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ABSTRACT 

 

CZTS non-stoichiometric thin films [Cu2-xZn1+xSnS4)] for solar cells applications have 

been successfully deposited on glass substrates using two different types of synthesis and 

two effective deposition methods: dip-coating into a sol or drop-wise ink spin-coating. For 

dip-coating, a sol was prepared by mixing a solution of metal chlorides dissolved in 

methanol together with thiourea dissolved in ethylene glycol; tin chloride (either 

pentahydrate or anhydrous) was used as a tin source. The ink for spin-coating was prepared 

by hot-injection, starting from metal (copper, tin and zinc) chlorides like in the previous 

synthesis: the salts, dissolved in oleylamine, were heated at 130 °C, when a solution of 

pure sulfur in oleylamine was injected. The CZTS thin films samples from both methods 

have been recrystallized by two thermal treatments, respectively with and without an extra 

sulfur powder at 550 °C in Ar atmosphere. Treatment duration was shown to affect both 

structure and microstructure of CZTS coatings. Moreover, the optical properties of the 

final absorbing layers were also deeply affected by the type and length of thermal 

treatments. Spurious phases like SnO2, SnS and ZnS, were produced in some cases, and 

identified as a possible culprit for poor CZTS photovoltaic device efficiency. 

Based on the extensive evidence collected during this research work, the present Thesis 

provides a rationale for an effective preparation of kesterite thin films for photovoltaic 

applications. 
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Chapter 1 

 

 

INTRODUCTION 

1.1 Colloidal synthesis 

Between 1853 and 1857 M. Faraday observed the first colloidal sols particles in Au 

solution [1]. Then in 1861 Graham further developed the colloidal science, but at that 

time the study of colloids did not seem as important for the scientific community as 

in the following century. Only in the 20th century scientists started considering the 

importance of colloidal systems for preparing ceramic materials in mild conditions, 

as they allow a fine control of the size of particles starting from inorganic salts [1].  

The electrostatic theory developed by B. Derjaguin et al. (1930-1950, DVLO theory), 

which combined the effect of Van der Waals and double layer forces, is the first 

scientific result in the science of stable colloidal suspensions [1]. Low-cost synthesis 

of organic-inorganic hybrids materials was not much a concern until the early ‘80s of 

the past century [1]; since then the colloidal synthesis (called also sol-gel process and 

schematically shown in Figure 1) from earth-abundant elements is the most 

widespread method to obtain a good control over microstructural parameters, such as 

particle size and shape, and a gram-scale production. Synthesis can be performed 

either at room temperature, leading to sols [2], or at high temperatures (e.g., by hot-

injection [3]), leading to nanocrystals. In both cases nucleation and growth processes 

form a stable dispersion of colloidal or nanometric crystals in a solvent, which can 

later evaporate. Among the many options and case studies, the production of 

semiconducting nanocrystals for photovoltaic applications has become of great 

interest to reduce costs and select better performing materials. Therefore, the main 
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goal of the present work is to outline and improve the synthesis via sol-gel of 

quaternary compound Cu2ZnSnS4 (CZTS). 

 

 

Figure 1. Simplified chart of sol-gel processes (reproduced from [1]). 
 

1.2 Sol-gel and hot-injection methods 

Nowadays, the demand of fine nanocrystals (NCs) is increasing, along with better 

synthesis methods, which are economically viable and suitable for an industrial 

scale-up. A rich literature describes the colloidal approach as a possible alternative to 

other synthetic methods, such as ceramic method [1], electrodeposition [4] and spray 

pyrolysis [5], highlighting the economic benefits of this choice. The study of 

electrokinetics, corrosion, optical and catalytic properties of this colloidal matter has 

a wide scientific interest [1], [3]. In the present work the production of solid particles 

of kesterite by nucleation and growth in a colloidal liquid medium (ink) is the main 
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goal, for obtaining definite shape and a narrow mono-modal size distribution [2, 3]. 

This synthesis route uses organic solvents (e.g., oleylamine, OLA), also acting as 

surfactants, and in some cases involves high temperature (hot-injection synthesis 

[3]). Chapters 2 and 4, respectively, describe theory and our results regarding the 

preparation of nanoparticles by the hot-injection method. The particles can be both 

precipitated from the liquid suspension, [1] or left dispersed in the liquid medium 

forming a colloidal suspension (without any heating) known as “sol” [1, 2].  

Sol process is correlated with the sol-gel method, since after producing the sol a 

consecutive gel can be formed in one-step. The sol-gel could be described as: 

“Formation of an oxide network through polycondensation reactions of a molecular 

precursor in a liquid” [6]. The final particles can be amorphous or crystalline. 

Generally, the sol or colloidal suspensions of particles are ruled by the van der Waals 

forces or hydrogen bonds. The basis of sol-gel synthesis is “to dissolve a precursor 

compound in a liquid in order to bring it back as a solid in a controlled manner” [6, 

7]. Sol-gel synthesis allows us to produce multi-component systems with a controlled 

stoichiometry by mixing sols of different compounds [2]; preventing problems of co-

precipitation; and realizing an intimate mixing of reagents at atomic level, thus 

producing small particles.  

As it can be noticed, hot-injection and sol-gel methods are useful, viable tools for 

reducing time and temperature during the synthesis of particles, controlling their 

crystallinity and size. 

 

1.3 Semiconducting materials for photovoltaic applications 

The electrical properties of a semiconductor material can be modified either by 

controlled addition of impurities or by the application of electrical fields or light, and 

thus one can use these properties to develop a broad range of functional devices, e.g., 

for signal amplification, switching, and energy conversion [8]. The one-way 

conductivity of semiconducting junctions provides the basic diode mechanism, 

which coupled with the sensitivity to light and heat and variable resistivity is the 

main property exploited to build photovoltaic cells. [8, 9]. 
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A list of most common elements and compounds with useful semiconducting 

properties is shown below: 

• Silicon and germanium are the most commercially relevant elements: they 

both have four valence electrons and form crystal lattices in which substituted 

atoms (dopants) can change the electrical properties.  

• Many binary compounds, such as gallium arsenide (GaAs), AlAs, GaP, GaN, 

InP, InAs InSb, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe and SiC, to cite the most 

common ones. 

• Certain ternary and quaternary compounds, including oxides, sulfides and 

alloys such as FeTiO3, Cu2ZnSnS4 and Cu2GeTe3. 

• Organic semiconductors made up of organometallic compounds like PPV: 

poly (p-phenylene vinylene), PFO: polyfluorene, P3AT: poly (3-

alkylthiophene) and CuPc: Cu-phthalocyanine. 

The most common semiconducting materials are crystalline solids, but 

amorphous and liquid semiconductors are also used [8, 9]. 

 

1.4 Quaternary semiconducting materials based on CZTS  

Much of the current research efforts are directed toward the fabrications of thin film 

solar devices based on direct-gap absorbers belonging to a large family of quaternary 

metal sulfides with the general formula A2BCX4. Specifically, Cu2ZnSnS4 (CZTS) 

can be considered in close relationship with the previously developed binary and 

ternary compounds (see figure 2), [9]. A. Walsh et al (2012) [9] indicated that 

besides CZTS also Cu2ZnSnSe4 and its alloys Cu2ZnSn(Se,S)4 are promising 

candidates, related to the zinc-blende structure, but “the complexity associated with 

the multi-component system introduces difficulties in material growth, 

characterization, and application”, which deserve to be examined in depth [9]. First 

of all, S. Schorr et al. [10] showed that the atoms in the Cu/Zn (001) layer of basic 

kesterite are disordered. According to A. Walsh et al. (2012), the random 

displacement of atoms in Cu/Zn sub-lattice can turn Cu2ZnSnS4 into the stannite 
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structure. A further point of interest regards the synthesis of homogeneous or multi-

phase materials. In fact, within restricted stoichiometric constraints, single phase 

CZTS is obtained, otherwise ZnS, with Zn-rich precursors, and CuSnS3, with Zn-

poor ones, can be obtained. All these aspects affect the material’s performance in the 

light-to-electricity conversion phenomena which are underlie all photovoltaic devices 

based on thin-films [9]. 

 

 

Figure 2. Relationship between binary, ternary, and quaternary semiconductors to produce 
Cu2ZnSnS4, starting from a II–VI parent compound [3]. 
 

CZTS, having a configuration I2–II–IV–V4 (see Figure 2), gives suitable and tunable 

bandgaps [9, 11]. The band gaps of configurations like I–III–VI2 and I2–II–IV–V4 

are narrower than those of II–VI compound. Recent works on Cu (In, Ga) Se2 

(CIGS) material showed that the substitutions of Se for S, and Ga for In, allowed for 

an optimization of the final band gap. [9], [12, 13, 14, 15]. Analogously, A. Walsh et 

al (2012) [9] described that CZTS-based compounds, like Cu2ZnSnSe4, Cu2FeSnS4 

and Cu2ZnGeSe4 have increased band gaps of 1.45 eV, [16, 17] 1.51 eV, [18] and 

2.27 eV, [19], [9], respectively. Although alloying these CZTS compounds can 

improve band gap, their Voc can still be low. Therefore H. Zhou et al. (2013) [20] 

reported that by “introducing more defects like antisites and vacancies species, some 

of which may act as recombination centers like different S/Se and/or Sn/Ge ratios” it 

is possible to change the bandgap meanwhile increasing the output voltage [20]. 
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1.5 Chronology efficiency of CZTS by solar cells applications 

The photovoltaic applications of CZTS have increased in recent years, in an attempt 

to gradually substitute the analogous CIGS (and CdTe). Since 1988 [21] several 

scientific reports considered CZTS as an alternative to CIGS for commercial solar 

cell systems. CZTS has a similar structure to the chalcopyrite of CIGS, but the raw 

materials of CZTS, based on earth-abundant elements, are five times cheaper than 

CIGS [21]. Moreover, unlike CIGS and CdTe devices, CZTS does not involve toxic 

elements. 

CZTS was first synthesized in 1966 [22], but only in 1988 was it demonstrated to 

exhibit the photovoltaic effect [23]. Figure 3 shows a diagram promoted by the 

National Renewable Energy Laboratory (NREL) with the chronology of efficiency 

growth of several semiconducting cells. In particular it is shown: 1) efficiency of 

different cell types – single-crystal, thin film polycrystalline or amorphous; 2) the 

types and number of junctions used (single- or multi-junctions); and 3) some 

emerging PV devices. In the diagram the evolution of solar cell efficiency in CZTS 

devices can be followed: from 2.3% in 1997 to 5.7% in 2005. The last results were 

obtained just through the optimization of the deposition process [24].  

In 2014, a bifacial device with CZTInS absorber material and transparent conducting 

back contact was reported to have 3.4% of efficiency [25]. In 2010, a solar energy 

conversion efficiency of about 10% (red route in Figure 3) was achieved by a CZTS 

device [25]. In August 2012 IBM announced a CZTS solar cell capable of converting 

11.1% of solar energy to electricity [26]. In November 2013, the Japanese thin-film 

solar company Solar Frontier announced that in joint research with IBM and Tokyo 

Ohka Kogyo (TOK), they have developed a world-record CZTS solar cell with 

12.6% energy conversion efficiency [27]. However, it should be noticed that all these 

excellent efficiency values were obtained by rather expensive synthesis procedures. 

In the present work the red route (Emerging PV: ◊ inorganic cells - CZTSSe) will be 

followed, using low-cost synthesis and techniques, analyzing how it is possible to 

increase the present band gap 1.5 eV [24] by some inorganic chemical modification 

during the synthesis. 



INTRODUCTION 

7 

 

 

Figure 3. Chronology of record cell efficiency according to the National Renewable Energy 
laboratory (NREL, USA, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg). 
 

1.6 Objectives for this Research  

The thesis work was organized according to the following ideas and guidelines: 

� To produce high-quality CZTS thin films, e.g. with controlled composition 

and crystal structure in order to avoid phase separation, by low-cost methods, 

suitable for the industrial scale-up.  

� To optimize the growth process of the CZTS layer exploring the effect of 

different post-deposition heat treatments, with or without sulfur. 

� To coat and anneal CZTS thin layers on glass substrates for studying the 

growth of defects and optical properties also in correlation with possible 

formation of spurious secondary phases. 

The most fundamental point in this investigation was to explore the routes to produce 

high-quality CZTS phase, showing the effect of spurious secondary phases on the 

microstructure and optical properties, to shed light on the correlation with the 

material composition. 
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1.7 Structure of the thesis 

A brief overview of the basic properties of CZTS is presented in Chapter II. This 

thesis is then structured in three central experimental chapters: 

• Chapter I is an Introduction to the topic. 

• Chapter II is a brief overview of the basic properties of CZTS. 

• Chapter III focuses on CZTS thin films produced by a water- and 

sulfurization-free solution route. Afterwards a description is presented of the 

growth process, together with a characterization of the optimized materials in 

terms of chemical composition. A detailed investigation of the stoichiometry 

effect on CZTS chemical properties, such as the differences induced by using 

a tin chloride precursor and and the final layer effects are also presented in 

this chapter. 

• Chapter IV concerns the development of CZTS thin films by a hot-injection 

method, using spin-coating as a deposition technique. This chapter mainly 

focuses on the optimization of this material in view of its application as an 

absorber layer in solar cells. 

• Chapter V is related to research activity on CZTS optical properties. 

Following the results of previous chapter IV, concerning synthesis processes 

and experimentation, this chapter focuses on: 1) effect of heat treatment time 

on the final layer, 2) structural characterization, and 3) optical properties of 

the absorbing layers. 

• Chapter VI contains the Conclusions and some future perspectives. 
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Chapter 2 

 

 

General overview of CZTS material 

2.1 Stability of the solvents leads the synthesis of CZTS 

CZTS nanoparticles can be produced by different methods using solvents as stabilizer 

or surfactant. According to the classic sol–gel method, primary particles can be grown 

in aqueous solution, if precursors metallic salts are soluble before the reactions of 

hydrolysis and condensation, which allow for the formation of inorganic polymers that 

eventually precipitate as amorphous particles [1] [28]. The processes of hydrolysis and 

condensation of precursors can occur also in different liquid media, for example 

alcohol or hydrocarbon solvents, depending on the chemical nature and reactivity of 

the precursors.  

