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Abstract 
 

The methodologies presented in this thesis address the problem of blind people rehabilitation 

through assistive technologies. In overall terms, the basic and principal needs that a blind indi-

vidual might be concerned with can be confined to two components, namely (i) naviga-

tion/obstacle avoidance, and (ii) object recognition. Having a close look at the literature, it 

seems clear that the former category has been devoted the biggest concern with respect to the 

latter one. Moreover, the few contributions on the second concern tend to approach the recogni-

tion task on a single predefined class of objects. Furthermore, both needs, to the best of our 

knowledge, have not been embedded into a single prototype. In this respect, we put forth in this 

thesis two main contributions. The first and main one tackles the issue of object recognition for 

the blind, in which we propose a ‘coarse recognition’ approach that proceeds by detecting ob-

jects in bulk rather than focusing on a single class. Thus, the underlying insight of the coarse 

recognition is to list the bunch of objects that likely exist in a camera-shot image (acquired by 

the blind individual with an opportune interface, e.g., voice recognition synthesis-based sup-

port), regardless of their position in the scene. It thus trades the computational time with object 

information details as to lessen the processing constraints. As for the second contribution, we 

further incorporate the recognition algorithm, along with an implemented navigation system that 

is supplied with a laser-based obstacle avoidance module. Evaluated on image datasets acquired 

in indoor environments, the recognition schemes have exhibited, with little to mild disparities 

with respect to one another, interesting results in terms of either recognition rates or processing 

gap. On the other hand, the navigation system has been assessed in an indoor site and has re-

vealed plausible performance and flexibility with respect to the usual blind people’s mobility 

speed. A thorough experimental analysis is hereby provided alongside laying the foundations for 

potential future research lines, including object recognition in outdoor environments.   
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1.1. Context 

As of August 2014, the estimates of the World Health Organization (WHO) reported that 39 million 

people worldwide are blind, and 246 millions have low vision varying between severe and moderate cases 

[1]. In geographical Europe alone, an average of 1 in 30 Europeans experience sight loss [2]. Particularly 

in Italy, according the Italian union of the blind and partially sighted (Unione Italiana dei Ciechi), a total 

of 129.220 individuals suffer from vision disability. That accounts for a 0.22 % of the country’s popula-

tion [3]. 

A recent revision of visual impairment definitions in the international statistical classification of dis-

eases, carried out in 2006, has revealed that visual acuity and performance are categorized according to 

one of the following four levels, namely normal vision, moderate, severe, and blindness [1].  

Blindness is posed as the inability to see. The leading causes of chronic blindness include cataract, 

glaucoma, age-related macular degeneration, corneal opacities, diabetic retinopathy, trachoma, and eye 

conditions in children (e.g. caused by vitamin A deficiency) [1]. 

Undoubtedly, either partial or full vision loss have their unpleasing psychological, social, as well as 

economic ramifications. A research conducted on a bunch of 18 blind and partially sighted adults from 

the east coast of Scotland, highlighted that participants experienced reduced mental health and decreased 

social functioning as a result of sight loss. The findings further added that participants shared common 

socio-emotional issues during transition from sight to blindness [4]. 

In his TEDx talk entitled ‘How I use sonar to navigate the world’, Daniel Kish, himself a blind per-

son and an expert in human echolocation as well as the President of World Access for the Blind organiza-

tion, indicated: ‘it’s impressions about blindness that are far more threatening to blind people than the 

blindness itself’ [5]. This statement underscores the profound psychological reflections that might be 

raised by visual impairment. 

Berthold Lowenfeld, a psychologist, and a renowned advocate for the blind, hypothesized that blind-

ness imposes 3 basic limitations on an individual: (1) a limited range and variety of experiences; (2) a 

limited ability to get around; (3) a limited control of the environment and the self in relation to it [6]. As a 

matter of fact, visually impaired children and young adults exhibit a sense of immaturity as compared to 

their sighted peers, which is due to the lack of adequate socialization opportunities. They usually have a 

tendency to be more socially isolated or to have feelings of loneliness and detachment [7]. 

Aimed at exploring the economic influence exerted by blindness and visual impairment on the US 

budget, a study concluded that these disorders were significantly associated with higher medical care ex-

penditures, a greater number of informal care days, and a decrease in health utility. The home care com-

ponent of expenditures was most affected by blindness [8]. Furthermore, the average unemployment rate 

of blind and partially sighted persons of working age is over 75 percent [2]. 

These warning figures/facts call for an urgent need to spend any possible effort and work on all lev-

els in order to improve the quality of life for people with vision disability, or at least to reduce its conse-

quences. 

In spite of the remarkable social and healthcare efforts being dedicated to cope with vision disability, 

the big prospective leap to full sight recovery has not yet been met. Nonetheless, assistive technologies 

can meet the challenge and provide a significant help towards the achievement of such an objective with a 

certain success. 

In pursuit of satisfying the needs of visually disabled people and promote better conditions for them, 

several designs and prototypes have been put forth in the last years. From an overall perspective, the 

overwhelming majority can be framed according to two mainstreams. The first one addresses the mobili-

ty/navigation concern while affording the possibility to avoid potential obstacles. The second endeavor is 

confined to recognizing the nature of nearby obstacles.  

1.2. Problems 

Considering both mobility and recognition aspects, various contributions, oftentimes referred to as 

electronic travel aids (ETAs), have been put forth in the literature. Regarding the navigation issue, which 

has been devoted the biggest part of interest as compared to the recognition aspect, different contributions 

have been carried out, and generally the mainstream makes use of ultrasonic sensors as a means for sens-

ing close-by obstacles. In which case, some sort of signal or beam is sent and subsequently received back 
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and the duration consumed between both processes defined as time of flight (TOF) is exploited, as pro-

posed for instance in  [9], which poses a guide-cane consisting of a round housing, wheelbase and a han-

dle. The housing is surrounded by ten ultrasonic sensors, eight of which are placed on the frontal side and 

spaced by 15° so that to cover a wide sensed area of 120°, and the other two sensors are located on the 

edgewise for side-objects detection (doors, walls, etc…). The user can use a mini joystick to control the 

preferred direction and push the cane through in order to inspect the area. In case any obstacle is present, 

it will be detected by the sensors and an obstacle avoidance algorithm (embedded in a computer) esti-

mates an alternative obstacle-free path and steers the cane through, which results in a force felt by the us-

er on the handle. A somehow similar concept called NavBelt was also presented in [10]. In this work, the 

ultrasonic sensors are integrated on a worn belt and spaced by 15°. The information about the context in 

front of the user is carried within the reflected signal and is processed within a portable computer. The 

outcome result is relayed to the user by means of earphones. The distance to objects is represented by the 

pitch and volume of the generated sound (i.e., the shorter the distance, the higher the pitch and volume). 

As an attempt to facilitate the use and inclose more comfort, a wearable smart clothing prototype has been 

designed in [11]. The model is equipped with a microcontroller, ultrasonic sensors, as well as indicating 

vibrators. The sensors take charge of sensing the area of concern, whilst the neuro-fuzzy-based controller 

serves for detecting the obstacle’s position (left, right, and front) and provides navigational tips such as 

turn left, turn right. An analogous work has also been proposed in [12]. Another study [13], provides an 

ultrasonic-based navigation aid for the blind, permitting him/her to explore the route within 6 meters 

ahead via ultrasonic sensors placed on the shoulders as well as on a guide cane. The underlying idea is 

that the sensors emit a pulse, which in case of an obstacle if any, is reflected back, and the time between 

emission and reception (i.e., time of flight) defines the distance of the reflecting object. The indication is 

carried out to the user by means of two vibrators (also mounted on his/her shoulders), and vocally for 

guiding the cane. The control of all the process is attributed to a microcontroller. However, the main 

drawbacks of such devices are their size on the one hand and their power consumption on the other hand, 

which reduce their suitability for daily use by a visually impaired individual. Other navigation aids ex-

ploit the Global Positioning System (GPS) to determine the blind user’s location and instruct him along 

his path [14] [15]. Such assistive devices may be useful and accurate for estimating the user’s location, 

but cannot tackle the issue of object avoidance.   

As for the recognition aspect, relatively few contributions could be found in the literature and are 

mostly computer-vision-based. In [16] for instance, a banknote recognition system for the blind was pro-

posed. It relies basically on the well-known Speeded-Up Robust Features (SURF). Diego et al. [17] sug-

gested a supported supermarket shopping, which incorporates navigational tips for the blind person 

through RFID technology, and camera-based product recognition via QR codes placed on the shelves. 

Another product barcodes detection as well as reading was developed in [18]. In Pan et al. [19], a travel 

assistant was proposed. It takes advantage of the text zones depicted in the frontal side of buses (at bus 

stops) for further extraction of information related to line number and the coming bus. The system pro-

cesses a given image acquired by a portable-camera and then notifies the outcome to the user vocally. In 

another computer vision-based contribution [20], assisted indoor staircases detection (within 1 to 5 meters 

ahead) was suggested. Also proposed in [21] is an algorithm intended to help visually impaired people to 

detect as well as read text encountered in natural scenes. Yang et al. [22] proposed to assist blind persons 

to detect doors in unfamiliar environments. Assisted indoor scene understanding through indoor signage 

detection and recognition was also considered in [23], through the use of the popular Scale Invariant Fea-

ture Transform (i.e., SIFT features). 

Accordingly, from the state-of-the-art reported so far, it is possible to make out that object detection 

and/or recognition for the blinds is approached in a class-specific manner. In other words, all the contri-

butions tend to emphasize on the recognition of one specific category of objects. Such strategy (i.e., fo-

cusing the interest on one class of objects), despite its effectiveness, conveys useful but limited infor-

mation for the blind person. By contrast, extending the interest to recognizing multiple different objects at 

once can be looked at as an alternative approach to make the recognition task more generalized and in-

formative. It is also aiming at bringing closer the indoor scene description to the blind person, yet foster-

ing his/her imagination. This is, however, not an easily achievable task due to the number of algorithms 

that would be invoked simultaneously (in case of setting up one algorithm per specific object), and may 

result in an unwanted high processing overcharge, thus making a real time or even a quasi-real time im-

plementation infeasible. 
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In the general computer vision literature, several works dealing with multi-object recognition can be 

found [24]-[28]. In [24], for instance, a novel approach for semantic image segmentation is investigated. 

The proposed scheme relies on a learned model, which derives benefits from newly proposed features, 

termed texture-layout filters, incorporating texture, layout, and context information. Presented in [25] is a 

scalable multi-class detector, in which a shared discriminative codebook of feature appearances is jointly 

trained for all object classes. Subsequently, a taxonomy of object classes is built based on the learned 

sharing distributions of features among classes, which is thereupon taken as a means to lessen the cost of 

multi-class object detection. Following a scheme that combines local representations with region segmen-

tation and template matching, in [26], an algorithm for classifying images containing multiple objects is 

presented. A generative model-based object recognition is proposed in [27]. It makes use of a codebook 

derived from edge based features. In [28], the authors introduce an object recognition approach which 

starts from a bottom-up image segmentation and analyzes the multiple segmentation levels of the image. 

To sum up, three main points are to be highlighted. The first one recalls the fact that object recogni-

tion for the blind and visually impaired, as compared to assistive mobility, has not been fairly addressed 

in the literature. The second one is that, to the best of our knowledge so far, amongst the tight list of assis-

tive object recognition contributions, multi-object recognition has not been subjected in the literature. 

Third, in order to address the previous point, one might suggest tailoring the typical multi-object recogni-

tion algorithms such as the ones conducted earlier. This resort, however, poses a major computational is-

sue, making such algorithms thereby not particularly adapted to the context of blind assistance because of 

tight time processing requirements. 

1.3. Thesis Objective, Solutions and Organization 

As pointed out in the previous subsection, (i) a scarce attention has been paid with respect to assis-

tive object recognition for the blind and visually disabled individuals, and furthermore (ii) assistive multi-

object recognition, as yet, has not been posed. On these points, the scope of this dissertation is principally 

focused on providing solutions on assistive multi-object recognition in indoor environments. Neverthe-

less, we further push the perspective towards (i) addressing the same concern outdoor spaces, and (ii) in-

corporating the proposed multi-object recognition solution(s) into a complete prototype that accommo-

dates a navigation system as well.   

The recognition model posed in this thesis accommodates a portable chest-mounted camera, which is 

used by the blind person to grab the indoor scene, which is afterwards forwarded to a processing unit, say 

a laptop or a tablet, on which the proposed multi-object algorithms are embedded. The outcome of the 

processing device is further communicated to the user through an audible voice via earphones.  

As hinted earlier, multi-object recognition for the blind is not an easy task to accomplish as it is con-

strained by real-time, or at least near-real time, processing requirements. In other terms, the blind individ-

ual needs an adequate description of the objects encountered in a given indoor site ‘in a brief processing 

span’, and this does not seem to be satisfied if common multi-object recognition algorithms are employed. 

In this respect, we introduce in this dissertation a concept termed ‘coarse scene description’, which con-

sists of listing/multilabeling the objects that most likely exist in the indoor scene regardless their position 

across the indoor site, which renders the processing requirements manageable as detailed further in this 

thesis. The image multilabeling process basically exploits and opportune library holding a set of labelled 

training images that serve as exemplary instances to multilabel a target test images (acquired by the blind 

user). Yet, the multilabeling process boils down to an image similarity regard, in which the test image in-

herits the objects of the closest training samples.  

