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“Nella nostra infanzia c'è sempre un momento in cui una porta 

si apre e lascia entrare l'avvenire”.  
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THE PRESENT THESIS 

 

The project has explored the developmental trajectories of several cognitive functions 

related to different brain regions: parietal cortex (quantity manipulation, finger gnosis, 

visuo-spatial memory and grasping abilities) and occipito-temporal cortex (face and object 

processing), in order to investigate their contributions to the acquisition of formal 

arithmetic in the first year of schooling. We tested preschooler, first grader and adult 

subjects, using correlational cross-sectional and longitudinal approaches. Results show that 

anatomical proximity is a strong predictor of behavioural correlations and of segregation 

between dorsal and ventral streams’ functions. This observation is particularly prominent in 

children: within parietal functions, there is a progressive separation across functions during 

development.  

During preschool age, presymbolic and symbolic number systems follow distinct 

developmental trajectories that converge during the first year of primary school. Indeed a 

possible cause of this phenomenon could be due to the refinement of the numerosity acuity 

during the acquisition of symbolic knowledge for numbers. 

Among the tested parietal functions, we observe a strong association between the numerical 

and the finger domain, especially in children. In preschoolers, finger gnosis is strongly 

associated with non-symbolic quantity processing, while in first graders it links up to 

symbolic mental arithmetic. This finding may reflect a pre-existing anatomical connection 

between the cortical regions supporting the quantity and finger-related functions in early 

childhood. In contrast, first graders exhibit a finger-arithmetic association more influenced 

by functional factors and cultural-based strategies (e.g. finger counting). 

Longitudinal data has allowed us to individuate which cognitive functions measured in 

kindergarteners predicts better the success in mental arithmetic in the first year of school. 

Results show that finger gnosis, as well as quantity and space–related abilities all concur at 

shaping the success in mental calculation in first graders. 
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These results are important because, primarily, they are the first to observe a strong relation 

between visuo-spatial, finger and quantity related abilities in young children, and, secondly, 

because the longitudinal design provides strong evidence for a causal link between these 

functions and the success in formal arithmetic. These results suggest that educational 

programs should include training in each of these cognitive domains in mathematic classes. 

Finally, specific applications of these findings can be found within the domain of 

educational neuroscience and for the rehabilitation of children with numerical deficits 

(dyscalculia).  
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Chapter 1  

THE PARIETAL LOBE AND ITS RELEVANCE IN NUMBER 

PROCESSING 

 

Parietal cortex has a crucial role in a vast series of cognitive and sensory-motor processes 

among which the manipulation of numerical information (Culham & Kanwisher, 2001). In 

the first part of this chapter I briefly illustrate the anatomical and functional properties of 

parietal cortex in adults together with their development during childhood. I then focus on 

number processing and discuss the relevance of different sub-regions of parietal cortex for 

representing and manipulating numbers. 

1.1 The parietal lobe 

1.1.1 Anatomical aspects 

 
The parietal lobe is delimited from the frontal lobe by the central sulcus (CeS) and from 

temporal and occipital cortices by superior/middle temporal gyrii, the transverse occipital 

sulcus (TOS) and the parieto-occipital sulcus (POS). 

The somatosensory cortex, localized in the post-central gyrus (PCG), covers the cortical 

area between the CeS and the post-central sulcus (PCS). All the regions that are posterior to 

the PCG constitute the posterior parietal cortex (PPC) which is divided into inferior (IPL) 

and superior parietal lobules (SPL) by an antero-posterior oriented sulcus, called 

intraparietal sulcus (IPS). The IPL is further composed by angular gyrus (AG) and 

supramarginal gyrus (SMG; see Fig. 1; (Culham, Cavina-Pratesi, & Singhal, 2006)). 

Despite inter-individual variability, the IPS is composed by three parts: an ascending and 

anterior branch from the post-central sulcus, a horizontal segment placed centrally to the 

IPS, and a descending branch approaching the occipital cortex (Molko, et al., 2003). 

Fibres bundles of the corpus callosum put in relation the parietal lobes of the two brain 

hemispheres. In the adult brain the left and right parietal lobes are quite symmetric. 
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However, certain asymmetries have been reported in favour to grater gray matter in the left 

hemisphere in the AG, the posterior part of SPL and IPS (Watkins, et al., 2001). 

 

 
Fig. 1. The posterior parietal cortex (PPC). Anatomical illustration of the postero-lateral (a) and medial (b) 

views of the left hemisphere of the human brain (pial surface) of one subject. The white lines highlight the 

principal sulci: central sulcus (CS), postcentral sulcus (PCS), intraparietal sulcus (IPS), transverse occipital 

sulcus (TOS), parieto-occipital sulcus (POS), the ascending ramus of the cingulate sulcus (arCingS) and the 

subparietal sulcus (sPS). Different colors represent different anatomical subdivisions of the PPC: the 

postcentral gyrus (PCG), the superior parietal lobule (SPL), the precuneus (PCu) and the inferior parietal 

lobule (IPL), which is divided into the supramarginal gyrus (SMG) and angular gyrus (AG). The SPL and 

PCu include both Brodmann areas 5 (BA5) and 7 (BA7). Note, the PCG is part of the parietal lobe, but is not 

included in the PPC (reproduced from Culham et al., 2006). 
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1.1.1.1 Development 

During development, and in particular during the first several years of life, the human brain 

undergoes a long and non-linear process of maturation characterized by both progressive 

and regressive changes. Two general laws seem to govern brain maturation. First, the 

maturation of somato-sensory and visual cortices constitutes the basic step for subsequent 

development of highly integrated associative cortices. Second, the brain maturation follows 

its philogenesis with a delay in the development of phylogenetically more recent regions, 

such as the inferior parietal or the dorsolateral prefrontal cortex (Gogtay, et al., 2004). 

Brain development is typically investigated by using different approaches based on 

physiological, cognitive, and imaging techniques. 

At birth, the brain of a child is only one-quarter to one-third of the adult brain, reaching its 

peak at 14,5 years for males and 11,5 years for female (Giedd, et al., 1999). Driven by 

genetic and environmental factors, the dendritic branching of neurons and their synaptic 

connections increase robustly during the first years of life up to adolescence, with a time-

course that varies enormously by brain region. Moreover a long processes of myelinization 

allows a faster conduction speed of the information shared by interconnect brain regions 

(Toga, Thompson, & Sowell, 2006). Subsequently to this amplification of neural 

connections, a curious process of dendritic pruning and synapse delectation occurs, with the 

aim to remove weak and overproduced connections, and to reach a high level of efficiency 

and specialization. Interestingly, an heterochronous synaptic pruning for different regions 

has been shown in both primate and human cortical development (Giedd, et al., 1999; 

Gogtay, et al., 2004;  Huttenlocher, 1979). 

Some physiological investigations showed even that different degree of myelination 

comparing the dorsal and the ventral streams (Goodale & Milner, 1992). The progression of 

myelination of dorsal regions seems to continue up to adolescence, while more ventral and 

deep brain structures were myelinated earlier. On average, the level of myelination differs 

comparing these two streams, such that dorsal cortex exhibits an inferior myelinisation 

level compared to the ventral cortex (P. R. Huttenlocher, 1990; Toga, et al., 2006). 
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Recently, studies demonstrated a more complex panorama regarding brain maturation. 

Indeed maturational processes occurs firstly in dorsal parietal cortices, (e.g. in primary 

sensorimotor areas), then spread rostrally over the frontal cortex and finally, in the lateral 

and caudal parts of the parietal, occipital, and the temporal cortex (Gogtay, et al., 2004). 

Imaging data suggest a non-linear changes in gray matter (GM) density during childhood 

up to prepubertal age followed by a postpubertal loss (Giedd, et al., 1999; Jernigan & 

Tallal, 1990). The GM density represents an indirect measure concerning the outcome of 

dendritic and synaptic processes within a complex architecture of glia, vasculature, and 

neurons. Indeed a loss of GM density was reported over time in relation to the postmortem 

synaptic pruning exhibited in adolescence and adulthood (Sowell, et al., 2003; Sowell, 

Thompson, Holmes, Jernigan, & Toga, 1999). 

Most studies based on imaging techniques have adopted a particular method called 

“volumetrical parcellisation” trying to define the neurodevelopmental trajectories of each 

cerebral region in terms of grey and white matter growth curves (Toga, et al., 2006). 

Structural imaging data demonstrated that most cerebral regions, such as parietal and 

frontal cortices, exhibit a cubic-like developmental trajectory with an increase in childhood, 

followed by a decline during adolescence and a stabilization of cortical thickness in 

adulthood. This developmental trend can be described on the base of regionally specific 

inverted U-shaped trajectories of gray matter volumes.  

Within the parietal regions, the first area to reach its thickness peak is the somatosensory 

cortex (at about 7 years), while the posterior polymodal regions reach the peak later, at 9-10 

years (Shaw, et al., 2008).  

This time course was also showed in a longitudinal pediatric imaging study, in which data 

suggest similar developmental trajectories for both frontal and parietal cortices, in contrast 

with temporal and occipital maturation. Specifically, the gray matter density developmental 

curves reach the peak first in the frontal and parietal lobes, and then in the temporal lobe 

(16 years of age). After that age, gray-matter loss occurs (Giedd, et al., 1999). 
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Fig. 2. Right lateral and top views of the dynamic sequence of GM maturation over the cortical surface. The 

side bar shows a color representation in units of GM volume (from Gogtay et al., 2004). 

  

1.1.2 Functional aspects 

 
Functionally, the parietal lobe represents a typical example of associate cortex recruited in 

processing information coming from different sensory districts and thus involved in several 

cognitive functions (Culham & Kanwisher, 2001). In particular, it constitutes the major 

component of a neural network massively involved in space and action processing called 

“dorsal stream”, in contrast with occipito-temporal network, the “ventral stream”, more 

dedicated to the analysis of perceptual features and form recognition (Goodale & Milner, 

1992). 

Neurophysiological recordings in monkeys have evidenced a fine parcellisation of parietal 

lobe into sub-regions on the basis of neurons’ response properties (Rizzolatti, Luppino, & 

Matelli, 1998). For example, multiple sub-regions involved in coding different body parts 
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such as the arm, leg and face were found in the posterior parietal lobe. For example, one of 

the best studied representations, the arm one, is represented at least 8 times. Indeed, many 

functional motor representations (“motor fields”) can be located in different anatomical 

areas coherently with some recent studies of corticospinal projections (He, Dum, & Strick, 

1993, 1995). Each parietal area is connected with motor areas by a complex system of 

“predominant” and “additional” connections. Each segregated parieto-frontal functional 

circuit is involved in a specific sensory-motor transformation for action, constituting the 

functional unit of the cortical motor system (Rizzolatti, Fogassi, & Gallese, 1997). 

Furthermore, recent evidences have redesigned the role of IPL and SPL. Indeed anatomical 

data have now showed that posteriorly, both lobules receive somatosensory and visual 

inputs. Anteriorly, however, these two lobules showed significant differences: SPL is 

involved in the somatosensory processing, while IPL has a role in the integration of the 

somatosensory and visual information (for a review see (Caminiti, Ferraina, & Johnson, 

1996; Rizzolatti, et al., 1997; Wise, Boussaoud, Johnson, & Caminiti, 1997)). 

Studies on monkey brain have contributed to understand in depth the parietal organization, 

suggesting important differences and some homologies across species, comparing the 

human to the macaque parietal regions (Orban, Van Essen, & Vanduffel, 2004). First, we 

see a specific expansion of both parietal and frontal lobes in humans, in particular in the 

region of IPL and IPS. Second, imaging data revealed peculiar differences in the responses 

to same stimuli while comparing directly human to monkey brains (Orban, et al., 2003; Van 

Essen, et al., 2001). For example, some main differences consist in a higher sensitivity for 

motion, especially for 3D motion, of intraparietal regions in humans compared to monkeys, 

suggesting the presence of specific areas for visuospatial processing in human intraparietal 

cortex (Vanduffel, et al., 2002). Despite these observations, at a physiological level, a 

typical posterior-to-anterior organization was observed in both monkeys and humans 

(Culham & Kanwisher, 2001). 
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Fig. 3. Comparison of monkey and human parietal lobes. Lateral view of (a) macaque monkey brain and (b) 

human brain, showing parietal lobes in white (from Cuhlam & Kanwisher, 2001). 

 

Among the potential homologues areas identified, three of them - areas LIP, VIP and AIP - 

are particular relevant here (fig. 3), considering their roles and locations within the 

intraparietal area (Grefkes, Ritzl, Zilles, & Fink, 2004). 

Posterior to IPS, a human homologous of monkey area LIP was identified. This region is 

characterized to be sensitive to target-oriented saccades in the space with a retinotopic 

organization of its responses which are even effectors-independent, as seen in monkey (Ben 

Hamed, Duhamel, Bremmer, & Graf, 2001; Sereno, Pitzalis, & Martinez, 2001). 

Converging data suggests the role of LIP in spatial updating in both humans and monkeys. 

For example, in a double-saccade task using event-related fMRI, it was possible to show 

that when the position of the target moves, the LIP activity also shifts, to represent the new 

spatial location of the target coherently with the spatial rearrangement based on eye-centred 

framework (Medendorp, Goltz, Vilis, & Crawford, 2003). 
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The other tentative human homologous region is the VIP area, typically responsive to 

motion in a multimodal way in monkey.  Considering this property, only one region in the 

depth of the IPS was found activated by visual, tactile and auditory motion (Bremmer, et 

al., 2001). However, the anatomical divergences concerning IPS between human and 

macaque brain needs additional studies on this line. 

The neurons of AIP area are specifically recruited in hand-centred coordinates during fine 

grasping (Culham, et al., 2003; Shikata, et al., 2003). Some regions of IPS were considered 

as AIP homologues due to their dual involvement in the identification of grasped objects 

and in selective impairment in patients regarding grasping actions (Binkofski, et al., 1998). 

Neuroimaging studies demonstrated the functional specialization of parietal regions 

contrasting hand versus eye movements, and grasping versus pointing (Grafton, Fagg, 

Woods, & Arbib, 1996; Kawashima, et al., 1996). In particular, grasping actions was 

contrasted to reaching and pointing movements. Imaging data show stronger activations for 

grasping actions on the anterior part of the IPS in contrast to reaching (Culham, et al., 

2003), while pointing movements selectively recruits even the HIPS and the posterior part 

of the superior parietal lobule bilaterally (Simon, Mangin, Cohen, Le Bihan, & Dehaene, 

2002). Indeed, coherently with what found in monkey brain, the hypothetical presence of an 

AIP homologous in human brain should be located more anteriorly compared to 

homologues areas LIP and VIP (Hubbard, Piazza, Pinel, & Dehaene, 2005). 

Recently, an extensite study on parietal functions was showed in Simon, Mangin, Cohen, 

Le Bihan, Dehaene (2002). The authors found a common orderly and topographically 

defined organization in all examined subjects for grasping, pointing, saccades, calculation, 

attention and phoneme detection. This observed systematic posterior-to-anterior 

parcellization converges with neurophysiological studies on monkey parietal lobe 

(Rizzolatti, et al., 1998) and with the proposed parcellization of human parietal cortex in 

monkey homologous subregions LIP-VIP-AIP. Moreover, in relation to the IPC, and in 

particular the AG, the data showing two lateral intraparietal areas associated with functions 

(calculation and phoneme detection) particularly developed in the human species. Those 

areas were surrounded by visuospatial areas plausibly homologous to the monkey areas 
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AIP, MIP, V6A, and LIP. This organization fits well with the cytoarchitectonic model of 

human parietal lobe (proposed in (Eidelberg & Galaburda, 1984)) indicating a significant 

expansion of human inferior parietal lobule whose activity is related to language and 

calculation.  

 

1.1.2.1 Development 

A restrict number of developmental studies measuring brain activity using functional 

imaging techniques show a complex pattern of changes in brain activation from childhood 

to adulthood (Gaillard, et al., 2000; Turkeltaub, Gareau, Flowers, Zeffiro, & Eden, 2003), 

often accompanied by an increasing hemispheric specialization. Specifically, across ages, 

imaging data often show an increasing activation in task-related regions together with a 

decreased activation in regions less relevant to the task (Rivera, Reiss, Eckert, & Menon, 

2005). Speculatively, both maturational processes and experience may contribute to the 

transition from a widespread activation pattern to a focal one as the result of plasticity 

reduction and higher efficiency (Durston & Casey, 2006; Durston, et al., 2006). On this 

wave, even increasing number of neural connections was reported during the development 

(Brown, et al., 2005). 

The parallel between brain development and cognitive development is evident and 

supported by the fact that the improvement of cognitive capacity during childhood may 

coincide with a progressive specialization and reorganization of the anatomical structures 

(Casey, Giedd, & Thomas, 2000; Chugani, Phelps, & Mazziotta, 1987; Diamond, 1996; 

Flavell, Beach, & Chinsky, 1966; Huttenlocher, 1979; Keating, Keniston, Manis, & 

Bobbitt, 1980; Rakic, Bourgeois, & Goldman-Rakic, 1994). 

Other variations in the brain activity from childhood to early adulthood (from 9 to 18 years 

of age) were also reported in relation to visual working memory, in that older children 

showed higher neural activations compared with younger counterparts in superior frontal 

and intraparietal cortices (Klingberg, Forssberg, & Westerberg, 2002).  
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Although the recent introduction of sophisticated techniques (e.g. fMRI) contributed to 

open a fascinating research field concerning the interplay between anatomical brain 

development and functional performance, further investigations are necessary about the 

neural bases of parietal functions in normally developing children. Indeed, despite a clearer 

panorama about the overall anatomical development of parietal cortex, the specific 

contributions of developing parietal subregions on behavioral performance lacks of relevant 

evidences. 

 

1.2 Parietal circuits for number processing 

1.2.1 In non human animals  

 The extraction of numerical information from the environment (the number of objects in a 

set) is thought to be a phylogenetically old ability, because it is found in animals of many 

different species (Boysen & Capaldi, 1993). These findings suggest a preverbal precursor 

system for our language-based counting and arithmetic. In particular, rhesus monkey has 

represented the best model for testing the non human numerical cognition and their neural 

correlates, due to our knowledge regarding its brain functional and anatomical organization. 

At a behavioral level, monkeys can distinguish sets of items on the basis on their numerical 

quantity and even learn the ordinal relations of the numbers from 1 to 9 (Brannon & 

Terrace, 1998; Brannon & Terrace, 2000). These animals are not only able to match and 

compare sets on the basis of their number, but also to perform simple addition or 

subtraction between sets of items (Hauser, Carey, & Hauser, 2000;  Hauser, MacNeilage, & 

Ware, 1996). At a neural level, single cell recordings found relevant contributions of two 

highly interconnected regions (Chafee & Goldman-Rakic, 2000; Quintana & Fuster, 1999), 

the lateral prefrontal (LPFC) and posterior parietal cortices (PPC), in such numerical 

processes (Nieder, 2005; Nieder & Dehaene, 2009). In particular, in the PPC, numerosity-

selective neurons were found responsible for the extraction of numerical information from a 

visual scene. Overall, the highest presence of numerosity-selective neurons was found in 
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the lateral prefrontal cortex (31% of all randomly selected cells, (Nieder, Freedman, & 

Miller, 2002)), followed by the fundus of the intraparietal sulcus (18%, (Nieder & Miller, 

2004); see Fig. 4). Other number-encoding neurons were even found in the superior parietal 

lobe SPL (Sawamura, Shima, & Tanji, 2002). 

Specifically, the time course within this fronto-parietal network was investigated analyzing 

the activity modulation over time. Results showed that the PPC number-encoding neurons 

are activated faster, and in particular show an 

early onset of the selectivity for the numerical 

information, while the LPFC neurons show the 

onset of number selectivity firing much later 

(Nieder & Miller, 2004). These findings suggest 

that the first stage of extraction of numerical 

information is represented by parietal areas and 

then LPFC has the role to amplify and maintain 

this information. All the numerosity-selective 

neurons of both frontal and parietal areas constitute 

a sort of bank of overlapping numerosity filters. 

Interestingly, the neurons’ sequentially-arranged, 

overlapping tuning curves preserved an inherent 

order of cardinalities. Thus, the numerosities are 

not isolated categories, but they are reciprocal 

categories which exist in relation to one another 

(Nieder, 2005). 

 

1.2.2 In humans 

A robust record of clinical evidences from brain-lesioned patients (Cohen, Dehaene, 

Chochon, Lehéricy, & Naccache, 2000; Grafman, Passafiume, Faglioni, & Boller, 1982; 

Takayama, Sugishita, Akiguchi, & Kimura, 1994) and imaging data using PET and fMRI 

 

Fig. 4. Lateral view of a monkey brain that 

shows the recording sites in the lateral 

prefrontal cortex, the posterior parietal 

cortex and the anterior inferior termporal 

cortex. The proportions of numerosity-

selective neurons in each area are colour 

coded according to the scale shown (from 

Nieder, 2005). 
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(Dehaene, et al., 1996; Fulbright, et al., 2000; Pesenti, Thioux, Seron, & De Volder, 2000; 

Rueckert, et al., 1996) point to a crucial role of parietal cortex in number processing. 

However, neural activations of PPC were found also for other cognitive functions related to 

language processing (Paulesu, Frith, & Frackowiak, 1993), visuo-spatial attention 

(Corbetta, Kincade, Ollinger, McAvoy, & Shulman, 2000) and visuo-motor control 

(Culham, et al., 2006). Thus, the crucial question is whether PPC contributions are specific 

for numerical domain, and distinct from other verbal, spatial and visuo-motor functions 

(Simon, et al., 2002). 

Here, I describe the model proposed by Dehaene and colleagues, exploring the different 

parietal circuits for number processing and their specific contributions ((Dehaene, Piazza, 

Pinel, & Cohen, 2003); Fig. 5). Several imaging studies demonstrate a sensitivity of 

posterior parietal cortex for different levels of numerical elaboration, such as number 

comparison (Chochon, Cohen, van de Moortele, & Dehaene, 1999), approximate 

calculation (Venkatraman, Ansari, & Chee, 2005), simple (Simon, et al., 2002; Zago, et al., 

2001) and complex exact calculation (Ischebeck, et al., 2006) and counting (Piazza, 

Mechelli, Butterworth, & Price, 2002). With the aim to clarify the organization of number 

related-processes in the parietal cortex, a meta-analysis of several different published fMRI 

studies was performed (Dehaene, et al., 2003), suggesting the presence of three neural 

regions recruited for different aspects of number processing: the bilateral horizontal 

segment of intraparietal sulcus (HIPS), the left AG and the bilateral posterior superior 

parietal lobule (PSPL). 

The HIPS, alternatively defined “core quantity system”, is consistently implicated in the 

processing of numerical magnitude. This region is thought to underlie the semantic 

representation of magnitude, because it is task- and notation-independent and modulated by 

a numerical quantity-dependent semantic metric. 

The other parietal circuits that seem to be systematically involved in number processing are 

involved in both numerical and non-numerical domains. The angular gyrus (AG) in the 

inferior parietal lobule seems to support the verbal aspects of number processing (Stanescu-

Cosson, et al., 2000). Indeed, this region is active for language-related processes, such as in 
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phoneme detection (Simon, et al., 2002). Fundamental contributions of the AG were shown 

for exact and automatic calculation, such as multiplications and simple additions which are 

performed, in adults of western societies on the basis of retrieval of memorized tables 

(Chochon, et al., 1999;  Lee, 2000). 

Finally, the PSPL supports visuo-spatial processes, attention and spatial working memory 

associated with the manipulation of numbers and they contribute to explain the numerous 

interactions between numbers and space (Hubbard, et al., 2005). 

In sum, despite little information about the interplay among HIPS, AG and PSPL, all these 

regions differently participate to the networks devoted to number processing in humans. 

Here, I describe in depth the specific role of each region within the neural circuit for 

number processing. 

 

 
Fig. 5. Three-dimensional representation of the parietal regions of interest. For better visualisation, the 

clusters show all parietal voxels activated in at least 40% of studies in a given group (Dehaene et al., 2003) 
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The horizontal segment of the intraparietal sulcus 

According with the idea of a core quantity system, the HIPS region should be recruited for 

all tasks requiring numerical processing. Indeed, this area is robustly activated during 

different tasks involving number comparison and arithmetic (Chochon, et al., 1999; Menon, 

Rivera, White, Eliez, et al., 2000; Stanescu-Cosson, et al., 2000). 

Subtractions seem to elicit stronger HIPS activations compared with multiplications 

(Chochon, et al., 1999;  Lee, 2000), especially for operations with large numbers (Stanescu-

Cosson, et al., 2000). Indeed the results of additions and multiplications with small 

numbers are frequently retrieved from verbal memory without true access to magnitude 

information, and this fact results in a less systematic activation of the HIPS activity in these 

tasks with respect to complex calculation (Cohen, et al., 2000). 

Less clear is the HIPS role for exact and approximate calculation: exact arithmetical 

operations (e.g. additions) may evoke less HIPS activation than approximate operations 

((Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999) but see (Venkatraman, et al., 2005), 

for contrasting results). Probably, different factors might determine these non-converging 

results: methodological discrepancy among studies and inter-individual variability about 

the strategies used to perform the task, especially for the approximate operations, could 

contribute to make uncertain the neural dissociation between the exact and approximate 

calculation. 

To address the true sensitivity of HIPS for numerical information, several imaging studies 

used more controlled tasks, such as number comparison. Interestingly, HIPS activation is 

inversely related to the numerical distance: close numbers (e.g. 5 - 4) elicited stronger 

activations than distant numbers (e.g. 5 - 9), irrespective of the numerical notations, such as 

dots arrays (Piazza, Giacomini, Le Bihan, & Dehaene, 2003), Arabic digits (Pinel, 

Dehaene, Riviere, & LeBihan, 2001) or number words (Le Clec'H, et al., 2000). 

The notation-independent coding of numerical quantity in the HIPS was found even using a 

fMRI adaptation paradigm (Piazza, Pinel, Le Bihan, & Dehaene, 2007). Indeed the shape of 

neural activity showed distance-dependent modulations of both HIPS and frontal regions 

irrespective to the numerical notation, supporting the idea of an abstract coding of 



 19 

approximate number shared by dots, digits, and number words. More specifically, multi-

voxel pattern analysis on imaging data found the presence of both format-specific and 

format-general number codes in human parietal cortex, where neural populations are more 

numerous, but more broadly tuned for non-symbolic than symbolic numbers (Eger, et al., 

2009). 

In children, age-related changes in the HIPS recruitment during the comparison of non-

symbolic magnitudes were found (Ansari, Dhital, & Siong, 2006). In particular, the 

activation of left HIPS increases during the processing of non-symbolic magnitude with 

age, suggesting the presence of age-related changes in functional neuro-anatomy regarding 

the basic levels of numerical cognition. However, bilateral HIPS activations were showed 

even when no comparisons are requested such as in the case of passive exposure to 

numerical quantities when participants viewed sets of items with a variable number (Piazza, 

Izard, Pinel, Le Bihan, & Dehaene, 2004). Thus, considering the existence of numerosity-

selective neurons in the VIP and their location anterior to PSPL and posterior to area AIP 

(Nieder & Dehaene, 2009), the HIPS is thought to be the human homology of monkey area 

VIP (Hubbard, et al., 2005).  

Taken together, these findings are in favor of amodal (notation independent) system of 

numerical representation in HIPS which is modulated by a semantic metric and which 

activity changes with age. 

 

The posterior superior parietal lobe 

The posterior superior parietal lobe is thought to be the human homology of monkey area 

LIP. Indeed this region is involved in target-oriented saccades in the space showing a 

retinotopic organization of its responses irrespective to the effectors, as found in monkey 

(Sereno, et al., 2001). A robust record of data suggested that even the PSPL is recruited 

when subjects performed different numerical tasks, such as number comparison (Pesenti, et 

al., 2000), parity judgment (Thioux, Pesenti, Costes, De Volder, & Seron, 2005), 

subtraction (Lee, 2000), additions (Venkatraman, et al., 2005), multiplications (Zago, et al., 

2001), counting (Piazza, et al., 2002) and numerical estimation (Piazza, et al., 2004). 
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In number comparison tasks, PSPL (as well as IPS) is activated irrespective of the number 

notation, with its neural activity modulated by distance between number words (Kaufmann, 

et al., 2005), two-digit numbers (Pinel, et al., 2001) and dots array (Piazza, et al., 2004). 

