
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Effective recommendations for

leisure activities

Beatrice Valeri

Advisors:

Prof. Fabio Casati and Dr. Florian Daniel

Università degli Studi di Trento

December 2015

Aknowledgments

First of all, I thank my advisors and colleagues in Trento, which guided

and supported me in the last years. We helped each other and found

together a way to grow and learn the most from this experience together.

I want to thank also the people I met in Grenoble during my internship,

as they showed me how collaboration can be successful even if we just met

and we had different backgrounds. They did not let me feel alone in my

first long experience out of Italy and they motivated me to look for other

experiences around the world.

Special thanks go to my husband. He always supported me during the

hardest periods, trying to keep me up and helping every time he could. He

was always there when I needed someone to talk to, to clarify my ideas and

always kept me updated with the novelties in the world of mobile devices.

He helped even when we needed more people supporting the data collection

in some of the experiments we run.

My friends supported me keeping the leisure time funny and distracting

me from work when I needed it.

My family and my relatives were always there for me and they were

understanding when I had to postpone our meetings because I had some

extra work to do.

Beatrice

Abstract

People nowadays find it difficult to identify the best places to spend their

leisure time performing different activities. Some services have been cre-

ated to give a complete list of the opportunities offered by the city in which

they live, but they overload people with information and make it difficult for

them to identify what is more interesting. Personalized recommendations

partially solve this problem of overload, but they need a deeper understand-

ing of the personal tastes of people and of the different ways in which people

want to spend their leisure time.

In this thesis we identify the requirements for a recommender system for

leisure activities, study which data are needed and which algorithm better

identifies the most interesting options for each requester. We explore the

effects of data quality on recommendations, identifying which kind of in-

formation is needed to better understand user needs and who can provide

better-quality opinions.

We analyse the possibility of using crowdsourcing as a means for collect-

ing ratings when volunteering is not providing the needed amount of ratings

or when a new dataset of ratings is needed to answer some interesting re-

search questions.

Finally, we show how the lessons learned can be applied in practice,

presenting a prototype of personalized restaurant recommender service.

Keywords

Recommender systems, leisure activities, data quality, crowdsourcing.

Contents

1 Introduction 1

1.1 Requirements . 4

1.1.1 Learning user tastes 5

1.1.2 Identifying the best restaurant 7

1.1.3 Availability everywhere and anytime 8

1.1.4 Starting the service 9

1.2 Methodology . 10

1.3 Contributions and Results 12

1.4 Structure of the Thesis . 14

1.5 List of Publications . 16

2 State of the Art 19

2.1 Discovering Places . 19

2.2 Recommending Items . 23

2.2.1 Main collaborative-filtering strategies 24

2.2.2 Algorithms evaluation 26

2.2.3 Recommending places 28

2.2.4 Social networks and collaborative filtering 29

2.3 Expressing Ratings . 31

2.3.1 Rating representation 32

2.3.2 Collecting ratings 34

2.4 Conclusion . 41

i

3 The Role of Friends in Decision Making 43

3.1 Introduction . 43

3.2 Sample Population and Comparisons with Baselines 45

3.3 Formal Experiment Definition 47

3.4 Definition of Recommendation Strategies 48

3.5 Evaluation of the Different Recommendation Algorithms . 49

3.6 Conclusion . 50

4 How Purpose Influences Opinion 53

4.1 Introduction . 53

4.2 Formal Definitions . 54

4.3 Extending the Experiment of Chapter 3 56

4.4 Understanding Preferences Across Activities 57

4.5 Effect of Purpose on User Preferences 59

4.6 Conclusion . 64

5 Purpose-orientation and Focus on Locals 65

5.1 Introduction . 65

5.2 Background . 67

5.3 Method . 68

5.3.1 Data collection . 68

5.3.2 Recommendation algorithms 69

5.3.3 Quality metric . 71

5.3.4 Algorithms tuning and configuration 72

5.4 Results . 73

5.4.1 Aggregate precision 73

5.4.2 Purpose-specific precision 75

5.5 Discussion and Conclusion 78

ii

6 Designing Recommendations for Mobile Devices 81

6.1 Introduction . 81

6.2 Rating on Mobile Devices 83

6.2.1 Data collection . 84

6.2.2 Rating efficiency 86

6.2.3 Questionnaire . 88

6.2.4 Discussion . 90

6.3 Personalized Recommender Algorithms 91

6.3.1 Offline evaluation 92

6.3.2 User evaluation . 96

6.3.3 Discussion . 101

6.4 Comparison with Commercial Services 102

6.4.1 Offline evaluation 102

6.4.2 User evaluation . 104

6.4.3 Discussion . 106

6.5 Learnings and Limitations 108

7 Collecting the Initial Ratings from the Crowd 111

7.1 Introduction . 111

7.2 Problem Definition . 115

7.3 Framework . 116

7.3.1 Worker clustering 118

7.3.2 Profile computation 121

7.3.3 Utility optimization 124

7.3.4 Cheaters identification 125

7.4 Evaluation . 126

7.4.1 Rating quality experiments 127

7.4.2 Parameter tuning 131

7.4.3 Utility function experiments 135

iii

7.4.4 Malign workers experiments 137

7.5 Conclusion . 140

8 Planfree - a Restaurant Recommender Service 141

8.1 Introduction . 141

8.2 Satisfying the Requirements of Recommender Systems . . 142

8.2.1 Learning user’s tastes 142

8.2.2 Making recommendations 145

8.2.3 Availability everywhere and anytime 147

8.2.4 Getting interest of users and restaurateurs 149

8.3 Architecture and Implementation 152

8.3.1 Data layer . 153

8.3.2 Application layer 154

8.3.3 Presentation layer 156

8.3.4 Implementation and code base 157

8.4 Tests . 158

8.4.1 Scalability test . 158

8.4.2 Usability test . 159

8.5 Research Exploitation . 161

8.6 Conclusion . 164

9 Conclusion 167

9.1 Contributions . 167

9.2 Lessons Learned . 168

9.3 Limitations . 171

9.4 Future Work . 173

Bibliography 177

iv

Chapter 1

Introduction

Leisure time is considered very important nowadays and everyone wants to

get the most out of it, without wasting a second of it. People can choose

between many leisure activities and anything that make people relax, have

fun or forget all the problems of work can be considered a leisure activity.

In this thesis, we are considering those activities that can be performed

outside our own house, possibly together with friends or the partner. For

example, people can choose between dining at a restaurant, watching a

movie at a cinema, going to a pub for a beer, dancing or playing soccer at

the public park with friends.

Once the activity has been selected, we are not ready yet to get fun:

we have to identify a place where we can perform it. A place for leisure

activities can be a business that offers services for leisure activities, such

as pubs, restaurants or museums, but also a public space that everyone

can use, like a public park. Suppose we want to go out for dinner, which

restaurant is the best for us? It depends on our tastes, our mood and the

type of experience we want to have. We can easily choose which place is

the closest to our needs between the ones in which we have already been,

but what about all the other opportunities our city is offering? Do we

know all of them? Usually the answer to this question is no.

1

CHAPTER 1. INTRODUCTION

Nowadays cities offer numerous opportunities for leisure time. Having

opportunities is great because we have a higher chance to find something

that better fits our taste and needs of the moment, but raises some diffi-

culties: i) it is difficult to know all the opportunities available and ii) it

is hard to identify the most interesting opportunity between the available

ones.

Despite the work presented in this thesis can be adapted to any leisure

activity, for the sake of simplicity and clarity, we decided to focus only on

one specific activity: going out for lunch or dinner. In this way, we consider

only restaurants as what we generically called “places”.

Before the advent of computers and of the Internet, when people had

some leisure time to spend, they had some opportunities to find where they

could perform some activities.

• Go around and personally check what the neighborhood offers. This

means that people enter a restaurant and try it, without any planning

in advance. They can be lucky and get a fantastic experience, but they

could also enter a restaurant that does not correspond to their needs.

In this way people get to directly know the opportunities available in

the selected neighborhood, but at the cost of wasting their time if the

place is not good for them.

• Through advertisement (posters, flyers, radio or television), restau-

rants show their offerings to people, trying to attract them there.

People can get some hints on the type of experience they can get

there, but they get to know only about some specific places, while the

most interesting one may be hidden somewhere else.

• Looking at yellow pages, people can see an almost complete list of

what is available around them, but they have only little information

about what these restaurants can offer and the type of experience

2

they can have there. Yellow pages contains the addresses and contact

information of many and many restaurants, making hard and time-

consuming for people to find the best opportunity for their needs.

• Friends and relatives know their care ones’ tastes and can share with

them their experiences, recommending the restaurants in which they

can enjoy their leisure time. This is perfect as people do not need

to spend time going around in the surroundings or experiencing un-

known restaurants: they just go to the recommended restaurant and

have high chance to have a good experience there. On the other hand,

friends and relatives have only partial knowledge of the available op-

portunities in their city as they can speak only about the restaurants

they had the possibility to experience.

With the advent of the Internet, new possibilities became available.

Maps and yellow pages-like services let people find an almost complete

list of the businesses, making the search for restaurants close by faster

than the paper-based yellow pages. But still, the overwhelming amount of

information make it difficult to find the opportunities that are interesting

and people need more support to easily and quickly identify a restaurant

where they can get the most out of their leisure time.

For these reasons, online recommender services have been developed:

they collect comments and opinions from people that experienced the

restaurants available in the city and report them to other people. In this

way, people can learn from others’ experiences the type and quality of ex-

perience they can have in a restaurant and can relate it to their tastes to

decide whether the restaurant is interesting to them or not. Such generic

services recommend the restaurants that are liked the most in general, mak-

ing people spend some time to read the reviews, understand the restaurant

3

CHAPTER 1. INTRODUCTION

characteristics and quality, and relate it to their tastes before being able

to take a decision.

Personalization makes a step further: personalized recommender ser-

vices learn people tastes through their reviews to known restaurants and

recommend them the unknown restaurants they should like.

The objective of this thesis is to study how personalized recommenda-

tions can be applied in the context of restaurant discovery. We start by

understanding how people choose a restaurant, identifying the information

that influences their choices. The same information needs to be considered

by the recommender service to better tailor the results to the specific situ-

ation of the requester. We model how these data can be collected and used

to improve the quality of personalized recommendations and we demon-

strate the applicability of our results by implementing them in a restaurant

recommender service.

1.1 Requirements

Personalized recommendation services solve the problem of overloading

of information that people feel when they look for a place where they

can spend their leisure time. Despite some of these services are already

available, still friends and relatives have a deeper understanding of people’s

tastes and can easily adapt to specific requests people do, related to their

context, their mood and the way in which they prefer to spend their time

in that specific occasion [70].

To design a personalized recommender service, we need to tackle differ-

ent problems. First, it is fundamental to collect people’s opinions about

the places in which they spend their leisure time and to learn from them

their tastes. Second, we need to understand how to use this information

to identify the best place for a specific requester, considering her specific

4

1.1. REQUIREMENTS

needs at the moment of the request. Data collection and recommendation

building are the most important elements of a recommender system, but

the service needs some data to start working : a complete knowledge of

the leisure-time offerings of the area and an initial set of people’s opin-

ions that can be used to understand how good the places are, to make the

recommender algorithm able to build useful recommendations even for the

first user coming in. Finally, people search for leisure places everywhere

and anytime, so the service should be always available, providing users the

needed information without the need to plan their leisure time in advance.

In the following, we look into the details of these different aspects of

a recommender system and identify the requirements that a recommender

service should satisfy.

1.1.1 Learning user tastes

The most important information used by a recommender system is people’s

opinion about the items it wants to recommend. Such opinions can be

collected in many different ways. The system can collect implicit feedback

by tracking how people interact with the items (visualization, purchase,

. . .) or can ask for explicit feedback in form of rating, review or detailed

description of the past experience with the item.

The implicit feedback has the advantage of being hidden from the user,

resulting in this way effortless. The information collected is in the form

of a history of what the users searched for, what attracted their interest

and which items they actually needed. The amount of data that can be

collected in this way is huge, and these data need to be interpreted and

reduced to a shorter representation of users’ tastes, used then to identify

which other items could be of interest for them the next time they access

the service.

5

CHAPTER 1. INTRODUCTION

Explicit feedback, on the other hand, requires a direct involvement of

users, requiring them to spend some time to express their opinion. Such

effort can be low or high, depending on the amount of information the

system wants to collect. For each item the users know, the system can ask

for different types of explicit feedback.

A rating is just an indication of how much the user liked the specific

item and is expressed by selecting a value from a rating scale. Many rating

scales are available, each one with its pros and cons, different levels of

effort needed to select the value representing users’ opinion and different

granularity. Through ratings the system can learn how much the user

liked the item in general, while different characteristics can be learned with

multi-criteria ratings, in which the user can express her judgement for the

listed characteristics of the item (like service, food quality and ambience

in the case of a restaurant). Ratings are usually converted into numeric

values that are easy to manage from a computational point of view and

the recommender algorithms can easily find which items are preferred.

Textual reviews let users express their feedback with more freedom,

letting them write anything they think that could help other people un-

derstand the characteristics and quality of the item.

Finally, a service could collect explicit feedback through a series of ques-

tions that can ask for a rating, a review and extra details about the expe-

rience the user had with the item, such as when she experienced it, where,

with whom and how she judges it according to different aspects. Such a

complex explicit feedback requires much effort to the user, but provides

the system many details about the experience of the user with the item

that can be used to understand both user tastes and item characteristics.

Despite textual reviews and specific questions could let us collect a huge

amount of information about each single restaurant, we decided to limit

6

1.1. REQUIREMENTS

our analysis of people’s feedback to ratings: they are quick to insert and

requires less effort to people.

1.1.2 Identifying the best restaurant

Once user feedback has been obtained, we need to identify the best al-

gorithm that learns the most information possible from these data and

computes the best recommendations possible.

Once user tastes are learned, we need to understand the needs of the

requester at the moment in which recommendations are requested. Dif-

ferent contexts could require different recommendations according to time,

requester’s location, mood and, possibly, companions. While these context

information are useless in e-commerce recommenders (as products can be

send everywhere and anytime), they become important when recommend-

ing for leisure activities. For example, if a person is in Rome, Italy, and

is searching for a place where she can have dinner, she does not like to

receive recommendations about restaurants in a different city. If she is

really hungry and can move only by foot, she wants only recommendations

about restaurants close by, which she can reach easily by walking few min-

utes. Moreover, the requester does not want to reach the recommended

restaurant and find it closed, so opening hours of the places and time of

the request should be considered.

There is much context information that could be useful to better tailor

the recommendations, but we have to consider both its usefulness and the

effort needed to collect it. Data like location and time can be implicitly

collected with the information about the received request, but other de-

tails about companions or mood could need a direct involvement of the

requester. Then, the recommender algorithm needs to include such context

details to improve its results.

7

CHAPTER 1. INTRODUCTION

1.1.3 Availability everywhere and anytime

We have seen that before the use of computers and of the Internet, people

were able to search for place for leisure activities through yellow pages.

This solution was available only at home, where the book was kept, and it

was time consuming to check all the available opportunities and find one

in the selected area that was satisfying the users needs. This required to

plan in advance what to do during leisure time. Even friends and relatives

recommendations are not always available.

Thanks to the Internet it is easier to access to more information, and

with mobile devices we can receive recommendations everywhere and any-

time. Making a recommender system available also from mobile adds extra

requirements.

Suppose we are in the city center, it is dinner time, we are hungry and

we want to find a restaurant close by where we can have fun with our

friends. We take our smartphone and access the recommender service. If

we are not first-time users, the system recognizes us and already knows

our tastes, so we would like to immediately get recommendations after just

choosing the type of activity we are interested in. This means that the

service should automatically detect most of the context : it should recognize

where we are and that it is dinner time, meaning that we are interested in

restaurants (the type of activity could be specified by us) that i) are close

by, ii) can be reached within few minutes and iii) are open right now.

Given the context has been learned without any effort from the user,

the system should be able to compute the recommendations very quickly

and the user should immediately find the most interesting option: current

services show recommendation lists of tens of items, while a mobile user

could not have time to scroll it. The recommendations should be very

8

1.1. REQUIREMENTS

precise and the user should find the most interesting option in the first few

positions.

1.1.4 Starting the service

Once we know how to collect user feedback about items and we know how

to use it to build recommendations, we have to collect the initial data

needed to start the service. Let’s suppose we start from a selected city.

First, we need the complete list of the places for leisure activities avail-

able in the city. These data can be added manually by hiring people that

know well the area and that are willing to explore the city and to insert ev-

ery place they see. This solution is quite costly and time-expensive as there

are many places for leisure activities even in a single neighborhood. An

alternative is to use services like Google Maps (https://www.google.it/

maps) or Open Street Maps (https://www.openstreetmap.org/), where

maps of points of interests can be accessed and the categories of places we

are interested in can be retrieved and used through these services. The cons

of using these services is that they could provide incomplete or erroneous

data as businesses change.

Once we have all the items we are interested in, the recommender al-

gorithm needs an initial set of people’s feedbacks to be ready to build rec-

ommendations as the first users arrive. When the algorithm receives the

request for a recommendation list, it builds its predictions using the feed-

back shared by previous users, according to a logic that is specific for the

algorithm. This means that if the first user makes a request and no one

already shared her opinion about the known items, the algorithm does not

know anything about the items and have no idea about which one would be

more interesting for the requester, and no recommendations can be built.

Another challenging situation is when a new user accesses the service:

we do not know her tastes yet and we need a way to learn them quickly.

9

https://www.google.it/maps
https://www.google.it/maps
https://www.openstreetmap.org/

CHAPTER 1. INTRODUCTION

One solution could be to force the new users to give some feedback before

accessing the recommendation feature. In this way we can build person-

alized recommendations even at the first request, but we have to design

this collection of feedback in a way that it does not discourage people to

try the service. Another option is to build the first recommendation list

as generic, without any hints on the tastes of the requester, explaining the

user that if she adds feedback to the places she knows the recommendation

quality will increase. The risk of adopting this solution is that the user

receives recommendations of bad quality and decides to not use the service

any more or she never adds her feedback, without giving any contribution

to the service she is using. The main problem here is to maintain a balance

between the consumption of and contribution to the service of each user,

as both actions are fundamental to keep the service alive.

1.2 Methodology

We have seen that recommender systems have many different challenges to

take in consideration.

To tackle them we started by analysing the state of the art on the related

topics:

• Discovering places, and in specific restaurants and similar businesses.

We identified the services that support people discovery of new restau-

rants and are currently used, analysed them and spotted out pros and

cons of using them.

• Recommending items. Many recommendation algorithms have been

already developed in the last years. We explore them and identify their

strengths and weaknesses, their adoption in recommending places and

restaurants, and their integration with social networks.

10

1.2. METHODOLOGY

• Expressing ratings. Different rating scales have been proposed and

used in different services. We present them and discuss how they in-

fluence people’s feedback. Moreover, the problem of collecting ratings

is analysed and the research work about crowdsourcing such subjective

data is summarized.

We started our research work by understanding the role of friends.

Nowadays, social networks let us easily collect friendships between peo-

ple. Since leisure activities are usually performed with some companions,

we studied whether friends, as stated in social networks’ relationships, can

have an effect on users’ opinions, or whether friends’ opinions influence

people’s ones. For this reason, we collected a dataset of restaurant ratings

and friendships as stated on Facebook and analysed the effects of different

user-bases on collaborative filtering recommendations.

We continued by exploring the effect of purpose, i.e. is the reason why

people are willing to go to the restaurant influencing their choice of the

place? We identified three companion-based purposes and a cost-related

one: having dinner with tourists, with the partner or with friends and

lunch break (meaning good price/quality ratio). For each restaurant, we

collected people’s feedback for each purpose identified and evaluated the

effect of these purpose-based ratings on restaurant ranking and recommen-

dations. To quantify our results we compared the obtained recommenda-

tions with the ones provided by a popular restaurant recommender service:

TripAdvisor.

Once learned how to collect people’s feedback and which extra informa-

tion boosts the quality of recommenders’ input data (i.e. friendships and

purpose-orientation), we run a comparative analysis of possible solutions

for collecting ratings and recommending restaurants. Different rating scales

and recommendation algorithms have been both studied through objective

metrics (such as precision and recall) and evaluated by users, identifying

11

CHAPTER 1. INTRODUCTION

the combination of rating scale and recommender algorithm that provides

the results of higher quality and that better satisfies users.

Before being able to compute recommendations, a recommender service

needs an initial set of ratings from which it can learn which restaurants

are good and which are not. We designed a novel crowdsourcing platform

for collecting reliable ratings. A reliable rating is a truthful rating from a

worker that is knowledgeable enough about the item she is rating. Through

this platform, restaurants can receive ratings of high quality as lazy and

malign workers are identified through a skill-based system which respects

the subjectivity of the expressed opinions. In addition, our platform focuses

on acquiring ratings for items that only have a few ratings. We evaluate the

proposed framework through simulations on synthetic and real datasets,

measuring the quality of the reliable ratings by using them as dataset for

a recommender service.

Finally, we collected all the findings and used them as a guide for the

implementation of a novel restaurant recommender service. Some extra

adjustments were needed to adapt the recommender service to an online

service, where scalability and implementation issues have to be considered.

1.3 Contributions and Results

Our work produced the following contributions.

Friends with similar tastes are the best user-base for collaborative fil-

tering. Even the simpler user-based collaborative filtering recommender

can be improved if it selects neighbors as the friends with tastes closer to

the requester. Surprisingly, this works even with friendships as stated in

social networks, which usually contain relationships of different kinds and

strengths [80], and not only the friends we spend our leisure time with.

12

1.3. CONTRIBUTIONS AND RESULTS

People choose different restaurants according to their purpose, i.e. ac-

cording to the type of companions they have: going out with tourists is

different than going out with the partner or with friends. Moreover, when

the price/quality ratio is took into consideration, for example as when

choosing a restaurant for lunch break, the opinion of people changes.

Similarities in the preferences of people can be extended to other ac-

tivities, which points to the potential of profiling users based on lifestyle.

Moreover, the effect of purpose is confirmed for other leisure activities,

such as having a beer at a pub.

Locals are more knowledgeable. We found that locals, i.e. city dwellers,

have a better understanding of the qualities of the different offerings in

the city: they have the opportunity to experience many of them and they

can compare them. By collecting purpose-based evaluations of restaurants

from locals, we obtain a good-quality dataset that let even off-the-shelf

recommender algorithms build good-quality recommendations, which eas-

ily outperform, for instance, TripAdvisor.

5-star ratings and user-based collaborative filtering provide the best rec-

ommendations, both according to precision and user satisfaction. 5-star

rating scale is preferred over smaller scales even when providing ratings

through mobile devices and in situations of split attention (i.e. while

walking). Between collaborative filtering algorithms, the user-based one

is able to provide recommendations of higher quality when providing short

recommendation lists (with only 5 restaurants). Recommendations com-

puted with this combination of rating scale and algorithm perform better

than TripAdvisor and produce recommendations of quality comparable to

Foursquare.

Skill-based evaluation of workers can detect cheaters, such as lazy and

malign workers, in a crowdsourcing platform for collecting restaurant rat-

ings. Lazy workers, i.e. cheaters assigning ratings randomly, are detected

13

CHAPTER 1. INTRODUCTION

with 70% precision and 80% recall, meaning that only 20% of them is able

to hide their random behaviour. Moreover, malign workers are identified

with almost 90% of precision when at least 20% of their ratings is mislead-

ing, i.e. aimed at raising or lowering the average rating of some items.

Reliable ratings provide high-quality recommendations. Evaluations of

the proposed crowdsourcing platform confirm that removing ratings from

workers suspected of being cheaters the quality of the recommendations

obtained is raised by more than 50%.

As part of our studies, we collected four datasets of purpose-based rat-

ings, one for restaurants, bars, pubs and clubs in 3 different cities around

the world and three only for Trento’s restaurants. Such datasets are fun-

damental for studying recommendation algorithms and let researchers test

algorithms in these peculiar conditions. To the best of our knowledge,

there are not other datasets with similar characteristics.

1.4 Structure of the Thesis

Chapter 2. State of the Art

In this chapter we analyse the past research work about the topics related to

this thesis: the discovery of places, recommender algorithms (with a focus

on the services that recommend restaurants or related to the leisure sector),

and rating collection. These topics have been studied under different points

of view, and we will show which research questions remain unsolved. The

chapter is based on and extends the State of the Art deliverable presented

in the context of the project Toolisse [75].

Chapter 3. The Role of Friends in Decision Making

We explore the importance of friend recommendations. We present an

experiment in which we mixed social network-based relationships with col-

laborative filtering recommendations to verify how this kind of “friends”

14

1.4. STRUCTURE OF THE THESIS

reflect our tastes and whether they have potential to make us discover new

places we actually are interested in. These results have been extracted

from the paper published at CollaborateCom [70].

Chapter 4. How Purpose Influences Opinion

We study the factors that affect people’s decision in participating to leisure

activities. To this end, we collected the ratings of local people from three

different cities around the world on popular leisure activities, and looked at

the personal, social and contextual features shaping their preferences. We

then used this dataset to evaluate how these features can be exploited to

recommend places people would actually like. This chapter is an extension

of the paper published at CGC [71].

Chapter 5. Purpose-orientation and Focus on Locals

Contrary to most works on the topic, in this chapter we do not focus

on the algorithmic side of the problem of recommendation quality and

instead study the importance of the data in input to the algorithms. We

study the case of restaurant recommendations for locals and compare the

effect of purpose-based and local-provided ratings on recommendations as

opposed to generic tourist-based recommendations provided by services like

TripAdvisor. These results have been submitted at Internet Computing

[73].

Chapter 6. Designing Recommendations for Mobile Devices

In the context of leisure activities, recommender systems can merge the

word-of-mouth of friends and relatives with a complete knowledge of the

available options. Making this service reachable from mobile devices can

provide recommendations anytime and everywhere, avoiding the need for

planning in advance. In this chapter, we focus on restaurants, we study

how to collect ratings on mobile devices and which algorithm is best for

mobile restaurant recommender services. This chapter is under review

process for Software: Practice and Experience [74].

15

CHAPTER 1. INTRODUCTION

Chapter 7. Collecting the Initial Ratings from the Crowd

In this chapter we address the problem of acquiring reliable ratings of items

such as restaurants from the crowd. We propose a platform that recognizes

lazy and malign workers through the identification of their skills as they

insert more ratings. Moreover, the items to be rated are assigned in a

way that items with less ratings are exposed more and, in particular, to

workers with higher skills for them. This research work has been submitted

to WEBIST [76].

Chapter 8. Planfree - a Restaurant Recommender Service

In previous chapters we presented our studies identifying the best solutions

to the challenges for recommendation systems for leisure activities. In

this chapter we see how these learnings can be applied to a restaurant

recommender system. This chapter is an extension of a technical report

related to the Toolisse project [72].

Chapter 9. Conclusion

Final discussions about the presented research work, its limitations and

future work are presented in the concluding chapter.

1.5 List of Publications

• Beatrice Valeri, Fabio Casati, Marcos Baez, and Robin Boast. A

model for knowledge elicitation, organization and distribution in the

cultural entertainment sector. In Human Centric Technology and Ser-

vice in Smart Space, 2012.

• Beatrice Valeri, Marcos Baez, and Fabio Casati. Comealong: Empow-

ering experience-sharing through social networks. In International

Conference on Collaborative Computing: Networking, Applications

and Worksharing (Collaborate-Com), 2012.

16

1.5. LIST OF PUBLICATIONS

• Galena Kostoska, Denise Fezzi, Beatrice Valeri, Marcos Baez, Fabio

Casati, Samuela Caliari, and Stefania Tarter. Collecting memories

of the museum experience. In CHI13 Extended Abstracts on Human

Factors in Computing Systems, 2013.

• Galena Kostoska, Denise Fezzi, Beatrice Valeri, Marcos Baez, Fabio

Casati, Samuela Caliari, and Stefania Tarter. Understanding sharing

habits in museum visits: A pilot study. Proc. Museums and the Web,

2013.

• Beatrice Valeri, Marcos Baez, and Fabio Casati. Come along: under-

standing and motivating participation to social leisure activities. In

International Conference on Cloud and Green Computing (CGC), 2013.

• Beatrice Valeri, Marcos Beaz, and Fabio Casati. A tool for motivating

participation to cultural events. In CHItaly, 2013.

• Galena Kostoska, Denise Fezzi, Beatrice Valeri, Marcos Baez, and

Fabio Casati. Sharing museum experiences: an approach adapted for

older and cognitively impaired adults. In Proc. Museums and the

Web Asia, 2013.

• Beatrice Valeri, Florian Daniel, Fabio Casati, Mafe de Baggis, and Fil-

ippo Pretolani. D5.1 Recommendation and Emotional Representation

of Places and Events: State of the Art. Technical report, TrentoRise,

2014.

• Beatrice Valeri, Florian Daniel, and Fabio Casati. D5.3 Planfree -

Concepts, Architecture, Implementation and Exploitation. Technical

report, TrentoRise, 2015.

• Beatrice Valeri, Florian Daniel, and Fabio Casati. Better recommen-

dations of social leisure activities through better understanding of peo-

17

CHAPTER 1. INTRODUCTION

ples choices and motivations (poster). In International Conference of

Computational Social Science, 2015.

• Beatrice Valeri, Shady Elbassuoni, and Sihem Amer-Yahia. Acquiring

reliable ratings from the crowd (poster). In Conference on Human

Computation & Crowdsourcing (HCOMP), 2015.

• Beatrice Valeri, Florian Daniel, and Fabio Casati. On the value of

purpose-orientation and focus on locals in recommending leisure ac-

tivities (submitted). In Internet Computing, 2016.

• Beatrice Valeri, Florian Daniel, and Fabio Casati. Rating scales and

algorithms for mobile recommender systems: The case of restaurant

recommendations (submitted). In Software: Practice and Experience,

2016.

• Beatrice Valeri, Shady Elbassuoni, and Sihem Amer-Yahia. Crowd-

sourcing reliable ratings for underexposed items (submitted). In In-

ternational Conference on Web Information Systems and Technologies

(WEBIST), 2016.

18

Chapter 2

State of the Art

In this thesis we are going to tackle many problems related to recommender

systems. In this chapter we will explore the solutions already available. We

start from the discovery of places, how people perform this activity and

which services are already available to support them. Then, we proceed

by analyzing recommender algorithms, how they are evaluated and ap-

plied to the discovery of places for leisure activities, and how collaborative

filtering is affected by social networks. Ratings are the heart of any recom-

mender service: the different rating scales are analysed and crowdsourcing

platforms are presented as a means for collecting crowd opinions when

volunteering is not enough. Finally, the chapter is concluded with con-

siderations about the questions that are still open and the areas in which

further research can provide some improvement.