Having devoted this first chapter to cover the different corners of the topic and drawing a complete 

picture of the problem and its surroundings. The next chapter puts forth all the proposed five multilabel-

ing schemes. Precisely, the first method takes advantage of the Scale Invariant Feature Transform (SIFT) 

[29], which is a renowned algorithm in computer vision meant to deduce a bunch of salient keypoints out 

of a given image. In this way, the issue similarity assessment between two generic images would be shift-

ed to keypoint correspondence check. In other words, the closest images shall score a high keypoints cor-

respondences. Despite its efficiency, the SIFT algorithm is known to consume a rather long processing 

time when comparing numerous images. To cope with that, a second alternative, named Bag of Words 

(BOW) [30], is posed. The BOW model consists of gathering the ensemble of keypoints extracted out of a 

considered image into a fixed-length signature. This is achieved by the mediation of a so-called codebook 

of words, which are a diminished set of keypoints derived from the library’s training images and clustered 
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down to a certain number (i.e., which is the size of the codebook as well as the final signature alike). The 

third scheme is confined to the well-known Principal Component Analysis (PCA) [31], an algorithm that 

serves for deducing a number of eigenimages, from the covariance matrix formed by the training images, 

and make use of them as a basis to project a given generic image, which ends up by producing a concise 

representation of that very image. The fourth strategy derives benefits from the compressed sensing (CS) 

theory [32], which has been posed as a powerful signal reconstruction tool in information theory. CS has 

been employed in our work as a tool to generate a compact representation of the images dealt with, which 

is reflected on the processing burden as detailed further in the third chapter. Additionally, CS has been 

further coupled with a Gaussian Process Regression model [33], as to estimate the final list of objects 

comprised in the test image. The last method is based on a Multiresolution Random Projection (MRP), 

which is an extension of the basic Random Projection (RP) algorithm [34]. The underlying idea of RP is 

to cast a given image, supposedly converted into a vector, onto a matrix of random entries whose number 

of columns defines the final size of the RP representation pertaining to the input image. Noteworthy is 

that, as pointed out in the experimental chapter, the RP has incurred a significant processing time-wise 

jump as compared to the other methods.                  

The remainder of this dissertation is outlined as follows. Chapter 2 details the pipeline underlying the 

coarse image description alongside all the multilabeling algorithms. Chapter 3 conducts the experimental 

setup and discusses the numerical findings. Chapter 4 describes the ultimate recognition-navigation proto-

type. Chapter 6 addresses outdoor objects recognition and reports preliminary results. Chapter 7 con-

cludes the thesis and paves the way for future ameliorations.  

This dissertation has been written supposing that the Reader is familiar with the basic concepts re-

garding the image processing, computer vision and pattern recognition fields. Otherwise, the Reader is 

recommended to consult the references which are appended in this dissertation. They are useful to give a 

complete and well-structured overview about the topics discussed throughout the manuscript. The follow-

ing chapters have been written in such a way to be independent between each other to give to the Readers 

the possibility to read only the chapter/s of interest, without loss of information. 
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2.1. Coarse Image Description Concept 

As hinted in the introdution chapter, instaead of emphasizing the scope to recognize a single 

particular object, the purpose in this work is to ‘coarsely’ describe a given camera-grabbed image of an 

indoor scene, whose description consists of checking the presence/absence of different objects of interest 

(determined a priori) and turns out to convey the list of the objects that are most likely present in the 

indoor scene regardless of their position within the image. The basic flowchart of the whole process is 

shown in Fig. 2. 1. 

 

 
 
 

Figure. 2. 1. Illustration of the coarse image description concept 

 
The reason behind such a framework is to enrich the perception and broaden the imagination of the 

blind individual regarding his/her surrounding environment.  

The proposed image multilabeling process is depicted in Fig. 2. 2.  

 

 
Figure. 2. 2. Pipeline of the image multilabeling approach 
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The underlying insight is to compare the considered query image (i.e., camera-shot image) with an 

entire set of training images that are captured and stored offline along with their associated binary 

descriptors, which encode their content as illustrated in Fig. 2. 3. The binary descriptors of the k most 

similar images are considered for successive fusion in order to multilabel the given query image. This 

fusion step, which aims at achieving better robustness in the decision process, is based on the simple 

majority-based vote applied on the k most similar images (i.e., an object is detected in the query image 

only if, amongst the k training images, it exists once for k=1, at least twice for k=3, and at least thrice for 

k=5). For that purpose, each training image in the library earns its own binary multilabeling vector (or 

simply image descriptor), which feeds the fusion operator. The routine for establishing such vector for a 

given training image is to visually check the existence of each object within a predefined list in the image. 

If an object exists within a given depth range ahead, assessed by visual inspection of the considered 

training image (e.g., 4 meters), then a ‘1’ is assigned to its associated bin in the vector, otherwise a ‘0’ 

value is retained as reported in Fig. 2. 3. Another paramount requirement, is to acquire an inclusive 

training ensemble (i.e., the set of training images shall cover the predefined list of objects). Additionally, 

Different acquisition conditions, such as illumination, scale, and rotation, have to be considered. 

 
Figure. 2. 3. Routinr for binary descriptor construction. 

    

As aforesaid, the underlying idea for multilabeling a given query image is to fuse the content of the 

most similar training images in the library. Hence, the way the matching is performed represents a 

decisive part. This implies the adoption of two main ingredients: 1) a suitable image representation; and 

2) a similarity measure. In this context, we propose in this work five different strategies that can be 

framed under two main categories according the feature extraction technique opted for. The first category, 

derives its image representation from local feature-based techniques. Whilst the second trend encloses 

global feature-based representation. The key-distinction between both is that the former one goes into 

image details at pixel level to build the feature set, whereas the latter one takes the image as a whole to 

produce its representation, as detailed further in what follows.    

2.2. Local Feature-Based Image Representation 

2.2.1. Scale Invariant Feature Transform Coarse Description (SCD): 

Suitable image representation is a critical aspect in our work since it should fulfill accuracy and 

computation time requirements. For such purpose, we first considered simple and traditional image 

comparison methods [1]-[2]. They however provided unsatisfactory results (by yielding around 30% of 

accuracy in the best cases). This is explained by the fact that the images dealt with contain lots of objects 

and structural details, additionally to scale and illumination changes that might significantly affect the 

matching process. Accordingly, it was important to resort to more sophisticated image representation 

strategies capable to tackle the issues of scale, rotation and illumination changes. To date, various image 

characterization methods have been proposed in the literature such as: scale-invariant feature transform 

(SIFT) [3], gradient location and orientation histogram (GLOH), shape context [4], spin images [5], 
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steerable filters [6], and differential invariants [7]. They are typically based on the extraction of 

histograms which describe the local properties of points of interest in the considered image. The main 

differences between them lie in the kind of information conveyed by the local histograms (e.g. intensity, 

intensity gradients, edge point locations and orientations) and the dimension of the descriptor. An 

interesting comparative study is proposed in [8], where it is shown that SIFT descriptors perform amongst 

the best. In this work, we will rely on the SIFT algorithm proposed by Lowe, [3], in order to localize and 

characterize the keypoints in a given image. 

The process used to produce the SIFT features is composed mainly by four steps. The first step is 

devoted to the identification of possible locations which are invariant to scale changes. This objective is 

carried out by searching for stable points across various possible scales of a scale space properly created 

by convolving the image I with a variable scale Gaussian filter: 
     

 (     )   (   )  
 

    
    ( 

     

   
)                                             (2.1) 

 

where ‘*’ is the convolution operator and   a scale factor. 

The detection of stable locations is done by identifying scale-space extrema in the difference-of-

Gaussian (DoG) function convolved with the original image: 
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where  is a constant multiplicative factor which separates the new image scale from the original 

image. To identify which points will become possible keypoints, each pixel in the DoG is compared with 

the 8 neighbors at the same scale and with the other 18 neighbors of the two neighbor scales. A pixel is 

called keypoint if it is larger or smaller than all the other 26 neighbors. The points getting extremum in 

the DoG are then classified as candidate locations. DoG function is sensitive to noise and edges, hence a 

careful procedure to reject points with low contrast and poorly localized along the edges is necessary. 

This improvement is done considering the Taylor expansion of the scale-space function and shifting the 

   (     ) so that the origin is at the sample point: 
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where D and its derivatives are evaluated at the sample point and   (     )  is the offset from 

this point. The location of the extremum  ̂ is determined by taking the derivative of this function with 

respect to X and setting it to zero, giving: 
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If  ̂       then it means that the extremum lies closer to a different sample point. In this case, the 

interpolation is performed. If we substitute equation (2.4) into (2.3), we obtain a function useful to 

determine the points with low contrast and reject them: 
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The locations with a | ( ̂)| smaller than a predefined threshold are discarded. 

The DoG produces a strong response along the edges, but the locations along the edges are poorly 

determined and could be unstable even with small amount of noise. So, a threshold to discard the points 

poorly defined is essential. Usually a poorly defined peak in the DoG has large principal curvature across 

the edge and small curvature in the perpendicular direction. The principal curvatures are computed from a 

2×2 Hessian matrix H estimated at the location and scale of the keypoint: 
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The derivatives are estimated by taking differences of neighboring sample points. The eigenvalues of 

H are proportional to the principal curvatures of D. Let   be the eigenvalue with the largest magnitude 

and   be the smallest one. We can compute the sum and the product of the eigenvalues from the trace and 

from the determinant of H: 
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Let r be the ratio between the largest eigenvalue and the smallest one, then: 
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To check that the ratio of principal curvatures is below some threshold, we need to check whether 
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A set of scale-invariant points is now detected, but as we stated before we need locations invariant 

also to the rotation point of view and this goal is reached by assigning to each point a consistent local 

orientation. The scale of the keypoint is used to select the Gaussian smoothed image L with the closest 

scale, so that all computations are performed in a scale-invariant manner. For each image sample  (   ) 
at this scale, the gradient magnitude  (   ) and the orientation  (   ) are evaluated using pixel 

differences: 
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 (   )       (
 (     )  (     )

 (     )  (     )
)                                              (2.12) 

    

A region around a sample point is considered and an orientation histogram is created. This histogram 

is composed by 36 bins in order to cover all the 360 degrees of orientation (each bin holds 10 degrees). 

Each sample added to the histogram is weighted by its gradient magnitude and by Gaussian-weighted 

circular window. The highest peak of the histogram is detected and together with the peaks within the 

80% of the main peak is used to create a keypoint with that orientation. 

In the last step of the method proposed by Lowe, at each keypoint, a vector is assigned which 

contains image gradients to give further invariance, especially with respect to the remaining variations 

(i.e., change in illumination and 3D viewpoint), at the selected locations. The gradient magnitude and the 

orientation at each location are computed in a region around the keypoint location to create the keypoint 

descriptor. These computed values are weighted by a Gaussian window. They are then accumulated into 

orientation histograms summarizing the contents over 4×4 subregions, with the length of each arrow 

corresponding to the sum of the gradient magnitudes near that direction within the region. The descriptor 

is formed as a vector, which is made up by the values of all the orientation histogram entries. 

We will adopt the common 4×4 array of histograms with 8 orientation bins, which means that the 

feature descriptor will be composed of 4×4×8=128 features. Finally, the descriptor is normalized to unit 

length to reduce the effects of illumination change. Any change in contrast in a pixel value multiplied by 

a constant will multiply gradients by the same constant, so this contrast change is cancelled by vector 

normalization. As mentioned above, all descriptors are extracted for each image and stored offline. 

Given a query image and a training image from the library, the proposed SIFT-based coarse image 

description (SCD) strategy evaluates their resemblance basing on a matching score that is aggregated by 
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counting the number of matching keypoints between them. In more details, for each keypoint in the first 

image, the two nearest neighbors (in the SIFT space) from the second image are identified according to 

the Euclidean distance. If the distance to the 1st nearest neighbor multiplied by a predefined value is 

smaller than the distance to the 2nd nearest neighbor, the matching score is increased by 1. This is 

repeated for all the keypoints of the first image.  

Since our interest is to pick up the k most similar images from the library to the query image, we 

compute its matching scores against all the training images (their stored SIFT descriptors) and keep the k 

images with the highest scores (see Fig. 2. 4.). In this way, the query image is multilabeled by fusing the k 

binary descriptors corresponding to the k images with highest matching scores. The fusion is implemented 

through the simple winner-takes-all rule (i.e., majority rule). Fig. 2. 5. Gives an example of SIFT 

keypoints extraction out of an image. 

 

 
 

Figure. 2. 4. Operational phase of the SIFT-based coarse image description (SCD) strategy. 

 

 
 

Figure. 2. 5. Example depicting SIFT keypoints extaction. 
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2.2.2. Bag of Words Coarse Description (BOWCD) 

Since the idea of our approach is based upon computing the similarity between the query image and 

each of the library images, it is expected that the SCD, despite its expected efficiency, may incur in a 

substantial processing time, which may not fulfill the time requirement of the application. Therefore, it is 

important to resort to a technique which can cope with this issue. A formulation of the image 

representation problem under a bag of words (BOW) model could be an interesting solution to drastically 

reduce the computation time by passing from a full SIFT to a SIFT-BOW representation. Indeed, BOW 

operates as an image representation model intended to map the set of features extracted from the image 

itself into a fixed size histogram of visual words [9]. In more details, all SIFT descriptors of all training 

images are first collected. Then, a codebook is generated by applying the K-means clustering algorithm 

[10]. This allows to define K centroids in the SIFT space, where each centroid represents a single word of 

the bag (see Fig. 2. 6.).  

 
Figure. 2. 6. Codebook construction in the BOW representation strategy. 

 

The set of training images of the library is thus substituted by a compact codebook. With this last, 

each query image initially represented by numerous SIFT descriptors will be represented by a compact 

BOW histogram (signature) which will gather the number of times each word appears in the query image 

(by assigning each keypoint descriptor to the closest centroid). The BOW signatures are generated out of 

all the training images collected to form the offline library. 

Given a query image, first, all its SIFT descriptors are extracted. Then, each SIFT descriptor is 

matched to the closest codeword (i.e., the closest among the K centroids in the SIFT space). The bin (of 

the BOW histogram) associated to that codeword is incremented by one. The end of this process leads to 

a compact K-bin BOW histogram (signature) representing the original image (see Fig. 2. 7). 

 



Chapter 2. Coarse Scene Description Via Image Multilabeling 

 

 15 

 
Figure. 2. 7. BOW image signature generation procedure. 