Considering the important role of this area in attention orienting (Coull, Frith, Buchel, & 

Nobre, 2000; Coull & Nobre, 1998), the PSPL is thought to reflect the unspecific spatial 

processes subsidiary to the core magnitude system in the HIPS, especially in the numerical 

manipulation on the internal representation through attention shifts (Hubbard, et al., 2005). 

Indeed, the posterior superior parietal lobe (PSPL) is thought to support attentional 

orientation to the mental number line in tasks requiring number manipulation (Menon, 

Rivera, White, Glover, & Reiss, 2000; Pesenti, et al., 2000). 

 

The angular gyrus (AG) 

The activations of this brain region do not exhibit stronger influence of numerical distance 

(Pinel, et al., 2001). Indeed, the neural activity of AG is thought to reflect verbal or 

linguistic components of the manipulation of numbers. First, AG is not active during non-

symbolic numerical information processing (Pesenti, et al., 2000; Piazza, Mechelli, Price, 

& Butterworth, 2006) (Piazza, et al., 2004). On the contrary, all study reporting activation 

in this region used symbolic numbers as stimuli. More precisely, AG activation is 

associated to arithmetic operations such as additions (Menon, Rivera, White, Glover, et al., 

2000), subtractions (Burbaud, et al., 1999) and multiplications (Gruber, Indefrey, 

Steinmetz, & Kleinschmidt, 2001). In particular, AG is intensively recruited for the 

solution of exact additions, with greater activations for small problems (2+3) than large 

ones (7+5; (Stanescu-Cosson, et al., 2000)) showing a peculiar role for arithmetical facts 

retrieval. Furthermore, the activity of angular gyrus also increases after training with 

complex operations indicating the transition from computation to retrieval strategy in 

solving the trained problems(Delazer, et al., 2003). 

This lobule constitutes a sort of bridge between arithmetic and language, indeed some small 

additions and multiplications problems are thought to be solved automatically (Ashcraft & 
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Battaglia, 1978) by using a sort of phonological associations accessible from the verbal 

representation of numbers (Dehaene, 1992). 

Some evidences are in favor of this interpretation, such as a better performance for addition 

and multiplication problems if showed in the same language used to learn them (Spelke & 

Tsivkin, 2001). Second, both arithmetical facts and language processing induced 

activations in same (left) dominant hemisphere and, more specifically, parietal regions for 

phoneme detection and subtraction are partly overlapped in the AG (Dehaene, et al., 2003; 

Fiez & Petersen, 1998; Simon, et al., 2002).  

More evidence comes from interference studies (Lee & Kang, 2002) showing that 

phonological rehearsal delayed significantly the performance in multiplication but not in 

subtraction, whereas visuo-spatial suppression interfered with subtraction but not 

multiplication performance. This result suggests the influence of phonological loop on the 

multiplication problems and of visuo-spatial sketchpad on subtraction. 

 

Some observations arise at this point. Imaging and physiological data have contributed to 

clarify the neuroanatomy of parietal cortex in terms of structural organization, even 

showing relevant homologies between human and monkey brain. Additionally, some 

imaging studies tried to define parietal circuits that differently contribute to the verbal, 

visuo-spatial, and quantity-related aspects of number processing. Unfortunately, for my 

knowledge, less is known about the developmental trajectories of this parietal circuit and its 

progressive emergence in children. Indeed, although a clearer panorama about the functions 

that recruit parietal areas such as grasping, pointing, saccades, calculation and attention in 

adults, further studies are necessary to explore the anatomical changes in the neural 

correlates of these functions during the brain development. 
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Chapter 2  

NUMBER REPRESENTATIONS 

 

From birth, humans are sensitive to numerical information, in either the form of the 

approximate number of objects in large sets or in the form of the exact number of objects in 

small sets. Both types of numerical sensitivity, are thought to be part of the Number Sense 

(see below) (Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004) are language-

independent and shared with other species. During enculturation, a long process of 

symbolization allows children to have a more precise and discrete concept of both small 

and large quantities. In contrast to the large approximate numerosity representation, the 

symbolic number representation is precise, discrete, language-specific and influenced by 

culture. 

In this chapter, I consider the main characteristics of Number Sense and its development 

showing the changes in the internal Weber fraction across ages. After introducing the 

models regarding the approximate representation of numbers, I focused on symbolic 

numbers. 

 

2.1 Presymbolic numerical representation 

 

The presymbolic representation of number constitutes an evolutionary tool that humans 

share with other species, constituting a sort of sixth sense: the “Number Sense” (Dehaene, 

1997). The sensitivity for numerosities is fundamental for survival and feeding, such as, for 

example, discerning the number of approaching predators (McComb, Packer, & Pusey, 

1994). A vast class of species like non-human primates, dolphins, rats, salamanders and 

pigeons (Brannon & Terrace, 2000; Kilian, Yaman, von Fersen, & Gunturkun, 2003; Meck 

& Church, 1983; Uller, Jaeger, Guidry, & Martin, 2003; Xia, Emmerton, Siemann, & 

Delius, 2001) can discriminate numerosities by using an approximate and compressed 
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representation, exhibiting the same psychophysical effects (Weber-Fechner law, see 

(Dehaene, 1997)) found in humans engaged in similar tasks. 

Numerical relevant behaviors were consistently found also in untrained animals, in wild 

environments (Hauser, et al., 1996), and where number information was spontaneously 

extracted (Hauser, Dehaene, Dehaene-Lambertz, & Patalano, 2002; McComb, et al., 1994). 

Adopting the violation-of-expectation paradigm (Wynn, 1992b) frequently used with 

infants, untrained monkeys exhibited a natural sense for numerosities and basic arithmetical 

relations between numerical quantities ( Hauser, et al., 1996). 

Both behavioral and electrophysiological studies suggest that numerosity extraction is not 

dependent on the specific modality of stimuli presentation, suggesting a modality-

independent representation of number. 

For example, the amodal features of numerosity representation were shown in a study 

(Church & Meck, 1984) where cats were trained to press the left lever for two flashes or 

two sounds, while the right lever for four flashes or four sounds. Then, cats spontaneously 

started pressing the right lever even for a combination of two sounds and two flashes. 

Electrophysiological studies confirm that number coding neurons exhibit amodal 

characteristics. In cats, for example, some neurons of the posterior associative cortex fire 

for a specific number as presented as visual and auditory stimulus modality (Thompson, 

Mayers, Robertson, & Patterson, 1970). Number neurons were also identified in the 

monkey’s parietal cortex related to the number of motor sequences performed by the 

monkeys (Sawamura, et al., 2002) or visual objects memorized by the monkeys (Nieder, et 

al., 2002). Finally, some number neurons of the monkey IPS respond for both sequential 

and simultaneous presentation of numerical stimuli (Nieder, Diester, & Tuduscius, 2006). 

These characteristics of approximation, compression, and invariant to modality are 

observed even in humans, under the conditions when counting cannot take place (for 

instance in childhood when children haven’t received yet a formal knowledge about 

counting or in adulthood when the task demands fast reaction times or the stimuli are 

presented too quickly and/or masked). Under the non-counting conditions, the ability to 

compare the numbers of items in sets is noisy and approximate: subject’s responses become 
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more accurate as the ratio between numbers to be compared increase, according with 

Weber’s law (Gallistel & Gelman, 2000). 

Moreover the subject’s performance show no cost comparing numerosities across-

modalities compared to within modality (auditory and visual) or across vs. within-format 

(sequential or simultaneous) presentation (Barth, La Mont, Lipton, & Spelke, 2005; Cordes, 

Gelman, Gallistel, & Whalen, 2001;  Hauser, Tsao, Garcia, & Spelke, 2003; Piazza, et al., 

2004). This general ratio-dependent behavior common to all sensory modality, is taken as 

to indicate the presence of a universal mechanism for approximate number processing, and 

supports the idea of an abstract and amodal representation of numerosity. 

However, the question of the scaling of the number line remains unclear. Current models 

propose that numbers are internally represented either on a logarithmically compressed 

continuum with fixed internal variability (Dehaene & Changeux, 1993) or on a linear scale 

with increasing standard deviation of the internal noise (Gallistel & Gelman, 2000). Both 

models accurately accounts for Weberian ratio-dependent performance. Indeed, in the case 

of numerosity discrimination, performance improves when the distance between the 

numerosities increases, as predicted by the Weber’s law: namely, the extent to which two 

stimuli can be discriminated is determined by their ratio (Piazza, et al., 2004; Pica, Lemer, 

Izard, & Dehaene, 2004). 

In an electrophysiological and behavioral study on monkeys by using a match-to-sample 

task, Nieder and colleagues (Nieder & Miller, 2003) found a peculiar symmetric data 

distribution when data are plotted on a logarithmic scale. While this finding was used in 

favor of the logarithmic scaling model, it was noticed that the observed symmetry on a Log 

scale represents the solely expression of Weber’s law (which is predicted by both linear and 

logarithmic number line models; (Piazza & Izard, 2009)). 

Preverbal approximate representations are also used to perform simple arithmetical 

operations. Indeed, some preverbal skills allow infants to judge the exactness of the 

solution of some basic problems like “1+1=2”, and not 3 (Wynn, 1992a).  

Interesting results were obtained studying preschool children before the acquisition of a 

formal knowledge of number by using computer-based tasks (Barth, et al., 2006; Barth, et 
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al., 2005). The paradigm simulates approximate calculation (e.g. additions and subtraction) 

with dots arrays. More precisely, a first dots array was presented and occluded by a panel, 

and then another array joined the first one behind the panel. After removing the panel, a 

third dots array differing from a small or large ratio from the correct sum was displayed. 

The participants had to compare it to the exact sum and decide whether is contained more 

or less dots. 5- and 6-years old children exhibited an above-chance ratio-dependent 

performance for approximate additions and subtractions with non symbolic stimuli. The 

contributions of perceptual factors or exact calculation strategies were excluded by 

successive studies (Barth, et al., 2006; Gilmore, McCarthy, & Spelke, 2007). 

 

2.1.1 The Weber’s fraction and its development 

 

On the basis of psychophysical and behavioral data, the measurement of the limits of 

human senses attracted several authors, E.H. Weber introduced a law able to specify the 

weakest different threshold (behavioral Weber fraction) necessary to produce a noticeable 

variation of the sensory experience, showing that the perception of a stimulus change 

depends on both the magnitude of the change (∆s) and the stimulus baseline intensity (s) 

(Gescheider, 1997). Stimuli for which the Weber’s low holds (mostly sensory, such as 

loudness, brightness) can be thought of being internally represented on approximate and 

compressed continuum (Dayan & Abbott, 2001). The same reasoning can be applied to the 

case of the internal representation of numbers. Indeed, one can think that numerosity (n) is 

represented on an internal continuum that is approximate and compressed (either 

logarithmically scaled or linear with increasing noise). In this way, the numerosity can be 

represented by a Gaussian distribution with mean Log(n), and with a constant 

width/standard deviation w, alternatively called the internal Weber fraction. This parameter 

represents the degree of precision of the internal representations of numerosities. Thus, 

2w*100 represents the difference (%) between two numbers that is necessary to perceive 

them as different with high confidence. For example, a w of 0.2 reflects an ability to 
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discriminate two sets differing by about 40% (e.g. 10 versus 14 items). The relation 

between behavioral and internal Weber’s fractions depends on the task, indeed a model of 

decision making is assumed in a given task (see (Dehaene, 2007) for a review). 

Intersingly, empirical data seem to achieve remarkably with what predicted by this 

psychophysical model (Dehaene, 2007). Comparable magnitudes of internal Weber fraction 

were found on the base of subject performance in different tasks (e.g. same-different task, 

lager-smaller task). Indeed the value of w in adults across different cultures in a larger-

smaller or same-different judgment task is around 0.15 (Piazza, et al., 2004; Pica, et al., 

2004). Moreover similar estimations for w were found on the basis of data from magnitude 

comparison tasks (dot arrays) in French (0.12) and Amazonian adults (0.17), even if the 

numerical lexicon of the Amazonian indigene people was restricted to 5 (Pica, et al., 2004). 

 

 
Fig. 6. Development of the precision of the approximate numerical representations. The graphs regroup the 

values of w estimated in different papers (from Piazza & Izard, 2009). 

 

Ratio-dependent numerical behavior also showed the presence of an approximate numerical 

sensitivity in preverbal infants, albeit with drastically less precision of the internal 

representation of number than adults (Halberda & Feigenson, 2008; Piazza & Izard, 2009). 

Development changes in the Weber’s fraction were documented during childhood with a 
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dramatic refinement over the first year of life: 1.0 at 6 months, (infants discriminate 

numerical changes for ratios of 2:1, e.g. 4 dots vs. 8 dots (Lipton & Spelke, 2003; Xu & 

Spelke, 2000), 0.5 at 9 months (e.g. 8 vs. 12 dots), improving gradually until late childhood 

(0.40 at  5 years, 0.25 at 10 years), describing a typical power function (Halberda & 

Feigenson, 2008; Lipton & Spelke, 2003; Xu & Spelke, 2000). 

As in adults (see above) also in children, similar values of w were obtained in both auditory 

and visual domains across ages (Lipton & Spelke, 2003; Wood & Spelke, 2005), 

suggesting that it is the internal representation of number itself, and not the visual or 

auditory sensitivity, that is improving. 

The factors liable for the reduction of w with age are still unknown, although maturational 

processes and arithmetic education may play a significant role. However, the presence of 

similar values of w in different cultures, even when formal education for arithmetic is 

absent or limited, supports the maturational interpretation. In sum, this law seems pervasive 

in numerical cognition and stable across cultures, life span and animal species while 

performing different numerical tasks (Piazza & Izard, 2009). 

 

2.1.2 Models of early numerical abilities 

 

Several models were proposed with the aim to accounting for the natural preverbal 

sensitivity for approximate numerical information. 

An original explanation of the ability to discriminate roughly the numerosity of sets of 

objects by using the metaphor of accumulator was proposed by (Meck & Church, 1983) 

and elaborated by Gallistel & Gelman (2000). According to this model, for each discrete 

numerosity, an imprecise amount of “energy” enters in the accumulator. The total amount 

is proportional to the counted numerosity. The quantity of energy entering in the 

accumulator varies trial by trial, thus the variability of accumulator state for a particular 

numerosity increases with the magnitude, following the classical trend described by 

Weber’s law. In other terms, the energy can be represented as a sort of water stream with an 
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inconstant discharge. Thus, we get different amount of water (in our hypothetical glass) 

keeping constant the acquisition time. This variability increases with the number of water 

acquisition which is proportional with the counted numerosity. 

Interestingly, recent electrophysiological evidences have showed the presence in macaque 

monkey LIP  of number neurons with an accumulator-like coding scheme (Roitman, 

Brannon, & Platt, 2007). Important differences regard the neural functional properties of  

these LIP  neurons from those number neurons found in monkey area VIP and cat posterior 

cortex (Nieder & Miller, 2004; Sawamura, et al., 2002; Thompson, et al., 1970). First, LIP 

neurons exhibit numerosity sensitivity, rather than selectivity. Indeed these neurons code 

monotonically with the number of visual objects rather than to a given number. Second, the 

numerosity accumulator neurons receive the information coming from limited retinotopic 

receptive fields, thus they only code for a bunch of items displayed in their receptive field, 

and not for the overall amount of the presented items. This property derives also from the 

particular anatomical location of these neurons in area LIP, more dorsally and caudally with 

respect to VIP,  that typically code for spatial information on the base of eye-centered co-

ordinates (Hubbard, et al., 2005; Nieder, 2005; Piazza & Izard, 2009). Thus, LIP 

accumulator neurons is thought to constitute an intermediate step from the basic extraction 

of sensorial information to VIP number neurons following a hierarchical processing. 

One of the first examples of connectionist approach to number cognition was proposed by 

Dehaene and Changeux (Dehaene & Changeux, 1993). This model also assumes an 

accumulation stage, but it also introduces a numerosity detection system. Three layers were 

considered within this model: an input “retina”, a map of objects location and an array of 

numerosity detectors. Through the retina, each stimulus is normalized and converted in a 

size-independent representation of the object. The same happens also for sounds by using 

an echoic auditory memory. The output of this location map is summed to yield an estimate 

of input numerosity and, then, sent to numerosity detectors tuned for a given numerical 

quantity. In this way, a given numerosity cluster will be active if the relative summation 

cluster is active, but those representations for higher numerosity are not. This model has 

received confirmation from electrophysiological recordings in monkey brain (Nieder & 
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Dehaene, 2009; Nieder & Miller, 2004). Then, the data suggest a parallel encoding of 

numerosity, which would be difficult to explain by the accumulator model that is, by 

definition, serial. More likely, the model of Dehaene and Changeux (1993) suggests an 

approximate detection of numerosity based on a analog magnitude process, and in parallel 

fashion. Again, the numerosity detectors proposed by this model become less selective with 

increasing center numerosities following the Weber’s law. 

 

More recently, another neural network model was suggested for the representation of 

number in animals and humans by Verguts and Fias (2005). 

Firstly, number-selective neurons are created on the base of an initially neural network 

trained for given non-symbolic stimuli as input (e.g., collections of dots) under 

unsupervised learning. Interestingly, at the neural level the resultant network exhibits the 

properties of number-selective neurons previously hypothesized by Dehaene and Changeux 

(1993) and recently found by Nieder and colleagues (Nieder, et al., 2002; Nieder & Miller, 

2003), showing the classical numerical effects such as distance and size effects. Then, the 

network was stimulated by the simultaneous presentation of symbolic and non-symbolic 

inputs. Interestingly, the previous number-selective neurons started learning the numerical 

magnitude of symbols. During this process, number-selective neurons do not quantitatively 

change their coding scheme (thus show reminiscent properties of the original network), but 

show a quantitative improvement in the representation efficiency of neurons after the 

presentation of symbolic input. 

This finding represents concrete evidence regarding how symbolic cognition originates 

from a neural systems previously devoted to numerosity information from perceptual input, 

suggesting the reciprocal influence between non-symbolic and symbolic number processing 

(Verguts & Fias, 2005). Specifically, these data are in favor of hypothetical refinement of 

neuronal tuning for numerosity after the acquisition of symbolic numbers. 
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2.1.3 The case of small numbers 

 

Small numbers (up to 3 objects) seem to represent a special category from early childhood. 

Indeed, in infants, opposite behavioral patterns were shown in case of processing small or 

large sets of items. While in case of large sets of items, the children responses are more 

selective for the numerical information rather than other non-numerical parameters (such as 

area, (Wood & Spelke, 2005), the inverse pattern of results was found for small numerosity 

whose processing is more influenced by non-numerical continuous parameters (Xu, Spelke, 

& Goddard, 2005) then numerical information. 

Indeed most studies evidence the role of some perceptual variables, such as total surface 

area, brightness, density etc. All these non-numerical variables seem to co-vary with the 

numerosity, with the relative impossibility to determine whether infants respond to 

continuous spatial dimensions rather than number itself (Feigenson, Carey, & Spelke, 

2002). Although some studies documented that infants respond according to the numerical 

magnitude versus other continuous spatial parameters (Brannon & Gautier, 2003), the 

performances of 6- and 8- month-old and in 10- and 12-month-old infants seem to be 

respectively related to the contour length (Clearfield  & Mix, 1999) or surface area and 

volume (Feigenson, Carey, & Hauser, 2002).  

In adults, numerosity identification is as fast as accurate up to sets with three or four items, 

while for larger sets errors rate and reaction times increase progressively of about 200-400 

ms/item (Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). This pattern of data reflects the 

presence of two separate processes in exact numeration, the subitizing for small sets and 

counting for larger sets. The nature of subitizing was recently explored. On one hand, 

subitizing may reflect the use of a common numerical estimation mechanism for both small 

and large numbers (Dehaene & Changeux, 1993; Gallistel & Gelman, 1991) that follows 

the Weber’s law. According to this hypothesis, low internal variability in the representation 

of small numbers may describe the advantage for the identification of small numerosities. 

On the other hand, subitizing may be considered a dedicated mechanism for apprehending a 

small number of items in parallel also present in infants (Feigenson, et al., 2004). 
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Interestingly, Trick and Pylyshyn (1994) proposed to consider this mechanism as a parallel 

tagging process that operates over small sets in the early stage of visual analysis. The idea 

of a dedicated mechanism was support by Revkin and coll. (2008). Indeed, using a 

numerosity naming and dot comparison tasks respectively in adults, the subitizing range 

appears dissociated from the internal Weber’s fraction, underling its distinction from 

number sense domain. Our visual system can select a fixed number of about four objects 

based on their spatial information or to encode their details, respectively for objects 

individuation and identification, also explaining the limited capacity of working memory to 

process and successively maintain visual information. 

In summary, human beings can extract the numerical quantity of sets without verbal 

counting. This ability depends on the presence of an innate sensitivity for numerosity, 

which is approximate, analog, language-independent, ratio-limited and well described by 

the Weber-Fechner law. This system represents a rudimental residual of our evolution 

shared with other species and observed in adults, preschool children and in indigene groups 

with limited number lexicon. Moreover, the activity of this system starts early in the 

development, as confirmed in several studies in infants and newborn babies (Izard, Sann, 

Spelke, & Streri, 2009). In case of few items (< 4), a particular mechanism could be 

recruited to count rapidly discrete elements in the visual scene, the subitizing.  

 

 

 

 

 

 

 

 

 



 32 

2.2 Symbolic numerical representation 

 

Humans come to life equipped with an approximate system for representing large 

numerosity and with an exact system for tracking exact small numerosities. During 

development children acquire symbols for numbers which represent a precise way to 

represents even large numerical information. Despite diverging ideas about the role and the 

relations among Arabic and verbal representations, there is a general consensus about the 

functional dissociations among symbolic representations on the base of what found in 

brain-damaged patients. Indeed functional separations were found for comprehension and 

production mechanisms, between Arabic and verbal codes and, finally, between lexical and 

syntactical process for each code (McCloskey, Macaruso, & Whetstone, 1992). The 

anatomical segregation of Arabic and verbal codes was even supported by imaging data 

(Pinel, et al., 1999). In the next sections, I explore the verbal and Arabic codes, their 

interplay and the relation with the preverbal representations during development. Then, I 

focus on the contributions of language and verbal counting on the development of symbolic 

numbers. 

 

2.2.1 Verbal and Arabic codes 

 

Every model of number processing has to consider the dual nature of Arabic and verbal 

codes. The verbal naming of numerical quantity varies among the cultures (Hurford, 1987). 

Despite this diversity, some common principles concerning its linguistic organization are 

universally shared. One of them is the similar size of the lexicon, which divides the units, 

from the teens and the decade names. Then, the traces of additive or multiplicative relations 

expressed by the syntactic order of items (such as in twenty + five and two*hundred 

respectively) are on the base of a more or less transparent ten-base structure of numbers. 

Indeed, while Chinese numbers above 10 respect explicitly additive and multiplicative rules 

(i.e. eleven is spoken as “ten one”), this is not valid for some western languages such as 
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German, English, French, Spanish and Italian which are not regular base-10 systems. For 

these reasons, at the beginning Chinese and western children showed similar performances 

for number up to 10 (Miller, Smith, Zhu, & Zhang, 1995), but for larger numbers Chinese 

children from the age of 4/5 years to all elementary school ages perform better compared to 

western children on counting beyond 10 (Stevenson & Stigler, 1992). 

Arabic digits represent the most common notation for encoding numerical quantity 

enabling children to read, write and understand even large numerical quantity in an exact 

fashion. Overall, despite a less attention on the acquisition of this notational system 

compared to the acquisition of verbal counting, developmental data does not show 

particular difficulties in learning the digits from 1 to 9 (Hughes, 1986). The only exception 

to this is represented by zero which determines specific difficulties in children while 

writing numbers (e.g. 203) containing a null position (Wellman & Miller, 1986)), 

responsible of a modification of the kinematics of the numerical handwriting (Lochy, 

Pillon, Zesiger, & Seron, 2002). Comparable results were found even with brain-damaged 

patients who showed impairments syntactic and lexical errors regarding the zero (Grana, 

Girelli, & Semenza, 2003). Probably this is due to the absence of correspondence with the 

verbal counting, but the real nature of this problem is still unclear. Specifically, in 

childhood, the main difficulties are represented by the positional nature of Arabic notation 

where the position occupied by the digit determines its value. 

The acquisition of Arabic numbers, as well as verbal counting, can be differentiated in 

several phases on the base of the child’s ability to identify and handle them. First, 

preschoolers have to distinguish Arabic digits (0-9) from non-numerical symbols (Noël, 

2001). At 3 years of age, their performances are at chance. About 1 year later, children 

identify as numerical symbols the Arabic numbers  (90%) but also letters. 5 years old 

children are sensitive for Arabic symbols and their related quantity information, and are 

even able to put in relation the Arabic numbers with the relative words (for 70% of cases). 

In the late preschool age, at 5 years, children can compare the numerical information (the 

magnitude) contained in Arabic symbols while solving addition and subtraction problems 

(Gilmore, et al., 2007) however they seem to do so in a strictly approximate fashion 
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(considering their approximate cardinality and not the exact numerical value). Cross-

sectional studies exploring the ability to compare Arabic digits in preschoolers, school age 

children and adults, showed that numerical distance influences all groups performances 

with a stronger effect in younger children (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; 

Dehaene, Dehaene-Lambertz, & Cohen, 1998; Holloway & Ansari, 2008). Converging 

results were reported also by Duncan and McFarland (Duncan & McFarland, 1980). 

These findings suggest similar Arabic representations in both children and adults which are 

influenced by our approximate system for numerosity. The decrement of the slope of 

numerical distance in young children might reflect their progressive refinement of 

magnitude mapping on symbolic numbers. Indeed a strong automatic access to Arabic 

number magnitude was reported at 7-8 years of age, roughly 1-2 years later the ability to 

compare Arabic numerals (Girelli, Lucangeli, & Butterworth, 2000; Rubinstein, Henik, 

Shahar-Shalev, & Berger, 2000). In other terms, the experience of children with Arabic 

numerals induces a more precise mapping of magnitude on these symbols, progressively 

amplifying their competence with larger numbers (Mussolin & Noel, 2007, 2008), and 

automatizing the access to semantic representations. 

During the development, verbal numerals are acquired and used before Arabic numerals. 

Despite the fact that in western cultures number-words are use to teach the Arabic code at 

school, these two codes can be dissociated as suggested in neuropsychological studies by 

using transcoding task consisting in the transformation from a numerical format to another 

one (e.g. from Arabic notation to number-word, (Cipolotti & Butterworth, 1995; 

McCloskey, et al., 1992)). 

However, some evidences from developmental studies on learning and cross-linguistic 

aspects support the idea of a verbal influence of Arabic code, at least in the first stages. 

Indeed the transparent verbal systems of Southeast Asia based on a clear ten-base 

organization can facilitate the acquisition of Arabic digits compared to western 

nontransparent systems (Miura, et al., 1994 ). Thus, at least initially, the acquisition of an 

Arabic system seems to be dependent on the transparency of preexisting verbal system for 

numbers. Generally, at the second grade, children can establish a direct association between 
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the analogue quantity and the Arabic digits without verbal recoding, suggesting the 

dissociation of these two codes (see also (Donlan, Bishop, & Hitch, 1998)).  

Several models were proposed to describe the multi-notational system for numbers on the 

base of the performance of brain-damaged patients (Deloche & Seron, 1987; McCloskey, 

Caramazza, & Basili, 1985). Among them, the model proposed by Dehaene ((Dehaene, 

1992) (Dehaene & Cohen, 1995); Fig. 7), called “triple code model. The name of this 

model derives by the assumption that numbers can be mentally represented in a visual 

system, a verbal system and a quantity system recruiting three different neural circuits. The 

visual system is sensible for the encoding of strings of Arabic numbers and its neural 

equivalent is probably represented by occipito-temporal regions. The verbal system is 

involved in the lexical, phonological and syntactical representation of numbers. Despite a 

first location in the left frontal and temporal language areas, recently this system is thought 

to depend on the angular gyrus (Pesenti, et al., 2000; Zago, et al., 2001). The last system, 

also called the core semantic system for numbers, contains an abstract representation of size 

and distance relations among numbers (Dehaene, et al., 2003). This system emerges from 

the activity of intraparietal sulcus (IPS) during number comparison, approximate 

calculation and subtraction, and may play a crucial role in the interaction between 

numerical and a spatial domains. 