A pioneering work on the synthesis of CZTS NCs was published by Q. Guo et al. 

(2009 [29]), who injected a solution of elemental sulfur dissolved in OLA into a 

solution of the metal precursor (Cu, Sn and Zn) in OLA at 225 °C with a 30 min 

reaction time [29]. In fact, solution stability is a major issue. Cu, Sn and Zn ions from 

precursors salts dispersed among solvent molecules collide, as an effect of several 

mechanisms, like Brownian motion, convection and gravity [29], thus leading to 

condensation of new compounds. The forming particles of colloidal size should tend 

to attract each other by van der Waals [30] and Keesom forces [29], [31], [32] in 

absence of complexing stabilizing agents. If generally a complexing or chelating agent 

can be used to avoid precipitation of fast grown large particles, stability can be 

promoted by using solvents like oleylamine (OLA). The amine group forms ionic 

interactions with metallic ions and the long hydrocarbon chain can be effective in 
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avoiding agglomeration by steric hindrance [33]. Thus OLA is used to both activate 

the precursors and cover nuclei, from which nanocrystals (NCs) will be grown. As 

shown in the literature (e.g., see [34] and Figure 4), one of the effects of OLA is to 

create metal complexes and prevent agglomeration of the resulting nanoparticles [32], 

[34].  

Current literature is poor on the issues arising from toxicity of solvents like OLA [32], 

which should be handled carefully, being corrosive and volatile at high temperatures 

[35]. 

 

 

Figure 4. Oleylamine effects, creating metal complexes at high temperatures (over 230 °C) allowing the 
CZTS formation [32]. 
 

2.2 Development of ink Precursors 

One of the most intriguing and promising ways of producing PV cells is to use inks for 

printing or spraying processes. In this regard the ink could be a hybrid sol containing 

nano-particles or amorphous inorganic 3D [32]. An appropriate ink should: 1) develop 

a large contact area between the two (liquid-solid) phases, 2) be produced by a large-

scale process and 3) provide a continuous adherent “crack-free” layer of kesterite. 

[32]. 

S. Magdassi et al. (2010) [36] first underlined the possibility to inkjet and print this 

type of ink to prepare thin films. Ink requirements and formulation guidelines are 

extensively discussed in the literature. According to S. E. Habbas et al. [32], ink 

stability is a major point, achievable by properly designing its composition, 

stoichiometry and solvent. Regarding the latter, S. E. Habbas et al. (2010) [32] 

emphasized the importance of using low vapor-pressure solvents (like OLA), to 
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control evaporation during thin layer deposition [32]. In fact, a fast release of the 

solvent during the deposition process can cause a non-uniform surface, and a 

premature precipitation of reactants [32]. 

 

 

Figure 5. Fabrication of a nanocrystal-ink based copper zinc tin sulfoselenide solar cell starting from an 

ink of CZTS nanocrystals and ending with a 7% efficient photovoltaic device [37].  
 

Figure 5 shows how to prepare a PV device using an ink [38, [39]. A further point of 

interest is the substrate. Organic polymeric substrates are largely used for their low 

cost and flexible features, although they are not as thermally resistant as metal foils or 

glasses [32].  

 

2.3 Low cost deposition techniques 

The most popular low cost techniques for preparing colloidal films are dip-coating and 

spin-coating, but other techniques may be applied, such as capillary-flow, spraying 

and electrophoresis [2], [3], [40]. 

2.3.1 Dip-coating  

This well-known technique consists in dipping a substrate into a sol and withdrawing 

it at constant rate so that, as M. Guglielmi (2001) [40] reported, “a liquid layer remains 

on the substrate with a thickness profile that is determined by the effect of different 
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forces (described in the section 2.1) on its flow”. M. Guglielmi et al. (1992) [41] also 

observed that, in the case of sols prepared by metal-organic precursors like metal 

alkoxides, during the process the sol “changes its rheological properties mainly due to 

evaporation of solvents, but also as a result of diffusion of water from the processing 

atmosphere”, which promotes hydrolysis of precursors. Further to hydrolysis and 

condensation reactions occurring in the fresh sol layer, the viscosity increases quickly 

and the gel point is attained, so that the thickness of the deposited layer is fixed and 

does not change anymore [32]. Therefore, M. Guglielmi et al. (1992) stated that the 

withdrawal at constant speed could produce a film layer with constant thickness [41].  

The thickness (h) of film prepared by dip-coating by using a sol-gel process can be 

determined by the following equation: 

 

ℎ = 0.94 HȠʋ
/�
�/�	(р�)�/
 

 

where the withdrawal speed is ʋ, viscosity HȠ, surface tension γ, and density р of the 

solution and gravity acceleration constant g. From this equation it can be deduced that 

the thickness of the layer can be controlled by varying the withdrawal rate. According 

to M. Guglielmi and S. Zenezini (1990) [42], “large planar substrates or axially 

symmetric substrates may be uniformly coated by the dip-coating technique with a 

batch or a continuous process (Figure 6 (a)). The coating could be also applied to a 

complex substrate. However, the thickness will not be uniform over the entire surface. 

Nevertheless, thickness uniformity will be achieved only if the driving mechanism for 

the withdrawal of the substrate acts smoothly and if any sources of mechanical or 

acoustic vibrations are eliminated” [42].  

2.3.2 Spin-coating 

In spin-coating (Figure 6(b)) a proper amount of sol is put onto the substrate, which, 

initially stationary, is then rotated at constant angular velocity ɷ. The excess of sol 

flows radially outward, driven by centrifugal force (calling spin-up stage) and 
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eliminated from the substrate (spin-off stage) [40]. At the latter stage, as mentioned by 

M. Guglielmi (2001) [40], “evaporation of the solvent, which occurs uniformly over 

the sample, increases the concentration of the solution” [31]. Due to the greater 

density and viscosity resulting at the end of the process, at this point gelation of sol or 

the deposition of a determined ink takes place, and the thickness of the material layer 

is fixed [40], [43]. The thickness is related to ɷ by the relation: 

h=Aɷ
-B 

where A and B are constants. B ranges between 0.4 and 0.7. Spin-coating is a 

convenient technique for preparing films having uniform thickness, provided that a 

homogeneous sol with a constant viscosity is available. The main typical drawback of 

spin-coating is that only small samples with a planar and simple geometry can be 

coated uniformly [40].  

 

Figure 6. Processes used to make thin-film coatings: (a) dipcoating (1: batch process, 2: continuous 
process); and (b) spin-coating processes [38]. 
 

 

Once the deposition of the colloidal films is carried out, it is necessary to proceed with 

thermal treatment, in order to obtain the final desired material. The effects of this 

thermal treatment or annealing on the CZTS thin films are described below. 
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2.4 Annealing effects from the precursor CZTS thin film. 

The sulfurization process, or the use of a sulfur source together with an inert 

atmosphere during annealing, can contribute to modify the elemental distribution 

through the entire CZTS layer, especially those of Sn, Ge, S and Na [44]. The surface 

morphology consists of several stacked layers, up to six in some cases. After each 

treatment [81], the surface morphology of each layer can be different, despite having 

similar composition ratios [45].  

An appropriate annealing temperature could optimize quality, crystallization and 

crystal structure of the thin films. According to the literature, the substrate surface 

warps at high temperatures so that strains and defects increase, affecting the growth of 

the crystalline phase [46]. As a consequence, a proper heat treatment at the correct 

annealing temperature is one of the keys to improve the quality of the thin films.  

Regarding the temperature of the annealing, literature reports that kesterite annealed at 

450 °C shows the (112) diffraction peak and a good crystalline quality; moreover, 

higher annealing temperatures give larger grain size, and consequently lower 

extension of grain boundaries [46]. Quite importantly, grain boundaries, as many other 

defects, can act as carrier traps, decreasing mobility and conduction [47]. 

Figure 7 shows a system for annealing the precursor, with a sulfur source and inert 

atmosphere [53], [81]. A recent publication by A. Emrani et al. (2013) [48] shows the 

surface morphology of CZTS thin films annealed at temperatures between 500 and 

575 °C. Increasing the annealing temperature improves the crystallinity of the CZTS 

thin films. Larger crystalline grains as well as compact and void-free structure reduces 

the number of secondary phases. The authors observed that at 500 °C the grains are 

smaller and some voids are also present [48]. Grains start to coalesce as the annealing 

temperature increases, with compact and larger grains observed at annealing 

temperature of 525 °C and 550 °C. At 550 °C, the grain size is approximately 1 µm 

[48]. However, beyond 550 °C grain coarsening starts, which seems to lower the film 

performance. Accordingly, 550 °C is the best temperature for the annealing in order to 

optimize the performance of the CZTS thin films. Moreover, Energy Dispersive 

Analysis X-ray (EDAX) measurements reveal a zinc rich and copper poor 

composition, with a Zn/Sn ratio ≈ 1.2 and Cu/(Zn + Sn) ratio ≈ 0.89. So far higher 
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efficiencies and optical properties have been obtained with zinc-rich and copper-poor 

compositions [49]. 

 

 

Figure 7. Schematic diagram of the sulfurization furnace [53].  

 

2.4.1 CZTS phase formation during the annealing process 

According to S. Delbos (2012) [50], CZTS is formed in a range of temperatures 

between 500 and 600 °C and, similarly to CIGS material, through chemical reactions 

not yet completely understood [50].  

Two types of processes have been studied by S. Delbos (2012) [50], in order to assess 

the reactions forming CZTS: a one-step process (CZTS precursors already annealed 

with an elemental Cu-rich target) and a two-step process (CZTS non-annealed 

precursors, sulfur poor). In both processes the temperature and the presence of sulfur 

play a fundamental role. These authors clearly state the importance of a strict control 

on the annealing temperature, because a too-fast treatment can develop strain and Sn 

formation. These two effects hinder the formation of large grains, especially in the 

two-step process [50, 51], S. Delbos (2012) [50] also remark that reactions are “taking 

place in the bulk of the layer between the elements leading to binaries, ternaries and 
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finally the quaternary” phase [50]. “At room temperature only binary compounds” 

[50], such as Cu6Sn5 [52], Cu5Zn8 [53], Cu3Sn and CuZn are formed [54], [50], at 

higher temperature (200 to 450 °C), metal chalcogenide binaries such as CuX, Cu2X, 

and SnX (X corresponds to the non-metal element) are formed [50], [55, 56, 57]. 

Beyond 450 ◦C, Cu2X binaries react with Sn to form Cu2SnS [50]. Only over 550-580 

°C [58, 59], and prolonged annealing time (or one-step deposition and treatment at 500 

°C [60], ZnX reacts with the ternaries Cu2SnX3 to finally form Cu2SnZnX4 according 

to the following equation [50]: 

Cu2SnX3 +ZnX → Cu2ZnSnX4. (1) 

A further important feature of the annealing process, is the use of elemental sulfur (or 

selenium) or H2S. The latter is less reactive than elemental sulfur and consequently 

requires a longer annealing time for forming binary compounds and large CZTS grains 

[50], [61, 62]. However, using H2S requires quite demanding control standards for the 

environmental toxicity and hazards, so that the use of sulfur under inert atmosphere is 

usually preferred.  

The one-step process favors the conditions for the growth of Cu-rich material [63], 

[50], whereas using an excess of sulfur does not promote the growth of large grains 

[50].  

 

Figure 8. SEM cross-section of CZTSe with ZnSe segregation at the back contact (reproduced from 
[50]), [67]. 
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Finally, both processes produce Zn-rich layers, and in particular Cu2X-free binaries 

[64]. It is worth noting that if the film contains Cu2X at the end of the synthesis 

process, a subsequent etching, e.g. using cyanide, leads the formation of voids and 

defects [50]. If Zn-rich growth conditions conditions are used, ZnX formation is 

promoted (Figure 8 shown the ZnX formation at the back contact) [50], [65, 66, 67]. 

2.4.2 The atmosphere control in the annealing process 

Unlike CIGS, the reagents for a CZTS synthesis are prone to evaporation and 

sublimation [41]. According to S. Delbos et al. (2012) [50], the Zn compounds 

sublimate at 430 °C [68], SnSe at 350 °C [55], SnS at 370 °C and Sn at 460 °C [50], 

[69, 70]. It is necessary to be aware that both high temperatures and atmosphere 

control can promote CZTS decomposition pushing to the right the equilibrium of 

equation (2) [71, 72], [59]. 

 

Cu2ZnSnX4 (s) ←→ Cu2X(s) + ZnX(s) + SnX(s) + 1/2X(g)     (2) 

If this equilibrium is shifted to the right, ZnX, SnX and X are formed, leading to 

Cu2X-rich layers, which increase resistance and prevent good photovoltaic efficiencies 

[50]. Thus, in order to avoid CZTS decomposition, the atmosphere should be saturated 

with the products of the right-side of equation (2) [50]. During the thermal treatment, 

SnX can be introduced [50], or the partial pressure of chalcogen can be increased [73, 

74], by using in both cases a lid to cover a small closed volume above the precursor 

layer [75], [82]. Alternatively, using a H2S source during annealing, Zn loss can be 

prevented by using ZnS as a precursor [76]. In some cases it seems that the presence 

of MoX2 from the molybdenum substrate pushes the reaction (2) to the right [77], [50].  

Although it is known that fast annealing in inappropriate atmosphere leads to the 

decomposition of CZTS, an appropriate atmosphere and slow annealing also causes 

the formation of different secondary phases, including binary and ternary compounds 

[78].  

As described in the previous section, S. Delbos (2012) et al. [50] elaborated two 

strategies of CZTS synthesis annealing: one-step (precursors with Cu-rich condition 
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with no sulfur excess) and two-steps (from precursors needing a sulfur excess). In the 

latter, the annealing step consists of a short step (a few minutes) for forming CZTS 

and a longer one (up to a few hours) for increasing grain size. Thus the atmosphere 

could also be different in each step [50], provided carrier gas and its pressure are well 

controlled. Actually the atmosphere control is not a simple task in sputtering systems, 

“because reaction chambers are designed for controlling the deposition rate and not the 

partial pressure of each element” [50], [82]. This simple consideration clearly adds 

more interest to chemical routes. 