 

For obtaining the k most resembling training images, we first compute the distances between the 

BOW histogram of the query image and all the BOW histograms stored in the library. Then, we consider 

the k images having the best scores as illustrated in Fig. 2. 8. These images refer to the k smallest 

Euclidean distances to the test histogram. Fig. 2. 9. provides an instance of BOW image representation. 

 

 
Figure. 2. 8. BOW image multilabeling strategy. 

 
 

 

 
 

Figure. 2. 9. BOW image signature example. 

 

Test image

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

BOW Histogram



Chapter 2. Coarse Scene Description Via Image Multilabeling 

 

 16 

2.3. Global Feature-Based Image Representation 

2.3.1. Principal Component Analysis Coarse Description (PCACD) 

The principal component analysis (PCA) has been successfully applied to solve various problems 

such as face recognition [12] and data compression [13]. Its underlying concept is to transform linearly 

the data under analysis according to the eigenvectors of the related covariance matrix, resulting thus in so-

called principal components (PCs). PCs are ranked according to their variability (information content) 

[14]. In the following, we describe the proposed application of PCA under a scene recognition 

perspective. 

Given the library of training images and a query image, PCA is aimed at identifying which image of 

the library appears the closest to the query image. The main steps for doing so are concisely formulated as 

follows: 

Step 1: Given p training images of size h×w, convert each of them to a vector of size hw and arrange all 

the vectors in a global matrix T so that each column represents a training image vector. Thus, the size of T 

is hw×p. 

Step 2: Compute the centered matrix A of T by subtracting the mean image from each column of T. 

Step 3: Since the size of the related covariance matrix C=A·A
t
 can be very large (hw×hw), first compute 

the eigenvectors Vi (i=1, 2…, p) from the matrix given by A
t
·A, i.e., 

 

A
t
·A Vi = i Vi                                                                  (2.13) 

 

where i  is the eigenvalue associated with Vi. 

Step 4: By introducing A on both sides of (13): 

 

A·A
t
·A Vi = i A·Vi                                                               (2.14) 

 

the desired eigenvectors Ei of C (i=1, 2…, p) are simply given by: 

Ei = A Vi                                                                     (2.15) 

 

Step 5: Construct a library of p eigenimages EIi by projecting the centered training images collected in A 

onto the eigenvector directions: 

 

EIi = A
t
·Ei                                                                    (2.16) 

 

Therefore, in the eigenimage representation strategy, instead of computing the similarity between the 

query image and the training images transformed in the SIFT or BOW spaces, the similarity computation 

will be performed between the eigenprojected query image and the library of training eigenimages EI. 

At the operational stage, when a query image is generated, it is first converted to a vector of size hw 

and centered by subtracting the mean training image. Let Q be the resulting vector. Then, it is projected 

along the eigenvectors computed in (15), namely: 

 

E
t
·Q = PQ                                                                     (2.17) 

where E is a hw×p matrix collecting the p eigenvectors Ei and PQ denotes a p-dimensional vector 

representing the eigenprojection of Q. 

In order to find the k closest eigenimages, the Euclidean distance is computed between PQ and each 

eigenimage EIi (i=1, 2,…, p). The k eigenimages which exhibit the lowest distances are picked up. 

Afterwards, multilabeling is performed as formerly described in the SCD strategy. An example of PCA-

based image representation is shown in Fig. 2. 10.  
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Figure. 2. 10. PCA image representation example. 

2.3.2. Compressed Sensing   

As aforesaid, the way the matching is performed represents a decisive part. This implies the adoption 

of two main ingredients: 1) a suitable image representation; and 2) a similarity measure. Regarding the 

former ingredient, there is a need for an appropriate tool to represent the images dealt with in a compact 

way for being able to achieve fast image analysis. Among recent possible compact representations is the 

compressive sensing (CS) theory [15]-[16], which has gained an outstanding position and become a 

significant tool in the signal processing community. In the following, we will respectively provide 

foundational details outlining the main CS concepts, and describe how it is exploited in our work for 

compact image representation. 

The second ingredient to be adopted for image matching is the similarity measure. Unlike the 

matching process adopted in the previous strategies, in this strategy however, we will interpret the term 

‘similarity’ in two different ways. The first one, termed Euclidean distance coarse description (EDCS), 

refers to the distance between two images in a given image domain representation, which in our case is 

the CS coefficient domain. For measuring the distance, we will make use of the well-known Euclidean 

distance. The second strategy, named semantic similarity coarse description (SSCS), of interpretation 

consists to compare the images in a semantic domain. This means that two images are semantically close 

if they contain the same objects, regardless of the apparent image resemblance. To that end, we propose a 

semantic-based framework for quantifying the similarity between images. Its underlying idea is to go 

through a semantic similarity predictor, learned a priori on a set of training images to predict the extent up 

to which two given images are semantically close. Among the variety of existing predictors, we will take 

advantage of the Gaussian process (GP) regression model because of its good generalization capability 

and short processing time. In the next subsections, more details about the CS theory, the GP regression 

and the proposed semantic similarity prediction are provided, respectively. 

2.3.2.1. Compressed Sensing Theory 

Compressed sensing, also known as compressive sampling, compressed sensing or sparse sampling, 

was recently introduced by Donoho  [15] and Candès  [16]. CS theory aims at recovering an unknown 

sparse signal from a small set of linear projections. By exploiting this new and important result, it is 

possible to obtain equivalent or better representations by using less information compared with traditional 

methods (i.e., lower sampling rate or smaller data size). CS has been proved to be a powerful tool for 

several applications, such as acquisition, representation, regularization in inverse problem, feature 

extraction and compression of high-dimensional signals, and applied in different research fields such as 

signal processing, object recognition, data mining, and bioinformatics  [17]. In these fields, CS has been 

adopted to cope with several tasks like recognition  [18]-[20], image super-resolution  [21], 

segmentation  [22], denoising  [23], inpainting and reconstruction  [24]-[25], and classification  [26]. Note 

that images are a special case of signals which hold a natural sparse representation, with respect to fixed 

bases, also called dictionary (i.e.: Fourier, wavelet)  [27]. 

Compressive sensing a thus way to obtain a sparse representation of a signal. It relies on the idea to 

exploit redundancy (if any) in the signals  [28]- [29]. Usually signals like images are sparse, as they 

contain, in some representation domain, many coefficients close to or equal to zero. The fundamental idea 
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of the CS theory is the ability to recover with relatively few measurements       by solving the 

following L0-minimization problem: 

 

   ‖ ‖                    ,    (2.18) 

 

where   is a dictionary with a certain number of atoms (which in our case, are images converted into 

vectors),   is the input image (converted into vector) which can be represented as a sparse linear 

combination of these atoms,   is the set of coefficients intended as a compact CS-based representation for 

the input image  . The minimization of ‖ ‖ , the L0-norm, corresponds to the maximization of the 

number of zeros in  , following this formulation: ‖ ‖   {       }. Equation (2.18) represents a NP-

hard problem, which means that it is computationally infeasible to solve. Following the discussion of 

Candès and Tao  [36], it is possible to simplify the evaluation of (1) in a relatively easy linear 

programming solution. They demonstrate that, under some reasonable assumptions, minimizing L1-norm 

is equivalent to minimizing L0-norm, which is defined as ‖ ‖  ∑ |  | . Accordingly, it is possible to 

rewrite equation (2.18) as: 

 

   ‖ ‖                        .                                                    (2.19) 

 

In the literature, there exist several algorithms for solving optimization problems similar to the one 

expressed in equation (2.19). In the following, we briefly introduce an effective algorithm called 

stagewise orthogonal matching pursuit (StOMP) [29], which will be used in our work. By contrast to the 

basic orthogonal matching pursuit (OMP) algorithm, StOMP involves many coefficients at each stage 

(iteration) while in OMP only one coefficient can be involved. Additionally, StOMP runs over a fixed 

number of stages, whereas OMP may take numerous iterations. Hence, StOMP was preferred in our work 

on account of its fast computation capability. 

2.3.2.2. CS-Based Image Representation 

The use of the CS theory for image representation in our work is thus motivated by its capability to 

concisely represent a given image. For such purpose, a bunch of     learning images representing the 

indoor environment of interest is first acquired. All images (if in RGB format) are converted in grayscale 

and into vectors. Their column-wise concatenation forms the dictionary D (composed of    atoms). 

Given a query image V, its compact representation  (whose dimension is reduced to the number of 

learning images) is achieved by means of the procedure summarized below: 

Step 1: Consider an initial solution     , an initial residual     , a stage counter s set to 1, and 

an index sequence denoted as T1,…,Ts, which contains the locations of the non-zeros in   . 

Step 2: Compute the inner product between the current residual and the considered dictionary  : 

 

    
             (2.20) 

 

Step 3: Perform a hard thresholding in order to find out the significant non-zeros in    by searching 

for the locations corresponding to the ‘large coordinates’   : 
 

                                    {    ( )      }          (2.21) 

 

where   represents a formal noise level, and    is a threshold parameter taking values in the range 

      . 

Step 4: Merge the selected coordinates    with the previous support: 

 

                                  (2.22) 

 

Step 5: Project the vector   on the columns of   that correspond to the previously updated Ts. This 

yields a new approximation   : 
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    (  )   (   
    )

     
                                            (2.23) 

 

Step 6: Update the residual according to             
Step 7: Check whether a stopping condition (e.g., smax=10) is met. If so,    is considered as the 

final solution. Otherwise, the stage counter   is incremented and the next-stage process is repeated 

starting from Step 2. 

The procedure for generating the vector of CS coefficients is illustrated in Fig. 2. 11. Fig. 2. 12. 

Depicts a CS representation example. 

 

 

Figure. 2. 11. Proposed CS-based image representation. 

 

 

 
Figure. 2. 12. Example of a CS-based image representation. 

2.3.2.3. Gaussian Process Regression 

According to the GP formulation [30]-[32], the learning of a machine is expressed in terms of a 

Bayesian estimation problem, where the parameters of the machine are assumed to be random variables 
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which are a-priori jointly drawn from a Gaussian distribution. In greater detail, let us consider   

{  }   
 

 a matrix of input data representing our N training images and where     
   represents a vector 

of    processed features, namely the    CS coefficients associated with the i-th training image. 

Let also denote   {  }   
 

 as the corresponding output target vector, which collects the desired 

semantic similarity values (between the considered reference image and all the training images). The aim 

of GP regression is to infer from the set of training samples {   } the function  ( ) so that   
 ( )   This can be done by formulating the Bayesian estimation problem directly in the function space 

view. The observed values y of the function to model are considered as the sum of a latent function f and 

a noise component  , where: 

      {   (   )}                                     (2.24) 

And 

        (    
  )                                                  (2.25) 

 

Equation (2.24) means that a Gaussian process GP{   } is assumed over the latent function f, i.e., this 

last is a collection of random variables, any finite number of which follow a joint Gaussian distribution 

[31].  (   ) is the covariance matrix, which is built by means of a covariance (kernel) function 

computed on all the training sample pairs. Equation (2.25) states that a Gaussian distribution with zero 

mean and variance   
  is supposed for the entries of the noise vector   with each entry drawn 

independently from the others (I represents the identity matrix). Because of the statistical independence 

between the latent function f and the noise component , the noisy observations y are also modeled with a 

GP, i.e. 

 

      (   (   )    
  )         (2.26) 

 

Or equivalently: 

 

 ( | )   (   (   )    
  )                         (2.27) 

 

In the inference process, the best estimation of the output value    associated with an unknown 

sample    is given by: 

 

 ̂ |        {  |      }  ∫   (  |      )     (2.28) 

 

From (2.28), it is clear that, for finding the output value estimate, the knowledge of the predictive 

distribution  (  |      ) is required. For this purpose, the joint distribution of the known observations y 

and the desired function value    should be first derived. Thanks to the assumption of a GP over y and to 

the marginalization property of GPs, this joint distribution is Gaussian. The desired predictive distribution 

can be derived simply by conditioning the joint one to the noisy observations y and takes the following 

expression: 

 (  |      )   (     
 )       (2.29) 

where: 

     
  [ (   )    

  ]          (2.30) 

 

  
   (     )    

  [ (   )    
  ]         (2.31) 

 

These are the key equations in the GP regression approach. Two important information can be 

retrieved from them: i) the mean   , which represents the best output value estimate for the considered 

sample according to equation (2.29) and depends on the covariance matrix  (   ), the kernel distances 

between training and test samples    the noise variance   
  and the training observations  ; and ii) the 

variance   
   which expresses a confidence measure associated by the model to the output. A central role 

in the GP regression model is played by the covariance function  (     ) as it embeds the geometrical 
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structure of the training samples. Through it, it is possible to define the prior knowledge about the output 

function  ( ). In this paper, we shall consider the following Matérn covariance function [31]: 

 

 (     )     [  
√ |     |

 
]    [ 

√ |     |

 
]                                    (2.32) 

 

For this covariance function, the hyperparameter vector is given by ʘ=[l, θ0]. Such vector can be 

determined empirically by cross-validation or by using an independent set of labeled samples called 

validation samples. As an alternative, as it will be done in this work, the intrinsic nature of GPs allows a 

Bayesian treatment for the estimation of ʘ. For such purpose, one may resort to the type II maximum 

likelihood (ML-II) estimation procedure. It consists in the maximization of the marginal likelihood with 

respect to ʘ, that is the integral of the likelihood times the prior: 

 

 ( | )   ( |   )  ∫ ( |     )  ( |   )      (2.33) 

 

with the marginalization over the latent function f. Under a GP regression modeling, both the prior 

and the likelihood follow Gaussian distributions. After some manipulations, it is possible to show that the 

log marginal likelihood can be written as [31]: 

 

    ( |   )   
 

 
   ( (   )    

  )     
 

 
   | (   )    

  |  
 

 
    (  )        (2.34)       

 

As it can be seen, equation (2.34) is the sum of three terms. The first is the only one that involves the 

target observations. It represents the capability of the model to fit the data. The second one is the model 

complexity penalty while the third term is normalization constant. From an implementation viewpoint, 

this maximization problem can easily be solved by a gradient-based search routine [31]. 