 
Fig. 7. Schematic anatomical and functional depiction of the triple-code model, adapted from (Dehaene & 
Cohen, 1995). 
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After acquiring a vast body of formal knowledge on the Arabic and verbal numbers, 

procedures (verbal and finger counting) and arithmetical principles (e.g. one-to-one 

correspondence), children learn to retrieve the results of simple calculation. Since 4 or 5 

years of age, children can solve simple additions using a vast repertoire of strategies  

(Siegler & Shrager, 1984). For instance, they can start from 1 adding the two operands, 

helped by fingers and verbal counting, or children can consider the larger operand and then 

counting forward for a number of positions equal to the magnitude of the smaller operand. 

These two strategies are called counting all and counting on (Baroody, 1987; Fuson, 1982) 

or sum and min procedures, respectively (Ashcraft, 1982; Groen & Parkman, 1972). 

Interestingly, cross-sectional and longitudinal findings showed the progressive shift from 

the use of counting all to counting on during schooling (Siegler & Jenkins, 1989). Thought 

practice, some arithmetic facts can be stored in our long-term memory determining a direct 

retrieval of the results without counting or computing, and helping us in the solution of 

complex operation via decomposition in partial results (Ashcraft, 1982). The transition 

from counting-based strategies to retrieval-based ones characterizes the acquisition of all 

simple operations (Siegler, 1988), despite the doubtful nature of the stored representation of 

these problems. Arithmetical facts can be conceptualized as abstract formats (McCloskey, 

et al., 1985), with operation-dependent nature (e.g. a preferential verbal format for the 

solution of multiplications and some additions, (Dehaene & Cohen, 1995)) or individual 

preference (Noel & Seron, 1993). 

The use of a retrieve-based strategy for arithmetic facts depends on the size of the operands 

(the problem-size effect, (Geary, 1996)). Indeed longer RTs and more inaccurate responses 

were described in relation to the operand sizes (e.g. 2+3 vs. 7+8) in the solution of all the 

problems involving additions (Ashcraft & Battaglia, 1978), subtractions (Geary, Frensch, & 

Wiley, 1993) and multiplications (Campbell, 1987). 

This effect seems to reflect the associative strength of a problem with a given result 

compared with other possible (not correct) responses (Siegler & Shrager, 1984), well 

described by the peak distribution around the correct answer for simple operations, in 

contrast with a flat distribution of more difficult problems. Children’s performances in 
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simple problems can be influenced even by a more internal threshold, the confidence 

criterion, related to the child reliability about the exactness of the retrieval response (R. S. 

Siegler, 1988). 

 

2.2.2 From pre-symbolic to symbolic numbers  

 

Despite a fast and easy acquisition of the first verbal numbers, the implicit association 

between the verbal labels to specific quantities can elicit particular difficulties. A sort of 

“transition phase” was reported during which children know the number words, but they are 

unable to associate them to precise cardinalities. During the early development, a 

considerable amount of time is necessary to understand the exact quantity hidden behind 

number words such as “three” and “four” (Wynn, 1992b). Even the particular 

nontransparent and conventional structure of the first numbers especially of western 

languages does not help the number understanding. In this way, the name dose not 

contribute to inform about the relative quantity, thus “four” is bigger than “five” just 

because its position on the verbal sequence. The transition from a preverbal representation 

to a verbal code involves a long period in which it is necessary to constitute a precise and 

automatic access to exact cardinal quantity from simple number names. Jordan and other 

authors (Huttenlocher, Jordan, & Levine, 1994; Jordan, Levine, & Huttenlocher, 1995) 

proposed the presence of a precise computational mechanism applicable to small quantity 

independently of linguistic or cultural influences. This mechanism may depend on the 

objects file manipulation or on an abstract representation based on discrete and symbolic 

code. 

According to Butterworth (Butterworth, 1999, 2005), the core of our arithmetical abilities 

consist in the innate capacity to discriminate, represent and manipulate small numerosities 

(subitizing). In Butterworth’s proposal, three separated components are thought to play a 

relevant role in numerical representation and processing. This component involves: our 

innate ability to discriminate small numerosities (subitizing), the functional use of fingers 
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through fine motor movements (finger movement), and the accuracy of the finger 

representation (finger gnosis). Within this framework, subitizing represent a fundamental 

component for the mapping of verbal numbers to numerosities (Benoita, Lehalle, & Jouenb, 

2004). 

Coherently to Butterworth’s proposal, a recent vast work on first graders (N=146) showed 

clear dissociations among three behavioral tasks regarding subitizing speed (on RTs), finger 

gnosis and finger tapping, while arithmetical abilities were predicted from subitizing skills 

both directly and indirectly via number knowledge (Penner-Wilger, Fast, LeFevre, Smith-

Chant, & et al., 2007). Clinical studies on dyscalculic children indicate a impaired 

subitizing skill (Landerl, Bevan, & Butterworth, 2004) in dyscalculia. 

Fewer studies have focused the attention on the relation between preverbal representations 

and numbers presented in the Arabic form. Behavioral data suggests that the comparison of 

large numbers in adults follows firstly a sequential procedure (processing the different 

digits one after the other), and only successively they used a holistic procedure taking 

account of the overall quantity (Hinrichs, Berie, & Mosell, 1982; Poltrock & Schwartz, 

1984). Contrastingly, in adults, comparisons of one- or two-digit numbers suggests the idea 

that Arabic numbers are directly activated and processed holistically on the basis of 

analogue representation, rather than considering the digits and their position in the number. 

Coherently to this, no decade break effect was reported while comparing two-digit numbers 

(Brysbaert, 1995; Dehaene, Dupoux, & Mehler, 1990; Reynvoet & Brysbaert, 1999). 

However, numbers larger than two-digit numbers seem to be compared using an analytical 

procedure regarding a serial analysis of the number components. Moreover, unclear 

evidences concern the numerical threshold for the passage from a holistic to an analytical 

processing and about the between-subjects variability. 

Interestingly, a distance effect was showed in a magnitude comparison task in both children 

and adults, suggesting an early access of analog representation of numbers. This analog 

representation of numerosity was firstly documented by the study of Moyer and Landauer  

(Moyer & Landauer, 1967) by using an Arabic numerical comparison task. These authors 

found an inverse correlation between RTs and error rate with the numerical difference. In 
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other terms, small numerical distances (e.g. 3-4) elicited slower RTs and higher error rates 

than large distances (e.g. 3-9). This phenomenon was called “numerical distance effect” 

and it assumes that numbers are automatically converted into an internal-analog 

representation and compared each other (but see (Verguts & Fias, 2005) for a different 

interpretation). This effect was found also comparing number words (Foltz, Poltrock, & 

Potts, 1984), dots arrays (Buckley & Gillman, 1974) and, even for two-digit Arabic number 

comparison (Dehaene, et al., 1990) suggesting a holistic representation of numbers bigger 

than 9 on the number line (Brysbaert, 1995), in contrast with a compositional single-digit 

representation (Nuerk, Weger, & Willmes, 2001). Beyond the numerical distance, another 

effect may reflect the number magnitude processing. The “size effect” determines higher 

latencies in comparing large than small numbers (Moyer & Landauer, 1967) due to the 

stronger compression (Dehaene, 2003) or higher variability (Gallistel & Gelman, 1992) for 

larger numerosities 

A ratio-dependent performance in preschool age was found by Gilmore and colleagues 

(Gilmore, et al., 2007) while children solve exact addition problems, underling the common 

influence of Weber’s law in both presymbolic and symbolic representation of numbers. 

Again, numerical distance at 6 to 8 years old children found in symbolic and non-symbolic 

numerical tasks correlates with arithmetic outcome. 

Specifically, children showed that mathematical achievement correlated with symbolic 

distance effect with a peak at age of 6 followed by a progressive decline up to 8 years, but 

not to non-symbolic distance effect (Holloway & Ansari, 2008). Differences in the relation 

between symbols and magnitudes were accounted to explain this result, although other 

mechanisms can be involved, e.g. the identification of Arabic numbers or symbolic 

mapping onto a magnitude representation. Taken together, these findings support the idea 

that preverbal numerical representation constitutes a natural basis for formal arithmetic. 
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Interestingly, mathematical competence from kindergarten to sixth grade was compared 

with the ability to compare non-symbolic numerosities of 14 years old children (Halberda, 

Mazzocco, & Feigenson, 2008). Despite a high variability in the Weber’s fraction among 

participants, data showed that numerosity 

acuity (the precision of the numerosity 

comparison) at age of 14 retroactively 

correlated with the early mathematical 

skills, even controlling the effect of speed 

of processing and IQ. Thus, the precision 

in non-symbolic numerical information 

processing was tightly related to symbolic 

mathematical competence from the age of 

5 years (see Fig. 8). However, further 

studies are necessary to investigate the 

casual role of number sense acuity on 

mathematical achievement and the effect 

of mathematic on the refinement of 

magnitude representation. 

 A recent study investigates the mapping 

of acquired symbolic numbers on a 

preexisting system for approximate 

quantity in children. Data show that 

children develop the ability to map 

between symbolic and non-symbolic 

number representations from 6 to 8 years 

of age (Mundy & Gilmore, 2009). Then, 

using a Stroop-type task in school age children and adults, it was possible to note the level 

of automatic numerical processing (Girelli, et al., 2000). The task consists in comparing the 

physical size or the magnitude of two different numbers written in congruent or 

Fig. 8. Linear regression of the standard score for each 

subject on the TEMA-2 test (a) or on the WJ-Rcalc 

test (b) of symbolic maths achievement and the acuity 

of the ANS (w). For TEMA-2 and WJ-Rcalc, higher 

numbers indicate better performance, whereas for the 

Weber fraction, lower numbers indicate better 

performance (from Halberda et al., 2008). 
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incongruent dimensions in respect to the numerical magnitude. In the case of physical 

comparison, the mismatch between physical and numerical information afflicted just older 

children and adults, suggesting the gradual process of automatization in Arabic number 

processing.  

In summary, the easy structure of Arabic code, especially for small quantities, is quickly 

learnt and used but a long phase is necessary for accessing to the associated precise 

quantity in an automatic fashion. 

 

2.2.3 The role of counting 

 

The acquisition of counting represents the first attempt toward a precise and symbolic 

representation of numbers. In this way, children progressively learn a particular way to 

symbolize numerosity (“digitization”) that allows us to better identify larger numerical 

quantity and constitutes the starting point for our capacity to perform complex arithmetical 

operations. As seen above, from about the age of 2 children start to recite the sequence of 

number words but do not  understanding basilar principles related to counting (Wynn, 

1990). Indeed, roughly 4 years are necessary to acquire all the sequence of number words 

and its properties, from a sterile repetition of words to a deeper knowledge of their meaning 

(Wynn, 1992b). 

This long-lasting process was documented in English speaking children who progressively 

acquire the meaning of “one”, after about 6 months the meaning of “two”, 9 months later 

the meaning of “three” up to “twenty” at 6 years old. The number “four” seems to represent 

the turning point of this process, which, once acquired, allows children to understand the 

logic of number chain and the successor function (Gelman & Gallistel, 1978; Wynn, 

1992b). 

The refinement of verbal counting continues from age 4 to age 7 o 8 with orderly 

qualitative differences in the elaboration of number words sequence, extensively studied by 

Fuson (Fuson, 1988; Fuson, Richards, & Briards, 1982). Five different phases of 
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elaboration were identified: a) string level, number words are undifferentiated in a forward 

form starting always by 1, b) unbreakable list level, number words start to be 

distinguishable , c) breakable chain level, the number words sequence can by recited from 

arbitrary points , d) numerable chain level, the words are abstracted and become units that 

can be matched and counted, and finally, e) bidirectional chain level, the sequence can be 

repeated in forward and backward direction. 

The practice of verbal object counting represents a fundamental factor of the development 

of these phases and the acquisition of important principles (Gelman & Gallistel, 1978). 

Indeed counting procedure contributes to the acquisition of five different counting 

principles: 

1. the one-to-one correspondence between objects and number words. This principle 

implies that every object must be counted only once. 

2. the fixed order of the number words sequences while counting (stable order 

principle), 

3. the flexible order of elements counted for the cardinality of the set (order 

irrelevance principle), 

4. the nature-independent format of elements that can be counted (abstraction 

principle) and 

5. the cardinality of a set represented by the last word in the count (cardinality 

principle). 

 

The role of counting principles in the development of number knowledge was demonstrated 

in a recent study on children (Le Corre & Carey, 2007, 2008). Interestingly, this studies 

show that, while the numbers from “one” to “four” are mapped onto the core representation 

of small magnitudes before the acquisition of counting principles, verbal numbers beyond 

“four” are only mapped onto analog representation about six months after the acquisition of 

counting principles. Then, since the verbal numbers learned prior to the introduction of 

counting principles are within the numerical range up to 4, this is taken as evidence that the 

construction process involves a system dedicated to small numbers (alone or together with 
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analog representation of small numbers), but does not involve analog magnitude 

representation of sets larger than 5 elements (Le Corre, Van de Walle, Brannon, & Carey, 

2006). 

Developmental studies showed that children are able to verbally quantify sets only for 

known number words (within their counting range), while other numerosities elicit scalar 

variability typical of the approximate number sense (Dehaene, 1997; Le Corre & Carey, 

2007; Wynn, 1992b). 3-years-old preschoolers can disentangle small known number words 

from larger unknown ones, but it is not sure if they use a strategy based on numerical 

ordering or magnitude (cardinality). Indeed the first evidence for a clearer understanding of 

numerical cardinality beyond the counting range emerged generally from 5 years of age 

(Lipton & Spelke, 2006). Indeed if a large set of items beyond the counting range is 

presented together with its number word, children can detect the cardinality changes in case 

of addition or removal of items but no changes are reported in case of items rearrangement 

or substitutions. This means that after a long process to learn the meanings of the first three 

number words, 5 years old children understand the logic of number words  meanings 

applying a specific, unique cardinal values.  

Doubts on the interplay of verbal counting and preverbal approximate system in the 

construction of an exact number system still remain. Indeed the verbal counting may 

represent a first way to map well-known number words onto approximate representation 

despite the unclear nature of this mapping. Furthermore the approximate system for 

numerosity may contribute to give the basic conception of counting (e.g. in the numbers 

ordering) that constitutes an essential element for verbal counting (Dehaene, 1997; Wynn, 

1992b). Alternatively, other authors suggest the innate nature of principles involved in 

learning to count verbally (Gelman & Gallistel, 1978). In contrast, Fuson (Fuson, 1988) 

points out the primary role of experience in the discovery of counting principles. 

In summary, several studies show on innate, preverbal, non-symbolic ability to extract 

numerical information from the environment even in newborn infants (Izard, et al., 2009). 

Then other studies focused their attention on the long constitution process of a symbolic 

system for numbers, supported by the contribution of counting. However, some doubts 
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remain regarding the interaction of the developmental trajectories of these two systems 

during the development, indeed the only common ratio-dependent behavior for symbolic 

and non-symbolic numerical processing across ages is not enough to clarify even and when 

these two systems converge during the early childhood coherently with a longitudinal 

prospective. 
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Chapter 3  

CONTRIBUTIONS OF NON-NUMBER RELATED PARIETAL 

FUNCTIONS TO NUMBER PROCESSING 

 

As shown in the previous chapters, number cognition emerges as a function of a complex 

interplay between a set of abilities mostly related to parietal cortex comprising quantity 

processing, visuo-spatial abilities, finger gnosis and objects estimation through action. At 

the behavioral level, important relations among these functions are found across ages in 

children, adults and patients. This chapter contributes to better describe these relations on 

the basis of behavioral and functional imaging findings in healthy and brain-injured adults 

and children. It will become clear that despite convincing evidence for significant relations 

among these domains, there is still a quite crucial open question on whether and to what 

extent these relations are based on genuine and specific functional links among these 

domains or whether and to what extent they reflect common maturational processes of 

close cortical regions. 

 

3.1 Space  

 

More than a century ago, several investigations by Galton (1880) on mental imagery 

suggested that many western educated adults mentally represent numbers in a stable and 

mostly 2-dimensional internal space, organized on idiosyncratic number-lines. Some 

individuals even report a series of visuo-spatial properties associated with numerical 

information, such as color, and brightness, which give rise to particular configurations 

occupied by the sequence of numbers ((de Hevia, Vallar, & Girelli, 2008; Galton, 1880) for 

a review, Fig. 9).  
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From Galton’s initial report, the idea 

of a spatially oriented number line 

assuming the interplay between 

spatial and numerical processing has 

found systematic support in both 

subjects with and without 

synaesthesia (Piazza, Pinel, & 

Dehaene, 2006; Seron, Pesenti, Noël, 

Deloche, & Cornet, 1992). 

A behavioral effect was classically 

used to document the effect of space 

in the representation of numbers: the 

SNARC (as in Spatial Numerical 

Association of Response Codes) 

effect (Dehaene, Bossini, & Giraux, 

1993). This effect reflects an RT advantage for small numbers when subjects respond using 

the left response key, and an advantage for large numbers with the right response key. This 

effect was found in number comparison, parity judgments and ordering tasks (de Hevia, et 

al., 2008; Dehaene, et al., 1993; Hubbard, et al., 2005). 

Interestingly, this effect is purely determined by the position of response keys and not by 

the hands position, indeed crossing the hands does not reverse the SNARC effect (Dehaene, 

et al., 1993). Curiously, the SNARC effect can be inverted by manipulating the spatial 

representation considered by the participant: while a standard SNARC effect emerges in 

case of typical number comparison, asking participants to image the numbers on a clock 

face determined a reverse association between magnitude and response side (Bachtold, 

Baumuller, & Brugger, 1998). 

The SNARC effect was found not only when the response keys are disposed horizontally, 

but also for vertical dispositions of response keys, with small numbers associated to the 

 

Fig. 9. A ‘number form’. Illustration of the mental image 

evoked by a subject when thinking about numbers (from 

Galton, 1880). 
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bottom key and the larger ones with the top key, such as in a thermometer or in the 

Cartesian axes (Ito & Hatta, 2004). 

This effect emerges in different tasks even when the number magnitude is irrelevant for 

response selection. Indeed spatial coding of numbers can interfere with non-numerical task 

involving spatial judgment (de Hevia, Girelli, & Vallar, 2006). The SNARC effect was 

found when required to discriminate the orientation of bars superimposed on an Arabic 

digits (Fias, 2001). 

Another effect pointing towards an automatic association of number to spatial locations is 

observed in physical bisection tasks. When asked to indicate the midpoint of a line 

composed of small numbers, the subject’s midpoint was placed on the left of the real 

midpoint and vice versa for larger numbers (Calabria & Rossetti, 2005; Fischer, 2001). 

Numerical magnitude can afflict even the eye movements toward left or right targets 

(Schwarz & Keus, 2004). Indeed small digits elicit faster target detection in the left visual 

filed, whereas right target are identified faster when large digits were shown (Fischer, 

Castel, Dodd, & Pratt, 2003).  
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Fig. 10. Behavioural studies demonstrating numerical-spatial interactions. (a) SNARC effect. Subjects 

respond whether a number is even or odd. Right-minus left-hand reaction time differences are plotted, with 

values greater than 0 indicating a left-hand advantage. (b) Attention bias effect. Presentation of a non-

informative digit at fixation leads to an automatic shift of attention to the left or right, and subsequently faster 

responses to visual targets. Graphs indicate reaction times to detect a visual target on the left or right side of 

space after presentation of a “low” or “high” digit. Open symbols indicate left-sided targets and filled 

symbols, right-sided targets. (c) Line bisection effect. When asked to point toward the midpoint of a line, 

subjects are accurate when the line is composed of x’s (center indicated by bold x). However, when the line is 

composed of 2’s or 9’s, pointing deviates from the midpoint. (d) Visual field presentation effect. When a 

number is presented in one visual field, an interaction between numerical distance and visual field is 

observed. Numbers that are smaller than the standard show an advantage for LVF/RH presentation, and vice 

versa. Adapted from Hubbard et al., 2005. 
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Electrophysiological evidences demonstrate that number magnitude interferes during the 

response-related stages, after the closure of perceptual operations but before response 

selection (Keus, Jenks, & Schwarz, 2005). Additionally, EEG data showed that non-

informative symbolic cues with spatial meaning, such as arrow and numbers, can elicit an 

automatic shift of attention (Ranzini, Dehaene, Piazza, & Hubbard, 2009) with a negative 

deflection (EDAN and ADAN components) on the hemisphere contralateral to the direction 

of attention for occipito-parietal and frontal regions, contributing to evidence that number 

automatically evoke association with space. 

The interplay between space and number domains afflicts even actions. 

A study of Song and Nakayama (Song & Nakayama, 2008) found direct relation between 

the numerical deviation and the deviation of hand trajectories, suggesting that numerical 

magnitude of the target is encoded as well as the numerical proximity or order along a 

hypothesized mental number line. Taken together, these results are important proofs about 

the existence of systematic interactions between number and space. 

If we consider the SNARC effect as an index of the spatial representation of numbers, the 

first documented presence that spatial numerical association in the response codes was 

found at the age of 9 (Berch, Foley, Hill, & Ryan, 1999). Indeed cultural and education 

habits can influence the SNARC effect. For example, Iranian subjects exhibit a weaker 

SNARC effect compared to Western subjects, probably due to their right-left reading 

direction (Dehaene, et al., 1993). Again, Arabic speakers are faster to compare two visually 

presented numbers when the larger number is placed on the left side (Zebian, 2005). The 

spatial features of number representation were also linked to finger-counting habits: 

American students start to count objects by raising the fingers on the left hand while Italian 

adults use the right hand first. Indeed, contrary to American subjects, Italian subjects reflect 

a systematic association of number from1 to 5 to the right hand due to their finger-counting 

habits (Di Luca, Grana, Semenza, Seron, & Pesenti, 2006). 

During childhood, a reduced visuo-spatial span, as measure by Corsi blocks, has sometimes 

observed in children with mathematical difficulties (Bull, Johnston, & Roy, 1999). 

Recently, it has been showed that the Corsi span represent a good predictor of the pre-
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verbal numerical performance in preschool children, but not in grade 1 children 

(Rasmussen & Bisanz, 2005). Moreover, Facoetti and colleagues (Facoetti, Trussardi, & 

Zorzi, 2007) found that that dyscalculia is associated with a defective visuo-spatial 

orienting in the right visual hemisphere indicated by the absence of inhibition of return 

effect. These authors suggest the presence of impairment in the right parietal cortex, 

particularly involved in the control of attention orienting. Subsequently, this deficit also 

influences negatively the number processing, limiting the ability to explore the 

representational space of the mental number line. 

Another line of evidence in direct favor to the involvement of spatial codes in number 

processing comes from clinical studies on patients with (right) hemineglect that 

systematically misplace the midpoint of a numerical interval to bisect ((Zorzi, Priftis, 

Meneghello, Marenzi, & Umilta, 2006; Zorzi, Priftis, & Umilta, 2002); Fig. 11). The 

midpoint is generally shifted rightward and error rate increases with the size of the interval, 

as observed in the physical bisection of simple lines. This distortion seems to emerge from 

the impaired representational form of spatial neglect rather than an impaired access to 

numerical representations (Vuilleumier, Ortigue, & Brugger, 2004). When asked to process 

number as in a clock face, these patients exhibit greater difficulties than controls for 

numbers larger than 6, placed on the left side of the clock face. These results confirm the 

dynamic and flexible nature of the spatial representation of numbers. 
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Fig. 11. Hemispheric effects in numerical-spatial interactions. (a) Neglect patients also demonstrate severe 

deficits in numerical distance and number bisection tasks. The upper graph shows the deviation on a number-

interval bisection task, as a function of interval size, while the lower graph shows reaction times on a 

magnitude judgment task with 5 as the standard. (b) When rTMS is applied to the angular gyrus, responding 

to a number greater than the standard takes longer than in the no-stimulation condition. (Adapted from 

Hubbard et al., 2005). 
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The implications concerning a spatial representation of numbers emerge even during 

mental arithmetic. Indeed a so called “operational momentum” was described in several 

studies (McCrink & Wynn, 2009). Empirically, this effect emerges solving additions in 

which incorrect results is generally larger than the correct solution, and for subtractions, 

where the incorrect results is smaller than the correct solution. In other terms, the answers 

to addition problems were systematically overestimated and the answers to subtraction 

problems were systematically underestimated. 

Recently, Knops and colleagues (Knops, Thirion, Hubbard, Michel, & Dehaene, 2009) 

showed that the cortical region in the posterior parietal cortex (homologous to monkey 

VIP) selectively implicated in eye movement execution is also involved in arithmetic 

calculation (both symbolic and non-symbolic). Indeed, a classifier trained to determine the 

direction of saccades, left or right, from the fMRI signal measured in PPC generalized to an 

arithmetic task. Its left versus right classification could be successfully used to sort out 

subtraction versus addition trials. 

However, a non-spatial interpretation of the operational momentum sees it as the 

consequence of the compression and expansion of the internal representation of quantity 

while adding or subtracting on a compressed continuum. In this way, the neural circuit 

dedicated to additions and subtractions process “can first undo the internal compression of 

the operands, thus avoiding gross inaccuracy”, but “ if this internal decompression is 

inaccurate, a small compressive bias might persist, thus causing the observed momentum 

effect” (McCrink, Dehaene, & Dehaene-Lambertz, 2007). Neurally, it is known that the 

posterior parietal cortex (homologues to monkey LIP) contains neuronal populations that 

perform vector addition for saccade programming (Pouget, Deneve, & Duhamel, 2002). It 

is thus possible that it is the internal structure or connectivity of such region that is reflected 

by the results of the classifier and not the execution of spatial operations per se. 

In summary, despite some less clear effects with still open interpretations, most of the 

studies reported show an intensive interplay between space and numbers in healthy subjects 

and brain-lesioned patients, with a typical association (SNARC effect) of small numbers 
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with left response side, and large numbers with right response side. In particular, neglect 

patients exhibit an impaired number bisection which reflects representational difficulties 

not specific to numbers domain. 

 

3.2 Fingers  

 

Before the invention of symbols for numerosities, humans were unable to count and 

numbers were implicitly embodied in the intrinsic features of environment. Without 

number words, our ancestor started to manipulate numerosities by using bones, sticks of 

wooden, stones and so on. Among these methods, another way to count and to 

communicate quantity information was represented by body parts, such as toes, arms, 

elbows, shoulders, but also lips, nose and eyes. Nowadays body counting strategies persist 

in some tribes of New Guinea (e.g. Islander from Torres, Papuans etc.) and, despite the 

heterogeneity of their strategies, most cultures share the use of a fruitful body part, the 

fingers, as a sort of personal abacus always available (Ifrah, 1981). 

Finger counting is not a recent discovery, but a conventional widespread technique used at 

every epoch (even by Sumerians, Babylonians, Maya and Aztec populations) that reached 

the maximum development in China allowing to count up to three billion with both hands 

by using combinations of phalanges and fingers (Ifrah, 1981). 

Curiously, cross-linguistic evidences documented the thick relation of digital domain with 

the origins of some number words and verbal counting. For example, in English the word 

“five” shares a common root with “fingers” and “first”; alternatively in Slavic languages 

the word “pet” (five) derives from “pest” (hand). At present, despite the introduction of a 

formal knowledge of numbers represented by Arabic system, the use of fingers to count 

constitutes a fundamental pedagogic tool for mathematical teaching and learning during 

school years (Butterworth, 1999). 
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Some characteristics of fingers may elicit their use, parallel to counting words, to help the 

transition between approximate numerosity representation to exact and symbolic number 

knowledge (Fayol & Seron, 2005). 

1. First, finger counting represents a preliminary step toward the acquisition of the number 

concept of bases (Butterworth, 1999). Although the use of a base-12 system would be more 

fruitful for number processing due to its combination with 2-3-4 and 6, historically finger 

counting has pressed on a base-10 system for pragmatic reasons. 

2. Second, unlike language, fingers configurations offer iconic relationships with the 

objects they represent. Indeed fingers can represent the cardinality of a set, irrespective of 

the nature of the set items, and even in absence of reference objects. 

3. Third, finger counting of objects requires a correspondence between words (which have 

time but not space) and objects (placed in the space but undifferentiated in time). This type 

of association is named one-to-one correspondence. These levels, temporal and spatial, 

elicited different types of errors in children from 3 to 6 years old: objects can be skipped 

(not counted), repetitively counted (counted twice) or just pointed with the finger (without 

receiving a word; (Fuson, 1988)). 