2.1 Discovering Places

The Web has changed the way people discover things to do in their spare

time, for dinner, for fun, for work. It is the world’s larges knowledge base,

and it allows them to look up, find and inspect the description of places and

events within seconds. Yet, choosing is in general not as simple as it might

sound. The set of search results is typically large, descriptions are not

19

CHAPTER 2. STATE OF THE ART

always satisfying, sometimes they are not trusted or even objectionable,

friends must be consulted as well, etc. In the following, we overview that

state of the art of how people discover places on the Web with the help

of dedicated applications or services and of how they share their opinions

or participation with their friends, giving their experience also a social

dimension.

Over the Internet, many services allow people to discover new places for

their leisure time exploiting the knowledge of the crowd, such as real time

location-sharing services, partially crowdsourced travel guides and social

networks just to mention some.

Location sharing services are very popular: users can see where their

friends are in a specific moment and can make serendipitous meetings

thanks to such information. Swarm by Foursquare (www.swarmapp.com)

makes it easy to discover new places nearby, added by the users themselves

when they decide to share their position (i.e. they check-in in a place). The

location sharing is motivated both by discounts offered by the place owner,

where available, and by a game: the user collects some points each time she

shares a location, earns badges and becomes the major of a place. Swarm

is also a social network, where users can select their friends and receive

notifications about their movements, keeping updated with their location.

Other than the explicit motivations offered by the system, i.e. rewards,

there are other reasons for location sharing, such as life-logging, commu-

nication and coordination with companions, recommendation of a place to

friends [11]. Swarm is used also for bookmarking places or let friends know

that they are available or that they reached their destination safely, in

particular when they check-in to their house. These behaviours have been

identified in [44]. The authors studied the effects of points and badges, and

discovered that they are good motivators for beginners, while later users

continue to use the service because of the social network connected to it.

20

www.swarmapp.com

2.1. DISCOVERING PLACES

Moreover, an important motivation to not check-in was identified in self-

representation: people do not check-in into places that could be considered

bad or that reveal a bad behaviour according to their friends [44].

The usage of location-sharing services has been studied also with the

goal of designing models to predict users’ future check-ins [4, 8, 53]. Know-

ing the user previous check-ins and the check-ins of her friends, Chang and

Sun [8] were able to recommend to the user her next checkin with 90% of

precision. Moreover, they found that if two people often check-in into the

same places, they are likely to be friends.

With location-sharing services people can discover new places in their

own city and in the surroundings, knowing where their friends go. For

tourists visiting a new city such services are not so helpful and travel web-

sites (or portals) are typically more focused on their context and needs.

Tourists find very useful the services based on users’ feedback that recom-

mend hotels, restaurants and places to visit, such as TripAdvisor (www.

tripadvisor.com) [49, 32]. Ratings coming from business customers are

trusted more than expert ones: experts’ opinions can be biased because

of personal profit. Recommender systems’ ratings collect people opinions

without any control on their knowledge of the place they are rating, letting

users free to add also fake reviews to increase the ranking of their own busi-

ness or to lower the one of their competitors [18]. Also some TripAdvisor’s

reviews seem fake, but the number of honest reviews is so high that the

fake ones do not have any impact on the final ranking of businesses and

the system is still reliable [54]. At our knowledge, user’s satisfaction of

TripAdvisor recommendations has not been studied yet.

Gogobot (www.gogobot.com) is another recommender system focused

on tourists, posing itself as a competitor of TripAdvisor. Differently from

TripAdvisor, it lets people ask for a partially-personalized recommenda-

tion list. Gogobot users build their profile entering in some communities

21

www.tripadvisor.com
www.tripadvisor.com
www.gogobot.com

CHAPTER 2. STATE OF THE ART

already provided by the platform, each one describing a lifestyle aspect.

Putting in your profile each community that represents one aspect of your-

self, you let the system know about your interests and the personalized

recommendation lists are more likely made of places that are interesting

for you. Gogobot’s knowledge about places comes from the crowd, and

each review contains a rating for each community that is well represented

by the place.

Some other services are similar to yellow pages, such as Google+ Local

(www.google.com/local) and Yelp (www.yelp.com). Both these services

help people finding businesses and places they are interested in. They

collect people’s feedback in form of 5-star ratings and textual comments.

Other services are more focused on restaurants and places where also

locals go. Zagat (www.zagat.com) is a trusted recommender system for

restaurants, hotels and nightspots, based on multiple 30-scale ratings for

each place, each one on a different characteristic. This rating system al-

lows more refined recommendations and a deeper understanding of the

type of experience that the place can offer. Moreover, Zagat collects rat-

ings from experts and their own editorial team curates all reviews and

recommendations. Experts are kept in the loop also by Urbanspoon (www.

urbanspoon.com): experts can be biased, but they still have a better

understanding of all the available options and they can integrate the in-

formation already collected by customers. In 2014 Foursquare added lo-

cal search functionality to its application (blog.sweetiq.com/2014/08/

foursquare-new-improved-yelp), using both the check-in information of

the location-based social network and user feedbacks, reviews and tastes to

provide recommendations. Foodspotting (www.foodspotting.com) moves

restaurant recommendations at a deeper level, going directly to the food

served in each place and building user profiles with food tastes. Actually,

this is a very important information that is very useful when you have to

22

www.google.com/local
www.yelp.com
www.zagat.com
www.urbanspoon.com
www.urbanspoon.com
blog.sweetiq.com/2014/08/foursquare-new-improved-yelp
blog.sweetiq.com/2014/08/foursquare-new-improved-yelp
www.foodspotting.com

2.2. RECOMMENDING ITEMS

decide which restaurant to go to. The Fork (www.thefork.com) is a restau-

rant booking service, which includes also recommendation functionalities.

Here only people that booked a table in the restaurant can rate it: in this

way the feedback is collected only from people that actually have been in

that restaurant.

Although recommender systems have been studied for a while, their ap-

plication in the context of leisure activities still needs more understanding

and the development of new applications like Foursquare local search and

The Fork is a clear indicator of the activity and evolution in this area.

2.2 Recommending Items

With the Internet, an overwhelming amount of information became avail-

able to everyone, but finding the interesting content became more and more

difficult. Recommender systems were born to solve this problem: among

a huge amount of items, they search the more interesting one for the user,

when she does not know the exact item she is looking for. These systems

are based on user’s opinions about the available items, collected mostly in

form of rating.

Recommender systems can be divided in two main categories: content-

based recommender systems and collaborative filtering. Content-based rec-

ommender systems [46] first learn the user profile, by extracting the charac-

teristics of the items the user liked, then build recommendations putting at

the top of the list the items that have more of the characteristics present in

the user profile. These recommenders have three main advantages: i) each

user is independent of the others, because recommendations are determined

only by the user’s own ratings; ii) the recommendations are transparent

and the characteristics of each item can be shown, allowing the user to

verify how much it corresponds to her profile; iii) new items can be recom-

23

www.thefork.com

CHAPTER 2. STATE OF THE ART

mended as well, even though they have not received ratings yet, because the

recommendations are based on their characteristics. On the other hand,

item characteristics are difficult to extrapolate and are very specific for the

context. Moreover, new users have to rate a minimum amount of items

before the system is able to build a valuable profile.

Collaborative filtering [37], instead, is able to build recommendations

without knowing item characteristics, as it is often the case. In [64], col-

laborative filtering is seen as an “automated word of mouth”, since recom-

mendations are built using other users’ opinions. The user profile consists

of her own past ratings assigned to items and is used to determine the taste

similarity between users. Items liked by more similar users are then rec-

ommended to the requester. In this way, recommendations are computed

without knowing extra information about the items and are more varied

since users can like items with different characteristics.

In the context of leisure activities and places, some item characteristics

need to be considered, like location, time and user’s distance, so we have

to filter “recommendable” items according to these characteristics. In this

way we restrict the item list to only places the user can actually reach, but

we still have a long list full of non-interesting items. At this point, we can

apply a collaborative-filtering recommender, to put at the top the places

that the user could find more interesting.

2.2.1 Main collaborative-filtering strategies

All collaborative filtering algorithms start from the rating matrix. It has

items as columns, users as rows and each cell (i,j) contains the rating that

the user i assigned to the item j. The ratings, as we will see more in details

in Section 2.3.1, can usually be unary (where the rating is defined, it means

that the user likes the item), binary (like vs. don’t like) or numerical, in a

finite scale (each number in the scale define the different degrees of liking).

24

2.2. RECOMMENDING ITEMS

Collaborative filtering strategies can be divided in three main categories:

memory-based, model-based and hybrid, which mix memory- and model-

based strategies. At each request of a recommendation list, memory-based

strategies uses the full rating matrix. Item-based strategies compute simi-

larity between items and recommend the items more similar to the ones the

user liked [61]. The similarity between two items is computed considering

how different the ratings given to the considered items by each user that

rated both are. Similarly, user-based strategies [15] compute the similarity

between users and the requester, select the more similar ones (building

in this way a neighborhood) and recommend the items that these similar

users liked. In this case, similarity is computed comparing how different the

ratings given by the two users on the items that both rated are. There are

different similarity metrics and strategies to identify the similar users, that

have impact on the algorithm’s performances. Memory-based algorithms

have some problems: i) the ratings matrix is sparse and finding similarities

can be difficult; ii) the cold-start problems refer to the inability to compute

recommendations for users with no or few ratings, or to recommend items

that have not been rated.

Model-based recommenders, as the name says, use the rating matrix to

build a model, representing the inferred knowledge in a more compact way.

This model is computed once and used to answer all the next requests, but

needs to be recomputed periodically as new ratings are added. Singular

value decomposition (SVD) [37] is the most famous model-based algorithm.

SVD decomposes the rating matrix in three smaller matrices according to

math-computed features: instead of storing each single rating, a small set

of features is computed according to the known ratings. A user-feature and

a feature-item matrices are computed, plus a feature-feature matrix that

translates computed ratings from one feature to the other. Each computed

rating in these matrices represents a piece of knowledge that previously

25

CHAPTER 2. STATE OF THE ART

was represented by many ratings. With a fast vector product, the final

prediction for a user and a new item is computed. The quality of SVD

recommendations depends on the number of features and the number of

iterations run to extract them. Slope One [41] is another model-based

algorithm based on a matrix of rating differences between items. The

algorithm uses item differences and requester’s actual ratings to compute

a predicted rating for the new items, which are then ranked and the top

ones are recommended. Model-based algorithms are usually more complex

and have long model-building phases, that have to be carefully planned to

maintain the recommendations good.

These two types of collaborative filtering strategies have been merged in

some hybrid algorithms, trying to get the best out of both. Cluster-based

recommender [79] “models” item and user neighborhoods, grouping them

in clusters according to their similarity. When a recommendation request

arrives, the rating matrix generated with the ratings of users in the re-

quester’s cluster is used to apply a memory-based recommender algorithm.

The clustering algorithm, the similarity metric and the number of clusters

computed are the parameters that affect the quality of the recommenda-

tions.

2.2.2 Algorithms evaluation

In the past years, many researchers have tested the different collaborative

filtering recommender algorithms, trying to understand which one gives the

best recommendations. Researchers used different formulae to understand

how good the recommendations are, considering both precision of top-k

recommendations and errors in singular rating predictions [7, 40]. In [7]

the authors compared 11 different collaborative filtering algorithms (and

some variants of one of them) on MovieLens and Netflix datasets, which

contain movie ratings in a 5-star scale. The tested algorithms are: user-

26

2.2. RECOMMENDING ITEMS

based, item-based, similarity fusion, regression-based, slope one, LSI/SVD,

regularized SVD, integrated neighbor-based - SVD model, cluster-based,

personality diagnosis and tendency-based algorithm. All these algorithms

have been tested both for prediction precision (how close is the predicted

rating to the actual rating) and for top-k recommendations (i.e. building

the recommendation list). The algorithms were tested under different data

densities, computing all the most common evaluation metrics: coverage,

MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), Preci-

sion, Recall, ROC (Receiver Operating Characteristics) and Half-life test.

Testing algorithms with different densities, the authors found that the rec-

ommendation quality of model-based algorithms changes less as density

changes, but on the other hand, memory-based algorithms are more accu-

rate when data density is high, because model-based algorithms abstract

and collapse data loosing part of their knowledge. The best results were

obtained with SVD-based algorithms, followed by tendencies-based and

slope one. Cluster-based algorithm performed the worst: it is based on the

existence of different user communities, but apparently in the used datasets

such communities are not present.

Lee, Sun and Lebanon [40] performed a similar test of collaborative fil-

tering algorithms (with Netflix dataset), coming to the same conclusion

that regularized SVD is the most accurate recommendation algorithm be-

tween the 15 selected. They tested the algorithms also considering time

constrains and found that regularized SVD is slow in building recommenda-

tions, taking at least 5 minutes under any density condition. For real-time

recommendations the authors recommend to use simple user average, while

the best algorithm that can build recommendations in maximum 1 minute

is Slope One, when the density is at least 2%.

The evaluations based purely on mathematical formulae for precision

and error do not always reflect the users’ perceived quality of recommen-

27

CHAPTER 2. STATE OF THE ART

dation lists. User-based evaluations can give more information about per-

ceived system qualities, beliefs, attitudes and behavioural intentions, and

can provide a more complete feedback on the full recommender system [56].

An example of recommender algorithms evaluation based on users is avail-

able in [12], where the authors asked people to evaluate recommendation

lists considering perceived accuracy, novelty and satisfaction. The baseline

recommender of most popular items and a variant of SVD resulted as the

most accurate and generated the highest satisfaction in users, but their

novelty was low.

2.2.3 Recommending places

We have seen that recommenders work with generic items and the re-

quester’s interests and past experiences are directly related to the future

experiences she will have with the recommended items. When we speak

of leisure time, we are speaking of social activities that are performed to-

gether with friends. When we recommend an activity for leisure time, the

user context is really important, differently from the recommendations of

e-commerce products in which only item characteristics and user prefer-

ences are needed. Baltrunas et al. [5] show that recommendation systems

are able to increment user satisfaction by considering weather conditions,

companions, time (season, weekday or time of the day) and familiarity with

the area, along with other contextual information. Mobile devices provide

support for context-aware recommendation systems. Thanks to their sen-

sors, they can automatically collect contextual information, such as user

position and therefore weather conditions, and also provide for proactive

recommendations [77]. For example, the recommendations for a user that

is doing shopping in the city center at lunch time with a friend should

involve restaurants that can be reached by foot in few minutes and that

are cheap. In other situations restaurant recommendations could use the

28

2.2. RECOMMENDING ITEMS

context information to identify restaurants with different characteristics or

recommendations could be useless.

In [28] the authors found that people mostly rate restaurants in an area

of 14 miles (22 kilometers) in diameter: this indicates that restaurants

conveniently situated are within this distance from the user location, while

farther places are less likely to be interesting to the user. Moreover, people

that go to the same restaurants tend to live close to each other. This

result is very useful for neighborhood-based collaborative filtering, since

neighbors search can be restricted to close users that live nearby, improving

efficiency without losing precision.

For tourists, the recommendations are very important because they

don’t know the area and the available options it offers. Recommendations

for tourists do not involve just the activity and place to perform it, but are

related also to time and path to reach places since the user is not able to

predict them by herself [21]. In tourism, some recommenders also consider

multi-criteria ratings to understand better what the user likes of the differ-

ent aspects of her experience, while other recommenders are critique-based,

letting the user guide better the recommender by expressing why an item

is not interesting for her and, in this way, implicitly adding more details

to the search query [21]. Ricci in [57] went one step further, identifying

in the item representation another challenge for recommendation services.

Recommenders should make it clear why they recommend an item, giving

some information about it. In this way, they let the user understand which

type of experience she could have going in that place or performing that

activity.

2.2.4 Social networks and collaborative filtering

Mui and his colleagues [51] already understood in 2001 that each person

gives different reputation to others and their opinions should have different

29

CHAPTER 2. STATE OF THE ART

effects on the predicted rating of the user computed by the user-based col-

laborative filtering algorithm. Other researchers used profile similarity and

rating overlap to improve the quality of recommendations [6]. Since offline

recommendations are received mainly from friends and familiar advisors,

i.e. people that the user knows and trusts, Bonhard and his colleagues

[6] proposed to apply collaborative filtering only on a more personal user-

base: people that have the same interests (coming from their profiles) or

that rated the same items in the same way.

In the last years, thanks to social networks, more people’s information

became available on the Internet: friendship and trust relationships. Such

information can be used to improve the recommendations generated with

collaborative filtering [63, 45, 47, 67]. In [63] the authors found that there

are two types of relations that, combined together, enhance the quality of

recommendations: they called them social friendship and spiritual friend-

ship. Social friendship is the actual friendship relation stated by users,

while spiritual friendship is defined by the similarity in behaviour, i.e. two

users have a spiritual friendship when they like the same things. The con-

clusions in [45] are quite similar: when collaborative filtering is applied on

a user-base composed of user’s friends and neighbours (i.e. people with

similar tastes) the resulting recommendations are better than using only

one of the groups.

In [48] the authors present recommender algorithm that mixes trust

with friendship and social networks. The authors paid a lot of attention to

user’s privacy and decided to use local approaches: users can completely

manage their profiles and share them on demand to direct friends. When

the recommender needs to predict the user’s rating (i.e. to assign a score),

the ratings of direct friends are asked together with their trust (explicitly

assigned by the user). The score is computed weighting friends ratings with

their trust values, or it is assigned a default value if there are not enough

30

2.3. EXPRESSING RATINGS

information to compute it. If the user’s friend does not have a rating for the

item, the system computes the friend’s score (i.e. the predicted rating) and

then only the score is shown, without propagating the ratings of friend’s

friends. Finally scores are aggregated before showing them. Moreover

the authors decided to add other weights, other than the explicit trust, to

better represent the value of relations between friends: correlation indicates

how similar the friends are, giving higher importance to the ratings coming

from friends that have similar tastes, while confidence indicates how the

propagated score was computed, allowing the recommender to distinguish

between real ratings, computed scores and default score.

In taste related domains, friend relationships can really improve collab-

orative filtering: in [23] the authors recommended Munich clubs to users

in a social network by selecting neighbors between friends. They found

that “groups of friends are more similar in ratings of taste related domains

than groups of people that do not know each other”. These results were

confirmed also in [65], where the authors found that restricting the neigh-

bors search between friends, user-based collaborative filtering maintains

the same performances with a reduction of resources consumption.

2.3 Expressing Ratings

To build a recommendation system we need three ingredients: i) items,

together with their characteristics, to be rated; ii) users willing to share

their opinions; iii) ratings, i.e. the representation of users’ opinions. Before

the system can start building recommendations, we already have to define

all the items we are interested in recommending, and we have to collect

some ratings from some users. Without an initial set of ratings, the recom-

mendation algorithms are not able to build the first version of model (for

model-based collaborative filtering algorithms) or is not able to compute

31

CHAPTER 2. STATE OF THE ART

Figure 2.1: Examples of different rating types.

similarities between items or users (for memory-based collaborative filter-

ing algorithms). This leads us to two main problems: i) how we represent

users’ opinions, i.e. in which form ratings are collected; ii) how we find

people to give the first set of ratings.

2.3.1 Rating representation

People can express their opinions in many different ways: ratings can be

unary (only “I like it”), binary (thumbs-up / thumbs-down), numerical in

a small finite scale (such as 5-star ratings), in larger scales or continuous

in a fixed interval (such as Jester’s ratings).

Unary ratings are the ones that only identify whether a person likes an

item. We can see an example of such ratings in Facebook, when users are

invited to say “I like it” to pages, movies, tv programs and others, but also

bookmarks can be seen as unary ratings. This type of ratings is particular

because the system does not collect any information about “bad items”

and the similarity between users, where needed, should be computed in a

different way.

The most known binary ratings are the ones of YouTube. They let

people express both positive and negative opinions, but without any degree.

The recommender system is not able to distinguish a good item from an

awesome one.

32

2.3. EXPRESSING RATINGS

The other numerical rating scales let users express different shades of

their positive, negative or neutral opinion, at different granularities. 5-star

ratings are quite a popular example of small-scale and can be found in Ama-

zon (www.amazon.com), TripAdvisor or MovieLens (movielens.umn.edu),

just to mention few. Larger scales can be easily shown with sliders, as done

in Jester’s joke recommender (eigentaste.berkeley.edu). Having more

values, people can express their opinion in a more detailed way, letting the

recommender rank the items with more precision, but on the other hand

the rating scale has some influence in the collected ratings [22]. Moreover,

the different rating values could be interpreted differently by users, map-

ping their opinions to rating values in a different way one from the other:

some people could be more “optimistic” and rate all good items with 5

stars, while others could be more “pessimistic” and reserve the 5 stars to

items that are really awesome [55]. The action of mapping opinions to rat-

ing values require the user different cognitive load according to the scale

used.

Past studies about rating scales in computer interfaces identified the 5-

star rating scale as the best one according to users when rating movies

or product reviews through a desktop device, immediately followed by

thumbs-up/thumbs-down [68, 10, 22]. The 5-star rating scale has the ad-

vantage of letting people assign a neutral rating when they do not have

a clear opinion about an item, without forcing a decision which may be

misleading [20]. Also, the way in which the scale is represented (e.g., with

only positive values or centered in 0 with negative values for bad ratings)

has an impact on how people select the rating that represents best their

opinion [3].

33

www.amazon.com
movielens.umn.edu
eigentaste.berkeley.edu

CHAPTER 2. STATE OF THE ART

2.3.2 Collecting ratings

Given a rating model to apply, providing precise and accurate recommenda-

tions requires first and foremost data, that is, user ratings of items. These

data can be used to both provide recommendations at system runtime or

to train and fine-tune the recommendation algorithm at development time.

Both scenarios are important in the context of recommender systems. For

the former scenario, data can be collected directly from the users using the

system, consuming recommendations, and providing their own ratings and

feedback. For the latter scenario, data collection is typically more complex,

in that the system to be developed (which would allow the users to express

ratings) is not yet in place. It is therefore needed to gain access to useful

data without involving the users of the future system.

One way of achieving this that has gained momentum over the last years

is crowdsourcing, i.e., outsourcing of a piece of work (e.g., the rating of

places) to an unknown group of people via an open call for contributions

[30]. Typically, this is done via the Web through so-called crowdsourc-

ing platforms like Amazon Mechanical Turk (www.mturk.com/mturk) or

CrowdFlower (www.crowdflower.com).

Ratings are usually collected online, advertising a webpage where people

can participate to a survey asking them to provide a set of ratings for

places. In this respect, crowdsourcing has two key pros: i) the survey can

be advertised to many workers around the world, and ii) respondents can

be motivated offering rewards (typically small amounts of money).

The rewards are great because they let researchers collect a huge amount

of data at relatively low cost and in short time. On the other hand, re-

wards motivate respondents to cheat, providing random or wrong answers,

to complete the task as fast as possible, increasing their personal hourly

income. Since data are needed for testing the researchers’ work, they do

34

www.mturk.com/mturk
www.crowdflower.com

2.3. EXPRESSING RATINGS

not want to pay for bad data, so quality controls are needed and workers

providing bad data should not be paid.

We already mentioned that crowdsourcing platforms provide respon-

dents from around the world. What if we want our survey to be answered

only by people with specific skills? We need to filter workers and let them

answer only if they can prove that they have the needed skills. These two

problems of worker selection and cheating detection are explained in the

following, together with the solutions suggested in the literature.

Worker selection

In the literature, the problem of identifying the right workers for completing

a task is usually solved in two ways: i) putting restrictions on the workers

according to some information available in their profiles; ii) requiring to

complete a qualification task before being able to access the actual task.

In crowdsourcing platforms, the requesters can hire people from all over

the world to complete a task, when the task is in an internationally known

language like English. This can be great for creative tasks, where a differ-

ent culture could lead to unexpected good results, but in other cases the

different culture and environment condition could make the task puzzling

or even offensive. For this reason many crowdsourcing platforms allow

the requesters to define some characteristics the workers should have to be

able to perform the task and these characteristics are usually related to the

country the worker lives in and the languages she knows. Such information

is contained in the worker profile and the verification is executed by the

platform when the worker shows interest in the HIT (“Human Intelligence

Task” in the terminology of Mechanical Turk).

Profile information is usually not enough for understanding whether a

worker has the correct skills to correctly perform a task. For example, some

tasks could require some specific knowledge in Math or in another specific

35

CHAPTER 2. STATE OF THE ART

subject. Workers’ skills could be learned by the crowdsourcing platform

by tracking workers’ performance on the solved tasks and by identifying

which skills are requested to correctly solve the specific tasks. A framework

for such kind of crowdsourcing platform has been presented in [60], named

SmartCrowd. The defined crowdsourcing system automatically evaluates

the accuracy of completed tasks, learns the skills of the worker from her

answers and assigns tasks to workers by matching their skills with the ones

required to solve the tasks. Still, the ability to check users’ skills depends on

the tasks they already completed: if our task require some specific skills it

could be possible that no previous task gave such type of skill information.

More detailed and task-specific conditions can be verified through a

qualification task. Workers are asked to complete first the qualification

task, that is actually a separated HIT, which contains questions or activities

specifically designed to identify if the worker has the needed capacities to

perform the actual task. Only the workers that give the correct answers

or perform the task well enough are allowed to access the actual task.

For example, in [2] workers are asked to judge if a document is relevant

to a search query. Since documents are articles about different countries,

workers need to know some geography and this skill is tested with few

questions in a qualification test. Another example can be found in [14],

where the level of knowledge of a specific city is verified before allowing

the worker to access the task. In this case the pictures of some less known

POIs are shown to the worker, which has to give the correct name of them

to show her deep knowledge of the city.

Cheating detection

There are many studies about the quality of crowdsourced work, also in

relation with experiments that evaluate information retrieval and recom-

mender algorithms. Before thinking on methods to identify if a worker is

36

2.3. EXPRESSING RATINGS

cheating, it is important to design the task in a way that cheating is as

discouraged as possible, possibly by making it more effortful than giving a

truthful answer. In [36] the authors show how the number of workers trying

to cheat is decreased by designing the task in a way that makes cheating at

least as effortful as giving trustful answers, while Eickhoff and de Vries in

[16] found that cheaters are discouraged by tasks that have the following

characteristics: require creativity and abstract thinking; have many con-

text changes; have small batch sizes. They also found that previous task

acceptance, as was implemented at CrowdFlower and its available channels

in 2010, is not enough to understand workers’ reliability since it was easily

cheated too.

In many cases, a good task design is not enough for discouraging cheat-

ing and the truthfulness of the collected information need to be checked

using different mechanisms. The most common ones are the followings:

• Gold answers, i.e. extra questions with verifiable answers: if people

are just giving random answers without reading the questions, they

will likely give the wrong answers to these verifiable questions. If

it is possible, the questions should refer to the content of the items

being rated, so the correct answer also checks that the user is actually

paying attention to what she is reading. In [29] the workers have, for

example, to answer questions about how many stops they noticed in

a video: stops were artificially added and there was only one correct

answer known by task designers.

• Verification and control questions: These are used mainly when the

answer of the user is very subjective. The correctness of the answer is

checked by asking the same question twice and comparing the results.

In [39] this result is obtained asking twice to classify the mood of

some music. The worker cannot understand the music is the same she

37

CHAPTER 2. STATE OF THE ART

already classified if she is not paying attention, so only trustful workers

can give twice the same answer and pass the verification question. A

variant is made of control questions: they are used to verify if the user

understood the topic related to the task and if she is paying the right

attention to what she is doing [17, 29]. Qualification tests are also

usually deployed to verify that the workers are knowledgeable about

the tasks they will be performing [2, 14].

• Majority decision: This technique allows one to verify if the answers

by one worker are in line with the answers by other workers. This is

true if there is only one correct answer, that we expect to be given by

the majority of the workers [2].

• Control group: The idea here is to crowdsource the verification pro-

cedure, that is, to create another task in which workers will have to

check whether the answers to the first task are plausible/correct. This

can be used again only if there is a commonly known good (objective)

answer [25].

• Log analysis : The interactions of the worker with the task interface are

logged and checked in a second moment. If the worker is spending too

much or too few time reading instructions or choosing/building the

answer, she is considered a cheater. In [29] this technique is applied

together with gold answers and content questions.

The quality of data collected through crowdsourcing can be influenced

also by simple feedback given to the worker while she performs the task.

In [66] the authors tested the effect of different motivational messages on

the quality of workers answers. The authors found that better results can

be obtained by telling the worker that her work will be verified and that if

the answers are wrong and too different from the ones of the other workers,

38

2.3. EXPRESSING RATINGS

she will be banned. Le et al. in [38], instead, find that better results are

obtained by giving feedback to workers during their training task. In this

way good workers learn how to complete the task in the best way, while

cheaters abandon the task since their attacks are identified and make them

spend more time.

Crowdsourcing subjective opinions

In recent years, many work have been done on improving the data quality

for crowdsourcing. Most such work focused on the joint inference of true

labels of items and worker reliabilities after the data have been collected

[13, 31, 33, 78, 25]. However, all these methods suffer from two drawbacks.

First, they assume the presence of one ground truth, even if it is unknown,

which is clearly not the case for subjective crowdsourcing tasks such as the

ones we are concerned within this thesis (i.e., rating of items). Second, all

these methods are generally post-processing methods, so they cannot be

easily used during task assignment to improve data quality as more tasks

are being performed.

To address the first issue, namely, the presence of a single ground truth,

Tian and Zhu [69] studied the problem of worker reliability in crowdsourc-

ing taks in the case where more than one answer could be valid and rea-

sonable. They directly modeled worker reliability and task clarity without

the help of gold standards. Their model was built on two mild assumptions

on the grouping behavior that happens in schools of thought: 1) reliable

workers tend to agree with other workers in many tasks; and 2) the an-

swers to a clear task tend to form tight clusters. Following this idea, they

developed a low-rank computational model to explicitly relate the group-

ing behavior of schools of thought, characterized by group sizes, to worker

reliability and task clarity.

39

CHAPTER 2. STATE OF THE ART

There have been various attempts to integrate worker reliabilities or

skills with task assignments in crowdsourcing platforms. Li and Zhao and

Fuxman [42] proposed a crowdsourcing platform that can automatically

discover, for a given task, if any group of workers based on their attributes

have higher quality on average; and target such groups, if they exist, for

future work on the same task. Satzger and Psaier and Schall and Dustdar

[62] proposed to use auctions to map tasks to workers in the crowd where a

requester defines a maximum amount of money she is willing to pay. They

then deployed an auctioning mechanism that provided a beneficial distri-

bution of tasks to the available resources. Karger and Oh and Shah [35]

considered a general model of crowdsourcing tasks and posed the problem

of minimizing the total price (i.e., number of task assignments) that must

be paid to achieve a target overall reliability. They gave a new algorithm

for deciding which tasks to assign to which workers and for inferring correct

answers from the workers’ answers.