2.3.2.4. Semantic Similarity for Image Multilabeling 

Given two images    and    together with their corresponding binary descriptors    and   , we define 

the quantity         as the semantic similarity between    and   . In particular, this measure expresses the 

ratio inclusion of    in   , that is the number of objects of    (represented as ones in   ) present also in    

(i.e., still represented as ones in   ). Hence, the larger the         the (semantically) closer    to   . 

Mathematically, it is expressed by: 

              
∑   ( )   ( )
 
   

∑   ( )
 
   

                                                          (2. 35) 

 

The multilabeling process based on the semantic similarity prediction is articulated over two phases: 

    Training phase: First, compute the    values between all couples of training images. 

Then, train as many GP regressors as the number of training images (i.e., N). Each GP regressor will 

be learned to predict        , that is the semantic similarity between a given generic image   and the 

training image    to which the GP regressor is associated. The supervised training of the p-th predictor is 

performed by giving: i) in input the CS coefficients corresponding to each training image    ; and ii) in 

output as target the         values (between the reference image     and each training image    ). 

    Operational phase: Feed each GP predictor with the CS coefficient vector of the query image   to 

estimate all         values, i.e., the similarity between   and each training images    . 

Subsequently, the process finalizes by picking up the k binary descriptors associated with the training 

images corresponding to the k highest    values for successive fusion, and infer the multilabeling of the 

query image as explained earlier. Fig. 2. 13, illustrates the semantic similarity compressive sensing 

(SSCS) strategy. 
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Figure. 2. 13. Flowchart of the proposed SSCS image multilabeling strategy. 

2.3.3.  Multiresolution Random Projections Coarse Description (MRPCD) 

2.3.3.1. Random Projections Concept 

As said earlier, in order to satisfy near-real-time standards in terms of processing loads, a compact 

image representation paradigm needs to be opted for. Yes, besides the strategies we have posed so far, we 

also suggest to make use of image domentionality reduction as a means to narrow the processing burden. 

With regards to the literature, several techniques meant for dimensionality reduction have been presented 

such as for instance principal component analysis (PCA) [PCA], and linear discriminant analysis (LDA) 

[33]. The underlying idea of the PCA is to construct a set of linearly uncorrelated vectors, called principal 

components, based on their eigenvalues. The bunch of principal components, being less than or equal to 

the number of original vectors in the data, are then used as a basis to represent the data in hand. LDA is a 

method that searches for the best basis vectors (features) among the data for further separation into one or 

more classes. However, such dimensionality reduction methods may draw low performances as the 

original set of data is projected onto a subspace that does not guarantee the best discriminatory 

representation. In other terms, the vectors that maximize the variance don not necessarily maximize 

information content. Moreover, they require a training stage in order to produce the basis vectors, which 

often need to be regenerated once the data has been modified (i.e., data-dependent). A recently emerged 

technique, namely RP, has shown powerful assets for dimensionality reduction while holding a data-
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independent property. For instance, the well-known Johnson–Lindenstrauss lemma [34][35], states that 

pairwise distances can be well maintained when randomly projected to a medium-dimensional space. 

The basis of RP comprises a matrix of random entries that serve as projection atoms for the original 

data. The entries of the matrix are generated once at the start, and then used even in case the dataset has 

been amended. As motivated above, the rationale for suiting the RP for image representation in our work 

is its remarkable aspect of concisely narrowing down an image into a series of scalars by means of a 

small-sized projection matrix.      

Consider a high dimensional signal        , and a projection matrix   comprising   random 

vectors      (arranged column-wise). The low dimensional projection         of   onto   is expressed 

by equation (2.36): 

                                                                         (2. 36) 

The projection procedure is more detailed in the next subsection. 

2.3.3.2.Random Projections for Image Representation 

From equation (2.36), the input   is a one-dimensional signal that is projected column-wise on the 

random matrix  . Hence, each column of the matrix represents an element of the projection basis. 

Subsequently, we can obtain the same results if a two-dimensional representation of the input signal and 

the projection elements were used. In particular, the input signal that is meant for a RP-based 

representation is a portable camera-grabbed image. Therefore, the projection elements consist of a bunch 

of random matrices holding the same size of the image. In more details, if   filters are adopted, then 

  inner products (between the image and each filter) are performed, which points out   scalars whose 

concatenation forms the ultimate compact RP representation of the image. Fig. 2. 14, outlines the routine 

for generating a RP representation of a generic image. 

 

 

  Figure. 2. 14. Diagram outlining the RP-based image representation 

  

2.3.3.3. Multiresolution Random Projections   

We have stated earlier that the input image undergoes an inner product with the templates (filters) of 

the adopted random matrix (also referred to as measurement matrix). Accordingly, the choice of the 

matrix entries has to be defined. From the literature, it emerges that the popular matrix configuration is 

confined to the one presented in [36], where the probability distribution of the random matrix entries is 

expressed as follows: 
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 (   )  √ {  

                        
                           (   )
                        

                                  (2. 37) 

Where the indices   and   point to the lines and columns of the random matrix  . Thus, two popular 

particular cases that are used the most in the literature are given by     and     [37-39]. In the case 

of    , two thirds of the projection templates entries would be null, which causes the elimination of 

    of the input image pixels. Such information loss is not in the favor of our application as all the pixels 

of the images play a major role. Whereas if   is set to unity, the projection matrix would then exhibit a 

uniform distribution of +1 and -1, which actually serves our application as it randomly captures the 

gradients at different positions over the input image. In this paper, the value of   is set to one, the 

respective uniform distribution is conducted hereunder: 

 

 (   )  {
                       
                       

                                            (2. 38) 

As to thoroughly analyze the images across different scales, we propose in this work a 

multiresolution random projection (MRP) of the input image. Multiresolution concept is meant to further 

analyze a given signal/image at different scales. Hence, the aim is to capture richer information and cover 

finer details regarding the addressed signal/image. Examples of multiresolution include for instance scene 

classification [40] [41], and texture analysis [42]. 

The MRP method consists of casting the input image onto a set of multiresolution random templates 

generated according to equation (2.38) with different patterns that vary gradually. In particular, assuming 

the images are of size m x n, then the first template of the projection matrix consists of four regions of 

size (m/2) x (n/2) each. The assignment of +1 and -1 is done according to equation (2.38). The next 

template consists of either +1 or -1-filled up regions of size (m/4) x (n/4). The size of the regions degrades 

progressively until the smallest sized region is reached, that is a single pixel of the image, where the 

pixels of the image take the values +1 or -1. In our work, the images consist of a resolution of 640x480. 

Eight multiresolution levels were adopted for generating the templates. The region size as well as the 

number of the respective templates are listed in Table 2. 1. Fig. 2. 15, depicts two samples of each 

template. Fig. 2. 16, illustrates an example of RP image representation. 

 

TABLE 2. 1. THE SET OF MULTIRESOLUTION RANDOM PROJECTION FILTERS. 

Region size Number of templates 

240x320 2 

120x160 5 

60x80 10 

30x40 20 

15x20 30 

5x10 40 

3x5 50 

1x1 100 

Total 257 
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Figure. 2. 15. Two samples of each projection template sorted from top to bottom according to the resolution. Top templates refer 

to resolutions of half the image size. Bottom templates refer to regions of one pixel. Black color indicates the -1 whilst the grey 

color refers to +1 
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Figure. 2. 16. RP image representaion example.  
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3.1. Dataset Description 

The evaluation of the presented image multilabeling approach was performed on four different 

datasets (the input images of all datasets consist in a resolution of 640x480). The first two datasets 

(dataset 1 and dataset 2) were acquired in two separate indoor locations at the University of Trento, Italy. 

The acquisition was run by means of a chest-mounted CMOS camera from the IDS Imaging Development 

Systems, model UI-1240LE-C-HQ with KOWA LM4NCL lens, carried by a wearable lightweight vest as 

illustrated in Fig. 3. 1. This last shows the multisensor prototype on which we are working for both 

guiding blind people and helping them in recognizing objects in indoor sites (Please refer to chapter 4 for 

further details). The method for the recognition part, which is described in this chapter, is exploited on 

demand, that is the user has access to the recognition function only when he desires it through a vocal 

instruction. The names of the objects identified within the image extracted from the video stream at the 

moment of the vocal instruction are communicated by speech synthesis. Work is in progress to integrate 

all the developed algorithms in the prototype. Back to this work, it is also noteworthy that the images 

acquired by the portable camera were not compensated for barrel distortion, as our method handles the 

images as a whole and does not extract any feature from the images. 

Dataset 1 contains a total of 130 images, which was split into 58 training images, and 72 for testing 

purposes. Dataset 2 holds 131 images, divided into 61 images for training, and 70 images for testing.  

As noted above, a list of objects of interest must be predefined. Thereupon, we have selected the 

objects deemed to be the most important ones across the considered indoor environments. Regarding 

dataset 1, 15 objects were considered as follows:  

‘External Window’, ‘Board’, ‘Table’, ‘External Door’, ‘Stair Door’, ‘Access Control Reader’, 

‘Office’, ‘Pillar’, ‘Display Screen’, ‘People’, ‘ATM’, ‘Chairs’, ‘Bins’, ‘Internal Door’, and ‘Elevator’.  

As for dataset 2, the list was the following:  

‘Stairs’, ‘Heater’, ‘Corridor’, ‘Board’, ‘Laboratories’, ‘Bins’, ‘Office’, ‘People’, ‘Pillar’, ‘Elevator’, 

‘Reception’, ‘Chairs’, ‘Self Service’, ‘External Door’, and ‘Display Screen’. 

The second two datasets (dataset 3 and dataset 4) were shot at two separate indoor locations at the 

University of King Saud, Saudi Arabia, by means of a Samsung Note 3 smartphone. Dataset 3 

accommodates 161 training and 159 test images for a total of 320 images. The list of objects is set as 

follows:  

‘Pillar’, ‘Fire extinguisher/hose’, ‘Trash can’, ‘Chairs’, ‘External Door’, ‘Hallway’, ’Self-service’, 

‘Reception’, ’Didactic service machine’, ‘Display Screen’, ‘Board’, ‘Stairs’, ‘Elevator’, ‘Laboratory’, 

‘Internal Door’.  

Dataset 4 comprises 174 images consisting of 86 training and 88 testing images, and the object list 

contains:  

‘Board’, ‘Fire extinguisher’, ‘Trash cans’, ‘Chairs’, ‘External door’, ‘didactic service machine’, 

‘Self-service’, ‘Reception’, ‘Cafeteria’, ‘Display screen’, ‘Pillar’, ‘Stairs’, ‘Elevator’, ‘Prayer room’, 

‘Internal door’. 

It is noteworthy that the training images for all datasets were selected in such a way to cover all the 

predefined objects in the considered indoor environment. Fig. 3.1. depicts sample images from each 

dataset. 

For all training images of each dataset, and for each of the proposed strategies (SCD, BOWCD, 

PCACD, EDCS, SSCS, MRPCD), we extracted the respective image representations as described in the 

previous chapter and stored them in a library alongside the training binary descriptors. 
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Figure. 3. 1. From topmost row to lowermost, three instances of: dataset1, dataset1, dataset 3, and dataset 4, respectively. 

 

As for the learning images, which are exploited to develop the CS dictionary, we made use of 51, 54, 

59, and 74 images with regards to Dataset 1, Dataset 2, Dataset 3, and Dataset 4, respectively. 
 

3.2. Results and Discussion 

Regarding the accuracy assessment, we compute accuracies by comparing the output vectors 

(estimated list of objects given by the multilabel vectors) of the test (query) images to the true multilabel 

vectors. In particular, we rely on two well-known accuracy measures, namely sensitivity and specificity, 

which are expressed as follows: 

True Positives
Sensitivity

True Positives False Negatives



                              (3.1) 
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True Negatives
Specificity

True Negatives False Positives



                              (3.2) 

 
The annotations mentioned in the previous two equations are clarified in Table 3. 1. In the following, 

the acronyms SEN and SPE will be used for sensitivity and specificity accuracies, which underline the 

accuracies of true positives (existing objects) and true negatives (non- existing objects), respectively. 

 

TABLE 3. 1. CONFUSION MATRIX FOR THE COMPUTATION OF THE SPECIFICITY AND 

SENSITIVITY ACCURACIES. 

Real label \ Estimated label 0 1 

0 True Negative False Positive 

1 False Negative True Positive 

 

Since the BOWCD strategy undergoes an iterative K-means clustering algorithm, we performed the 

experiments 10 times for this strategy, each time with a different random clustering initialization. The 

accuracies of BOWCD reported in the following are averaged over the ten trials. Hereby, tables (from 

3.2. to 3.20) summarize the classification results for all datasets regarding all the proposed strategies. 

Let’s consider for instance the results pointed out by the first three schemes (SCD, BOWCD, and the 

PCACD), whose outcomes are reported in Tables 3.2. to  3.7. In particular, we first interpret the effect of 

the value of the number of training images (k) on the accuracies. For the three strategies, the results 

suggest that the value of k does not impact much on the specificity, while it does on the sensitivity. This 

is explained by the fact that the k closest images may appear very different, and thus convey disagreeing 

lists of objects. A motivation for this disagreement can be found in the way our library has been 

constructed. Indeed, we used relatively few training images to represent the entire environment. A 

significant number of training images, sufficient enough to cover all the indoor spots, would lead to an 

increase of correlation between the training images and hence to a higher likelihood of getting k closest 

images in better compatibility to each other, increasing thereby the fusion effectiveness. However, the 

drawback of increasing the size of the library is the computational time, which may become unacceptable 

for an application like the one targeted in this work. Therefore, for our datasets, it emerges that the most 

appropriate value is k=1. In particular, for the first dataset, the best strategy is SCD (SEN=84.64% and 

SPE=91.02%), followed by BOWCD (72.73 % and 88.38%) and PCACD (70.79% and 80.69%). For the 

second dataset, the best one is still SCD (91.36% and 95.78%), followed by BOWCD (85.09% and 

93.88%) and PCACD (76.36% and 91.09%), the third dataset scored its best under the SCD (89.79% and 

97.90%), followed by BOWCD (83.74% and 96.66%) and PCACD (71.49% and 92.02%), and finally the 

fourth dataset reporting the highest porformance by means of the SCD (88.84% and 95.92%), then 

BOWCD (77.60% and 92.96%), and PCACD (71.49% and 92.02%).  

