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Abstract 
 

Inductive reasoning is of remarkable interest as it plays a crucial role in many 

human activities, including hypotheses evaluation in scientific inquiry, learning 

processes, prediction of future events, and diagnosis of a phenomenon (e.g., 

medical diagnosis). Despite the relevance of these cognitive processes in a 

variety of settings, there still remains much to understand about the basis of 

human inductive inferences. For example, it is not yet clear whether the same 

psychological mechanisms underlie both inductive reasoning and deductive 

reasoning or, on the contrary, whether induction and deduction correspond to 

distinct mental processes. 

 The study of inductive reasoning has been a traditional topic in 

epistemology, and is more recently being explored in cognitive psychology as 

well. In the present contribution, I focus on both the epistemological and the 

psychological accounts. To begin with, I illustrate the state-of-art of research on 

inductive reasoning. On one hand, epistemologists have been working to develop 

normative theories in which the notion of inductive strength (or confirmation) is 

formalized. I discuss some of the alternative Bayesian measures of confirmation 

proposed in the literature on inductive logic. On the other hand, psychologists 

have been empirically investigating inductive reasoning, discovering important 

phenomena such as systematic effects of similarity, typicality, and diversity. I 

illustrate some of the most significant models of induction proposed in the 

psychological literature to account for such phenomena.  

Both lines of inquiry – epistemological and psychological – have focused 

on a restricted kind of induction problem: when assessing the inductive strength 

of arguments, premises are assumed to be true, that is, ascertained with the 

maximum degree of probability. However, inductive arguments occurring in real 

settings often depart from this pattern. Indeed, in a variety of situations, one 

may need to assess the impact of a piece of evidence whose probability may have 
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significantly changed while not attaining certainty. Evidential uncertainty in 

inductive inferences is at the core of the present research.  

After exploring a selection of psychological phenomena concerning 

uncertainty, I address the epistemological problem of how to extend Bayesian 

confirmation theory to include cases where the evidence is not certain. A 

straightforward solution is proposed for a major class of confirmation measures 

called P-incremental. The solution proposed is based on Jeffrey 

conditionalization, an essential formal principle discussed below in greater 

detail. 

On the psychological account, I discuss two experimental studies 

conducted to test whether and how people’s judgments of inductive strength 

depend on the degree of evidential uncertainty. In the first study the uncertainty 

of evidence is explicitly manipulated by means of numerical values, whereas in 

the second study uncertainty is implicitly manipulated by means of ambiguous 

pictures. The results show that people’s judgments are highly correlated with 

those predicted by two normatively sound Bayesian measures of confirmation. 

This sensitivity to the degree of evidential uncertainty supports the centrality of 

inductive reasoning in cognition, and opens the path to further investigations on 

induction in real contexts. 
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Chapter 1  

Inductive reasoning 

 

1.1 In the epistemological literature 
 

1.1.1 Historical overview of inductive logic 
 

In Book V of the Organon, Aristotle theorizes the notion of induction as follows: 

 

Induction is a passage from particulars to universals, e.g. the 

argument that supposing the skilled pilot is the most effective, 

and likewise the skilled charioteer, then in general the skilled 

man is the best at his particular task.  

(Aristotle, Topics, I, 12, 105a, Barnes, 1985, p. 175) 

 

In Aristotle’s view, induction is confined to generalization from particular to 

universal knowledge. This view seems to have influenced the way of thinking 

about induction for several centuries (see Fitelson, 2005, for details on historical 

developments of inductive logic). The scope of inductive logic became wider only 

with the advent of more precise and sophisticated accounts of the notion of 

probability. The mathematical work carried out during the 18th and 19th 

centuries, in particular by Bayes, Laplace, and Boole, set the basis for a rigorous 

analysis of induction. Yet, only since the 20th century, inductive logic has been 

regarded as a general, quantitative tool to evaluate arguments. 

In logic, an argument is a finite list of propositions, i.e., a list of statements 

that can be either true or false. One of the propositions in the list is the 

conclusion of the argument, whereas the others are called premises. In general, 
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the premises are supposed to provide reasons in support of the conclusion. In 

schematic representations, a horizontal line is usually placed between the 

premises and the conclusion. For example, if ���, … , ��� are the premises of an 

arbitrary argument, and � is its conclusion, then the argument will be 

represented in the following schematic form: 

 

 

�����—�
 

 

An alternative way to schematically represent an argument from the premises ���, … , ��� to the conclusion � is ���, … , ��� / �. 

Many contemporary texts on introductory logic assert that there are two 

kinds of arguments: deductive and inductive. In deductive arguments, the truth 

of the premises ���, … , ��� guarantees the truth of the conclusion �. By contrast, 

in inductive arguments the truth of the premises can only affect the credibility of 

the conclusion to different degrees, without any guarantee of the truth of �.  

Put another way, the main aspect that distinguishes the two kinds of 

arguments is that a deductive argument can be either valid or not valid. 

Deductive logic offers strict standards with which to establish the validity of an 

argument. Hacking (2001), for example, has identified the following equivalent 

features as characteristics of any deductively valid argument:  

• the conclusion � follows from the premises ���, … , ���; 

• whenever the premises ���, … , ��� are true, the conclusion � must be true 

too; 

• the conclusion � is a logical consequence of the premises ���, … , ���; 

• the conclusion � is implicitly contained in the premises ���, … , ���. 

Inductive arguments, on the contrary, are perilous because the conclusion � 

might be false, even if all of the premises ���, … , ��� are true. Thus, the concept of 

validity cannot be applied to inductive arguments.  
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While deductive logic offers qualitative criteria to assess whether an 

argument is valid or not – the conclusion either does or does not follow from the 

premises – inductive logic offers finer-grained quantitative standards of 

evaluation for arguments – the premises can support the conclusion to different 

degrees. On one hand, deductive logic attempts to clarify the concept of validity. 

On the other hand, inductive logic attempts to clarify a quantitative 

generalization of this concept. The generalization of the validity concept is often 

termed inductive strength. 

 The idea of inductive logic as a general theory of argument evaluation 

traces back at least to Keynes’s (1921) Treatise on Probability. Keynes seeks to 

define a logical relation between the premises and conclusion in case of 

arguments that are inductive, i.e., arguments for which it is not possible to 

logically derive the conclusion from the premises. In a later seminal work, 

Logical Foundations of Probability, Rudolf Carnap (1950) discusses the 

possibility of constructing a theory of induction that aims to generalize classical 

deductive logic. He very clearly develops the concept of ‘confirmation’ as a 

quantitative generalization of deductive entailment. In the present study, the 

term ‘confirmation’ used by Carnap will be regarded as equivalent to the term 

‘inductive strength’ mentioned above.  

The following quotation from Carnap (1950) introduces the main idea 

underlying his project on inductive logic, and explicates the relation between 

inductive and deductive logic: 

 

Deductive logic may be regarded as the theory of the relation 

of logical consequences, and inductive logic as the theory of 

another concept which is likewise objective and logical, viz., 

[…] degree of confirmation.  

(Carnap, 1950, p. 43) 

 

According to Fitelson (2005), most of the contemporary epistemologists have 

been influenced by Carnap’s work. Indeed, the following three fundamental 
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tenets, inspired by Carnap’s ideas, have been largely accepted as the foundation 

of modern inductive logic:  

1. inductive logic should offer a quantitative generalization of deductive 

logic. Deductive entailments and deductive refutations should be 

considered as limiting cases of inductive relations. Therefore, inductive 

logic should assign extreme quantitative values to them. Partial 

entailments and partial refutations, instead, should be associated with 

quantitative values included between those extremes;  

2. inductive logic should employ probability as its fundamental building 

block; 

3. inductive logic should be objective and logical, as explicitly emphasized in 

Carnap’s quotation. 

Together, the three tenets are intended to characterize a quantitative relation � 

of confirmation, or inductive strength. It is worth observing that the 

desideratum (2) highlights the centrality of the probability concept to the 

modern inductive logic (see Appendix � for a definition of the probability 

notion).  

Whilst the first two desiderata are fairly clear, the third desideratum is 

more ambiguous. The following two quotations, again from Carnap (1950), 

illustrate Carnap’s understanding of desideratum (3), i.e., in what sense 

objectivity and logicality should be applied to inductive logic: 

 

That c is an objective concept means this: if a certain c value 

holds for a certain hypothesis with respect to a certain 

evidence, then this value is entirely independent of what any 

person may happen to think about these sentences, just as the 

relation of logical consequence is independent in this respect. 

(Carnap, 1950, p.43) 

 

The principal common characteristic of the statements in 

both fields [viz., deductive and inductive logic] is their 
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independence of the contingency of facts. This characteristic 

justifies the application of the common term ‘logic’ to both 

fields. 

(Carnap, 1950, p. 200) 

 

In spite of Carnap’s efforts to explain the meaning of desideratum (3), the 

requirement of objectivity and logicality for the notion of confirmation appears 

to be the most problematic. 

A first attempt to define inductive logic as a quantitative generalization of 

classical deductive logic is illustrated as follows: as already mentioned, 

deductive logic requires that an argument ���, … , ��� / � is valid iff the 

conditional ��  …  �� � � is necessarily true. Therefore, the relation of 

inductive strength might be defined as follows. The inductive strength of the 

argument from ���, … , ��� to � is directly proportional to the probability that the 

conditional ��  …  �� � � is true.  

This proposal is called naïve inductive logic (NIL) by Fitelson (2005). 

More formally, NIL can be expressed as follows: 

 ���, ���, … , ���� is high iff �����  …  �� � �� is high.                          (NIL) 

 

As pointed out by Skyrms (2000), this first, naïve attempt is not adequate to 

quantitatively generalize the concept of deductive validity. Skyrms stresses the 

fact that it is easy to conceive arguments whose inductive strength is not high, 

while the relative conditionals are highly probable. Consider, for example, the 

following argument suggested by Skyrms (2000): 

 

There is a man in Cleveland who is 1999 years and 11-months-old and  

in good health 

——————————————————————————————— 

No man will live to be 2000 years old 
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According to Skyrms, the probability that “no man will live to be 2000 years old” 

is high per se. This high probability value makes the conditional � � � highly 

probable too. However, the argument in question is not strong, since the premise 

does not support the conclusion. If anything, the former seems to disconfirm the 

latter. Hence, the quantitative value given by the formula �����  …  �� � �� 

is not appropriate to represent the confirmation notion, for it is not able to 

capture the relation between the premises and the conclusion of an argument. In 

general, �����  …  �� � �� can be high because either the probability of � is 

high, or the probability of ��  …  �� is low. As a consequence, �����  …  �� � �� does not reflect the evidential relation between premises and 

conclusion.  

These considerations led Skyrms (2000) to defend an alternative account. 

Fitelson (2005) refers to this new perspective as the received view (TRV) about 

inductive logic: 

 

 ���, ���, … , ���� ! ����|��  …  ���              (TRV) 

 

According to the received view, the conditional probability of �, given ��  …  ��, should be employed to measure the inductive strength of the argument ���, … , ��� / � (see Appendix � for a definition of conditional probability). This 

position has been accepted by many authors, including Keynes (1921) and 

Carnap (1950) in particular. 

 As will be seen, TRV does not satisfy desideratum (3) either. Here the 

issue concerns more generally probabilistic models and how they should be 

interpreted. In fact, there are several ways in which probabilities can be 

interpreted. The two interpretations most commonly encountered in the domain 

of inductive logic are the following: the epistemic and the logical interpretations.  

With epistemic interpretations of probability, ����� is understood as the 

degree of belief that an agent assigns to the proposition �. This degree of belief 

depends on the probability model " that represents the epistemic state of the 

agent (see Appendix � for a definition of probability model). Instead, for logical 
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interpretations of probability, ����|�� is understood as a quantitative 

generalization of a deductive relation between the propositions � and �.  

 Presumably, Keynes (1921) appeals to an epistemic interpretation of 

probability in his Treatise on Probability. He writes: 

 

Let our premises consist of any set of propositions h, and our 

conclusion consist of any set of proposition a, then, if a 

knowledge of h justifies a rational degree of belief in a of 

degree x, we say that there is a probability-relation of degree 

x between a and h. 

(Keynes, 1921, p. 4) 

 

If probabilities are interpreted epistemically, it is not so evident how TRV can 

satisfy desideratum (3), concerning objectivity and logicality of the inductive 

relation �. In his view of inductive logic, Keynes seems to maintain that 

conditional probabilities are objective. He says: 

 

Once the facts are given which determine our knowledge, 

what is probable or improbable in these circumstances has 

been fixed objectively, and is independent of our opinion. 

(Keynes, 1921, p. 4) 

 

However, he later acknowledges that conditional probabilities may vary 

depending on the agent’s background knowledge, and so they are not objective. 

Carnap (1950) was aware of the problem regarding the epistemic 

interpretations of probabilities. He tried to solve it by formulating logical 

interpretations of probability. This approach would allow TRV to directly satisfy 

desideratum (3). Indeed, if the posterior probability is logical in its nature, then 

inductive confirmation automatically will turn out to be logical too. 

Carnap’s attempts to construct a logical and objective measure of 

confirmation are numerous (see Carnap, 1950, 1952, 1971, and 1980). But, in 
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the end, none of these attempts was considered entirely appropriate to ground 

the TRV account of inductive logic. The main reason is that Carnap’s theories 

cannot be regarded as logical. For instance, in his early work, Carnap uses the 

principle of indifference, which assumes that certain propositions are 

equiprobable a priori. According to Carnap, this principle can be applied only to 

events that reveal some symmetries, in relation to an agent’s background 

knowledge. In other words, the principle of indifference can be applied only to 

events that appear to be indistinguishable, with respect to a probability model ". Thus, Carnap’s theories do not seem to be logical, unless Carnap justifies the 

choice of the probability model " to be selected. 

To recap, both Keynes and Carnap develop confirmation functions which 

depend on some contingencies. They both try to eliminate these contingencies in 

an attempt to render � objective and logical. Nonetheless, their relative 

strategies use, more or less implicitly, some a priori probability model, i.e., some 

elements of subjectivity. 

Fitelson (2005) points out that there exists a more direct way to 

guarantee the objectivity and logicality of confirmation. It is sufficient that the 

notion of inductive strength explicitly refers to a particular probability model. 

Not only does the relation between premises and conclusion count, but a 

probability model also needs to be included in the definition of �. Following this 

approach, the received view should be modified into the following revisited form: 

 

The inductive strength of the argument ���, … , ��� / �, with respect  

to a probability model ", is given by ��#��|��  …  ���                    (TRVr) 

 

In this way, judgments of confirmation are overtly relative to certain probability 

models, which are selected a priori. This solves all the problems caused by the 

presence of contingency factors.  

 But, if probability models are chosen from the beginning, an important 

question may arise: based on what criteria do we select the most adequate 

probability model in an inductive context? Despite its relevance, this question 
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should not be answered by inductive logicians. To illustrate the reasons, the 

strict analogy between deductive and inductive logic should be noted. On one 

hand, deductive relations depend on a propositional language. On the other 

hand, inductive relations depend on a probabilistic model. The problem of which 

language should be used is external to deductive logic. Yet, once a language has 

been chosen, the deductive logician should employ objective and logical 

standards to tell which relations are deductively valid in that language. A similar 

point can be made about the inductive logician. It is not up to the inductive 

logician to suggest which probability model should be utilized. However, once a 

probability model has been selected, the inductive logician should tell how to 

determine inductive relations objectively and logically. 

 Although the TRVr proposal transparently solves all the difficulties 

caused by the requirement of objectivity and logicality, the revised formulation 

of inductive confirmation has problems too. In general, ��#��|��  …  ��� 

might be high solely by virtue of ��#��� being high, and not because of any 

evidential relation between ���, … , ��� and �. 

To illustrate, consider the following argument proposed by Fitelson 

(2005): 

  

Fred Fox (who is a male) has been taking birth control pills  

for the past year 

—————————————————————————— 

Fred Fox is not pregnant 

 

Fitelson points out that, once a probability model has been selected to 

appropriately capture the background knowledge about human biology, the 

conditional probability of the conclusion is very high. And this is simply because 

the unconditional probability of the conclusion – the probability that Fred Fox is 

not pregnant – is very high. Indeed Fred Fox is a male. In contrast with the 

prediction of TRVr, it is hard to claim that a strong evidential relation links the 
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premise and the conclusion of the argument in question. In fact, the premise 

seems to be irrelevant to the conclusion.  

This kind of criticism is similar to that made by Skyrms (2000) in 

opposition to the NIL proposal. If the premises are intended to provide evidence 

in support of (or against) the conclusion, then the set of premises should affect 

the probability of the conclusion. This leads to an additional desideratum for the 

inductive confirmation �. This fourth desideratum can be formulated as follows: 

 

4. ���, ���, … , ���� should be sensitive to the probabilistic relevance of ��  …  �� to �. 

 

Since ��#��|��  …  ��� is not sensitive to the relevance of the premises to the 

conclusion, the TRVr account should be ruled out as a proposal for defining 

inductive strength. 

 To summarize, the desiderata (1)-(4) have been identified to characterize 

the notion of inductive confirmation. Fitelson (2005) combines all the four 

desiderata in the following unique desideratum, called probabilistic inductive 

logic (PIL): 

  

���, ���, … , ���, "� is 
&'(
')maximal and 0 0 if  ���, … , ��� entails �0 0 if  ��#��|��  …  ��� 0 ��#���! 0 if  ��#��|��  …  ��� ! ��#���5 0 if  ��#��|��  …  ��� 5 ��#���minimal and 5 0 if  ���, … , ��� entails ��                      �PIL�

9 
 

It is worth recalling that the confirmation function ���, ���, … , ���, "� aims to 

measure the extent to which a set of premises ���, … , ��� inductively supports a 

conclusion �, once a given probability model " has been specified. It is also 

worth noting that any measure satisfying PIL also satisfies all four desiderata. 

Indeed, for the first desideratum, observe that � assigns extreme values to 

deductive entailments and deductive refutations, whereas intermediate values 

are assigned to partial entailments and partial refutations. The second 
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desideratum is satisfied because the constraints on �’s values are expressed in 

terms of probability. As for the third desideratum, it is enough to notice that � 

depends on a probability model ", and so its values are logical and objective 

with respect to ". Finally, sensitivity to probabilistic relevance is modeled in 

PIL: ���, … , ��� are irrelevant to � just in case ��#��|��  …  ��� ! ��#���, 

with a consequent inductive strength equal to zero (see §1.1.2, for further 

details). 

