Strictly
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2.4. Defect free, spatially infinite crystals

speaking this form of the Lorentz factor is only accurate under the
assumptions of an ideal powder of perfect, spatially infinite crystals.
Defects and spatial boundedness entail a different form of equation 2.20
and a different approach to powder integration, leading to a different
Lorentz factor. This is reviewed in Sections 2.5 and 2.6.
Each delta distribution in equation 2.22 or each profile function in
equation 2.24 is located at the scattering vector shkl. Recalling the
definition of the scattering vector from Section 2.2, this location can
be converted to the more observable scattering angle through the re-
lationship shkl = 2 sin θhkl

λ . Recognizing that the nature of the FT
operation dictates that the hkl Bragg point corresponds to the dis-
tances between (hkl) set of crystal planes implies that shkl = 1/dhkl;
where dhkl is the spacing between the (hkl) set of crystal planes. This
in turn leads to Bragg’s law λ = 2dhkl sin θhkl, relating inter-atomic
distances to measurable quantities in the observed powder diffraction
pattern [5].
Two example powder intensity distributions, simulated assuming metal-
lic nickel as outlined in Section 2.1, are shown in Figure 2.6. Both were
computed by assuming unpolarized incident radiation, requiring a po-
larization factor given by equation 2.3 with Q = 0. A wavelength
of 1.54059 Å was assumed, as it is a common condition in laboratory
diffraction instruments where characteristic copper radiation is often
used. In Figure 2.6a, equation 2.22 was used, and each Delta distri-
butions representing a Bragg peak is shown with an artificial width of
0.5◦ 2θ and a height proportional to the relative intensity of the Bragg
peak. In Figure 2.6b, the unrealistic intensity distribution presented
in Figure 2.6a has been empirically broadened as per equation 2.24 by
a Cauchy distribution with unit area and FWHM of 1◦ 2θ. The sym-
metry of the nickel DS lattice dictates that a number of Bragg peaks
(e.g. the {111} family) are degenerate in both powder position shkl
and integrated intensity. The symmetry of the nickel unit cell entails
that some Bragg peaks (e.g. the {110} family) lead to a structure fac-
tor that is exactly zero, causing systematic absences in the intensity
distributions shown in Figure 2.6.
The representation of the diffracted intensity distribution presented
in Figure 2.6b and the mathematics behind it form the fundamental
basis for much of standard diffraction data analysis. While analysis

22



2.5. Defect free, spatially finite crystals

(a) Dirac profiles (b) Cauchy profiles

Figure 2.6: The diffracted intensity distributions due to an ideal powder of
perfect, spatially infinite nickel crystals is shown, assuming unpolarized cop-
per Kα1 radiation, leading to a polarization factor 1+cos 2θ

2
, as per equation

2.3. Bragg peaks are either shown as Dirac distribution with an artificial
width of 0.5◦ 2θ, as per equation 2.22, or as Cauchy distributions with a
FWHM of 1◦ 2θ, as per equation 2.24.

of this kind has been hugely and undeniably successful at furthering
material science, it was highlighted in Section 1.2 that the intrinsic
assumptions on which it is based can be limiting when characterizing
nanomaterials [16]. It is with these limiting assumptions in mind that
the next section is presented, focusing on a physical representation of
line-profile shapes due to the finite spatial extent of crystals.

2.5 Defect free, spatially finite crystals

This section begins by acknowledging that real crystals are never per-
fect nor spatially infinite, but are always finite objects. In the context
of this work, a spatially finite crystal that scatters coherently is called
a coherently scattering domain (CSD), or often just a domain. In the
context of real samples, a domain can represent a mosaic block within a
larger polycrystalline particle, a individual crystal within a powder, or
an individual grain in a polycrystalline monolith. The only important
point is that the atoms within each domain scatter coherently (wave
amplitudes add), while the domains themselves scatter independently
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(intensities add). Gelisio and Scardi studied the effect upon diffracted
intensity of positional and rotational correlation between adjacent do-
mains, finding that for domains larger than just a few nanometers
domain-domain interference effects were negligible with only a slight
degree of misorientation between domains, possibly only detectable by
advanced synchrotron light sources [52].
Many authors have sought to describe the diffraction effect of the fi-
nite spatial extent of a CSD. Scherrer developed the so-called Scherrer
formula. In 1918 he suggested that the FWHM of the diffraction line
profile, in units of the scattering vector, is inversely proportionate to
the thickness of the crystal [17]. This was extended in 1942 by Stokes
and Wilson, who derived a strategy (and several formulas) for directly
computing the anisotropic line-profiles due to finite crystals with var-
ious morphologies and arbitrary atomic structure [23]. This has only
recently been employed to directly compute line-profile shapes [20, 26–
28]. The following section reviews some of these strategies and offers
some novel extensions.

2.5.1 Electron density

To model spatially finite crystals, it is convenient to directly modify
the spatially infinite electron density represented in equation 2.10. In
1940, Ewald proposed the use of a shape function for this modification
[22], piecewise defined as either 1 inside or 0 outside the shape volume
Vc, written as

σ(r) =
{
1, if r ∈ Vc

0, if r /∈ Vc

. (2.25)

Applying σ(r) to the electron density function must be done with
forethought, as the mathematical route employed has a direct impact
on the surface termination of the domain, as pointed out by Ino and
Minami [13]. If the shape function is applied after the lattice has been
tiled with electron density, as proposed by Patterson and Ewald, the
electron density is written [22, 53]

ρ (r) =
( n∑

p=1

Up (∥r − rp∥) ∗ z (r)
)
σ(r), (2.26)
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Figure 2.7: When the shape function acts on the infinite crystal electron
density as in equation 2.26 the resulting spatially finite crystal has a “hard”
boundary.

and the resulting density function represents the spatially infinite elec-
tron density cut abruptly at the shape function boundaries, as seen in
Figure 2.7. Using this description, some atoms with local origins com-
pletely outside the domain volume Vc contribute electron density to
the finite crystal, while the electron density of surface atoms with local
origins inside Vc is suddenly cut off. Although it may seem unphysi-
cal, this description is sufficiently accurate for large domains to a first
approximation, where the fraction of surface atoms is small [13, 54].
An alternative approach was proposed by Hosemann and Bagchi.
First the shape function is applied to the lattice, which is then dressed
or tiled with the unit cell electron density. With such an approach the
domain electron density is written as [55]

ρ (r) =
n∑

p=1

Up (∥r − rp∥) ∗
(
z (r)σ(r)

)
. (2.27)

This density function represents the complete electron density from all
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2.5. Defect free, spatially finite crystals

Figure 2.8: When the shape function acts on the infinite crystal electron
density as in equation 2.27 the resulting spatially finite crystal includes only
electron density from the atoms within unit cells associated with a lattice
point within the crystal volume.

atoms in each unit cell associated with a lattice point within Vc, as seen
in Figure 2.8. A domain described in this way also shows some strange
features. Some atoms with local origins outside Vc are included fully
in the domain, while some atoms with local origins fully inside Vc are
not included, as the unit cell they belong to was removed by the shape
function.
Ino and Minami suggested that the atom be considered the most
fundamental building block of a finite crystal, thus they proposed a
domain electron density function where the shape function removes all
electron density from all atoms with a local origin outside Vc, but that
retains the complete electron density of all atom with local origins in-
side Vc, even if the diffuse electron density extends beyond the borders
of Vc [13]. An example is presented in Figure 2.9. Mathematically,
this requires translating the lattice function, rather than the atoms, by
the fractional coordinate rp of the pth atom in the unit cell. The trans-
lated lattice function is then convolved with the isolated atom electron
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Figure 2.9: When the shape function acts on the infinite crystal electron
density as in equation 2.28 the resulting spatially finite crystal retains all
electron density from all atoms with local origin inside the crystal volume.

density of the pth atom Up (r). A sum is then taken over all atoms in
the unit cell. Following this route, the electron density is written [13]

ρ (r) =
n∑

p=1

Up (r) ∗
(
z (r − rp)σ(r)

)
. (2.28)

This approach is the most intuitive and physically realistic for de-
scribing the shape of domains in nanomaterials, as it most accurately
reproduces the “intended” shape of the domain as represented by the
shape function. It does not introduce any unphysical features at the
surface of the domain, such as those seen in Figure 2.7 or Figure 2.8.
Thus equation 2.28 is the preferred form of the domain electron den-
sity for the following derivation of the intensity distribution. It should
be pointed out that the mathematical definition of the finite crystal
does have an impact on the form of the diffracted intensity equation.
This point is discussed only briefly in the next section; a more detailed
discussion was presented by Ino and Minami [13].
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2.5.2 Scattering

Again, the scattered wave amplitude is represented by the FT of the
electron density. Equation 2.28 can be transformed and the RS lat-
tice in equation 2.17 can be substituted. Following this approach the
scattered wave amplitude can be written as

φ (s) = F

[
n∑

p=1

Up (r) ∗
(
z (r − rp)σ(r)

)]

=
n∑

p=1

F [Up (r)]

(
F [z (r − rp)] ∗ F [σ(r)]

)

=
n∑

p=1

fp (s)

((
Z (s) e−2πırp·s) ∗ F [σ(r)]

)
. (2.29)

By making the definition S (s) ≡ F [σ(r)] equation 2.29 can be rewrit-
ten as

φ (s) =
n∑

p=1

fp (s)

((
Z (s) e−2πırp·s

)
∗ S (s)

)

=
n∑

p=1

fp (s)

(∑
hkl

e−2πırp·shklS (s − shkl)
)

=
∑
hkl

n∑
p=1

fp (s) e
−2πırp·shklS (s − shkl) . (2.30)

The sum
∑n

p=1 fp (s) e
−2πırp·shkl in equation 2.30 is similar to structure

factor outlined in Section 2.4.2 and written in equation 2.14, but here it
depends on both the scattering vector magnitude s and the location of
the Bragg point shkl. This summation is here called the IM structure
factor and identified as F (s, shkl), after Ino and Minami [13]. The
dual dependence is a result of the new definition of the electron density
function (equation 2.28). By substituting F (s, shkl) into equation 2.30
the scattered wave amplitude can be written as

φ (s) =
∑
hkl

F (s, shkl)S (s − shkl) . (2.31)
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The scattered wave amplitude is a sum in RS of the FT of the shape
function translated to each Bragg point and weighted by the IM struc-
ture factor. The squared magnitude of equation 2.31 represents the
diffracted intensity distribution, and can be written as

I (s) = |φ (s)|2 =(∑
hkl

F (s, shkl)S (s − shkl)
)(∑

h′k′l′

F (s, sh′k′l′)S (s − sh′k′l′)

)∗

.

(2.32)

Where each sum is explicitly over different sets of Miller incices, either
hkl or h′k′l′. The product can be grouped into the sum of two different
products: those where hkl = h′k′l′ and those where hkl ̸= h′k′l′,
allowing equation 2.32 to be re-written as

I (s) =
∑
hkl

|F (s, shkl)S (s − shkl)|2 +

∑∑
hkl ̸=h′k′l′

F (s, shkl)F (s, sh′k′l′)
∗S (s − shkl)S (s − sh′k′l′)

∗
. (2.33)

The second group of terms in equation 2.33 where hkl ̸= h′k′l′ is not
necessarily zero. Since S (s) generally has spatial extent (it is not
a Delta distribution), S (s − shkl) and S (s − sh′k′l′)

∗ could overlap if
the hkl and h′k′l′ Bragg points are close in RS. It would be convenient
however to ignore the second group of terms in equation 2.33, as it is
much too computationally expensive in its full form.
The approach shown so far in this section intrinsically assumes that
the shape function and lattice function have coincident origins. A spe-
cial case of equation 2.33 exists, where the domain under investigation
is considered as an “average,” constructed by considering a uniform dis-
tribution of all relative shape function origins. That is, equation 2.33
is worked out again by considering a shape function with an arbitrary
shift t, re-written as σ (r − t). By integrating over all t, it can be said
that the hkl ̸= h′k′l′ terms in equation 2.33 are exactly zero. This is
the so called “random shift treatment” or the “ξ-average” as outlined
by Ino and Minami or Hosemann and Bagchi, respectively [13, 55].
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(a) no shift (b) random shift

Figure 2.10: Schematic projections of the electron density from two domains
cut with the same shape function with different relative shape function trans-
lations.

In general the domain electron density as expressed in equation 2.28
is not invariant under a translation of the shape function by t. Two
crystals formed by applying otherwise identical shape functions can
show different surface termination, and even a different number of
scattering centers or atoms, due to a different choice of shape function
origin. Physically the averaging over all shits acts to “blur” the sur-
face of the domain, dictating that the real domain under consideration
consists of an average of all possible surface terminations. This point
is highlighted in Figure 2.15, which shows two distinct finite crystals,
cut from the same infinite crystal by the same shape function with
different relative displacements.
As an additional point, with increasing domain size, S (s) becomes
more spatially compact, and as a result the cross terms in equation
2.33 become increasingly negligible. This was explicitly highlighted by
Guinier [51], but it is a generalization of the Scherrer formula [17].
Thus, if the domain has no specific preferred surface termination, or
the domain is sufficiently large, the cross terms in equation 2.33 where
hkl ̸= h′k′l′ can safely be ignored. Equation 2.33 can be re-written as
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I (s) =
∑
hkl

|F (s, shkl)S (s − shkl)|2 (2.34)

and visualized as a RS lattice where each hkl Bragg point is lo-
cally represented by what is called here the shape profile function
|S (s)|2, weighted by the squared magnitude of the IM structure factor
|F (s, shkl)|2.
As pointed out earlier, the IM structure factor in equation 2.34 is func-
tionally dependent on both the Bragg position of the peak shkl and the
scattering vector magnitude s. As a result, the weighting varies across
the breadth of the shape profile function. This can lead to an asymme-
try and apparent shift out of Bragg position [13]. The direction and
magnitude of this shift and the amount of asymmetry both depend
heavily on the behavior of F (s, shkl) (the atomic structure) and the
width of the profile (the microstructure). Holding other factors con-
stant, the shift is generally inversely proportionate to the domain size
and proportionate to the unit cell size [13].

1.8 1.9 2.0 2.1 2.2
h

Bragg Position Hs002L

Diffracted Intensity

ÈFHs,s002L
2

ÈSHs-s002L
2

Figure 2.11: The h00 section of RS, showing the diffracted intensity, shape
profile function |S (s − shkl)|2, and squared IM structure factor |F (s, shkl)|2
from the h00 section of RS, simulated by assuming a spherical domain of fcc
nickel with a diameter of 10 nm. The asymmetry and shift in the 200 profile
is highlighted. All function values have been normalized by their value at
h = 2 to facilitate plotting on the same scale.

Figure 2.11 highlights this effect, assuming a 10 nm spherical domain
of fcc nickel as outlined in Section 2.1. The squared magnitude of
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the IM structure factor, the shape profile function, and the diffracted
intensity distribution are shown considering the h00 section of RS. To
be clear, the diffracted intensity plotted in Figure 2.11 results from
choosing equation 2.28 to represent the domain electron density.

Figure 2.12: A schematic of the diffracted intensity map from the hk0
section of RS from a 10 nm domain of fcc nickel. Colors and contours
represent logarithmic changes in intensity, to highlight subtle features.

Putting it all together, equation 2.34 allows for the calculation of the
diffracted intensity in RS of a spatially finite, oriented, perfect domain
with an “averaged” surface termination. A schematic of the diffracted
intensity from the hk0 section of RS due to a 10 nm domain of fcc
nickel is shown as a log contour plot in Figure 2.12. Equation 2.34 was
used directly without employing any empirical profile functions. It is
apparent that each Bragg spot is itself spherically asymmetric, while
the entire intensity map shows the symmetry of the m3̄m Laue-class,
inherited from the parent DS lattice.
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2.5.3 Shape profile function

The shape profile function IVhkl
(s) ≡ |S (s − shkl)|2 in equation 2.34

has been revisited many times. It is the direct result of using a shape
function σ(r) to describe a finite crystal. First proposed by Ewald
in 1940 [22], the shape function was later employed by Stokes and
Wilson to derive a general strategy and several formulas for modeling
anisotropic line-profiles resulting from nonspherical domain morpholo-
gies [23].
Recalling the definition of S (s) can help shed some light on the phys-
ical meaning of IVhkl

(s), which can be re-written as

IVhkl
(s) = |S (s − shkl)|2 = S (s − shkl)S (s − shkl)∗

= F
[
σ(r)e−2πır·shkl

]
F
[
σ(r)e2πır·shkl

]
= F

[(
σ(r)e−2πır·shkl

)
∗
(
σ(r)e2πır·shkl

)]
= F

[
(σ(r) ∗ σ(r)) e−2πıL·shkl

]
. (2.35)

In other words, IVhkl
(s) represents FT of the autocorrelation or self-

convolution of the shape function, with an additional phase term associ-
ated with the translation to the hkl Bragg point. This self-convolution
can be explicitly defined as

σ(r) ∗ σ(r) =
∫ ∞

−∞
σ(r)σ(r − L) dV r ≡ A (L) . (2.36)

Such a self-convolution has been called the common volume function
(CVF), as it is conveniently envisioned as the common volume between
two identical objects where one (the domain “ghost,” σ(r−L)) is trans-
lated relative to the other (the domain, σ(r)) by the vector L, following
the work of Stokes and Wilson [23]. A schematic depiction of this phys-
ical meaning behind the CVF is shown in Figure 2.13; both a square
and circle shape function and their ghosts are shown for various dis-
placement vectors L. The common area between the two shapes is also
highlighted in red, and the CVF is plotted for each.
This definition is used to rewrite equation 2.35 as

IVhkl
(s) = F

[
A (L) e−2πıL·shkl

]
=

∫ ∞

−∞
A (L) e−2πıL·(s−shkl) dV L. (2.37)
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(a) Circle, 10 nm radius (b) Square, 10 nm side length

Figure 2.13: Two-dimensional schematics highlighting the physical meaning
behind the CVF for two different shapes. The shape function is represented
by a solid boundary, while the ghost is represented by a dashed line. The
common area (analogous to the common volume) is enclosed by a blue line
and shaded different tints of red depending on the length of the autocorrela-
tion vector L.

Much work has been done outlining analytic expressions for the CVF
of basic shapes. As an example, the expression for a sphere of diameter
D depends only on the magnitude of L, and can be written in a volume
normalized form as

A(L) =

(
1− 3L

2D
+

L3

2D3

)
. (2.38)

Figure 2.15 shows a plot of this function and its FT for a sphere with
a diameter of 10 nm. Expressions for A (L) have also been derived for
other regular polyhedrons including cubes, tetrahedrons, octahedron
[23], cylinders [56], and hexagonal prisms [57]. Leonardi et al. have
worked out a general algorithm for computing the CVF for any poly-
hedron shape, including hollow objects, tripods and tetrapods [58]. By
using the CVF approach, the line-profile component associated with
nearly any finite crystal shape and size can be computed directly from
physical models without the need to use any empirical peak-shaped
functions.
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Figure 2.14: CVF and shape profile function associated with a sphere with
a diameter of 10 nm

2.5.4 Polydispersed shape profile function

It is likely that the domains of interest are not characterized by iden-
tical shapes but rather show some distribution in the size parameters
describing the shape. If the structure of the lattice and the unit cell
are assumed to be uncorrelated with the domain size, such a situation
can be handled by suitably modifying S (s) and directly substituted it
into equation 2.34.
Scardi and Leoni addressed such a situation by considering a general
distribution weighted shape profile function for any arbitrary distribu-
tion of objects described by one length parameter [26], but it is possible
to generalize such an approach to objects with any number of length
parameters. The first step is to recognize that the shape function σ(r)
is actually dependent on both the spatial coordinate vector r and the
parameters defining the boundaries of the volume Vc, here represented
as the entries of the vector D. In general, the dimension of the vector
D depends on the nature of Vc.
For a spherical shape function, D is unidimensional and contains only
information on the diameter D of the sphere; in this case the shape
function is written

σ (r,D) =

{
1, if r ≤ D

0, if r > D
. (2.39)

For parallelepiped shape function, D contains three entries, the par-
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allelepiped edge lengths. If a simple case is taken where the paral-
lelepiped is aligned with edges parallel to the three principle Cartesian
axes, then D = (Lx, Ly, Lz), and the shape function is written as

σ (r = xx̂ + yŷ + zẑ,D = (Lx, Ly, Lz)) ={
1, if (0 ≤ x ≤ Lx) ∧ (0 ≤ y ≤ Ly) ∧ (0 ≤ z ≤ Lz)

0, if (0 > x > Lx) ∨ (0 > y > Ly) ∨ (0 > z > Lz) .
(2.40)

This formalism can however be applied for more complex objects with
any number of size parameters. The new general shape function is then
written σ (r,D), while the autocorrelation of this shape function, or the
CVF, can be rewritten as A (L,D). The FT of this new CVF represents
the shape profile function of a perfect, spatially finite crystal described
by the vector of length parameters D, and can be written as

IVhkl
(s,D) = F

[
A (L,D) e−2πıL·shkl

]
=

∫ ∞

−∞
A (L,D) e−2πıL·(s−shkl) dV L

(2.41)
For a polydisperse system, the presence of domains with the same
shape but different size parameters D can be described by a multivari-
ate probability density distribution of the length parameters g(D). The
shape profile function arising in such a system is the volume weighted
ensemble-averaged profile considering all different sizes. The new shape
profile function is written as

IVhkl
(s) =

∫∞
0

IVhkl
(s,D) g(D)Vc (D) dD∫∞

0
g(D)Vc (D) dD

=

∫∞
0

F
[
A (L,D) e−2πıL·shkl

]
g(D)Vc (D) dD∫∞

0
g(D)Vc (D) dD

(2.42)

Where Vc (D) represents the volume of a domain with shape parame-
ters D. Substituting for F [A (L,D)] and defining the volume weight
function as w (D) ≡ g(D)Vc (D) gives

IVhkl
(s) =

∫∞
0

∫∞
−∞ A (L,D) e−2πıL·(s−shkl) dV L w(D)dD∫∞

0
w(D)dD

(2.43)
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Swapping the order of integration yields

IVhkl
(s) =

∫∞
−∞

∫∞
0

A (L,D)w(D)dDe−2πıL·(s−shkl) dV L∫∞
0

w(D)dD
(2.44)

The volume weighted CVF, independent of the vector of size parame-
ters D, can be defined as

A (L) ≡
∫∞
0

A (L,D)w(D)dD∫∞
0

w(D) dD
. (2.45)

With this the volume-weighted shape profile function expressed in equa-
tion 2.44 can be rewritten as

IVhkl
(s) = F

[
A (L) e−2πıL·shkl

]
=

∫ ∞

−∞
A (L) e−2πıL·(s−shkl) dV L. (2.46)

This approach allows for the computation of the shape profile function
arising from a polydisperse system of domains independently of the
integrated intensity of the profile, proportional to |F (s, shkl)|2.
In some specific cases equation 2.45 can be written analytically. Scardi
and Leoni elaborated analytic expressions for log-normal and Poisson
distributions of spheres, cubes, and regular tetrahedra and octahedra
[26]. For example, by assuming an ensemble of spherical domains with
diameters described by a log-normal distribution with log-normal mean
and standard deviation of µ and σ respectively, the CVF can be written
analytically as [26]

A (L) = erfc lnL− µ− 3σ2

√
2σ

− 3

4
erfc lnL− µ− 2σ2

√
2σ

e−µ− 5
2σ2 L+

1

2
erfc lnL− µ√

2σ
e−3µ− 9

2σ2 L3

(2.47)

where erfc represents the complementary error function. The FT of
this expression can then be evaluated numerically to obtain the asso-
ciated shape profile function. Examples of such profiles are presented
in Figures 2.15b and 2.17.
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2.5. Defect free, spatially finite crystals

Handling of the diffraction effect of domain size distributions directly
in this way can help to highlight some issues with traditional LPA
techniques, which typically rely on understanding either the Bragg
peak FWHM or integral breadth β (the ratio of the Bragg peak area to
the intensity) as a function of scattering vector. In what is often called
Williamson-Hall analysis, a straight line is fit to β(s) data, and the
s = 0 value of β is retrieved through extrapolation [18]. Under a certain
set of assumptions, this integral breadth is inversely proportionate to
the volume weighted mean column length (MCL) ⟨L⟩V of the domains
in the powder, β(s = 0) = 1/⟨L⟩V . In the absence of other profile
broadening effects, β(s) = β(s = 0) (β(s) is a line with zero slope).

By assuming a domain morphology the MCL ⟨L⟩V can be translated
to an average domain dimension. As an example, by assuming an
ensemble of spherical domains, ⟨L⟩V can be related to the volume
weighted mean diameter as ⟨L⟩V = 4/3⟨D⟩V , where ⟨D⟩V represents
the volume-weighted mean diameter. The volume-weighted mean di-
ameter however in most cases does not itself uniquely establish the
shape of the distribution of diameters.

This can be made more clear if a powder of spherical domains with
log-normally distributed diameters is specifically considered. In this
case, the shape profile functions can be computed using equation 2.47,
and ⟨D⟩V is the ratio of the fourth distribution moment to the third
distribution moment, leading to the expression ⟨D⟩V = eµ+7/2σ2

=
4

3β(s=0) [59, 60]. There are an infinite number of values of σ and µ

that yield the same ⟨D⟩V and thus the same β(s = 0). An example
is shown in Figure 2.15, where three different log-normal distributions
are considered, pictured in Figure 2.15a. Each distribution possesses
a different algebraic mean diameter ⟨D⟩, leading to three completely
distinct profile functions, shown in Figure 2.15b.

Each distribution however shows an identical volume weighted mean
diameter, ⟨D⟩V = 300 Å, and thus each profile shows an identical
integral breadth, β = 0.00444 Å−1. This suggests that techniques
relying on integral breadth alone are unlikely to provide unambiguous
statistical information on the domain size. This is explored in more
detail in Section 3.3.1.
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Figure 2.15: Three different log-normal distributions are shown, each with a
different mean diameter ⟨D⟩, but an identical volume weighted mean ⟨D⟩V .
Also shown are the associated line-profiles, computed using equation 2.47.
Since each distribution has an identical volume weighted mean, the integral
breadth of each profile is identical

2.5.5 Powder averaging

To obtain the powder-averaged diffracted intensity distribution of an
ideal powder of perfect, spatially finite crystals, equation 2.34 must be
integrated over powder diffraction spheres as in Section 2.4.3. Figure
2.16 gives a schematic depiction of a cross section of this powder in-
tegration sphere, considering the diffracted intensity distribution orig-
inally shown in Figure 2.12. Adopting this approach, the intensity
distribution can be rewritten as

I (s) =
1

4πs2

∫∫
S

I (s) dS (2.48)

=
∑
hkl

|F (s, shkl)|2

4πs2

∫ 2π

0

∫ π

0

|S (s − shkl)|2 s2 sin θ dθ dϕ

=∑
hkl

|F (s, shkl)|2

4π

∫ 2π

0

∫ π

0

∫ ∞

−∞
A (L) e−2πıL·(s−shkl) dV L sin θ dθ dϕ.

(2.49)

The orientation average in equation 2.49 applies only to e−2πıL·s, and
has the analytical solution of sin (2πLs)/2πLs = sinc(2πLs). Equation
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2.5. Defect free, spatially finite crystals

2.49 can be rewritten as

I (s) =
∑
hkl

|F (s, shkl)|2
∫ ∞

−∞
A (L) e−2πıL·shklsinc(2πLs) dV L. (2.50)

The integral in equation 2.50 contains the even functions A (L) and
sinc(2πLs) along with the complex function e−2πıL·shkl . The com-
plex function can be written as the sum of the even, real component
cos(−2πL · shkl), and the odd, imaginary component ı sin(−2πL · shkl),
using Euler’s relation. The integral can then be expanded into the sum
of two integrals, with one integral being entirely even and real and
the other being entirely odd and imaginary. The integration range is
symmetric over all space, and thus the odd component of the sum is ex-
plicitly zero. With this, the integral in equation 2.50 can be rewritten
as

I (s) =
∑
hkl

|F (s, shkl)|2
∫ ∞

−∞
A (L) cos(−2πL · shkl)sinc(2πLs) dV L.

(2.51)

Figure 2.16: A schematic to illustrate the concept of the powder integration
sphere and its approximation by tangent planes
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2.5. Defect free, spatially finite crystals

Analytic solutions for the integral in equation 2.51 only exist for
special forms of A (L). A number of alternative, approximate solu-
tions exist for computing the powder integral for spatially finite crys-
tals, including integration on planes which are tangent to the pow-
der integration sphere. This is done by using the differential surface
dS = ŝ · ŝhkl dA/s rather than dS = s2 sin θ dθ dϕ in equation 2.48.
Using this approach, Stokes and Wilson wrote the powder intensity as
[23]

I (s) =
∑
hkl

|F (s, shkl)|2

4πs2

∫
A ((L · ŝhkl) ŝhkl) cos (2π (s · ŝhkl − shkl)L)dL.