As for  the third method, we recall the point that it encompasses two strategies for image 

comparison, an Euclidean distance in the CS representation space, and a semantic similarity measure as 

detailed in the previous chapter. A worth mentioning fact is that the resolution of the images has a direct 

influence on the processing time (in particular, in the CS representation phase). Therefore, we have 

analyzed its impact by running the experiments on four different resolution ratios. The first one is set to 

the unity (thus, keeping the original 640×480 resolution), the second ratio was set to the half (320×240 

image size), the third one equals to one fifth (128×96), and the last one was fixed to one tenth (64×48). 

The results corresponding to the combination of the k values and the image resolutions regarding both 

EDCS and SSCS strategies are summarized in Tables 3.8 to 3.15. Observing the results, it comes out that, 

in overall terms, both the semantic similarity-based compressed sensing (SSCS) and Euclidean distance-

based compressed sensing (EDCS) methods perform nearly equivalently for k=1 on an average over the 

SEN and SPE accuracies. However, the SSCS strategy yields a better sensitivity while the EDCS shows a 

better specificity. For the other k values, the SSCS outperforms. This is explained by the fact that the 

EDCS relies on measuring the similarity of the CS coefficients, yet measuring the apparent similarity 

between the images, which is likely to guarantee the query image actually resembles to the first closest 

image from the library (for k=1). However, by raising the value of k to 3 and 5, the library images tend to 
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be dissimilar to the query image, which results in a lower performance (in particular, the sensitivity). The 

rationale behind such accuracy decrease can, as aforesaid, be referred to the limited number of library 

images. In other terms, for every indoor scenery, there are few representative images within the library. 

Increasing such number would certainly promote a better correlation between the k considered library 

images and uplift the probability of having objects in common, and hence boost the fusion process but at 

the cost of a larger processing load. On the other hand, such phenomenon is not observed with the SSCS 

strategy since similarity computation is performed not in the image domain but in the semantic one. 

Moreover, it tends to be more balanced between the sensitivity and the specificity, which is not the case 

with the former strategy. The result differences between the datasets can be refered to the reason that the 

structure and the quantity of the objects composing their images, in addition to the physical dimensions of 

the indoor spaces, are different. In general, the SSCS, in spite of the small-size library, behaves better 

than the EDCS given that it performs the multilabeling process more efficiently. This is because image 

similarity assessment in the semantic domain appears more straightforward to infer than in the image 

domain which is more sensitive to image acquisition condition issues. As for the behavior of the GP 

regressors, it can be drawn that the obtained results are very satisfactory despite that only few training 

images are used. 

Moving to the last MRPCD strategy, given that the higher the resolution the more time is consumed 

whilst in the projection step (i.e., the inner product) as the RP templates have the same size of the input 

image. Therefore, we adopt the same image resolution scenarios undersaken in the SSCD strategy. 

Provided that the projection matrix comprises random +1 and -1 distributions, we have taken the average 

accuracies over ten runs (each run performed with a different set of random projections). The matching 

step has been achieved by means of the cosine distance as it pointed out slight improvements with respect 

to the basic Euclidean distance.  

We initiate the experimental evaluation by checking the efficiency of a multiresolution RP as 

compared to a regular state-of-the-art multiresolution strategy (i.e., where the projection filters consist of 

a resolution of one pixel). Therefore, we further launched the experiments by means of 257 RP templates 

(which is the total number of multiresolution templates as stated in the previous chapter) of a 1x1 region 

size. The average accuracies over ten runs are reported in Tables 3.16. to 3.19. The results clearly point 

out the valuable increase incurred by the multiresolution RP over the ordinary RP scenario, which 

indicates the capacity of the MRP in investigating further scales of the considered images. 

From the reported results, it appears clearly that the presented MRP algorithm points out its best at a 

resolution ration of 1/10 regarding all the datasets. This might trace back to the point that decaying the 

image resolution diminishes the small details as well as  the size of the objects while maintaining the 

backgrounds and the large surfaces/objects. In other terms, the tiny details can be considered as outlier 

noise, hence reducing the resolution fades that noise and keeps the dominating spectral content of the 

images, which is essential for the comparison as validated by the results. 

Considering the best case scenario with respect to all strategies, we provide in Table 3.21 a 

comparison of yielded accuracies on all datasets.Having a close look at the outcomes, it emerges that the 

SCD and the BOWCD methods exhibit relatively higher accuracies (particularly, the SEN), which is 

raionale as both strategies rely on the SIFT keypoints space for image representation, which is likely to 

preserve the most prominent image content into salient keypoints, raising thereby the efficiency of image 

matching, that leads to accurate multilabeling. On the other end, the remaining three strategies do not go 

into a pixel-level investiation but treat a onsidered image as whole, which might be subject to overlook 

some essential spectral details. On the whole, the SCD outperforms all the other schemes, followed by the 

BOWCD, then the PCACD and MRPCD that perform almost equivalently and lastly the CSCD. We also 

report the overall (average over all datasets) processing time per image in Table 3. 22. It comes out that 

the MRPCD is, by far, much faster than the remaining methods, the PCACD comes second with less than 

a second per image, then the BOWCD followed by the PCACD. The SCD, however, cosumes as much as 

2.5 min per image, which makes it inappropriate in real-time implementations. Ultimately,  considering 

the recognition accuracy on the one hand and the processing span on the other, one might tend to deem 

the MRPCD and the BOWCD as the most adequate accuracy-time-balanced options. For the sake of 

illustration, three multilabeling examples are depicted in the upcoming figures. The examples for all 

methods depic the quesry camera-grabed images and their closest thre neighbours from the library, the 

objects list however, was derived from the closest training image (k=1), except for the RPCD where only 

the depiction of the closest neighbour is shown. It is yet to point out the fact that, even though the 
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libraries hold a limited set of images as compared to the broadness of the adressed indoor sites, the closest 

images exhibit a certain similarity with the quesry samples, and as mentioned earlier a denser training 

library is bound to bridge the gaps (i.e., the semantic gap with regards to the SSCD and the spectral gap 

regarding the remaining strategies) between he test and the training images.      

Finally, worth addressing is the behavioir of the BOWCD with respect to different codebook sizes, 

we have performed the experiments considering different cases and found out that a codebook of 250 or 

300 words yields the best rates, yet a fixed size of 300 centroids was adopted. On the other hand, we have 

conducted further experiments considring illumination changes, and found out that the results are not 

impacted, which is reasonable as we are dealing with images of inddor sites what are supplied with 

artificial lights,. In other words the objects are exposed to artificial illumination with constant intensity, 

the outdoor illumination has therefore no impact on the objects reflectance. 

 

TABLE 3. 2. CLASSIFICATION ACCURACIES OF THE SCD SCHEME IN TERMS OF k VALUES 

FOR ALL DATASETS. 

 Dataset1 Dataset2 Dataset3 Dataset4 

k=1 SEN 84.64 91.36 89.79 88.84 

SPE 91.02 95.78 97.90 95.92 

AVG 87.83 93.57 93.84 92.38 

k=3 SEN 83.52 90.45 81.94 80.58 

SPE 91.76 95.06 97.10 95.36 

AVG 87.64 92.75 89.52 87.97 

k=5 SEN 77.15 86.36 72.77 70.66 

SPE 92.13 93.01 97.40 95.18 

AVG 84.64 89.68 85.08 82.92 
 

TABLE 3. 3. PER-CLASS OVERALL CLASSIFICATION ACCURACIES ACHIEVED ON ALL 

DATASETS BY MEANS OF THE SCD METHOD FOR k=1. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ds1 94.44 83.33 98.61 90.28 84.72 98.61 86.11 86.11 86.11 94.44 95.83 81.94 87.50 80.56 93.06 

Ds2 98.57 97.14 94.29 84.29 95.71 91.43 94.29 90.00 98.57 98.57 91.43 97.14 95.71 97.14 98.57 

Ds3 99.37 92.45 95.60 96.23 96.23 94.34 98.11 100.00 98.74 98.74 97.48 96.23 100.00 100.00 85.53 

Ds4 85.23 89.77 94.32 89.77 92.05 96.59 95.45 96.59 98.86 98.86 100.00 100.00 98.86 95.45 87.50 

 

TABLE 3. 4. CLASSIFICATION ACCURACIES OF THE BOWCD SCHEME IN TERMS OF k 

VALUES FOR ALL DATASETS. 

 Dataset1 Dataset2 Dataset3 Dataset4 

k=1 SEN 72.73 85.09 83.74 77.60 

SPE 88.38 93.88 96.66 92.96 

AVG 80.55 89.48 90.2 85.28 

k=3 SEN 65.96 80.18 75.16 60.29 

SPE 90.09 94.39 95.93 93.09 

AVG 78.02 87.28 85.54 76.69 

k=5 SEN 60.90 75.05 70.26 50.04 

SPE 90.38 94.37 96.07 93.64 

AVG 75.64 84.71 83.16 71.84 
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TABLE 3. 5. PER-CLASS OVERALL CLASSIFICATION ACCURACIES ACHIEVED ON ALL 

DATASETS BY MEANS OF THE BOWCD METHOD FOR k=1. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ds1 93.06 70.83 98.61 76.39 70.83 97.22 81.94 76.39 87.50 95.83 91.67 75.00 80.56 72.22 95.83 

Ds2 98.57 90.00 90.00 77.14 92.86 84.29 88.57 85.71 97.14 100.00 91.43 97.14 92.86 94.29 97.14 

Ds3 97.48 88.68 91.19 90.57 96.23 93.71 96.23 99.37 98.11 95.60 94.34 95.60 97.48 100.00 82.39 

Ds4 75.00 82.95 79.55 82.95 88.64 89.77 86.36 96.59 95.45 90.91 98.86 98.86 96.59 93.18 76.14 

 

TABLE 3. 6. CLASSIFICATION ACCURACIES OF THE PCACD SCHEME IN TERMS OF k 

VALUES FOR ALL DATASETS. 

 Dataset1 Dataset2 Dataset3 Dataset4 

k=1 SEN 70.79 76.36 70.16 71.49 

SPE 80.69 91.08 94.06 92.02 

AVG 75.74 83.72 82.11 81.75 

k=3 SEN 67.79 66.36 63.35 57.02 

SPE 81.80 90.00 93.71 93.41 

 AVG 74.795 78.18 78.53 75.21 

k=5 SEN 65.54 62.27 52.62 42.98 

SPE 81.67 91.57 94.21 93.41 

AVG 73.60 76.92 73.41 68.19 

 

TABLE 3. 7. PER-CLASS OVERALL CLASSIFICATION ACCURACIES ACHIEVED ON ALL 

DATASETS BY MEANS OF THE PCACD METHOD FOR k=1. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ds1 76.39 58.33 94.44 80.56 79.17 93.06 70.83 63.89 80.56 95.83 88.89 72.22 69.44 63.89 86.11 

Ds2 94.29 75.71 84.29 74.29 84.29 77.14 87.14 90.00 95.71 97.14 90.00 94.29 92.86 92.86 90.00 

Ds3 96.86 81.13 91.82 84.91 90.57 76.73 91.82 96.23 96.86 94.97 89.31 89.31 98.74 99.37 74.84 

Ds4 71.59 81.82 94.32 80.68 88.64 95.45 88.64 90.91 97.73 92.05 95.45 88.64 95.45 92.05 70.45 

 

TABLE 3. 8. RESULTS OF PROPOSED STRATEGIES OBTAINED ON DATASET 1, BY VARYING 

IMAGE RESOLUTION AND K (NUMBER OF MULTILABELING IMAGES) VALUE. 

 SSCS 

(Semantic similarity compressed sensing) 

EDCS 

(Euclidean distance compressed sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 SEN 80.89 81.64 79.77 79.77 71.53 70.41 69.66 69.66 

SPE 68.14 

 

67.40 66.91 66.54 79.33 

 

79.82 

 

79.82 

 

80.19 

 AVG 74.51 74.52 73.34 73.15 75.43 75.115 74.74 74.92 

k=3 SEN 78.65 78.65 80.52 80.14 65.91 66.66 67.41 68.53 

SPE 69.86 

 

69.61 69.74 69.37 81.54 

 

80.93 

 

81.42 

 

81.91 

 AVG 74.25 74.13 75.13 74.75 73.72 73.79 74.41 75.22 

k=5 SEN 76.02 76.77 76.02 75.65 67.41 67.79 67.79 68.16 

SPE 71.09 

 

70.60 70.47 70.72 82.41 

 

81.91 

 

81.79 

 

82.04 

 AVG 73.55 73.68 73.24 73.18 74.91 74.85 74.79 75.1 

 
TABLE 3. 9. PER-CLASS CLASSIFICATION ACCURACIES ACHIEVED ON DATASET 1 BY: 

EDCS METHOD (K=1 AND 1/10 RATIO), SSCS METHOD (K=3 AND 1/2 RATIO). 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EDCS 77.77 61.11 93.05 75 77.77 90.27 75 66.66 77.77 95.83 91.66 65.27 66.66 59.72 87.50 

SSCS 58.33 59.72 91.66 69.44 63.88 90.27 44.44 54.16 90.27 95.83 87.50 38.88 72.22 73.61 88.88 
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TABLE 3. 10. RESULTS OF PROPOSED STRATEGIES OBTAINED ON DATASET 2, BY 

VARYING IMAGE RESOLUTION AND K (NUMBER OF MULTILABELING IMAGES) 

VALUE. 

