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Summary

The human body is composed by more than 1 billion of cells. For this reason,
they are considered the basic elements of life. The building block of almost
all biological membranes and other living organisms are the so-called lipid bi-
layers, structures with a thickness of the order of some nanometers. Because
biological membranes surround each cell, they play a very important role in
all cell lifetime processes, such as endo- and exo-cytosis; understanding their
behavior due to chemical and/or mechanical input is highly important in
many fields, such as in the design of drug delivery or in the monitoring of
organs healthy.

For these reasons, inChapter 1 a review of the main features of this kind
of compound is presented. The mechanical behavior of biological membranes
is regulated by the interaction of an extremely rich list of features [59, 195],
such as their thinness, their special constitutive nature which enables them
to sustain bending moments but not in-plane shear stresses (unless their
viscosity is accounted for), their chemical composition and, furthermore,
their capability of undergoing ordering-disordering phenomena. The model
developed in [55, 210] reveals the possibility of describing the geometrical
(shape) and conformational (state of order) behavior of the lipid bilayer on
the basis of one single ingredient: the in-plane membrane stretching elasticity,
regulating the material response with respect to local area changes on the
membrane mid-surface. In essence, the major point in the employed model is
that the bilayer stretching elasticity is enough to describe its order-disorder
transition. In this Thesis it will be shown how, by making use of the results
obtained in [55, 210], it is possible to establish a precise connection among
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several features of lipid bilayers: line tension, area compressibility modulus,
bending moduli and order-disorder transition zone (see [52, 55]).

The main bulk of this Thesis is focused on the response of cell membranes
due to chemical and mechanical stimuli. Chapter 2, 3 and 4 are devoted
to deduce how the key aspect of the cell response activated by chemical
signaling can be predicted by a simplified energetics, making use of both
theoretical models and numerical simulations. In this regard, the attention is
focused on cell membranes embedding G protein-coupled receptors (GPRCs),
the most import family of biological receptors. By analyzing the behavior
of cell membranes, one can isolate three main contributions in order to
model their response: (1) diffusion of receptors and transporters embedded
in the lipid membrane; (2) conformational changes of the receptors; (3)
membrane elasticity. By assuming a proper kinematics, it is possible to
use a dimensional reduction procedure [52, 55] and simplify the problem
under investigation. The introduction of a unique conformational field owes
coupling between the rearrangement of receptors, membrane stretches and
the conformational field itself. First of all, a proper energetics is constructed
based on experimental data and pragmatical observations. Therefore a
phenomenological local energy dependening on temperature and adhesion is
assumed. Finally, the energy of receptor-ligand bonds, the energy due to
loss of diffusional entropy of the activated GPRCs, and the newly deduced
energy due to conformational changes in the transmembranal (TM) domains
in the current configuration meet the elastic energy. This is due to the
surrounding lipid membrane. Moreover, the interplay between TM confor-
mational changes and lateral pressure of the lipid membrane against such
TMs is introduced. The chemical potential of the receptor-ligand compound,
deduced as the variational derivative of such energy, is compared with the
one calculated by accounting for the work done by the lateral pressure intro-
duced above. The result yields a relationship between the conformational
field, the mechanical field (interpreted as either the thickness change or the
areal change) and the distribution of the compounds receptor-ligand. The
analysis of such resulting constitutive equation among those three quantities
shows that, essentially, the reason why ligand-GPRCs compounds prefer
to live on lipid raft is that the interplay between the work performed by
the lateral pressure and the need of TMs to change their conformation dur-
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ing ligand binding. Henceforth, mechanobiology gives a justification to the
experimental findings of Nobel Prizes 2012, Kobilka [117] and Leifkovitz [127].

It is possible to show that lipid membranes are subjected to material
instabilities whenever areal stretches characterizing homogeneous configura-
tions lie inside the spinoidal zone of the free energy density, and bifurcations
from such configurations can be shown to occur as oscillatory perturbations
of the in-plane displacement. Furthermore, experimental observations [66]
show a power-law in-plane viscous behavior of lipid structures. This obser-
vation allows one for considering an effective viscoelastic behavior of lipid
membranes, which falls in the framework of Fractional Hereditariness. The
unstable behavior, both in elastic and in viscoelastic case, of such structures
is deeply investigated in Chapter 5. There, first the elastic and then the
viscoelastic response are studied. Whenever the membrane is assumed to be
purely elastic, perturbations of the phase ordering of lipids are predicted to
form bifurcated shapes, sometimes of large periods relative to the reference
thickness of the bilayer. The corresponding membrane stress changes are
also oscillatory. In the second part of the Chapter also the viscosity of the
compound is taken into account. Time synchronous variations are considered
for finding the boundary conditions and the field equations governing the
problem. Such equations yield a non-classical fractional eigenvalue problem
to be analyzed through the method of separation of variables. Because
bifurcations of the areal stretch from the spinoidal zone are analyzed, the
spatial modes are still found to be oscillatory. The period of oscillation is
shown to decrease with the ratio of (dimensionless) generalized local and
nonlocal moduli and, hence, the number of oscillation increases with respect
to the elastic case. As the ratio just mentioned above increases, for a given
number of oscillations, the interval of stretches for which bifurcation can
occur gets larger if compared with the one determined by the purely elastic
behavior. These results can be also found in [58].

Side issues emerging from phenomenological investigations during the
study of the hereditary behavior of the biological structures gave rise to two
papers [54, 57] dealing with time-hereditary of biological tissues (such as
bones) and with a related mathematical question, e.g. the determination of
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the state of free energy for materials exhibiting power-law decay (aka Frac-
tional Hereditary Materials, FHM). Hierarchical materials exhibit marked
hereditary and diffusion features that could be understood by seeking for a
unified approach. The theoretical models need to be combined with accurate
numerical strategies, such as modified Newton-Raphson methods, multigrid
methods or numerical methods based on the Cauchy-Born rule. This should
be done in order to validate hypothesis of new, although existing, and novel
mechanical/multiphysics models and to predict the behavior of hierarchical
materials and structures. All the notions coming from these fields have
to converge to the common result of giving both valid models and useful
design tools for the Engineers. A very important role is played by microme-
chanics and hierarchical methods; with regards to this in [148] it is written
that “a lot of scientific efforts are still required in the micromechanics of
hierarchical materials, before these approaches can converge and achieve the
level, at which the computational design of materials with optimally tailored
multiscale microstructures can be realized ”. Indeed, a good understanding
of the underlying nano-structure of any given material, not just biological
structures, is needed in order to study the properties and behavior of larger
aggregates and, hence, to obtain their effective properties. The goal of this
work is to give a contribution for understanding the behavior of natural
materials through the development of models able to predict their response.

Accordingly to the considerations above , Chapter 6 of this Thesis fo-
cuses the attention on the notion of state for Fractional Hereditary Materials.
By using the definition recalled in [47] for linear viscoelastic materials, one
can state that if two states are different then there must be some process
(of arbitrary duration) starting from such state which produces different
responses with the two states as initial ones. Materials showing hereditary
features and undergoing relaxation test possess a residual stress that could
be measurable. Henceforth, at first the concept of state is investigated for
Fractional Hereditary Materials (FHMs) by means of advanced Fractional
Calculus tools [182] and by employing strain functions that are locally of
Special Bounded Variation (SBV) in time. The state of “non-virgin materials”
is addressed by assuming the strain as independent variable and recasting
the expression in terms of Caputo fractional derivatives. The description
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of two rheological models, formed by proper arrangement of springs and
dashpots, has enabled to reproduce the hereditary features of such ma-
terials. Deeper insights about the micromechanics related to the scheme
of the rheological elements introduced in the treatment concludes the section.

Mechanical, biological, electrical properties and other material physical
features depend on the observation scale. It is well known that material prop-
erties may show different features if they are measured either at nanoscale
or at micro/macro scale. This phenomenon is particularly relevant whenever
the characteristic length of the material microstructure and the size of the
sample are comparable. Experimental observations show that in presence
of defects in the inner structure at meso/nano scale the material properties
exhibit decay laws with respect to the same properties measured at the
macroscale, and this holds true for properties such as elasticity, strength
and toughness. Under these considerations, the design of a specific material
owning high mechanical, thermal and electrical properties at microstructure
could be not led to satisfying features at higher observation scales.

Self-similarity of microstructure at several observation scales is the main
feature of certain biological tissues. Henceforth it is possible to call them
as hierarchic structures, since the macro-scale properties can be obtained
by measures done at micro-scale and by using a proper (in most cases
not-integer) factor scale. This feature is examined in Chapter 7. There,
as example the bone tissue is considered, since it shows several levels of
hierarchy (at least 7) in which hard platelets are embedded in soft (extra-
cellular) matrix. Generally, hard elements are hydroxyapatite and soft
matrix is collagen. This arrangement at different observation scales provides
to bone amazing properties of strength, elasticity, stiffness, toughness and
lightness at macro-scale [113, 122, 209]. In order to posses an effective tool
for designing good material it is important to handle a proper hierarchic
mechanical model, which is able to describe the power-law hereditariness
of these materials by using power-law exponents of fractional order. In
the case of bones, here taken as example, this exponent is in the range
0 ≤ β ≤ 1. This behavior arises during creep/relaxation test, whenever a
load (displacement) is applied following a ramp up the prescribed value and
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held constant during the test. A predictive model of such behavior is needed
to design bio-inspired material with the same features. Two rheological
models, formed by springs and dashpots are presented in this Chapter and
it is shown that they are strictly related with the fractional operators and
able to reproduce the power-law behavior in the ranges 0 ≤ β ≤ 1/2 and
1/2 ≤ β ≤ 1. Moreover, the related numerical methods used to model the
bone response are discussed. The microstructure of bone tissue can not
be explained in the classical framework of Euclidean geometry; moreover,
the observation of the cross-section at several observation scales shows an
anomalous scaling of both geometrical and mechanical properties. The
geometric bone features are studied by employing the Hausdorff dimension
with the aid of the fractal geometry: it is shown that the value of the fractal
dimension is strictly related with the exponent of the power-law obtained by
fitting experimental data collected in literature with the fractional springpot
model.
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Introduction

The human body is composed by a huge number of cells, probably more
than 1 billion. The boundary of a cell (also known as cell membrane, the
barrier separating inside and outside the cell) is identified by its external
barrier, almost composed by lipid bilayers, structures typically 5 nanometers
thick. For this reason, the lipid bilayers are recognized to be building blocks
of almost all biological membranes and other living organisms. The scientific
interest on this kind of stuctures is dated back in the early 1970s [24, 96, 189],
but the recent spread of experimental techniques and imaging elaborations
produced an increasing interest in the topic in the last decade.

The lipid structure is composed by a hydrophilic head and a hydrophobic
tail. The chemical stability of the constituents forces the formation of
structures in which two layers of lipids face each other in such a way the
heads look outward and the tails look each other. Each lipid molecule can
show two different shape conditions of the tail, either straightened and taller
(also known as ordered state, Lo), or curly and shortened (also known as
disordered state, Ld). Which of these state is assumed depends on several
conditions, but mainly on temperature of the surrounding and chemical
composition of the lipid mixture. The mechanical and chemical response of
these amazing structures depends on a very long list of parameters, such
as the shape of the membrane, temperature of the environment, osmotic
pressure, chemical composition of lipid mixture [3, 4, 12, 13, 15, 38, 104,
105, 107, 155, 179, 202], among others.

Depending on the presence, or not, of embedded specialized proteins into
the lipid membrane, several predicting models and theory have been devel-
oped [4, 19, 24, 52, 55, 112, 210]. Most of them are based on the characteri-
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INTRODUCTION

zation of the energy, with the aim to predict the so called ordered-disordered
phenomena arising in transition regions for contrasting the external stimuli.
Indeed, thickness reduction of the bilayer is observed by changing the me-
chanical and chemical conditions in the environment surrounding the cell.
For this reason, several Authors adopted the change in thickness as order
parameters for studying such kind of compound [88, 163, 179].

GPCRs receptors

Biological membrane are characterized by the presence of embedded special-
ized proteins able to triggering chemo-mechanical signal transmission and
modulation [2, 167]. Thanks to them, it is possible to convert extracellular
stimulus into one or more intracellular signals or responses. This process
is also knwon as transmembrane (TM) signal transduction, and it involves
mainly three kind of proteins: ion-channel receptors, enzyme-linked receptors
and G protein-coupled receptors (GPCRs), also known as seven transmem-
brane receptors. The name derives from the fact they pass through the cell
membrane seven times [199]: alternated intracellular and extracellular loops
link the transmembrane domains.

The GPCRs trigger several signal transducion pathways, mainly (i)
the cyclic adenosine monophosphate (cAMP) signal pathway and (ii) the
phosphatidylinositol signal pathway [86], both of them deeply involved in
the most essential process for the life of the cell. In particular, they regulate
the response to hormones, neurotransmitters, metabolites, ions, fatty acids,
pathogens, and physical stimuli. Thanks to this feature of responding to
several nature of stimuli and because they are deeply involved in many
diseases (such as cardiovascular, metabolic, neurodegenerative, psychiatric,
cancer and infectious pathologies), this family of receptors is widely used
as target in drugs delivery (about 40% of all modern medicinal drugs [72,
162]), especially in disorders of neural, immune, cardiovascular and endocrine
systems, and cancer [6, 144, 200].

The family of GCPRs is mainly composed by two subfamilies, named
α and β, which differ for both chemical properties (e.g. ligand specificity)
and downstream effector mechanisms [28, 93]. Some years ago, it has been
demonstrated the presence of β-2 adrenergic receptors (β2AR) in HTR-
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8/SVneo cell line, a well characterized first-trimester human extravillous
trophoblast-derived cell line [17]. This presence is strongly connected with
several phenomena during pregnancy [92, 125], e.g. limited trophoblast
invasion of maternal vessels has been correlated with fetal growth restriction
[131]. In this Thesis, the attention will be focused on β2AR in HTR-8/SVneo
cell.

The external surface of the membrane plays a fundamental role in the
process of ligand binding, since it hosts receptors. Whenever a receptor binds
an external ligand, a downstream involving the G-protein is activated. The
membrane exhibits a conformational change, while some chemical processes
are triggered. The G-protein, indeed, can inhibit or activate various effector
enzymes and/or ion channels. The cAMP production follows either a rotation
of TM6 and a tilting of TM6 toward TM5 [85], showing a strong connection
with conformational changes.

Nowadays GPCR signaling is recognized to be more complex that was
originally understood [117]. In the case here analyzed, the formation of β2AR
bounds trigger a second messenger named cyclic adenosine monophosphate
(cAMP) production. The produced second messenger can activate many
downstream signaling pathway inside the cell [127]. Indeed these receptors
can activate more than one G protein isoform, and they can also signal using
a G protein-independent path-way involving beta-arrestin [117].

Experimental evidences [17] suggest that cAMP can reach the external
environment of the cell. This flow is regulated by the presence of a specific
proteins called transporters. Among other, the most important has been
recognized to be Multidrug Resistant Proteins (MRPs) [18]. It is still not
clear the role of extracellular physiological cAMP, but one suggestion is that
they may contribute to regulate of the intracellular nucleotide levels [103].

The structure, activation, and signaling of a GPCR is heavily influ-
enced by the bilayer environment. This influence seems likely to involve
either indirect bilayer effects, specific membrane–GPCR interactions, or a
combination of both [29, 64, 157, 161, 166]. Some subsets of GPCRs are
preferentially segregated to discrete regions of the membrane defined as
lipid rafts. The very reasons why this turns out to be the case are still
unknown. Lipid rafts are planar domains of cell membranes enriched by
lipids and proteins. In particular, they can be viewed as dynamic nanoscale
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INTRODUCTION

assemblies, where a high glycosphingolipid and cholesterol content in the
outer leaflet of the lipid bilayer is present. This composition gives them
a gel-like liquid-ordered organisation in comparison with the surrounding
phospholipid-rich disordered membrane [29, 129].

The main goal of this Thesis is understanding why GPCRs prefer to
live on rafts. In this regard, the surrounding environment of these islands
must be taken into account, i.e. the lipid bilayer and its proximities. Many
features are involved in the physical description of the membrane behavior,
such as the possibility to sustain in-plane normal forces, bending moments,
while the absence of a proper model including the viscosity does not allow for
trasmitting shear stresses. The very large variety of configurations exhibit
by biological membranes and the order-disorder phenomena are strongly
regulated by chemical composition, temperature or osmotic pressure [15, 38,
107, 179]. In this framework, models involving bending elasticity have been
deeply used for studying the equilibrium shapes of red blood cells [112] and
GUVs (Giant Unilamellar Vesicle) [24, 96], whereas the effects of embedded
proteins or rod-like inclusions in the lipid membrane have been fruitfully
exploited [4, 19], together with the analysis of buds formation [130] with the
coexistence of domains characterized by different bending rigidities [3, 13].
Particular regards have been devoted to the prediction and understanding of
the order-disorder transition [5, 27, 59, 70, 88, 107, 109, 116, 163, 164] and
to the effects of special molecules (such as cholesterol) on such transition
[120, 165, 176]. There exist several models able to give reasonable prediction
of this phenomena by employing proper energy functional of such a structure
[4, 30, 52, 59, 138, 174, 175, 191, 202, 210].

In particular, there exist a model [52, 55, 210] in which, thanks to
the constraint of “quasi-incompressibility” of the environment, chemical
composition and stretching elasticity are enough to describe its order-disorder
transition, i.e. for describing the membrane profile and boundary layers,
and the connected line tension and rigidities in both phases.

Fractional Order Materials

Collaterally to the main topic of this Thesis, mainly focused on the study
of biological membranes, some attention is dedicated to Fractional Order
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FRACTIONAL ORDER MATERIALS

Materials(FHM).
Starting from the first half of the twentieth century, the increasing

importance of the science of material, with correlated execution of several
mechanical tests, showed that many materials posses an intimate time-
dependent behavior, sometimes very-well described by mean of proper power-
law models [156, 185]. This behavior, also called macroscopic hereditariness,
clearly arises in presence of tests regarding stress relaxation and creep
compliance.

The use of the term hereditariness implies that the current response of the
material in terms of stress/displacement for example, is deeply influenced by
all its past history. Two mechanical tests are mainly used in order to observe
these phenomena. The relaxation test is performed by held a constant
value of strain, with subsequent monitoring of the value of the stress, which
appears to be a decreasing function of time. On the contrary, in a creep
test a fixed value of stress is imposed, while it is monitored the value of the
strain, which appears to be an increasing function of time. The analysis of
these tests clearly suggest that the past undergone stress or strain history
influence the future response of the specimen.

The main charatestic of these time-dependent materials is the presence
of a response with a very long tail [111]. Classically, the rheological models
employed for catching this behavior consist in approximating the response by
means of exponentials. It has been shown [54, 57] that the use of power laws
would give a more accurate tools able to handle the mathematical description
of both creep and relaxation, by inserting these behaviors in the framework
of the Fractional Hereditariness. The recent interest in the development
of effective bioinspired materials and biological structure focus again the
attention on the subject of proper tools for the responsive prediction of
materials (see e.g. [111, 133, 152, 184, 188]).

Indeed, the optimization and effective design of engineered devices passes
through the chance to employ proper mathematical models of material
behavior. In particular, in the case of biological and bioinspired materials,
a key aspect is the chance to introduce a multiscale approach for govern-
ing the response and the behavior of the material from the nano- to the
macrolevel. This aspect is particularly crucial in biomedical and biological
applications, where beside the requirement of exact mechanical properties,

5
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the physiological functionality of such devices determines their success. The
features of biological tissues are essential for design and optimizing devices
able to interact at different scales with the environment in which the device
is embedded.

In the field of the biological materials, such kind of time-dependent
behavior has been observed in mineralized tissues as ligaments and tendons.
Indeed, they appear as a composite materials in which high ductile collagen
proteic matrix accommodate higher stiff (but also higher brittle) hydroxyap-
atite crystals. Such compound possesses high strength [80], and at the same
time its hereditary response spans several time scales, from pico to nano
seconds [16, 97, 114], especially due to the hereditariness of the collagen
proteic matrix.

Mineralized bone tissues represent another example of amazing structure
that one can encounter in nature. Beside the classical common features
required to biological tissues, such as stiffness, strength, toughness, perme-
ability, porosity, thermal conductivity among others [8, 146, 187], they must
be able to carry important loads, since they sustain all the weight of the
body. It is interesting to note that they show a very marked time-dependent
behavior under applied loads [57]. A closer observation of the intimate
structure of this tissue reveals that it exhibits a hierarchic self-organization
of collagen matrix and mineral crystals, i.e. it presents the same structural
organization regardless of the observation scale [122, 150, 153]. It is recog-
nized that bone possess 7 observation scales at which the same basic elements
of the material give rise to different arrangements of the structure [122, 150,
153]. For this reason, it is proper to assert that the bone section exhibits a
fractal-like self-organization, which determines the exceptional properties of
strength, stiffness and toughness. From the point of view of viscoelasticity,
this hierarchical arrangement of the assembly provoke multiple relaxation
times, experimentally observed on both trabecular and cortical bones and
with peculiar continuous time spectra (see e.g. [14, 90, 108]).

Moreover, this particular structural assembly determines an anomalous
scaling of stiffness and viscosity coefficients. This scaling can be explained
by introducing a mechanical hierarchy dubbed fractance, in close relation
with fractal geometry.

6



Structure of the Thesis

Following the introductive discussion, this Thesis is composed by two parts.
In the first part, the aim is understanding why GPCRs prefers to live on
rafts. The problem is faced in the frame of mechanobiology, where tools
typically used in Solid Mechanics and approaches typically employed in
chemistry and physics meet for combining their capabilities and giving a
synergy for exploring the topic. On the other hand, the second part of
this Thesis is focused on the notion of Fractional Hereditary Materials, i.e.
materials in which the current response is strongly influenced by the past
history. In this regard, bones represent a very interesting case of study. The
topics discussed in this Thesis will be presented as follows:

• PART I: Mechanobiology of Cell Membranes

– Review on the behavior of lipid membranes

– A novel constitutive model

– Balanced configurations

– Numerical simulations

– Unstable behavior of lipid membranes

• PART II: Hereditary behavior of Fractional Order Materials

– Notion of state for Fractional Hereditary Materials

– Power-law hereditariness of hierarchical fractal bones
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Chapter 1

A review on the behavior of
Lipid Membranes

Lipid membranes are soft structures arising by proper arrangement of lipids.
There exist several type of lipids, but only three of them are mainly found in
biological membranes, i.e. phospholipids, glycolipids, and cholesterol. The
main feature of lipids is that they are composed by a hydrophilic head soluble
in water (also known as the polar part) and a hydrophobic tail (also known
as the nonpolar part. Mostly because of this chemical composition, lipid
membrane are self-organized bilayer compounds, i.e. structures in which
the polar part (i.e the heads) is pointing outward and the nonpolar part
(i.e. the tail) is pointing inward. The biological purpose of this formation is
keeping separated the watery environment outside the membrane by the the
watery environment inside.

These self-assembled structures often reveal amazing shapes, sometime
breathless intricate patterns at micro and nano scales [12], such as fluid
films spanning macroscopic lateral scales but thick just few nanometers (i.e.
structures in which lateral extension exceeds lipid size by several orders of
magnitude).

A closer analysis of lipid membranes reveals that slight changes in
temperature and/or pressure may provoke shape rearrangements with the
occurrence of thin and thick zones, namely phase transitions between zones of
straight and curly configurations of lipids (see Figure 1.1). This phenomenon,
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nowadays recognized as raft formation, was noticed for the first time in
1997 by Simons and Ikonen [190]: it is shown that there exist a range
of given temperature, chemical composition and pressure (among other
physical parameters) in which different phases coexist, organizing themselves
in proper domains. Although this observation is quite recent, the coexistence
of several phases in binary or ternary mixtures of different kind of lipids
dates back to the early 1970s [189]. The raft formation is often studied
in the framework of the so called order-disorder theory, in which “liquid
ordered” (Lo) and “liquid disordered” (Ld) phases coexist. It is possible
to relate the liquid order phase to the straight configuration of lipids, and
the curly configuration to the disordered phase, respectively. Recently, the
coexistence of two or more phases have been studied extensively [11, 71,
201].

Figure 1.1: Schematic of transition regions between curly and straight lipids, also
known as raft regions.

Some models for predicting lipid membrane response have been developed
under the assumption of (i) “in-plane fluidity” and (ii) elasticity of the
membrane, i.e in-plane shear stress cannot arise [24, 96], but it is assumed
that changes of the membrane profile are allowed as strategy for responding
to the external solicitations. It has been widely shown [59, 106] that the
behavior of the membrane is governed by a very small number of material
parameters. Among these, the most effective are the mean and the Gaussian
curvature modulus, in the sequel denoted by κ and κ̄, respectively. It is
worth noting that lipid bilayer assemblies are very hard to stretch but easy to
bend. The equilibrium of a lipid bilayer can be studied through a functional,
introduced for the first time by Helfrich [96], having the following form:

E [Ω] =

∫
Ω

[
1

2
κ (K −K0)2 + κ̄KG

]
dA (1.1)
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where Ω is the geometry describing the surface of the membrane and, after
defining c1 and c2 the two local principal curvatures, K = c1 + c2 denotes
the total curvature and KG = c1 c2 is the Gaussian curvature, while K0

denotes the bilayer curvature, even if this term vanishes often because some
material and geometrical symmetries can be taken into account [59, 106].

It has been also shown [52, 55] that, beside bending rigidities, also
the line tension plays a very important role in the equilibrium of such a
structures, especially in the case of observed non-spherical configurations [5,
104, 130, 197].

1.1 The membrane elasticity theory for the lipid
bilayers

In this Section the main results obtained in [52, 55, 210] are briefly recalled,
and a schematic description of the approach followed in these papers is
provided. For a fixed temperature of 30◦C, the Authors assumed that
the membrane natural configuration B0 coincides with the flat prismatic
shape of constant thickness h0 (with ordered phase Lo) embedded in a
orthonormal reference frame (e1, e2, e3). The membrane geometry is split
into two entities, the two-dimensional mid-plane and the thickness, hence,
points belonging to B0 are described by:

x = x + ze3, (1.2)

where x = x e1 + y e2 denotes locations of a flat mid-surface Ω, and z spans
the whole thickness. In this Thesis, it is considered a membrane that in the
reference configuration B0 has a thin flat prismatic shape of homogeneous
thickness h0 in direction e3, width B in direction e2 and length L in direction
e1. The reference membrane mid-surface θ corresponds to z = 0, and its
edges are defined by x = ±L/2 and y = ±B/2.

The formulation of the model is based on the following assumptions:

(i) the effects leading to a spontaneous or natural curvature of the bilayer
are ignored, i.e. it is assumed that the natural configuration is flat;

(ii) the membrane kinematics is restricted to the class of normal preserving
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deformations, i.e. the normal vector n remains always normal to the
mid-surface (lipid molecules remain orthogonal to the bilayer mid-
surface);

(iii) no proteins are taken into account, i.e. only lipid membranes are
studied.

Figure 1.2: Schematic representation of the deformation (1.6) of a prismatic,
plate-like reference configuration B0 into the current configuration B. The gray
box depicts the space occupied by two lipid molecules, their volume being conserved
during the deformation. Courtesy of [55].

Under these assumptions, a simplified version of the elastic energy related
to the change of the membrane geometry is obtained. The deformation
mapping is denoted by f , while its gradient is F = ∇f . The stored Helmholtz
free-energy can be then expressed as

E(f ) =

∫
B0

Ψ(f ) dV =

∫
Ω

∫ h0/2

−h0/2
Ψ(f ) dz dΩ, (1.3)

where Ψ denotes the Hemholtz energy density per unit of referential volume.
It easy to recognize that the surface density energy has the form:

ψ(f ) =

∫ h0/2

−h0/2
Ψ(f ) dz. (1.4)

Experimental evidences suggest that lipid membrane own the so-called in-
plane fluidity, i.e. the absence of viscosity does not allow for sustaining shear
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in planes perpendicular to e3. Based on this constitutive assumption, it is
possibile [52, 55] to find a relationship for the energy density Ψ depending
on the three invariants of the deformation gradient, namely

I (x ) = {J̃(x ), detF(x ), φ̄(x )}, (1.5)

i.e. the areal stretch of planes perpendicular to the direction e3, the volume
change and the stretch in direction e3, respectively. The latter term can be
also interpreted as the thickness stretch φ̄(x ) = h(x )/h0.

Some experiments [130, 179] strongly suggest that the volume of lipid
membranes does not change significantly, although geometrical changes
occur. Some Authors [88, 164] showed also that the volume of biological
membranes can be assumed constant at several values of temperature . In
order to find an explicit relationship between Ψ and I (x ), the following
Ansatz (see Figure 1.2) is assumed:

f (x ) = g(x) + zφ(x)n(x), (1.6)

where g(x) = g(x, y, 0) represents the current mid-surface of the membrane
(i.e θ = g(Ω)), n denotes the outward normal to θ, and φ(x) = h(x)/h0 is
the thickness stretch, defined as the ratio of the current thickness h0 over
the reference value h0. The assumption of the Ansatz (1.6) must be coupled
with the quasi-incompressibility constraint mentioned above in the following
form:

detF(x, 0) = J̃(x, 0)φ(x) = 1. (1.7)

It is worth noting that the quasi-incompressibility is a first-oder approxi-
mation only of the incompressibility requirement. Indeed, relationship (1.7)
holds exactly only in the case of planar deformations, where detF(x ) =
detF(x, 0) +O(z). This will be the special case considered in this Thesis.
Relationship (1.7) has been widely adopted as constraint in literature [70,
88, 109, 110, 163, 164, 179], therefore either the areal stretch J or the tick
stretch φ have been used as coarse-grained order parameter. An explicit
expansion of equation (1.4) in powers of the reference thickness h0 (see [52,
55, 210]) can be done by taking into account the choice of the constraint
(1.7). Therefore, a restriction ψ of the energy density Ψ to Ω is considered
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by taking into account the requirement (1.7):

ψ(J) = Ψ(J̃ , detF, φ̄)
∣∣∣
z=0

= Ψ(J, 1, J−1), (1.8)

where J(x) = J̃(x, 0). At this point, under Ansatz (1.6) and the assumptions
of in-plane fluidity and bulk incompressibility, the expansion of equation
(1.4) up to third order therm h3

0 gives

ψ = ϕ(J) + κ(J)H2 + κG(J)K + α(J) ||
(
gradθĴ

)
m

||2, (1.9)

where H and K are the mean and Gaussian curvatures of the mid-surface θ,
respectively, κ(J) and κG(J) are the corresponding bending rigidities, ϕ(J)
represent the so-called local energy and

α(J) =
h2

0
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ϕ′(J)

J5
(1.10)

is a function related to the nonlocal part of the energy density. In equation
(1.9), Ĵ is the spatial description of J , defined by the composition Ĵ ◦ g = J ,
gradθ is the gradient with respect to points of the current mid-surface θ,
and (·)m gives his material description. On the other hand, it is possible to
show [52, 55] that the energy is also described as:

ψ = ϕ(J) + h2
0

[
k1H

2 + k2

(
K +

1

2

||∇J ||
J2

)]
(1.11)

where ϕ(J) is the local term of the energy, the part depending on the gradient
of the areal stretch ||∇J || is the non-local part and h2

0

(
k1H

2 + k2K
)
is the

bending term. There, the mean and the saddle-splay bending stiffnesses, k1

and k2, take the forms:

k1 :=
ϕ,JJ(J)

6
, (1.12a)

k2 :=
ϕ,J(J)

12J
. (1.12b)

The term (1.11) recovers exactly the Helfrich energy [96] if J is constant.

26



1.1. THE MEMBRANE ELASTICITY THEORY FOR THE LIPID BILAYERS

The main ingredient of the two-dimensional membrane model derived
in (1.9) is the surface Helmholtz energy ϕ(J), which regulates the in-plane
stretching behavior of the membrane and describes the phase transition
phenomena taking place in lipid bilayers.

The fundamental point is then computing the local energy ϕ(J). In the
lack of specific information, ϕ(J) can be constructed, as a polynomials of the
power of the order parameters, i.e the change in thickness (see, e.g., [70, 88,
120, 163, 164]), in analogy with the procedure employed in the framework
of Landau phase transition.. This approach results to be very useful since it
allows for relating the coefficients of the polynomial expansions to quantities
(such as the transition temperature, the latent heat and the order parameter
jump) that one can measure by setting up proper experiments (see [88] and
the treatise [179] for a detailed discussion).

As mentioned above, by assuming that the membrane natural configura-
tion B0 coincides with the flat, ordered Lo phase (i.e. J = Jo = 1) at the
considered temperature, the Landau expansion of stretching energy [210]
takes the form:

ϕ(J) = a0 + a1J + a2J
2 + a3J

3 + a4J
4, (1.13)

where the parameters ai (i = 0÷ 4) depend in general on temperature and
chemical composition. Because of the lack of avalaible experimental data,
these parameters have been calibrated [210] by considering experimental
estimates provided by [88, 119, 120], and for a temperature T ∼ 30◦C they
have been determined as:

a0 = 2.03, a1 = −7.1, a2 = 9.23, a3 = −5.3, a4 = 1.13, (1.14)

dimensionally expressed in [J ][m]−2. The related local stress, defined as the
first derivative of the local energy with respect to the order parameter J , i.e.

τ(J) =
dϕ(J)

dJ
, (1.15)

owns the typical S-shaped form, as shown in Figure 1.3, revealing more
on the properties of such an energy. Accordingly to the analysis done by
Coleman and Newman [31], in the same Figure the remarkable points of
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local energy

local stress
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Figure 1.3: The stretching energy ϕ(J) (top) adapted from [88] for a temperature
T ∼ 30◦, with related local stress ϕ′(J) = τ(J) (bottom). The areal stretch Jo = 1
corresponds to the unstressed, reference configuration B0.
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interest of the local stress are highlighted. The locations where the maximum
Σmax and the minimum Σmin of the local stress occur are denoted by Jmax

and Jmin, respectively, and highlighted with squares, while the value of the
Maxwell stress (determined by the equal area rule) is drawn as a straight
horizontal dark-grey line. Whenever a generic stress Σ is considered, it is
also possible to identify three intersections between such a stress and the
local stress curve. In the case of the Maxwell stress, these three intersections
are denoted with black circles, and the corresponding areal stretch values are
called J∗, Jm and J∗ from left to right. As an example, Table 1.1 collects the
numerical values of these quantities for the local stretching energy obtained
by using the coefficients in (1.14).

Table 1.1: Characteristic values of the membrane stretching energy at T ∼ 30◦.
Stress expressed as [Σ] = [J/m2] × 10−3

ΣM Σmax Σmin J∗ Jm J∗ Jmax Jmin

5.922 10.855 0.989 1.025 1.167 1.308 1.085 1.248

1.2 Planar case

The study of the equilibrium for a planar lipid membrane described by
the energy (1.13) (for instance, by supplying this entity with the constants
given by parameters (1.14)) permits to elucidate the emergence of thickness
inhomogeneities in the membrane. Moreover, this simple energetics allows
one to calculate the corresponding rigidities and the shape of the boundary
layer between the ordered and disordered phases. Whenever no curvature
changes are experienced by the lipid bilayer, the elastic energy density in
(1.9) takes the form:

ψ(J) = ϕ (J) + α(J)||∇J ||2, (1.16)

or equivalently

ψ(J) = ϕ (J)− 1

2
γ(J)||∇J ||2, (1.17)
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where the function

γ(J) = −h
2
0

12

τ ′(J)

J5
= −2α(J) (1.18)

can be interpreted as a transition function, since it drives the boundary
layer wherever transitions between two phases occur. Accordingly with the
geometry introduced above, the three-dimensional membrane deformation is
further restricted with respect to equation (1.6), according to

f (x ) = g(x)e1 + ye2 + zφ(x)e3 (1.19)

so that the width B is kept constant and its gradient takes the following
form

∇f =

 gx 0 0
0 1 0
zφx 0 φ

 , (1.20)

where the subscript x denotes differentiation with respect to x. The dis-
placement component along e1 is u(x) = g(x)− x. After setting

λ(x) = gx(x) (1.21)

for the stretch in direction e1, the relationships detF = λφ = 1 and J = λ
are found. Hence φ = λ−1, so that the membrane deformation is completely
determined by J = λ.

The set of equilibria of a elastic body undergoing the same kinematics
(1.19) and governed by the stretching energy density (1.17) are deeply studied
in [55] in presence of a stress acting at the edges. For the sake of simplicity,
let now consider a one-dimensional case., i.e.

ψ(J) = ϕ (J)− 1

2
γ(J)J2

x . (1.22)

The use of the principle of minimum of energy in that specific case [55]
allows for obtaining the Euler-Lagrange equation for such kind of structure
in the form:

γ(J) J +
1

2
γ(J) J2

x + τ(J) = Σ, (1.23)
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where Σ is a force per reference length at the edges x = ±L/2. In such
conditions, it is easy to show that homogeneous configurations are in the set
of equilibria. Indeed, whenever an homogeneous configuration is considered,
the higher-order terms drop to zero and the equilibrium equation reads as:

τ(J) = Σ. (1.24)

It is also interesting to note that for each choice of stress Σ there exist three
admissible homogeneous balanced configurations, because of the characteris-
tic S-shape local stress, shown in Figure 1.3.
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Chapter 2

A novel constitutive model

The aim of this Chapter is to highlight the key aspects of the cell response
activated by GPCRs through the use of a proper simplified energetics. The
energy functional governing the membrane behavior employed here takes
contribution from the energy of receptor-ligand bonds, the energy due to
loss of diffusional entropy of the activated GPRCs, the deduced energy due
to conformational changes in the TM domains in the current configuration
and, last but not least, the elastic energy due to the surrounding lipid
membrane. The elasticity of the cytoskeleton is not explicitly treated in this
approach, but its manifestation is incorporated in the adhesion energy, which
augments the membrane elasticity. Furthermore, the interplay between
TM conformational changes and lateral pressure of the lipid membrane
against such TMs is introduced. The chemical potential of the receptor-
ligand compound, deduced as the variational derivative of such energy
with respect to the density of active receptors, is compared with the one
calculated by accounting for the work done by the lateral pressure. The
result yields a relationship between the conformational field, the mechanical
field (interpreted as either the thickness change or the areal stretch) and the
distribution of the compounds receptor-ligand.

Later in this Chapter, the attention is focused on the analysis of such
resulting constitutive equation among those three quantities. The main
outcome of this analysis shows that, essentially, the reason why ligand-
GPRCs compounds prefer to live on lipid raft. This comes out from the
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interplay between the work performed by the lateral pressure and the need
of TMs to change their conformation during ligand binding. Henceforth,
mechanobiology gives a justification to experimental findings of Chemistry
Nobel Prizes 2012, Kobilka [117] and Leifkovitz [127].

2.1 The Helmholtz free energy for the system

The structure formed by the cell membrane does include several components
which are involved in very complex processes while stimulated by exogenous
and endogenous agents. Nevertheless, a few main effects may be singled
out while attempting to model the response of cell aggregates to external
ligands. In particular, here the Helmholtz free energy is constructed by
taking into account three main contributions, and they are recognized to be
the following three items:

• diffusion of receptors and transporters;

• conformational changes of the receptors;

• membrane elasticity.