 

2.5 Use of the ternary phase diagram (TPD) to understand the CZTS phase 

stability and secondary phases 

The complete phase diagram of CZTS, containing four atomic species, requires a 

complex three-dimensional representation. The amount of sulfur in the film depends 

on the reactions occurring with the metallic precursors, reducing the degrees of 

freedom of the system to three. The study of J. J. Scragg et al. (2010) [63] on phase 

diagram was based on comprehensive measurements done by D. Olekseyuk et al. 

(2004) [79]; ternary phase diagrams for a system at 400 °C with different regions of 

composition are shown in Figure 9 and 10. It is worth noting that the phase diagram of 

Figure 9 is valid in a quasi-equilibrium at 400 °C. However, other experiments carried 

out in comparable conditions (e.g. [80]) demonstrated the occurrence of secondary 

phases, predicted by the diagram. Therefore, it may be useful both to depict the 

compositions of the samples and to support assumptions concerning composition and 

secondary phases. The diagram shows ten fields, each of them implying the presence 

of CZTS with one or two secondary phases [63]. Around the middle (the point is 

labeled as “1” in Figure 9) only CZTS should exist. It is important to highlight that all 

the secondary phases are compounds of sulfur and there are no metallic phases [63] 

[79]. As described in the previous section, an excess amount of sulfur is provided 

during the sulfurization process. However, not all the secondary phases have been 

considered, because they depend on the thermal treatment conditions [79]. An 
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important secondary phase is SnS2, which forms at 700 °C when an excess of Sn 

precursor is present, leading to a decrease in final efficiency of the CZTS layer [53] 

 

 

Figure 9. Ternary phase diagram of the Cu2S–ZnS–SnS2 quasi-ternary system at 400 °C [63] [79]. 

Secondary phases expected in the different regions of the phase diagram are also reported (see the Table 

2). 
 

The investigations of J. J Scragg et al (2010) [63], divide the phase diagram in regions 

already indicating the possible secondary phases (Figure 10) [63]. In the Zn-rich 

region, for example, ZnS is the expected secondary phase formed by an excess of Zn 

precursor. The Zn-poor region covers several fields with various possible secondary 

phases. One can notice that this notation is clear but unusual: in literature Cu-poor and 

Cu-rich are usually distinguished (e.g. [53]), without consideration for the ratio 

between the remaining metals. 

At the end, it is important to consider that in an ideal phase diagram only secondary 

compounds with Cu(I), Zn(II) and Sn(IV) are taken into account, with no mention of 

ternary compounds such as Cu2SnS4, Cu3SnS4 or Cu4SnS6. According to Malerba 

(2014) [82], the main spurious phases are those of Table 1: some of these are just 

intermediate products of the reaction (at T <500 ° C), while others are also present in 

the final film [81, 82]. 
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Figure 10. Ternary phase diagram with different regions of composition [63]. 

 

Table 1. Secondary phases for the Cu-Zn-Sn-S system for each material, stability 

region, crystal structure (hexagonal), bandgap energy Eg and XRD reference (ICDD) 

card number are reported [81, 82]. 

Chemical 

Formula 

Mineral Stability Structure Eg (eV) XRD card 

CuS  Covellite  T < 507°C  hexagonal  1.7  06-0464  

75-2233  

Cu2S  Low-  

Chalcocite  

0°C < T < 104°C  orthorhombic  1.18  

[83]  

23-0961  

73-1138  

Cu2S  High-

Chalcocite  

90°C < T < 435°C  hexagonal   84-0206   

Cu9S5  Digenite  72°C < T < 1130°C  rhombohedra  1.8  

[84]  

47-1748  

84-1770  
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Chemical 

Formula 

Mineral  Stability  Structure Eg (eV) XRD card 

Cu31S16  Djurleite  T < 93°C  orthorhombic  1.4  42-0564  

83-1463 

Cu7S4  Anilite  T < 75°C  orthorhombic   72-0617   

2H-ZnS  Wurtzite   hexagonal 3.91 79-2204 

ZnS  Sphalerite   cubic  3.54 05-0566  

71-5975 

α-SnS  Herzenbergite  Tmelt < 605°C  orthorhombic  1.3  

[85]  

83-1758  

(Amnm)  

β-SnS   Tmelt > 605°C   73-1859 

(Pbnm)  

Sn2S3  Ottemanite     1 [85] 75-2183 

2H-SnS2  Berndtite  Tmelt = 870°C  hexagonal  2.2  

[85]  

23-0677  

83-1705  

4H-SnS2  
 

    21-1231  
 

Cu2SnS3   T>400°C Cubic 0.96 [86]  

Cu2SnS3   T<400°C tetragonal 1.35 [86]  

Cu3SnS4  Isostanite   orthorhombic 1.60 [86] 36-0218 

Cu4SnS6  Synthetic  Tmelt <537°C  rhombohedra   36-0053 

Cu2ZnSnS4  Kesterite   tetragonal 1.5 26-0575 
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Chapter 3 

 

 

CZTS synthesis by non-vacuum process 

This chapter describes the production of CZTS thin films deposited from a metal salt 

solution using two aqueous solutions. After mixing these solutions and obtaining the 

sol, a dip-coating method is used to deposit wet precursor films. After presenting the 

influence of different solutions and precursors, a study of phase formation using in situ 

and ex situ methods will be discussed. Moreover, the effects of tin chlorides and sulfur 

conditions with respect to the phase purity will be discussed and possible solutions to 

avoid them will be addressed. Finally a tentative test of a solar cell cross section is 

presented, together with an evaluation of optical properties. 

 

Part of this chapter has been published in: 

“A water- and sulfurization- free solution route to Cu2-xZn1+xSnS4” 

Renato D’Angeloa, Cristy Leonor Azanza Ricardoa, Alberto Mittigab, Paolo Scardia, Matteo Leonia. 

J Sol-Gel Sci Technol. 72; 490-495, (2014). DOI 10.1007/s10971-014-3462-x 

 

a University of Trento, DICAM, Via Mesiano 77, 38121, Trento, Italy. 

b ENEA C.R. Casaccia, (S.P. 064), Via Anguillarese 301, 00123, Roma, Italy 
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3.1 Introduction 

Thin film solar cells aim to become competitive with traditional silicon-based devices, 

as a low cost per kW of the base materials is coupled to the possibility of building the 

cell on flexible and non-flat substrates. Energy harvesting in a thin film solar cell is 

obtained via electron-hole pair formation in a suitable absorber layer. The best 

absorbers so far contain cadmium (e.g. CdTe, max laboratory efficiency of 18.3% 

[87]) or indium (CIGS, CuInxGa1-xSe2, max efficiency 20% [88]), the first one being 

notoriously toxic and the other quite expensive.  

The research is thus fostered towards finding alternative absorbers, based on non-toxic 

and inexpensive elements. The most interesting results are currently shown by a 

synthetic analog of the mineral kesterite with formula Cu2ZnSn(S,Se)4 (CZTS). An 

efficiency of 11% has been already achieved in the laboratory using a partially 

selenized CZTS [19]. Many processes have been proposed for the production of CZTS 

thin films and powders (for solar inks), most of them based on vacuum deposition, 

complex synthetic routes or requiring a sulfurization step, all of which are too 

expensive for mass production. Limiting the scope to cheap production routes, the best 

stoichiometry, morphology and band gap (1.44-1.51 eV) have been obtained with 

absorbers synthesized from liquid phase [89]. Conventional aqueous solution 

processes entail the possibility of forming M–O–M bonds in the precursor solution or 

during the annealing step, which can lead to the formation of unwanted extra phases if 

the incorrect solvent is employed. Recent studies [90-91] have shown the effects of 

water, ethanol, ethylene glycol and methanol as solvents: near stoichiometric CZTS 

films were obtained up to 500-550 °C. H. Park et al. [92] tested nitrogen to replace 

H2S for heating treatment and confirm the optimal stoichiometry of sulfur in the 

material.Here we report a simple process to obtain CZTS without vacuum and without 

sulfurization. A Zn-rich/Cu-poor CZTS is obtained, beneficial e.g. for solar energy 

applications: previous reports [93,94] suggested that a Cu-poor material leads to the 

formation of Cu vacancies, which are shallow acceptors in CZTS, while a Zn-rich 

condition suppresses Cu substitution on the Zn sites, and thus decreases the quantity of 

deep acceptors. (cf. R. D’Angelo et al. 2014: 1 [2]). 
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3.2 Sol-gel experimental details 

Two routes using water and sulfurization-free solution, similar to the one proposed in 

[90-92] are employed to obtain a stable stoichiometry of Cu2-xZn1+xSnS4 (where 

x=0.2). Copper chloride (Cu (II) Cl2•2H2O), zinc chloride (Zn (II) Cl2) and tin (IV) 

chloride were chosen as metal sources. Both the anhydrous and the pentahydrate tin 

(IV) chloride (Sn (IV) Cl4 and Sn (IV) Cl4•5H2O, respectively, were tested. Thiourea 

(SC(NH2)2, was chosen as sulfur source. (cf. R. D’Angelo et al. 2014: 2 [2]). 

In this work, precursor composition was varied within the Cu-poor and Zn-rich 

stoichiometry region, which is known to give CZTS samples with the best 

performances as absorber layer described in the previous motivation and state of the 

art. Solutions were prepared by dissolving 0.45 mol of the copper source, 0.30 mol of 

the zinc source and 0.25 mol of the chosen tin source in 20 mL of solvent using a 

magnetic stirrer. Subsequently, 20 mL of a 0.60 M solution of thiourea was added. A 

brown sol is obtained that turns white after short stirring and then reverts to a 

transparent and limpid yellow liquid after around 5 minutes of continuous stirring, as 

shown in Figure 11. (cf. R. D’Angelo et al. 2014: 2 [2]). 

 

Figure 11. Final solution after 5 minute of stirring (S2B) 

 

The resulting solution can be employed for the production of both powders and films. 

Several combinations of solvents (water, ethanol, ethylene glycol and methanol) were 

tested. A detailed list of synthesis conditions is reported in Table 2. 
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Table 2. Details of the solutions and their corresponding ID's. 

Sol Solvent 

(Salts)  

ratio Solvent 

(thiourea) 

Tin source Thermal 

treatment 

Other 

phases 

S1A Ethanol 1:1 H2O Sn(IV)Cl2 T0-air + T1+S-1h SnO2++ 

Cu2S+ 

S2A Methan

ol 

1:1 EG Sn(IV)Cl2 T0-air + T1+S-1h SnO2+ 

S3A Ethanol 1:1 EG Sn(IV)Cl2 T0-air + T1+S-1h SnO2+ 

Cu2S++ 

S4A Ethanol 1:2 EG Sn(IV)Cl2 T0-air + T1+S-1h SnO2++ 

Cu2S++ 

S1B Ethanol 1:1 H2O Sn(IV)Cl2·

5H2O 

T0-Ar + T1-noS-

3h 

SnO2++ 

S2B Methan

ol 

1:1 EG Sn(IV)Cl2·

5H2O 

T0-Ar + T1-noS-

3h 

-------- 

S3B Ethanol 1:1 EG Sn(IV)Cl2·

5H2O 

T0-Ar + T1-noS-

3h 

Cu2S+ 

S4B Ethanol 1:2 EG Sn(IV)Cl2·

5H2O 

T0-Ar + T1-noS-

3h 

SnO2++ 

 

Following the literature and theory described in Chapter 2, the salts decompose, 

leading to the formation of CZTS by the steps described below: 
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Metal chlorides and thiourea dissolutions 

 

 

Cu(Cl)2                    Cu2+ + 2Cl- 

Zn(Cl)2                    Zn2+ + 2Cl- 

Sn(Cl)4                   Sn4+ + 4Cl- 

                 (CH4N2S)                  S2- + H+ + NH2-C=NH 

 

First solution: Reaction of metal chlorides in presence of solvent. 

 

��(��)����2� � �! "###$ ∆→	�' +	��)	 + ��2� � �! "###$ 	� − ���3 + ���� 
S2B: Cu(Cl)2 + Zn(Cl)2 + Sn(Cl)4 + 7H2O   ∆+ CH3OH   Cu2+ + Zn2+ + Sn4+ + -OCH3+ XHCl +XH2O  

 

Second solution: Thiourea dissociation in presence of solvent 

 

																																		S																																															S- − H 

			�2.−�−.�2 			�2�6�2			011111112 	.�2−� = .−�	 																011112 	N =4 C−NH2+H2S	 													6###$ 	7=	+2�+ 

S2B: (CH4N2S)     HO-CH2-CH2-OH     S2- + H+ + NH2-C=NH + OH-CH2-CH2-OH 

 

Final solution to CZTS formation: The nucleophile and coordination attack  

 

��1 − ���3 + ��2 − ���3 + ��3− ���3 + 479 + 2�' 								:;°							"######$
 

7 −�1 − �- − ��3		 + 		7 − �2 − �- − ��3 + 7 −�3 − �- − ��3 ∆
=�;>    Cu1-2Zn1+2SnS4 

 



CZTS synthesis by non-vacuum process 

27 

 

3.2.1 Deposition of precursors sols by dip-coating  

Films were obtained by dip-coating (reported in section 2.3.1): an example is shown in 

Figure 12. Residual solvents were removed by heat, treating the film at 150 °C for 5 

min. In the dip-coating process, substrates were dipped and retracted at 3000 mm/s 

with no yield time in the beaker. Soda lime glass slides (Corning 2947) were used as 

substrates.  

 

 

Figure 12. Example of the dip-coating deposition on a soda lime substrate using 3000 mm/s 
 

The deposited and annealed samples were characterized by X-ray diffraction (XRD), 

Raman spectroscopy, SEM and EDX. The annealing process is described in the next 

section. 