 

1.1.2 Some Bayesian measures of confirmation 
 

A large number of alternative measures of confirmation � are proposed and 

advocated in the epistemological literature (see Fitelson, 1999, for a survey of 

the various measures of inductive support). In what follows, I discuss some 

representative confirmation measures that have been defended over the years, 

in an attempt to single out those measures appearing to be the soundest from a 

normative point of view. 

 Most of the contemporary epistemologists have followed a Bayesian 

approach for a formalization of the degree of confirmation. In general, 

epistemologists have focused on the degree of confirmation provided by a piece 

of evidence � for a hypothesis � under test. In other words, they have been 

typically involved with the inductive strength of arguments which take the form � / �. 

According to Fitelson (1999), a measure of confirmation � is called a 

relevance measure, if � is sensitive to the probabilistic relevance of � to �. This is 

to say, � is a relevance measure, if it satisfies the desideratum (4) illustrated in 

§1.1.1. In mathematical terms, any relevance measure must comply with the 

following constraints1: 

                                                
1 As noted in §1.1.1, any measure of confirmation should be defined with respect to a given 

probability model ". Put another way, � should depend on agents’ background knowledge. I omit 

background knowledge to simplify the notation. 
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���, �� :0 0 if ����|�� 0 �����! 0 if ����|�� ! �����5 0 if ����|�� 5 �����                                                                     �RM�9 

 

It is said that � confirms �, in case ����|�� 0 �����, � disconfirms �, in case ����|�� 5 �����, and � is confirmationally irrelevant to �, otherwise. As 

Fitelson (2001b) and Festa (1996) point out, it is possible to reformulate the 

condition (RM) in several equivalent ways. In fact, it is not difficult to prove that, 

for example, the following conditions are logically equivalent to (RM), according 

to the theory of probability: 

  

 ���, �� 0/!/5 0 if ����  �� 0/!/5 ����� = �����, 
  

 ���, �� 0/!/5 0 if ����|�� 0/!/5 ����|���, 
  

 ���, �� 0/!/5 0 if ����|�� 0/!/5 �����, 
 

 ���, �� 0/!/5 0 if ����|�� 0/!/5 ����|���. 

 

 (RM) and its equivalent formulations put only qualitative constraints on the 

values that a relevance measure should assign to inductive arguments. On the 

quantitative account, there are several ways of defining relevance measures of 

confirmation. For example, it is possible to construct a quantitative measure �, 

by taking the difference between the left and right hand side of any inequalities 

above. So, for instance, both ����, �� ! ����|�� > ����� and ����, �� !����|�� > ����� are relevance measures able to quantify the degree of 

evidential support. Another possibility to form quantitative measures satisfying 
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(RM) is provided by taking the logarithm2 of the ratio between the left and right 

hand side of any inequalities above. For instance, �?��, �� ! log @ AB�C|D�AB�C|�D�E is 

another quantitative relevance measure. Or also, relevance measures can be 

obtained by subtracting the numerical value 1 from the previous ratios. For 

instance, �F��, �� ! AB�D|C�AB�D� > 1. 

 Some of the most representative relevance measures of confirmation, 

collected from the literature, are shown in Table 1.1 below3. Since the measures 

presented so far are constructed in a way that they all satisfy the qualitative 

condition (RM), it might be expected that all of them impose the same ordering 

over different arguments. In other words, it might be expected that all the 

relevance measures are ordinally equivalent, in accordance with the following 

precise definition: 

 

Definition 1.1: Two confirmation measures ����, �� and ����, �� are said to be ordinally equivalent just in case, for any 

pair of arguments �� / �� and �� / ��: 

 

 �����, ��� 0/!/5  �����, ��� iff �����, ��� 0/!/5 �����, ���. 

 

                                                
2 Obviously, the logarithm must have base > 1. In fact, in case of base > 1, logarithm maps 

quantities > 1 onto positive values, quantities < 1 onto negative values, and quantities = 1 onto 

zero.  

3 Among the advocates of the measure H are Eells (1982), Gillies (1986), Earman (1992), Jeffrey 

(1992), and Rosenkrantz (1994). Advocates of I include Christensen (1999) and Joyce (1999). � 

is Carnap’s (1962a) relevance measure. Among those who have defended J are Keynes (1921), 

Horwich (1982), Schlesinger (1995), Milne (1996), and Pollard (1999). Advocates of K include 

Kemeny and Oppenheim (1952), Good (1984), Pearl (1988), and Fitelson (2001a, 2001b). 

Finally, Crupi, Tentori, and Gonzalez (2007) recently advocated L. Observe that the positive 

branch of L is identical to Rips’s (2001, p. 129) quantitative measure of inductive strength and 

ordinally equivalent to a confirmation measure proposed by Gaifman (1979, p. 120). Further 

occurrences of L include Rescher (1958), Shortliffe and Buchanan (1975), Mura (2006, 2008), 

and Cooke (1991). 
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Surprisingly, it can be proven that Table 1.1 includes no pair of ordinally 

equivalent measures (see Crupi et al., 2007; Fitelson, 2001b).   

 

Table 1.1: Rival Bayesian measures of confirmation 

 

 H��, �� ! ����|�� > ����� 
 I��, �� ! ����|�� > ����|��� 

 ���, �� ! ����  �� > ����� = ����� 

 J��, �� ! ����|������� > 1 

 K��, �� ! ����|�� > ����|�������|�� M ����|��� 

 

L��, �� !
&'(
')����|�� > ����������� if ����|�� 0 �����

����|�� > ���������� otherwise

9 
 

 

The non-equivalence between confirmation measures implies important 

consequences. Many criticisms and paradoxes have surrounded the Bayesian 

theory of confirmation. Practitioners of Bayesianism have attempted to resolve 

these paradoxes and criticisms by identifying some relevant properties that any 

appropriate measure of confirmation should satisfy. As will be seen, these 

relevant properties are not shared by measures that are not ordinally 

equivalent. Thus, by analyzing the properties that characterize each measure 

presented in Table 1.1, it is possible to narrow down the field of competing 

measures. 
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PARADOXES OF CONFIRMATION 

 One of the most famous paradoxes of confirmation is the so-called ravens 

paradox. This paradox is based on the following two assumptions: 

• Universal statements are confirmed by their positive instances. For 

example, the proposition “this raven is black” confirms the hypothesis “all 

ravens are black”. 

• If � confirms ��, and if �� is logically equivalent to ��, then � also 

confirms ��. 

From the two assumptions above, it is possible to deduce the following 

paradoxical conclusion: the proposition “this laptop is red” confirms the 

hypothesis “all ravens are black”. In general, any proposition involving objects 

that are non-raven or non-black confirms the hypothesis that all ravens are 

black. 

The resolution of the ravens paradox proposed by Horwich (1982) is 

based on the following property, which should be satisfied by proper 

confirmation measures: 

 

 If ����|��� 0 ����|���, then ���, ��� 0 ���, ���.                                    (P-1) 

 

It can be proven that the measures H, J, K, and L have the property expressed in 

(P-1), whereas I and � do not (see Fitelson, 2001b; Crupi et al., 2007). 

 The grue paradox, originally conceived by Goodman (1983), makes things 

even worse for the support of universal statements by means of empirical 

evidence. This paradox shows that, for every hypothesis confirmed by a piece of 

evidence, there are many alternative hypotheses which are equally confirmed by 

the same piece of evidence, but are inconsistent with the initial hypothesis. To 

illustrate the paradox, Goodman defines the predicate grue as follows: it “applies 

to all things examined before t just in case they are green but to other things just in 

case they are blue” (Goodman, 1983, p. 74). 

The statement “a is an emerald and a is green” confirms the hypothesis 

“all emeralds are green”. According to Goodman, the observation that “a is an 
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emerald and a is green” also confirms the hypothesis “all emeralds are grue”, if 

the observation is made before time N. This is absurd because generalizations 

like “all emeralds are grue” imply the incompatible prediction that “if an emerald 

subsequently examined is grue, it is blue and hence not green” (Goodman, 1983, p. 

74). 

 A resolution of the grue paradox is offered by Sober (1994). His 

resolution relies on the following property:  

 

If �� � �, �� � �, and ����� 0 �����, then  ����, �� 0 ����, ��.         (P-2) 

 

All the relevance measures presented in Table 1.1, apart from J, satisfy the 

property expressed in (P-2). 

Another difficulty, encountered by advocates of Bayesian inductive 

confirmation, is given by the problem of irrelevant conjunction. This problem 

concerns the deductive account of confirmation, which posits that � confirms � 

if � � �. Thus, for the monotonicity of �, it follows that: if � deductively 

confirms �, then � also deductively confirms �  �, for any �. The problem 

arises when the conjunct � is totally irrelevant to � and �. Even in these cases, 

the evidence � should continue to confirm the conjunction �  �. 

 A solution to the problem of irrelevant conjunction relies on the following 

property (see Fitelson, 2001b): 

 

If � confirms �, and � is confirmationally irrelevant to �  

with respect to �, then ���, �� 0 ���  �, ��.               (P-3) 

 

All measures in Table 1.1 satisfy the property expressed in (P-3), except J. 

 

SYMMETRIES AND ASYMMETRIES OF CONFIRMATION 

 As highlighted by Eells and Fitelson (2002), it is possible to further 

narrow the field of competing measures of confirmation by appealing to simple 

consideration of symmetry. For example, it appears reasonable to require that 
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the inductive strength of the argument � / � is different from the inductive 

strength of � / �. This is because, in general, the degree of support provided by a 

piece of evidence � for a hypothesis � is not equal to that provided by � for �.  

Eells and Fitelson (2002) analyze only four kinds of symmetries: the 

“evidence symmetry”, for which ���, �� ! >���, ���, the “commutativity 

symmetry”, for which  ���, �� ! ���, ��, “the hypothesis symmetry”, for which ���, �� ! >����, ��, and “the total symmetry”, for which ���, �� ! ����, ���. 

They argue that only the hypothesis symmetry should be satisfied by any 

adequate measure of confirmation. 

A complete study on all the symmetries is provided by Crupi et al. (2007). 

Crupi and colleagues suggest a general principle to determine which symmetries 

should be fulfilled and which should not. The principle, called Ex2, is inspired by 

the Carnapian view according to which inductive logic should provide a 

quantitative generalization of classical deductive logic. It is worth noting that 

Crupi et al. (2007) analyze symmetry properties both in case of confirmation 

and in case of disconfirmation. Interestingly, they agree with Eells and Fitelson 

(2002) about the inadequacy of the commutative symmetry ���, �� ! ���, ��, 

but just in case of confirmation. Instead, in case of disconfirmation, Crupi and 

colleagues argue that the commutative symmetry is a reasonable extension of 

the following theorem of deductive logic: � � �� iff � � ��.  

Among the relevance measures included in Table 1.1, Crupi et al. (2007) 

prove that only L satisfies all the symmetry properties determined by means of 

the principle Ex2. 

To recap, the strength and weakness of the most representative relevance 

measures are summarized in Table 1.2. The last column of the table shows that K 

and L are the only relevance measures satisfying the condition PIL discussed in 

§1.1.1. This is to say, K and L are the only measures that assign extreme 

quantitative values to deductive entailments and deductive refutations (see 

Crupi et al., 2007; Fitelson, 2001b). 

Looking at the Table 1.2, K and L appear to be the soundest normative 

measures of confirmation. 
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Table 1.2: Strength and weakness of the most representative 

Bayesian confirmation measures 

 

Confirmation 

measures 

Ravens 

paradox 

Grue 

paradox 

Irrelevant 

conjunction 

Ex2 

symmetries 
PIL 

H��, ��      

I��, ��      

���, ��      

J��, ��      

K��, ��      

L��, ��      

 

 

1.2 In the psychological literature 
 

1.2.1 Induction vs. deduction 
 
Inductive reasoning is a central topic in cognitive science. However, despite its 

fundamental role in the comprehension of human cognition and behavior, 

psychologists have carried out much less work on inductive reasoning than on 

deductive reasoning. 

 As suggested by Heit (2007), there are two different views on the study of 

inductive reasoning as compared to deductive reasoning: the “problem view” 

and the “process view”. The first view points out how problems of induction may 

differ from problems of deduction, whereas the second view puts emphasis on 
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how inductive processes may differ from deductive ones. According to the 

problem view, it is possible to recognize whether a study is about inductive vs. 

deductive reasoning on the basis of some easily identifiable characteristic 

elements. For instance, most psychological studies on inductive reasoning have 

used a particular kind of induction, namely, category-based induction, which 

involves arguments regarding different categories. It is also to be noted that, in 

studies on inductive reasoning, participants are typically asked to judge the 

strength of a single argument, or to judge which of two arguments is stronger. 

On the other hand, research on deductive reasoning tends to ask participants to 

evaluate the logical validity of arguments. In this kind of study, arguments can 

have the if-then form or can involve statements like “All humans are mortal”.  

The problem view, therefore, offers the possibility of defining deduction 

and induction in an objective way, in terms of the problem being solved or the 

question being asked. Yet, in some cases the problem view cannot help clarify 

whether a study centres on deductive vs. inductive reasoning. For example, 

Wason’s selection task has been argued to be a problem of deduction by some 

authors, but induction by others (e.g., Oaksford & Chater, 1994; Feeney & 

Handley, 2000; Poletiek, 2001).  

The problem view does not seem viable not only because some studies 

remain unclassified, but also for the following important consideration. It would 

be a mistake to assume that people are performing deductive reasoning simply 

because they are presented with well designated deduction problems, and 

analogously, that people are performing inductive reasoning when presented 

with induction problems. It seems desirable to consider deduction and induction 

as possible kinds of psychological processes.  

According to the process view, the distinction between deduction and 

induction depends on the underlying mental processes. At a more general level, 

reasoning surely involves many different psychological processes. An interesting 

question, though, is whether the same processing account can be applied to both 

deduction and induction, or whether two different processing accounts can be 

applied to the two respective types of reasoning.  
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On the one-process account, the same kind of processing underlies both 

induction and deduction. In other words, there is essentially one kind of 

reasoning, which may be applied to a variety of problems, either inductive or 

deductive. By contrast, according to the two-process account, there are two 

distinct kinds of reasoning.  

 The mental model theory proposed by Johnson-Laird (1983) is usually 

thought of as a one-process account. The probabilistic account proposed by 

Oaksford and Chater (1994) as an alternative to the mental model theory is also 

a one-process account, as it claims that people solve problems of deduction by 

using inductive processes. While the two previous accounts were developed 

mainly in respect to problems of deduction, other reasoning accounts have 

focused on problems of induction (e.g., Osherson, Smith, Wilkie, Lopez, & Shafir, 

1990; Sloman, 1993; Heit, 1998). These accounts can treat some inductively 

strong arguments as a special case of deductively valid arguments. For example, 

the following inductive argument is also deductively valid since there is a perfect 

overlap between the premise category and the conclusion category, with the 

property being kept fixed: 

 

Cats have Property � 

————————— 

Cats have Property � 

 

In the previous example, the same processing mechanisms – e.g., those that 

govern overlap assessments – would be applied to both problems of induction 

and deduction. Therefore, these accounts of induction, too, may be considered as 

one-process accounts. However, it should be noted that, in general, the validity 

of deductive arguments cannot be assessed simply in terms of overlap between 

premise and conclusion categories. By consequence, these accounts of induction 

cannot explain deductive phenomena in a proper way. 

In contrast to one-process accounts, other researchers have emphasized 

the existence of two different kinds of reasoning (e.g., Sloman, 1996; Evans & 
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Over, 1996; Stanovich, 1999). In support of the two-process account, Osherson 

et al. (1998) have provided some neuropsychological evidence, obtained using 

brain imaging techniques, suggesting the existence of two anatomically separate 

systems of reasoning. In Osherson et al.’s (1990) research, participants were 

presented with a set of arguments to evaluate. Using the same arguments, 

participants were asked to judge deductive validity and inductive plausibility. 

The result was that distinct brain areas seemed to be implicated for deduction 

vs. induction.  

It would be difficult to explain the previous result, if deduction and 

induction processes were essentially the same. Yet, it seems too early to 

abandon the one-process account. Heit (2007) also suggests not abandoning 

another possibility, namely that the deduction and induction processes may 

overlap, at least to some extent. In order to answer the many issues concerning 

the process view, more studies are clearly needed. 

 

1.2.2 Some psychological models of induction 

 

In contrast to deductive reasoning, inductive reasoning is characterized by a 

sense of ambiguity, vagueness and indecision. Following Rehder (2007), 

inductive reasoning is “reasoning to uncertain conclusions” (p. 81). Such 

reasoning appears in different forms in everyday life. In some cases, uncertain 

inference involves a given object; in other cases, it may concern a specific event. 

For example, when we come across a dog on the street, we may wonder if it is 

safe to pet. Or, when we pick a mushroom while walking in the mountains, we 

may ask if it is safe to eat. There are also cases in which people may need to 

make inductive generalizations aimed at characterizing an entire class of objects 

or situations. We induce, for example, that mosquitoes can cause malaria on the 

basis of a finite number of medical situations. Or, starting from a few 

observations, one might generalize a specific property to all the members of a 

particular category. Generalizations in which properties are projected to an 
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entire class of objects are called category-based generalizations. The work by 

Osherson et al. (1990) represents a landmark in the study of category-based 

induction.  

 

SIMILARITY-COVERAGE MODEL 

The model proposed by Osherson et al. (1990) can predict the strength of a 

particular set of inductive arguments. Premises and conclusions of all the 

arguments analyzed by the authors have the form “all members of � have 

property �”, that is, premises and conclusions attribute a fixed property to one 

or more categories. A typical example of argument employed in the study is the 

following: 

 

Sparrows have sesamoid bones 

Eagles have sesamoid bones 

—————————————— 

All birds have sesamoid bones 

 

An important limitation in Osherson et al.’s (1990) work is that the focus of their 

analysis is on the role of categories in the evaluation of argument strength. 

Instead, the role of properties appearing in premises and conclusions is minimal. 

The authors acknowledge that prior beliefs about a property “can be expected to 

weigh heavily on argument strength, defeating [the] goal of focusing on the role of 

categories in the transmission of belief from premises to conclusions”. The authors 

continue, stating: “For this reason, the arguments to be examined all involve 

predicates about which subjects have few beliefs, such as “require biotin for 

hemoglobin synthesis”. Such predicates are called blank. Although blank predicates 

are recognizably scientific in character (in the latter case, biological), they are 

unlikely to evoke beliefs that cause one argument to have more strength than 

another” (p. 186). 

Even within the restricted set of arguments examined in their study, 

Osherson and colleagues have documented 13 qualitative phenomena about 
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inductive strength. The phenomena are classified on the basis of argument’s 

features. In particular, the authors distinguish three classes of arguments: 

general, specific, and mixed arguments.  