(2.52)
Within this expression, the profile shape is represented by a one-

dimensional cosine FT of the CVF evaluated along the vector parallel
to ŝhkl
Ino and Minami corrected this expression to consider very small do-
mains, writing the powder integral as [61]

I (s) =
∑
hkl

|F (s, shkl)|2

4πsshkl

∫
A ((L · ŝhkl) ŝhkl)

(
cos (2π (s · ŝhkl − shkl)L)−

cos (2π (s · ŝhkl + shkl)L)

)
dL. (2.53)

Figure 2.16 helps to illustrate the meaning of these integration ap-
proximations. Shown is a schematic of a two-dimensional (hk0) section
of RS with diffracted intensity contours, originally pictured in Figure
2.12. Superimposed are sections of powder integration surfaces used
in equation 2.49 (sections of a sphere) and equation 2.52 (sections of
a plane) when considering the (110) Bragg spot. Also shown are the
geometric meanings of the vectors in both equations.
For smaller domains, showing more diffuse diffraction spots, approxi-
mating the powder integration sphere as tangent planes as in equation
2.52 and equation 2.53 introduces significant inaccuracies. In this case,
numerical integration in reciprocal space may be preferred, as proposed
by Beyerlein et al. [62]. Another alternative is to abandon the RS-based
approaches reviewed in this chapter and rely instead on a DS approach,
as reviewed in Chapter 3.
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2.5. Defect free, spatially finite crystals

40 60 80 100 120 140 160

0.4 0.6 0.8 1. 1.2

Degrees 2Θ HΛ = 1.54059 ÞL

R
el

at
iv

e
In

te
ns

ity
s = 2 sin HΘL�Λ HÞ-1L

H1
11
L

H0
02
L

H0
22
L

H3
11
L

H2
22
L

H0
04
L

H1
33
L

H0
24
L

(a) Linear scale

40 60 80 100 120 140 160

0.4 0.6 0.8 1. 1.2

Degrees 2Θ HΛ = 1.54059 ÞL

L
og

R
el

at
iv

e
In

te
ns

ity

s = 2 sin HΘL�Λ HÞ-1L

H1
11
L

H0
02
L

H0
22
L

H3
11
L

H2
22
L

H0
04
L

H1
33
L

H0
24
L

(b) Log scale

Figure 2.17: The ensemble-averaged diffracted intensity distribution result-
ing from a nickel powder composed of spherical domains, with diameters
described by the three distributions shown in Figure 2.15a, on both a linear
scale and a log scale.

All of the powder intensity distributions proposed above (equations
2.50, 2.52, and 2.53) show some distinctive features that are often ne-
glected in traditional pattern fitting or decomposition, discussed briefly
in Section 1.2. Each shows a unique form of the Lorentz factor, that is
in turn also different from that seen in Section 2.4.3, further reinforc-
ing the point that the form of this powder correction depends strongly
on both the form of the initial diffracted intensity distribution and the
method of powder integration.
While the integral in equation 2.52 is symmetric with respect to shkl,
the same is not true for the integrals within equations 2.53 and 2.50,
implying an intrinsic profile asymmetry when using these equations.
Furthermore, within all three equations both the Lorentz factor and
the structure factor vary across the entire profile, compounding line-
profile asymmetries and shifts already present due to an asymmetric
integral. Finally, the transformation from scattering vector s to the
more commonly observed scattering angle 2θ is not linear, leading to
further asymmetries in the profiles. These effects depend on both the
nature of the diffraction experiment and the fine details of the both the
atomic and microstructure, and act together to create an asymmetric
and shifted line-profile. It can be possible to retrieve the degree of
asymmetry and shift from an intensity distribution through empirical
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2.6. Spatially infinite crystals with one-dimensional disorder

profile decomposition with an unconstrained model and a carefully cho-
sen profile function, but linking the retrieved parameters to the fine
details of the atomic and nanostructure requires the arduous derivation
of structure specific analytic expressions [21].
Much more useful is a direct computation of the powder-averaged
diffracted intensity distribution. An example of this is presented in
Figure 2.17, where equation 2.47 is used with equation 2.52 to simu-
late data from three different samples of nanocrystalline nickel (Section
2.1). Shown are the powder-averaged diffracted intensity distributions
of three hypothetical nickel powder samples, composed of otherwise
perfect spherical domains, with diameters described by the log-normal
size distributions presented in Figure 2.15a. The line-profiles repre-
senting each Bragg peak are computed directly, and each line-profile
shows an identical integral breadth expressed in units of scattering vec-
tor both across the scattering vector range and between the different
datasets. Thus, if only integral breadth based LPA methods were used
to estimate the average domain size of the samples simulated in Figure
2.17, each would appear identical.

2.6 Spatially infinite crystals with one-dimensional
disorder

Analytic expression for crystal electron densities can also be found if
the condition of three-dimensional periodicity, imposed in Section 2.4
and Section 2.5, is relaxed. When periodicity is removed along one
direction, crystals are said to be characterized by one-dimensional dis-
order or stacking disorder, used interchangeably within this text. Such
disorder can manifest as in a number of forms, such as mistakes in a
simple polytype sequence, fluctuations in layer-layer relative positions,
layer-layer mutual rotation defects, or as polytype interlayering. A
common feature of all such manifestations is that crystals are composed
of bi-dimensionally periodic atomic scale layers, arranged by stacking
along a third direction. The diffracted intensity distribution from a
large collection of such crystals is the incoherent ensemble-average of
the diffracted intensity distribution from each arrangement, weighted
by the occurrence likelihood of the arrangement.
Following routes outlined in Sections 2.4.2 or 2.5.2, it would be straight-
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2.6. Spatially infinite crystals with one-dimensional disorder

forward to express the diffracted intensity distribution for any individ-
ual layer arrangement, but explicitly considering all possible arrange-
ments in the weighted ensemble-average can be prohibitively expensive,
from a computational standpoint. Furthermore, it is not straightfor-
ward to compute the likelihood or weight of each individual layer ar-
rangement within the weighted ensemble-average. Thus the problem is
two-fold: the ensemble-average contains many terms and a convenient
and accurate weighting scheme must be found.
A great deal of effort has been put forward in solving these two prob-
lems. In 1937, Landau first proposed explicit formulas for the diffracted
intensity distribution from ensembles of crystals composed of mutually
shifted coherently scattering lamellar domains of different thicknesses
[63]. The treatment was extended in the same year by Lifschitz who
generalized the approach to lamellar domains with different atomic
content and variable spacings [64].
In 1942, Wilson presented a difference equation method, later ex-
tended by Paterson, where a correlation function, giving the probabil-
ity that layers are separated by certain distances, is used to compute
the diffracted intensity [65–67]. This approach forms the basis of the
most common treatments of diffraction from linearly disordered close-
packed crystals [21, 68]. It has been widely employed in studying twin
and deformation faults within close-packed structures, and has led to
the concept of “fault probabilities.” Several authors later reviewed and
adapted the difference equation methods [69, 70], presenting simplified
explicit expressions for specific structures [71].
In 1942, Hendricks and Teller developed a much more general treat-
ment, using a probability matrix to describe nearest neighbor layer-
layer correlations, rather than considering fault probabilities. This
approach also allowed for variable layer contents and layer-layer stack-
ing vectors [25]. It was used successfully to explain diffuse intensity
from layered materials such as disordered graphite [72], mica [14] and
other close-packed structures. Many authors have since worked with
the Hendricks-Teller description, elaborating on mathematical meth-
ods [73–81] or deriving explicit solutions for specific structure types
[82, 83]. Over several papers, Jagodzinski [84–87] obtained explicit
solutions within the Hendricks-Teller formalism for various ranges of
interaction between layers, beyond the simple layer-layer case outlined
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2.6. Spatially infinite crystals with one-dimensional disorder

by Hendricks and Teller, and allowing for clustering or extended corre-
lations between stacking sequences.
In 1991, Treacy et al. developed a simple and general approach for
computing the averaged intensity distribution from ensembles of lin-
early disordered crystals [88]. It is based on the same general structure
description as the Hendricks-Teller formalism, also using a probability
matrix to describe nearest neighbor layer-layer correlations. Treacy et
al. however exploited the self-similarity of stacking sequences to recur-
sively write the ensemble-averaged scattered wave function as entries
within vectors, rather than matrices, reducing the computational over-
head and making the mathematics more transparent.
The approach of Treacy and colleagues is the simplest and most math-
ematically transparent yet mentioned. It is also just as general as the
Hendricks-Teller matrix based approach, allowing for interactions be-
tween an arbitrary number of layer-nearest neighbors, with minimal
restrictions on the atomic contents or mutual arrangement of the lay-
ers [25]. For these reasons it is the preferred starting point in this
study. In the original work, Treacy and colleagues did not explicitly
consider a lattice function and no analytic expressions for the pow-
der intensity distribution were presented. Furthermore, points in re-
ciprocal space which are unaffected by one-dimensional disorder were
analytically broadened by an unphysical “detuning” of the intensity
equation.
This section then details a novel extension of the work of Treacy and
colleagues, leading to a new powder intensity equation which can be
used to directly compute the diffracted intensity from a powder of infi-
nite crystals showing extensive stacking disorder without the need for
detuning. Also shown is a methodology to approximate the diffracted
intensity from a powder of finite crystals showing extensive stacking
disorder, without employing empirical profile functions.

2.6.1 Electron density

To begin, an electron density function of a three-dimensional layer
with only two-dimensional periodicity must be considered. This is
done by first modifying the lattice function as presented in equation
2.8. The sum on w, associated with the third dimension of periodicity,
is removed, resulting in a double sum associated with the layer lattice
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2.6. Spatially infinite crystals with one-dimensional disorder

vectors a and b, following Drits and Tchoubar [14]. The lattice function
is then written as

z (r) ≡
∞∑

u=−∞

∞∑
v=−∞

δ (r − ua − vb) =
∑
uv

δ (r − ruv) , (2.54)

The symmetry of this two-dimensional lattice can be described by one
of the 5 two-dimensional Bravais lattices [89]. To impose coherence
between all layers within the crystal, it is assumed that a and b in
equation 2.54 are identical for every layer throughout the crystal. Fur-
ther, they are defined such that the plane they span is perpendicular
to the Cartesian direction ẑ, that is, (a × b) / ∥a × b∥ = ẑ.
This lattice function can be dressed with unit cell electron density by
a convolution, as in Section 2.4. The electron density of the atomic
scale layer is then written

ρlayer (r) =

 nlayer∑
player=1

Uplayer

(∥∥r − rplayer

∥∥) ∗ z (r) . (2.55)

In the case of the three-dimensionally periodic crystals outlined in Sec-
tions 2.4 and 2.5, the position vector of the pth atom in the unit cell
was defined in terms of fractions of the three lattice vectors, rp =
xpa + ypb + zpc. However, for crystals described in this section, there
is no assumption of periodicity along a third dimension, and thus there
is no third lattice vector. As a result in equation 2.55 the position
vector of the pth atom in the layer unit cell must be redefined as
rplayer

≡ xplayer
a + yplayer

b + zplayer
clayerẑ, where clayer is the spa-

tial extent, or thickness, of the layer unit cell along ẑ, and zplayer
is

the fractional atomic coordinate of atom p within the layer unit cell,
with respect to this layer thickness. The symmetry within the two-
dimensionally periodic layer unit cell as written in equation 2.55 can
be described by one of the 80 sub-periodic layer groups [43].
Thus equation 2.55 represents a bi-periodic, three-dimensional layer
of electron density. To build a three-dimensional crystal these layers
are stacked along the direction perpendicular to their periodicity. Sum-
ming translated layer electron densities yields the partially disordered
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crystal, which can be written as

ρ (r) = ρlayer1 (r) + ρlayer2 (r − R12) + ρlayer3 (r − R12 − R23) + · · · ,
(2.56)

where R12 and R23 represent translation vectors, spanning the origins
between adjacent layers. By proceeding as in Section 2.4 and taking
the squared magnitude of the FT of equation 2.56, it would be possible
to arrive at an analytic expression for the diffracted intensity of this
specific configuration. As mentioned at the beginning of this section,
a huge number of configurations would need to be explicitly consid-
ered to accurately represent the diffracted intensity distribution of a
polycrystalline ensemble.
Many authors have shown that adopting a minimal set of objects and
set of assembly instructions can reduce the computational overhead
(see for example the introduction to this section). To achieve this here,
it is assumed that the stacking of layers can be modeled by a discrete-
time Markov chain, a practice which has a long history within the
literature [14, 88, 90–92]. That is, each layer in the crystal stack is one
of a finite number of layer types represented by one of M total states
of a Markov process. Each layer type i is characterized by a common
crystal lattice z (r) shared between all layer types, but is permitted
to have a unique unit cell

∑ni

pi=1 Upi (|r − rpi |) and layer thickness ci.
In this way the electron density of the layer of general type i can be
written as

ρi (r) =
(

ni∑
pi=1

Upi (∥r − rpi∥)

)
∗z (r) =

∑
uv

ni∑
pi=1

Upi (∥r − rpi − ruv∥) ,

(2.57)
Each layer type i is further associated with transition vectors Rij

defining each transition from state i to state j. These transition vectors
serve to relate adjacent layers spatially, spanning the two origins of
the layers. They are defined here in terms of fractions of the common
lattice vectors and unique layer thicknesses Rij ≡ xija + yijb + zijciẑ.
Thus when describing a general N -layer crystal, built as a stack of the
arbitrary layer types ijk . . ., the crystal electron density can be written
as

ρ
(N)
ijk... (r) = ρi (r) + ρj (r − Rij) + ρk (r − Rij − Rjk) + · · · . (2.58)
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For “traditional” Markov processes, called first-order Markov pro-
cesses, the transition probabilities depend only on the identity of the
current state. Here these transition probabilities are defined as αij ≡
Pr (Xn+1 = ρj (r + Rij) |Xn = ρi (r)), or in plain terms the probabil-
ity that a layer of type i will be spatially adjacent to a layer of type
j with mutual translation Rij . Higher order Markov processes can be
considered in this formalism and are discussed more in Section 3.1.1.

The transition probabilities populate the right stochastic probabil-
ity matrix for the Markov process, P ≡ [αij ]. If the Markov process
described by P is irreducible and aperiodic, then there exists a sta-
tionary distribution vector π. This stationary distribution vector is
the 1-normalized left eigenvector of P associated with the left eigen-
value of 1, and correspondingly satisfies the characteristic equation
πP = π = [pi], where pi is the intrinsic probability of Markov state or
layer type i. A Markov process that is not irreducible and aperiodic
is usually an indication that the stacking sequences being described
are in fact periodic in some fashion. While the approached outlined
here can accommodate such a situation by assuming a uniform initial
distribution ([pi] = 1/M), it may be more appropriate to revert to the
models outlined in Sections 2.4 or 2.5.

Under this Markov framework, the probability of any crystal in the
ensemble showing a first layer of type i is pi. The probability that this
layer of type i is followed by a layer of type j is αij , while the probability
of the specific layer sequence ij . . . is the product piαij . . .. A crystal
described by the general layer sequences ijk . . ., as outlined in equation
2.58, then occurs with a probability piαijαjk . . .. This conveniently
provides a compact framework for computing the probability weights
in the ensemble averaged, addressing one problem mentioned in the
introduction.

There exist exactly MN possible ways of permuting M layer types
to build crystals with exactly N total layers. While some of these
configurations may be equivalent according to the combined symmetry
of the stacking operations and the layers, the most general case, where
each permutations is unique, will be considered here.
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2.6.2 Scattering

As in all previous sections on scattering, the scattered wave amplitude
is the FT of the electron density of the crystal. To begin, only the
general crystal built by the ijk . . . layer sequence presented in equation
2.58 is considered, after this a weighted sum will be expanded. Using
this general crystal, the scattered wave amplitude can be written as

φ
(N)
ijk... (s) = F

[
ρ
(N)
ijk... (r)

]
= F [ρi (r)] + F [ρj (r − Rij)] + F [ρk (r − Rij − Rjk)] + · · ·
= F [ρi (r)] + e−2πıRij ·sF [ρj (r)] + e−2πı(Rij+Rjk)·sF [ρk (r)] + · · · .

(2.59)

In equation 2.59, F [ρi (r)] represents the scattered wave from only
layer type i, and can be expanded as

F [ρi (r)] = F

[∑
uv

ni∑
pi=1

Upi (∥r − rpi − ruv∥)

]

=
∑
uv

ni∑
pi=1

F [Upi (r)] e
−2πırpi

·se−2πıruv·s

=
∑
uv

ni∑
pi=1

fpi (s) e
−2πırpi

·se−2πıruv·s

=
∑
uv

Fi (s) e−2πıruv·s. (2.60)

The lack of three-dimensional periodicity requires that the structure
factor of the i-type layer unit cell, Fi (s), in equation 2.60 takes on
a different definition than that adopted previously. Within Section
2.4.2, the dot product rp ·s in the phase terms e−2πırp·s of the unit cell
structure factor could be simplified as xph+ypk+zpl by exploiting the
orthogonality conditions of the DS and RS lattices, implied in equation
2.18. However, the one-dimensional disorder assumed in this section
entails that no third DS or RS lattice vector is present. As a result, the
dot product within the phase terms of the structure factor of a layer
unit cell, rpi · s simplifies to xpih + ypik + zpicil, where l in this case
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is the projection of s onto the unit vector Ẑ = a∗×b∗

|a∗×b∗| , In this section,
l represents a continuous Miller index and is a real number, with units
identical to s.

With these clarifications, the FT of layer type i in equation 2.60 can
be substituted into equation 2.59, and the scattered wave amplitude
can be written as

φ
(N)
ijk... (s) =∑

uv

e−2πıruv·s
(
Fi (s)+e−2πıRij ·sFj (s)+e−2πı(Rij+Rjk)·sFk (s)+· · ·

)
(2.61)

As mentioned earlier, of real interest is the ensemble-average of all
MN sequences with exactly N total layers. This average intensity
can be represented as a probability weighted incoherent sum of the
scattered intensity of all possible layer configurations. Each individ-
ual intensity distributions is represented as the squared magnitude of
the complex wave scattered from each configuration. Adopting this
approach, the averaged diffracted intensity distribution can be written
compactly as

I (s) =
M∑

i,j,k...=1

piαijαjk . . .

(
φ
(N)
ijk... (s)

)(
φ
(N)
ijk... (s)

)∗

, (2.62)

where the preceding factor of piαijαjk . . . represents the probability
weighting of each term in the average.

The brevity of equation 2.62 can be somewhat misleading. The sum-
mation in equation 2.62 represents an N -tuple sum, with each running
over all layer types, leading to MN total terms in the average. The
terms within the average are however a product of sums, each con-
taining N2 total terms. Substituting the scattered wave amplitude in
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equation 2.6.2 directly, the intensity distribution can be written as

I (s) =
M∑

i,j,k...=1

piαijαjk . . .

(∑
uv

e−2πıruv·s
(
Fi (s) + e−2πıRij ·sFj (s)

+ e−2πı(Rij+Rjk)·sFk (s) + · · ·
))(∑

u′v′

e2πıru′v′ ·s
(
Fi (s) + e−2πıRij ·sFj (s)

+ e−2πı(Rij+Rjk)·sFk (s) + · · ·
)∗)

I (s) =
M∑

i,j,k...=1

piαijαjk . . .

(∑
u′v′

∑
uv

e−2πı(ruv−ru′v′ )·s|Fi (s) + e−2πıRij ·sFj (s)

+ e−2πı(Rij+Rjk)·sFk (s) + · · ·|2
)
,

(2.63)

However, the double lattice sum of phase terms can be rewritten as
a single RS lattice sum of Dirac distributions (a RS lattice function),
by arguments similar to those adopted in Section 2.4.2 for equation
2.16. This new RS lattice is however not identical to that employed in
Sections 2.4.2 and 2.5.2. The RS lattice employed here is written as

Z (s) ≡
∞∑

h=−∞

∞∑
k=−∞

δ (s0 − ha∗ − kb∗) =
∑
hk

δ (s0 − shk) , (2.64)

where s0 is the projection of s onto the plane spanned by a∗ and b∗,

s0 ≡ s − s · a∗ × b∗

|a∗ × b∗|
. (2.65)

Within this definition, a∗×b∗

|a∗×b∗| is equivalent to the third Cartesian unit
vector in RS, Ẑ, and s · a∗×b∗

|a∗×b∗| can be rewritten simply as lẐ, where
l is again the new continuous Miller index. With this, the reciprocal
lattice of a finite layer can be rewritten as

Z (s) =
∑
hk

δ
(

s − shk − lẐ
)
=
∑
hk

δ (s − shkl) . (2.66)
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2.6. Spatially infinite crystals with one-dimensional disorder

Thus, the RS lattice of the layer is a sum of Dirac delta distributions,
periodic in two-dimensions, and extended along the third dimension
such that Z

(
s = ha∗ + kb∗ + tẐ

)
= δ (0) for all t when h and k are

both integers. A RS lattice of this type, along with the associated DS
lattice, is depicted schematically in Figure 2.18 as a two-dimensionally
periodic lattice of “Dirac rods.”

Figure 2.18: At left, a schematic representation of a DS lattice of two-
dimensionally periodic, three-dimensional layer is shown. The FT of this
object represents a RS lattice of Dirac rods, shown schematically at right.
Here these rods are given an artificial spatial extent (width), in reality the
rods haven no width and evaluate to δ (0) when s = ha∗ + kb∗ + tẐ for all
t when h and k are both integers

Substituting this RS lattice into equation 2.63 gives a new expression
for the diffracted intensity distribution

I (s) =
∑
hk

δ (s − shkl)
M∑

i,j,k...=1

piαijαjk . . . |Fi (s)

+ e−2πıRij ·sFj (s) + e−2πı(Rij+Rjk)·sFk (s) + · · ·|2
(2.67)

=
∑
hk

δ (s − shkl)
M∑

i,j,k...=1

piαijαjk . . .

(
|Fi (s)|2

+ Fi (s)Fj (s)∗ e2πıRij ·s + Fi (s)∗ Fj (s) e−2πıRij ·s + |Fj (s)|2

+ Fj (s)Fk (s)∗ e2πıRjk·s + Fj (s)∗ Fk (s) e−2πıRjk·s + |Fk (s)|2

+ Fk (s)Fi (s)∗ e−2πı(Rij+Rjk)·s + Fk (s)∗ Fi (s) e2πı(Rij+Rjk)·s + · · ·
)

(2.68)
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2.6. Spatially infinite crystals with one-dimensional disorder

It is not practical to explicitly evaluate equation 2.68, but it can
be rewritten by recognizing the recursive relationship of nested layer
sequences, following the work of Treacy et al. [88]. The ensemble-
averaged scattered wave amplitude from all N -layer crystals starting
with a layer of type i can be written as a nested sum

φ
(N)
i (s) = Fi (s) +

M∑
j=1

αije
−2πıRij ·s

(
Fj (s)+

M∑
k=1

αjke
−2πıRjk·s (Fk (s) + · · · )

)
. (2.69)

The nested terms in equation 2.69 can be recognized as the averaged
scattered wave amplitude from all (N−1)-layer crystals that start with
a layer of type j, and equation 2.69 can be rewritten as

φ
(N)
i (s) =

(
Fi (s) +

M∑
j=1

αije
−2πıRij ·sφ

(N−1)
j (s)

)
, (2.70)

giving a recursive relationship between φ
(N)
i (s) and φ

(N−1)
j (s) pro-

vided that φ(0)
i (s) = 0. Using equation 2.70 allows equation 2.68 to be

rewritten as

I (s) =
∑
hk

δ (s − shkl)
( M∑

i=1

pi

(
Fi (s)∗ φ(N)

i (s) + Fi (s)φ(N)
i (s)∗ − |Fi (s)|2

)
+

M∑
i,j=1

piαij

(
Fj (s)∗ φ(N−1)

j (s) + Fj (s)φ(N−1)
j (s)∗ − |Fj (s)|2

)

+

M∑
i,j,k=1

piαijαjk

(
Fk (s)∗ φ(N−2)

k (s) + Fk (s)φ(N−2)
k (s)∗ − |Fk (s)|2

)
+· · ·

)
.

(2.71)

The properties of the Markov process can here be exploited. The tran-
sition probabilities associated with each Markov state i must sum to
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unity, specifically,
∑M

j=1 αij = 1. This relationship allows for a collec-
tion of terms in equation 2.71, and it can be rewritten as

I (s) =
∑
hk

δ (s − shkl)
( M∑

i=1

pi

(
Fi (s)∗ φ(N)

i (s) + Fi (s)φ(N)
i (s)∗ − |Fi (s)|2

)
+

M∑
i=1

pi

(
Fi (s)∗ φ(N−1)

i (s) + Fi (s)φ(N−1)
i (s)∗ − |Fi (s)|2

)
+

M∑
i=1

pi

(
Fi (s)∗ φ(N−2)

i (s) + Fi (s)φ(N−2)
i (s)∗ − |Fi (s)|2

)
+ · · ·

)
.

(2.72)

Within this equation, there are N individual sums on i, with each suc-
cessive sum including averaged scattered wave amplitude terms con-
sidering crystals with one less layer, from N layers (φ(N)

i (s)) down to
0 layers (φ(0)

i (s)). This allows for a further collection of terms, and
equation 2.72 can be rewritten as

I (s) =
∑
hk

δ (s − shkl)
N−1∑
m=0

M∑
i=1

pi

(
Fi (s)∗ φ (s) (N−m)

i (s)+

Fi (s)φ (s) (N−m)
i (s)∗ − |Fi (s)|2

)
. (2.73)

The summations can be further simplified if some quantities are re-
written as vectors and matrices, again following the work of Treacy et
al. [88]. The vector F of dimension M is defined as [Fi (s)]. Weighting
each entry of F by the intrinsic probability of the associated layer type
pi gives the probability weighted structure factor vector, G ≡ [piFi (s)].
The M × M matrix T is defined as the transition probability ma-
trix P weighted by the phase differences introduced by the transitions,
[αije

−2πıRij ·s]. With these matrix definitions, the recursive relation-
ship expressed in equation 2.70 can be specified in a vector format as

φ(N) =

N−1∑
n=0

TnF, (2.74)
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where the vector φ(N) of dimension M is defined as [φ(N)
i (s)].

Using these new vector definitions, equation 2.73 can be rewritten as

I (s) =
∑
hk

δ (s − shkl)
(

G∗T
N−1∑
m=0

N−m−1∑
n=0

(TnF)+

GT
N−1∑
m=0

N−m−1∑
n=0

(TnF)
∗ −

N−1∑
m=0

G∗T F
)
, (2.75)

where the superscript T indicates a transpose operation.
Of interest here however are spatially infinite crystals, and thus it
is necessary to evaluate limN→∞ I (s). In this situation, the sum∑N−1

m=0

∑N−m−1
n=0

1
N Tn is a geometric series that converges to (I − T)

−1,
where I is the identity matrix, if and only if the spectral radius (the
largest eigenvalue λi in absolute value) of T is less than 1, that is
|λi| < 1. To substitute limN→∞

∑N−1
m=0

∑N−m−1
n=0

1
N Tn into equation

2.75, it is necessary to consider the intensity per layer. With this the
diffracted intensity in equation 2.75 can be rewritten as

I (s) =
∑
hk

δ (s − shkl)
(

G∗T (I − T)
−1 F+

GT
(
(I − T)

−1 F
)∗

− G∗T F
)
. (2.76)

Each entry i in the vector (I − T)−1F in equation 2.76 physically
represents the average wave interference introduced in transitioning
from layer i to all other layers. Here this vector is labeled φ(∞). Thus
the intensity equation can be rewritten as

I (s) =
∑
hk

δ (s − shkl)
(

G∗Tφ(∞) + GTφ(∞)∗ − G∗T F
)
. (2.77)

The second factor in equation 2.77 is here denoted Ψ (s) for brevity.
This is a similar result as that obtained in the case of perfect spatially
infinite crystals explored in Section 2.4.2, where the diffracted intensity
was found to be a three-dimensionally periodic lattice of hkl Bragg
points, where each is represented by a structure factor weighted Dirac
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2.6. Spatially infinite crystals with one-dimensional disorder

distribution. In this case, equation 2.77 represents a two-dimensionally
periodic RS lattice of hk Bragg rods, where each is represented by a
Dirac rod weighted along the third RS direction by the continuous
intensity distribution Ψ (s).
Similar to the case of the perfect crystals, the intensity equation can
be written as a sum on these Dirac rods

I (s) =
∑
hk

Ihk (s) (2.78)

where

Ihk (s) = δ (s − shkl)Ψ (s) .