Ho and Vaughan [27] explored the problem of assigning heterogeneous

tasks to workers with different, unknown skill sets in crowdsourcing mar-

kets such as Amazon Mechanical Turk. Inspired by research on the online

adwords problem, they presented a two-phase exploration-exploitation as-

signment algorithm to allocate workers to tasks in a way that maximizes the

total benefit that the requester obtains from the completed work. The same

authors together with Vaughan [26] investigated the problem of task assign-

ment and label inference for heterogeneous classification tasks. By applying

online primal-dual techniques, they derived a provably near-optimal adap-

tive assignment algorithm and showed that adaptively assigning workers

to tasks can lead to more accurate predictions at a lower cost when the

available workers are diverse.

Roy, Lykourentzou, Thirumuruganathan, Amer-Yahia and Das [60] pro-

posed in a vision paper to rethink crowdsourcing as an adaptive process

40

2.4. CONCLUSION

that relies on an interactive dialogue between the workers and the system

in order to build and refine worker skills while tasks are being completed.

In parallel, as workers complete more tasks, the system learns their skills

more accurately, and this adaptive learning is then used to dynamically

assign tasks to workers in the next iteration. This dialogue between the

system and workers resembles the dialogue between users in trust-based

systems [50]. In the same way in which in an e-commerce website buyers

rely on the sellers’ reputation and on the past interactions to understand

how much they can trust them, in a crowdsourcing platform the task re-

questers use the learned skills of workers to understand how much they can

trust them. However, the meaning of worker skill is different from trust,

as it includes also the specific capabilities of a worker.

2.4 Conclusion

We have seen how research has been active in the different areas related to

recommendations of places for leisure activities, but there are still questions

that remain without an answer.

Although recommender systems have been studied for a while, their ap-

plication in the context of leisure activities still needs more understanding

and the development of new applications like Foursquare local search and

The Fork is a clear indicator of the activity and evolution in this area. In

research many personalized recommendation algorithms have been devel-

oped and studied, but their application is still limited, in particular in the

context of leisure activities.

We have seen that according to literature SVD is one of the best rec-

ommendation algorithms, but these evaluations are based mainly on movie

datasets, where there is no context to consider and people are less influ-

enced by others. A deeper understanding of the application of these algo-

41

CHAPTER 2. STATE OF THE ART

rithms for recommending places for leisure activities is needed. Moreover,

these evaluations are mainly based on offline experiments (i.e. simulating

the requests and evaluating the results with objective measures such as

precision and mean average error), while user-based evaluations are funda-

mental to understand how much people are satisfied of the recommended

items.

The identification of the best rating scale, that provides the correct

amount of options to correctly collect all the shades of people tastes and at

the same time is easy to use, is a problem that has been already tackled.

For desktop devices, the 5-star rating scale has been identified as the best

one, but at the best of our knowledge, no one explored the adoption of

rating scales on mobile devices, where real estate and touch interface make

the interaction different.

When volunteering is not providing the needed amount of ratings or

when a new dataset is needed to answer some interesting research ques-

tions, crowdsourcing platforms could be the answer: they let you easily

reach a crowd willing to collaborate at the cost of a reward (balanced with

the time needed to complete the task). Crowdsourcing has been used to

complete tasks easy for humans and hard for computers, such as label-

ing images, and different techniques for identifying the correct solutions

between the many provided have been developed. The main difference

between usual tasks and rating collection lays in the subjectivity of the

information provided in this last type of task. The techniques for identi-

fying cheaters in crowdsourcing platforms usually rely on the presence of

a ground truth, i.e. an objective correct answer which all trustful workers

agree on. In the case of rating collection this ground truth does not exist,

and novel quality-control techniques are needed to respect the subjectivity

of workers’ opinions.

42

Chapter 3

The Role of Friends in Decision

Making

3.1 Introduction

In Section 1.1 we have seen how people feedback about the items they know

about can be collected in different ways. Between the many implicit and

explicit user feedbacks we can use as source of people opinions, we decided

to focus on ratings: people select the value that better represent their

opinion from the provided scale. Assigning a rating to an item requires

only few seconds, in which the user reminds her last experience with that

item and maps her level of liking to a value within the scale presented

to her. Being a form of explicit feedback, it has the advantage that the

system is collecting the real opinion of the user and does not need to

interpret user’s behaviour to extrapolate her tastes, as it happens when

collecting implicit feedback. We decided to not consider reviews and other

more complex explicit feedbacks because of their effort: the more time is

required for a single feedback, the fewer feedbacks the user is willing to

leave. Another advantage of collecting ratings is that their values can be

immediately consumed by recommender algorithms, without the need for

special conversions.

43

CHAPTER 3. THE ROLE OF FRIENDS IN DECISION MAKING

Friends and relatives are important in the leisure environment as we

usually spend leisure time with them. In the last years we have seen an

increasing usage of social networks. People like to meet friends online

and share with them the interesting facts of their life. Thanks to social

networks, now relationships between friends are easily accessible without

the need to ask directly people about them.

In this chapter we study whether the relationships between users as

stated in social networks can be used to improve recommendation quality.

The question behind this study is the following: since in real life friends’

recommendations about what to do in leisure time are very important, do

friends’ tastes better represent the requester’s ones? Collaborative filter-

ing algorithms use the opinions of users with tastes similar to the requester

to predict how much the requester would like an unknown/un-rated item.

What happens if instead of considering “similarity” relationship we con-

sider “friendship” relationship as it is stated in social networks?

For the following evaluation, we focused our attention on restaurants.

Going out for dinner is a very common activity and almost everyone knows

at least some of the restaurants available in her city. As most of the

other leisure activities, it is usually performed with some companions, i.e.

friends, the partner, the family or other relatives. The choice between

restaurants is hard as their characteristics, such as cuisine type, location

and price, are usually not enough to understand the type and quality of

the experience we can have there. As for all the other places for leisure

activities, the opinions of others are important to understand the quality

of the service offered and be able to identify the right place for us.

44

3.2. SAMPLE POPULATION AND COMPARISONS WITH BASELINES

3.2 Sample Population and Comparisons with Base-

lines

To study the effectiveness of ratings, we collected a set of ratings about

restaurants in Trento, Italy (694 ratings from 90 users, over a total of 75

restaurants we considered in the study, taken from TripAdvisor’s top 75

ranked restaurants). Ratings were on 1-5 scale as TripAdvisor does. How-

ever, our population was people who live in Trento and therefore know the

restaurant scenes rather well. Furthermore, each person rated on average

just short of 8 places in the same town. We do not have in our survey rat-

ings from occasional visitors who has only been in one or two places, and

we do not have ratings from restaurant owners or their competitors. The

population in the study is composed of relatively young adults that have

a Facebook account (we required a Facebook login to perform analysis of

the effectiveness of friend-based recommendations). This means that our

population was mainly composed of young adults, but we don’t consider

this to be a bias because the sample is also the same as the population we

target.

We take therefore the results of the ranking as a representation of the

average opinion of locals.

As a first part of the analysis, we studied how well results from popular

travel guides match our ground truth. We took as notable example the

Lonely Planet 2012 guide for Italy [24]. The result is shown in Table 3.1.

The guide lists five restaurants. One of them is not among TripAdvisor’s

top 75 and therefore is not in our test list. The other four are, interestingly,

in very different position in the three rankings. Lonely Planet considers

them to be the four most interesting restaurants to visit, while for our

ranking they are more or less evenly distributed among the top half but are

quite far from the top 4 (with one exception), and the results are analogous

45

CHAPTER 3. THE ROLE OF FRIENDS IN DECISION MAKING

Table 3.1: LonelyPlanet recommended restaurants for Trento

Lonely Planet Our ranking (out of 75) TripAdvisor ranking

Scrigno 5 10

Uva e Menta 15 55

Tre Garofani 20 7

Pedavena 37 47

Table 3.2: TripAdvisor top 10 recommended restaurants for Trento

Restaurant TripAdvisor Our ranking

Due Spade 1 1

Duo 2 35

Vecchia Macina 3 35

Albert 4 35

Margon 5 63

Madruzzo 6 5

Tre Garofani 7 20

Gusto 8 54

Pineta 9 69

Scrigno 10 5

for TripAdvisor (TripAdvisor and our rankings are also very different, but

we’ll get back to this later). We can say that Lonely Planet did not, in

this case, guess the preferences of our test users population.

As another baseline analysis, we consider TripAdvisor. Instead of us-

ing correlation coefficients we take a very pictorial way of performing the

analysis: we consider the effectiveness of the top 10 rated restaurants on

TripAdvisor (assuming we would look at those to select where to go) and

see how well we would do with that.

As Table 3.2. shows, in three cases we would pick one of the our top 10

restaurants, while in the other cases we pick places that are rather far down

the ranking. Indeed, given that we have a population of 75 restaurants, 6

out of these top 10 are around or below that midpoint!

46

3.3. FORMAL EXPERIMENT DEFINITION

We now turn to look at how we can best use such ratings to perform

accurate and personalized recommendations. Specifically, we first see how

our overall ratings are accurate in giving recommendation to a user, and

then compare this with recommendations given by considering only the

requester friends’ rating, by considering ratings from people with similar

taste as the requester (that rated similarly), and last by considering the

ratings by similar friends.

3.3 Formal Experiment Definition

Let U be the set of all users and P the set of all the places. Liked represents

the relation (user, place) ∈ U × P of places users rated positively, and

Disliked the relation (user, place) ∈ U × P \ Liked of places users rated

negatively. FriendOf denotes the relation (user, user) ∈ P2. Given these

basic elements we define:

Known(u) = {p ∈ P | Liked(u, p) ∨ Disliked(u, p)} ,

Unknown(u) = P \ Known(u)

to denote the sets of places the user have rated and the ones yet to discover.

For the scoring function, we compute the average rating of the network

in consideration:

score(p,Net(u)) =
‖Likes(p,Net(u))− Dislikes(p,Net(u))‖

‖Net(u)‖
Net(u) = {u′ ∈ U | sim(u, u′) > δ} .
Likes(p,Net(u)) =

⋃
{u′ ∈ Net(u) | Liked(u′, p)}

Dislikes(p,Net(u)) =
⋃
{u′ ∈ Net(u) | Disliked(u′, p)}

Finally, we define the recommendation of places p to a user u as:

47

CHAPTER 3. THE ROLE OF FRIENDS IN DECISION MAKING

1. Rec(u, k) ⊆ Unknown(u),

2. |Rec(u, k)| = k,

3. ∀p ∈ Rec(u, k) ∀p′ ∈ (Unknown(u) \ Rec(u, k))

(score(p) ≥ score(p′)).

3.4 Definition of Recommendation Strategies

We tested four different settings of the above definition to compare the

effectiveness of the different networks to recommend places:

Recommendation based on overall popularity

In this setting we consider the ratings from all users to compute the score

(scoreo):

simo(u, u
′) = 1,∀u, u 6= u′

Recommendation based on friends

This setting makes use of the network of friends to compute the score

(scoref):

simf(u, u
′) = 1,∃FriendOf(u, u′)

Recommendation based on similar users

This setting makes use of people with similar taste to compute the score

(scorert). The similarity function in this case is defined as:

simrt(u, u
′) =

‖Co liked(u, u′) ∪ Co disliked(u, u′)‖
‖Known(u) ∩ Known(u′)‖

Co liked(u, u′) =
⋃
{p ∈ P | Liked(u, p) ∧ Liked(u′, p)}

Co disliked(u, u′) =
⋃
{p ∈ P | Disliked(u, p) ∧ Disliked(u′, p)}

48

3.5. EVALUATION OF THE DIFFERENT RECOMMENDATION ALGORITHMS

Table 3.3: Evaluation of the different scoring functions, k = 5

Score function (k = 5) Precision Recall

Av. sd Av. sd

scoreo 0.09 0.15 0.08 0.12

scoref 0.16 0.21 0.12 0.17

scorert 0.12 0.18 0.08 0.14

scoresf 0.25 0.26 0.14 0.16

Table 3.4: Evaluation of the different scoring functions, k = 10

Score function (k = 10) Precision Recall

Av. sd Av. sd

scoreo 0.11 0.12 0.16 0.16

scoref 0.17 0.16 0.22 0.20

scorert 0.13 0.13 0.17 0.21

scoresf 0.22 0.21 0.25 0.28

Recommendation based on similar friends

This setting makes use of friends with similar taste to compute the score

(scoresf). The similarity function in this case is defined as:

simsf(u, u
′) = simrt(u, u

′),∃FriendOf(u, u′)

3.5 Evaluation of the Different Recommendation Al-

gorithms

We evaluated each recommendation strategy by computing all variations of

the score function for all users u on every place p ∈ P , dropping the place

from the set of known places Known(u) as the initial condition. Then we

took the top k places and compared this list with how many places the

user actually liked computing precision and recall. The summary of the

results can be seen in Table 3.3 and Table 3.4.

49

CHAPTER 3. THE ROLE OF FRIENDS IN DECISION MAKING

In the evaluation we use the following definition of precision and recall:

precision =
‖Tp(u)‖

‖Tp(u)‖+ ‖Fp(u)‖

recall =
‖Tp(u)‖

‖Fp(u)‖+ ‖Fn(u)‖
Tp(u) =

⋃
{p ∈ Rec(u) | Liked(u, p)}

Fp(u) =
⋃
{p ∈ Unknown(u) | Disliked(u, p)}

Fn(u) =
⋃
{p ∈ Known(u) \ Rec(u) | Liked(u, p)}

The results suggest, not surprisingly, that recommendations coming

from similar users (based on rating behaviour) performs better than overall

popularity. More interestingly, recommendations coming from friends, and

specially if reduced to similar friends, outperforms considerably the other

algorithms in both precision and recall. These results are promising and

points to the potential of balancing personal tastes (in this case captured

by rating behaviour) with the real social context (friends).

We should interpret the higher precision as higher chances of finding in-

teresting restaurants, and the higher recall as the reduced feeling of missing

out something.

3.6 Conclusion

From this analysis we learn that there is space for improvement in recom-

mending good places to eat (and, likely, the same applies to other categories

of places for leisure activities), as we have seen that travel guides and web

sites are not satisfying the locals involved in our experiment. Specifically,

an interesting take home point is that not only unbiased ratings from locals

differ from those of travel guides, but also that considering friendship and

50

3.6. CONCLUSION

similarity have a profound effect on the accuracy of the recommendations.

We assume that the friendship effect is not so much related to being friends

but rather to being in the same age group, but we did not have the chance

to verify this. Recommendations based on similar friends provide by far

the best result (almost three times better than overall ratings), combining

(we believe) age with taste similarity.

51

CHAPTER 3. THE ROLE OF FRIENDS IN DECISION MAKING

52

Chapter 4

How Purpose Influences Opinion

4.1 Introduction

In this chapter we study how people decide what activity to perform during

leisure time, and in particular in which places they can perform the chosen

activity, focusing our attention to typical activities that are performed on

a standard evening in three different cities in the world: drinking aperitif

in a bar and having dinner at a restaurant in Trento, Italy; having dinner

at a restaurant and drinking some beer in a pub in Asunción, Paraguay;

having dinner at a restaurant and dancing in a club in Tomsk, Russia. We

discovered that places for performing these activities are chosen differently

according to the kind of companions people are spending their leisure time

with, and in which situations price/quality ratio is important.

Recommendations are analysed too, finding that recommendations can

be computed also across different activities: knowing user’s tastes about

restaurants, we can recommend which places she can like for the other

activity considered in her city. This discovery leads to the possibility of

profiling users based on their lifestyle, allowing us to extend the recom-

mendation service to all different kinds of leisure activities maintaining the

high quality.

The main contributions of this chapter can be summarised as:

53

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

• a large scale study on three different cities around the world, gathering

a total of 9820 ratings from 162 local people.

• an analysis of factors affecting people’s decision and preferences in

participating in leisure activities, considering the social context, pref-

erences across activities and the effect of individual’s purpose in en-

gaging in an activity.

We have seen in Chapter 3 how for Trento’s people Facebook friends

are a useful user-base for collaborative filtering-based recommendations of

restaurants. In this chapter we extend the previous experiment in three

directions: i) we run it in 3 different cities around the world (Trento in

Italy, Asunción in Paraguay, and Tomsk in Russia); ii) we considered two

different leisure activities in each city, one of which is again restaurants

while the other is different for each city; iii) for each place, users were able

to specify 4 different ratings according to different purposes that can be

accomplished with an activity.

4.2 Formal Definitions

Before describing the study in details, we start by providing some formal

definitions. The formulae we are presenting here extends the ones already

explained in Section 3.3. In this case, we are not considering generic places,

but specific businesses (restaurants, bars, pubs and clubs), so we will use

these two words as synonyms.

Let U be the set of all users and B the set of all the businesses where

activities can be performed. Let A be the set of all activities, and P the set

of purposes that can be accomplished with an activity. Liked represents the

relation (u, b, a, p) ∈ U ×B×A×P of businesses users rated positively for

a given activity on a specific purpose, and Disliked the relation (u, b, a, p) ∈

54

4.2. FORMAL DEFINITIONS

U ×B×A×P \Liked of businesses users rated negatively. As an example,

this definition can capture a situation in which a user (u) likes a given

restaurant (b) to have dinner (a) with her partner (p).

Given these basic elements we define:

Rated(u, b, a, p) = Liked(u, b, a, p) ∨ Disliked(u, b, a, p)

Known(u, a) = {b ∈ B | ∃p ∈ P,Rated(u, b, a, p)}

Unknown(u, a) = B \ Known(u, a)

In the previous chapter we have seen how friends are better predictors

of users tastes, while this time we focus only on similarity. Similarity is

defined as a measure of how much users’ tastes are similar and is computed

counting how many times the two users gave a similar rating to the same

places:

sim(u, u′, a) =
‖Corated(u, u′, a)‖

‖Known(u, a) ∩ Known(u′, a)‖

Corated(u, u′, a) =
⋃
{b ∈ B | ∃p ∈ P ,

Liked(u, b, a, p) ∧ Liked(u′, b, a, p) ∨

Disliked(u, b, a, p) ∧ Disliked(u′, b, a, p)}

For the scoring function, we compute the average rating of the network

Net(u) ⊆ U in consideration:

score(u, b, a, p) =
‖Likes(u, b, a, p)‖ − ‖Dislikes(u, b, a, p)‖

‖Net(u)‖

Net(u) = {u′ ∈ U | ∃a′ ∈ A, sim(u, u′, a′) > δ} ,
Likes(u, b, a, p) =

⋃
{u′ ∈ Net(u) | Liked(u′, b, a, p)}

Dislikes(u, b, a, p) =
⋃
{u′ ∈ Net(u) | Disliked(u′, b, a, p)}

On this foundation, we study how different factors influence user pref-

erences by analysing how effective they are in recommending places users

55

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

would probably like. To this end, we define the recommendation of busi-

nesses b to a user u to perform an activity a with a purpose p as:

1. Rec(u, a, p, k) ⊆ Unknown(u, a),

2. |Rec(u, a, p, k)| = k,

3. ∀b ∈ Rec(u, a, p, k)

∀b′ ∈ (Unknown(u, a) \ Rec(u, a, p, k)) ,

(score(Net(u), b, a, p)) ≥ score(Net(u), b′, a, p)).

4.3 Extending the Experiment of Chapter 3

The study we present in this chapter extends the previous one in three

directions: i) the geographic area is extended to three different cities around

the world; ii) in each city we asked ratings not only for restaurants but

also for another activity that is usually done before or after going out for

dinner; iii) for each place people were able to specify four different marks

according to different purposes. The experiment was run in Trento (Italy)

with bars for aperitif as second type of places, Asunción (Paraguay) with

pubs, and Tomsk (Russia) with clubs. In all cases, we considered the same

four purposes: one mark was dedicated to the price/quality ratio and the

other three was related to the different types of companions people can

spend their leisure time with, which are tourists, friends and their partner.

A website guided users through the procedure for rating the different

places available for their city, requesting to access using their Facebook

account (from which friends relationships are collected) and requesting at

least five marked places in the first activity in order to access the list

prepared for the second one. The ratings were collected using the thumbs-

up/thumbs-down scale plus the neutral option. The website was pub-

lished the 16th of November 2012 and collected people’s preferences for two

56

4.4. UNDERSTANDING PREFERENCES ACROSS ACTIVITIES

months. It was advertised mainly through social networks, but in Trento

some posters were also hung up in the university’s buildings. For Trento we

asked to mark places for aperitif first, choosing between the 30 provided,

and restaurants after, with a list of 67 places. 49 people participated to

the study, leaving 2700 marks. For Asunción we started with a list of 254

restaurants, followed by 43 pubs and bars, collecting a total of 6100 marks

from 97 people. We started from restaurants for Tomsk too, with a list

of 32 places, followed by 12 clubs. We reached 16 people that left 1020

marks. The website was designed in a way that it was very easy to filter

all the available places and find the ones that are known.

4.4 Understanding Preferences Across Activities

In this study, we focused on understanding whether it was possible to

extend recommendations across different activities: knowing a user’s taste

for restaurants, is it possible to recommend her another activity, and a

place where to perform it, using only her taste for restaurants?

Going after that question, we collected ratings for two typical activi-

ties (a1, a2) in our three target locations. Then, for each user (u), we

created a dataset without all her ratings for the second activity, leaving

Known(u, a2) = ∅. On this dataset, we calculated the recommendations

assuming the following definition of network:

Net(u) = {u′ ∈ U | ∃a′ ∈ A, sim(u, u′, a′) > δ} ,

which builds a set of users sharing similar tastes in a1, since all the user

ratings for a2 were removed. In doing so, we are recommending places for

a2 (e.g., going clubbing) using the network of users with similar taste for a1

(e.g., going out for dinner). Borrowing the previous definition of similarity,

we say that user u is similar to user u ′ if they agree in at least 70% of their

ratings (δ >= 0.7).

57

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

Table 4.1: Precision of the recommendations

Precision(10) Precision(||P||)

Trento 0.85 0.81

Asunción 0.922 0.893

Tomsk 0.82 0.84

In order to understand how good these recommendations are, we com-

puted precision for the top-10 places and the full list. Given R(u, b, p, n) as

the set of recommendations computed for user u on business b for purpose

p, where n is the position in the ranking, andM(u, b, p) as the set of marks

given by user u on business b for purpose p, the precision is defined as

Precision(u, p, n) =
||Good(u, p, n)||

||Good(u, p, n)||+ ||Bad(u, p, n)||

where

Good(u, p, n) = {b ∈ B | R(u, b, k) ≡ M (u, b) ∧ k ≤ n}

Bad(u, p, n) = {b ∈ B | R(u, b, k) 6= M (u, b) ∧ k ≤ n}

Recommendations were computed for all 4 different purposes, only for the

users that had a similar group containing at least 3 users (Net(u) >= 3).

The resulting precision for the top 10 recommendations and of all of them,

averaged by city, are reported in table 4.1.

As can be seen, the precision of such recommendations is high. For the

places that the considered user already rated, the recommendations usually

matched the user’s rating, with very few errors that appeared mainly for

users with a too wide similarity group. The results suggest that similari-

ties in the preferences of people for an activity can be extended to other

activities, which points to potential of profiling users based on lifestyle.

58

4.5. EFFECT OF PURPOSE ON USER PREFERENCES

Table 4.2: Kendall τ distances for Trento’s restaurants

T F P Q

T 1.0

F 0.146 1.0

P 0.652 0.162 1.0

Q -0.106 0.288 -0.027 1.0

Table 4.3: Kendall τ distances for Trento’s bars for aperitif

T F P Q

T 1.0

F 0.287 1.0

P 0.696 0.232 1.0

Q -0.007 0.227 0.011 1.0

4.5 Effect of Purpose on User Preferences

Given all the collected ratings, we first analysed the differences between

the rankings resulting from the marks for different purposes. All places,

divided by city and by activity, were ordered, for each purpose, according

to the average mark and the number of marks received, building in this

way four rankings for each activity in each city. We considered only the

places that received at least 5 marks for each purpose, maintaining only

the places that collected a minimum amount of the crowd’s opinion. The

remaining places are 23 restaurants and 30 bars for Trento, 87 restaurants

and 26 pubs for Asunción, 21 restaurants and 12 clubs in Tomsk.

Kendall τ distance was used to compute the difference between the four

rankings for each activity, counting the number of couples in the rankings

that appear in the same order. The returned value is between 1 and -1,

with 1 meaning that the two rankings are equal, while -1 means that they

are completely the opposite. Naming C the number of concordant couples

and D the number of the discordant ones, the metric is defined with the

59

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

Table 4.4: Kendall τ distances for Asunción’s restaurants

T F P Q

T 1.0

F 0.383 1.0

P 0.502 0.388 1.0

Q 0.324 0.328 0.262 1.0

Table 4.5: Kendall τ distances for Asunción’s pubs and bars

T F P Q

T 1.0

F 0.28 1.0

P 0.36 0.194 1.0

Q 0.335 0.169 0.261 1.0

following formula:

Kendall τ =
C −D
C +D

The Kendall τ distance is reported in tables 4.2, 4.3, 4.4, 4.5, 4.6 and

4.7, where the purposes are summarised in the following way: T = Bring-

ing tourists, F = Bringing friends, P = bringing the partner and Q =

price/quality ratio.

As can be seen, in both Trento’s tables 4.2 and 4.3 the highest similarity

is between the rankings for Bringing tourists and Bringing the partner,

while they are both different from Bringing friends and in particular from

Price/quality ratio, that has almost half of the couples in the wrong order.

The distance between Price/quality ratio and Bringing friends is slightly

less, giving a hint that going out with friends the quality and price of food

and beverages are took in consideration more than when spending time

with tourists and the partner.

In Asunción, tables 4.4 and 4.5, there is still a higher similarity between

Bringing tourists and Bringing the partner, but their distance to Bringing

friends and Price/quality ratio is much less. Moreover, both Bringing

60

4.5. EFFECT OF PURPOSE ON USER PREFERENCES

Table 4.6: Kendall τ distances for Tomsk’s restaurants

T F P Q

T 1.0

F 0.019 1.0

P 0.476 -0.067 1.0

Q -0.133 0.429 -0.029 1.0

Table 4.7: Kendall τ distances for Tomsk’s clubs

T F P Q

T 1.0

F 0.182 1.0

P 0.454 0.545 1.0

Q 0.0 0.273 0.242 1.0

friends and Price/quality ratio are almost equally distant from all the

other rankings, showing that there is no stronger correlation between them.

Moving to pubs and bars, we can see that the similarity between Bringing

tourists and Bringing the partner is not present here, with only Bringing

friends slightly more distant from the other rankings.

In Tomsk, tables 4.6 and 4.7, the rankings are again divided in two

groups, with Bringing tourists and Bringing the partner on one side and

Bringing friends and Price/quality ratio on the other. Looking at the

Kendall τ distance for club rankings, the situation is different. Here the

closest rankings are Bringing friends and Bringing the partner, immedi-

ately followed by the already known couple Bringing tourists and Bringing

the partner. Despite this, Bringing friends and Bringing tourists are dis-

tant.

Summarizing all the results, we have seen that people preferences are

sensitive to the companion (e.g., partner, friends, tourists) for which they

look for different features. In particular, most of the times going out

with friends results in different choices than going out with the partner

61

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

Table 4.8: Comparison of purpose-based ranks with TripAdvisor on Trento’s restaurants

TripAdvisor T F P Q

Le due spade 1 13 18 12 23

Duo tapas bar 2 3 14 3 15

Loto 3 1 4 1 17

Niky’s 4 4 20 7 18

Oro stube 5 7 13 9 9

Welcome India 6 14 6 4 13

Rosa d’oro 7 8 1 6 7

Il cappello 8 6 21 5 16

Trattoria Piedicastello 9 9 8 19 8

Uva e menta 10 2 5 2 3

Da Andrea - 16 7 15 1

or tourists, and sometimes goes together with higher attention to the

price/quality ratio. As we have seen there are some exceptions to this

generalization, specially for Asunción’s pubs where the price/quality ratio

is considered more when choosing places where to bring tourists. These

differences depending on the location can be intuitively be related to the

cultural and economical aspects.

Comparison with an existing service

One of the most popular services for recommendations of restaurants is

TripAdvisor. We have locals’ knowledge of Trento’s restaurants according

to different purposes: how does TripAdvisor’s rank compare with them?

We selected the 23 restaurants in Trento that received at least 5 ratings

for each purpose and ranked them according to their average rating. We

obtained in this way 4 different rankings, and we compared them with the

rank of the same restaurants computed by TripAdvisor: this means that

we got the TripAdvisor full rank of all Trento’s restaurants and we removed

the restaurants not present in our list.

62

4.5. EFFECT OF PURPOSE ON USER PREFERENCES

Table 4.9: Kendall τ distances with TripAdvisor for Trento’s restaurants

T F P Q

TripAdvisor 0.431 0.020 0.478 -0.186

Table 4.8 shows the position of the top-10 restaurants according to Tri-

pAdvisor in our 4 prupose-based ranks. The top-10 restaurants are in the

top-15 positions for our Bringing tourists rank and in the top-19 positions

for our Bringing the partner rank. Differently, the rank for Bringing friends

is quite different and only half of the restaurants are still in the top-10 po-

sitions. The difference is even higher if we look at the fourth rank: the one

dedicated to Price/quality ratio. In this case, the restaurant that is at the

first place according to TripAdvisor is instead at the last one in our rank

(23rd in a list of 23 restaurants) and the restaurants that is the best for

Price/quality ratio is not even in the rank of TripAdvisor.

Kendall τ distance confirms these first impressions (see Table 4.9).

Bringing tourists and Bringing the partner have very high values, above

0.4, indicating that the differences are small, while the Kendall τ distance

of Bringing friends is very close to 0. The negative value for Price/quality

ratio confirms our intuition of an opposite tendency of this rank with re-

spect to TripAdvisor’s one.

Since TripAdvisor is a service dedicated mainly to tourists, these re-

sults are not surprising. It is providing a very good service to its main

user base, and also locals confirm that the recommended restaurants are

good for tourists. On the other hand, locals would not be satisfied by Tri-

pAdvisor’s recommendations if they want to use it when going out with

friends, for example. This means that there is space for another restaurant

recommender service dedicated to locals and better tailored to this goal.