Below is a description of some of the most important phenomena 

documented by Osherson et al. (1990), along with a pair of arguments to 

illustrate each. In what follows, CAT(�O) and CAT(�) denote the category that 

appears in premise �O  and in conclusion �, respectively. 

 

Premise typicality: The more representative or typical CAT(��), …, CAT(��) are of 

CAT(�), the higher is the inductive strength of the argument ��, … , �� / �.  

 

Robins have property � 

———————————  (OSWLS-1) 

All birds have property � 

 

Penguins have property � 

————————————  (OSWLS-2)  

All birds have property � 

 

Argument (OSWLS-1) is stronger than argument (OSWLS-2) because robins are 

more typical than penguins of BIRD category. 

 

Premise diversity: The less similar CAT(��), …, CAT(��) are among themselves, 

the higher is the inductive strength of the argument ��, … , �� / �.  

 

Hippopotamuses have property � 

Hamsters have property � 

———————————————  (OSWLS-3) 

All mammals have property � 
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Hippopotamuses have property � 

Rhinoceroses have property � 

———————————————  (OSWLS-4) 

All mammals have property � 

 

Argument (OSWLS-3) is stronger than argument (OSWLS-4) because hippos and 

hamsters differ from each other more than hippos and rhinos do. 

 

Premise monotonicity: The more inclusive is the set of premises of an argument, 

the higher is the inductive strength of that argument.  

 

Hawks have property � 

Sparrows have property � 

Eagles have property � 

————————————  (OSWLS-5) 

All birds have property � 

 

Sparrows have property � 

Eagles have property � 

————————————  (OSWLS-6)  

All birds have property � 

 

Argument (OSWLS-5) is stronger than argument (OSWLS-6) because the set of 

premises is more inclusive in the first case than in the second one. 

 

Premise-conclusion similarity: The more similar CAT(��), …, CAT(��) are to 

CAT(�), the higher is the inductive strength of the argument ��, … , �� / �.  
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Robins have property � 

Bluejays have property � 

————————————  (OSWLS-7) 

Sparrows have property � 

 

Robins have property � 

Bluejays have property � 

———————————  (OSWLS-8) 

Geese have property � 

 

Argument (OSWLS-7) is stronger than argument (OSWLS-8) because robins and 

bluejays resemble sparrows more than they resemble geese. 

 Osherson et al. (1990) observe that each phenomenon should be 

recognized as a guideline directing the evaluation of inductive strength rather 

than as a strict rule determining the strength of an argument. For example, re-

examine the pair of arguments (OSWLS-3) and (OSWLS-4) in light of premise 

typicality and premise diversity. Argument (OSWLS-3) is stronger than 

argument (OSWLS-4) according to the diversity effect, even though hamsters are 

less typical than rhinoceroses of MAMMAL category. Thus, here diversity effect 

is in competition with typicality effect, and the greater diversity of the premise 

categories in argument (OSWLS-3) seems to prevail over the greater typicality of 

the premise categories in argument (OSWLS-4). 

Although inductive reasoning is uncertain by nature, the 13 phenomena 

documented by Osherson and colleagues represent a rich set of regularities that 

should be accounted for by any adequate theory of category-based induction. 

According to Osherson et al.’s (1990) model, the inductive strength of an 

argument depends on two variables:  



26  
1. Inductive reasoning 
 

 
 

1. the degree to which the premise categories resemble the conclusion 

category, and  

2. the degree to which the premise categories resemble members of the 

lowest-level category that includes both the premise and conclusion 

categories.  

To illustrate the role of these two variables, the authors use the following 

argument: 

 

 Robins use serotonin as a neurotransmitter 

 Bluejays use serotonin as a neurotransmitter 

 ———————————————————— 

 Geese use serotonin as a neurotransmitter 

 

Notice that, in the foregoing argument, the premise categories are ROBIN and 

BLUEJAY, and the conclusion category is GOOSE; also notice that BIRD is the 

lowest-level category that includes ROBIN, BLUEJAY, and GOOSE. So, the first 

variable corresponds to the similarity between robins and bluejays on the one 

hand, and geese on the other hand; the second variable corresponds to the 

similarity between robins and bluejays on the one hand, and all birds on the 

other hand. In other words, the first variable measures the similarity between 

the premise categories and the conclusion category; the second variable 

measures how well the premise categories ‘cover’ the superordinate category 

that includes all the categories mentioned in an argument. The name Similarity-

coverage model that Osherson et al. (1990) gave to their model summarizes well 

the role of both variables: similarity and coverage. 

 In mathematical terms, the similarity-coverage model uses the following 

simple formula to predict the inductive strength of argument ��, … , �� / �: 

 

 P = SIMRCAT����, … , CAT����; CAT���W M  
 �1 > P� = SIM�CAT����, … , CAT����; XCAT����, … , CAT����, CAT���Y�, 

 



 

In the psychological literature 
27 

 

 
 

where SIMRCAT����, … , CAT����; CAT���W indicates the similarity between the 

premise categories and the conclusion category, and XCAT����, … ,CAT����, CAT���Y denotes the lowest-level category that includes 

both the premise and the conclusion categories. 

Given plausible assumption about the similarity function SIM, the model 

predicts all the 13 phenomena analyzed by Osherson et al (1990). However, a 

general weakness of the similarity-coverage model is due to the fact that 

similarity is a rather vague and elusive notion. Maintaining that two objects are 

similar might be meaningless if a criterion for similarity has not been specified.  

Instead of grounding a model on similarity judgments, an alternative is to 

move towards models in which the focus is on object features. Such models can 

learn directly from experience. 

 

FEATURE-BASED MODELS 

The feature-based model of Sloman (1993) predicts inductive strength as a 

measure of feature overlap between premises and conclusion categories. Like 

the similarity-coverage model, the feature-based model applies to arguments in 

which premises and conclusion have the form “all members of � have property �”. Moreover, Sloman’s (1993) model mainly focuses on “blank” predicates 

about which people would have few prior beliefs.  

 The feature-based model is implemented as a connectionist network in 

which a set of input nodes serves to encode features values, and an output node 

serves to encode the blank predicate �. To illustrate the process by which the 

model determines inductive strength, Sloman (1993) considers the following 

argument: 

 

 Robins have property � 

 ———————————  (S) 

 Falcons have property � 
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The temporal evolution of the connectionist network for the argument (S) is 

shown in Figure 1.1. Before the presentation of the argument, the node 

representing the blank predicate is initially not connected to any nodes that 

represent the features of the premise category (Figure 1.1-a). Then, to encode 

the premise, the input nodes that represent the features of ROBIN are connected 

to the predicate node �. In this way, the input nodes ‘activate’ the predicate node 

(Figure 1.1-b). Finally, argument’s conclusion is tested by evaluating the extent 

to which the predicate node � becomes activated by means of the features of the 

conclusion category (Figure 1.1-c). 

  

Figure 1.1: Temporal evolution of the network implemented in 

the feature-based model for the argument (S) 
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In brief, the model’s predictions are completely determined by a set of features 

and by two rules: an encoding rule and an activation rule. The encoding rule 

posits how connections are established between featural and predicate nodes, 

whereas the activation rule defines the value of predicate node. In other terms, 

the encoding rule allows the connectionist network to learn associations 

between input nodes and output node. Then the activation rule serves to 

measure what value is assigned to the output node after presenting the features 

of the conclusion category. If this value is high, then the argument in question is 

judged strong; if it is low, then the argument is judged weak. 

As highlighted by Sloman (1993) himself, according to the feature-based 

model, “argument strength is, roughly, the proportion of features in the conclusion 

category that are also in the premise categories”. And “intuitively, an argument 

seems strong to the extent that premise category features ‘cover’ the features of the 

conclusion category, although the present notion of coverage is substantially 

different from that embodied by the similarity-coverage model” (p. 242). 

Perhaps the most important difference between the feature-based model 

and the similarity-coverage model is that the former does not have a specific 

component for assessing coverage of a superordinate category. In fact, the 

feature-based model is able to address many of the same phenomena as the 

similarity-coverage model, but without employing a second mechanism apt to 

coverage. Another difference between the two models is that only Osherson et 

al.’s (1990) model assumes that judgments of inductive strength depend on a 

stable hierarchical category structure. By contrast, the feature-based model 

assumes that inductive strength depends on the intensity of connection between 

the features of the conclusion category and the predicate in exam. Here, the 

existence of a stable category structure is not necessary. Obviously, Sloman 

(1993) recognizes that people have some knowledge about the hierarchical 

structure of categories. However, in his model, this knowledge is not 

represented as structured as would be required to support Osherson et al.’s 

(1990) model. 
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 Both the similarity-coverage model and feature-based model make 

accurate predictions of the inductive strength of arguments whose predicates 

are blank. Yet, as noted by Heit (1998), inductive reasoning with blank 

properties captures only one aspect of inductive reasoning in general. 

 

BAYESIAN MODELS 

 Heit (1998) proposed a more extensive framework for addressing 

phenomena besides similarity, diversity, and typicality effects. He has presented 

a theory where induction is modeled as Bayesian inference. Hence, the name of 

his model: Bayesian model.  

To illustrate the model, Heit (1998) discusses the following inductive 

argument involving just two categories of animals, namely, cows and horses: 

 

Cows have property � 

——————————  (H) 

Horses have property � 

 

The author argues that, when reasoning about novel properties to be attributed 

to cows and/or horses, it is convenient to classify all the known properties 

concerning animals into four groups:  

1. properties that are true of cows and horses; 

2. properties that are true of cows but not horses; 

3. properties that are true of horses but not cows; 

4. properties that are not true of either cows or horses. 

These four types of known properties are thought of as four alternative 

hypotheses, each associated with a degree of prior belief. Table 1.3 reports the 

degree of prior belief that Heit proposes for each of the four hypotheses. 

The value of 0.70 assigned to hypothesis 1 indicates that there is a 70% 

chance that a new property would be true of both cows and horses. Heit (1998) 

observes that the prior beliefs sum up to 1, since the corresponding hypotheses 

are exhaustive and mutually exclusive.  
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Table 1.3: The four hypotheses and the degree of prior beliefs 

used in Heit’s (1998) example 

 

Hypotheses Degree of prior belief 

1 Cow = True and Horse = True 0.70 

2 Cow = True and Horse = False 0.05 

3 Cow = False and Horse = True 0.05 

4 Cow = False and Horse = False 0.20 

 

Once the prior beliefs are assigned, the next step planned in the Bayesian model 

is to update the belief values in light of new evidence. As for argument (H) above, 

the prior beliefs concerning the four hypotheses need to be updated in light of 

the premise “Cows have property �”. To compute the posterior degree of belief 

in each hypothesis, Bayes’s theorem is used and the values obtained are 0.93 for 

hypothesis 1, 0.07 for hypothesis 2, and 0 for the remaining hypotheses 3 and 4. 

At this point, Heit (1998) argues that the previous values may be used to assess 

the plausibility of the argument’s conclusion. Indeed, by virtue of the total 

probability theorem, the degree of belief that horses have property � is directly 

given by summing the updated beliefs in hypotheses 1 and 3, namely, the values 

0.93 and 0.  

Heit (1998) observes that, before learning that cows have the property �, 

the prior belief that horses have the property � is only 0.75 = 0.70 + 0.05. Thus, 

according to the model, the premise that cows have the property � leads to an 

increase in the belief that horses have the property �. However, in Heit’s (1998) 

Bayesian model the inductive strength of an argument is not measured as a 

function of the increase in the plausibility of its conclusion. Inductive strength is 

simply given by the updated plausibility of the argument’s conclusion. 

 It is worth noticing that the Bayesian model is strictly linked to accounts 

of hypothesis testing and, as such, it suggests a normative description on how to 

reason with a hypothesis space. This account is rather successful as it is able to 

accommodate most of the psychological phenomena as Osherson et al.’s (1990) 

and Sloman’s (1993) models. On the Bayesian model account, assessing the 
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strength of an inductive argument is regarded as learning about the property 

appearing in the premises and conclusion of that argument. For example, upon 

learning that dogs have some novel property �, one might wonder whether 

wolves or parrots have the same property �. The key assumption of the Bayesian 

model is that, to answer this question, people would analyze a set of hypotheses 

about the novel property, relying on prior knowledge about familiar properties. 

For instance, the fact that people know a relatively large number of properties 

true of both dogs and wolves may lead to the conclusion that, if property � is 

applied to dogs, then it probably applies to wolves too. On the other hand, a 

relatively small number of properties are known to be true of both dogs and 

parrots, and this may lead to conclude that property � is relatively unlikely to 

extend to parrots. 

The foregoing example is consistent with the principle that similarity 

promotes property projection. Given the premise that a category has a certain 

property, it seems plausible that a similar category has that property as well. 

But, for some properties and some categories, similarity does not seem to be 

central to inductive inferences. Heit and Rubinstein (1994) have provided the 

following important example showing how inferences may go in the opposite 

direction of what overall similarity would predict. 

 

 Chickens prefer to feed at night 

 ——————————————  (HR-1) 

 Hawks prefer to feed at night 

 

 Tigers prefer to feed at night 

 —————————————  (HR-2) 

 Hawks prefer to feed at night 

 

Heit and Rubinstein (1994) found that the argument (HR-1) is judged weaker 

than the argument (HR-2). But, if the behavioral property about feeding and 

predation is replaced with the blank, biological property “have a liver with two 
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chambers”, then the standard trend predicted by the similarity-coverage model 

re-emerges. Despite the considerable biological differences between tigers and 

hawks, it seems that people are influenced by the known predatory behavior 

that these two animals have in common. 

Another example in which similarity seems not to be central to induction 

has been provided by Smith, Shafir, & Osherson (1993). 

 

Poodles can bite through barbed wire 

 ——————————————————————  (SSO-1) 

 German Shepherds can bite through barbed wire 

 

 Dobermans can bite through barbed wire 

 ——————————————————————  (SSO-2) 

 German Shepherds can bite through barbed wire 

 

Smith et al. (1993) found that the argument (SSO-1) is stronger than the 

argument (SSO-2), even though there is greater similarity between Dobermans 

and German Shepherds than between poodles and German Shepherds. An 

informal justification given to this result is based on the preconditions for the 

capacity to bite through barbed wire: if a little and weak dog, like a poodle, is 

able to bite through barbed wire, then clearly a German Shepherd, which is 

stronger and more ferocious, can do so as well. 

 Heit (1998) shows how his Bayesian model can account for effects (e.g., 

those presented in the previous two examples) that are determined by 

properties rather than by the similarity between categories. The distribution of 

prior beliefs across hypotheses is of extreme importance to predict these effects. 

But how are these prior beliefs generated? According to Heit, prior beliefs are 

assigned on the basis of past observations. His explanation for how prior beliefs 

come about is heavily memory-based: the probability of a hypothesis is 

proportional to the number of familiar features that can be retrieved from 

memory and that have the same extension as that hypothesis. 
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 Tenenbaum et al. (2007) acknowledge that, if supplied with the right 

kinds of prior beliefs, Heit’s (1998) Bayesian model is able to predict a number 

of qualitative phenomena concerning both blank and non-blank properties. 

However, Tenenbaum et al. (2007) point out the lack of a formal method for 

generating priors, as well as the lack of any quantitative test for checking the 

accuracy of the model through people’s judgments. 

 

THEORY-BASED BAYESIAN MODELS  

Tenenbaum, Griffiths, & Kemp (2006) have proposed a framework that adopts a 

Bayesian approach which is similar to that implemented by Heit (1998). The 

Bayesian approach of Tenenbaum et al. (2006) attempts to answer two 

important kinds of question about human inductive capacities. First, what 

knowledge is a given inductive inference based on? And second, how does that 

knowledge support property generalization? In contrast with previous models of 

inductive reasoning, in which the emphasis is put mainly on the process of 

induction, the approach developed by Tenenbaum et al. (2006) takes the prior 

knowledge representation as a crucial element. A major distinction between the 

Bayesian model of Heit (1998) and the theory-based Bayesian framework of 

Tenenbaum et al. (2006) is the presence, in the second framework, of a 

mechanism that generates appropriate prior beliefs. 

The framework proposed by Tenenbaum at al. has two main components: 

a structured probabilistic representation of domain-specific knowledge, and a 

general Bayesian inference engine to perform inductive inferences. Even though 

structured representations are far from being complete formalizations of 

people’s knowledge, they are important because they approximate the genuine 

structures contained in the world. On the other hand, Bayesian inference 

provides a well-grounded normative procedure for uncertain reasoning. 

Together, the two components lead to quantitative models for predicting 

people’s inductive judgments. More importantly, the two components offer an 

explanation about the processes underlying inductive reasoning.  
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It has been argued that different properties, such as anatomical features, 

behavioral properties, or disease states of animal species, might promote 

different patterns of inductive behavior. But whether this is due to diverse kinds 

of knowledge, diverse mechanisms of reasoning, or both, is not so clear. 

According to Tenenbaum et al. (2007), a single Bayesian mechanism, in which 

the priors are generated to capture most of the knowledge that supports 

induction, may be sufficient. 

It is challenging to adequately model prior beliefs concerning any familiar 

thing, because different kinds of knowledge might be relevant when making 

inferences about the thing in question. For example, a cat can be thought about 

in a large number of ways. It is an animal that belongs to the category of felines, 

eats mice, climbs trees, has whiskers, and so on. As pointed out by Tenenbaum et 

al. (2007), all of these pieces of information could be influential in an inductive 

inference about cats. For instance, upon learning that cats suffer from a recently 

discovered disease, people could suspect that mice have that disease too. Or, 

upon learning that cats have a recently discovered gene, people could think that 

tigers are more likely to have that gene than mice. Thus, as mentioned earlier, it 

seems clear that inductive inferences crucially depend on the property involved. 

The theory-based Bayesian models of Tenenbaum et al. (2006), as well as the 

Bayesian model of Heit (1998), accounts for property-based phenomena by 

positing that people can rely on different kinds of prior knowledge.  

For Tenenbaum et al. (2006) any computational theory on inductive 

reasoning should show as explicitly as possible how priors are generated in a 

specific context. As regards the theory-based Bayesian framework, two aspects 

are most relevant for constructing priors: firstly, a representation of how 

categories are related to each other and, secondly, a process that governs how 

properties are distributed over categories. In this framework, each category is 

represented as a node in a relational structure. The structure’s edges represent 

relations that are relevant for determining inductive strength (e.g., taxonomical 

or causal relations). Priors are then generated by means of a stochastic process 

defined over the relational structure. Stochastic processes, such as diffusion 
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process, drift process, or noisy-transmission process, can be used to model how 

properties are distributed over the related categories.  