Interpreting this equation, it can be seen that there are two possible
cases: either the scattering vector s is coincident with a Bragg rod, or
not. With this it is possible to write equation 2.78 piecewise as

I (s) =
{
δ (0)Ψ (shkl) , if s = ha∗ + kb∗ + lẐ = shkl
0, if s ̸= shkl

. (2.79)

It is interesting to look at the behavior of Ψ (shkl), which weights each
(hk) Dirac rod along its length. Again, the practical example of nickel,
outlined in Section 2.1, is considered. A simple Markov chain model is
adopted for the one-dimensional disorder, where only the probability
of a forward transition αf between two layers is given. Adopting this
approach, Ψ (shkl) can be computed as a function of the continuous
Miller index l, for fixed values of h and k. It should noted that rep-
resenting the nickel structure as an assembly of an hexagonal mesh of
nickel atoms, as in Section 2.1, rather than the traditional cubic unit
cell, entails a remapping of the Miller indices such that [21]

hl = −hc/2 + kc/2 (2.80)
kl = −kc/2 + lc/2 (2.81)
ll = hc/3 + kc/3 + lc/3, (2.82)

where, hl, kl, and ll are Miller indices associated with the layer descrip-
tion of nickel, while hc, kc, and lc are Miller indices associated with
the traditional fcc description of nickel.
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Figure 2.19: Diffracted intensity for two Bragg rods with different (listed)
probabilities of a forward transition

Figure 2.19 shows Ψ (shkl) computed as a function of l for two (hk)
rods, considering three different values for αf . Figure 2.19a shows
the (12)l rod, where it can be see that decreasing αf leads to both a
broadening and a shift of what would be considered “Bragg spots” in
an ideal structure. The same effect is however not seen in the case
of the (00)l Bragg rod, shown in Figure 2.19b. This rod shows sharp,
periodic, spikes in intensity, and the shape of this intensity distribution
does not appear to depend on αf .
There is both a physical and mathematical explanation for this be-
havior. Mathematically, the sharp features in Figure 2.19b correspond
to scattering vectors that cause the geometric series in equation 2.75 to
diverge. Treacy et al. pointed out that this occurs at s values where all
origin invariant quantities Rii ·s, (Rij+Rji) ·s, (Rij+Rjk+Rki) ·s . . .
are integers. They also pointed out that when this condition is satisfied,
the determinant of I − T is zero [88].
The necessary and sufficient condition for convergence of the geo-
metric series is that the spectral radius (the largest eigenvalue λi in
absolute value) of the phase-factor weighted transition probability ma-
trix T is less than 1, |λi| < 1. While it is also necessary that the
determinant of I−T does not equal zero, as suggested by Treacy et al.
[88], this condition is generally not sufficient to guarantee convergence
of the series.
The RS points s where the geometric series diverges correspond to
sharp Bragg-like spots with infinite intensity, identical in form to the
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2.6. Spatially infinite crystals with one-dimensional disorder

Dirac delta distributions in equations 2.20 and 2.22. Practically speak-
ing, the presence of Dirac delta distributions in equation 2.78 is no more
of a problem than those in equation 2.20, as these delta distributions
have a finite integrated intensity [88]. This point will be addressed
further in the next section. Within Figure 2.19b, Bragg peaks associ-
ated with a divergent geometric series in equation 2.75 have been given
an artificial observable width by introducing a detuning parameter of
0.001, following Treacy et al. [88]
Physically, the divergence of the geometric series indicates that the
correlations between the (hkl) atomic planes in DS, corresponding to
the RS direction s, remain periodic, or are generally unaffected by the
stacking disorder. The sharp spots on the (00)l rod in Figure 2.19b
correspond to the (111)c set of lattice planes in the nickel structure,
and indicate that the periodicity between the atomic planes along the
[111]c/[001]l direction is not affected by the disorder. This is reasonable
conclusion, as both a forward and backward transition in this Markov
chain description of the stacking disorder entail an identical translation
along the [111]c/[001]l direction.

2.6.3 Powder averaging

Equation 2.78 gives the diffracted intensity in three-dimensional RS for
an infinite average crystal showing stacking disorder. Again, it may be
more interesting to consider a powder; it is then necessary to take
a weighted orientation average over all s at constant s. The powder
intensity is

I (s) =
1

4πs2

∫∫
S

I (s) dS

=
1

4πs2

∑
hk

∫ 2π

0

∫ π

0

δ (s − shkl)Ψ (s) s2 sin θ dθ dϕ (2.83)

By rewriting the delta distribution in cylindrical coordinates the inte-
gral is analytic and the powder intensity is

I (s) =
∑
hk

Ψ (shkl)
4πls

. (2.84)
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where the 1/4πls represents the Lorentz factor appropriate in this case,
and is a result of the powder averaging of rods.
The intensity distribution in equation 2.84 contains “hidden” delta
distributions, associated with the both the Lorentz factor and the di-
vergence of the geometric series in equation 2.75. In the case of the for-
mer, as l → 0, then I (s) → δ (0) Ψ(shkl)

4πs2hkl
, while in the case of the latter

if |λi| ≥ 1, then I (s) → δ (0) G∗T TF
4πs2hkl

, where λi is the largest eigenvalue
of the phase-weighted transition probability matrix T. These points
are however manageable, as they show a finite integrated intensity, just
as those in equation 2.22 in Section 2.4.3.
With this, the intensity distribution in equation 2.84 can be written
in a piecewise fashion as

I (s) =
1

4πshkl



Ψ(shkl)
l , if s = shkl ∧ l ̸= 0 ∧ |λi| < 1

δ (0) Ψ(shkl)
shkl

, if s = shkl ∧ l = 0 ∧ |λi| < 1

δ (0) G∗T TF
shkl

, if s = shkl ∧ |λi| ≥ 1

0, if s ̸= shkl

. (2.85)

Equation 2.85 allows the powder pattern to be plotted directly. Sev-
eral examples of this for the pervasive example of nickel, outlined in
Section 2.1, are presented in Figure 2.20. The intensity distributions
shown were simulated by assuming unpolarized characteristic radiation
of copper (equation 2.3 with Q = 0 and λ = 1.54059 Å). Figure 2.20
features the same three theoretical nickel samples featured in Figure
2.19. Rather than showing the diffracted intensity as a function of s
as in Figure 2.19, Figure 2.20 shows the powder intensity as a func-
tion of s or θ. Bragg peaks associated with a delta distributions in
equation 2.85 have again been given an artificial observable width by
introducing a detuning parameter of 0.001, following Treacy et al. [88].
Speaking more empirically, it is known that instrumental aberrations
and deviations from perfect crystallinity both act as convolutions to
smear the diffracted intensity [12]. If an empirical profile function P (s)
is adopted to approximate this effect, the smeared powder intensity
distribution can be written as

Iempirical (s) = P (s) ∗ I (s) =
∑
hk

∫
P (s− shkl) I (shkl) dshkl. (2.86)
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Figure 2.20: Different ensemble-averaged diffraction datasets, from powders
of linearly disordered, infinite nickel crystals. Each dataset corresponds to a
different likelihood of a forward transition.

It is possible to substitute any broadening function for P (s) in equa-
tion 2.86. If an entirely empirical approach is sought, simple empirical
profiles can be substituted. If a semi-empirical approach is desired, and
the additional broadening is assumed to be due to the finite size of the
domains, the shape profile function associated with the tangent plane
approximation from equation 2.52 in Section 2.5.5 can be substituted
into equation 2.86, allowing the broadened intensity to be written as

ICV F (s) =∑
hk

∫ ∫
A ((L · ŝhkl) ŝhkl) cos (2π (s · ŝhkl − shkl)L)dLI (shkl) dshkl.

(2.87)

For scattering vectors which cause equation 2.84 to evaluate to a
Delta distribution (see equation 2.85), the convolution in equations
equation 2.86 and equation 2.87 act to shift the broadening profile
to that specific scattering vector. For other scattering vectors, the
convolution must be evaluated numerically.
If finite domains are assumed to show a spherical morphology with a
log-normal distribution of diameters, equation 2.47 can be substituted

60



2.6. Spatially infinite crystals with one-dimensional disorder

Α = 0.95

Α = 0.80

Α = 0.70

40 60 80 100 120 140 160 180

0.4 0.6 0.8 1. 1.2

Degrees 2Θ HΛ = 1.54059 ÞL

R
el

at
iv

e
In

te
ns

ity

s = 2 sin HΘL�Λ HÞ-1L

(a) Linear scale

40 60 80 100 120 140 160 180

0.4 0.6 0.8 1. 1.2

Degrees 2Θ HΛ = 1.54059 ÞL

L
og

R
el

at
iv

e
In

te
ns

ity

s = 2 sin HΘL�Λ HÞ-1L

(b) Log scale

0 5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

D HnmL

gH
D
L

<D>

<D>V

(c) Log-normal distribution de-
scribing domain diameter

Figure 2.21: The ensemble-averaged diffracted intensity distribution result-
ing from nickel powders composed of one-dimensionally disordered, spatially
finite nickel crystals. Shown are three different likelihoods of a forward tran-
sition. Each diffracted intensity distribution has been convolved by a shape
profile function corresponding to the distribution in (c), assuming a spher-
ical morphology. This serves to approximate the diffraction effect of finite
domain size.
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into equation 2.87. Examples of this specific case are presented in Fig-
ure 2.21. Shown are the same intensity distributions depicted in Figure
2.20 after semi-empirically broadening assuming that the domains in
the sample show a spherical morphology with the log-normal distribu-
tion of diameters shown in Figure 2.21c. The approach provides a phys-
ical method with which to approximate ensemble-averaged diffracted
intensity from powders of finite domains showing different degrees of
one-dimensional disorder.
Using a similar approach, the amount of stacking disorder can be held
constant and the effect of changing the domain size distribution can
be shown. This is the focus of Figure 2.22, where the likelihood of a
forward transition in a nickel powder is held constant at a 0.95. The
single intensity distribution is then broadened as per equation 2.87 by
assuming spherical domain morphologies with diameters governed by
the three different size distributions in Figure 2.22c.
By closely observing the log and linear scale plots in Figures 2.22b and
2.22a, respectively, it is possible to notice that small differences exist
in the three resulting intensity distributions. The convolution acts to
broaden the delta distributions extensively, while the portion of the
powder intensity already broadened by the effect of the disorder are
also broadened, but to a lesser extent. It should be emphasized that
all differences between the plots in Figure 2.22c are due only to the
powder diffraction effect of domain size. By adopting this approach,
it is should be possible to discern the independent effects of stacking
disorder and finite domain size in experimental data.

2.7 Spatially finite crystals with one-dimensional
disorder

In this section, a general three-dimensional shape function as as pro-
posed by Ewald [22] and shown in Section 2.5.1 is applied to the elec-
tron density of a stack of layers composing a infinite crystal. This
has the effect of mixing some features of various different, existing
diffraction modeling approaches [93]. Previous work along this line
has employed only a two-dimensional shape function to alter only the
domain layers, leading to a restriction to only prismatic shapes [14,
94], or introduced unnecessary and unphysical complications into the
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Figure 2.22: The ensemble-averaged diffracted intensity distribution result-
ing from a nickel powder composed of one-dimensionally disordered, spatially
finite nickel crystals. For each distribution, a 0.95 likelihood of a forward
transition was assumed. Each diffracted intensity distribution has been con-
volved with a different shape profile function, corresponding in color to the
distributions in (c), assuming a spherical morphology. This serves to approx-
imate the powder diffraction effect of finite domain size.
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definition of a atomic layer [95]. By using a three-dimensional shape
function, all of the previous principles outlined in Section 2.5 can be
used for finite crystals showing one-dimensional disorder.

2.7.1 Electron density

As in Section 2.5, this section begins by acknowledging that crystals
are finite, not infinite objects. To create a spatially bound crystal
characterized by stacking disorder, the general three-dimensional shape
function σ(r) as described by equation 2.25 in Section 2.5.1 is applied to
the electron density of the spatially infinite, disordered crystal detailed
in Section 2.6.1 and identified by equation 2.58.
It should be specified that an initial assumption is that the total
number of layers in the domain N is large enough that the spatial
extent of the stack is greater than the spatial extent of domain volume
Vc along the stacking direction ẑ. In practice this is trivial, as the
diffracted intensity will in any case be taken as limN→∞. It is also
useful to translate the shape function to an arbitrary point t to ensure
that it is within the spatial extent of the domain.
The same Markov chain description outlined in Section 2.6.1 is used
to handle layer stacking. The atoms rather than the unit cell are taken
as the smallest building block of the layer. This entails a redefinition
of the electron density function for layer type i as

ρi (r) =
ni∑

pi=1

Upi (r) ∗
(
z (r − rpi)σ (r − t)

)
, (2.88)

similar to the new definition of the spatially finite perfect crystal pro-
vided by Ino and Minami [13] outlined in Section 2.5.1
This modified layer electron density can again be used to build a
linearly disordered crystal, as in Section 2.6, by summing translated
layers. Thus to describe a general N -layer domain, where N is large,
built as a stack of the arbitrary layer types ijk . . ., the domain electron
density can be written as a sum of translated modified layer electron
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densities

ρ
(N)
ijk... (r) =

ni∑
pi=1

Upi (r) ∗
(
z (r − rpi)σ (r − t)

)
+

nj∑
pj=1

Upj (r) ∗
(
z
(
r − rpj − Rij

)
σ (r − t)

)
+

nk∑
pk=1

Upk
(r) ∗

(
z (r − rpk

− Rij − Rjk)σ (r − t)
)
+ · · · (2.89)

again, occurring with piαijαjk . . . probability.

2.7.2 Scattering

As in all previous sections on scattering, the kinematic scattered wave
amplitude is the FT of the electron density of the domain, and can be
written as

φ
(N)
ijk... (s) = F

[
ρ
(N)
ijk... (r)

]
= F

[
ni∑

pi=1

Upi (r) ∗
(
z (r − rpi)σ (r − t)

)]
+

F

 nj∑
pj=1

Upj (r) ∗
(
z
(
r − rpj − Rij

)
σ (r − t)

)+

F

[
nk∑

pk=1

Upi (r) ∗
(
z (r − rpk

− Rij − Rjk)σ (r − t)
)]

+ · · · (2.90)
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Each term of the sum in equation 2.90 can be rewritten

F

 nj∑
pj=1

Upj (r) ∗
(
z
(
r − rpj − Rij

)
σ (r − t)

)
=

nj∑
pj=1

F
[
Upj (r)

](
F
[
z
(
r − rpj − Rij

)]
∗ F [σ (r − t)]

)

=

nj∑
pj=1

fpj (s)

((
Z (s) e−2πırpj

·se−2πıRij ·s
)
∗
(
S (s) e−2πıt·s)).

(2.91)

A word should be devoted to the second factor in equation 2.91. It
represents a RS convolution between the lattice of Dirac rods, as shown
in Figure 2.18, and the three-dimensional shape profile function. It can
be written explicitly as

(
Z (s) e−2πırpj

·se−2πıRij ·s
)
∗
(
S (s) e−2πıt·s) =∑

hk

∫ (
δ (τ − shkl) e−2πırpj

·τ e−2πıRij ·τ
)(

S (s − τ ) e−2πıt·(s−τ )

)
dV τ ,

(2.92)

where shkl implicitly depends on τ , as shkl = shk − lẐ (equation 2.66),
and l represents the component of τ which does not lie in the plane
spanned by a∗ and b∗.

Unlike the convolution involving the RS lattice of Dirac distributions
in equation 2.30, the convolution in equation 2.92 is not completely
analytic. It can be evaluated analytically only in the dimensions asso-
ciated with the periodicity of the lattice of Dirac rods, along a∗ and
b∗, when τ = ha∗+kb∗+ lẐ. The convolution in the dimension along
the rods Ẑ is however not analytic and must be left unevaluated. The
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convolution can be rewritten as(
Z (s) e−2πırpj

·se−2πıRij ·s
)
∗
(
S (s) e−2πıt·s) =∑

hk

∫
S (s − shkl) e−2πırpj

·shkle−2πıRij ·shkle−2πıt·se2πıt·shkl dl

This convolution can be substituted back into equation 2.91 to rewrite
the FT of the atomic layer as

nj∑
pj=1

fpj (s)

((
Z (s) e−2πırpj

·se−2πıRij ·s
)
∗
(
S (s) e−2πıt·s)) =

∑
hk

∫
S (s − shkl)

nj∑
pj=1

fpj
(s) e−2πırpj

·shkle−2πıRij ·shkle−2πıt·se2πıt·shkl dl.

(2.93)
However the sum on atoms in the unit cell of layer type j in equation
2.93,

∑nj

pi=1 fpj (s) e
−2πırpj

·shkl , can be recognized as the IM structure
factor Fj (s, shkl), with a new definition shkl, incorporating the con-
tinuous Miller index l. Using these definitions, the scattered wave
amplitude in equation 2.90 can be rewritten as

φ
(N)
ijk... (s) =

∑
hk

∫
e−2πıt·se2πıt·shklS (s − shkl)

(
Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·
)
dl

(2.94)
The diffracted intensity from this domain is the squared modulus of the
scattered wave amplitude, but as in Section 2.6, rather than a domain
with any specific ijk . . . sequence, the true interest is an ensemble-
averaged domain considering all layer sequences. In this case an in-
coherent sum is again taken where each intensity term is weighted by
the probability of the specific sequence. Expressed in this way the
diffracted intensity distribution can be written as

I (s) =
∑

i,j,k...

piαijαjk . . . φ
(N)
ijk... (s)φ (s) (N)

ijk... (s)
∗
. (2.95)
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Writing this explicitly,

I (s) =
∑

i,j,k...

piαijαjk . . .

∑
hk

∫
e−2πıt·se2πıt·shklS (s − shkl)

(
Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·
)
dl∑

h′k′

∫
e2πıt·se−2πıt·sh′k′l′S (s − sh′k′l′)

(
Fi (s, sh′k′l′)+

Fj (s, sh′k′l′) e
−2πıRij ·sh′k′l′+Fk (s, sh′k′l′) e

−2πı(Rij+Rjk)·sh′k′l′+· · ·
)∗

dl′.

(2.96)

Again, as in Section 2.5.2, the intensity equation can be expanded and
rewritten, grouping terms where hkl = h′k′l′ or hkl ̸= h′k′l′,

I (s) =
∑

i,j,k...

piαijαjk . . .

[∑
hk

∫
|S (s − shkl)|2|Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·|2 dl

+
∑∑
hk ̸=h′k′

∫∫
e2πıt·(shkl−sh′k′l′ )S (s − shkl)S (s − sh′k′l′)

∗
(
Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·
)

(
Fi (s, sh′k′l′) + Fj (s, sh′k′l′) e

−2πıRij ·sh′k′l′+

Fk (s, sh′k′l′) e
−2πı(Rij+Rjk)·sh′k′l′ + · · ·

)∗

dl dl′
]
. (2.97)

While equation 2.97 may seem intimidating, it can be simplified sig-
nificantly if an average over all shape function translations t is taken,
by integration

∫
I (s) dt, where the dependence of the intensity equa-

tion on t is implicit. The only portion of the integrand that depends
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on t is e2πıt·(shkl−sh′k′l), a coefficient of the hkl ̸= h′k′l′ terms, and the
integration of this function over all t is explicitly zero. This means
equation 2.97 can be re-written as

I (s) =
∑

i,j,k...

piαijαjk . . .
∑
hk

∫
|S (s − shkl)|2|Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·|2 dl.
(2.98)

This can be considered is the “random shift treatment” in the case
of one-dimensionally disordered domain described by a general three-
dimensional shape function. While it is similar to the work of Ino and
Minami or Hosemann and Bagchi [13, 55], these authors did not con-
sider stacking disorder, and this represents the first time it has been
shown applicable in this specific case. This treatment has some impli-
cations however. Strictly speaking, it implies that true crystal under
consideration is not one with only integer numbers of layers, but one
with a uniform distribution of total layers (including fractional layers).
This assumption could be a problem in the case of materials known
to have specific surface termination, such as mixed layer minerals. In
such case, explicit termination of the sum on the total number of lay-
ers e.g. in equation 2.75 may be preferred over applying a randomly
shifted shape function.
Further simplifications are still possible. The shape profile function
|S (s − shkl)|2 and the RS lattice sum are independent of the specific
layer sequence being considered, and can be factored outside the sum
on layer types

I (s) =
∑
hk

∫
|S (s − shkl)|2

∑
i,j,k...

piαijαjk . . .|Fi (s, shkl)+

Fj (s, shkl) e−2πıRij ·shkl + Fk (s, shkl) e−2πı(Rij+Rjk)·shkl + · · ·|2 dl.
(2.99)

Immediately it can be recognized that the second factor in equation
2.99, associated with the sums on atomic layer types, is identical to
the second factor in equation 2.67. Through a process identical to that
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taken in Section 2.6.2, equation 2.99 can then be rewritten as

I (s) =
∑
hk

Ihk (s) (2.100)

where

Ihk (s) =
∫

|S (s − shkl)|2
(

G∗φ(∞) + Gφ∗(∞) − G∗F
)
dl

=

∫
|S (s − shkl)|2 Ψ (s, shkl) dl,

and the vector intensity has been rewritten as Ψ (s, shkl).
In this equation, the vectors take on a slightly different definition

when compared to those for the infinite crystal case outlined in Section
2.6.2. F is redefined as a vector of the new IM layer structure factors as
outlined in Section 2.5.2, here depending on the continuous Miller index
l, as outlined earlier in this section, F ≡ [Fi (s, shkl)]. Similarly, G is
redefined as a vector of stationary distribution weighted IM structure
factors, G ≡ [piFi (s, shkl)]. φ(∞) is also redefined as (I−T)−1F, using
the new definition of F and a new definition of the phase weighted
transition matrix T =

[
αije

−2πıRij ·shkl
]
.

The two terms in equation 2.100 have both been seen before, |S (s − shkl)|2
represents the shape profile function, and can be computed quite gen-
erally as outlined in both Section 2.5.3 and Section 2.5.4. The second
term in equation 2.100 is nearly identical to the second term in equation
2.78, and represents the diffracted intensity distribution of a perfect,
infinite crystal that is disordered along one dimension.
The integral in equation 2.100 has the form of a convolution, and is
a result of the Dirac rod form of the RS lattice, as described earlier
in this and the previous sections (equation 2.66 and equation 2.93).
The convolution is over only one RS direction, namely the continuous
Miller index l. Thus each hk rod in equation 2.100 is a convolution of
the shape profile function along the length of the rod, expressed by the
continuous Miller index l.
An example of the application of equation 2.100 is shown in Figure
2.23, where the typical example of nanocrsytalline nickel, outlined Sec-
tion 2.1, is again considered. A three-dimensional rendering of the
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(a) Ψ (s, shkl) and |S (s)|2 (in-
set)

(b) Intensity in RS

Figure 2.23: Averaged diffracted intensity of the (12)l rod in three-
dimensional RS for an ensemble of finite, one-dimensionally disorder nickel
domains

shape profile function, |S (s − shkl)|2, resulting from a 10 nm spher-
ical domain is shown inset in Figure 2.23a, along with the value of
Ψ (s, shkl) along the (12)l rod, considering the remapped Miller in-
dices. The nickel domain considered in the figure shows a 25% chance
of an interruption in the normal stacking sequence. Figure 2.23b shows
a three-dimensional rendering of the convolution of the two objects
shown in Figure 2.23a, representing the averaged diffracted intensity
distribution of a partially disordered ensemble of 10 nm nickel domains.

2.7.3 Powder averaging

Again, if a randomly oriented powder rather than a perfectly oriented
ensemble is of interested, then it is necessary to take a weighted ori-
entation average of equation 2.100. The the powder intensity is then
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written as

I (s) =
1

4πs2

∫∫
S

I (s) dS (2.101)

=
1

4πs2

∑
hk∫ 2π

0

∫ π

0

∫
|S (s − shkl)|2 Ψ (s, shkl) dls2 sin θ dθ dϕ

=
1

4π

∑
hk∫ ∫ 2π

0

∫ π

0

∫ ∞

0

A (L) cos (−2πıL · s)e−2πıL·shkl dV LΨ (s, shkl) sin θ dθ dϕdl

It is important here to recall the functional dependence of each term.
In Section 2.5.5, the structure factor term F (s, shkl) in the powder
integration in equation 2.49 could be factored outside of the integral,
as it had no dependence on the direction of the scattering vector s.
This is not true in equation ??, as the recursive intensity distribution
Ψ (s, shkl) depends implicitly upon s, as shkl = ha∗ + kb∗ + lẐ, where
l is the projection of s along the length of the (hk) rod.
Again, analytic solutions to this integral have not been found, but
the powder intensity can be approximated on tangent cylinders. This
entails rewriting the differential surface element as dS = sdθŝ · ŝhkl
rather than dS = s2 sin θ dθ dϕ. This was originally proposed by War-
ren [96], but it was only ever applied for the case where each layer was
the same shape (i.e prismatic domains).
In practice it is often not necessary to evaluate or approximate equa-
tion ??. Rather, equation 2.87 can be used with the appropriate profile
function. This is the approach adopted throughout this work.

2.8 Concluding remarks

Having gone through the extremely repetitive derivations presented in
this chapter, at least one thing should be obvious: when attempting
to model diffraction for the purpose of data fitting, there are a variety
of different approaches which can be taken. The key point however is
that each approach is itself based on sets of fundamental assumptions.
These assumptions must be kept in mind, as the degree to which they
are satisfied essentially governs the accuracy and reliability of the ap-
proach. An attempt to apply models in cases where the fundamental
assumptions are not satisfied can be at best unproductive, and at worst
misleading.
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Fundamentally, every equation in this chapter (and this thesis) share
some common assumptions. Namely, it is assumed that X-rays scatter
elastically and kinematically without anomalous scattering, that the
scattered X-rays are observed far from the scattering event, and that
atomic electron clouds are spherically symmetric and react to pertur-
bations much more quickly than the static atomic nuclei. Some of
these assumptions can be relaxed with a minimum of modifications to
the equations contained herein: for example, thermal motion of atoms
can be incorporated by assuming a harmonic bond potential, leading
to a a Debye-Waller thermal factor, and anomalous scattering can be
incorporated by correcting the atomic form factor, as hinted at in Sec-
tion 2.3. Conversely, fully casting off other assumptions, such as that
of kinematical scattering, would require significant re-working of the
ideas presented here.
The above common assumptions can be used without further addi-
tions if DS approaches are used to compute the diffracted intensity.
This is the most general and often most computationally expensive ap-
proach, and is covered in Chapter 3. Adopting more computationally
efficient models entails the imposition of more specific assumptions.
For example, by assuming a degree of periodicity within the domains
constituting the samples, it is possible to work in a Fourier transformed
reciprocal space. Such RS approaches were the main focus of this chap-
ter.
The equations outlined in Section 2.4 are a result of assuming that
the scattering objects are three-dimensionally periodic and spatially
unbounded. Practically speaking, it was seen that such objects gen-
erally result in a diffracted intensity distribution that is also three-
dimensionally periodic and composed of weighted Delta distributions.
Powder averaging results in a powder diffraction pattern such as that
presented in Figure 2.6b. An empirical broadening function can be
applied, as seen in Figure 2.6a, to approximate small deviations from
the assumptions of this section. The choice of broadening function is
however not generally objective, and most functions have little basis
in the actual physics of diffraction. Furthermore, this method of ap-
proximation retains a form of the Lorentz factor which is strictly only
applicable under the assumptions of this section.
In Section 2.5, the condition of spatial unboundedness was relaxed. It
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was assumed that domains can be represented following the work of Ino
and Minami [13], and that such spatially finite crystals show an “aver-
aged” surface termination. Under such assumptions, the diffracted in-
tensity distribution is a three-dimensionally periodic lattice composed
of weighted shape profile functions, where each shape profile function
can be thought of as the FT of the crystal shape autocorrelation func-
tion. In this section explicit expressions for the powder diffraction
pattern were given under the assumption that the powder integra-
tion sphere could be approximated locally as a tangent plane following
Stokes and Wilson [23].
It was seen that considering only the finite size of the crystals implied
that Bragg peaks can be apparently shifted out of Bragg position in the
powder pattern, and that line profiles themselves expressed as a func-
tion of scattering angle are intrinsically asymmetric. The degree of shift
and asymmetry is dependent on the details of both the atomic scale
structure and the morphology of the domains [13]. Such details are
necessarily difficult to capture when approximating the profile shape
with empirical broadening functions as per Section 2.4.3, as this ap-
proach has no intrinsic capability to capture these effects, whereas the
models of Section 2.5 handle the effects explicitly.
In Section 2.6, the assumption of three-dimensional periodicity im-
posed in Sections 2.4 and 2.5 was relaxed. Diffraction from objects
built a stacks of two-dimensionally periodic objects was considered. A
Markov chain description was adopted to describe the arrangements of
the layers [14, 88, 90–92] out of convenience only, and allowed for the
computation of the diffracted intensity considering a weighted average
of all possible configurations [88]. It was seen that in such a situation,
the diffracted intensity distribution becomes continuously distributed
along Bragg rods which extend parallel to the stacking direction in RS,
rather than being concentrated in isolated Bragg spots as was seen
in the case of Sections 2.4 and 2.5. The nature of this continuously
diffracted intensity depends on the atomic scale layers, how they are
arranged, and the likelihood of each arrangement. In this way, atomic
and nanoscale structure are considered together directly to give the
diffracted intensity distribution.
The work of Treacy et al. [88] was followed closely to derive new
expressions for the powder- and ensemble-averaged intensity from a