According to our participants, many of the restaurants recommended by

TripAdvisor do not provide a good price/quality ratio. By considering this

63

CHAPTER 4. HOW PURPOSE INFLUENCES OPINION

aspect, TripAdvisor could improve its service and make even tourists with

low budget happier of the recommendations. We did not explore whether

Tripadvisor’s filter by price could improve user satisfaction for this specific

purpose.

4.6 Conclusion

In this chapter we studied various aspects around user preferences that

could be used to help users find activities and places they would actually

like. We found that the knowledge about the users’ preferences and neigh-

bours on one specific activity (i.e., restaurants) can be used to recommend

another related activity (i.e., a common saturday evening activity) even

without any information about a specific user preferences on the second

activity, reducing the cold start problem of collaborative filtering. More-

over, thanks to this we can provide better recommendations, extending the

knowledge-base to different activities.

Moreover, we identified four different purposes that make people select

places for leisure activities differently. We discovered that companions have

a high influence, as the places identified as good for going out with tourists

or the partner are different from the ones for going out with friends. Even

price/quality ratio has an effect on the choice and a good ratio is considered

more when going out with friends, maybe as people try to not spend too

much this occasion.

Finally, we have seen the effect of purpose also with respect to TripAd-

visor’s rank of Trento’s restaurants. As we expected, TripAdvisor’s rank

is closer to our Bringing tourists purpose: in fact, the service is focused

on tourists and it does a good work for its goal. These results show the

possibility to extend TripAdvisor by including also locals in the user-base

and providing locals-focused recommendations.

64

Chapter 5

Purpose-orientation and Focus on

Locals

5.1 Introduction

At the core of each recommender system there are two ingredients: first,

the recommender algorithms that select candidate items; second, the data

that provide the base for the recommendations [1]. In general, the better

the algorithms and the more the data available, the better the recom-

mendations. We have already seen in Section 2.2 how algorithms are the

traditional focus of research.

Data is often represented by ratings on items, and literature on recom-

mender algorithms typically uses standard datasets for the assessment of

algorithms, such as the 5-star ratings for movies by MovieLens [7] or Net-

flix [7, 40]. Other common rating scales are unary (like), binary (thumbs-

up/thumbs-down) and 3-value scales (thumbs-up/neutral/thumbs-down).

Ratings come as values with no extra information about the experience or

context of the user that led to the judgments, leaving the interpretation

of the ratings to the recommender algorithms. In Chapter 4 we started

studying the recommendation of leisure activities (drinking, dining, danc-

ing), and we noticed that the quality of recommendations on items (in

65

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

our cases, restaurants, bars and clubs) strongly depends on the specific

purpose of the activity: one place may be good for dining but not for

drinking; another one may be good for a romantic dinner but not for one

with friends. This kind of nuances is usually not captured by state-of-

the-art recommender systems and, hence, cannot be used to better tune

recommendations to users.

In addition, in the specific context of restaurants and dining, tourists

have generally very limited knowledge of a new city and, therefore, most of

the times rely on recommendations from family members or friends; if these

are not available, tourists also like to rely on recommendations from locals

[59]. They see locals as knowledgeable and trustworthy, since they know

that locals know most of the available options, have been there themselves,

and can provide personal recommendations for free. Again, this kind of

knowledge from locals is typically lost in online tourist portals, which are

mostly oriented toward and, hence, visited by tourists themselves. Good

recommendation services specifically tailored to locals are still underrepre-

sented.

These considerations raise the question whether data collected with i)

special attention to locals and ii) information on specific usage purposes

in mind can recommend restaurants with higher precision (that is, higher

probability of recommending a place the user will actually like) than generic

recommender systems, such as TripAdvisor for restaurants. In order to an-

swer this question, this chapter studies the case of collaborative filtering

algorithms and tests the following two hypotheses:

H1: Data collected from locals and state-of-the-art, personalized recom-

mendation algorithms produce recommendations of higher precision than

generic recommender systems, such as TripAdvisor.

H2: Recommendations computed from purpose-specific data outperform

TripAdvisor.

66

5.2. BACKGROUND

The findings show that indeed taking these aspects into consideration

can lead to improved recommendations with respect to the mainstream

recommender in this domain. The findings also unveil insights that are

particularly important to mobile recommender systems characterized by

limited screen real estate.

5.2 Background

In a recommender system, users express their opinions about items in form

of ratings. Items can be anything users can experience and can have an

opinion about, while a user is any person that has experienced some of the

items the system is focused on. Here we focus specifically on restaurants.

These are physical establishments, so only people able to visit them can

also experience them. From this perspective, a restaurant can have two

kinds of customers: locals and tourists. Locals are people that live in

the area, are familiar with the local cuisine and the restaurants, and can

experience them several times. Tourists are visitors for business or leisure

that generally have fewer chances to sample restaurants in a given area

and are less familiar with the local cuisine.

When rating items, users assign only one rating per item, evaluating it

according to their overall experience. Multi-criteria ratings, instead, ask

users to add one rating for each of a set of predefined characteristics of

the item. For example, in the case of restaurants, the criteria could be

food quality, drink quality, service and popularity. This requires a user to

consider the different aspects of her experience and give more ratings.

Orthogonally to this, a restaurant may be perceived differently depend-

ing on the purpose of the visit: the choice of a restaurant for a dinner with

friends may differ from what we would choose for a romantic dinner or for

a quick lunch. We already verified this hypothesis in our earlier research

67

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

reported in Chapter 4, where we also identified four main purposes: dinner

with tourists, romantic dinner with the partner, dinner with friends and

price/quality ratio (e.g., important for a lunch break).

5.3 Method

We study whether recommendations based on purpose-specific data col-

lected from locals outperform recommendations computed from the typical

data collected from tourists by tourist portals (TripAdvisor).

5.3.1 Data collection

We collected ratings using a 3-value thumbs-up/thumbs-down scale for each

of the purposes identified in Chapter 4 (dinner with tourists, dinner with

partner, dinner with friends and lunch break): users can specify whether

they like or don’t like a restaurant, or are neutral about it. In general,

the thumbs-up/thumbs-down leaves less space for controversy than using

5 stars: the user just has to think about whether the item is good or

bad, without having to think about how good (or how bad). The neutral

rating prevents forcing the user to like or dislike an item if it is considered

borderline.

As concrete dataset, in May 2014 we collected ratings for 50 restau-

rants in Trento, Italy. We selected this list considering the most popular

restaurants according to TripAdvisor that are located in the city center

and easily reachable by everyone. We enrolled participants by distributing

fliers to locals, sending emails to friends and colleagues, and also involving

a small group of university students. The participants (114) were asked to

rate restaurants for each of the purposes (the 4 identified above) at a time.

The process produced a total of 4706 ratings, with 1529 ratings for “din-

ner with tourists”, 1113 ratings for “dinner with the partner”, 1112 ratings

68

5.3. METHOD

for “dinner with friends” and 952 ratings for “price/quality ratio”. The

restaurants received a minimum of 4 ratings and a maximum of 112 ratings

per purpose, while users added a minimum of 0 ratings and a maximum of

49 ratings per purpose, with an average of 11 ratings per purpose.

5.3.2 Recommendation algorithms

Computing purpose-specific recommendations poses challenges to the rec-

ommendation algorithms, as the algorithm has to work with multiple rat-

ings per item per purpose. A first way to approach this multiplicity is

to filter ratings to create one dataset for each purpose; in this way, only

the information about the purpose the requester is interested in is used to

compute recommendations. Another way is to merge all ratings from the

different purposes and to compute aggregated ratings valid for all purposes,

similarly to how multi-criteria ratings are handled by recommendation al-

gorithms. A third solution is to learn user tastes using all collected data

for all purposes and to compute ratings for each purpose individually; in

this way, the whole information is used to extract taste features and to

compute similarities between users or items, but only the ratings specific

to a purpose for a user in a given instant of time are used for the prediction

of ratings for unknown restaurants.

We followed this last solution. To handle the presence of 4 ratings per

user-restaurant pair (one for each purpose), we split each user’s ratings

for a restaurant into 4 purpose-specific restaurant-purpose pair, resulting

in 200 (50 * 4) items. In this way, all ratings can be considered in the

computation of the model used by the algorithm (like building clusters for

cluster-based collaborative filtering or computing matrix factorization for

SVD), while only the restaurant-purpose pairs for the requested purpose

are considered to build the rank when computing recommendations. To

69

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

adapt the algorithms to this behavior, we only need to extend them with

a final filter of items by purpose.

For computing recommendations we selected four state-of-the-art, per-

sonalized, collaborative filtering algorithms implemented by Apache’s Ma-

hout library (http://mahout.apache.org):

• User-based collaborative filtering [15] identifies a requester’s neighbors

(the users with similar tastes) and uses their ratings and the level of

similarity with the requester to compute a prediction of the requester’s

ratings for the items she does not know yet.

• Cluster-based collaborative filtering [79] pre-groups users into clusters

of similar users (according to their ratings) and averages the ratings of

all users within each cluster to compute a prediction of the requester’s

ratings for unknown items. We specifically use hierarchical clustering.

• Slope One [41] is an item-based algorithm that leverages on the prin-

ciple of “popularity differential,” that is, on how much one item is

liked more than another. In order to predict the rating of an item,

it considers information both from other items rated by the requester

(and their ratings from other users) and from other users who rated

the item (and their ratings to other items) .

• Singular Value Decomposition (SVD) [37] is a matrix factorization

algorithm that computes ratings out of features automatically ex-

tracted from a known, incomplete user-item matrix. The matrix is

decomposed into a user-feature, a feature-item, and a feature-feature

matrix. Rating predictions are computed as the product of the re-

quester’s row, the feature-feature matrix, and the item’s column.

These algorithms have been selected as they are popular and simple, two

properties that allow us to communicate better the effects of the data on

70

http://mahout.apache.org

5.3. METHOD

recommendation quality. Other algorithms have been shown to perform

similarly or even better under certain conditions, but our goal is more

that of understanding and communicating the effect with widely known

and adopted algorithms. Since all restaurants in our dataset are easily

reachable by foot, user location and time (the usual contextual information)

are not needed; we consider instead the purpose the requester is interested

in.

5.3.3 Quality metric

We compare algorithms based on their precision (since we don’t have full

knowledge of the users’ interests - they may have rated only a subset of

the restaurants they actually know - we cannot compute meaningful re-

call values). Given a user u, the list of computed recommendations, and

the purpose p, we compare the performance of the algorithms using the

following precision metric (following [23]):

Precision(u, p, list) =
||Good(u, p, list)||

||Good(u, p, list)||+ ||Bad(u, p, list)||

where

Good(u, p, list) = items in list that have been rated positively by user u

for purpose p,

Bad(u, p, list) = items in list that have been rated negatively by user u for

purpose p.

For the comparison, we split the users’ ratings for each purpose p into a

training set (the ratings the algorithms can use to build the user profile) and

a test set (the ratings used to compute the precision of recommendations)

with a 70/30 proportion. We tested only users that had at least 6 ratings

per selected purpose, leaving at least 2 ratings for testing (the ceiling of the

30% split), and omitted items the users didn’t express any opinion for. Test

71

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

ratings were randomly collected half from users’ positive ratings and half

from their neutral or negative ratings (to test good and bad predictions).

To make the test independent of the computed split of ratings, each query

was repeated with 5 different random splits.

5.3.4 Algorithms tuning and configuration

Given this evaluation strategy, all algorithms underwent a dry run to con-

figure them for best performance: we collected 5 recommendations (i.e.

Np = 5) for each purpose from each algorithm and averaged the preci-

sion of each list of recommendations (20 per user: 4 purposes by 5 train-

ing/test splits). Slope One has no parameters, so it was used as it is.

User-based collaborative filtering depends on the used similarity metric,

neighborhood strategy and neighborhood size. We tested Pearson correla-

tion, log likelihood, Spearman correlation, Tanimoto coefficient, cosine sim-

ilarity, Euclidean-distance-based similarity and Yule similarity. The best

precision was obtained with neighborhood selected by similarity threshold,

using Yule similarity and similarity threshold 0.3, with a precision of 76%.

For cluster-based collaborative filtering, we used the same similarity metrics

as for user-based collaborative filtering and identified the best configura-

tion in log likelihood similarity and stopping condition expressed as fixed

number of clusters, set to 3, with a precision of 70%. The best precision

with SVD was obtained with 10 features and 30 iterations, with 65% of

precision.

72

5.4. RESULTS

5.4 Results

5.4.1 Aggregate precision

For the comparison, we select the top Np recommendations from TripAd-

visor in the order proposed by TripAdvisor. We vary Np from 2 to 15 to

study the effect of the recommendation set size on precision and compute

the precision of our recommender algorithms by averaging the results of

all the purposes over 570 individual data points (114 users times 5 random

splits per run) per purpose.

For a first assessment of the difference between the dataset underlying

TripAdvisor and our own dataset, we compare the recommendations of Tri-

pAdvisor with a similar non-personalized, average-based recommendation

algorithm (we call this the baseline algorithm) using our dataset. This

baseline algorithm computes the predictions of user ratings by comput-

ing the “lower bound of Wilson’s score confidence interval” (http://www.

evanmiller.org/how-not-to-sort-by-average-rating.html). This for-

mula computes a confidence interval for the average rating we would obtain

if we had all ratings by the full population, starting from a sample of rat-

ings. The lower bound tells “the item is liked at least that much.”

Our own dataset differs from TripAdvisor’s one in four key aspects: (i)

3-value vs. 5-value rating scales, (ii) purpose-based vs. generic ratings,

(iii) locals vs. tourists, and (iv) small amount vs. large amount of ratings.

Since we don’t have access to the actual dataset and algorithm used by

TripAdvisor, we cannot distinguish the effects of each of these aspects, but

we can still see in Figure 1 how TripAdvisor generally produces better rec-

ommendations than the baseline (except for Np=5). The key to this better

performance most likely lies in the bigger amount of ratings TripAdvisor

can rely on.

73

http://www.evanmiller.org/how-not-to-sort-by-average-rating.html
http://www.evanmiller.org/how-not-to-sort-by-average-rating.html

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

Figure 5.1: Precision of the recommendation algorithms for varying Np.

Interestingly, if we now look at the precision of the personalized algo-

rithms, we see that they all perform better then both TripAdvisor and the

baseline. Slope one and user-based have the best precision and are very

close to each other. Cluster-based is not far from the top recommenders,

with only a distance of 2 percentage points in precision for higher Np,

while SVD performs worse. TripAdvisor’s precision is higher for Np = 15,

where it reaches the same precision of SVD, while it still is 10 percent-

age points lower than the best performance. This shows that as the size

of the recommendation set grows, TripAdvisor has higher probability to

contain good recommendations. In order to assess the expressive power

of the charts in Figure 5.1, we took the precision values for Np = 15 and

performed pair-wise t-tests. The tests confirm also statistically what is

communicated by the chart visually: except for user-based/slope one and

TripAdvisor/SVD, all precision values are significantly different (p-value <

0.0001, α-level = 0.05, considering the precision of 1280 recommendation

lists for each algorithm).

Overall, Figure 5.1 shows that the precision of the best algorithm be-

tween the chosen personalized algorithms (user-based collaborative filter-

74

5.4. RESULTS

ing) is from 10 (Np=15) to 31 (Np=5) percentage points higher than that

of TripAdvisor (from 17% to 68% in relative terms). This makes us accept

our hypothesis H1: data collected from locals and state-of-the-art, per-

sonalized recommendation algorithms produce recommendations of higher

precision than TripAdvisor.

This means that even though our dataset is significantly smaller than

that of TripAdvisor, the focus on locals and personalization yield recom-

mendations that are of significantly higher quality compared to recommen-

dations computed with a generic algorithm from a much larger dataset. Tri-

pAdvisor’s restaurant rank is in fact built using a huge amount of reviews

mostly by tourists and specifically focuses on recommending restaurants to

tourists. Our experiment aims to understand how to recommend restau-

rants to locals and shows that locals are a special class of users that are

simply more demanding then generic tourists.

We have to keep in mind that these results have been obtained by aver-

aging the precision of purpose-based recommendations. TripAdvisor starts

with a disadvantage since it is built only for making recommendations to

tourists and its recommendations could be worse for the other purposes

(as we will see in details below).

5.4.2 Purpose-specific precision

In order to understand this different demand, we now analyze the impor-

tance of purpose-specific ratings in recommending restaurants. In Chapter

4 we found that the restaurants perceived as good for bringing a tourist

are similar to those for a romantic dinner with the partner, while the

ones for going out with friends are very different and more related to the

price/quality ratio. Next, we analyze concretely how the different recom-

menders behave depending on the purpose a user has in mind. The test

setting of the experiments is the same as above, with the only difference

75

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

that now we no longer aggregate results and instead keep purposes sepa-

rated.

Figure 5.2 reports the precision graphs for each purpose. If we con-

centrate on TripAdvisor, we see that it provides good predictions for a

dinner with tourists, while its precision decreases if the meal is to be con-

sumed with the partner or friends, and it reaches its lowest value if a good

price/quality ratio is the target (only 26% of precision for Np = 2). The

personalized algorithms seem less affected by the purpose, with slightly

higher precision for a dinner with the partner and slightly lower preci-

sion for the price/quality ratio. Slope one, user-based and cluster-based

collaborative filtering always outperform SVD.

These results clearly indicate that each purpose is different from the

others, and algorithms that take care of these differences are able to build

better recommendations than generic algorithms. TripAdvisor shows the

best precision for Np=2 and “dinner with tourists”, while the worst pre-

cision is obtained for Np=2 and “price/quality ratio”, with a difference

of 46 absolute percentage points. Purpose-based recommender algorithms

have a more constant quality, with less difference between the best and

the worst precision: for example, user-based collaborative filtering has the

highest precision for Np=5 and “dinner with the partner”, while the lowest

one is for Np=15 and “price/quality ratio”, with a difference of 25 abso-

lute percentage points. This minor difference demonstrates a higher quality

of purpose-based, personalized recommendations under all circumstances.

This supports hypothesis H2 for the purposes dinner with partner, din-

ner with friends and price/quality ratio: recommendations computed from

purpose-specific data outperform TripAdvisor for these purposes and may

represent a strategic value for competitors of TripAdvisor that want to

target locals instead of generic tourists.

76

5.4. RESULTS

Figure 5.2: Purpose-based precision for the five recommendation algorithms.

77

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

TripAdvisor recommendations have instead a high precision for a dinner

with tourists, and for this purpose their quality is in line with the ones

computed with personalized recommendation algorithms. Given that these

latter algorithms use data that stem from locals, this means that locals

essentially agree with TripAdvisor on where to bring a tourist and where

not. This, in turn, is a quality certificate for TripAdvisor for this specific

purpose.

5.5 Discussion and Conclusion

Our experiments show that providing locals with restaurant recommen-

dations is a tricky endeavor, because providing them with added value

compared to generic tourist portals like TripAdvisor asks for advanced

personalization, not only based on identity but also on purpose. The ex-

periments further show that if data are collected with an eye on the purpose

of the restaurant visit and from locals, even basic algorithms outperform

generic recommendations. The improvement in recommendation quality

thanks to tailored data is not only significant, but has a big effect size.

These results are somewhat surprising, given that also more advanced and

precise algorithms are available in the literature. The results however also

show that TripAdvisor is still competitive in its own domain, i.e., recom-

mendations for tourists.

At first glance, our comparison of the personalized algorithms with

purpose-specific datasets and TripAdvisor may not seem fair: TripAdvisor

does not specifically target locals; the available datasets are very differ-

ent; and its underlying algorithms are not publically available and known.

However, at the same time TripAdvisor is one of the key representatives

of the state of the art in restaurant recommendations and one that nicely

shows a one-size-fits-all approach that works for tourists. What we show

78

5.5. DISCUSSION AND CONCLUSION

in this chapter is that there is still huge space for improvement and busi-

nesses if the focus is shifted from a generic audience to locals. Yet, doing

so really requires a thorough planning of how to collect the necessary data

and how to tailor it to the needs of locals. There is no shortcut solution to

good data collection (e.g., crawling TripAdvisor or similar), and each new

application will have to collect its own data according to its specific needs.

The results of our experiments also reveal another, slightly hidden mes-

sage that is of particular importance to the world of mobile recommender

systems: Mobile devices have typically small screens and are often used in

situations in which the user cannot pay full attention to the device. This

means that the user can see only few recommended items at a time and

may not be willing or able to go through a long list of recommendations

[58]. A mobile recommender system is thus particularly challenged even

more than a desktop one to compute precise recommendations. The data

in Figure 5.2 show that TripAdvisor performs particularly weakly for small

result sets. The lesson is that simply porting a desktop version of a recom-

mendation algorithm to a mobile recommender system may be dangerous,

and personalization and data quality become even more important.

One limitation of the study is that our comparison of algorithms is

based on the externally visible behavior of TripAdvisor. Its actual, inter-

nal algorithm and dataset are not made publicly available. Further, the

algorithms we used were trained on the same dataset we also used for test-

ing. TripAdvisor, on the one hand, could rely on a much bigger set of

ratings for the training, but, on the other hand, the comparison was again

based on our dataset of ratings. One difference between the two datasets

is that TripAdvisor uses a 5-star rating scale, while our dataset uses a

3-value thumbs-up/thumbs-down scale. Understanding if the two rating

scales affected our findings would require further analysis.

79

CHAPTER 5. PURPOSE-ORIENTATION AND FOCUS ON LOCALS

80

Chapter 6

Designing Recommendations for

Mobile Devices

6.1 Introduction

In the literature, many recommenders have been proposed and studied,

with application mainly in e-commerce, movies or music, and mostly based

on desktop interfaces [43, 7].

Restaurants have different characteristics that must be considered when

building a recommender service. First, geolocation is important, as people

can only experience places that are close to them. Second, people generally

rate only a limited amount of items : while people can listen to many songs

each week, they can eat only in few different restaurants. Third, people

are interested in the quality of restaurants and the experience they can

have there. This type of information is not available through restaurant

characteristics, but can be collected through other people’s opinions.

TripAdvisor (www.tripadvisor.com), Yelp (www.yelp.com), and Four-

square (www.foursquare.com) are among the most widely used restaurant

recommenders. In particular, Foursquare recently turned from a location-

based social network into a recommender service for restaurants, bars and

other places for leisure activities. The primary use of these recommender

81

www.tripadvisor.com
www.yelp.com
www.foursquare.com

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

systems is via mobile devices, also since decisions on restaurants are often

taken on the go.

Recommenders that provide their services through mobile devices have

to consider the specific aspects of these devices. These are not only re-

lated to limited screen real estate and the specifics of touch-based input,

but also the fact that interaction is often performed with limited attention,

e.g., due to users performing other activities in parallel, such as walking

or talking. Yet, the fact that people carry their mobile phone always with

them also provides for new opportunities, e.g., to collect ratings: proac-

tively asking people for ratings right when they leave a restaurant (thanks

to geo-localization) and asking them to review the experience they just

had can provide for better contextualized and precise ratings. Doing so

however asks for rating interfaces that make this action really fast even in

contexts of split attention as the user is likely to walk at that time.

In this chapter, we study which combination of rating scale and rec-

ommender algorithm provides the best results for mobile restaurant rec-

ommendations, with a specific focus on ratings entered on mobile devices

and in conditions of limited attention. We start from identifying which

rating scales are most effective for collecting user inputs through mobile

devices. We study effectiveness under three dimensions: (i) the ability of

users to quickly insert ratings on the go and in conditions of limited atten-

tion, which are common conditions when interacting with a mobile device;

(ii) the feeling of accuracy and completeness that users perceive for the

various rating scales; and (iii) whether the different rating scales impact

the quality of the results we can get from recommender systems. We then

analyze ratings (and the effectiveness of the different rating scales) with

different algorithms to identify which recommender algorithm has highest

precision and user satisfaction. We specifically focus on collaborative filter-

ing algorithms [37], given their ability to capture other people’s opinions.

82

6.2. RATING ON MOBILE DEVICES

Finally, we compare the best combination of rating scale and algorithm

against popular recommendation services.

So far, similar analyses have been conducted only for desktop interfaces,

and mobile devices have not been studied adequately. In fact, most studies

on mobile restaurant recommenders have focused on how to integrate con-

textual information, such as location, weather and time of the day [5, 77],

and paid less attention to rating scales and algorithms used to compute

personalized recommendations. Also, recommendations are predominantly

tested by simulating user requests using a training dataset and checking

whether recommended items are liked in a testing dataset. This offline

evaluation fails to capture how people perceive the recommendations and

how satisfied they are with them [12]. The research presented in this chap-

ter considers both offline and user-centric evaluations of algorithms to

identify the best one to use in a mobile restaurant recommender.

6.2 Rating on Mobile Devices

Recommendation services are based on the collection of ratings to learn

user tastes. This is done using a rating scale. Fixed the number of options

to choose from, the rating scale must be represented visually. For example,

the same 5-value rating scale can be represented with stars like in Amazon

or with dots like in TripAdvisor. Different representations may influence

users’ choices of values [3]. Mobile devices are often used while performing

other activities, reducing the attention the user can dedicate to the device.

Given this limited attention, rating scales should be adequate to the limited

screen real estate and the specifics of touch-based input.

In this section we study the first two dimensions of rating scales an-

nounced in the introduction: (i) the ability of users to quickly insert ratings

on the go and in conditions of limited attention, which are common condi-

83

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

tions when interacting with a mobile device, and (ii) the feeling of accuracy

and completeness that users perceive for the various rating scales.

6.2.1 Data collection

Since in the mobile context it is important to keep the cognitive load of

the rating task low, we expect that thumbs-up/thumbs-down is preferred

over the 5-star scale (previous works showed that on desktop devices the

difference between the two is very small [68]). Thanks to past studies, we

also know that the neutral rating plays a fundamental role [20]: it does not

force the user to decide when she has not a clear opinion about an item.

For this reason, we think that a 3-value rating scale would perform better

than thumbs-up/thumbs-down. Moreover, having less options to choose

from, we expect it to require less time and effort than 5-star. To test the

effect of different representations, we include in our study two different

3-value rating scales: 3-thumb, which adds the neutral thumb to thumbs-

up/thumbs-down, and 3-face, in which rating values are expressed with

sad, neutral and happy faces. This leads us to 4 rating scales to evaluate

(Figure 6.1):

• 2-thumb, where users can select thumbs-up if they like the item or

thumbs-down if they do not like it, without any neutral option;

• 3-thumb, similar to 2-thumb but with the intermediate thumbs-neutral

for a neutral rating;

• 3-face, another 3-valued rating scale with “like” represented with a

smily face, “neutral” represented with a neutral face, and “don’t like”

represented with a sad face; and

• 5-star, where users can select from 1 to 5 stars, with 5 stars being the

maximum and no half stars allowed.

84

6.2. RATING ON MOBILE DEVICES

Figure 6.1: The UI for collecting ratings: the actual task on the left; the rating scales

dynamically selected on the right.

Table 6.1: Number of participants per rating-scale (columns) and context condition

(rows).

2-thumb 3-thumb 3-face 5-star total

standing 19 20 19 20 78

walking 15 14 19 19 67

total 34 34 38 39 145

Next, we consider two contexts of mobile device usage:

• standing (or sitting): when people can devote all their attention to

the device and are not doing other activities in parallel; and

• walking : when their attention is split between the device and walking

and the environment around them.

We collected ratings for 50 restaurants in the city center of Trento,

Italy, measured how many seconds pass between the request of a restaurant

85

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

rating and the saving of the rating, and questioned participants about

their satisfaction with the rating scale they used. To do so, participants

were asked to access the study website through their smartphones, see

restaurants in random order once at a time (Figure 6.1), and rate them

according to the rating scale randomly assigned to them.

To enroll participants, in October 2015 we invited students at our uni-

versity to participate in our study by rewarding them with a free coffee.

This allowed us to attract 145 participants. Some of them were randomly

selected for the walking context, in which they were asked to walk while

rating restaurants. Participants had the possibility to skip restaurants

they did not know, and the rating task was stopped after 10 ratings or

after viewing at most 35 of the 50 restaurants in our list. In this way, we

hide part of the restaurants that the participants may know, which will be

needed for the next user studies on recommender algorithms. We collected

a total of 1295 ratings, with an average of 9 ratings per participant. Table

6.1 shows how participants were divided by rating scale and by context

condition.

6.2.2 Rating efficiency

We analyzed how much time was required to select a rating in function

of the different rating scales and context conditions. For each rating, we

measured how many seconds passed between the request of a rating and the

actual rating. We expected that ratings assigned while walking and rating

scales showing more options, such as 5-star, would require more time. The

actual results are shown in Table 6.2.

The lowest and the highest average times are obtained in the standing

context: 3-thumb is the rating scale that requires less average time, but 5-

star, the slowest scale, is less than 1 second slower. In the walking context,

the tendency of smaller scales to be fastest is not confirmed as 5-star obtains

86

6.2. RATING ON MOBILE DEVICES

Table 6.2: Statistical analysis of time needed (in seconds) to select a rating under different

context conditions.

Mean Standard Dev.

standing * 2-thumb 5.937 3.469

standing * 3-thumb 5.848 2.133

standing * 3-face 6.183 2.108

standing * 5-star 6.807 2.757

walking * 2-thumb 5.971 1.557

walking * 3-thumb 6.631 2.052

walking * 3-face 5.971 1.959

walking * 5-star 5.946 1.971

the lowest average time, while 3-thumb got the highest, being 0.7 seconds

slower. These differences are not only small, but they are not statistically

significant according to ANOVA analysis (rating scales: p− value = 0.88,

α − level = 0.05; context: p − value = 0.81, α − level = 0.05). Given

the high standard deviations, we expect that also with more participants

the differences would not become statistically significant. What is more

surprising is that there is almost no difference in task performance between

the two usage conditions (standing vs. walking).

Despite our expectations, it seems that the different rating scales and

contexts have only a very limited effect on the rating performance and

that there is no single rating scale that gives particular advantages over

the others. This result could be explained by the fact that the task is

relatively easy, and people that use smartphones every day, like university

students, have no difficulty in performing it even in contexts that require

them to split their attention.

87

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

6.2.3 Questionnaire

After the rating assignment, participants were asked to assess the rating

scales they used also qualitatively by stating their agreement with the

following 6 statements:

1. The options available to express my opinion require a suitable amount

of time for choosing.

2. The rating options are in correct number.

3. The rating options let me express my opinion with the correct accu-

racy/expressiveness.