At this stage, the analysis will be done by focusing the attention on single
cells.

2.1.1 Receptor and transporter diffusional entropy

The TM-receptors are interpreted to diffuse to lower the energy of the system
in a purely entropic way (see e.g. [81]), i.e.

H(ξ)
d = KBT ξ

(
−eRL + log

(
ξ

ξ0

))
, (2.1)

where KB is the Boltzmann constant, T is the absolute temperature of the
bath in which the cells are living, ξ represents the distribution function of
active receptors density, ξ0 is a referential value of such field and eRL is the
specific activation energy for the complex ligand-receptor. In this context,
and in the sequel, the quantity ξ0 denotes the average density computed by
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assuming that all the receptors embedded in the cell membrabe are active;
for the sake of simplicity, this quantity is named density of activable receptors.
The result (2.1) is a generalization of the work done by some authors, e.g.
as Finkelstein et al. [73] and Murray et al. [151], measuring the entropic
changes while accounting for deformation of the membrane.

In analogy with the receptors, the active cAMP transporters, whose
density is denoted by ζ, diffuse throughout the cell membrane. Hence, the
corresponding contribution to the Helmholtz free energy density reads as
follows:

H(ζ)
d = KBTζ

(
−eRT + log

(
ζ

ζ0

))
, (2.2)

where ζ0 is a referential value of such field defined in analogy with ξ0 and
eRT is the specific activation energy for the complex cAMP-transporter.

As a first approximation, the contribution of the conformational changes
observed in transporters are neglected. This assumption implies that only
the entropic term contributes to their total energy.

2.1.2 Conformational energy

Conformational changes in GPCR receptors are mainly known to be char-
acterized by a rotation ω of TM6 about its axis and by a translation µh
of the TM6 domain with respect to TM3 and TM5 (see e.g. Ghanouni
et al. 2001 [85]), where h is the value of the membrane thickness in the
current configuration and µ is the corresponding shear, as depicted in Figure
2.1. A schematic of the kinematics of the cell membrane in the presence of
conformational changes is displayed in Figure 2.2. Here Structured Defor-
mations [41, 42, 49–51] are used to describe the geometrical changes of the
cell membrane due to both the conformational changes mentioned above
together with the deformation of the lipid bilayer.

In particular, on the top-left side of Figure 2.2, a schematic of a piece of
the membrane in its “ideally” virgin configuration is sketched; there only the
TMs involved in the conformational changes of a single GPCR are drawn.
Besides the reference thickness h0, the quantities highlighted there are the
normal N to the mid-plane, the reference value φT of the diameter of each
TM, and the available diameter φ0 for such movements to arise. After
denoting as ρT := φ0/φT the room space available between the TMs for
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Figure 2.1: Schematic of GPCRs movements caused by the action of
epinephrine (inspired by https://commons.wikimedia.org/wiki/File:GPCR_
activation.jpg)

 

 

Current Configuration 
h

µh ω
n

s

Classically deformed Configuration
 

n

h

hr

!

Virgin Configuration N

r0

h0

φ0

hr
0

(f , G)

G = HF

F = ∇f

(f , F
) (i,

H
)

Figure 2.2: Conformational changes and membrane deformation.

38

https://commons.wikimedia.org/wiki/File:GPCR_activation.jpg)
https://commons.wikimedia.org/wiki/File:GPCR_activation.jpg)


2.1. THE HELMHOLTZ FREE ENERGY FOR THE SYSTEM

3
65

h0

h
(r)
0

ds

φ0

(a) (b) (c)

Figure 2.3: Schematic of the degree of packing, or room space, ρT : (a) receptor
domain involved, (b-c) minimum (1 + 2/

√
3 and maximum (3) allowed packing

configurations, respectively.

conformational changes in the reference configuration, this indicates the
degree of packing of the TMs. The minimum value of the room space ρT is
estimated to be 1 + 2/

√
3 (closest packing of the three domains involved in

the movements), hence its value is taken to be between such a value and 3,
corresponding to the available room space of a TM in the middle of TM3, 5
and 6, as shown in Figure 2.3.

The current configuration is represented on the top right side of Figure
2.2 and, mathematically, this is described through the pair (y,G), where y
is the deformation mapping from the virgin configuration, and G is a tensor
field which would be equal to the gradient of y if no conformational changes
would occur. The lower part of the Figure 2.2 offers an explanation of such
interpretation through the multiplicative decompostition of the pair (y,G)
introduced above. An intermediate classically deformed configuration is
represented in the bottom of this figure where (y,F), with F = Grady, maps
points in the virgin configuration in this intermediate one. Furthermore,
a pair (i,H) is visualized in Figure 2.2: here i is the identity mapping
(and, hence, it leaves the first entry untouched), while H is a tensor field
accounting for all the local conformational changes. Although one could
use its 9 components to characterize such changes, as a starting point for
modeling them, the attention is focused on the main aspects of the observed
changes in geometry for the TMs, namely the rotation ω and the shear µ.
The change in Helmholtz free energy per unit surface and per unit receptor
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due to the changes discussed above can be then interpreted as a result of
two contributions, both arising from the classically deformed configuration.
For both of such terms, the change in entropy per unit area and per unit
receptor is evaluated. The change of entropy due to rotation is accounted
for by generalizing the result obtained in [73], namely

ϕ
(1)
CR = A log

( ω

2π2/3

)
(2.3)

where ω represents the rotation of the TM domains involved in the confor-
mational change about the normal e3 to the mid-plane of the membrane in
the current configuration and A ·KBT represents the conformation energy
level per unit receptor per unit area at the reference angle ω∗ = 2π2/3e (see
footnote1).

The change of entropy due to translational changes is also evaluated
in the current configuration. The local translation measure is relative to
the free volume available for the conformational changes, calculated by
multiplying the current value of the thickness h of the cell membrane by the
available area r2

0J , where r0 represents the referential radius of the involved
domains. As h0 denotes the reference value of the membrane thickness, the
field

J =

(
h

h0

)−1

(2.4)

represents the inverse of the thickness change measure. It is worth recalling
that J depends on the location x := (x1, x2) of the mid plane of the bilayer.
It has been shown (see Chapter 1 for details) that J is the order parameter in
lipid membranes (see e.g. [52, 55, 210]), allowing for discriminating whether
or not lipids exhibit ordered (J < 1, more straight configuration of the lipid
tails) or disordered phase (J > 1, curlier configuration). Henceforth, the
resulting change in entropy due to translational changes may be written as

1 The reference angle is estimated as follows:

1 = log

(
ω∗

2π2/3

)
=⇒ e =

ω∗

2π2/3
=⇒ ω∗ = 2π2/3e
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follows:

ϕ
(2)
CR = A log

(
µh(

J r2
0 h
)1/3

)
, (2.5)

where µh represents a measure of the local translation of the TMs with
respect to current location and

(
J r2

0 h
)1/3

=
(
r2

0 h0

)1/3 is a reference measure
of such translation.

The total conformational energy density per unit area and per unit
receptor is obtained as the sum of both contributions (2.3) and (2.5) above,
i.e.

ϕCR = ϕ
(1)
CR + ϕ

(2)
CR.

Finally, the relationship for describing the change due to conformational
movements reads as:

ϕCR = A log

(
ω

2π2/3

µh

(Jr2
0h)1/3

)
= A log

(
η

J

h
2/3
0

2π2/3r
2/3
0

)

= A log

(
η

J

1

21/3

(
2h0

πd0

)2/3
)

= A log

(
η

J

1

21/3

(
2h0

πdsρT

)2/3
)

= A log
(
K
η

J

)
(2.6)

where
η := ω µ (2.7)

represents the conformational field and K is a dimensionless geometric
constant defined as follows:

K =
1

21/3

(
2h0

π ds ρT

) 2
3

. (2.8)

Equation (2.6) describes conformational changes at the level of GPCRs
by combining shear and rotation as a unique parameter that may occur at
the level of transmembrane domains. Accordingly to equation (2.8) and the
reasonable range of geometric quantities collected from literature in Table 2.1,
a range for K can be then determined to be 0.93 ≤ K ≤ 2.59. In the sequel
the notation Kmin = 0.93, Kmax = 2.59 and Km = (Kmin +Kmax)/2 = 1.76
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will be used.

Table 2.1: Reasonable values of geometrical parameters assumed from literature
[102, 126], while the room space ρT is estimated from Figure 2.3.

thickness h0 diameter ds room space ρT
[nm] [nm] -

3÷ 6 0.3÷ 0.5 2.15÷ 3

ω = 0◦

ω = 45◦

ω = 90◦

ω = 180◦

ω

µ = tan(α)

α = 0◦
α = 22, 5◦

α = 45◦

rotation shear

Figure 2.4: Extreme geometric configuration of a single TM.

The range of admissible values of the conformational changes η can be
estimated by considering extreme configurations of a single TM, as shown
in Figure 2.4. It would be worth bearing in mind that η is composed by two
basic movements, a rotation ω in the range [0, π], and a shear µ = tan α
measured through the tangent of an out of plane (x− z) plane, see Figure
2.2) angle α in the range [0, π/4], due to the presence of the surrounding
TMs. Then, this range for the conformational field is found as 0 ≤ η ≤ π.

2.1.3 Membrane Elasticity and Total Helmholtz free energy

The last contribution to the energy functional lies in the elasticity of the
lipid bilayer. Chapter 1 showed a deeper review of a specific stretching
energy model recently presented in literature. Henceforth, the local energy
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density here employed takes the form:

ψ = KB T ψ
∗ = ϕ(J)− 1

2
γ(J)∇J2,

where ψ∗ denotes the elastic energy density per unit of KB T . By summing
up all the contributions, the Helmholtz free energy H of the system is
obtained in the following form:

H
KBT

=

∫
Ω
ξ

[
−eRL + log

(
ξ

ξ0

)
− ϕCR

]
dA+

+

∫
Ω

(
ζ

[
−eRT log

(
ζ

ζ0

)]
+ ψ∗

)
dA.

(2.9)

2.2 Conformation as the interplay between ener-
getics and lateral pressure

The resulting energetics described before depends on the fields describing
distribution function of receptors density ξ and transporters density ζ,
conformational change η and areal stretch J . In the sequel it will be shown
that both densities of receptors ξ and transporters ζ regulate the production,
diffusion and transport of the cAMP, while the last two fields, η and J , are
certainly governed by the energetics.

The fact that ξ measures the density of active receptors implies that this
quantity is certainly related to the amount of conformational changes η of
such GPCRs. Furthermore, because ξ measures this density in the current
configuration, the dependence on the local membrane stretch J must be
accounted for. Henceforth, an unknown relationship ξ = ξ̃(η, J) is assumed
to hold. For a given stretch, a correspondence between density of active
receptors and amount of conformational changes also must hold. If such
a correspondence is one-to-one, then the latter relationship is invertible in
such variables, and

η = η̃(ξ, J) (2.10)

can be taken as its inverse. From the phenomenological point of view, there
is the physically reasonable expectation that, for a given J , the higher the
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density of active receptor gets, the higher the magnitude of the conformation
will be. Finding an explicit expression for the relationship (2.10) is one of
the main goal of this Thesis.

The first and second law of thermodynamics can be specified to the system
through partition of the power (chemical and mechanical) and thanks to the
knowledge of the Helmholtz free energy above. Among other consequences,
from this procedure it is standard (see e.g. [48, 91]) to see that the chemical
potential of the species is delivered by the variational derivative of such free
energy with respect to the specific species itself.

For instance, the variational derivative of the Helmholtz free energy with
respect to the chemical species ξ yields the chemical potential µRL of the
compound receptor-ligand,

µRL
KBT

=
1

KBT

δH
δξ

= −eRL + 1 + ln

(
ξ

ξ0

)
− (ξ ϕCR),ξ , (2.11)

where the dependence of η entering ϕCR on ξ remains to be determined.
Relationship (2.11) witnesses the fact that ξ itself is indeed measuring the
density of active receptors, namely the ones bound with ligands. On the
other hand, the chemical potential of the compound Ligand-Receptor (RL),
which represents the free energy per unit receptor and per unit area of
such compound, has the meaning of the configurational force driving the
conformational changes of the active receptors. This certainly is determined
by the (specific) work done by the lateral pressure arising against moving
TMs for the presence of a quasi-incompressibility watery liquid-like medium,
as will be shown in the next section.

2.2.1 Lateral pressure arising in TMs-lipid interactions

Lateral pressure in lipid membranes is known to arise in bilayers even
without receptors, due to quasi-incompressibility induced by their acqueous
environment. This is known to contribute to the stress across the thickness
and it acts as the reaction to incompressibility, thereby not affecting the
elastic (stored) energy. When it comes to consider the membrane stress,
the lateral pressure is indeed the reactive part of such stress. In turn, the
lateral pressure changes in the presence of proteins (see e.g. [25, 126, 142,
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160]) and it influences their chemical potential. In Figure 2.5 it is shown
a schematic of a TM domain involved in the conformational changes and
the lateral pressure profile π(x, z) (in green). Indeed, this lateral pressure
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Figure 2.5: Schematic representation of the lateral pressure between a TM domain
and the lipid bilayer (see also [142]).

exhibits higher magnitudes in the zones where the lipid heads interact with
the top and bottom sites of the TMs. Therefore the lateral pressure induces
a local area change J(x, z) (depending on the location z through thickness
as well as on x) against which π(x, z) performs work. The latter is a specific
quantity, measured per unit receptor and per unit area (hence is integrated
through thickness h(x) = h0/J(x)), namely:

W(J(x, t)) = π ds
h0

J(x, t)

∫ h0
2
J(x,t)

−h0
2
J(x,t)

π(x, z, t)J(x, z, t) dz (2.12)

where J(x, t) := J(x, 0, t) can be evaluated by considering a piecewice
linear approximation of the pressure profile, by relating such quantity to
the corresponding asymptotic approximation of J(x, z, t). It is worth noting
that in relationship (2.12) the time-dependence is explicitly showed for the
sake of completeness, but it will not be taken into account in the sequel.
One can account for the surface interactions through the surface energy γRL
between the receptors (R), through the TMs involved in the conformational
changes, and the surrounding lipid heads (L), whose diameter is denoted by
φL. It is not difficult to show that this yields a simple expression for the
specific work.

Let start by considering a piecewise function able to describe approxi-
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mately the lateral pressure profile, i.e.

π(x , z) :=


−p 0 < z <

h

2
− φL

2
q

φL/4

[
z −

(
h

2
− φL

2

)]
h

2
− φL

2
< z <

h

2
− φL

4

q − q

φL/4

[
z −

(
h
2 −

φL

4

)]
h

2
− φL

4
< z <

h

2
(2.13)

where q denotes the value of repulsive pressure arising because of the con-
trast of the headgroup against the receptor domain, and p is the value of
the pressure along the hydrocarbon chain region arising fol self-balancing
the pressure profile. The introduction of equation (2.13) in (2.12) allows,
after some calculations (see Appendix D.1 for more details), for finding an
expression for the work done by the lateral pressure as:

W(x, t) = π φ γRL (h(x, t)− h0) ≤ 0 (2.14)

ore equivalently

W(J(x, t)) = π h0γRL φL

(
1

J(x, t)
− 1

)
(2.15)

which is consistent with the asymptotic approximation of the quantities above.
Whenever the membrane undergoes thinning, the chemical potential would
facilitate the formation of a new species, then it is decreasing; consequently,
the work done by the surrounding pressure (depending on the quantity h−h0)
against the lateral expansion (under the assumption of incompressibility, a
decreasing thick involves an increasing plane area) is negative, i.e. W < 0.
The chemical potential of the compound Receptor-Ligand can be written
accounting for of the specific work just obtained. Henceforth such chemical
potential can be written as:

µRL

KBT
=

µ0
RL

KBT
+ ln

(
ξ

ξ0

)
+
W(J)

KBT
. (2.16)

Consistency between equations (2.11) and (2.16) implies that the following
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relation must hold:
(ξ ϕCR),ξ =

W(J)

KBT
. (2.17)

Integration of relationship (2.17) delivers the following result:

−ξϕCR =
W(J)

KBT
ξ + c(J)

where c(J) represents a constant that must be determined, then it is assumed
that the conformational field η for the reference density ξ0 is zero for all J .
This normalization allows for determining the constant as:

c(J) = −W(J)

KBT
ξ0 (2.18)

and, consequently, finding a different expression for the energy density related
to the conformational field as:

−ξϕCR =
W(J)

KBT
(ξ − ξ0) ,

namely

− ϕCR =
W(J)

KBT

(
1− ξ0

ξ

)
. (2.19)

A comparison of relationships (2.5) and (2.19) (see Appendix D.2) yields
the following relationship between the density of active receptors ξ, the
conformational field η and the membrane strain J :(

ξ

ξ0

)−1

= 1− C J

1− J ln
(
K
η

J

)
, (2.20)

where
C :=

KBTA

πφTh0γRL
. (2.21)

Equation (2.20) is the constitutive relationship previously sought (see the
introduction part, Section 2.2)
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2.3 Constitutive relationships and admissible do-
mains

For the sake of understanding, it is more revealing to express the constitutive
relationship (2.20) in terms of the local lipid height ratio, namely:(

ξ

ξ0

)−1

= 1− C

h

h0
− 1

ln

(
K
h

h0
η

)
. (2.22)

Although equation (2.22) represents a surface in the space defined by ξ, h
and η, in Figure 2.10 slices obtained by fixing values of η are shown, namely
the quantity X = ξ/ξ0 as a function of the thickness change H = h/h0.
In this Thesis, the attention is focused on the occurrence of thinning, i.e
h/h0 ≤ 1. In particular, taking inspiration from experiments [117, 127], the
attention is focused on the occurrence in which the higher the thickness, the
higher is the density of active receptors. As matter of fact, the conditions
allowing for monotonically increasing relationships between these quantities
are of interest.

It will be shown that the density of active receptors and the parameter
h/h0 predict that relative membrane thickening increases the active receptor
density, thereby finding that they manifest themselves with higher density
on lipid rafts. This result, here obtained directly from the proper energetics
employed in the model, is found to be in agreement with the experimental
findings of Lefkovitz [127] and Kobilka [117], who showed that in a purification
process the addition of cholesterol to the membrane induced rafts formation,
i.e. induced the transition to ordered lipids, as displayed in Figure 2.6.

Equation (2.22) delivers a relationship between density of active receptors,
thickness change and conformational field. For the sake of illustration, in
the sequel the following notation (already used above) will be explicitly
employed:

X :=
ξ

ξ0
(2.23a)

H :=
h

h0
(2.23b)
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A 12

8

765

3
4

B

Figure 2.6: Schematic of raft in a membrane: A) cytosol, B) extracellu-
lar space, 1) non-raft membrane, 2) lipid raft, 3) lipid raft associated trans-
membrane protein, 4) non-raft membrane protein, 5) glycosylation modifica-
tion, 6) GPI-anchored protein, 7) cholesterol, 8) glycolipid. Reproduction from
http://cellbiology.med.unsw.edu.au/units/science/lecture0803.html.

One of the most important parameter of the model presented above is
the quantity C, but it is tricky to choose a proper value for this parameter.
Indeed, although a deeper investigation in literature was done at the best
of the Writer’s capabilities, neither existing experiments or sources useful
for determining the value of the constant C were found. The lack of this
piece of information can be filled by considering that, in this framework, it
is clear that the conformational field η must increase wherever the thickness
change H = h/h0 gets higher values, i.e. ∂η/∂H > 0, or explicitly:

∂η

∂H
=

1

C H2KX
exp

(
−(1−H)(1−X)

C X

)
(H − C X −HX) > 0

Bearing in mind this condition, equation (2.28b) delivers a relationship for
C in the following form:

C <
H(1−X)

X
(2.24)

At this stage, the employee of a reverse engineering approach can be useful
for determining the order of magnitude of C. In this regard, a closer
analysis of (2.21) reveals that the only unknown quantity for computing
C is the conformation energy level per unit receptor and per unit area,
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namely A. Indeed, all the other quantities depend on the geometry of
receptor domains. This observation allows for developing the following
approach: (i) a parameter a based on known quantities only is introduced;
(ii) a relationship for computing A from the constitutive equation (2.20) is
computed; (iii) numerical experiment are performed in order to analyze the
results and choosing the proper values of A and, consequently, of C. As first
step, the following relationship is introduced:

C =
A

a
, (2.25)

where
a :=

πφTh0γRL
KB T

. (2.26)

The coefficient a is dimensionless, and it depends on the diameter of the
domain, the thickness of the membrane, surface energy and temperature,
henceforth it can be easily computed. All the uncertainty lies on the value
of A, which represents a ratio between molecules currently in the compound.
An inverse relationship for computing A can be found from the constitutive
equation (2.20) as

A = − a

log (K ηH)

(H − 1)(X − 1)

X
. (2.27)

The analysis of equation (2.27) allows for a parametric study of the the
constant A as function of the conformational field η whenever the geometry
is fixed (i.e. a is known) using as parameter the receptor density X = ξ/ξ0

and the height ratio H = h/h0 = J−1. However, this approach leads to a
wide range of possible values for A, and consequently for C. The use of
further numerical experiments (see Figure 2.7), allows for limiting C in the
range [0.05÷ 0.75], even if the more reliable value is C = 0.3 (see Chapter 4
for the numerical simulation on the conformational change). These values
will be used in the sequel of this Chapter for the analysis of the constitutive
equations.

Manipulation of the constitutive equation (2.20) allows one to get explicit
forms of several constitutive relationships very useful for closer mathematical
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Figure 2.7: Examples of the reserve engineering approach for determining the
parameter A: numerical experiments using a = 11 and a = 46 for given values of
K and K.
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Table 2.2: Estimated values for C. For each choice of parameters, the first row is
referred to A = 0.5, the second to A = 2. Values of γRL come from literature [142,
160].

h0 [nm] φT [nm] γRL [mN/m] a C

3 0.5 10 11.01 0.045
0.182

6 0.3 10 13.21 0.038
0.151

3 0.5 35 38.52 0.013
0.052

6 0.3 35 42.22 0.011
0.043

inspections and revealing more on the model itself:

X =
1

1− C log (K ηH)

1−H

, (2.28a)

η =
1

HK
exp

(
−(1−H)(1−X)

C X

)
. (2.28b)

A closer analysis of (2.28a) provides both an upper and a lower bound for
the field of admissible conformational changes. Indeed, receptor density is a
positive definite quantity (X > 0) and at the same time the case of interest is
regarding when it is an increasing function of the height ratio (∂X/∂H > 0).
The simultaneous occurrence of both these conditions implies that:

η <
1

K H
exp

(
1−H
C

)
= ηUB, (2.29a)

η ≥ 1

K H
exp

(
H − 1

H

)
= ηLB. (2.29b)

for given values of H, C and K.
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Figure 2.8: Lower and upper bounds on the plane (η, H): (top) given values of
K and C; (middle) influence of K on the limit curves; (bottom) influence of C on
the limit curves.

53



CHAPTER 2. A NOVEL CONSTITUTIVE MODEL

Relationships (2.29) allow for determining an admissible region on the
plane defined by thickness change H versus receptor density ratio X at
the top ofFigure 2.8. Here, the not-admissble movements are denoted as a
grey area. This result highlights that for a fixed geometry (i.e. for given
values of H, K, C) only some movements of the domains (represented by
the conformational field η = ω µ) are allowed. The bounds depends on the
chosen couple (K, C), as shown at the middle and the bottom of Figure 2.8.
It is easy to recognize that an increasing value of K (whenever C is fixed)
gives more space for the movements (indeed the the lower bound assumes
smaller values with increasing K), whereas increasing values of C (whenever
K is fixed) influence the position of the upper bound, that seems to limit
the chance to get great movement in correspondence of small thinning. The
strong influence of C could be expected since it drives the decay rate of the
exponential function in (2.28b).

It would be worth noting that the model is able to predict the absence of
conformational changes whenever both the density of receptors is vanishing
and the height ratio is very close to zero, i.e H → 0 and X → 0. Indeed,
the argument of the exponential function (2.28b) tends to −∞, and thus:

lim
X→0, H→0

exp(f(X,H))→ 0, (2.30)

as expected.
Besides equation (2.28a), relationship (2.28b) together with the condi-

tions X > 0 and ∂X/∂H > 0 provides an admissible region on the plane
defined by (H, X) whenever the conformationl change value is used as
parameter. In particular, the following relationship must hold:

∂X

∂H
> 0 ⇒ X >

H

C +H
, (2.31)

It is worth bearing in mind that the curves X(H) whenever η is a parameter
can be obtained as the projection of the surface η(H,X) on the plane H−X.
A closer inspection of (2.28a) together with the result (2.31) shows that the
limit curves become more flat as C increases (see Figure 2.9), as equation
(2.31) suggests. In this analysis, a special value of conformational change,
η∗, is introduced. This value represents the value of η needed for reaching
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the minimum value of allowed conformational change, namely ηLB, whenever
the reference configuration H = 1 is chosen. This curve is drawn with a
red line in Figure 2.10. In the same drawing, the grey area delimited by a
dashed line represents locations that are not reachable, since it is out of the
admissible region.

K = 1.76C = 0.05
C = 0.15
C = 0.3
C = 0.7
C = 1.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H = h/h0

X
=
ξ
/ξ
0

Figure 2.9: Changes in the lower bound for X = ξ/ξ0 depending on C.

In order to complete the series of analysis coming from the constitu-
tive relationships (2.20) and (2.28), the dependence of the behavior of the
conformational field η on both height ratio H and receptor density X is
studied, and the graphical results are shown in Figure 2.11 and Figure 2.12.
As expected, whenever the membrane exhibits thinning (i.e the height ratio
H moves from 1 to smaller values) and a fixed value of receptor density is
assumed, the conformational changes is increasing, since more movements
are needed. On the other hand, as predicted experimentally, whenever the
height ratio H is fixed, the value of conformational field η increases as the
receptor density increases.
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Figure 2.10: Behavior of ξ/ξ0 vs h/h0 using η as parameter. Here η∗ = 1.07 and
∆η = 2.06.
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Figure 2.11: Behavior of η vs h/h0 using the ratio ξ/ξ0 as parameter. The grey
area represents the non-admissible region.
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Chapter 3

Balanced configurations of
biological membranes

The aim of this Chapter is to focus the attention on the diffusive phenomena
and balanced configurations of trophoblast cell membrane. In Chapter 2,
the energetics of systems composed by lipid bilyers in which proteins are
embedded was presented; in this Chapter this energetics will be used for
looking at the set of equilibria related with the diffusion of receptors and
transporters. First of all, these diffusive phenomena will be explored, and a
proper model for predicting the average response of the cell is introduced.
Later, the local elastic energy introduced in Chapter 1 is extended by taking
into account contributions due to both adhesion and temperature. Finally,
the set of equilibria are sought by employing the principle of the minimum
of energy, i.e. the variational derivative of the energy functional will be
computed in order to isolate configurations corresponding to stationary
points of the energy itself.

3.1 Diffusive phenomena involving receptors and
transporters

The time-space evolution of the density of active receptors entering in the
free energy functional can be specified once their diffusion is accounted for.
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Of course the cAMP transporters influence such a balance and, in turn
they also must have a balanced flux. To this end, if dξ and dζ denotes
the diffusivities of receptors and transporters respectively (assumed to be
independent of the lipid ordering, namely on J), the following equations
may be deduced:

−Di dξξ + ξt = α ζt (3.1a)
−De dζζ + ζt = 0 (3.1b)

where, roughly speaking, α ζt represents a sink term in the balance of fluxes
involving the active receptors due to the fraction of cAMP swept away from
the cell aggregate, namely the extracellular cAMP. It is worth noting that
(3.1b) is an eigenvalue problem which gives rise to suitable eigenfuntions,
depending on the geometry of the domain and, eventually, on the boundary
conditions. Furthermore, an expansion of (3.1a) in terms of eigenfunctions
may also be considered.

The usual production process of cyclic adenosine monophosphate (cAMP)
involves several cellular components, and it can be schematically depicted as
shown in Figure 3.1. The pictures shows that (i) some amount of epinephrine
stimulates the β2-adrenergic receptors annealed into the cellular membrane,
signaling (ii) the production of intracellular cAMP; inside the cell, some of
these products (iii) are degraded by the cyclic nucleotide phosphodiesterase
(PDE), while others (iv) are pushed out by the multidrug-resistent protein
(MRP), increasing the quantity of extracellular cAMP outside the cell. Xie
et al. [205] studied this process by adopting both a two- and a three-
compartment model in order to provide a mathematical description of
the response of the cell, hence ODE equations governing the intracellular
and extracellular compartments were provided. The key aspect of this
approach is that the diffusion of the species is studied through the analysis
of the products. It is worth to note that for getting information about the
species itself, a proper relationship will be employed for converting such a
value. Although the model employed is very simple and allows for getting
qualitatively good results, the production of cAMP appear to be governed
by functions only increasing in time.
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Figure 3.1: Schematic of cell processes involved in cAMP production as studied
in [205].

An experiment involving the cell subject of this Thesis was recently
(2010) performed by Biondi et al. [18], where cAMP efflux from human
trophoblast cell lines was measured. Unlike the scheme presented above, in
the experimental setup the action of PDE was inhibit; the related sketch
of cAMP production involved in this experiment is displayed in Figure 3.2.
For the sake of the Reader’s convenience, the experiment is briefly recalled.
A group of HTR-8/SVneo trophoblast cell line obtained from human first-
trimester placenta ex-plant cultures were properly treated at 37◦C in a
controlled atmosphere. These cells were grown to confluence (2-3 days) in
a 24-well plate (Figure 3.3) and then incubated for the time prescrobed
by the protocol. After that, media containing approximately 250.000 cells
were harvested in wells containing Cw = 500µL of water and some amount
of epinephrine was added. The wells were immediately frozen at -70◦C
until cAMP levels were measured. Intracellular and extracellular cAMP
were determined by proper methods (e.g. method of Brown [22]) and the
nucleotide levels were expressed as pmoles/106cells/time (Figure 3.4).

As an experimental result, epinephrine enhanced intracellular cAMP
concentration in a dose-dependent fashion, reaching a plateau at around

63



CHAPTER 3. BALANCED CONFIGURATIONS OF BIOLOGICAL MEMBRANES

multidrug-resitent
protein

Receptor

Submembranal Compartment

Cytosolic Compartment

Extracellular Compartment

Transporter
Adenylate cyclase

(a)

(b)

(c)

(d)

Ζ
Ξ

G

AC

protein

V 
J 

V 

V 

epinephrine

f(t)

(submembranal)

(cytosolic)
intracellular cAMP

intracellular cAMP

extracellular cAMP
e

s e

MRP

s

c

Figure 3.2: Schematic of cell processes involved in cAMP production with
inhibited PDE (experimentally imposed in [18]), as assumed in this work.
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Figure 3.3: Schematic of the experiment performed in [18]: (a) trophoblast cell
taken from human placenta; (b) harvesting in a 24wells plate; (c) treatment in
controlled atmosphere; (d) cAMP measurement.
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10−4M (Figure 3.4a). After the analysis of this saturation curve, the
cAMP evolution over time was monitored for the fixed concentration of
10−6M of epinephrine, because able to trigger a cAMP production close
to the half of the maximum response (Figure 3.4b). Intracellular cAMP
increased as a function of time up to about 15 min, thereafter a reduction
of the nucleotide level was observed. At the same time, extracellular cAMP
gradually increased in time, at least during the 60 min of observation,
although this result is not showed graphically in [18]. For this specific case,
when a ligand concentration c = 1µM was used, the total quantity Qe of
epinephrine used in the experiment involving 106 cells can be then computed
as:

Qe = 4× cCw = 4× 1µM × 500µL = 2000 pmol (3.2)

3.1.1 cAMP-to-receptors relationship

The fields of active receptors density ξ(x, t) and its products, namely the
intracellular cAMP (i.e S(x, t)+C(x, t)), are intimately linked by a conversion
factor, namely αξ, as follows:

cAMPi = αξ
(
ξ − ξ̄

)
≈ αξ ξ, (3.3)

where αξ = 104 is estimated experimentally [18]. In this Thesis, the cAMP
level is referred to a population of 106 cells (and it is expressed in pmol);
taking into account a parameter c1 = 106 for switching between the pop-
ulation and the single cell, and c2 = 1012 for converting pmol to mol, the
number of active receptors can be computed as follows:

ξ# =
1

c1

1

αξ

(
cAMPi
c2

)
NA (3.4)

where NA is the Avogadro number. An analogue relationship holds for
computing the number of transporters:

cAMPe = αζ
(
ζ − ζ̄

)
≈ αζζ (3.5)
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3.1.2 A model for the average diffusion

Inspired by the model developed in [205], a three-compartment model
composed by a set of three ODEs is considered in order to study the average
diffusion in terms of cAMP production:

˙̂
S = ω11

(
Ĉ − Ŝ

)
+ ω12

(
Ẑ − Ŝ

)
+ f̂(t)

˙̂
C = ω21

(
Ŝ − Ĉ

)
˙̂
Z = ω31

(
Ŝ − Ẑ

) (3.6)

and initial conditions Ŝ(0) = Ŝ0, Ĉ(0) = Ĉ0 and Ẑ(0) = Ẑ0. Here, Ŝ(t) and
Ĉ(t) denote the submembranal and cytosolic cAMP production, respectively,
whereas Ẑ(t) is related to the quantity of cAMP pulled out of the cell by
transporters. The coefficients ωij are determined by means of proper ratios
between flux and volume of the three considered pools (compartments), and
are dimensionally expressed as [min]−1:

ω11 =
Jsc
Vs

ω12 =
Jse
Vc

ω21 =
Jsc
Vc

ω31 =
Jse
Ve

(3.7)

where Vs, Vc and Ve are the volume of submembranal, cytosolic and extra-
cellular pool, respectively, whereas Jsc is the flux between submembranal
and cytosolic compartment and Jse is the flux involved from submembranal
to extracellular compartment.

The production on both intra- and extra-cellular cAMP is triggered by
the bonding of a specific ligand, i.e. the epinephrine, to binding sites. It
is clearly that both the formation of bindings and the triggering of cAMP
production are phenomena occurring over the time, and then they depend
on a rate of both precipitation of the ligand and bounds formation. For this
reason, a function f(t) for describing the ligand precipitation is introduced,
whereas the cumulative quantity of precipitated ligand is denoted by F (t):

F (t) =

∫ t

0
f(τ) dτ and

∫ T

0
f(τ) dτ = Qe, (3.8)
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where T denotes the experiment lifetime (60 mins). It is worth noting
that relationships (3.8) are suggested by phenomenological consideration.
Moreover, they represent the only pragmatical choice of all the subsequent
model. Immediately after the ligand is put in the well, a chemical potential
µRL < 0 is observed, i.e the energy difference between the binder-ligand pair
in the bound and unbound states facilitates the formation of binds. This
condition holds until the saturation of binding sites is reached at a certain
instant, namely tm. The chemical potential becomes then positive (i.e µRL >
0 ) and the unbinding phenomenon is prevalent. Here, taking inspiration from
[158], where an exponential form is used to model the binding/unbinding
phenomena involved in the adhesive properties of fibroblasts cells, the
precipitation phenomenon is assumed to be governed by the following balance
equation,

ḟ(t) + ka f(t) = qa, (3.9)

which together with the initial condition f(0) = 0 gives solution:

f(t) =
qa
ka

(
1− e−ka t

)
. (3.10)

Thanks to the property of the exponential function, it is clear that the ratio
qa/ka represents the maximum value of the function f(t) itself, reached
after a certain saturation time. Let normalize the function f(t) by means of
fmax := qa/ka, i.e

f∗(t) =
f(t)

fmax
, (3.11)

and assume that at time tm, the function f(t) reaches the normalized value
m:

m :=
f(tm)

fmax
< 1. (3.12)

This mathematical description follows by the consideration that at the
beginning of the experiment, the rate of precipitation is increasing up to get
a maximum value exactly at tm. Under these considerations, the constant
ka, dimensionally expressed as [T−1], can be computed as follows:

f∗(tm) = 1− e−ka t = m, (3.13)
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ka = − log(1−m)

tm
. (3.14)

After that, the quantity of ligand still in the solution is less than the bound
quantity, hence the rate of precipitation is decelerating. Similarly to above,
the differential equation governing the precipitation after the plateau is
expressed as:

ḟ(t) + kd f(t) = 0, (3.15)

whose solution, assuming initial condition f(tm) = mfmax, reads:

f(t) = f(tm) ekd(t−tm). (3.16)

In this case, as expected, the function f(t) is decreasing in time. Let assume
that at time tf it reaches a ratio n defined as follows:

n :=
f(tf )

fmax
<
f(tm)

fmax
= m. (3.17)

Henceforth, the constant kd is computed as follows:

f∗(tf ) = mekd(t−tm) = n (3.18)

kd =
log (n/m)

tf − tm
(3.19)

Finally, the piecewise normalized forcing term f∗(t) (whose an example is
showed in Figure 3.20) assumes the following form:

f∗(t) =

{
1− e−ka t t ≤ tm
mekd(t−tm) t > tm

(3.20)

3.1.3 A model for the space-dependent diffusion

Besides the averaged diffusion over time, the diffusive phenomenon over
the space is also taken into account. By considering as starting point the
mathematical model for predicting the time-dependent diffusion discussed
in the previous section, the diffusion over the space is considered by taking
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Figure 3.5: Example of normalized precipitation function f∗(t), by assuming
m = 0.99, tm = 15min, n = 0.2 and tf = 20min.

into account a term related to the Laplacian through a diffusivity coefficient,
i.e.  St = ω11 (C − S) + ω12 (Z − S) + dξ ∆S + y(Ω̂, t)

Ct = ω21 (S − C)
Zt = ω31 (S − Z) + dζ∆Z

(3.21)

with proper initial and boundary conditions:
S(Ω̂, 0) = S0(Ω̂)

C(Ω̂, 0) = C0(Ω̂)

Z(Ω̂, 0) = Z0(Ω̂)

(3.22a)


∇S(∂Ω̂, t) = 0

∇C(∂Ω̂, t) = 0

∇Z(∂Ω̂, t) = 0

(3.22b)

where Ω̂ denotes a 2D domain and ∂Ω̂ its boundary. In equation (3.21), dξ
and dζ represent receptors and transporters diffusion coefficients, respectively,
and each field is a function of both space and time, i.e S(Ω̂, t), C(Ω̂, t) and
Z(Ω̂, t), whereas y(Ω̂, t) is a space- and time-dependent forcing term.

For the sake of simplicity, from now on only the one-dimensional case will
be considered. Also in this case, the deposition rate relationship (3.8) for
describing the action of the epinephrine holds, since the time-dependent func-
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tion f(t) physically describes the deposition distribution of the epinephrine.

At this stage, a problem about how model the forcing term y(x, t) arises.
As first approach, one can imagine to find a space depending forcing term,
namely g(x), such that is possible to combine together effects over space
and time, i.e.

y(x, t) = f(t) g(x) (3.23)

It is possible to find reasonable shape for the function g(x) (see the Section
4.4 in the sequel for more details). Although proper choices can lead to
fashionable results, the used forcing term in space strongly influences the
evolution of diffusion.