74



2.8. Concluding remarks

linearly disordered spatially infinite crystal. A new physical approach
was shown to approximate the powder diffraction effect of finite crys-
tals in the case of one-dimensionally disordered domains. In this way,
atomic, nano, and microscale structure are considered together directly
to give the powder pattern.
In Section 2.7, the three-dimensional shape function approach used
to describe a finite crystal, as proposed by Ino and Minami [13] was
applied to the generally linearly disordered spatially infinite crystal
outlined in Section 2.6, without introducing unnecessary and unphysi-
cal complications into the definition of a atomic layer [95]. By using a
Markov framework as in Section 2.6 a weighted average of all possible
configurations was considered to compute the diffracted intensity. This
led to a partially analytic convolution operation, and a new description
for the weighted average diffracted intensity of an ensemble of linearly
disordered spatially finite crystals. In this situation, powder averaging
was only explored briefly.
It is essential to understand that across all the RS approaches dis-
cussed in this chapter, an inherit assumption is that sample properties,
such as the domain size, the lattice parameters, or the layer-layer tran-
sition probabilities, are all uncorrelated. For example, when the diffrac-
tion effect of a polydisperse domain size was worked out in Section 2.5.4,
each domain, regardless of size, is assumed to be characterized by the
same unit cell. As another example, when the combined diffraction
effect of stacking disorder within polydisperse domains was explored
in Section 2.7.1, each domain, regardless of size, was assumed to be
characterized by the same set of layer unit cells and the same overall
layer-layer correlation properties.
While these assumptions may be valid in large crystals, it is well
known that they generally do not hold for nanomaterials. The volume
fraction of under-coordinated surface species increases super-linearly
as domain size decreases, and these under-coordinated species tend to
relax, leading to domain size dependent bond distances and thus lat-
tice parameters of nanomaterials which can deviate significantly from
that seen in the bulk [97–100]. Furthermore, the energy needed to in-
terrupt a normal stacking sequence is characteristically described per
unit area. As domain size decreases, cross sectional area of the do-
main also decreases, implying that the energy necessary “per fault”
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decreases. This naturally implies that layer-layer correlation probabil-
ities will vary with domain size.
It is possible to approximate correlation between material properties
using a RS approach by considering each unique set of properties as
describing a separate phases, but for complex systems this is rarely
tractable, and the additional model complexity introduced is likely not
justified in terms of improved understanding and/or reproduction of
experimental data.
This is not to say that the equations in this chapter are useless, it
is only to add a grain of salt to the optimism one might experience
after seeing such direct modeling approaches. The equations in this
chapter are useful insofar as the assumptions are kept in mind, and
one is careful not to over interpret the results if they are used to fit
real diffraction data. They offer a starting point for understanding, and
can shed light on fine details of the atomic, nano, and microstructure
of a sample, but this information can be skewed by a plethora of factors
and should not be taken literally.
In the next chapter, a series of virtual diffraction experiments are
carried out to obtain synthetic (simulated) powder diffraction data
from a set of atomistically represented nanocrsytalline nickel powders.
Some of the different modeling approaches proposed in this chapter
are applied in an attempt to both fit this powder diffraction data and
understand the physical characteristics of the powders.
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Chapter 3

Virtual powders: proof of concept

While some the expressions and associated derivations in the previous
chapter may seem strictly academic, it is in fact possible to use them
to explicitly compute the diffracted intensity from an ensemble [20,
26–28]. It is of course interesting and important to compare the accu-
racy and precision of these computations to what is measured from a
real sample, but a real sample itself introduces several other compli-
cating factors that have not been addressed in the previous chapter.
For example, nowhere in the previous chapter were the specifics of
the measurement instrument reviewed. The physical imperfections or
aberrations of the instrument can affect both the shape, position, and
relative profile intensity of the measured intensity distribution [9, 10,
101]. Furthermore, the absorption [9, 102] of a real sample measured
in both reflection or transmission can also influence these things. How-
ever, the ultimate goal of this work is to understand how fine details
of the diffracted intensity are influenced by the sample and not the in-
strument. For this reason it is desirable to conduct an idealized virtual
diffraction experiment, where no instrumental effect is seen.
While eliminating the effect of the instrument is reason enough to
conduct a virtual diffraction experiment to test the models in Chap-
ter 2, another unintended benefit of a virtual experiment is a priori
knowledge of the correct sample characteristics, a benefit exploited by
Beyerlein et al. in similar work [103]. Few characterization techniques
exist that provide accurate and statistically complete information on
sample chemistry and structure spanning many length scales [104]. In-
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formation of particular interest could include the contents and shape of
periodic units, the extent of and type of stacking disorder, or details of
domain morphology (domain shape, distribution of size parameters).
Total scattering approaches are often able to provide some informa-
tion on stacking disorder [105–107] but can fall short at describing the
statistics of a sample, often treating the sample as a powder of identical
or nearly identical objects [105, 108, 109]. While this approximation
is accurate for ensembles with tightly controlled properties, it may not
be suitable for powders with broad domain size distributions or signif-
icant defect clustering. X-ray absorption spectroscopy can provide a
plethora of information on local coordination environment, but useful
information often does not extend beyond the second or third coordi-
nation sphere [110, 111], meaning morphology information or longer
range patterns in stacking could be missed.
A common characterization method is scanning or transmission elec-
tron microscopy. With automated image analysis [112, 113], these
techniques can yield unbiased and accurate morphology information
and domains size distributions [114, 115]. It is also possible to locally
identify and quantify atomic scale defects, such as twin boundaries and
stacking faults [116, 117], two manifestations of the stacking disorder
outlined in Section 2.6.
Electron microscopy probes are however not ideally suited for quan-
tifying sample atomic, nano and microstructure. Accurately imaging
CSDs or defects can be a quite laborious, expensive, and subjective
task, and ultimately provides only two-dimensional projections of three-
dimensional objects. Although procedural standards exist [118], micro-
graphs are inevitably collected at the subjective discretion of micro-
scope operator. Furthermore, when the possible configuration space
of the specimen is large, as with complex disorder or broad size distri-
butions, the population size necessary to accurately estimate sample
properties can easily become unfeasibly large [119]. For these reasons
electron micrographs are often presented without quantification, used
only to indicate a general morphology or the presence of defects [120–
124], and quantitative results have even occasionally been the subject
of contention [116, 125, 126].
With this motivation, virtual powder samples were created. Each vir-
tual powder is a collection of atomistic domains synthesized through a
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random sampling of different distributions or stochastic processes, as
outlined in Section 3.1. By carrying out a virtual diffraction experiment
using these virtual powders as outlined in Section 3.2, synthetic powder
diffraction data which approximates the ensemble average is obtained
and discussed. In Section 3.3, the accuracy and validity of different
approximations utilized in the RS approaches outlined in Chapter 2 is
assessed by fitting the synthetic powder diffraction data, a process al-
ready established in the literature [103]. This section also discusses the
effect on the diffracted intensity of different micro and nanostructural
features.

3.1 Synthesis

This section gives an overview of the process of synthesizing a virtual
powder sample. As the ultimate goal of this chapter is not charac-
terizing real samples but only comparing RS diffraction models, the
characteristics of the specific virtual powder samples are completely
invented. It is important to note though that this process could be
equally repeated based on characteristics refined from actual powder
diffraction data. The resulting virtual powder sample could then be
utilized within atomistic simulations, driven by classical molecular dy-
namics or density functional theory. With such an approach, it may
be possible to abandon some assumptions imposed by working in RS,
such as the lack of correlation between sample parameters.

3.1.1 Selecting the appropriate models

To synthesize virtual powder samples, it is first necessary to select
the material of interest. Throughout this thesis nickel metal has been
generally adopted as a model system for its relative simplicity, and
for its tendency to adopt both the fcc and hcp polytypes within the
nanocrystalline form [42]. The atomic structure and stacking scheme
of nickel are described at length in Section 2.1.
After the choice of material, the domain morphology and the form
of the domain size distribution should be chosen. Here equi-axial
(spherical) domains with log-normally distributed diameters are cho-
sen. While this assumption is made in the interest of simplicity, it
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also happens that nanocrystalline nickel very frequently adopts an ap-
proximately spherical morphology [127–129], and that log-normal dis-
tributions have been found to accurately describe the sizes of domains
in may cases [59]. These choices introduce considerable simplifications
into the actual computation, and conveniently reduce the number of
parameters necessary to describe the whole virtual powder. Particu-
larly, the CVF is analytic and isotropic for a log-normal distribution
of spheres. The exact form of this was first given by Scardi and Leoni,
but is presented in this work in equation 2.47 [26].
It should be highlighted that the methods for directly computing the
powder intensity distribution outlined in Chapter 2 are rather general:
no restrictions or assumptions were made on the symmetry of the crys-
tal lattice or unit cell, nor on the crystal morphology or distributions of
dimension parameters, aside from an assumption that these parameters
are all uncorrelated.
For samples showing stacking disorder, as investigated here, it is also
necessary to identify constituent layer structures as well as physically
and chemically reasonable stacking vectors. For the fcc and hcp poly-
types, Warren [21] has done an excellent job of both tasks, and a
summary of this was presented in Section 2.1.
Having established constituent layer structures and associated layer-
layer translations, an appropriate description of the correlations be-
tween adjacent layers must be chosen. For a Markov description as
per Section 2.6, this amounts to choosing the order n of the Markov
process. In plain terms, in an nth-order Markov process the identity of
the ith state is dependent on the identity of n previous states. That is

Pr (Xi = xi|Xi−1 = xi−1, Xi−2 = xi−2, Xi−3 = xi−3 . . . Xi−n = ni−n)

In terms of the application of Markov chains to modeling diffraction,
Jagodzinski coined the term “Reichweite number” R for describing the
range of the layer-layer interactions [85]. R is equivalent to the order
n of the Markov process necessary for modeling the layer sequence.
In the context of the description of nickel outlined in Section 2.1,
the Markov process has two states, associated with the two possible
transitions, forward f or backward b. The transition probability matrix
P describes the likelihood of state to state transitions, and is a right
stochastic matrix, meaning the entries of each row sum to unity.
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For zeroth-order Markov process, or R = 0 stacking, f and b transi-
tions are equally likely, and the probability matrix can be written as

P =

[
0.5 0.5
0.5 0.5

]
. (3.1)

This only implies an equal probability of either translation, and leads
to fcc and hcp that are on average just one atomic layer thick. The
stochastic nature of the Markov process however does allow for succes-
sive (repeated) f or b transitions, leading to fcc and hcp bands that are
larger than just one atomic layer (see e.g. figures 3.3, 3.4, or 3.7). The
finite state-machine for this Markov process is shown in Figure 3.1.
For the case of a first-order Markov process, or R = 1 stacking, the
likelihood of an f or b transition is only dependent on the identity
of the current state, and there is one linearly independent probability
αf describing the likelihood of an f transition between any two layers.
Figure 3.1 shows the finite state-machine for this Markov process. The
associated probability matrix can be written as

P =

[
αf αb = 1− αf

αf αb = 1− αf

]
. (3.2)

For the case of a second-order Markov process, or R = 2 stacking,
the likelihood of an f or b transition is dependent on the current and
previous states. This memory effect can be achieved by judicious def-
inition of the probability matrix. It can be seen in equation 3.2 that
the only way to reach the Markov state associated with the first row of
the probability matrix is through an f transition, while the only way
to reach the Markov state associated with the second row of the prob-
ability matrix is through a b transition. In equation 3.2 the probably
of either transition is however independent of which path was taken
previously (both states show the same probabilities). By splitting the
states and introducing two independent probabilities, the probability
of an f transition given a preceding f transition, written αff , and
the probability of an f transition given a preceding b transition, writ-
ten αbf , a memory effect can be imposed. The finite state-machine for
this Markov process is shown in Figure 3.1, and the resulting transition
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probability matrix can be written as

P =

[
αff αfb = 1− αff

αbf αbb = 1− αbf

]
. (3.3)

Going further, any nth-order Markov process can be represented as
a first-order Markov process with an expanded state space and con-
strained transition probabilities. For example, a third-order Markov
process for the nickel system considered here, with the two states asso-
ciated with the transitions f and b, can be represented by a first-order
Markov process with the four states ff , bf , fb and, bb. In this ap-
proach, each state in the expanded state space has a forced history:
state ff can only be reached as a result of two f transitions, state bb
can only be reached as a result of two b transitions, and so on. The
probability matrix for such a Markov process is written as

P =


αfff 0 αffb = 1− αfff 0
αbff 0 αbfb = 1− αbff 0
0 αfbf 0 αfbb = 1− αfbf

0 αbbf 0 αbbb = 1− αbbf

 (3.4)

The “memory” associated with the third-order Markov process is con-
tained within the transition probability matrix itself. For example, the
states associated with the first row of the probability matrix can only
be reached in one transition from states associated with an f transition,
that is, either bf (second row) or ff , and the state bb (fourth row) can
only be reached in one transition from states associated with a b tran-
sition, that is from either fb or bb (third or fourth rows respectively).
For this reason some entries of the probability matrix in equation 3.4
are forced to zero.
It is important to point out that a lower order Markov process can
be modeled by a higher order Markov process simply by constraining
the probabilities in the higher order Markov process. For example,
the transition probability matrix for the second order Markov process
outlined in equation 3.3 can be used to model the first order Markov
process outlined in equation 3.2 by imposing the constraint that αff =
αbf , while the first, second, or third order Markov processes outlined
in equations 3.2, 3.3, and 3.4, respectively, can each be used to model
the zeroth order Markov process outlined in equation 3.1 by imposing
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the constraints that αf = αb = 0.5, αff = αbf = 0.5, or αfff =
αbff = αfbf = αbbf = 0.5, respectively.
In all these above cases the probability distributions describing the
likelihood of repeated sequential transitions are generally geometric in
nature, however it is important to remember that the layer sequences
are finite in length, as they represent small domains. This can affect
the probability distribution shape.

Figure 3.1: Finite state machines representing the Markov process for the
case of close packed nickel for different interaction ranges R. Forward transi-
tions are associated with a blue color, while b transitions are associated with
a red color.

As a final note the symmetry of these polytypes should be considered:
a series of f transitions is equivalent to a series of b transitions in an
inverted coordinate system. By Friedel’s law, the scattering behavior
of the two objects are however equivalent. Thus, in all of the above
cases, it is possible to completely swap the probabilities of f and b
transitions to obtain an equivalent physical system.
For example, taking equation 3.2 and assigning explicit probabilities
gives the matrix

P =

[
αf = 0.2 αb = 1− 0.2 = 0.8
αf = 0.2 αb = 1− 0.2 = 0.8

]
. (3.5)

However, the probability matrix

P =

[
αf = 0.8 αb = 1− 0.8 = 0.2
αf = 0.8 αb = 1− 0.8 = 0.2

]
(3.6)

leads to an ensemble of stacking sequences that are, on average, equiv-
alent. This implies that only a portion of the parameter space associ-
ated with the Markov transition probabilities leads to unique systems,
at least in the case of nickel.
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3.1.2 Automated stochastic domain creation

Once all characteristics of the virtual powder specimen have been cho-
sen, the specimen can be synthesized. The DISCUS software pack-
age (v3.6.2), written by Proffen and Neder, is ideal for this purpose
[130]. DISCUS is a flexible application for building and manipulating
domains. The software contains intrinsic functionality for stochasti-
cally sampling various statistical distributions, assembling layers using
a Markov process, and cutting crystals based on a shape function. An
example DISCUS script that could be used to synthesize a virtual pow-
der sample is provided in Appendix A. The script implements an R = 3
stacking scheme, and thus can be used to model all R ≤ 3 schemes.
In summary, the user provides the script with the intended log-normal
mean µ and standard deviation σ for a log-normal distribution describ-
ing the domain diameters, along with a unit cell for each layer type
(here each layer has an identical unit cell), and transition probabili-
ties. DISCUS randomly samples the log-normal distribution to obtain
a domain diameter and creates an atomic layer that is wider than the
intended CSD. Following this, DISCUS creates a stacking sequence
by randomly sampling the user defined Markov process. The stack-
ing sequence has enough layers to be larger than the domain diameter.
DISCUS then populates the stacking sequence with the atomic lay-
ers. The entire stack is then shifted by a randomly generated vector,
modulo the layer unit cell, to ensure that the lattice and shape func-
tion origin are not coincident. Lastly, the spherical shape function is
applied, removing all atoms outside its boundaries.
By following this process, DISCUS was used to create seven differ-
ent virtual powder specimens, with properties outlined in Table 3.1.
The libraries all contained at least 2,000 individual domains to ensure
adequate sampling of the underlying statistical processes.
Select atomistic domains, chosen from the libraries built with the
DISCUS software, can be rendered using OVITO (Open Visualization
Tool) [131]. OVITO is a powerful tool, not only for rendering atomistic
models, but also for post-processing these atomistic models. Among
other things, OVITO can quickly perform common neighbor analysis,
identifying the local polytype symmetry of atoms, and color the atoms
accordingly. OVITO is capable of differentiating between not only
the fcc and hcp polytypes, but also the two common polytypes of
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Sample eµ (nm) σ Reichweite R Probability

1 5 0 0 - -
2 5 0.1 0 - -
3 5 0.1 1 αf = 1.0 -
4 5 0.1 2 αff = 0.8 αbb = 0.2
5 15 0.1 0 - -
6 15 0.1 2 αff = 0.8 αbb = 0.2
7 15 0.1 1 αf = 1.0 -

Table 3.1: Characteristics of virtual powders synthesized here. eµ is the
median of the log-normal distribution described by log-normal mean and
standard deviation µ and σ, respectively.

sp3-bonded carbon, namely diamond and lonsdaleite. Within all the
atomistic models rendered here, this common neighbor analysis has
been performed using OVITO, and green or red atoms are coordinated
locally as fcc or hcp, respectively. Under-coordinated surface atoms
have been removed to improve visibility.
Four randomly selected domains from sample 1 are shown in Figure
3.3, with stacking disorder highlighted by common neighbor analysis.
This sample is monodispersed, with domains that are only 5 nm across.
It is characterized by an R = 0 stacking scheme, and thus it is gov-
erned by the transition probability matrix as outlined in equation 3.1.
Within sample 1, domains contain both twin boundaries and deforma-
tion faults (hcp bands that are 1 or 2 atoms thick, respectively), but
also seen are hcp bands significantly thicker than 2 atomic layers.
It is interesting to note that, although each domain in Figure 3.3 was
carved with the same 5 nm spherical shape function, the random shift
imposes a unique surface termination on each domain. The configura-
tion space associated with this sample is then a result of both the layer
configurations and surface termination of the domains.
Sample 2 is identical to sample 1, with the exception that the diame-
ters of the domains in the former are not monodisperse, but rather are
described by the log-normal distribution in Figure 3.2, with a median
domain diameter of 5 nm, log-normal standard deviation of 0.1, and
about 95% of the domains between 4 and 6 nm in diameter. The con-
figuration space in this sample is a result of the same linear disorder
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Figure 3.2: Probability density g(D) functions describing the distributions
of domain diameters D for the different (labeled) virtual specimens outlined
here. Both distributions are log-normal, with a median of either 5 or 15 nm,
and a log-normal standard deviation of 0.1.

and surface termination as sample 1, with an added configuration di-
mension of domain diameter dispersion. All these features can be can
be seen in Figure 3.4, which shows four randomly selected domains
from this sample.
Sample 3 is an example of an “unfaulted” powder. Within the Markov
framework outlined here this deterministic stacking can be described
by an R = 1 stacking scheme as described by the general probability
matrix in equation 3.2, with the probability of an f transition set to
1 leading to an ordered fcc structure. The domains in the sample are
characterized by a median diameter of 5 nm, with a diameter dispersion
identical to that in sample 2, shown in Figure 3.2. The configuration
space in this sample does not include the effect of linear disorder, only
that of domain diameter dispersion and surface termination. Four
randomly selected domains from sample 3 are shown in Figure 3.5,
where it can be seen that the stacking scheme clearly leads to ordered,
entirely fcc domains.
Sample 4 is characterized by an R = 2 stacking process, with a 80%
chance of an f transition given a preceding f transition and a 20%
chance of a b transition given a preceding b transition, according to the
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Figure 3.3: Four domains selected randomly from sample 1, shown in both
a front view (top) and orthographic projection (bottom). All domains show
an identical diameter, but different stacking sequences described by the as-
sociated Markov process.

probability matrix shown in equation 3.3. Sample 4 shows the same
domain diameter dispersion of samples 2 and 3 (Figure 3.2), with a
median diameter of 5 nm. It is clear by viewing a few of the domains,
presented in Figure 3.6, that the stacking disorder in this sample is
much less “severe” than in the R = 0 case of either sample 1 or 2.
Significantly fewer and thinner bands showing a local hcp structure
are seen. Twin boundaries and deformation faults are however both
still present, as are hcp bands greater than two atomic layers.
It is however not immediately obvious how changing from an R = 0
to an R = 2 stacking disorder alters the configuration space of the
sample. Strictly speaking this change affects only the probability of
each configuration within a domain of a certain diameter: within the
R = 0 model, all stacking configurations have an equal probability,
whereas in an R = 2 model, this is not necessarily true. The total
number of possible configurations is unaltered by changing the stacking
model, as this number is only dependent on the diameter of the crystal.

Sample 5 signals a departure from the domain diameter distribution
common to samples 2, 3 and 4. The domains diameters in sample 5
are described by the distribution in Figure 3.2, with a median domain
diameter of 15 nm, and about 95% of the domains between 12 and 18
nm in diameter. Sample 5 is characterized by the same R = 0 stacking
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Figure 3.4: Front views (top) and orthographic projections (bottom) of
four domains selected randomly from sample 2. Domains show a diameter
distribution as presented in Figure 3.2 and different stacking sequences.

process describing sample 2, with a probability matrix as outlined in
equation 3.1. Figure 3.7 shows four randomly selected atomistic do-
mains from this sample, showing the diameter dispersion and stacking
disorder clearly.
The domains in sample 6, rendered in Figure 3.8, show the same
diameter dispersion as sample 5, with a mean diameter of 15 nm. The
layer stacking is governed by the same R = 2 stacking disorder as
sample 4, with an 80% chance of an f transition given a preceding
f transition and a 20% chance of a b transition given a preceding b
transition (equation 3.3).
Sample 7 (Figure 3.9) is again an example of an “unfaulted” powder,
similar to sample 3, with a unity probability of an f transition between
any two layers. This sample shows the same larger average domain
diameters as samples 5 and 6, with Figure 3.2 showing the diameter
dispersion.

3.2 Synthesized (simulated) powder diffraction data

3.2.1 The Debye scattering equation

Once a substantial quantity of domains (typically greater than 2,000)
have been created for a given virtual powder, the atomic coordinates
can be be used to compute “synthetic” powder diffraction data of the
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Figure 3.5: Four domains randomly chosen from sample 3, presented in
front views (top) and orthographic projections (bottom). Domains show a
diameter distribution as depicted in Figure 3.2, with a median diameter of 5
nm. The domains are completely “unfaulted,” each showing a deterministic
stacking sequence, leading to an fcc structure

object through a DS approach, using the Debye scattering equation
(DSE), which is provided here without derivation as

I (s) =

Natoms∑
i=1

Natoms∑
j=1

fi (s) f
∗
j (s) sinc(2πsrij) , (3.7)

where the double sum is over all atoms in the domain and rij is the
distance between the i and j atomic pair. A deterministic approach,
the DSE as presented in equation 3.7 yields the far-field, dynamical,
diffracted intensity distribution for an atomistic object averaged over
all possible rotations [132]. If the ensemble is a collection of diverse
rather than identical objects, the diffracted intensity distribution of
the ensemble can be computed as incoherent arithmetic average of the
diffracted intensity distribution from each object, provided that each
object in the ensemble is sufficiently mis-oriented to scatter indepen-
dently [52].
The DSE as presented in equation 3.7 is often considered the most
precise, accurate, and flexible method for modeling powder diffraction
from nanocrystalline systems. Contrary to the RS models outlined in
Chapter 2, equation 3.7 forces no assumptions regarding the character-
istics of the unit cells, periodicity, crystallinity or morphology of the
coherently scattering objects. No approximations, aside from that of
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Figure 3.6: Front views (top) and orthographic projections (bottom) of
four domains selected randomly from sample 4. Domains show a diameter
distribution as depicted in Figure 3.2 and stacking sequences that are the
result of an R = 2 stacking process with αff = 0.8 and αbb = 0.2 (equation
3.3). This particular stacking scheme leads to bands showing a local hcp
structure which are much thinner and less numerous than those observed in
either sample 1 or 2.

an “ideal powder,” are invoked for powder integration, and any type or
degree of correlation between structural, nanostructural or microstruc-
tural parameters can be treated generally, since each scattering object
must be defined explicitly.
Unfortunately, the high level of precision, accuracy, and flexibility
is associated with relatively high computational costs. If the ensem-
ble of interest is described by broad statistical distributions governing
properties such as size, morphology, or stacking disorder type/extent,
then the intersection of all configuration spaces implies that the total
number of possible atomic configurations can be extremely large. The
explicit nature of the DSE necessitates that a similarly large number of
individual objects be considered. Further, the necessary computation
time for the DSE scales with the sixth power of the linear dimension
of the domain, implying additional computational overheads if the av-
erage size of the domains is large, or the size distribution is skewed
towards large sizes.
While considerable progress has been made to speed up DSE compu-
tations [39, 133, 134] the combined effects of large configuration spaces
and non-linear scaling of computation time necessitate that DSE ap-
proaches are best suited for systems of relatively small domains with
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Figure 3.7: Four domains selected randomly from sample 4, characterized
by a median diameter of 15 nm and the same R = 0 stacking process as in
samples 1 and 2, leading to an equal chance of bands showing either an hcp
or an fcc structure.

tightly controlled characteristics. For these reasons, studies employing
the DSE to deduce real atomic, nano, and microstructural informa-
tion from experimental data can be found [135–137] but are not yet
common.

3.2.2 Convergence

For a polydisperse powder sample showing stacking disorder, it may
be likely that no single domain can be considered representative of
the whole sample; each is only one of many possible atomic configu-
rations, chosen from the whole configuration space of the sample, and
each in turn shows a unique diffracted intensity distribution. As an
example, three very diverse intensity distributions are plotted in Fig-
ure 3.10. Each is computed by feeding the atomic coordinates of three
different domains, shown inset in Figure 3.10, into the DSE (equation
3.7). Each domain was selected randomly from from sample 6, and is
thus governed by the statistics of that sample, but none represents the
ensemble-average diffracted intensity, shown in Figure 3.17.
In practice, a true nanocrystalline sample is composed of millions
or more individual domains, quite an impractical number to consider
using the DSE. If an ensemble-averaged powder intensity distribution
is sought, it must naturally then be approximated, and it becomes
important to check the accuracy of this approximation with respect
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Figure 3.8: Front views (top) and orthographic projections (bottom) of four
domains selected randomly from sample 6. Domains show the same diameter
distribution as sample 5, shown in Figure 3.2, with various R = 2 stacking
sequences, where αff = 0.8 and αbb = 0.2 (equation 3.3).

to the number of domains considered, in order to ensure convergence
of the finite-average approximation to the “true” ensemble-averaged
intensity distribution. Beyond this, by determining a minimum number
of necessary domains, the “information content” of the diffraction data
can be checked as a function of the physical characteristics (atomic,
nano, and microstructural) of the sample.
To this end, it is useful to look towards the relatively new approach
of “serial femtosecond crystallography,” where pulsed X-ray free elec-
tron lasers are used to serially collect partial diffraction datasets from a
series of individual objects (often individual domains) [138]. These par-
tial datasets are then merged to build the ensemble-averaged diffraction
dataset. Naturally, this data merging suffers from a problem similar
to the one just mentioned: a sufficient number of partial datasets must
be considered to provide an averaged diffracted intensity distribution
which is representative of the sample.
Researchers in this field use a measure they call Rsplit to ensure that
the dataset is converged [139]. It is the total fractional (or percent)
difference between two ensemble-averaged datasets, where the popu-
lation considered in each ensemble-average is equal in total size, but
composed of different randomly selected partial datasets. It can be
written as

Rsplit =
100√
2

∑
Igroup 1 − Igroup 2

1
2

∑
Igroup 1 + Igroup 2

, (3.8)
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Figure 3.9: Four domains randomly chosen from sample 7, presented in
front views (top) and orthographic projections (bottom). Domains show a
diameter distribution as depicted in Figure 3.2, with a median size of 15
nm. The domains are completely “unfaulted,” each showing a deterministic
stacking sequence, leading to an fcc structure

where the summation is over all data points in the data set, and Igroup 1
and Igroup 2 represent the averaged intensity by merging over the two
different randomly selected datasets.
For each virtual powder sample outlined in Section 3.1.2, Rsplit was
computed as a function of the ensemble population size in the scatter-
ing vector range from 0.3 Å−1 to 1.9 Å−1, representing the wide-angle
X-ray scattering (WAXS) of the virtual powder data. Small-angle X-
ray scattering (SAXS) was not considered here. To smooth fluctuations
associated with the random sampling, an average Rsplit value of 10 dif-
ferent random selections was taken at each populations size. The Rsplit

data for each sample was then fit with the function

Rsplit (x) =
a

xk
, (3.9)

where x is the population size, or the number of randomly selected
domains included in the ensemble-average, and a and k are fitting pa-
rameters. Instrumental weighting was used in the fit, with the standard
deviation at each population size being estimated from the averaging
over 10 different random selections. The fitted curves for each sample
are plotted in Figure 3.11, while Table 3.2 shows the fitted values for a
and k, along with the minimum number of randomly selected domains
necessary to achieve Rsplit = 5% and Rsplit = 1%.
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Figure 3.10: The intensity distributions, computed using the DSE (equation
3.7), associated with three different domains, shown inset, randomly selected
from sample 6. The colors highlighting each atomistic domain correspond
to the associated intensity distribution in the plot.