4. A lot of precision is needed to select the correct rating.

5. The rating options and their visualization are suitable to my context.

6. I am satisfied with the available options to express my opinion.

Participants expressed their agreement with the statements via a 5-point

Likert scale from strongly disagree (-2) to strongly agree (+2). Participants

were either Italian or English-speaking foreign people, so the sentences were

available in both languages and the one matching the device language was

shown. The average agreements per statement and rating scale are reported

in Table 6.3.

3-face obtained the highest agreement regarding the adequacy of the

time needed to rate restaurants, closely followed by 5-star (with a difference

of only 0.08). This difference is very small and not confirmed by the times

we measured. That is, the subjective perception of 5-star is better than its

actual performance.

Statements 2 and 3 analyzed the granularity of the rating scales. Both

collected a very high agreement for 5-star, with a difference of 0.48 from

88

6.2. RATING ON MOBILE DEVICES

Table 6.3: Average agreement per questionnaire statement

Statement 2-thumb 3-thumb 3-face 5-star

1 1.012 0.918 1.132 1.047

2 0.339 0.539 0.500 1.024

3 0.014 -0.032 0.184 0.539

4 -0.195 -0.139 -0.316 0.024

5 0.544 0.386 0.632 0.793

6 0.098 0.243 0.447 0.792

Sum 2.202 2.193 3.211 4.172

3-thumb for sentence 2 and a difference of 0.36 from 3-face for sentence

3. These results confirm that people have a preference for rating scales

with different levels of granularity that allow them to better articulate

their opinions. For statement 2, all the differences between rating scales

involving 5-star results statistically significant (α− level: 0.05; p− values:
0.002 for 2-thumb, 0.02 for 3-thumb, 0.01 for 3-face), while the differences

between the other three rating scales are not significant. For statement 3

we got almost the same results, but here the difference between 5-star and

3-face is not significant (α− level: 0.05; p− values: 0.03 for 2-thumb, 0.04

for 3-thumb, but 0.11 for 3-face).

The precision needed to select a rating is analyzed with sentence 4, for

which low agreement expresses better quality. 3-face obtained the lowest

agreement, followed by 2-thumb and 3-thumb. As expected, 5-star resulted

the worse, being the only one with somehow positive agreement with the

sentence, indicating that the precision needed to select one of the stars is

higher that selecting one of the thumbs or faces.

Regarding the context condition (standing vs. walking), only 2-thumb

received higher satisfaction when walking, while the other rating scales

are preferred when standing. The more comfortable rating scale is 5-star,

89

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Table 6.4: Details of statement 5: effect of context conditions

Context 2-thumb 3-thumb 3-face 5-star

standing 0.421 0.700 0.842 0.850

walking 0.667 0.071 0.421 0.737

difference 0.246 0.629 0.421 0.113

average 0.544 0.386 0.632 0.793

with the higher satisfaction both for standing and for walking and with the

lowest difference between the two contexts (Table 6.4).

Finally, the last sentence studied satisfaction. 5-star stands out as the

rating scale with the highest satisfaction, followed by 3-face, 3-thumb, and

2-thumb. The differences between 5-star and both 3-thumb and 2-thumb

are statistically significant (α− level: 0.05; p− values: 0.01 for 3-thumb,

0.005 for 2-thumb); for 3-face it is not.

If we sum up all agreement levels per rating scale (after multiplying the

agreement with statement 4 by -1 to turn the preference for the lowest value

to the preference for the highest one as in the other statements), 5-star

clearly obtained the highest overall agreement. Pairwise t-tests between

these results confirm that the differences between 5-star and both 2-thumb

and 3-thumb are statistically significant (p − values: 0.0005 and 0.001;

α − level: 0.05). The difference between 5-star and 3-face did not reach

statistical significance.

6.2.4 Discussion

These results support our intuition that in mobile devices the 5-star rat-

ing scale requires more time or effort to choose a rating representing the

user’s opinion due to the higher granularity. On the other hand, this more

effort needed is small, not confirmed by the actual time needed to assign

a rating, and seems to be accepted by users as a reasonable cost for the

90

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

higher granularity with different nuances. In this case the user evaluation

is fundamental and without it we would have reached the wrong conclusion

considering all rating scales equally adoptable as they all need almost the

same time to assign a rating. 5-star has been recognized as the best also

for desktop devices [68, 10, 22], so the same rating scale can be used in

both situations.

One possible explanation of the preference of 5-star over the other rating

scales is the omnipresence of this rating scale: people are so used to it that

they can immediately recognize it and they perfectly know how to use

it. The 3-thumb rating scale may be affected by the opposite problem:

people are used to thumbs, but the presence of the neutral option may

make people feel like there is something wrong with it.

Surprisingly, 3-face obtained a higher acceptance than 3-thumb (with

only one exception: for sentence 2 3-thumb obtained a higher satisfaction,

but the difference is of only 0.04). Even though both rating scales have

the same number of options with the same meanings, the different rep-

resentation influenced users’ satisfaction. Maybe the fact that 3-face is

completely new makes the presence of the neutral value less strange. On

the other hand, the distribution of ratings between negative, neutral and

positive is almost the same in both cases (21 negative ratings, 117 neutral

and 187 positive for 3-thumb, and 36 negative ratings, 119 neutral and

199 positive for 3-face), so the different representation did not bias the

feedbacks towards any extreme of the rating scale.

6.3 Personalized Recommender Algorithms

Given a dataset of ratings collected using a specific rating scale, the next

step is identifying which algorithm builds the best recommendations with

the provided ratings.

91

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

In the following, we present our evaluation of collaborative filtering algo-

rithms, first offline with an automatic evaluation tool, and then user-based,

where participants to the first study were contacted again to collect their

feedback on the recommendation lists computed with the selected algo-

rithms.

6.3.1 Offline evaluation

Method

The first study allowed us to collect a good dataset of restaurant ratings

(1295 ratings for 50 restaurants, 145 users); each user provided 3 to 10

ratings. Previously we have seen that, when recommending restaurants,

recommendation algorithms should take into consideration also geographic

distance from the requester: only places that are relatively close to her po-

sition should be recommended. To avoid adapting the algorithms we study

in the following (to take geolocation into account), we limited the items in

the dataset to restaurants in a restricted geographical area: the selected

restaurants are the restaurants that can easily be reached by walking inside

the city center of Trento, Italy.

To study which recommendation algorithm performs best with which

rating scale, we selected a set of off-the-shelf collaborative filtering algo-

rithms:

• User-based collaborative filtering [15]

• Hierarchical cluster-based collaborative filtering [34]

• K-means cluster-based collaborative filtering [19]

• Slope one [41]

• Singular Value Decomposition (SVD) [37]

92

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

Since cluster-based collaborative filtering is highly dependent on the

clustering algorithm used, we decided to test it with two different cluster-

ing algorithms: for hierarchical clustering we selected a complete-linkage

bottom-up approach that builds high quality clusters but is not scalable,

while k-means is a lighter algorithm that is very fast and scalable but can

produce low quality clusters.

For the implementation, we used the Apache Mahout library (mahout.

apache.org) written in Java that contains many off-the-shelf personalized

recommender algorithms and an evaluation tool that we adapted to our

needs. The evaluator takes one user at a time and splits her own ratings

into a 70% training set (known to the algorithm) to learn her tastes and

a 30% test set (not known to the algorithm) to evaluate the computed

recommendations. With 3-10 ratings per user, this provides each algorithm

with 2-7 ratings to learn from. All the ratings added by the other users

are used in the computation of the recommendations (i.e., they are part

of the training set). To make the evaluation independent of the specific

split of ratings, we used five different random splits of ratings into training

and test sets, computing recommendations of five restaurants five times for

each user.

The quality of the produced recommendations is measured through the

F0.5 measure, which is based on precision and recall. These formulas are

based on the number of true positives (tp) (items that are recommended

and have been positively rated by the user in the test set), false positives

(fp) (items that are recommended but have been rated as neutral or neg-

ative by the user in the test set), and false negatives (fn) (items that are

not recommended but have been rated positively by the user in the test

set). Items that are recommended but have not been rated by the user are

ignored and are not considered in the computation of precision and recall.

93

mahout.apache.org
mahout.apache.org

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

The three metrics are defined as follows:

precision =
tp

tp+ fp
recall =

tp

tp+ fn

F0.5 measure = (1 + (0.5)2) ∗ precision ∗ recall
((0.5)2 ∗ precision) + recall

Precision thus indicates how many items in the recommendation list

are actually liked by the user, while recall indicates how many of the items

the user likes have been included in the recommendation list.

Given the peculiarities of mobile devices (small screen real estate, only

few recommendations visualizable at a time, limited attention by users),

precision is more important than recall. For this reason, we selected the

F0.5 measure as indicator of recommendation quality instead of the more

common F1 measure. While the F1 measure computes the harmonic mean

of precision and recall, the different weights used in F0.5 measure give

higher importance to precision.

Results

Before studying which algorithm performs best with which rating scale,

we identified the best parameters for each algorithm for each rating scale.

Slope one has no parameters, so it was used as is, while cluster-based col-

laborative filtering with k-means clustering was almost constantly failing

to recommend any of the items known by the user, so it was not possible

to evaluate its results. For this reason, we decided to apply here the same

parameters (similarity metric and number of clusters) as for hierarchical

cluster-based collaborative filtering. Without being able to evaluate the

quality of the clusters built with this specific algorithm, this represents

the best approximation of parameters possible. User-based collaborative

filtering and cluster-based collaborative filtering depend on a similarity

metric to compute the similarity between users to identify neighbors and

94

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

Figure 6.2: Precision/recall of best algorithm per rating scale.

cluster-mates. In both cases we tested the following measures: cosine vec-

tor similarity, Pearson correlation similarity, Euclidean-distance-based sim-

ilarity, Tanimoto coefficient similarity, generalized Jaccard similarity (an

extension of Jaccard similarity that can be applied also to rating scales

with higher granularity than binary ratings), Yule similarity, log likelihood

similarity, and Spearman correlation similarity. User-based collaborative

filtering was tested with varying neighborhood sizes, while cluster-based

collaborative filtering was tested with both fixed numbers of clusters and

threshold-based stopping conditions. SVD was tested with different num-

bers of features and iterations.

This parameter tuning process allowed us to identify first the best con-

figuration for each algorithm and then the best algorithm for each rating

scale. The results are as follows:

• 2-thumb: cluster-based collaborative filtering with hierarchical clus-

tering, generalized Jaccard similarity and 8 clusters;

• 3-thumb: user-based collaborative filtering with cosine vector similar-

ity and neighborhood of 10 users;

• 3-face: cluster-based collaborative filtering with hierarchical cluster-

ing, Tanimoto coefficient similarity and 2 clusters;

95

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Figure 6.3: Searching the best algorithm for each rating scale, F0.5 measure.

• 5-star: cluster-based collaborative filtering with hierarchical cluster-

ing, log likelihood similarity and 2 clusters.

Figure 6.2 illustrates the precision and recall values computed for each

rating scale using the identified algorithms and configurations. The re-

sulting F0.5 measure of each algorithm and rating scale are reported in

Figure 6.3. For three out of four rating scales the best algorithm is cluster-

based collaborative filtering with hierarchical clustering. User-based col-

laborative filtering performs best for 3-thumb ratings. Interestingly, all

the scale/algorithm combinations perform similarly well, while the combi-

nation 3-thumb/user-based collaborative filtering have the highest recall,

resulting in 9% higher F0.5 measure.

6.3.2 User evaluation

Method

As a follow-up of the previous study on the rating scales, we contacted the

same participants by email and asked them to evaluate the recommenda-

96

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

Table 6.5: Number of participants per rating scale.

2-thumb 3-thumb 3-face 5-star total

11 5 10 15 41

Figure 6.4: UI for recommendation list assessment.

tions computed with the five algorithms identified in the offline evaluation.

Out of 145 initial participants, 41 participated also in this second experi-

ment. Table 6.5 shows how many participants per rating scale responded

to our invitation.

Each participant was presented with 5 different personalized recom-

mendation lists (one for each algorithm) in random order. Each list con-

tained 5 restaurant recommendations, and participants were able to indi-

cate whether they agreed with a recommendation (they would have rec-

97

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Figure 6.5: Precision of recommendations according to users.

ommended that restaurant too) or not (they wouldn’t). For restaurants

they did not know they were not required to enter any feedback. The

recommended lists showed only places the participants did not already

rate in the data collection phase (first study); since that phase omitted

some well known restaurants, participants were able to identify among the

recommended restaurants some known restaurants they did not rate be-

fore. Participants were also asked to express the overall satisfaction with

each complete list of recommendations. Satisfaction was expressed using

a Likert scale with 5 degrees ranging from “not satisfied at all” to “very

satisfied”, mapped to numeric values from -2 to +2. The interface used for

the study is shown in Figure 6.4.

The design of this study allows us to compute a subjective precision:

the recommended items a user agrees with are considered true positives,

the ones she disagrees with are considered false positives.

98

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

Results

Figure 6.5 summarizes the collected data regarding the precision of the

algorithms for each rating scale and the average precision (weighted by

the number of participants for each rating scale). The highest precision is

obtained by cluster-based collaborative filtering with hierarchical clustering

and user-based collaborative filtering, while the lowest is obtained with

cluster-based collaborative filtering based on k-means clustering (with a

relative reduction in average precision of 14%).

If we look at the single rating scales, we can see that the precision for

3-face ratings is very high. It is always the highest, except for slope one,

where 3-thumb received a higher precision.

The participants knew only some of the recommended items, so we were

able to collect only partial precision of the algorithms. The precision results

we reported here does not indicate a difference between the algorithms of

statistical significance. These results are still valuable as they confirm the

ones we already obtained with the offline evaluation: user-based collabora-

tive filtering and hierarchical, cluster-based collaborative filtering are the

two algorithms providing the best recommendations.

Figure 6.6 reports the data collected regarding the satisfaction with the

individual recommendation lists. Looking at the average overall satisfac-

tion (weighted by the number of participants per rating scale), the highest

satisfaction is obtained by user-based collaborative filtering, followed by hi-

erarchical cluster-based collaborative filtering with 29% lower satisfaction.

The lowest satisfaction is obtained by slope one, with a reduction of 68%.

Still all algorithms received an average positive satisfaction, which means

that the participants were generally either neutral or positively satisfied

with the recommendations. Only 15 negative satisfaction ratings were as-

signed, mainly to slope one and SVD, while the positive satisfaction ratings

99

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Figure 6.6: User satisfaction with recommendation lists.

were 103. One may wonder why k-means cluster-based collaborative filter-

ing obtained the most negative satisfaction for 3-thumb, even though slope

one and SVD received more negative satisfaction ratings. The value is jus-

tified by the overall low satisfaction and the low number of respondents for

the 3-thumb rating scale (5): one negative (-2) and four neutral (0).

If we look at each rating scale, we can notice that the highest satisfaction

is consistently obtained by 3-face ratings, except for user-based collabora-

tive filtering where participants that rated restaurants using 5-star showed

higher satisfaction. It is interesting to notice how much difference there

is between the different rating scales for SVD: 3-face participants showed

a satisfaction of 1.5 while all the other participants showed a satisfaction

lower than 0.6.

An ANOVA test on the algorithms (without splitting the satisfaction

results by rating scale) demonstrated that at least two algorithms are dif-

ferent in a statistically significant way (p − value: 0.04, α − level: 0.05,

F − critical: 2.42, F : 2.53). With t-tests between pairs of algorithms, we

found that the differences between user-based collaborative filtering and

100

6.3. PERSONALIZED RECOMMENDER ALGORITHMS

both k-means, cluster-based collaborative filtering and slope one are sta-

tistically significant. Participants were able to indicate their satisfaction

for all the recommendation lists they evaluated, providing us with more

data than for precision.

6.3.3 Discussion

Given the presented results, we can conclude that the best algorithm for

our dataset is user-based collaborative filtering (due to higher user satis-

faction and precision), immediately followed by hierarchical cluster-based

collaborative filtering (which has the same precision).

Previous work identified SVD as the best algorithm for personalized rec-

ommendations, in particular for recommending movies [7, 40, 12]. In this

case, instead, its recommendations are of lower quality and the algorithm

scores only third best. Our dataset has a higher density than the movie

dataset used in the other studies, and this could be the reason for this

result: SVD is known to work better on low-density datasets, where user-

based collaborative filtering does not have enough information to build

good recommendations. We expect restaurant datasets to be more dense

than movie datasets in general: the available options in an area are not

so many as movies, and the most popular restaurants will receive ratings

from almost every user.

It is interesting to note how the overall satisfaction level expressed by

participants sometimes differs from the pure precision values reported. The

satisfaction refers to the impression participants have of all five recommen-

dations as a whole (see Figure 6.4) and seems only marginally related with

the precision of each single recommended item in the list. Very likely, the

collected satisfaction levels also include external knowledge of the partici-

pants, e.g., coming from recommendations received by friends or relatives

or other kinds of advertisement they had been exposed to.

101

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

6.4 Comparison with Commercial Services

We now compare the quality of recommendations computed with user-

based collaborative filtering and rating-scale-specific parameters with the

quality of recommendations computed by two popular online restaurant

recommenders: TripAdvisor and Foursquare. This allows us to understand

how the recommender service based on the best algorithm we identified

performs compared to services used in practice. TripAdvisor uses a 5-values

scale represented with dots, while Foursquare allows 3 possible answers to

the question “do you like this place?”: “yes”, “no” and “so-so”.

6.4.1 Offline evaluation

Method

We follow the same approach as in the previous offline study: we compute

recommendation lists of 5 items and evaluate them using the F0.5 measure.

We use the dataset of ratings collected in the first study (with 1295 ratings

for 50 restaurants given by 145 users) and evaluate the algorithms on five

70/30 splits of the user ratings into training and test sets.

The algorithms used by TripAdvisor and Foursquare are not known, so

we cannot run their recommendation algorithms on our dataset. We thus

use the generic recommendations both services provide through their Web

interface. Despite this limitation, this study is still interesting as it can

give us an indication of how the service we are designing can work against

its competitors. TripAdvisor and Foursquare are able to compute better

recommendations, but also our service can be improved with novel, more

accurate versions of the algorithm we selected.

TripAdvisor and Foursquare ranks for all restaurants considered for

the evaluation of our own algorithms were extracted and saved at the

time we collected ratings for our first study. For each user, we retrieved

102

6.4. COMPARISON WITH COMMERCIAL SERVICES

Figure 6.7: Precision and recall of offline evaluation of user-based collaborative filtering,

TripAdvisor and Foursquare.

Figure 6.8: F0.5 measure of offline evaluation of user-based collaborative filtering, Tri-

pAdvisor and Foursquare.

the full, ranked list of recommendations as computed by TripAdvisor and

Foursquare, removed the restaurants already rated by the user in the train-

ing set, and retained the top 5 restaurants according to the remaining rank.

Results

Figure 6.8 reports the F0.5 measures obtained. User-based collaborative

filtering and Foursquare are close, while TripAdvisor recommendations

are clearly of lower quality (with a reduction of 13 percentage points in

103

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Table 6.6: Number of participants per rating-scale.

2-thumb 3-thumb 3-face 5-star Total

10 7 7 15 39

F0.5 measure). Looking at the chart of precision and recall (Figure 6.7),

we can see that the low recommendation quality of TripAdvisor is mainly

due to a low recall, while the difference in precision is small.

The algorithms provide almost the same quality across the different

rating scales, with only TripAdvisor showing significant differences. This

result is surprising, since TripAdvisor is based on 5-star ratings, while

Foursquare is based on 3-values ratings. Surprisingly TripAdvisor does

not produce the best recommendations for our 5-star participants, but for

the ones that used the 3-face rating scale.

6.4.2 User evaluation

Method

We involved again the participants already enrolled in the first user study

and asked them about their opinion regarding the recommendation lists

computed for them by user-based collaborative filtering, TripAdvisor and

Foursquare, respectively. We contacted again the participants by email,

using the same user interface as in the previous experiment (Figure 6.4),

but with the three new recommendation lists. Again, participants were

able to indicate whether they agreed with recommendations individually

and to express their satisfaction with the full list of recommendations. We

collected the answers of 39 participants out of the 145 people contacted by

email (Table 6.6).

104

6.4. COMPARISON WITH COMMERCIAL SERVICES

Figure 6.9: Precision of recommendations according to users.

Results

12 participants did not know any of the items in the three recommendation

lists, so we were not able to compute respective precision values. For the

remaining participants, we obtained the precision levels shown in Figure

6.9. We can see that user-based collaborative filtering produced the lowest

precision according to the participants, with 9% lower average precision

than Foursquare, which reached the highest precision. TripAdvisor is very

good too, with 5% lower average precision than Foursquare. Pair-wise t-

tests were not able to reach statistical significance, due to the low number

of participants.

Looking at the details per rating scale, we can see that surprisingly

the precisions of TripAdvisor and Foursquare have only minor fluctuations

across the different rating scales, while user-based collaborative filtering has

difficulties in producing good recommendations for 2-thumb users. This

could be due to the limited number of choices that does not allow the

algorithm to clearly understand the different tastes of users.

105

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

Figure 6.10 reports users’ satisfaction per rating scale and the aver-

age satisfaction (weighted by the number of participants per rating scale).

The highest average satisfaction is obtained by user-based collaborative

filtering, immediately followed by Foursquare, while TripAdvisor has a sig-

nificantly lower satisfaction (with a reduction of 86%). An ANOVA test on

the algorithms (without splitting the satisfaction results by rating scale)

demonstrated that at least two algorithms are different in a statistically

significant way (p − value: 0.003, α − level: 0.05, F − critical: 3.07, F :

6.19). With t-tests between pairs of algorithms, we found that the dif-

ferences between TripAdvisor and both user-based collaborative filtering

and Foursquare are statistically significant (p− values: 0.0006 and 0.015,

α−level: 0.05), while there is no statistically significant difference between

user-based collaborative filtering and Foursquare.

Taking a deeper look into the details for each rating scale, we surpris-

ingly see that TripAdvisor got negative satisfaction for the 5-star rating

scale, which is the one actually used by the service itself. While Foursquare

generated almost the same satisfaction throughout all the rating scales,

user-based collaborative filtering got very good results for 5-star and 3-

face, while it performed poorly for 2-thumb and 3-thumb.

6.4.3 Discussion

One result that stands out is the big difference between precision and

satisfaction of TripAdvisor according to our participants. According to

participants, the recommendations made by TripAdvisor were quite pre-

cise, yet they left them not fully satisfied; the result was similar also in

the offline evaluation of TripAdvisor. That is, participants acknowledge

that the recommended restaurants are of good quality, but they simply

would have preferred to see other restaurants in the top-5 selection. In

106

6.4. COMPARISON WITH COMMERCIAL SERVICES

Figure 6.10: User satisfaction with recommendations lists.

short, this finding unveils the big shortcoming of TripAdvisor: the lack of

personalization.

Another reason for the lower satisfaction generated by TripAdvisor is the

different user-base compared to ours. TripAdvisor is generally dedicated

to tourists, while Foursquare specifically focuses on locals (i.e., people that

live in the city they are searching a restaurant for) and is popular among

a younger audience (86% of users are younger than 44 years, http://www.

quora.com/What-are-the-demographics-of-Foursquare-users). Our

dataset is based on the opinions of university students living in Trento, an

audience that is thus more similar to that of Foursquare than to the one

of TripAdvisor. This focus of our dataset represents a limitation of our

study.

Looking at the rating scale-based results of user-based collaborative

filtering, we found another reason to prefer 5-star over the other rating

scales. In fact, the personalized algorithm produces the best results when

ratings are collected with this scale (obtaining the highest precision, both

offline and user-based, and the highest satisfaction): the granularity is

107

http://www.quora.com/What-are-the-demographics-of-Foursquare-users
http://www.quora.com/What-are-the-demographics-of-Foursquare-users

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

higher than in the other rating scales and it is likely that this lets the

algorithm better learn the different nuances of user tastes.

6.5 Learnings and Limitations

We studied the performance of different rating scales and recommender al-

gorithms for mobile devices using offline, empirical analyses and user stud-

ies, specifically comparing precision, recall and F0.5 measure. According

to the results reported on in this chapter, the combination of rating scale

and recommender algorithm that suits best our restaurant recommenda-

tion problem is 5-star with user-based collaborative filtering. 3-face is

considered by users slightly less accurate than 5-star, while cluster-based

collaborative filtering with hierarchical clustering has a performance close

to that of user-based collaborative filtering. The study shows well how

the subjective opinion of users does not always follow objective metrics,

e.g., the 5-star rating scale outperforms the other scales in terms of user

preferences although we could not identify any objective difference.

We also compared user-based collaborative filtering with two of the most

popular restaurant recommender systems, TripAdvisor and Foursquare,

and found that TripAdvisor produces worse recommendations than the

other two algorithms, very likely due to the lack of personalization and

a different user-base. The TripAdvisor and Foursquare datasets we used

were generic and did not consider individual user tastes, but they had the

advantage of being much larger compared to our own dataset. Yet, we

lack a direct comparison of the algorithms, as these services are businesses

and do not share their data or algorithms. Still the comparison shows how

already a simple personalized recommender algorithm with purposefully

collected data can outperform generic recommendations of currently-used

services – and this is what counts in practice.

108

6.5. LEARNINGS AND LIMITATIONS

One limitation of this study is the size of the datasets it is based on.

Our dataset consists of 1295 ratings, while usually algorithms are evaluated

on datasets of 100,000 ratings or more (however, most works in literature

test their performance on the MovieLens dataset and not on real restau-

rant recommendations). As for the user evaluations in Sections 6.3 and

6.4, these are based on the answers provided by 40 participants; we expect

that larger sample sizes would have made the differences between algo-

rithms stronger and significant. Despite these limitations, we think that

the described results clearly indicate a tendency of preference for the 5-star

rating scale by our participants. Of course, so far we focused on university

students, which are not necessarily representatives of the full population.

However, this focus allowed us to unveil the shortcoming of TripAdvisor in

terms of personalization.

Finally, it is important to note that user-based collaborative filtering

and hierarchical cluster-based collaborative filtering perform well in offline

settings with limited amounts of data, while they do not scale well and do

not support online updates as users rate new items: user neighborhoods

and clusters are computed offline, e.g., nightly or once a week. More work

is needed toward fast and scalable, online algorithms, e.g., to quickly com-

pute high-quality clusters even with large amounts of data as for instance

proposed in [52] and [9]. The findings of this study justify the necessary

effort.

109

CHAPTER 6. DESIGNING RECOMMENDATIONS FOR MOBILE DEVICES

110

Chapter 7

Collecting the Initial Ratings from

the Crowd

7.1 Introduction

Providing precise and accurate recommendations requires first and fore-

most data, that is, user ratings of items. These data can be used i) for

research purposes to study the behaviour of novel algorithms, ii) for de-

velopment purposes to train and fine-tune the selected recommendation

algorithm, and iii) to bootstrap a novel recommender system to make it

able to build recommendations even for the first users accessing it. In

these cases volunteering is not applicable as there is not a recommender

system available, so data cannot be collected directly from the users using

the system, consuming recommendations, and providing their own ratings

and feedback. It is therefore needed to gain access to useful data without

involving the users of the future system.

So far, we specifically enrolled people to collect their opinions and eval-

uate our ideas for recommender systems. We collected ratings through an

online survey and advertised it at university and in the city center, we

invited our friends and colleagues to participate and to spread the word,

and assigned some rewards to attract higher participation. Despite our

111

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

advertisement and rewards it was hard to collect enough participants, and

we started to explore different ways for collecting datasets of ratings.

One way of achieving this that has gained momentum over the last

years is crowdsourcing, i.e., outsourcing of a piece of work (e.g., the rating

of places) to an unknown group of people via an open call for contributions

[30]. Crowdsourcing has two key pros with respect to online surveys: i)

the survey can be advertised to many “workers” around the world, and ii)

respondents can be motivated offering rewards (typically small amounts of

money).

The rewards are great because they let researchers collect a huge amount

of data at relatively low cost and in short time. On the other hand, re-

wards motivate respondents to cheat, providing random or wrong answers,

to complete the task as fast as possible, increasing their personal hourly

income. Moreover, to build a good-quality dataset of ratings we need tech-

niques to control that the ratings are reliable (i.e. people are not cheating)

and well-distributed across the items. In fact, if some items remain without

ratings, the algorithm will not be able to recommend them.

It would thus be beneficial to build a rating platform that takes into

consideration rating quality and sparsity. The platform should ideally ac-

quire the best ratings possible from the currently active crowd of workers

based on their expertise with respect to the items. The system should au-

tomatically identify cheaters, i.e. workers that are consistently providing

misleading ratings. We distinguish two types of cheaters: i) lazy workers,

who assign ratings randomly to complete the rating tasks as fast or as

effortless as possible, and ii) malign workers, who give misleading ratings

to particular items in order to reduce or raise their average ratings. The

platform should also prioritize acquiring ratings for underexposed items

(i.e., items that have fewer ratings).

112

7.1. INTRODUCTION

While traditional crowdsourcing platforms such as Amazon Mechanical

Turk (www.mturk.com) and CrowdFlower (www.crowdflower.com) have

been successfully used in various scenarios to acquire human knowledge in

a cheap and effective manner, they are not suitable for our scenario. In

such platforms, there is no clear notion of a worker expertise apart from

a single score reflecting how well a worker performed on previous tasks.

This is not feasible in our scenario for various reasons. First, to be able

to measure how well workers performed on previous tasks (rating of items

in our case), some ground truth (i.e., correct ratings for items) must be

available. Ratings are subjective and worker-dependent as they reflect the

personal experience of the workers and their personal tastes. This in turn

means that there is no single ground truth that can be used to compute

expertise scores for workers.

Second, workers might be more skilled to rate certain types of items

than others. For instance, students might be more knowledgeable about

holes-in-the-walls or cheap restaurants whereas professionals might be more

knowledgeable about fancier restaurants. It is thus crucial to associate

workers with different scores representing their expertise with respect to

the different types of items being rated.

Finally, it is crucial to ask workers to rate only the items for which they

have higher skills. In traditional crowdsourcing platforms, workers self-

appoint themselves to tasks and requesters have no control over how the

task assignment is carried out. In our case, we would like the platform to

automatically assign tasks to workers based on their estimated expertise.

In this chapter, we present a novel crowdsourcing platform that acquires

reliable ratings for a set of items from a set of workers. A reliable rating

is a truthful rating provided by an expert worker. Our platform estimates

worker expertise based on the agreement of the worker with other similar

expert workers in the system. The platform makes use of a fine-grained

113

www.mturk.com
www.crowdflower.com

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

utility function to present workers with the best items to rate based on

the workers’ expertise and the number of ratings the items have. Finally,

the framework automatically identifies cheaters and we experiment with

various ways of dealing with them. Our platform is described in Section 7.3.