 

3.2.2 Annealing of the precursors CZTS thin film deposited  

A two-step thermal annealing was employed. The first step, performed at 220 °C for 

10 min in air (T0-air) or in Ar (T0-Ar), respectively for the set A and set B of 

specimens. The first step is aimed to remove the process solvents. The second step at 

550 °C in Ar (T1-Ar) promotes the crystallization of the film and, if it is necessary, 
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completes the sulfurization. Two alternatives were employed for the second step: 

either with 400 mg sulfur for 1h (T1-S-1h) or without sulfur for 3h (T1-noS-3h). An 

example of the annealing system is shown in Figure 7 of chapter 2, section 2.4 and a 

picture of the real system is shown in Figure 13. For specific details of each annealing 

schedule, see Table 1.  

The sintering of solution-deposited precursors within thin films with different types of 

atmosphere can influence the grain growth, metal ion distribution, formation of 

secondary phases and therefore the electronic properties of the resulting CZTS solar 

cells. Of special interest in the following sections is the evolution of different layer 

morphologies, as well as the bulk and surface composition when the precursor is 

annealed under inert atmosphere and contemporaneously in sulfur atmosphere. 

 

 

Figure 13 Tubular furnace. Inside there is a sample to be annealed with 400 mg of sulfur for 1 h 

 

3.3 Results and discussion of the sols (S2B) precursors  

3.3.1 Formation of Cu1.8-Zn1.2SnS4  

In order to understand the sequence of reactions leading to the formation of 

Cu1.8Zn1.2SnS4 infrared absorption spectra (FT-IR) were from the precursor solutions. 

The instrument used was a PerkinElmer SPECTRUM ONE FT-IR spectrometer (633 
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nm Class 1 laser), on liquid droplets using an ATR (Attenuated Total Reflection) 

attachment (ZnSe crystal). 

The study of the reactions of Cu2-xZn1+xSnS4 was done on the S2B solution as well as 

on the metal and the thiourea solutions leading to it (named, respectively, S2B-metal 

and S2B-thiourea). The methanol solution of the chlorides can be quite a complex 

system: at the given low molarity, the salt is totally decomposed and just coordination 

complexes are expected in S2B-metal. Some water should also be present due to the 

atmospheric moisture, the residual water in the alcohol, and the structural water 

released by the solids. Under those conditions, some alkoxides (M(OR)n) may form, 

but their condensation (thus the formation of a proper gel) is unlikely, at least for short 

processing times: the metal ions will be therefore coordinated by the alcohol and by 

the water molecules (M-O-R or M-O-H2). The typical demonstration of this formation 

occurs when a green color is observed like that seen in Figure 14. (cf. R. D’Angelo et 

al. 2014: 3 [2]). 

 

 

Figure 14. Metal solution, (S2B-metal) 

 

The green color is typical for coordination compounds e.g. of Cu. The FT-IR spectrum 

of S2B-metal confirms this coordination, being very similar to the methanol one, but 

with the extra presence of a 1635 cm-1 peak compatible with the ʋ2 band of liquid 

water (see figure 15) 
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Figure 15. ATR-FTIR spectra. In (a) the precursors solution: Thiourea, Ethylene glycol, and thiurea on 

ethylene glycol (S2B-Thiurea). In (b) the methanol and the precursor solution: alkoxydes in methanol 

(S2B-Metals). (c) The final solution (S2B) CZTS samples with the methanol solvents: ethylene glycol 

and the precursors solutions: S2B-Thiurea and S2B-Metals 
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In the spectrum (Figure 15 a) for the thiourea solution it was possible to observe that 

the organosulfur compound (thiourea) is dissolved completely in the diol in an 

analogous way. The alcoholic dissolution of thiourea has already been reported in the 

literature [95]. The FT-IR spectrum of S2B-thiourea shows all the features of ethylene 

glycol solution plus some extra bands related to nitrogen of thiourea. The double band 

observed around 3300 cm-1 is in fact the combination of the OH signal from water and 

the diol with the doublet coming from the stretching of the NH2 of thiourea [96].  

Through this characterization it was possible to understand the role of the two mixed 

solutions, and as the lone pairs of sulfur in thiourea are attracted to the metal cations 

and it will likely substitute for at least some of the existing species coordinating the 

metal (more likely the alcohol and water molecules, as they are less bound to the metal 

ion).  

Following literature [95, 96], the cations will be therefore octahedrally coordinated by 

the original anions (chlorine) plus a variable number of thiourea, methanol and water 

molecules. The number largely depends on the cation valence and on the steric 

hindrance. This coordination of the metal ion(s) with sulfur is likely to be responsible 

for the change of color of the S2B solution just after S2B-metals and S2B-thiourea are 

mixed. The coordination with the metal ion lowers the strength of the S-C bond in 

thiourea that becomes more prone to a nucleophilic attack and possible conversion into 

a O-C bond. A plausible type of attack involves the transformation of the complex into 

a thiol and the conversion of thiourea into urea mediated by hydroxide ions. It is 

possible that this second reaction step is responsible for the solution changing to a 

white color (opaque), creating a metastable sol. This is probably the starting step 

towards the production of the sulfide. An increase in the temperature is then necessary 

to promote the elimination of HCl and the formation of sulfide bonds. The FT-IR 

spectrum is unable to give a full confirmation to this process: thiourea is in excess, the 

solvents mask all other signals and sulfide bonds cannot be seen in the accessible 

range [96, 96] 

Further insights are provided by Raman spectroscopy (see Figure 16). Raman spectra 

were collected on a LabRAM Aramis confocal microRaman system, using a 
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backscattering configuration at 532 nm and spectrometer with a grating of 1800 

grooves/mm coupled to an air cooled 1024*256 VIS CCD.  

The spectra show a downshift of the ʋ(CS) at ca. 700 cm-1 in S2B with respect to S2B-

thiourea, compatible with a coordination of thiourea with the metal ion(s) [96]. The 

Raman spectrum at lower wavenumbers (see Figure 16) also shows a simultaneous 

reduction of the signal related to the coordination of the metal chlorides with the 

alcohol/water, and an increase in the signal from the metal-sulfur bond. Both 

observations are compatible with the proposed reaction scheme. 
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Figure 16. Raman spectra of the CZTS precursors S2B 
 

It is possible that the increase in steric hindrance when moving from methanol to 

ethanol to ethylene glycol is responsible for the slowing down of the reactions in the 

corresponding cases and, ultimately, for the observed increase in stoichiometry 

control. The high density and polarity of the diol seems also the key for a better 

dissolution and stabilization of thiourea with respect to the water-based and 



CZTS synthesis by non-vacuum process 

33 

 

conventional sol-gel approaches usually proposed in the literature. (cf. R. D’Angelo et 

al. 2014: 3 [5]). 

 

3.3.2 Stability and formation of CZTS by DTA/TG 

To investigate the thermal stability of CZTS from the final solution S2B (yellow color, 

see Figure 11), samples were studied by DTA/TG in static air under atmospheric 

conditions. Approximately equal aliquots of ca. 23 mL of solution were placed in 

Al 2O3 crucibles (100 mg capacity), subjected to a linear heating ramp between 25 °C 

to 900 °C at a heating rate of 10 °C/min in flushing nitrogen at 100 sml/min. A 

Setaram TG-DTA apparatus equipped with a LABSYS TG-ATD 1600 °C rod. The 

test measurements were made for the mass variation of the sample as a function of the 

temperature and the phase changes by the absorption or the emission of energy (heat 

flow) against temperature. Analyses of the heat-flow peaks were conducted using the 

Setaram proprietary software. 

TG/DSC analyses were conducted in order to study the energy stability, 

decomposition and the phase transition behavior of the solution precursors S2B 

(Figure 17). All three metal precursors and thiourea showed the evaporation of the 

solvents (methanol, EG and H2O complexes with the salt precursors) developing a 

weight loss of ~40 % at 160 °C (Endo process), after this step, the previous forms of 

CZTS will begin with the attack complex. Further annealing to 214 and 526 °C is 

accompanied by a slight weight loss of about 5 % (Exo process), ascribed to a loss of 

sulfur (from the thiourea) and chloride ions (from the metals precursor), which occur 

together with the probable formation of binary, ternary and the quaternary compounds 

like Cu2SnS3 +ZnS ↔ Cu2-xZn1+xSnS4. At 525 °C formation of the quaternary CZTS 

compounds is completed, but above 550 °C the CZTS equilibrium is broken, and 

decomposition starts with a considerable weight loss [50], [97], [102]. 
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Figure 17. TGA (left) and DSC (right) of CZTS of the final precursor solution S2B (yellow solution). 
The heat treatment temperature should be 526 °C (crystalization completes, decomposition tremperature 
and the energy envolved). 
 

However, this characterization confirmed how equilibrium has been achieved in one-

step (cf. equation 2 in previous sections 2.4.1 and 2.4.2), to form non-stoichiometric 

CZTS by a non-vacuum method.  

 

3.4 Results and discussion of the CZTS thin films from S2B after the annealing  

3.4.1 Impurities from solutions with and without sulfur source 

For an in situ study of crystallization and impurity phase identification by XRD, the 

CZTS sol precursor S2B was converted into crystalline kesterite by a high temperature 

annealing, as described in section 3.4. 

All samples were characterized using grazing incidence X-ray diffraction with a fixed 

incidence angle ſ=0.8°. Diffraction data were collected on a PANalytical X’Pert 

MRD diffractometer, operated with a cobalt source (45 kV, 30 mA) and equipped with 

a polycapillary primary optics and a secondary flat graphite analyzer.  
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The X-ray diffraction patterns taken in grazing incidence on the films prepared from 

the proposed solutions (as described in Table 2) are shown in Figure 18 and 19. 

Kesterite (ICDD PDF2 card #26-0575) is present in all cases: impurities in some of the 

patterns are cassiterite (SnO2, ICDD PDF2 card #41-1445) and copper sulfide 

(digenite CuxS, e.g. ICDD PDF2 card 24-0061). No further sulfide phase are directly 

identified, as their diffraction peaks might hide under (overlap with) those of CZTS, 

owing to a similarity between the CZTS and the zinc blende crystal structures [90], 

[97]. 
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Figure 18. Grazing-incidence XRD patterns of CZTS films from the precursor SA starting with 
anhydrous tin chloride (SnCl4) and with a excess on sulfur annealing. 
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Figure 19. Grazing-incidence XRD patterns of CZTS films from the precursor SB starting with 
pentahydrate (SnCl4•5H2O) and without a sulfur annealing. 
 

A qualitative evaluation of the phase content is proposed in Table 1. The synthesis in 

methanol/ethylene glycol (S2B) leads to the formation of pure kesterite, as witnessed 

by the absence of peaks from spurious phases; this is also confirmed by Raman 

spectroscopy measurements and EDXS (Figure 20 and 21).  

 

3.4.2 Surface composition 

Raman spectroscopy was collected after the annealing step using an excitation 

wavelength of 532 nm. The same instrument described before (section 3.5.2), a 

LabRAM Aramis confocal micro-Raman system. Raman spectra do not reveal 

substantial information about the presence of secondary phases which are detectable 

by XRD (see Figures 18 and 19). The Raman spectrum (Figure 20) shows the main 

peaks of polycrystalline CZTS at 285 and 337 cm-1, and a weak signal around 370 cm-

1, which are all as reported in literature (see Table 3) [86], [98]. 

The possible Raman modes of CZTS and other secondary phases are listed in table 3  
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Table 3. Raman peaks in Cu1.8Zn1.2SnS4 thin film: CZTS and spurious phases. 

Phase Raman shift (cm-1) Phase Raman shift (cm-1) 

CZTS 260, 289, 340, 366 (polycrystalline) 

T-Cu2SnS3 297, 337, 352 

Cubic- Cu2SnS3 267, 303, 356 

Cubic ZnS 275, 352 

Cu2S 474 

SnS 160, 190, 219 (not observed) 

SnS2 314, 215 (not observed) 

Sn2S3 32, 60, 111, 224, 307-311 

 

The presence of this weak peak reflects the remaining S in the absorber and therefore a 

mixed CZTS phase. The main CZTS (polycrystalline) is already weakly visible in the 

measurement at 366 cm-1 condition.  
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Figure 20. Raman spectrum of the S2B specimen deposited on glass and annealing without sulfur 

 

The peak around 474 cm-1 probably stems from Cu2S [50], [54-55] and not from a ZnS 

phase. The main peak corresponding to the ZnS phase is expected at 250 cm-1 [99]. It 

is still possible to detect at 274 cm-1 and a bit at 350 cm-1, however, the probing depth 

of Raman is limited to less than a micron, and possible ZnS accumulation close to the 
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back contact may not be detected. This would be consistent with ZnS accumulation 

close to the back contact. XRD is not typically used to find this type of phase, since 

diffraction peaks overlap heavily with those of the principal kesterite phase [99]. 

If Zn is bound to S, UV Raman with a 325 nm excitation wavelength would be needed 

for resonant Raman measurement due to its higher optical band gap compared to ZnS 

[100]. The presence of the Cu2SnSe3 main Raman peaks around 302, 334 and 355 cm-1 

cannot be excluded [63], although the ternary phase diagram (Figure 9) suggests its 

formation in this sample should be unfavorable (see Chapter 2 section 2.5). 

EDXS was carried out with a Jeol JMS 7401F instrument, using the Bruker EDX. The 

study was aimed once again toward the spurious phases, especially in specimens SA 

(see Table 2), but also to have a better understanding of the ratio of different cations. 

In fact, it should be noticed that a slightly unbalanced ratio between Cu and Zn, 

favoring Zn (EDXS) led to the desired stoichiometry Cu1.8Zn1.2SnS4 with a target ratio 

Cu/(2 x Zn)=0.75, which can be advantageous for solar energy harvesting applications. 

Figure 21 shows a graphic with more details using the estimated EDXS result for 

every solution ID. 

1 2 3 4 5 6 7

-80

-60

-40

-20

0

20

40

60

80

100

120

140

S3AS4A S4B S3B S2BS1B

Ethy:Meth

 

 

 Cu/(Zn+Sn)
 Zn/Sn

C
u/

(Z
n+

S
n)

 a
nd

 Z
n/

S
n 

ca
tio

n 
ra

tio
s 

(%
)

Solution ID

S1A

 

Figure 21. Estimetd stoichiometry for the different tested solvents (several measured were performed 
for each solution ID). 
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These data indicate that sulfurization is not always necessary to obtain an optimal 

stoichiometry, a point that can be verified with solutions S3B and S2B presenting less 

scattering. The resulting ratios of metal elements [Cu/(Zn+Sn) and Zn/Sn  

respectively] of the solutions with a closer stoichiometric distribution were around 

0.82 and 1.35 for S3B and 0.84 and 1,29 for S2B (see Figure 21), showing that Cu-

poor and Zn-rich compositions are sustained up to 550 °C with longer annealing times. 