In general, the convergence behavior is much more rapid than what
is seen in serial femtosecond crystallography [139], where thousands or
hundreds of thousands of datasets can be necessary to achieve conver-
gence to Rsplit = 5%. This is not at all surprising, as each population
member in serial crystallography experiments yields only a small sec-
tion of RS, whereas in this study each population member provides
an entire orientation-averaged picture of RS, leading to much faster
convergence.
Of all the samples considered here, sample 1 shows the fastest conver-
gence rate, dropping to Rsplit = 1% after considering only 177 domains.
The ensemble-averaged powder diffraction data for Rsplit = 5% and
Rsplit = 1% is shown in Figure 3.12, along with the residual between
the two convergence levels. The residual is generally spread over the
entire dataset, but is largest at Bragg peaks.
This relative result is not surprising; sample 1 is the only monodis-
perse sample explored here, and the lack of domain size dispersion
naturally leads to a narrower configuration space and more rapid con-
vergence. The overall implications are however quite interesting, as a 5
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Figure 3.11: Fitted functions (equation 3.9 and Table 3.2) for computed
Rsplit (equation 3.8) values considering only WAXS as a function of the
number of domains considered in the average, for the 7 different virtual
powders considered here. A dashed and solid line is drawn for Rsplit = 5%
and Rsplit = 1%, respectively.

nm domain of this type contains about 25 atomic scale layers, leading
to 225 (more than 33 million) possible layer permutations. Granted,
at least half of of these permutations are identical by symmetry, but
the added possibilities in terms of surface termination further increase
the configuration space. Despite what seems like a huge number of
possible unique configurations, it is clear that the average diffracted
intensity of the sample can be represented to a total error (Rsplit) of
less than 1% by considering as few as 177 configurations or domains.
This is a rather striking result, as a typical diffraction dataset from
a nanocrsytalline powder sample represents the average of millions of
domains.
Comparing sample 2 and sample 1 can help isolate the convergence
effects of size dispersion, as the two samples show the same type and
amount of stacking disorder and the same median domain diameter,
but sample 2 includes size dispersion. This feature significantly slows
the convergence behavior of the ensemble-average diffraction dataset,
shown in Figure 3.13; in this case more than 530 domains must be
considered in order to achieve convergence to Rsplit = 1%, more than
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Sample a k Rsplit < 5% Rsplit < 1%
(number of domains)

1 20(1) 0.580(2) 11 177
2 38(1) 0.577(5) 33 534
3 36(1) 0.590(5) 28 426
4 36(2) 0.591(8) 28 421
5 41(1) 0.578(5) 38 607
6 40(1) 0.586(7) 34 537
7 31(1) 0.571(5) 24 409

Table 3.2: Fitted parameters with estimated standard uncertainties, based
on fitting equation 3.9 to data generating by applying equation 3.8. Also
listed are the minimum number of domains necessary to achieve different
levels of convergence of the ensemble-averaged diffracted intensity, computed
using the DSE (equation 3.7)

3 times what was necessary in the case of sample 1. The trend of this
result is to be expected; including size dispersion naturally expands the
configuration space. It is interesting to note the rather large impact on
convergence behavior that occurs by including a rather small amount
of dispersion in the domain size distribution, as 95% of the domains
are within just ± 1 nm of the median size of 5 nm. In fact, no other
single effect investigated here causes such slowing of the convergence
behavior, in terms of the relative number of domains necessary.
Comparing the convergence behavior of sample 2 to that of sample 3
can serve to isolate the effect of R = 0 type stacking disorder on con-
vergence: the two samples show an identical domain size distribution,
but sample 3 shows no stacking disorder, or an entirely fcc structure.
The powder diffraction dataset from sample 3, shown in Figure 3.14,
converges to Rsplit = 1% after considering 426 domains, 108 fewer
domains than were necessary to reach convergence in the case of the
R = 0 sample, indicating that the convergence effect of R = 0 type
stacking disorder is small. Much greater is the effect of size dispersion,
seen by contrasting convergence behavior of sample 1 with 2.
The residual between the datasets converged to either Rsplit = 5%
or Rsplit = 1%, in the case of sample 3 (Figure 3.14), shows a dif-
ferent behavior than that seen in either samples 1 or 2. Rather than
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Figure 3.12: The approximated ensemble-averaged powder diffraction data
of sample 1, on both a linear and log (inset) scale, computed by averaging the
output of the DSE. The two curves represent the approximate averages after
considering either 11 or 177 domains, leading to a respective convergence
level of Rsplit = 5% or Rsplit = 1%. The residual between the two levels of
convergence is also shown offset.

being spread evenly across the entire scattering vector range, it is con-
centrated heavily at Bragg peaks. This is reasonable, as the ordered
stacking implies no real diffuse intensity between Bragg peaks. Rather,
all intensity in the dataset from each domain is concentrated around
Bragg peaks.
To investigate the convergence effect of the type of stacking disor-
der, sample 4 can be compared to sample 2. The two are identical
except that the former is characterized by an R = 2 type stacking
process, while the latter is characterized by an R = 0 type stacking
process. Only about 421 domains are necessary to achieve convergence
to Rsplit = 1% in the case of sample 4, shown in Figure 3.15. This is
about 113 fewer than that necessary in the case of sample 2. Thus it
would appear that the more complex R = 2 type disorder increases the
convergence rate and shrinks the configuration space of the ensemble.
Conversely, there is not a significant difference between the conver-
gence behavior of sample 4, showing a R = 2 type disorder and sample
3, showing no stacking disorder.
Samples 5, 6, and 7 show a median domain size of 15 nm, but show
stacking disorder that is identical to samples 2, 4, and 3, respectively.
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Figure 3.13: Approximate ensemble-averaged powder diffraction data from
sample 2, shown on both on a linear and log (inset) scale. The two curves
represent either an Rsplit = 5% or Rsplit = 1% level of convergence, com-
puted by averaging the output of the DSE from either 33 or 534 domains
respectively. A offset residual between the two levels of convergence is also
shown.

Comparing the two sets can then give the effect on convergence behav-
ior of increasing the median domain size, holding other factors constant.
To achieve convergence to Rsplit = 1% for the diffraction data from
sample 5, shown in Figure 3.16, an average of 607 domains needed to
be considered, only 73 more than were necessary for sample 2. A simi-
lar trend is found when comparing samples 6 and 4, which both show
a more complex, R = 2 type, stacking process; moving to the larger
median domain size as seen in sample 6 entails considering about 116
more domains to achieve convergence of the ensemble-averaged diffrac-
tion dataset, shown in Figure 3.17, to Rsplit = 1%.
This relatively small number of additional domains required to achieve
convergence in samples 5 and 6 when compared to samples 2 and 4, is
rather unexpected. Tripling the median domain size entails increasing
the number of possible layer configurations in a stacked domain by
a factor of 9, as N total layers and 2 layer types gives 2N possible
stacking permutations. This significant increase in the configuration
space however does not appear to impact convergence behavior of the
diffraction data significantly.
It is worth pointing out that, even if an increase in median domain
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Figure 3.14: Different convergence levels (Rsplit = 5% or Rsplit = 1%) of
the approximate ensemble-averaged powder diffraction data from sample 3,
computed using either 28 or 426 domains, respectively. The residual between
the two levels of convergence is also shown offset, and a log-scale plot is shown
inset to highlight small differences in diffuse features.

linear dimension does not dictate a significant increase in the total
number of domains necessary to achieve convergence, a threefold in-
crease in the median domain linear dimension dictates a 36 = 729-fold
increase in computation time when using the DSE (equation 3.7) to
compute the ensemble average.
Comparing the convergence behavior of the samples 7 and 3, where
no stacking disorder is present, it can be seen that increasing the me-
dian domain size leads to a slight decrease in the number of domains
necessary to achieve convergence to Rsplit = 1%. This represents an
inversion of the trend seen when comparing samples 5 and 2 or samples
6 and 4.
Such an inversion may initially seem surprising, but has an intuitive
explanation if the ensemble averaged powder intensity distribution of
sample 7, shown in Figure 3.18, is considered in the context of the
nature of the sample. The increase in median domain size necessitates
a decrease in the FWHM of the Bragg peaks, and the regular stacking
present in the sample dictates that significant diffuse scattering is not
present. Thus, the diffracted intensity is concentrated into a smaller
scattering vector range, giving a decreased possibility of fluctuations
between individual intensity distributions. This is further evidenced in
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Figure 3.15: The approximate powder ensemble averaged powder diffraction
data from sample 4, on both a linear and log (inset) scale. The two curves
represent the average powder diffraction data after averaging the output
of the DSE considering either 28 or 421 domains, leading to a respective
convergence level of Rsplit = 5% or Rsplit = 1%. The residual between the
two levels of convergence is also shown.

the residual resulting from sample 7, shown in Figure 3.18.
Summarizing, this study suggests that domain size dispersion has a
much greater impact on the convergence behavior than the type of
stacking disorder, or even the median domain size, at least in terms
of the number of domains necessary to achieve an ensemble-averaged
powder diffraction dataset. Increasing the median domain size from
5 to 15 nm has only a marginal impact on the convergence behavior.
The slowest convergence behavior was seen in the highly disordered
R = 0 samples showing domain size dispersion. Importantly, all sam-
ples considered here show an average Rsplit value of less than 1% after
considering at most 610 domains in the ensemble-average. This sug-
gests that for the material, morphology and stacking disorder types
considered here, libraries of just 610 domains can be considered rep-
resentative when simulating powder diffraction data using the DSE
(equation 3.7).
This is however not equivalent to declaring these libraries representa-
tive in other situations. It is entirely possible that these libraries do
not fully embody the statistics of the sample in terms of other physical
characteristic, such as layer-configuration, size distribution, or surface
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Figure 3.16: Different convergence levels (Rsplit = 5% or Rsplit = 1%) of
the approximate ensemble-averaged powder diffraction data from sample 5,
computed using either 38 or 607 domains, respectively. The residual between
the two levels of convergence is also shown offset, and a log-scale plot is shown
inset to highlight small differences in diffuse features.

termination. It is also likely that such small libraries are not represen-
tative of macroscopic properties.
As a specific example, sample 1 can be considered. It was mentioned
that the total number of possible layer permutations in a 5 nm spher-
ical nickel domain showing stacking disorder is more than 33 million.
In the R = 0 case of sample 1, each of the layer configurations has an
equal probability, since the likelihood of an f or b transition is equal.
Yet, in the case of sample 1, only 177 randomly selected configurations
are necessary to represent the ensemble-averaged powder diffraction
dataset to Rsplit = 1%. This essentially means that diffraction tech-
niques cannot unambiguously determine the difference between two
samples, one governed by the statistics of sample 1 as outlined in Ta-
ble 3.1, and one composed of only 177 different configurations selected
from sample 1.
This is an important point, and it should be highlighted, as it rep-
resents a fundamental limitation of diffraction based characterization.
While the powder diffraction data of the two above mentioned samples
may be indistinguishable, it is not guaranteed that any other observ-
able macroscopic properties of the two samples are identical.
In the following section, the powder diffraction data from each of the
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Figure 3.17: The approximate averaged powder diffraction data from sam-
ple 6, on both a linear and log (inset) scale. The two curves represent
the average after averaging the output of the DSE considering either 34 or
537 domains, leading to a respective convergence level of Rsplit = 5% or
Rsplit = 1%. The residual between the two levels of convergence is also
shown.

7 virtual powder samples is discussed and analyzed using different RS
based approaches, including traditional line-profile analysis techniques
and the new models proposed in Chapter 2. By comparing the fit
quality and predicted ensemble parameters of different RS approaches,
the overall accuracy of each can be tested.

3.3 Characterization using RS approaches

By establishing a novel convergence criteria, borrowed from the com-
munity of serial crystallography, the minimum number of domains nec-
essary to reach reasonable and uniform convergence was established
and compared for each virtual powder. Having established uniform
convergence, it is possible to use these synthetic datasets to assess the
accuracy and validity of different RS modeling approaches as proposed
in Chapter 2.
In Section 3.3.1, traditional LPA techniques, based on the equations
of Section 2.4.3, are employed to fit the synthetic diffraction data where
possible. The results of the analysis are reported, and compared to the
known properties of the virtual powder.
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Figure 3.18: The approximated ensemble-averaged powder diffraction data
of sample 7, on both a linear and log (inset) scale, computed by averaging the
output of the DSE. The two curves represent the approximate averages after
considering either 24 or 409 domains, leading to a respective convergence
level of Rsplit = 5% or Rsplit = 1%. The residual between the two levels of
convergence is also shown offset.

In Section 3.3.2, more advanced RS modeling techniques, based on
the equations of Section 2.6.3, are used to directly fit the synthetic
data. These results are reported, and compared to both the known
properties of the virtual powder, and the results obtained in Section
3.3.1.

3.3.1 Traditional LPA: fitting with empirical profile func-
tions

As pointed out briefly in Sections 1.2 and 2.4.3, traditional techniques
are typically based on the application of equation 2.23 to compute line-
profiles positions and relative intensities, followed by an assumption
that the line-profiles shape can be modeled by an empirical profile
function. This effectively amounts to assuming a powder pattern of the
form arising from perfect, spatially infinite crystals that is empirically
broadened, as per equation 2.24.
A commonly adopted empirical profile is the pseudo-Voigt, a linear
combination of a Cauchy (or Lorentz) and Gauss (or normal) distribu-
tion. The pseudo-Voigt profile is a computationally simpler alternative
to the true Voigt profile, which represents a convolution of a Cauchy
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and Gauss distribution, and can be written as

pV (x, x0, I, η,Γ) = I

[
η

(
1

π

1/2Γ
(x− x0)2 + (1/2Γ)2

)
+(1− η)

(
1

Γ

√
ln 16
π

e−
4(x−x0)2 ln 2

Γ2

)] (3.10)

where the two terms inside the brackets are the Cauchy and Gauss
distributions respectively.
The pseudo-Voigt profile is parametrized by the total integrated in-
tensity I =

∫
pV (x, x0, I, η,Γ) dx, the location of the profile x0, the

FWHM Γ, and η, the fraction of Cauchy character of the profile.
There a number of ways to constrain these parameters. If equation
2.24 is used, Bragg’s law constrains the position xo of each line-profile,
and the number of free parameters depends on the assumed lattice
symmetry, with a maximum of 6 for the lowest symmetry lattices. If
information on the atomic coordinates within the unit cell is desired,
then the structure factor can be used to compute integrated intensity
of each profile, I. The asymmetric unit then determines the number
of free parameters, with a maximum 5 times the number of atoms in
the asymmetric unit, if occupancy and isotropic thermal displacement
are considered. There are a number of methods to constrain the peak
shape parameters η and Γ, but in the simplest case they are often left
free, leading to an additional number of fitting parameters equal to 2
times the number of non-degenerate line-profiles.
An alternative to this approach is to leave all profile parameters free

within the fitting routine, leading to a quantity of fitting parameters
equal to 4 times the number of non-degenerate line-profiles. Such
model freedom often can lead to a better fit in terms of quality in-
dices when compared to more constrained models. Assigning physical
meaning to these unconstrained refined values is not always straight-
forward, however, and thus it can be difficult to make good use of this
information.
The two above modeling approaches represent extremes of diffraction
data fitting: highly constrained vs. unconstrained fitting. There exist
numerous permutations of the two approaches, with different degrees
of constraints. Each permutation has its own advantages and disad-
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vantages, and finds use in specific situations depending on the type of
information desired.
This discussion neglects the contribution of the diffraction instrument
to the line profile shape. The datasets considered here are synthetic,
computed using the DSE, and thus are not affected by the instrument.
Proper handling of the instrumental effect is however an important
part of application of these techniques to real diffraction datasets, and
is discussed briefly in Chapter 4.
Within traditional LPA, the results of the data fitting are often inter-
preted using what is typically called a Williamson-Hall plot [18], where
the ratio of the line-profile area to its height, or the integral breadth β,
is plotted as a function of the scattering vector s. The trend in β (s)
gives some indication of the source of the line-profile broadening. Un-
der the common and so-called “size-strain” model, it is assumed that

β (s) =
1

⟨L⟩V
+ 2⟨ε⟩s, (3.11)

where ⟨L⟩V is the isotropic volume-weighted mean column length (MCL),
and ⟨ε⟩ is the mean isotropic microstrain within the lattice. Thus, by
fitting a line to the β (s) data as extracted from the fitted empirical
profiles, the ⟨L⟩V and ⟨ε⟩ can be estimated for a sample. Several mod-
ified techniques exist for this approach [140, 141], where an attempt is
made to handle anisotropic volume-weighted MCLs and strains. For
the virtual powders outlined here only the simple isotropic model em-
bodied in equation 3.11 will be employed, as it is known a priori that
no strain is present, and that the domain morphology is isotropic.
By adopting this traditional LPA approach, some of the powder diffrac-
tion datasets presented in Section 3.2 can be fit. It is clear from reading
Section 2.4 that Bragg’s law and the structure factor of the unit cell,
arising from equation 2.24, are intrinsically based on the assumption
of perfect, spatially infinite crystals, an assumption that is plainly not
true in the case of any of the virtual powder samples (or any real sam-
ple, for that matter). That being said, it is useful to attempt such an
analysis to understand the exact nature of the shortcomings of these
assumptions.
In all the fits presented in this section, the powder diffraction data

was fit over the range 0.3 < s < 1.9Å−1 by minimizing the unweighted
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sum of the squared differences within the fityk v0.9.8 software package
[142]. A pseudo-Voigt line-profile shape as described by equation 3.10
was assumed for each of the 14 distinct line profiles in this scattering
vector range. In each virtual powder, an initial fit was attempted where
the profile center x0 and integrated area I were both constrained by
equation 2.24 assuming the nickel structure outlined in Section 2.1.
The cubic lattice parameter, ac, was allowed to vary freely. The
position and occupancy of the single nickel atom in the asymmetric unit
were held fixed at (0,0,0) and 1.0, respectively, while an isotropic Debye-
Waller factor ⟨u2⟩, representing the mean squared atomic displacement,
was allowed to vary freely for this atom. The shape parameters, η and
Γ, of each of the 14 profiles were allowed to vary freely. In the case
of the former, the value was constrained to be between 0 and 1. An
overall scale factor was also refined. For these constrained fits, a total
of 31 free parameters were required.
The diffraction data from samples 1, 2 and 5 could not be fit with this
approach, with the solution always diverging or parameters fitting to
incomprehensible values. The reason for this is apparent, both if a few
domains or the diffraction data from the samples are investigated: all
of the domains within these samples show a random but coherent inter-
layering of bands with either a local fcc or hcp structure. This leads to
diffraction composed of highly shifted and anisotropically broadened
line-profiles from both the fcc and hcp structures. Equation 2.24 and
the associated assumptions are then completely inappropriate.
Samples 4 and 6 show stacking disorder, but are generally much less
severely disordered than samples 1, 2 and 5. As a result, the con-
strained fits of the diffraction data from these samples do not com-
pletely fail, but in general were very poor. In these samples, a second
fit was performed, again assuming a pseudo-Voigt line-profile shape,
but with no constraints on the profile parameters. In these cases, 56
free parameters were required.
In all the fits presented here, the fit quality index used was again
Rsplit, as outlined in equation 3.8 within Section 3.2.2. In this case,
the two different “groups” were the model fit and the synthetic powder
diffraction data. By adopting this approach, the error associated with
the modeling can be compared directly to the error associated with
approximating the ensemble-average.
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3.3.1.1 Sample 3

Sample 3 represents a powder with no stacking disorder, and a median
domains size of 5 nm. A few selected domains are rendered in Figure
3.5. The powder diffraction data arising from samples 3 and the asso-
ciated constrained fit and residual are shown in Figure 3.19. Table 3.3
reports the fitted shape parameters, FWHM and η, for each empirical
profile, along with the integral breadth β. A Williamson-Hall analy-
sis was also performed based on the fitted parameters, and is shown
in Figure 3.19. The physical sample parameters retrieved from this
LPA are presented in Table 3.4, along with corresponding true sample
parameters, known a priori, and the fit quality index.
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Figure 3.19: The powder diffraction data from virtual powder 3 is shown,
fit with a constrained RS model assuming pseudo-Voigt profile shapes. Inset
is the same, on a log-scale to highlight differences in the diffuse intensity.
Below, the integral breadth β of each line profile has been plotted against
the scattering vector s. The trend in β with s has been fit with a line,
following typical Williamson-Hall analysis.

The fit quality index obtained for sample 3, Rsplit = 3.68%, indicates
that the error associated with approximating the powder diffraction
data as a sum of constrained empirical profiles is larger than the error
associated with the finite ensemble-average. The overall residual is
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not independent, showing some level of positive correlation centered
on the location of Bragg peaks. For some individual profiles, most
notably the (111), the residual is asymmetric. It is likely that this misfit
is associated with the assumption of a relatively simple, symmetric
pseudo-Voigt line-profile shape; this empirical profile is not able to
capture all fine details that underlie the true sample dataset pointed
out in Section 2.5.2, such as profile asymmetries and the apparent
violation of Bragg’s law that occur even for otherwise perfect, finite
domains.

profile FWHM Γ (Å−1
) η β(Å−1

)

(111) 0.02056(4) 0.310(6) 0.02513
(002) 0.02052(7) 0.29(1) 0.02404
(022) 0.0205(1) 0.31(2) 0.02476
(113) 0.0206(1) 0.26(2) 0.02470
(222) 0.0211(3) 0.24(7) 0.02369
(004) 0.0207(8) 0.4(1) 0.02485
(133) 0.0201(3) 0.26(5) 0.02483
(024) 0.0208(4) 0.36(6) 0.02460
(224) 0.0206(4) 0.30(8) 0.02462

(115) & (333) 0.0205(4) 0.30(7) 0.02456
(044) 0.021(2) 0.4(3) 0.02512
(135) 0.0198(5) 0.29(8) 0.02452

(006) & (244) 0.0225(8) 0.2(1) 0.02568
(026) 0.021(1) 0.3(2) 0.02471

Table 3.3: Reported for each profile are the FWHM Γ and fraction Cauchy
character η of the empirical pV profiles used within the constrained fit of the
powder diffraction data from virtual powder 3, shown in Figure 3.19. Each
profile is represented by its associated Miller indices (hkl). The resulting
integral breadth β of each profile is also shown.

In terms of the retrieved physical parameters, the traditional con-
strained fit and resulting LPA as applied to virtual powder 3 tends to
slightly overestimate both the volume-weighted mean domain size and
the amount of microstrain, although only by a marginal or negligible
amount for the latter. The lattice parameter ac recovered from the
fit is overestimated by about 0.04%. The Debye-Waller mean squared
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displacement ⟨u2⟩ is overestimated: virtual powder 3 is technically a
static snapshot, with no thermal motion. The picture painted by tra-
ditional LPA is then accurate to a degree, but some of the information
provided is inaccurate, and no information is provided on the shape of
the domain size distribution.

Sample 3 Rsplit = 3.68%
Parameter Constrained fit True value

ac (Å) 3.52153(6) 3.52000
⟨D⟩V (nm) 5.6(1) 5.0
⟨ε⟩ (%) 0.03(1) 0.00
⟨u2⟩(Å2

) 0.01(1) 0.00

Table 3.4: The physical characteristics of virtual powder 3, obtained by con-
strained fitting of the powder diffraction data and subsequent Williamson-
Hall analysis. Reported is the cubic lattice parameter ac, the average mi-
crostrain ⟨ε⟩, the volume-weighted mean domain size ⟨D⟩V , and an isotropic
mean squared thermal displacement ⟨u2⟩ for the nickel atom. Also reported
for comparison are the true characteristics of sample 3, known a priori

3.3.1.2 Sample 4

The domains in sample 4, rendered in Figure 3.6, show a degree of
R = 2 type stacking disorder, and a median domain size of 5 nm.
The fitted powder diffraction data and residual is shown in Figure
3.20, along with a Williamson-Hall plot. Table 3.5 displays the fitted
line-profile shape parameters, while the physical sample parameters
retrieved from the constrained fit and LPA are listed in Table 3.6.
There are several red-flags surrounding the constrained fit presented
in Figure 3.20. The fit quality index Rsplit = 11.0% indicates that the
error associated with the constrained model used here is much larger
than the error associated with approximating the ensemble-average.
The fit residual in Figure 3.20 suggests that the relative integrated
intensities of the structure factor constrained model do not not match
the data. A large amount of diffuse intensity between profiles is missing
from the model, and the positions of several line-profiles, particularly
the (002), do not match those in the observed data. Finally, within
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profile FWHM Γ(Å−1
) η β(Å−1

)

(111) 0.0267(2) 0.80(1) 0.03822
(002) 0.0416(8) 0.82(3) 0.06021
(022) 0.0247(7) 0.99(4) 0.03845
(113) 0.0235(4) 0.76(3) 0.03308
(222) 0.025(2) 0.8(1) 0.03580
(004) 0.040(8) 0.7(3) 0.05604
(133) 0.030(2) 0.6(1) 0.04025
(024) 0.023(1) 0.5(1) 0.02896
(224) 0.028(3) 0.9(2) 0.04165

(115) & (333) 0.025(2) 0.8(1) 0.03522
(044) 0.024(9) 0.9(6) 0.03478
(135) 0.023(2) 0.3(1) 0.02741

(006) & (244) 0.025(3) 0.3(3) 0.02869
(026) 0.05(1) 0.1(5) 0.04991

Table 3.5: The FWHM and fraction Cauchy character η are reported for the
empirical pV profiles used within the constrained fit of the powder diffraction
data from virtual powder 4. The resulting integral breadth β of each profile
is also shown.
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Figure 3.20: The constrained fit of the powder diffraction data arising from
virtual powder 4 is shown, with the associated subsequent Willaimson-Hall
plot shown below, where β of each line-profile is plotted against its scattering
vector s. Also shown is the fit residual. Diffraction data and fit are also
shown inset on a log-scale.

the Williamson-Hall plot, the integral breadth trend does not follow a
straight line, seemingly violating the model behind equation 3.11, with
extensive anisotropic line-profile broadening.
Together, these issues suggest that a model constrained in this way
is inappropriate. The reason is apparent if the nature of the sample is
considered. The domains composing sample 4 are characterized by a
departure from three-dimensional periodicity. The use of Bragg’s law
and the unit cell structure factor to constrain the model are however
based on an explicit assumption of three-dimensional periodicity, lead-
ing to equation 2.24. Naturally then, this constrained fitting approach
fails.
Surprisingly, this poor quality of the fit is reflected only in some of the
retrieved physical characteristics. The volume-weighted mean diameter
is underestimated by about 44%, but other characteristics generally do
not deviate significantly from their true values. The constrained model
however does not consider disorder, and thus no information on the
one-dimensional disorder is retrieved.
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Sample 4 Rsplit = 11.0%
Parameter Constrained fit True value

ac (Å) 3.5195(5) 3.52000
⟨D⟩V (nm) 2.8(4) 5.0
⟨ε⟩ (%) -0.3(3) 0.0

Ni ⟨u2⟩(Å2
) 0.078(3) 0.0

Table 3.6: The characteristics obtained by constrained fitting of the powder
diffraction data from virtual powder 4. Reported are the recovered and true
physical characteristics, including the cubic lattice parameter ac, the average
microstrain ⟨ε⟩ and the volume-weighted mean domain size ⟨D⟩V , and an
isotropic Debye-Waller mean squared atomic displacement ⟨u2⟩ for the nickel
atom.

In light of the poor quality of the constrained fit, the diffraction data
from sample 4 was also fit using an unconstrained model, with all profile
parameters allowed to vary freely. The result of this fitting approach
are shown in Figure 3.21, along with the resulting Williamson-Hall plot.
The fitted profile parameters are reported in Table 3.8, along with the
integral breadth β and the deviations Δx0 in the profile positions with
respect to what would be expected by applying Bragg’s law for an ideal
nickel structure.
In general, the fit is highly improved with respect to the constrained
model, with a the fit quality index Rsplit = 3.20% (compared to the
11.0% seen for constrained fitting). The diffuse intensity between pro-
files is more accurately reproduced, as are the profile positions. While
the fit is improved, the error associated with the fit is still greater than
that associated with the finite ensemble-average approximation, the
residual again shows a degree of correlation, and the fraction Cauchy
character η fit to unphysical values greater than unity for several of
the line-profiles, indicating a super-Lorentzian character.
Table 3.8 displays the physical sample parameters retrieved from this
fit. It is worth noting that by adopting this unconstrained fitting
approach, all information on atomic structure is lost: no lattice pa-
rameter or Debye-Waller mean squared atomic displacement can be
retrieved easily, unless fitted peak parameters are analyzed ex post
facto. The only information that can be estimated is microstructural,
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profile x0(Å
−1

) I(Å−1
) η FWHM

Γ(Å−1
)

β(Å−1
) Δx0(Å

−1
)

(111) 0.49265(3) 6.61(3)×108 0.716(9) 0.02814(9) 0.03748 -0.00059(3)
(002) 0.5621(1) 3.20(3)×108 0.60(2) 0.0449(2) 0.0573 0.0061(1)
(022) 0.80368(8) 1.98(2)×108 0.91(2) 0.0237(3) 0.0367 -0.00015(8)
(113) 0.94219(6) 2.37(3)×108 0.78(2) 0.0227(3) 0.0335 0.00003(6)
(222) 0.9829(2) 5.1(3)× 107 0.4(1) 0.024(1) 0.029 0.0012(2)
(004) 1.139(1) 2.7(3)× 107 0.8(3) 0.040(3) 0.054 -0.003(1)
(133) 1.2391(4) 8.4(4)× 107 0.90(8) 0.028(1) 0.042 -0.0008(4)
(024) 1.2697(2) 6.6(4)× 107 0.4(1) 0.022(1) 0.029 0.0007(2)
(224) 1.3922(6) 5.2(2)× 107 1† 0.0282(7) 0.045 -0.0004(6)
(115)&
(333)

1.4755(6) 5.1(2)× 107 0.83(9) 0.024(6) 0.036 0.0007(6)

(044) 1.606(2) 1.4(2)× 107 1.0(3) 0.0236(6) 0.038 0.001(2)
(135) 1.6809(7) 4.2(4)× 107 0.4(2) 0.022(4) 0.027 -0.0002(7)
(006)&
(244)

1.704(1) 3.2(5)× 107 0.8(2) 0.024(7) 0.035 0.000(1)

(026) 1.797(3) 2.3(4)× 107 1† 0.038(4) 0.061 0.000(3)

Table 3.7: Shown are the profile parameters resulting from the uncon-
strained fit of the diffraction data from sample 4. Also shown are the profile
shifts Δx0 from ideal Bragg position, and the integral breadths β of each
profile. †Shape parameter persistently fit to unphysical value greater than 1
and thus was subsequently fixed to 1.
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Figure 3.21: The unconstrained fit of the powder diffraction data from
sample 4, shown on both a linear and log (inset) scale. A Williamson-Hall
plot of the integral breadth β of each line profile against its scattering vector
s is also shown. The trend in β with s has been fit with a line to extract the
intercept and slope.

and even this information is inaccurate in this case, as it is based
on Williamson-Hall analysis as manifested in equation 3.11, which as-
sumes only size and mirostrain but not stacking disorder contribute to
line-profile breadths. As a result, the mean domain size is again un-
derestimated by about by about 40%. Thus, the unconstrained fitting
approach does provide a higher quality fit, but provides no improve-
ment in terms of understanding the sample, in fact it actually provides
less information.