In order to overtake this theoretical deficiency, it is possible to relate
the space diffusion to the binding/unbinding phenomenon itself. To this
aim, it is worth noting that there exist locations along the membrane at
which the ligand is not able to trigger cAMP production because of the lack
of active receptors. Henceforth, a statistical parameter 0 ≤ β(x, t) ≤ 1 is
introduced in order to model the chance of getting bounds and, consequently,
production of cAMP. With these considerations in mind, the ligand binding
function w(x, t) at time t is introduced as follows:

w(x, t) = β(x, t)F (t). (3.24)

Henceforth, the forcing term y(x, t) governing the diffusive problem arises
as:

y(x, t) =
∂w

∂t
= [β(x, t)F (x, t)],t = βt(x, t)F (t) + β(x, t) f(t). (3.25)

since the relationship Ft(t) = f(t) holds. The statistical parameter β can
be also interpreted as the ratio of activated receptor over the maximum
number of activable ones ξ0, i.e.:

β :=
ξ(x, t)

ξ0
. (3.26)

Bearing in mind the cAMP-to-receptors relationship (3.3), the statistical
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parameter β can be also computed as follows:

β(x, t) =
ξ

ξ0
=

ξ

ξ0

αξ
αξ

=
S(x, t) + C(x, t)

αξξ0
=
S(x, t) + C(x, t)

(S + C)max
=
S(x, t) + C(x, t)

M

β(x, t) =
S(x, t) + C(x, t)

M
(3.27)

where S(x, t) is the submembranal intracellular cAMP and C(x, t) is the
cytosolic intracellular cAMP. The quantityM := (cAMPi)max represents the
maximum value of intracellularcAMP measured experimentally by Biondi et
al. [18] (see Figure 3.4a). Obviously, the following relationship holds:

ξ0 =
cAMPmax

αξ
(3.28)

3.2 Stretching Energy of Cell Membranes

The local stretching energy shown in Chapter 1 has been characterized for a
specific temperature of T = 30◦C [55, 210]. In this Section dependencies
on both temperature and adhesion are considered, and an extended version
of the local energy is supplied. The change in energy of the membrane
is evaluated starting from the prestressed state, reached by the cell upon
adhering to its substrate and prior to the insertion of the ligand into the
watery solution of the surrounding medium.

3.2.1 Influence of Temperature and Adhesion

In this Thesis, cells resting on a substrate at fixed value of temperature
are considered. It is known that temperature influences the behavior of
lipids and, in turn, the membrane stretching energy strictly depends on
this value. Indeed, experimental observations [3, 13, 38, 59, 88, 120, 164]
show that the composition of the lipid membranes strongly influences the
behavior of the stretching energy when the temperature changes. As an
example, the compound analyzed by Goldstein and Leibler [88] is such that
an increasing temperature causes the lost of the characteristic double-well
shape. On the contrary, the lipids composing the membrane studied in
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Figure 3.6: Local energy ϕ̄ and local stress τ̄ depending on temperature.
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this Thesis approaches a double-well energy as the temperature increases.
Observations done in laboratory [18, 131] showed that the value T ≈ 41◦

can be assumed as transition temperature for the membrane subjected of
this research. Based on these considerations, the stretching energy defined
in (1.13) (and now denoted by ϕ∗(J) for the sake of illustration) is modified
taking into account an extra quadratic term as follows:

ϕ̄(J, T ) = ϕ∗(J) +AT (J − 1)2 . (3.29)

Here the dependence on temperature is introduced through the parameter
AT = Â(T ). This dependence was calibrated by considering that the two
characteristic wells share the same depth at the transition temperature. As
result, it was found that AT (41◦) = −0.0178 J/m2, and that the location
where the second well occurs is J = 1.333. It is worth bearing in mind
that the assumption AT (30◦) = 0 was done. In Figure 3.6 is shown how
the temperature modifies the local stretching energy and the related stress
τ̄(J) = ϕ̄′(J) on the basis of (3.29).

Besides the dependence on temperature, in this work also the dependence
on the adhesion with the substrate is accounted for. Indeed, as shown in
Figure 3.6(b), the local stress presents compression in correspondence of a
stretch greater than 1, for the typical physiological range of temperature
of a human body (36◦ ÷ 3t◦). As known, cell membranes are not able to
sustain compression, suggesting that the energy ϕ̄(J, T ) is not suitable for
the purpose of this Thesis. This fact highlights the importance of introducing
also a term depending on the adhesive property. Adhesion of the cells to the
substrate of the well is modeled with the introduction of a specific cohesive
energy, namely Γa, which may vary with temperature and with the stiffness
of the substrate. The adhesion energy Γa is modeled in the same fashion of
temperature dependence, i.e. by introducing a quadratic term as:

Γa(J, T, Γ̂) :=
1

2
Γ̂(J − 1)2, (3.30)

where the values of Γ̂ must be determined. The adhesion energy depends
on the interaction between the membrane and substrate, and it quantifies
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the energy needed to detach one of the two bodies. Sagvolden at al. [180]
performed a series of experiments where the value of the adhesion force
to detach the cells from the substrate was measured. However, the force-

ΔW

Δx

ΔF

D

C

B

A

A

A

A

Figure 3.7: Schematic of the measured force in the experiment performed by
[180] (cfr. with Figure 2 of the paper).

displacement relationship is not reported, even if the measured force is
showed in Figure 3.7. As first approach, the force distribution is considered
equivalent to a force acting for all the displacement ∆x with half value of
the peak, henceforth the adhesion energy is computed by the ratio of the
work done by the adhesion force divided by the area of the cell:

Γ̂ =
W

A
=

1

2

F0 ∆x

Ap J
−2
p
, (3.31)

where Ap is the area of the membrane in the reference configuration and
F0 is the maximum value of the force applied for detaching it from the
substrate. Sagvolden [180] showed that the adhesion is greater at T = 37 ◦C
than at T = 23 ◦C. On the other hand, some experiments [131] showed
that adhesion decreases with temperature and it vanishes at T ≈ 40 ◦C.
Henceforth, it is reasonable to assume a triangular distribution having the
higher vertex at T = 37 ◦C, as shown in Figure 3.8. The parameters of the
adhesion for the membrane were calibrated by employing both experimental
observations and data found in literature. The computed values are reported
in Table 3.1.
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Figure 3.8: Adhesion model.

Table 3.1: Values of Γ̂ (expressed in [N/m]) used for modeling the adhesion
between a cell and its substrate.

T = 23◦ T = 37◦ T = 40◦

0.01 0.03 0

3.2.2 Modified stretching energy

The modified stretching energy finally comes out by taking into account both
the sources of influence considered above, i.e. temperature and adhesion, by
means of equation (3.29) and (3.30), respectively. This modification allows
the stretching energy to take the following form:

ϕT (J, T ) =

[
a0 +AT (T ) +

Γ̂(T )

2

]
+
[
a1 − 2AT (T )− Γ̂(T )

]
J+

+

[
a2 +AT (T ) +

Γ̂(T )

2

]
J2 + a3 J

3 + a4 J
4

(3.32)
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Whenever a temperature T ∗ is fixed, equation (3.32) allows for computing
the actual local energy ϕ(J), the local stress τ(J) and the transition function
γ(J) governing the membrane equilibrium as usual:

ϕ(J) = ϕT (J, T ∗) (3.33a)
τ(J) = ϕ′(J) (3.33b)

γ(J) = −h
2
0

12

τ(J)

J3
(3.33c)

In Figure 3.33 the energetic function (3.33) are displayed made dimensionless
with respect to one tenth of Maxwell stress Σ and the square of the membrane
height h0, and at several values of temperature.

3.3 The equilibrium of the membrane

The configurations assumed by the membrane at the equilibrium are governed
by the principle of the Minimum of Energy. The total potential energy is
obtained as the total Helfrich free energy H, defined by equation (2.9) minus
the work W done by the external load, i.e

E = H−W. (3.34)

The work W results from the presence of two entities, a traction Σ acting
against the displacement, and a hyperstress Γ acting against the gradient of
the displacement, i.e.

W = B [Σu+ Γ∇u]∂Ω , (3.35)

which in the one-dimensional case takes the form:

W = B
[
Σu+ Γu′

]
∂Ω
, (3.36)

where B is the depth of the membrane patch considered.It is clear that the
displacement field depends on the space, i.e. u = û(x). For the sake of
illustration, the the space-dependent argument is omitted. It is worth noting
that, thanks to the result addressed in Chapter 2, the change in energy due
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Figure 3.9: The function ϕ(J), τ(J) and γ(J) at T = 37◦C.
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to the conformational field assumes the following form:

−ξϕCR =
W (J)

KBT
(ξ − ξ0) =

πdsqφh0

KBT

(
1

J
− 1

)
(ξ − ξ0) =

S(ξ)

KBT

(
1

J
− 1

)
where S = Ŝ(ξ) can be interpreted as a chemical stress, varying along the
membrane, depending on the receptor density only:

S(ξ) := π ds q φ h0 (ξ − ξ0) . (3.37)

This quantity arises because of the presence of diffusive phenomena due to
the change of receptor density. The Euler-Lagrange equation is found by
employing the principle of minimum of the energy through the variational
derivative in terms of the independent variable of the problem, i.e. the
displacement u. For this reason, in the sequel terms not depending on the
displacement u are dropped out. Bear in mind that in the 1D case the
relationship J = 1 + u′ holds. Henceforth, the energy (3.34) in terms of
displacement u reads as follows:

E =

∫
Ω

(
ϕ(1 + u′)− 1

2
γ(1 + u′)u′′2 + S(ξ)

(
1

1 + u′
− 1

))
dx+

−
[
Σu+ Γu′

]
∂Ω

(3.38)

The variational derivative of the energy (3.38) (see Appendix D.3) supplies
the differential equation governing the equilibrium of the membrane:

−A′ = 0 in Ω
either A− Σ = 0 or δu = 0 in ∂Ω
either γ u′′ + Γ = 0 or δu′ = 0 in ∂Ω

(3.39)

where:
A = ϕ′ +

1

2
γ′u′′2 + γu′′′ − S(ξ)

(1 + u′)2
. (3.40)

Equation (3.39) delivers a fourth order differential equation, whose solution
provides the response of the cell membrane under the specified boundary
conditions. Finally, the fourth order differential equation governing the
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equilibrium of the membrane assumes the following form:

γu′′′′ + 2γ′u′′ u′′′ +
1

2
γ′′u′′3 + ϕ′′u′′ +

2S(ξ)u′′

(1 + u′)3
− S′(ξ)

(1 + u′)2
= 0 (3.41)

and boundary conditions:

γu′′′ +
1

2
γ′u′′2 + ϕ′ = Σ +

S

(1 + u′)2
. (3.42)

Note that in equation (3.41) the prime denotes derivation with respect to
the space variable.

3.4 Chemo-mechanical coupling: Kinetics of bind-
ing

Previously in this Chapter, diffusive and mechanical phenomena were mod-
eled independently each other. For this reason, ad first approach it seems to
be reasonable developing a numerical scheme in which these two physics still
remain separate (see Section4.4 for details). Although the results obtained
from this kind of simulations seem to be in agreement with the experimental
evidence, this lack of coupling is not satisfactory.

Indeed, it would appear more natural that the diffusive evolution would
be driven by association/dissociation of ligand binding. For this reason, the
use of the model for the diffusion over space and time related to a statistical
parameters introduced in Section 3.1.3 would be more efficient. Moreover,
beside this source of influence during the time evolution, the receptor density
changes because of the change in the chemical potential (2.16) µRL:

µRL

KBT
=

µ0
RL

KBT
+ ln

(
ξ

ξ0

)
+
W(J)

KBT
.

A closer analysis of this relationship shows that the chemical potential itself
is influenced by both the mechanics (through the current stretch J) and
the receptor density ξ. It is then clear that a more sophisticated update
scheme can be developed for performing reliable numerical simulations. In
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this regard, it turns out be incisive the use of a kinetic relationship in the
same fashion of one discussed in [158] about the kinetics of focal adhesion.
By taking inspiration from this model, the following kinetic relationship is
considered:

ξt =
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(
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])
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(
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(3.43)

where kb and ku represent the binding and unbinding constant, respectively,
and U represents an unbinding chemical configurational force rate per unit
of KB T and per unit of active receptors density. Note that the employee of
relationship (3.43) is proved numerically to be an essential requirement for
the right and effective evolution of the simulation (see Chapter 4). Indeed,
since the forcing term is modeled by means (3.25), there would not be any
chance to obtain a negative time derivative for decreasing the action of the
epinephrine.
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Chapter 4

Numerical simulations for
getting balanced configurations

This Chapter is devoted to illustrate the numerical procedure developed
for performing numerical simulations regarding the model analyzed in this
Thesis. Each employed numerical scheme is reported and supplied with
comments and coding remarks. For the sake of illustration, the following
notation will be used in the sequel:

– bold capital letters, as A, denote matrices;

– capital letters, as A, denote vectors;

– small letters, as f(x), denote functions;

– small letters with a subscript, as fi, denote discrete values of a function
f(x).

Whenever this notation is not used, it will be clearly declared.
In the sequel, the Finite Differences are employed for discretizing dif-

ferential equations. Second order accurate central schemes are used in this
Thesis up to the fourth derivative. Let consider a space discretization, also
known as mesh, and denote with xi the points of the mesh and with ∆x
the (constant) discrete difference between two neighboring points, and let
be f(x) a continuous function and fi its values at meshpoints. Then, the
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central finite difference schemes for computing derivatives at the generic
point xi take the forms:

f ′(xi) ≈
1

2 ∆x
(fi+1 − fi−1) (4.1a)

f ′′(xi) ≈
1

∆x2
(fi+1 − 2fi + fi−1) (4.1b)

f ′′′(xi) ≈
1

∆x3

(
fi+2

2
− fi+1 + fi−1 −

fi−2

2

)
(4.1c)

f ′′′′(xi) ≈
1

∆x4
(fi+2 − 4fi+1 + 6fi − 4fi−1 + fi−2) (4.1d)

Relationships (4.1) allow for computing derivatives as linear operations by
mean of proper matrices. In the sequel, these differential matrices will be
denoted by the letter D followed by the order of differentiation, e.g. D2

denotes the operator for getting the second derivative of a vector representing
discrete values at meshpoints of a given function. Just as example, if this
vector is denoted by F , the discrete values of the second derivative at the
same meshpoints are found through the linear operation D2 · F . Obviously,
these operators are more accurate as smaller is the distance ∆x between
two discrete points xi. The accuracy of these operations is limited at edges:
for this reason, higher order approximation are needed for preserving second
order accuracy at the boundary of the domain (see Appendix E). In Matlab,
a specific function called funFD1S is coded (see Appendix E) for computing
these operators up to order 4. Note that sparse matrices are employed for
optimization purposes.

4.1 Average Diffusion

In this Section the average diffusion related to the model presented in equa-
tion (3.6) is studied. The model consists of a set of three linear ODEs,
representing the cAMP production and ejection between the three compart-
ments used for modeling the cell structure (see Figure 3.2).

The action of the epinephrine is modeled by means of relationship (3.20).
The values found in [205], reported in Table 4.1 were used as starting point
for determining the best coefficients ωij for fitting the experimental curves
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obtained from [18]. The diffusive problem is solved by coding an implicit
scheme. Indeed, a classical forward Euler march scheme is employed for the
time derivative, whereas a central finite difference scheme (see relationships
(4.1)) is used for discretizing the space derivatives. Let denote with S, C and
Z the variables containing discrete values of submembranal, cytosolic and
extracellular cAMP over the time, respectively, with U the vector containing
the unknown functions, and with F the forcing vector, i.e. F = [f(ti), 0, 0]T .
Then the ODE system is solved by employing the following numerical scheme
between two subsequent time steps (e.g. tn and tn+1):

Un+1 − Un
∆t

= KUn+1 + F

Un+1 (I−∆tK) = Un + ∆t F (4.2)

where

K =

 (ω11 + ω12 + ω13) −ω12 −ω13

−ω21 ω21 0
−ω31 0 ω31

 (4.3)

and ∆t is the timestep increment of the discrete time-spanning. It is worth
noting that K is not symmetric. Several simulations have been run by
changing the values of coefficients ωij through proportional coefficients wij ,
in such a way the effective coefficients ODE systems are expressed as wij ωij .
The best result of this numerical simulation is shown in Figure 4.1: the
experimental data taken from [18] are represented by green squares, whereas
the solid curves represent the numerical solution of the cAMP diffusion. The
intracellular cAMP is denoted by the color blue, and it is in good agreement
with the experimental data, suggesting the well behavior of the model. The
extracellular cAMP, instead, is denoted by the color red, and it is an always
increasing function accordingly to the experimental result (although, as
wrote in [18], no data about its values are shown in the reference paper).
The influences of the proportional coefficients wij are shown in Figure 4.2.
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Figure 4.1: Result of numerical simulation on average diffusion.
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Figure 4.2: Simulation results depending on coefficients wij (see Table 4.2).
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Table 4.1: Starting guess values for determining the coefficients ωij of the model
in (3.6).

Jsc Jse Vs Vc Ve ω11 ω12 ω21 ω31[
pL
min

]
[pL] [min]−1

0.006 0.03 0.02 2 2.02 0.3 1.5 3×10−3 0.0148

Table 4.2: Simulation coefficients wij .

sim w11 w12 w21 w31

Sim 1a 1 1 1 1
Sim 1b 2 1 1 1
Sim 1c 1 2 1 1
Sim 1d 1 1 2 1
Sim 1e 1 1 1 2

4.2 The equilibrium of the membrane

The membrane balanced configurations in the set of equilibria studied in
this Thesis are regulated by a strongly nonlinear fourth order ODE (3.41),
and it has been derived by means of the principle of the minimum energy
and the variational derivative as:

−A = γu′′′′ + 2γ′u′′ u′′′ +
1

2
γ′′u′′3 + ϕ′′u′′ +

2S u′′

(1 + u′)3
− S′

(1 + u′)2
= 0.

The solution of this governing differential equation at each discrete time
during the simulation evolution allows for finding the configuration that
minimize the energy and, hence, the specific profile sustaining the stress
acting along the lipid membrane. The nonlinear fourth-order Euler-Lagrange
equation is very hard to be solved directly, then in this Thesis two different
workarounds are taken into consideration: (a) a Gradient Flow (GF) scheme
and (b) a linear approximation around a known balanced configuration.
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4.2.1 The gradient flow scheme

The basic idea beyond a gradient flow scheme is looking for a (local) mini-
mum by following the negative direction suggested by the gradient in the
current configuration. By employing the properties of the inner product in
a specified space, a partial differential equation to be solved arises. A fake
running time is employed for computing the flow until a null values is reached,
i.e until relationship (3.41) is satisfied. This workaround allows for approach-
ing the sought configuration thanks to this fictitious flow. For numerical
purpose, the flow is assumed to get zero value whenever a certain tolerance
tol is reached, i.e. |ut| < tol. Two numerical schemes have been developed
depending on the norm used for computing the time derivative, i.e either
L2 or H2 norm. In literature, it has been shown [206, 207] that the latter
improves the velocity of convergence and the stability of the algorithm be-
cause the possible numerical error due to 4th order derivative approximation.

� Norm L2. In order to set up the the numerical scheme in L2 norm, a
weak characterization of the energy (3.38) is imposed, i.e.

〈ut , v〉L2 = −〈E ′[u] , v〉 (4.4)

where E [u] is the energy functional written in terms of the displacement
u(x, t), and E ′[u] denotes the variational derivation of the energy. Relation-
ship (4.4) can be also represented in integral form as:∫

Ω
u̇ v dx = −

∫
Ω

δE
δu

v dx ∀v ∈ L2 (4.5)

Integrating by part equation (4.5), the gradient flow relationship arises in
the form:

u̇ = −A′ (4.6)

Basically, the workaround strategy consists in solving the above partial dif-
ferential equation. For stability purpose, the numerical scheme is developed
by introducing as unknown also the second derivative with respect to the
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space of the displacement field, namely w(x), i.e. u′′ = w

u̇ = γ w′′ + 2γ′ww′ + 1
2γ
′′w3 + ϕ′′w +

2S(ξ)w

J3
− S′(ξ)

J2

(4.7)

A semi-implicit scheme is used by means of Finite Differences and all the
nonlinearities are removed by computing their values at the previous timestep.
By considering two subsequent timesteps, namely tn and tn+1, the following
numerical scheme was coded:

[
I K12

−D2 I

] (
Un+1

Wn+1

)
=

 Un −∆ t
S(1)
n

J2
n

0

 (4.8)

and

K12 =− I + ∆ t

[
− γ(0)

n D2 − 2γ(1)
n (D1 ·Wn)+

1

2
γ(2)
n W 2

n −ϕ(2)
n − 2

S(0)
n

J3
n

] (4.9)

where the subscripts j are referred to the timestep, the apex (j) denotes the
jth derivative of the function with respect to its own argument and ∆t is
the discretized fake-time increment. The energetic functions γ(J) and ϕ(J)

are evaluated at the time step tn, then γ
(0)
n denotes the vector containing

the values of γ(J) at each meshpoint by using the configuration Un; the
same notation holds for all the other functions.

� Norm H 2. As shown above, also the numerical scheme employing the
H2 norm is based on finding a week formulation, i.e.

〈ut , v〉H2 = −〈E ′[u] , v 〉 (4.10)

91



CHAPTER 4. NUMERICAL SIMULATIONS FOR GETTING BALANCED CONFIGURATIONS

or in integral form as:∫
Ω

(
c0 u̇ v + c1 u̇

′ v′ + c2 u̇
′′ v′′+

)
dx = −

∫
Ω

δE
δu

v dx ∀v ∈ H2 (4.11)

where c0, c1 and c2 are non-negative weights of the space derivative of the
rate of change. Again, integration by parts supplies the sought partial
differential equation to be solved as:

c0u̇− c1u̇
′′ + c2u̇

′′′′ = −A′ (4.12)

The opportunity to develop a H2-based gradient flow is due to the re-
quirement for CFL stability of the scheme, since in presence of forward
time-stepping the standard L2 norm requires very small timestep size. The
use of the H2 norm allows for arising a fourth order terms on the LHS of
(4.11) that in some sense cancels out the numerical instability due to fourth
order term on the RHS. Bearing in mind the position (4.7), the discrete
numerical scheme takes the form:[

c0 I K∗12

−D2 I

](
Un+1

Wn+1

)
=

[
c0 I −c1I + c2D2

0 0

](
Un
Wn

)
+

+ ∆t

 −S′n(x)

J2
n

0

 (4.13)

and

K∗12 = −c1 I + c2 D2 + ∆t
(
− γ(0)

n ID2 − 2(γ(1)
n D1) · I+

− 1

2
(γ(2)
n W 2

n) · I− ϕ(2)
n I− 2Sn

J3
n

I
) (4.14)

4.2.2 Linearized equation

Beside the gradient flow schemes shown above, a strategy employing a
linearized equation (3.41) can be very useful in terms of CPU cost and
simulation time. Indeed, the focus of the simulation is the time evolution
of the balanced configuration depending on the chemical processes related
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to cAMP diffusion. Under the hypothesis of the minimum of the energy, it
is possible to assume that the balanced geometrical configuration does not
change so much between two discrete timesteps, if they are close enough.
Let denote by Ω a balanced configuration at time t̄, and assume that the
difference with the next balanced configuration at time t, namely Ω, is small
enough. Then this difference can be interpreted as a perturbation, i.e.{

u = ū+ v
J = J̄ + ε

where, for a 1D case, J̄ = 1 + ū′, v = u− ū and ε = v′ = J − J̄ . Let recall
the fourth order equation (3.41) to be solved, i.e.

γu′′′′ + 2γ′u′′ u′′′ +
1

2
γ′′u′′3 + ϕ′′u′′ +

2S u′′

(1 + u′)3
− S′

(1 + u′)2
= 0,

focus the attention on the first term of the equation and linearize it:

γ(J)u′′′′ =

(
γ(J̄) +

∂γ(J)

∂J

∣∣∣
Ω

(J − J̄)

)
(ū+ v)′′′′

=
(
γ̄ + γ̄′ v′

) (
ū′′′′ + v′′′′

)
= γ̄ ū′′′′ + γ̄ v′′′′ + γ̄′ ū′′′′ v′ + γ̄′ v′ v′′′′

≈ γ̄ ū′′′′ + γ̄′ ū′′′′ v′ + γ̄ v′′′′

(4.15)

At the last line the approximation symbol (≈) is introduced because all the
higher-order (infinitesimal) terms do not give significant contributions ans
by dropping out all the nonlinearities. The same procedure can be applied
to the other terms, i.e.

γ′(J)u′′ u′′′ =
(
γ′(J̄) + γ′′(J̄) v′

)
(ū′′ + v′′) (ū′′′ + v′′′)

γ′′(J)u′′3 =
(
γ′′(J̄) + γ′′′(J̄) v′

) (
ū′′ + v′′

)3
ϕ′′(J)u′′ =

(
ϕ′′(J̄) + ϕ′′(J̄) v′

) (
ū′′ + v′′

)
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and

γ′(J)u′′ u′′′ ≈ γ̄′ ū′′ū′′′ + γ̄′′ū′′ū′′′v′ + γ̄′ ū′′′ v′′ + γ̄′ ū′′ v′′′ (4.17a)

γ′′(J)u′′3 ≈ γ̄′′ ū′′3 + γ̄′′′ ū′′3 v′ + 3γ̄′′ ū′′2 v′′ (4.17b)
ϕ′′(J)u′′ ≈ ū′′ϕ̄′′ + ϕ̄′′′ ū′′v′ + ϕ̄′′v′′ (4.17c)

where bar functions denote quantities evaluated in correspondence on the
previous balanced configuration Ω̄, i.e. γ

(
J̄
)

:= γ̄. Let now consider the
Taylor expansion around the configuration Ω of the last two terms:

u′′

(1 + u′)3
≈ u′′

(1 + u′)3

∣∣∣
Ω

+
∂

∂u′

[
u′′

(1 + u′)3

]
Ω̄0

(u′ − ū′)+

+
∂

∂u′′

[
u′′

(1 + u′)3

]
Ω

(u′′ − ū′′)

≈ ū′′

(1 + ū′)3
− 3 ū′′

(1 + ū′)4
· v′ + 1

(1 + ū′)3
· v′′

(4.18)

1

(1 + u′)2
≈ 1

(1 + u′)2

∣∣∣
Ω̄0

+
∂

∂u′

[
1

(1 + u′)2

]
Ω

(u′ − ū′)

≈ 1

(1 + ū′)2
− 2

(1 + ū′)3
· v′.

(4.19)

Finally, the (easier) linear fourth order BVP governing the balance configu-
ration is found by considering all the linear terms obtained above:

b4(x) v′′′′ + b3(x) v′′′ + b2(x) v′′ + b1(x) v′ + b0(x) v + q0(x) = 0

v(∂Ω) = 0

v′′(∂Ω) = 0,

(4.20)
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where:

b4(x) = γ̄, (4.21a)
b3(x) = 2(γ̄′ ū′′), (4.21b)

b2(x) = 2(γ̄′ ū′′′) +
1

2

(
3γ̄′′ ū′′2

)
+ ϕ̄′′ + 2S(x)

1

(1 + ū′)3
, (4.21c)

b1(x) = γ̄′ ū′′′′ + 2(γ̄′′ū′′ū′′′) +
1

2

(
γ̄′′′ ū′′3

)
+ ϕ̄′′′ ū′′+

− 2S(x)
3 ū′′

(1 + ū′)4
+ S′(x)

2

(1 + ū′)3
,

(4.21d)

b0(x) = 0 (4.21e)

q0(x) = γ̄ ū′′′′ + 2(γ̄′ ū′′ū′′′) +
1

2

(
γ̄′′ ū′′3

)
+ ū′′ϕ̄′′+

+

(
2S(x) ū′′

(1 + ū′)3
− S′(x)

(1 + ū′)2

)
.

(4.21f)

Note that the variable coefficients bi(x) are known whenever the configuration
Ω is chosen, and they depend on Ω only. Hence, they must be computed
at each timestep. The (hard) numerical solution of the nonlinear problem
(3.41) is then reduced to solve the (easy) linear problem (4.20). This result
implies that during the simulation only the following linear system must be
solved:

MU = Q (4.22)

where Q is a vector acting as free term, and the coefficient matrix M is
defined as follows:

M = B4 ·D4 + B3 ·D3 + B2 ·D2 + B1 ·D1, (4.23)

where Bi are matrices related to the space discretization regarding the varib-
ale coefficients bi(x), and Di are the Finite Differences operators introduced
at the begin of this Chapter.
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4.3 Initial Configuration

This Section is devoted to explain how each of the simulation run in the
sequel has been initialized. Independently of the kind of numerical sim-
ulation procedure employed, the initial configuration is computed at the
very beginning. At the initial step, namely t0 for all simulations, diffusive
phenomena are not already started, then the chemical stress is assumed to
be dependent on the initial amount of receptors along the membrane only;
simultaneously the mechanical stress at the edges due to the presence of the
surrounding is present (and it will remain constant during all the simulation).
The procedure here presented and summarized can be assumed as the Step 0
for each simulation, i.e. how to compute the initial configuration of the
membrane before that all the subsequent phenomena (receptor diffusion and
evolution towards mechanical equilibrium) occur.

Just before to start, temperature and adhesive properties are chosen:
in such a way, it is possible to fix stretching energy and compute all the
quantities of interest, defined accordingly to notation used by Coleman [31]:
the Maxwell stress ΣM (by means of the equal-area-rule), the place of the
maximum of local stress Jmax, the place of the minimum of local stress Jmin,
the local maximum of the local stress Σmax and the local minimum Σmin,
the places at which the Maxwell stress meets the local stress function τ(J),
namely J∗, Jm and J∗, respectively. The energetic functions ϕ(J) and γ(J)
are then made dimensionless by using a factor d = ΣM/10 and a rescaling
parameter h(p)

0 of the domain is introduced (typically of order
√

105) such
that

h0 = h
(r)
0 h

(p)
0 (4.24)

Dimensionless functions are used in order to get numerical stability, whereas
the reason of introducing a scale parameter h(p)

0 is to reduce the compu-
tational cost. The use of a value h(p)

0 =
√

105 implies that the considered
domain becomes ∼ 300 times smaller of the real one.

The presence of a constant mechanical stress induces the nucleation of
raft, as suggested by the local energy itself. This means that the profile
of the stretch J(x) at time t = 0 is assumed to be not flat. In order to
get this initial profile, a gradient flow scheme is used, using as starting
stretch configuration a function profile built in such a way a perturbation is
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applied to a constant value. This choice is driven by the will to move from
a unstable configuration towards natural raft formation. The perturbation,
namely µ(x), must satisfy the boundary conditions: therefore, both the first
derivative of µ(x) and the value of the function must be zero at the edge. A
function of the following form has been used:

µ(x) =
1

2Ap

(
1− cos

(
π np

x− xa
xb − xa

))
(4.25)

where Ap and np are parameters for governing the shape of the perturbation,
and xa and xb are the edges of the 1D-domain (e.g. xa = −L/2 and xb =
+L/2). It would be worth noting that 〈µ〉 6= 0. The starting configuration
Ji(x) from which run the GF scheme is then chosen as:

Ji(x) = Jm + µ(x) (4.26)

where Jm is the unstable intersection between the local stress and the
mechanical stress at the boundary. The second of relationship (3.39) allows
for computing the stretch at the edges in terms of displacement:

γ(u′)u′′′ +
1

2
γ′(u′)u′′2 + ϕ′(u′) = Σ +

S(ξ)

(1 + u′)2
,

or, in terms of stretch (for the 1D case) as:

γ(u′)J ′′ +
1

2
γ′(u′)J ′2 + ϕ′(u′) = Σ +

S(ξ)

J2
,

where the term Σ is to be intended as the prestress at edges, i.e. Σ = ΣP .
Bearing in mind that the boundary conditions impose J ′ = 0 (since the
hyperstress Γ = 0), the computation of the stress at edges is simplified as:

γ(J) J ′′ + ϕ′(J) =

[
ΣP +

S

J2

]
∂Ω

(4.27)

The stress is known, but an uncertainty remains around J ′′. It is easy
to recognize that J ′′(∂Ω) = µ′′(∂Ω). This observation is used for finding
this unknown value. Finally, the nonlinear equation (4.27) can be solved
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numerically at both edges, by assuming Jm as starting guess point. Whenever
the value of J at edges is computed, namely Ja and Jb respectively, the
starting stretch configuration Js(x) for the GF is computed by employing a
suitable function s(x) and the perturbation µ(x) itself:

s(x) = Ja + (Jb − Ja)
1

1 + exp
[
−B

(
2 x−X1
X2−X1

− 1
)] , (4.28a)

Js(x) = s(x) + µ(x). (4.28b)

It is worth noting that the assumption B ≥ 50 allows for having J ′s(∂Ω) ≈
J ′′s (∂Ω) ≈ 0. The starting displacement configuration Us(x) is instead
computed by recalling the relationship between stretch and displacement in
the 1D case:

Us(x) =

∫
(Js(x)− 1) dx+ C0, (4.29)

where the constant C0 is chosen such that u(xm) = 0, and xm = (x1 +x2)/2
is the middle point of the domain (typically xm = 0).

In Figure 4.3 initial configurations obtained by spanning values of the
initial (dimensionless) prestress ΣP from Smin = 4.73 to Smax = 15.27,
with increment of 1 unit of dimensionless stress, are shown. The initial
configurations are computed by employing a gradient flow scheme. A closer
analysis of the stretch profiles highlights that higher values of stress determine
an higher number of rafts (oscillations) in the same reference region Ω =
[−L

2 ,+
L
2 ]. The numerical statics about number of GF loops and time are

shown in Figure 4.4 as decimal logarithm. As average, 88789 loops (in 455
sec) are required for determining a configuration. A closer analysis of these
graphical statics show that there is a quite proportional ratio between time
consumed and number of loops, although it is possible to note that the code
required more time for each loop whenever the stress values is just below
the Maxwell stress (SP = 7-8)
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Figure 4.3: Initial configurations
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Figure 4.4: Number of GF loops (top), simulation time (middle) and time/loop
ratio (bottom) taken by the code for computing the initial configurations. Both
the quantities are expressed as logarithm.
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4.4 “Double Step” (Uncoupled) Simulations

The presence of receptor diffusion (and related cAMP prodution) has an
effect on the membrane in terms of stress. Indeed, the stress arises fed by
two contributions: (i) mechanical stress due to the presence of the other cells
in the well and (ii) chemical stress due to the diffusion of receptors. During
the simulation, the mechanical stress is assumed to be constant during all
the evolution, whereas the chemical stress is evolving together with the
diffusive phenomena. As first approach, the two physics mentioned above
live separately, i.e. the first step of the simulation is about the diffusion
of receptors, while the mechanical equilibrium is studied late in the second
step. For this reason, this kind of uncoupled numerical scheme is also called
double step simulation.

The simulations of diffusive phenomena run autonomously from the
mechanical balance, and they are driven by the choice of a proper forcing
term, defined as:

ŷ(x, t) := f(t) g(x) (4.30)

where the time and space influences come from different contribution. During
the development of the numerical scheme, several time-dependent function
f(t) have been taken into account. Despite of this, for the sake of illustration
in this Thesis only the result obtained by employing the form (3.20) (denoted
by type 1 ). The differences in the results of the simulations shown in the
sequel mainly lies in the choice of the space-component of the forcing term.
In this Section several kinds of space-depending forcing term are considered:
(A) sinusoidal shape higher at the center of the domain, (B) sinusoidal
shape higher at the center and the edges, (C) sinusoidal shape higher at the
edges, (D) sinusoidal with symmetric high concentration, (E) rectangular
shape higher at the center, (F) rectangular shape higher at the edges, (G-H)
random, as shown in Figure 4.5.

The work-flow procedure employed by each simulation can be summarized
as follows (note that as an illustrative example, during the description only
the results of Simulation 1A will be commented; 1A means that time-
dependent component of type “1” and space-dependent component of type
“A” were used for composing the forcing term):

1. Simulate the space- and time-depending diffusion of cAMP based on
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Figure 4.5: Normalized space-depending forcing term f̂(x).
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Figure 4.6: Double Step Simulation: discrete selected times.

the choice of ŷ(x, t), as shown in Figure 4.7. Whenever the cAMP
distribution is known, the receptor ratio X = ξ/ξ0 is computed by
means of (3.4), as shown in Figure 4.8(top). As expected, the ratio
is higher at the center of the domain in correspondence of the time
at which the maximum value of cAMP was measured during the
experiments.

2. Because of the very huge CPU time and computational cost for in-
tegrating the PDE at each discrete timestep by means of a gradient
flow scheme, only some discrete times at which solve the equation
governing the equilibrium are chosen. The simulation of the average
diffusion together with the experiments showed that after 30min the
measure of cAMP is approximately constant. For this reason, the
simulation run until t = 36min, in order to save computational time.
The chosen selected discrete times are reported as green points in
Figure 4.6, whereas, for the sake of illustration, the smaller red points
denote the instant selected to be displayed in the Figures that the
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Reader will meet in the sequel.

3. compute the variable chemical stress S(ξ) along the membrane due to
diffusion by means of (3.37) and its first derivative ∂S/∂x with respect
to the space. It is worth noting that also at the time t = 0, when
the diffusion is not started yet and ξ(x, 0) ≈ 0 almost everywhere,
a chemical stress can be found because of the presence of the term
−ξ0. It is worth bearing in mind that the total stress acting along the
membrane, shown in Figure 4.8(middle), can be computed as:

Σ = ΣP +
S(ξ)

J2
.

4. Whenever the chemical stress is known, as many Gradient Flows as
many are the discrete selected times run for computing the balanced
configurations. The starting configuration for each GF loop is taken
from the solution at the previous step. The solution allows for finding
both the displacement and the stretch fields along the membrane and,
consequently, also the height ratio changes H = h/h0 = J−1. As
example, the areal stretch is shown in Figure 4.8(bottom).