4. Fourth, the stable order principle is reflected by the sequence of finger movements. 

The extension of these principles also on fingers counting determines a process of 

familiarization with frequent fingers configurations allowing a direct access to their 

semantics (Wiese, 2003) and a link between each finger with a specific number. Coherently 

to this, 7 years old children extract numerical information faster for habitual fingers 

configurations of numbers from 2 to 9 compared with unfamiliar configurations, suggesting 

their holistic representation (Noel, 2005). 

5. Finally, the practice with verbal and finger counting contributes to detecting some 

regularities at the basis of mathematical thinking (e.g. arithmetical properties) and to 

“digesting” numerical features such as ordinality and cardinality. 

 

A longitudinal study on 5-6 years old children showed that finger abilities, finger 

discrimination and graphestesia were significant predictors of the subsequent arithmetical 
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performance after one (Fayol, Barrouillet, & Marinthe, 1998) and three years (Marinthe, 

Fayol, & P., 2001). The specific contribution of finger gnosis is also confirmed by another 

study on school age children, in which the predictive power of finger gnosis is selective for 

number domain, in contrast with what predicted by other cognitive abilities, such as 

processing speed (Noel, 2005). On this wave, a recent study reinforcing the idea of a deep 

link between the finger and the number domain is a training study, showing that 8-weeks 

training in finger gnosis ameliorates the arithmetical outcome of first graders (Gracia-

Bafalluy & Noel, 2008). In this study, children were separated into three groups: an 

“untrained group” with low finger gnosis abilities, a “trained group” with low finger gnosis 

abilities who received the training, and a “skilled group” composed of children with high 

scores in finger gnosis tests. Once training was concluded, the trained children exhibited an 

improvement in arithmetical competence, reaching levels of scores similar to skilled 

children. 

Fingers seem to be recruited by 

children in relation to numerical 

processing or arithmetical 

problems. It is well documented 

that finger counting plays a crucial 

role in the acquisition of symbolic 

numbers, contributing to the 

transition from an approximate  

representation of numerosity to 

symbolic numbers (Fuson, 1988; 

Jordan, Kaplan, Ramineni, & 

Locuniak, 2008). This body parts 

represent a sort of pointer while 

enumerating, assist the verbal counting and allow us to communicate and compare 

numerosities. A recent study has tracked longitudinally the relation between the frequency 

of finger use and number combinations from kindergarten to second grade. The data 

 

Fig. 12. Fitted growth trajectories for mean percentage of 

trials on which fingers were used on number 

combinations, by income status (from Jordan et al., 

2008). 
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showed a quadratic trend from a significant positive correlation in kindergarten, to 

decreasing positive correlations in first and second grades, and to a small but significant 

negative correlation by the end of second grade ((Jordan, et al., 2008); Fig. 12). This 

indicates the relevant role on fingers use during the early steps of formal mathematical 

education with a natural decrement of the use of this strategy once that the arithmetical 

procedures are robustly consolidated. 

From a functionalist point of view, the co-occurrence of deficits in calculation and fingers 

discrimination, as well as the interaction between finger gnosis and math in normally-

developing children, arise experientially in the course of the normal development. This 

suggests that “the representation of numbers is not only co-located with, but also linked to, 

the representation of fingers” (Penner-Wilger & Anderson, 2008). Indeed, individuals who 

could not or did not use their fingers to represent quantities (i.e. children with Spina 

Bifida), have impaired finger gnosis that is co-morbid with mathematical difficulties 

(Banister & Tew, 1991; Barnes, Smith-Chant, & Landry, 2005). Interestingly, children with 

developmental coordination disorder (DCD) exhibiting a deficit in finger motor agility with 

a preserved finger gnosis do not show arithmetical deficits (Cermak & Larkin, 2001). This 

finding suggests the role of finger, in particular of digital gnosis, in the acquisition of 

numerical representation during the development through the creation of a hypothetical 

functional/developmental link between these two domains. Alternatively, however, it could 

also reflect that the impairment in DCD is unrelated to parietal damage. 

In this way, the acquisition of fingers counting may be a process of assimilation of digital 

configurations, previously observed and then repeated. On the same wave, implicit 

representations of number-related actions may be created on the base of frequent 

associations between visuo-motor finger configurations and related movements 

(Butterworth, 1999). Moreover, other overlapping activations were found in the 

intraparietal sulcus bilaterally for both numerical magnitude judgments and “how many 

raised fingers” task on a hand picture (Thompson, Abbott, Wheaton, Syngeniotis, & Puce, 

2004), suggesting that finger configurations may share common processes with symbolic 

numerical knowledge. 
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Additional indirect supports on the functional interpretation were based on recent 

neuroimaging data of Zago et al. (2001) who found activation of premotor area 

corresponding to the finger representations during single-digit multiplications, while 

Andres and colleagues ((Andres, Seron, & Olivier, 2005)) showed an activation of hand 

motor circuits during dot counting task in adults. Both these studies speculated that these 

findings represented an evidence of a developmental numbers-fingers trace in the brain. 

Nowadays, the investigation about connections between SMG and AG with premotor areas 

contributes to clarify the anatomical circuits of finger movements and their relation with 

number domain. Anatomical proximity was found for the sites responsible for finger 

agnosia and acalculia in the SMG or close to the IPS (Roux, Boetto, Sacko, Chollet, & 

Tremoulet, 2003). 

 

 
 

Fig. 13. Parietal projections from areas located in the lateral bank and in the fundus of the intraparietal sulcus 

in the macaque monkey. In order to show these areas, the intraparietal sulcus has been opened and the 

occipital lobe removed (from Rizzolatti et al., 1998). 

 

Recent developed MRI techniques, such as the multiple-fiber diffusion tractography (Aron, 

Behrens, Smith, Frank, & Poldrack, 2007; Rusconi, Pinel, Dehaene, & Kleinschmidt, 
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2009), makes possible to quantify the connectivity in vivo. A parieto-premotor network 

(Fig. 13) was found in several studies documenting connections of premotor regions with 

IPS, a region sensible for number quantity, and AG, responsible of bimanual finger 

movements and higher-order aspects of motor control (e.g. conscious access of one’s own 

actions; (Farrer, et al., 2008; Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; Pesenti, et al., 

2001)). These supramarginal regions were recruited during fine control of hands and finger 

movements, even while gesturing (Mühlau, et al., 2005). Mirror neurons system was 

hypothesized to play a role for digital representation of numbers with the presence of a 

neural substrate for both finger movement execution and observation (Rizzolatti & 

Craighero, 2004). 

Again, a TMS study demonstrated a concomitant disruption of performance in both 

numerical tasks and digital gnosis tasks after stimulation of angular gyrus, confirming the 

anatomo-functional contiguity of the relative regions (Rusconi, Walsh, & Butterworth, 

2005). Taken together, these findings suggest that both number processing and finger 

knowledge seems to be grounded in neighboring, and sometimes overlapped, regions of the 

parietal cortex. Thus, the presence of such common maturational pathways might well 

predict the observed correlations, in both infants and adults. 

 

3.3 Action: Grasping  

 

Despite several studies that have deeply investigated the grasping abilities in both monkeys 

and human, just recent neuroimaging data contributed to clarify the neural circuits for 

grasping. Here, I describe the kinematis of grasping in humans and its neural mechanisms. 

Next, I summarize the current state of knowledge about the influence of numerical 

information on grasping actions. 

The mechanic of grasping in humans is dependent on several types of object attributes. 

Jeannerod was the first who analyzed grasping in terms of variation of the distance between 

the thumb and the index finger, the so-called grip aperture. Indeed, during a reach-to-grasp 
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action, the initial and progressive opening of the grip is followed by gradual closure in 

order to make contact with the objects’ (Fig. 14). A fundamental process for a successful 

grasp implies a transformation of the intrinsic-visual features (one of the most important of 

which is the size) of the objects into motor actions (Jeannerod, 1984, 1997). Jeannerod 

identified a particular time during grasping when the thumb-index distance is the largest 

(maximum grip aperture, hereafter MGA) that occurs within 60-70% of reaching duration 

and it is significantly modulated to object size. Over and above size, other properties, such 

as texture, weight, fragility, size of the contact surface, also seem to influence the 

kinematics of grasping.  

 
 

Fig. 14. Kinematics of grasping. a) The hand preshapes during its journey to the target object. b) Maximal 

grip aperture (distance between the tip of thumb and the tip of index finger) typically occurs within 70% of 

movement completion. c) Representation of traces demonstrating the scaling of maximum grip aperture with 

respect to object size (from Castiello, 2005). 

 

In monkey, three specific regions are responsible of grasping: the primary motor cortex 

(F1), the premotor cortex (PML/F5) and the anterior intraparietal sulcus (AIP; see 
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(Castiello, 2005) for a review). The integrity of F1 is obviously fundamental for performing 

successful grasping. The role of AIP and F5 is more complex and the neural response 

properties of these two regions show striking similarities as well as important differences. 

For instance, both AIP and F5 regions code for actions related to the type of objects to be 

grasped during precision grip movements. By contrast, while AIP neurons are able to 

represent the entire action, F5 neurons are specifically involved in the selection of the patter 

of movement of the hand and fingers (Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; 

Rizzolatti, et al., 1998; Sakata & Taira, 1994; Sakata, Taira, Murata, & Mine, 1995). 

Moreover, as suggested by a study by Sakata et al. (1995; see also Murata et al., 2000), F5 

selects and sends back the information regarding the selected motor command to area AIP. 

Single-unit recordings tried to clarify the visual and somato-sensory contributions of  

grasping, and showed that AIP activity is influenced by the shape of the target object, while 

somato-sensory cortex classically responded later than AIP region while/after the hand 

touched the object (Gardner, Debowy, Ro, Ghosh, & Babu, 2002).  

In humans, neuroimaging data documented the role of primary motor cortex (PMC) and 

posterior parietal cortex (PPC) in grasping. In comparison with touching, grasping actions 

increased the regional cerebral blood flow (rCBF) in wide regions of the bilateral PMC, the 

PPC and the prefrontal cortex PFC (Matsumura, et al., 1996). Another study confronted 

pointing, grasping, and matching conditions (Faillenot, Toni, Decety, Gregoire, & 

Jeannerod, 1997). In this last condition subjects had to compare the shape of the target 

objects with the previous one. While grasping-pointing contrast showed an increased 

activation of the anterior part of PPC, the grasping-matching contrast showed an increased 

activation in the cerebellum, left and medial frontal cortex and left IPS. In summary, 

primary motor, premotor, and AIP areas were found to be involved in grasping circuits. 

However, other regions may be involved, including for example prefrontal, superior 

parietal and cerebellar areas (Castiello, 2005). 

Interestingly, some studies showed the influence of numerical magnitude on grasping 

actions. A recent study investigated on the electromyographic (EMG) recordings of hand 

muscles activity during a parity judgment task with Arabic digits. The participants had to 
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open or close (and vice versa) their hand according to the parity status of the number (odd 

or even). Data showed larger grip apertures in case of large digits, and the opposite for 

small digits (Andres, Davare, Pesenti, Olivier, & Seron, 2004). Again, another behavioral 

study shows a modulation of grasping kinematics regarding an enlarged maximum grip 

aperture in the presence of large numbers (Lindemann, Abolafia, Girardi, & Bekkering, 

2007). 

 

In another study, participants had to judge whether they can grasp a rod lengthways 

between their thumb and index finger. Each presentation of the rod was anticipated by 

Arabic digits. When a small digit preceded the rod, participants overestimated their grasp; 

conversely, when a large digit preceded the rods, they underestimated their grasp. Control 

experiments allowed to exclude that the weight on the performance on other effect, such as 

perceptual factors (Badets, Andres, Di Luca, & Pesenti, 2007). Thus, since grasping 

requires the estimation of object size in order to determine a precise and correct hand 

shaping, both coding number magnitude and grasping may share common processes 

(Andres, et al., 2004). On this wave, Walsh proposed a model by which number magnitude 

and the size of objects to grasp take place in the dorsal visual pathway on the basis of a 

common system of magnitude (Walsh, 2003). 

Anatomically, objects manipulations (Binkofski, et al., 1999), grasping (Culham, et al., 

2003), reaching (Cohen & Andersen, 2002), and visual pointing (Connolly, Andersen, & 

Goodale, 2003) rely on the same parieto-premotor networks co-activated even during 

numerical tasks, such as additions, subtractions, multiplications and magnitude 

comparisons (Dehaene, et al., 2003). 

For example, human dorsal premotor cortex (F2), an area plays a crucial role in 

programming and controlling proximal movements based on somatosensory information 

(Shen & Alexander, 1997) also is also found active in subjects performing additions, 

subtractions and numerical comparisons (Chochon, et al., 1999; Fias, Lammertyn, 

Reynvoet, Dupont, & Orban, 2003; Menon, Rivera, White, Glover, et al., 2000). The 

fronto-parietal connectivity is represented by the connections between the F2 areas and the 
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medial intraparietal areas (MIP) in the IPS region. In particular, MIP represents an 

important component of the parietal reach region involved in preparation, execution and 

monitoring of reaching movements. Thus, the MIP-F2 circuit integrates both the visual and 

somatosensory information to coordinate hand movements toward a visual target (Cohen & 

Andersen, 2002; Colby & Duhamel, 1991; Eskandar & Assad, 1999). 

Furthermore, the AIP activity is invariant to spatial location of objects (Sakata, et al., 1995) 

and it is connected to F5 throughout the premotor ventral regions. Thus, the anterior 

intraparietal region (AIP) exhibits a neural selectivity while grasping objects and the AIP-

F5 circuits are thought to be responsible of the object manipulations on the basis of their 

visual and physical features (Jeannerod, Arbib, Rizzolatti, & Sakata, 1995). The neurons of 

AIP can be divided into two groups: “object type” and “non-object type”. The former plays 

a role during object observation in absence of grasping movement, while the latter is related 

to the shape of handgrip, irrespective to object observation (Murata, et al., 2000). 

Clinically, patients with parietal lesions exhibit impairments in matching the grip aperture 

with object size (Jeannerod, 1986). 

In summary, on the basis of neuropsychological studies, we can delineate the role of MIP-

F2 and AIP-F5 circuits. On one hand, the circuit MIP-F2 seems to contribute to the coding 

of spatial location of objects, even during enumeration tasks. 

On the other hand, the circuit AIP-F5 is crucial for shaping the handgrip to grasp objects (in 

line with the presence of a shared mechanism for coding number magnitude and object size 

(Castiello, 2005)). However, other investigations are necessary to better understand if the 

human homologues of AIP and MIP are located in the anterior and medial parts of the IPS 

coherently with the neural structure of monkey brain. On this wave, anatomical coordinates 

of recent neuroimaging studies suggest a partial overlap of these regions (Culham & 

Kanwisher, 2001; Koyama, et al., 2004; Simon, et al., 2002). 

 

Overall, these findings suggest a clear interplay between numerical processing with other 

parietal functions such as spatial, digital and action processes. These relations are both 

explained on the basis of anatomical connections and proximity of parietal regions, but 
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even on the basis of functional contributions mediated by educational and cultural factors 

(e.g. finger counting, grasping, displaying numbers on an oriented line). However some 

questions remain open, in particular regarding the processes that allow these interactions to 

emerge during childhood and the relative contribution of maturational and functional 

factors. 
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Chapter 4  

CLINICAL EVIDENCES OF PARIETAL IMPAIRMENTS IN 

NUMBER PROCESSING 

 

In this chapter I consider evidences coming from two clinical disorders, the developmental 

dyscalculia and Gerstmann’s syndrome, that present deficits in both the number domain 

and in other domains related to parietal cortex functions. These two disorders have different 

origins. In the case of “dyscalculia”, this deficit appears during the cognitive development 

from childhood, in contrast with the term “acalculia” generally used for acquired lesions 

determining impairments in numerical domain and calculation. 

 

4.1 Developmental dyscalculia 

 

Developmental dyscalculia (hereafter DD ) concerns a disorder of  numerical competence 

and arithmetical abilities in children who fail to achieve adequate proficiency in the number 

domain despite normal IQ, proper schooling, emotional stability, adequate social relations 

and motivation (Shalev & Gross-Tsur, 2001; Temple, 1992). The term “developmental 

dyscalculia ” was introduced by Ladislav Kosc (Kosc, 1974), even if nowadays other 

terminologies are considered to describe this disorder on the base of selection criteria, such 

as “arithmetical learning disabilities”, “mathematical disabilities” or “specific arithmetic 

learning difficulties” (Jordan, Hanich, & Kaplan, 2003a; McLean & Hitch, 1999). Recent 

epidemiological studies showed that this deficit afflicts approximately the 6% of school-age 

children (Gross-Tsur, Manor, & Shalev, 1996; Lewis, Hitch, & Walker, 1994). It was also 

demonstrate the co-occurrence of other disorders in DD cases: 25% of children with 

mathematical disabilities showed an occurrence of attention deficit hyperactivity disorder 

ADHD (Gross-Tsur, et al., 1996)) and roughly the 40-60% of DD children exhibit reading 

difficulties (Lewis, et al., 1994). The reason of these relations remains still unclear. 



 65 

Even genetic studies demonstrated that 58% of monozygotic twins and 39% of dizygotic 

twins had developmental dyscalculia (Alarcon, DeFries, Light, & Pennington, 1997). The 

genetic susceptibility for DD was also found in some genetic disorders such as velo-cerdio-

facial syndrome (Eliez, et al., 2001), fragile-X syndrome (Mazzocco, 2001), Turner’s 

syndrome (Bruandet, Molko, Cohen, & Dehaene, 2004), and Down’s syndromes (Paterson, 

2001). 

Difficulties in learning and remembering basic arithmetical facts are consistently reported 

in children with mathematical difficulties (Geary, 1990; 1993; Ostad, 1997). Apparently, 

the arithmetical facts retrieval from long-term memory remains stable across elementary 

ages in these children, suggesting the presence of a persistent cognitive deficit rather than a 

delayed development (Geary, 1993). The classical development of calculation in children 

concerns the transition from digital-verbal strategies to memory-based ones. Interestingly, 

DD children do not exhibit this shift and they persist in using immature strategies (Geary, 

Brown, & Samaranayake, 1991; Jordan, et al., 2003a; Ostad, 1997), showing difficulties 

not only in the knowledge of facts, but also in arithmetical procedures (Russell & Ginsburg, 

1984). Moreover, children with mathematical difficulties showed slower verbal counting 

ability (e.g. counting from 45 to 65 and backwards) and lack of some counting principles, 

such as order irrelevance principle (Landerl, et al., 2004). 

Two different streams of research have proposed alternative interpretations of this disorder: 

one point towards a more general cognitive deficit while the other to a specific impairment 

of core number system. 

On one hand, the difficulties of DD children may derive from a general dysfunction 

affecting processing speed (Bull & Johnston, 1997), working memory (Bull & Scerif, 

2001), general information retrieval (Geary, 2000), spatial disabilities (Rourke & Conway, 

1997) or finger agnosia (Fayol, et al., 1998). Indeed slow RTs while naming letters of 

numbers (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007), reduced digit and visuo-

spatial span (McLean & Hitch, 1999) were found in children with mathematical difficulties. 

On this wave, many evidences suggest the presence even of a form of “developmental 

Gerstmann’s syndrome” in which dyscalculia is associated to a corollary of other parietal 
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deficits such as dysgraphia, finger agnosia and right-left disorientation (Kinsbourne, 1968; 

PeBenito, Fisch, & Fisch, 1988). 

Recently most of researches have been focused on the role of spatial abilities and finger 

gnosis in DD. On the basis of the presence/absence of co-morbid reading difficulties, 

Rourke (Rourke & Conway, 1997) suggested that the cause of this disorder was due to a 

lateralized hemispheric dysfunction: a left hemisphere dysfunction may be responsible of 

both mathematical and reading impairment. Alternatively, right hemisphere dysfunctions 

may be associated to specific problems in mathematics. However, some recent studies fail 

to find consistent differences between DD children and children with DD and reading 

deficits (Jordan, Hanich, & Kaplan, 2003b). Moreover, some developmental studies support 

the role of finger gnosis in number acquisition, showing for example that accuracy of finger 

gnosis at the age of 5 predicts a significant proportion of variance in arithmetical tests 

administered 1 year later ( Fayol, et al., 1998;  Noel, 2005).  

On the other hand, some authors considered the DD as the result of a specific core deficit in 

the numerical domain (Butterworth, 1999; Dehaene, 1997). A “number defective module” 

or an impaired “number sense” were suggested to describe the incapacity to manipulate and 

understand numbers and numerical quantities. Indeed dyscalculic children showed 

consistent deficits in numerical task including symbolic quantities compared to age- 

matched controls despite their phonological processing, information retrieval, language 

abilities and psychomotor development were all in the normal range or above average 

(Landerl, et al., 2004). 

Additionally, dyscalculic children exhibit a defective sensibility and a less precise internal 

representation for numerosity as showed by a higher Weber fraction compared to healthy 

counterpart (Fig. 15). Specifically, 10 years old dyscalculic children show a 5 years delay 

in numerical sensibility, which is similar to what found in 5 years-old non-dyscalculic 

children (Piazza, et al., 2010). 
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Fig. 15. Developmental trajectory of internal w. The graph represents mean w as a function of mean age and 

group (in black: non-dyscalculic group, in red: dyscalculic group; adapted from Piazza et al., 2010) 

 

In a physical number line task, participants have to estimate the position of a number on a 

line, for example, from 0 to 100. Typically, during the development, children shifted from a 

logarithmic-based estimation (with small numbers compressed on the left side and big 

numbers on the right side) to a linear representation. Generally, this transition happens 

between 6 and 8 years for 0 to 100 numbers (Siegler & Booth, 2004), and between 8 and 11 

years for 0 to 1000 numbers (Siegler & Opfer, 2003). Children with mathematical 

difficulties are less accurate than their counterparts and they used more often a logarithmic 

strategy rather than a linear one (Geary, et al., 2007). 

All these data support the idea of a basic numerical deficit for DD, as the result of a 

defective number sense. Indeed, compared to age-matched controls, children with 

mathematical difficulties had poor performance in identifying small and large numerosities 

(Mandler & Shebo, 1982; Piazza, Price, Mechelli, & Butterworth, 2001), calculation 

(Jordan & Hanich, 2000) and placing a number on a physical line (Geary, et al., 2007). 

Even neuro-anatomical and neuro-functional data suggest structural abnormalities in the 

dyscalculic IPS as compared to non-dyscalculic controls. For instance, adults with genetic 
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problems (e.g. Turner’s syndrome in (Molko, et al., 2003) and adolescents with very low 

birth weight (Isaacs, Edmonds, Lucas, & Gadian, 2001) frequently showed arithmetical 

difficulties, associated with reduced grey matter volume in the IPS (Isaacs, et al., 2001; 

Rotzer, et al., 2008). Functionally, fMRI studies showed a lack of IPS modulation during 

non-symbolic comparison and symbolic comparison in children with mathematical 

difficulties which was interpreted as either a weaker parietal representation of number 

magnitude, or a limited access to numerical information (Price, Holloway, Rasanen, 

Vesterinen, & Ansari, 2007; Soltesz, Szucs, Dekany, Markus, & Csepe, 2007).  

The interpretations regarding the etiology of developmental dyscalculia are multiple. On 

one hand, a “core deficit” idea was suggested by those studies that have reveal a defective 

number sense, impaired transition from a non-symbolic to a symbolic representation and 

structural/functional abnormalities of IPS in dyscalculic children. On the other hand, 

scientific literature shows the presence of variegated sub-types of dyscalculia based on a 

defective verbal symbolic representation (deficits in learning and retrieving arithmetical 

facts and counting sequence), executive dysfunctions (inefficient strategies and arithmetical 

procedures) or impaired spatial attention (defective subitizing skills). 
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4.2 Gerstmann’s syndrome 

 

Acalculia represents one of the tetrad of symptoms that characterize the syndrome 

described by the neurologist Gerstmann (Gerstmann, 1927). The other deficits consist in 

left-right disorientation, finger agnosia and agraphia. This syndrome was initially found in 

patients with lesions of the left parietal cortex, precisely of the AG (Butterworth, 1999; J. 

Gerstmann, 1940, 1957). Subdural stimulations of AG produce the emerging of all of the 

four characteristic deficits, alternatively called as the “angular syndrome” (Mazzoni, 

Pardossi, Cantini, Giorgetti, & Arena, 1990). Gerstmann’s clinical interpretation was based 

on the presence of a selective disorder of the hand area and its body schema representation, 

“the finger sense”. A cascade of impairments was associated by observing that: calculation 

and fingers share the ten-base system, hands are used as reference of left-right orientation, 

and writing implies a good finger praxia. In particular, acalculia may emerge as the result 

of impossibility to relate numbers and fingers by using finger counting strategies (J. 

Gerstmann, 1957). 

 

Here, I briefly report the main characteristics of each symptom: 

 

Finger gnosis is frequently impaired in patients with Gerstmann’s syndrome especially in 

finger naming and verbal identification (Jung, et al., 2001; Moore, Saver, Johnson, & 

Romero, 1991; Tucha, Steup, Smely, & Lange, 1997). In particular, the accuracy decreases 

in case of lack of visual control while performing the task (Mayer, et al., 1999; Tucha, et 

al., 1997). This deficit afflicts not only the own fingers but also the identification of the 

corresponding fingers of the examiner’s hand (Carota, Di Pietro, Ptak, Poglia, & Schnider, 

2004; Mayer, et al., 1999). 

Even the representational structure of the hand seems disrupted with the inability to know 

the number of fingers between two fingers touched by the examiner. Higher error rates 

were documented for index, middle and ring fingers compared with thumb and little finger 
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(Mayer, et al., 1999; Mazzoni, et al., 1990). In several cases, a toe agnosia was described 

suggesting the idea of a more general disorder in the body schema (Tucha, et al., 1997). 

 

Left-right confusion emerges while asking to identify specific body parts. Patients make 

more errors in absence of visual control (Levine, Mani, & Calvanio, 1988; Mayer, et al., 

1999; Mazzoni, et al., 1990) or when asked to point the examiner’s body, (Carota, et al., 

2004; Tucha, et al., 1997) especially if he/she faces the patients. Even crossed commands 

(e.g. “touch your left eye with your right hand”) were executed less precisely than 

uncrossed ones (Jung, et al., 2001; Mayer, et al., 1999)). 

 

Two main types of peripheral deficit in handwriting (agraphia) afflict these patients. On 

one hand, the writing can be slow and illegible with misaligned and scrawled letters (Jung, 

et al., 2001), in particular for cursive letters (Mazzoni, et al., 1990). This deficit may 

sometimes afflict also the drawing of geometrical shapes (Levine, et al., 1988), taking the 

form of apraxic agraphia, as the result of a disruption in motor graphic patterns in memory 

(Zesiger, Martory, & Mayer, 1997 ). On the other hand, letters are omitted, repeated or, 

more often, substituted with other similar letters,  e.g. p-b, q-d (Carota, et al., 2004) that 

shared the same motor segments. This deficit may reflect impairments at the allographic 

level where letter identity is accessed from motor production, as also confirmed by the lack 

in the visual imagery for letter forms (Rapp & Caramazza, 1992). 

 

Acalculia constitutes the most variegated deficit among the tetrad of symptoms. 

Syntactic difficulties frequently  characterize the comprehension and production of Arabic 

numbers (Kinsbourne, 1968; Martory, et al., 2003), especially while reading three-digits 

numbers versus one- or two- digits ones (Varney, 1984). Even syntactical relationship 

among number words can be impaired (Martory, et al., 2003). 

The spatial disorganization of digits often induces errors in writing calculation, suggesting 

the presence of a spatial acalculia (Strub & Geschwind, 1974). The effects of this syndrome 

on arithmetic and calculation are more debated. 
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In accordance with the interpretation of Gerstmann, this syndrome should involve basic 

arithmetical difficulties due to their intimate link with the finger counting in childhood (J. 

Gerstmann, 1940). 