The theory-based Bayesian framework of Tenenbaum et al. (2006) is able 

to capture several kinds of knowledge by choosing the appropriate kind of 

structure and the appropriate stochastic process. However, an important 

constraint in the construction of priors is given by the correspondence, albeit not 

perfect, between the structure of the world and the representation of the 

Bayesian model. To illustrate, the theory-based Bayesian model developed for 

generic biological properties uses a noisy-mutation process over a taxonomic 

tree. The theory-based Bayesian model developed for causally transmitted 

properties, instead, uses a noisy-transmission process over a predator-prey 

network. Both models are built by thinking about how some class of properties 

is actually distributed in the world. Not surprisingly, they correspond roughly to 

models employed by biologists and epidemiologists, respectively. According to 

Tenenbaum et al. (2006), by deriving prior beliefs from ‘intuitive theories’ (e.g., 

intuitive biology, intuitive physics, intuitive psychology) that reflect the actual 

structure of the world, it becomes clear why these priors should support 

induction in real-world tasks. It is worthwhile to note that the theory-based 

approach uses the same Bayesian principle to explain how intuitive theories 

guide inductive inferences, but also how intuitive theories might be learned from 

experience. 

Both the model for generic biological properties and the model for 

causally transmitted properties have been tested. In doing so, judgments of 

inductive strength expressed by participants have been compared with 

theoretical judgments predicted by the models. In addition, a comparison with 

several alternative models, including the similarity-coverage model, has been 

performed (see Tenenbaum et al., 2007). In general, the theory-based Bayesian 

model that is specific for the inductive context in exam has given better 

predictions than, or comparable to, the best of the other models. 

As pointed out by Sloman (2007), the sophisticated framework proposed 

by Tenenbaum et al. (2006) is impressive in its potential for generating domain-
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specific models. The strength of this approach is that it offers a perspective 

covering induction in all its forms. However, the danger is that a large number of 

relational structures need to be created, each shaped to fit a specific study. Yet, it 

is plausible to think that relational structures are not independent of each other. 

Presumably, all rational structures are generated on the basis of some 

fundamental principles. For example, a top-down biological structure might 

emerge from a causal analysis grounded on an evolutionary base. In fact, it might 

be the case that, once the causal analysis that endorses the hierarchical structure 

is clearly defined, the structure itself will turn out to be unnecessary. In this 

sense, inductions might be mediated directly by causal knowledge. In other 

words, the relational structure may serve as a proxy for some other kind of 

knowledge, like causal knowledge, that is not domain specific. This last view was 

largely supported by Rehder (2007). 

 

INDUCTIVE REASONING REVISITED AS CAUSAL REASONING  

Rehder (2007) interprets property generalization in terms of causal reasoning. 

He reports numerous sources of evidence that people reason causally when they 

generalize properties. For example, he mentions the results of Heit and 

Rubinstein (1994) showing that a behavioral property (e.g., “travel in a zig-zag 

path”) is projected more strongly from tunas to whales than from bears to 

whales. But when the property in exam is biological (e.g., “have a liver with two 

chambers”), then a reversal trend is observed, that is the property is generalized 

more strongly from bears to whales than from tunas to whales. Rehder’s reading 

of these results is that people recognize the biological similarity between bears 

and whales because of a causal mechanism associated with their common 

category, namely, MAMMAL. Probably this mechanism gives rise to biological 

properties like having a two-chambers liver. On the other hand, people think 

that tunas and whales are more likely to share a behavioral property like 

traveling in a zig-zag path, because tunas and whales are prey/predator animals 

living in the same natural environment.  
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 Also the results of Smith et al. (1993), already illustrated above, are 

interpreted by Rehder in terms of causal reasoning. Smith et al. (1993) found 

that people are more willing to generalize the property “can bite through barbed 

wire” to German Shepherds from poodles than from Dobermans. In this case, the 

kind of causal reasoning that drives people’s judgment is more or less the 

following: if poodles can bite through barbed wire, then obviously stronger dogs 

like German Shepherds can do it too. But it could not be the case if the premise 

category is another powerful dog. 

 Finally, another example used by Rehder in support of the centrality of 

causal reasoning in property generalization is due to Sloman. Sloman (1994) 

considers the following pair of arguments: 

 

 Many ex-cons are hired as bodyguards 

 ———————————————————  (S-1) 

 Many war veterans are hired as bodyguards 

 

Many ex-cons are unemployed 

 ————————————————  (S-2) 

 Many war veterans are unemployed 

 

According to Sloman’s (1994) results, the argument (S-1) is judged stronger than 

the argument (S-2). Rehder’s explanation is that, in the first argument, the same 

reasons that lead to be a good bodyguard (e.g., being experienced fighter) can be 

applied to both ex-cons and war veterans. By contrast, the reasons that explain 

unemployment of war veterans are less likely to be applied to ex-cons too. 

 Rehder (2006) has developed a general theory that underlines the 

centrality of causal reasoning in induction. This theory makes three predictions 

about the role of causal reasoning in category-based generalizations. The first 

prediction is that property generalization can reflect prospective reasoning. 

According to this prediction, the more the causes producing a property are 

present in the conclusion category, the more the property is generalizable. The 
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second prediction is that property generalization can be driven by a diagnostic 

reasoning. The more the presence of a property can be inferred by the effects it 

might produce, the more the property is generalizable. To put it differently, 

property generalization can be thought of as a particular kind of causal 

reasoning in which people make a diagnosis about the presence of a property by 

analyzing whether its symptoms (i.e., effects) are present or not. The third 

prediction is that property generalizations are regulated by extensional 

reasoning. The more the causes and/or effects of a property are prevalent, the 

more the property is generalizable.  

The previously discussed results of Heit and Rubinstein (1994), Smith et 

al. (1993), and Sloman (1994) can be seen as empirical support for the 

prospective-reasoning prediction (for other empirical data in support of 

Rehder’s theory, see Rehder, 2006).  

An important question concerns how causal knowledge interacts with the 

phenomena formalized by the similarity-coverage model, such as diversity, 

similarity, and typicality. To foreshadow the main result, research suggests that 

causal reasoning not only influences property generalizations, but, in some 

cases, it may replace the similarity-based effects. For example, Lopez, Atran, 

Coley, Medin & Smith (1997) found that Itzaj Maya, a population in the rainforest 

of Guatemala with great expertise regarding local plants and animals, often 

based their inferences (e.g., about the disease in a species) on causal processes, 

thus failing to show standard diversity effects. By contrast, American 

undergraduates did show standard diversity effects on the same items. 

 Of course, the foregoing results could be explained in terms of cultural 

differences between Itzaj and Americans. However, the prevalence of causal 

explanations does not seem to be attributable only to cultural factors. Proffitt, 

Coley, & Medin (2000) studied inferences about plant categories made by three 

groups of American tree experts: taxonomists, landscapers, and tree 

maintenance workers. The aim was to test whether and how property 

generalizations are influenced by typicality and diversity effects. Like Itzaj Maya, 

the landscapers and the tree maintenance workers did not show standard 
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diversity effects. Moreover, none of the groups of tree experts exhibited 

standard typicality effects.  

The studies of Lopez et al. (1997) and Proffitt et al. (2000) tested experts 

with domain-specific knowledge, but there is also evidence, coming from non-

expert people, that proves a similar pattern. Consider the following pair of 

arguments proposed by Medin, Coley, Storms & Hayes (2003):  

 

Pigs are injected with antibiotics 

Chickens are injected with antibiotics 

————————————————  (MCSH-1) 

Cobras are injected with antibiotics 

 

Pigs are injected with antibiotics 

Whales are injected with antibiotics 

————————————————  (MCSH-2) 

Cobras are injected with antibiotics 

 

Medin et al. (2003) found that American undergraduates judged the argument 

(MCSH-1) weaker than the argument (MCSH-2), despite the set of premise 

categories is more diverse in the first argument than in the second one. Maybe, 

pigs and chickens were recognized as farm animals, and this suggested possible 

causes of being injected with antibiotics. The fact that those causes are absent in 

cobras may have led to a weaker property generalization. 

 To deepen the study on how causal knowledge interacts with typicality, 

diversity, and similarity effects, Rehder (2006) conducted three experiments in 

which the causal knowledge was explicitly provided to participants (observe 

that in the studies of Lopez et al., 1997; Proffitt et al., 2000; and Medin et al., 

2003 participants’ judgments relied on background knowledge). In each 

experiment two factors were manipulated. One factor was the presence/absence 

of a causal explanation; the other factor was either diversity, similarity, or 

typicality. The results suggest that, if a causal explanation is available, then 
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typicality, similarity, and diversity effects can be reduced or completely 

eliminated.  

 

AVAILABILITY AS A KEY FACTOR TO EXPLAIN CATEGORY-BASED INDUCTION 

 The concept of availability is central for Shafto, Coley, and Vitkin (2007). 

These authors, too, recognize that many kinds of knowledge can support 

inductive reasoning, and that a specific knowledge would be employed in a given 

particular situation. For example, taxonomic knowledge would be preferred 

when reasoning about a novel property concerning internal features such as 

two-chambered liver; ecological knowledge would be preferred, instead, when 

reasoning about toxins or diseases that might spread through an ecosystem. But 

what are the factors that influence the selection of a particular knowledge in a 

given situation? Shafto et al. (2007) argue that different kinds of knowledge are 

differentially available across contexts, and that the ease with which specific 

knowledge comes to mind reflects the probability that such knowledge will 

guide inductive inference. 

 According to Shafto et al.’s (2007) view, availability is a dynamic concept: 

it may change. The main sources determining changes in the availability of 

different kinds of knowledge are short-term influences of context and long-term 

effects of experience. On one hand, the context characterizing category-based 

induction tasks (e.g., the set of categories and the property used) results in acute 

changes in availability. On the other hand, prior knowledge accrued through 

experience results in chronic changes in availability. 

Shafto et al. (2007) reconsider evidence coming from experimental 

results in psychological literature, and they reinterpret existing phenomena in 

light of changes in availability. As will be seen, these changes are due to both 

inductive context and experience in a specific domain. As regards inductive 

context, the results obtained by Heit and Rubinstein (1994), which highlight the 

importance of property in induction, are explained as follows: the given property 

to be generalized makes the specific knowledge that drives inductive inference 

more available. Thus, in general, anatomical knowledge is more available when 
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anatomical properties are given, and likewise behavioral knowledge is more 

available if behavioral properties are provided. 

Another line of evidence, showing how context may change availability, 

concerns the effects of relations among premise categories, or among premise 

and conclusion categories. Work by Medin, Coley, Storms & Hayes (2003) has 

identified a number of effects, termed relevance effects, that demonstrate how 

salient relations among premises categories, or between premises and 

conclusion categories, may direct the assessment of inductive strength. One of 

these effects is non-diversity via property reinforcement. To illustrate, consider 

the following pair of arguments: 

 

 Polar bears have property � 

 Antelopes have property � 

 —————————————  (MCSH-1) 

 All animals have property � 

 

 Polar bears have property � 

 Penguins have property � 

 —————————————  (MCSH-2) 

 All animals have property � 

 

Medin et al. (2003) found that arguments like (MCSH-1) are rated stronger than 

arguments like (MCSH-2), even though, on a taxonomic account, the premises in 

the second argument offer better coverage of the conclusion category than the 

premises in the first argument. It seems that the salient property shared by polar 

bears and penguins – adaptation to a freezing environment – interferes with the 

greater coverage they provide to ANIMAL category. 

A second effect analyzed by Medin et al. (2003) is non-monotonicity via 

property reinforcement. Consider the following two arguments: 
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 Brown bears have property � 

—————————————  (MCSH-3) 

 Buffalo have property � 

 

 Brown bears have property � 

Polar bears have property � 

Black bears have property � 

Grizzly bears have property � 

—————————————  (MCSH-4) 

 Buffalo have property � 

 

By virtue of the monotonicity phenomenon (see Osherson et al., 1990), the 

argument (MCSH-4) should be stronger than the argument (MCSH-3). However, 

Medin et al. (2003) found an opposite trend. A possible explanation is that the 

premises in the argument (MCSH-4) seem to reinforce the idea that property � is 

involved with bears, and therefore the property is unlikely to be true of buffalo. 

Shafto et al. (2007) reinterpret the relevance effects reported by Medin et 

al. (2003) as follows: if specific relations among premises and/or conclusions 

categories are available (e.g., being polar animals or bears), then more general 

phenomena are overcome (e.g., diversity or monotonicity effects).  

The results examined so far are all explained in terms of acute changes in 

availability due to factors that outline inductive context: the nature of property 

and the relations between categories in an argument. Shafto et al. (2007) also 

present evidence that the availability of different kinds of knowledge can be 

mediated by experience in a specific domain. For example, evidence in this 

direction comes from the results of Lopez et al. (1997), and Proffitt et al. (2000), 

which reveal that novices and experts rely on different kinds of knowledge when 

making inductive inferences. It is worth noticing that Rehder (2007) used the 

same results – Lopez et al. (1997) and Proffitt et al.’s (2000) results – to prove 

how causal reasoning may guide induction. By contrast, Shafto et al. (2007) use 
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those results to show that experiential background may lead to chronic changes 

in the kinds of knowledge that are available for inductive reasoning. 

In sum, Shafto et al. (2007) maintain that the notion of availability 

provides a framework which is able to connect a large number of phenomena 

related to category-based induction. This framework can explain the effects of 

properties on inductive reasoning, and can also account for the influence of 

experience in property generalizations.  
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Chapter 2  

In case of uncertain evidence 

 

2.1 The role of uncertainty in everyday life: a psy chological 

perspective 

 

Uncertainty in everyday life is often understood as a part of some underlying, 

causal structure of the world that people strive to comprehend. According to 

Hastie and Dawes (2001), people tend to deny the existence of chance. Or, even 

worse, people tend to conceive some rationale to explain life’s uncertainties. 

Sometimes, the consequences of denying uncertainty and believing in a 

deterministic world can be very severe. Some individuals think that poor people, 

living on the street, must have done something to deserve that fate. And these 

poor people themselves may accept that judgment. In such a situation, assistance 

measures are rendered ineffective.  

Even those who have studied the theory of probability calculus are 

inclined to erroneously interpret the behavior of random processes unless they 

are asked to corroborate their interpretations. A typical misconception about 

randomness is to believe that some kinds of chance events, such as winning the 

lottery, involve skills. This misconception is caused by the fact that, in such 

events, there is an element of active participation. For instance, we have to 

choose a lottery ticket, if we want a chance of winning. Choosing the right ticket 

is often seen as a special ability. But, of course, this reading is not correct. It may 

lead to an illusion of personal control over situations that are governed solely by 

chance. 

According to Hastie and Dawes (2001), it is very easy to confuse factors 

depending on chance with factors based on skill. When evaluating the outcomes 
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of actions that involve both chance and skill (e.g., making a goal in a football 

match), people have a strong propensity to repeat behaviors that precede 

success and change behaviors that precede failure. Such a strategy encourages 

superstitious behaviors. Superstitions, as well as beliefs in tarot cards and 

astrology, help many people to make sense of uncertainty in life.  

It is not pathological to try to reduce uncertainty regarding our existence 

and the environment around us. Uncertainty reduction is essential to the 

cognitive enterprise of understanding the world. It is fundamental even in 

science. However, a complete removal of uncertainty would be dreadful. 

 In Prometheus Bound, Aeschylus writes: 

 

Prometheus: 

I caused mortals to cease foreseeing their doom. 

Chorus: 

Of what sort was the cure that you found for this affliction? 

Prometheus: 

I caused blind hopes to dwell within their breasts. 

Chorus: 

A great benefit was this you gave to mortals. 

(Aeschylus, Prometheus Bound, vv.250-253, Smyth, 1926) 

 

According to Aeschylus, hope comes from the lack of certainty of doom. Hope is 

blind. A life without uncertainty would be unbearable: no hope, no challenge, no 

freedom.  

Imagine the horror of being informed to have a gene that causes 

Alzheimer’s disease with certainty. But being informed about pleasant news 

with certainty would also detract from life’s happiness. It is only because people 

do not know what the future holds for them that they can have hope. It is only 

because people are unaware of the exact consequences of their choices that 

choice can be free, within the limits of morality.  
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Most people recognize that there is a lot of uncertainty in the world. A 

very critical choice is whether to accept that uncertainty or try to avoid it. Those 

who choose to reject uncertainty, or those who believe uncertainty does not 

exist, live in a stable, deterministic world, which is constructed, invented, not 

real. By contrast, those who accept uncertainty can appreciate the limits of 

knowledge. A central part of wisdom is the capacity to establish what is 

uncertain, and comprehend the probabilistic essence of uncertainty in real 

contexts. 

Both in the epistemological and psychological domain, uncertainty is 

normally expressed and formalized in terms of probabilities. It is usual to assign 

a different degree of uncertainty, i.e., a different probabilistic value, to 

alternative hypotheses under examination. Yet, in epistemological and 

psychological research, much less attention has been paid to another kind of 

uncertainty, which is likewise central: the uncertainty relative to a piece of 

evidence.  

In the following section, I will show how classical Bayesian 

conditionalitazion can be extended in order to account for situations where a 

piece of evidence is not certain. 

 

 

2.2  On Jeffrey’s rule 
 

Jeffrey conditionalization represents a formal means to update degrees of belief 

on the basis of uncertain evidence. In what follows, I will illustrate Jeffrey’s rule 

in some details.  

Consider a non-empty set of propositions Γ closed under negation, 

conjunction and disjunction, and consider a probability function ��Z defined, at a 

given time [, over Γ. Suppose that ��O� is a set of mutually exclusive and jointly 

exhaustive events, with �O  Γ and ��Z��O� 0 0 for all \. Jeffrey (1965) has given 

the following definition to introduce his conditionalization: 
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Definition 2.1: A probability measure ��] is said to come from ��Z, by 

probability kinematics on ��O�, if there exists a sequence �^O� of positive real 

numbers summing to one, such that 

 

 ��]��� ! ∑ ��Z��|�O� = ^OO ,  for all �  Γ.                                                       (2.1) 

 

Observe that, if the set ��O� is comprised by only one proposition �, then the 

formula (2.1) reduces to the following: 

 

 ��]��� ! ��Z��|��,  for all �  Γ.                                                                    (2.2) 

 

Thus, probability kinematics turns out to be a generalization of classical 

Bayesian conditionalization. As Wagner (2002) points out, the formula (2.1) is 

equivalent to the conjunction of two conditions: 

 

 ��]��O� ! ^O ,                       for all \, and                                                              (2.3) 

 ��]��|�O� ! ��Z��|�O�,  for all �  Γ and for all \.                                       (2.4)
 

  

Put into words, probability kinematics provides a tool to revise a probability 

function when the total evidence induces a revision of the probabilities of �O – as 

specified by (2.3) – and when nothing new is learned about the relevance of any �O to every proposition � – as specified by (2.4). It is worth noting that the 

probabilities ��]��O� are based not only on new evidence, but also on old 

evidence. 