A closer analysis of the results show that at the beginning of the simulation
the stress acting on the membrane is constant, then spontaneously the
membrane presents both ordered and disordered phase of lipids, i.e. rafts.
This configuration is strictly connected with the specific form of the local
energy. The analysis of the results shows that after the diffusion starts, the
raft formation immediately follows the concentration of the stress.
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Figure 4.7: DS Simulations: diffusion over space and time.
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Figure 4.8: DS simulation 1A: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.9: DS simulation 1B: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.10: DS simulation 1C: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.11: DS simulation 1D: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.12: DS simulation 1E: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.13: DS simulation 1F: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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Figure 4.14: DS simulation 1G: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
112



4.4. “DOUBLE STEP” (UNCOUPLED) SIMULATIONS

t = 0 min
t = 4 min
t = 8 min
t = 15 min
t = 21 min
t = 36 min

1H

-1000 -500 0 500 1000

0.0

0.5

1.0

1.5

2.0

x/h0

X
=
ξ
/ξ

0

t = 0 min
t = 4 min
t = 8 min
t = 15 min
t = 21 min
t = 36 min

1H
Σ = Σ0+

S (ξ)

J2

-1000 -500 0 500 1000

0

5

10

15

20

x/h0

Σ

t = 0 min
t = 4 min
t = 8 min
t = 15 min
t = 21 min
t = 36 min

1H

-1000 -500 0 500 1000

1.0

1.1

1.2

1.3

x/h0

J(
x,
t)

Figure 4.15: DS simulation 1H: receptor ratio ξ/ξ0 (top), total stress along the
membrane Σ (middle) and stretch J (bottom) at discrete selected times.
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4.5 “Double update” (Coupled) Simulations

Despite the uncoupled numerical scheme employed in Section 4.4, the me-
chanical and chemical phenomena are intimately linked, since they influence
each other during the experimental evolution. As widely discussed in Section
3.4, this intimate coupling can be obtained by employing a forcing term of
kind (3.25) and the kinetic relationship (3.43). The latter is a simple ODE
that can be easily coded by means of the forward Euler Finite Difference:

ξn+1(I−∆tR) = ξn (4.31)

where ξn and ξn+1 represent the vectors of the discrete values of the receptor
density at the discrete times tn and tn+1, respectively, ∆t is the time
increment and R is a diagonal matrix whose terms depend on the discrete
values of the chemical potential µi at the meshpoints:

Ri,i =


kb

(
1− exp

[
µ

(i)
RL

KB T

])
if µ(i)

RL < 0

ku U
(

exp

[
− µ

(i)
RL

KB T

]
− 1

)
if µ(i)

RL > 0

(4.32)

Based on these considerations, a numerical scheme able to catch the mutual
influence of the two physics can be coded. In particular, it is possible to split
each timestep into two sub-steps: during the first substep a diffusion model
is employed for updating the value of the receptor density, while during the
second sub-step the receptor density is updated by considering the kinetic
relationship (3.43). This numerical scheme is also called “double update”
scheme because of the strategy just illustrated for the chemo-mechanical
coupling. The numerical procedure is coded as follows:

0. Initialize all the required quantities and load the initial configuration.

1. Do the first receptor density update, first by solving the diffusion
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equation in terms of cAMP:
St = ω11 (C − S) + ω12 (Z − S) + dξ Sxx + y(x, t)
Ct = ω21 (S − C)
Zt = ω31 (S − Z) + dζ Zxx

As first approximation, the diffusive coefficients are set to have the same
value, i.e. dξ = dζ and the guess values is roughly set to d = 104 nm2/s
from Gao [81]. The solution of the ODE system allows for computing
the updated value as:

ξ∗(x, t) =
S + C

αξ
.

2. Compute the chemical potential and check at which locations xi binding
will take place, i.e where µi < 0:

µ
RL(i)

KB T
=

µ0

KB T
+ log

(
ξ∗i
ξm

)
+
W(Ji)

KB T
< 0

3. Do the second receptor density update for computing ξ∗∗i by considering
the kinetic relationship (3.43).

4. Compute the chemical stress S(ξ∗∗) through (3.37):

S(ξ∗∗) = π ds q φ h0 (ξ∗∗ − ξ0)

5. Solve the Euler-Lagrange equation (3.39) by employing one of the
method exposed in Section 4.2. The favorite scheme uses the lineariza-
tion method because of the speed for getting the solution (indeed it
allows for obtaining results in a reasonable time). The solution in
terms of displacement U allows for computing the stretch J = 1 + U ′

and height ratio H = J−1.

6. Store all the variables and set them as starting values for the next
loop. Note that at this step also the statistical parameter β together
with its time derivative β,t are computed. The latter is evaluated by
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considering both the updates of the current step (i.e. both ξ∗ and ξ∗∗),
i.e.

βt =
1

ξ0

ξ∗∗ − ξ∗
∆t

Some coefficients have been introduced in the numerical code for enhancing
parametric analysis. Similarly to the average case, coefficients wij have been
introduced for modulating diffusion, while a coefficient dc is used as factor
in front of the diffusion coefficient, i.e:

ωij = wij ω
∗
ij (4.33a)

d = dc d
∗ (4.33b)

where the quantities on lhs denote the effective values used in the simulation,
while the apex ∗ represents guess values taken from literature. In the
numerical code, the specific activation energy for the compound receptor-
ligand, namely eRL, is always expressed per unit of KB, T , then it is always
a dimensionless term.

In order to understand the influence of each type of parameter employed
in the model, several series of simulations have been performed. After the
best set of parameter was found, this best set has been used as reference set
for comparing results obtained by performing parametric studies on varying
of numerical coefficients. Time after time, only one parameter has been
changed, while the others have maintained the values of the best set. The
following series of simulation have been considered:

� S00: the simulation with the best set of parameters (see Figure 4.16).

� Series A, focused on the influence of dc (see Figure 4.17).

� Series B, focused on the influence of eRL (see Figure 4.18).

� Series C, focused on the influence of w11 (see Figure 4.19).

� Series D, focused on the influence of w12 (see Figure 4.20).

� Series E, focused on the influence of w21 (see Figure 4.21).

� Series F, focused on the influence of w31 (see Figure 4.22).
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� Series G, focused on the influence of wc (see Figure 4.23).

� Series H, focused on the influence of SP (see Figure 4.24).

� Series I, focused on the influence of tm (see Figure 4.25).

� Series L, focused on the influence of tf (see Figure 4.26).

The series with the best set is denoted by S00, whereas the other are labeled
by progressive order of letters. Table 4.3 collects parameter sets used in each
simulation. For the sake of understanding, the varying value with respect to
the basic set is highlighted by blue color.

name SP nx tm tf m m eRL dc wc

S00 8 300 10 18 .95 .05 -6 2.3 [6 2 5 2]

SA1 8 300 10 18 .95 .05 -6 0.5 [6 2 5 2]
SA2 8 300 10 18 .95 .05 -6 1 [6 2 5 2]
SA3 8 300 10 18 .95 .05 -6 2 [6 2 5 2]
SA4 8 300 10 18 .95 .05 -6 5 [6 2 5 2]
SA5 8 300 10 18 .95 .05 -6 10 [6 2 5 2]

SB1 8 300 10 18 .95 .05 -3 2.3 [6 2 5 2]
SB2 8 300 10 18 .95 .05 +3 2.3 [6 2 5 2]
SB3 8 300 10 18 .95 .05 -4 2.3 [6 2 5 2]
SB4 8 300 10 18 .95 .05 -5 2.3 [6 2 5 2]
SB5 8 300 10 18 .95 .05 -7 2.3 [6 2 5 2]
SB6 8 300 10 18 .95 .05 -10 2.3 [6 2 5 2]

SC1 8 300 10 18 .95 .05 -6 2.3 [1 2 5 2]
SC2 8 300 10 18 .95 .05 -6 2.3 [10 2 5 2]
SC3 8 300 10 18 .95 .05 -6 2.3 [100 2 5 2]

SD1 8 300 10 18 .95 .05 -6 2.3 [6 1 5 2]
SD2 8 300 10 18 .95 .05 -6 2.3 [6 10 5 2]
SD3 8 300 10 18 .95 .05 -6 2.3 [6 100 5 2]

SE1 8 300 10 18 .95 .05 -6 2.3 [6 2 1 2]
SE2 8 300 10 18 .95 .05 -6 2.3 [6 2 10 2]
SE3 8 300 10 18 .95 .05 -6 2.3 [6 2 100 2]
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name SP nx tm tf m m eRL dc wc

SF1 8 300 10 18 .95 .05 -6 2.3 [6 2 5 1]
SF2 8 300 10 18 .95 .05 -6 2.3 [6 2 5 10]
SF3 8 300 10 18 .95 .05 -6 2.3 [6 2 5 100]

SG1 8 300 10 18 .95 .05 -6 2.3 [60 20 50 20]
SG2 8 300 10 18 .95 .05 -6 2.3 [.6 .2 .5 .2]

SH1 5 300 10 18 .95 .05 -6 2.3 [6 2 5 2]
SH2 11 300 10 18 .95 .05 -6 2.3 [6 2 5 2]
SH3 13 300 10 18 .95 .05 -6 2.3 [6 2 5 2]

SI1 8 300 1 18 .95 .05 -6 2.3 [6 2 5 2]
SI2 8 300 2.5 18 .95 .05 -6 2.3 [6 2 5 2]
SI3 8 300 5 18 .95 .05 -6 2.3 [6 2 5 2]

SL1 8 300 10 15 .95 .05 -6 2.3 [6 2 5 2]
SL2 8 300 10 25 .95 .05 -6 2.3 [6 2 5 2]
SL3 8 300 10 40 .95 .05 -6 2.3 [6 2 5 2]

Table 4.3: Parameters used for the Double Update (DU) Simulation.

Note that in Figures 4.16-4.24 the golden vertical lines represent tm and
tf , respectively. On the contrary, in Figure 4.25 the line representing tm
has the same color of the relative simulation (see legend) and tf is fixed by
a golden line, while in Figure 4.26 is the opposite, tm is highlighted by a
golden line and the color of tf changes with regard of the simulation (see
legend).

First of all, the influence of the parameter dc is studied in the Series A.
Figure 4.17 5 different values (0.5, 1, 2, 5, 10) are considered. The parameter
dc influences the solution of the diffusion at the first update step (step 1).
Increasing values determine a lower mobility of the receptors, hence relevant
binding effects can not be activated. It is worth noting that the downhill
of the average cAMP curve can be obtained only because of the presence
of binding. Indeed, the forcing term y(x, t) would be always positive. This
observation becomes more clear if one pays attention to Series B, which is
devoted to explore the role of the activation energy per unit of KB T , i.e.
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eRL. Positive values (bear in mind that µ0 = −eRL + 1) do not allow for
obtaining the typical downhill of the curve because there are not locations
at which the chemical potential reaches positive values. This means that the
density ratio is always increasing, then also the time derivative βt is always
positive. Indeed, a closer analysis of relationship (3.25), i.e.

y(x, t) = βt(x, t)F (t) + β(x, t)f(t),

shows that the only term able to make the forcing term negative (i.e. to be
a sink) is the time derivative β. This fact arises only whenever the chemical
potential becomes positive and the updating relationship (3.43) imposes
decreasing values of the receptor density ξ∗∗. This consideration appears
as an evidence whenever one has a look to Figure 4.18. A direct inspection
of the graphical results of this series shows that whenever eRL is positive
(SB2, red curve), the average time evolution of cAMP appears to be always
increasing; on the other hand, decreasing the values of activation energy (i.e.
increasing µ0) behaves as an advance in the starting of the downhill curve,
since the condition of a positive chemical potential is reached before.

The diffusion process is of course influenced by the dimension of the pools
and the flux between compartments, i.e. by the the coefficients ωij (defined
in (3.7)). This dependence is examined in Series C-G. As expected, the
results suggest the importance of two coefficients, ω11 and ω31. The first
couples the submembranal and cytosolic pool, whereas the latter is the one
coupling receptors and transporters. The graphical results highlight that
they are the more influential parameters of the purely diffusive process.

Beside these aspects, the value of the mechanical stress coming from the
surrounding has a very important role. This aspect is studied in Series H.
Following the results relative to the initial configuration (see Figure 4.3),
three values of dimensionless prestress ΣP have been chosen (5, 11, 13) in
such a way they represent very different initial configurations. The shape of
the membrane deeply influences the evolution of cAMP production, because
it is strictly connected to the chemical potential and the work done by lateral
pressure. The result in Figure 4.24 clearly shows the key role played by the
membrane profile in this kind of evolution. Probably, different values of
ligand concentration and different conditions of the surrounding environment
would impose different shapes and, in turn, different behavior and response.
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At last but not least, Series I-L focus the attention on the (chosen)
shape of the association/dissociation relationship (3.20). Indeed, the choice
of the characteristic time tm and tf represents the only arbitrary parameters
of the model. The result in Figure 4.25 suggests that smaller values of
tm prescribe an advanced in time of the peak of the average curve; such a
peak appears to be as greater as higher is the value of the chosen time tm,
probably because of its influence the diffusive phenomena. On the other
hand, in Figure 4.26 it is possible to observe that moving tf late has opposite
effects: the curves appear to be more flat with decreasing value of the peak,
reached at delayed time.
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Figure 4.16: Simulation DU-S00: average evolution.
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Figure 4.17: Simulation DU-Series A (influence of dc): average evolution.
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Figure 4.18: Simulation DU-Series B (influence of eRL): average evolution.
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Figure 4.19: Simulation DU-Series C (influence of w11): average evolution.
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Figure 4.20: Simulation DU-Series D (influence of w12): average evolution.
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Figure 4.21: Simulation DU-Series E (influence of w21): average evolution.
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Figure 4.22: Simulation DU-Series F (influence of w31): average evolution.
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Figure 4.23: Simulation DU-Series G (influence of wc): average evolution.
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Figure 4.24: Simulation DU-Series H (influence of SP): average evolution.
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Figure 4.25: Simulation DU-Series I (influence of tm): average evolution.
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Figure 4.26: Simulation DU-Series L (influence of tf): average evolution.
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The complete set of results regarding the simulation with the best set
of parameters, namely SIMS00, is shown in Figure 4.27-4.28. The results
show the strong influence of the membrane profile on the chemical potential
and, in turn, on all the related quantities. The evolution of the stress over
the time clearly shows that stress concentration arises in correspondence of
order phases, i.e. where h/h0 is higher and formation of rafts is observed.

Beside the results obtained by employing the best set of parameters, also
what has been obtained in all the other simulations is shown in the sequel.
The diffusive evolution over space and time is shown in Figure 4.29-4.36 as
contour plot. On the right side of each plot a legend explains the relative
scale. All the other quantities of interest are shown in Figures 4.37-4.45;
each of these figures is relative to a specific series of simulations, as indicated
in the legend, and relative to the discrete time t = 15min. Each set of
results is composed by the space dependence of cAMP, the overall stress
along the membrane (computed by taking into account both mechanical
and chemical stress), the arising values of areal stretch obtained by solving
the linearized equation for the equilibrium and the value of the chemical
potential driving the evolution.
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Figure 4.27: Results of simulation DU-SIM00 (1): contour plot of the diffusion
over space and time (top), values of cAMP (middle) and overall stress (bottom)
along the membrane at some selected discrete times.
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Figure 4.28: Results of simulation DU-SIM00 (1): displacement field U (top),
stretch field J = 1 +U ′ (middle) and values of chemical potential per unit of KB T
(bottom) along the membrane at some selected discrete times.
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Figure 4.29: Comparison of results about diffusion: simulations DU-A1, A2, A3,
A4
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Figure 4.30: Comparison of results about diffusion: simulations DU-A1, B1, B2,
B3
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Figure 4.31: Comparison of results about diffusion: simulations DU-B4, B5, B6,
C1
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Figure 4.32: Comparison of results about diffusion: simulations DU-C2, C3, D1,
D2
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Figure 4.33: Comparison of results about diffusion: simulations DU-D3, E1, E2,
E3
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Figure 4.34: Comparison of results about diffusion: simulations DU-G1, G2, H1,
H2
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Figure 4.35: Comparison of results about diffusion: simulations DU-H3, I1, I2, I3
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Figure 4.36: Comparison of results about diffusion: simulations DU-L1, L2, L3
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Figure 4.37: Simulation results Series A: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.38: Simulation results Series B: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.39: Simulation results Series C: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.

139



CHAPTER 4. NUMERICAL SIMULATIONS FOR GETTING BALANCED CONFIGURATIONS

-1000 -500 0 500 1000

0

50

100

150

200

250

300

cA
M
P

t = 15 min
DU-S00
DU-SD1
DU-SD2
DU-SD3

-1000 -500 0 500 1000

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H

-1000 -500 0 500 1000

0

5

10

15

Σ
*

-1000 -500 0 500 1000

-20

-15

-10

-5

0

5

x/h0

μ
/
K
bT

Figure 4.40: Simulation results Series D: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.41: Simulation results Series E: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.42: Simulation results Series F: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.43: Simulation results Series G: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.44: Simulation results Series H: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.45: Simulation results Series I: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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Figure 4.46: Simulation results Series L: cAMP, stress, stretch and chemical
potential along the membrane at t = 15min.
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4.6 Post-processing and Results

The aim of this Section is showing the postprocessing procedure applied for
getting the final results. The more interesting analysis is focused on the
exploration of the conformational field η(x, t). The goal of these numerical
simulations is exploring how the conformational field changes depending on
the quantities of interest, with special regard to the change in thickness.
The conformational field is computed by using the results of the simulation
through the constitutive equation (2.28b), i.e.

η =
1

HK
exp

(
−(1−H)(1−X)

C X

)
,

derived in Chapter 2. The field η(x, t) has been computed numerically at
discrete selected times employing both the double step and the double update
numerical scheme, and the results are shown in Figure 4.47 and Figure
4.48, respectively. For the sake of illustration, three different values of the
constitutive parameter C have been chosen accordingly to the parametric
analysis discussed in Chapter 2.3. At each instant, η can assume all the
values included between the solid and the dashed line of the same color
(i.e the two curves describing the field at a fixed instants). The former
curve denotes the conformational change in correspondence of the minimum
value of the geometrical parameter Kmin = 0.93 estimated in Chapter 2.1,
whereas the latter denotes the value of η related to the maximum value
Kmax = 2.59. The main result highlighted by these simulations is that the
maximum activity is focused in correspondence of the locations where rafts
take place.

Here we found, for the first time in literature at the best of the Writer’s
knowledge, an analytic model able to predict that the field η(x, t) is higher
where higher values of H is encountered, i.e. where formation of rafts
happens, confirming the findings by Kobilka [117] and Lefkovitz [127].

A similar analysis can be done by focusing the attention on the change
of the conformational field η(x, t) at a specific location of the membrane,
for instance the point on the axis of symmetry of the domain, i.e. x = 0,
shown in Figure 4.47 and Figure 4.48. As expected, the activity is driven
by the diffusion, and it is increasing until the maximum value of cAMP is
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Figure 4.47: Conformational change η(x, t) for fixed values of C (double step
simulation).
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Figure 4.48: Conformational change η(x, t) for fixed values of C (double update
simulation).
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measured, while it is decreasing after that point. Also in this case, three
values of C are considered. The experimental results are in agreement with
the experimental observations, suggesting that after some time, the receptor
activity would vanish. This result is as true as smaller is the assumed value
of C.
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Figure 4.49: Conformational change η(x̄, t) for fixed values of C at x̄ = 0: double
step (top) and double update scheme.

The analysis of the presented numerical results suggests that the more
reliable value to be chosen in order to get physically reasonable results in
terms of conformational changes η is C = 0.3. Based on this choice, in
Figure 4.50 the conformational field is shown at several locations along the
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membrane. The shape of the curves and the maximum reached value depend
on the geometrical configuration of the receptor domain, i.e. on K: dashed
curves denote the results obtained by means of Kmin, whereas the solid ones
are computed by using Kmax. Obviously, all the region bounded by these
two coupled curves (always drawn of the same color) represents possible
value for η. A closer analysis of the results shows thaa after a period of
about 40min, the conformational activity drop to zero, independently of
the studied location. This fact strengthens the choice of the parameter C.
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Figure 4.50: Conformational change η(x̄, t) at several fixed locations x̄ = 0.
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Chapter 5

Unstable behavior of lipid
membranes

Courtesy of the Authors, most of this Chapter is a copy of the following published
paper:

L. Deseri, P. Pollaci, M. Zingales, K. Dayal, “Fractional Hereditariness of
Lipid Membranes: Instabilities and Linearized Evolution”, Accepted for
publication on Journal of the Mechanical Behavior of Biomedical Materials (2016).

In this Chapter, lipid ordering phase changes arising in planar membrane bilay-
ers is investigated both accounting for elasticity alone and for effective viscoelastic
response of such assemblies. The mechanical response of such membranes is studied
by minimizing the Gibbs free energy which penalizes perturbations of the changes of
areal stretch and their gradients only [55]. As material instabilities arise whenever
areal stretches characterizing homogeneous configurations lie inside the spinoidal
zone of the free energy density, bifurcations from such configurations are shown to
occur as oscillatory perturbations of the in-plane displacement. A review about the
recently derived the energetics governing the thermo-chemo-mechanical behavior [4,
52, 55, 139] has been presented in Chapter 1, and it has been shown that such kind
of energetics represents a powerful tool for predicting the response of biological
membranes whenever specific conditions occur.

The main feature of this approach is that the energetics of the membrane
can be described through one single ingredient: the in-plane membrane stretching
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elasticity. This allows for describing the response with respect to local area changes
on the membrane mid-surface. The principle of the minimum of energy allows for
characterizing the governing equation of the mechanical response of the membrane.
Both profile and the boundary layer of the disordering-ordering phenomena, i.e the
change from a thicker domain (ordered phase) to a thinner one (disordered phase),
and their associated rigidities have been determined.

The main feature of the energy derived in [50] is the presence of two turning
points in the local stress governing the biological membrane behavior (see Figure
1.3). They are placed in a region characterized by material instabilities, i.e in a
spinoidal zone. Henceforth, whenever the external conditions are such that the areal
stretch, i.e. the reciprocal of the thinning, is enclosed in this region, the response
may produce a rapid change of the geometry, i.e material instabilities can occur.
In this work, we show that this occurrence is exhibited even when the in-plane
viscosity of the lipid membrane is accounted for. In this regard, the experimental
observations of lipid viscous behavior showed that the loss and storage moduli
are well described by power law functions [66]. This observation suggests that
the viscoelastic behavior of the biological membrane is properly described in the
framework of the Fractional Hereditariness. Indeed, upon introducing an enriched
kinematics accounting for in-plane shears and the exhibited in-plane power-law
viscosity in a parallel contribution [53], a dimension reduction procedure analog to
one shown in [52, 55] will be used for studying the fractional viscoelastic behavior
mentioned above.

5.1 The linearized mechanics

In this Section linearized equation of lipid membrane under the plane strain
geometry (1.20) will be derived, by starting from an homogeneous configuration
Ω̄, such that gx = J̄ and φ = φ̄ (hence φx = 0). In this regard let us denote with
ε the strain field perturbing uniformly the stretched configuration just described.
The elastic free energy density (1.9) for the membrane is then evaluated at the
perturbed configuration J = J̄ + ε, and takes the form:

ψ (ε, εx) = ϕ
(
J̄ + ε

)
+ α(J̄ + ε)||

(
J̄ + ε

)
x
||2

≈ ϕ(J̄) + ϕ′(J̄) ε+
ϕ′′(J̄)

2
ε2 + α(J̄) ||εx||2

(5.1)

where higher-order contributions in ε2 are neglected. Then the free energy takes
the form:

Ψ =

∫
Ω

ψ(ε, εx) dx, (5.2)
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where a domain Ω ∈ [−L/2, L/2] is considered and

ψ(ε, εx) = ϕ(J̄) + ϕ′(J̄) ε+
ϕ′′(J̄)

2
ε2 + α(J̄) ε2

x. (5.3)

As consequence of this choice, the (in-plane) displacement field is described through
a perturbation v such that u = ū+ v. Of course, ε(x) = vx(x).

It is assumed that the membrane is pulled by opposite tractions of magnitude
Σ (force per reference length) at the boundary, i.e on the edges x = ±L/2, although
the case in which the end displacements are controlled may be treated in an analog
way (see, e.g., [198]). Due to the presence of nonlocal terms εx, it is necessary to
introduce hyper-tractions Γ which perform work against displacement gradient vx
at the boundary [171]. Henceforth, the total energy E change in a neighborhood of
the homogeneously deformed configuration reads as follows:

E = BΨ−W(v, vx), (5.4)

where B denotes the width of the membrane patch and W is the external work of
the applied tractions Σ and hypertractions Γ (see Chapter 1) defined as follows:

W (v, vx) = B [Σ (ū+ v) + Γ (ūx + vx)]∂Ω , (5.5)

where ū = J̄x is the displacement corresponding to the homogeneously stretched
configuration from which bifurcations are sought. Upon substituting (5.1) and
(5.4) in (5.5) the total energy change takes the following form:

E = B

∫
Ω

(
ϕ+ ϕ′(J̄) vx +

ϕ′′(J̄)

2
v2
x + α(J̄) v2

xx

)
dx−B [Σ v + Γ vx]∂Ω + Ē . (5.6)

In the sequel all the quantities with the over-bar are referred to the homogeneously
stretched configuration, e.g. ϕ̄ := ϕ(J̄), ϕ̄′′ := ϕ′′(J̄) and ᾱ := α(J̄). The variation
of the energy is computed with respect to a reference value E (J̄) defined as follows:

Ē = B

∫
Ω

ϕ(J̄)dx− [Σ ū+ Γ ūx]∂Ω . (5.7)

In this Chapter, the unidimensional case only is considered, then the relationship
J = v′(x) holds. The resulting governing equation of the planar membrane is
obtained by imposing the stationarity of E , then by entering this result into the
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energetic functional the first variation reads as follows:

δE =

∫
Ω

(ϕ̄′ + ϕ̄′′v′) δv′ + (2ᾱ v′′)δv′′ − [Σδv + Γδv′]∂Ω . (5.8)

After expanding all contributions and integrating by part, the Euler-Lagrange
equation with its boundary condition reads as follows: 2ᾱ v′′′′ − ϕ̄′′ v′′ = 0 in Ω

either ϕ̄′′ v′ − 2ᾱ v′′′ = Σ− ϕ̄ or δv = 0 in ∂Ω
either 2ᾱ v′′ = Γ or δv′ = 0 in ∂Ω

(5.9)

It is worth noting that homogeneous configurations of the membranes from which
oscillatory perturbations could arise are not known. In order to find the values of J̄
characterizing such homogeneous states and to study the solution of the boundary
value problem governing bifurcated equilibria from such configurations, a parameter
ω is introduced as follows:

ω2 :=


+
ϕ̄′′

2ᾱ
if ϕ̄′′ > 0

− ϕ̄
′′

2ᾱ
if ϕ̄′′ < 0,

(5.10)

where:
ϕ̄′′

2ᾱ
=

12

h2
0

ϕ̄′′

ϕ̄′
J̄5, (5.11)

because of (1.10). Henceforth, equation (5.9) can be recast as:
v′′′′ ∓ ω2 v′′ = 0 in Ω

either ± ω2v′ − v′′′ =
Σ− ϕ̄

2ᾱ
or δv = 0 in ∂Ω

either 2ᾱ v′′ = Γ or δv′ = 0 in ∂Ω.

(5.12)

The choice of the boundary conditions above generate various cases. For the sake
of illustration, we choose the case in which the displacement is constrained and the
hypertractions are imposed at the boundary, i.e. v = 0 and 2ᾱ v′′ = Γ.

It is worth noting that the assumed value of ω2 affects the quality of the
solution, i.e. the onset of phase changes in the elastic membrane. In this regard
some sub-cases can be identified depending upon the location of the reference
condition associated to J̄ in the stretching energy function in Figure 1.3. Indeed,
because ϕ(J) has at most one stationary point J0 unless the lipid bilayer is at its
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transition temperature, inspection of Figure 1.3 shows that there are four values of
J besides J̄ to be accounted for, namely J∗ ≤ Jmax ≤ Jmin ≤ J∗. Here Jmax, Jmin
are stationarity points of τ(J) = ϕ′(J), i.e. ϕ(J) changes curvature there (namely
ϕ′′(J) changes sign, while J∗ and J∗ are the abscissas of the two points sharing
common tangent on ϕ(J). Two alternative situations may arise depending on the
sign of ϕ̄′′. This depends on whether or not the configuration J̄ is in the spinoidal
(unstable) zone of the local energy density ϕ(J).

The special form of the local stress τ(J) = ϕ′(J) shown in Figure 1.3 allows for
discriminating several cases around the spinodial-zone, i.e. where the function τ(J)
is an S-shaped function. Indeed, whenever J < J1 and J > J2 the equilibrium
can be reached for only one value of J , namely Σ = τ(J) (see (1.23)). On the
contrary, if J1 < J < J2 the configuration lies in the spinoidal-zone, and the
membrane can sustain the same value of the stress by assuming three different
configurations, i.e. the three intersection of the function τ(J) with the horizontal
straight line representing the values of the stress at the edges. Here, the only
parameter governing the membrane behavior is the areal-stretch J , henceforth, by
recalling the basic idea of the instabilities of structures, the system is stable if the
second derivative of the total potential energy (namely ϕ(J) for an homogeneous
configuration) is positive. Therefore, two different behaviors occur inside the
spinoidal zone: if J1 < J < Jmax or Jmin < J < J2 the second derivative of the
energy is positive ϕ′′(J) > 0 (i.e, the slope of τ(J) = ϕ′(J) is positive), and the
behavior is stable, otherwise Jmax < J < Jmin and the second derivative assumes
negative values, namely ϕ′′(J) < 0 and the slope of τ(J) = ϕ′(J) is negative,
determining the unstable behavior.

5.1.1 Unstable zone

Let now explore the case for which ϕ̄′′ < 0 in (5.10), which happens whenever J̄ is
located in the spinoidal zone, i.e. Jmax < J̄ < Jmin, corresponding to a negative
slope of the local stress, since τ(J) = ϕ′(J) (see Figure 1.3). Clearly, this represent
the only interesting case, because the presence of the homogeneously stretched
membrane1 lying in the unstable zone, can drive unexpected evolution phenomena.
The governing equation (5.12) takes the following form:

vxxxx + ω2vxx = 0, (5.13)

1At this stage, the knowledge on how the membrane got the current configuration
is not of interest. It is reasonable to assume that this configuration is imposed in a
experimental setup.
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which admits the integral

v(x) = A1 cos(ω x) +A2 sin(ω x) +A3 x+A4. (5.14)

We explore this solution for the following boundary conditions apply:

v
∣∣∣
∂Ω−

= 0 v
∣∣∣
∂Ω+

= 0 2ᾱv′′
∣∣∣
∂Ω−

= Γ̂L 2ᾱv′′
∣∣∣
∂Ω+

= Γ̂R (5.15)

where Γ̂R = Γ
∣∣∣
∂Ω+

and Γ̂L = Γ
∣∣∣
∂Ω−

. The values of the coefficients Ai in (5.14)
depend on the specified boundary conditions. For the sake of convenience the
positions c = cos(ω L/2) and s = sin(ω L/2) are assumed; henceforth, the BCs
assume the following form: A1 c−A2 s−A3

L

2
+A4 = 0

2ᾱω2 (−A1 c+A2 s) = Γ̂L
atx = −L

2 A1 c+A2 s+A3
L

2
+A4 = 0

2ᾱω2 (−A1 c−A2 s) = Γ̂R
atx = +

L

2

x = −L/2 x = +L/2

A1 c−A2 s−A3
L

2
+A4 = 0 A1 c+A2 s+A3

L

2
+A4 = 0

2ᾱω2 (−A1 c+A2 s) = Γ̂L 2ᾱω2 (−A1 c−A2 s) = Γ̂R

In this example it is assumed Γ̂L = Γ̂R = Γ̂. These assumptions lead to a simplified
matrix system:


0 s L

2 0

c 0 0 1

0 s 0 0

−2ᾱ ω2c 0 0 0




A1

A2

A3

A4

 =


0

0

0

Γ̂

 , (5.16)

whose determinant is ᾱ c s Lω2. We first study the nontrivial modes (??) of the
system, i.e. we explore the roots of the following equation

ᾱ c s Lω2 = 0. (5.17)
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It is worth noting that, because of the definition (1.10) and 1 < Jmax < J̄ < Jmin,
we have ᾱ > 0 for all J̄ > 1. Then, the orthogonality of the trigonometric func-
tions imposes that the equation is satisfied if either for c = cos(ω L/2) = 0 or for
s = sin(ω L/2) = 0. Henceforth, we are left to examine two subcases.

Case 1. Let us consider the case s = 0 and c = ±1. This condition implies
that:

sin

(
ω
L

2

)
= 0 =⇒ ω

L

2
= nπ =⇒ ω =

2nπ

L
(5.18)

and a closer analysis of (5.18) shows that this case occurs whenever the following
relationship holds:

ϕ̄′′

ϕ̄′
J̄5 = −n

2π2

3

(
h0

L

)2

. (5.19)

The thinness of the membrane here enters with the ratio (h0/L)
2 which is normally

smaller than 10−8. A large but finite number n of oscillation can certainly arise
from (5.19) for J such that ϕ̄′′ → 0−, i.e. right after change on convexity of
the local part of the strain energy density. The solution of the system allows for
deducing the values of amplitude of the nth mode:

0 0 L
2 0

±1 0 0 1

0 0 0 0

∓2ᾱ ω2 0 0 0




A1

A2

A3

A4

 =


0

0

0

Γ̂


then 

A1 = ∓ Γ̂

2ᾱ ω2

A3 = 0

A4 = ∓A1

.

Hence, the buckled mode n has the following form:

vn(x) = ± Γ̂

8 ᾱ n2 π2

[
cos
(

2nπ
x

L

)
− 1
]

+ +A2 sin
(

2nπ
x

L

)
. (5.20)

It is worth noting that even if the hyperstress Γ̂ at the boundary would vanish,
equation (5.20) assures that a bifurcation always occurs with a bifurcated mode
vn = A2 sin

(
2nπ xL

)
.

It is natural to ask if there is a reduction of energy by nucleating oscillations.
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The amount of the extra energy for getting the final configuration from J̄ is
now computed. The nth buckled mode obtained in the elastic case (5.20) can be
expanded as follows:

v =
ΓL2

8π2ᾱ
[1− cos (ωx)] +A2 sin (ωx)

v′ =
ΓL2

8π2ᾱ
ω sin (ωx) +A2 ω cos (ωx)

v′′ =
ΓL2

8π2ᾱ
ω2 cos (ωx)−A2 ω

2 sin (ωx)

(5.21)

Because the solution v(x) depends on the trigonometric functions, for the sake of
discussion two contributions related to the cosine and sine components, respectively,
are distinguished , i.e

v = vc + vs. (5.22)

The energy stored by the membrane for getting the final configuration from the
reference one can be then decomposed as follows:

E =

∫
Ω

ϕ̄′ v′(x) +
ϕ̄′′

2
v′2 + ᾱ v′′2

=

∫
Ω

ϕ̄′ (v′c + v′s) +
ϕ̄′′

2
(v′c + v′s)

2
+ ᾱ (v′′c + v′′s )

2

=

∫
Ω

(
ϕ̄′v′c +

ϕ̄′′

2
v′2c + ᾱv′′c

)
+

(
ϕ̄′v′s +

ϕ̄′′

2
v′2s + ᾱv′′s

)
+

+ 2

(
ϕ̄′′

2
(v′cv

′
s) + ᾱ (v′′c v

′′
s )

)
= Es + Ec + Ecs

(5.23)

where the following relationships were assumed:

Ec =

∫
Ω

ϕ̄′v′c +
ϕ̄′′

2
v′2c + ᾱ v′′c , (5.24a)

Es =

∫
Ω

ϕ̄′v′s +
ϕ̄′′

2
v′2s + ᾱv ′′s , (5.24b)

Ecs = 2

∫
Ω

ϕ̄′′

2
(v′cv

′
s) + ᾱ (v′′c v

′′
s ) . (5.24c)

Bearing in mind that in this case ω2 = −ϕ̄′′/2ᾱ, it is possible to compute the
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energy term by term:

Ec =

∫
Ω

ϕ̄′ v′c +
ϕ̄′′

2
v′2c + ᾱv′′2c

= ω
ΓL2

8π2ᾱ

∫
Ω

ϕ̄′ sin
(
nπ

x

L

)
dx+

+ ω2

(
ΓL2

8π2ᾱ

)2 ∫
Ω

[
ϕ̄′′

2
sin
(
nπ

x

L

)2

+ ᾱ ω2 cos
(
nπ

x

L

)2
]
dx

= ω2

(
ΓL2

8π2ᾱ

)2
L

2
ᾱ

(
ϕ̄′′

2ᾱ
+ ω2

)
= 0

and analogously

Es =

∫
Ω

ϕ̄′ v′s +
ϕ̄′′

2
v′2s + ᾱv′′2s

= ωA2

∫
Ω

ϕ̄′ cos
(
nπ

x

L

)
dx+

+ ω2A2
2

∫
Ω

[
ϕ̄′′

2
cos
(
nπ

x

L

)2

+ ᾱ ω2 sin
(
nπ

x

L

)2
]
dx

= ω2A2
2

L

2
ᾱ

(
ϕ̄′′

2ᾱ
+ ω2

)
= 0,

Finally,

Ecs =

∫
Ω

2

(
ϕ̄′′

2
(v′cv

′
s) + ᾱ (v′′c v

′′
s )

)
= 0

because of the orthogonality of the trigonometric functions. Indeed v′s v′c ∝ v′′s v′′c ∝
sin (ω̂ x) cos (ω̂ x), and since they are orthogonal functions, the integral over a
period is zero.

This result turns out that it is identically zero. This fact suggests that all the
buckled configuration from J̄ posses the same quantity of energy and then such
buckled configuration do have the same likelihood to occur.

Case 2. Let us now consider the case s = ±1 and c = 0. This condition
implies that:

cos

(
ω
L

2

)
= 0 =⇒ ω =

(1 + 2n)π

L
(5.25)
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and
ϕ̄′′

ϕ̄′
J̄5 = − (1 + 2n)2π2

12

(
h0

L

)2

, (5.26)

which has certainly roots for J̄ such that ϕ̄′′ → 0− for the reason explained in
case 1. As usual, the coefficients of the mode are found by imposing the boundary
conditions. We find A2 = A3 = A4 = 0. Hence, in this case a solution is possible if
and only if Γ̂ = 0. It follows that the buckled modes take the forms:

vn(x) = A1 cos(ω x) = A1 cos
(

(1 + 2n)π
x

L

)
. (5.27)

It is easy to recognize that also in this case the extra amount of energy needed to
bifurcate from J̄ is equal to 0.

5.1.2 Stable zone

Whenever the configuration of the membrane J̄ is located outside of the spinoidal
zone, i.e ϕ̄′′ > 0 and either 1 < J̄ < Jmax or J̄ > Jmin, the governing equation
assumes the following form:

v′′′′ − ω2 v′′ = 0. (5.28)

In such a case, the profile of the perturbation becomes:

v(x) = A1 cosh(ω x) +A2 sinh(ω x) +A3 x+A4, (5.29)

where the coefficients Ai, as in the previous analysis, depend of the specific boundary
conditions.

5.1.3 Singular points

Before proceeding further some additional discussion may be withdrawn from the
analysis of the singular points J̄ = Jmax and J̄ = Jmin. In both cases, the first
derivative of the local stress is zero, i.e ϕ̄′′ = 0: then the case ω = 0 occurs.
Henceforth, the governing equation appears to be simpler than in the other cases:
v′′′′ = 0, whose solution reads:

v(x) = A0 +A1 x+A2 x
2 +A3 x

3. (5.30)
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As an example, let us consider boundary conditions (5.15) with Γ̂R = Γ̂L = Γ̂,
which yields the following values for the constants:

A0 = − Γ̂L2

16 ᾱ
A1 = 0 A2 =

Γ̂

4 ᾱ
A3 = 0. (5.31)

Of course no bifurcated perturbations would occur in the absence of hyperstress at
the boundary.