Alternatively, Dehaene and colleagues (2003) predict that number processing and complex 

operation should be disrupted in contrast with arithmetical facts (e.g. small additions or 

multiplications) retrieval relying on language areas. Moreover, the presence of deficits in 

arithmetical facts in some patients can be imputed to larger lesions involving the AG, a 

fundamental area for the verbal processing of numbers. Probably, verbal processing does 

not represent the core of the problem, considering that those patients did not exhibit aphasic 

disorders. An extensive study contributed to clarify the consequences of angular lesion, 

concerning impaired simple and complex calculation and semantic knowledge of numbers 

(Martory, et al., 2003), indeed patients are unable to place numbers on a straight line and to 

recite numbers series (Cipolotti, Butterworth, & Denes, 1991; Delazer & Benke, 1997; 

Varney, 1984). 

Although the existence of this syndrome was occasionally questioned (Poeck & Orgass, 

1966) and despite an uncertain localization on cortical or subcortical substrates, the left 

angular gyrus lesion may represent a sufficient condition for the syndrome onset. Not 

surprisingly, angular gyrus seems to be responsible for the initialization of bimanual finger 

movements (Roux, et al., 2003), which are thought to be typically used during finger 

counting. 

Furthermore, other non- Gerstmann deficits were reported in clinical studies, together with 

some heterogeneity in the neural localization. Extensive studies on brain-damaged patients 

documented the presence of other symptoms, such as constructional apraxia and reading 

difficulties that correlated with the typical tetrad of Gerstmann’s syndrome (Kinsbourne, 

1968). In particular, the agnosia, left-right confusion, agraphia and acalculia were mostly 

associated to aphasic patients than to non-aphasic ones (Poeck & Orgass, 1966; Poeck & 

Orgass, 1975)). Thus, these cardinal symptoms may be the consequence of language 

disorder and verbal comprehension of the task contents. However this hypothesis was ruled 
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out by two studies (Strub & Geschwind, 1974) where the majority of Gerstmann patients 

did not exhibit language disorders. 

In this view, Roeltgen and colleagues (Roeltgen, Sevush, & Heilman, 1983) firstly asserted 

that the territory of the left AG and SMG were responsible of the syndrome in case of 

patients without aphasia, normal IQ and preserved memory, spatial processing and 

constructional apraxia. Again, TMS over the left AG in adults is associated to impairments 

in both numerical and digital tasks (Rusconi, et al., 2005). Taken together, these data 

support the idea that the neural territory of the left AG represents the sufficient condition 

for emerging the syndrome. 

Recently, Dehaene et al. (2003) suggest another interpretation of the syndrome. The co-

occurrence of the tetrad of symptoms was the result of anatomical proximities of the 

regions involved in calculation, manual tasks and visuo-spatial processing in the IPS. 

All these regions are irrigated by the middle cerebral territory. Thus, the common 

vascularisation determines a conjunction of the deficits of different parietal subregions. 

However this explanation does not account clinical cases where IPS is not involved in the 

etiology of the syndrome, such as in patients with non-angular lesions, such as in hiv-1 

encephalopathy (Cirelli, Ciardi, Salotti, & Rossi, 1994) and diffuse cerebral atrophy (Jung, 

et al., 2001). This non-converging data may suggest the idea of a wider network in the AG 

of cortical and subcortial regions responsible of the Gerstmann’s syndrome. To address this 

point, the incidence of Gerstmann’s deficits in Alzheimer patients was considered. 

Surprisingly the Gerstmann’s symptoms did not cluster together during the cortical 

degeneration supporting the idea of distinct neural networks for each function in the AG 

(Jung, et al., 2001). 
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Fig. 16. Functional and structural imaging results of left parietal lobe organization in the human brain. The 

upper left-hand picture provides a rendering of the left hemisphere cortical surface for reference. The four 

middle panels show functional activation results superimposed onto a left parietal zoom of this surface 

rendering. Activations are from experiments separately probing the four domains as labelled in the figure. 

These different task-related activation zones do not show significant overlap across all four domains. Taking 

these activation foci as seeding points permits tracking fibres connected with these cortical zones, as shown in 

the lower left-hand panel by different colours for the different domains of the tetrad. The upper right-hand 

panel tracks fibres from a bottleneck in parietal white matter and the lower right-hand panel shows the 

disconnection effect from such a ‘virtual’ lesion on the cortical surface (from Rusconi et al., 2009). 

 

More recently, Rusconi and colleagues ((Rusconi, et al., 2009); Fig. 16) clarified the 

organization of the fiber tracts of the classical tetrad by using fMRI with high spatial 

resolution. Curiously, a great subcortical overlap was found among fiber bundles activated 

for numerical, spatial, writing and digital tasks. Their interpretation consists in considering 

the Gerstmann's pure forms a sort of “syndrome by disconnection”. In other terms, its cause 

is not determined by a lesion to a shared cortical substrate, but due to an intraparietal 

disconnection between segregated cortical regions in parietal cortex to their related regions 

in the frontal cortex. Thus, Gerstmann’s syndromes more likely emerge after damage to 

subcortical white matter region. 
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Together, developmental dyscalculia and Gerstmann’s syndrome represent the main clinical 

evidences regarding the role of abnormal parietal structures and functions in the etiology of 

numerical deficits. Interestingly, both there pathologies showed a tight relation of number 

cognition with other parietal domains involved in the processing of space, finger 

representation and action, based on the anatomical proximities among these regions within 

the parietal cortex. 
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Chapter 5  
EXPERIMENTAL QUESTIONS 

 

The present thesis investigates the developmental trajectories of several both number-

related and non-number related parietal functions during the preschool years, with the aim 

of identifying clusters of associations across functions and their relative role as functional 

predictors of arithmetical abilities during the first year of primary school. In particular, 

within the number domain, we were interested in better understanding the relation between 

pre-existing non-symbolic quantity system and the culturally mediated symbolic number 

system. Second, we were interested in measuring the relative contributions of both 

quantity-related and non quantity related functions to the development of arithmetical 

skills. 

 

Developmental trajectories of the pre-symbolic and symbolic numerical systems 

In humans, two different systems can be recruited for the manipulation of numerical 

information. On one hand, an innate, approximate and non-symbolic system for numerosity 

represents the natural sensitivity for numerical quantity shared by both humans and non-

human animals. On the other hand, an exact and symbolic system for number is 

progressively acquired during development on the basis of cultural factors, such as 

mathematical education at school. Previous research has suggested an interplay across these 

two systems. Here, we investigated the maturation of these systems in preschool age and 

capitalize on the study of their relative developmental trajectories to better understand the 

nature of their interplay. The questions were: Can the inter-individual difference between 

children in these two domains reveal something about the development of the relation 

between the pre-symbolic and the symbolic system? Can the analysis of the development of 

such relation reveal something about the direction of the causality link between the pre-

symbolic and the symbolic systems? 
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Contributions of spatial, digital and sensory-motor processes to number processing  

Studies on children and adults showed interactions of numerical abilities with other parietal 

non-numerical domains, such as finger gnosis, visuo-spatial processing and sensory-motor 

abilities. These non-numerical functions are thought to be relevant for the acquisition of an 

exact and abstract concept of number and for arithmetical procedures. Here, we 

investigated the pattern of correlations across these parietal functions in preschoolers, in 

order to isolate functional clusters that could be more safely interpreted as pre-determined 

(or pre-existing) associations vs. culturally mediated associations due to explicit training. 

For comparison, we also considered the associations among all these parietal functions in 

adulthood after a long period of familiarization and practice with numbers, in order to see 

whether the adult pattern of functional correlations showed similar functional clusterization 

and cross-domain interactions as well as in children. 

 

Predictive power for arithmetical achievement 

The last section of the present thesis is dedicated to investigate the predictive power of both 

quantity and non-quantity related (i.e. space, finger gnosis, grasping abilities) factors 

measured in preschool, for arithmetical achievement one year later, at the end of the first 

year of primary school. In the literature only few studies have adopted a longitudinal and 

extensive approach to explore which cognitive functions can predict the subsequent 

arithmetical performance, especially during the transition from kindergarten to school. Our 

aim was to determine whether and which quantity or non quantity-related function, 

measured during the last year of kindergarten, can predict the subsequent number 

processing and the arithmetical outcome 1 year later, at the end of the first year of primary 

school. 
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Chapter 6  

NUMBER ACUITY CLUSTERIZES WITH OTHER PARIETAL 

FUNCTIONS IN PRESCHOOLERS AND ADULTS 

6.1 ABSTRACT 
 
Parietal cortex is the major component of the dorsal stream supporting several different 

functions mainly involved in perception for action. In particular, the integrity of parietal 

cortex is fundamental for visuo-spatial, sensory-motor and quantity-related skills. In 

numerical cognition, during development, all these functions are thought to play an 

important role, especially in the construction of the concepts of exact numbers and their 

governing principles. Previous developmental research has focused on a restricted number 

of functions (mainly sensitivity to non-symbolic numerical quantity and finger gnosis in 

school age children). This study explores an extensive set of parietal (presymbolic and 

symbolic numerical abilities, finger gnosis, visuo-spatial span, grasping abilities) as well as 

ventral (faces and objects recognition) functions in a large sample of preschoolers and of 

human adults, with the aim of determining clusters of correlations among these functions 

and their development during life-span. 

Firstly, our data show a general improvement in all tasks during development between 3 

and 6 years of age. In preschoolers, our findings suggest that anatomical proximity is a 

strong predictor of behavioural correlations across cognitive functions with a clear 

segregation of dorsal and ventral functions. In contrast, data from adults reveal a higher 

degree of specialization within parietal functions and the presence of some dorso-ventral 

functional correlations. Concerning the relation between pre-symbolic and symbolic 

numerical abilities, our results show that the two start from a general independency in 

preschool age to a close relation in adulthood. Finally, our data also point towards a 

particularly strong correlation between numerosity and finger processing, which, being 

strongest in young children, allows us to conclude for the presence of important anatomo-
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functional links between the two domains in childhood even prior to the formal use of 

procedure (like finger counting) that may eventually strengthen this link. 

 

6.2 INTRODUCTION 

Parietal cortex is the major component of the dorsal stream supporting several different 

functions mainly involved in perception for action (Goodale & Milner, 1992; Ungerleider 

& Mishkin, 1982). Data from macaque monkeys and humans (based on cytoarchitectonic, 

patterns of connectivity and neural response properties) converge in revealing a complex 

anatomo-functional parcellisation of parietal cortex in sub-regions. 

This parcellisation is organized along a caudal-to-rostral functional gradient by which 

information is coded with a systematic transformation from sensory to effector-specific 

properties. Caudal regions (LIP in monkeys and its human homologue hLIP) are involved 

in the control of eye movements and of attention in the extrapersonal space, code 

information mainly unimodally (either visual or auditory) and in eye-centered reference 

frames (Sereno et al., 2002). Medial regions (VIP and hVIP) are involved in complex co-

ordinate transformation and multi-modal integration crucial in motion and quantity 

processing (Bremmer, et al., 2001; Duhamel, Colby, & Goldberg, 1992; Piazza & Dehaene, 

2004) (Nieder & Miller, 2003) and the control of attention in peripersonal space (Colby & 

Goldberg, 1999). In these regions neural responses are massively multimodal (audio-visual, 

visuo-tactile, visuo-vestibular) (Grefkes, et al., 2004; Schlack, Sterbing-D'Angelo, Hartung, 

Hoffmann, & Bremmer, 2005) and mainly centered on head co-ordinates (Vallar, Bottini, & 

Paulesu, 2003) (Duhamel, Colby, & Goldberg, 1998). Finally, more anterior regions (AIP) 

are involved in programming hand-related actions and particularly grasping, code space in 

hand-centered co-ordinates (Iwamura, Iriki, & Tanaka, 1994), and mainly proprioceptive 

and visuo-motor information, thus tuned to the motor-component of hand-actions 

(Bodegard, Geyer, Grefkes, Zilles, & Roland, 2001; Bushara, et al., 1999) (Jancke, 

Kleinschmidt, Mirzazade, Shah, & Freund, 2001). 
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Whether this pattern of anatomo-functional specialization already exists at birth or whether 

and to what extent it develops as a function of experience and/or brain maturation is still 

unknown. However, it is well known that during the first several years of life the human 

brain undergoes a long process of maturation. In particular, in the case of parietal cortex, 

maturation follows a cubic-like developmental trajectory, with a progressive increase in 

cortical thickness during infancy, reaching its peak around 10 years of age, declining during 

adolescence, and stabilizing in adulthood (Gogtay, et al., 2004; Shaw, et al., 2008). A 

similar pattern of synaptic pruning and of increased myelinization of cortico-cortical 

associative fibers is observed during the first 10 years of life (Huttenlocher, 1990) 

(Yakovlev & Lecours, 1967). Given that maturation implies at least some degree of 

functional specialization it is highly probable that the pattern of functional specialization 

observed in adults is laid down within the 10 initial years after birth. 

Among the different parietal cortex functions reviewed above, in this study we were 

particularly interested in quantity and number-related functions. Number processing has 

been associated to parietal cortex by a vast number of studies hinging upon different 

methodologies, from neuropsychology to functional imaging. Parietal cortex is the major 

site for both acquired and developmental dyscalculia, a disability that selectively affects 

number processing and calculation (Rotzer, et al., 2008; Temple, 1992), and it is 

systematically activated in subjects performing mental arithmetic tasks as well as many 

other number-related task (e.g. comparing numbers, detecting numbers, judging the parity 

of numbers; for a review, see (Dehaene, et al., 2003)). 

Moreover, a system for extracting and internally manipulation approximate non-symbolic 

numerical quantities (i.e. the number of elements in a collection) is based on neural 

populations localized precisely around the medial horizontal segment of the intraparietal 

sulcus (Knops, et al., 2009; Piazza, et al., 2004; Venkatraman, et al., 2005). This system is 

evolutionary ancient, shared with other animals (Dehaene, 1997), and deployed by humans 

spontaneously at birth (Izard, et al., 2009). This system is considered as one of the most 

basic building blocks on which culturally mediated knowledge of symbolic numbers builds 

upon. Indeed, its “acuity” (the precision of the numerosity estimate) is an excellent 
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predictor of the success in arithmetical tasks in children and adolescents (Gilmore, et al., 

2007; Halberda, et al., 2008), and also predicts the severity of the dyscalculic disease in 

developmental dyscalculia (Piazza, et al., 2010). 

Over and above this basic pre-symbolic numerical ability, however, a series of other 

cognitive functions have been seen as crucial in shaping the development of numeracy. 

These functions comprise finger gnosis, fine visuo-motor co-ordination, and visuo-spatial 

abilities. Finger gnosis, for example (defined as the intact internal schema of one own 

fingers), also successfully predicts mathematical achievements in first and second grade 

children (Fayol, et al., 1998; Marinthe, et al., 2001). As numerosity discrimination ability, it 

is also often impaired in children with dyscalculia (Benson & Geschwind, 1970). Finally, 

the strong association between fingers and numbers is also reflected in automatic number-

finger associations in human adults (Andres, Seron, & Oliver, 2007; Di Luca, et al., 2006; 

Sato, Cattaneo, Rizzolatti, & Gallese, 2007). 

A secondary, even thought not less important aspect of the number-finger interaction is the 

fine visuo-motor co-ordination and control of finger posture during grasping movements. 

Planning to grasp an object depends to a large extent on magnitude processing, since it 

requires a translation of physical magnitude information (i.e., object size) into an 

appropriate grip aperture. Indeed, considerable behavioral evidences indicate a tight and 

automatic link between number and the and size of grip aperture during grasping in adult 

subjects (Andres, et al., 2004; Andres, et al., 2007; Lindemann, et al., 2007; Moretto & di 

Pellegrino, 2008; Song & Nakayama, 2008). Little is known on the relation between 

grasping abilities and mathematical abilities in children. However, it is well known that 

impairments in grasping abilities, very common for example in dyspraxia, are also quite 

often associated with calculation disabilities, even in cases of overall preserved general 

intelligence (Yeo, 2003).  

Finally, another function that seems to be of substantial relevance in developing of 

mathematical skills seems to be the ability to internally represent visuo-spatial information. 

During childhood, visuo-spatial span (as measured by variants of the Corsi test) represents 

another good predictor of numerical performance in children (De Smedt, et al., 2009; 



 83 

Holmes, Adams, & Hamilton, 2008; Rasmussen & Bisanz, 2005). Visuo-spatial abilities 

are also often severely impaired in developmental dyscalculia (for a review, see (Wilson & 

Dehaene, 2007)). Finally, in adults, several types of number-space interactions occur 

(Hubbard, et al., 2005). 

It is possible that the parietal cortex subregions specialized for the representation of fingers 

and their control during grasping, the representation of spatial information, and the 

representation of numerical quantity, are strongly interconnected and undergo common 

developmental trajectories due to anatomical proximity(Penner-Wilger & Anderson, 2008) 

(Dehaene, 2009). However, it is also possible that the implementation of cultural practices 

such as finger counting and ordering numbers on an oriented number-line greatly influence 

the functional associations between these domains. 

To date it is not possible to disentangle the role of culture-based training from the role of 

anatomical proximity in the emergence of these associations because most studies reporting 

interactions between number and other parietal functions either test adults or children in the 

initial primary school years, in a period where children undergo intensive training 

specifically aimed at creating links across these domains. Notably, during the first years of 

school, the intensive use of new procedures (i.e. finger-counting, finger use in simple 

arithmetical operations, number-to-space association with the use of the number line) may 

contribute to create or reinforce the associations between number and fingers and number 

and space, thus confounding what is due to common neuro-functional maturational 

processes from the effect of learning procedures. In order to verify the presence of genuine 

(non-culturally driven) associations among functions prior to formal training one needs to 

test younger children who did not yet undergo formal teaching aiming at boosting these 

associations. 

The present study investigates a large set of parietal functions in preschoolers, traces and 

compares their developmental trajectories, and capitalizes on the inter-individual 

differences to isolate clusters of correlations among functions indicating the presence of 

early connections prior to school-based training of associations across domains. We also 
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tested some non-parietal functions (face and object processing) to test the hypothesis that 

dorsal and ventral streams undergo different developmental trajectories.  
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6.3 METHODS 

6.3.1 Participants 

We obtained a signed informed consent from the parents or the legal representatives of 109 

kindergarteners from two schools in Rovereto, Italy, and from 36 adults without 

neurological or psychiatric disorders, and normal or corrected-to-normal vision. The data 

from 15 children were not included in the analysis either because they did not speak Italian 

sufficiently to understand the tasks instructions (N=7), or did not complete any of the 

proposed task (N=8). The final sample consisted of 94 children (mean age= 56±11 months, 

range = 37-76 months; right-handed= 91.5 %; males= 54.3 %) and 36 adults (mean age= 27 

years, range= 20-45; right-handed= 91.7%; males=50%). The study was approved by the 

local ethical committee. 

6.3.2 General testing procedure 

Children were tested in a quiet room in the school during school hours. They carried out 6 

tests in two separate sessions (mean inter-session time: 6 days), each lasting for about 30 

minutes. The tasks-order randomly varied across child with the only constraints that the 

SPAN test was always the first test proposed during the first session because it did not 

involve unfamiliar external devices other then the wooden colored blocks and because it 

required continuous interaction with the experimenter. Children could take breaks between 

each task and anytime during testing, upon request.  For the PC-based tasks (based on 

MATLAB psychotoolbox – MathWorks MA:USA software for both stimuli presentation 

and response recording), children were seated approximately 40 cm from a 15-inch LCD 

monitor. 

Adults were tested in a quiet room in the Laboratory of Experimental Psychology of the 

Center for Mind/Brain Center in Rovereto, Italy. All tests were performed, in randomized 

order, in one session lasting approximately 1 hour. 
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Numerosity comparison 

Subjects were presented with pairs of arrays of dots were on a computer screen. Their task 

was to choose the array containing more dots. Children made their choice by pointing to the 

chosen array, while adults pressed the button corresponding to the chosen array. Every trial 

started with a fixation cross for 1 sec. followed by the appearance of two lateralized arrays. 

Subjects were given an unlimited amount of time to produce their response, but they were 

asked not to perform exact counting. 

The number of dots of the two arrays was varied in order to modulate the comparison 

difficulty. One of the two arrays always included 16 or 32 dots (n1), while the other could 

contain 5-9-12-15-17-20-23-27 dots (or 10-18-24-30-34-40-46-54 dots respectively, n2). 

Each pair was repeated 8 times for children and 12 times for adults, for a total of 128 trials 

for children and 192 for adults. Dot arrays were generated by a computerized program 

controlling the effect of dot size and array area. For each pair, half of the trials were 

controlled for dots size and the other half for dots area, so that response to number could 

not be attributed to any single non-numerical visuo-spatial parameter. Before starting the 

experiment subjects performed 8 practice trials. The trial order was randomized both within 

and across subjects. 

 

Symbolic number comparison 

This task was the symbolic version of the previous task. Subjects had to choose  the larger 

among two two-digits numbers, which were presented in the auditory modality in children 

(as most of them could not read Arabic digits –e.g., the experimenter would say “what is 

the largest number between 16 and 25?”) and in the visual modality in adults (on a 

computer screen). The ratio between the numbers of dots in the two arrays spanned 4 

values: 0.4, 0.5, 0.6, or 0.8, while for adults we used the same ratios and digits used in the 

numerosity comparison task. Additionally, only for children, we introduced eight 

supplementary digit pairs (16-11, 40-15, 60-31, 30-12, 28-22, 23-18, 20-10, 21-13), with 

the same ratio as the “standard pairs” but controlled for word length. Children performed 

24 trials, whereby each digit pair was presented only once. Indeed, in order to keep the 
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experiment short the order of the numbers (large number first or second) was not 

counterbalanced but randomly assigned to each trial. This was not the case for adults, who 

performed a total of 256 trials (each pair being repeated eight times). The trial order was 

randomized both within and across subjects. 

 

Fingers gnosis 

Subjects sat on a chair in front of a table, and were asked to place their dominant hand 

(DH), palm down on the table, in front of the experimenter. The experimenter then covered 

the subjects’ DH to their sight by putting a white vertical panel at the level of their wrist. 

Then the experimenter started the stimulation, which consisted in touching either one or 

two fingers (in sequence). The experimenter then removed the panel and asked the subject 

to point to the finger(s) that were previously touched, maintaining the same order. Children 

performed 10 trials for the one finger condition (each finger was stimulated twice) and 10 

for the two fingers conditions (all 10 finger pairs were stimulated once), while for adults we 

also added a three-fingers condition (10 additional trials) to avoid ceiling effects. The trial 

order was randomized both within and across subjects. 

 

Visuo-spatial SPAN 

In order to measure visuo-spatial short term memory abilities we used a standard measure 

of capacity (SPAN) using the Corsi block-tapping task (Corsi, 1972). The test material 

consisted of nine blue wooden blocks (40×40×18 mm) mounted on a white-colored board 

(420×300 mm). The digits 1 to 9 were printed on one side of the blocks, visible to the 

experimenter only. Subjects, set in front of the examiner, observed him/her tapping the 

blocks with his/her index finger, at a rate of approximately 1 block per second. The 

experiment always started with a sequence of two blocks. Once the experimenter 

terminated the sequence the subjects was requested to repeat the action using his/her index 

finger. Subjects were given 3 trials for each number of touched blocks. If the subject 

succeeded on 2 out of 3 trials, the experimenter increased the number of touched blocks by 

a unit. The test was terminated if the subject failed to reproduce at least 2 sequences (out of 
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3) of a given number. Only complete and correct sequences were scored as correct; and 

self-corrections were allowed. 

 

Grasping 

We measured grip aperture during grasping objects of different sizes using the Zebris 

CMS20S system (ZEBRIS, Medizintechnik-GmbH, Germany), which is based on the travel 

time measurement of ultrasonic pulses (40 kHz) transmitted by miniature transmitters 

(markers: 10 x 8 mm, 1 g) to three microphones built into the measuring sensor. It gives 

spatial coordinates in the 3-D space with a resolution of 1/10 mm. 

The subject sat in front of a table with the two Zebris markers wrapped around the tip of the 

thumb and index fingers of his/her DH by a soft leather stripe. Their task consisted in 

grasping a wooden cylinder that was placed 13 cm away in front of them. They started from 

a “neutral” position, with their hand lying on the table close to them, and with the index-

thumb distance of 0 cm. After the experimenter’s verbal input (“Go”), the children grasped 

the cylinder, put it in a box located on the table on the opposite side of the DH (cylinder-

box distance of about 25 cm) and, then returned to the “neutral” position. Cylinders were of 

two different sizes (3.1 and 5.1 cm diameter). Subjects performed 10 trials with each 

cylinder size, in random order, for a total of 20 trials. 

 

Faces and objects recognition 

This experiment comprises a study phase and a test phase. During the study phase, children 

were shown 16 gray scale images (7 x 7 cm), representing 8 different Caucasian male faces 

and 8 novel 3-D objects, one after the other, for 10 seconds each (images courtesy of 

(Golarai, et al., 2007)). Some second after the end of the study phase, the test phase started. 

In this phase, the children were asked to classify 32 images (consisting of 16 old and 16 

new) as already seen or not. For adults, in order to avoid ceiling effects, there were 28 

stimuli in the study phase (14 faces and 14 objects) and 56 in the test phase. 
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6.4 RESULTS 

The results from children and adults were analyzed separately. 

6.4.1 Experiment 1A: CHILDREN 
 
For each task, we first describe the average results and main effects, and then we report 

their developmental trajectory during the studies age period (from 3 to 6 years of age). 

Finally, we describe the interactions among tasks using correlations and cluster analysis. 

 

Numerosity comparison 

Overall, “larger” responses to n2 followed a classic sigmoid curve. The slope was 

approximately twice as large for trials where the stimuli were twice larger, replicating 

earlier findings of Weber’s law for numbers (Figures 1A). The curves became parallel 

when plotted on a log scale (Figures 1B), and super-imposable once expressed as a function 

of the log ratio of the two numbers (Figures 1C). Across age ranges, the slope of the central 

portion of the sigmoid became steeper, indicating a progressive refinement in the internal 

representation of numerosity during the life-span (compare the columns in figure 1). On the 

basis of these accuracy distributions we then estimated the internal Weber fraction 

(thereafter w), a measure of the precision of the underlying numerical representation. This 

measure corresponds to the standard deviation of the estimated Gaussian distribution (on a 

log scale) of the internal representation of numerosity that generates the observed 

performance (a method previously described in the Supplemental Data from (Piazza, et al., 

2004), and also used in (Halberda & Feigenson, 2008)). We first fitted the individual 

subjects’ data to exclude subjects with too variable (quasi-random) response distributions. 

10 out of 94 children were excluded, either because the fitting procedure using to derive w 

did not converge (N=7), or the R² of the fit was very low (<.2; N=3). The data from the 

remaining 84 children was used to calculate the average w, which was equal to 0.71 (model 

fit: R² = 0.96), a value twice as large as the one reported in previous studies on children of 

the same age range (Halberda & Feigenson, 2008; Piazza & Izard, 2009).  
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Fig. 1. Performance in the numerosity comparison task as a function of age group. Graphs represent the 

proportion of the trials in which participants responded that n2 was more numerous than n1. Performance is 

plotted as a function of n1 on a linear scale (A), logarithmic scale (B) and on the logarithm of the numerical 

ratio (C; see Piazza et al., 2004) 

 

Close inspection of response distributions indicated that children made more errors that 

what expected on the basis of previous reported data in particular when the total occupied 



 91 

area was kept constant across numerosities, thus when the individual dot size increased 

with number (see figure 2A), and especially in those conditions where n2 was larger than 

n1 and. To address this effect statistically, we run a mixed 3x8x2 ANOVA on the accuracy 

with age group as between-subjects factor and the variables ratio (8 levels) and control type 

(2 levels, area vs. size) as within-subjects factors. Results showed a main effect of age 

group [F(2,91)=16.4, p<.000], ratio [F(7,637)=270.1, p<.000] and control type 

[F(1,91)=397.5, p<.000]. As expected, ratio was modulated by age group [F(14,637)=2.9, 

p<.000], and control-type [F(7,637)=145.0, p<.000]: in larger N2/N1 ratios young children 

made more errors then older. Ratio was also modulated by control-type: errors in large 

ratios errors were especially large for trials controlled for area. This effect did not vary as a 

function of age group (as evident in no triple interaction age*ratio*control-type). This 

pattern of results suggests that for the present stimuli and setting children were often misled 

by the size of the individual dots, selecting the array where the dots were bigger, 

irrespective of their number (see discussion). Since this response bias was identical across 

age groups (see figure 2B), we could be sure that this effect was not responsible for the 

observed difference in w across groups. 