We evaluated our framework using a set of exhaustive experiments on

both real and synthetic datasets about restaurant. Our experimental re-

sults, presented in Section 7.4, clearly highlight the effectiveness of our

system in acquiring reliable ratings from expert workers, particularly for

underexposed items. We also show that identifying cheaters, which is an

integral part of our platform, has a great impact on the overall rating

quality.

According to our knowledge, this is the first work that addresses the is-

sue of acquiring reliable ratings from the crowd. Most related work studied

how to estimate the skills of crowdsourcing workers assuming the existence

of only one valid ground truth [13, 31, 33, 78, 25], which is not the case in

our setting as we have already explained. Moreover, most related methods

for estimating worker skills are generally post-processing methods, so they

are not applicable in our scenario where we make use of the worker skills

during task assignment to improve rating quality as more tasks are be-

ing performed. This is also not the case for existing work where one-time

pre-task qualification tests are run to estimate worker skills.

Our main contributions are the followings:

• We build a scalable and realistic crowdsourcing platform to acquire

reliable ratings of items such as restaurants, movies or hotels.

• Our platform automatically estimates worker expertise based on the

agreement of the worker with similar expert workers in the system.

114

7.2. PROBLEM DEFINITION

• Our platform uses a carefully designed utility function to present work-

ers with the best items to rate based on the estimated expertise of the

workers and the number of ratings for those items.

• Our platform automatically identifies cheating workers and can dampen

their effect.

7.2 Problem Definition

Given a set of workers W and a set of items I, our goal is data acquisition.

That is, we want to acquire reliable ratings for as many items as possible

where the set of possible ratings R is {0 (don’t know), 1 (don’t like), 3

(neutral), 5 (like)}. We map ratings to values between 1 and 5 to stay

compatible with the 5-star rating paradigm used by most recommender

systems.

More specifically, we want to populate a database of tuples of the form

T =< w, i, r >, where w is a worker, i is an item, and r is the rating

provided by w for item i. Our data acquisition has the following two sub-

goals: 1) worker w should not be a cheater, and 2) item i should currently

be the best item for worker w to rate, meaning that i is the item w is

most knowledgeable about and that has the fewest ratings (the platform

parameters give more importance to one or the other aspect).

Note that the first sub-goal, identifying cheaters, is important for the

realization of our main goal, acquiring reliable ratings for items. In the

second sub-goal, given that w is not a cheater, we want her to rate the

items that have fewer ratings she is most knowledgeable about and for

which she is most likely to give reliable ratings. In the next section, we

describe our framework that realizes the above sub-goals to achieve our

main goal of acquiring reliable ratings for as many items as possible from

a crowd of workers.

115

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

Figure 7.1: The proposed framework.

7.3 Framework

In a nutshell, our framework works as follows. First, we cluster the items to

be rated into n itemsets I1, ..., In according to characteristics of the items.

The clusters can overlap and the characteristics are inherent properties of

the items. For example, in the case of restaurants, the characteristics can

be cuisine, price range, etc. We cluster items into itemsets so that we can

associate each worker in our system with an expertise level for each itemset

that can help us assess how likely the worker can provide reliable ratings

for items in an itemset. A given worker can be an expert in one type

of items and less expert or completely unknowledgeable for other types.

Second, we constantly cluster active workers in the platform based on the

ratings they provide: each cluster represents a group of workers with same

tastes, different from the other ones. Clusters are used in our system for

two reasons: 1) to compute the expertise of workers, and 2) to identify

workers who provide misleading ratings which we refer to as cheaters.

116

7.3. FRAMEWORK

A diagram of our framework is shown in Figure 7.1. Our platform works

in task sessions: the worker enters a new task session with the first ratings

she assigns and continues to rate the items the platform presents her till

she leaves the session. Within a session, the reliability of her ratings is

checked. Once a new worker joins the system, she is asked to rate the l

items with the highest number of ratings in the system so far, to be able

to compare her with as many workers in the system as possible. Based on

her provided ratings, we assign the worker into one worker cluster. After

a worker is assigned to a cluster, her profile is updated for each itemset

she provided ratings for. Using the calculated profile, the worker is either

suspected to be a cheater and is asked to pass a verification test, or she is

asked to rate more items. A verification test is simply another set of rating

tasks where a worker is asked to rate items she has rated before. A worker

passes the verification test if she is relatively consistent with her previous

ratings, otherwise she is banned from the system. The verification test

is designed this way to disguise it from actual cheaters and to not turn

off falsely-flagged workers. Other ways of dealing with cheaters are also

applicable and we experiment with different methods in Section 7.4.

In case more items are to be rated (i.e., the worker was not flagged as a

cheater or has passed the verification test), we apply a utility function that

presents the worker with the items we anticipate that she has the most

promise to rate reliably, prioritizing items that have fewer ratings. Our

framework performs the above mentioned procedure for every worker that

is currently active in the platform and the same procedure is repeated each

time a new rating is provided until the worker leaves the system. In case

a worker consistently fails to join a worker cluster after she has provided

a given number of ratings, the worker is suspected to be a cheater and is

asked to pass a verification test as before.

117

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

Our framework consists of four main components: 1) Worker Clustering,

2) Profile Computation, 3) Utility Optimization, and 4) Cheater Identifi-

cation. We describe each component next.

7.3.1 Worker clustering

Given the set of active workers W in the system, our goal is to cluster

them into a number of clusters based on their ratings. Let w and w′ be

two workers inW and Iint =< i1, i2, . . . , in > be the set of items that both w

and w′ rated. Also, let R =< r1, r2, . . . , rn > be the vector of ratings worker

w provided for the items in Iint where rk is the rating of item ik. Similarly,

let R′ =< r′1, r
′
2, . . . , r

′
n > be the vector of ratings worker w′ provided for

the items in Iint where r′k is the rating of item ik. We cluster the workers

based on an adjusted Euclidean-distance-based similarity measure which

is computed as follows:

sim(w,w′) = 2 ∗ (
1

1 +
Σn

k=1(
rk−r

′
k

rmax−rmin
)2

n

− 1

2
)

where rmax is the highest rating possible (5 in our case) and rmin is the

lowest rating possible (1 in our case). In the computation of similarity we

are ignoring the “don’t know” ratings with value 0.

Note that using a standard Euclidean-distance-based similarity or a Co-

sine Vector similarity will not work in our setting, where the neutral rating

(3) should be considered very similar to both “like” (5) and “don’t like”

(1). In standard similarity metrics, instead, rating 3 is considered quite dif-

ferent from both 1 and 5. To overcome this, we started from the standard

Euclidean-distance-based similarity metric

EuclideanDistanceSim(w,w′) =
1

1 +

√
Σn

k=1(rk−r′k)2
√
n

118

7.3. FRAMEWORK

and substituted the simple distance (
√

Σn
k=1(rk − r′k)2) with a relative dis-

tance by dividing it by the maximum distance there could be between any

two ratings (in our case 4). This results in a value in the range of [−1, 1]

and squaring it gives a value in [0, 1] which is a diminished distance to

accommodate for the closeness between the neutral rating and the other

two ratings. Finally, the whole fraction gives a result in the range of [0.5, 1]

(after calculating the average, adding 1 and then taking the reciprocal).

Thus, we subtract 1/2 and multiply by 2 to map the results back to the

interval [0,1]. Of course, any other suitable similarity measure can be seam-

lessly used instead in our framework depending on the context for which

the framework is used.

Our incremental clustering algorithm is shown as Algorithm 1. The

algorithm is called whenever a new rating is provided, since it is a new

evidence about what the worker knows and the goal of the clustering is to

group together workers who have similar tastes and experiences. This is

also the case when a new worker joins the system and there already exists

a set of worker clusters. We utilize an incremental hierarchical clustering

algorithm [34]. We opted for a hierarchical clustering rather than a flat

one since the number of clusters is not known a priori and it changes

over time as workers rate more items or as new workers join the platform.

Hierarchical clustering is also best suited for incremental clustering as it

avoids recomputing the full hierarchy of clusters each time a new rating

arrives. Note that we do not store the full hierarchy of clusters at the end,

but only store the final level ending with a flat set of clusters.

Our clustering algorithm takes as input 1) the worker who provided the

new rating (or a new worker) which we refer to as the provoking worker w,

2) the current set of worker clusters H, and 3) a cluster closeness threshold

τC , and it returns a new set of clusters. In case the provoking worker w

was an existing worker who has rated a new item, we remove w from its

119

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

Algorithm 1 Cluster Workers

Input: current set of clusters H, provoking worker w, closeness threshold τC

Output: new set of clusters

if w is an exisiting worker then

Cw ← getCluster(H,w)

removeWorker(Cw, w)

if Cw is empty then

removeCluster(H,Cw)

end if

end if

new ← createNewCluster(w)

addCluster(H,new)

while TRUE do

max← −∞; first← null; second← null

for i = 1 to |H| − 1 do

for j = i+ 1 to |H| do

closeness← closeness(Ci, Cj)

if closeness > max then

max← closeness

first← Ci; second← Cj

end if

end for

end for

if max > τC then

merged← mergeClusters(first, second)

replaceClusters(H, first, second,merged)

else

break

end if

end while

return H

own cluster and assign it to a singleton cluster. In case w is a new worker

who has just joined the system, she is also assigned to a singleton cluster

after providing a predefined number of ratings for the most rated items.

120

7.3. FRAMEWORK

Our clustering algorithm then keeps on merging the two closest clusters to

reduce the number of clusters by one at each iteration, following a bottom-

up approach.

The closeness of two clusters Ci and Cj is computed as the smallest sim-

ilarity between their workers (i.e., complete-linkage clustering) as follows:

closeness(Ci, Cj) = min
w∈Ci,w′∈Cj

sim(w,w′)

Finally, we merge the two clusters Ci and Cj with the highest closeness.

We keep on merging clusters as long as the following condition holds:

∃Ci,Cj
closeness(Ci, Cj) > τC

where τC is a threshold on the closeness between any two clusters to be

merged.

We use complete linkage to ensure that when we remove the provoking

worker from her cluster, the intra-cluster similarity either stays the same

or increases. This in turn means that the affected cluster stays compact,

does not need to be split to improve the clustering quality, and we can

start improving clusters from the current configuration of clusters, without

recomputing the complete clustering hierarchy. Since we only have one

more cluster at each step, very few iterations are needed for updating the

clusters and this is independent from the number of clusters and workers

involved.

7.3.2 Profile computation

Each worker w is associated with a profile vector < w.p1, . . . , w.pn > repre-

senting the worker’s expertise for each itemset Ij, where w.pj is the ordered

pair (w.pj.known,w.pj.skill). To compute this profile, we measure two as-

pects of the worker: how many items in Ij she knows (i.e., did not rate

0), which we refer to as w.pj.known and, for the items she knows, how

121

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

much she agrees with other expert workers from her cluster, which we refer

to as w.pj.skill. The first component of the worker profile w.pj.known is

computed as follows:

w.pj.known =
#known(w, Ij)

#ratings(w, Ij)

where known(w, Ij) is the number of items that worker w knows in Ij (i.e.,

did not rate as 0) and #ratings(w, Ij) is the number of items in Ij she has

rated so far (including the 0 rating).

The second component measures how skillful the worker is for the items

she knows. For the skill component, we utilize the agreement of the worker

w with other workers from her cluster. The intuition behind this is that

the worker is expected to behave similarly to the rest of the workers in

her cluster. Before we dwell into the details of how we compute agreement

between workers, we need to decide on who to compute agreement with.

One alternative is to compute the agreement of worker w with all other

workers from her cluster. This is however prune to some fundamental is-

sues. First, in case some non-expert workers are still present in the current

worker cluster, their effect on the agreement might deteriorate the profile

values computed for other, possibly, expert workers. Moreover, if we com-

pute the agreement with all the workers in the cluster of w, we would need

a lot more ratings to have sufficient enough ratings to compute agreements

between workers. Note that agreement depends solely on ratings provided

by workers for items in the current itemset of interest. This is a problem

since we ideally would like to acquire minimum number of ratings from

non-expert workers. In order to overcome the aforementioned issues, we

propose the following. To compute the skill value w.pj.skill for worker w,

we measure the agreement of worker w with only the top-k most expert

workers for the itemset Ij. We explain how to retrieve the top-k most

expert workers in a given cluster later.

122

7.3. FRAMEWORK

Regardless of whether we measure agreement with all workers in a clus-

ter or with only expert workers, the rest of the computation procedure for

the skill component of a worker’s profile is the same. To measure agree-

ment between two workers wi and wj, we use the same similarity metric

used for building our clusters described in the previous subsection. Our

similarity metric is well adapted to our setting of ratings and is applicable

even when only few items have been rated by both users.

Once we have the agreement of the worker wi with all the top-k expert

workers in her cluster, we aggregate the agreements by taking the average

and use this as the skill for worker wi on itemset Ij as follows:

w.pj.skill =
Σw′∈top−kagreement(w,w

′)

k

where top-k is the top-k most expert workers in w’s cluster.

Retrieving the top-k most expert workers in a cluster. Recall that

in order to compute the skill component of the profile of a worker w, we

need to measure the agreement between w and the top-k most expert work-

ers in her cluster Cw with respect to an itemset Ij. In order to retrieve

these top-k most expert workers, we rank all the workers w ∈ Cw in de-

creasing order of their skill components w.pj.skill. We then take the top-k

workers with the highest w.pj.skill values. Ties are broken arbitrarily us-

ing #known(w, Ij) which is the number of items that the worker knows

(i.e., did not rate as 0) from itemset Ij.

Initially, we bootstrap the system with a set of experts, for instance,

restaurant or movie critics. These initial experts are clustered based on

their ratings and their skills are computed based on the overall agreement

between them. At step n, when worker skills need to be updated, the top-

k most expert workers are selected based on their skills computed at step

n− 1 and those are used to update the worker skills.

123

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

7.3.3 Utility optimization

The goal of the utility optimization component is to pick the best item for

a given worker w to rate. More precisely, we want to pick the items with

few ratings the worker most likely knows and will be able to reliably rate.

To be able to do this, we use a utility function that is composed of two sub-

components. The first component, SetUtility(w, Ij), takes into considera-

tion the worker profile and the number of ratings the worker has already

provided for the itemset Ij. The second component, ItemUtility(w, i),

takes into consideration the number of ratings available for the item i and

the closeness of the item to other items the worker knows.

More precisely, given a worker w and an itemset Ij, the SetUtility

component is defined as follows:

SetUtility(w, Ij) = β1 · (1−
#ratings(w, Ij)

MAXk#ratings(w, Ik)
)

+ β2 · (w.pj.known ∗ w.pj.skill)

where β1 + β2 = 1, #ratings(w, Ij) is the number of ratings the worker

w provided for Ij and w.pj is the profile value of worker w for Ij. The

first component of the SetUtility favors itemsets for which the worker has

provided fewer ratings. The second component measures how expert the

worker is with respect to the itemset.

Similarly, given a worker w and an item i, the ItemUtility component

is defined as follows:

ItemUtility(w, i) = β3 · (1−
#ratings(i)

MAXj#ratings(j)
)

+ β4 ·
Σj∈Iwk sim(i, j)

|Iwk |

where β3 + β4 = 1, #ratings(i) is the total number of ratings for item i

and Iwk is the set of items that worker w knows (i.e., has not rated as 0).

124

7.3. FRAMEWORK

The similarity sim(i, j) is the similarity between two items i and j and

it can be measured based on characteristics of the items (e.g. geographic

distance between restaurants).

The final utility function utility(w, i) of item i belonging to itemset Ij

for worker w is then computed as the average of ItemUtility(w, i) and

SetUtility(w, Ij) as follows:

utility(w, i) =
ItemsetUtility(w, Ij) + ItemUtility(w, i)

2

Note that the utility of item i for worker w or utility(w, i) is equal to 0

if worker w has already rated item i since we do not want to acquire more

than one rating for an item by the same worker.

Once the utilities of every item for a given worker w are computed, we

pick the item i for which utility(w, i) is maximum and provide this item

to the worker w to rate.

7.3.4 Cheaters identification

One constant goal of our framework is to identify cheaters, that is, work-

ers who are consistently providing misleading ratings. We distinguish two

types of cheaters: i) lazy workers, which assign ratings randomly to com-

plete the rating tasks as fast or as effortless as possible, and ii) malign

workers, which provide misleading ratings to particular items in order to

reduce or raise their average ratings. Our platform makes use of its differ-

ent components to achieve this task. Given a threshold τS, the worker w

is considered a cheater if the following condition holds:

∀jw.pj.skill ≤ τS

In addition, a worker w is considered a cheater if she consistently remains

in a singleton cluster after m number of ratings have been collected (other

than don’t know or 0). In either case, the flagged worker is asked to pass

125

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

a verification test by asking her to rate items she previously rated. We

then measure the agreement between the new ratings and the old ratings,

and if the agreement is below a threshold value τ , the worker is verified

to be a cheater and is banned from the system. Otherwise, the worker

profile is updated based on the agreement between the worker’s new and

old ratings. In the next section, we experiment with other strategies to

deal with cheaters such as weighting down their ratings when aggregating

items’ ratings.

7.4 Evaluation

We evaluate the effectiveness of our framework for acquiring reliable ratings

from expert workers using four different sets of experiments. The first set

verifies the quality of ratings acquired for a real dataset of restaurants by

assessing the performance of a recommendation system after identifying

cheaters. This set of experiments clearly highlights the importance of the

identification of cheaters. In these experiments, we also test the effect

of worker expertise with respect to itemsets on the quality of the ratings

acquired.

Next we perform parameter tuning to study the effect of the differ-

ent parameters in our system such as the clustering algorithm parameters,

cheaters identification threshold and the weights used in the utility func-

tion. Parameter tuning was performed on both synthetic and real datasets

about restaurants.

The third set of experiments studies our utility function more closely and

compares it with a number of alternative utility functions to test its effect

on the overall performance of the system. In all these three experiments,

we used the case of lazy workers to represent cheaters, as it was easier to

simulate and since the results of the experiments hold regardless of the

126

7.4. EVALUATION

type of cheaters. In the fourth and final experiment, we focus on the

other type of cheaters, namely malign workers, which are workers who

intentionally give misleading ratings to particular items in order to reduce

or raise their average ratings. In particular, we evaluate the effectiveness

of our framework in identifying such cheaters.

7.4.1 Rating quality experiments

Effect of Filtering Out Lazy Workers. The main goal of our work is

to build a crowdsourcing service for collecting reliable high-quality ratings.

One major application that could benefit from our work is recommenda-

tion. Our basic assumption is that acquiring reliable ratings will in turn

improve recommendation accuracy. To validate this hypothesis, we use

a real dataset of restaurant ratings, identify lazy workers in this dataset,

and measure the errors made by an off-the-shelf recommendation system.

More precisely, we measure the errors made when using all the ratings and

when only using the ratings of trusted workers, i.e. workers that were not

identified as lazy workers by our framework.

To build our real dataset, we collected ratings for 50 selected restaurants

in Grenoble, France, from students and researchers using a custom website.

We had a total of 57 workers, seven of which were experts and 10 were

lazy workers and acquired a total of 540 ratings. The set of experts was

composed of people that were very familiar with the restaurants in the

selected city. On the other hand, the set of lazy workers was composed

of workers who provided random ratings. In the end of this section, we

experiment with the other type of cheaters, i.e. malign workers.

Since we want to understand the quality of the ratings we collected, we

evaluate the recommendations built using subsets of our ratings to iden-

tify which subset is of higher quality and let the algorithm build better

recommendations. We used a user-based collaborative filtering as a recom-

127

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

mendation algorithm [40], and cosine similarity on rating vectors to define,

for each user, a fixed-size neighborhood of 10 most similar users. Such a

configuration has been shown to perform quite well and is very popular in

many successful recommendation systems [40].

We ran a recommender algorithm evaluation based on a 70-30 training-

test split of data and root mean squared error (RMSE) as evaluation metric.

We ran the algorithm using the training set as known ratings and predicted

the ratings (computed as similarity-wighted mean of neighbors ratings) for

the worker-item pairs already present in the test set. In this way, we

compared the predicted rating and the real rating assigned by the worker

to the item and measured the error (according to RMSE) the algorithm

made. The smaller the error the better the prediction, and hence the

better the quality of the data in the training dataset. For evaluation, we

considered only “known” ratings (i.e. ratings 1, 3 and 5) and we split the

dataset by time, identifying a specific date such that 70% of the ratings in

our dataset were provided before that date (i.e. the training set) and 30%

of the ratings were provided after (i.e. the test set).

Using the full dataset, we obtained an RMSE of 2.202. Removing lazy

workers, the RMSE was 1.021. We can therefore conclude that the ability

to isolate cheaters in this dataset reduced recommendation error by 53.6%.

This result is quite promising and shows the utility of cheater identification

for a popular recommendation algorithm.

Effect of Filtering Out Ratings of Non-expert Workers. Moreover,

we know which itemsets the workers are deemed to be more experts for, and

we can exploit this information to filter out lower quality ratings (i.e., those

for which workers are not considered to be experts enough to rate). Recall

that our utility function makes use of the worker profile w.pj to identify

the itemsets for which the worker can give the best ratings. This means

that ratings provided to items in itemsets for which the worker has higher

128

7.4. EVALUATION

Figure 7.2: RMSE as ratings for itemsets on which workers are less expert about are

filtered out.

profile values should be of higher quality since the worker is considered

to be an expert for items they contain. For this reason, by filtering out

the ratings workers provided to itemsets they are less experts for, i.e.,

with lower profile value, we will increase the quality of the ratings used

to compute recommendations. Recall that the profile value of a worker w

for an itemset Ij is composed of two components: 1) w.pj.skill which is

measured as the agreement of worker w with the top-k most experts in her

cluster with respect to itemset Ij, and 2) w.pj.known which is measured

as the number of items in Ij the worker knows (i.e., did not rate as 0).

Finally, the two components of the worker profile are then used in our

utility function to represent the worker expertise as expertise(w, Ij) =

w.pj.known ∗ w.pj.skill.
The minimum expertise value we obtained in our dataset was zero, so

we tried different expertise thresholds τE ranging from 0.1 to 0.9. After

removing all ratings assigned by workers to itemsets for which they had ex-

pertise lower than the threshold, we split the dataset into training and test

sets using a temporal cutoff as in the previous experiment (70% training

set, 30% test set). We computed the RMSE for the same user-based collab-

orative filtering algorithm used previously (with a fixed-size neighborhood

of 10 workers with the highest cosine similarity).

129

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

As can be seen in Figure 7.2, the RMSE decreases as the threshold τE

increases, confirming that the ratings for which workers are more expert

are of better quality and enable the recommendation algorithm to produce

more precise predictions. The RMSE immediately falls to 1.819 with τE =

0.1, and reaches the lowest value of 1.029 with τE = 0.7. As the value of τE

increases, we end up with too few remaining ratings and for τE = 0.9 the

recommendation algorithm is not able to compute any prediction. As can

be seen, the final RMSE is always lower than the one we obtained before

removing lazy workers (2.202).

Effect of Weighting Ratings by Worker Expertise. Filtering out

the ratings of non-experts or flagged cheaters is a huge expense. In fact,

they can still be of some value when aggregated. Another possibility is to

weight the ratings by the expertise of the workers providing them when

aggregating the items’ ratings. To test the effect of this on the final ag-

gregated ratings, we created two lists of aggregated ratings. In the first

list, which we refer to the unweighted list, the ratings for each item were

aggregated by taking the average over all the ratings provided for this item

by all workers including lazy workers. In the second list, which we refer to

as the weighted list, the ratings of each item were aggregated by taking a

weighted average over all the ratings provided for this item by all workers

(including lazy workers) such that each rating is weighted by the expertise

of the worker that provided the rating at the time the rating was provided.

To compare these two lists of aggregated ratings, we created a third list of

aggregated ratings and used this list as a reference list. In this third list of

aggregated ratings, the rating of each item was computed as the average

of all ratings provided for the item by only “trusted” workers (excluding

lazy workers).

We computed the RMSE (root mean squared error) for each of the

two lists, the unweighted list and the weighted one, using the reference

130

7.4. EVALUATION

list as the “true” average ratings. We obtained an RMSE of 0.201 for

the unweighted list and an RMSE of 0.077 for the weighted list, with a

reduction of 62% in average rating prediction. This clearly highlights the

merits of weighting ratings by worker expertise when aggregating ratings.

This can also be seen as another strategy for dealing with cheaters, instead

of using a verification test and banning workers that do not pass it.

7.4.2 Parameter tuning

The goal of this set of experiments is to study the effect of the various

parameters of our framework on cheater identification accuracy. To do so,

we proceeded as follows: we generated a synthetic dataset and computed

the accuracy of cheater identification for different values of the worker clus-

tering threshold, the weights used in the utility function and the minimum

skill threshold. We then tested the selected values on other larger datasets

and a real-world one. Here we focused only on lazy workers as cheaters.

The synthetic dataset consisted of 100 fake restaurants, randomly placed

in a 20-km diameter, divided into four non-overlapping itemsets I1, I2, I3,

and I4, of the same size (i.e., 25 restaurants each). We generated 100

workers divided in the following way: 15 initial experts, 15 lazy workers

and 70 trusted workers (i.e. providing truthful ratings). Each worker rated

40 restaurants, for a total of 4000 ratings with a value greater than zero

(i.e., no don’t know or 0 ratings). The 15 initial experts in our dataset were

divided into three non-overlapping groups each consisting of five experts.

The first group liked itemsets I1, and I2, the second group liked itemsets

I3 and I4, and the third group liked I1 and I4. In order to make rating

generation simpler, we assumed all expert workers either liked or disliked all

the items they know in any given itemset for which they provided ratings.

This is a simplification of a real-world scenario where it is more likely that

workers will like some items in an itemset and dislike others in the same

131

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

itemset. Similarly, our 70 trusted workers were divided into seven non-

overlapping groups each consisting of 10 workers. The first three groups

were similar to the three groups of experts, that is, they liked the same

itemsets as the three groups of experts. The fourth group of trusted workers

liked I1 and I3, the fifth group liked I2 and I4, the sixth group liked I1 only,

and the seventh and final group liked I3 only. Rating generation for trusted

workers was done as follows. All trusted workers gave a rating of 5 to items

within the itemsets they liked with a 70% probability, and 3 (i.e., neutral)

with a probability of 30% . The same happened for items they didn’t like

where a rating of 1 was generated with a 70% probability and a rating of

3 was generated with a 30% probability. Finally, the remaining 15 workers

in our dataset were designed to be lazy workers with random ratings.

Using the above synthetic dataset, we tuned the different parameters

in our framework. The first parameter is the similarity threshold for our

clustering algorithm. Recall that our framework continuously re-clusters

workers in the system as new ratings arrive. Our incremental hierarchical

clustering algorithm merges clusters continuously until no two clusters can

be merged (i.e., the closeness between any pair of clusters is lower than a

threshold τC). We ran our algorithm with different values of τC keeping

all other parameters fixed to some randomly selected values: β1, β2, β3 and

β4 = 0.5 for the utility functions and τS = 0.3 for the minimum skill

threshold. We then computed the precision, recall and F2 measure for

detecting cheaters, where

precision =
#true positives

#true positives+ #false positives

recall =
#true positives

#true positives+ #false negatives

F2 measure = (1 + 22) ∗ (
precision ∗ recall

(22 ∗ precision) + recall
)

132

7.4. EVALUATION

We used the F2 measure since we wanted to sacrifice a bit of precision in

favor of a higher recall. That is, we want to detect as many lazy workers

as possible, even with the price of falsely flagging some trustful workers

as cheaters. This is not a problem in practice, since trustful workers will

eventually pass the verification test after being flagged as cheaters.

We obtained the highest F2 measure with τC = 0.6 (see Figure 7.3a).

We also measured the quality of the clusters obtained with our algorithm

with respect to the ideal set of clusters computed once all the ratings

were generated. On average, 76% of workers were clustered correctly, with

an 83% precision when the selected similarity threshold was used. In a

similar fashion, we identified the best values for the other parameters in

our framework: τS = 0.5 for the minimum skill threshold; β1 = 0.3 and

β2 = 0.7 for itemset utility; and β3 = 0.6 and β4 = 0.4 for item utility. The

results of this evaluation are shown in Figure 7.3.

To test the identification of cheaters on a larger dataset, we built four

other synthetic datasets of bigger size, with 300 items each divided into six

itemsets I1 through I6, and 1000 workers. The set of experts was composed

of 100 workers equally divided into five groups, same for all datasets. The

groups have tastes like the ones presented for the smaller dataset, but we

added also an itemset-independent taste: one group liked only items whose

id was a multiple of three. This last group represents a more realistic group

of workers who like and dislike items within the same itemset and across

itemsets. Experts’ ratings were generated with the correct rating (i.e., 1 for

items the expert didn’t like and 5 for items she liked) with 80% probability

and the neutral rating (with value 3) with 20% probability.

The main difference between the four datasets in this evaluation is the

number of lazy workers. Dataset A had 100 cheaters, dataset B had 200

cheaters, dataset C had 300 cheaters and dataset D had 400 cheaters.

Trusted workers were equally divided into 10 different groups, five of which

133

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

(a) Best value for τC .

(b) Best value for τS .

(c) Best values for β1 and β2, with β2 values on top

and β1 values on bottom.

(d) Best values for β3 and β4, with β4 values on top

and β3 values on bottom.

(e) Legend.

Figure 7.3: The best values for system parameters.

134

7.4. EVALUATION

Figure 7.4: Results of the 4 synthetic datasets with 1000 workers.

correspond to the ones of the experts while the rest are composed in the

same way, but with different combinations of itemsets. Trusted workers

gave the correct ratings (either 1 or 5) with a 70% probability and they

gave the neutral rating (i.e., 3) with a 30% probability. Each dataset

contained around 120,000 ratings.

As shown in Figure 7.4, our framework performs consistently well for

all four datasets, reaching full precision and recall for dataset D (i.e., as

the number of cheaters increase). In addition, each task was run in about

2 seconds on average, from the received rating to the reply with the next

item to rate. This result clearly indicates the feasibility of our approach

as a web service for crowdsourcing rating tasks.

Finally, we ran our framework with the best parameter values deter-

mined by the previous experiment on our real dataset. We obtained a

precision of 0.727, a recall of 0.800 and an F2 measure of 0.784. These

results confirm the ability of our framework to correctly identify cheaters

in a real setting.