5.1.4 Numerical Examples
Let consider a planar lipid membrane at the fixed temperature T ∼ 30◦ (see Figure
1.3). The solution of the problem in (5.12) depends on the sign of the ratio ϕ̄′′/ϕ̄′,
appearing in (5.11) and (5.26). We recall that bifurcations occur if ϕ̄′′ < 0, i.e.
whenever the membrane stretch J̄ lies in the unstable part of the spinoidal zone.
This circumstance is highlighted in Figure 5.1 as a grey region under the orange
curve which, as expected, is contained in the spinoidal zone between the two turning
points for the convexity of ϕ, i.e. in the range [Jmax, Jmin].

JL JR

J*

J*

Ji

Jn

Jmax
Jmin

n
_2 π2

3
h0
2

L2

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

-100

-50

0

50

100

J

-
J5
×

φ
ʹʹ(
J)/
φ
ʹ(J
)

Figure 5.1: Plot of the ratio ϕ̄′′/ϕ̄′ as function of the homogeneous configuration
J̄ whenever n = 8830, h0 = 4.55nm and L = 10µm (see (5.19)). Courtesy of [58].

Figure 5.1 shows that for each chosen value of n, representing the index mode
or “wave number”, there exist two admissible solutions for (5.19). One of such
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values of J̄ lies on the left and the other one on the right branch of the curve with
respect to Jn the location where the horizontal tangent is found. Moreover, this
is the only location where a unique value of n is possible, i.e JR = JL = Jn. The
wave number related to this location is labelled nmax, because (5.19) ensures that
greater values of n do not allow the presence of bifurcated solutions. This value
can be computed as follows:

nmax =
1

π

(
L

h0

)√
−3

ϕ̄′′J̄5

ϕ̄′

∣∣∣∣∣
J̄=Jn

. (5.32)

The energy used for this numerical example leads to Jn = 1.2235 and nmax = 10.832.
Each choice of n, therefore, allows for finding two configurations J̄ from which a
bifurcated mode can be nucleated. Such values are found numerically by choosing
values of n from 0 up to nmax and computing the intersection J̄L and J̄R by means
of equation (5.19); The results are shown in Figure 5.2. The lower blue curve

Jn

JR
JL

0 2000 4000 6000 8000 10000

1.05

1.10

1.15

1.20

1.25

1.30

n

J

Figure 5.2: Locus of the left and right intersections as stretched balanced config-
urations, i.e. admissible solutions of equation (5.19). Courtesy of [58].

represents the intersection with the left branch of the curve in Figure 5.1, whereas
the red curve is the intersection with the right branch. Obviously, these two curves
share a common point at J = Jn. In order to show the behavior of the system,
a value n = 10 is chosen for the sake of representation, then the stretch J and
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the stress Σ related to this specific bifurcated configuration are computed through
(1.23). Two cases are considered for illustrative purpose only, in order to show the
behavior of our numerical solution: as first case, the arbitrary constant A2 is set to
0 and the hyperstress is chosen such that Γ̂ = α(J̄)

50L , whereas in the second example
a case with a null hyperstress, Γ̂ = 0, is considered and the constant A2 is chosen
as A2 = 1

50
L

2π n . Both the results are shown in Figure 5.3.

5.2 The mechanics of fractional order lipid bilayers

Available experimental data [36, 66, 94] show that lipid bilayers present a time-
dependent behavior depending on the in-plane anomalous viscous behavior exhibited
by various lipid molecules at different temperatures.

The aim of this Section is to introduce the governing equations of a Fractional
Hereditariness capturing the evolution of the perturbations on the ordered/disor-
dered phase transition shown by lipid bilayers. Such perturbation are predicted to
occur in the lipid membrane starting from a homogenously squeezed configuration.

The problem is formulated by seeking for the values of the areal stretches for
which unknown time evolving bifurcated configurations could occur. In this regard,
in full analogy with the elastic case, a suitable generalization of the variational
principle is invoked and the variational principle is employed. Here, the Gibbs free
energy density is taken from [43], where a rheological model yields the Staverman-
Schartzl free energy [39, 40, 46, 47] as the one for power-law materials.

The experimental data about lipid membrane hereditariness that can be found
in literature [94] show that the case of a purely elastic membrane represents the
asymptotic condition of the mechanics of the lipid bilayer under a constant uniform
stress. However, this circumstance is very seldom present in the physiological con-
ditions of living cells, for which intracellular and/or extracellular fluids contributes
to change the areal membrane stretch several times during cell lifetimes. Therefore
the membrane stress at a certain observation time t may be much higher than the
value evaluated in the non-linear elasticity framework, it may evolve into breakage
of the cell membrane or to lipid phase modification towards ceramid phase and
then to cell apoptosys [36].

5.2.1 The physical description of lipid membrane hereditari-
ness

The mechanics of lipid bilayers forming artificial and natural cytoplasmatic mem-
branes presents a significative hereditary behavior [66]. Storage and loss moduli
G
′
(p), G

′′
(p) of lipid membrane depend on the type of lipids (in the membrane e.g.
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Figure 5.3: Buckled mode 1 : A2 = 0 and Γ̂ = α(J̄)
50L . Buckled mode 2 : A2 = 1
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L
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and Γ̂ = 0. Courtesy of [58].
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phosphatidylcholine (PODC), the sphyingomyelin (SM) based lipid chains) and on
the melting temperatures of such mixtures [66]. The morphology of the lipids in
the bilayers influence their viscosity. It may be either liquid-ordered or gel-phase,
for temperatures over or below the melting temperatures of the PODC. For SM the
liquid-disordered or the solid phase (ceramide) may be involved depending upon
the temperature of the membrane.

Several experimental observations on lipid mono-and-bilayer [94] showed that
the storage and loss modulus, namely G

′
(p) and G

′′
(p), are proportional to the

frequency through a power-law of frational order, i.e G
′
(p) ∝ pβ and G

′′
(p) ∝ pβ+1,

where the exponent β depends on temperature and specific chemical composition
of the biological structure.

Henceforth, the use of Maxwell rheological elements to model storage and
loss moduli of the material does not provide an suitable representation for the
behavior of lipid membrane. This is because Maxwell models yield G

′
(p) ∝ p and

G
′′
(p) ∝ p2, which are not observed in experimental rheology of such membranes

[66].
In this context appropriate models of the hereditary behavior of the lipid

membranes must contain fractional-order operators models, in which creep and
relaxation are described as power-laws of real-order, such that J(t) ∝ tβ and
G(t) ∝ t−β , respectively. The time evolution of small perturbations arising in
lipid bilayers from homogeneous configurations describing uniform squeezing is
here modeled by making use of the Boltzmann-Volterra superposition integral. In
particular, this allows for measuring the stress evolution at a generic location x
depending on an applied strain history ε(x, t) as follows:

σ(x, t) =
Cβ

Γ[1− β]

∫ t

−∞
(t− τ)

−β
ε̇(x, τ) dτ ; (5.33)

the right-hand side of this expression is related to the Caputo fractional-order
derivative [26, 115, 133, 169, 182], i.e.:

Dβt f(t) =
1

Γ(β)

∫ t

−∞
(t− τ)−β ḟ(x, τ)dτ. (5.34)

A rheological model known as springpot element (after Scott-Blair [186]) is asso-
ciated to (5.34). This represents an intermediate behavior among a linear elastic
spring and a viscous dashpot that are obtained for β = 0 and β = 1, respectively.

In the next section the free energy function obtained in [43] for power-law
hereditary materials is utilized. Such a free energy will be further specialized to
yield the rheological description of the springpot element to handle lipid membrane
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hereditariness.

5.2.2 The free energy of hereditary lipid bilayers

The governing equations for the evolution of small perturbations of homogeneous
configuration of hereditary and planar lipid membranes is derived by employing
the principle of the minimum of energy.

To this aim it is worth bearing in mind that the quadratic form of the free
energy in (5.3) contains both a local perturbative term, namely ε(x t), and a non-
local contribution in term of a first order gradient εx(x, t). As we observe that the
free energy function of the purely elastic case is a function of the state variables
ε(x) and εx(x), the free energy function in presence of material hereditariness
may be assumed as the sum of different contributions related to the local and the
non-local state variables (see e.g. [21, 39, 40, 44, 46, 47]).

As in the elastic case, the viscoelastic free energy has a local and a nonlocal
part. There, the power at which stress and hyperstress (which performs work
against changes of the displacement gradient ux, see [55] for more details) relax
could be different, as diffusion mechanisms may occur at different average speed
depending on whether or nor they arise in a boundary layer between different phase
or in a given phase.

By looking at purely (nonlinear) elastic contributions, in the previous section
the phase transition phenomena describing areal changes of lipid membranes were
obtained [52, 55]. Time evolution of small perturbation of such configurations are
inferred to be modulated by the local and nonlocal stresses σL(x, t) and σN(x, t)
respectively, i.e.

σL(x, t) =

∫ t

0

GL(t− τ)ε̇(x, τ) dτ, (5.35a)

σN(x, t) =

∫ t

0

GN(t− τ)ε̇x(x, τ) dτ, (5.35b)

where GL and GN are the local and nonlocal relaxation moduli (relative to the
configuration J̄), respectively, defined as follows:

GL(t) := ϕ̄′′ + fL(t),

GN(t) := 2ᾱ+ fN(t).

Here the following relationship must hold

lim
t→∞

fL(t) = lim
t→∞

fN(t) = 0, (5.37)

168



5.2. THE MECHANICS OF FRACTIONAL ORDER LIPID BILAYERS

as the elastic case has to be retrieved as limit. The specific dependence of the
functions fL(t) and fN(t) on time depends on the experimental observation of
the evolution of the ordered-disordered phase as well as of their transition zone.
Motivated by the experimental evidence discussed in the previous Section, in this
work a power law relaxation function are used for the description of the decay
behavior of both local and nonlocal evolution. In particular, two different decay
laws for describing both the local and the nonlocal contribution are assumed. Thus
the following relaxation moduli, based on [43], are considered:

GL(t) := ϕ̄′′ + CL t
−λ, (5.38a)

GN(t) := 2ᾱ+ CN t
−ν , (5.38b)

where CL and CN represent generalized moduli of the local and nonlocal relaxations,
λ and ν are the decay exponents of the relaxations (for now chosen in the range
[0, 1]). It is worth nothing that the contributions ϕ̄′′ and 2ᾱ in (5.38) come from the
third and fourth terms of the linearized functional in (5.6). The use of an additive
relaxation form in (5.38) corresponds to the use of a fractional order rheological
element introduced in (5.34).

After these considerations, the free energy function Ψ(x, t) can be thought as
composed by two distinguished contributions:

Ψ(x, t) = ΨDZ(x, t) + ΨV (x, t), (5.39)

where ΨDZ(x, t) is defined by (5.2) and represents the elastic contribution to
the free energy at equilibrium (see [39]), while ΨV (x, t) denotes the free energy
associated to the hereditary response of the membrane. This has been shown [43]
to be the Staverman-Schartzl energy [21, 39, 40]. This result and equations (5.35),
(5.38) suggest that Ψ(x, t) may be written also as:

Ψ(x, t) = ΨL(ε(x, t)) + ΨN(εx(x, t)), (5.40)

where a local and nonlocal term are accounted for. The former depends on the
stretch itself, while the latter on its gradient. Following [21, 43] we introduce a
kernel K(◦, ◦) as a symmetric function, i.e K(◦, ◦) ≥ 0 and K(τ1, τ2) = K(τ2, τ1).
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The contribution above can finally be written as follows:

ΨL(x, t) =
1

2
KL(0, 0)ε(x, t)2

+ ε(x, t)

∫ t

−∞
K̇L(0, t− τ)ε(x, τ)dτ

+
1

2

∫ t

−∞

∫ t

−∞
K̈L(t− τ1, t− τ2)ε(x, τ1)ε(x, τ2)dτ1dτ2,

(5.41a)

ΨN(x, t) =
1

2
KN(0, 0)εx(x, t)2

+ εx(x, t)

∫ t

−∞
K̇N(0, t− τ)εx(x, τ)dτ +

+
1

2

∫ t

−∞

∫ t

−∞
K̈N(t− τ1, t− τ2)εx(x, τ1)εx(x, τ2)dτ1dτ2,

(5.41b)

where

KL(t, 0) := ϕ̄′′ +
CL

Γ(1− λ)
(t+ δ)−λ = GδL(t), (5.42a)

KN(t, 0) := 2ᾱ+
CN

Γ(1− ν)
(t+ δ)−ν = GδN(t), (5.42b)

where δ is a preloading time. Of course KL(0, t) = KL(t, 0) and KN(0, t) = KN(t, 0).
It is worth noting that the form of equation (5.41) comes from the definition of
the Staverman-Schartzl energy [21, 39, 43]. This result, together with (5.38) and
the considerations addressed in equations (17-22) by Deseri et al. [43], allows for
writing down the final form of the free energy as:

ΨL(x, t) =
1

2
GδL(0)ε2(x, t) + ε(x, t)

∫ t

−∞
ĠδL(t− τ)ε(x, τ) dτ+

+
1

2

∫ t

−∞

∫ t

−∞
G̈δL(2t− τ1 − τ2)ε(x, τ1)ε(x, τ2)dτ1 dτ2,

(5.43a)

ΨN(x, t) =
1

2
GδN(0)ε2

x(x, t) + εx(x, t)

∫ t

−∞
ĠδN(t− τ)εx(x, τ) dτ

+
1

2

∫ t

−∞

∫ t

−∞
G̈δN(2t− τ1 − τ2)εx(x, τ1)εx(x, τ2)dτ1 dτ2,

(5.43b)
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where ε(x, t) = vx(x, t), where v(x, t) represents the perturbation of the configura-
tion of the lipid membranes at the location x and time t. Finally, the total (Gibbs)
free energy related to the perturbation v(x, t) can be computed as:

E =

∫ t2

t1

(∫
Ω

[ΨL(x, t) + ΨN(x, t)] dx

)
dt− [Σ v(x, t) + Γ vx(x, t)]∂Ω , (5.44)

where t1 and t2 > t1 are two subsequent times during which the time evolution of
the membrane is investigated.

5.3 Linearized evolution of lipid membranes

The governing equation for the evolution of lipid membrane is sought for v by
stationarity of the functional E in the class of syncronous variations, i.e. δv(◦, t1) =
δv(◦, t2). The computation of the first variation gives:

δEL =

∫ t2

t1

(∫
Ω

(
GδL(0)λ+

∫ t

−∞
ĠδL(t− τ)λ(τ)dτ

)
δλ

)
dx dt (5.45a)

δEN =

∫ t2

t1

(∫
Ω

(
GδN(0)λ′ +

∫ t

−∞
ĠδN(t− τ)λ′(τ)dτ

)
δλ′
)

dx dt (5.45b)

Equations (5.45) can be rewritten bearing in mind the Volterra-type integral in
the following form:

δEL =

∫
Ω

(∫ t

−∞
GδL(t− τ)λ̇(τ)dτ

)
δλ dx (5.46a)

δEN =

∫
Ω

(∫ t

−∞
GδN(t− τ)λ̇′(τ)dτ

)
δλ′ dx (5.46b)

and, after proper substitutions:

δEL =

∫
Ω

(
ϕ̄′′ [λ(x, t)− λ0] + CLDλt λ(x, t)

)
δλ dx (5.47a)

δEN =

∫
Ω

(2ᾱ [λ′(x, t)− λ′0] + CNDνt λ′(x, t)) δλ′ dx (5.47b)
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Henceforth:

δE =

∫
Ω

([
ϕ̄′′ (v′ − λ0) + CLDλt v′

]
δv′ + [2ᾱ (v′′ − λ′0) + CNDνt v′′] δv′′

)
δx+

− [Σ δv + Γ δv′]∂Ω

Finally, the Euler-Lagrange equation takes the form:

2ᾱ
∂4

∂x4
(v + C∗NDνt v)− ϕ̄′′ ∂

2

∂x2

(
v + C∗LDλt v

)
= y(x), (5.48)

where C∗L = CL/ϕ̄
′′ and C∗N = CN/2ᾱ represent the normalized local and nonlocal

moduli of the membrane, respectively, and the forcing term y(x) is defined as
follows:

y(x) = 2ᾱ
∂4 v0

∂x4
− ϕ̄′′ ∂

2 v0

∂x2
. (5.49)

Here v0(x) represents an initial perturbation displacement that can be induced on
the membrane at the beginning of the observation time, and it can be thought
as the initial configuration before the relaxation.The governing equation (5.48) is
coupled with the following boundary conditions:

either
ϕ̄′′
(
v′ + C̄LDλt v′

)
− 2ᾱ

(
v′′′ + C̄NDνt v′′′

)
= Σ + Σ0

or
δv = 0

(5.50a)


either
2ᾱ
(
v′′ + C̄NDνt v′′

)
= Γ + 2ᾱ ε′0

or
δv′ = 0

(5.50b)

It is worth nothing that the term Σ0 := ϕ̄′′ε0+2 ᾱ ε′′0 can be interpreted as the initial
stress acting on the membrane to hold it in the initially perturbed configuration.
Of course, if no initial perturbation is induced on the membrane, equation (5.48)
and its boundary conditions lead to an eigenvalue problem, examined in Section
5.3.3 in the sequel.

The structure of the linear partial differential equation (5.48) allows for separa-
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tion of variables for the perturbation v(x, t), i.e.:

v(x, t) = f(x) q(t), (5.51)

where q(t) describes the time change of the perturbation or “transfer function”, and
f(x) describes the shape of the mode. Henceforth, the governing equation can be
written in the following form:

2ᾱ

ϕ̄′′
f iv(x)

f ′′(x)
=
q(t) + C∗LDλt q(t)
q(t) + C∗N Dνt q(t)

= k2, (5.52)

where k2 is a constant to be determined. In this context, relationship (5.10) holds.
In this work we are interested in exploring conditions from which oscillations can
occur, henceforth only the case ϕ̄′′ < 0 is studied. Then:

− 1

ω2

f iv(x)

f ′′(x)
=
q(t) + C∗LDλt q(t)
q(t) + C∗N Dνt q(t)

= k2, (5.53)

as oscillatory perturbations are explored. In analogy with (5.15) the following
boundary conditions are assumed for all times t:

v
∣∣∣
∂Ω−

= v
∣∣∣
∂Ω+

= 0

2ᾱ [v′′ + C∗N Dνt v′′]
∣∣∣
∂Ω−

= 2ᾱ [v′′ + C∗N Dνt v′′]
∣∣∣
∂Ω+

= Γ̂
(5.54)

which by (5.51) imply: 
f(x)

∣∣∣
∂Ω

= 0

2ᾱf ′′ [q(t) + C∗N Dνt q(t)]
∣∣∣
∂Ω

= Γ̂
(5.55)

5.3.1 Solution of the space-dependent equation

The space-dependent function f(x) is found through (5.52) to obey the following
ordinary differential equation:

f iv(x) + k2 ω2f ′′(x) = 0. (5.56)

After setting
ζ2 = k2 ω2 , (5.57)
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bearing in mind that ϕ̄′′ < 0, the solution of (5.56) reads as

f(x) = A1 cos (ζ x) +A2 sin (ζ x) +A3x+A4. (5.58)

As usual, the boundary conditions (5.55) must be used in order to determine the
coefficients Ai, i = 1÷ 4. In particular, a closer analysis of the condition on the
second derivative of the space-dependent function f(x) yields:

2ᾱ f ′′
∣∣∣
∂Ω

[q(t) + C∗N Dνt q(t)] = Γ̂ ∀ t.

The latter boundary condition can be fulfilled if either Γ̂ is a prescribed of of time
or if it is constant. This second case is explored in the sequel. Whenever Γ̂ is
constant, then

q(t) + C∗N Dνt q(t) = κn, (5.59)

where κn is a constant. Consequently, the boundary condition is written as follows:

2ᾱ f ′′
∣∣∣
∂Ω
κn = Γ̂. (5.60)

Moreover, this condition at the edge highlights that the second derivative vxx(x, t)
∣∣∣
∂Ω

there can be zero if and only if

f ′′
∣∣∣
∂Ω

= 0 ⇐⇒ Γ̂ = 0 (5.61)

the hyperstress is zero. For such a case, equation (5.59) is irrelevant. Because in
this section the attention is focused on the case ϕ̄′′ < 0, after setting s = sin(ζL/2)
and c = cos(ζL/2), the boundary conditions can be written explicitly in the form: A1 c−A2 s−A3

L

2
+A4 = 0

2ᾱζ2 (−A1 c+A2 s)κn = Γ̂
at x = −L

2 A1 c+A2 s+A3
L

2
+A4 = 0

2ᾱζ2 (−A1 c−A2 s)κn = Γ̂
at x = +

L

2
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Such a system is the analogue of (5.16):
0 s L

2 0

c 0 0 1

0 s 0 0

−2ᾱ κnζ
2c 0 0 0




A1

A2

A3

A4

 =


0

0

0

Γ̂

 (5.62)

whose nontrivial solutions can be found by studying the roots of the determinant,
namely after solving:

ᾱ c s Lκn ζ
2 = 0. (5.63)

Because of equation (5.60), the case κn = 0 implies that the hyperstress at edges is
zero, and for now we do not consider this possibility to occur. Then, the quantities
ᾱ, L and κn are always nonzero, and we are left to study only two cases.

Case 1. Because ζ2 = k2 ω2 with k > 0 (although still unknown at this stage), if
s = 0 we have:

k2 ω2 =
4n2π2

L2
, (5.64)

and

− ϕ̄′′

ϕ̄′
J̄5 =

n2π2

3 k2

(
h0

L

)2

. (5.65)

Case 2. If c = 0 then Γ̂ = 0. As highlighted in (5.61), this happens if and only if
f ′′ (∂Ω) = 0.

5.3.2 Solution of the time-dependent equation
The time-dependent solution q(t) turns out to depend on the value of the second
derivative in space at the edges (see (5.60)).

Whenever in (5.55) the boundary condition on the second derivative of the
displacement is nonzero , the presence of a hyperstress Γ̂ at the edges implies that
the time-dependent term is constant, assuring that relation (5.59) holds. This
equation can be easily solved through the method of the Laplace Transform method
(see Appendix A.2) to yield:

q(t) =
κn
C∗N

tνEν,ν+1

(
− 1

C∗N
tν
)

+ q0Eν

(
− 1

C∗N
tν
)
, (5.66)

where Eα,β (z) is the Mittag-Leffler function of two parameters. At the same
time, the assumption of the separation of variables dictates that (5.52) be satisfied.
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Hence, (5.52) and (5.59) imply that the following relationship has to hold:

q(t) + C∗LDλt q(t) = k2 κn, (5.67)

whose solution is again found by using the Laplace Transform method :

q(t) =
k2 κn
C∗L

tλEλ,λ+1

(
− 1

C∗L
tλ
)

+ q0Eλ

(
− 1

C∗L
tλ
)
. (5.68)

Both equations (5.66) and (5.68) give explicit analytic closed forms for the time-
dependent function q(t). Obviously they must be same. The trivial case in which
the local and nonlocal terms have both the same relaxation exponent λ = ν and
the same normalized material parameters C∗L = −C∗N shows that

k2 =
C∗L
C∗N

= 1,

bearing in mind that the local term C∗L < 0 as it is made dimensioless dividing CL
by ϕ̄′′ < 0.

5.3.3 Complete time-dependent equation: Eigenvalues

The fact that (5.52) and (5.59) must be consistent also in the nontrivial case is
studied in this section. In this regard, the complete equation coming from (5.52)
and (5.59) is considered:

C∗LDλt q(t)− C∗N k2Dνt q(t) + (1− k2)q(t) = 0. (5.69)

Equation (5.69) has the form of a Fractional Order Eigenvalue Problem, which is
not easy to be solved. Indeed, very recent works show the strong effort in finding
this kind of solutions [65, 101, 128, 134, 172]. In order to solve this eigenvalue
problem, we make use of the right-sided Fourier transform Q(p)

Q(p) :=

∫ +∞

0

e−i p tq(t) dt p ∈ R. (5.70)

By Fourier transforming both sides of (5.69) we obtain:[
C∗L (−i p)λ − C∗N k2 (−i p)ν + (1− k2)

]
Q(p) = 0. (5.71)
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The roots of the function inside square brackets supplies the eigenvalues of the
fractional differential equation (5.69). Consider −i = e−i

π
2 and expand (5.71):

C∗L p
λ e−i

π
2 λ − k2C∗N p

ν e−i
π
2 ν + (1− k2) = 0. (5.72)

The constant k2 introduced in (5.52) must be a real-valued number. Solving
equation (5.71) in terms of k2 we get:

k2 =
1 + C∗L p

λ (cλ − i sλ)

1 + C∗N pν (cν − i sν)

=

(
1 + C∗L p

λ cλ
)
− i

(
C∗L p

λ sλ
)

(1 + C∗N pν cν)− i (C∗N pν sν)
=
a− i b
c− i d

=
a− i b
c− i d

c+ i d

c+ i d
=
a c+ b d

c2 + d2
+ i

a d− b c
c2 + d2

,

where we set {
a = 1 + C∗L p

λ cλ

b = C∗L p
λ sλ

{
c = 1 + C∗N p

ν cν

d = C∗N p
ν sν

,

and for the sake of convenience the positions cα = cos(απ/2) and sα = sin(απ/2)
are used. Because of the fact that k is real, the following relationships must hold:

k2 =
a c+ b d

c2 + d2
(5.73a)

a d− b c = 0. (5.73b)

The latter of these conditions allows for characterizing the value k2 as

C∗N p
ν sν − C∗L pλ sλ + C∗L C

∗
N p

λ+ν (sνcλ − cνsλ) = 0.

Bearing in mind the transformation formulae for the difference of two angles, the
relationship (5.73b) becomes:

C∗N p
ν sin

(
ν
π

2

)
− C∗L pλ sin

(
λ
π

2

)
+

+ C∗L C
∗
N p

λ+ν sin
(

(ν − λ)
π

2

)
= 0

(5.74)
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Finally, a relationship for k2 is found in the form:

k2 =

(
1 + C∗L p

λ cλ
)

(1 + C∗N p
ν cν) +

(
C∗L p

λ sλ
)

(C∗N p
ν sν)

(1 + C∗N pν cν)
2

+ (C∗N pν sν)
2 . (5.75)

Whenever the trivial case λ = ν and C∗L = C∗N is considered, equation (5.74) has
solution p = 0, that implies k2 = 1, as noticed qualitatively above. The solution
of (5.75) cannot be found in closed form. In Figure 5.4 and Figure 5.5 some
numerical results are represented whenever the local modulus C∗L, the nonlocal
modulus C∗N and both the viscoelastic exponents are known. The value of R is
defined as function of the moduli ratio C∗L/C∗N < 0, showing that the eigenvalues are
continuous functions, then for each choice of R is possible to find the correspondent
value of k2.

Each bifurcated configuration is characterized by a chosen value of k2 that
modifies the left and right branch of the ratio ϕ̄′′/ϕ̄′, as shown in (5.65). Indeed, the
elastic case (5.19) is recovered whenever k2 = 1. A numerical example handling the
same energy used in the elastic case is reported in Figure 5.6. A closer analysis of
the curves shows that k2 works as a rescaling parameter, increasing the magnitude
of the ratio ϕ̄′′/ϕ̄′ as k increases. The location of Jn is not affected by the rescaling,
whereas the upper bound of the curve is deeply influenced by that. Henceforth, the
value nmax of the spatial oscillations depends on such a rescaling, as shown in the
insert in Figure 5.6. Consequently, the left and right branch change their shape,
and the intersections yielding the corresponding configurations J̄ are modified as
shown in Figure 5.7.

5.3.4 Initial condition and Eigenvalue problem

Let consider the complete fractional differential equation (5.69) with inhomogeneous
initial conditions:{

C∗LDλt q(t)− C∗N kDνt q(t) + (1− k2)q(t) = 0,

q(0) = q0.

As suggested in [169], a Transform method is used for solving this Fractional
Differential Equation. As first step, let use the right-sided Fourier Transform on
the original equation taking into account the initial condition:

C∗L
[
(i p)λQ̂− (i p)λ−1q0

]
− C∗N k2

[
(i p)νQ̂+

− (i p)ν−1q0

]
+ Q̂ (1− k2) = 0,

178



5.3. LINEARIZED EVOLUTION OF LIPID MEMBRANES

CL* = -1
CL* = -10
CL* = -20
CL* = -50

k2 ∈ 

λ = 0.9
ν = 0.3

0 5 10 15 20 25 30

0

2

4

6

8

10

|CL
* /CN

* |

p

CL* = -1
CL* = -10
CL* = -20
CL* = -50

λ = 0.9
ν = 0.3

0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

|CL
* /CN

* |

k2

Figure 5.4: Locus of the real eigenvalues k2 and their values as function of the
ratio R = −C∗N/C∗L whenever λ = 0.9 and ν = 0.3 (see equations (5.74)-(5.75)).
Courtesy of [58].
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Figure 5.5: Locus of the real eigenvalues k2 and their values as function of the
ratio R = −C∗N/C∗L whenever λ = 0.7 and ν = 0.4 (see (5.74)-(5.75)). Courtesy of
[58].
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Figure 5.6: Right hand side of equation (5.65) as function of k2. Courtesy of [58].
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Figure 5.7: Modification of the left and right intersection depending on k2 (see
also Figure 5.2). Courtesy of [58].
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where p is the variable in the Fourier domain; the solution of the obtained algebraic
equation in term of the transformed function Q̂(p) reads:

Q̂k(p) = q0

(
C∗L (i p)λ−1 − C∗N k2 (i p)ν−1

)
C∗L (i p)λ − C∗N k (i p)ν + (1− k2)

. (5.76)

By means of the solution displayed in [169], (eqns 5.22-5.25 pag. 155 where a = C∗L,
β = λ, b = −C∗N k2, α = ν and c = 1− k2), the transfer function in the frequency
domain of this problem reads as follows:

Ĝk(p) =
1

C∗L (i p)λ − C∗N k2 (i p)ν + (1− k2)
. (5.77)

It would be worth noting that the transfer function is strictly related to the
eigenvalue of k2; for this reason, we denoted Ĝ with the subscript k, in order
to highlight the importance of k2 on the transfer function. Finally, the transfer
function in the real time domain if found simply by using the Inverse Fourier
transform:

Gk(t) = F−1
{
Ĝk(p); t

}
=

=
1

C∗L

∞∑
z=0

(−1)z
(

1− k2

C∗L

)z+1

tλ(z+1)−1E
(z)
λ−ν,λ+zν

(
C∗N
C∗L

k2 tλ−ν
)
.

(5.78)

The transfer function Gk(t) is strictly connected with the Mittag-Leffler func-
tion, and it plays a modulation role in the evolution of the membrane response in
terms of both stretch and stress.

As an illustrative example, the transfer function is numerically explored in
Figure 5.8 whenever two subcases of C∗L = −C∗N are considered, by assuming
several values of the exponential decay λ = ν. Similarly, in Figure 5.9 the real and
imaginary part of the transfer function are analyzed whenever different exponents
of the decay λ 6= ν are chosen for some values of k2. The Mittag-Leffler function
drives the evolution of the membrane stretch, determining changes in the amplitude
of the membrane response, as expected from the analysis with a separation of
variables.

5.4 Remarks

The onset of bifurcated configurations possibly arising from homogeneous config-
urations characterized by an areal stretch lying in the spinoidal region has been
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Figure 5.8: Time-dependent transfer function for two chosen values of C∗L = −C∗N
and h0 = 1.5. Here t∗ = ν
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is a dimensionless time (see equation (5.66).

Courtesy of [58].

investigated. Here the total elastic (Gibbs free) energy has been minimized in order
to determine the bifurcated modes and the relationships between the number of
nucleated spatial waves with the critical values of the areal stretches.

Time synchronous variations are considered for finding the boundary conditions
and the field equations governing the problem. Such equations yield a non-classical
eigenvalue problem to be analyzed through the method of separation of variables.
Because we analyze bifurcations of the areal stretch from the spinoidal zone, the
spatial modes are still found to be oscillatory. The period of oscillation is shown to
decrease with the ratio of (dimensionless) generalized local and nonlocal moduli
and, hence, the number of oscillation increase with respect to the elastic case. As
the ratio just mentioned above increases, for a given number of oscillations the
interval of stretches for which bifurcation can occur gets larger if compared with
the one determined by the purely elastic behavior.

The time-dependent part of the problem leads to a non classical fractional
eigenvalue problem. Upon exploring the transfer function of the governing equation
for different values of the local and nonlocal relaxation power, it can be concluded
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that time-decay occurs in the response. Hence, large number of spatial oscillation
slowly relaxes, thereby keeping the features of a long-tail type response.

Separation of variables allows for showing how Fractional Hereditariness owes
bifurcated modes with a larger number of spatial oscillations than the corresponding
elastic analog. Indeed, the available range of areal stresses for material instabilities
is found to increase with respect to the purely elastic case. Nevertheless, the time
evolution of the perturbations solving the Euler-Lagrange equation above exhibits
time-decay and the large number of spatial oscillation slowly relaxes, thereby
keeping the features of a long-tail type time-response.
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Figure 5.9: Transfer function Ĝk(p): real and imaginary part. Courtesy of [58].
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Hereditary behavior of
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Chapter 6

Notion of state for Fractional
Hereditary Materials

Courtesy of the Authors, most of this Chapter is a copy of the following published
paper:

L. Deseri, M. Zingales and P. Pollaci, “The State of Fractional Hereditary
Materials (FHM)”, Discrete and Continuous Dynamical Systems Series B, 19
(7), doi:10.3934/dcdsb.2014.19.2065 (2014).

The occurrence of time-dependent power law mechanical properties has been
noticed in many materials since the first half of the twentieth century [156, 185].
Macroscopic hereditariness has indeed been detected through stress relaxation and
creep mechanical tests.

As noticed in [111], the response of time-dependent systems exhibiting long tail
memories would entail a very large number of approximating conventional modes,
namely e.g. of exponentials, that are identifiable through classical rheological
models. A more appropriate and yet precise way to handle the exhibited behavior is
to account for power laws, both for creep and relaxation, leading to the occurrence
of fractional hereditariness. Furthermore, the same feature is observed while
monitoring complex interfaces observed experimentally in thin films formed by
solutions containing surface active molecules. For instance, this is the case of
lipid membranes where, often times, elasticity is taken as the only feature of the
effective response (see e.g. [52, 55]). The underlying nano-structure (lipids are a
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few nanometers long) determines the physical properties of such membranes, which
are key constituents for cells.

A part from situations in which the experienced strains become very large
and, hence, appropriate strain measures are required (see e.g. [32]), it is known
that accurate descriptions of the results of experimental tests are reproduced by
power-laws with real order exponents [60, 62, 83]. This elucidates the reason why
linear hereditary equations are applicable to the analysis of complex materials
whose behavior is time dependent, and it clarifies the confusion that sometimes
is made between apparent material nonlinearity and power law behavior (see e.g.
[173]). The motivations above regarding bone as an example explain why multiple
scales present in many materials entail several multiple relaxation times, ultimately
producing a macroscopic power-law hereditariness.

Although strong motivations for looking at such power laws have been discussed,
neither they have been explicitly incorporated in general mathematical frameworks
(see e.g. the ones developed in [7, 44, 46, 47, 67, 68, 132, 181] among others) nor
it has been shown a direct mechanical and mathematical connection between the
material properties at the submacroscopic level and the observed macroscopic power
law. The latter are known to yield the Boltzmann-Volterra constitutive equations,
both for creep and relaxation, in terms of fractional operators (see [9, 10, 60, 62,
111, 135–137] for their applications to viscoelasticity and [77–79, 121, 177, 178, 193,
194, 208] for applications to other mechanical contexts). This leads to refer to the
constitutive properties of such media as “Fractional Hereditary Materials" (FHM).

In this Chapter, the attention is focused on the characterization of the state for
such materials. The particularization of the notion of state introduced by Noll in
[154] to viscoelastic materials (see [40, 47, 84, 89]), one can state that if two states
are different then there must be some continuation (of arbitrary duration) of such
state which produces different responses with the two states as initial ones. For
viscoelastic materials the conclusion that can be drawn is that two past histories
verifying this condition must correspond to the same state. Whenever the strain is
taken to be the independent variable of the analysis, the material response can be
described either in terms of the resulting stress (through the Boltzmann-Volterra
integral (6.27a)) or in terms of the work done by the stress on any continuation
(see [84]). On the other hand, for this case a notion of state has been introduced in
[40] as a pair where one of the entries is an equivalence class of strain histories and
the other one is the current value of the strain. The equivalence class is established
through the right-hand side of (6.33) (which involves a generic relaxation function),
whose solution for all non negative times characterizes equivalent histories. This
notion of state, eventually called “minimal state" in [47], entails the fact that a state
variable can be singled out as the residual stress measurable at any further time
(t+ τ in (6.33)) after freezing and keeping the current value of the strain to zero
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for any arbitrary duration τ . “Long tai” memory materials may allow for detecting
such a stress for long times and this is the case for power law hereditariness. The
notion of “minimality” recalled above has to do with the fact that the knowledge of
such a stress is the minimum necessary information required to fully characterize
the response of the material to further loadings. Obviously, the specific knowledge
of the solutions of (6.33) are very useful, although very rarely they can be found
explicitly.

6.1 Fractional hereditary virgin materials

It is worth recalling that two hypotheses are considered while analyzing viscoelastic
materials (see e.g. [136]): 1) invariance under time translation and 2) causality.
The first requirement means that time shift in the input is reflected as a same shift
in the output; the second means that the material response depends on previous
histories only, reflecting hereditariness of such materials. In this section we shall
refer to “virgin” materials, namely either the strain or the stress are known from
the very beginning of the observation of their behavior, conventionally set at t = 0,
and hence no past histories with respect to such a time need to be taken into
account. From Section 6.2 on, this requirement will be relaxed and the notion of
state introduced in [40, 47] will allow for characterizing the residual stress due to
unknown past histories. For the sake of illustration, the whole paper is focused on
one dimensional problems.

Creep and relaxation tests are performed to detect material hereditariness [123]:
in the first case, the stress is held constant and the strain is measured, whereas in
the second one the strain is held constant and the stress is measured. Whenever
either a unit stress or a unit strain is utilized, the creep compliance J(◦) and
relaxation modulus G(◦) are found as the strain and stress response to the imposed
unit stress and strain respectively, i.e.

ε(t) = U(t) −→ σ(t) = G(t) (6.1a)
σ(t) = U(t) −→ ε(t) = J(t), (6.1b)

where U(◦) is the unit Heaviside step function. When either the creep or the
relaxation function is known, the Boltzmann superposition principle allows for
writing convolution-type Riemann-Stieltjies integrals to express the relationships
between σ and ε. Whenever either the strain or the stress are prescribed, the
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constitutive relations for the corresponding derived quantities read as follows:

σ(t) =

∫ t

0+

G(t− τ) dε(τ), (6.2a)

ε(t) =

∫ t

0+

J(t− τ) dσ(τ). (6.2b)

Smoothness assumptions on ε(t) and σ(t) will be discussed in the sequel.