Irrespective of the bias to choose the set with larger individual dot size, as expected, the 

overall w decreased with age [F(2,81)=15.4, p<.000; all planned comparisons ps<.020], 

starting from an average of 0.95 for the youngest (R²=0.92), down to 0.74 for the medium 

(R²=0.91), and to 0.55 for the oldest kindergarteners (R²=0.98). Linear regression between 

w and age as a continuous variable indicated that w continuously decreased as a function of 

age (β =-.51, p<.000), denoting a progressive improvement in numerosity discrimination 

abilities during development (see figure 3). 
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Fig. 2. Distribution of errors (%) separated for control-type (size vs. area) overall (A) and for age group (B). 
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Fig. 3. Distribution of Weber fraction (w) as a function of age. 

 

Symbolic number comparison 

Some children, in particular among the youngest, found this task very difficult, as they 

never encountered the large two digits numbers used in the experiment before. Indeed, the 

experimenter noticed that some children overcome this difficulty by almost systematic 

employing the strategy of choosing the second number of the pair whatever its magnitude 

(the last number pronounced by the experimenter). In order to exclude the trials in which 

children used such “chose the last number” strategy, since the stimuli order was not 

counterbalanced neither within nor across subjects, we restricted our analysis to the trials 

where the first number was the larger. Performance in these trials would not be “polluted” 

by particular response strategies, but would rather reflect a genuine ability to perform 

numerical comparisons. Errors in these trials decreased with age [main effect of age range 

F(2,91)=10.8, p<.000] going from 74 % to 69% and 40% in 3, 4, and 5-years old children. 

Moreover, they were modulated by the ratio between the numbers [main effect of ratio 

F(3,273)=3.2, p<.050]  and this modulation increased with age [age range * ratio 

interaction F(6,273)=2.3, p<.050]. Linear regression between overall errors and age as a 
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continuous variable indicated that error rate for numerical comparison continuously 

decreased as a function of age (β =-.488, p<.000), denoting a progressive improvement of 

number abilities during development (see figure 4). 
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Fig. 4. Distribution of the performance in symbolic number comparison (% errors) as a function of age. 

 

Finger gnosis 

The overall mean error rate was 38% and it declined across ages starting from an average of 

52% for the youngest down to 35% for the medium and 25% for the oldest kindergarteners 

[F(2,91)=29.9, p<.000; all planned comparisons ps<.010]. On average, 77% of the errors 

corresponded to trials where two fingers were stimulated (85%, 77%, and 75% for the 

young, medium, and old group, respectively). Of those errors, 81% were due to an incorrect 

discrimination of one or two fingers (hereafter ‘discrimination errors’ 83%, 76%, and 83% 

for the three groups), while 19% were due to an incorrect report of the order in which the 

fingers were stimulated (hereafter ‘inversion errors’ 17%, 24%, and 17% for the three 

groups). 
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Linear regression between the overall error rate and age indicated that finger discrimination 

progressively increased as a function of age (β =-.65, p<.000, see figure 5). This trend was 

confirmed even when trials were separated on the basis of the number of stimulated fingers 

(β =-.46, p<.000 and β =.-64, p<.000 for one vs. two fingers stimulated respectively). Both 

discrimination and inversion errors also linearly decreased with age (β =-55, p<.000, and β 

=-.29, p<.010 for discrimination and inversion errors respectively). 
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Fig. 5. Distribution of errors (%) in fingers discrimination as a function of age 

 

Visuo-spatial SPAN 

The overall SPAN (index of the capacity of visuo-spatial short term memory) was 3 (±0.9). 

It increases with age, starting from an average of 2.4 for the youngest, 3.0 for the medium 

and to 3.6 for the oldest kindergarteners [(F(2,91)=22.8, p<.000; all p.s <.002] (see figure 

6), as also confirmed by linear regression (β =.60, p<.000). 
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Fig. 6. Mean visuo-spatial SPAN for age group. 

 

Grasping 

The maximal grip aperture was modulated by the size of the to-be-grasped cylinders: it was 

9.8 cm for small and 10.8 cm for big cylinders [F(1,91)=503.5, p<.000]. The difference 

between the max grip aperture for the large and the small objects, indicating the ability to 

modulate the grip aperture on the basis of the size of the to-be-grasped object progressively 

increased with age (it was 0.7 cm in 3 years old, 1 cm in 4 years old, and 1.1 cm in 5 years 

old children [main effect of age range on max grip aperture size modulation (large object 

max grip aperture – small object max grip aperture) F(2,91)=10.3, p<.000; all planned 

comparisons ps <.000], also confirmed by linear regression (β =.44, p<.000) (see figure 7). 

This difference was mostly, but not entirely due to an increase of the maximum grip 

aperture with age for the large object (β = .21, p<.050). Indeed, hierarchical regressions 

showed that the increased difference between the max grip aperture for the large and the 

small objects with age remained significant even after partialling out the effect of the 

increasing grip aperture to large objects (potentially associated to pure “hand enlargement”) 

(r = .513, p<.005, r²=.247). Indeed, both cylinders’ sizes were way below the children’s 

maximum grip aperture. 
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Fig. 7. The difference between the max grip aperture for the large and the small objects was plotted as a 

function of age. 

 

Faces and Objects recognition 

In order to quantify recognition abilities excluding the effects due to response biases (e.g., 

tendency to consistently respond “no” or “yes” to the question “have you seen this image 

before?”) we used d’, a measure commonly used in signal detection theory, calculated as 

the difference between the hit rate (old images correctly categorized as old) and the false 

alarm rate (new images incorrectly categorized as old), for faces and objects separately 

(Green & Swets, 1966; Macmillan & Creelman, 1991). Sensitivity improved with age 

[F(2,88)=3.7, p<.050] and was higher for objects then to faces [F(1,88)=239.4, p<.000]. 

Linear regressions confirmed that recognition ability improved with age, and that this 

improvement was steeper and more significant for faces (β =.27, p<.010) than for objects (β 

= .22, p<.040) (see figure 8A and 8B, respectively). 
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Fig. 8. Sensitivity  for faces (A) and objects (B) as a function of age. 

 

Interactions among Tasks 

The main goal of the present experiment was to indentify clusters of correlations among the 

tested functions. Towards this aim, we selected the most significant index of each task to 

describe subjects’ performance. The chosen indices were w for the numerosity judgments, 

overall accuracy for both the symbolic number processing task and the finger gnosis task, 

SPAN for the visuo-spatial memory, the difference in aperture for large vs. small objects in 

grasping, and d’ for faces and objects recognition memory. For each subjects we extracted 

these indexes, and we investigated the patter of relations using a Principal Component 

Analysis (thereafter PCA). In order to better separate (and thus interpret) the isolated 

factors we also applied Varimax rotation to the PCA loadings (Jolliffe, 2002). A very clear 

two-cluster solution, accounting for 56% of the variance emerged (figure 9). The two 

factors sharply separated dorsal from ventral functions: the first included number related 

tasks (symbolic and non-symbolic comparison), as well as fingers gnosis, visuo-spatial 

SPAN and grasping, and the second included faces and objects recognition. Paired 

correlations among the individual tasks within the two factors confirmed the presence of 

significant correlations among the dorsal and the ventral functions and the absence of 
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consistent correlations across dorsal and ventral tasks (see table 1 for the full correlation 

matrix).  
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Fig. 9. PCA among the tasks. Coefficients of linear correlation (loadings) express the degree of influence of 

each variable on the component. Lines show significant interactions between tasks partialling out the effect of 

age.  

 

We then focused on the pattern of correlations among tasks, and performed hierarchical 

regressions partialling out the effect of age. This analysis aimed at isolating functions that 

characterize individual differences over and above the presence of similar developmental 

trajectories (those cases are indicated by a star in Table 1). These were: finger gnosis and 

numerosity comparison (r²=.427, p<.030; see Fig. 10); finger gnosis and visuo-spatial 

SPAN (r²=.439, p<.030); symbolic number comparison and visuo-spatial SPAN (r²=.382, 

p<.050, and, finally, faces and objects recognition (r²=.199, p<.000). All these correlations 

are reported in fig. 9 (lines).  
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Table 1 

 Numerosity 

comparison 

Symbolic 

number 

comparison 

Finger 

discrimination 

Grasping SPAN Faces 

recognition 

Objects 

recognition 

Numerosity 

comparison  

1       

Symbolic number 

comparison 

β=.322 

p<.005 

1      

Finger 

discrimination  

β=.484 

p<.000 * 

β=.433 

p<.000 

1     

Grasping β=-.153 

p=.164 

β=-.318 

p<.005 

β=-.296 

p<.005 

1    

SPAN β=-.345 

p=.001 

β=-.452 

p<.000 * 

β=-.534 

p<.000 * 

β=.353 

p<.000 

1   

Faces  

recognition 

β=-.152 

p=.172 

β=.072 

p=.499 

β=-.149 

p=.159 

β=.031 

p=.769 

β=.031 

p=.770 

1  

Objects  

recognition 

Β=-.240 

p=.029 

β =-.115 

p=.272 

β=-.151 

p=.149 

β=-.006 

p=.952 

β=.190 

p=.068 

β=.423, 

p<.000 * 

1 

* Significant relation even excluding the effect of age 

 

To better explore the relation between finger gnosis and numerosity comparison we carried 

out separate data analyses considering the number of stimulated fingers and the types of 

errors. Concerning the former, while both 1-finger errors (β=.415, p<.000) and 2-fingers 

errors (β=.404, p<.000) significantly correlated with the ability to discriminate numerosities 

(w), only 1-finger errors only survived the correction for the effect of age (r²=.223, p<.050). 

We performed the same analysis to investigate the relation between finger gnosis and 

SPAN, and show that wile both 1-finger errors (β=-.315, p<.005), and 2-fingers errors (both 

discrimination (β=-.389, p<.000) and inversion (β=-.415, p<.000) errors) correlated with 

SPAN, only 2-fingers inversion errors (r=.417, p<.005, r²=.156)) remained significant after 

controlling for the effect of age. 
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Fig. 10. Distribution of Weber fraction (numerosity comparison task) as a function of  (%) errors in finger 

discrimination task. 

 

6.4.2 Experiment 1B: ADULTS 
 
Numerosity comparison  

The classical sigmoid response distributions, well accounted for by the Weber’s law were 

recovered. On the basis of individual performance we calculated w for each participant. 

Overall, the mean w was equal to 0.19 (model fit: R² = 0.99; fig. 11), a value that is slightly 

higher compared to what reported in other studies (0.14, Pica et al., 2004; 0.15 in Piazza et 

al. 2009, 0.11 in Halberda et al. 2008). 

Similarly to children, an 8x2 ANOVA with ratio and control type (size vs. area) as within-

subjects factors was performed on error rate. The analysis showed the main effects of 

numerical ratio [F(7,245)=105.4, p<.000] and control type [F(1,35)=42.6, p<.000]. Separate 

analysis for each control type revealed that error rate increased when total occupied area 

was kept fixed, especially for larger ratios [F(7,245)=3.6, p<.000; see fig.12]. This pattern 

was coherent with what showed in Exp. 1, underling that dot size represented relevant 

information for numerical processing, especially with the current set of stimuli.  
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Fig. 11. Performance in the numerosity comparison task 

(adults). Graphs represent the proportion of the trials in 

which participants responded that n2 was more numerous 

than n1. Performance is plotted as a function of n1 on a 

linear scale (A), logarithmic scale (B) and on the 

logarithm of the numerical ratio (C). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Distribution of errors (%) separated for control-

type (size vs. area). 

 

 

Symbolic number comparison 

Two 2x4x2 repeated measures ANOVAs were carried out on both RTs and accuracy with 

n1 magnitude (16 o 32), ratio (4 levels), and side of the larger number (left vs. right). 

Results showed the classical magnitude and distance effects: first, pairs with smaller 

magnitudes (n1=16) were responded faster to than pairs with larger magnitudes (n1=32) 

[F(1,35)=85.7, p<.000; accuracy n.s.]. Second, both RT and error rate decreased with 

increasing ratio [F(3,105)= 175.8, p<.000 and F(3,105)=18.6, p<.000 for RTs and errors, 

respectively].  
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Fingers gnosis  

The mean error rate was 11%. All error related to finger discrimination. No inversion errors 

were made. Errors were modulate by the number of fingers stimulated (F(1,35)=23.2, 

p<.000). The three-fingers trials significantly represented the most difficult condition (67% 

of overall errors) compared to two-fingers trials [33%; three- versus two-fingers trails: t 

(35)=-4.8. p<.000]. No one-fingers error reported. 

 

Visuo-spatial SPAN  

The overall SPAN was 6 (±1) with a range from 4 to 7 across subjects. 

 

Grasping  

The maximum grip aperture was modulated by the size of the objects, being higher for the 

big cylinder than the small cylinder’s aperture [10.9 cm vs. 9.6 cm; t(35)=1.9, p=.07 (0.04 

one tail)]. 

 

Faces and objects recognition  

Mean d-prime for faces and objects were of 2.04 and 2.05 respectively, a non significant 

difference (p = n.s.).  

 

Interactions among tasks  

In order to explore the presence of clusters of function we entered one index for each 

function (w in numerosity judgments, accuracy in symbolic number processing and in 

finger gnosis, SPAN in visuo-spatial memory, difference in aperture for large vs. small 

objects in grasping, d’ in faces and objects recognition memory) into a PCA applying a 

Varimax rotation. A three-cluster solution was obtained, accounting for 68% of the 

variance among variables (figure 13).  

The first cluster included the numerical tasks (symbolic and non-symbolic comparison). A 

second cluster involved grasping abilities and finger gnosis and the last one included visuo-
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spatial SPAN, faces and objects recognition. Paired correlations among the individual tasks 

within the three clusters confirmed the presence of significant correlations (see table 2). 
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Fig. 13. PCA among tasks. Coefficients of linear correlation (loadings) express the degree of influence of 

each variable on the component. Lines show significant interactions between tasks.  

 

 

 

 

 

 

 

 

 

 



 105 

 

Table 2 

 Numerosity 

comparison 

Symbolic 

number 

comparison 

Finger 

discrimination 

Grasping SPAN Faces 

recognition 

Objects 

recognition 

Numerosity 

comparison  

1       

Symbolic number 

comparison 

β=.557 

p<.000 

1      

Finger 

discrimination  

β=.235 

p=.168 

β=.053 

p=.760 

1     

Grasping β=-.113 

p=.510 

β=-.081 

p=.638 

β=.033  

p=.848 

1    

SPAN β=-.343 

p=.041 

β=-.032 

p=.851 

β=-.319 

p=.058 

β=-.051 

p=.769 

1   

Faces  

Recognition 

β=-.148 

p=.388 

β=.189 

p=.271 

β=.058 

p=.735 

β=.153 

p=.373 

β=.392 

p=.018 

1  

Objects  

Recognition 

β=-.085 

p=.622 

β=-.022 

p=.899 

β=-.023 

p=.895 

β=-.027 

p=.876 

β=.455 

p=.005 

β=.369, 

p=.027 

1 

 

 

 

 

 

 

 

 

 

 

 



 106 

6.5 DISCUSSION 
 

The aim of this study was to trace developmental trajectories of the sensitivity of numerical 

quantity (measured by numerosity and number comparison tasks) and other parietal 

functions such as visuo-spatial SPAN (Corsi test), finger gnosis (measured by a finger 

agnosia test) and grip aperture (measured by the index-thumb distance while grasping 

objects) in preschoolers and adults. As control tasks, we also tested face and object 

processing abilities (measured by a recognition task), which are related to the functioning 

of occipito-temporal regions. 

Firstly, our data showed a general improvement in all tasks during development between 3 

and 6 years of age. 

Among parietal functions, numerosity acuity (w) continues the process of progressive 

refinement that starts from birth (Halberda & Feigenson, 2008; Izard, et al., 2009). While in 

absolute terms the estimated Weber’s fraction values departed from those reported in 

previous studies, the rate of decrease across the preschool ages that we observed, fitted with 

previous reports (e.g. 40%, compared to 42% of the present study respectively from 3 to 6 

years of age (Halberda & Feigenson, 2008; Piazza & Izard, 2009)). The factors liable for 

the reduction of w with age are still unknown; although maturational processes are more 

likely to play a significant role from birth up to before schooling, arithmetic education may 

account for later and further refinements. 

Finger gnosis also improved. Two factors can be taken into account in explaining this trend. 

On one hand, our digital task involved a tactile-to-visual integration and parietal maturation 

that can determine more precise cross-modality interplay. On the other hand, “one factor 

that determines a correct movement of one part of the body to another is the sensory 

differentiation of the point or locus which is the goal of the movement” (Lefford, Birch, & 

Green, 1974). Thus, the development of fingers sensibility is related with the concept of 

body schema and body image (Benton, Hutcheon, & Seymour, 1951) and their 

modifications during the development. Thus, improvements in both the pure sensory 
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representation and/or in the higher level representation at the level of the body schema can 

account for the observed improvement. 

Visuo-spatial span increased linearly with age with an enlargement of 0.6 elements every 

year, confirming previous reports (Pickering, 2001). 

Grasping also becomes more rigorous and object-specific during these years. Indeed, across 

ages, the maximum grip aperture is progressively more influenced by the objects size: small 

objects determine a reduced aperture while big objects determine bigger aperture in the 

initial moments of grasping action. This result suggested a refinement of grasping ability in 

terms of a more precise modulation of grip aperture based on the physical magnitude of 

objects.  

Among ventral functions, processes such as faces and objects recognition improved with 

age. This result is also in line with previous reports as documented by in a combined 

behavioral and fMRI study on older children (ages 7-11) showing that face, but not objects, 

processing improved during the development and this trend was strictly related to the 

anatomical maturation of fusiform face area - FFA (Golarai, et al., 2007). In this way, the 

refinement of faces sensitivity seems to involve throughout a longer period when compared 

to objects sensitivity.  

Data reduction analysis allowed us to explore the relations among these tasks. Results 

showed that in young children anatomical proximity was a strong predictor of behavioural 

correlations across cognitive functions. Indeed, we observed a clear separation between 

dorsal and ventral functions. In this respect, data from adults showed a quite different 

picture: a much higher degree of specialization within parietal functions, and the presence 

of correlations between dorsal and ventral functions, suggesting that experience and 

education act by modifying the pre-existing pattern of functional (and maybe also 

anatomical) connections. 

In children, hierarchical regression analysis showed that while some correlations between 

tasks were due to common developmental trajectories, a correlation was present even when 

the effect of common developmental trends was controlled for. Thus, the presence of even 

stronger associations within subjects is evident between some functions. 
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The first strong correlation observed was the one between finger gnosis and non-symbolic 

numerical acuity. Given that this part of the correlation was not accounted by common 

maturational factors, it would be tempting to attribute it to common functional factors, such 

as finger counting. Indeed, even when preschool children do not receive formal teaching at 

finger counting, it is possible that some of them have already started using finger-counting 

in quantification tasks. On one hand, the use of finger counting would improve finger 

gnosis via increasing awareness of one’s finger and their relative position in space. On the 

other hand, it is also possible that this operation would produce some degree of refinement 

of the internal representation of magnitude (Verguts & Fias, 2005). As a result, children 

with high finger gnosis would also have high number acuity (functionalist account). An 

alternative interpretation is the presence of high functional connections among regions 

related to finger gnosis and quantity processing, present at the architectural level, and 

irrespective of training finger counting. In order to disentangle these two interpretations, we 

explored the numerosity-finger interplay within each age group. Contrary to the predictions 

from the functionalist hypothesis, we found that the strongest association between finger 

and numerical discrimination was present in 3 years-old children (β=539, p<.010), and that, 

even among the youngest children, this correlation remained significant after partialling out 

the effect of age (r=.554, p<.020, r²=.237). Due to a limited influence of functional factors 

(e.g. finger counting) in early childhood, this finding supported the view that the strong 

interplay between numerosity and fingers discrimination is mostly driven by anatomo-

functional connections which are not modulated by experience. On the contrary, it seems 

that education and experience determine a distinct specialization of these two domains; 

indeed, the two abilities did not correlate in adults. 

On the other hand, symbolic number processing seemed to be more related to spatial 

abilities in preschoolers. Indeed, the idea of ordered spatial distribution of numbers on a 

line and the mental number line could contribute to solve the relative task easier. 

Furthermore, spatial span memory interacted with finger gnosis, especially in the case of 

correct discrimination of fingers, but with an inverted sequence (inversions). Indeed, 

children with lower spatial span had the highest tendency -when solving the digital task- to 
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start from the last stimulated finger rather than the first one (although instructed to avoid 

this strategy). Probably, the use of this strategy may help low-span children to solve the 

task with less mental load. 

Experiment 2 gave us the possibility to explore the same cognitive functions in adulthood 

when maturational processes linked to development are concluded, or limited. 

Interestingly, symbolic (number words) and non-symbolic (dots) number processing 

exhibited a peculiar trend in early childhood and adulthood. These two abilities seemed to 

converge during the development, from a general independency in preschool age to an 

intimate relation in adulthood. A possible cause of this phenomenon derived from the effect 

of the exact numerical manipulation that contributed to the mapping of the symbolic 

representation on a preexisting representation of numerosity. In other terms, the acquisition 

of symbolic knowledge for numbers may determine a refinement of the numerosity acuity, 

as suggested by Verguts & Fias (2005). 

Spatial memory is considered more important for adults during the processing of numerical 

information. Dot arrays (vs. Arabic digits) may imply higher contributions of spatial 

processing during the phase of visualization and comparisons of the array pairs due to 

different spatial complexity of these stimuli. In contrast to preschool data, in adults SPAN 

is more related to ventral memory-based tasks. Probably, this is due to a stronger impact of 

common and shared memory-related processes of working memory for visuo-spatial 

information retention.  

 

In summary, our findings contributed to disentangle of the developmental trajectories of 

dorsal and ventral functions. In particular, we showed the relation of number domain with 

space, finger gnosis and action among parietal components. Interestingly, this extensive 

approach gave the possibility to investigate a large set of parietal functions in preschool 

age, comparing their developmental trajectories, and capitalizing on their inter-individual 

differences in order to isolate functional clusters of correlations across domains.  
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Chapter 7  

INDIVIDUAL DIFFERENCES IN FINGER, SPATIAL AND 

QUANTITY REPRESENTATIONS CORRELATE WITH MATH 

ACHIEVEMENT IN FIRST GRADERS 

 

7.1 ABSTRACT 
 
Previous studies have shown the existence of associations between single abilities (e.g. 

numerosity estimation, subitizing skills, finger gnosis, linear number to space mapping) and 

calculation. Curiously, few studies adopted a larger perspective measuring all these 

important functions at the same time. Thus, it is unknown how both numerical and non-

numerical abilities interact with each other and support formal arithmetical calculation. 

This study aims at overstepping these limitations, and considers the pattern of relations 

across several different cognitive domains related to the numeracy development such as 

numerosity estimation, number comparison, finger gnosis, subitizing, number to space 

mapping and simple mental arithmetic in 6 year-old children, at the end of the first year of 

primary school. 

Functional clusterization shows three distinct components that respectively include 

subitizing skills, quantity processing and arithmetic-space-finger domains. 

Subitizing skills do not correlate with any other numerical abilities, supporting the non-

numerical interpretation of subitizing as an independent mechanism for parallel estimation 

of small numerosity. 

The strong relation between symbolic and non symbolic number comparison is dependent 

on the fact that both these tasks are thought to share a common cortical representation of 

quantity on the basis of a “cortical remapping” of the preexisting neural system for 

numerosity during the acquisition of symbolic numbers. 

Performance in addition and subtraction problems is strongly associated with symbolic 

number comparison, finger gnosis and with the degree of linearity in the mapping numbers 
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to a line, suggesting the role of all these factors in calculation. In particular, a mixed 

anatomo-functional interpretation regarding the arithmetic-finger association is suggested 

as a function of a higher influence of educational factors across ages. 

 

7.2 INTRODUCTION  
 
Humans, as well as other human primates, come to life equipped with a system, based on 

parietal cortex circuitry (Piazza & Izard, 2009), for estimating and internally manipulating 

numerical information (the approximate number of objects in a collection). Thanks to this 

system they can match, compare and perform simple calculation like additions and 

subtractions on sets of items. This system is approximate in nature and in humans it appears 

to be complemented by a second system that allows a direct apprehension of the exact 

small number of up to three or four items (called “subitizing” or “object file system”). For 

some time subitizing and estimation were thought to reflect a common system for 

approximate numerosity, which precision decreases as the number of items increases, 

according to Weber’s law (Dehaene & Changeux, 1993; Gallistel & Gelman, 1991). 

Recently, however, it is becoming clearer that subitizing reflects a truly separate 

mechanism which is non-numerical in nature, limited in capacity, and based on indexing 

multiple objects in parallel ((Revkin, et al., 2008; Trick & Pylyshyn, 1994); see (Feigenson, 

et al., 2004) for a review). 

Both subitizing and estimation are thought to act as start-up-tools for the development of 

further mathematical knowledge (Butterworth, 1999; Dehaene, 1997). However, while 

much empirical research have focused on the relation between symbolic numerical abilities 

and the pre-verbal approximate estimation system, little is known on the role of subitizing 

during numeracy development. 

Indeed, to date we have convincing empirical evidence for the foundational role played by 

the approximate number system: first, its acuity correlates with symbolic number 

comparison in adults and children ((Gilmore, et al., 2007), and see the results of chapter 5 

of this thesis), second, it predicts mathematical achievements in normally developing 
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children and adolescent (Gilmore, et al., 2007; Halberda, et al., 2008), and finally, it is 

impaired in dyscalculic children (Piazza, et al., 2010). On the contrary, while some 

researchers have proposed that subitizing is even more crucial then estimation abilities in 

the development of number processing (Butterworth, 1999), we still lack strong evidence in 

favour of the foundational role of subitizing in numeracy development (but see (Landerl, et 

al., 2004)). 

A key step in numeracy development is the acquisition of symbolic numbers as arbitrary 

signs for exact numerical quantity (cardinality). This important acquisition is achieved 

thanks to several strategies. The first one is certainly the implementation of counting. 

Counting (at least in our society) is very often performed with the aid of fingers, used as 

“abstract” place holders. Indeed, even if fingers are themselves concrete objects, they can 

be used to represent physical objects of any nature (sounds, visual objects, movements, 

ideas). Moreover, given their fixed spatial configuration, they help the access to exact 

quantities even when their number exceeds the subitizing limit (e.g., if all fingers of a hand 

are raised we do not need to count them to know that there are exactly 5, and this is because 

we recognise a specific spatial configuration). This “handy” tool is spontaneously recruited 

by children not only to count objects but also to solve simple arithmetical problems 

(Jordan, et al., 2008). Indeed, finger gnosis (the ability to mentally representing one’s own 

fingers and their spatial relations) is a good predictor of symbolic arithmetical abilities in 

children in the first years of schools, and it is often severely impaired in dyscalculic 

children (Fayol, et al., 1998). 

A second and probably also very important strategy towards a full understanding of exact 

number concepts is the establishment of spatial metaphors for numbers. Indeed, the 

introduction of the idea that numbers can be ordered in space, along an oriented number 

line is part of the educational program of the first year in Italian elementary school. This 

linear number to space mapping helps children reshaping their internal representation of 

numerical quantity which is initially approximate and compressed (logarithmic) towards an 

exact and linear one. Indeed, by using the number-to-space task, where children are asked 

to position different numbers on a line representing a given continuum, researchers have 
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shown that during development there is a shift from a logarithmic to a linear number-to-

space mapping (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 2009; Siegler & Opfer, 

2003), and that this shift occurs between the last year of preschool and the first year of 

elementary school. This mentalized number line is then used by children for calculation and 

measurements. Indeed, the degree of linearity of the number-to-space mapping correlates 

with mental arithmetic scores (Berteletti, et al., 2009) and is immature in dyscalculic 

children (Wilson & S., 2007). 

While we now know that both number-to-finger and the number-to-space associations play 

important roles in the transition between presymbolic to symbolic number processing, the 

exact steps underlying this transition are still very little understood. In particular, little is 

known about the relative contributions and the interplay between numerical and non-

numerical functions in numeracy development. In fact, previous studies report the existence 

of associations between single abilities and calculation, but never approached the question 

from a large perspective measuring all these important functions at the same time.  