3.3.1.3 Sample 6

The domains in sample 6, rendered in Figure 3.8, show the same type
and degree of stacking disorder as sample 4, and the same median size,
15 nm, as sample 7. The fitted powder diffraction data from samples
6 and fit residual are shown in Figure 3.22, along with a Williamson-
Hall plot. Table 3.9 displays the fitted line-profile parameters, while
the physical sample characteristics, retrieved from the fitting and sub-
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Sample 4 Rsplit = 3.20%
Parameter Unconstrained fit True value

⟨D⟩V (nm) 2.4(6) 5.0
⟨ε⟩ (%) 0.0(3) 0.0

Table 3.8: The physical sample characteristics obtained by unconstrained
fitting the powder diffraction data from sample 4, with the unconstrained fit
quality index Rsplit. Only the miscrostructural parameters are reported, as
atomic information cannot be retrieved with an unconstrained model. Also
reported for comparison are the true characteristics of sample 4, known a
priori

sequent Williamson-Hall analysis, are listed in Table 3.10.
For sample 6, the constrained fit yields a fit quality index of Rsplit =

11.8%, again suggesting that the error associated with fitting is greater
than that associated with taking an approximate ensemble average.
The constrained fit in this case shows problems similar to the con-
strained fit of the diffraction data from sample 4. The fit residual, as
seen in Figure 3.22, shows positive correlation, several profiles fit to
a super-Lorentzian shape, the relative intensities of the fit do not not
match the data, a large amount of diffuse intensity is missing from the
fit, and the position of several line-profiles do not match those in the
observed data. Furthermore, the Williamson-Hall plot does not follow
the linear trend predicted by equation 3.11, with all profiles, especially
the (002) and (004), showing extensive anisotropic broadening.
The poor level of fit is also reflected clearly in the physical character-
istics of the sample, retrieved from the fit and presented in Table 3.10.
The volume-weighted mean domain diameter ⟨D⟩V is underestimated
by 300%. An unphysical negative average microstrain is incorrectly
found, the lattice parameter is underestimated by about 0.05%, and
the mean squared thermal displacement of the nickel atom is overesti-
mated.
The reason for the failure is again clear if the sample is considered.

The domains composing sample 6 are characterized by a departure
from three-dimensional periodicity. The use of Bragg’s law and the unit
cell structure factor as in equation 2.24 to constrain the fit explicitly
imposes three-dimensional periodicity on the structure. Naturally then,
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profile FWHM Γ(Å−1
) η β(Å−1

)

(111) 0.01130(8) 1† 0.017767
(002) 0.0282(8) 0.91(4) 0.043239
(022) 0.0092(1) 1† 0.014656
(113) 0.0078(2) 1† 0.012363
(222) 0.0108(6) 1† 0.016895
(004) 0.026(9) 1† 0.040681
(133) 0.0142(7) 1† 0.021902
(024) 0.0081(5) 0.8(1) 0.011468
(224) 0.013(1) 1† 0.019784

(115) & (333) 0.0090(6) 1† 0.013915
(044) 0.008(2) 1† 0.012825
(135) 0.0077(7) 0.7(2) 0.010320

(006) & (244) 0.008(1) 0.7(3) 0.011900
(026) 0.02(1) 0.9(7) 0.032722

Table 3.9: Reported are the empirical profile parameters resulting from the
constrained fit of the powder diffraction data from sample 6, along with
the integral breadth β of each profile. †Shape parameter persistently fit to
unphysical value greater than 1 and thus was subsequently fixed to 1.

Sample 6 Rsplit = 11.8%
Parameter Constrained fit True value

ac (Å) 3.5195(3) 3.52000
⟨D⟩V (nm) 5(1) 15.0
⟨ε⟩ (%) -0.3(3) 0.000
⟨u2⟩(Å2

) 0.067(6) 0.000

Table 3.10: The physical characteristics of sample 6, obtained by con-
strained fitting of the powder diffraction data are reported, along with the
true characteristics of sample 6, known a priori. Also reported is the fit
quality index Rsplit.
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Figure 3.22: The powder diffraction data arising from virtual powder 6, fit
with constrained model, and the subsequent Williamson-Hall analysis are
shown. Shown also is the offset fit residual.

the constrained fit is of poor quality, and the retrieved parameters are
unreliable.
Again, seeing the failure of a constrained model, the powder diffrac-
tion data from sample 6 was fit using an unconstrained model. The
result is shown in Figure 3.23, along with a Williamson-Hall plot. Ta-
ble 3.11 gives the fitted profile parameters using this approach, while
Table 3.12 displays the physical sample characteristics retrieved from
the fit.
The unconstrained fit represents an improvement over the constrained
fit in terms of the level of agreement, with the fit quality index decreas-
ing from Rsplit = 11.8% to 8.72%. This is still however greater than
the error obtained by approximating the ensemble-average. The pro-
file positions match the data, but the unconstrained fit is still plagued
by problems, with many profiles fitting to a super-Lorentzian shape,
missing diffuse intensity, and a fit residual showing clear positive cor-
relation.
The microstructural information, estimated from the unconstrained
fit is still inaccurate despite a slightly improved fit agreement. The
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profile x0(Å
−1

) I(Å−1
) η FWHM

Γ(Å−1
)

β(Å−1
) Δx0(Å

−1
)

(111) 0.49233(2) 1.71× 1010 1† 0.01112(6) 0.01747 -0.00027(2)
(002) 0.5636(2) 1.00(1) ×

1010
1† 0.0304(5) 0.04779 0.0046(2)

(022) 0.80354(4) 4.60(5)×109 1† 0.0077(1) 0.01214 -0.00001(4)
(113) 0.94226(3) 5.82(6)×109 0.94(3) 0.0077(1) 0.01179 -0.00003(3)
(222) 0.9833(2) 1.88(7)×109 1† 0.0121(6) 0.01902 0.0009(2)
(004) 1.139(2) 8(1)× 108 1† 0.028(5) 0.04458 -0.002(2)
(133) 1.2381(3) 2.11(8)×109 1† 0.0147(8) 0.02311 -0.0007(3)
(024) 1.2702(1) 2.02(7)×109 0.92(9) 0.0081(4) 0.01231 0.0003(1)
(224) 1.3920(5) 1.23(7)×109 1† 0.013(1) 0.02053 -0.0002(5)
(115)&
(333)

1.4761(3) 1.26(6)×109 1† 0.0087(5) 0.01369 0.0001(3)

(044) 1.6070(9) 3.3(5)× 108 1† 0.008(2) 0.01230 0.0001(9)
(135) 1.6808(3) 1.24(7)×109 0.8(2) 0.0077(5) 0.01100 -0.0001(3)
(006)&
(244)

1.7041(5) 8.2(6)× 108 1† 0.0089(9) 0.01391 0.0004(5)

(026) 1.797(3) 6(1)× 108 1† 0.028(7) 0.04449 0.000(3)

Table 3.11: Shown are the profile parameters resulting from the uncon-
strained fit of the diffraction data from sample 6. Also shown are the profile
shifts Δx0 from ideal Bragg position, and the integral breadths β of each
profile. †Shape parameter persistently fit to unphysical value greater than 1
and thus was subsequently fixed to 1.

Sample 6 Rsplit = 8.72%
Parameter Unconstrained fit True value

⟨D⟩V (nm) 5(2) 15.0
⟨ε⟩ (%) -0.2(4) 0.0

Table 3.12: The physical sample characteristics obtained by fitting the pow-
der diffraction data from sample 6, with the unconstrained fit quality index
Rsplit. Only the miscrostructural parameters are reported, as atomic infor-
mation could not be retrieved with an unconstrained model. Also reported
for comparison are the true characteristics of sample 6, known a priori
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Figure 3.23: The unconstrained fit of the powder diffraction data from
sample 6, shown on both a linear and log (inset) scale. A Williamson-Hall
plot of the integral breadth β of each line profile against its scattering vector
s is also shown. The trend in β with s has been fit with a line to extract the
intercept and slope.

volume-weighted mean domain diameter ⟨D⟩V is still underestimated
by 300%, and an unphysical negative average microstrain is again in-
correctly found.

3.3.1.4 Sample 7

Sample 7 represents a powder with no stacking disorder, and median
domains size of 15 nm. Figure 3.9 shows a few rendered examples of do-
mains from this sample. Figure 3.24 shows the fitted powder intensity
distribution and residual from samples 7, along with a Williamson-
Hall plot. The fitted line-profile parameters are listed in 3.13, while
the physical parameters of the sample, retrieved from the fit, are shown
in 3.14, along with corresponding true samples 7 parameters.
While the constrained fit reproduces the diffraction data well, the fit
quality index Rsplit = 3.92% indicates that more error is introduced by
fitting than by approximating the ensemble-average. In general, the fit
residual again shows positive correlation centered on the locations of
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Figure 3.24: The constrained fit of the powder diffraction data from sample
7. Shown immediately below is the residual. Below the residual, the integral
breadth β of each line profile has been plotted against the scattering vector s.
The trend in β with s has been fit with a line, following typical Williamson-
Hall analysis.

Bragg peaks. The Williamson-Hall plot is essentially linear.
As with sample 3, the constrained fitting of the diffraction data from
sample 7 generally provides accurate physical sample characteristics,
shown in Table 3.14. Both the volume-weighted mean domain size
and microstrain are overestimated, but only slightly so. In this case,
the latter is essentially estimated at zero, within error. The lattice
parameter ac is recovered more faithfully then was seen in the case of
sample 3, but is still slightly overestimated. The Debye-Waller mean
squared atomic displacement ⟨u2⟩ is retrieved faithfully.
In summary, empirical pseudo-Voigt profiles were employed to fit syn-
thetic powder diffraction data from the nickel virtual powders outlined
at the beginning of this chapter, following both an unconstrained ap-
proach and an approach constrained by the application of equation
2.24. Only 4 of the synthetic diffraction datasets could be fit through
such an approach, while the remaining 3 datasets resulted in fits that
diverged, or converged to truly nonsensical values, regardless of the
starting parameters.
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profile FWHM Γ(Å−1
) η β(Å−1

)

(111) 0.00684(1) 0.279(5) 0.008247(1)
(002) 0.00684(2) 0.28(1) 0.008249(2)
(022) 0.00684(3) 0.28(2) 0.008245(3)
(113) 0.00684(3) 0.28(1) 0.008243(6)
(222) 0.00683(9) 0.31(6) 0.008341(8)
(004) 0.0068(2) 0.3(1) 0.008295(1)
(133) 0.00684(7) 0.29(4) 0.008291(3)
(024) 0.00684(8) 0.29(4) 0.008283(2)
(224) 0.0068(1) 0.28(6) 0.008252(5)

(115) & (333) 0.0068(1) 0.28(6) 0.008242(4)
(044) 0.0068(4) 0.3(2) 0.008323(3)
(135) 0.0068(1) 0.28(7) 0.008253(4)

(006) & (244) 0.0069(2) 0.3(1) 0.008400(5)
(026) 0.0068(3) 0.3(2) 0.008277(4)

Table 3.13: The FWHM and fraction Cauchy character η of the empirical
pV profiles used to fit the powder diffraction data from virtual powder 7
are reported for each profile, represented by the Miller indices (hkl). The
resulting integral breadth β of each profile is also shown

Sample 7 Rsplit = 3.92%
Parameter Constrained fit True value

ac (Å) 3.52017(2) 3.52000
⟨D⟩V (nm) 16.3(3) 15.0
⟨ε⟩ (%) 0.0007(5) 0.0
⟨u2⟩(Å2

) 0.00(4) 0.0

Table 3.14: The characteristics obtained by fitting the powder diffraction
data from virtual powder 7, along with the fit quality index. Also reported
for comparison are the true characteristics of sample 7, known a priori
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The condition for convergence in this case was the type of one-dimensional
disorder: samples 1, 2 and 5 are characterized by an R = 0 type stack-
ing disorder with an equal (or random) probability of each of the two
layer-layer translations. This extreme disorder precludes any attempt
to fit the data by employing perturbed models based fundamentally on
three-dimensional periodicity, as the powder diffraction data is char-
acterized by anisotropic line-profile broadening, profile position shifts,
and the presence of new profiles. These complex features necessitate
that all fitting techniques, both constrained and unconstrained, fail.
This is a large shortcoming, and leaves an entire group of materials
“uncharacterized.”
Conversely, when the samples are characterized by an R = 2 type
stacking process with a larger probability of stacking sequences result-
ing in a “normal” fcc structure, such as samples 4 and 6, the fitting
approach employed in this section is more successful in reproducing the
observed data. That being said, the physical characteristics, obtained
partially by direct fitting and partially by ex post facto interpretation
of the empirical profile shapes, are generally unreliable and inaccu-
rate. Average domain sizes are underestimated and the refined lattice
parameter deviates significantly more than is acceptable in a typical
diffraction study.
The fitting approach employed in this section is most successful in
reproducing the observed data for samples such as 3 and 7, character-
ized by an absence of stacking disorder, or an entirely fcc structure.
In general, the physical characteristics of such samples are retrieved
accurately and reliably, although only an average domain size is ob-
tained with no information regarding the shape of the domain size
distribution.
When a small degree of one-dimensional disorder, or stacking disor-
der, is introduced into the finite domains composing the sample, as
in samples 4 and 6, constrained fitting approaches fail, both in repro-
ducing the data, and in retrieving the physical sample characteristics.
While a move towards unconstrained fitting can generally improve the
quality of the fit, this entails an increase in the number of fitted pa-
rameters. Clear methods for translating these fitted parameters unam-
biguously to meaningful physical information ex post facto do not exist
in a general sense. In any case, while the fit may improve, atomic-scale
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information is completely lost by employing an unconstrained fitting
technique, and the accuracy of the retrieved microstructural informa-
tion is not significantly improved over constrained approaches.
Finally, it should be highlighted that the successful retrieval of sample
characteristics in the ordered samples can be misleading. For all the
datasets considered, the resulting fit error, measured by the factor
Rsplit, was greater than the error introduced by approximating the
ensemble-average. This indicates that there are some details of the line
profiles that cannot be captured by fits based on empirical profiles.

3.3.2 Computing the FT directly using new models

The models employed in the previous section are based the assumption
of empirical profiles (here equation 3.10 was used) and the application
of Bragg’s law with the traditional description of the structure fac-
tor of the unit cell, as embodied in equation 2.24. Subsequently, a
Williamson-Hall analysis based on equation 3.11 was applied to obtain
physical information on the sample microstructure.
This approach was reasonably successful for samples 3 and 7, show-
ing no linear disorder. It was significantly less suscessful when linear-
disorder was present, failing to retrieve accurate physical characteris-
tics in the case of moderately disordered samples 4 and 6, and resulting
in divergent fits in in the case of heavily disordered samples 1, 2, and
5.
An alternative approach is to make use of the models outlined in Sec-
tion 2.6 to compute the model diffracted intensity, and to refine those
model parameters directly, without resorting to empirical profiles. The
equations outlined in this section take as input only the details of the
stacking disorder and the domain morphology and size distribution,
and provide directly the diffracted intensity distribution. Such an ex-
ercise, as applied to the 7 virtual powders outlined in this chapter, is
the focus of this section.
The first step, as with any fitting approach, is to assume reasonable
starting models. In this case, significant information on the samples is
known a priori. In a real experimental case, such as that presented in
Chapter 4, it is mandatory to first have a good understanding of the
chemistry and the likely crystal structure of the sample, the type and
extent of linear disorder, and the morphology and approximate size of
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the domains. This is possible with careful synthetic control and an
exploratory electron microscopy study.
The samples here are all composed of close packed polytypes of nickel,
and thus the layer unit cell as outlined in Section 2.1 is assumed. The
equivalent cubic lattice parameter ac was refined and used to constrain
the layer thickness cl and lattice parameters al and bl through equation
4.2. The one nickel atom in the layer unit cell is on a special site, and
as a result its position was not refined here. An isotropic Debye-Waller
factor ⟨u2⟩, representing the mean squared atomic displacement of the
nickel atom, was also refined. This gave a total of 2 refined parameters
associated with the atomic structure of the samples.
In this case, the stacking model outlined in Section 2.1 is assumed,
allowing equation 2.87 to be used to describe the diffracted powder
intensity distribution. As mentioned in Section 3.1.1, any R = n stack-
ing process can be successfully modeled by an R ≥ n stacking process.
For the samples considered here, the largest Reichweite number is 2,
and thus an R = 2 stacking process will be assumed for all samples, as
governed by the probability matrix outlined in equation 3.3. With this
model, two parameters, the transition probabilities αff and αbf , were
refined to describe the disorder. It should be pointed out that using
the probability matrix shown in equation 3.3 within equation 2.87 is
valid even when the structure is ordered, implying that αff = 1 and
αbf = 0.
It is known a priori that the domains composing the samples con-
sidered here show an isotropic morphology, with size governed by a
log-normal distribution. With this in mind, the CVF arising from a
log-normal distribution of spherical domains as written in equation
2.47 can be used to describe the broadening associated with finite crys-
tal size. This entails the use of two refinable parameters governing the
log-normal distribution, respectively the log-normal mean and stan-
dard deviation, µ and σ.
Including an overall scale parameter to account for proportionality,
only 7 total parameters are required to fit the powder diffraction data
in these samples. This represents an improvement over the fitting
approach outlined in Section 3.3.1, where as few as 31 and as many
as 56 free parameters were needed to fit the data. Moreover, each
parameter used for fitting in this section is directly connected to a
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physical characteristic of the actual sample, rather than being related
to such a characteristic ex post facto.
The synthetic powder diffraction datasets from all virtual powders
considered here were fit by using the above approach to compute the
model data. The indicated 7 model parameters were varied to minimize
the total sum of the squared difference between the model and the data
through a gradient based algorithm. This all was as implemented in the
Mathematica software package. The fits were performed five times for
each sample, with starting parameters chosen randomly from a range
of ±10% of the true parameter value. The best best fit of the five was
taken.
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Figure 3.25: Shown is the synthetic powder diffraction data from sample 1,
along with a fit using an approach where the FT is computed directly from
physical characteristics of the sample. Both are shown on a linear and log
(inset) scale. The fit residual is also shown.

The synthetic powder diffraction data from sample 1 is shown in Fig-
ure 3.25 on both a linear and log-scale, along with the fit as described
above and the fit residual. In general, the fit agreement is exceptional,
with Rsplit = 1.52% indicating a fitting error nearly equivalent to
that associated with the ensemble-averaging process used to build the
dataset. The fit residual is generally small across the scattering vector
range considered, with the largest residuals concentrated about the lo-
cation of Bragg peaks in an ideal nickel structure. It is not possible to
compare this fit with one using empirical profile functions, as fitting
with this approach completely failed.
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Sample 1 Rsplit = 1.52%
Parameter Direct fitting True value

ac (Å) 3.520(4) 3.52000
⟨u2⟩(Å2

) 0.0(1) 0.0
αff 0.50(5) 0.50
αbf 0.49(4) 0.50

eµ (nm) 4.97(8) 5.0
σ 0.02(2) 0.0

Table 3.15: Physical characteristics of sample 1 retrieved by directly fitting
the powder diffraction data using expressions for the FT, along with the true
sample characteristics for comparison. Reported is the

The size dispersion of the domains in sample 1 is best described by
a Dirac distribution, while the stacking disorder is described by the
R = 0 process leading to a transition probability matrix as in equation
3.1. Together these two phenomena require only 1 free parameter: the
median of the Dirac distribution. By modeling these two features as
as a log-normal distribution and an R = 2 process, respectively, an
additional 3 parameters are introduced.
Considering the over-defined model, the physical characteristics of
sample 1, obtained through direct fitting and reported in Table 3.15,
are generally recovered well. The atomic structure is recovered exactly,
while the details of the stacking process match almost exactly within
error. The fitted fitted parameters µ and σ reproduce the true Dirac
domain size distribution very well.
In Figure 3.26 the powder diffraction data from sample 2 is shown,
along with the fit as described above, on both a linear and log-scale.
The fit agreement is very good, with Rsplit = 1.52% again indicat-
ing a fitting error that is about equivalent to that associated with the
ensemble-averaging process used to build the dataset. Across the scat-
tering vector range considered the fit residual is generally small, with
the largest residuals concentrated about the location of Bragg peaks
in an ideal nickel structure. Again, the powder diffraction data from
sample 2 could not be fit with empirical profiles following the approach
outlined in Section 3.3.1.
The physical characteristics of sample 2 obtained through this fit are
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Figure 3.26: Powder diffraction data from sample 2 is shown with a fit done
by directly computing the FT and refining the physical characteristics of the
sample, on both a log (inset) and linear scale. The fit residual is also shown
in red.

reported in Table 3.16. All characteristics are recovered with high accu-
racy. The best agreement is found in the case of the atomic structure,
which is recovered exactly. The details of the stacking process match
almost exactly within error but the estimated standard uncertainties
on the refined transition probabilities are again large. The parameters
of domain size distribution are also recovered accurately.
For sample 3, showing no linear disorder, the fit gives very high agree-
ment with the synthetic powder diffraction data, and is presented in

Sample 2 Rsplit = 1.52%
Parameter Direct fitting True value

ac (Å) 3.520(3) 3.52000
⟨u2⟩(Å2

) 0.0(2) 0.0
αff 0.49(2) 0.50
αbf 0.50(5) 0.50

eµ (nm) 5.01(7) 5.0
σ 0.11(6) 0.10

Table 3.16: Retrieved physical characteristics of sample 2, obtained by di-
rectly fitting the powder diffraction data using expressions for the FT
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Figure 3.27: Shown is the powder diffraction data from sample 3 and the
fit done by directly computing the FT. Both are shown on a linear and log
(inset) scale. Shown below in red is the fit residual.

Figure 3.27. The fit error of Rsplit = 0.40% is very low, much lower
than that associated with the finite ensemble average. The fit resid-
ual is nearly flat across the entire scattering vector range, with slight
fluctuations at the location of Bragg peak maxima.
The fitted physical sample characteristics are shown in Table 3.17. In
this case all characteristics are retrieved with near exact accuracy. The
estimated standard uncertainties are also much lower, especially on the
transition probabilities. This is likely because any small change from
the three-dimensional periodicity entailed by αff = 1.0 and αbf = 0.0

Sample 3 Rsplit = 0.40%
Parameter Direct fitting True value

ac (Å) 3.5200(1) 3.52000
⟨u2⟩(Å2

) 0.00(1) 0.0
αff 0.999(1) 1.00
αbf 0.000(2) 0.00

eµ (nm) 5.02(5) 5.0
σ 0.100(9) 0.10

Table 3.17: Physical characteristics of sample 3 retrieved by directly fitting
the synthetic powder diffraction data using expressions for the FT
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represents a very large change in the diffracted intensity distribution,
leading to a very steep objective function gradient.
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Figure 3.28: Shown is the synthetic powder diffraction data from sample 4
as well as the fit by directly computing the FT. Shown below in red is the
fit residual.

Sample 4 Rsplit = 1.80%
Parameter Direct fitting True value

ac (Å) 3.5200(4) 3.52000
⟨u2⟩(Å2

) 0.00(5) 0.0
αff 0.802(4) 0.80
αbf 0.21(3) 0.20

eµ (nm) 5.1(1) 5.0
σ 0.11(2) 0.10

Table 3.18: Physical characteristics of sample 4 retrieved by directly fitting
powder diffraction data using expressions for the FT

The fit of the powder diffraction data from sample 4, showing an
R = 2 linear disorder, is presented in Figure 3.28. It yields good
agreement with the synthetic powder diffraction data, with a fit error
ofRsplit = 1.80%, equivalent to that associated with the finite ensemble
average. The fit residual is again concentrated at the location of Bragg
peak maxima.
Presented in Table 3.18 are the fitted physical sample characteristics.
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3.3. Characterization using RS approaches

All characteristics are recovered with high accuracy, but the best agree-
ment is again found with atomic structure characteristics, which are
recovered exactly within estimated uncertainty. The parameters of do-
main size distribution are also recovered accurately with low estimated
uncertainties.
The αff transition probability matches almost exactly within error,

with a low estimated standard uncertainty. Conversely, αbf is retrieved
with less accuracy and a higher estimated standard uncertainty. The
relative large probability (0.80) of consecutive f transitions creates
large blocks of consecutive f transitions which dominate the diffracted
intensity distribution, and thus dominate the gradient of the fit objec-
tive function and the standard uncertainty estimates. The portions of
defective structure created when the large blocks of consecutive f tran-
sitions are by chance interrupted tend to be more rare and smaller,and
thus contribute relatively less to the diffracted intensity distribution.
For this reason, the gradient of the fit objective function with respect
to parameters governing these structural features (αbf ) is less steep,
leading to a larger estimated error.
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Figure 3.29: Powder diffraction data of sample 5 shown on a linear and log
scale (inset). Also shown is the fit performed by directly computing the FT,
along with the fit residual.

Like samples 1 and 2, sample 5 shows R = 0 linear disorder. Again,
the model adopted here is over-defined, being intended for an R = 2
stacking process. That being said, the fit of the powder diffraction
data from sample 5, presented in Figure 3.29, shows good agreement,
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Sample 5 Rsplit = 0.72%
Parameter Direct fitting True value

ac (Å) 3.5201(2) 3.52000
⟨u2⟩(Å2

) 0.0(1) 0.0
αff 0.49(3) 0.50
αbf 0.50(4) 0.50

eµ (nm) 15.2(3) 15.0
σ 0.10(1) 0.10

Table 3.19: Physical characteristics of sample 5 retrieved by directly fitting
powder diffraction data using expressions for the FT

with a sufficiently low value of error, Rsplit = 0.72%. The fit residual is
nearly featureless, with small fluctuations at the the location of sharp
Bragg-like features.
The physical characteristics retrieved by direct fitting are shown in

Table 3.19, and generally agree well with the true sample character-
istics. The estimated uncertainties on the transition probabilities are
again large, as was seen in the other samples showing R = 0 linear
disorder (samples 1 and 2). That being said, all characteristics are re-
trieved nearly exactly within estimated uncertainties. This represents
a large improvement, as fits of this dataset employing empirical profiles
complete diverged.

Sample 6 Rsplit = 0.64%
Parameter Direct fitting True value

ac (Å) 5.5200(3) 3.52000
⟨u2⟩(Å2

) 0.00(4) 0.0
αff 0.799(1) 0.80
αbf 0.21(3) 0.20

eµ (nm) 14.9(2) 15.0
σ 0.098(1) 0.10

Table 3.20: Sample 6 characteristics, retrieved by direct fitting of the pow-
der diffraction data using expressions for the FT

Like sample 4, sample 6 shows R = 2 linear disorder. The fit of the
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Figure 3.30: Shown on a log (inset) and linear scale is the powder diffraction
data from sample 6 fit by directly computing the FT. The fit residual is also
shown in red.

powder diffraction data from sample 6, presented in Figure 3.30, shows
a high level of agreement, with an error of Rsplit = 0.64%, lower than
that associated with the finite ensemble average. The fit residual is
nearly featureless, with very slight fluctuations at the the location of
sharp Bragg-like features.
The fitted physical sample characteristics are shown in Table 3.20. In
this case all characteristics are retrieved with exact accuracy, within
the bounds of the low estimated uncertainties.

Sample 7 Rsplit = 1.08%
Parameter Direct fitting True value

ac (Å) 3.52000(6) 3.52000
⟨u2⟩(Å2

) 0.000(1) 0.0
αff 1.000(1) 1.00
αbf 0.000(2) 0.00

eµ (nm) 15.00(6) 15.0
σ 0.100(2) 0.10

Table 3.21: Sample 7 characteristics, retrieved by direct fitting of the pow-
der diffraction data using expressions for the FT

Sample 7 represents an ideal fcc nickel powder with no stacking dis-
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Figure 3.31: Shown on a log (inset) and linear scale is the powder diffraction
data from sample 7 fit by directly computing the FT. The fit residual is also
shown in red.

order. The powder diffraction data and fit are shown in Figure 3.31.
Again, the fit reproduces the data very well, with a low error of Rsplit =
1.08%. The fitted physical sample characteristics are shown in Table
3.21. In the case of this idealized powder, all characteristics are re-
trieved with exact accuracy, within the estimated uncertainties, which
themselves are very low compared to those of the other samples.