Although Jeffrey conditionalization appears in many respects to be the 

most appropriate generalization of Bayesian conditionalization, many authors 

have objected that Jeffrey conditionalization is defective, for it is non-

commutative. This means that consecutive applications of Jeffrey 

conditionalization may produce different ultimate results, depending upon the 



 

On Jeffrey’s rule 
49 

 

 
 

order in which those conditionalizations are applied. For example, having 

revised ��Z to ��] by the formula (2.1), consider a subsequent revision of ��] to ��̀  by an analogous formula: 

 ��̀ ��� ! ∑ ��]R�|abW = cbb ,  for all �  Γ,                                                       (2.5) 

 

where dabe and RcbW have the same functions as the previous ��O� and �^O�. Now 

imagine reversing the order of the revisions, so that ��Z is first revised to ��]f by 

means of dabe and RcbW, and then ��]f is revised to ��̀f by means of ��O� and �^O�. It 

may be the case that ��̀ g ��̀f, unless ��O� = ��� and dabe = �a�. Under classical 

Bayesian conditionalization, in fact, ��̀ ��� ! ��Z��|�  a� ! ��Z��|a  �� !��̀f.  
In what follows, I will discuss a numerical example, due to Lange (2000), 

showing the non-commutativity of Jeffrey’s rule. Imagine seeing a bird at 

twilight, and imagine identifying it to be a raven. Consider the following 

propositions: 

 � ! “All ravens are black”, � ! a ! “The bird observed is black”. 

 

Because of the darkness, it is difficult to identify the bird’s color with certainty. 

So suppose that the observation made at twilight can only raise the confidence in � from ��Z��� ! 0.75 to ��]��� ! 0.99. Suppose, moreover, that initially ��Z��  �� ! 0.7 and ��Z��  ��� ! 0, so that ��Z��� ! 0.7. According to 

Jeffrey conditionalization, ��]��� ! @ l.ml.mnE = 0.99 M @ ll.�nE = 0.01 ! 0.924. In 

particular, it results that ��]��  �� ! 0.924 and ��]��  ��� ! 0. Now, 

suppose that a second glance lowers the confidence in �, so that ��̀ ��� ! 0.8. A 

second application of Jeffrey’s rule yields ��̀ ��� r 0.747.  

If, instead, the two experiences occur in a reversed order, namely, ��]f��� ! 0.8 and ��̀f��� ! 0.99, then ��]f��� r 0.747 and ��̀f��� ! 0.924. The 
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main steps in the two cases are summarized in the following sequences of 

revisions. 

  ��Z��� ! 0.7 > > >� ��]��� ! 0.924 > > >� ��̀ ��� r 0.747��Z��� ! 0.75 ��]��� ! 0.99 ��̀ ��� ! 0.8  

(2.6) 

 ��Z��� ! 0.7 > > >� ��]f��� r 0.747 > > >� ��̀f��� ! 0.924��Z��� ! 0.75 ��]f��� ! 0.8 ��̀f��� ! 0.99  

(2.7) 

 

In both sequences, the second glance completely overrides the first glance. Thus, 

apparently, commutativity is not respected: ��̀ ��� g ��̀f���. 

The possibility of such non-commutativity has caused much concern 

among several epistemologists. Van Fraassen (1989) writes about this issue: 

 

Two persons, who have the same relevant experiences on the 

same day, but in a different order, will not agree in the 

evening even if they had exactly the same opinions in the 

morning. Does this not make nonsense of the idea of learning 

from experience?  

(van Fraassen, 1989, p. 338) 

 

Following Lange (2000), I will argue that Jeffrey conditionalization has been 

deemed inadequate on the basis of unjustified concern. Returning to the 

foregoing example, the fact that two persons assign probability values to � in a 

reversed order does not mean that those persons have identical learning from 

the same relevant experiences. Observe that the last step in the sequence (2.6) 

and the first step in the sequence (2.7) are both induced by experiences 

prompting a revision of the belief in �, with the effect of setting ����� ! 0.8. Yet, 

these experiences are not the same. The main reason is that the degree of 
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confidence in �, directly prompted by an experience, depends on agent’s prior 

opinions. In order to explain this, Lange writes:  

 

For an experience at twilight to have lowered our confidence 

in E from 0.99 to 0.8, the bird must have not looked much the 

way a black bird would be expected to look at twilight, 

whereas for an experience at twilight to have raised our 

confidence in E from 0.75 to 0.8, the bird must have looked 

about the way that any dusky colored object would be 

expected to look under those conditions. Plainly, these are 

different experiences. 

(Lange, 2000, p. 398) 

 

Though Jeffrey’s rule may give different ultimate outcomes depending on the 

order in which probability values are plugged in, this does not prove its non-

commutativity. Indeed, the raven example does not show that Jeffrey 

conditionalization leads to different final opinions, starting from the same priors 

and the same experiences.  

 According to Wagner (2002), the concern about the non-commutativity of 

Jeffrey’s rule seems to rely on implicit acceptance of the following two 

principles: 

 

Principle 1: If the experience inducing the revision of ��Z to ��] and the 

experience inducing the revision of ��]f to ��̀f produce the same learning, 

and if the experiences inducing the revision of ��] to ��̀  and the 

experience inducing the revision of ��Z to ��]f produce the same learning, 

then it ought to be the case that ��̀ ! ��̀f. 
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Principle 2: Identical learning deriving from the revision of ��Z to ��] 

and of ��]f to ��̀f ought to be expressed by the probability identities 

 

  ��̀f��O� ! ��]��O�,  for all \,                                                                    (2.8) 

 

and identical learning deriving from the revision of ��] to ��̀  and of ��Z 

to ��]f ought to be expressed by the identities 

 

  ��]fRabW ! ��̀ RabW,  for all s.                                                                    (2.9) 

 

While Principle 1 is wholly correct, Principle 2 is erroneous, since probabilities 

assigned to �O and ab are based on the total evidence, as already mentioned 

earlier. This is to say, probabilities appearing in the condition (2.3), which 

defines Jeffrey conditionalization, depend not only upon new evidence, but also 

upon old evidence, and thus they incorporate elements of the relevant priors. 

 Within the Bayesian framework, it is possible to represent numerically 

what is learned from new evidence alone. The correct representation is provided 

by the ratios of new-to-old odds (see Good, 1950, 1983). Wagner (2002) proved 

that, if Principle 2 is modified by substituting (2.8) and (2.9) with adequate 

identities involving Bayes factors, then Principle 2 is both sufficient and, in many 

cases, necessary for the satisfaction of Principle 1. Put another way, once 

identical learning is appropriately formalized, Jeffrey’s rule does commute 

across order. 

The theoretical study presented in the following section4 addresses the 

issue of generalizing Bayesian theory of confirmation to cases of evidential 

uncertainty. As will be shown, Jeffrey conditionalization will play an essential 

role. 

 

 

                                                
4 Much of the material in §2.3 appears in Crupi, Festa, & Mastropasqua (2008). 
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2.3 A theoretical study on how to adapt confirmatio n 

measures in case of evidential uncertainty 

 

2.3.1 Introduction 
 

Bayesian epistemology postulates a probabilistic analysis of many sorts of 

ordinary and scientific reasoning. Also, contemporary Bayesians typically 

endorse a subjective reading of probability, i.e., interpret probabilities as 

degrees of subjective belief. Huber (2005) has provided a novel criticism of 

Bayesianism, whose core argument involves a challenging issue: confirmation by 

uncertain evidence, i.e., evidence which has not been ascertained. In order to 

assess Huber’s argument, it is crucial to combine Bayesian confirmation theory 

with Jeffrey conditionalization. In the present theoretical study, I will argue that, 

when properly merged with Jeffrey conditionalization, Bayesian confirmation 

theory escapes Huber’s criticism and yields some new and appealing results. 

The discussion will proceed as follows. First, I will outline a generalized 

version of Bayesian confirmation theory which can be readily applied under 

Jeffrey conditionalization. Then, I will review a crucial requirement at the core of 

Huber’s argument and show that it is equivocal. I will argue that on one reading 

it amounts to a compelling principle, whereas on an alternative reading it turns 

out to be highly implausible. Finally, I will show that the proposed account of 

Bayesian confirmation by uncertain evidence appropriately captures the former 

version of the requirement and violates the latter.  

 

2.3.2 Uncertain evidence and Bayesian confirmation 
 

For the purposes of the present study, I will consider a non-empty set of 

statements Γ closed under truth-functional operators such as negation, 

conjunction and disjunction. Bayesians commonly assume that, at a given time [, 
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the belief state of an agent � concerning the statements in Γ is represented by a 

probability function ��Z defined over that set. 

 It may occur that, from time [ to u, � experiences a change in opinion 

concerning a particular �  Γ (provided that ��Z��� is not extreme, i.e., 0 5 ��Z 5 1). Therefore, one important question is: how should �’s beliefs in 

other statements belonging to Γ change as a consequence? 

 Up to the mid-1960s, Bayesians had a ready answer only for the special 

case in which, at time u, � has come to believe that � is certainly true, so that ��]��� ! 1 (and, correspondingly, ��]���� ! 0). ‘Classical’ Bayesian updating 

or conditionalization (BC) postulates that: 

 

If ��]��� ! 1, then for any �  Γ, ��]��� ! ��Z��|��   (BC) 

 

However, it may surely also occur that �’s degree of belief in � changes from 

time [ to u without reaching certainty. What will be the value of ��]��� then? 

Richard Jeffrey has suggested a natural and elegant way to generalize classical 

Bayesian conditionalization (Jeffrey, 1965, Chapter 11; also see Jeffrey, 2004, pp. 

53-55). In Jeffrey conditionalization (JC), it is assumed that: 

 

For any �  Γ, ��]��� ! ��Z��|�� = ��]��� M ��Z��|��� = ��]����     (JC) 

 

Thus, in (JC) ��]��� is computed as an average of the ‘old’ conditional 

probabilities of � on � vs. ��, weighted by the current probabilities of � and ��, respectively. Notice that (JC) is obtained directly by the formula (2.1) 

supposing ��O� ! ��, ��� (see §2.2). It is easy to see that Jeffrey 

conditionalization is a proper generalization of classical Bayesian updating in the 

sense that (JC) implies (BC) (not the converse). Under Jeffrey conditionalization, 

however, a change in belief about � prompts the updating of the prior 

probability ��Z��� to a new value ��]��� which is generally not identical to 

either the conditional ��Z��|�� (except when � does become certainly true) or 
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the conditional ��Z��|��� (except when � becomes certainly false), but rather 

lies between those two values. 

 Now consider the Bayesian notion of confirmation. Bayesian confirmation 

theory has been commonly elaborated and applied on the background of 

classical Bayesian updating. The issue has been to formalize the impact on a 

hypothesis � on the (often implicit, and quite restrictive) assumption of 

evidence � having been ascertained, i.e., precisely in case ��Z��� g ��]��� ! 1. 

Then � is said to be confirmed iff ��]��� ! ��Z��|�� 0 ��Z��� and to be 

disconfirmed iff ��]��� ! ��Z��|�� 5 ��Z���. (If ��]��� ! ��Z��|�� ! ��Z���, 

it is said that coming to know that � is neutral for �.) 

 Can Bayesian confirmation theory be extended to cases such that from 

time [ to u the probability of � changes, but the assumption of � having been 

ascertained at u is relaxed? In other terms, is there any natural way to parallel 

Jeffrey’s generalization of classical Bayesian updating in the framework of 

confirmation, and provide a plausible probabilistic account of confirmation by 

uncertain evidence? In what follows, I will claim that the answer is in the 

positive. (In essence, I will be following a proposal already made in Festa, 1999, 

pp. 56-59.) 

 It is well known that various alternative measures of confirmation have 

been proposed and defended by Bayesian theorists (see Festa, 1999; Fitelson, 

1999; see also §1.1.2). For the purposes of the present study, it will be 

convenient to focus on a core set of such confirmation measures which share the 

following interesting property: they can be defined by means of a function c 

depending only on ����|�� and �����, c being a strictly increasing function of 

the former value and a non-increasing function of the latter. We will call such 

confirmation measures classically P-incremental. Classically P-incremental 

measures include: 

• the ‘difference’ measure, first defined by Carnap (1950/1962a, p. 

361) as: 

 H��, �� ! ����|�� > ����� 
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• the ‘ratio’ measure, first defined by Keynes (1921, pp. 150-155) as: 

 

J��, �� ! ����|�������  

 

• the ‘odds ratio’ measure, first conceived by Alan Turing (as reported 

by Good, 1950, pp. 62-63) as5: 

 

vJ��, �� ! ����|�� �����|��⁄����� ������⁄  

 

• and the following measure, recently discussed by Crupi et al. (2007) 

 

L��, �� !
&'(
')����|�� > �����1 > ����� if ����|�� x �����

����|�� > ���������� otherwise 9 
 

Notice that, in the notation adopted here, ����� ! ��Z��� whereas, under 

classical Bayesian conditionalization, ����|�� ! ��]���. Thus, when classical 

Bayesian conditionalization applies, the above definitions can immediately be 

converted into: 

 HZ,]��� ! ��]��� > ��Z��� 

 

JZ,]��� ! ��]�����Z��� 

 

vJZ,]��� ! ��]��� ��]����⁄��Z��� ��Z����⁄  

                                                
5 Advocates of measure vJ include Good himself (1950, 1983) as well as Fitelson (2001a). 
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LZ,]��� !
&'(
')��]��� > ��Z���1 > ��Z��� if ��]��� x ��Z���

��]��� > ��Z�����Z��� otherwise 9 
 

Here, the double subscript ‘[, u’ highlights the fact that confirmation is relative in 

an important sense: it is crucial for confirmation (disconfirmation) of a 

hypothesis � by a change in opinion about � to occur in the shift from one 

probability distribution, ��Z, to another, ��] , such that ��Z��� g ��]���. 

 But now my claim is that these latter formulas already represent 

straightforward ways to generalize the corresponding confirmation measures as 

usually defined in the literature. This is because HZ,]���, JZ,]���, vJZ,]��� and LZ,]��� all measure (although in different ways) the departure from the initial 

probability of � – ��Z��� – of an appropriately updated probability ��]���. 

Under Jeffrey conditionalization, generalized confirmation will amount to the 

departure from prior probability not of the conditional ��Z��|�� (which, again, 

is not attained except in the special case of � having in fact being ascertained), 

but rather of the updated probability ��]��� to which a change in belief about 

the uncertainty of � will lead. Clearly, for any classically P-incremental Bayesian 

confirmation measure, a generalized version can be devised along these lines. 

Importantly, by such a move, any classically P-incremental measure will also 

satisfy a generalized condition of P-incrementality, i.e., it will be expressible by 

means of a function c depending only on ��]��� and ��Z���, c being a strictly 

increasing function of the former value and a non-increasing function of the 

latter.6 

                                                
6 Such a generalized P-incrementality condition will play an important role in what follows. For 

this reason, I am leaving aside here various confirmation measures proposed by Bayesian 

theorists which are demonstrably not P-incremental (see Carnap, 1950/1962a, p. 360; Nozick, 

1981, p. 252; Mortimer, 1988, Section 11.1; Christensen, 1999, p. 449; Joyce, 1999, Chapter 6). 
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As a final remark, notice that, even beyond Jeffrey conditionalization, 

generalized P-incremental measures are suitable to application under any kind 

of updating rule considered in probability kinematics. This is because they only 

require defined values of ��Z��� and ��]��� themselves, however related.7  

 

2.3.3 Bayesian confirmation by uncertain evidence: test cases and 

basic principles 

 

Huber (2005) has provided a useful hypothetical test case for Bayesian 

confirmation by uncertain evidence. Suppose: 

 

 � ! “All Scots wear kilts”, 

 � ! “The Scottish guy Stephen wears a kilt”. 

 

Notice that � � � (not the converse), so that the probability of the latter given 

the former must equal 1.8 Also, a Bayesian account would provide an agent � 

with initial probabilities ��Z��� and ��Z��� such that ��Z��� 0 ��Z���, again 

because of the logical relationship between the two statements. It is then 

assumed that � is initially uncertain about both � and �, so that both ��Z��� and ��Z��� are not extreme. It follows that coming to believe with certainty that “the 

Scottish guy Stephen wears a kilt” would confirm “all Scots wear kilts”, i.e., ��Z��|�� 0 ��Z���. 

                                                
7 Over the years, Bayesian theorists dealing with probability kinematics have considered various 

forms of updating, as prompted by different kinds of information (see, for instance, van Fraassen, 

1980; Jeffrey, 1992, Chapters 6–7). 

8 Strictly speaking, in order to have � � �, “Stephen is Scottish” should be included as a separate 

background knowledge statement within Γ, and the notation should be modified accordingly. I 

embedded the statement “Stephen is Scottish” in � simply for ease of exposition. This, however, 

has no effect on the issue discussed in the present study. 
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 Suppose that �, who is not wearing her glasses, looks at Stephen and 

comes to subjectively believe that “the Scottish guy Stephen wears a kilt” with a 

moderate level of confidence, assumed to be represented by:  

 ��]��� ! 0.6. 

 

Importantly, Huber’s (2005) discussion of the example clearly suggests that ��]��� 0 ��Z���, i.e., that �’s observation has increased her confidence in �.  

 Now consider � looking at Stephen with her glasses on and coming to 

subjectively believe that “the Scottish guy Stephen wears a kilt” with a high level 

of confidence, e.g., such that: 

 ��̀ ��� ! 0.9. 