 SSCS 

(Semantic similarity compressed sensing) 

EDCS 

(Euclidean distance compressed sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 SEN 75 74.09 75 75 68.18 69.09 70 70 

SPE 73.97 73.73 74.09 74.09 89.03 89.51 90.12 90.12 

 AVG 74.48 73.91 74.54 74.54 78.60 79.3 80.06 80.06 

k=3 SEN 69.54 70.90 70.90 70.45 63.18 62.27 61.36 60.90 

SPE 81.80 82.53 

 

82.65 82.65 87.22 86.98 86.98 87.10 

AVG 75.67 76.71 76.77 76.55 75.2 74.62 74.17 74 

k=5 SEN 68.63 69.09 69.09 68.63 53.18 55 55.90 55.90 

SPE 81.08 81.68 

 

81.92 82.04 89.63 89.39 89.87 89.75 

AVG 74.85 75.38 75.50 75.33 71.40 72.19 72.88 72.82 

 

TABLE 3. 11. PER-CLASS CLASSIFICATION ACCURACIES ACHIEVED ON DATASET 2 BY: 

EDCS METHOD (K=1 AND 1/2 RATIO), SSCS METHOD (K=3 AND 1/2 RATIO). 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EDCS 60 74.28 68.57 50 65.71 67.14 78.57 82.85 75.71 87.14 78.57 91.42 77.14 77.14 81.42 

SSCS 45.71 62.85 64.28 45.71 64.28 82.85 67.14 88.57 80 91.42 81.42 95.71 90 90 85.71 

 

TABLE 3. 12. RESULTS OF PROPOSED STRATEGIES OBTAINED ON DATASET 3, BY 

VARYING IMAGE RESOLUTION AND K (NUMBER OF MULTILABELING IMAGES) 

VALUE. 

 SSCS 

(Semantic similarity compressed sensing) 

EDCS 

(Euclidean distance compressed sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 SEN 73.8220 72.5131 73.29 73.29 55.23 56.28 58.37 59.42 

SPE 80.5292 80.1797 80.12 80.12 92.56 93.01 93.01 93.11 

AVG 77.17 76.34 76.70 76.70 73.89 74.64 75.69 76.27 

k=3 SEN 73.2984 73.5602 73.56 74.08 59.42 41.62 43.97 43.98 

SPE 82.8258 82.4763 82.32 82.52 93.11 93.75 93.91 93.91 

AVG 78.06 78.02 77.94 78.3 76.26 67.68 68.94 68.94 

k=5 SEN 72.5131 72.77 73.03 73.56 32.1990 34.55 36.38 35.60 

SPE 83.2252 83.07 83.22 83.42 94.0589 94.00 94.01 94.06 

AVG 77.87 77.92 78.12 78.49 63.13 64.27 65.19 64.83 
 

TABLE 3. 13. PER-CLASS CLASSIFICATION ACCURACIES ACHIEVED ON DATASET 3 BY: 

EDCS METHOD (K=1 AND 1 RATIO), SSCS METHOD (K=5 AND 1 RATIO). 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EDCS 95.60 71.70 91.19 81.13 88.68 72.33 93.08 96.23 97.48 96.23 89.94 81.13 97.48 96.86 66.67 

SSCS 88.05 55.35 79.25 59.12 83.65 69.18 90.57 96.86 95.60 85.53 79.87 81.13 96.23 97.48 59.75 
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TABLE 3. 14. RESULTS OF PROPOSED STRATEGIES OBTAINED ON DATASET 4, BY 

VARYING IMAGE RESOLUTION AND K (NUMBER OF MULTILABELING IMAGES) 

VALUE. 

 

 

SSCS 

(Semantic similarity compressed sensing) 

EDCS 

(Euclidean distance compressed sensing) 

Ratio 1/10 1/5 1/2 1 1/10 1/5 1/2 1 

k=1 SEN 64.46 66.53 67.36 69.42 57.44 60.74 61.16 62.39 

SPE 72.91 74.12 74.40 75.13 91.19 91.47 91.47 91.74 

AVG 68.68 70.32 70.88 72.27 74.31 76.10 76.31 77.06 

k=3 SEN 62.40 63.22 65.29 65.70 45.04 47.52 47.52 47.52 

SPE 73.93 74.40 74.49 74.86 93.41 93.32 93.32 93.23 

AVG 68.16 68.81 69.89 70.28 69.22 70.42 70.42 70.37 

k=5 SEN 62.81 65.29 67.36 68.18 34.71 39.26 42.98 42.15 

SPE 74.30 74.58 74.95 75.14 93.41 93.41 92.86 92.86 

AVG 68.55 69.93 71.15 71.66 64.06 66.33 67.92 67.50 
 

TABLE 3. 15. PER-CLASS CLASSIFICATION ACCURACIES ACHIEVED ON DATASET 4 BY: 

EDCS METHOD (K=1 AND 1 RATIO), SSCS METHOD (K=1 AND 1 RATIO). 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EDCS 64.77 78.41 82.95 80.68 80.68 90.91 84.09 93.18 95.45 92.05 96.59 94.32 89.77 89.77 59.09 

SSCS 52.27 56.82 47.73 60.23 56.82 69.32 62.50 93.18 95.45 75.00 96.59 85.23 90.91 90.91 64.77 

 

TABLE 3. 16. CLASSIFICATION RESULTS ON ALL DATASETS BY MEANS OF MRPCD FOR A 

RESOLUTION RATIO OF 1. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

 

Muliresolution 

Random 

Projections 

SEN 68.69 74.32 68.48 67.48 

SPE 82.89 90.88 94.11 91.52 

Average 75.79 82.6 81.3 79.5 

Time (sec) 1.04 1.07 1.06 1.09 

Std (SEN) 2.24 2.60 1.99 1.92 

Std (SPE) 1.70 0.61 0.39 0.80  
 

Random 

Projections 

SEN 72.45 68.76 68.06 62.89 

SPE 90.73 83.35 94.30 90.30 

Average 81.59 76.05 81.18 76.59 

Std (SEN) 1.60 1.09 2.17 3.10 

Std (SPE) 0.42 0.94 0.42 0.83 

TABLE 3. 17. CLASSIFICATION RESULTS ON ALL DATASETS BY MEAN SOF MRPCD FOR A 

RESOLUTION RATIO OF ½. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

 

Muliresolution 

Random 

Projections 

SEN 68.65 74.5 69.21 67.69 

SPE 82.85 90.83 94.24 91.58 

Average 75.75 82.67 81.73 79.63 

Time (sec) 0.25 0.22 0.23 0.29 

Std (SEN) 2.12 2.67 1.79 1.72 

Std (SPE) 1.65 0.58 0.39 0.68  
 

Random 

Projections 

SEN 69.18 67.45 63.46 58.72 

SPE 81.14 89.88 93.75 90.71 

Average 75.16 78.67 78.60 74.71 

Std (SEN) 2.60 3.47 0.92 2.17 

Std (SPE) 0.96 0.95 0.32 0.61 
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TABLE 3. 18. CLASSIFICATION RESULTS ON ALL DATASETS BY MEAN SOF MRPCD FOR A 

RESOLUTION RATIO OF 1/5. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

 

Muliresolution 

Random 

Projections 

SEN 68.84 75.86 70.42 69.55 

SPE 82.77 91.08 94.54 91.73 

Average 75.8 83.47 82.48 80.64 

Time (sec) 0.056 0.056 0.061 0.061 

Std (SEN) 2.43 2.17 1.63 1.92 

Std (SPE) 1.63 0.53 0.35 0.78  
 

Random 

Projections 

SEN 70.07 64.63 64.63 57.15 

SPE 80.12 93.89 93.89 90.35 

Average 75.10 79.26 79.26 73.75 

Std (SEN) 2.20 1.98 1.71 2.10 

Std (SPE) 0.96 0.72 0.37 0.73 

 

TABLE 3. 19. CLASSIFICATION RESULTS ON ALL DATASETS BY MEAN SOF MRPCD FOR A 

RESOLUTION RATIO OF 1/10. 

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 

 

Muliresolution 

Random 

Projections 

SEN 71.16 77.18 71.65 70 

SPE 83.2 91.41 94.81 92.33 

Average 77.18 84.3 83.23 81.16 

Time (sec) 0.037 0.037 0.035 0.037 

Std (SEN) 2.32 2.32 1.49 1.90 

Std (SPE) 0.78 0.49 0.31 0.73  
 

Random 

Projections 

SEN 70.60 67.77 65.16 61.32 

SPE 80.92 89.75 94.15 90.73 

Average 75.76 78.76 79.65 76.03 

Std (SEN) 1.04 2.32 1.68 2.54 

Std (SPE) 1.16 0.47 0.23 0.59 
 

 

 

 

TABLE 3. 20. PER-CLASS OVERALL CLASSIFICATION ACCURACIES ACHIEVED ON ALL 

DATASETS BY MEANS OF THE MRPCD METHOD FOR A RESOLUTION RATIO OF 1/10. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Ds1 81.91 67.87 93.30 79.37 80.53 92.18 78.86 67.87 79.85 95.27 89.56 77.07 78.17 69.01 84.85 

Ds2 90.14 80.29 83.86 76.71 86.86 77.71 89.29 85.71 94.00 96.29 91.57 97.00 90.71 93.43 92.86 

Ds3 96.54 80.31 92.58 86.29 91.57 81.70 92.20 97.55 96.42 96.23 90.00 88.68 97.74 99.18 79.50 

Ds4 73.18 81.70 89.55 85.34 84.55 94.32 88.75 93.98 95.34 90.34 97.73 91.36 92.95 89.32 75.11 
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TABLE 3. 21. COMPARISON OF ALL CLASSIFICATION STRATEGIES ON ALL DATASETS. 

FOR THE SCD, BOWCD, AND THE PCACD, THE ACCURACIES CORRESPOND TO K =1. FOR 

HE SSCS STRATEGY THE VALUES OF K AND THE RESOLUTION RATIO WERE (3, ½), (3, 1/2), 

(5, 1), AND (1,1) FOR THE CONSIDERED DATASETS, RESPECTIVELY. FOR THE MRPCD, THE 

RESOLUTION RATION CORRESPONDS TO 1/10. 

 Dataset1 Dataset2 Dataset3 Dataset4 Overall  

SCD SEN 84.64 91.36 89.79 88.84 88.66 

SPE 91.02 95.78 97.90 95.92 95.16 

AVG 87.83 93.57 93.84 92.38 91.91 

 

BOWCD 

SEN 72.73 85.09 83.74 77.60 79.79 

SPE 88.38 93.88 96.66 92.96 92.97 

AVG 80.55 89.48 90.2 85.28 86.38 

 

PCACD 

SEN 70.79 76.36 70.16 71.49 72.20 

SPE 80.69 91.08 94.06 92.02 89.46 

AVG 75.74 83.72 82.11 81.75 80.83 

 

SSCS 

SEN 80.52 70.90 73.56 69.42 73.60 

SPE 69.74 82.65 83.42 75.13 77.74 

AVG 75.13 76.77 78.49 72.27 75.67 

 

MRPCD 

SEN 71.16 77.18 71.65 70 72.50 

SPE 83.2 91.41 94.81 92.33 90.44 

AVG 77.18 84.3 83.23 81.16 81.47 

 

 

 

 

 

TABLE 3. 22. OVERALL PROCESSING TIME PER IMAGE WITH RESPECT TO ALL 

STRATEGIES. 

Scheme SCD BOWCD PCACD SSCS MRPCD 

Time/Image 2.5 min 0.71 sec 0.65 sec 1.18 sec 0.036 sec 
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Figure. 3. 2. Three multilabeling examples from Dataset 1 by means of the SCD. 
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2nd Closest image 3rd Closest image

Query image 1st Closest image

Predicted objects:'Office',    'Pillar',    'Display Screen',    'Chairs',

2nd Closest image 3rd Closest image
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Figure. 3. 3. Three multilabeling examples from Dataset 2 by means of the SCD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Query image 1st Closest image

Predicted objects: 'Heater',     'Corridor',  'Board',   'Office',

2nd Closest image 3rd Closest image
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Figure. 3. 4. Three multilabeling examples from Dataset 3 by means of the SCD. 
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Figure. 3. 5. Three multilabeling examples from Dataset 4 by means of the SCD. 
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Figure. 3. 6. Three multilabeling examples from Dataset 1 by means of the BOWCD. 
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Figure. 3. 7. Three multilabeling examples from Dataset 2 by means of the BOWCD. 
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Figure. 3. 8. Three multilabeling examples from Dataset 3 by means of the BOWCD. 
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Figure. 3. 9. Three multilabeling examples from Dataset 4 by means of the BOWCD. 
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Figure. 3. 10. Three multilabeling examples from Dataset 1 by means of the PCACD. 
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Figure. 3. 11. Three multilabeling examples from Dataset 2 by means of the PCACD. 
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Figure. 3. 12. Three multilabeling examples from Dataset 3 by means of the PCACD. 
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Figure. 3. 13. Three multilabeling examples from Dataset 4 by means of the PCACD. 
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Figure. 3. 14. Three multilabeling examples from Dataset 1 by means of the SSCS. 
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Figure. 3. 15. Three multilabeling examples from Dataset 2 by means of the SSCS. 
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Figure. 3. 16. Three multilabeling examples from Dataset 3 by means of the SSCS. 
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Figure. 3. 17. Three multilabeling examples from Dataset 4 by means of the SSCS. 
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Figure. 3. 18. Three multilabeling examples from Dataset 1 by means of the RPCS. 
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Figure. 3. 19. Three multilabeling examples from Dataset 2 by means of the RPCS. 
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Figure. 3. 20. Three multilabeling examples from Dataset 3 by means of the RPCS. 
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Figure. 3. 21. Three multilabeling examples from Dataset 4 by means of the RPCS. 
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4.1. Introduction 

Visual disability is one of the most serious troubles that may afflict an individual. Despite the fact 

that 80 percent of all visual impairment is claimed to be preventable and even curable, still 

blindness/partial-sight represent a serious problem worldwide [1](WHO). Besides the great efforts spent 

in medicine, neuro-science and biotechnologies to find an ultimate solution to such problems, 

technologies can provide tools to support those people by providing basic functionalities such as the 

ability to navigate and recognize their entourage independently, to improve their quality of life and allow 

better integration into the society. This objective is ambitious but not out-of-reach, thanks to the recent 

technological advances. 