As a result, it is unknown how both numerical and non-numerical abilities, such as 

estimation, subitizing, finger gnosis, and the ability to attribute numbers to linear positions 

in space interact with each other and support arithmetical calculation. 

This study aims at overstepping these limitations, and considers several tasks tackling 

several different cognitive domains relevant in numeracy development: numerosity 

estimation, finger gnosis, subitizing, number to space mapping, number comparison, and 

simple mental arithmetic. We propose those tasks to 6 years old children in the end of the 

first year of primary school in order to investigate the pattern of relations across these tasks 

and their role in predicting performance in mental arithmetic. 

 

7.3 METHODS 

7.3.1 Participants 
 
The study recruited 19 children (age=84 ±4 months; right-handed= 89.5%; males= 52 .7%) 

attending Grade1 classes in Rovereto (Italy). Before starting the study, we obtained the 
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approval by the local ethical committee and a signed informed consent from the parents (or 

the legal representatives). The testing took place in April-May 2009 towards the end of the 

school year. 

7.3.2 General testing procedure 
 
Children were tested in a quiet room while seated at a table, in front of a familiar examiner 

and approximately 40 cm from a 15-inch LCD monitor. Children were given breaks 

between each task and anytime during testing, upon request. Computerized tasks were 

based on MATLAB psychotoolbox software (MathWorks MA:USA) for both stimuli 

presentation and response recording (reaction times, RTs). The overt use of fingers 

counting was recorded by the experimenter. Each child carried out 7 tasks in one session 

lasting about 50 minutes. The tasks order was randomly assigned to each child. 

 

Numerosity comparison 

Children were presented with pairs of arrays of dots on a computer screen. Their task was 

to point to the array containing more dots. Every trail started with a fixation cross for 1 sec. 

followed by the appearance of two lateralized arrays. Children were given an unlimited 

amount of time to produce their response, but were urged to avoid exact counting. One of 

the two arrays always included 16 or 32 dots (n1), while the other could contain 12-13-14-

15-17-18-19-20 (or 24-26-28-30-34-36-38-40 dots respectively, n2). Each pair was 

repeated 8 times, for a total of 128 trials. Dot arrays were generated by a computerized 

program controlling the effect of dot size and array area, so that response to number could 

not be attributed to any single non-numerical visuo-spatial parameter. Indeed, for each pair, 

half of the trials were controlled for dots size and the other half for dots area. Before 

starting the experiment, children performed 8 practice trials, followed by 128 trials. The 

trial order was randomized both within and across subjects. 
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Number comparison 

In this task, children  were presented with pairs of lateralized two digit Arabic numbers, 

black on a white screen, and had to press the button corresponding to the numerically larger 

number (buttons: ‘D’ and ‘L’ of the keyboard). Trials started with a fixation cross for 1 sec. 

followed by the stimuli. The children had an unlimited amount of time to give their 

solution. The numbers used were identical to the ones used in the numerosity comparison 

task. Each pair was showed twice for counterbalanced left-right stimuli assignment, and 

repeated 2 times for a total of 64 trials. The trial order was randomized both within and 

across subjects. 

 

Fingers gnosis 

Children sat on a chair in front of a table, and were asked to place their dominant hand 

(DH), palm down on the table, in front of the experimenter. The experimenter then covered 

the children’s hand to their sight by putting a white vertical panel at the level of their wrist. 

Then the experimenter started the stimulation, which consisted in touching one, two, or 

three fingers (in sequence). The experimenter removed the panel and asked the child to 

point to the finger(s) that were previously touched, maintaining the same order. For the one 

finger condition, each finger was touched twice (10 trials), for the two fingers condition, all 

finger pairs were touched once (10 trials), while for the three fingers conditions 10 random 

triplets of fingers were touched. The trial order was randomized both within and across 

subjects. 

 

Additions 

Children were asked to solve orally 20 simple additions showed on a Pc screen. As soon as 

the children gave their answer the experimenter collected their responses and press on a key 

to record the approximate RTs. The addends were one-digit numbers (between 1 and 9). In 

order to modulate difficulty, in half of the problems the result was inferior to 10, while in 

the remaining half it was superior to 10. The children had an unlimited amount of time to 

give their solution. The trial order was randomized both within and across subjects. 
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Subtractions 

18 subtractions were solved orally by children without time restrictions for responses. As 

for the addition problems, the experimenter collected the children’s responses and the 

relative RTs. The subtractions were divided for difficulty level on the basis of the 

magnitude of the minuend: simple (with 4/5), medium (8/9) and difficult (14/15). The 

subtrahend was 2, 3, or 4. The trial order was randomized both within and across subjects. 

 

Number-to-line task (thereafter “Line”) 

Children were shown a horizontal white segment in the middle of a black screen labeled 

with “1” on the left and “10” on the right side. For each trial, children had to indicate the 

position on the segment of a top-centered target-number (Arabic digit). The children placed 

the number by using the arrow of the mouse. All the target-numbers from 2 to 9 were 

showed three times, avoiding repetitions. The trial order was randomized both within and 

across subjects. 

 

Enumeration 

Children were presented dots arrays and instructed to name the number of dots as 

accurately and quickly as possible using a microphone. The dots were black on a white 

disc, appearing on a black background of the display. Each trial began with a double 

flashed fixation cross, to announce the arrival of the dots. Then a flicker mask was 

displayed, and finally a black screen (see fig. 1). Children performed 4 practice trials, 

followed by three blocks of 16 trials each one (for a total of 48 valid trials). For each dots 

pattern, half of the trials were controlled for dots size and the other half for dots area (cfr. 

(Revkin, et al., 2008)). The trial order was randomized both within and across subjects. 
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Fig. 1. In the 1–8 naming task, after a fixation cross flashed twice, participants were shown a group of 1 to 8 

dots, followed by amask; the task was to name the presented numerosity as quickly as possible using the 

labels ‘‘1’’ through ‘‘8.’’ (from Revkin et al., 2008) 

 

7.4 RESULTS 
 
Here we first report the results in each individual task, end the then pattern of correlations 

across tasks. About half of our sample (N= 10/19) used intensively fingers to count in 

solving both addition and subtraction problems. We thus run a t-test comparison for each 

task to check for significant difference between finger-counters and non-counters. No 

comparison was significant. Thus we collapsed the data from counters and non-counter for 

all analysis. For all RTs analyses, we considered the mean RT (±2 s.d.) as cutoff. 

 

Numerosity comparison 

Overall, “larger” responses to n2 followed a classic sigmoid curve. With the aim to measure 

the precision of the numerical judgment, the internal Weber fraction (thereafter w) was 
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estimated for each subject. This measure corresponds to the standard deviation of the 

estimated Gaussian distribution (on a log scale) of the internal representation of numerosity 

that generates the observed performance. Three subjects were excluded because the 

psychophysical model did not converge (one subject), or the R² of the model was too low 

(<.2, two subjects). The data from the remaining 16 children was used to calculate the 

average w, which was equal to 0.27 (model fit: R² = 0.65; fig. 2).  
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Fig. 2. Performance in the numerosity comparison task (first graders). Graphs represent the proportion of the 

trials in which participants responded that n2 was more numerous than n1. Performance is plotted as a 

function of n1 on a linear scale (A), logarithmic scale (B) and on the logarithm of the numerical ratio (C). 
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Number comparison 

We carried out two separated 2x4 ANOVAs on RTs [cutoff=7 sec. (57 data points out)] and 

accuracy with n1 (16 or 32) and ratio as within-subjects factors. Only main effects were 

significant: magnitude (pairs around 16 elicited fewer errors and faster responses in 

comparison with pairs around 32 [F(1,18)=11.3, p<.010; F(1,18)=43.1, p<.000 for error and 

RTs respectively], and ratio (reaction times increased linearly with the ratio between paired 

numbers [F(3,54)=6.4, p<.000], no effect for accuracy). 

 

Finger gnosis 

The error rate increased from 9% to 41%, and 54% (all t-tests ps<.030; see fig. 3) with the 

number of touched digits.  
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Fig. 3. Mean distribution of errors (%) as a function of  the number of stimulated fingers. 

 

Additions 

Two ANOVAs on RTs [cutoff=27sec. (20 out)] and accuracy, with task difficulty (results 

above/below 10) as within-subjects factor, confirmed that additions below-10 were the 

fastest [6.3 vs. 10.8 sec.; F(1,18)=66.2, p<.000] and with the lowest error rate [6 vs. 18 %; 

F(1,18)=36.3, p<.000].  
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Subtractions 

Two ANOVAs on RTs [cutoff=30 sec. (19 out)] and accuracy, with difficulty (simple, 

medium, difficult) as within-subjects factor, confirmed a significant increase of both RTs 

[7.6, 9.7 and 12.1 sec. respectively; F(2,36)=7.4, p<.010] and error rate [3, 9 and 8 %;  

F(2,36)=5.0, p<.050] from simple to difficult task conditions.  

 

Number-to-Line 

We calculated the goodness of fit (R2) of the linear regressions on the estimated number 

positions for each subject. Data showed a linear representation of numbers (mean R²=.97) 

in all children, even thought there was an overall tendency to overestimate the spatial 

position of the number on the line, exhibiting a right-sided bias (Fig. 4). 
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Fig. 4. Location of each target number (from 2 to 9) on the spatial line from 1 to 10. 

 

Enumeration 

The errors distribution followed a sigmoid curve with a stable high accuracy for the first 

three numbers (mean Error= 4%) and a progressive error increase from 4 to 5 (respectively, 

mean Error= 28% and 50%) and a stabilization from 6 to 8 (Mean Error= 73%; fig. 5). We 

calculated the subitizing range for each participant by fitting the full accuracy curve with a 
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sigmoid function of numerosity and considering its inflexion point (Revkin, et al., 2008). 

The model was highly accurate in all subjects (model fit: mean R²=.82) with a mean 

subitizing range of 4.8. Comparable results were found when considering the RTs 

distribution with a mean subitizing range of 4.5 (R²=.79).  
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Fig. 5. Error rates (%) as a function of the presented number (stimuli) 

 

Correlations 

For each task and each subject we considered one index representing proficiency in the 

different tasks: w for numerosity comparison, accuracy for Arabic number comparison, 

finger gnosis, additions and subtractions, the R² of the linear model for the number-to-line 

task, accuracy based subitizing range for subitizing (we obtain comparable results using 

RTs based subitizing range). This analysis showed a strong correlation between numerosity 

and numbers comparisons (β =.585, p<.02 with 3 subjects out), and between additions and 

subtractions (β=.835, p<.00). Additions and subtraction correlated with both number 

comparison (β= .559, p<.03, and β=.504, p<.03 respectively) and finger gnosis (β=.684, 

p<.01 and β=.449, p=.054). (See table 1 for the full correlation matrix). 
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Table 1 

 Numerosity 

comparison 

Symbolic 

number 

comparison 

Finger 

discrimination 

Additions Subtractions Number  

To 

Line  

Enumeration 

Numerosity 

comparison  

1       

Symbolic number 

comparison 

β=.585 

p=.017 

1      

Finger 

discrimination  

β=.432 

p=.095 

β=.305 

p=.204 

1     

Additions β=.185 

p=.492 

β=.559 

p=.013 

β=.684 

p=.001 

1    

Subtractions β=-.005 

p=.987 

β=.504 

p=.028 

β=.449 

p=.054 

β=.835 

p<.000 

1   

Number-to-Line β=.269 

p=.314 

β=.243 

p=.316 

β=.425 

p=.070 

β=.431 

p=.065 

β=.200 

p=.411 

1  

Enumeration β=-.076 

p=.780 

β=-.150 

p=.539 

β=-.275 

p=.225 

β=.082 

p=.738 

β=.053 

p=.829 

β=.008 

p=.975 

1 

 

Interactions among Tasks 

Given our interest in exploring the global pattern of relations among the different tasks, we 

decided to use a Hierarchical clustering approach. Hierarchical algorithms find successive 

clusters using previously established clusters. These algorithms begin with each element as 

a separate cluster and merge them into successively larger clusters. We used this method to 

explore the possibility of finding hierarchical patterns reflecting the typical step-by-step 

educational procedure to teach mathematic in Italian Grade1 classes. Thus, all the relations 

among tasks were explored by using a Buttom-Up Hierarchical clustering on all the 

Pearson’s correlations among individual measures for each task (on 16/19 subjects) (see 

fig. 6). Results show a clear segregation of subitizing skills from the other numerical and 

arithmetical abilities. We found a functional parcellisation of the pure basic numerical 

abilities from more and more complex tasks and procedures, which are acquired and 

practiced progressively during the first year of school (fig. 7).  
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Fig. 6. Dendrogram of Hierarchical Clustering on Pearson’s correlations among individual measures for each 

task. 
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Fig. 7. Graphical representation of the hierarchy of tasks related to calculation (indicated by the arrow in fig. 

6). 

 

Moreover, the presence of functional clusters were investigated entering one index for each 

task (w in numerosity judgments, accuracy for symbolic number processing, finger gnosis, 

subtractions and additions; the goodness of fit (R2) for number-to-line task and the 
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subitizing range) into a PCA applying a Varimax rotation. A three-cluster solution was 

obtained, accounting for 81% of the variance among variables (figure 8).  

The first cluster included subitizing skills alone. Then, the second cluster involved the 

numerical tasks (symbolic and non-symbolic comparison). The last cluster included 

number-to-line task, finger gnosis, additions and subtractions.  

 

 

 
Fig. 8. PCA among tasks. Coefficients of linear correlation (loadings) express the degree of influence of each 

variable on the component. Lines represent significant interactions between tasks (dashed line: trend - p=.054) 
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7.5 DISCUSSION 
 
Correlational results together with cluster analysis methods suggested a high degree of 

correlations as well as segregations among the investigated functions. Three main 

functional components, representing distinct domains, emerged: one concerned only 

subitizing, while the other two components - only partially segregated - concerned quantity 

representations as well as arithmetic, finger gnosis, and spatial processing. 

The fact that the acuity of the system for apprehending a limited number of items in parallel 

(subitizing) did not correlate with any other numerical abilities supported the non-

numerical interpretation of subitizing which has already been suggested by previous studies 

(Revkin, et al., 2008). However, it disconfirmed the hypothesis that subitizing is 

fundamental for the development of symbolic numerical abilities (Butterworth, 1999). 

In contrast to subitizing, the other two domains showed more inter-cluster and intra-cluster 

interactions. The strong relation between symbolic and non-symbolic number comparison 

is coherent with functional imaging studies that showed a convergence across the symbolic 

and non-symbolic modalities towards a common cortical representation of quantity (Piazza, 

et al., 2007). This convergence was also predicted by the models of Dehaene and 

Changeaux (1993) and of Verguts and Fias (2005), according to which the acquisition of 

symbolic numbers determines a progressive cortical remapping of the preexisting neural 

system for numerosity. According to this slow “recycling” process, the correlation between 

symbolic and non-symbolic numerical comparison abilities is much stronger in first graders 

compared to preschoolers (see Experiment 1 of this thesis). 

Interestingly, the ability to compare Arabic numbers also highly correlated with the success 

in solving arithmetical problems such as additions and subtractions. Indeed, in all these 

problems, Arabic numbers constituted the typical vehicle of numerical information for their 

solution. Performance in addition and subtraction problems is also strongly associated with 

finger gnosis. This correlation did not differ significantly between children that explicitly 

and overtly used finger-counting compared to those who did not use finger-counting. 
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Indeed, we did not find significant differences contrasting finger counters versus non-

counters in all the investigated functions in first graders.  

Considering the findings on preschoolers (Exp. 1), we can define two separate contributions 

of finger gnosis to the numerical domain. On one hand, before going to school, finger 

discrimination abilities are related to numerosity acuity possibly because of the existence of 

important connections among neighboring parietal regions supporting these two different 

functions (see Exp. 1). At the same time, no relation clearly emerged between finger gnosis 

and symbolic number comparison. This pattern is completely reversed in first graders: 

finger gnosis clusterizes with symbolic calculation abilities but became more independent 

than approximate number processing. These findings suggested a functional association 

between finger gnosis and arithmetical procedures (e.g. in additions, subtractions) which 

was mediated by the use of finger to count (finger-counting) that is explicitly taught during 

school ages. 

The correlation data suggested that the degree of linearity in mapping numbers to a line 

seemed to be independent from the other numerical abilities, even if there was an almost 

significant correlation with both additions (p=.065) and finger gnosis (p=.070). Indeed, the 

PCA analysis associated it to the calculation component, indicating an early recruitment of 

spatial strategies for solving arithmetical problems such as the number line. Hierarchical 

clustering places this ability in between the calculation and the number domains, again 

confirming this idea. The use of spatial strategies in mental calculation, and especially in 

additions and subtractions (versus multiplications, which are mainly retrieved by memory 

(Dehaene, et al., 2003)) was demonstrated by the use of interference paradigms (Lee & 

Kang, 2002).  

Another source of evidence for an automatic number-to-space mapping is the phenomenon 

of “operational momentum”. Empirically, this effect revealed the solving additions in 

which incorrect results was systematically overestimated when compared to the correct 

solution, and the subtractions, where the incorrect results was systematically 

underestimated compared to the correct solution  (McCrink & Wynn, 2009). 
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In conclusion, cultural factors like the use of fingers and the association between ordered 

sequences to spatial positions allowed children to partially reshape their innate quantity 

representations so as to generate discrete representations of numerical quantities attached to 

symbolic numbers. The link between these factors was evident very early in development, 

as early as the end of the first grade, and therefore it was not surprising to observe it even in 

adult subjects.  
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Chapter 8  

PREDICTIVE POWER OF NUMERICAL AND NON-NUMERICAL 

ABILITIES FOR ARITHMETIC: A LONGITUDINAL STUDY 

 

8.1 ABSTRACT 

Both quantity-related (e.g. number acuity) and non-quantity related abilities (e.g. finger 

gnosis, visuo-spatial processing) were previously shown to play an important role during 

the acquisition of formal arithmetic and number processing. However, the relation between 

these abilities and math achievement is often made by testing each of these functions 

individually. 

In the present study, we take a more comprehensive approach and contrast the relative 

power of a large set of functions in predicting later achievements in number processing and 

mental arithmetic. We thus perform a longitudinal study on a group of children from 

kindergarten (T1) to the end of first grade (T2). The measures used for predictions (T1 

measures) were numerosity comparison, symbolic number comparison, finger gnosis, 

visuo-spatial SPAN, grasping abilities and, as control tasks, face and object recognition. At 

T2 we additionally measured additions, subtractions, spatial mapping of numbers and 

subitizing skills. 

Results indicate a strong continuity of non-symbolic number and finger acuity in time as a 

contrast to a discontinuity in symbolic number processing. It suggests an important 

functional reorganization of the internal representation of numerical quantity during first 

grade. In terms of predictions, we find that good predictors of performance in arithmetical 

tasks are verbal number processing, visuo-spatial abilities and finger gnosis. Moreover, 

hierarchical multiple regressions reveal a relative independent contribution of finger gnosis 

at T1 and at T2 in influencing arithmetical abilities.  
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8.2 INTRODUCTION  
 

The acquisition of abstract concepts of exact numbers during school ages is a long process 

that involves the contributions of preexisting numerical and non-numerical abilities. 

Within the number domain, the innate sensitivity for approximate numerical information 

(called Number Sense) is thought to constitute the functional and neural base on which we 

build an exact representation of number and to compute arithmetical problems (Dehaene, 

1997). However, other non-numerical abilities may play a crucial role in the transition from 

an approximate to an exact representation of number and even for calculation such as finger 

gnosis, fine visuo-motor coordination, and visuo-spatial abilities (Butterworth, 1999). 

Finger discrimination is based on an intact internal schema of one own fingers and it 

represents a good predictor of the subsequent mathematical achievements in first and 

second grade children (Fayol, et al., 1998; Marinthe, et al., 2001), in contrast with other 

cognitive skills such as reading abilities. 

Moreover, finger counting constitutes a frequent strategy used by children to count and to 

create discrete representations of numerical quantities (Jordan, et al., 2008). Interestingly, 

repeated training sessions on finger gnosis in first graders have beneficial and indirect 

effects on processing of Arabic digits (Gracia-Bafalluy & Noel, 2008). As numerosity 

discrimination ability, impairments regarding finger gnosis are reported in dyscalculic 

children (Benson & Geschwind, 1970). Automatic finger-number associations were also 

reported in human adults as a developmental trace of finger-related strategies during 

numerical tasks (Andres, et al., 2007; Di Luca, et al., 2006; Sato, et al., 2007). More 

recently, a TMS study in adults revealed impairments in both digital and numerical tasks 

after the stimulation of angular gyrus suggesting the anatomical proximities of the regions 

involved in numerical and finger discriminations (Rusconi, et al., 2005). On this regard, 

both VIP and AIP areas (involved in quantity and finger –related processes, respectively) 

lie in close proximity within the intraparietal sulcus, suggesting a high probability of shared 

circuits between a quantity-related circuit and the processing of proprioceptive and visuo-

motor information of hand-related actions (Bodegard, et al., 2001; Bushara, et al., 1999; 
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Hubbard, et al., 2005; Jancke, et al., 2001). Despite some evidences during primary school, 

little is known about the predictive power of finger gnosis on match achievement in 

preschool age, when the effect of functional factors (e.g. finger counting) is limited. 

Another important aspect of the finger-number interactions regards the fine visuo-motor co-

ordination during grasping movements. Indeed, the precision of grip aperture while 

grasping depends, among other parameters, on the estimation of the physical magnitude of 

objects (Pryde & Roy, 1998). At the behavioral level, a modulation of the numerical 

magnitude on the size of grip aperture during grasping was found in both adult and children 

(Andres, et al., 2004; Lindemann, et al., 2007; Moretto & di Pellegrino, 2008; Pryde & 

Roy, 1998; Song & Nakayama, 2008). Interestingly, manual tasks such as objects 

manipulations (Binkofski, et al., 1999), grasping (Culham, et al., 2003), reaching (Cohen & 

Andersen, 2002), and visual pointing (Connolly, et al., 2003) rely on the same parieto-

premotor networks that is also active during numerical tasks, such as additions, 

subtractions, multiplications and magnitude comparisons (Dehaene, et al., 2003). On this 

line, some studies showed that the motor components of some actions, such as pointing and 

grasping movements seem to be modulated by numerical information (Andres, et al., 2004; 

Song & Nakayama, 2008). Again, patients with iimpairments in grasping abilities quite 

often also exhibit calculation disabilities (Yeo, 2003). However, to our knowledge nothing 

is known on the relation between grasping abilities and mathematical abilities in children.  

Another non-numerical ability that is thought to play an important role in numeracy 

development is the ability to deal with spatial information (Hubbard, et al., 2005). The 

interplay between space and number seems may derive from the culturally mediated tools, 

such as the number line (where numbers are associated to precise spatial positions ordered 

on a left-to-right oriented line), the Cartesian axis, the measurement systems (such as the 

meter and/or the thermometer). These cultural constructions may elicit and contribute to an 

automatic association between the representations of number and space (Berch, et al., 1999; 

Hubbard, et al., 2005). Interestingly, during childhood, visuo-spatial span (as measured by 

variants of the Corsi test) represents another good predictor of subsequent numerical 

performance in children (De Smedt, et al., 2009; Holmes, et al., 2008; Rasmussen & 
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Bisanz, 2005). In fact, visuo-spatial deficits are often found in children with developmental 

dyscalculia (for a review, see (Wilson & Dehaene, 2007)). In adults, a vast body of 

evidence showed several types of number-space interactions such as SNARC (Spatial 

Numerical Association of Response Codes) effect (Dehaene, et al., 1993; Hubbard, et al., 

2005).  

Considering the pattern of interactions and contributions of quantity-related (numerosity 

acuity) and non-quantity-related (finger, space, grasping) abilities to the development of 

arithmetical abilities, we performed a longitudinal study on a group of children from 

kindergarten (T1) to the end of first year if primary school (T2). The tasks used for 

predictions (T1 measures) were numerosity comparison, symbolic number comparison, 

finger gnosis, visuo-spatial SPAN, grasping abilities and, as control tasks, face and object 

recognition. At T2, we consider also the children performance in additions, subtractions, 

spatial mapping of numbers and subitizing skills. 

 

8.3 METHODS 

8.3.1 Participants 

This longitudinal study was initially based on 28 preschoolers attending the last year of 

preschool, recruited from two kindergartens in Rovereto (T1). Of this initial group, only 19 

children (mean age=84 ±4 months; right-handed= 89.5%; males= 52 .7%) took part in the 

study one year later (T2) after attending Grade1 classes. The study was approved by the 

local ethical committee. For each child we obtained signed informed consent from the 

parents (or the legal representatives). 

8.3.2 General testing procedure 

Each child was tested twice, in two sessions separated by one year on average. During the 

first session (T1 phase), which took place in quiet rooms of two kindergarten schools in 

Rovereto (IT), each child was administered a set of cognitive tasks exploring several non-

verbal functions (quantity comparisons, finger gnosis, spatial short term memory, grasping, 
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faces and objects recognition). During the second session (T2 phase), which took place in 

the experimental psychology laboratories of the University of Trento, in Rovereto (IT), the 

same children performed another set of tasks, some of which were identical to the ones 

performed one year before (quantity comparisons and finger gnosis), while others were 

different and tapped on newly acquired numerical and calculation abilities (enumeration, 

calculation, and number-to-space mapping, table 1). Here, we simply report a reminder 

with the main details for each task (for more detailed descriptions see Experiment 1 and 2 

of the present thesis), their relative administration phase and indexes used for the 

longitudinal correlations. 

 

Numerosity comparison (pre-symbolic): T1&T2 

In this test, children were presented pairs of dots arrays on a computer screen. Their task 

was to point to the array containing more dots. The numerosity of the paired arrays was 

ratio-controlled. On the basis of accuracy distribution we extracted for each child the 

internal Weber’s fraction, an index of the precision of the judgment (Piazza & Izard, 2009). 

The internal Weber fraction was taken as the index of numerosity comparison ability. 

 

Number comparison (symbolic): T1&T2 

This test is the symbolic version of the numerosity comparison test: children were 

presented with two digits symbolic numbers and were asked to choose the numerically 

large one. In T1 stimuli were presented in the auditory modality, while in T2 they were 

presented visually, as Arabic digits. The ratio between the numbers was manipulated. Mean 

accuracy for each child was taken as the index of number comparison ability. 

 

Fingers gnosis: T1&T2 

In this test children sat on a chair in front of a table with their dominant hand placed on the 

table covered by a panel from their sight. The experimenter then touched one or two (in 

T1), or one, two, or three (T2) fingers in sequential order. After removing the panel, the 

children were asked to point to the finger(s) that were previously touched, maintaining the 
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same order. Mean accuracy for each child was taken as the index for finger representation 

ability. 

 

Visuo-Spatial SPAN: T1 

The “Corsi block-tapping” task was administered. The SPAN (the higher number of blocks 

correctly identified by children) of each child was taken as the index of visuo-spatial 

abilities. 

 

Grasping abilities: T1 

The kinematic analysis of grasping allowed us to obtain the maximum grip aperture while 

children were grasping objects of either small or big size. This measure that is known to 

correlate with object size and it reflects high precision grasping. Thus, we used the 

difference between the maximal grip aperture during large object grasping and the maximal 

grip aperture during small object grasping as a measure of the ability to modulate grasping 

on the basis of objects’ size (thus indirectly grasping precision). 

 

Faces and Objects recognition: T1 

Cards representing faces and objects were showed to child, one at a time, for some seconds. 

Then, the experimenter mixed the familiar stimuli with cards representing novel faces and 

objects, and presented them to the child, who had to identify the cards already seen. D’ 

(defined as hits-false alarms recognition performance) for each child was taken as the index 

of faces and objects recognition abilities. 

 

Additions: T2 

Children had to solve orally 20 additions problems (addends between 1 and 9) showed on a 

Pc screen. The experimenter noted the children’s responses. Mean accuracy for each child 

was taken as the index of the ability to solve additions. 
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Subtractions: T2 

Children had to solve orally 18 simple subtractions showed on a Pc screen. The 

experimenter collected the children’s responses (accuracy). Mean accuracy for each child 

was taken as the index of the ability to solve subtractions. 