 

Commenting on his example, Huber remarks that “if some E speaks in favor of 

some H – say, because it is a logical consequence of the latter – then [...] getting to 

know that E is probably true should provide confirmation for H – and the more 

probable it is that E is true, the more it should do so” (p. 105). Here I will focus on 

the last part of this statement, conveying the following comparative principle of 

confirmation by uncertain evidence: 

 

If coming to believe with certainty that � would confirm �, then,  

the more probable it becomes that � is true, the more this should  

confirm �.            (H) 

 

Huber considers various Bayesian confirmation measures, provides his own 

formal analysis of Bayesian confirmation in the ‘kilt’ case and argues that the 

difference measure H, the ratio measure J and the odds ratio measure vJ all 

violate the allegedly compelling principle (H). He concludes that serious doubts 

arise on the adequacy of the Bayesian approach and elaborates the point in 

various ways. 
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 As Huber himself points out, however, his own example can be read in 

two ways: (i) on one hand, ��] and ��̀  could be seen as referring to two 

alternative possible worlds, both branching from the state represented by ��Z; 

(ii) on the other hand, ��Z, ��] and ��̀  could be seen as following each other in a 

single time sequence. Importantly, Jeffrey conditionalization can be indifferently 

applied if either (i) or (ii) is adopted and, in both cases, it provides one unique 

value for ��]��� as well as one unique value for ��̀ ���.9 Yet the distinction 

between the possible worlds and the time sequence interpretation emphasizes 

that principle (H) is equivocal, as it can be taken as reflecting each one of two 

very different adequacy requirements imposed on a candidate measure of 

confirmation by uncertain evidence �. 

 If the kilt example is read in terms of possible worlds, then the most 

natural rendition of (H) is: 

 

 Provided that ��Z��|�� 0 ��Z���, if ��Z��� 5 ��]��� 5 ��̀ ���, 

then �Z,]��� 5 �Z,`���.                   (H.1) 

 

In words, this means that the higher the increase from the initial probability of 

an � confirming � the higher the confirmatory impact on � will be.  

 If, however, the kilt example is read in terms of a single time sequence 

(which is Huber’s main line in his paper), then principle (H) can also be seen as 

stating: 

 

                                                
9 One may doubt that ��̀ ��� will remain equal when arrived at from ��Z  vs. from ��] , i.e., that 

��Z��|�� = ��̀ ��� M ��Z��|��� = ��̀ ���� ! ��]��|�� = ��̀ ��� M ��]��|��� = ��̀ ����. 

This will be so, however, by virtue of a condition known as rigidity (Jeffrey, 1965, Chapter 11) or 

invariance (Jeffrey, 2004, p. 52), according to which ��Z��|�� ! ��]��|�� and ��Z��|��� !��]��|���. It can be proven that rigidity is implied by Jeffrey conditionalization (indeed, it is 

logically equivalent to it). 
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Provided that ��Z��|�� 0 ��Z���, if ��Z��� 5 ��]��� 5 ��̀ ���, 

then �Z,]��� 5 �],`���.                  (H.2) 

 

As compared to (H.1), this is a completely different claim: it means that any 

subsequent increase (no matter how small) in the probability of an � confirming � will have a greater confirmatory impact on � than any previous increase (no 

matter how large) in the probability of �.  

 My claim here is that, while (H.1) is a perfectly safe and sound intuitive 

constraint on an adequate theory of confirmation by uncertain evidence, (H.2) is 

utterly implausible (as it will be argued shortly).  

 As for (H.1), it can be shown that (see the Appendix ~ for a proof): 

 

Theorem 2.1: Any Bayesian confirmation measure �Z,]��� enjoying generalized 

P-incrementality satisfies (H.1). 

 

By contrast, in appropriate cases all alternative confirmation measures 

considered here will agree in violating (H.2) – as they should. In fact, it is easy to 

conceive examples where the increase from ��]��� to ��̀ ��� is so much smaller 

(on any plausible standard of comparison) than the increase from ��Z��� to ��]��� that (H.2) is a highly unappealing principle. 

 To illustrate, suppose that: 

 ��Z��|�� ! 1, ��Z��� ! 0.05, ��Z��� ! 0.10, ��]��� ! 0.80, ��̀ ��� ! 0.81. 
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By Jeffrey conditionalization, it can be computed that: 

 ��]��� ! 0.40, ��̀ ��� ! 0.405. 

 

Then: 

 HZ,]��� ! ��]��� > ��Z��� ! 0.35 0 0.005 ! ��̀ ��� > ��]��� ! H],`���. 

 

Similarly, it can be computed that: 

 JZ,]��� ! 8 0 1.0125 ! J],`���, 

 vJZ,]��� r 12.667 0 1.021 r vJ],`���, 

 LZ,]��� r 0.368 0 0.008 r L],`���. 

 

Thus, all four confirmation measures considered here appropriately violate (H.2) 

in simple clear-cut cases, i.e., when a subsequent increase in the probability of an � confirming � is unequivocally very small (e.g., 0.80 to 0.81) as compared to a 

previous increase in the probability of the same � (e.g., 0.10 to 0.80).10 

                                                
10 It is fair to say that this line of argument is partly anticipated, and criticized, by Huber (2005) 

towards the end of his paper (pp. 111ff.). Huber’s critical point essentially amounts to the 

remark that, when uncertain evidence is at issue, �Z,]��� crucially depends on ��Z  even in 

qualitative terms (confirmation vs. disconfirmation). This seems, however, an appropriate 

feature of Bayesian confirmation by uncertain evidence. Indeed, should it be the case that – for 

any reason – looking at Stephen actually decreased �’s confidence in � down to 0.6 from an 

initially higher value, we would like to say that this has disconfirmed � to some extent. In fact, in 

such a situation, �Z,]��� would assume a negative value, since by Jeffrey conditionalization ��]��� would itself be lower than ��Z���. (Also see footnote 11.) 
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 In conclusion, contrary to Huber’s claim, Bayesian confirmation theory, 

when properly generalized, actually gets things right when it comes to 

confirmation by uncertain evidence – i.e., satisfies principle (H.1) and violates 

(H.2).11 

 

                                                
11 The lack of an explicit unpacking of statement (H) may not be the only reason why Huber 

(2005) thinks otherwise. From his analysis, it seems that a further reason boils down to his own 

way of applying Bayesian confirmation under Jeffrey conditionalization. To illustrate, consider 

the ‘difference’ measure of confirmation. In line with the notation utilized so far, Huber (2005, p. 

104) seems to have primarily employed the following way of computing degrees of confirmation:  

HZ,]� ��� ! ��]��|�� > ��]���. 

This is unfortunate, however, for this quantity does not measure the departure of the 

appropriately updated probability of � from the initial one. In fact, under Jeffrey 

conditionalization, it seems obvious that ��]���, and not ��]��|��, represents the degree of 

belief in � at time u – when the probability of � has shifted to non-extreme values – whereas ��Z���, and not ��]���, represents the initial degree of belief in �. Indeed, if HZ,]� ��� is adopted, 

not only the implausible principle (H.2), but even the compelling requirement (H.1) itself will be 

systematically violated. This is bad enough, but it gets worse. For HZ,]� ��� implies that even a 

decrease in the probability of a confirming � will confirm �. In fact, it can be proven that, for 

whatever (non-extreme) value of ��Z��� and ��]���, provided that ��Z��|�� 0 ��Z���, HZ,]� ��� 

will be higher than the neutrality value 0. In the presence of what I see as a highly plausible 

alternative way to apply Bayesian confirmation to uncertain evidence, which does not exhibit 

such undesirable properties, the latter remarks seem to show the inadequacy of HZ,]� ��� – not of 

Bayesian confirmation theory itself. 
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Chapter 3  

An experimental study on inductive 

reasoning with uncertain evidence 

 

3.1 Aim of the study 
 

Judgments concerning the support that a piece of information brings to a 

hypothesis are commonly required in scientific research as well as in other 

domains (medicine, law). A major aim of a theory of inductive reasoning is to 

provide a proper foundation for such confirmation judgments. 

 Previous research has shown that, after acquiring some pieces of certain 

evidence, intuitive assessments of inductive confirmation can be elicited directly, 

as people prove able to appropriately distinguish between posteriors and 

degrees of confirmation (see Tentori, Crupi, Bonini, & Osherson, 2007). It has 

also been observed that intuitive confirmation judgments based on ascertained 

evidence tend to conform to normatively appealing models such as K and L (see 

Crupi, Tentori, & Gonzalez, 2007). 

 However, in a large number of real situations, the evidence available is 

not certain, and the psychology of confirmation by uncertain evidence appears to 

have remained unexplored so far. The present experimental study aims at 

answering the following basic questions: 

• Do judgments of inductive strength depend on the degree of 

evidential uncertainty? 

• To what extent of accuracy can people judge the impact of an 

uncertain piece of evidence on a given hypothesis? 
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Two experiments have been carried out in an attempt to investigate whether the 

noteworthy results of previous studies on confirmation can be extended to 

scenarios involving uncertain evidence12. 

 

 

3.2 Experiment I 
 

3.2.1 Introduction 
 

Uncertainty is recognized as a ubiquitous challenge for human cognition and 

theories thereof (see, e.g., Hastie & Dawes, 2001; Jeffrey, 1992; Oaksford & 

Chater, 2007). Nonetheless, major theoretical accounts of reasoning typically 

assume some evidence to be known with certainty and to play a crucial role. 

Bayesianism is no exception, at least in its ‘textbook’ versions (Hartmann, 2008): 

a Bayesian agent is supposed to evaluate hypotheses by probabilistically 

conditionalizing on data that are acquired as certain. As useful as it may be for 

epistemological analysis, the latter assumption amounts to a rather crude 

simplification in psychological terms, as it is rarely met in real settings. In a 

murder trial, for instance, the defendant’s presence at the scene of the crime may 

be highly relevant for the hypothesis of guilt, yet it can hardly be completely 

ascertained in a court of law. At best, a DNA test or a reliable testimony can make 

it very probable. Indeed, in a variety of situations, people may need to assess the 

impact of a piece of evidence with probabilities that significantly change without 

attaining extreme values. 

Psychological research on inductive reasoning has largely shared the 

focus on ascertained evidence. For instance, from seminal inquiries up to more 

recent developments, the categorical induction paradigm presents participants 

with the consideration of a hypothesis/conclusion (e.g., “Birds have an ulnar 

                                                
12 Much of the material in §3.2, §3.3, and §3.4 appears in Mastropasqua, Crupi, & Tentori 

(submitted). 
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artery”) as possibly supported by an allegedly known fact given as a premise 

(e.g., “Robins have an ulnar artery”) (see, e.g., Osherson et al., 1990; Heit, 1998; 

Medin et al., 2003; Blok, Medin, & Osherson, 2007; Blok, Osherson, & Medin, 

2007; Kemp & Tenenbaum, 2009). Now that a considerable amount of data and 

theorizing has been accumulated, it seems of interest to extend the empirical 

study of inductive reasoning beyond the limits of this framework, addressing 

how uncertain evidence is employed in hypothesis evaluation. 

In what follows, two experiments concerning assessments of the 

inductive impact of uncertain evidence will be presented. Before that, however, I 

will need to briefly illustrate the relevant theoretical framework which extends 

the basic Bayesian account to the uncertain evidence case. The two experiments 

will then provide an empirical test of the descriptive adequacy of this normative 

benchmark. 

 

JEFFREY’S RULE OF CONDITIONALIZATION 

Consider a pair of complementary hypotheses of interest � and �� (extending 

the following treatment to any richer partition is straightforward). In the 

Bayesian framework, it is assumed that, at a given time N, the belief state of an 

agent is represented by a probability function ��� defined over � and ��. It may 

occur that, from time N to N M 1, the agent experiences a change in opinion 

concerning a further statement � – provided that ������ is not extreme to begin 

with, i.e., 0 5 ������ 5 1. Jeffrey conditionalization provides a natural way to 

update the probability values of � and ��, in case the agent’s degree of belief in � changes from time N to N M 1 without reaching certainty. According to Jeffrey’s 

rule, it is assumed that (see §2.2 and §2.3.2):  

 

 �������� ! �����|�� = �������� M �����|��� = ���������                     (3.1) 
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Thus, �������� is computed as an average of the ‘old’ conditional probabilities of � on � vs. ��, weighted by the current probabilities of � and ��, respectively.  

Jeffrey’s generalized rule of conditionalization is both elegant and 

plausible. Indeed, by virtue of the theorem of total probabilities, this updating 

rule turns out to be mandatory through mere probabilistic coherence once it is 

assumed that �����|�� ! �������|�� and �����|��� ! �������|��� – a 

condition named rigidity (Jeffrey, 1965, Ch. 11) or invariance (Jeffrey, 2004, p. 

52). (See Oaksford & Chater, 2007, pp. 113ff. for a discussion of the rigidity 

condition in psychology.)  

Along with Jeffrey’s, another influential treatment of probability updating 

upon uncertain evidence has been devised by Pearl (1988). Labeled the method 

of virtual evidence, the latter account exploits the powerful formalism of 

Bayesian networks. It is worth noting, thus, that Chan and Darwiche (2005) 

provided mathematical results to the effect that one can neatly translate any of 

Jeffrey’s and Pearl’s machinery into the other. 

 

FROM CONDITIONALIZATION TO CONFIRMATION BY UNCERTAIN EVIDENCE 

For most contemporary Bayesian theorists, there is a major conceptual 

difference between posterior probability (whatever the kind of 

conditionalization being involved) and inductive confirmation (see, e.g., Carnap, 

1950/1962a; Fitelson, 1999; see also §1.1.1 and §1.1.2). Inductive confirmation 

is a relative notion in a very crucial sense: the credibility of a hypothesis can be 

changed in either a positive (confirmation in a narrow sense) or negative way 

(disconfirmation) by a given piece of evidence. Confirmation (in the narrow 

sense) thus reflects an increase from prior to posterior probability, whereas 

disconfirmation reflects a decrease. As a consequence, the degree of 

confirmation is not the same as the posterior probability. To illustrate, the 

probability of an otherwise very rare disease (�) can be quite low even after a 

relevant positive test result (�); yet � is inductively confirmed by � to the extent 

that its probability has risen thereby. By the same token, the probability of the 
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absence of the disease (��) can be quite high despite the positive test result (�), 

yet �� is disconfirmed by � to the extent that its probability has decreased 

thereby. As confirmation concerns the relationship between prior and posterior, 

there is simply no single probability value that can capture the notion.  

A natural way to measure degrees of inductive confirmation amounts to 

positing a function ��,������ mapping a relevant set of probability values from ��� and ����� onto a number which is positive, null or negative depending on the 

posterior of � being higher, equal or lower as compared to its prior, i.e.: 

  

��,��� :0 0 if  �������� 0 ������! 0 if  �������� ! ������5 0 if  �������� 5 ������9                                                                   (3.2) 

 

Various alternative measures of confirmation have been proposed and defended 

which satisfy this basic constraint (see Festa, 1999; Fitelson, 1999; Crupi et al., 

2007; Crupi, Festa, & Buttasi, in press; see also §1.1.2 and §2.3.2). As shown by 

Crupi, Festa and Mastropasqua (2008), moreover, major confirmation measures 

can be defined in a completely general fashion, i.e., not depending on the 

particular rule of conditionalization leading from ������ to if  ��������. In this 

way, they can be readily applied when the credibility of hypothesis � is affected 

by a change in the probability of some relevant piece of evidence � which does 

not attain certainty. In what follows, I will focus on the following measures of 

inductive confirmation (for brevity of notation, ‘v’ denotes odds, so that v���� ! ������ �������⁄  and v������ ! �������� ���������⁄ ):  

 

 K�,������ ! �����D�����D������D�����D�                 (3.3a) 
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L�,������ ! :AB����D��AB��D���AB��D� if �������� x ������
AB����D��AB��D�AB��D� otherwise 9              (3.3b) 

 

Measure K�,������ is strictly connected with the log likelihood ratio measure 

first conceived by Alan Turing (as reported by Good, 1950, pp. 62-63; also see 

Kemeny & Oppenheim, 1952; Fitelson, 2001)13.  

While non-equivalent in general terms, measures K�,������ and L�,������ 

share a number of properties which single them out as particularly appealing as 

normative models (see Eells & Fitelson, 2002; Crupi et al., 2007; see also §1.1.2). 

Among other things, each of K�,������ and L�,������ achieves a fixed finite 

maximum [minimum] value +1 [–1] in the limiting case of an ascertained piece 

of evidence � implying [contradicting] �, thus naturally matching the bounded, 

bidirectional and symmetric rating scale employed in the experiments I am 

presenting.  

Experiment I was conceived as a first test of the descriptive adequacy of 

measures K�,������ and L�,������ relative to judgments of confirmation by 

uncertain evidence. The degree of uncertainty of evidence was manipulated by a 

purposely devised sampling procedure, as explained below. 

 

3.2.2 Method 
 

Thirty-three students (17 females, mean age 25 years) from the University of 

Trento participated in Experiment I in exchange for course credit.  

Participants performed two tasks: a confirmation task first, then a 

probability task.14 A custom Java application was used for stimuli presentation 

and to collect participants’ responses.  

                                                
13 Indeed, under strict Bayesian conditionalization, K�,������ ! tanh ��� ln�����|�� ����|���⁄ ��. 
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CONFIRMATION TASK 

Participants were presented with seven sets of four inductive arguments each. 

The four arguments in a set each involved an identical piece of evidence and a 

different hypothesis. The probability of evidence varied across the seven sets 

(seven levels, one for each set, ranging between 100% and 0%, see Table 3.1) 

and was manipulated by means of the following scenario:15 

 

Consider a group of 1,000 students, 500 males and 500 

females, randomly selected at the University of Trento. For the 

sake of convenience, these 1,000 students have been ordered 

alphabetically by their surname, from A to Z. Starting from the 

beginning of the alphabetical list, separation lines have been 

entered after each set of ten students, as shown below. [The 

relevant graphical display was provided.] In this way, the 

1,000 students have been divided into 100 groups, each 

formed by 10 students. In what follows we will repeatedly 

draw at random one among the 100 groups of students, then 

again one at random among the 10 students in that group. 

Draws will be independent at each trial (so, in principle, the 

same student might be selected more than once). 

 

The gender of the drawn student represented the relevant evidence and the 

double sampling procedure (i.e., first drawing a group, then a student from that 

                                                                                                                                      
14 Confirmation judgments represented the ultimate variable of interest of this study, with 

probability estimates providing relevant data for the empirical test of Bayesian confirmation 

measures. By consequence, task order was kept fixed for all participants in an effort to preserve 

the intuitive and naïve character of confirmation assessments from any risk of carry over effects. 

15 All materials are translated from Italian. 
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group) provided a plausible way to manipulate its probability. For example, 

participants concurred that a student drawn from a group of 8 males and 2 

females had a 0.8 probability of being male vs. a 0.2 probability of being female.  

After the student was said to have been drawn, participants were 

presented with a set of four inductive arguments each involving the same 

information about the probability of the student being a male vs. female coupled 

with one among four different hypotheses (see Table 3.1 for a full description of 

the hypotheses employed). An example of argument as displayed in the 

experiment is provided by the Figure 3.1. 