In summary, for each of the 7 synthetic diffraction datasets analyzed
in this section, a direct fitting approach was applied. Equations 2.47
and 3.3 were used to describe, respectively, the diffraction broadening
effect of a polydisperse finite domain size and transition matrix gov-
erning the one-dimensional disorder. These two equations were substi-
tuted into equation 2.87 to compute the diffracted intensity directly.
By optimizing the physical characteristics, a best-fit was found between
the modeled and synthetic diffraction data, without invoking empirical
profile functions. For all the datasets considered, the resulting fit er-
ror, measured by the factor Rsplit, was less than the error introduced
by approximating the ensemble-average. In all cases, the direct fit-
ting procedure retrieved exact or nearly exact sample characteristics
with relatively low estimated uncertainties. The lowest uncertainties
were achieved in samples with less linear disorder, on characteristics
pertaining to atomic structure.
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3.4. Concluding remarks

3.4 Concluding remarks

This chapter outlined the procedure for creating a virtual atomistic
powder sample. First, models were outlined for governing the general
powder ensemble characteristics, such as domain size and atomistic
layer arrangements. A spherical morphology was adopted with domain
diameters distributed log-normally. A layer description of the nickel
structure was adopted from the work of Warren [21], and a simple
Markov model was employed to describe stacking sequences assuming
only either f or b relative layer translations were possible.
Markov chains and log-normal distributions, as applied here, are how-
ever abstractions derived to reduce the amount of information neces-
sary to describe a large ensemble. The distribution of domain sizes in
a real sample may or may not be accurately described as “log-normal,”
and the layer stacking sequences may or may not be accurately de-
scribed by a Markov chain. These assumption are employed here be-
cause they provide relatively simple and appropriate examples that can
be used to test the accuracy and reliability of the different RS models
outlined in Chapter 2.
Through use of the DISCUS software package [130], atomistic pow-
ders with known characteristics were constructed. The DSE (equation
3.7) was used to compute the powder averaged diffracted intensity
distribution from each domain and these intensity distributions were
averaged for each sample. A novel approach was outlined for deter-
mining the degree of convergence of the ensemble-averaged diffracted
intensity distributions, borrowed from serial femtosecond crystallogra-
phy[139]. Using this approach, the minimum library size necessary
for reproducing an approximate ensemble-average faithfully was estab-
lished and investigated as a function of sample characteristics.
The use of the DSE closely resembles a true diffraction experiment,
at least more so than the use of the RS models outlined in Chapter
2. When applying the DSE, only configurations which are explicitly
present are considered, just as with a true diffraction experiment. With
this in mind, it is interesting to note that for all of the samples con-
sidered here, libraries of less than 650 configurations were required
to reach a reasonable level of convergence. In some cases, as few as
177 domains were necessary. This introduces some ambiguity into the
diffraction measurement: it is not possible to distinguish between a
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true powder ensemble dictated by the general characteristics, contain-
ing millions of domains, and one composed of just the finite library
necessary to produce a reasonably converged ensemble average.
Having established the approximate convergence of the diffraction
data from the virtual powders, two different data fitting approaches
were applied, based on two different RS models from Chapter 2. The
first model was based on empirically broadening a powder pattern de-
rived from the assumption of three-dimensional periodicity and large
crystals, as per equation 2.24. In general, this method completely failed
in both fitting the data and retrieving sample characteristics when sig-
nificant stacking disorder was present. When only a limited amount
of stacking disorder was present, the model was successful in repro-
ducing the experimental data (to an extent) but the characteristics of
the sample were not retrieved reliably or accurately. When no stacking
disorder was present, the model was successful both in reproducing the
experimental data and accurately retrieving the characteristics of the
sample.
These results are important, because they demonstrate the perils asso-
ciated with applying models in situations where their base assumptions
are not satisfied. In some cases, the samples considered here deviated
enough from the assumptions of the model to clearly guarantee the
failure of data fitting. However in other cases the deviations from the
model assumptions are not significant enough to guarantee failure of
the fitting. In these cases, fitting of the data is successful, but the re-
trieved sample characteristics are completely nonsensical. Such perils
can only be avoided in the case of real samples if complementary char-
acterization approaches are applied. Diffraction is not by any means
a characterization approach that can provide complete understanding
of the sample, but rather it must exist as part of a vast tool-set.
With the shortcomings of these models established, a more physically
reasonable model was used to fit the synthetic powder diffraction data
from these samples. With this approach, the parameters of the domain
size distribution, the layer transition probabilities, and the atomic unit
cell of the layers were used directly in equation 2.87 to fit the powder
diffraction data.
By adopting this approach, each powder diffraction dataset from the

7 virtual powders considered here was successfully fit, with fit quality
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indices indicating that the fit error was lower than or about equivalent
to that introduced by approximating the finite ensemble average. Be-
yond the high level of agreement between the fit and the diffraction
data, the physical characteristics of each of the 7 virtual powders were
retrieved accurately, even in cases where a somewhat inappropriate
stacking model was assumed (for example, when an R = 2 stacking
model was used to fit diffraction data from samples 1, 2, 3, 5 and 7,
which were characterized by an R < 2 stacking processes).
In such direct fitting situations, the first and most important step is
always an assumption of the proper models. In the cases presented
in this chapter, the fitting procedure benefited enormously from prior
knowledge of the true sample characteristics. With this information, it
was trivial to assume the correct models and proceed with the analysis.
it should be stressed again that, when considering a real powder sam-
ple, acquisition of such information requires the application of many
different and overlapping characterization techniques.
A final word should be devoted to the atomistic virtual powders them-
selves. Each domain within these samples represents an idealized and
static snapshot, and does not necessarily represent a physically feasi-
ble atomic configuration. The primary aim of this study was testing
data fitting approaches based on various different models. Thus, the
physical accuracy of the domains themselves is irrelevant, and the only
important point is that the synthetic powder diffraction data, approx-
imated by a finite ensemble average, accurately represents the true
ensemble average for a given set of chosen sample characteristics.
That being said it is likely that the defects introduced by perturbing
the spatially infinite, three-dimensionally periodic crystal, (i.e. stack-
ing disorder and domain boundaries) in some cases lead to physically
unreasonable configurations that should either be eliminated from the
virtual powder or altered somehow. Alteration could be achieved
through a suitable molecular dynamics simulation, with an appropriate
energy minimization and/or thermalization. Such a procedure could
be useful for investigating the physical accuracy of both the virtual
powders themselves and the assumptions necessary to model their syn-
thetic powder diffraction data.
The next chapter follows a path similar to this chapter, but rather
than considering synthetic powder diffraction data from atomistic vir-
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tual powders, real powder diffraction data is considered from nanos-
tructured boron nitride samples.
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Chapter 4

Practical application: boron nitride

Recently several authors have reported different polycrystalline boron
nitride (BN) samples with improved hardness, thermal stability, and
fracture toughness [125, 143, 144]. All authors report structural fluc-
tuations at the nanoscale, with electron micrographs suggesting exten-
sive “banding” within individual domains, which themselves show an
isotropic morphology and are generally less than 50 nm in size [125,
126]. The powder diffraction patterns vary from sample to sample and
from study to study, but generally show some common characteris-
tics including anisotropic line-profile broadening and shifting, as well
the presence of incomplete sets of diffraction peaks from two different
polytypes of BN with unexpected relative peak intensities [125, 126].
Lacking definitive quantitative diffraction analysis, authors have put
forward many conflicting hypotheses regarding the identity of improved
BN samples. Some authors have suggested samples are “aggregated
nanocomposites,” essentially proposing sintered mixtures of the two
polytypes [143]. Others have proposed that samples are either “nanos-
tructured” [144, 145] or “nanotwinned” [125] single-phase BN. Unfortu-
nately this confusion in sample identity has prevented a comprehensive
understanding the physical processes behind the improvement in prop-
erties. To date, no definitive conclusion has been reached regarding
the nanostructuring in such BN samples.
The cubic polytype of BN, or c-BN, crystallizes in the F 4̄3m space
group, with a lattice parameter of ac = 3.615 Å [146], and is completely
isostrucutural with cubic diamond. A schematic of the c-BN unit cell
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is shown in Figure 4.1a. This polytype is common in numerous indus-
trial applications, typically as an abrasive in cases requiring thermal
or chemical stability beyond that of harder, diamond-based abrasives.
Much like diamond, a second sp3-bonded polytype of BN has been
reported. Crystallizing in the P63/mmc space group with lattice pa-
rameters aw = 2.55 Å and cw = 4.17 Å, it is often called wurtzite-type
BN, or just w-BN, and is isostrucutral with the lonsdaleite phase of
diamond [147, 148]. A schematic of the w-BN unit cell is shown in
Figure 4.1b.

(a) c-BN (b) w-BN

Figure 4.1: Perspective views of the unit cells of two different sp3-bonded
polytypes of boron nitride

This chapter is focused on testing two different approaches for quan-
titative analysis of the powder diffraction data from several nanos-
tructured BN samples, with the ultimate aim of understanding atomic,
nano, and microstructure of these samples. The first approach is based
on an assumption of two-phase samples, while the second is based on
the assumption of single-phase samples showing stacking disorder.

4.1 Experimental

The syntheses of all nanostructured BN samples showing improved
properties follow similar routes: a nanocrystalline form of the sp2-
bonded (graphite-like) BN polytype, crystallizing in the space group
P63/mmc, is subjected to high-pressure high-temperature (HPHT)
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treatments, and undergoes a phase transformation to an sp3-bonded
polytype [125, 126, 146, 147]. At sufficiently high temperatures and
pressures, complete transformation to c-BN is observed [147]. The
identity of the products at intermediate temperatures and pressures is
still unclear and the subject of contention in the literature [125, 126,
145, 149].
The 6 samples investigated here were first reported by Tian et al. [125].
In their work, nanostructured turbostratic sp2-bonded BN “nano-onions”
were subjected to HPHT treatments at various pressure-temperature
combinations. The subset of samples considered here were all treated
at 15 GPa. Electron micrographs, available in the original work, show
approximately equiaxed individual domains, less than 50 nm in diam-
eter, containing nanostructural “bands” that the original authors call
“nanotwins” [125].
The powder X-ray diffraction pattern for each sample was collected
on a laboratory diffractometer (D8 Discover) in Bragg-Brentano ge-
ometry using copper radiation without a monochromator. The instru-
mental contribution to line profile-broadening was obtained by fitting
pseduo-Voigt profiles to the powder diffraction data of a microcrys-
talline silicon sample, collected in the same instrumental geometry.
By parameterizing the squared FWHM of the resulting line-profiles us-
ing a Caglioti-type second degree polynomial in cos θ with coefficients
U = 0.0028, V = 0.013,W = −0.0029 [150], and and a Cauchy mixing
parameter η using a second degree polynomial in θ (η(θ) = aθ2 + bθ
with a = 0.14, b = 0.011, c = 0), the θ dependence of the instrumen-
tal contribution to line-profile shape was estimated and included by
numerical convolution.

4.2 Diffraction fitting

4.2.1 Two-phase models

Just as in Section 3.1.1, the first step to quantitative diffraction analy-
sis is choosing appropriate models. As mentioned, some authors have
hypothesized that nanostructured BN samples are sintered two-phase
mixtures of c-BN and w-BN. Employing such a model and assum-
ing three-dimensionally periodic phases implies the existence of Bragg
peaks within the powder diffraction patterns. From 25◦ < 2θ < 100◦,
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there are 15 distinct Bragg peaks, 10 arising from w-BN and 5 from c-
BN. Fitting each peak with a pseudo-Voigt function with unconstrained
shape parameters requires the use of 30 free parameters. If the position
of each profile is constrained by Bragg’s law, three further parameters
are required, two due to w-BN, and one from c-BN.
The profile area can be constrained by the structure factor, but choices
must be made regarding which atomic structure parameters to refine.
Boron and nitrogen are similar in atomic number, so only one shared
isotropic Debye-Waller factor ⟨u2⟩ is refined per phase. Within both
the c-BN and w-BN unit cells, all atoms sit on special sites, and the
symmetry of the unit cells is such that only the z-coordinate of nitro-
gen in the w-BN structure could be refined; it is however here held
constant. The atomic structure constraints thus entail only 2 addi-
tional free parameters.
Additionally, a linear sample displacement correction s was refined,
allowing for a point-wise shift in θ, based on the equation Δ2θ =
−180s

π cos θ (in degrees), where s represents twice the ratio of the linear
sample displacement to the diffractometer goniometer radius. Further-
more, the coefficients of a third degree polynomial in θ were refined to
fit the background. Adding a scale term for each phase entails 2 ad-
ditional parameters, bringing the total number of parameters for this
two-phase fit to 41. The number of parameters could be reduced if
the shape of each profile was constrained through some equation, for
example equation 3.11, but this approach is not adopted here.
The adoption of models in this way allows for the use of the equations
outlined in Chapter 2 for approximating the powder diffraction data
as a sum of empirical profiles. For each of the 6 samples investigated
here, equation 2.24 was used, as implemented within the fityk v0.9.8
software package [142], to model the powder diffraction data from each
sample. The atomic parameters of the sample and the empirical profile
shapes were refined by minimizing the weighted sum of the squared
differences between the observed and and modeled data, using a local
gradient approach.

4.2.2 Single-phase models

As already mentioned, electron microscopy studies suggest that the
samples are nanocrystalline, with extensive “banding” [125]. This
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nanoscale banding, together with the strange anisotropic powder diffrac-
tion features, suggest the presence of stacking disorder, a hypothesis
also proposed in the literature [125, 126, 145, 149]. Stacking disor-
der in BN samples is best understood within the context of the two
main sp3-bonded polytypes. By viewing projections of the c-BN and
w-BN polytypes, as shown in Figures 4.2a and 4.2c, respectively, it
is clear that both can be described as different relative arrangements
of the same atomic scale layer, just as in the case of the fcc and hcp
polytypes outlined in Section 2.1.
In fact, the only differences between the nickel and BN cases are
the contents and absolute dimensions of the layer unit cell. With the
p6mm layer group, the layer unit cell common to both BN polytypes
is shown in 4.2b, and contains one boron at (0,0,0) and one nitrogen at
(0,0,0.75), both on 1a Wyckoff sites. Only one shared isotropic Debye-
Waller factor ⟨u2⟩ is refined for the layer unit cell, with the positions
of the atoms held constant.
The layer unit cell vectors al and bl and layer thickness cl can be
described through a transformation of either the c-BN or w-BN unit
cells, written as either

al = −ac

2
+

bc

2
, (4.1a)

bl = −bc

2
+

cc

2
(4.1b)

cl =
1

3
∥ac + bc + cc∥ , (4.1c)

or
al = aw (4.2a)

bl = bw, (4.2b)

cl =
1

2
∥cw∥ , (4.2c)

where ac, bc, and cc are the c-BN unit cell vectors, and aw, and bw

are the w-BN unit cell vectors.
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The shape of layer unit cell is slightly different depending on whether
the c-BN or w-BN unit cell vectors are transformed. Specifically, the
symmetry of the c-BN unit cell dictates that only the cubic lattice
parameter ac = ∥ac∥ = ∥bc∥ = ∥cc∥ is used to constrain the layer
unit cell shape, whereas the symmetry of the w-BN unit cell dictates
the hexagonal lattice parameters aw and cw are both used to constrain
the layer unit cell shape, as the ratio cw/aa is not ideal in the w-BN
unit cell. In practice, this amounts to either allowing both the layer
thickness cl and lattice parameter al to vary freely, or allowing just
the layer lattice parameter to vary freely and constraining the layer
thickness through cl =

√
2/3al. Throughout this chapter, the latter

approach is adopted in all fits, necessitating two fit parameters for the
atomic structure (⟨u2⟩ and al).
The c-BN and w-BN polytypes can be constructed by considering rel-

ative horizontal positions of two adjacent atomic layers. A “forward”
shift, represented by the relative position vector Rf = al

3 − bl

3 + clẑ, or
a “backward” shift, represented by the relative position vector Rb =
−al

3 + bl

3 +clẑ are the only two possibilities. The c-BN polytype is con-
structed by repeating the same translation, while the w-BN polytype
is constructed by alternating translation types. Within this section,
Rf and Rb were not varied as part of the fitting process.
As a note, a alternative stacking model could be envisioned, where
two distinct atomic scale layers were used to construct the two poly-
types. In this case, both layers would be primitive hexagonal lattices
containing either a boron or a nitrogen atom. By constraining the
transition probabilities to force an alternation of these two different
layer types with the correct stacking vectors, both the c-BN and w-BN
polytypes could in theory be constructed. This however introduces an
unnecessary complexity into the Markov process and the above speci-
fied simpler stacking model is preferred.
The arrangement of the atomic scale layers is modeled by a Markov
process, as outlined in Section 2.7. The similarity to the case of the fcc
and hcp polytypes is again exploited when discussing the interaction
range or Reichweite number R of this system. The description out-
lined in Section 3.1.1 can in fact be completely lifted and brought here,
allowing for the use of either equation 3.1, 3.2, 3.3, or 3.4 to describe
the probability matrix T of the Markov process describing the layer
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4.2. Diffraction fitting

(a) c-BN unit cells (b) common layer unit
cell (c) w-BN unit cells

Figure 4.2: In (a), a projected view of several c-BN unit cells is shown, with
the Warren layer type identified at left, and relative translation identified
at right. The same is shown in (c) for several idealized w-BN unit cells. In
(b), the layer unit cell common to both polytypes is shown, both in a top
and front view. The indicated directions are with respect to the lattice of
the closest pictured structure. Forward or backward relative translations are
indicated by the color blue or red, respectively

arrangements. The finite states machines of Markov processes with
varying interaction ranges are shown in Figure 4.3.
In this chapter, the R = 0 stacking process was not adopted, as it
offers no degrees of freedom in terms of the layer arrangements. The
R = 1 stacking process offers only one degree of freedom in terms of
the layer arrangements, and leads to cubic and relatively twinned cubic
regions of the same average size. This is contradicted by experimental
observation, as Tian et al. reported smaller relatively twinned cubic
bands, based on electron microscopy studies [125]. For these reasons,
throughout this section a R = 2 stacking process as described by equa-
tion 3.3 is assumed for describing the layer arrangements. This entails
two fit parameters associated with layer correlations, namely αff and
αbf .
Electron micrographs rule out the presence of strongly anisotropic
morphologies, instead indicating that the domains composing the sam-
ple adopt what is essentially an equiaxial or spherical morphology [125].
For this reason, a spherical crystal shape function was adopted in this
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4.2. Diffraction fitting

Figure 4.3: Finite state machines for modeling stacking disorder in BN

section. A log-normal distribution was assumed to describe the disper-
sion of the domain diameters, yielding two fit parameters associated
with crystal morphology, namely µ and σ, the log-normal mean and
standard deviation, respectively.
Again, a linear sample displacement correction s and the coefficients
of third degree polynomial in θ were refined, to account for a linear
sample displacement and background, respectively. All total and in-
cluding a scale factor, 11 parameters were necessary to directly fit the
powder diffraction datasets using this approach. The parameters re-
fined for each sample, their physical meanings, and their boundaries,
when imposed, are presented in Table 4.1.

Parameter Physical meaning Boundaries

h overall scale h > 0.0

ac = 2
√

2al layer lattice 3.59 Å < ac < 3.63 Å
⟨u2⟩ isotropic Debye-Waller mean squared thermal

displacement (both B and N)
0.0 Å2 < ⟨u2⟩ < 4.00 Å2

s sample displacement -
αff probability of f transition given a previous f

transition
0.0 < αff < 0.50

αbf probability of f transition given a previous b
transition

0.0 < αbf < 1.00

µ log-normal mean and standard deviation
0.0 Å < 4/3eµ+7/2σ2

< 103 Åσ of domain diameter distribution
a1

Background polynomial coefficientsa2
a3

Table 4.1: A complete list with physical meanings and imposed boundaries
of all fitted parameters used in the single-phase fits

Adopting such models for the samples allows for the use of equation
2.87 to compute the diffracted intensity distribution. For each of the
6 samples investigated here, a manual optimization of fit parameters
was first made to provide reasonable starting values. The parameters
were then refined by minimizing the weighted sum of the squared dif-
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4.3. Fitting results

ferences between the observed and modeled data using a local gradient
approach.

4.3 Fitting results
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(b) Samples 4-6

Figure 4.4: Shown is the X-ray powder diffraction data of each BN sample
considered here (with processing temperature/pressure listed). Below each
powder diffraction pattern is a fit residual associated with the two-phase
Rietveld fit (red lines) or the single-phase fit incorporating one-dimensional
disorder (blue lines)

The experimental powder diffraction data from each sample is shown
in Figure 4.4, with fit residuals from the two different models shown
offest below the diffraction data.
The two different fitting approaches each provide a different set of
information. By applying a two-phase approach with empirical profiles,
the integral breadth of each profile can be extracted ex post facto and
used in a Williamson-Hall analysis for each phase, based on equation
3.11. This provides a volume-averaged strain and domain diameter,
if equiaxed domains are assumed. Additionally, the lattice parameters
and the shared isotropic Debye-Waller factor for each phase are directly
retrieved from the fit. All physical characteristics retrieved from the
two-phase fits are reported in Table 4.2, along with the goodness-of-fit
indices [151].
Adopting a direct modeling approach assuming one-dimensional dis-
order yields a different set of information from each sample. Again, the
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4.4. Nanostructure: virtual specimens

Parameter Sample
1 2 3 4 5 6

GoF 1.15 1.10 0.87 1.08 0.78 1.05
s 0.10(1) 0.064(5) -0.04(4) 0.087(4) 0.106(4) 0.029(3)

c-BN

ac (Å) 3.6203(4) 3.6182(1) 3.6176(1) 3.6163(1) 3.6170(1) 3.6156(1)
⟨u2⟩(Å2) 0.0128(5) 0.0080(4) 0.00(5) 0.0120(4) 0.0202(5) 0.0176(5)

⟨D⟩V (nm) 18(2) 28(2) 29.7(8) 49(2) 51(2) 100(6)
⟨ε⟩ (%) 0.2(1) 0(3) 0.0(2) 0.02(1) 0.02(2) 0.3(1)

w-BN

aw (Å) 2.460(4) 2.408(8) 2.427(6) 2.41(1) 2.319(5) 2.45(4)
cw (Å) 3.99(2) 4.24(2) 4.23(2) 4.20(3) 4.39(1) 3.978(8)

⟨u2⟩(Å2) 0.58(6) 0.39(4) 4.0(2) 0.0(2) 0.0(2) 0.0(2)
⟨D⟩V (nm) 4(3) 3.4(5) 3.2(7) 10(12) 10(14) 13(40)

⟨ε⟩ (%) 2(5) 2(1) 1(2) 1(7) 1(4) 1(5)

Table 4.2: Physical characteristics for BN samples, retrieved by fitting pow-
der diffraction data using a two-phase model with empirical profiles

lattice parameters and the shared isotropic Debye-Waller factor are di-
rectly retrieved from the fit. However, R = 2 layer-layer correlation
probabilities are also retrieved, as well as the log-normal mean and
standard deviation of a log-normal distribution describing the domain
diameters. These physical characteristics are listed for each sample
in Table 4.3, with the fit quality indices, for each of the 6 samples
considered here.

Parameter Sample
1 2 3 4 5 6

GoF 1.21 1.06 0.99 1.13 0.86 1.15
ac = 2

√
2al (Å) 3.6169(3) 3.6144(1) 3.6137(1) 3.6131(1) 3.61324(7) 3.6130(1)

⟨u2⟩(Å2) 0.011(2) 0.0095(6) 0.0076(5) 0.0068(4) 0.0057(1) 0.0038(2)
s 0.8(5) 0.6(2) -5.7(2) -0.3(2) 0.6(2) -3.6

αff 0.924(1) 0.9510(7) 0.9624(6) 0.9759(5) 0.9760(8) 0.9855(5)
αbf 0.44(3) 0.28(2) 0.27(3) 0.25(3) 0.27(5) 0.27(4)
µ 3.2(5) 5.47(4) 5.55(4) 5.75(3) 5.80(5) 5.94(3)
σ 0.65(1) 0.22(3) 0.23(3) 0.19(3) 0.17(4) 0.16(3)

Table 4.3: Fitted parameters for BN samples using a single-phase RS ap-
proach incorporating stacking disorder]

4.4 Nanostructure: virtual specimens

The information in Table 4.3 gives only a partial picture of each sample.
The layer lattice parameter al gives a picture of atomic scale structure,
while µ and σ completely define the domain size distribution, or the

147



4.4. Nanostructure: virtual specimens

microstructure of each sample. The layer correlation probabilities αff

and αbf help to describe the nanoscale structure.
More interesting however is the full picture of how these different
structure scales interact. To investigate this, a virtual specimen can be
created, following a process similar to that in Section 3.1.2, or proposed
but not studied already in the literature [152]. This is done simply
by stochastically sampling the characteristics of each sample to build
individual domains, and then analyzing the structure of these domains.
For example, to create one domain of a given sample, first the log-
normal distribution refined from the powder diffraction data of the
sample is sampled to establish the domain size. Following this, a
Markov chain is generated by sampling the finite state machine created
from the refined transition probabilities of the sample. The length of
this Markov chain is determined by the refined layer unit cell thickness
and the sampled domain size. The Markov state sequence represents
the sequence of layers in the domain. For example, a domain can be
represented by a Markov state sequence such as

ffffffffbffffffffffffffffbbbbbffff, (4.3)

representing a series of forward f and backward b transitions.
When a domain is constructed in such a way, bands can be observed

within the domain showing local symmetry of either of the two sp3-
bonded polytypes mentioned earlier (Figures 4.1a and 4.1b). Three
types of bands can be uniquely identified in such a domain, based on
these two polytypes: c-BN, w-BN, and tc-BN (twinned cubic-BN). The
local structure of any given layer is determined by the relative position
of the pre- and proceeding layers, and correspond to the layer sequences
as follows

. . . ff . . . → c-BN
. . . fb . . . → w-BN
. . . bf . . . → w-BN
. . . bb . . . → tc-BN

(4.4)

It is important to note that the distinction between c-BN and tc-
BN is only meaningful when both structures exist coherently within a
single domain, as the two are related by reflection on the cubic (111)
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4.4. Nanostructure: virtual specimens

plane. This distinction can be useful to identify preferential growth
of relatively twinned bands with respect to non-twinned bands within
individual domains.
With this, the individual layers in Markov state sequence in equation
4.3 can be assigned local symmetries

ffffffffbffffffffffffffffbbbbbffff (4.5)

All nanostructural information can be retrieved from a domain rep-
resented by a Markov sequence such as that in equations 4.3 and 4.5:
this specific sequence can be described as 7.1 nm domain, containing 34
atomic layers and 7 total polytype bands: a c-BN band of 8 layers (1.7
nm), a w-BN of 2 layers (0.4 nm), a c-BN of 15 layers (3.1 nm), a w-BN
of 1 layer (0.2 nm), a tc-BN of 4 layers (0.8 nm), a w-BN of 1 layer (0.2
nm), and a c-BN of 3 layers (0.6 nm). It is not necessary to explicitly

Figure 4.5: An atomistic BN domain corresponding to the Markov sequence
in equation 4.3. Locally c-BN, tc-BN, or w-BN are colored green, blue, or
red, respectively.

define atomic positions to retrieve this nanostructural information, as
all atomic positions are implicit based on the Markov sequence, the rel-
ative positions of the atomic layers as defined by the Markov process,
and the assumed domain morphology. By avoiding the specification of
atomic positions, considerable computational resources can be spared,
both in processing and storage. That being said, it can at times be
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4.4. Nanostructure: virtual specimens

helpful to view an atomistic representation a Markov sequence. Fig-
ure 4.5 shows such an atomistic representation of the Markov sequence
presented in equation 4.3, with band structures colored according to
local symmetry, and band sizes denoted by λx, where x = c, tc, or w.
Such a domain however represents only one configuration within a
powder or polycrystalline sample that is composed of a huge number of
domains. By repeating this stochastic domain creation process many
times, statistical distributions can be built that completely describe
the nanostructure of the sample. Examples of such distributions for
sample 1 are shown in Figure 4.6.
The first row of Figure 4.6 gives information on the domains in the
sample. Figure 4.6a shows the probability of choosing a domain from
the sample with only one local symmetry (with no stacking disorder).
In this case, there is no distinction between the tc-BN and c-BN struc-
tures. Figure 4.6b is similar, but gives the joint probability of choosing
a domain from the sample with only one local symmetry and a specific
size.
The second row of Figure 4.6 gives information on the bands in the
sample. Figure 4.6c presents the probability of choosing a single band
from any domain in the sample and finding it with a specific local
symmetry. Figure 4.6d gives the joint probability of choosing a single
band and finding it with both a given local symmetry and thickness.
Figure 4.6e gives similar information, showing the joint probability of
choosing a single band and finding it both with a given local symmetry
and inside a domain of a given size.
The final row of Figure 4.6 provides information on the individual
atomic layers in the sample. Figure 4.6f gives the overall probability of
choosing a single layer with a given local symmetry. Figure 4.6g gives
the joint probability of choosing a single layer in the sample and finding
it within a band both of a given local symmetry and thickness. Figure
4.6e gives similar information, showing the joint probability of choosing
a single atomic layer and finding it with a given local symmetry inside
a domain of a given size.
Together these distributions give a complete set of information re-
garding the nanostructure of the virtual sample, as derived from the
fit assuming a single phase with stacking disorder.
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Figure 4.6: Probability distributions describing the nanostructure of sample
1, derived from random sampling of refined stochastic process
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4.5 Discussion

4.5.1 Model accuracy

The two different models provide two very distinct pictures of the sam-
ples. By employing a two-phase RS model, assuming empirical profile
shapes constrained by Bragg’s law and a traditional structure factor,
the hypothesis is that each sample is a sintered mixture of purely c-BN
and w-BN domains, where each shows near perfect three-dimensional
periodicity. By applying the new RS model proposed in Section 2.6.3,
the hypothesis is that each sample is a sintered body of BN domains,
where each domain is characterized by one-dimensional disorder and
built of coherently stacked bands that show a local symmetry of either
the c-BN or w-BN polytype.
Comparing the results obtained in terms of both the agreement with
experimental data and the reliability of the extracted sample character-
istics can help establish exactly which picture of the samples is more
likely. If just the goodness-of-fit index is used to compare the mod-
els, one might be inclined to declare the two-phase hypothesis as more
likely: with the exception of sample 1, all two-phase fits show a lower
goodness-of-fit, indicating a higher level of fit agreement.
This however is a good example of where a bit of common sense can
go a long way. For each sample, the w-BN phase parameters fit to
unphysical values with large estimated uncertainties. The w-BN lat-
tice parameter cw shows a relative standard uncertainty of about 0.5%,
much higher than what is typically expected for a lattice parameter.
Further, cw deviates from the experimentally reported value of 4.17
Å[147, 148] by as much as 4% in some samples. A similar problem is
found for the aw w-BN lattice parameter. Worse still are the implau-
sibly large average microstrain and small average domain size of the
w-BN phase, retrieved for each sample. The relative standard uncer-
tainties obtained on both these characteristics are in some cases greater
than 100%.
In general these issues are a clear indication that a two-phase model
is not appropriate, suggesting that the samples are not sintered mix-
tures of nanocrystalline c-BN and w-BN. The alternative hypothesis
is that the samples are sintered bodies of nanocrystalline BN domains,
where each domain is characterized by one-dimensional disorder and
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4.5. Discussion

built of coherently stacked bands that show a local symmetry of ei-
ther the c-BN or w-BN polytype. As mentioned earlier, generally the
goodness-of-fit numbers indicate that the fits associated with such a
model are lower quality. However, the difference in the goodness-of-fit
between the two models is not particularly large, and the single-phase
model is significantly simpler, requiring only 11 parameters compared
to the 41 parameters employed in the two-phase model. Further, the
fitted parameters within the single-phase model correspond directly to
physical characteristics of the sample, are more physically reasonable,
and are generally retrieved with lower standard uncertainties. Finally,
the hypotheses of one-dimensional disorder is supported directly by
electron microscopy observations. All of these pieces together strongly
suggest that the single-phase hypothesis is morel likely.
It is worth pointing out that the one-dimensionally disordered single-
phase hypothesis was already proposed in an incomplete form by Tian
et al. These researchers neglected to suppose the existence of bands
showing a w-BN local symmetry within the domains, instead supposing
only the existence of nanotwins [125]. Nanotwinned bands however
necessitate the presence of w-BN bands, as a (111)c twin-boundary in
BN always shows the local symmetry of the w-BN polytype (see e.g.
Figure 4.5). The existence of larger w-BN bands in the samples of Tian
et al. was pointed out by Dubrovinskaia and Dubrovinsky [126], who
had previously synthesized apparently similar samples [143]. However,
in their original work, Dubrovinskaia et al. explicitly ruled out the
possibility of stacking disorder, instead proposing that the samples
were sintered nanocomposites [143].