Previous reports [100-101] have demonstrated that a Cu-poor condition leads to the 

formation of Cu vacancies, which generate shallow acceptors in CZTS, while a Zn-

rich condition suppresses Cu substitutions at Zn sites, which increases the 

concentration of deep acceptors [27]. 

Moreover comparing the various specimens, the sulfurization step seems to be 

responsible for the formation of the extra copper sulfide. The choice of the solvent 

also has an effect on the stabilization of the tin ion, leading to the formation of tin 

oxide together with kesterite.  

3.4.3 Morphological study  

For compositional/morphological characterization, the samples were analyzed using A 

Jeol JMS 7401F Field-Emission SEM equipped with a Bruker EDX detector.  

Figure 22 shows elemental mapping studies on Cu1.8Zn1.2SnS4 thin films composition. 

No contrast is observed in elemental map images which imply that the films are 

chemically homogenous. According to the phases identified by the Raman studies ZnS 

is an insulator, SnS, Cu2SnS3, Cu3SnS4, Sn2S3 are semiconductors, whereas Cu2-xS is a 

degenerate semiconductor [3],[20], hence a separate segregation of any of these phases 

was anticipated from elemental mapping studies. However, elemental maps could not 

reveal any segregation of phases.  
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Figure 22. Elemental maps of Cu, Zn, Sn and S along with corresponding microstructure for 

Cu1.8Zn1.2SnS4 thin film from the precursor solution S2B 
 

Since the electron beam penetrates down to the substrate in elemental mapping, the 

applied voltage (20 kV) could be one of the possible reasons why the phase separation 

could not be revealed when the phases are isolated in spatial distribution [27]. The 

other possible reason could be that the secondary phases, which are quantitatively less 

or appear in isolated regions, could not be identified in the area under scan. 

However, in Figure 23 (left) it can be observed that a micrograph collected at lower 

accelerating voltage gives same contrast and brightness, whereas the image collected 

at higher accelerating voltage shows clear contrast in the microstructure. This confirms 

that the secondary phase is buried under the surface which belongs to Cu3SnS4 phase.  
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Figure 23. SEM and cross section images of Cu1.8Zn1.2SnS4 thin film from the precursor solution S2B 

recorded on a lump morphology at 10 kV accelerating voltage with a magnification at (left) 1 µm and 

(right) 100 nm respectively. 
 

On the other hand, the morphology shows a non-uniform distribution of agglomerated 

particles with well-defined voids and boundaries; it is also seen where the tin source 

affects the quality and microstructure of the resulting material. The soluble but volatile 

anhydrous tin chloride (SnCl4) used for the solutions S [1, 2, 3, 4] A (see Table 2) is 

always employed in the literature. The less dangerous pentahydrate (SnCl4•5H2O) 

[101] used for the synthesis of the S2B solution (solution with the best results 

reported), gives less contamination and a reduced tendency, for the films, towards 

island growth, which is shown in the cross section of the Figure 23 (right). Further, tin 

(IV) pentahydrate does not evaporate and can thus guarantee a better stoichiometry 

control. 

 

3.5 Tentative test of the S2B specimen for solar cell applications 

This section reports the optical properties of the specimen S2B deposited and annealed 

in the UNITN laboratory and measured in collaboration with ENEA-Research Center 

in Rome. The cross section and the band gap energy were analyzed, in order to 

develop a test device. However, these analyses correspond just to an attempt to verify 

the quality of the material, despite the morphological problems described in the 

previous section. 
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The cross section of the final CZTS thin-film solar cell can be observed in Figure 24 

(left). The CZTS absorber layer is clearly visible with a thickness of about 1.5 µm, as 

well as kesterite crystals of a few hundred nanometers in size. No MoS2 layer was 

detected under the absorber layer. The CdS buffer layer and the sputtered ZnO/ZnO:Al 

top electrode are observed on top of the absorber layer. Following the theory explained 

in the section 2.5, the CZTS layer does not show any trace of impurities like SnO2
++ 

Cu2S
++. However, owing to flaws of the final morphology (most probably, short-

circuits), it was not possible to measure current-voltage characteristic curve for the 

CZTS thin film device; therefore, the CZTS was tested measuring the optical 

properties in order to obtain the band-gap of the CZTS thin film after the annealing 

step.  

Starting from the transmittance spectra of a CZTS films and using the film thickness, 

the absorption coefficient α is obtained as: 

α=1/t ln 1/T 

where t is film thickness and T is the transmittance of the film. Figure 24 (right) shows 

the Bandgap from the absorption coefficient (α) of CZTS films from two different 

samples using the S2B precursor solutions. 

The transmittance spectra of two S2B precursors and the corresponding CZTS film are 

reported. The latter was used to obtain the absorption coefficient (α) of the final 

materials and the energy gap was estimated using E04 [84], [86], defined as the energy 

value at α=104 cm-1. In the sample reported in Figure 24 (left) the resulting value of 

E04 for the sample S2B is 1.52 eV (red Tauc-plot); this can be considered as an 

acceptable value in comparison with those reported in the literature [24], [86], taking 

into account the morphological defects. As a comparison, 1.61 eV (blue Tauc-Plot) is 

the value of a typical example of CZTS done by sputtering method (from ENEA 

laboratories). The absorption edge of the precursor S2B has a high wavelength, thus 

revealing optimal bandgap energy around 1.52 eV of the deposited materials. This 

effect of the wavelength together with the morphological effects can be consistent both 

with a strongly disordered CZTS and with the presence of secondary phases such as 

Cu2SnS3 (Eg~1.35 eV) or SnS (Eg~1.30 eV) [11], [16, 17], [84]. 
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Figure 24. CZTS thin film cross section of specimen S2B (to the left) produced at the University of 

Trento. CZTS optical properties of specimen S2B (to the right): the red line refers to a sample deposited 

at the UNITN and mesured by ENEA; blue line is for a reference film produced by ENEA labs by 

sputtering. 

 

3.6 Conclusions 

The optical properties obtained are in accordance with the data reported in literature 

[4], [24] while the cross section for the thin film device showed grain growth that can 

cause short-circuit, decreasing the Voc value. This behavior of a high band gap and low 

Voc has been already described in section 1.3. More efforts are necessary to optimize 

the process, and this requires improved experimental conditions, besides possibly 

changing precursor (tin chloride): specific attention should be devoted to improve the 

morphology of the CZTS absorber layer, avoiding formation of large pores while, at 

the same time, controlling the stoichiometry and absence of spurious phases, so to 

increase the overall solar-cell performance. 
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Chapter 4 

 

 

Monodisperse CZTS processed by colloidal 

method synthesis 

The following chapter describes a new approach based on a hot injection method for 

large scale synthesis of CZTS nanoparticles, minimizing the use of organic solvents. 

Nanocrystals were synthesized starting from metal chlorides and pure sulfur powder 

and using Oleylamine (OLA) as a capping agent. The first part shows the 

microstructure characteristics (size distribution, shape, and stoichiometry) and optical 

properties evaluated. The investigation confirmed that the use of metal chlorides, 

though low-cost precursors, makes difficult the control of composition, size and final 

shape of the nanoparticles. Since stoichiometry is fundamental for high efficient films, 

the second part of this chapter is focused on the control of the composition. In 

particular, the effects of the amount of sulfur powder (sulfur source), solvent and zinc 

precursor on the chemical and physical properties were investigated 

Part A of this chapter has been published in: 

“Chloride-based route for monodisperse CZTS nanoparticles preparation”.  

C. L. Azanza Ricardoa, F. Girardia, E. Cappellettoa, R. D’Angeloa, R. Cianciob,, E. Carlinob, P. C. Riccic, 

C.Malerbad, A. Mittigad, R. Di Maggioa and P. Scardia.  

J. Renewable Sustainable Energy. (2015). DOI: 10.1063/1.4929959 

a University of Trento, DICAM, Via Mesiano 77, 38121, Trento, Italy.  

b CNR-IOM, TASC Laboratory, Area Science Park, Basovizza S.S. 14 Km 163.5, 34149 Trieste, Italy 

c University of Cagliari, Italy 

d ENEA C.R. Casaccia, (S.P. 064), Via Anguillarese 301, 00123, Roma, Italy 
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This part A of the project was carried out with the collaboration of several researchers. 

A brief description of the responsibilities of each author is shown below: 

Cristy Leonor Azanza Ricardo worked as an advisor throughout all this part of the 

project. The hot-injection synthesis was carried out by R. D’Angelo in collaboration 

with F. Girardi and E. Cappelletto. Depositions on glass were done by R. D’Angelo. 

R. Ciancio and E. Carlino performed the TEM measurements and analysis. P.C. Ricci 

was responsible of the Raman measurements and analysis. Alberto Mittiga and 

Claudia Malerba were responsible of carrying out the optical and SEM cross-section 

analysis at ENEA labs; more observations were made by R. D’Angelo at the 

University of Trento. Rosa Di Maggio and Paolo Scardi worked as supervisors of the 

entire work, with specific contributions in interpretation of the results and part of the 

writing of papers. 

 

4.1 Introduction 

The production of high quality Cu2ZnSnS4(CZTS) nanoparticles still receives a 

growing attention for fabrication of absorber layers in photovoltaic devices. Recent 

work outlined the possibility of obtaining different CZTS polymorphs [102], 

tetragonal or hexagonal, depending on the capping agent and/or the metal sources. The 

major influence of the sulfur source on the final shape of nanocrystals has also been 

investigated and fully acknowledged. Complex and expensive metal sources are 

required to achieve a fine control of composition [103]. When using cost-effective and 

simpler starting materials such as chlorides, a large amount of Zn cations is not 

actively used in the synthesis, as an effect of the large difference between the stability 

of zinc complex and copper and tin ones [104]. This is the main reason why most 

authors use a Zn excess to compensate for its loss in the preparation [105]. The best 

performance, for a device using CZTS as absorber layer in thin film solar cells, has 

been historically obtained working within a narrow compositional window, with Cu-

poor and Zn-rich stoichiometry [64-66]. In fact, this condition is desirable to prevent 

formation of both detrimental copper-sulfide phases [64] and harmful intrinsic defects 

predicted by ab-initio calculations (such as Cu3-
Sn and CuZn+CuSn) [63], [73, 74]. It 
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follows a new simple approach to gram-scale CZTS nanoparticle production 

minimizing the amount of organic solvents. It is based on the hot injection method, a 

widely used procedure for colloidal nanocrystals production in which three main 

elements may be identified: precursors, organic surfactants and solvents (in some 

cases, surfactants also serve as solvents). This method consists of injecting a cold 

solution of precursors into a hot surfactant, leading to the immediate nucleation and 

growth of nanocrystals. This is a convenient route to the synthesis of a wide range of 

semiconducting nanocrystals, providing good control over composition and 

morphology. 

A key point of this work is that the nanocrystal synthesis was performed starting from 

metal chlorides as metal sources and pure sulfur powder, and using Oleylamine (OLA) 

as capping agent (acting as surfactant and solvent at the same time) [2]; in this way we 

avoid organic stabilizers or more complex and therefore more expensive reagents, 

such as metal acetylacetonates. Through the optimization and the control of synthesis 

parameters, it is possible to obtain a good (gram-scale) amount of high quality 

nanoparticles, in terms of morphology and composition, even if prepared by using 

commercial (70% grade) OLA [33, 34]. This approach will enable low-cost fabrication 

of solar cell devices through techniques such as drop casting, dip coating, spin coating, 

or printing of the resulting CZTS nanocrystal solution. 

 

4.2 Experimental details 

Copper (II) chloride dihydrate (CuCl2 2H2O, Aldrich,>99.0%), Zinc chloride (ZnCl2, 

Aldrich >98%), Tin (II) Chloride (SnCl2 2H2O, Aldrich 98%) were dehydrated at 200 

°C under vacuum. Sulfur powder (Aldrich), oleylamine (OLA, Aldrich, 70%), Toluene 

(Aldrich, 99.9%) and Ethanol (Aldrich, >99%) were used without further purification. 
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Figure 25. Scheme of the principal steps to synthetize the CZTS nanoparticles by hot injection method. 
 

CZTS nanoparticles were synthesized according to the scheme in Figure 25. In a 

typical reaction, 4 mmol of CuCl2, 6.22 mmol of ZnCl2 and 2.16 mmol of SnCl2 

(Cu:Zn:Sn=2:3.11:1.08) were mixed into a 100 mL three-neck round bottom flask 
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containing 20 mL of OLA. The system was connected to a Schlenk line apparatus, in 

order to carry out all the experiments in a standard air-free condition. Oleylamine was 

added both as solvent and as capping agent for the nanocrystals. 

The mixture was heated to 130 °C, when the color became brown. At this temperature 

the flask was degassed and refilled with nitrogen six times and kept under vacuum for 

10 minutes. The temperature was raised to 270 °C and then 8 ml of a sulfur/OLA 1M 

solution was rapidly injected under strong stirring and N2 flux. After the hot injection 

the mixture turned black. The mixture was kept at 270 °C for 30 minutes and then 

naturally cooled to room temperature [2]. The final suspension of nanoparticles was 

first mixed with a solution of toluene:ethanol 1:5 by volume and centrifuged for 10 

min at 4000 rpm in order to separate the solvent from the “ink” containing the CZTS 

nanoparticles. At the end of the synthesis process, an amount of 1.10 g of dried 

nanoparticles was obtained. 

 

 

Figure 26. Final Ink suspended in toluene 
 

The ink was prepared adding 1–2 ml of toluene to the nanoparticles and sonicating for 

15 min (Figure 26). Films were obtained by spin-coating technique and residual 

toluene was removed in oven at 150 °C for 5 min. Silicon wafers, which provide 
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minimal background contribution beside a smooth surface, were used as substrate for 

X-ray diffraction (XRD) measurements, whereas soda lime glasses for Raman 

spectroscopy and optical characterization. A drop of a suspension of the CZTS 

nanoparticles in toluene (1:10) was spread onto a Cu grid, dried in air and observed by 

Transmission Electron Microscopy (TEM). 