Creep compliance and relaxation modulus are not independent. Indeed they
are linked to each other by the relationship

Ĵ+(ω)Ĝ+(ω) =
1

(iω)
2 , (6.3)

where the symbolˆdenotes the right-sided Fourier transform (see Appendix A.1),
equation (A.10)).

Experiments on polymeric materials performed by Nutting [156] at beginning
of the twentieth century showed that their relaxation function is well fitted by
power-laws, i.e.

G(t) =
Cβ

Γ(1− β)
t−β , (6.4)

where Γ(◦) is the Euler-Gamma function, Cβ and β are characteristic constants
of the material. The exponent β must be enclosed in the range 0 < β < 1
because of thermodynamics restrictions [9, 10, 62]. At the extrema of the range,
asymptotic behaviors are obtained: β → 0 corresponds to purely elastic solid
whereas β → 1 to purely viscous fluid. The values of 0 < β < 1 correspond
to an intermediate behavior between elastic solid and viscous fluid, allowing for
describing both complex-structured materials and soft matter. As we expect, the
creep compliance of the given material can be determined through (6.3) from the
relaxation modulus assumed in (6.4). Furthermore, the right Fourier transform of
the relaxation function (6.4) yields

Ĝ+(ω) = Cβ(iω)β−1, (6.5)

and by substituting this expression in (6.3) we then obtain

Ĵ+(ω) =
1

Cβ(iω)β+1
, (6.6)
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whose anti-transform reads as follows:

J(t) =
1

CβΓ(1 + β)
tβ . (6.7)

It is worth analyzing the material behavior with the aid of normalized functions,
G(t) and J(t) defined as follows:

G(t) := G(t) (Cβ)
−1

Γ(1− β) = t−β (6.8a)

J(t) := J(t)CβΓ(1 + β) = tβ (6.8b)

and showed in Figure 6.1. A careful observer will notice immediately that all the
curves share the common point (1,1), which represents a key value. Indeed, the
blue curves (0 < β ≤ 1/2) show that the elastic phase prevails on viscous one with
decreasing β, whereas the red ones (1/2 ≤ β < 1) show that the viscous phase
prevails on elastic one as increases as β. This consideration allows for identifying
the former as elastoviscous (E) materials while the latter as viscoelastic (V) ones;
the value β = 1/2 is clearly common to both kinds of materials, thus it may be
obtained as a limiting case of both models described above. The corresponding
rheological models, formed by proper arrangements of springs and dashpots, will
be discussed in the sequel.
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Figure 6.1: Normalized (a) relaxation and (b) creep functions. Courtesy of [54].

In order to introduce the appropriate functional setting characterizing stress
and strain we start from (6.2a), i.e. when ε is assumed to be the control variable.
Lemma 2.2 in [183] (p.35) assures that if ε ∈ ACloc, where ACloc denotes the set
of locally absolutely continuous functions, then the integral (6.2a) exists almost
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everywhere for 0 < β < 1 and takes the following form1:

σ(t) =
Cβ

Γ(1− β)

∫ t

0+

ε̇(τ)

(t− τ)β
dτ. (6.9)

Lemma 2.2 also guarantees that σ ∈ Lrloc, where 1 ≤ r ≤ β−1. Nevertheless, in
reality, the strain may exhibit localized jumps, i.e. strain discontinuities could
be present and localized in sets of measure zero, namely in specific locations in
time. Estimates regarding the properties of the generalization of (6.2a) to the
tensor valued case and to a→ −∞ have been provided in [40, 47]. There strains
were taken in BVloc and SBVloc ∪ L2

loc respectively2. Obviously, any absolutely
continuous function has bounded total variation3, since the following chain of
inclusion holds: ACloc ⊂ SBVloc ⊂ BVloc. In particular any εSBV ∈ SBVloc is such
that

εSBV (t) =

∫ t

0+

ε̇ac(τ)dτ + εJ (t), (6.10)

where εac is the absolutely continuous part of ε and the second term εJ represents
the so called jump part of ε, i.e.

εJ (t) :=
∑

t>ti∈J (ε)

JεK(ti)U(t− ti), (6.11)

where J (ε) is the jump set of ε, ti are the locations of the jumps, U(◦ − ti) are
unit step Heaviside functions located at ti and JεK(ti) := ε(t+i )− ε(t−i ) is the jump
experienced by ε at ti. It is worth remarking that any ε̇ac ∈ L1

loc. It is well known
that εBV ∈ BVloc can be decomposed in the following way:

εBV (t) = εSBV (t) + C(ε(t)), (6.12)

where C represents the so called Cantor part of ε at t. Relation (6.12) is the
Lebesgue decomposition of ε for BVloc functions and (6.10) is its particularization
to the case of ε ∈ SBVloc (see e.g. [118]). Henceforth, by considering strains in

1Here ε(0) = 0
2Here BVloc and SBVloc denote the sets of functions of bounded and special bounded

variations on bounded sets, respectively
3The total variation Var of a function ε is defined as:

Var
loc

(ε) := Var (ε(r))
r∈(a,b)

= sup

{
n∑

i=1

|ε(ri)− ε(ri−1)| : {r0, r1, . . . , rn} ∈ (a, b)

}
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such space, the stress can still be computed by means of (6.9), by understanding
that the following representation holds for the strain rate:

ε̇(τ) = ε̇ac(τ) +
∑

t>ti∈J (ε)

JεK(ti)δ(t− ti), (6.13)

where δ(◦− ti) are Dirac delta masses located at ti ∈ J (ε). Because ε ∈ SBVloc its
total variation Var

loc
(ε) is finite, and hence the strain measure4 dε = ε̇(t)dt, with ε̇(t)

as in (6.13), is bounded from above by Var
loc

(ε). It is worth noting that the power

law relaxation function (6.4) is such that Ġ ∈ L1
loc/{0} and that G(0) is unbounded

(for thermodynamic restriction about such function see [87]). Henceforth, as long
as t = 0 is excluded, estimates of the stress (see Section 6.2 in the sequel) can be
done by using the fact that (6.2a) is a Riemann-Stieltjies integral and hence (see
Theorem 2 in [118] p. 368) the following inequality holds, i.e.∣∣∣∣∫ t

a

G(t− τ)dε(τ)

∣∣∣∣ ≤ sup
r∈(a,b)

|G(t− r)|Var(ε(r
r∈(a,b)

)) ∀a 6= 0, ∀t ≤ b. (6.14)

Finally, we recognize that relation (6.9) may be recast in terms of the Caputo
fractional derivative of order β of ε (see Appendix A), i.e.

σ(t) = Cβ

(
CD

β
0+ε
)

(t) . (6.15)

This notation must be interpreted bearing in mind that every straining ε̇ appearing
in (6.9) has the representation (6.13); in the sequel of this section the contribution
of the Dirac delta masses to the stress will be singled out. Whenever σ is assumed
as control variable (6.2b) must be considered. By substituting relation (6.7) in
(6.2b) we get:

ε(t) = (CβΓ(1 + β))
−1
∫ t

0+

(t− τ)β σ̇(τ)dτ. (6.16)

A simple integration by parts yields the following representation formula:

ε(t) =
1

Cβ

(
σ(0)tβ

Γ(1 + β)
+
(
Iβ0+σ

)
(t)

)
(6.17)

4It is worth noting that dε can be seen as a Radon measure and, hence, (6.13)
represents the Radon-Nykodim derivative of ε(t) with respect to the one-dimensional
Lebesgue measure dt.
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after setting (
Iβ0+σ

)
(t) :=

1

CβΓ(1− β)

∫ t

0+

(t− τ)β−1σ(τ) dτ ; (6.18)

this defines the Riemann-Liouville fractional integral of order β of the stress. It
is worth noting that this is well defined since σ ∈ Lrloc, 1 ≤ r ≤ β−1, 0 < β < 1.
Furthermore, the fact that σ is at least L1

loc is a necessary and sufficient condition
for the resulting ε to be ACloc (see Theorem 2.3 in [183] p. 43).

Moreover, Theorem 2.4 in [183] (p.44) ensures that if σ is represented through
(6.15), where ε̇ is replaced by ε̇ac, because ε̇ac ∈ L1

loc then

Iβ0+

(
Dβ0+εac

)
(t) = εac(t). (6.19)

The jump part εJ defined in (6.11) of εmust then be treated separately. By denoting
with σJ (t) the contribution to the stress σ(t) of εJ (t), the direct evaluation of (6.9)
(or (6.15)) can be done bearing in mind that

ε̇J (t) :=
∑

t>ti∈J (ε)

JεK(ti)δ(t− ti). (6.20)

Such a contribution to the total stress reads as follows

σJ (t) =
Cβ

Γ(1− β)

∑
t>ti∈J (ε)

JεK(ti)
(t− ti)β

. (6.21)

We are now in the position to check whether or not the analog result for εac,
granted by Theorem 2.4 in [183], holds also for εJ . In other words, we conjecture
that the relationship (6.19) above holds in the form(

Iβ0+σJ

)
(t) = εJ (t). (6.22)

Actually, the fact that this may be the case follows from the property of σJ in (6.21)
which is certainly L1

loc. Henceforth, Theorem 2.4 in [183] applies. Nevertheless, a
direct proof of the validity of relation (6.22) can be obtained by substitution of
(6.21) into (6.18). Indeed, a direct inspection shows that the fractional integral at
the left hand side of (6.22) can be written as follows:(

Iβ0+σJ

)
(t) =

(Cβ)

Γ(β)Γ(1− β)

∑
t>ti∈J (ε)

JεJ K(ti)
∫ t

ti

(t− τ)β−1(τ − ti)−βdτ (6.23)
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Each integral on the right hand side may be easily evaluated by setting α := 1− β
and by making use of procedure highlighted in [183] (p.29) namely:∫ t

ti

(t− τ)−α(τ − ti)α−1dτ = B(α, 1− α), (6.24)

where B(z, w) is the Euler Beta function defined as follows:

B(z, w) =

∫ 1

0

xz−1(1− x)w−1dx. (6.25)

By noting that Γ(β)Γ(1 − β) = B(β, 1 − β) and B(β, 1 − β) = B(1 − β, β), the
solution of (6.23) may be recast in the following form:(

Iβ0+σJ

)
(t) = Cβ

∑
t>ti∈J (ε)

JεJ K(ti)U(t− ti) (6.26)

This result shows that (6.19) holds true even when jumps are present in the strain
ε as long as ε ∈ SBVloc.

6.2 The state of pre-stressed fractional hereditary
materials

In [40, 47, 132] a definition of state introduced by Noll [154] has been established
for viscoelastic materials whenever the strain is the control variable. This allows
for defining equivalence classes of past-strain histories which, together with the
current value of the strain, characterize the state in such context. Two histories
are equivalent if any arbitrary continuation (often called either process or segment)
of finite arbitrary duration yields to the same response. The latter can be either
measured in terms of the stress or through the work done on processes [132].

On the other hand, whenever the stress is assumed to be the control variable,
then the response is measured in terms of the strain. Here an equivalence class of
stress histories could be singled out for the given material so that its state can be
expressed in terms of any representative of such a class and of the current value of
the stress (this belongs to a work in progress [56], although the logic followed in [40,
47, 132] applies with appropriate substitutions and considerations). In either case,
here we completely characterize the state of FHM by making use of the analog of
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(6.2a) and (6.2b), both extended to (−∞, t), i.e.

σ(t) =

∫ t

−∞
G(t− τ)dε(τ) =

Cβ
Γ(1− β)

∫ t

−∞

ε̇(τ)

(t− τ)β
dτ = Cβ

(
CD

β
+ε
)

(t) ,

(6.27a)

ε(t) =

∫ t

−∞
J(t− τ)dσ(τ) =

(Cβ)−1

Γ(1 + β)

∫ t

−∞
(t− τ)β σ̇(τ)dτ =

1

Cβ

(
Iβ+σ

)
(t) ,

(6.27b)

where ε̇ in (6.27a) and σ̇ in (6.27b) make sense because of the smoothness assump-
tions listed above. We bear in mind that σ(−∞) = 0 and, hence, by extending
(6.16), (6.17) and (6.18) when 0+ is replaced by −∞ we get (6.27b). We start by
considering (6.27a) and two functions ε̇(i), i = 1, 2 to be defined as follows:

ε̇(i)(r) := ε̇∗(i)(r) + U(r − t)ε̇p(r) i = 1, 2 and r ∈ (−∞, t) (6.28)

where:

εt(2)

εt(1)

t+ τt

εp

ε(t+ τ)

Figure 6.2: Past histories εt(1), ε
t
(2) and deformation process εp. Courtesy of [54].

ε̇∗(i)(r) :=

{
ε̇t(i)(τ) r ∈ (−∞, t)
0 r ∈ [t, t+ τ)

i = 1, 2 (6.29)

represents the null extension of ε̇t(i)(◦) and where

ε̇t(i)(r) := ε̇(i)(t− r) i = 1, 2. (6.30)

The latter represent two past straining histories with respect to the initial observa-
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tion time (conventionally labeled with t), namely the instant in which the common
straining continuation ε̇p is applied. In the sequel we shall refer to ε∗(i), i = 1, 2,
as extended histories, namely the null extensions of finite duration, τ , of the given
histories εt(i). Henceforth, by substituting (6.30) in (6.29) and the result in (6.28)
and, finally, by evaluating the stress response through (6.27a) of both ε̇(i) i = 1, 2
we have:

σ(i)(t+ τ) : =

∫ t

−∞
G(τ + t− r)ε̇t(i)(r)dr +

∫ τ

0

G(t− r′)ε̇p(r′)dr′

=

∫ t+τ

−∞
G(τ + t− r)ε̇∗(i)(r)dr + Cβ

(
CD

β
0+ε

p
)

(τ)

= Cβ

((
CD

β
+ε
∗
(i)

) (
t+ τ

)
+
(
CD

β
0+ε

p
)

(τ)
)

i = 1, 2

(6.31)

where εp represents the prescribed strain during the interval [0, τ ]. Following the
definition of state given above, we say that ε̇∗(1) and ε̇∗(2) are equivalent if

σ(1)(t+ τ) = σ(2)(t+ τ) ∀τ ≥ 0 (6.32)

on any process εp. In other words, this condition implies that∫ t+τ

−∞
G(t+ τ − r)ε̇∗(r)dr ≡ Cβ

(
CD

β
+ε
∗
) (
t+ τ

)
= 0 ∀τ ≥ 0 (6.33)

where ε∗ := ε∗(2) − ε∗(1). Henceforth, an equivalence class on the set of extended
histories may be considered. The state of the material at the time t+ τ may be
determined by any of such extended histories, say e.g. ε∗, in the equivalence class
characterized by (6.33) together with the current value of the strain ε(t+ τ).

It is worth noting that a more realistic condition for (6.33) is when we impose
that such a relationship holds for all τ > 0 which, in practice, would imply that
there is always a nonzero unloading time. In order to show that the equivalence
class of extended histories does not contain the zero strain only we need to study
the solutions of (6.33). This may not be done directly, but rather by constructing
a one parameter family of strains approximating such a solutions. For this purpose,
it may also be considered the function aε

∗(◦) as the restriction of ε∗(◦) to the
domain [a, t+ τ) namely (see Figure 6.2):

aε
∗(r) :=


0 r < a

ε(r) a ≤ r < t

0 t ≤ r < t+ τ .

(6.34)
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where a is finite time. In this case relation (6.33) yields:(
CD

β
a+ε
∗
) (
t+ τ

)
= 0 ∀τ > 0, (6.35)

where (
CD

β
a+ε
∗
) (
t+ τ

)
=

1

Γ(1 + β)

∫ t+τ

a

ε̇(r)

(t+ τ − r)β dr. (6.36)

The result 2.27 in [183] (p.36) may be useful; its translation to the current notation
allows for stating that solution of (6.35) are such that

ε∗(2)(t+ τ)− ε∗(1)(t+ τ) =
ε0

(t+ τ − a)1−β . (6.37)

It is worth noting that whenever (A.3b) (see Appendix A) is considered, the

a

r

t t+ τb a

r

t t+ τb

ε∗ aε
∗

Figure 6.3: Restriction aε
∗ to a prescribed domain of the strain ε∗. Courtesy of

[54].

relationship (6.36) may be rewritten in the form(
CD

β
a+ε
∗
) (
t+ τ

)
=
(
Dβa+ε

∗
) (
t+ τ

)
− ε∗(a)

Γ(1− β)(t+ τ − a)β
(6.38)

where
(
Dβa+ε

∗
) (
t+ τ

)
is the Riemann-Lioville fractional integral defined in (A.2b)

(Appendix A).

In order to show that the left-hand side of (6.35) approximates (6.33) we first
show that the stress response associated with aε

∗ approximates the stress caused
by ε∗. To this end we consider relations (6.27a) and (6.29) yielding the following
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expression for the stress at t+ τ :

σ(t+ τ) = −G(t)ε(t) +

∫ t

b

G(τ + t− r)ε̇(r) dr +

∫ b

a

G(τ + t− r)ε̇(r) dr+

+

∫ a

−∞
G(τ + t− r)ε̇(r) dr,

(6.39)
where b is such that a < b < t is a fixed arbitrary time. The stress aσ(t + τ)
corresponding to aε

∗ defined by (6.34) is obtained from (6.39) by neglecting the
last integral, i.e.

aσ(t+ τ) = G(τ + t− a)ε(a)−G(τ)ε(t) +

∫ t

b

G(τ + t− r) dε(r)+

+

∫ b

a

G(τ + t− r) dε(r).

(6.40)

By computing the difference between (6.39) and (6.40) we obtain:

σ(t+ r)−a σ(t+ r) =

∫ a

−∞
G(τ + t− r) dε(r)−G(τ + t− a)ε(a), (6.41)

whose magnitude may be estimated as follows∣∣σ(t+ r)− aσ(t+ r)
∣∣ ≤ ∣∣G(τ + t− a)

∣∣ |ε(a)|+sup |G(τ
r∈(−∞,a]

+t−r)|Var(ε(r))
r∈(−∞,a)

. (6.42)

The following extension of (6.14)∣∣∣∣∫ a

−∞
G(τ + t− r) dε(r)

∣∣∣∣ ≤ sup|G(τ
r∈(−∞,a)

+ t− r)| Var(ε(r))
r∈(−∞,a)

(6.43)

holds true since, by inspection of (6.4), it can be shown that G(τ + t − ◦) is
absolutely continuous and, hence, bounded in (−∞, a). Indeed, because of relation
(6.4), if we let δ > 0 there exists at least an aδ for which if we chose an a < aδ
we have that G(τ + t − a)C−1

β = Γ(1 − β)−1(τ + t − a)−β < δ. Finally, by
extending ε ∈ SBV(−∞,a) we can find an M > 0 such that Var(ε(r))

r∈(−∞,a)

< M , so that∣∣σ(t+ r)− aσ(t+ r)
∣∣ < Mδ. Hence

lim
a→∞ aσ(t+ τ) = σ(t+ τ), (6.44)
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in other words the stress aσ converges to σ in L∞. Obviously the same conclusions
could have been drawn starting from (6.31) written for ε∗ and for its restriction
aε
∗ instead of ε∗(i) and by setting εp = 0.

It is worth noting that the integral appearing in (6.41) represents the residual
stress at time t+ τ caused by past strain histories truncated at the time a

Ia(τ + t) :=

∫ a

−∞
G(τ + t− r)dε(r). (6.45)

If one considers the difference

ε∗a := ε∗ − aε
∗ (6.46)

then (6.45) can be expressed as follows:

Ia(τ + t) = Cβ

(
CD

β
+ε
∗
a

) (
τ + t

)
. (6.47)

Upon considering the intermediate arbitrary time b ∈ (a, t) introduced in (6.39)
and the equality:

aIb(τ + t) :=

∫ b

a

G(τ + t− r) dε(r)−G(τ + t− b)ε(b) +G(τ + t− a)ε(a), (6.48)

the reasoning leading to (6.44) allows for proving that (6.48) approximates the
state variable (6.45), i.e.

lim
a→−∞ aIb(τ + t) = Ib(τ + t). (6.49)

As a first step, we may consider the stresses bσ(t+ τ) and aσ(t+ τ) whenever bε
and aε defined by (6.34) are assumed to be experienced at the material point; the
difference between such stresses reads as follows:

bσ(t+ τ) − aσ(t+ τ) = G(τ + t− b)ε(b)−G(τ + t−a)ε(a)−
∫ b

a

G(τ + t− r) dε(r).

(6.50)
An estimate of the magnitude of such a difference may be delivered by noting that:∣∣

bσ(t+ τ) − aσ(t+ τ)
∣∣ ≤ ∣∣G(τ + t− b)ε(b)−G(τ + t− a)ε(a)

∣∣+
+

∣∣∣∣∣
∫ b

a

G(τ + t− r) dε(r)

∣∣∣∣∣ . (6.51)
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Henceforth, we also note that whenever δ > 0 is given such that there exists at
least a ∆δ > 0 for which if |b− a| < ∆δ we have

∣∣G(τ + t− b)−G(τ + t− a)
∣∣ <

ω
Cβ

Γ(1−β)∆δ, with ω > 0 and Var(ε(
r∈(a,b)

r)) < δ, hence we obtain

∣∣G(τ + t− b)ε(b)−G(τ + t− a)ε(a)
∣∣ < Cβ

Γ(1− β)

(
(τ + t)−βδ + ω |ε(a)|∆δ

)
(6.52)

and ∣∣∣∣∣
∫ b

a

G(τ + t− r) dε(r)

∣∣∣∣∣ ≤ ∣∣G(τ + t− a)
∣∣ δ < Cβ

Γ(1− β)(τ + t)β
δ. (6.53)

Therefore it turns out that the following result holds

lim
b→a bσ(t+ τ) = aσ(t+ τ). (6.54)

Of course the stress aσ(t+ τ) may be expressed in terms of a fractional derivative,
simply by recalling relation (6.34) for aε∗, which allows for writing

aσ(t+ τ) =
Cβ

Γ(1− β)

(
ε(a)

(t+ τ − a)β
− ε(t)

τβ
+
(
CD

β
a+ aε

∗
) (
t+ τ

))
. (6.55)

On the other hand the stress response evaluated for ε∗ (see (6.31) with ε∗(i) replaced
by ε∗ and ε = 0) reads as follows

σ(t+ τ) = Cβ

(
CD

β
+ε
∗
) (
t+ τ

)
− Cβε(t)

Γ(1− β)τβ
. (6.56)

By comparing the procedures used for showing that (6.44) and (6.54) hold, it
is not difficult to show that the approximation formula (6.49) for the state variable
holds. Hence (6.37) allows for providing an approximation to equivalent histories
for FHMs. Physically, if a in (6.37) is interpreted as the instant in which the virgin
material can bear loading, then (6.37) gives the exact characterization of the state
of the material, in terms of histories that can equivalently bring the material to
the same stress.
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6.3 Rheological models for fractional hereditariness

The design of novel materials is strictly related to the capability to obtain the
desired behavior at the macroscale starting from both the knowledge of mechanical
properties of basic constituents and their proper arrangement at the nano-to-
microscale. Often times real materials have intermediate behavior between elastic
materials and viscous fluids, showing hereditary features. Micromechanics provides
a way, to deliver macroscopic properties starting from basic elements at the
submacroscopic level. For this reason, a rheological model explaining fractional
hereditariness is required.

In this regard, the exact mechanical model of fractional hereditary materials
was recently proposed in [62]. The authors separated the behavior of elasto-viscous
material from visco-elastic one: both are ruled by β-order differential equation,
but in the former case 0 < β < 1/2 while in the latter 1/2 ≤ β < 1. The different
range of fractional-order involved in constitutive equations is linked to a different
mechanical model. In this section we show two different mechanical arrangements
to describe the material behavior.

γ(t)σ(t)

ηV (z)

γ(t)σ(t)

GE(z)

(a) (b)

Newtonian Fluid
Elastoviscous case (E)

Elastic Solid
Viscoelastic case (V)

z

Figure 6.4: Rheological continuum models: (a) elastoviscous (E) and (b) vis-
coelastic (V). Courtesy of [54].

The rheological scheme of Elasto-Viscous material (E) is represented by an
indefinite massless plate resting on a column of Newtonian fluid supported on
a side by a “bed" by way of independent elastic springs, whereas the model of
Visco-Elastic material (V) is represented by an indefinite massless plate resting
on a column of elastic solid linked to a rigid support through independent viscous
dashpots, as depicted in Figure 6.4. In both cases, we consider a cross-section with
area A; moreover, we assume that the material elastic modulus k(z) and viscous
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coefficient c(z) spatially decay with a power-law, resembling a functionally graded
microstructure. Thus, in the case of elastoviscous material, they read as follows:

kE(z) = AGE(z) = A
G0

Γ(1 + α)
z−α (6.57a)

cE(z) = AηE(z) = A
η0

Γ(1− α)
z−α , (6.57b)

whereas in the case of viscoelastic material they become:

kV (z) = AGV (z) = A
G0

Γ(1− α)
z−α (6.58a)

cV (z) = AηV (z) = A
η0

Γ(1 + α)
z−α. (6.58b)

In equations (6.57), (6.58) the subscripts E and V indicate Elastoviscous and
Viscoelastic case, respectively, and 0 ≤ α ≤ 1 is the decay parameter. In these
models the equilibrium is governed by a differential equation in the following form:

(EV) :
∂

∂z

[
cE(z)

∂γ̇

∂z

]
= kE(z)γ(z, t) (6.59a)

(VE) :
∂

∂z

[
kV (z)

∂γ

∂z

]
= cV (z)γ̇(z, t), (6.59b)

where γ(z, t) represent the transverse displacement imposed to the shear layer at
depth z and γ̇(z, t) := ∂

∂tγ(z, t) is its time rate of change. In order to solve the
problems above, we make use of the boundary conditions related to mechanical
schemes in Figure 6.4, expressed in the form of limits as follows: lim

z→0
γ(z, t) = γ(t)

lim
z→∞

γ(z, t) = 0.
(6.60)

By using such boundary conditions in [62] it is shown that (6.59a) (or (6.59b))
delivers a relationship between the force σ arising in the top layer in both models
and the Caputo fractional derivative of displacement γ, i.e.

σ(t) = Cβ

(
CD

β
0+γ

)
(t) (6.61)
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where we assumed the parameters as:

Cβ :=CEβ =
G0Γ(β)

Γ(2− 2β)Γ(1− β)21−2β
(τ (E)

α )
β (6.62a)

τ (E)

α =
η0

G0

Γ(1 + α)

Γ(1− α)
(6.62b)

and α = 1− 2β for the EV material, whereas:

Cβ :=CVβ =
G0Γ(1− β)

Γ(2− 2β)Γ(β)22β−1
(τ (V )

α )
β (6.63a)

τ (V )

α =
η0

G0

Γ(1− α)

Γ(1 + α)
(6.63b)

and α = 2β − 1 for the VE material. The terms τE(α), τV (α) are relaxation
times. The result expressed by (6.61) highlights that these rheological models are
capable to yield a force on the top layer relaxing with a power-law, ultimately
resembling the macroscopic material behavior. In this respect, the boundary of
such rheological models reproduces the material response.

6.4 Overall response from the rheological model:
micro and macro state

The forces σ(E)
m (z, t) exerted either on the springs (E model) or σ(V )

m (z, t) on the
dashpots (V model) at z may be computed as follows:

σ(E)

m (z, t) = k(z) γ(E)(z, t), (6.64a)
σ(V )

m (z, t) = c(z) γ̇(V )(z, t). (6.64b)

By denoting by γ(E) and γ(V ) the solution of the field equations (6.59a) and (6.59b),
the knowledge of transfer functions H(E)(z, ◦) and H(V )(z, ◦), relative to (6.59a)
and (6.59b) yield the following representation formulas:

γ(E)(z, t) =

∫ t

−∞
H(E)(z, t− r)γ(r) dr, (6.65a)

γ(V )(z, t) =

∫ t

−∞
H(V )(z, t− r)γ(r) dr, (6.65b)
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where

H(E)(z, t) = F−1
+

[
Ĥ(E)(z, ◦)

]
(t) (6.66a)

H(V )(z, t) = F−1
+

[
Ĥ(E)(z, ◦)

]
(t) (6.66b)

and

Ĥ(E)(z, ω) =
G0

Γ(1− β)Γ(2− 2β)2−β
(τEα iω)

β
2 zβ Kβ

(
z√
τEα iω

)
(6.67a)

Ĥ(V )(z, ω) =
G0

Γ(β)Γ(2− 2β)2β−1
(τVα iω)

1+β
2 z1−β K1−β

(
z
√
τVα iω

)
. (6.67b)

Let us assume that the displacement of the rigid top plate of both models (E) and

γ(◦; t)

r

t t+ τ� t t+ τ

�

U(t− ◦)

−∞

Figure 6.5: Displacement at the rigid top plate. Courtesy of [54].

(V) is prescribed up to the time t and it is held constant to zero (Figure 6.5), i.e.

γ(r; t) := γ(r)U(t− r). (6.68)

In other words, the prescribed displacement history for the top plate is continued
by the null process (see Figure 6.5). The displacement recorded at z in the
rheological model at time τ + t (τ > 0) is simply calculated through (6.65a) and
(6.65b) respectively by setting t = τ + t:

By substituting the resulting expressions in (6.64a) and (6.64b) respectively,
the “micro” stresses σ(E)

m , σ(V )
m are recovered. In both cases the resultants of those

forces can be evaluated by integrating the equation across the semi-infinite sequence
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of springs and dashpots respectively. Such resultants read as follows:∫ ∞
0

σ(E)

m (z, τ + t)dz =

∫ τ+t

−∞

∫ ∞
0

k(z)H(E)(z, τ + t− r) γ(r) dz dr (6.69a)∫ ∞
0

σ(V )

m (z, τ + t)dz =

∫ τ+t

−∞

∫ ∞
0

c(z)H(V )(z, τ + t− r) γ̇(r) dz dr, (6.69b)

where the order of integration has been interchanged thanks to Fubini’s Theorem.
The upper limit on the integrals in r can be truncated at t because of (6.68),
although it is kept as it is for the sake of convenience. For the purpose of obtaining
the overall response of the two rheological models there is no need to produce
(6.66a) and (6.66b). We may indeed evaluate the right Fourier transforms of (6.69a)
and (6.69b), and make use of (6.67a) and (6.67b) respectively in order to perform
the explicit calculations. Upon introducing

σ̂(E)

m (z, ω) := F+ {σ(E)

m (z, ◦)} (ω) (6.70a)
σ̂(V )

m (z, ω) := F+ {σ(V )

m (z, ◦)} (ω), (6.70b)

and

γ̂(E)(z, ω) := F+ {γ(E)(z, ◦)} (ω) (6.71a)
γ̂(V )(z, ω) := F+ {γ(V )(z, ◦)} (ω), (6.71b)

(6.69a) and (6.69b) yield∫ +∞

0

σ̂(E)

m (z, ω)dz =

∫ +∞

0

kE(z)γ̂(E)(z, ω) dz

=
k0 (τ (E)

α iω)
β−1
2

Γ(2− 2β)Γ(1− β)2−β

∫ +∞

0

zβK1−β

(
z√
τ (E)
α iω

)
dz γ̂(ω)

(6.72a)

∫ +∞

0

σ̂(V )

m (z, ω)dz = iω

∫ +∞

0

cV (z)γ̂(V )(z, ω) dz

=
k0 (τ (V )

α iω)
β+2
2

Γ(2− 2β)Γ(β)2β−1

∫ +∞

0

z1−βKβ
(
z
√
τ (V )
α iω

)
dz γ̂(ω).

(6.72b)

6.4.1 Direct evaluation of the microstresses

The displacement functions along the depth of the continuum column of the
mechanical models displayed in Figure 6.4 (see [62] for more details) analyzed in
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the right Fourier domain assume the following forms

γ̂(E)(z, ω) = γ̂(ω)
(τ (E)
α iω)

− β2

Γ(β)2β−1
zβKβ

(
z√
τ (E)
α iω

)
(6.73a)

γ̂(V )(z, ω) = γ̂(ω)
(τ (V )
α iω)

β
2

Γ(β)2β−1
zβKβ

(
z
√
τ (V )
α iω

)
, (6.73b)

for the (E) and (V) case respectively, where γ̂(ω) is the right Fourier transform of
the imposed displacement at the top plate, Kν(◦) is the modified Bessel function of
the second kind of order ν, τ (E)

α and τ (V )
α have been defined in (6.62b) and (6.63b)

respectively and β = 1 − β. The relationships above are preparatory to enable
us evaluating σ̂(E)

m and σ̂(V )
m , namely the time-(right)-Fourier transforms of the

microstress, arising in the external devices for both models.

Bearing in mind that α = 2β−1, the right-Fourier Transform of the microstress
related to the external springs for the (E) case may be written as follows:

σ̂(E)

m (z, ω) =
1

A
kE(z)γ̂(E)(z, ω)

=
G0

Γ(1 + α)
z−α γ̂(ω)

(τ (E)
α iω)

− β2

Γ(β)2β−1
zβKβ

(
z√
τ (E)
α iω

)

= γ̂(ω)
G0 (τ (E)

α iω)
β−1
2

Γ(2− 2β)Γ(1− β)2−β
zβK1−β

(
z√
τ (E)
α iω

)
.

(6.74)

The resultant of such quantities can be computed as the integral across the external
devices (the springs for the (E) case). In order to evaluate this quantity, we recall
that following result holds for a modified Bessel function of second kind integral:∫ ∞

0

zµ−1Kν (Az) dz = 2µ−2A−µΓ

(
µ− ν

2

)
Γ

(
µ+ ν

2

)
. (6.75)

By assuming µ − 1 = β and ν = 1 − β in (6.75) and with the aid of (6.74), the
resultant of the right-Fourier Transform of the microstress for the (E) case arises
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in the following form:∫ ∞
0

σ̂(E)

m (z, ω)dz = γ̂(ω)
G0 (τ (E)

α iω)
β−1
2

Γ(2− 2β)Γ(1− β)2−β

∫ ∞
0

zβK1−β

(
z√
τ (E)
α iω

)
dz

= γ̂(ω)
G0 (τ (E)

α iω)
β−1
2

Γ(2− 2β)Γ(1− β)2−β
2β−1

(
1

τ (E)
α iω

)− (β+1)
2

Γ(β)

= γ̂(ω)
G0 (τ (E)

α )
β

Γ(β)

Γ(2− 2β)Γ(1− β)21−2β︸ ︷︷ ︸
CEβ

(iω)β
(
iω

iω

)

= (iω)γ̂(ω) CE

β (iω)β−1.
(6.76)

Hence, by taking the inverse right-Fourier transform of both sides and by using
Fubini’s Theorem on the left-hand side, we have:∫ ∞

0

σ(E)

m (z, t)dz =

∫ t

−∞
G(t− τ)γ̇(τ)dτ, (6.77)

since the right Fourier transform of the assumed relaxation function in (6.4) takes
the form:

F+

{
Cβ

Γ(1− β)
t−β
}

(ω) = Cβ(iω)β−1. (6.78)

Similarly, whenever it is assumed that α = 2β − 1 the microstress for the
external dashpots for the (V) case can be evaluated as follows:

σ̂(V )

m (z, ω) =
1

A
cV (z)(iω)γ̂(V )(z, ω)

=
η0

Γ(1 + α)
z−α (iω)γ̂(ω)

(τ (V )
α iω)

β
2

Γ(β)2β−1
zβKβ

(
z
√
τ (V )
α iω

)
=

G0τ
(V )
α

Γ(1 + α)

Γ(1 + α)

Γ(2− 2β)
(iω)γ̂(ω)

(τ (V )
α iω)

β
2

Γ(β)2β−1
z1−βKβ

(
z
√
τ (V )
α iω

)
= γ̂(ω)

G0 (τ (V )
α iω)

β+2
2

Γ(β)Γ(2− 2β)2β−1
z1−βKβ

(
z
√
τ (V )
α iω

)
(6.79)
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where equation (6.63b) has been used in the following form:

τ (V )

α =
η0

G0

Γ(1− α)

Γ(1 + α)
=⇒ η0 = τ (V )

α G0
Γ(1 + α)

Γ(2− 2β)
. (6.80)

The use of (6.79) and the assumptions µ− 1 = 1− β and ν = β in (6.75) allow for
writing the overall microstress for the (V) case in the following form:∫ ∞

0

σ̂(V )

m (z, ω)dz = γ̂(ω)
G0 (τ (V )

α iω)
β+2
2

Γ(β)Γ(2− 2β)2β−1

∫ ∞
0

z1−βKβ
(
z
√
τ (E)
α iω

)
dz

= γ̂(ω)
G0 (τ (V )

α iω)
β+2
2

Γ(β)Γ(2− 2β)2β−1
2−β (τ (V )

α )
β−2
2 Γ(1− β)

= γ̂(ω)
G0 (τ (V )

α )
β

Γ(1− β)

Γ(β)Γ(2− 2β)22β−1︸ ︷︷ ︸
CVβ

(iω)β
(
iω

iω

)

= (iω)γ̂(ω) CV

β (iω)β−1.

(6.81)

Now, proceeding like in (6.77) we get:∫ ∞
0

σ(V )

m (z, t)dz =

∫ t

−∞
G(t− τ)γ̇(τ)dτ (6.82)

The results addressed by (6.76)-(6.77) and (6.81)-(6.82) show that it is possible
to compute the resultant of the microstresses in both models without knowing
explicitly the transfer function H(z, t) in the time domain.
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6.4.2 Micro and macro state

It is not difficult to show that, thanks to the results addressed in Secion 6.4.1, the
integrals in (6.72a) and (6.72b)) can take the form:∫ +∞

0

σ̂(E)

m (z, ω)dz =
k0 (τ (E)

α )
β

21−2β

Γ(β)

Γ(2− 2β)Γ(1− β)
(iω)β−1iωγ̂(ω)

=

∫ +∞

0

e−iω(t+τ)

∫ t+τ

−∞
G(E)(t+ τ − r)γ̇(r) dr dτ

(6.83a)

∫ +∞

0

σ̂(V )

m (z, ω)dz =
k0 (τ (V )

α )
β

22β−1

Γ(1− β)

Γ(β)Γ(2− 2β)
(iω)β−1iωγ̂(ω)

=

∫ +∞

0

e−iω(t+τ)

∫ t+τ

−∞
G(V )(t+ τ − r)γ̇(r) dr dτ.

(6.83b)

Henceforth, the inverse right Fourier transform of the relations above yield that
(6.69a) and (6.69b) read as follows:∫ +∞

0

σ(E)

m (z, t+ τ)dz =

∫ t+τ

−∞
G(E)(t+ τ − r)γ̇(r)dr (6.84a)∫ +∞

0

σ(V )

m (z, t+ τ)dz =

∫ t+τ

−∞
G(V )(t+ τ − r)γ̇(r)dr (6.84b)

From the latter relations, we can conclude that no matter what rheological model is
considered, their overall response, i.e. the resultant of the “microforces", namely of
the forces on the lateral springs (for the (E)-model) or dashpots (for the (V)-model),
match exactly the force arising at the “macrolevel", i.e. the force acting on the top
plate.