In pursuit of satisfying the needs of visually disabled people and promote better conditions for them, 

several designs have been put forth in the last years. From an overall perspective, they can be framed into 

two mainstreams. The former addresses the guidance/navigation concern, while affording the possibility 

to avoid potential obstacles. The latter is focused on recognizing the nature of nearby moving/static 

obstacles. Considering both aspects, various contributions have been suggested, often referred to as 

electronic travel aids (ETAs) [2] (Capi & Toda, 2011) [3] (Tian & Arditi, 2010) [4] (Chen, Dong, & 

Wang, 2010) [5] (Loomis, Golledge, Klatzky, 1998) [6] (Ganz, Grandhi, Wilson, Mullett, 2010) [7] 

(Simpson, LoPresti, Hayashi, Guo, Ding, Ammer, Sharma, Cooper, 2005). In [8] (Nanayakkara, Shilkrot, 

& Maes, 2012), an autonomous device, called EyeRing, has been presented. It comprises a finger-worn 

ring equipped with a VGA mini camera and an on/off switch, as well as an android mobile application. 

The user is required to turn the switch on, then the camera captures the scene and carries it on to the 

mobile phone via Bluetooth for further computer vision-based processing. Depending on the chosen mode 

(e.g., object, color, or currency), which is verbally selectable by the user, a vocal statement is output by 

the mobile application through a TTS (Text-To-Speech) module. The notable features of the designed 

instrument are the ease-of-use and lightweight. Proposed in [9], is a guide-cane consisting of a round 

housing, wheelbase and a handle. The housing is surrounded by ten ultrasonic sensors, eight of which are 

placed on the frontal side and spaced by 15° so that to cover a wide sensed area of 120°, while the 

remaining two are located on the edgewise for side-objects detection (doors, walls, etc…). The user can 

use a mini joystick to control the preferred direction and push the cane through in order to inspect the 

area. When an obstacle is detected by the sensors, an embedded obstacle avoidance algorithm is launched 

to estimate an alternative obstacle-free path. The feedback to the user is given by steering the cane 

through, which results in a force felt by the user on the handle. A somehow similar concept, called 

NavBelt, was also presented in [10] (Shoval, Borenstein, & Koren, 1998). In this work, the ultrasonic 

sensors are integrated on a worn belt and spaced by 15°. The information about the context in front of the 

user is carried within the reflected signal and is processed within a portable computer. The outcome of the 

analysis is relayed to the user by means of earphones. The distance to objects is represented by the pitch 

and volume of the generated sound (i.e., the shorter the distance, the higher the pitch and volume). As an 

attempt to facilitate the use and bring more comfort, a wearable smart clothing prototype has been 

designed in [11] (Bahadir, Koncar, & Kalaoglu, 1998). The model is equipped with a microcontroller, 

ultrasonic sensors, as well as indicating vibrators. The sensors explore the area of concern, whilst a neuro-

fuzzy-based controller detects the obstacle position (left, right, and front), and provides navigation tips 

such as “turn left”,or “turn right”. A similar approach is also proposed in [12] (Shin & Lim, 2007). 

Another study [13] (Bousbia-Salah, Bettayeb, & Larbi, 2011), provides an ultrasonic-based navigation aid 

for the blind, permitting him/her to explore the route within 6 meters ahead via ultrasonic sensors placed 

on the shoulders as well as on a guide cane. The underlying idea is that the sensors emit a pulse, which in 

case of an obstacle is reflected back: the time between emission and reception (time of flight) allows 

estimating the distance of the obstacle. The indication is carried to the user by means of two vibrators 

(also mounted on his/her shoulders), and verbally for guiding the cane. The control of all the process is 

attributed to a microcontroller. In [14] (Lee, Kang, Lee, 2008), the authors propose a different approach 

including many tasks. In particular, the proposed system contains the following modules: object 

detection, pedestrian recognition, ultrasonic-based object distance sensing, and a positioning system 

through the GPS (Global Positioning System). Object detection module generates a disparity image, 

which is processed in the object recognition module using support vector machines (SVM). The classifier 

is trained on vertical silhouette and takes charge of face detection. Text recognition is also included and is 

achieved using a commercial engine. The main drawback is that the above modules are run sequentially. 

Another design was considered in [15] (Scalise, Primiani, Russo, Shahu, Di Mattia, De Leo, Cerri, 2012). 
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In that paper, a new electromagnetic concept for obstacle detection was introduced, based on the idea of 

scanning the frontal area through a wideband antenna, emitting an electromagnetic wave. The presence of 

an obstacle generates a reflection of the signal, which is amplified and analyzed to assess the distance of 

the reflecting object. The presence of objects has been achieved at a signal-to-noise ratio (SNR) within 

10-23 dB. Robot-based assistance for visually impaired has also received attention [16] (Kulyukin, 

Gharpure, Nicholson, & Osborne, 2006) [17] (Kim, Yi, 2008). Robots can perform many assistive tasks 

for people with vision disability such as navigation guidance, handling various household duties, 

providing medical care, entertainment and rehabilitation. In order to effectively assist blind and low 

vision people in an interactive and team-based way, and to improve the acceptance and usability of these 

technologies, assistive robots must be able to recognize the current activity that the human is engaged in, 

the task and goal context of the current activity, as well as be able to estimate how the human is 

performing and whether assistance is required and appropriate in the current setting. Social assistive 

robots, which may be particularly expensive, must also ensure the physical safety of the human users with 

whom they share their workspace. Banknote recognition for the blind has also been addressed in [18] 

(Hasanuzzaman, Yang, & Tian, 2012), where the Speeded-Up Robust Features (SURF) have been 

employed. A supermarket shopping scenario has been treated in [19] (López-de-Ipiña, Lorido, López, 

2011). In this work, Radio-frequency identification (RFID) has been used as a means for localization and 

navigation, while product recognition has been performed by reading QR codes through a portable 

camera. Product barcodes detection and reading has also been suggested in [20] (Tekin, Coughlan, 2009). 

In another work [21] (Pan, Yi, & Tian, 2013), a portable camera-based design for bus line-number 

detection was considered as a travel assistant. Staircase detection in indoor environments was proposed in 

[22] (Tang, Lui, Li, 2012). In [23] (Chen & Yuille, 2004), the authors suggest assistive text reading in 

natural scenes. RFID technology was also exploited for bus detection at public bus stations as to further 

ease blind people mobility [24] (Al Kalbani, Suwailam, Al Yafai, Al Abri, Awadalla, 2015). Another 

worth-noting contribution was proposed in [25] (Kulkarni & Bhurchandi, 2015). It consists of a device 

designed for facilitating e-book reading for blind individuals via a built-in Braille script. The device was 

claimed to be handy and at an affordable cost. Another work, which considers clothes color as well as 

pattern recognition as a means of facilitating recognition capabilities of blind people, was put forth in [26] 

(Thilagavathi, 2015). It combines three kinds of features, which are further fed into a SVM classifier as a 

decision making paradigm. In [27] (Neto & Fonseca, 2014), assistive text reading was propounded. Its 

underlying idea is to acquire the text zones by means of a camera, and afterwards exploit optical character 

recognition capabilities to recognize the text and forward it to a text-to-speech engine as to deliver a vocal 

feedback. 

Overall, although the current literature proposes several interesting technologies to address specific 

guidance or recognition problems for the blind, there is still a remarkable lack of integrated solutions able 

to provide a usable “sight substitute”. In this context, we propose in this paper a new design that 

incorporates guidance and recognition capabilities into a single prototype. These two needs, as observed 

throughout the literature, have very scarcely (just one previous work to the best of our knowledge) been 

coupled together. The tool is designed for indoor use, and is fully based on computer-vision technologies. 

The components of the system include a portable camera attached to a wearable jacket, a processing unit, 

and a headset for commands/feedback. The navigation system is launched as soon as the prototype is 

powered on, and keeps instructing the blind person whenever he/she moves across the indoor 

environment. In order to avoid information flooding, the recognition system is activated upon request of 

the user. The prototype was implemented and tested in an indoor environment, showing good 

performance in terms of both navigation and recognition accuracy. 

The rest of this paper is structured as follows. Section 2 provides an overview of the prototype 

architecture. In Section 3, the functioning of the guidance system and its modules are reported in detail. 

Section 4 describes how the recognition task is performed. Section 5 illustrates the operational use of the 

prototype in a real indoor environment. Finally, conclusions are drawn in Section 6. 

4.2. Proposed Prototype 

The proposed prototype accommodates two complementary units: (i) a guidance system, and (ii) a 

recognition system. The former works online and takes charge of guiding the blind person through the 

indoor environment from his/her current location and leading him/her to the desired destination, while 

allowing avoiding static as well as moving obstacles. By contrast, the latter works on demand. The whole 
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prototype is based on computer vision and machine learning techniques. The inputs of the prototype 

include: 

 A speech recognition module, which acquires verbal instructions from the headset and serves for 

determining the command of the user, e.g., to launch for instance the recognition system, or to in-

dicate a desired target location for the guidance module. 

 A laser sensor whose task is to provide information about the distance to encountered obstacles, if 

any. 

 A set of patterns (markers) as well as their associated coordinates within the indoor environment. 

This set is used as a ground truth for determining the user’s location, as explained later. 

 An inertial measurement unit (IMU sensor), used to reinforce the egomotion module, in particular 

by getting a reliable measurement of the user orientation within the indoor space. 

 A dataset including a bunch of images to be utilized in the recognition module as detailed in the 

following. 

 A portable camera (a CMOS camera from the IDS Imaging Development Systems, model UI-

1240LE-C-HQ with KOWA LM4NCL lens) utilized for capturing the scene and forwarding the 

shots to either the navigation or the recognition units. 

 An ego-motion module for estimating the current position of the user, based on coupling two key 

information, namely (i) the marker-based estimated spatial coordinates within the indoor envi-

ronment, and (ii) the user’s orientation from the IMU sensor. 

 A path planning module, which receives (i) the user’s location from the egomotion module, and 

(ii) the distance to potential obstacles from the laser sensor, and calculates a safe path for the user 

to walk through. 

 A speech synthesis module to convert the output of both guidance and recognition units into au-

dio feedback. 

All the modules are implemented on a portable processing unit carried by the user (a laptop in our 

case). The overall architecture is depicted in Fig. 4. 1 

The various modules are described in detail in the following sections. 

4.3. Guidance System 

The guidance system embodies three main modules, namely (i) an egomotion module whose 

function is to estimate the user’s current position within the indoor environment, (ii) a path planning 

module that serves for estimating an obstacle-free path from the current location (automatically detected 

by the egomotion module) and the desired destination (provided by the user through a verbal command 

among a list of predefined potential destinations in the environment), and (iii) an obstacle detection 

module, which provides information about the possible presence of unforeseen obstacles along the path 

(e.g., people, objects), and sends it to the path planning module in order to avoid obstruction. 

4.3.1. Egomotion Module 

In order to estimate the user’s current position (within the environment), we implemented a 

positioning technique based on pattern matching. The underlying idea is that a set of markers is placed at 

selected locations over the indoor environment. The markers employed in this work are the Aruco 

markers [28] (Fusiello, 2008), which represent a 7x7 grid where the internal 5x5 white/black cells 

formulate the code and the outer black bordure represents the frame. The process consists of detecting the 

markers prior to proceeding with the recognition, both procedures are detailed in [29] (Brunner) and [30] 

(Aruco), respectively. Since the markers, along with their spatial coordinates, are stored in the portable 

processing unit, the camera position can be calculated at every step by triangulating the point of view, 

based on the back-projection of visible markers. The portable camera, while walking, captures the 

surrounding area and sends the stream to the processing unit, which in turn detects the markers in the 

scene and uses them to estimate the camera pose as detailed in [28] (Fusiello, 2008).  
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As the guidance operates in a continuous manner, so does the egomotion module, which generates 

the position and orientation estimates. If at some point no markers are detected, a Kalman filter is used to 

perform a dead reckoning based on previous positioning and current IMU measurements [31] (Grimble, 

1994). The output of the egomotion (i.e., the estimated spatial position of the camera within the indoor 

space)  is finally fed to the path planning module. 

 

 

Figure 4. 1. Block diagram and interconnections of the developed prototype. 

4.3.2. Path Planning Module 

In order to track the motion of the user within the environment and plan the path to destination, we 

use a CAD map of the site as shown in Fig. 4. 2. Thus, the user as well as the temporary obstacles 

detected by the system can be placed on the map and monitored on the screen. The role of the path 

planning module is to steer the blind from his/her current position all the way to his desired destination 

within the indoor space, by computing the safest (collision-free) path. It thus collects the desired 
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destination from the voice command unit and the initial location from the egomotion module, and defines 

a preliminary path. As long as the user proceeds along the path, the current location and the presence of 

unexpected obstacles are continuously monitored using egomotion and obstacle detection modules, and 

the remaining path is updated accordingly. 

As far as the definition of the path is concerned, the algorithm works as follows: 

 Firstly, we highlight the areas within the environment across which the user might walk. 

 Then, we create a skeleton of the highlighted walkable area as explained further (see red curve on 

Fig. 4. 2.). The skeleton provides the pieces of trajectory that ensure maximum distance from ob-

stacles. 

 Finally, we select the set of skeleton segments that provides the safest path between the current 

position and the final destination. 