4.5.2 Effect of processing temperature

Having established a likely nanostructural model, as well as a method
for extracting a full nanostructural picture, it is possible to explore
the effect of HPHT synthesis temperature on sample atomic, nano,
and microstructure. Repeating the stochastic sample creation process
outlined in Section 4.4 for each sample gives distributions like those
presented in Figure 4.6 for each sample. Analysis of these distributions
gives all information on the virtual sample nanostructure, linked to the
real sample through the powder diffraction data fitting.
The lattice parameter, directly refined as part of the fit for each
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(a) Equivalent c-BN lattice parame-
ter

(b) Debeye-Waller mean squared dis-
placement

Figure 4.7: Atomic scale structure of the BN samples as extracted from
powder diffraction data fitting, plotted vs. synthesis temperature

dataset, is plotted in Figure 4.7a against synthesis temperature. As
synthesis temperature increases, the lattice parameter tends to de-
crease, with the largest drop seen between the samples prepared at
1200◦C and 1400◦C. Above a synthesis temperature of 1800◦C, the
lattice parameter is stable at round 3.6131 Å. The significant devia-
tion in lattice parameter at low synthesis temperature is likely due to
the very small average domain size of about 10 nm. Smaller domains
show a larger volume fraction of under-coordinated surface species,
which can relax and show a lattice parameter significantly different
from that of the bulk material [97–100]. The tendency to converge to
a lattice parameter slightly smaller than the measured bulk value of
c-BN (ac = 3.615 Å) can be explained by the presence of w-BN bands
within the domains. The B-N bond length in the ideal w-BN polytype
is 1.56179 Å, smaller than that in ideal c-BN (1.56534 Å), thus it is
possible that the w-BN bands are slightly more dense than their c-BN
counterparts, and that their presence leads to a small decrease in the
lattice parameter.
Figure 4.7b shows a plot of the directly refined isotropic mean squared
thermal displacement, ⟨u2⟩. With increasing synthesis temperature,
⟨u2⟩ decreases nearly linearly, suggesting that thermal vibrations de-
crease in magnitude with increasing synthesis temperature. An appar-
ent decrease in vibrational magnitude is consistent with a more ordered
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structure [105, 153].

(a) layers (b) bands

Figure 4.8: Probability of finding a layer or band of a certain polytype
symmetry within each BN sample

The probability of choosing a layer of a given local symmetry is shown
in Figure 4.8a. As each layer effectively represents a uniform slice of the
domain, the layer probability effectively represents a volume fraction
or percent. Figure 4.8a then suggests that the c-BN volume percent
increases from 79% at a synthesis temperature of 1200◦C to 94% at a
synthesis temperature of 2300◦C. This increase in c-BN comes at the
expense of both w-BN and tc-BN type layers: the volume percent of
both decreases with increasing synthesis temperature.
The probability of a band showing a specific polytype vs synthesis
temperature is shown in Figure 4.8b. There is an an initial increase
in the pervasiveness of w-BN and tc-BN type bands from a synthesis
temperature of 1200◦C to 1400◦C, coming at the expense of c-BN type
bands. This trend is reversed above synthesis temperatures of 1200◦C,
where a very slight increase is seen in the fraction c-BN type bands
at the expense of w-BN type bands, with little to no change seen in
the frequency of tc-BN type bands. Generally, Figure 4.8 would sug-
gest that while the overall volume fractions associated with each layer
local symmetry change significantly with synthesis temperature, the
frequency of each type of band remains relatively static.
Figure 4.8 gives information only about the relative frequency of bands
or layers showing a specific local symmetry. Another important as-
pect is the average thickness ⟨λ⟩ of these bands (see Figure 4.5 for
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(a) Average band size (b) Volume-average domain size

Figure 4.9: Nano and microstructure of the BN samples as extracted from
powder diffraction data fitting, plotted as a function of synthesis temperature

a schematic depiction). By taking a numerical average of distribu-
tions like the one shown in Figure 4.6d for each sample, the average
band thickness can be determined, both with and without regard to
local symmetry. A plot of this information vs synthesis temperature
is shown in Figure 4.9a. Initially, from a synthesis temperature of
1200◦C to 1400◦C there is a very small change in the average thickness
of bands showing either a w-BN or tc-BN local symmetry. Again above
a synthesis temperature of 1400◦C locally w-BN or tc-BN bands remain
relatively static at average thicknesses of about 1.2 or 3.6 atomic layers
(0.77 nm or 1.2 nm), respectively.
Conversely, Figure 4.9a clearly shows that average thickness of bands

with a c-BN local symmetry increases nearly linearly with increasing
synthesis temperature, from 7.8 atomic layers (1.6 nm) at 1200◦C to 51
layers (11 nm) at 2300◦C. The same is true if the local symmetry of the
band is neglected: in general as synthesis temperature increases each
domain is on average composed of thicker bands showing one consistent
polytype symmetry throughout. This indicates that the nanostructure
becomes more ordered with increasing synthesis temperature, consis-
tent with the results obtained regarding thermal vibrations.
Shown in Figure 4.9b is the volume-weighted mean domain size ⟨D⟩V
plotted against synthesis temperature. There is a large increase in
⟨D⟩V from 11.3 nm at 1200◦C to 28.4 nm at 1400◦C. Above 1400◦C
the increase in ⟨D⟩V is essentially linear with synthesis temperature,
with a final volume-weighted mean domain size of 41.5 nm at 2300◦C.
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With this complete set of information it is possible to hypothesize how
the BN phase transformation proceeds with increasing temperature at
15 GPa. Initially at 1200◦C, very disordered, small domains exist,
containing up to 15% w-BN type layers by volume, dispersed into w-
BN type bands that are on average just one layer thick. These w-
BN type bands act as twin boundaries between c-BN and relatively
twinned c-BN type bands, where one of the two is on average much
smaller. With a small increase in synthesis temperature to 1400◦C,
the average domain size more than doubles, with a marked decrease in
the volume fraction of w-BN type layers, in favor of c-BN type layers.
The growth of c-BN type bands is favored, while relatively twinned
c-BN and w-BN type bands remain on average about the same size.
These trends (consumption of w-BN type layers, growth of c-BN type
bands, domain growth) continues with further increases in synthesis
temperature above 1400◦C. Even at synthesis temperatures as high as
2300◦C however, stacking disorder still exists, although it is much less
frequent.
Some authors have suggested that the samples investigated contain
large regions of w-BN type structure [126], similar to previously re-
ported aggregated BN nanocomposites [143]. In general however, none
of the virtual samples show a significant quantity of w-BN type bands
that are greater in thickness than 1 atomic scale layer. In fact, it is clear
from Figure 4.9a that in all samples, regardless of synthesis tempera-
ture, the average w-BN band thickness is less than 1.2 atomic layers.
With this information it is possible to state that the primary manifes-
tation of disorder is the presence of twin boundaries, at least in the
case of these specific BN samples [125]. This goes beyond the simple
model that these BN samples are characterized by stacking disorder,
proposed by Koch and Leoni [145].

4.6 Concluding remarks

Disagreement exists in the literature regarding the crystalline identity
of nanostructured BN samples, with some proposing they are sintered
mixtures of the two sp3-bonded polytypes (“aggregated nanocompos-
ites”) [126, 143], and others suggesting that samples are “nanostruc-
tured” [144], “disordered” [145], or “nanotwinned” [125, 149] single-
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phase BN. By applying two different models for powder diffraction data
fitting, it was possible to test each of these nanostructural models. This
study suggests that HPHT treatment of turbostratic sp2-bonded BN
at 15 GPa, between 1200◦C and 2300◦C, does not result in two-phase
samples but rather a single BN phase with stacking disorder, and that
the primary manifestation of this stacking disorder is the presence of
nanotwins, as originally proposed [125].
Using a Markov chain model, it is possible to imagine the existence
of similar BN samples characterized by different nanostructures. In
fact, the possible permutations of domain size, Reichweite number,
and layer-layer correlation probabilities implies that a vast array of
nanostructured BN samples could exist. This potential for diversity is
a possible explanation for the significant disagreement in the literature:
small variations in initial precursors or synthesis parameters (temper-
ature, pressure, dwell time, ramp rate, etc.) could cause significant
fluctuations in the sample in terms of one-dimensional disorder, do-
main morphology and even atomic structure. These changes manifest
as inexplicable features in the powder diffraction pattern, and often
prevent any sort of quantitative analysis.
As a practical example, the work of Dubrovinskaia et al. can be consid-
ered. Unlike Tian et al., who employed BN “nano-onions” precursors
(nested fullerene-like structure) [125], Dubrovinskaia et al. subjected
simple pyrolytic graphite-like BN to HPHT treatments. They con-
cluded that reflection broadening within the powder diffraction data
was entirely due to crystallite size, and thus ruled out the presence
of structural defects (stacking disorder) [143]. However, the powder
diffraction data of some samples (e.g. their Figure 2c, synthesized at
1600◦C and 18 GPa) clearly show features from both c-BN and w-BN
phases. With this qualitative evidence, Dubrovinskaia et al. concluded
that their samples were aggregated nanocomposites [143].
However, by applying the Markov chain models adopted here, pow-
der diffraction data which looks remarkably similar to that reported
in Figure 2c of [143] can be simulated. Such a simulation, done by
assuming instrumental conditions identical to those used by Dubrovin-
skaia et al., is reported in Figure 4.10a. Shown in Figures 4.10b, 4.10c,
and 4.10d are respectively the domain size distribution, the fraction
of different layer types, and the fraction of different band types asso-
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Figure 4.10: Powder diffraction data with nano and microstructure informa-
tion for a hypothetical sample, possibly similar to that prepared at 1600◦C
and 18 GPa by Dubrovinskaia et al. [143].

ciated with the powder diffraction data in Figure 4.10a. Compared
to the samples investigated here, the hypothetical sample of focus in
Figure 4.10 is characterized by a much large fraction of w-BN type
layers (51%) and bands (50%). Further, the w-BN type bands are on
average much larger (⟨λw⟩ = 3.9 atomic layers = 1.4 nm), indicating
the stacking disorder in such a sample cannot be said to manifest as
“nanotwins’.’ Granted, without analysis of the actual powder diffrac-
tion data following a process similar to the one outlined here, it cannot
be concluded definitively that the sample reported by Dubrovinskaia
et al. is in fact characterized by stacking disorder. However the visual
similarity between the simulated and measured powder patterns, and
the presence of “banding” within individual domains of their samples,
evidenced by electron microscopy [143], suggest that stacking disorder
is highly likely.
Describing a sample characterized by stacking disorder as an aggre-
gated nanocomposite is partially appropriate, as disordered samples do
show local regions with structure similar to c-BN and w-BN (see e.g.
Figure 4.5). Strictly speaking, a two-phase composite specimen should
show disordered boundaries between domains of different polytypes,
while specimens characterized by stacking disorder show very specific
coherent boundaries. One would expect that from a mechanical point
of view the properties would be distinct.
Thus, not only was a probable nanostructural model suggested and
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supported, this nanostructural model can facilitate speculation on the
identity of apparently diverse samples prepared under similar synthe-
sis conditions. Beyond this, by applying the approach outlined here, it
should be possible to correlate nanostructural information with both
properties and synthesis conditions in order to better understand the
physical mechanisms underlying the improved performance of nanos-
tructured BN and ultimately engineer further improvements.
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Chapter 5

Conclusions

5.1 Summary

The primary aim of this work was reviewing, expanding upon, test-
ing, and utilizing RS models of diffraction. In Chapter 2, RS models
were reviewed, moving from strict assumptions of spatial unbounded-
ness and three-dimensional periodicity to more relaxed assumptions of
partial periodicity and finite crystals. Throughout the chapter, con-
cepts were illustrated practically through examples of metallic nickel.
New expressions were presented and a new approach was shown for
approximating the diffraction effect of finite crystal size for a powder
ensemble of one-dimensionally disordered crystals. A generalized shape
function approach was demonstrated for the first time for the case of a
spatially finite one-dimensionally disordered average crystal, without
introducing any new definition to the layer electron density. It was ex-
plicitly pointed out that care must be taken in choosing models: there
is a trade off between computational expense, accuracy, and physical-
ity. It is essential that the limitations (assumptions) of the models are
kept in mind when adopting any specific approach.
In Chapter 3, RS models were tested on synthetic powder diffrac-
tion data computed by applying the DSE to several atomistic powder
specimens. A process for creating atomistic powder ensembles was
outlined, and a novel method was proposed for accurately approxi-
mating the ensemble-averaged powder diffraction pattern. The min-
imum library size was determined and compared for each ensemble
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considered, and it was found that libraries of less than 620 domains
were generally sufficient to approximate the ensemble average. The
ensemble-averaged powder diffraction data was fit where possible us-
ing several different models, and it was found that only the new model
for finite, linearly disordered-crystals was successful both at reproduc-
ing the powder diffraction data and accurately retrieving the physical
characteristics of the samples. It was seen that while a failure to sat-
isfy model assumptions does not necessarily imply that the data fitting
fails, it can necessitate that the fitted parameters do not reflect the true
characteristics of the sample.
In Chapter 4, different RS models were utilizing to fit powder diffrac-
tion data from nanostructured BN samples to establish the most likely
nanostructure. It was found that models incorporating the powder
diffraction effects of stacking disorder and finite crystal size, while
not significantly improving the agreement with the observed diffrac-
tion data, yielded more accurate and precise refined parameters, and
were in better agreement with electron microscopy studies when com-
pared to models assuming a sintered mixture of two nanocrystalline
phases. With this result, it was possible to conclude that the most
likely nanostructural model is that of sintered bodies composed of a sin-
gle one-dimensionally disordered nanocrsytalline phase, rather than a
two-phase or nanocomposite sintered body. Beyond this, by construct-
ing simulated nanostructures through stochastically sampling refined
sample characteristics, it was possible to further conclude that in the
samples investigated, the primary manifestation of one-dimensional dis-
order was the presence of twin boundaries, leading to nanometer scale
twin bands or “nanotwins” as proposed by those who synthesized the
samples, and ruling out the presence of significantly large bands show-
ing a w-BN-like structure.

5.2 Future perspectives

Nanomaterials showing one dimensional disorder are pervasive. Con-
sidering only materials isostructural with the simple close packed poly-
types discussed in this thesis already provides a huge list of possibil-
ities. Many metals show a significantly decreased stacking fault en-
ergy when alloyed [154], or even meta-stable polytypes when samples
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are nanocrsytalline [155–157]. This stacking disorder or polytype in-
terlayering has been linked to material performance in a number of
nanocrystalline metal systems [155–159].
Most II-IV semicondoctors such as ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe,
and CdTe, adopt structures similar to the cubic zincblende and hexag-
onal wurtzite structures (isostructural with c- and w-BN), and tend
to show polytype interlayering and/or the presence of stacking faults
[105, 160–169]. In a number of cases, this nanostructuring has been
shown to influence electronic properties [161, 167].
Going beyond the polytypes considered in this work, mixed layer min-
erals with both cationic [14, 170–172] and anionic [173–175] rigid layers
also show stacking disorder, although the nature of the bonding often
dictates that layer-layer translations are significantly less well-defined
than the examples considered here. These materials show promise
as specialized drug carriers [176–178], for environmental remediation
[179], and catalysis [180, 181].
It should be clear then that the modeling approaches outlined in this
thesis have a role to play within materials science, as effective charac-
terization acts to connect structure, properties, processing, and perfor-
mance. In the face of the the “nanostructure problem” [15] associated
with stacking disorder, outlined briefly in Chapter 1 and highlighted
further throughout this work, traditional diffraction techniques can be
ineffective. The new models outlined here offer an improvement, and
could in some cases represent a bridge to the atomic scale detail offered
by the more computational expensive DS approach embodied by the
DSE.
Specifically, the RS modeling approaches reviewed and expanded upon
in Chapter 2 can be useful for providing a coarse understanding of the
average atomic, nano, and micro structure of a powder sample. These
approaches are however intrinsically limited by their intrinsic assump-
tions, especially that sample related parameters are uncorrelated. In
reality, lattice parameters and faulting rate are influenced by crystal
size, and may not be uniform within a crystal. The values retrieved by
RS modeling approaches likely then represent mean or effective values.
Correlation of atomic, nano, and micro structure can be modeled eas-
ily using the DSE, but good starting models are necessary to make the
analysis computationally tractable. Thus RS and DS models can be
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seen as complementary; the former can provide a reasonable starting
point for the latter, saving computational resources, while the latter
is more flexible, but computationally expensive. Molecular dynamics
could also be used as an intermediate treatment, transforming initial
idealized atomistic powder ensembles into more physically reasonable
ensembles. Ultimately, the goal would be to apply as many charac-
terization techniques as possible simultaneously to refine a globally
consistent model for the sample across vast length scales, from atomic
to macroscopic.
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Appendix A

DISCUS Synthesis Script

Below is an example script provided to the DISCUS software package
(v3.6.2) [130] for creating a virtual powder specimen. It is intended
to be used with a layer input file, included in the same directory, and
named “l1.cll.” The contents of “l1.cll” are included after the script.

1 set prompt, off, file
2
3 #
4 #declare variables
5 #
6 variable integer, start
7 variable integer, stop
8 variable integer, current
9 variable real, diameter

10 variable real, shift1
11 variable real, shift2
12 variable real, shift3
13 variable real, mu
14 variable real, median
15 variable real, prob
16 variable real, prob2
17 variable real, prob3
18 variable real, prob4
19 variable real, sigma
20 variable integer, width
21 variable integer, height
22
23 #naming conventions, number of domains to be created (here 10)
24 start = 1
25 stop = 10
26
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27 #parameters for generating an ensemble, should be chosen by
user

28 #log-normal mean of log-normal distribution describing domain
diameters (in Angstroms)

29 mu = 4.5
30
31 #log-normal standard deviation of log-normal distribution

describing domain diameters (in Angstroms)
32 sigma = 0.18
33
34 #median of log-normal distribution describing domain diameters

(in Angstroms)
35 median = exp(mu)
36
37 #probability of a forward transition given two previous forward

transitions (alphafff)
38 prob = 0.91
39
40 #probability of a forward transition given a previous forward

transition and a previous previous backward transition (
alphabff)

41 prob2 = 0.80
42
43 #probability of a forward transition given a previous backward

transition and a previous previous forward transition (
alphafbf)

44 prob3 = 0.25
45
46 #probability of a forward transition given two previous

backward transitions (alphabbf)
47 prob4 = 0.12
48
49
50 #loop to create multiple domains
51 do i[1] = start,stop
52
53 #sample distribution to get diameter
54 diameter = logn(median, sigma)
55
56 #if the diameter is less than 3.2 Angstroms we throw it away

(this is not an objective cut-off...)
57 i f (diameter .lt. 0.32) then
58 i[1] = i[1] - 1
59 else
60 #store the variables
61 current = i[1]
62 #define the layer cell
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63 read
64 cel l l1.cll
65 #calculate the minimum number of unit cells based on the

unit cell dimension and the target diameter
66 width = 1.6 *(int(diameter/lat[1])) + 4
67 height = (int(diameter/lat[3])) + 5
68
69 #compute a random shift (this is to be completely correct

when using the shape function apporach)
70 shift1 = (lat[1] * ran(0.))
71 shift2 = (lat[2] * ran(0.) )
72 shift3 = (height/2.0 +(lat[3]/2 * ran(0.) ))
73
74 #load the cell with the correct dimensions and dump it to a

temp file
75 read
76 cel l l1.cll,width,width,1
77 save dummy.1.struc
78
79 #enter the stack subroutine area
80 stack
81 #
82 # Now we specify the structure files to be used for the
83 # four layers. each layer is identical except for it's

stacking
84 #
85 layer dummy.1.struc
86 layer dummy.1.struc
87 layer dummy.1.struc
88 layer dummy.1.struc
89 #
90 # number of layers in the stack
91 #
92 number height
93 #
94 # transition vectors. This is for R=3 so we have some

forbidden transitions
95 #
96 #Forward
97 trans 1,1, 1.0/3.0,-1.0/3.0,1.0
98
99 #Forbidden

100 trans 1,2, 0,0,1.0
101
102 #Backward
103 trans 1,3, -1.0/3.0,1.0/3.0,1.0
104
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105 #Forbidden
106 trans 1,4, 0,0,1.0
107
108 #Forward
109 trans 2,1, 1.0/3.0,-1.0/3.0,1.0
110
111 #Forbidden
112 trans 2,2, 0,0,1.0
113
114 #Backward
115 trans 2,3, -1.0/3.0,1.0/3.0,1.0
116
117 #Forbidden
118 trans 2,4, 0,0,1.0
119
120 #Forbidden
121 trans 3,1, 0,0,1.0
122
123 #Forward
124 trans 3,2, 1.0/3.0,-1.0/3.0,1.0
125
126 #Forbidden
127 trans 3,3, 0,0,1.0
128
129 #Backward
130 trans 3,4, -1.0/3.0,1.0/3.0,1.0
131
132 #Forbidden
133 trans 4,1, 0,0,1.0
134
135 #Forward
136 trans 4,2, 1.0/3.0,-1.0/3.0,1.0
137
138 #Forbidden
139 trans 4,3, 0,0,1.0
140
141 #Backward
142 trans 4,4, -1.0/3.0,1.0/3.0,1.0
143
144 #
145 #probabilities. This is for R=2 so we have some

forbidden transitions
146 #
147 crow 1,prob,0,1.0-prob,0
148 crow 2,prob2,0,1.0-prob2,0
149 crow 3,0,prob3,0,1.0-prob3
150 crow 4,0,prob4,0,1.0-prob4
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151 #
152 # no idea what this does but I guess it has to do with

how Discus builds the stacks in x and y...
153 #
154 aver 0.0, 0.0, 1.0
155 modul 1.00, 0.00, 0.00, 0.00, 1.00, 0.00
156 set modulus,on
157 set trans, fixed
158
159 create
160 run
161 exit
162 #
163 # do the shifting
164 #
165 symm
166 uvw 0,0,1
167 orig 0.0, 0.0, 0.0,crystal
168 trans shift1,shift2,(-1.0*(shift3))
169 angle 0.0
170 type proper
171 mode repl
172 power 1
173 sel all
174 incl all
175 show
176 run
177 exit
178 #
179 # cut our sphere
180 #
181 boundary sphere, diameter/2
182 purge
183 #
184 # output the crystal in an xyz format
185 #
186 plot
187 prog diamond
188 outfile "./domain.diameter.%f.iter.%d.xyz",diameter,

current
189 type crystal
190 ext all
191 sel all
192 dese void
193 col xyz
194 show
195 run
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196 exit
197 endif
198 enddo
199
200
201 exit

layer input file contents, “l1.cll”:
1 t i t le 1 layer, Ni
2 #layer group symmetry
3 spcgr P6
4 #layer unit cell the cubic lattice parameter (a_c) is

transformed here to a hexagonal equivalent
5 # a_h = b_h = sqrt(2)*a_c/2 , c_h = sqrt(3) * a_c/3
6 #ac= 3.52
7 cel l 2.4890 2.4890 2.0323 90.00 90.00 120.00
8 atoms
9 Ni 0.000 0.000 0.000 0.100
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Abbreviations

Acronyms

FP fundamental parameters
FWHM full width at half maximum
CSD coherently scattering domain
FT Fourier transform
WPPM whole powder pattern modelling
DSE Debye scattering equation
BN boron nitride
DS direct-space
RS reciprocal-space
LPA line-profile analysis
fcc face-centered cubic
hcp hexagonal close packed
CVF common volume function
MCL mean column length
SEM scanning electron microscopy
TEM transmission electron microscopy
WAXS wide-angle X-ray scattering
SAXS small-angle X-ray scattering
HPHT high-pressure high-temperature
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Symbols
β Integral breadth of a line profile. The integrated area of

the profile divided by the profile maximum

a DS lattice vector, ∥ to x̂

b DS lattice vector, in the plane spanned by x̂ and ŷ

c DS lattice vector

Rij Stacking vector spatially relating layer types i and j

when adjacent in a crystal with stacking disorder

v̂ unit vector, v/ ∥v∥

λ wavelength

r position vector

θ half of the scattering angle

s scattering vector

s scattering vector magnitude

e elementary charge, 1.602176565 (35)× 10−19C

me rest mass of an electron, 9.10938215 (45)× 10−18g

c speed of light in a vacuum, 2.99792458× 108 m/s

U (r) electron density from an isolated atom

V volume
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· scalar product

ı imaginary unit,
√
−1

φ (s) Scattered wave amplitude

F Fourier transform operator

f (s, ℏω) atomic form factor

ℏ reduced Planck constant†, 6.58211928 (15)× 10−16eV·s

δ(r) Dirac delta distribution

∗ convolution operation

z (r) DS lattice function

ρ (r) electron density from a collection of atoms

F (s) structure factor

I (s) intensity distribution

Z (s) RS lattice function

h Miller index associated with a∗ direction in RS

k Miller index associated with b∗ direction in RS

l Miller index associated with c∗ direction in RS

a∗ RS lattice vector, ∥ to b × c

b∗ RS lattice vector, ∥ to c × a

c∗ RS lattice vector, ∥ to a × b

× cross product

σ(r) Shape function describing a crystal volume

S (s) FT of the crystal shape function, F [σ(r)]
†Datum taken from [184]
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A (L) Autocorrelation function of the shape function

M Number of layer types in the Markov process describing

a crystal with stacking disorder

N Total number of layers in a crystal

αij Transition probability from Markov state (layer type) i

to j in the Markov process describing a crystal with stacking disorder

R Reichweite number of the stacking process
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