Once more this is a confirmation of the fact that the detected “macroscopic"
stress response, governed by a power-law relaxation function, is completely deter-
mined by constitutive properties of the submacroscopic structure which, in this
case, is resembled by the rheological models (E) and (V).

The achieved result is consistent with what is encountered in micromechanics,
where a displacement (in this case γ) is prescribed on the boundary (namely the top
plate) of a representative volume element of heterogeneous material and a boundary
value problem is solved in the interior of such an element. The latter is essentially
provided by the procedure followed in [62]: there it was found that the response of
the top plate, upon which a time varying displacement was prescribed, was precisely
given by the convolution between the rate of change pf the imposed displacement
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and the relaxation function G(E)(◦) or G(V )(◦) for (E) or (V) respectively.
Nevertheless, (6.84a) and (6.84b) from (E) and (V), respectively, can be inter-

preted by invoking the balance of forces arising on each system. In particular, the
free body diagrams displayed in Figure 6.6 are self explanatory about the fact that
for each if the two models balance of forces yields that the following relation must
hold

σ(t) =

∫ ∞
0

σm(z, t)dz (6.85)

where σ(t) is given by (6.61) and σm(z, t) represents either (6.64a) and (6.64b).

γ(t)
σ(t)

(a) (b)

γ(t)
σ(t)

Newtonian Fluid
Elastoviscous case (E)

Elastic Solid
Viscoelastic case (V)

σ(E)

m (z, t)

σ(z, t)

σ(z, t) +
∂σ

∂z
(z, t)dz

σ(V )

m (z, t)

σ(z, t)

σ(z, t) +
∂σ

∂z
(z, t)dzz

Figure 6.6: Elastoviscous (E) and Viscoelastic (V) deformed models and related
external microstresses. Courtesy of [54].

Since (6.61) is nothing but the representation in terms of (Caputo) fractional
derivative of either G(E)(◦) or G(V )(◦), (6.85) reproduces exactly (6.84a) and
(6.84b). Evidently, a third way to achieve the same result provided by the latter
equation is that (6.59a) and (6.59b) deliver the balance of linear momentum of an
arbitrary slab (of unitary width) in between the depths z and z + dz, i.e.

∂τ(z, t)

∂z
= σm(z, t) (6.86)

where τ is the shear stress inside the column and the pair (τ, σm) for (E) and (V)
agrees with

(
c(E)(z)

∂γ̇(z,t)
∂z , σ(E)

m

)
,
(
k(V )(z)

∂γ(z,t)
∂z , σ(V )

m

)
respectively. Henceforth,

the simple integration of (6.86) across the depth of the column yields

τ(0, t) = −
∫ ∞

0

σm(z, t)dz. (6.87)

It is not difficult to check that a direct evaluation of the left-hand side for each of
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the two rheological models yield (6.84a) and (6.84b) back again.
Ultimately, the knowledge of the time history of the displacement of the top

plates determines:

(i) the overall response of the system, no matter what rheological model is used;

(ii) the values of the displacement “at the microlevel" γ(E)(z, t), γ(V )(z, t) for (E)
and (V) respectively (e.g. (6.65a) and (6.65b)) ultimately leading to the “mi-
crostresses" σ(E)

m (z, t) and σ(V )
m (z, t) through (6.64a) and (6.64b) respectively.

Physically it is unlikely to know the whole past strain history of a viscoelastic
material, whereas residual stresses may be detectable. As remarked in Sect. 3
before defining It1(t2) with (6.45) (here t1 and t2 denote two arbitrary times),
this variable represents such a stress at time t2 for not necessarily known strain
histories acting from the far past up to the initial observation time t1 < t2.

The approximation formulas (6.49) and (6.37) allow us to state that although
(approximately) equivalent histories differ by a power-law strain, the knowledge of
It1(t2) at any t1 < t2 allows for uniquely determining (i) and (ii).

Unlike (i), which has been treated in [62], (ii) needs to be clarified. If we set

aε
∗
b(r) :=

{
aε
∗(r) a ≤ r < b

0 b ≤ r < t+ τ
(6.88)

then relation (6.48) delivering the corresponding residual stress at t+ τ reads as
follows

aIb(τ + t) =
(
CD

β
a+ aε

∗
b

) (
τ + t

)
− ε(b)

(t+ τ − b)β +
ε(a)

(t+ τ − a)β
. (6.89)

This allows for obtaining representatives of the equivalence class of histories by
computing the fractional integrals Iβa+ of order β of both sides of such a relationship.

As far as the rheological models are concerned, we can state that, instead
of prescribing the displacement history of the top plate, the knowledge of the
associated residual stress aIb(τ + t) allows for evaluating

(
Iβa+ aIb

) (
τ + t

)
=

1

Γ(β)

∫ τ+t

a+
aIb(r)(t− r)β−1dr. (6.90)

This (besides the terms depending on ε(b) and ε(a), where the latter vanishes in
the limit for a→ −∞) divided by Cβ permits to replace γ in (6.84a) and (6.84b)
and hence allows for determining the overall response of the rheological models. In
this sense, we may state that the “state at the microlevel", namely the knowledge
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of σ(E)
m (z, t) (or γ(E)(z, t)), σ(V )

m (z, t) (or γ(V )(z, t)) is fully determined through the
knowledge of the “macroscopic" state.

6.5 Remarks

In this Chapter, at first the attention has been focused on “virgin" materials
characterized by power law relaxation (and hence creep) functions, it has been
considered absolutely continuous strain functions in time, for which the Boltzmann-
Volterra integral relation can be recast in terms of a Caputo fractional derivative,
whose order matches the power encountered in the relaxation function (besides
its sign). Such derivative is characterized by a hyper-singular integral, whose
convergence is guaranteed whenever the strain is absolutely continuous in time (see
[183], Lemma 2.2, p.35). In this case, the resulting stress is at least locally integrable
and its representation formula enjoys its inverse in terms of the Riemann-Liouville
integral of the same order of the derivative above. This result has been generalized
here to strains which are locally of Special Bounded Variations (SBVloc) in time.
This has been done by first evaluating the contribution to the stress of the jump
part of the strain, which can be represented through its Lebesgue decomposition
(see e.g. [118]). It has been proved, both through the use of Theorem 2.4 in
[183] and also by direct calculation, that the corresponding stress turns out to be
invertible as well as the one associated with the absolutely continuous part of the
strain. This has allowed for reconstructing any strain in SBVloc starting from the
associated stress.

The state for a “non-virgin", namely prestressed (or prestrained), FHM has been
then treated in Section 6.2. Whenever the strain is assumed as the independent
variable, the equivalence of two past histories is recast in terms of the Caputo
fractional derivative of their difference ε∗ (see equation (6.33)). An approximation
of this equation has been considered and its solution has generated a one parameter
family of strains producing a corresponding family of stresses converging in L∞ to
the response related to ε∗. In turn, it has been shown that this procedure permits
to single out the explicit expression of the residual stress obtained by freezing the
strain to zero for any arbitrary duration starting from a conventional observation
time, t, before which the experienced past history is not known. For such a variable
an approximation formula has been provided in analogy with the one discussed
above.

Two rheological models derived in [62] yielding power law creep and relaxation
have been discussed in Section 6.4. The first one conveys the idea of having a
functionally graded submacroscopic structure, labelled with the letter (V), formed
by a continuous elastic layer supported on one of its sides by a continuous sequence
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of dashpots whose stiffness and viscosity both decrease with depth. The second
model, labelled with (E), is somehow the dual of the previous one, since it is
obtained by considering a viscous layer supported on continuous springs both
characterized by viscosity and stiffness decreasing with depth, respectively. In both
cases the two systems are driven by an indefinite massless rigid plate on which
a displacement time history is prescribed. The initial boundary value problems
corresponding to both systems have been summarized, whose solutions (6.61) arise
in terms of the fractional derivative of the imposed time history, leading to the
force (stress) arising at the rigid plate.

On the other hand, Section 6.4 has provided newer insights on the models
introduced above. Indeed, the “microstresses”, namely the “forces” arising in the
continuous distributions of dashpots (model (V)) and springs (model (E)) have
been evaluated.The overall responses of both systems has been shown to match
the force arising at the rigid plate. This is motivated a-posteriori by exploring the
balance of forces in both rheological models and it also shown how the knowledge
of the state of the top plate determines the microstresses in both systems.
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Chapter 7

Power-law hereditariness of
herarchical fractal bones

Courtesy of the Authors, most of this Chapter is a copy of the following published
paper:

L. Deseri, M. Di Paola, M. Zingales and P. Pollaci, “Power-law hereditariness
of hierarchical fractal bones”, International Journal for Numerical Methods in
Biomedical Engineering 29 (12), 1338-1369, doi:10.1002/cnm.2572 (2013).

In this Chapter, the attention is focused on the mechanical behavior of bone
tissues because as highly functionalized tissues because of its important in biomed-
ical engineering. Indeed, the main feature that biomedical devices must possess
have high compatibility with directly interacting biological tissues. For natural
and artificial bone-like structures, this feature involves similar stiffness, strength
and toughness among in vivo and artificial devices. The bones can grow, change
their form during their life and self-heal after a fracture, renewing through a
remodeling process. All these processes are regulated by mechanical, hormonal
and physiological signals. In particular osteocytes basic remodelling is mainly led
by mechanical transduction through strain/energy density in bone tissue [23, 35,
143, 168, 196] and, henceforth, the hereditariness of mineralized biological tissue is
a crucial aspect to detect the speed of bone reformations as well as to predict its
interactions with artificial devices.

Here, it will shown that relaxation/creep functions of trabecular and compact
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bones are well captured by real-order power-laws tβ (0 < β ≤ 1/2) yielding a
rheological model in term of real-order differintegral operators [136, 169, 183].
This behavior has been associated to the anomalous Euclidean scaling of bone
specimen geometry as in ordinary fractal analysis. This observation provides a
relation among the Hausdorff dimension of the geometry scaling and the decay of
the power-law. Indeed, stiffness and viscosity coefficients of the fractance decay
of power-law with the observation scale have exponent related to the observed
dependence of both the creep and relaxation functions [62].

7.1 Bone hereditariness: The power-law rheologi-
cal model

Mineralized biological tissues as bones, tendons and ligaments are very sophisticated
and highly specialized engineered materials. Macroscopic observations of trabecular
bone tissue show that its architecture is built upon a complex network of beams
and platelets forming a three-dimensional geometric structure. Spaces among the
mineralized tissues are filled by bone marrow, a fluid-like material formed by fat
cells, water and proteins. The biphasic nature of the trabecular bone is the main
reason why its macroscopic mechanical behavior fades out stress peaks due to high
frequency and impulsive loads. Mathematical models of the macroscopic behavior
of biphasic trabecular bones make wide use of the Biot’s poroelasticity [33, 98–100,
168], although a more modern treatment of such media may be found through the
theory of Structured Deformations [49–51].

Despite the macroscopic behavior of trabecular bones, the rheological descrip-
tion of mineralized biological tissues deserves careful considerations. Indeed load
capacity and ultimate strength of bones, as well as stiffness, depend on the me-
chanical properties of the solid-like phase. However several pathological diseases
such as osteoporosis and/or osteosynthesis affect, specifically, the nano-micro scale
structure of the mineralized tissue modifying, primarily, its rheological properties
[145, 192, 204]. In this regard, it is well known that the structure of bones is self-
organized in a hierarchic sequence repeating its fundamental elements in different
stacking at different resolution scales [122]. The overall behavior of the mineralized
tissue is detected through macroscale relaxation tests from several authors [1, 173,
203] and is displayed in Figure 7.2 In the pictures, dots represent the experimental
data whereas solid lines are the fitting relaxation curves chosen in the following
class:

G(t) :=
Cβ

Γ(1− β)
t−β β ∈ [0, 1] (7.1)

where G(t) and Γ(1−β) are the relaxation function and the Euler-Gamma function
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t

ε(t)

ε(t)ε(t)

ε0

t∗

Figure 7.1: Schematic representation of relaxation test: after the initial ramp,
the strain is held constant. Courtesy of [57].

evaluated at t and at 1 − β respectively and [Cβ ] = FT β/L2 is an anomalous
force coefficient of the material. Inspection of Figure 7.2 shows that the fitting
curves in (7.1) are in good agreement with experimental results for different kinds
of bones undergoing to relaxation tests (schematically represented in Figure 7.1).
The viscoelastic behavior of collagen is then shown to agree with our choice of
the class of relaxation functions, even if a closer analysis of data seems to require
an additional constant elastic term to model the equilibrium response. Indeed,
the hereditary feature causes continuum stress relaxation in time depending on
an exponent near to 0 (see Table 7.1). Henceforth the stress value fades out in a
very long time. Experimental tests are performed in a limited time frame, so that
the proposed model approximates very well the experimental data in the given
time-range [34, 82, 170]. The results of best-fitting procedure, collected in Table
7.1, show that the power-law exponent depends on the anatomical location of the
considered specimen [149]. This observation is in good agreement with several bone
microscopies showing that the mineralized tissue architecture changes upon the
anatomic location as the result of a material optimization procedure. In the context
of linear hereditariness and in the absence of past histories, the Boltzmann-Volterra
superposition principle may be used to provide the stress response as well as the
strain evolution for prescribed strain γ (stress σ) processes:

σ(t) :=

∫ t

0

G(t− τ)γ̇(τ) dτ (7.2a)

γ(t) :=

∫ t

0

J(t− τ)σ̇(τ) dτ. (7.2b)
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As the model parameters have been obtained from the best-fitting of experimental
data on stress relaxations, the creep function J(t) may be obtained from the
relaxation function G(t) in (7.1) by mean of the well-known relation in the Laplace
domain, i.e.

G̃(s)J̃(s) =
1

s2
=⇒ J(t) =

1

CβΓ(1 + β)
tβ (7.3)

where the symbol ˜ denotes the Laplace transform.
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Figure 7.2: Fitting of relaxation experimental data from several authors: a) [173];
b) [203]; c) and d) [1]. Courtesy of [57].

By inspection of the last term in the equality chains in (7.2) through the
definitions reported in Appendix A, it is shown that assuming a power-law expression
of the relaxation/creep function of the material results into rheological expressions:
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Table 7.1: Parameters from best-fitting procedure on curve in Figure 7.2.

β Cβ Notes[
N

mm2
sβ
]

(a) [173]

F0 = 168 N 0.0194 71.17

bovine femural head

F0 = 320 N 0.0171 71.52
F0 = 445 N 0.0128 71.58
F0 = 577 N 0.0139 72.13
F0 = 727 N 0.0136 72.56

(b) [203]

ε0 = 1.143% 0.0690 46.99 human calcaneus horizontal

ε0 = 0.678% 0.0575 75.61 human calcaneus 45◦

ε0 = 0.478% 0.0886 98.53 human calcaneus vertical

ε0 = 0.480% 0.0341 229.95 os lunatum

ε0 = 0.707% 0.0372 158.22 os capitalum

(c) [1]
u0 = 0.15 mm 0.0104 88.99

bovine femuru0 = 0.20 mm 0.0015 83.50
u0 = 0.25 mm 0.0069 84.09
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σ(t) =
Cβ

Γ(1− β)

∫ t

0

(t− τ)−β γ̇(τ) dτ = Cβ

(
CD

β
0+γ

)
(t) (7.4a)

γ(t) =
1

CβΓ(1 + β)

∫ t

0

(t− τ)β σ̇(τ) dτ =
1

Cβ

(
Iβ0+σ

)
(t) (7.4b)

containing the well-known Caputo and Riemann-Liouville differential and integral
operators. For “non-virgin" materials, i.e. materials whose state at the very begin-
ning of observation is characterized by prestressed (or prestrained) configuration,
equation (7.2) would be supplemented by state variables [40, 45]. The use of
fractional operators in the context of rheological material modeling has been proved
to be a key tool to predict the hereditariness of stresses and strains in organic
polymers [74–76]. The rheological description of the hereditary features of bone
tissues has been shown in Figure 7.2, where the material parameters have been
estimated by a best fitting procedure for different kinds of trabecular bone tissues.
The stress-strain behavior in (7.4) may be fruitfully explained by making use of a
rheological device, called springpot [185]. The springpot has an intermediate be-
havior between a linear spring, whose constitutive equations reads as σ = Eγ, and
a Newtonian dashpot with constitutive law relation σ = ηγ̇ (Figure 7.3). Limiting

σ(t) = E(D0γ)(t) = Eγ(t)

σ(t) = Cβ(D
βγ)(t)

E

η

Cβ β

(β = 0)

(β = 1)

(0 < β < 1)

σ(t) = η(D1γ)(t) = ηγ̇(t)

Figure 7.3: The mechanical devices: (a) spring, (b) springpot, (c) dashpot.
Courtesy of [57].

values of the order of differentiation β → 0 or β → 1 yield springs and dashpot
devices, respectively. The fairly limited use of fractional-order derivatives in the
context of mechanics is related to the lack of a clear mechanical description of the
associated rheological devices. An efficient and exact representation of springpot
devices has been recently obtained [61, 62].
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7.2 The mechanical model of bone fractional-order
hereditariness

An exact mechanical model of fractional hereditary materials was recently proposed
in [62], where two different mechanical representations of fractional hereditary
material (FHM) depending on the mathematical range of the exponent β are
reported. The mechanical description of Elasto-Viscous (EV) materials (0 ≤ β ≤
1/2) is represented by an indefinite massless viscous shear fluid externally restrained
by a bed of independent elastic springs. Visco-Elastic (VE) materials (1/2 ≤ β ≤ 1)
are represented instead by an indefinite elastic shear layer externally restrained by
independent linear dashpots (Figure 7.4).

γ(t)σ(t)

ηV (z)

γ(t)σ(t)

GE(z)

Newtonian Fluid Elastic Solid

(a) (b)

z

�

Figure 7.4: Continuum fractional models: (a) elastoviscous (EV) and (b) vis-
coelastic (VE) cases.

It is assumed that the mechanical parameters of the model, namely the elastic
modulus k(z) and the viscosity coefficient c(z) decay with power-law with the axial
coordinate z as:

kE(z) := AGE(z) = A
G0

Γ(1 + α)
z−α (7.5a)

cE(z) := AηE(z) = A
η0

Γ(1− α)
z−α, (7.5b)

for EV materials (denoted by subscript E), whereas for VE materials (denoted by
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subscript V ) they read as follows:

kV (z) := AGV (z) = A
G0

Γ(1− α)
z−α (7.6a)

cV (z) := AηV (z) = A
η0

Γ(1 + α)
z−α (7.6b)

where 0 ≤ α ≤ 1, A is the cross-sectional area and GE, GV and ηE, ηV represent
the elastic modulus and the viscosity coefficient per unit of area for both cases
respectively (see [62] for more details). In the following it is assumed a unit area
(A = 1) so that kE,V (z) = GE,V (z)A = GE,V (z) and cE,V (z) = ηE,V (z)A = ηE,V (z).
In these circumstances the balance of linear momentum of the model reads:

(EV) :
∂

∂z

[
cE(z)

∂γ̇

∂z

]
= kE(z)γ(z, t) (7.7a)

(VE) :
∂

∂z

[
kV (z)

∂γ

∂z

]
= cV (z)γ̇(z, t), (7.7b)

where γ(z, t) is the transverse displacement of the shear layer at depth z and
γ̇(z, t) = ∂γ(z,t)

∂t . Boundary conditions associated to the mechanical model in
Figure 7.4 are provided in the form: lim

z→0
γ(z, t) = γ(t)

lim
z→∞

γ(z, t) = 0.
(7.8)

Upon solving the boundary value problem, the stress arising at the top surface
turns out to be related to the transverse displacement γ(t) by the following relation:

σ(t) = Cβ

(
CD

β
0+γ

)
(t) , (7.9)

where:

Cβ :=CE

β =
G0Γ(β)

Γ(2− 2β)Γ(1− β)21−2β
(τE(α))

β (7.10a)

τE(α) = − η0

G0

Γ(α)

Γ(−α)
(7.10b)
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and α = 1− 2β for the EV material, whereas:

Cβ :=CV

β =
G0Γ(1− β)

Γ(2− 2β)Γ(β)22β−1
(τV (α))

β (7.11a)

τV (α) = − η0

G0

Γ(−α)

Γ(α)
(7.11b)

and α = 2β−1 for the VE material, where the terms τE(α), τV (α) are dimensionally
a relaxation time. This result shows that the mechanical models analyzed above
and formed by a proper arrangement of springs and dashpots with mechanical
parameters decaying with power-law provides exactly a rheological model in terms
of fractional derivatives.

It is worth noting, with the aid of the normalized creep function J(t) =
J(t)CβΓ(1+β) = tβ (see Figure 7.5), that the value β = 1/2 of the derivation order
separates two different ranges for the material behavior. In the range 1/2 ≤ β ≤ 1
the viscosity prevails, the elastic phase decreases with increasing β and then it is
appropriate to define such materials as VE. The corresponding mechanical model
is composed by an elastic indefinite column undergoing shearing and resting on a
bed of linear dashpots. The second behavior is characterized by 0 ≤ β ≤ 1/2 in
which the elastic phase prevails with decreasing β, and then it is appropriate to
define these materials as EVs. The corresponding mechanical model is described
as an unbounded column of viscous fluid resting on a bed of linearly independent
springs.

The critical value of the fractional derivation order β = 1/2 may be also
obtained as a limit case for the two different models described above.

Β

t

J�t�

Β � 1�2

Β � 1�2

Β � 1�2

Β �����

Β �����

Β �����

Β �����

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
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1.2

Figure 7.5: Normalized creep function J(t) (curves with different β). Courtesy
of [57].

233



CHAPTER 7. POWER-LAW HEREDITARINESS OF HERARCHICAL FRACTAL BONES

7.3 The discrete equivalent representation of FHM

Validation and challenges of the mechanical equivalent representation of FHM
have been discussed in previous papers [60, 61] for EV (0 ≤ β ≤ 1/2) and VE
(1/2 ≤ β ≤ 1) materials. To this aim the continuum mechanical model has been
discretized into a mechanical fractance. Introducing a finite discretization grid of
the z−axis into point zj = (j − 1)∆z, j = 1, 2, . . . , n, with step ∆z = h/n where
h is the spatial extension of the fractance.

γ(t)σ(t)cV 1

cV 2

cV 3

kV 1

kV 3

kV 2

γ(t)σ(t)

cE,1

cE,2

cE,3

kE,1

kE,2

kE,3

∆z

∆z

∆z

∆z

(a) (b)

z

�

Figure 7.6: Fractional mechanical model: discrete counterpart of (a) EV and (b)
VE materials. Courtesy of [57].

The introduction of z−axis discretization yields discrete mechanical fractances
both for EV and VE cases (Figure 7.6) with stiffness and damping coefficients that
for EV case read:

kE,j = GE(j∆z)∆z =
η0

Γ(1 + α)
(j∆z)

−α
∆z (7.12a)

cE,j =
ηE(j∆z)

∆z
=

G0

Γ(1− α)

(j∆z)
−α

∆z
. (7.12b)

Hence, the equilibrium equations are provided in the following form:{
σ(t) = k0γ1 − c0∆γ̇0

kjγj − cj∆γ̇j + cj−1∆γ̇j−1 = 0
(7.13)

where ∆γ̇j+1 = γ̇j+1 − γ̇j . May be shown that as ∆z → 0 and h → ∞ (7.13)
reverts to the governing equation in (7.7b). Similar considerations hold for VE
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models as we select the spring coefficient of the model in (7.6) as follows:

kV ,j =
GV (z)

∆z
=

G0

Γ(1− α)
j−α

∆z−α

∆z
(7.14a)

cV ,j = ηV (z)∆z =
η0

Γ(1 + α)
j−α∆z−α ∆z, (7.14b)

while the equilibrium equation are:{
σ(t) = c0γ̇0 − k0∆γ1

cj γ̇ − kj∆γj + kj−1∆γj−1 = 0
(7.15)

where ∆γj+1 = γj+1 − γj .

The discretized version of the equilibrium equations may be cast in a compact
form for EV and VE, namely:

pEAγ̇ + qEBγ = vσ(t) (7.16a)
pVBγ̇ + qVAγ = vσ(t), (7.16b)

where p and q are constant coefficients only depending on discretization increment
∆z, γ is the vector of displacement at each layer of discretization, vσ(t) is the
vector of applied stress, and:

pE :=
η0

Γ(1− α)
∆z−(1+α) pV :=

η0

Γ(1 + α)
∆z1−α (7.17a)

qE :=
G0

Γ(1 + α)
∆z1−α qV :=

G0

Γ(1− α)
∆z−(1+α) (7.17b)

γ = [γ1 γ2 . . . γn]
T

v = [1 0 . . . 0]
T
, (7.17c)

Here the matrices A and B are defined as follows:

Ai,j =


(i− 1)−α + i−α i = j

−i−α (j − i) = 1 with j > i

−j−α (i− j) = 1 with i > j

0 other
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A =



1−α −1−α 0 . . . 0

1−α 1−α + 2−α 2−α . . . 0

0 2−α 2−α + 3−α . . . 0
...

...
...

. . .
...

0 0 0 . . . (n− 1)−α + n−α


(7.18)

Bi,j =

{
i−α, i = j

0, i 6= j

B =



1−α 0 0 . . . 0

0 2−α 0 . . . 0

0 0 3−α . . . 0
...

...
...

. . .
...

0 0 0 . . . n−α


(7.19)

It is worth noting that B is actually positive difinite and, hence, invertible. In the
sequel we will report analysis and solutions for both elastoviscous and viscoelastic
materials.

Let now focus the attention on EV case. The solution of the system of
differential equations in (7.16a) will be obtained introducing the following change
of coordinate:

x = B
1
2γ (7.20)

By left-multiplying both sides of (7.16a) by B−
1
2 , we obtain:

pEDẋ + qEIx = B
1
2 vσ(t), (7.21)

where D = B−
1
2 AB−

1
2 is the dynamical matrix, and it is symmetric and positive

and I is the identity operator. This equation may be studied by making use of Φ
(where each column is an eigenvector of D ), which has the following properties:

ΦTDΦ = Λ (7.22a)

ΦTΦ = I, (7.22b)

where Λ is the diagonal matrix of the eigenvalues λi > 0 of D. In order to obtain
a decoupled set of equations, the modal transformation x = Φ y is performed;
henceforth by left-multiplicating for Φ−1 = ΦT , the following modal equation
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arises:
pEΛẏ + qEy = ΦTv σ(t) (7.23)

where B
1
2 v = v for the special form both of B and v.

Following the same steps with the same assumptions the governing equation
for VE discrete model read as follows:

pV ẏ + qVΛy = ΦTv σ(t). (7.24)

In the modal space, the jth equation of each model takes the following form:

ẏj +
qE
pEλj

yj =
φ1,j

pEλj
σ(t) (7.25a)

pV
qV λj

ẏj + yj =
φ1,j

qV λj
σ(t), (7.25b)

where φ1,j is the first element of the jth eigenvector of the dynamical matrix
D. Equations (7.25) are analog to the ones governing the evolution of a generic
Kelvin-Voigt element with viscous coefficient aE := 1 (aV := pV /(qV λj), elastic
spring bE := qE/(pEλj) > 0 (bV := 1), and forced by σj := fjσ(t) :

aj ẏj + bj yj = fjσ(t) j = 1, 2, . . . , n; (7.26)

the previous statement allows for detecting the relaxation time of each level as
the ratio τj = bj/aj . In equation (7.26) the magnitude modal-load coefficients are
defined as follows:

fj :=


fE =

φ1,j

pEλj
EV

fV =
φ1,j

qV λj
VE .

(7.27)

Setting the initial condition properly as

y(0) = ΦTB
1
2γ(0) (7.28)

the complete solution of differential equation of Kelvin-Voigt model in the modal
space reads:

y(t) = yj(0)ε
− bjaj t +

fj
aj

∫ t

0

ε
− bjaj (t−τ)

σ(τ)dτ, (7.29)

where yj(0) is the jth element of initial values vector y(0); yielding the displacement
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bE,j =
qE

pEλj

aV,j =
pV

qV λj
aE,j = 1

bV,j = 1

fV,j =
φ1j

qV λj
fE,j =

φ1j

pEλj

fV,jσ(t)fE,jσ(t)

(a) (b)

Figure 7.7: The jth EV (a) and VE (b) Kelvin-Voigt resolution model in modal
space. Courtesy of [57].

vector of the fractance as:
γ(t) = B−

1
2 Φy(t). (7.30)

The displacement at the top of the mechanical model is provided by the first
element of the solution vector γ(t). In order to separate such a displacement from
the rest of the response, one can make use of the vector v defined before, i.e.
γ(t) = vTγ(t).

Inspection of (7.25) shows that the dynamical system in the modal space is
described by a set of decoupled, linear, one-degree of freedom system with different
relaxation times τj . Such a consideration shows that the continuous spectrum
relaxation function of FHM may be properly discretized in a set of spectral rows
corresponding to relaxation times τj , (j = 1, 2, . . . , n, . . . ).

The capability of the model may be shown for EV and VE forced by a constant
force σ(t) = σ0 = U(t). The solution of generic Kelvin-Voigt for a quiescent system
at its starting time (i.e. the initial conditions are zero for each layer) in modal
space reads as follows:

yj(t) = fjσ0

(
1− ε−

bj
aj
t
)

In particular, Figure 7.8a shows the influence of the number of layer n (using
β = 0.4 and ∆z = 0.001). Figure 7.8b shows the influence of ∆z (using β = 0.4
and n = 500). It may be observed that as soon as more layers are considered the
solution converges towards the exact expression of a fractional integral. At last, the
exact and discrete solutions are compared for several values of β studying both EV
case (n = 1500, ∆z = 0.001) and VE case (n = 1500, ∆z = 0.02), as depicted in
Figure 7.8c and Figure 7.8d respectively. It is interesting to note that the predicted

238



7.4. POWER-LAW HEREDITARINESS OF FRACTAL MODELS OF BONES

response for VE needs a lower discretization step to match the exact one.
The mechanical model presented yields a power-law creep function and that

the discretized model involves a discretized time spectrum. In this regard we may
consider that FHM as a continuum counterpart of 1D linearly independent n degree
of freedom system with decaying stiffness and viscosity. This behavior will be used
in Section 5 to address bone hereditary response.
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Figure 7.8: The influence of parameters on discrete solution and its match with
exact values for several values of β (η0 = 1, G0 = 1, σ0 = 1, γ0 = 0). Courtesy of
[57].

7.4 Power-law hereditariness of fractal models of
bones

The mechanical picture of power-law hereditariness of FHM that showed Section
7.3 does not correspond to the material organization of bone.

239



CHAPTER 7. POWER-LAW HEREDITARINESS OF HERARCHICAL FRACTAL BONES

In this Section it will be provided a fractal geometrical model of material
specimen that corresponds to a power-law creep/relaxation function. A relation
among the fractal geometric dimension of the material specimen and the exponent
of the power-law is obtained. Details about fractal geometry and fractal dimension
has been reported in Appendix B.

To this aim let us consider a material specimen of length measure L0 and
squared cross section of side length b0 at the macroscopic observation scale. Let
us assume, moreover, that material specimen involves several, self-similar, scale-
dependent microstructures that appear with the refinement of the observation scale.
Each microstructure is constituted by a bundle of longitudinal fibers of length
Lj = L0/εj , with εj the resolution factor, j = 1, 2, .... the resolution level, and ∆ε
the resolution interval. Let us assume that the the cross-sectional area measure
of the self-similar microstructure is scale-invariant and that it presents more and
more details with the refinement of the observation scale. As a consequence, more
and more detailed cross-section is present for the microstrucure observed for the
εj+1 resolution with respect to the microstructure appearing at the εj scale.

The requirement of self-similarity, scale-invariance measure in conjunction
with the presence of more details of the microstructured cross-section yields that
it must belong to a more general class of geometrical sets with respect to the
Euclidean objects. An example of such class are the lacunar-type fractal sets. In
Figure 7.9 we reported the geometrical architecture of a Sierpinski carpet, a specific
precursor of fractals of side b0. According to the definition of fractal dimension
and fractal measure, the Sierpinski carpet has measure equal to bd0/Γ(d− 1), with
1 ≤ d = log(8)

log(3) ≤ 2 which denotes the anomalous Hausdorff dimension. The case
d = 2 corresponds to the well-known Euclidean set with measure b20. As we increase
the observation scale of a fractal εj = j∆ε, where j = 1, 2, . . . and ∆ε is the
resolution interval, the fractal cross-section shows a smaller self-similar geometrical
architecture still maintaining the same overall measure of the fractal cross-section
area bd0/Γ(d− 1). In this context, as we refine the resolution scale of a factor εj
to observe the jth microstructure, we identify geometric elements with measure
(b/εj)

d
= bd0ε

−d
j /Γ(d− 1).

It is assumed that the microstructure fibers are composed by a two-phase
material: i) a purely elastic, Hookean solid phase with Young modulus E0 and; ii)
a purely viscous, Newtonian fluid phase with viscosity coefficient η0. Let us assume
that the dense space around singular points of the fractal support is occupied by the
viscous phase, whereas the pores of the cross-sections are filled by the elastic phase.
Since the cross-section of the material specimen possesses anomalous dimension, a
scale-dependent damping coefficient cj and stiffness of the jth microstructure, is
involved. Indeed, as we refine the observation scale of factor εj and we measure
the cross-section area at this new resolution, we must rescale the length measure of
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a factor ε−dj to maintain the same overall measure. This geometrical consideration
yields that the scaling law of stiffness and dampig coefficients of the material read
(see [62] for details):

cj =
ηdb

d
0ε
−d
j

LjΓ(d− 1)
=
η0

L0

bd0ε
1−d
j

Γ(1− d)
(7.31a)

kj =
Ed
L0
bd0
ε1−d
j

Γ(d)
=
E0

L0

bd0ε
1−d
j

Γ(1− d)
(7.31b)

where ηd = η0b
2−dΓ(d − 1)/Γ(1 − d) and Ed = E0b

2−dΓ(d − 1)/Γ(1 − d)is the
anomalous viscosity coefficient.
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Figure 7.9: Fractal mechanical representation of the elastic and viscous phase of
the material microstructure. Courtesy of [57].

The presence of a material microstructure that is maintained, as we refine
the observation scale, togheter with a new microstructure appearing at smaller
scales involves a connection among the different microstructures as observed by
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the mechanical fractance in Figure 7.9. To this aim we reported in Figure 7.9
the micromechanical fractal tree corresponding to section A-A of the Sierpinsky
carpet modelling the EV and VE Material, respectively. The elastic (for VE
material), as well as the viscous (for EV material), phase are distributed among
scales in a self-similar fashion, filling pores with an Hookean or Newtonian material,
respectively.

It must be remarked that, as we consider the presence of self-similar microstruc-
tures appearing at different observation scales, still maintaining previously observed
microstructures, is not corresponding to the classical mechanical discussions on
fractal sets. Indeed the introduced material model is not equivalent to the analysis
of a fractal-like solid that involves, instead different microstructures at different
scales without any interaction among the scales.

The kinematic degrees of freedom of the microstructure observed at different
scales are defined as uj and, in this regard, the mechanical fractance is fully
equivalent to a mechanical hierarchical assembly of viscous dashpots with damping
coefficients cj externally restrained by linear springs with stiffness coefficients kj
as reported in Figure 7.10:

The balance of linear momentum involves contributions from the j−1 and j+1
observation scales and, the system of differential equation ruling the time-evolution
of the microstructure displacements may be written as:

F = c1 (u̇1 − u̇2) + k1u1

c1
(u̇1 − u̇2)

∆ε
= c2

(u̇2 − u̇3)

∆ε
+ k2u2∆ε

c2
(u̇2 − u̇3)

∆ε
= c3

(u̇3 − u̇4)

∆ε
+ k3u3∆ε

...

cj−1
(u̇j−1 − u̇j)

∆ε
= cj

(u̇j − u̇j+1)

∆ε
+ kjuj∆ε

...

(7.32)

The use of the Laplace transform allows for solving the system reported in (7.32)
in the following form:

ũ1(s) =
F̃ (s)

k1

1

f1 −
τ̃1τ̃2
f2 −

τ̃2τ̃3
f3 −

. . .
τ̃j−1 τ̃j
fj − . . . (7.33)

where the symbol denoting the continued fractions was used (see Appendix C for
more details). In (7.33) we defined the quantities τ̃j = s cj/kj , fj = 1 + rj + τ̃j and
rj = s cj−1/kj in order to get a compact form of the expression, where kj = kj∆ε
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Figure 7.10: The mechanical hierarchy of the microstructure at the jth observation
scale. Courtesy of [57].

and cj = cj/∆ε. Moreover, the quantity τ̃j represent the relaxation time at the jth
observation scale. The substitution in (7.32) of the stiffness kj and the viscosity cj
using (??) and (??), respectively, and replacing ∆z with ∆ε yields the following
differential equation as ∆ε→ 0:

E0

Γ(1− d)
ε1−du(ε, t) =

∂

∂ε

[
η0

Γ(1− d)
ε1−d ∂u̇(ε, t)

∂ε

]
(7.34)

with boundary conditions stated as:

u(∞, t) = 0 (7.35a)

F = lim
ε→0

η0

Γ(1− d)
bd
∂u̇

∂ε
ε1−d, (7.35b)

(see Sect. IV in [62] for an analog derivation). The observation of ((7.34),(7.35))
shows that assuming α = d− 1, the solution for ε→ 0 yields a displacement-force
rheological relation as:

F0 = Cβ

(
Dβ0+u

)
(t) (7.36)

with a relation among the decaying coefficient β, the proportionality coefficient Cβ
and the fractal dimension of the cross-section area that reads:

β =
(1− α)

2
=

(2− d)

2
, Cβ =

G0Γ( 2−d
2 )

Γ(d)Γ(d/2)2d−1
(τE(α))

(2−d)
2 (7.37)

with τE(α) = − η0
G0

Γ(d−1)
Γ(1−d) . We observe that, as d = 2, the Euclidean dimension

of the cross-section yields a perfectly elastic material. In case d = 1, instead a
fractional hereditary material at critical state, that is with exponent β = 1/2, is
obtained.

The case involving VE material, i.e. with 1/2 ≤ β ≤ 1 may be dealt with
similar arguments yielding a relation among the power-law exponent and the fractal

243



CHAPTER 7. POWER-LAW HEREDITARINESS OF HERARCHICAL FRACTAL BONES

dimension as β = d/2. More details about the fractal representation of material
hereditariness will be reported in a forthcoming paper [63].

It is interesting to observe that by introducing a fractal geometric description of
the microstructure of material specimen, a relation among the power-law exponent
of creep/relaxation function and the fractal dimension of the geometric cross-section
may be obtained.

As the relation among Hausdorff dimension and power-law exponent has been
established the application may be devoted to a fractal model of the bone tissue
hereditariness. Indeed in Figure 7.11 c we reported the Hausdorff dimension of a
rat femural cross-section trabecular structure at resolution scales (cm− µm).