 

Table 3.1: The seven levels of uncertain evidence and four 

hypotheses appearing in the inductive arguments employed in 

Experiment I 

 

Information about uncertain evidence 

 

the drawn student is 

male with probability [100%; 80%; 70%; 50%; 30%; 20%; 0%]  

female with probability [0%; 20%; 30%; 50%; 70%; 80%; 100%]  

 

Hypotheses 

 

the drawn student 

[owns a 10,000 euro motorbike; owns a 10,000 euro necklace;  

usually has a beard shave; usually applies eye make-up] 

 

Participants were asked to estimate inductive confirmation concerning the four 

arguments presented. In order to do so, they were asked to drag each argument 

icon on an ‘impact scale’, thus assigning it a value. The scale (see Figure 3.2) had 

two opposite directions, corresponding to positive and negative impact, 
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respectively, as well as a neutral point in the middle, corresponding to no 

impact. 

 

Figure 3.1: Example of argument employed in Experiment I 

 

INFORMATION (surely true): 

the drawn student is 

male with 80% probability  

female with 20% probability  

 

HYPOTHESIS (can be true or false): 

the drawn student  

owns a 10,000 euro motorbike 

 

Figure 3.2: The impact scale used for confirmation judgments in Experiment I 

 

  

Participants were instructed to place the argument icon as much to the right 

[left] as they judged the information given about the uncertainty of evidence to 

increase [decrease] the plausibility of the hypothesis. Once they expressed their 

judgments, a novel double sampling was said to have been performed, and 

participants were requested to evaluate another set of inductive arguments; and 

so on for all seven sets. 
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On the whole, 28 confirmation judgments were collected for each 

participant (7 sets times 4 hypotheses). The concurrent evaluation of four 

arguments fostered relevant comparisons and appropriate use of the 

quantitative scale. (Based on pilot studies, the four hypotheses chosen were 

expected to elicit quantitatively different judgments on both the positive and 

negative side of the impact scale.) 

 

PROBABILITY TASK 

After the confirmation task, participants were asked to consider again a group of 

1,000 students, 500 males and 500 females, and to answer questions like the 

following, for each hypothesis:  

 

How many male students out of 500 own a 10,000 euro motorbike? 

How many male students out of 500 do not own a 10,000 euro motorbike? 

How many female students out of 500 own a 10,000 euro motorbike? 

How many female students out of 500 do not own a 10,000 euro motorbike? 

 

Complementary estimates were asked in order to increase accuracy. Participants 

could begin from the estimate they preferred; the software required each pair of 

complementary estimates to sum up to 500 (in Appendix �, a sequence of screen 

displays produced by Java application is provided to better illustrate the 

experimental procedure of Experiment I).  
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3.2.3 Results and Discussion 
 

In what follows, I denote by ����^��,������ any of the twenty-eight confirmation 

judgments expressed by participants during the confirmation task. Following the 

notation used in §3.2.1, � stands for a hypothesis, corresponding to one of those 

shown in Table 3.1; subscripts N and N M 1 indicate, respectively, the initial and 

subsequent degrees of belief concerning statement �, which in turn can be 

regarded as “the drawn student is male”. 

In order to test relevant theoretical predictions against collected 

judgments, quantities ������ and �������� were calculated for each of the 

twenty-eight arguments presented and for each participant by means of the 

theorem of total probability and Jeffrey’s conditionalization rule, respectively, 

i.e.: 

 

[theorem of total probabilities] ������ ! �����|�� = ������ M �����|��� = �������                               (3.4a) 

 

[Jeffrey conditionalization]  �������� ! �����|�� = �������� M �����|��� = ���������                   (3.4b) 

 

Notice that all values in Eqs. (3.4) were available. The experimental procedure 

fixed ������ and ��������. In particular, the initial probability that the drawn 

student was male, ������, was set at 0.5, as participants were informed from the 

beginning that the overall group of 1,000 students was formed by an equal 

number of males and females; �������� was then provided by the additional 

information contained in each argument as amounting to one of the seven levels 

of evidence uncertainty reported in Table 3.1. Values �����|�� and �����|���, 

on the other hand, emerged from the estimates that each participant expressed 

while performing the probability task and were simply obtained through 
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division by 500 of the estimate given in response to the question about the 

number of male and female students (out of 500) satisfying hypothesis � (e.g., 

owning a 10,000 euro motorbike; see Table 3.1). 

If confirmation by uncertain evidence is appropriately assessed, then ����^��,������ should match the basic condition displayed for ��,������ in 

§3.2.1 (see Eq. 3.2), i.e., it should be the case that: 

 

����^��,������ :0 0 if  �������� 0 ������! 0 if  �������� ! ������5 0 if  �������� 5 ������9                                               (3.5) 

 

The first analysis aimed at checking whether the basic normative constraint in 

Eq. (3.5) was indeed satisfied. Overall, only 17 among 28 × 33 = 924 (1.8%) ����^��,������ violated Eq. (3.5). The same analysis was also carried out after 

splitting the confirmation judgments into two subsets consisting of limiting 

cases of evidence uncertainty vs. cases of strict evidence uncertainty, 

respectively. The former subset includes 8 × 33 = 264 judgments with �������� 

amounting to either 100% or 0% (indicating that either � or �� was in fact 

certain evidence at N M 1); the latter subset includes all other 20 × 33 = 660 

judgments, with �������� amounting to intermediate values between 80% and 

20% (see Table 3.1). In both subsets the proportion of violations of Eq. (3.5) was 

negligible (0.4% in limiting cases and 2.4% under strict uncertainty). Thus, 

intuitive confirmation judgments elicited in Experiment I largely reflect the 

theoretical distinction of positive, null and negative impact even when evidence 

is strictly uncertain. 

A second kind of analysis was aimed at measuring the degree of association 

between participants’ confirmation judgments and the corresponding 

quantitative degrees of confirmation as predicted by measures K and L. In line 

with the notation introduced earlier, I denote by K�,������ and L�,������ any 

confirmation judgment as predicted by K and L, respectively. For each 
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participant, the 28 K�,������ and L�,������ values were first computed, by 

directly substituting ������ and �������� into the relevant expressions (see Eqs. 

(3.3) in §3.2.1). For two participants, some K�,������ turned out to be undefined 

because ������ and �������� were zero for some hypotheses � (division by 

zero) and were thus excluded from the present analysis. For each of the 

remaining 31 participants, Pearson16 correlations were computed between the 

28 ����^��,������ and the corresponding 28 K�,������, Z�,����H�, and posterior 

probabilities as arising from Jeffrey conditionalization. Average correlations 

across participants are shown in Table 3.2.  

 

Table 3.2: Results from experiment I 

 

  Predicted 

confirmation (K) 

Predicted 

confirmation (L) 

 Posterior probability 

(Jeffrey conditionalization) 

Judged 

confirmation 

 
0.913* 0.903*  0.662 

 

Note. The table contains average Pearson correlations between judged confirmation and 

confirmation predicted by K and L, and between judged confirmation and posterior 

probability computed by Jeffrey conditionalization. Each value is the average of 31 

Pearson correlations (one per participant) involving 28 observations. (Starred averages 

are reliably greater than the average for posterior probability by paired t-test, � 5 0.01.) 

 

If participants’ judgments did not appropriately reflect the distinction between 

confirmation and posteriors, then the average correlation from posterior 

probability would have been close to 1. It can be seen that, on the contrary, 

posterior probability produced the lowest average correlation. Indeed, paired t-

tests revealed that average correlations yielded by K and L were both reliably 

greater than that computed by posterior probability (� 5 0.01). Thus, 

                                                
16 I assume ����^��,������ to lie on interval scale, as participants expressed their confirmation 

judgments through a continuous scale.  
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participants were apparently able to assess confirmation as distinct from 

posterior probability. Furthermore, the high average correlations with both K 

and L indicate that participants’ confirmation judgments were normatively 

sound, viz. close to those implied by credible theoretical models, with a small but 

significant (� 5 0.01, by paired t-test) higher predictive accuracy of K as 

compared to L. 

The same quantitative analyses were also carried out on a more detailed 

level by identifying three subsets of judgments. The first subset amounts to the 

limiting cases of evidence uncertainty as defined above, i.e., with �������� equal 

to either 100% or 0%. The second and third subsets consist in two classes of 

cases of strict evidence uncertainty: �������� equal to either 80% or 20% and �������� equal to either 70% or 30%, respectively. Results closely matched 

those from the general analysis reported above. Average correlations with each 

of the measures K and L were statistically indistinguishable across all three 

subsets. Within each subset, both K and L were consistently superior predictors 

as compared to posterior probability (� 5 0.01 by paired t-tests), with K 

consistently more accurate than L (� 5 0.05 by paired t-tests).  

 

 

3.3 Experiment II 
 

3.3.1 Introduction 
 

Experiment I employed inductive arguments in which the probability of 

evidence was explicitly provided (e.g., “the drawn student is male with 

probability 80%, female with probability 20%”). Results show that participants’ 

judgments largely conform to plausible normative models. However, in most 

inductive arguments from real life people have to deal with uncertain evidence 

while not being given any numerical measure of belief by some external source. 
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As a test of generality, in Experiment II the uncertainty of evidence has been 

manipulated indirectly, by means of ambiguous pictures.  

 

3.3.2 Method 
 

Thirty-four students (15 females, mean age 26 years) from the University of 

Trento participated in Experiment II in exchange for course credit. None had 

participated in Experiment I. As in Experiment I, participants performed a 

confirmation task followed by a probability task presented through a custom 

Java application. 

 

CONFIRMATION TASK 

The confirmation task was basically the same as in Experiment I, the only 

difference being the way in which evidential uncertainty had been manipulated. 

In Experiment II, participants were presented with the following scenario: 

 

Consider a group of 1,000 students, 500 males and 500 

females, randomly selected at the University of Trento. In 

what follows we will repeatedly draw at random one among 

the 1,000 students, and we will show you a picture of her/his 

hand. Draws will be independent at each trial (so, in principle, 

the same student might be selected more than once). 

 

As it can be seen, no double sampling procedure was involved in this scenario; 

the student was said to have been directly drawn from the larger sample of 

1,000. The uncertainty of evidence concerning student’s gender was implicitly 

manipulated through the picture of her/his hand. Based on a pilot study, 



80  
3. An experimental study on inductive reasoning with uncertain evidence 
 

 
 

pictures were selected as displaying more or less relevant cues to gender, thus 

determining more or less extreme departures of the probability of being 

male/female from the initial base-rate level of 0.5. At each trial, an enlarged 

picture of the hand appeared on the screen for 10 seconds and participants were 

prompted to look at it very carefully and in detail. The picture then automatically 

reduced in size (but could still be widened simply by clicking on it) and 

participants were asked to answer the following questions: 

 

In light of the picture, do you think the drawn student is male or female? 

(Participants had to choose one option: male vs. female) 

What is the probability that your previous answer is correct? 

(Participants had to place the cursor on a sliding bar ranging from 50% to 

100%) 

 

Responses to the questions above provide an estimate of participants’ perceived 

degree of uncertainty about the evidence concerning gender. Afterwards, a set of 

four inductive arguments was presented, while a reminder on the top-right of 

the screen reported the degree of uncertainty previously assigned to the 

evidence. As in Experiment I, participants had to estimate inductive 

confirmation. The hypotheses as well as the scale employed and the rest of the 

procedure were the same as in Experiment I (in Appendix H, a sequence of 

screen displays produced by Java application is provided to better illustrate the 

experimental procedure of Experiment II). An example of inductive argument as 

displayed in Experiment II is provided by the Figure 3.3. 

 

 PROBABILITY TASK 

The probability task was exactly the same as in Experiment I. 
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Figure 3.3: Example of argument employed in Experiment II 

 

INFORMATION (surely true): 

this is the drawn student’s hand  

 

 

 

HYPOTHESIS (can be true or false): 

the drawn student  

owns a 10,000 euro motorbike 

 

 

3.3.3 Results and Discussion 
 

In Experiment II, 28 × 34 = 952 ����^��,������ were collected. On the whole, 63 

(6.6%) of them violated Eq. (3.5) above, i.e., the basic normative distinction of 

positive, null and negative impact. Based on the participants’ own interpretation 

of the pictures displayed, limiting cases of evidence uncertainty (i.e., with judged �������� amounting to either 100% or 0%) were a small minority, namely 56 

(5.9%) judgments out of 953. The proportions of violations of Eq. (3.5) in the 

latter set and among all remaining judgments involving strict evidence 

uncertainty were 5.4% and 6.7%, respectively. Overall, while still minor, 

departures from Eq. (3.5) were somewhat more common than in Experiment I 

(z-test for proportion, � 5 0.01), presumably reflecting an increased difficulty of 
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the task. The pattern arising from quantitative analyses was nevertheless very 

similar to that in Experiment I.  

Average Pearson correlations from K, L and posterior probability are shown in 

Table 3.3. Once again, both K and L yielded very high average correlations, 

significantly greater than that with posterior probability (� 5 0.01 by paired t-

test). Much as in Experiment I, moreover, the higher average correlation of 

measure K as compared to L also reaches statistical significance (� 5 0.05). 

Finally, as in Experiment I, results are not inflated by limiting cases of evidence 

uncertainty, as all significance tests remain unaffected under strict evidence 

uncertainty, i.e., by the removal of the five participants who sometimes provided 

extreme values for ��������.  

 

Table 3.3: Results from experiment II 

 

  Predicted 

confirmation (K) 

Predicted 

confirmation (L) 

 Posterior probability 

(Jeffrey conditionalization) 

Judged 

confirmation 

 
0.902* 0.893*  0.605 

 

Note. The table contains average Pearson correlations between judged confirmation and 

confirmation predicted by K and L, and between judged confirmation and posterior 

probability computed by Jeffrey conditionalization. Each value is the average of 34 

Pearson correlations (one per participant) involving 28 observations. (Starred averages 

are reliably greater than the average for posterior probability by paired t-test, � 50.01.) 

 

 

3.4 General discussion 

 

Ever since the work of chief Bayesian theorists such as Keynes (1921), Carnap 

(1950/1962a) and Good (1950), a basic component of inductive reasoning has 
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been identified in the notion of evidence prompting a change in belief – viz. 

confirmation – as distinct from final belief per se. In philosophy of science and 

epistemology, the debate on the issue has been lasting (see, e.g., Earman, 1992; 

Fitelson, 1999). In the psychological literature, on the other hand, Bayesian 

confirmation has occurred sparsely and indirectly, often by different names. It 

has been invoked, for instance, in discussions concerning the reality of the 

‘conjunction fallacy’ (see Sides, Osherson, Bonini, & Viale, 2002; Crupi, Fitelson, 

& Tentori, 2008) and related phenomena (see Lagnado & Shanks, 2002) as well 

as in inquiries into various aspects of the perception of chance (e.g., Tenenbaum 

& Griffiths, 2001). A specific principle of confirmation theory has been 

experimentally studied by Lo, Sides, Rozelle, & Osherson (2002) and found to be 

largely adhered to in children’s reasoning. Bayesian confirmation also yields 

formal and conceptual connections with models of the value of information 

(Nelson, 2005), involved in a number of established research areas in 

psychology such as Wason’s selection task (see Klayman & Ha, 1987; Oaksford & 

Chater, 1994, 2003; Nickerson, 1996; McKenzie & Mikkelsen, 2000; Fitelson, in 

press).  

The experiments reported above extend recent studies explicitly devoted 

to the psychology of confirmation (Tentori et al., 2007; Crupi et al., 2007; 

Tentori, Crupi, & Osherson, in press). Tentori et al. (2007), in particular, 

employed an urn setting with sequential draws where relevant evidence (the 

color of drawn balls) was certain (indeed, established by participants 

themselves by direct observation). In this study, intuitive judgments of 

confirmation reflected to a remarkable extent the formal notion as represented 

by normatively appealing accounts such as measures K and L (see also Crupi et 

al., 2007). The present experiments replicate this basic finding in a different 

setting and generalize it to the assessment of confirmation by uncertain 

evidence.  

In order to appreciate the results reported here, it is useful to consider 

the following points about the procedures adopted. First, participants were not 

faced with problems involving artificially devised predicates (such as the color of 
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balls or the composition of urn, as in Tentori et al., 2007) or blank (i.e., 

semantically opaque) properties, as is common in other experimental paradigms 

for the study of inductive reasoning (e.g., Osherson et al., 1990); rather, real-

world and transparent hypotheses were employed. Second, convergent results 

were obtained with two different ways of manipulating evidence uncertainty, 

i.e., directly providing probabilistic information (Experiment I) vs. relying on the 

interpretation of ambiguous pictures conveying uncertainty (Experiment II). 

Finally, and more generally, the relative difficulty of the task should be 

mentioned, which makes participants’ performance remarkable. A confirmation 

judgment always reflects the consideration of two distinct variables (viz. prior 

and posterior probability) as well as the quantitative relationship between them. 

By their normatively sound responses, participants proved to be able to 

integrate the degree of evidence uncertainty into this sophisticated assessment. 

Such a result is in line with Tentori et al.’s (2007) findings under conditions of 

strictly certain evidence, and supports the centrality of confirmation judgments 

in human cognition. 

Beyond a generally high correlation with observed judgments, 

Experiment I and II also documented a slight but significant advantage of 

measure K over L in terms of descriptive accuracy. Interestingly, Crupi et al. 

(2007) had reported a similar but reversed pattern: K and L turned out to be 

very good predictors with a slight but significant advantage for the latter. 

Measures K and L thus appear to be close competitors in capturing confirmation 

assessment in human reasoning. More definite conclusions about their 

respective merits remain an issue for further research.   

To conclude, I shall notice that a growing trend of claims depicts various 

aspects of human inductive reasoning involving certain evidence as 

appropriately captured by sophisticated models arising from the Bayesian 

approach and involving normatively sound principles (see, e.g., Griffiths & 

Tenenbaum, 2006; Oaksford & Chater, 2007; Kemp & Tenenbaum, 2009; Crupi, 

Tentori, & Lombardi, in press; but also Sloman & Fernbach, 2008, for a critical 

view). However, as far as inductive confirmation by uncertain evidence is 
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concerned, available normative models had not been put to empirical test so far. 