The hydrodynamic size of the CZTS nanoparticles was characterized using a 

DelsaNano (Beckman Coulter) instrument for Dynamic Light Scattering (DLS). DLS 

measures the intensity of a laser light scattered by suspended particles. The average 

hydrodynamic diameter of the particles is derived from the temporal evolution of the 

scattered light intensity using the Stokes-Einstein equation [106]. Mixtures were 

sonicated for 15 min using a bath sonicator (40 W, 35 kHz, Elma 460/H) before the 

size analysis. All data were collected at room temperature (25 °C), kept constant by 

the DelsaNano C instrument. Reliability of hydrodynamic size values was ensured, 

according to a standard procedure, by 10 scans for each analysis. The optical 

properties were investigated by transmittance and reflectance measurements in the 

250-2500 nm wavelength range, using a Perkin Elmer Lambda9 spectrophotometer 

equipped with an integrating sphere. Raman scattering measurements were carried out 

in backscattering geometry with the 1064 nm line of a Nd:YAG laser. Measurements 

were performed in air at room temperature with a compact spectrometer BWTEK i-

Raman Exintegrated system. The powder diffraction pattern was collected on a 

Phillips XPert MRD diffractometer, using CoKα radiation filtered by a diffracted-beam 

graphite analyzer. This instrument provides a pseudo-parallel beam with a divergence 

of about 0.3° by using a polycaplillary lens. Preliminary morphological analysis was 

carried out using a Zeiss Supra 40 field-emission gun (FEG) scanning electron 

microscope (SEM) equipped with a Gemini column and In-lens detectors yielding 

increased signal-to-noise ratio. The nanostructure of the CZTS nanoparticles was 

thoroughly determined by high resolution transmission electron microscopy (HRTEM) 

and high angle annular dark field (HAADF) scanning TEM (STEM) analyses. The 

TEM/STEM experiments were carried out using a JEOL 2010 UHR field emission 

gun microscope operated at 200 kV with a measured spherical aberration coefficient 

Cs of 0.47 ± 0.01 mm, resulting in a spatial resolution at optimum defocus of 0.19 nm. 
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The microscope is equipped with an Oxford system for energy dispersive X-ray 

spectroscopy (EDXS) studies. High-Angle Annular Dark-Field (HAADF) images 

were acquired using an illumination semi-angle of 12 mrad and a collection angle 

88≤2θ≤234 mrad to enhance the sensitivity and detect variation in the specimen 

average atomic number [107, 108]. EDXS analyses were carried out in STEM mode 

by scanning an electron probe of 0.5 nm to determine accurately the chemical 

composition of nanoparticles. 

 

4.3 Results  

The nanoparticles synthesized by hot injection were spherical and monodisperse. The 

HRSEM micrograph shown in Figure 27 (left) points out that they tend to self-

assemble with a planar and homogeneous distribution. Nano-particle size distribution 

was determined by analyzing a large set of SEM images. Figure 27 (right) shows the 

size distribution measured by DLS (providing a hydrodynamic average diameter of 

16.2 nm and a Polydispersity Index (PI) of 0.014, which indicates a monodisperse 

suspension) compared to that measured by SEM images; giving a size distribution 

peaked at 17±4 nm. HRTEM investigations confirm the nanoparticles tend to form 

self-organized close-packed monolayers. Rounded nanoparticles with a diameter of 

about 16 nm were observed by HRTEM in Figure 28a, along with a minor fraction of 

smaller-size irregularly shaped particles. The corresponding Selected Area Electron 

Diffraction (SAED) pattern in Figure 28b is compatible both with hexagonal structure 

of CZTS as well as those of the tetragonal CZTS.  
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Figure 27. HRSEM micrograph showing the self-assembling behaviour of the nanoparticles (left); size 

distribution obtained from HRSEM and corresponding DLS measurements (right). 

 

 

Figure 28 (a) HRTEM micrograph of a representative cluster of nanoparticles and (b) related Selected 

Area Electron Diffraction showing rings compatible with the CZTS hexagonal and tetragonal crystal 

structure; (c) HRTEM image highlighting the presence of contrast variation within the nanoparticles 

compatible with a core-shell structure (dashed box area); (d) representative diffractogram of an 

individual nanoparticle showing the presence of both the CZTS hexagonal and CZTS tetragonal pattern, 

respectively in the [0001] and [221] zone axis. 
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Figure 29. HAADF-STEM images of the nanoparticles. In a) a rounded CZTS nanoparticle is marked 

by the dashed box where the presence of contrast variation between core and shell can be seen and 

appreciated in better detail in b). An isolated CZTS nanoparticle with evidence of a core-shell structure 

is shown in c), with the corresponding Inverse Fast Fourier Transform shown. 
  

A closer HRTEM inspection of nanoparticles reveals a slight contrast difference 

between the core and the peripheral areas, as shown in Figure 28c. Diffractograms 

recorded over those nanoparticles show a pattern with the characteristic spots of the 

[0001] zone axis of the CZTS/ZnS hexagonal cell along with those of the [221] zone 

axis of the CZTS tetragonal cell. A representative diffractogram is displayed in Figure 

28d where the spots are indexed and the two contributing patterns are highlighted by 

circles (dotted for CZTS tetragonal and solid for CZTS hexagonal/ZnS hexagonal) for 

an easy visualization. These observations point out a possible core-shell structure: 

further support to this interpretation stems from HAADF/STEM and EDXS. The 

HAADF image contrast of Figure 29a indicates a compositional variation across the 

nanoparticles. As visible in the higher magnification image of Figures 29b and in the 

HAADF image in Figure 29c, (obtained after Gaussian filtering in the reciprocal space 

to highlight the lattice fringes visibility in the particle), image contrast variations can 
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be appreciated between the core and the periphery of the nanoparticles. The brighter 

contrast of the core is compatible with a higher density region. From the HAADF 

image of Figure 29c the shell thickness can be estimated in about 3 nm. EDXS line-

scan profiles collected across the nanoparticles provide further insight into the core-

shell architecture and reveal the possible presence of additional phases segregating 

during the synthesis. 

 

 

Figure 30. HAADF/STEM image of self-assembled nanoparticles. Line and arrow indicate the area 

where the EDS line-scan profiles have been acquired, providing the EDS elemental profile of Cu 

(violet), Zn (red) Sn (green), S (blue) shown below. 

 

Figure 30 shows the STEM-EDXS line-scan taken along the yellow line. The signals 

of Cu, Zn and S follow an almost constant and homogeneous profile across the first 

two nanoparticles on the left-bottom, whereas a clear increase in the Zn signal (red 

profile) and a corresponding drop in the Cu (violet) and in the Sn (green) profiles is 

measured in the last nanoparticle on the right-upper part of the line-scan. This 

evidence is consistent with the presence of ZnS nanoparticles, segregating apart as a 

result of the large zinc excess in the starting precursor. The sampling across the TEM 

specimen confirms that most nanoparticles are CZTS with a rounded shape, whereas 



Monodisperse CZTS processed by colloidal method synthesis 

54 

 

the minority ZnS nanoparticles are of smaller size and/or characterized by different 

and irregular shapes (i.e., triangular or trapezoidal prisms). It is worth noting that the 

presence of ZnS in CZTS samples is often reported in the literature and seems not to 

be detrimental to the device performance. Further structural information was provided 

by XRD and Raman spectroscopy [109]. 

 

 

Figure 31. a) XRD pattern (left) and b) Raman profile (right) of nanoparticles deposited on silicon 

wafer and soda lime glass respectively. 
 

The XRD pattern in Figure 31a shows two phases: tetragonal kesterite (CZTS-T) and 

hexagonal wurtzite (CZTS-H). The highly disordered hexagonal phase has been first 

reported in [109] and frequently considered afterwards for understanding the process 

of nucleation and growth of CZTS nanoparticles [110]. The XRD pattern was 

analyzed by the Rietveld method using TOPAS 4 [111], assuming two independent 

phases, as stated before. The tetragonal phase was modelled with the kesterite space 

group (I-4) leading to cell parameters compatible with a pseudo-cubic structure 

(a=0.5427 nm  and c=1.0854 nm; c/2a=1), whereas the resulting average crystalline 

domain size was ~20nm, compatible with microscopy and DLS results. A quantitative 

phase analysis revealed about 25% of hexagonal phase. It is worth noting that to 

accurately fit the data a high microstrain level (2%) was required for modelling the 

hexagonal phase. The inset in Figure 31(a) shows the details of the XRD data analysis 

for the principal peak of the tetragonal (112) and hexagonal (001) phases. The Raman 

spectroscopy pattern shown in Figure 31(b) clearly identifies the CZTS phase (338; 
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293, 335, 372 cm-1) with a small amount of ZnS (352 cm-1). There is no positive 

evidence of the presence of CTS ternary compounds, although small amounts cannot 

be totally ruled out based on the observed data quality (large peak broadening). 

Optical properties were investigated by spectrophotometric measurements in the 250-

2500 nm wavelength range. Transmittance (T) and Reflectance (R) spectra were 

collected to measure the absorption coefficient (α) according to the expression: 

? = −1@ �A	B C
(1 − D)
E 

where d is the film thickness, evaluated from SEM cross-sections of the specimen.  

To avoid any subjectivity in the band gap energy (Eg) evaluation from graphical 

method (Tauc plot in Figure 32b and c), Eg can be estimated with the parameter E04, 

i.e., the energy value at α=104 cm-1[86, 99, 112] (see Figure 32a). In this way, the 

energy gap was found to be 1.6 – 1.65 eV, which is within the range, 1.48 – 1.65 eV of 

the Eg values reported in the literature [24], [100], [113, 114]. As expected, no band 

gap widening effect due to quantum confinement is observed.  

The widening effect (∆E=Eg-Eg0) can be estimated using the approximated expression: 

FG − FG; = ℎ

8IJKD
 

where R is the nanoparticle radius and meh is the reduced mass of electron and 

hole	�IJK = IJIK (IJ +IK)⁄ �. Using me=0.186 m0 and mh=0.48 m0 [115] (where 

m0 is the free electron mass), the quantum confinement effect on the band gap energy 

expected in our sample (with R 10 nm) is found to be negligible (∆E = 7 meV). It is 

worth to notice that the ZnS phase, with an energy gap wider than that of CZTS, 

would not give any contribution to the measured absorption spectra. 
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Figure 32. Transmittance, absorption spectra (a) Tauc plot and corresponding SEM cross section 
analyzed at ENEA (b) and Tauc plot, transmittance - absorption spectra measurements at UNITN (c) of 
a typical nanoparticle film deposited at UNITN by spin-coating on soda lime glass.  

 

4.4 Discussion 

As suggested by Tan et al. 2014 [116], the formation of CZTS nanoparticles can be 

considered as a three-step process: (i) formation of Cu2-xS; (ii) diffusion of Sn cations 

leading to the CTS ternary compound, and (iii) diffusion of Zn cations to form the 

final CZTS phase. Exploiting the copper stoichiometry defect with an excess of Zn 

prevents the formation of CuS and CTS, the most undesirable phases in these systems 

and also in our samples favors the formation of ZnS [108], confirmed by Raman and 

STEM-EDXS analysis, in a such low amount to be negligible in the modelling of 

XRD data. At this regard, tetragonal (pseudo-cubic) and hexagonal CZTS phases are 
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shown by XRD spectra and SAED analysis. The evidence on the actual distribution of 

the two phases comes from the high level of microstrain revealed by the XRD 

analysis, which may originate from the presence of an interface between the two 

polymorphs. Indeed, it is known that the strong correlation between the two structures 

can induce a phase transformation (from hexagonal to tetragonal and vice-versa) by 

atomic layer faulting [117]. The mechanism is similar to the well-known fcc-hcp 

phase transformation, where the [111]fcc and [001]hcp directions are equivalent [117]. 

As a consequence of the self-assembling tendency of nanoparticles in the most 

favorable hexagonal-like crystallographic orientation, SAED would not be sufficient 

to identify the two polymorphs: as a matter of fact, in the diffractogram of Figure 

29(b), the d-spacings of the some diffraction spots of the (tetragonal) [221] zone axis 

closely match those of the (hexagonal) [0001] zone axis (e.g., T(02-4)/H(-120), T(20-

4)/H(110), T(-220)/H(2-10)). Moreover, it is relevant to point out that HRTEM images 

of particles, slightly misoriented with respect to the electron beam, enlighten the 

presence of defective areas (see Figure 33).  

 

 

Figure 33. HRTEM images showing structural defects. 
 

According to the layer faulting mechanism, both structures may coexist within a single 

nanoparticle. Several hypotheses can be made on their distribution, and the simplest 
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one is a core-shell structure: hexagonal core and tetragonal shell. This last is supported 

by (i) HAADF-STEM images and (ii) stability of the hexagonal phase in the synthesis 

conditions [118]. The slightly brighter contrast in the HAADF-STEM images of the 

nanoparticles’ core identifies this last as a higher density region, compatible with a 

CZTS hexagonal core surrounded by a lower density tetragonal shell. Although the 

opposite configuration (tetragonal core and hexagonal shell) cannot be completely 

ruled out, it is unlikely. In fact, in order to justify our results of the quantitative phase 

analysis by Rietveld refinement, hexagonal shell thickness should be 0.7 nm instead of 

3 nm, which is the realistic value determined both by HRTEM and by HAADF-STEM 

observations. 

 

4.5 Conclusions  

High quality CZTS nanoparticles were produced in gram-scale, minimizing the 

amount of organic solvents and using cost effective, simple, and widely available 

starting materials as metal chlorides. The procedure is easily scalable and extendable 

for technological applications. The final product is made of equiaxial core-shell 

nanoparticles, having CZTS hexagonal core and CZTS tetragonal shell, with a 

monodisperse and narrow size distribution. Measured optical properties confirm the 

expected semiconducting behavior, a promising result for possible applications in the 

thin-film photovoltaic devices. 
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Part B: shows unpublished data 

4.6 Composition control of CZTS nanoparticles 

 

Figure 34. Scheme of the routes for the CZTS composition control. 