7.4.3 Utility function experiments

Our utility function has no influence on the identification of cheaters:

cheaters will sooner or later reveal themselves as they rate more items,

135

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

regardless of the order in which items are presented. The importance of

the utility function is the time needed to identify cheaters. Clearly, the

sooner they are identified, the better. If the framework needs to collect

many ratings before identifying cheaters, this would be costly and more

importantly, it could happen that a cheater might stop giving ratings be-

fore the framework had had the chance to identify her as one. In this

case, the ratings provided by this unidentified cheater would be considered

reliable.

To test the effect of our utility function on the overall performance of

the system, we compare it to two other baseline utility functions: i) a

recommendation-based utility function, in which the next item shown to

the worker is the one recommended to the worker according to the ratings

she already gave using an off-the-shelf recommendation system, and ii)

a random utility function, in which the next item is randomly selected.

Recall that our proposed utility function is based on the number of ratings

already assigned to an itemset, the profile of the worker for the itemset,

the number of ratings already given for an item and the similarity of the

item with other items rated by the worker. To test which utility function

performs best, we analyzed the number of ratings the framework asked

each cheater before identifying her, using our real dataset of restaurants.

Using our real dataset, on average the random utility function needed to

show 25 items and the recommender-based utility function needed to show

32 items, while our utility function needed to present only 17 items. These

different results are statistically significant according to t-tests between the

pairs (p-values: 0.0001, 0.008, 0.03, α-level: 0.05). This means that our

utility function identified cheaters at least 32% earlier than the other two

functions.

Another important aspect of our utility function is that it keeps the

number of ratings balanced over items which is a main goal of our data

136

7.4. EVALUATION

Table 7.1: Standard deviation of number of ratings per item.

N Our utility Recommendation-

based utility

Random utility

150 0.2 0.53 0.59

300 0.99 0.53 0.57

600 1.2 0.67 0.57

1200 1.32 1.67 1.11

2000 1.94 1.81 1.75

acquisition that distinguishes it from a recommendation system. When

the framework chooses which item to show next, it gives higher priority

to items that have fewer ratings, balancing in this way the number of

ratings across items. To verify this, we analyzed how many ratings items

had after N data acquisition rounds, for different values of N. We used

standard deviation to compute rating distributions. The results are shown

in Table 7.1. We can see that all utility functions have close values of

standard deviation, with our utility function having smaller values for the

first 150 ratings. A smaller deviation means that the number of ratings

across items is quite balanced. When we consider a higher number of

ratings, the standard deviation increases even with our utility function.

This is mainly an effect of the initial items proposed to the worker when

she arrives. Since the system aims to gather enough ratings per worker to

be able to cluster them, the first items proposed to workers are those with

the highest number of ratings. We thus end up with a small set of items

that have more ratings than others, causing this problem of unbalanced

ratings.

7.4.4 Malign workers experiments

So far, we have only considered lazy workers as cheaters, i.e. those workers

who provide random ratings. There are other ways for cheating and a par-

137

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

ticularly appealing category of them are the malign ones. Malign workers

are workers who intentionally give misleading ratings to particular items

to reduce or raise their average ratings.

In this set of experiments, we added malign workers to our real and

synthetic datasets and tested how many of them are correctly marked as

cheaters. For the synthetic dataset, these malign workers provided “truth-

ful” ratings for a percentage of the items by following the same behavior of

some of the experts in the system (as these behaviors are well defined). For

the real dataset, the malign worker followed the behavior of the majority

of the other workers (i.e., giving a positive rating when the majority gave

a positive rating and vice versa). For the rest of the items, the malign

workers provided opposite ratings to those provided by the experts or the

majority depending on the dataset, reducing or raising the average ratings

of these items.

We start by testing how many misleading ratings these workers had to

give before being identified as cheaters. In the synthetic dataset used for

parameter tuning (with 100 workers), we added 24 malign workers divided

into four groups of six workers with different percentages of misleading

ratings: 10%, 20%, 30% and 40%. The framework identified 87% of the

malign workers on average (21 of 24), and 71% of the ones that it missed to

identify had only 10% of misleading ratings. Considering only the workers

with a higher percentage of misleading ratings, the framework identified on

average 95% of the malign workers. We conclude then that the framework

is able to correctly identify almost all malign workers when they give at

least 20% of misleading ratings.

We also computed the recall of malign workers’ identification as we vary

the clustering threshold (τC). Since workers are marked as cheaters when

they fail to join clusters, a different value for this parameter could increase

or decrease the amount of misleading ratings the workers should provide

138

7.4. EVALUATION

Figure 7.5: Average recall of malign workers identification.

to be identified as cheaters by our framework. Figure 7.5 shows that the

recall remains stable with varying τC values. On average, 75% of malign

workers that were not identified as cheaters had only 10% of misleading

ratings. This confirms the previous limit of 20% of mialsedinag ratings as

the minimum amount of misleading ratings that a malign worker has to

provide to be identified as a cheater by our system.

Finally, we confirmed the above results using our real dataset. We

added 10 malign workers with 20% of misleading ratings and the rest of

the ratings following the majority of the other workers, and the framework

correctly identified 93% of the malign workers on average. These results

are quite promising, but marking malign workers as cheaters is only half

of the work. To complete the work, malign workers should not be able

pass the verification test. However, since malign workers are aware of their

misleading ratings, they will be able to reproduce their ratings when the

verification test is run. We leave the identification of a different verification

test that is hard to pass for malign workers but not for trustful workers

falsely flagged as cheaters to future work.

139

CHAPTER 7. COLLECTING THE INITIAL RATINGS FROM THE CROWD

7.5 Conclusion

We presented a crowdsourcing platform to acquire reliable ratings of items.

Our data acquisition platform differs from existing crowdsourcing systems

and recommendation systems because it targets the most expert users to

provide ratings for items with the fewest number of ratings. Our system re-

lies on incremental clustering to identify cheaters and a carefully-designed

utility function to assign items to rate to the most expert workers. Our

experimental evaluation on both synthetic and real restaurant datasets

showed that detecting cheaters, acquiring ratings from expert workers only,

and automating the rating acquisition process all have a positive impact

on both the cost of acquiring reliable ratings and on improving recommen-

dation accuracy in popular recommendation systems.

With a crowdsourcing platform implementing the presented framework,

we could easily and quickly collect the initial ratings needed to start a

recommender service for leisure activities in a new area, collecting high-

quality ratings for the new items added into the system. With this plat-

form, we can easily identify whether a worker is a local or not for the area

we are considering and acquire ratings only if the worker demonstrates to

be trustworthy.

140

Chapter 8

Planfree - a Restaurant

Recommender Service

8.1 Introduction

We studied how to collect people’s feedback and how to use it to build

high-quality personalized recommendations. In this chapter we present

Planfree, the prototype of a restaurant recommender service the which

we applied the results obtained in our studies. The prototype has been

developed as a tool to be integrated in Toolisse (www.toolisse.com), a

platform of travel solutions.

The fact that recommendations here are limited to restaurants, i.e.

places for having lunch or dinner, does not mean that the same service

cannot support recommendations for other leisure activities. This solution

is generic for leisure recommendations, but is limited to restaurants only

to keep the system smaller and to make its characteristics more visible and

clear.

141

www.toolisse.com

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.1: Interface for rating collection.

8.2 Satisfying the Requirements of Recommender Sys-

tems

In Section 1.1 we introduced the requirements that recommender systems

have to satisfy and in the previous chapters we have studied the solutions

that can be applied. Here we explain which solutions we adopted for our

restaurant recommender service.

8.2.1 Learning user’s tastes

One important decision to take is about how to collect people’s feedback.

As we have seen in Chapter 6, the favorite rating scale on mobile devices

is 5-star. Since it was already identified as the best rating scale also for

desktop computers, we can use this rating scale without the risk to have

dissatisfied users.

We have seen in Chapters 4 and 5 the importance of purpose-based rat-

ings to collect contextual information together with the ratings and to build

more tailored recommendations. For this reason we ask 4 ratings for each

restaurant: with visitors, romantic, with friends and lunch break. Each

142

8.2. SATISFYING THE REQUIREMENTS OF RECOMMENDER SYSTEMS

Figure 8.2: First-time user: inserting home town.

purpose is easily distinguished by the meaningful icon and the different

color that represent it (Figure 8.1).

When a new user arrives, we have to learn her tastes before she requests

recommendations, otherwise we can present only generic recommendations.

We decided to build a specific path for first-time users. People enter the

service after the mandatory login, implemented through two major social

logins: Facebook and Google. While returning users access directly the

recommendation list with their registered settings, first-time users are first

forced through a two-steps profile-filling procedure. First, the new users

are asked to insert their home town or the city in which they feel local the

most (Figure 8.2). Then, if the service is already available in their city,

they are asked to rate the restaurants they know there (Figure 8.3). In

this way, we can start knowing some preferences of these new users before

they request any recommendation.

By asking people their home town or the city in which they feel local the

most, we are able to recognize whether they are locals or tourists for the

city they are asking recommendations for. In Chapter 5 we presented the

importance of locals’ opinions, as they are more knowledgeable about the

143

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.3: First-time user: inserting ratings for home town restaurants.

offerings available in their city, so knowing this information let us consider

locals’ ratings with the adequate importance.

Since the profile procedure does not force people to share their feed-

back about the known restaurants, i.e. people can easily skip the task if

they don’t want to complete it for any reason, we still have to be able to

build their recommendation lists when they request them. For this reason,

we integrate the personalized recommender algorithm with a generic one,

based on the average of ratings.

144

8.2. SATISFYING THE REQUIREMENTS OF RECOMMENDER SYSTEMS

8.2.2 Making recommendations

In Chapter 6 we analyzed the collaborative filtering recommender algo-

rithms, searching the one that builds the best recommendations, both ac-

cording to objective metrics (i.e precision, recall and F0.5−measure) and

to user evaluation. We found that user-based collaborative filtering is the

more precise and satisfactory, in particular when combined with 5-star rat-

ings. Unfortunately, user-based collaborative filtering is not scalable, and

when the number of users, items and ratings increases, it takes too much

time to compute the requester’s neighborhood and compute the recommen-

dations. We want to provide a fast and reliable service to mobile users too:

they usually want to get the requested information immediately, waiting

maximum few seconds. This means that we cannot make them wait for a

couple of minutes every time they access our service.

To get a recommender service fast and scalable, we moved our attention

to cluster-based recommender services. They have the advantage of com-

puting clusters of users in advance, and even the predicted ratings for each

item and each purpose for the cluster can be stored in advance. When a

request of recommendation arrives, the predicted ratings are already avail-

able and only context-based considerations have to be done. This let us

quickly answer when a request arrives, but the clusters need to be period-

ically recomputed as new ratings arrive.

In Chapter 6 we analyzed the cluster-based clustering filtering with

two different clustering algorithms: hierarchical clustering and k-means.

Despite hierarchical clustering gives very good results, very close to the

ones of user-based collaborative filtering, it is not scalable and even with

only one thousand users it takes too much time to recompute clusters,

making them useless as new data arrive while this computation takes place.

For this reason, we temporarily adopted k-means as clustering algorithm.

145

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.4: Recommendation settings.

The clusters it computes can be of low quality, but they are computed

quickly and we can provide some recommendations to our users. We will

search for better algorithms for the next versions of this service.

Once clusters and cluster-generic recommendations have been computed

and stored, the recommender algorithm needs to tailor the results to the

requester’s needs. First of all, user’s location is considered, filtering out the

places that are too far from her. The user can indicate to the algorithm

what “too far” means to her according to her current situation by adjusting

the settings, shown in Figure 8.4: she can indicate the maximum distance

in meters she is willing to walk/drive to reach the best place for her needs.

The settings let users specify also the number of recommendations they

are willing to receive and the city they are interested in. Thanks to this,

the service is flexible and people can also use it to plan in advance their

lunches and dinners for a future visit to a different city.

Then, the algorithm has to consider the purpose indicated by the re-

quester. Despite clusters are computed considering the full set of ratings

146

8.2. SATISFYING THE REQUIREMENTS OF RECOMMENDER SYSTEMS

collected till their computation, the predictions for each item are computed

taking purpose in consideration. For example, the prediction for item i and

purpose p is computed as average of the cluster’s ratings for that item and

that purpose, without considering what the users within the cluster thinks

about the item for other purposes. The recommendation list is computed

by sorting the items according the prediction computed for the requested

purpose.

Finally, the previous ratings of the requester are considered to person-

alize the recommendation list: the places the user already rated negatively

are removed from the list. Now we have the complete recommendation list

for the requester, satisfying all her needs. The service returns the top-k

places, with k being the number of items the user requested (by setting it

in the settings).

To make the recommendation list consumption easier from mobile de-

vices, we suggest the following settings, which are the default values: 5

items in the recommendation list, which contains only places within 1000

meters from user’s current position. A distance of 1000 meters could seem

big, but it can easily be covered in 20 minutes by walking. Such distance

makes the user sure that the top restaurant the service recommends is the

best one she can reach from her position by foot.

More details about the algorithm can be found in Section 8.3.2.

8.2.3 Availability everywhere and anytime

We have seen that one of the major challenges is the availability of the

service everywhere and anytime. This suggests to build a service that can

be easily accessed by any device: desktops, tablets and smartphones.

To solve this problem, we built Planfree platform as a Web applica-

tion that can be accessed by regular web users through any standards-

compliant, desktop/mobile Web browser. The Web interface is responsive:

147

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.5: Recommendation page for mobile (right) and for desktop (left).

it adapts to the device size. Figure 8.5 shows how the recommendation

page is shown on mobile and desktop. Moreover, the platform provides

an application programming interface (API) for developers that can be

accessed through third-party clients. Through this solution, the service

can be accessed through the Internet without any need of installing any

application, but at the same time the platform is ready for supporting

device-specific applications that can access the Planfree backend through

the Internet. More details about the platform are available in Section 8.3.

To make the recommendation list easy to consume and to point user

attention to the top positions, we show only one recommended restaurant

at a time, starting from the first position and going down through the list.

In this way, people accessing through the smartphone can immediately see

all the details about the restaurant that can affect their choice: the restau-

rant name and image, how far it is and how much we recommend it (as an

148

8.2. SATISFYING THE REQUIREMENTS OF RECOMMENDER SYSTEMS

indicator of the rating we predict the user will share after experiencing it).

With all these details, the user can decide whether to go to this restaurant

or to swipe to the next recommendations without the need to access the

full details of the restaurant, i.e. without moving to a different page of the

website.

8.2.4 Getting interest of users and restaurateurs

With Planfree we are presenting a novel recommender service, but from

the outside it looks like all the others. Our main strength is the quality of

recommendations, based on the results of our studies. This characteristic

is, however, not visible by people until they try the service and compare

its results with the results of other competitors (TripAdvisor, Foursquare,

The Fork . . .). This means that we need to add some features to attract

people and make them try our service (and discover how good it is).

To solve this problem we decided to offer a couponing service integrated

with the recommender one. Restaurateurs are invited to enter our platform

and request the right to control their restaurant’s page. Through it, they

can directly provide the full information about their restaurant and offer

some discounts in form of coupons. Involving restaurateurs in the platform,

we have also the advantage of providing curated information about the

places, improving the quality of the service.

These discounts are advertised to people if the restaurant is available in

their recommendation list, as can be seen in Figure 8.5: this means that

only people that would like the experience at that restaurant, according

to our recommender service, will have the chance to get the coupon. The

discount attracts new people to the restaurant and, since the restaurant

was recommended to them, there is a good chance that these people will

like the experience and return in the future. In this way, restaurateurs

149

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.6: Restaurant page with discount details.

150

8.2. SATISFYING THE REQUIREMENTS OF RECOMMENDER SYSTEMS

Figure 8.7: Details about the obtained coupon.

can get high-quality advertisement and high return of investment from the

small expense of providing few coupons.

Advertising the availability of coupons through Planfree, people are mo-

tivated to enter the service, provide the initial ratings and try the recom-

mendations. Once first-time users discover the quality of our recommen-

dations, they hopefully will become returning users and will recommend

Planfree to their friends and relatives.

The coupons can be requested from the restaurant page (Figure 8.6),

and the obtained coupon has the details shown in Figure 8.7. The personal

list of acquired and used coupons can be accessed from the menu, keeping

track of all the offers the user is willing to take advantage of.

We did not have the chance to test the effect of coupons and how much

they will attract restaurateurs and users, but this model have been already

used in different contexts. For example, The Fork is a restaurant booking

service and uses discounts as advertisement and as a motivation to prefer

their service instead of using one of its competitors.

151

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.8: Conceptual architecture of Planfree.

8.3 Architecture and Implementation

Planfree comes as both a Web application for regular Web users and an

application programming interface (API) for developers. The former can

be assessed via any standards-compliant, desktop/mobile Web browser, the

latter through third-party clients.

The architecture follows the conventional client-server pattern of Web

applications and can be split into three layers (see Figure 8.8):

• The presentation layer provides the access to Planfree and its fea-

tures. It comprises the Web user interface for human consumption

152

8.3. ARCHITECTURE AND IMPLEMENTATION

and the RESTful application programming interface for consumption

by software agents.

• The application layer hosts the two core ingredients of the Planfree

approach to recommending nearby places (e.g., restaurants or bars):

the location-aware, personalized recommender algorithm and the user

clustering algorithm. The former computes place recommendations

for users on the fly, the latter clusters users into groups with similar

interests/profiles both online (for incremental updates of the clusters)

and offline (to periodically re-compute the whole set of clusters).

• The data layer hosts the data the two algorithms work on: user pro-

files, user clusters, ratings, and places. User profiles are automatically

created upon the registration of new users and can be edited by the

users. The ratings are provided through an own form part of the

UI. The user clusters are computed by the clustering algorithm. The

places are pre-loaded (e.g., taken from OpenStreetMap or the Toolisse

database).

The whole backend runs in the cloud (Google App Engine), is written in

Python, HTML, CSS and JavaScript, and uses Google Datastore for data

management.

8.3.1 Data layer

The diagram in Figure 8.9 represents the conceptual data model underlying

Planfree.

153

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.9: Conceptual data model of Planfrees data layer.

8.3.2 Application layer

This layer is responsible for elaborating the data and providing the needed

information to the user. The most important task here is executed by the

recommender algorithm.

We use a cluster-based recommender algorithm: it groups users in clus-

ters using k-means clustering algorithm, and the opinions of the cluster are

154

8.3. ARCHITECTURE AND IMPLEMENTATION

Algorithm 2 Compute clusters

Input: all users and their ratings, the number of clusters k, tC threshold

Output: centers of clusters, cluster id set in each user

while true do

for each user u do

for each center c do

compute user similarity(u, c)

end for

u.cluster id = c.cluster id, for c with max similarity

end for

for each cluster do

new center = avg ratings(usersincluster)

end for

if min(similarity(old ca, new ca)) < tC then

return

end if

end while

used to build recommendations for the requester. K-means algorithm has

been selected because it can be implemented using MapReduce technology

and in this way it scales well.

CLUSTERING:

Initial step The users that already rated some restaurants are grouped

into clusters.

Incremental step When a new user arrives, she provides some initial

ratings and, based on them, she is added to the closest cluster.

Re-computation step Once in a while (once a week/month), clusters

need to be recomputed, to take into consideration also the ratings

added or updated since the last cluster computation. This operation

can be planned to execute when the server(s) have low workload and

can concentrate the resources in this task.

155

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Algorithm 3 User similarity (based on euclidean distance)

Input: pair of users x and y and their ratings

Output: similarity value

n = # of common ratings of x and y (i.e. ratings of same place for same purpose)

r(x, pl, pu) = value of rating of user x for place pl and purpose pu

sum = 0

for each place pl and purpose pu in common ratings do

sum = sum+ square(r(x, pl, pu)− r(y, pl, pu))

end for

similarity = 1/(1 + (sqrt(sum)/sqrt(n)))

return similarity

RECOMMENDATIONS:

The algorithm receives a user query containing the following information:

purpose, number of recommendations needed and filtering information

for places.

The filtering information for places at the moment are related to geolo-

cation: the user position (latitude and longitude) and the maximum

distance the user is willing to walk to reach the place.

The recommender first retrieves the list of places that are within max

distance from user location, then it gets users cluster and build the

predicted rating using users cluster ratings.

The algorithms 2, 3 and 4 show more details in pseudocode.

8.3.3 Presentation layer

The application exposes its services to both real users, through a web user

interface, and other applications, through the REST APIs. The web user

interface has been designed to be easy to use and responsive: it adapts to

any device, both desktop and mobile.

156

8.3. ARCHITECTURE AND IMPLEMENTATION

Algorithm 4 Recommend

Input: center of user cluster, user, user location (given by user latitude and user lon-

gitude), user maximum distance, purpose , number of recommendations to compute

(n)

Output: n places

placelist = list of places within maximum distance from user location

for place p in placelist do

score of p = ratings of cluster center

end for

return n places with higher score

8.3.4 Implementation and code base

The project is stored on github at the following address: https://github.

com/sphoebs/rockshell.

The application is built to run on Google App Engine, the cloud service

provided by Google. It uses a Datastore to store all the data, and the

definition of the data model depends on this no-sql database.

The project is implemented in Python, using the libraries webapp2 and

jinja2. Webapp2 is used to make the application able to receive and respond

to HTTP calls. Jinja2 is a templating library, which allows us to easily fill

data in the html/css/js pages that are returned by the user interface calls.

To allow geolocation-based queries for places, we use a small table in

Google Cloud SQL, i.e. a MySQL database within the Google Cloud. This

table contains only place keys and coordinates and here we can perform

a query which retrieves all places within a rectangular area, while with

datastore it is not possible.

To cluster users very quickly, we implemented k-means algorithm using

MapReduce procedures. In this way, the computation for each user can be

parallelized, getting the results very quickly.

157

https://github.com/sphoebs/rockshell
https://github.com/sphoebs/rockshell

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

For the user interface, we used HTML, CSS and JavaScript. We used

JQuery and underscore libraries. The first one let us handle some minor

http calls and update the visualized html page without the need to reload it

entirely. Underscore library is used for building html templates to be used

by JavaScript. These templates are used to handle place lists pagination

in the browser, without the need of extra communication with the server

for only visualization changes.

The responsiveness of HTML pages is obtained only through css, using

percentage sizes and media queries, without the need of extra libraries.

8.4 Tests

To verify that we matched our goals of building a platform that can provide

an awesome experience to thousands of users, we run some tests about

scalability and usability.

8.4.1 Scalability test

The application has been developed keeping in consideration scalability.

In particular, the recommender algorithm has been chosen according to

its ability to scale well as the number of users grows. The algorithm we

selected for cluster-based collaborative filtering is k-means and it can be

implemented with MapReduce: at each step, a fixed number of “centroids”

are selected and each user is associated to the most similar one (map step),

then the new centroids for the next step are computed (reduce step). The

centroids are some representative users, one for each cluster, which are

computed by averaging the ratings of all users within the cluster. At the

beginning some users are randomly selected as initial centroids. Moreover,

we implemented Planfree in Google App Engine, which provides more re-

sources and new instances when the traffic increases, splitting the work

158

8.4. TESTS

over more machines automatically to keep performance high. The com-

bination of the MapReduce algorithm and Google App Engine guarantee

that Planfree scales well.

To prove the efficacy of the algorithm and the quick response of the

application when a user requests her recommendations, we tested Planfree

with a synthetic dataset generated randomly and containing 1000 restau-

rants, 1000 users and 10000 ratings.

Average time to get the restaurants around the user: 0.11 seconds

Average time for loading full recommendations (get places, get cluster rat-

ings, get user ratings and, if needed, compute overall average ratings): 0.75

seconds

Average time for cluster computation (tested with 10 clusters): 2 hours

8.4.2 Usability test

The usability of the application has been tested online, and 11 participants

completed the evaluation. The test consisted in performing 4 tasks that

cover the main functionalities of the application: rate restaurants (task

#1), browse through recommendations (task #2), get a coupon and spend

it (task #3), and change settings (task #4).

In general the application resulted easy to use and pleasant in all tasks,

but there is space for improvement in particular to support first-time users.

For each task, very few errors (self-reported usage mistakes, not system er-

rors or bugs, such as accidentally closing a dialog window without having

filled the respective form) were made by participants, with the higher num-

ber of errors obtained for the task of rating restaurants (Figure 8.10): 7

participants made 1 to 3 errors, but only 2 of them found it difficult to re-

cover from their errors and anyway did it on their own without side effects.

These errors are mainly due to the navigation through the application. In

159

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.10: Average number of self-reported usage errors in usability tasks.

the rating page, at the bottom there are both arrows to navigate through

the restaurant list (which is paged) and the button to end the rating task.

These buttons turned out to be not visible and clear enough, and they

have been improved after this evaluation.

A different error was identified for a particular device/browser combi-

nation. When you access the website using Firefox on an Android smart-

phone, there are issues with the autocomplete provided by Google Maps

API: the suggestions are not visible until a space or comma is pressed and

the first suggestion is almost impossible to select. We will search for solu-

tions and workarounds. The few errors made for the other tasks were all

easy to recover and none of theme was severe.

The task that was considered the slowest was the one related to coupons:

only three restaurants had available coupons and it was hard to find them

if they were not between the first recommendations. This is not a nega-

tive result: we wanted users to see coupons only for restaurants we think

they would like, and this is exactly what happened. The interfaces were

all considered primarily pleasant (Figure 8.11), but the interfaces for the

tasks “rate restaurants” and “get a coupon and use it” received also some

160

8.5. RESEARCH EXPLOITATION

Figure 8.11: “How pleasant was it to use the design?”, in a scale from 1 (not pleasant at

all) to 5 (very pleasant).

comments on the possibility of improvements to make them even easier to

use.

As can be seen in Figure 8.12, participants expressed a higher likelihood

to use Planfree to get recommendations and coupons for other cities they

don’t know yet, while in their home city they will be interested more in

coupons than in recommendations. A couple of participants would not

use this application in their home city since they don’t see any benefits in

choosing it against TripAdvisor and similar services.

Between the features people would like to see in the application, booking

of a table is the most requested one, followed by more user-created content,

like comments, pictures (not from the owner) and feedback in general.

8.5 Research Exploitation

From a research perspective, the project had important results, but more

work is needed to improve the accuracy of predictions with low number of

ratings, and specifically low number of ratings per place per purpose. This

161

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

Figure 8.12: : How likely participants would use Planfree, in a scale from 1 (very unlikely)

to 5 (very likely).

is a common scenario even in the most widely used recommender systems

such as Yelp and TripAdvisor, and it is also a common problem with new

places (or, even more interestingly, in old places with new management).

Understanding at which point it makes sense to provide recommendations

for a place and how to manage change in management on the same loca-

tion is another open research topic whose solution would greatly affect the

quality of the suggestions that can be provided to customers, and as such

improve the customer experience.

In terms of the current version of the application, the findings of the

above performance and usability studies are encouraging regarding the ca-

pability of Planfree to scale beyond the current limited user basis: techni-

cally, MapReduce and Google App Engine provide for the necessary com-

puting resources in a flexible and per-use basis that allows us to lock (and

pay for) resources only if they are really needed. Content-wise, it seems

that Planfree has the expected potential to appeal especially to locals in

their own town (next to the personalized, purpose-specific recommenda-

tions, the presence of coupons and special offers seems crucial here), but

the usability study also revealed a huge potential for the use of Planfree

162

8.5. RESEARCH EXPLOITATION

when visiting another city the users are not yet familiar with (here the rec-

ommendation feature seems more important and the coupons a bit less).

The opportunities highlighted during the test will be used as guidelines

for the upgrade of the interface of the platform, to make it even more easy

and intuitive to use. In particular, we will improve the communication of

the recommendation feature, making more clear the fact that the recom-

mended restaurants are personalized and based on collaborative filtering.

The participants also produced a good list of missing features that we

will consider for the next version of the platform. We will start from

the “my favourite restaurants” to bookmark the places the user wants to

remember or is planning to visit. The booking feature was already in our

mind as a future step and we see that it will complete the experience in

our platform. Some participants complained about a missing place where

all available coupons are listed, but we will not add such feature: at the

moment only coupons for the restaurants the user would like are shown to

motivate people to try new places (and share their experience about them)

and we plan to make them even more “personalized”.

Coupons will be used by restaurateurs to attract influential people that,

according to the tastes we learned, will like the place and will share positive

feedback. We don’t want to become like groupon, where people go only for

getting discounts, but we want to use them to motivate people to try new

places at a lower risk and as marketing campaigns. Also, one idea that

came up already during the development of Planfree and that may become

a core distinguishing feature compared to other couponing platforms is

the idea to allow the restaurateurs to know about the presence outside

of their restaurant of people that could potentially be interested in their

restaurant and to further allow them to make instant/on-the-fly offers that

are specifically tailored to the interests of the identified group of people and

163

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

valid only for them and within a very short interval of time (e.g., one hour).

This would allow restaurateurs to attract guests in a last minutes fashion.

8.6 Conclusion

In this chapter we presented Planfree, a prototype of restaurant recom-

mender service. It includes all the learnings we collected through the stud-

ies presented in the previous chapters:

Data collection It collects ratings through the 5-star rating scale and

the ratings are purpose-based, i.e. there are 4 ratings per item: with

tourists, romantic, with friends and lunch break. The users are distin-

guished as locals or tourists, according to the city they are interested

in.

Algorithm Despite the best algorithm found is user-based collaborative

filtering, it is not adequate for online recommendations, so we moved

to cluster-based collaborative filtering. It has the advantage of com-

puting clusters of users in advance, making the computation at request

time faster even in case of a large dataset of ratings.

Availability everywhere and anytime The recommender service is planned

for fast and easy usage even from mobile devices, but without forget-

ting the needs of desktop users.

Attracting users One way to advertise the platform and motivate people

to try this new service have been identified in a couponing service,

which has been implemented. Thanks to coupons, both users and

restaurateurs are motivated to contribute to Planfree, the first ones

sharing their feedback and the second ones providing complete and

updated information about their restaurants.

164

8.6. CONCLUSION

The prototype of recommender service has been completed, but some

questions remains open.

As we have seen, the application of recommendations in an online ser-

vice posed an important requirement: the recommendation list should be

computed very quickly as the user is willing to wait only few seconds to get

it. The recommender algorithm should be very fast and scalable, meaning

that its performance is not affected by the amount of users and ratings it

has to consider in its computations. The algorithm we identified as the

best in Chapter 6, i.e. user-based collaborative filtering, is not applica-

ble in such online context, and we had to adopt another algorithm that

produces recommendations of lower quality. We need to search for a fast

and scalable algorithm able to build recommendations of quality similar or

better than user-based collaborative filtering.