The experiments reported here open up this line of investigation, providing 

evidence that those models prove psychologically tenable. 
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Chapter 4  

Conclusion 

4.1 The study of inductive reasoning: a critical su mmary 
 

Inductive reasoning merits investigation for many reasons. It represents 

everyday reasoning and is fundamental for numerous cognitive activities, such 

as learning, prediction, and discovery (Baron, 2008). In general, we make 

inductive inferences every time we use our knowledge to deal with novel 

situations. Without induction, for example, we could not generalize from one 

instance to another, or draw scientific hypotheses from the experimental 

evidence at our disposal. According to Polya (1954), inductive reasoning is 

central even to non-empirical research, such as mathematical inquiry. Before 

achieving a rigorous proof of a theorem, a critical step in mathematical 

investigation is the formulation of a conjecture. Conjectures are suggested by 

observation and indicated by particular instances. In short, they are developed 

through induction.  

It has been noted that the study of induction has a long history in the field 

of philosophy and epistemology. Among the most well-known analyses in 

philosophy is Hume’s (1748/2004) argument against the logical justification of 

induction. Hume argues that, unlike deductive inference, there are no rational 

reasons for induction. In other words, Hume rejects the idea that there could be 

any logical justification for the validity of a method that generates inductive 

inferences.  

The so-called philosophical problem of induction, raised by Hume, consists 

in the following quandary: paraphrasing Carnap (1962b), on one hand inductive 

reasoning is used by people without apparent scruples, and the feeling is that it 

is valid and indispensable. On the other hand, once Hume rouses our intellectual 

conscience, no answer is found to his objection. Nevertheless, it is fair to say that 
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the epistemological understanding of the scope and forms of inductive reasoning 

has achieved important results up to very recent times. 

Although psychological research on inductive reasoning has not directly 

addressed this old problem of induction, it has uncovered a rich and interesting 

collection of phenomena, highlighting how inductive reasoning is rife in human 

thought (see Heit, 2000, for a review of psychological work on inductive 

reasoning). 

In the psychological literature, the study of induction appears in several 

forms. However, it is worth noting that most psychological studies have focused 

on a particular kind of induction, i.e., category-based induction. The work by 

Osherson et al. (1990) represents a milestone in the study of category-based 

induction. Yet, the similarity-coverage model they proposed shows some 

weaknesses. By assuming that a category has a certain property, it seems 

plausible that a similar category has that property too. But, for some properties 

and some categories, similarity does not seem to be central to inductive 

inferences (Heit & Rubinstein, 1994; Smith et al., 1993). Furthermore, the 

similarity notion is not defined in a rigorous way; it is quite elusive and vague.  

As an alternative to the similarity-coverage model, Sloman (1993) has 

conceived and advocated a model – the feature-based model – in which argument 

strength is roughly measured in terms of feature overlap between premise and 

conclusion categories. Both the similarity-coverage model and the feature-based 

model are able to make accurate predictions when predicates appearing in 

inductive arguments are ‘blank’. But the study of inductive reasoning cannot be 

confined to arguments with blank predicates. This is because not only the 

categories, but also the properties involved in inductive arguments are crucial 

when making inductive inferences. Indeed, it has been emphasized that different 

properties (e.g., behavioral properties or properties concerning anatomical 

features) may foster diverse patterns of inductive behavior (Heit, 1998; Medin et 

al., 2003).  

It has also been highlighted that inductive processes may be guided by 

different kinds of knowledge (Lopez et al., 1997; Proffitt et al., 2000). According 
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to Tenenbaum et al. (2006, 2007) and Shafto et al. (2007), a specific knowledge 

would be employed in a given context. For example, taxonomic knowledge would 

be preferred when reasoning about properties concerning anatomical features, 

whereas ecological knowledge would be preferred when reasoning about 

diseases that may spread through an ecosystem.  

On Shafto et al.’s (2007) account, the selection of a particular knowledge 

depends on the ease with which that knowledge comes to mind. The approach 

followed by Shafto et al. (2007) is based on the idea of availability. Availability is 

seen as a relevant factor in the recruitment of the knowledge that drives a 

specific inductive inference. This idea traces back to a classical work by Tversky 

and Kahneman (1973), who discuss availability as a heuristic “by which people 

evaluate the frequency of classes or the likelihood of events” (p. 207). Even though 

this heuristic serves as an effective strategy to account for a large number of 

phenomena related to category-based induction, the concept of availability is 

rather vague. Like the concept of similarity, it is not rigorously defined.  

Also Rehder’s (2006, 2007) approach to the study of inductive reasoning 

can explain numerous phenomena concerning category-based induction. Rehder 

has developed a theory that underlines the importance of causal reasoning in 

induction. Yet, his view seems too restricted, as causal reasoning is cited as the 

only factor that influences inductive inferences. 

A more precise account of induction is provided by Heit (1998) and 

Tenenbaum et al. (2006). In their theories, induction is modeled as Bayesian 

inference. Their general framework is defined in a very precise way, on the basis 

of the probability notion. Both the Bayesian model of Heit (1998) and the 

theory-based Bayesian models of Tenenbaum et al. (2006) are able to predict 

many phenomena related to induction, by positing that people can rely on 

diverse kinds of prior knowledge. However, the Bayesian models of Heit (1998) 

and Tenenbaum et al. (2006) do not take into consideration the crucial 

distinction between inductive strength and posterior probability. According to 

their models, once prior beliefs are assigned, the inductive strength of an 
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argument is given by the belief value of the conclusion, updated in light of the 

premise. 

For most contemporary Bayesian theorists, there is a conceptual 

difference between inductive strength (or confirmation) and posterior 

probability. The notion of confirmation reflects the change from the prior 

probability to the posterior probability of argument’s conclusion. As noted by 

Fitelson (2005), the received view – according to which inductive strength is 

given by posterior probability – is not an adequate proposal for the 

formalization of inductive confirmation. This is because, in general, posterior 

probability is not sensitive to the probabilistic relevance of the premise to the 

conclusion of an inductive argument.  

Popper (1954) is one of the first to urge probabilistic relevance be 

considered as a desideratum for measures of confirmation. In response to 

Popper’s request, Carnap (1962a) defines two different kinds of confirmation: 

confirmation as firmness and confirmation as increase in firmness. While the 

former does not require probabilistic relevance and is properly captured by 

posterior probability, the latter presupposes that premise is relevant to 

conclusion. Carnap (1962a) does not propose any adequate relevance measure 

of confirmation and, oddly enough, he does not advocate Kemeny and 

Oppenheim’s (1952) measure as an example of proper relevance measure either. 

This curious sequence of events in the epistemological history of inductive logic 

may explain why relevance-based approaches have never gained as much 

interest as the received view. 

Similarly, in the psychological field, little attention has been paid to the 

relevance of premise to conclusion. Yet, the following studies are worth 

mentioning. Work by Medin et al. (2003) has identified some relevance effects in 

category-based induction. These effects prove how salient relations between 

premise and conclusion categories may direct the evaluation of inductive 

strength. Tentori et al. (2007) and Crupi et al. (2007) have employed a 

relevance-based approach to the study of induction, on both the experimental 

and the theoretical account. 
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The same kind of approach followed by Tentori et al. (2007) and Crupi et 

al. (2007) has been used in the present study. The novelty element that 

characterizes both the theoretical and the experimental researches discussed in 

chapters 2 and 3 is the employment of uncertain evidence. Although people are 

generally prone to reduce or underestimate uncertainty in everyday life, the 

ability to recognize it and take it into account is essential in many situations. In 

most inductive contexts from real life, people have to deal with uncertain 

evidence. 

In the theoretical study presented in §2.3, the Bayesian confirmation 

theory has been extended to cases in which the available evidence is not 

acquired with certainty. Jeffrey conditionalization played an essential role in 

generalizing a particular class of relevance measure of confirmation, called P-

incremental. It seems that, before the aforesaid theoretical study, such a 

generalization had never been analyzed by confirmation theorists, and much less 

experimentally investigated by cognitive scientists interested in inductive 

reasoning. 

One interesting question in the psychology of inductive reasoning is 

whether the normatively soundest confirmation measures are also the most 

accurate from a descriptive point of view. Measures K and L, albeit not ordinally 

equivalent, share several properties which single them out as particularly 

compelling normative models. Experiments I and II have been conceived as an 

empirical test of the descriptive adequacy of K and L relative to judgments of 

confirmation by uncertain evidence. 

In Experiment I the uncertainty of evidence was explicitly manipulated by 

means of numerical values, whereas in Experiment II the uncertainty of evidence 

was implicitly manipulated by means of ambiguous pictures. The results show 

that people’s judgments are highly correlated with those predicted by K and L. 

This does not imply that the probabilistic computations underlying Bayesian 

measures of confirmation should be factually regarded as models of the 

cognitive processes that guide assessments of inductive strength. It is well 

documented that people often depart from the Bayesian prescriptions, when 
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judging probability (Kahneman, Slovic, & Tversky, 1982). People seem to apply 

the rational rules of probability only under particular conditions (Girotto & 

Gonzalez, 2001). No matter what the computations leading to confirmation 

judgments with uncertain evidence are, the experiments show that some 

peculiar aspects of such judgments can be captured, to a significant degree, by 

normatively appropriate measures. The interaction between normative and 

descriptive accounts might be beneficial for the study of inductive reasoning, as 

it has been in other domains of human reasoning. 

From the results obtained in the two experimental studies illustrated in 

chapter 3, people appear to be sensitive to the degree of evidential uncertainty. 

This supports the centrality of inductive reasoning in cognition, and opens the 

path to further investigations in more naturalistic settings. 

 

 

4.2 Future directions 

Experiments I and II were devised to test whether people properly estimate the 

impact of an uncertain piece of evidence on a given hypothesis. To further 

explore inductive confirmation by uncertain evidence, new experimental 

scenarios could be implemented. One possibility is to conceive settings in which 

the prior probability of evidence – ������ – is not fixed to the value of 0.5 (recall 

that ������ was set at 0.5 in both Experiments I and II). It is worth observing 

that situations where ������ ! 0.5 represent a special case, in the sense that 

evidence acquired with total uncertainty (i.e., �������� ! 0.5) turns out to be 

confirmationally irrelevant to the hypothesis under consideration. This appears 

to be rather intuitive, as suggested by the results analyzed in §3.2.3 and §3.3.3 

(recall that confirmation judgments elicited in Experiment I and II largely 

comply with the theoretical distinction of positive, null and negative impact). 

Yet, if ������ g 0.5, it is no longer correct to judge evidence that is completely 

uncertain as confirmationally irrelevant. Experiments in which the prior 

probability of evidence is manipulated may serve to clarify whether naïve people 
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still conform to the condition (3.2) in §3.2.1 which defines relevance measures of 

confirmation. 

 In the two experimental studies presented earlier, confirmation 

judgments expressed by participants were compared with judgments predicted 

by the soundest Bayesian confirmation measures (K and L). It would be 

interesting and useful to contrast the predictive accuracy of relevance measures 

advocated in the domain of epistemology with models of induction proposed in 

the psychological field (e.g., the similarity-coverage model of Osherson et al., 

1990). 

 Finally, another line of inquiry could involve hypothesis testing in light of 

uncertain evidence. While a relevance-based approach to the study of induction 

was followed in the present research, hypothesis testing corresponds to the 

study of inductive reasoning based on the received view. As highlighted in 

different points throughout the current contribution, Jeffrey’s rule offers a 

proper principle to revise the probability of a hypothesis in situations where a 

piece of evidence is not certain. The issue of probability updating with uncertain 

evidence is at least as relevant as the issue of evaluating inductive strength. 

Nonetheless, it appears to have never been investigated in the psychology of 

reasoning. 
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Appendices 

 

Appendix A: Foundation of the theory of probability  
 

A probability function �� is a function from a Boolean algebra ~ of propositions 

to the unit interval [0,1]. For all propositions � and � in ~, �� must satisfy the 

following three axioms (see Kolmogorov, 1956): 

 

I. ����� x 0, 

II. If � is a logical necessary truth, then ����� ! 1, 

III. If � and � are mutually exclusive, then ���� � �� ! ����� M �����. 

 

According to Kolmogorov (1956), the conditional probability is defined in terms 

of unconditional probability, as shown by the following definition: 

 

Definition A.1: ����|�� ! AB�����AB��� , provided that ����� g 0. 

 

Informally, “�����” can be read as “the probability that proposition � is true”, 

and “����|��” can be read as “the probability that proposition � is true, given 

that proposition � is true”.  

 

Definition A.2: A probability model " ! �~, ��#� consists of a Boolean algebra ~ 

of propositions, and a particular probability function ��# over the elements of ~.  
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Appendix B: Proof of Theorem 2.1 
 

Provided that ��Z��|�� 0 ��Z���, if ��Z��� 5 ��]��� 5 ��̀ ���,  

then �Z,]��� 5 �Z,`���.                  (H.1) 

 

Theorem 2.1: Any Bayesian confirmation measure �Z,]��� enjoying generalized 

P-incrementality satisfies (H.1). 

 

Proof: 

First of all, in what follows, I will posit ��Z��� 0 0, so that ��Z��|�� is defined. 

Given that, I will prove that, assuming ��Z��|�� 0 ��Z���, ��Z��� 5 ��]��� 5��̀ ��� and �Z,]��� enjoying generalised P-incrementality, the inequality �Z,]��� 5 �Z,`��� is verified. 

 By the probability calculus, the following equivalence can be derived: 

 

 ��Z��|�� 0 ��Z���   �  ��Z��|�� 0 ��Z��|���                                       (A.1) 

 

Since by hypothesis, ��Z��|�� 0 ��Z���, then, by Equation (A.1), one has ��Z��|�� 0 ��Z��|��� as well, whence ��Z��|�� > ��Z��|��� 0 0. Also, by 

hypothesis, ��]��� > ��Z��� 0 0. So the product of ��Z��|�� > ��Z��|��� and ��]��� > ��Z��� will be itself greater than zero. The latter inequality can be 

algebraically manipulated as follows: 

 X��Z��|�� > ��Z��|���Y = ���]��� > ��Z���� 0 0 �  

��Z��|�� = ���]��� > ��Z���� > ��Z��|��� = ���]��� > ��Z���� 0 0 � 

��Z��|�� = ���]��� > ��Z���� M ��Z��|��� = ���]���� > ��Z����� 0 0 � ��Z��|�� = ��Z��� M ��Z��|��� = ��Z���� 5  

 ��Z��|�� = ��]��� M ��Z��|��� = ��]����                                                   (A.2) 
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By the theorem of total probabilities, Equation (A.2) can be rewritten as: 

 

 ��Z��� 5 ��Z��|�� = ��]��� M ��Z��|��� = ��]����                                (A.3) 

 

Since, by hypothesis, also ��̀ ��� > ��]��� 0 0, an analogous manipulation 

yields: 

 

 ��Z��|�� = ��]��� M ��Z��|��� = ��]���� 5 

  ��Z��|�� = ��̀ ��� M ��Z��|��� = ��̀ ����                                       (A.4) 

 

And, by Jeffrey conditionalization, Equations (A.3) and (A.4) imply: 

 

 ��Z��� 5 ��]��� 5 ��̀ ���                                                                                (A.5) 

 

By enjoying generalised P-incrementality, �Z,]��� is by definition a strictly 

increasing function of the update probability of �. Hence, from Equation (A.5) it 

immediately follows that: 

 �Z,]��� 5 �Z,`��� 

 

Q.E.D. 
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Appendix C: Sequence of screen displays produced by  Java 

application for Experiment I 

 
Figure C.1: Instruction of Experiment I (part 1) 

 

 

 

Note. All materials are translated from Italian. 
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Figure C.2: Instruction of Experiment I (part 2) 
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Figure C.3: Instruction of Experiment I (part 3) 
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Figure C.4: Instruction of Experiment I (part 4) 
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Figure C.5: Confirmation task in Experiment I (part 1) 

 

 

 

Note. Participants were informed about a double drawing (first the drawing of a group, then of 

a student from that group). Then, they were presented with a set of four inductive 

arguments each involving the same information about the probability of the student 

being a male vs. female, coupled with one among four different hypotheses. The 

hypotheses employed were: “owns a 10,000 euro motorbike”, “owns a 10,000 euro 

necklace”, “usually has a beard shave”, “usually applies eye make-up”. 
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Figure C.6: Confirmation task in Experiment I (part 2) 

 

 

 

Note. Participants were asked to estimate inductive confirmation concerning the four 

arguments presented. In order to do so, they were asked to drag each argument icon on 

the ‘impact scale’, thus assigning it a value. In particular, they were instructed to place 

the argument icon as much to the right [left] as they judged the information given about 

the uncertainty of evidence to increase [decrease] the plausibility of the hypothesis. 

Once they expressed their judgments, a novel double sampling was said to have been 

performed, and participants were requested to evaluate another set of inductive 

arguments; and so on for all seven sets. 
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Figure C.7: Probability task in Experiment I 

 

 

 

Note. After the confirmation task, participants were asked to consider again a group of 1,000 

students, 500 males and 500 females, and to answer four questions relative to each 

hypothesis. Here participants had to answer considering the hypothesis of “owning a 

10,000 euro necklace”. Complementary estimates were asked in order to increase 

accuracy. Participants could begin from the estimate they preferred; the software 

required each pair of complementary estimates to sum up to 500. 
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Appendix D: Sequence of screen displays produced by  Java 

application for Experiment II 

 
Figure D.1: Instruction of Experiment II (part 1) 

 

 

 

Note. In Experiment II the uncertainty of evidence has been manipulated indirectly, by means 

of ambiguous pictures. 
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Figure D.2: Instruction of Experiment II (part 2) 
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Figure D.3: Instruction of Experiment II (part 3) 
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Figure D.4: Confirmation task in Experiment II (part 1) 

 

 

 

Note. No double sampling procedure was involved in this scenario. Participants were 

informed about the draw of a student from the larger sample of 1,000. The uncertainty 

of evidence concerning student’s gender was implicitly manipulated through the picture 

of her/his hand. At each trial, an enlarged picture of the hand appeared on the screen for 

10 seconds and participants were prompted to look at it very carefully and in detail. 
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Figure D.5: Confirmation task in Experiment II (part 2) 

 

 

 

Note. The picture of the drawn student’s hand automatically reduced in size, and participants 

were asked to answer two questions. Responses to those questions provided an estimate 

of participants’ perceived degree of uncertainty about the evidence concerning gender. 
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Figure D.6: Confirmation task in Experiment II (part 3) 

 

 

 

Note. A set of four inductive arguments was presented, while a reminder on the top-right of 

the screen reported the degree of uncertainty previously assigned to the evidence. 

Participants’ task was to estimate inductive confirmation. The hypotheses, as well as the 

scale employed and the rest of the procedure, were the same as in Experiment I. 
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