 

4.7 Introduction 

As mentioned previously, the use of the metal chlorides certainly lowers costs, but 

makes control of composition, size and final shape of CZTS nanoparticles more 

difficult. Stoichiometry is fundamental for the development of films with high 

efficiency. In order to achieve a control of the chemical composition, three different 

synthesis routes were carried out and samples having different amount of Zn, S and 

solvents were investigated. The following nominal composition was taken as a 

reference point for this study: Cu:Zn:Sn=2:1.34:1.08. To avoid Zn-poor compositions 

of CZTS, the conventional approach is to use an excess of the zinc precursor to 

compensate for its loss during the synthesis. So, the first step was to increase the 

starting zinc amount (mmol) with respect the desired nominal composition (Zinc 

route). Moreover, we studied the effect of the increase of sulfur in the synthesis of 

CZTS (S1 and S2 route). The third route (OLA route) consisted in varying the amount 

Cu:ZnSn:S
2:1.34:1.08:4

nominal composition

K1

K2

K3

K1b

K2b

K3b

Zinc route

OLA route

Sulfur route 2

Sulfur route 1
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of OLA used as solvent and capping agent. Once the desired stoichiometry was 

obtained, the sulfurization process and the thermal annealing have been examined 

(next chapter). All the experimental details are summarized in Table 4 and 5, 

described in the following experimental part. 

4.8 Experimental details 

The chemicals used for these activities were the same used in. The CZTS 

nanoparticles were synthesized by hot-injection method, as described above (4.2 Part 

A). The details of the starting elemental compositions are presented in Table 4. The 

inks were deposited on glass using the spin-coating method. X-ray florescence (XRF) 

spectroscopic studies were carried out to determine the elemental composition using a 

Thermo-Arl X’tra high-energy powder diffractometer. 

 

Table 4. Details of the starting elemental composition of CZTS  

Starting mmol values 

Route Sample ID Cu Zn  Sn S S/(Cu+Zn+Sn) OLA (mL) 

Zn K1 2 2.68 1.08 4 0.69 20 

K2  2 3.11 1.08 4 0.65 20 

K3 2 4.02 1.08 4 0.56 20 

S1 K3  2 4.02 1.08 4 0.56 20 

K3b  2 4.02 1.08 6 0.85 20 

S2 K2  2 3.11 1.08 4 0.65 20 

K2b 2 3.11 1.08 5.6 0.90 20 

OLA K1 2 2.68 1.08 4 0.69 20 

K1b 2 2.68 1.08 4 0.69 6.6 

 

4.9 Results and discussion 

The resulting compositions of the CZTS (Cu:Zn:Sn:S=2:1.34:1.08:4) films, as 

measured by XRF, are shown in the Table 5. 
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Table 5. Starting elemental composition and % of Zn loss for CZTS nanoparticles deposited on glass (determined using XRF). 

 Starting 

nominal composition (mmol) 

 

Elemental composition CZTS films (mmol) 

Route Sample 

ID 

Cu Zn Sn S S/(Cu+Zn+Sn) OLA 

(mL) 

Zn 

XRF 

Sn 

XRF 

% Zn  

Zn(XRF)/Zn(start) 

*100 

%Zn loss 

Zn(start.)/Zn(XRF) 

*100 

Zn K1 2 2.68 1.08 4 0.69 20 0.94 1.14 35 65 

K2  2 3.11 1.08 4 0.65 20 0.89 1.16 29 71 

K3 2 4.02 1.08 4 0.56 20 0.97 1.11 24 76 

S1 K3  2 4.02 1.08 4 0.56 20 0.97 1.11 24 76 

K3b  2 4.02 1.08 6 0.85 20 3.28 1.18 81 19 

S2 K2  2 3.11 1.08 4 0.65 20 0.89 1.16 29 71 

K2b 2 3.11 1.08 5.6 0.90 20 1.78 1.11 57 43 

OLA K1 2 2.68 1.08 4 0.69 20 0.94 1.14 35 65 

K1b 2 2.68 1.08 4 0.69 6.6 2.43 1.10 91 9 
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First of all, CZTS nanoparticles were synthesized, increasing the amount of zinc and 

keeping fixed the other parameters, here called sample K1, K2 and K3. Starting from 

the right of Table 5, the second column shows the zinc amount (mmoles) of each 

CZTS thin film, measured by XRF. Even increasing the amount of zinc chloride, the 

composition of the nanoparticles did not approach that desired. On the contrary, the 

quantity of zinc lost is more or less the same for all three compositions (Table 5). 

Samples K3 and K2 were also studied in order to evaluate the effect of varying sulfur 

amount during hot injection. In both S1 and S2 routes, the loss of zinc was reduced 

with respect the first approach. In particular the sample K2b shows a composition very 

close to the desired one. Moreover, the final composition of the CZTS nanoparticles of 

sample K1, prepared by lowering the amount of oleylamine (OLA route), was closest 

to the desired composition, showing a negligible zinc loss (Table 5 and Figure 35).  

 

 

Figure 35. XRF results of the samples at different routes of starting changes. 

 

This study has demonstrated that the first approach, based on the excess of zinc, does 

not lead to the desired elemental ratio. Zn-poor compositions were achieved also by 

increasing two or three times the amount of the starting zinc, with respect to the: after 

a certain amount, the zinc excess does not come into play in the formation of CZTS 

nano-crystals. Instead, a more effective control on the loss of zinc is reached by 

increasing the sulfur powder amount. It is possible to obtain a composition very close 
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to that of reference (Cu:Zn:Sn:S=2:1.34:1.08:4) by changing zinc and sulfur amounts 

together, as in sample K2b. However, the most important role in zinc loss is played by 

oleylamine: decreasing its amount increases the zinc content in the final composition 

of CZTS. In fact, OLA can act not only as solvent, but also as chelating/capping agent 

of the metallic ions. In this regard, OLA is effective in controlling the zinc availability 

during the CZTS formation reactions, hindering the zinc interaction with the CTS 

ternary compound (copper, tin and sulfur). In conclusion Figure 36 clearly shows a 

strategy for controlling the final composition, namely the loss of zinc varies in 

function of the initial sulfur/metal ion ratio. 
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Figure 36. Plot of chemical composition ratios: starting Zn over measured Zn vs S/(Cu+Zn+Sn) starting 
ratio. 
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Chapter 5 

 

 

Effect of the annealing time on CZTS thin films 

In this chapter the effects of annealing conditions, time and gas atmosphere on the 

structure, morphology and photovoltaic properties of CZTS thin films has been 

described. Previous works on this subject suggest that heat treatment, under vacuum 

and/or a nitrogen atmosphere, facilitates grain growth and improves the electronic 

properties of the absorber layer. Furthermore, the sulfurization, e.g. annealing in 

sulfur, has been demonstrated to be advantageous, as it is non-toxic, compared to a 

treatment with selenium. CZTS nano-crystals with a specific Cu-poor/Zn-rich 

composition were synthesized through a hot injection method and the derived inks 

were annealed in a quartz tube furnace. Their grain growth, morphology and optical 

properties have been studied by a) varying the annealing time at 560 °C and b) 

carrying out a second annealing in sulfur vapor. 

 

Part of this chapter was presented at the EMRS Spring meeting 2015. Lille – 

France. Publication in progress. 

“Influence of annealing process on to morphological and optical properties of 

CZTS thin films”.  

R. D’Angeloa, F. Girardia, C. L. Azanza Ricardoa , R. Di Maggioa and P. Scardia. 

a University of Trento, DICAM, Via Mesiano 77, 38121, Trento, Italy.  
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5.1 Abstract 

CZTS non-stoichiometric thin films [Cu2Zn1.34Sn1.08S4] have been successfully 

deposited on glass substrates by an effective and low cost simple spin-coating method 

for solar cells applications. Mono-disperse CZTS nanoparticles, produced in grams 

scale using hot-injection method, have been suspended in toluene forming an ink and 

used as starting material of thin films. These last underwent annealing treatments in 

order to form a continuous and effective layer of CZTS, suitable for measuring their 

optical properties. The present work shows how the different conditions of process 

correlate with the micro-structural and optical properties of the films. They underwent 

two consecutive annealing steps at 560 °C of different duration and with or without 

sulfur vapors during the second step. All these parameters affected not only roughness 

and porosity, but also stability of phases (SnS and ZnS were identified in some cases 

beside CZTS) and as a consequence a final optical properties. Actually, some studies 

claimed that spurious phases, such as SnS and ZnS, can limit the energy conversion 

efficiency of CZTS when used as absorber material in a thin photovoltaic device. 

5.2 Introduction 

Although thermal treatments and sulfurization are considered the best methods for 

growing CZTS absorbers films [36], [54] it is not common to find exhaustive studies 

correlating their properties with annealing and/or sulfurization process. In the previous 

chapter, it was described how synthesis can lead to a control of the chemical 

composition. Among all the prepared materials, for studying the effect of annealing we 

chose those having the composition closest to ideal CZTS (K2b). The present part 

describes how annealing time and sulfur vapor affect the structural and micro-

structural features of the samples of CZTS, characterized by means of X-ray 

diffraction (XRD), FT-Micro-Raman spectroscopy, SEM micrographs and 

spectrophotometric measurements. 

5.3 Experimental details 

The synthesis of CZTS (having the following elemental ratio Cu:Zn:Sn=2:3.11:1.08) 

nanoparticles was carried out by hot injection processing as shown in the previous 
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chapter [3]. The particles were suspended in toluene forming ink, which was deposited 

on glass platelets by spin coating method. The residual toluene was removed in an 

oven at 150 °C for 5 min [3]. The films underwent two consecutive thermal 

treatments: TT1, under nitrogen atmosphere, and TT2 with sulfur vapor. The first was 

from room temperature up to 520 °C at 20 °C/min, then up to 560 °C at 10 °C/min 

with an isothermal step of variable length. The second thermal treatment differs from 

the first, because 20 mg sulfur powder was sprinkled around the sample in order to 

generate sulfur vapors under Ar atmosphere. The duration of each isothermal step is 

indicated in Table 6 

Table 6. Summary of the samples and heat treatments used in this study. 

 Isotherm at 560 °C 

Series Sample TT1 (min) 

without S 

TT2(min)  

with S 

 

I 

I-0 20 ----- 

I-120 20 120 

I-180 20 180 

II II-0 120 ---- 

II-20 120 20 

II-120 120 120 

 

 
III 

III-0 180 ---- 

III-20 180 20 

III-40 180 40 

III-60 180 60 

III-80 180 80 

III-180 180 180 

 

Three sets of samples were studied, each of them, as shown in Table 6, underwent an 

isothermal step of increasing duration at 560 °C. Within each series, the time of the 

isothermal step was held constant at 560 °C of TT1, but increasing the isotherm of 

TT2 from 0 to 180 minutes. 
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5.4 Characterization of CZTS thin films 

Raman spectra were collected on a LabRAM Aramis confocal microRaman system in 

backscattering configuration at 532 nm using a spectrometer with a grating of 1800 

grooves/mm coupled to an air cooled 1024*256 VIS CCD. The X-ray diffraction 

(XRD) patterns were recorded on powder samples using theta-2theta incidence by a 

diffracted-beam graphite analyzer with a fixed Ɵ=0.25°. Diffraction data were 

collected on a PANalytical X’Pert MRD diffractometer operated with a cobalt source 

(45kV, 30mA) and equipped with a polycapillary primary optics. A Jeol JMS 7401F 

Field-Emission SEM equipped with a Bruker EDX detector was employed for the 

compositional/morphological characterization. The optical properties were 

investigated by transmittance and reflectance measurements in the 250-2500 nm 

wavelength range, using a Perkin Elmer Lambda 750 spectrophotometer equipped 

with an integrating sphere. 

5.5 Results (and discussion) 

5.5.1 Micro-Raman Analysis  

Raman spectrum (Figure 37) of the sample I-0 (Series I) shows a major peak at 329 

cm-1 [92], [119, 120]. Other minor phases such as ZnS, SnS, Cu2SnS3 and Cu2SnS4) are 

present. This indicated that a single short annealing is not sufficient to convert 

precursors into CZTS alone. The presence of copper sulfides (CuxS, 1<x<2) is not 

clearly visible because, varying x, the main peak shifts from 260 to 270 cm-1, where 

the signals of many phases can overlap. ZnS and SnS are the most important 

secondary phases, their presence suggests the low quality of the synthesis of 

nanoparticles, but their presence is difficult to confirm because the position of peaks is 

in a region crowded by peaks of other phases (e.g. ZnS could be hidden by Cu2SnS3 

[54]) and the intensity of the peaks is very low, especially when the intensity of CZTS 

is high.  
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Figure 37. Micro-Raman spectra of a sample of series 1: I-0. The number indicates the main frequency 
of the main peak of its Raman spectrum. 

 

5.5.2 XRD Analysis 

In order to understand in detail the effect of the annealing time on the formation of one 

or more secondary phases, XRD spectra of the films were recorded (shown in Figure 

38 (a), (b) and (c)). All XRD patterns exhibit peaks of kesterite (JCPDS 26-0575). The 

major peak, located at 33.2°, implies a preferential orientation in the (112) plane; in 

each XRD spectra all the diffraction peaks that belong to CZTS are highlighted. 

Within the Series I, the presence of the tin sulfide (SnS, ICDD card No 39-0354), 

which had been hypothesized on the basis of the results of Raman spectroscopy 

measurements, is confirmed. The peak at 37° (Figure 38 (a)) is characteristic of that 

phase and decreases with increasing the duration of the isotherm (TT2). Similarly in 

Series II (Figure 38 (b)) a second annealing with sulfur vapor favors the removal of 

this secondary phase (II-20), but longer treatments (II-120) again lead to SnS 
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formation. The XRD spectra of the series III show a higher content of SnS than in the 

previous ones. The peak at 37° disappears completely only in sample III-180. The 

other sulphide phase (ZnS) revealed by Raman cannot be directly identified, because 

its diffraction pattern is covered by that of CZTS, due to the similarity to zinc blend 

crystal [121]. 