Each characteristic of the recommender service implemented in Planfree

has been tested against TripAdvisor’s generic restaurant recommendations,

and we know that combining personalization, purpose-based ratings and

opinions from locals we can obtain better results than this very popular

service. On the other hand, a deeper comparison with other personal-

ized recommender systems is still missing. For example, we evaluated the

best collaborative filtering algorithm (on our dataset) against Foursquare’s

generic rank in Chapter 6, but Foursquare builds also personalized recom-

mendations that could provide better results.

The effects of providing the couponing service has not been tested yet.

Despite discounts are widely adopted to attract people and motivate them

to use a new service, it would be interesting to investigate their effect in a

restaurant recommender service.

165

CHAPTER 8. PLANFREE - A RESTAURANT RECOMMENDER SERVICE

166

Chapter 9

Conclusion

In this thesis we tackled the problem of recommending places for leisure

activities. The huge amount of offerings available in a city nowadays make

it difficult for people to know all of them and to identify the ones they are

more interested in. Recommender systems can support people’s choice of

where to spend their leisure time. We focused on restaurants as main use

case, but our findings can be applied to places for other leisure activities.

In the following we summarize the findings, discuss the limitations of

our studies and indicate possible directions for future work.

9.1 Contributions

The contribution of this thesis is a multifaceted study of how to recommend

restaurants on mobile devices with a special eye to locals. The study iden-

tifies two features that affect the quality of recommendations as perceived

by locals, namely the opinions of friends and the purpose of going out for

a meal. Instead of focusing on the algorithmic side of the recommendation

problem, the work focuses its attention on the quality of data by identify-

ing how to best collect ratings from users on mobile devices and collecting

data that are purpose-specific. A performance comparison of a set of col-

laborative filtering algorithms using the collected dataset shows that with

167

CHAPTER 9. CONCLUSION

purposefully collected data even standard, off-the-shelf algorithms are able

to outperform commercial recommendation systems like TripAdvisor.

The detailed contributions of the work are:

• A literature review on discovery of places, item recommendation, and

rating collection;

• A comparative analysis of different neighborhood selection methods

on collaborative filtering, exploring the effect of friend relationships

and taste similarity;

• Two user studies of the effect of purpose on the choice of a restaurant;

• A comparative analysis of off-the-shelf collaborative filtering algo-

rithms applied to purpose-based ratings;

• A prototype implementation and a performance analysis of a novel

crowdsourcing framework for collecting reliable ratings, supporting

the collection of large datasets for further studies;

• A prototype implementation of a personalized restaurant recommender

service, following the results of the presented studies.

9.2 Lessons Learned

From the presented studies we learned the following.

• Friends have a special influence in people’s opinion, and recommender

systems can use these relationships between users to improve their

results. We found that the ratings of friends with similar tastes are

the best for predicting the requester’s opinion, against considering

only taste or friendship. The friends were collected from Facebook,

a social network where real friendships are mixed with relationships

168

9.2. LESSONS LEARNED

of lower strength, and we expect the results to be even better if we

would be able to collect only those relationships considered important

during leisure time.

• The purpose, i.e. whether going at the restaurant with tourists, the

partner or friends or price/quality ratio (also identified with lunch

break), influences both the opinion about a restaurant (i.e. the as-

signed rating) and the choice of the restaurant. Purpose-based per-

sonalized recommenders provide recommendations of similar quality

for all purposes (i.e. bringing tourists, bringing the partner, bringing

friends and price/quality ratio), having always higher precision than

generic recommenders like the considered average-based baseline and

TripAdvisor. These purposes have been shown to influence people’s

opinion in some cities (Trento in Italy, Asunción in Paraguay and

Tomsk in Russia) and in different contexts. The purpose-based rat-

ings collected allowed us to obtain different ranks for other activities

other than going to the restaurant, such as going to a bar for aperitif,

to a pub for a beer or to a club.

• The most satisfying rating scale for rating items through mobile de-

vices is 5-star, preferred over 3-faces, 3-thumbs and 2-thumbs. 5-star

provides users the needed granularity for correctly expressing their

opinion and keeping the options easy to select even using small screens

with touch interface, i.e. mobile devices.

• The most precise personalized recommendations on mobile devices,

providing the highest satisfaction to users, are obtained with user-based

collaborative filtering, as compared with other off-the-shelf collabora-

tive filtering algorithms. This algorithm works particularly well for

mobile recommender systems, where limited attention and small real

169

CHAPTER 9. CONCLUSION

estate require short recommendation lists, such as the evaluated top-5

recommendations.

• TripAdvisor’s restaurant rank is different from locals’ opinion. Such

difference was identified in the comparisons of Trento’s locals opinions

of four different datasets with TripAdvisor restaurant rank. Two of

these datasets contain simple user-restaurant ratings and show that

generic opinion of locals differs from TripAdvisor rank. In the other

two datasets, with the introduction of purpose-based ratings, we were

able to better understand the reason for this difference: according to

locals, TripAdvisor is providing good recommendations for tourists,

which is its goal, and for going out with the partner, but these rec-

ommendations are not good for going out with friends and according

to price/quality ratio.

• A novel crowdsourcing platform supports researchers and developers

in collecting datasets of ratings efficiently. Volunteering usually re-

quires a high effort for motivating participants, while the proposed

croudsourcing platform can collect even more reliable and balanced

ratings with lower effort, thanks to techniques for identifying cheaters

(still respecting the subjectivity of workers’ answers) and for assigning

the best item to rate.

Throughout our research work, we learned that when building a rec-

ommender system it is important to keep focus on users: the system has

to think in the same way as the requesters do, being able to recognize

their tastes, considering the characteristics of the different items expressed

through other users’ ratings and identifying the best items as the requesters

would do if they had enough knowledge and time to analyse all the items.

We learned that people needs can change over time, so different re-

quests from the same user could need different results. These needs can

170

9.3. LIMITATIONS

be influenced by the context of the request, and identifying what to con-

sider as context is fundamental to be able to understand user needs and

adapt results to them. In our studies we identified four purpose categories

that showed to influence requester needs and more studies could be run to

identify other contextual information that may influence people’s choice of

places for leisure activities.

9.3 Limitations

Such interesting work has though some limitations.

• The datasets we were able to collect for our studies have limited size,

with the bigger including 162 users and 9,800 ratings. Despite we ad-

vertised our data collection, inviting also many colleagues and friends

to participate, people were not willing to disclose their opinion as they

were not receiving any direct benefit (such as high-quality recommen-

dations) for their participation. In particular, from the user evalua-

tion of rating scales and recommender algorithms (in Chapter 6) we

perceive that some of the results could be significant, but the limited

number of participants to the study does not let us make strong state-

ments. In other cases available datasets, such as the ones provided by

MovieLens and Netflix (with the smaller having 100,000 ratings), are

used to avoid collecting novel datasets, even though movies are not

the focus of their work.

• In our studies, we analyzed the personalized algorithms from the

points of view of precision and satisfaction, but scalability and ap-

plicability in an online service are important too. Precision measures

prediction accuracy and satisfaction measures how recommendations

are perceived by people and how useful they are, while the time needed

171

CHAPTER 9. CONCLUSION

to compute recommendations and the scalability of the service indi-

cate how fast these results can be retrieved by users. Since people are

not willing to wait more than few seconds, in particular when making

the request on the go through mobile devices, the recommendations

should be computed very quickly, even when the service grows and a

huge amount of ratings need to be analysed.

• We focused on off-the-shelf recommender algorithms, while more ad-

vanced and precise algorithms have been developed. These algorithms

have been used as they are popular and simple, letting us better com-

municate the effects of data.

• Comparisons of TripAdvisor’s restaurant rank and locals’ opinions

are based on the external behaviour of TripAdvisor since its internal

algorithm and dataset are not publicly available. The same holds

for the comparison with Foursquare: only generic rank has been used

while the service is able to provide personalized recommendations too.

• The proposed crowdsourcing platform for collecting reliable ratings

has been tested against lazy and malign workers. Lazy workers assign

ratings randomly to complete the rating tasks as fast or as effortless

as possible, while malign workers give misleading ratings to particular

items in order to reduce or raise their average ratings. Despite both

of these types of workers are correctly marked as cheaters, the malign

workers are able to pass the verification test as they can replicate their

misleading ratings. A different verification test need to be identified

for making the framework resistant to such malign workers, but still

keeping it simple to pass for non-malign workers expressing a different

opinion.

172

9.4. FUTURE WORK

9.4 Future Work

TripAdvisor dataset and our purpose-based dataset of ratings provided by

locals have many differences. While in TripAdvisor users rate usually few

items in a city and, possibly, at different times, in our datasets locals assign

many ratings in short time, making in this way a sort of personal rank. It

would be interesting to measure how this different behaviour influences the

quality of the produced recommendations or whether locals have a better

knowledge of the different opportunities available than tourists and can

better evaluate each single restaurant.

Our recommender system is able to perform better than TripAdvisor in

recommending restaurants to locals, thanks to personalization, providing

results of slightly better quality than the generic (i.e. non-personalized)

Foursquare rank. Since Foursquare is able to provide personalized recom-

mendations too, another comparison considering both personalization and

purpose-orientation for Foursquare and Planfree is needed to better un-

derstand the strengths and weaknesses of these two services. We expect

Foursquare to be stronger in personalization as its dataset contains more

information about restaurants and users’ past locations, while Planfree has

a deeper knowledge of the different purposes.

We extended some off-the-shelf recommender algorithms to consider also

purposes, making them able to analyse purpose-based ratings. The recom-

mendations our service can compute could be improved by adapting more

advanced and precise recommender algorithms. Moreover, it would be in-

teresting to extend our studies by analysing other activities and identifying

the more influencing purposes for them.

Different kinds of social and trust relationships, other than Facebook

friends, are available through online social networks such as Twitter and

Google+, and it would be interesting to study their effect on recommen-

173

CHAPTER 9. CONCLUSION

dations. Google+ let us obtain different groups of people with different

relationships with the user and could possibly let us identify the best group

of friends for performing a specific activity along, while Twitter represents

wider trust relationships and could let us identify those people that influ-

ence the user more.

As part of Planfree we presented the couponing service. It is supposed

to motivate both users and restaurateurs to use the service, providing more

feedback and high-quality information. Despite couponing is highly used as

marketing strategy, we did not study its effects in the adoption of Planfree

instead of its competitors and in quality and amount of ratings collected

from the users.

A deep analysis of recommender algorithms and how to make their pre-

diction more precise has already been done. Now there is a need for a

deeper understanding of the way in which people usually choose a restau-

rant for their leisure time, identifying the information that influences their

decision, related to the past experiences and the actual context. We have

identified the role of purpose in the choice of restaurants, but more deeper

studies on the way in which people choose a restaurant are needed. The

more we learn about what influences people choices, the better we will be

able to integrate similar considerations in recommender systems, making

them able to replicate people’s choices with more accuracy.

Another important aspect of recommender systems of places for leisure

activities that would be interesting to explore more is their locality. Not

only can people experience only items relatively close from a geographic

point of view, but also the different culture and people behaviour in dif-

ferent countries could require the system to consider some information in

a different way. For example, when the system receives the request for a

recommendation of restaurants in December in Rio de Janeiro, Brazil, it

has to make different considerations than for the same request in Tomsk,

174

9.4. FUTURE WORK

Russia. In fact, in Brazil the weather is hot enough for eating outside,

while in Russia a sit inside is needed as outside is very cold. This is just a

simple difference dictated by the weather, but the different culture of peo-

ple in such different countries could require different adjustments in the

consideration of contextual information as people make choices in a differ-

ent way. More studies about the different behaviour of people in different

countries are needed to deeper understand such differences.

175

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next

generation of recommender systems: A survey of the state-of-the-art

and possible extensions. IEEE Transactions on Knowledge and Data

Engineering, 17(6):734–749, 2005.

[2] Omar Alonso, Daniel E. Rose, and Benjamin Stewart. Crowdsourcing

for relevance evaluation. SIGIR Forum, 42(2):9–15, 2008.

[3] Taiwo Amoo and Hershey H Friedman. Do numeric values influence

subjects’ responses to rating scales? Journal of International Market-

ing and Marketing Research, 26:41–46, 2001.

[4] Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can:

improving geographical prediction with social and spatial proximity.

In Proceedings of the 19th International Conference on World Wide

Web (WWW), pages 61–70, 2010.

[5] Linas Baltrunas, Bernd Ludwig, Stefan Peer, and Francesco Ricci.

Context-aware places of interest recommendations for mobile users.

In Design, User Experience, and Usability. Theory, Methods, Tools

and Practice (DUXU), pages 531–540. Springer, 2011.

[6] Philip Bonhard, Clare Harries, John McCarthy, and M. Angela Sasse.

Accounting for taste: using profile similarity to improve recommender

177

BIBLIOGRAPHY

systems. In Proceedings of the SIGCHI conference on Human factors

in computing systems (CHI), pages 1057–1066, 2006.

[7] Fidel Cacheda, Vı́ctor Carneiro, Diego Fernández, and Vreixo For-

moso. Comparison of collaborative filtering algorithms: Limitations

of current techniques and proposals for scalable, high-performance rec-

ommender systems. ACM Transactions on the Web (TWEB), 5(1):2,

2011.

[8] Jonathan Chang and Eric Sun. Location3: How users share and re-

spond to location-based data on social networking sites. In Proceedings

of the 5th International AAAI Conference on Weblogs and Social Me-

dia (ICWSM), 2011.

[9] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Ed-

ward Y Chang. Parallel spectral clustering in distributed systems.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

33(3):568–586, 2011.

[10] Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A Konstan, and

John Riedl. Is seeing believing?: how recommender system interfaces

affect users’ opinions. In Proceedings of the SIGCHI conference on

Human factors in computing systems (CHI), pages 585–592. ACM,

2003.

[11] Henriette Cramer, Mattias Rost, and Lars Erik Holmquist. Perform-

ing a check-in: Emerging practices, norms and ‘conflicts’ in location-

sharing using foursquare. In Proceedings of the 13th International

Conference on Human Computer Interaction with Mobile Devices and

Services (Mobile HCI), pages 57–66. ACM, 2011.

[12] Paolo Cremonesi, Franca Garzotto, Sara Negro, Alessandro Vittorio

Papadopoulos, and Roberto Turrin. Looking for “good” recommenda-

178

BIBLIOGRAPHY

tions: A comparative evaluation of recommender systems. In Human-

Computer Interaction–INTERACT, pages 152–168. Springer, 2011.

[13] Alexander P. Dawid and Allan M. Skene. Maximum likelihood estima-

tion of observer error-rates using the em algorithm. Applied statistics,

pages 20–28, 1979.

[14] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Na-

dav Golbandi, Ronny Lempel, and Cong Yu. Automatic construction

of travel itineraries using social breadcrumbs. In Proceedings of the

21st ACM conference on Hypertext and Hypermedia (HYPERTEXT),

pages 35–44. ACM, 2010.

[15] Christian Desrosiers and George Karypis. A comprehensive survey

of neighborhood-based recommendation methods. In Recommender

systems handbook, pages 107–144. Springer, 2011.

[16] Carsten Eickhoff and Arjen P de Vries. Increasing cheat robustness of

crowdsourcing tasks. Information Retrieval, 16(2):121–137, 2013.

[17] Mojisola Erdt, Florian Jomrich, Katja Schüler, Christoph Rensing,

et al. Investigating crowdsourcing as an evaluation method for TEL

recommender systems. In ECTEL meets ECSCW 2013: Workshop on

Collaborative Technologies for Working and Learning, page 25, 2013.

[18] Amy Fong. The influence of online reviews. Journal of Digital Research

& Publishing Semester 1 2010 (7pm class), pages 106–113, 2010.

[19] Edward W. Forgy. Cluster analysis of multivariate data: Efficiency

versus interpretability of classifications. Biometrics, 21:768–769, 1965.

[20] Ron Garland. The mid-point on a rating scale: Is it desirable? Mar-

keting Bulletin, 2(1):66–70, 1991.

179

BIBLIOGRAPHY

[21] Damianos Gavalas, Vlasios Kasapakis, Charalampos Konstantopou-

los, Konstantinos Mastakas, and Grammati Pantziou. A survey on

mobile tourism recommender systems. In Third International Confer-

ence on Communications and Information Technology (ICCIT), pages

131–135. IEEE, 2013.

[22] Cristina Gena, Roberto Brogi, Federica Cena, and Fabiana Vernero.

The impact of rating scales on user’s rating behavior. In User Model-

ing, Adaption and Personalization (UMAP), pages 123–134. Springer,

2011.

[23] Georg Groh and Christian Ehmig. Recommendations in taste related

domains: collaborative filtering vs. social filtering. In Proceedings of

the 2007 International ACM Conference on Supporting Group Work

(GROUP), pages 127–136. ACM, 2007.

[24] Paula Hardy. Italy Travel Guide. Lonely Planet, 2012.

[25] Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. Cost-optimal

validation mechanisms and cheat-detection for crowdsourcing plat-

forms. In Fifth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), pages 316–321.

IEEE, 2011.

[26] Chien-Ju Ho, Shahin Jabbari, and Jennifer W. Vaughan. Adaptive

task assignment for crowdsourced classification. In Proceedings of the

30th International Conference on Machine Learning (ICML), 2013.

[27] Chien-Ju Ho and Jennifer W. Vaughan. Online task assignment in

crowdsourcing markets. In AAAI, 2012.

[28] Tzvetan Horozov, Nitya Narasimhan, and Venu Vasudevan. Using

location for personalized POI recommendations in mobile environ-

180

BIBLIOGRAPHY

ments. In International Symposium on Applications and the Internet

(SAINT). IEEE, 2006.

[29] Tobias Hoßfeld, Michael Seufert, Matthias Hirth, Thomas Zinner,

Phuoc Tran-Gia, and Raimund Schatz. Quantification of YouTube

QoE via crowdsourcing. In IEEE International Symposium on Multi-

media (ISM), pages 494–499. IEEE, 2011.

[30] Jeff Howe. Crowdsourcing: Why the Power of the Crowd Is Driving

the Future of Business. Crown Publishing Group, 1 edition, 2008.

[31] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality man-

agement on Amazon Mechanical Turk. In Proceedings of the ACM

SIGKDD workshop on human computation, pages 64–67, 2010.

[32] Ingrid Jeacle and Chris Carter. In TripAdvisor we trust: Rankings,

calculative regimes and abstract systems. Accounting, Organizations

and Society, 36(4–5):293 – 309, 2011.

[33] Manas Joglekar, Hector Garcia-Molina, and Aditya Parameswaran.

Evaluating the crowd with confidence. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD), pages 686–694, 2013.

[34] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika,

32(3):241–254, 1967.

[35] David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal

task allocation for reliable crowdsourcing systems. Operations Re-

search, 62(1):1–24, 2014.

[36] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user

studies with mechanical turk. In Proceedings of the SIGCHI Confer-

181

BIBLIOGRAPHY

ence on Human Factors in Computing Systems (CHI), pages 453–456.

ACM, 2008.

[37] Yehuda Koren and Robert Bell. Advances in collaborative filtering.

In Recommender Systems Handbook, pages 145–186. Springer, 2011.

[38] John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. Ensur-

ing quality in crowdsourced search relevance evaluation: The effects of

training question distribution. In SIGIR workshop on crowdsourcing

for search evaluation (CSE), pages 21–26, 2010.

[39] Jin Ha Lee and Xiao Hu. Generating ground truth for music mood

classification using Mechanical Turk. In Proceedings of the 12th

ACM/IEEE-CS joint conference on Digital Libraries (JCDL), pages

129–138. ACM, 2012.

[40] Joonseok Lee, Mingxuan Sun, and Guy Lebanon. A comparative study

of collaborative filtering algorithms. arXiv report 1205.3193, 2012.

[41] Daniel Lemire and Anna Maclachlan. Slope One predictors for online

rating-based collaborative filtering. In SIAM International Conference

on Data Mining (SDM), volume 5, pages 1–5, 2005.

[42] Hongwei Li, Bo Zhao, and Ariel Fuxman. The wisdom of minority:

Discovering and targeting the right group of workers for crowdsourc-

ing. In Proceedings of the 23rd International Conference on World

Wide Web (WWW), 2014.

[43] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recom-

mendations: Item-to-item collaborative filtering. Internet Computing,

7(1):76–80, 2003.

[44] Janne Lindqvist, Justin Cranshaw, Jason Wiese, Jason Hong, and

John Zimmerman. I’m the mayor of my house: Examining why peo-

182

BIBLIOGRAPHY

ple use Foursquare-a social-driven location sharing application. In

Proceedings of the SIGCHI conference on Human factors in comput-

ing systems (CHI), pages 2409–2418, 2011.

[45] Fengkun Liu and Hong Joo Lee. Use of social network information

to enhance collaborative filtering performance. Expert Systems with

Applications, 37(7):4772–4778, 2010.

[46] Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro. Content-

based recommender systems: State of the art and trends. In Recom-

mender Systems Handbook, pages 73–105. Springer, 2011.

[47] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King.

Recommender systems with social regularization. In Proceedings of the

fourth ACM international conference on Web search and data mining

(WSDM), pages 287–296, 2011.

[48] Simon Meyffret, Lionel Médini, and Frédérique Laforest. Trust-based

local and social recommendation. In Proceedings of the 4th ACM Rec-

Sys workshop on Recommender systems and the social web, pages 53–

60. ACM, 2012.

[49] Joana Miguéns, Rodolfo Baggio, and Carlos Costa. Social media and

tourism destinations: TripAdvisor case study. Advances in Tourism

Research, pages 26–28, 2008.

[50] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A computational

model of trust and reputation. In Proceedings of the 35th Annual

Hawaii International Conference on System Sciences (HICSS), pages

2431–2439. IEEE, 2002.

[51] Lik Mui, Peter Szolovits, and Cheewee Ang. Collaborative sanction-

ing: Applications in restaurant recommendations based on reputation.

183

BIBLIOGRAPHY

In Proceedings of the 5th International Conference on Autonomous

Agents (AGENTS), pages 118–119, 2001.

[52] Arun Narang, Anurag Srivastava, and Naga Praveen Kumar Katta.

High performance offline and online distributed collaborative filter-

ing. In IEEE 12th International Conference on Data Mining (ICDM),

pages 549–558, 2012.

[53] Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, and Massimil-

iano Pontil. An empirical study of geographic user activity patterns in

Foursquare. In Proceedings of the 5th International AAAI Conference

on Weblogs and Social Media (ICWSM), pages 70–573, 2011.

[54] Peter O’ Connor. User-generated content and travel: A case study

on Tripadvisor.com. Information and Communication Technologies in

Tourism, pages 47–58, 2008.

[55] Gavin Potter. Putting the collaborator back into collaborative filter-

ing. In Proceedings of the 2nd KDD Workshop on Large-Scale Rec-

ommender Systems and the Netflix Prize Competition, pages 3:1–3:4,

2008.

[56] Pearl Pu, Li Chen, and Rong Hu. A user-centric evaluation framework

for recommender systems. In Proceedings of the fifth ACM conference

on Recommender systems (RecSys), pages 157–164, 2011.

[57] Francesco Ricci. Travel recommender systems. IEEE Intelligent Sys-

tems, 17(6):55–57, 2002.

[58] Francesco Ricci. Mobile recommender systems. Information Technol-

ogy & Tourism, 12(3):205–231, 2010.

[59] Paul Rompf, Robin B Dipietro, and Peter Ricci. Locals’ involvement

in travelers’ informational search and venue decision strategies while

184

BIBLIOGRAPHY

at destination. Journal of Travel & Tourism Marketing, 18(3):11–22,

2005.

[60] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuru-

ganathan, Sihem Amer-Yahia, and Gautam Das. Crowds, not drones:

Modeling human factors in interactive crowdsourcing. In DBCrowd

2013-VLDB Workshop on Databases and Crowdsourcing, pages 39–

42, 2013.

[61] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.

Item-based collaborative filtering recommendation algorithms. In Pro-

ceedings of the 10th international conference on World Wide Web

(WWW), pages 285–295. ACM, 2001.

[62] Benjamin Satzger, Harald Psaier, Daniel Schall, and Schahram Dust-

dar. Auction-based crowdsourcing supporting skill management. In-

formation Systems, 2012.

[63] Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Thomas Neumann,

Josiane Xavier Parreira, Marc Spaniol, and Gerhard Weikum. So-

cial wisdom for search and recommendation. IEEE Data Engineering

Bulletin, 31(2):40–49, 2008.

[64] Upendra Shardanand and Pattie Maes. Social information filtering:

Algorithms for automating “word of mouth”. In Proceedings of the

SIGCHI conference on Human factors in computing systems (CHI),

pages 210–217, 1995.

[65] Amit Sharma, Mevlana Gemici, and Dan Cosley. Friends, strangers,

and the value of ego networks for recommendation. Proceedings of

the 5th International AAAI Conference on Weblogs and Social Media

(ICWSM), pages 721–724, 2013.

185

BIBLIOGRAPHY

[66] Aaron D Shaw, John J Horton, and Daniel L Chen. Designing in-

centives for inexpert human raters. In Proceedings of the ACM 2011

Conference on Computer Supported Cooperative Work (CSCW), pages

275–284. ACM, 2011.

[67] Rashmi R Sinha and Kirsten Swearingen. Comparing recommenda-

tions made by online systems and friends. In DELOS workshop: per-

sonalisation and recommender systems in digital libraries, 2001.

[68] E Isaac Sparling and Shilad Sen. Rating: How difficult is it? In Pro-

ceedings of the fifth ACM conference on Recommender systems (Rec-

Sys), pages 149–156, 2011.

[69] Yuandong Tian and Jun Zhu. Learning from crowds in the presence of

schools of thought. In Proceedings of the 18th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD),

pages 226–234, 2012.

[70] Beatrice Valeri, Marcos Baez, and Fabio Casati. Comealong: Em-

powering experience-sharing through social networks. In Collaborative

Computing: Networking, Applications and Worksharing (Collaborate-

Com), 2012 8th International Conference on, pages 175–180. IEEE,

2012.

[71] Beatrice Valeri, Marcos Baez, and Fabio Casati. Come Along: Under-

standing and motivating participation to social leisure activities. In

Cloud and Green Computing (CGC), 2013 Third International Con-

ference on, pages 211–218. IEEE, 2013.

[72] Beatrice Valeri, Florian Daniel, and Fabio Casati. D5.3 Planfree -

Concepts, Architecture, Implementation and Exploitation. Technical

report, TrentoRise, 2015.

186

BIBLIOGRAPHY

[73] Beatrice Valeri, Florian Daniel, and Fabio Casati. On the value of

purpose-orientation and focus on locals in recommending leisure ac-

tivities (submitted). IEEE Internet Computing, 2016.

[74] Beatrice Valeri, Florian Daniel, and Fabio Casati. Rating scales and

algorithms for mobile recommender systems: The case of restaurant

recommendations (submitted). Software: Practice and Experience,

2016.

[75] Beatrice Valeri, Florian Daniel, Fabio Casati, Mafe de Baggis, and Fil-

ippo Pretolani. D5.1 Recommendation and Emotional Representation

of Places and Events: State of the Art. Technical report, TrentoRise,

2014.

[76] Beatrice Valeri, Shady Elbassuoni, and Sihem Amer-Yahia. Crowd-

sourcing reliable ratings for underexposed items (submitted). In Pro-

ceedings of the 12th International Conference on Web Information Sys-

tems and Technologies (WEBIST), 2016.

[77] Daniel Gallego Vico, Wolfgang Woerndl, and Roland Bader. A study

on proactive delivery of restaurant recommendations for Android

smartphones. In ACM RecSys Workshop on Personalization in Mobile

Applications (PEMA), 2011.

[78] Chirine Wolley and Mohamed Quafafou. Scalable expert selection

when learning from noisy labelers. In Proceedings of the 12th Interna-

tional Conference on Machine Learning and Applications (ICMLA),

pages 398–401, 2013.

[79] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng,

Yong Yu, and Zheng Chen. Scalable collaborative filtering using

cluster-based smoothing. In Proceedings of the 28th International

187

BIBLIOGRAPHY

ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval, pages 114–121, 2005.

[80] Kirsty Young. Social ties, social networks and the Facebook expe-

rience. International Journal of Emerging Technologies and Society,

9(1):20–34, 2011.

188

	Introduction
	Requirements
	Learning user tastes
	Identifying the best restaurant
	Availability everywhere and anytime
	Starting the service

	Methodology
	Contributions and Results
	Structure of the Thesis
	List of Publications

	State of the Art
	Discovering Places
	Recommending Items
	Main collaborative-filtering strategies
	Algorithms evaluation
	Recommending places
	Social networks and collaborative filtering

	Expressing Ratings
	Rating representation
	Collecting ratings

	Conclusion

	The Role of Friends in Decision Making
	Introduction
	Sample Population and Comparisons with Baselines
	Formal Experiment Definition
	Definition of Recommendation Strategies
	Evaluation of the Different Recommendation Algorithms
	Conclusion

	How Purpose Influences Opinion
	Introduction
	Formal Definitions
	Extending the Experiment of Chapter 3
	Understanding Preferences Across Activities
	Effect of Purpose on User Preferences
	Conclusion

	Purpose-orientation and Focus on Locals
	Introduction
	Background
	Method
	Data collection
	Recommendation algorithms
	Quality metric
	Algorithms tuning and configuration

	Results
	Aggregate precision
	Purpose-specific precision

	Discussion and Conclusion

	Designing Recommendations for Mobile Devices
	Introduction
	Rating on Mobile Devices
	Data collection
	Rating efficiency
	Questionnaire
	Discussion

	Personalized Recommender Algorithms
	Offline evaluation
	User evaluation
	Discussion

	Comparison with Commercial Services
	Offline evaluation
	User evaluation
	Discussion

	Learnings and Limitations

	Collecting the Initial Ratings from the Crowd
	Introduction
	Problem Definition
	Framework
	Worker clustering
	Profile computation
	Utility optimization
	Cheaters identification

	Evaluation
	Rating quality experiments
	Parameter tuning
	Utility function experiments
	Malign workers experiments

	Conclusion

	Planfree - a Restaurant Recommender Service
	Introduction
	Satisfying the Requirements of Recommender Systems
	Learning user's tastes
	Making recommendations
	Availability everywhere and anytime
	Getting interest of users and restaurateurs

	Architecture and Implementation
	Data layer
	Application layer
	Presentation layer
	Implementation and code base

	Tests
	Scalability test
	Usability test

	Research Exploitation
	Conclusion

	Conclusion
	Contributions
	Lessons Learned
	Limitations
	Future Work

	Bibliography