 

Number-to-line test (thereafter “Line”): T2 

Children were shown a horizontal white segment of a black screen labeled with “1” on the 

left and “10” on the right side. For each trial, children had to indicate the position on the 

segment of a top-centered target-number (Arabic digit). The children placed the number by 

using the arrow of the mouse. For each child, we performed a linear regression on the 

estimated and the correct positions, and took the goodness of the linear fit (R2) as a measure 

of the linearity of the number-to-space mapping. 

 

Enumeration: T2 

Sets of 1 to 8 dots were flashed on a screen and subsequently masked. Children were asked 

to report the number of dots by saying that number out loud. For each child, we fit the full 

accuracy distribution with a sigmoid function, and took the inflection point as a measure of 

the subitizing range. 

 

Table 1 

T1: 5 years old T2: 6 years old (1 year later) 
Numerosity comparison Numerosity comparison 

Symbolic Number comparison Symbolic Number comparison 

Finger gnosis Finger gnosis 

Visuo-spatial SPAN Additions 

Grasping abilities Subtractions 

Face recognition Line 

Objects recognition Subitizing 
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8.4 RESULTS  

8.4.1 Single tasks results 
 
For a full description of the results in each of the proposed tasks, please see chapter 5 and 6 

of the present thesis. 

8.4.2 Correlation from T1 to T2 
 
To start exploring the data in a longitudinal perspective, we first performed simple 

correlations between the tasks’ indices at T1 and the tasks indices at T2. Three subjects 

were excluded from this analysis because the R² of the fitting procedure used to derive w 

(at T2) did not converge (N=1) or was very low (<.07, N=2). In order to help the reader, we 

report two correlation matrices, one for the “pure longitudinal” tasks only, i.e. tasks for 

which we acquired one measure in T1 and one measure in T2 (Table 2), and the other 

including all tasks in T1 and their correlations with all “new” tasks in T2 (Table 3). As for 

the pure longitudinal measures, we observed strong correlations between analogous tasks 

performed in T1 and T2 only for numerosity comparison (β =.676, p<.005) and finger 

gnosis (β =.597, p<.020) but not for symbolic number comparison (β=.069, p=.800). As for 

the pattern of correlations between the measures in T1 and the new measures in T2, we 

observe that accuracy in solving additions and subtractions is directly predicted by accuracy 

in symbolic number comparison and by the visuo-spatial SPAN one year earlier. Second, 

the linearity of the number-to-space mapping is also predicted by accuracy in symbolic 

number comparison one year earlier. Finally, subitizing is not predicted by any numerical 

or non-numerical ability one year earlier. 
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Table 2 

T1 

 

T2 

Numerosity 

comparison 

Symbolic 

number 

comparison 

Finger 

discrimination 

Numerosity 

comparison  

β=.676 

p=.004 

β=.158 

p=.559 

β=.381 

p=.146 

Symbolic number 

comparison 

β=.216 

p=.421 

β=.069 

p=.800 

β=.187 

p=.488 

Finger 

discrimination  

β=.059 

p=.827 

β=.716 

p=.002 

β=.597 

p=.015 

 

 

Table 3 

T1 

 

T2 

Numerosity 

comparison 

Symbolic 

number 

comparison 

Finger 

discrimination 

Grasping SPAN Faces 

recognition 

Objects 

recognition 

Additions β=-.126 

p=.642 

β=.612 

p=.012 

β=.182 

p=.499 

β=-.338 

p=.201 

β=-.590 

p=.016 

β=.039 

p=.886 

β=.205 

p=.446 

Subtractions β=-.175 

p=.516 

β=.310 

p=.242 

β=.101 

p=.710 

β=-.214 

p=.426 

β=-.621 

p=.010 

β=.063 

p=.817 

β=.342 

p=.195 

Number-to-

line 

 

β=-.108 

p=.689 

β=.621 

p=.010 

β=.230 

p=.392 

β=.075 

p=.781 

β=.020 

p=.942 

β=-.328 

p=.214 

β=-.427 

p=.099 

Enumeration β=-.249 

p=.352 

β=-.245 

p=.360 

β=-.350 

p=.183 

β=.436 

p=.071 

β=.238 

p=.375 

β=-.051 

p=.850 

β=-.145 

p=.592 

 

8.4.3 Hierarchical Models 
 
In our longitudinal simple correlational analysis, we did not observe the expected 

correlations between finger gnosis and numerosity acuity at T1 on one side and symbolic 

number processing (number comparison and mental arithmetic) at T2 on the other. 

However, previous findings (see Exp. 1 and 2) showed strong interactions between these 
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abilities in both preschoolers and first graders. In preschoolers, finger gnosis, number 

comparison, and numerosity acuity were part of the same functional cluster, while in first 

graders finger gnosis, number comparison and mental arithmetic were heavily correlated. 

However, using a longitudinal approach, it is possible that functional discontinuity during 

development masks the presence of genuine but more complex correlations between these 

functions. Here we thus considered the most relevant discontinuities.  

 

The relation between non-symbolic and symbolic number processing during 

development 

Considering the strong correlation between numerosity acuity and symbolic number 

comparisons found in first graders (T2: β=.59, p<.020) and between numerosity acuity at 

T1 and T2 (β=.68, p<.005), we expected that numerosity acuity at T1 would predict 

symbolic number processing at T2. However, no significant relation was found between 

these two factors in the longitudinal analysis (see table 2). We reasoned that the absence of 

correlation could indicate the presence of a developmental discontinuity in numerosity  

acuity between kindergarten and first grade. This discontinuity would indicate that the 

presence of cultural factors (the introduction of symbolic numbers and arithmetic) may 

account for (part) of the refinement of numerosity acuity in first graders.  

Thus, we carried out three hierarchical multiple regressions among the numerosity acuity 

(measured with the Weber’s fraction) at T1, at T2 and the Arabic number processing at T2, 

taken two at the time and excluding the effect of the remaining factor of the triad. The 

results first confirmed an absence of a direct predictive power of numerosity acuity at T1 

for the symbolic number processing at T2, even partialling out the effect of numerosity 

acuity at T2. Second they show that numerosity acuity at T2 still correlated with symbolic 

number processing at T2 even after partialling out the effect of numerosity acuity at T1 (r2= 

.31; p< .020). Taken together these results suggest that part of the refinement of numerosity 

acuity during first grade is due to maturation, while part is due to the acquisition of 

symbolic numbers. 
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Model 1 

T1 
Numerosity

T2 
Numerosity

T2 Symb. 
Number 

Comparison

Age: 5 years

Age: 6 years

R2  = .61
p= .004
(T2 Symbolic  
number excluded)

R2  = .31
p= .016
(T1 Numerosity
excluded)

 

 

The relation between finger gnosis and arithmetic during development 

Analysis of correlations across tasks in our group of first graders (see chapter 6), revealed 

correlations between finger gnosis at T2 and arithmetical proficiency (β=.68, p<.005, and 

β=.45, p=.054, for additions and subtractions respectively). Longitudinal analysis between 

finger gnosis at T1 and T2 also revealed a significant correlation (β=.60, p<.020). However, 

surprisingly, longitudinal correlations of finger gnosis at T1 and arithmetical proficiency at 

T2 were not significant. Thus, in order to better explore the unclear predictive role between 

finger gnosis and arithmetical performance, we applied three hierarchical multiple 

regressions among finger gnosis at T1 and T2 and arithmetical outcome for additions in T2, 

taken two at the time and excluding the effect of the remaining factor of the triad. Results 

revealed a relative independent contribution of finger gnosis at T1 (r2= .62; p< .010) and at 

T2 (r2= .62; p< .000) in influencing arithmetical abilities. Indeed, finger gnosis at T1 

became a significant predictor of arithmetic only when the shared variance with finger 

gnosis at T2 was excluded. This suggests that even finger gnosis may exhibit a qualitative 

change during the development under the intense effect of functional factors (finger 

counting) that support the relation with arithmetical abilities. 
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Model 2 

 

T1 Finger 
gnosis

T2 
Arithmetic

T2 Finger 
gnosis

R2  = .62
p= .008
(T2 Finger 
gnosis excluded)

R2  = .62
p= .000
(T1 Finger 
gnosis excluded)

R2  = .72
p= .001
(T2 Arithmetic 
excluded)

Age: 5 years

Age: 6 years

 

        

8.5  DISCUSSION 
 
The transition from kindergarten to school determines implicitly important new functional 

associations, which sometimes can create discontinuities during the cognitive development. 

Considering that the first year of school represents an intensive period for the acquisition of 

arithmetical operations and the symbolic number system, we tried to delineate the principal 

contributions of each preexisting abilities to numerical and arithmetical domains. 

 

Continuities and discontinuities during development   

Firstly we considered the relations among those tasks that we repeateded at T1 and T2: 

numerosity comparison, number comparison and finger gnosis. While we observed a strong 

continuity in time indicating consistency in children’s abilities to discriminate dot arrays, 

and to correctly identify their fingers, we found a discontinuity (absence of correlation) in 

the ability to compare symbolic numbers between the last year of preschool and the end of 

first grade. In other words, performance at T1 did not significantly predict performance on 
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the same task at T2. As depicted in figure 1, the improvement from T1 to T2 for the number 

comparison task was not homogenous among children. Some of them improved more than 

others, and curiously, few of them (N=3) exhibited even an inverse trend (showed worst 

performance in T2 compared to T1). It would be tempting to speculate that this 

discontinuity is due to a major reorganization of the internal representation of numbers 

during first grade, and that this reorganization may not be strongly influenced by the pre-

training intuitions that children have on symbolic numbers. Indeed, a key change during 

first grade is the introduction of Arabic digits, which are not formally taught (at least in 

Italy) during preschool. Moreover, the introduction of Arabic digits is also accompanied 

with procedures such as finger counting and spatial mapping of numbers. It is possible that 

these procedures affect the children’s internal representation of numbers in a way that is 

idiosyncratic. 
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Fig. 1.  Error rates for the symbolic number comparison respectively in T1 and T2 for each participant. 

 

However, we should consider a caveat in the interpretation of these results, which relates to 

the fact that while in T1 the stimuli were presented as verbal numbers, in T2 they were 

presented visually as Arabic digits. While we ensured that all children could correctly read 

the Arabic digit numbers by asking them to read them aloud before making their 
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comparative judgment, it is possible that the difference in the input modality may have 

masked a potential convergence across modalities towards internal representation of 

numerical quantity. Thereofore, this difference may have negatively influenced the 

correlation between T1 and T2 in number comparison scores. Indeed, while several results 

reported a convergence between the different types of modalities towards a common 

representation of magnitude (Dehaene & Akhavein, 1995), other studies found that Arabic 

and verbal numbers were processed in a notation-dependent manner, suggesting that Arabic 

and verbal codes are represented separately even at the semantic level (Cohen Kadosh, 

Henik, & Rubinsten, 2008). 

 

Processing symbolic and non-symbolic quantity  

 

Since previous research have reportied an important relation between non-symbolic and 

symbolic numerical abilities, we further explored  the relation regarding the link between 

them (Gilmore, et al., 2007; Halberda, et al., 2008). By using hierarchical regressions, we 

observed that the precision of the internal representation of numerical quantity in first 

graders resulted from independent contributions of the previous ability to discriminate 

numerosity (one year before), and also the acquisition of a new system to represent and 

manipulate exact numerosity (Arabic digits). Indeed, the hierarchical regression showed 

that the independent portions of variance of the non-symbolic acuity in T2 were accounted 

for by the previous numerosity sensibility in T1, and the precision of symbolic number 

comparison in T2. In other words, these results suggested that the observed refinement of 

number acuity (at least in first grade) was partially due to the acquisition of symbolic 

Arabic numbers. Such partial remapping of non-symbolic number representations during 

the symbol acquisition was previously predicted by a computational model (Verguts & 

Fias, 2005). 

Grasping abilities at T1 also seemed to predict the ability to perform Arabic digits 

comparison at T2 (β =-.512, p=.043). Indeed, grasping ability as defined by our measure is 

the ability to modulate grip aperture on the size of the to-be-grasped objects during the 
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execution of grasping movement. This modulation is only possible when a correct 

estimation of the objects’ magnitude is performed. Behaviorally, the effect of Arabic 

magnitude of grip aperture while grasping objects was demonstrated in a recent study 

(Badets, et al., 2007) in which the small versus big magnitude of numbers was able to 

modulate the grip aperture determining, respectively, an overestimation vs. underestimation 

of the object size to grasp. Our results thus confirmed that numerical and non-numerical 

magnitude processing is deeply related to each other and influences one another even 

during development. 

 

Arithmetic, finger and spatial processing  

Coherently with previous research pointing towards an important relation between finger 

processing and arithmetical abilities (Noel, 2005), we observed a strong correlation 

between finger discrimination abilities at T1 and arithmetical abilities at T2. Nevertheless 

this correlation emerged only when the finger discrimination abilities at T2 was partialled 

out. 

This suggested the existence of a partial refinement of finger gnosis in first graders which 

was not directly explained by the preexisting finger gnosis in T1. This discontinuity, 

masking the predictive power of finger gnosis at T2 for the subsequent arithmetical 

performance was possibly due to an increasing influence of cultural factors, (like finger 

counting). 

Then, we also observed that spatial memory (SPAN) predicted the arithmetical 

performance one year later, confirming previous observations that spatial processing is a 

key component in mental arithmetic. Indeed the contributions of space in the numerical 

domain even during simple calculation are well-known (see “Operational momentum”, 

(McCrink, et al., 2007)). Specifically, spatial influences on numerical processing - 

consistent with the orientation of the mental number line- can emerge during the solution of 

arithmetical problems.  
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Chapter 9  

GENERAL DISCUSSION  

 
From the results of these experiments, it is possible to trace the main contributions of this 

thesis to cognitive development, specifically on numerical cognition.   

 

9.1 Developmental trajectories of numerosity acuity  and 
symbolic numbers  

 
Numerosity sensitivity represents one of the functions present at birth (Izard, et al., 2009). 

Despite some knowledge about its modifications across the life-span (Halberda & 

Feigenson, 2008), little is known about its interplay with the system for representing exact 

numerical quantities that emerges during the development as the result of a long process of 

symbolization of numerosity into discrete quantities through the use of symbolic numbers. 

In particular, while it has always been suggested that the approximate number system has a 

causal role in determining maths achievement, the results to date are still equally 

compatible with the opposite interpretation which states that the ability to manipulate 

symbolic numbers and perform calculation is not the consequence but the cause of the 

refinement in the acuity of the approximate number system (Halberda, et al., 2008; Verguts 

& Fias, 2005).  

Our data concerning the developmental trajectory of numerosity acuity (measured by the 

internal Weber’s fraction) are in favor of a maturational interpretation of the refinement of 

numerosity acuity during development before schooling. It is in line with previous 

observations pointing towards a dramatic refinement during the first years of life (Piazza & 

Izard, 2009), which cannot be explained by cultural factors. The maturational interpretation 

seems also to be in line with recent cross-cultural studies showing that, even in cultures 

with limited number lexicon and with absence of formal mathematical education, adult 

number acuity appears to be quite similar to adults from educated western society (Pica, et 
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al., 2004).  However, it is possible that the published research in those pre-numerical 

cultures lacks the necessary sensitivity to reveal potential differences across cultures. 

Indeed, our data supports the idea that part of the observed refinement of the numerosity 

acuity during the first year of primary school is also accounted by the introductions of 

symbols for numbers and arithmetic. Indeed a qualitative change (partial recycling) of the 

numerosity acuity was found in children at the end of the first year of primary school. In 

this way, the impact of educational and cultural factors on numerosity acuity increases, and 

becomes additionally relevant, especially in school age when education influences robustly 

the experience and the practice with numerical quantity.  

In the same manner, also the symbolic verbal representation of numbers (number words) is 

subject to refinement during development. From the age of 3 to 5 years, the ability to 

compare verbal numbers increases from a random choice (52%) up to 25% of error rates. 

It is probable that the verbal numbers knowledge and counting can play a role in the 

improvement of representation of numbers, contributing to provide an insight about the 

numerical organization at least for the first few numbers (e.g. one, two, three etc.) based on 

their order relations and on the understanding of recursive aspects (e.g. the linguistic 

transparence) of verbal numerical sequence. It is particularly evident for larger numbers 

(e.g. twenty-three, thirty-three, forty-three). 

Using a cross-sectional approach, the interplay between presymbolic (dots) and symbolic 

(number words, Arabic digits) numerical representations was investigated from childhood 

to adulthood. In preschoolers, even though data clustering analysis (PCA) associated the 

two functions, we observed no significant correlations across children, suggesting that these 

representations are only very slightly linked in preschoolers. Interestingly, other non 

numerical variables (such as length, luminance) followed the Weber’s law, accordingly to a 

ratio-based modulation on the behavioral performance (Dayan & Abbott, 2001). Due to this 

shared Weber-like behavior for both numerical and non-numerical variables, ratio-

dependent performance cannot be considered per se as an evidence of converging 

development between numerosity acuity and symbolic number system. On the contrary, 

stronger evidences can be taken from correlational studies. In this respect, the data 
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presented in this thesis showed that at preschool age, presymbolic and symbolic number 

processing follows partially separated developmental trajectories. Successively, the first 

evidence for strong converging trajectories between presymbolic and symbolic numerical 

representations emerges behaviorally from the first year of primary school. During this long 

period, characterized by an intensive arithmetical education, the manipulation of exact 

numbers could additionally contribute to the formation of a deeper association between 

numerical symbols (e.g. Arabic digits) and an innate and approximate sensitivity for 

numerosity. 

Thus, the progressive effect of symbolic numbers on the preexisting numerosity acuity can 

be elicited on the basis of an intense manipulation of precise numerical quantities from the 

initial verbal numbers and during the first years of school with the introduction of a new 

symbolic system for numbers, the Arabic digits.  

Moreover, behavioral data shows that this cortical recycling does not concern the overall 

system dedicated to numerosity acuity, but just a part of it. Indeed different proportions of 

the inter-subjects variability in numerosity acuity at 6 years of age are correlated to the pre-

existing numerosity acuity and to the recently acquired symbolic number processing. The 

fact that the numerosity acuity in preschool does not directly predict the symbolic number 

processing after 1 year can support the idea of a partial qualitative change (in terms of 

retuning) within the numerical sensitivity during the first year of primary school. Thus, the 

manipulation of symbolic numbers (in the form of Arabic digits) can determine a quite 

important change in the internal representation of quantity, strengthening the link between a 

preexisting ability to process numerosity and a precise symbolic system for numbers.  

 

9.2 Finger gnosis and its relation to number domain   
 
During early childhood, finger gnosis, as well as numerosity acuity, develop on base of 

maturation processes involving the hand schema and the integration of visuo-tactile inputs. 

In our digital task, since we asked preschoolers to point to the finger(s) that were previously 

touched, both these factors can play a relevant role. On one hand, the correct movement of 
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a body part to another one is influenced by the sensory differentiation of the locus or place 

which is the target of the movement. Second, fingers are stimulated tactically, but the 

children’s response is based on a visual-guided movement of the hand that implicitly 

involves two-sense integration. The effects of manual practice and manipulations over time 

can affect the chronological organization, integration and interpretation of sensory inputs 

during the development (Lefford et al., 1974).   

A relevant result from our experiments concerns the curious trajectory of finger gnosis in 

relation to the number domain. This relation appears early in both preschool and school 

age, but shows relevant peculiarities. 

Before going to school, children exhibit a genuine relation between fingers and numerosity 

discrimination. Due to a limited effect of cultural/educational factors at this age, the 

anatomical proximity of numerical and digital regions within the IPS can be suggested to 

explain this relation. This view is also supported by the presence of a strong and early 

number-finger relation particularly in 3-year old children.  

Then the interplay between number and digital domains changes during the first year of 

primary school. In first graders, this relation takes the form of a functional association 

involving finger gnosis and arithmetical abilities. At this age, thanks to its contributions to 

calculation, finger counting is thought to play a mediator role in shaping this relation.       

Taken together, localizationist and functionalist interpretations on the development of 

digital and numerical interplay in childhood were considered (for a review see (Penner-

Wilger & Anderson, 2008)). Indeed, in the early preschool age, this association is mostly 

driven by anatomo-functional connections not modulated by experience. Therefore, before 

going to school, the existence of important connections among close parietal regions 

supports the relation between finger discrimination abilities and numerosity acuity. 

Curiously, in first graders, this pattern is modified by the functional use of finger to count 

(finger-counting) that is explicitly taught during school ages. Indeed, finger gnosis 

correlates robustly with symbolic calculation abilities (versus approximate number 

processing), suggesting a functional association between finger gnosis and arithmetical 

procedures (e.g. additions, subtractions). 
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9.3 Contributions of quantity-related functions to arithmetical 
achievement 

 
From longitudinal and cross-sectional data, symbolic number comparison seems to be 

directly related to arithmetical abilities. Accuracy in symbolic number comparison tasks in 

both preschoolers and first graders correlates with arithmetical abilities. This finding 

supports the idea that formal arithmetical procedures recruit the manipulation of exact 

numbers, and that knowledge of numbers predicts achievement in arithmetic. This finding 

is not trivial if one considers that while the number comparison tasks involved large two 

digits numbers, most arithmetical problems involved the manipulation of much smaller 

numbers. Thus, the relations does not simply reveal knowledge of the precise numbers 

involved, but a more general phenomenon in which proficiency in manipulating symbolic 

numerical quantities in preschool is a good predictor on achievement in simple arithmetic 

in first grade. Moreover, our data shows that (verbal) number comparison abilities in 

preschoolers predict the precision of the linearity of the (Arabic) numbers to space mapping 

in first graders, suggesting that a refined knowledge of magnitude relations between 

numbers influences the linearization of the internal representation, irrespective of the 

symbolic notation used (verbal or Arabic)  

Quite surprisingly, neither in preschooler nor in first graders, numerosity acuity is directly 

involved in the arithmetical achievement. Despite the lack of a direct link between an 

innate system for numerosity and the arithmetical abilities, numerosity acuity seems to 

support more strongly the symbolic exact representation of numbers which, in turn, has a 

fundamental role for arithmetical outcome. 

 

9.4 Contributions of non quantity-related functions  to 
arithmetical achievement 

 
A last important point concerns the predictive power of non-numerical parietal functions on 

the number domain and arithmetical abilities in primary school. 
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Visuo-spatial memory represents the most relevant contribution to arithmetical domain. 

Indeed, spatial working memory is implied in the solution of addition and subtraction 

problems. However, the role of space in problem solving is not new. A spatial 

representation of numbers was suggested and conceptualized as a mental line with left-to-

right increasing numbers. This spatial metaphor of numbers is also used in arithmetical 

procedures. On this regard, an example of spatial influence is represented by the presence 

of an “operational momentum” while solving arithmetical problems (McCrink & Wynn, 

2009).  

Subitizing skill (here considered as a visuo-spatial function because it represents the result 

of our ability to detect precisely and rapidly a limited number of visual items) constitutes a 

separated component from the number and arithmetical domains supporting the non-

numerical interpretation of this ability, thought to be more dependent on the visual parallel 

processing of small numerosities. As a matter of fact, our visual system can select a fixed 

number of about four objects or can encode their details, based on their spatial information. 

It explains the limited capacity of working memory to process visual information (Xu & 

Chun, 2009). However contradictory evidences emerge from clinical evidence in which 

children with dyscalculia seem to count sets of items even within the typical subitizing 

range (<4), exhibiting a progressive increase of response times for each additional item 

(Koontz & Berch, 1996. Moreover, coherent with Butterwoth’s proposal (Butterworth, 

1999, 2005), in a vast study of first graders (Penner-Wilger, et al. 2007), subitizing skills 

predict directly calculation skills.. In this regard, three main independent components can 

support the human numerical representation and processing: an innate capacity to process 

small numerosities (e.g. subitizing), secondly the functional use of fingers (fine motor 

ability), and the precision of mental finger representation (finger gnosis).  

In addition, a second important contribution in explaining the achievement in arithmetic in 

first graders seems to be finger knowledge. Indeed, in first graders, finger knowledge 

strongly correlate with arithmetical achievement. Specifically, not only finger gnosis 

correlates but also partially predicts the subsequent arithmetical achievement. Indeed 

independent contributions of finger gnosis at T1 and at T2 influence arithmetical abilities. 
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This data is in accordance with a very well documented fact that finger counting represents 

a useful and spontaneous strategy used by children to solve the problems. Again, counting 

with fingers is thought to be an important step from a continuous representation of 

numerosity to discrete numbers (Jordan et al., 2008). Curiously, the performance in 

addition and subtraction problems does not significantly differ between children that 

explicitly and overtly used finger-counting compared to those who did not use finger 

counting. Actually, we did not find any significant differences contrasting finger counters 

versus non-counters in all the investigated functions in first graders. It is likely that the 

result is due to the fact that, in our case, both finger-counters and non finger-counters 

respectively use explicit or implicit finger-related processes to count.   

 

9.5 Practical implications 
 
All these findings represent an important input within the rising framework of “educational 

neuroscience”, regarding new prospective for mathematical education at school. Following 

this line, innovative teaching methods should include not only typical numerical 

components (such, as numerosity acuity) but also take into considerations the cognitive 

contributions of other non-numerical parietal functions (e.g. finger gnosis, space 

processing, grasping abilities) with the aim to improve the arithmetical learning of 

symbolic numbers and arithmetical procedures in first graders.  

Meanwhile, new educational plans about “proto-mathematic” should be introduced from 

preschool age so as to strengthen and boost the early numerical abilities. In this way, 

preschool children may have a robust numerical knowledge and processing that will help 

them during the acquisition of the formal arithmetic at school.  

Finally, these findings allow us to trace additional evidences regarding the complex pattern 

of arithmetical deficits during childhood (developmental dyscalculia) and the role of non-

numerical functions for new approaches about the rehabilitation of numerical impairments.  
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9.6 Limits and future directions 
 
Although these studies render a clearer cognitive panorama of preschool cognitive 

development, the kindergarten-to-school transition appears more uncertain and confusing. 

Indeed, despite typical linear trends of cognitive functions during the preschool age, 

important and relevant behavioral discontinuities can be found in first graders. These 

changes may represent the result of the educational influence on the functional 

reorganization of the brain that can elicit quantitative and qualitative modifications in the 

behavioral performances in various tasks and in their interrelations across ages. For these 

reasons, it seems highly necessary to understand better this transition phase with further 

investigations. 

Moreover, a critical observation from the literature concerns the paucity of scientific 

evidences regarding preschoolers compared to school age children, in particular their 

cognitive development of numerical abilities and educational implications.  

Specifically, additional investigations could test the real functional association between 

functions (e.g. number processing and finger gnosis) through cognitive training at school. 

An example on this line derives from a recent study (Gracia-Bafalluy & Noel, 2008) 

regarding the functional link between finger gnosis and number skills. Surprisingly, these 

authors found that training in finger discrimination increases not only finger gnosis but it 

improves indirectly numerical performance in school age children. Taken together, 

cognitive training on specific functions can represent an interesting research line of 

educational neuroscience to improve learning and teaching methods in both preschool and 

school age children. 
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Chapter 10   
APPENDIX  

Gender differences and cognitive development  

In the study on preschoolers (Exp. 1), we consider also the possible effect of gender on 

cognitive development contrasting male versus female performance, especially regarding 

the developmental trajectories of parietal functions. 

 

Results 
The two samples do not show relevant differences in terms of either age distribution 

[t(42)=-1.3; p=.197] or task performance (all comparisons n.s.). Here, we report briefly the 

significant correlations between tasks (p<.050). 

 

Table 1 

 Numerosity 
comparison 

Symbolic 
number 
comparison 

Finger 
discrimination 

SPAN Grasping Faces 
recognition 

Objects 

recognition 

Numerosity 

comparison  

       

Symbolic number 

comparison 

♂ - ♀(.06)       

Finger 

discrimination  

♂-♀ ♂(.06) - ♀      

SPAN ♂-♀ ♂-♀ ♂-♀     

Grasping  ♂ ♂ ♂    

Faces Recogn.        

Objects Recogn.      ♂-♀  

Significant correlations for ♀ female ♂ male 

 

Correlations analysis and PCA (fig. 1) showed similar developmental trajectories of the 

parietal and ventral functions in male and female children from 3- to 6-years old. The only 

cross-gender difference concerns the stronger interaction of grasping abilities with most of 

parietal functions in male children compared to female counterpart (see table 1). 
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Fig. 1. PCA among tasks and divided for gender (on top: male, below: female). Coefficients of linear 

correlation (loadings) express the degree of influence of each variable on the component. 
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