In conclusion, the presence of pure single phase CZTS can be hypothesized only in 

samples I-180, II-20, III-180, which do not exhibit peaks attributable to secondary 

phases. The presence of these last phases in some annealed samples implies that the 

sulfurization was not effective in the given conditions of preparation. 

 

 

Figure 38 (a). XRD patterns of the thin films (Series I) annealed at different (TT2) times. 
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Figure 38 (b). XRD patterns of the thin films (Series II) annealed at different (TT2) times. 
 

 

Figure 38 (c). XRD patterns of the thin films (Series III) annealed at different (TT2) times. 
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According to this extensive study, the first annealing in argon atmosphere seems to 

favor crystal growth but also the formation of phases such as tin sulfide: the longer the 

treatment the greater the amount of secondary phase (see Figure 39). Instead, the 

second treatment (sulfurization) does not entail an additional grain growth, but helps 

tin sulfide conversion into CZTS. As a consequence, the length of the second 

annealing has to be adapted to the amount of secondary phase formed after the first 

treatment  
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Figure 39. XRD patterns show the recrystallization of the thin films with and without TT. The red 
pattern (CZTS without TT) shows broad diffraction peaks, indicative of small crystalline domains. The 
black pattern (I-120) shows narrow or sharp diffraction peaks indicative of larger crystalline domains, 
suggesting that the TT leads grain growth. 
 

5.5.3 Compositional and Morphological study 

In order to evaluate the morphology of the layer after annealing, the cross-section of 

the samples was observed through SEM. Figure 40 shows some SEM micrographs 

taken on samples with a variable content of secondary phase (I-120, II-20, II-120). All 

the films have a similar thickness of about 1.5 µm. The samples, characterized by the 

presence of tin sulfide in the XRD patterns (I-120 and II-120), show a similar 

morphology: some distorted grains and voids/pores at the coating/glass interface, 

especially in the sample I-120 (at top left). It has not yet been fully understood 
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whether the voids develop during the film growth or during the annealing. Comparing 

the two samples from the series II, we see that the increase of the time of sulfurization 

leads to a low compact film. This is in contrast with that found in literature [122]. 

Instead II-20 sample appears more densely packed, although it seems detached from 

substrate, probably owing to the cutting step in the preparation of the cross-section. 

The higher apparent density of the CZTS nanoparticles in this sample could be 

correlated to the lower amount, or even the complete absence, of secondary phases, 

see XRD pattern (Figure 38 (b)). 

 

 

Figure 40. SEM micrographs of the cross-sections of some films. Operating conditions for the imaging 

(voltage and working distance WD) are reported in the micrographs, along with the labels and the times 

of annealing of the samples. 

 

The elemental composition ratios of annealed films were determined by XRF and 

listed in Table 7. The first row shows the ideal ratios between the cations 

corresponding to the formula Cu:Zn:Sn:S = 2:1.34:1.08:4. All the samples are Zn-rich 

(Zn/Sn > 1) and slightly Cu-poor, with sample II-120 having Cu/(Zn + Sn)>1.  
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It was found that the higher Cu/(Zn+Sn) ratio the more porous the film [123].This is 

also confirmed by our analysis of the samples I-120, II-20 and II-120 (Figure 40). 

Accordingly, sample II-20 shows the best morphology in SEM micrograph, e.g. a 

compact layer without voids, and an elemental composition closest to that of nominal.  

 

Table 7. Annealing conditions (all in flowing Ar background gas) and bulk 

compositions measured by XRF on the samples under discussion in this chapter. 

Series Sample name Cu/Zn 

0.75 

Cu/Sn 

0.93 

Zn/Sn 

1.24 

Cu/(Zn+Sn) 

0.83 

CZTS thin film Without annealing 0.56 1.00 1.79 0.72 

 

I 

I-0 0.61 1.12 1.86 0.79 

I-120 0.78 1.29 1.58 0.97 

I-180 0.83 1.36 1.64 1.03 

II II-0 0.55 1.17 2.12 0.75 

II-20 0.77 1.01 1.31 0.87 

II-120 0.86 3.16 3.69 1.35 

 

 

III 

 

 

III-0 0.57 1.22 2.15 0.77 

III-20 0.64 1.58 2.48 0.91 

III-40 0.60 1.33 2.20 0.83 

III-60 0.63 1.38 2.19 0.86 

III-80 0.61 1.31 2.16 0.83 

III-180 0.76 0.85 1.11 0.80 
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5.5.4 Optical Properties  

The optical properties of all the samples were analyzed by spectrophotometric 

measurements in the 250-2500 nm wavelength range. The method for calculating the 

energy gap through a Tauc-plot was described in chapter 4 (section 4.3 Results, pages 

56) [124]. The band gap values were calculated using the following equation: 

αhʋ=A(hʋ-Eg)
n/2  

where α is the absorption coefficient related to the incident photon energy, h is 

Planck's constant, ν is the frequency, Eg is the band gap, A is a proportionality 

constant and n conveys the nature of the radiative transition: in our case it is equal to 1 

for direct band gap material. For all films, the value used for the absorption coefficient 

in the visible range was >104 cm-1. 

The values of band gap (Eg) of CZTS thin films were estimated from the absorption 

spectra and listed in Table 8. In the Table are also indicated the eventual presence of 

tin sulfide, the heat treatments employed for each sample and the thickness. The 

Figure 41 (a), (b) and (c), represent the Tauc plots of the annealed samples: the band-

gap is obtained from the extrapolation of the linear part of the plot (αhʋ)2 vs. hʋ at 

(αhʋ)2 equals zero. 

Table 8. Values of E04 (energy at which α=104cm-1), SnS presence, and maximum 

transmittance measurement for all CZTS film Series.  

 

Series 

Sample 

name 

TT1 (min) 

without S 

TT2 (min) 

with S 

SnS T% 

(max) 

Thickness 

(d, µm) 

E04 

(eV) 

 

I 

I-0 20 ----- Found 45.38 1.55 1.507 

I-120 20 120 Found 54.01 1.60 1.540 

I-180 20 180 Not F. 46.30 1.00 1.380 

II II-0 120 ---- Found 65.70 1.00 1.480 

II-20 120 20 Not F. 47.60 1.67 1.445 

II-120 120 120 Found 42.04 1.10 1.459 
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Series 

Sample 

name 

TT1 (min) 

without S 

TT2 (min) 

with S 

SnS T% 

(max) 

Thickness 

(d, µm) 

E04 

(eV) 

 

 

III 

III-0 180 ---- Found 35.78 1.00 1.404 

III-20 180 20 Found 54.87 1.26 1.530 

III-40 180 40 Found 54.30 1.28 1.471 

III-60 180 60 Found 52.75 1.22 1.464 

III-80 180 80 Found 47.40 1.22 1.402 

III-180 180 180 Not F. 27.58 1.17 1.372 

 

Figure 41 shows the Tauc plots for all the CZTS thin film annealed with different 

conditions. Comparing the band gap values with the corresponding Tauc plots, it can 

be seen that the lowest gap values (I-180, II-20, II-120, III-0, III-40, III-60, III-80, III-

180) correspond to the highest optical absorptions at energies lower than the gap itself, 

in a region in which the samples should be transparent. This anomalous absorption is 

due to the poor quality of material; in particular the exponential and irregular tail of 

the absorption curve (Figure 41 (c)) is associated with a high conductivity, which 

depends on high defects concentration and/or the presence of secondary phases. 

Taking into account this, the analysis of Tauc plots suggests short annealing processes, 

e.g. within the series I the longer the sulfurization time (from 0 to 180 min) the shorter 

the band gap (from 1.530 to 1.372 eV), rather than a higher optical absorption below 

the gap. The increase of isothermal segment in the first annealing (I-0, II-0, III-0) 

seems to affect less the optical absorption behaviour and the relative shift of Tauc plot 

(Figure 42). The worst samples were those of series III, but III-180, which may be 

partly explained by the presence of SnS shown by the analyses of XRD spectra. In the 

case of III-180 the trend of Tauc plot (and the lowest value of band gap) may be due to 

a high concentration of defects or to spurious phases, such as the Cu2SnS3 that was 

identified in the sample I-0 by Raman spectroscopy, not visible in the XRD spectra. 
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Figure 41 (a) Evolution of the CZTS Series I. Band gap for fixed (20 min) TT1 and different TT2 time.  

 

Figure 41 (b) Evolution of the CZTS Series II. Band gap for fixed (20 min) TT1 and different TT2 
time. 
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Figure 41 (c) Evolution of the CZTS Series III. Band gap for fixed (20 min) TT1 and different TT2 
time. 
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Figure 42. Evaluation Band gap (eV) of CZTS Series I, II, III without TT2 
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Previous works explained the Eg variation with the presence of secondary phases and 

in particular Sn-rich spurious phases. SnS (Eg of 1.3 eV [85]) would give rise to a Eg 

decrease, however, in these samples there is not a direct correlation between the 

presence of SnS (XRD spectra) and the value of band gap. 

 

5.6 Conclusions 

The first annealing process (without vapor of S) causes a grain growth, but the 

analyses by Raman spectroscopy and X-ray Diffraction identified also the presence of 

spurious phases, such as SnS, the only secondary phase easily identifiable in XRD 

spectra. Sulfurization reduces the amount of tin sulfide. Increasing the duration of the 

first annealing also increases SnS. This secondary phase can contribute to CZTS 

formation during the second annealing of proper duration. A very long isothermal step 

for both the first and the second treatment (e.g. I-180) leads to the disappearance of 

SnS phase, but also to both the formation of defects and/or other spurious phases, 

which cause a lowering of the band gap. 

 

 

 

 

 



Conclusion and future outlook 

79 

 

 

 

Chapter 6 

 

 

Conclusion and future outlook 

The present research project was focused on synthesis and characterization of non-

stoichiometric Cu2ZnSnS4 (CZTS) absorber layers obtained by non-vacuum growth 

processes. The main goals of this work were a) to avoid the use of toxic, expensive, 

rare or explosive reagents; b) the use of reproducible and scalable procedures. 

Two different processes were investigated: the first approach, described in Chapter III, 

was based on the synthesis of CZTS layers starting from metal salts–thiourea 

precursor solutions i); the second one, reported in Chapter IV-V, was focused on the 

hot injection method that consists in the injection of a sulfur source into a hot solution 

of metal precursors and surfactant ii). 

In the first part of the thesis, several metal–thiourea complexes were prepared 

changing the organic solvents used to prepare the starting solutions of metal salts and 

thiourea. In general, the mixing of these two solutions leads the formation of complex 

sulfides: a comprehensive characterization (by X-ray diffraction, EDXS analysis and 

Raman spectroscopy measurements) led to conclusion that the synthesis in 

methanol/ethylene glycol gives pure kesterite without spurious phases. This study has 

demonstrated that Zn-rich/Cu-poor CZTS layers can be obtained without vacuum or 

sulfurization steps. Additional investigations were performed to understand the 

reactions sequence leading to the formation of CZTS, and a feasible reaction 

mechanism, that involves the coordination of the metal ions by thiourea and the 

intermediate formation of thiols, was proposed.  
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In conclusion, with a careful control of the reaction conditions, it is possible to 

develop a green route for the production of CZTS absorber layers. 

The second and parallel activity was based on the synthesis of high-quality CZTS 

nano-crystals via the thermolysis of low-cost precursors: monodisperse nano-crystals 

were obtained by the thermal decomposition of metal chlorides into a hot organic 

surfactant (oleylamine) with a dissolved sulfur source. The extensive investigation, 

presented in chapter IV determined that the final product is made of equiaxial core-

shell nanoparticles, having a hexagonal core and a tetragonal shell, with a narrow size 

distribution. The main objectives have been reached, indeed the developed procedure 

is cheaply, easily scalable and extendable to technological applications. 

Part of chapter IV was also devoted to the compositional control of the CZTS 

nanoparticles. The main problem of this growth process is the loss of zinc due to the 

different stability of the zinc complex with respect to those of copper and tin: while 

the formation of the complexes and of the quaternary chalcogenide takes place, a large 

amount of zinc cations is not active leading to the production of a material poor in this 

element. This work has demonstrated that the chemical composition of the obtained 

CZTS nano-crystals can be tuned by changing some reaction conditions, in particular 

the amount of sulfur source and surfactant used. Therefore, the balancing of the metal 

precursors, the sulfur source and the surfactant could be the key for the production of 

quaternary chalcogenides with highly predictable composition. 

In the typical process, the resulting powders are dispersed in toluene to form inks that 

are later deposited by spin coating technique; the obtained films are subjected to 

thermal treatments at high temperature. In Chapter V, two different types of treatments 

were studied in order to study the effect of the post-deposition annealing on the 

morphology and the optical properties of CZTS films. The investigation performed on 

annealed CZTS thin films has shown that: a) annealing without sulfur powder gives 

grain growth, but also the formation of secondary phases such as tin sulfide; b) SnS is 

converted back to CZTS during the sulfurization process; c) long isothermal segments, 

longer than 120 minutes, seem to favor the formation of defects, or of other spurious 

phases in the CZTS. This involves a lowering of the band gap, i.e. the best Tauc-Plot 

was obtained after a first isotherm of 20 min followed by a second one of 120 min. 
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Additional investigations are necessary to clarify completely the effect of the heat 

treatment conditions on the absorber thin layer. 

This study showed that the spin-coating method could have some limitations even if it 

is often preferred in the laboratory practice for reproducibility and cost effectiveness. 

In particular, the SEM investigation highlighted a non-homogeneous distribution on 

the surface, which might partly be ascribed to this deposition method. The 

macroscopic defects, such as cracks due to the spin-coating, together with the 

secondary phases could become factors limiting the use of CZTS inks in the overall 

deposition of PV devices. Moreover the spin-coating is neither high-throughput nor 

scalable, and has the fatal drawback of wasting a good deal of material.  

For these reasons the future step will be to test alternative deposition methods, e.g. 

spray coating and ink-jet printing that are able to perform large-area depositions and a 

direct scaling-up to industrial production. 
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