The fractal dimension have been obtained, by an isthological specimen of bone
tissue of a bone head after a period in fornaline for 24 hours. Bone specimen have
been then decalcified in EDTA with an acid tampon and, furthermore reconditioning
have been performed with Phosphate Buffered Saline (PBS). The specimen have
been also immersed in alchoolical solutions with different concentrations, left in
xilene solution, and immersed in paraffine at 60 ◦C for two hours.

The observation of the prepared bone tissue specimen have been performed
on an optical microscope after coloration of the bone marrow with emathossiline-
eosin and observed in the range from 10x to 40x with a Leica DM 5000 B with
camera CCD Leica 3000 F as in Figure 7.11a. The observed images have been then
recomposed to cover the entire rat femoural head and the evaluation of the fractal
dimension of the bone head has been performed on a binary image conversion
as in Figure 7.11b). The fractal dimension have been obtained by means of the
box-counting method (see Appendix B for more details) obtaining, for the different
specimen analized, fractal dimension in the range ∆r = 1.70−1.83. A representation
of the fractal dimension has been reported in the Log-Log representation in Figure
7.11c

With the estimated values of Hausdorff dimension ∆r we may conclude that
the cross-sectional area of a bone head is not Euclidean and, by recalling previous
arguments, a relation among the fractal dimension and the creep/relaxation expo-
nent may be provided (with ∆r = 1.83) as β = (2 − d)/2 = (2 −∆r)/2 = 0.085.
This value is very close to the estimated one for β, obtained from macroscopic
mechanical experimental tests as reported in Section 7.1 on different bone tissues
specimens.

However, it may be observed that the bone tissue has a hierarchical self-
organization and that, at different resolution scales, different geometric structures
may be observed [122]. Indeed, bones are not true fractal since they do not posses
a self-similar organization at every resolution scale and, therefore, a fractal model
of bone tissue may be only a rough approximation.

In this regard, we observe that the lack of self-similarity of real bone is limited
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Figure 7.11: (a) High resolution image of a cross-section of a health rat bone
proximis femural epiphisis after chemical treatment (as deffatting). (b) Image
elaboration oriented to highlight the resistant section. (c) Evaluation of the fractal
dimension using the box-counting method. Courtesy of [57].

to the difference among observed hierarchic levels of bone tissue (see Figure 7.12).
However, for each element of the hierarchy a specific value of the fractal dimension

lamellae collagen fibers collagen fibrils
(1 Μm)(10 Μm) (100 nm)

(a) (b) (c)

Figure 7.12: (a) Bone Lamellae scale. (b) Collagen fibers scale. (c) Collagen
fibrils scale. Courtesy of [57].

∆k, with k = 1, 2, . . . , N (N represents the number of level of the hierarchy), may be
identified. As we observe that for each level of the hierarchy an elastic and a viscous
phase exists and more details in their separation may be obtained increasing the
resolution scale, within the range of the observed hierarchical structure a relation
as βk = (2 − ∆k)/2 may be provided. In this case a model involving linear
combinations of power-laws with Cβ1

tβ1 + Cβ2
tβ2 + . . . may be build providing a

better estimate of creep and relaxation functions. Details about this possibility to
model material behavior will be reported elsewhere.
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It is interesting to observe that the FHM model with a single power-law with
exponent β may represent the creep/relaxation of a multiple hierarchic fractal
geometry with averaged dimension ∆ =

(∑N
k=1 pk∆k

)
/N with 0 ≤ βk ≤ 1 and

pk, k = 1, 2, ..., N weighting coefficients 0 ≤ pk ≤ 1 useful to provide the influences
of the jth scale to the overall hereditariness of material specimen. In this latter
case the value of the exponent of the power-law creep/relaxation may be obtained
as β = (2− d)/2.

7.5 Remarks
In this Chapter, a hierarchic fractal model to describe bone hereditariness has
been introduced. Indeed, experimental data of stress relaxation or creep functions
obtained by compressive/tensile tests have been proved to be fit by power-law
with real exponent 0 ≤ β ≤ 1. The rheological behavior of the material has
therefore been obtained, using the Boltzmann-Volterra superposition principle, in
terms of real order integrals and derivatives (fractional-order calculus). It has been
also shown that the power-laws describing creep/relaxation of bone tissue may be
obtained introducing a fractal description of bone cross-section and the Hausdorff
dimension of the fractal geometry is then related to the exponent of the power-law.

The presence of a power-law with 0 < β ≤ 1/2 has been justified with a
mechanical model represented by a Newtonian viscous material resting on a bed of
independent spring [62]. The presence of such mechanical model, however, is not
observed in bone tissue and, henceforth a fractal description of bone cross-section
has been introduced. In this regard it has been shown that the specimen cross-
section at any level of hierarchy has a non-Euclidean dimension. As it is assumed
that this dimension is identical at several observation scale of the bone, as in fractal
set, a relation among the the power-law and the fractal dimension has been found.
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Conclusion

The main result obtained in this Thesis is the novel constitutive model presented in
Chapter 2. The analysis of the cell membrane behavior has allowed for extrapolating
three main contributions to the Helmholtz free energy: (1) diffusion of receptors and
transporters embedded in the lipid membrane; (2) conformational changes of the
receptors; (3) membrane elasticity. As widely done in literature, the areal stretch J ,
defined as the inverse of the thick stretching, has been employed as coarse-grained
parameter. Moreover, a proper conformational field η has been introduced. First
of all, a proper energetics has been constructed based on experimental data and
pragmatical observations. A dependence on temperature and adhesive properties
have been taken into account for developing a reliable model. The total energy has
been finally derived by coupling the energy of receptor-ligand bonds, the energy due
to loss of diffusional entropy of the activated GPRCs, and the newly deduced energy
due to conformational changes in the transmembranal (TM) domains in the current
configuration. This energy has allowed for determining the chemical potential of
the receptor-ligand compound through the variational derivative. Beside this, the
interplay between TM conformational changes and lateral pressure of the lipid
membrane against such TMs has been introduced and compared with the one
calculated by accounting for the work done by the lateral pressure. Thank to this
comparison, a relationship between the conformational field, the mechanical field
(interpreted as either the thickness change or the areal change) and the distribution
of the compound receptor-ligand has been found. In order to get more insights into
this newly constitutive relationship, a deeper parametric analysis has been done for
characterizing the unknown quantities arisen during the study (namely C, A, a).

In Chapter 3 the balanced configurations of the membrane in the set of equilibria
have been sought. This has be done with special regard to an existing experiments
involving HTR-8/SVneo cells and β2AR. Diffusive phenomena, both in time and
space, have been considered and a proper chemo-mechanical coupling has been
introduced through the kinetics of ligand bindings. The model has been numerically
tested in Chapter 4. At first, it has been assumed that diffusive phenomena and
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mechanical equilibrium would be independent, while later the full coupled problem
has been faced. These two approaches have given rise to two different numerical
schemes, called Double Step (DS) and Double Update (DU), respectively.

The analysis of the resulting constitutive equations among conformational field,
receptor density and areal stretch has shown that the reason why ligand-GPRCs
compounds prefer to live on lipid rafts is the consequence of the interplay between
the work performed by the lateral pressure and the need of TMs to change their
conformation during ligand binding. Moreover, the results are strengthened by the
numerical results obtained by means of numerical simulations. The analytic model
presented and discussed in this Thesis is able, for the first time in literature at the
best of the Writer’s knowledge, to predict that the field X = ξ(x, t)/ξ0 of active
receptors is higher where higher values of H = h/h0 are encountered, i.e. where
formation of rafts happens, confirming the findings by Nobel Prize 2012 Kobilka
[117] and Lefkovitz [127].

Because of the characteristic double-well energy, lipid membranes can also
experience material instability. This topic has been analyzed in Chapter 5, both
in the linear and viscoelastic framework, by employing a linearization of the en-
ergy around an unstable configuration. A flat prismatic membrane with constant
thickness has been assumed as reference configuration. The value of the thick-
ness is chosen in such a way the initial homogeneous stretch lies in the unstable
region of the energy (i.e. the spinoidal zone of the local stress). This occurrence
allows for studying the set of equilibria by introducing a small perturbation. By
assuming two sets of boundary conditions, it has been shown that this perturbation
drives the nucleation of bifurcated shapes, forcing the separation of the phases
and determining natural lipid ordering. First this occurrence has been studied in
the asymptotic elastic case. By employing the variational principle, it has been
shown that the bifurcated modes appear to be oscillatory, with periods larger than
the reference thickness of the bilayer. Beside this, the viscoelastic behavior of
lipid membrane has been taken into account through their exhibited power-law
in-plane viscosity. As in the elastic case, the set of equilibria has been sought by a
variational principle, in order to find the minimum of the energy in the class of
synchronous perturbations. The resulting Euler-Lagrange equation is a Fractional
Order PDE yielding a non-classical eigenvalue problem. The strategy employed for
solving the fractional PDE is the separation of variables, then the mode (spatial
dependence) and transfer (time dependence) functions are determined. It has been
shown that the characteristic modes of the viscoelastic case, namely ζ2, are still
oscillatory, and appear to be amplified by a factor (k2) with respect to the elastic
counterpart. The time-dependent part of the differential equation is a non classical
fractional eigenvalue problem, and leads to an anomalous time long-tail of the
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response. The ratio of (dimensionless) generalized local and nonlocal moduli drives
this amplification, and it has been shown that the viscoelastic case is characterized
by a larger (if compared with the elastic case) range os stretches at which insta-
bilities (namely bifurcations) can occur. The time decay is strongly influenced by
the factor k2 and, in turn, is by local and local modulus. In Figure 5.8 has been
shown the specific case in which the same power-law describes both the local and
the nonlocal response. All the other cases are studied in Figure 5.9, where both
the real and imaginary part of the transfer function are shown, revealing always
the occurrence of a fading memory in time.

The treatise presented in Chapter 6 is strongly motivated by the revitalized
interest on the hereditariness of biological and bioinspired substructured materials
exhibiting macroscopic power-law behavior. The aim of the discussion is to frame
the study of Fractional Hereditary Material in a proper framework. In order to
achieve this result, first of all the stress and the strain response are mathematically
characterized in the broader functional setting of strains in SBVloc. It has been
shown how the very long-tail memory of prestressed FHM can be studied by means
of power-law hereditariness. Starting from the notion of state for general linear
viscoelastic materials, it has been found a new relationship for the class of the
equivalent past strain histories in terms of the Caputo fractional derivative. A
simplifies analysis has been considered for deriving the explicit expression of the
state variable, i.e. the residual stress living in the material after a prescribed
past history of arbitrary duration. Two rheological models, composed by proper
arrangement of springs and dashpots, for modeling the FHMs have been presented.
A direct connection between the microstress along the depth of the model and the
arising macrostress has been established, and it has been shown that it can be
expressed in terms of the Caputo fractional derivative of the macroscopic strain
history. It is worth noting that the imposed strain history is not known a priori.
It has been shown that the use of the balance of linear momentum justifies the
equality between macrostresses, and a relationship between macro and micro stress
has been derived in terms of fractional operators.

Among several biological structures owing the properties above, a special
attention must be paid to mineralized biological tissues like bones, tendons and
ligaments, because of their importance in biomedical engineering. The aim of
Chapter 7 has been to face this problem in the advanced framework of fractal
geometry and fractional-order calculus. These tools allow for employing fractional
derivatives (i.e. convolution integral having power-law kernel) for describing the
relaxation and creep functions as hereditary features. In the case of a bone, this
function is well described by power-law function, and well justified by assuming
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a fractal scaling of the cross-section. The presence of both a purely elastic and a
purely viscous phase can be modeled as a proper arrangement of spring an dashpots.
The use of a proper self-repetition of these devices at the microlevel captures the
arising anomalous scaling properties, and it has be shown to be natural the presence
of fractional-differentiation order relationships. In order to construct a solid base
for these observations, several experiments found in literature have been analyzed
and it has been shown that a relation among the fractional-order derivation index
and the fractal dimension of bone model there exist. It is worth noting that the
value of fractal dimension computed is very close to the value obtained from the
analysis of the experimental tests.
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Appendix A

Basic concepts on Fractional
Calculus

Fractional calculus may be considered the extension of the ordinary differential
calculus to non-integer powers of derivation orders (e.g. see [169, 183]). In this
Appendix we address some basic notions about this mathematical tool.

The Euler-Gamma function Γ(z) may be considered as the generalization of
the factorial function since, as z assumes integer values as Γ(z + 1) = z! and it is
defined as the result of the integral as follows:

Γ(z) =

∫ ∞
0

e−xxz−1dx. (A.1)

The Riemann-Liouville fractional integrals and derivatives with 0 < β < 1 of
functions defined on the entire real axis R have the following forms:(

Iβ+f
)

(t) =
1

Γ(β)

∫ t

−∞

f(τ)

(t− τ)1−β dτ (A.2a)(
Dβ+f

)
(t) =

1

Γ(1− β)

d

dt

∫ t

−∞

f(τ)

(t− τ)β
dτ. (A.2b)

The Riemann-Liouville fractional integrals and derivatives with 0 < β < 1 of
functions defined over intervals of the real axis, namely f(t) such that t ∈ [a, b] ⊂ R,
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have the following forms:(
Iβaf
)

(t) =
1

Γ(β)

∫ t

a

f(τ)

(t− τ)1−β dτ (A.3a)(
Dβaf

)
(t) =

f(a)

Γ(1− β)(t− a)β
+

1

Γ(1− β)

∫ t

a

f ′(τ)

(t− τ)β
dτ. (A.3b)

The relation (A.3b) is a direct consequence of Corollary of Lemma 2.1 in [183]
(p.32). Beside Riemann-Liouville fractional operators defined above, another class
of fractional derivative that is often used in the context of fractional viscoelasticity
is represented by Caputo fractional derivatives defined as:(

CD
β
a+f

)
(t) := Im−βa+ (Dma+f) (t) m− 1 < β < m (A.4)

and whenever 0 < β < 1 it reads as follows:(
CD

β
a+f

)
(t) =

1

Γ(1− β)

∫ t

a

f ′(τ)

(t− τ)β
dτ. (A.5)

A closer analysis of (A.3b) and (A.5) shows that Caputo fractional derivative
coincides with the integral part of the Riemann-Liouville fractional derivative in
bounded domain. Moreover, the definition in (A.4) implies that the function f(t)
has to be absolutely integrable of order m (e.g. in (A.5) the order is m = 1).
Whenever f(a) = 0 Caputo and Riemann-Liouville fractional derivatives coalesce.

Similar considerations hold true also for Caputo and Riemann-Liouville frac-
tional derivatives defined on the entire real axis. Caputo fractional derivatives
may be consider as the interpolation among the well-known, integer-order deriva-
tives, operating over functions f(◦) that belong to the class of Lebesgue integrable
functions (f(◦) ∈ L1) as a consequence, they are very useful in the mathematical
description of complex system evolution.

A.1 Notes on fractional calculus and Fourier trans-
forms

It is worth introducing integral transforms for fractional operators. In this regard,
it is useful to recall that the Laplace and Fourier integral transforms are defined as
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follows:

L[f(t)] =

∫ ∞
0

f(t)e−stdt (A.6a)

F [f(t)] =

∫ +∞

−∞
f(t)e−iωtdt. (A.6b)

Similarly to classical calculus, the Laplace integral transform L(◦) is defined in the
following forms:

L
[(

Dβ0+f
)

(t)
]

= sβL[f(t)] = sβ f̃(s) (A.7a)

L
[(

Iβ0+f
)

(t)
]

= s−βL[f(t)] = s−β f̃(s). (A.7b)

In the same way, the Fourier integral transform F(◦) assumes the following forms:

F
[(

Dβ+f
)

(t)
]

= (−iω)βF [f(t)] = (−iω)β f̂(ω) (A.8a)

F
[(

Iβ+f
)

(t)
]

= (−iω)−βF [f(t)] = (−ω)−β f̂(ω). (A.8b)

Obviously, the right-Fourier Transform of both Caputo fractional derivative and
Riemann-Liouville fractional integral are defined as follows:

F+

{(
Iβ+f

)
(◦)
}

(ω) = (−iω)−β f̂+(ω) (A.9a)

F+

{(
CD

β
+f
)

(◦)
}

(ω) = (−iω)β f̂+(ω) (A.9b)

where
F+ {f(◦)} (ω) := f̂+(ω) :=

∫ ∞
0

f(t)e−iωtdt. (A.10)

These mathematical tools may be very useful to solve systems of fractional
differential equations, which appear more and more frequently in various research
areas and engineering applications [169]. The research on electrical circuits (es-
pecially on semiintegrating circuits) was one of the first fields of application of
differential equations of fractional order [159]. As example we consider the following
differential equation of order β = 1/2:(

D
1
2
0 f
)

(t) + af(t) = 0 (A.11)
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with the following initial condition

C =
[(

D−
1
2

0 f
)

(t)
]
t=0

. (A.12)

The use of the Laplace integral transform allows for writing the solution in the
Laplace domain as follows:

f̃(s) =
C

s1/2 + a
. (A.13)

Whenever the time domain is restored, the solution has the following form:

f(t) = Ct−
1
2E 1

2 ,
1
2

(
−a
√
t
)

(A.14)

where Eα,β(z) is the Mittag-Leffler function, defined as follows:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
α > 0 , β > 0. (A.15)

In his textbook, Podlubny showed [169] (p. 21) an expression for the Laplace
transform can be found in the following form

L
[
t
k−1
2 E

(k)
1
2 ,

1
2

(
a±
√
t
)]

=
k!

(
√
s∓ a)

k+1
(A.16)

where the notation (k) denotes the kth-derivative. We recognize that in (A.13)
k = 0, henceforth the time domain solution reads has the form reported in (A.14).

The curious reader can find several procedures and examples on differential
equations of fractional order in the complete textbooks by Podlubny [169] and
Samko [183].

A.2 Solution of a Fractional Ordinary Differential
Equation

As an example, let us solve the following Fractional Order Differential Equation:

aDαt h(t) + b h(t) = c, (A.17)
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and denote with h0 the initial condition. The Laplace Transform of (A.17) takes
the form:

(apα + b)H =
c

p
+ a pα−1h0 (A.18)

For the sake of convenience, we distinguish to contribution to the transformed
function H: 

H1 =
c p−1

apα + b
=
c

a

p−1

pα + b
a

H2 =
a pα−1h0

apα + b
= h0

a

a

p−1

pα + b
a

(A.19)

Let us recall the Laplace Transform of the Mittag-Leffler function (see Podlubny
pag 21, eqn 1.80 [169])

L
{
tα
∗ k+β∗−1E

(k∗)
α∗,β∗

(
±a∗tα∗

)
; t; p

}
=

k∗! pα
∗−β∗

(pα∗ ∓ a∗)k∗+1
, (A.20)

and look for the Anti-transform of each term. For the first term we get recognize
that k∗ = 0, α∗ − β∗ = −1, α∗ = α, a∗ = b/a, then:

h1(t) =
c

a
tαEα,α+1

(
− b
a
tα
)
, (A.21)

whereas for the second one k∗ = 0, α∗ − β∗ = α− 1, α∗ = α, a∗ = b/a, then

h2(t) = h0t
0Eα,1

(
− b
a
tα
)
. (A.22)

Finally, the sought solution takes the following form:

h(t) =
c

a
tαEα,α+1

(
− b
a
tα
)

+ h0Eα

(
− b
a
tα
)
. (A.23)
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Appendix B

Basic concepts on Fractal
Geometry

The fractal geometry (from the Latin word fractus, extremely divided) was intro-
duced by Mandelbrot [140] at the end of the seventies in order to give scholars a
new mathematical tool to describe real objects. The notions stated by Mandelbrot
have spread in several field of research, such as chaos and financial theories [124,
141]

The particular property of the fractal objects is the self-similarity. This property
means, roughly speaking, that the object may be defined as the union of smaller,
self-similar copies of itself. Such a property of fractal objects may also be used to
define fractals by means of self-similar transformations of the parent object. This
feature has to be understood rigorously for mathematical fractals only, whereas it
has to be interpreted in a statistical sense for real objects.

The measure of fractal objects as well as their dimension are the main differences
with respect to their Euclidean description. The classical Euclidean objects are
characterized by integer dimension which identifies the degrees of freedom of the
object in the related Euclidean space. On the contrary, the dimension of the fractal
objects is different from one of the Euclidean space which encloses them; whenever
the dimension of the fractal object is greater than the one of the Euclidean space
it is defined lacunar, otherwise it is invasive.

Several authors [69] tried to provide a mathematical definition of fractal di-
mensions. The most used definitions have been addressed by Mandelbrot [140],
Hausdorff and Besikovitch [95] and Minkowski [147]. The first is related to the
invariance property under change of observation scale of fractal objects, whereas
the latter ones depend on the coverage density of fractal object by Euclidean covers.
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The Mandelbrot’s dimension ∆ is strictly related to the Mandelbrot’s funda-
mental relation as follows:

Nr∆ = L∆
0 =⇒ ∆ =

logN

log L0

r

(B.1)

where N is the number of self-similar copies when the observation scale changes,
L0 is the length of the parent object and r is the length of the ruler.

In order to define the Hausdorff-Besikovitch dimension, it is worth to introduce
the concept of Hausdorff-measure. Let U be a non-empty set enclosed in Rn. The
diameter of this set is defined as the greater distance between two any points
belonging to it, i.e. |U | = sup{|x− y| : x, y ∈ U}. The δ-cover of a fractal subset
F depends on the parameter δ as follows:

F ⊂
∞⋃
i=1

Ui |U |i ≤ δ (B.2)

where δ represents the greater diameter allowed. Let α be a non-negative real
number. For all δ ≥ 0, the Hausdorff measure is defined in the following form:

Hαδ = lim
δ→0

inf

{ ∞∑
i=1

|U |αi : |U |i is a δ-cover of F
}
. (B.3)

The value of the limit defined in (B.3) is either 0 or ∞, except for a specific

dH = α
0

∞

α

Hα(F )

Figure B.1: The Hausdroff-Besikovitch dimension of a fractal object Hα(F ).

choice of α in correspondence to which the curve Hα(F ) have a jump (see Figure
B.1). The Hausdorff-Besikovitch dimension dH of a fractal object F is defined
as the smaller value of α such that the Hausdorff measure of F has zero value
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or, equivalently, the greater value of α such that the Hausdorff measure of F has
infinite value :

dH(F ) = α = sup{α : Hα(F ) =∞} = inf{α : Hα(F ) = 0}. (B.4)

The Hausdorff dimension is an integer number for the Euclidean objects whereas it
is a real number for the fractal ones.

The last definition of dimension uses the covering definition by Minkowski [140]
and it was studied by Bouligand [20] and Kolomogorov [69]. The observer selects a
proper coverage box (e.g. a range, a square and a cube for 1D, 2D and 3D Euclidean
spaces respectively) and computes how many objects need to completely cover
the fractal object when the amplitude of the cover decreases. The computation
of the slow of the best fitting straight-line in the bi-logarithmic plane allows for
calculating the fractal dimension as follows:

dMB = lim
δ→0

[
D − logF (δ)

log δ

]
(B.5)

where D is the dimension of the Euclidean space in which the object is enclosed, δ
is the dimension of the cover and F (δ) is the overall coverage (union of all covers of
the object). This procedure is the most used since it is easily enforced in numerical
codes.
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Appendix C

Fundamentals of Continued
Fraction

The continued fractions give an exact mathematical representation of rational and
irrational numbers. For instance, the exact representation of 67/29 reads as:

67

29
= 2 +

1

3 +
2

9

. (C.1)

The use of this powerful mathematical tool is strictly related to need to find a
better mathematical representation of the decimal one. The general definition of
continued fraction can be expressed in the following form:

f = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

(C.2)

where an and bn, namely the elements of the continued fraction, are complex
numbers and am 6= 0 for all m. The numbers am and bm are called mth partial
numerator and partial denominator. Whenever am = 1 for all m, equation (C.2) is
defined simple continued fraction. A more convenient form for (C.2) can be written
as follows:

f = b0 +
a1

b1 +

a2

b2 +

a3

b3 + . . .
. (C.3)
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Let {am}m∈N and {bm}m∈N an ordered pair of complex numbers, where N0 and N
are the set of the positive integer including or not the 0 respectively. It is possible
to define a linear fractional transformation as follows:

s0(w) := b0 + w sn(w) :=
an

bn + w
n = 1, 2, 3, . . . (C.4)

S0(w) := s0(w) Sn(w) := Sn−1 (sn(w)) n = 1, 2, 3, . . . (C.5)

The form assumed by (C.5) for a generic value of w is the following:

Sn(w) = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . . an
bn + w

(C.6)

Whenever the number f is rational the elements of the continued fraction
coalesce with the Euclidean algorithm and they are finite; otherwise if f is irrational
the continued fraction is composed by an infinite number of elements. The nth

approximation of an irrational number can be written as follows:

fn = b0 +
a1

b1 +

a2

b2 +

a3

b3 + · · ·+
an
bn
. (C.7)

Every rational number has an essentially unique continued fraction representation.
The continued fraction have been used to give more accurate description of

several mathematical functions (such as exponential, power-law, trigonometric,
hyperbolic, error, Bessel functions and many other) and constants (Euler’s number,
Euler’s constant, golden ratio and many other) and also in the eigen-analysis. The
curious reader can find more details are deeply treated in the complete Handbook
of Continued Fractions for Special Function [37].
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Appendix D

Some Calculations

This Appendix is devoted to simply collect explicit calculations of some results
presented in this Thesis.

D.1 Work done by lateral pressure

With respect to Figure 2.5, the profile of lateral pressure is approximated by the
following (symmetric) piecewise function:

π(x , z) :=



−p 0 < z <
h

2
− φ

q

φL/4

[
z −

(
h

2
− φL

2

)]
h

2
− φ < z <

h

2
− φ

2

q − q̄

φL/4

[
z −

(
h
2 −

φL
4

)]
h

2
− φ

2
< z <

h

2

or equivalently bearing in mind that φ = φL/2:

π(x , z) :=



−p 0 < z <
h

2
− φL

2
q

φL/4

[
z −

(
h

2
− φL

2

)]
h

2
− φL

2
< z <

h

2
− φL

4

q − q̄

φL/4

[
z −

(
h
2 −

φL
4

)]
h

2
− φL

4
< z <

h

2
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where q denotes the value of the pressure arising between of the contrast of the
lipid head against the domain of receptor protein, and p is the value of the pressure
along the lipid tail arising fol self-balancing the pressure profile. Indeed, because
of the force balance, the following relationship must hold:

2 · p
(
h

2
− φ

)
= 4 · q · φ/2

2
.

This balance allows for finding a relationship between p and q in the form:

p =
q

2

φ

h

2
− φ

or p =
q

2

φL
h− φL

.

Let now compute the work done by this lateral pressure:

W = π ds hW∗

where W∗ denotes the work done per unit of area. After setting

θ = z −
(
h

2
− φL

2

)
and θ′ = z −

(
h

2
− φL

4

)
the quantity W∗ can be evaluated as follows:

W∗ =

∫ +h/2

−h/2
π(x , z, t) J(x , z, t) dz = 2

∫ h
2

0

π(x , z, t) J(x , z, t) dz

= 2

(
− p

∫ h

2
−
φL
2

0

J(x , z, t) dz + q
4

φL

∫ φL
4

0

θ J̃(x , θ, t) dθ︸ ︷︷ ︸
a

+

(
q
φL
4

)
+

− q 4

φL

∫ φL
4

0

θ′Ĵ(x , θ′, t) dθ′︸ ︷︷ ︸
a

)

≈ 2

[
q

4

φL
− p

∫ h
2−

φL
2

0

[J(x , 0, t) + z Jz(x , 0, t)] dz

]

= 2

[
q

4

φL
− p

(
h

2
− φL

2

)
J + 0

]
= 2

[
p

(
h

2
− φL

2

)
− p

(
h

2
− φL

2

)
J

]
= p (h− φL) (1− J)
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Finally, the work done the lateral pressure is computed as:

W = π ds hW∗ ≈ π ds h p̄ (h− φL) (1− J)

= π ds p̄ h (h− φL)

(
1− h0

h

)
= π ds p̄ (h− φL)︸ ︷︷ ︸

q̄φL/2

(h− h0) =
π ds q̄ φL

2
(h− h0) =

=
π ds q̄ φL

2
h0

(
1

J
− 1

)
=
π ds q̄ φL

2
h0

(
1

J
− 1

)
Finally:

W = π ds φ q̄ (h− h0) ≤ 0

Moreover, bearing in mind that the surface tension γRL is related to the lateral
pressure as

q = γRL/ds

where ds denotes the diameter of a single receptor domain, a more compact
relationship can be written as follows:

W = π φ γRL (h− h0) ≤ 0

D.2 Chemical Potential

Integration of (2.17) supplies the following result

−ξϕCR =
W(J)

KBT
ξ + d(J),

where the constant d(J) must be determined. This is done by assuming that in
reference state, denoted by the subscript 0, the value of the conformational field
has zero-value. Hence, the constant is found as:

0 =
W(J)

KBT
ξ0 + d(J) =⇒ d(J) = −W(J)

KBT
ξ0.

This result allows for obtaining a relationship for the conformational field in the
form

−ϕCR =
W(J)

KBT

(
1− ξ0

ξ

)
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A comparison of this result (reported in the main text as equation (2.19)) with the
previous one obtained in (2.5) yields the following relationship:

−A log
(
K
η

J

)
=
W(J)

KBT

(
1− ξ0

ξ

)
(
ξ

ξ0

)−1

= 1 +
A KBT

W log
(
K
η

J

)
= 1 +

A KBT

πdsqφh0

(
1

J
− 1

) log
(
K
η

J

)
=

= 1 +
A KBT

πdsqφh0

J

1− J log
(
K
η

J

)
= 1− A KBT

πdsqφh0

J

J − 1
log
(
K
η

J

)
(
ξ

ξ0

)−1

= 1− C J

J − 1
ln
(
K
η

J

)
,

where

a :=
πh0φLγRL
KBT

C :=
KBT A

πh0φLγRL
=
A

a
.

See Chapter 2.3 in the text for the strategy employed for determining the parameters
C, A and a.
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D.3 First variation of the energy functional
Let consider the one-dimensional energy functional in (3.38) written in term of
the displacement field u(x). Then, by consider a virtual perturbation δu, the first
variation with respect the field variable reads as follows (note that the integration
is done along the onedimensional domain Ω, and that the explicit differential dx is
omitted for simplicity of writing, since it is clear that each term is function of x):

δE =

∫
Ω

ϕ δu′ − 1

2

(
γ′u′′2δu′ + 2γu′′δu′′

)
− S

(1 + u′)2
δu′ − (Σ′δu+ Σδu′ + Γ′δu′ + Γdu′′)

=

∫
Ω

− (γu′′ + Γ) δu′′ +

(
ϕ′ − 1

2
γ′u′′2 − S

(1 + u′)2
− Σ− Γ′

)
δu′ − Σ′δu

= − [(γu′′ + Γ) δu′]∂Ω +

∫
Ω

(γu′′ + Γ)
′︸ ︷︷ ︸

γ′u′′·u′′+γu′′′+Γ′

δu′+

+

∫
Ω

(
ϕ′ − 1

2
γ′u′′2 − S

(1 + u′)2
− Σ− Γ′

)
δu′ − Σ′δu

= − [(γu′′ + Γ) δu′]∂Ω +

∫
Ω

ϕ′ + 1

2
γ′u′′2 + γu′′′ − S

(1 + u′)2︸ ︷︷ ︸
A

−Σ

 δu′ − Σ′δu

= − [(γu′′ + Γ) δu′]∂Ω +

∫
Ω

(A− Σ) δu′ − Σ′δu

= − [(γu′′ + Γ) δu′]∂Ω + [(A− Σ) δu]∂Ω −
∫

Ω

(A− Σ)
′
δu−

∫
Ω

Σ′δu

= − [(γu′′ + Γ) δu′]∂Ω + [(A− Σ) δu]∂Ω −
∫

Ω

A′δu

Finally, the Euler-Lagrange equation governing the equilibrium of the membrane is
found as a fourth order differential equation in the form:

A′ =
d

dx

(
ϕ′ +

1

2
γ′u′′2 + γ′u′′′ − S(x)

(1 + u′)2

)
= ϕ′′u′′ +

1

2

(
γ′′u′′ · u′′2 + 2γ′u′′ u′′′

)
+ γ′u′′ · u′′′ + γu′′′′ +

(
2S u′′

(1 + u′)3
− S′

(1 + u′)2

)
= γu′′′′ + 2γ′u′′ u′′′ +

1

2
γ′′u′′3 + ϕ′′u′′ +

(
2S u′′

(1 + u′)3
− S′

(1 + u′)2

)
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Appendix E

Matlab codes

This Appendix is devoted to collect all the code written for performing numerical
simulations

E.1 Finite Differences

1 function [D0,D1,D2,D3,D4,D5] = funFD1S(n,h)
2 % SPARSE MATRICES are employed
3 %
4 % n = mesh points
5 % h = discretization step
6 %
7 % D0 = function itself (identity)
8 % D1 = first derivative
9 % D2 = second derivative
10 % D3 = third derivative
11 % D4 = fourth derivative
12 %
13

14 d0 = ones(n,1);
15 d1 = ones(n-1,1);
16 d2 = ones(n-2,1);
17 d3 = ones(n-3,1);
18 %% == FUNCTION ==
19 D0 = speye(n);
20
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21 %% FIRST DERIVATIVE
22 D1 = (diag(d1,1) + diag(-d1,-1));
23 D1 = D1/2/h;
24

25 D1(1,1:3) = [-3/2 2 -1/2]/h;
26 D1(n,n-2:n) = [1/2 -2 3/2]/h;
27 D1 = sparse(D1);
28

29 %% SECOND DERIVATIVE
30 D2 = (diag(-2*d0) + diag(d1,1) + diag(d1,-1));
31 D2(1,1:4) = [2 -5 4 -1];
32 D2(n,n-3:n) = [-1 4 -5 2];
33 D2 = D2/h^2;
34 D2 = sparse(D2);
35

36 %% THIRD DERIVATIVE
37 D3 = diag(-d1,1) + diag(d1,-1) + ...
38 diag(d2/2,2) + diag(-d2/2,-2);
39 D3(1,1:5) = [-5/2 9 -12 7 -3/2];
40 D3(2,1:5) = [-3/2 5 -6 3 -1/2];
41 D3(n-1,n-4:n) = [1/2 -3 6 -5 3/2];
42 D3(n,n-4:n) = [3/2 -7 12 -9 5/2];
43 D3 = D3/h^3;
44 D3 = sparse(D3);
45

46 %% FOURTH DERIVATIVE
47 D4 = diag(6*d0) + ...
48 diag(-4*d1,1) + diag(-4*d1,-1) + ...
49 diag(d2,2) + diag(d2,-2);
50 D4(1,1:6) = [3 -14 26 -24 11 -2];
51 D4(2,1:6) = [2 -9 16 -14 6 -1];
52 D4(n-1,n-5:n) = [-1 6 -14 16 -9 2];
53 D4(n,n-5:n) = [-2 11 -24 26 -14 3];
54 D4 = D4/h^4;
55 D4 = sparse(D4);
56

57

58 %% FIFTH DERIVATIVE
59 D5 = diag(-5*d1/2,-1) + diag(5*d1/2,1) + ...
60 diag(2*d2,-2) + diag(-2*d2,2) + ...
61 diag(-d3/2,-3) + diag(d3/2,3);
62 D5(1,1:7) = [-7/2 20 -(95/2) 60 -(85/2) 16 -(5/2)];
63 D5(2,1:7) = [-(5/2), 14, -(65/2), 40, -(55/2), 10, -(3/2)];
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64 D5(3,1:7) = [-(3/2), 8, -(35/2), 20, -(25/2), 4, -(1/2)];
65 D5(n-2,n-6:n) = [1/2, -4, 25/2, -20, 35/2, -8, 3/2];
66 D5(n-1,n-6:n) = [3/2, -10, 55/2, -40, 65/2, -14, 5/2];
67 D5(n,n-6:n) = [5/2, -16, 85/2, -60, 95/2, -20, 7/2];
68 D5 = D5/h^5;
69 D5 = sparse(D5);

As an example, see the following script. It is worth noting that some ap-
proximations arise at the boundaries (see Figure E.1) if the mesh is not fine
enough.

1 %% SCRIPT: FINITE DIFFERENCE EXAMPLE
2 clc; clear; close all
3

4 %% exact function and its derivatives
5 syms x
6 u0 = sin(2*pi*x)/3 + exp(x); %exact solution
7 u1 = diff(u0,1);
8 u2 = diff(u0,2);
9 u3 = diff(u0,3);
10 u4 = diff(u0,4);
11 u5 = diff(u0,5);
12

13 %% conversion to matlab function
14 u0 = matlabFunction(u0);
15 u1 = matlabFunction(u1);
16 u2 = matlabFunction(u2);
17 u3 = matlabFunction(u3);
18 u4 = matlabFunction(u4);
19 u5 = matlabFunction(u5);
20

21 %% mesh
22 xa = 0;
23 xb = 1;
24 nx = 30;
25 xmesh = linspace(xa,xb,nx)';
26 dx = xmesh(2)-xmesh(1);
27

28 %% compute Finite Difference Operators
29 [D0,D1,D2,D3,D4,D5] = funFD1S(nx,dx);
30

31 %% discrete function
32 U0 = u0(xmesh(:));

277



APPENDIX E. MATLAB CODES

33 U1 = D1*U0;
34 U2 = D2*U0;
35 U3 = D3*U0;
36 U4 = D4*U0;
37 U5 = D5*U0;
38

39 %% plot result
40 figure('Name','Result','Position',[200 500 800 800])
41 subplot(3,2,1)
42 hold on
43 plot(xmesh,u0(xmesh),'k')
44 plot(xmesh,U0,'ok','MarkerFaceColor','r','MarkerSize',5)
45 grid on
46 title('function')
47

48 subplot(3,2,2)
49 hold on
50 plot(xmesh,u1(xmesh),'k')
51 plot(xmesh,U1,'ok','MarkerFaceColor','r','MarkerSize',5)
52 grid on
53 title('first derivative')
54

55 subplot(3,2,3)
56 hold on
57 plot(xmesh,u2(xmesh),'k')
58 plot(xmesh,U2,'ok','MarkerFaceColor','r','MarkerSize',5)
59 grid on
60 title('second derivative')
61

62 subplot(3,2,4)
63 hold on
64 plot(xmesh,u3(xmesh),'k')
65 plot(xmesh,U3,'ok','MarkerFaceColor','r','MarkerSize',5)
66 grid on
67 title('third derivative')
68

69 subplot(3,2,5)
70 hold on
71 plot(xmesh,u4(xmesh),'k')
72 plot(xmesh,U4,'ok','MarkerFaceColor','r','MarkerSize',5)
73 grid on
74 title('fourth derivative')
75
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76 subplot(3,2,6)
77 hold on
78 plot(xmesh,u5(xmesh),'k')
79 plot(xmesh,U5,'ok','MarkerFaceColor','r','MarkerSize',5)
80 grid on
81 title('fifth derivative')
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Figure E.1: Example: numerical computation of derivatives by means of Finite
Difference Operators.
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