In order to create the skeleton, we use of the Voronoi diagram, which generates an ensemble of cells 

around a set of seeds (i.e., points that are provided a-priori), where each cell includes the nearby points 

around the respective closest seed [32] (Okabe, Boots, Sugihara, Chiu, 2009). In our work, we adopt the 

boundaries of the fixed obstacles (pillars, walls, etc.) lying across the indoor space as starting seeds. An 

example of Voronoi diagram is depicted on Fig. 4. 2. 

Afterwards, the points corresponding to the current and the desired locations are linked to the closest 

nearby cells (based on the Euclidean distance) as shown in Fig. 4. 2. Finally, the safest path (green route 

on Fig. 4. 2.) is computed by means of the Dijkstra's algorithm [33] (Dijkstra, 1959). The ultimate 

trajectory is highlighted in green in Fig. 4. 2. 

4.3.3. Obstacle Detection Module 

The obstacles that might be encountered along the way could be either static (walls, pillars, furniture) 

or moving (mostly pedestrians). Their locations within the environment are pivotal for the path planning 

module as to alert the user while instructing him/her. Static obstacles are typically part of the map (except 

for objects that can be temporarily moved), so that their coordinates can be stored beforehand. Moving 

obstacles instead need to be monitored online while walking. Accordingly, in our prototype we opted for 

a laser sensor-based obstacle detection. Precisely, a URG-04LX-UG01 time-of-flight laser scan is 

employed (Fig. 4. 3.), due to its remarkably small size, high precision, lightweight, and low power 

consumption. The distance to the object (if any) as well as its angulation (rough information about the 

object shape) obtained from the laser scan are then communicated to the path planning module, which 

exploit them to localize the moving obstacle in the CAD map of the site and then locally (in the 

neighborhood of the obstacle) update the safest path before steering the user. 

 

 

Figure 4. 2. Ultimate path extraction out of Voronoi diagram. 
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Figure 4. 3. URG-04LX-UG01 laser sensor. 

4.4. Recognition System 

As for the recognition system, the SSCD described in the previous chapter has been implemented 

considering an image resolution of 1/10. The reader is referred to Chapter 3 for further details.  

4.5. Prototype Illustration 

We experimented the prototype in an indoor open-access space at the University of Trento, Italy. 

This space represents an interesting but at the same time challenging public indoor environment. It is 

composed of long and relatively large corridors, offices, classrooms, as well as numerous objects 

typically found in such environments (e.g., advertisement boards, chairs, ATM). In the following, we 

illustrate how the prototype behaves in such environment, and in particular its guidance and recognition 

systems. 

As stated before, the prototype includes a portable camera mounted on a lightweight and rigid jacket 

worn by the user, and USB-connected to the processing unit (currently, a simple laptop). Once the 

application is launched, all the offline-stored information regarding both the recognition and the 

navigation systems are loaded. From that point on, the application is under the voice control of the user. 

The predefined verbal commands, system instructions and information are listed in Table 4. 1. 

An image illustrating the prototype is provided in Fig. 4. 4. Examples of the markers (employed for 

positioning) can be seen in the image (attached to the walls). 

For greater detail, we provide a demonstrative example in Fig. 4. 5., which shows some screen shots 

of the application. In this example, the user requests ‘Reception’ as a destination by uttering the voice 

command ‘Go to Reception’, which is interpreted by the speech recognition module and fed into the path 

planning module for further guidance. In Fig. 4. 5., four instances of the guidance process are illustrated 

(the chronological order goes from left to right, and from top to bottom). As shown, the black command 

prompt highlights the voice tips derived out of the estimated route (by the path planning module) such as 

‘go left’, ‘go right’…etc, as well as the user’s command at the beginning of the process. As recommended 

by a local association of blind people, a voice tip is released by the system only when a change in the 

walking direction is suggested. This modality has been found important in order not to overload the user 

with a redundant flow of similar voice instructions. Finally, upon arrival to the desired destination, the 

prototype informs the users. 

Fig. 4. 5. depicts also (rightmost images) a virtual environment emulating the real movement of the 

user within the indoor space. The user is symbolized by a black silhouette, with which two lines are 

associated. The blue line shows the current user’s orientation, while the green one points to the 

destination (estimated by the path planning module). The red dot represents the final destination, while 

the red curve highlights the estimated safest path. The interface also includes the markers displayed as 

thick lines lying on the walls in different locations across the environment. In this experiment, we have 

considered five predefined destinations (Reception, Didactic Office, Elevator, Toilet, and Classroom). 

The list can be obviously customized by adding other desired locations within the indoor site. 
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TABLE 4. 1. VOCABULARY OF THE PROTOTYPE. 

 Name Description 

User’s voice 

commands 

‘Go to’ + destination 

 

 

 

 

‘Reset’ 

‘Start’ 

‘Exit’ 

 

The user orders the prototype to lead him towards one 

of the following predefined destinations: elevators, 

toilet, didactic service, classroom, reception. 

 

 

Perform hardware components setup 

Launch the navigation system 

Abandon the guidance/recognition task 

System instructions ‘Go’ + ‘forward’, ‘right’, 

‘right forward’, ‘right 

backward’, ‘backward’, ‘left 

backward’, ‘left’, ‘left 

forward’ 

 

The system directs the user to step towards the eight 

predefined directions. Left forward/backward and 

right forward/backward refer to 135°/225° and 

45°/315° orientations, respectively 

 

Additional system 

information 

Destination + ‘reached’ 

 

 

‘IMU connected’ 

‘IMU not connected’ 

‘Laser connected’ 

‘Laser not connected’ 

‘Camera connected’ 

‘Camera not connected’ 

‘Microphone not connected’ 

 

Once the user reaches the desired destination, the 

system informs him. 

 

Inform the user about the status of the key hardware 

components 

 

 

 

Figure 4. 4. Illustration of the hardware components of the prototype. 

 

 

Marker 

Jacket IMU Sensor 
Laser 

Sensor 
Camera Headset 
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Figure 4. 5. Example depicting the guidance system interface. 

Noteworthy is that the experiments were run on a Dell laptop, incorporating an i5 Intel processor 

with a 4Gb memory. The processing and instruction speed has shown a sound compatibility with an 

ordinary blind user’s motion. The accuracy of the egomotion and path planning modules can be 

considered satisfactory with regard to the various trials we performed within the test site. The main issue 

found, though not critical, is the piecewise nature of the computed safest path which sometimes may 

appear not compatible with an expected naturally curved path. 
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5.1. Introduction 

In the introduction chapter, we have stressed the role smart technologies can play in service of blind 

people rehabilitation, with a particular focus on the indoor-based context. Another yet worth tackling but 

more challenging problem is the development of supportive methodologies able to aid blind individuals in 

outdoor environments.  

Up to date, different attempts have been set forth in the literature. Similarly to the indoor-based con-

cepts, outdoor contributions generally stem as a two-sided regard, enfolding the two formerly claimed 

concerns, namely navigation and recognition. Considering the navigation aspect, several works have been 

accumulated so far, which were made mention of in the previous chapters. With respect to the recognition 

part, however, still there is much to do as a little attention has been paid. For instance, the work presented 

in [1], intends to facilitate the task of bus detection for blind people. The system accommodates two sub 

modules; the first one is implemented inside the bus and serves for detecting nearby bus stops and subse-

quently alerting the blind persons aboard, it also counts the number of blind people in local bus stops if 

any, and informs the bus driver; the second module is implemented at bus stations and takes charge of de-

tecting the upcoming buses while keeping the blind individuals in the station updated. Another travel as-

sistant system was presented in [2]. It takes advantage of the text zones depicted in the frontal side of 

buses (at bus stops) for further extraction of information related to bus line number. The system processes 

a given image acquired by a portable-camera and then notifies the outcome to the user vocally. In [3], as-

sistive text reading from complex backgrounds was put forth. The algorithm mainly consists of two tasks, 

namely (i) text localization, and (ii) text reading from the localized zones. The former task was achieved 

by learning gradient features of stroke orientations and distributions of edge pixels by means of an Ada-

boost model. Afterwards, the latter task is performed by off-the-shelf optical character recognition (OCR) 

software and subsequently transformed into an audible output. The algorithm was assessed in the context 

of the ICDAR 2003 competition and further on a dataset collected by 10 blind persons, and has been 

proven effective. In another work [4], stairs, pedestrian crosswalks, and traffic signs detection was tackled 

by means of an RGB-D (i.e., Red, Green, Blue, and Depth information) image-based method. Departing 

from the fact that crosswalks, as stairs, are characterized by a parallel-lines-like structure, Hough trans-

form was applied on the RGB channels as to extract those forming lines, which are coupled with depth 

information and later fed into a support vector machine classifier (SVM) for a final decision whether the 

input conveys stairs or crosswalks. In the former case, another SVM classifier is employed to tell the in-

clination of the stairs (i.e., upstairs or downstairs). The status (i.e., red or non-red) of traffic lights nearby 

the crosswalks was determined by another SVM classifier learned on HOG (i.e., histogram of oriented 

gradient) features extracted from the input RGB image. The design was evaluated on an outdoor dataset 

and pointed out interesting outcomes. The proposal suggested in [5] considers a different recognition con-

cern, instead of recognizing definite objects, the algorithm is meant to recognize blind user’s situation in 

outdoor places, where the term ‘situation’ refers to the entity of the spot/location where the blind user is 

standing. The considered situations account for three types, namely sidewalk, roadway, and intersection. 

Mainly, the scheme’s pipeline encompasses three steps. In a first step, regions of interest (ROIs) underlin-

ing the boundaries lying between the sidewalks and roadways are extracted by means of Canny edge de-

tector and Hough transform. In a second step, features (Fourier transform) are extracted from the ROIs 

and injected into SVMs for further training. Lastly, in operational phase, the trained SVMs are applied to 

a given input image to decide the situation’s class. Another contribution, suggested in [6] designed an al-

gorithm for outdoor scene description, the description consists of attributing a single label (e.g., door in 

front of building) to a given query image. The labeling was performed by considering a majority vote 

amongst the k closest labeled training images from an already prepared library, where image representa-

tion was achieved through GIST features, whilst KNN classifier was used for the matching process. In 

this respect, outdoor object recognition in the context of blind rehabilitation has notpaid much attention to 

the multiobject concern.  

On this point, in the future expansion of the scope of this thesis, we intend to focus on outdoor mul-

tiobject recognition. Thus far, we have highlighted the pivotal need to holistically describe indoor scenes, 

and we conducted trending contributions from the literature. We recall the fact that, in indoor sites, the 

challenge encompasses two requirements, namely (i) adequate recognition efficacy, constrained by (ii) 

short processing time, as to closely meet (at least near) real-time requirements. Subsequently, the chal-

lenge inflates and becomes harder to address while tackling the same concern (i.e., coarse description) in 

outdoor environments, due to diverse reasons such as:  
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(i) The high number of objects likely to appear in outdoor scenes.  

(ii) The heterogeneity of objects, particularly the ones that belong to the same class, in terms of 

shape (e.g., different types of trees might reflect different shapes and sizes), color (e.g., 

onroad vehicles drastically differ often by color, and less often by size).  

(iii) The scale-change tends to be harder as the camera’s frontal field of view expands while 

switching from indoor to outdoor.  

(iv) The weather condition changes, expressed within the illumination of the shot images (in in-

door sites, the lighting is artificial and thus poses less problems as its intensity is kept under 

control). 

(v) The mobility of different objects, particularly vehicles, might cause blurred out images, 

which does not serve the cause of this work.       

In this chapter, apart from the SCD strategy which was proposed as a best case scenario exemplary 

that needs further investigation with what concerns the processing time, we run the remaining strategies 

in the outdoor context and assess their efficiency under the challenges mentioned above. We further pave 

the way for potential future considerations as to bridge the gaps underlining these strategies.  

5.2. Experimental Setup 

The experimental evaluation with respect to outdoor environments will be conducted on a dataset of 

images acquired at different locations across the city of Trento located in the Trentino-Alto Adige region. 

The locations were selected based on their importance as well as the density of people frequenting them. 

For the sake of clarity, we provide a Google map highlighting those locations (Fig. 5.1). The dataset ini-

tially comprises one thousand images, which were split up into training and testing subsets (i.e., 500 

each). As for the predefined list of objects, a long initial list has been prepared. However, upon consulta-

tion of a visually impaired person, the list was narrowed down to a total of 26 objects, as follows:  

People, Building, Bar(s), Monument(s), Chairs/Benches, Green ground, Vehicle(s), Stairs, Walk path 

/ Sidewalk, Fence / Wall, Tree(s) / Plant(s), Garbage can(s), Bus stop, Crosswalk, River, Roundabout, 

Pole(s) / Pillar(s), Shop(s), Supermarket(s), Pound/Birds, Underpass, Bridge, Railroad, Admiration build-

ing, Church, Traffic signs.  

   In addition to the aforementioned challenges, in the outdoor case, the size of the dataset (number of 

training images) expands roughly nine or ten times with respect to the indoor datasets addressed before.  

On what concerns the SSCS, a dictionary for representing the images by way of CS has to be allocated. 

Therefore, a total of 58 images were used to develop the CS dictionary, which gives rise of image repre-

sentations of the same size. 

The classification results are reported in Table. 5. 1. In particular, for the SSCS and the MRPCD, we 

opted for an images resolution of 1/10 (which was thought of as the optimal choice for a large dataset). 

From the table, it is to deduce that, despite the challenges noted above, satisfactory results can be 

yielded in the outdoor scenario. It is also to mention the observation that SEN, similarly to the indoor 

case, is still higher that SPE, except for the SSCS scheme where the opposite is observed, which can be 

interpreted by the reason that, in outdoor spaces, the images are likely to have in common at least few ob-

jects amongst the long predefined list (e.g., such as sidewalk, buildings, and vehicles, which appear in 

many images), which is further reflected in a high SEN metric, which also recalls the expectation men-

tioned in the previous chapters, that a high number of training images is likely to lift the object co-

occurrence amongst the k images, which renders the recognition accuracy higher.  

Considering the average between SEN and SPE, the best result was pointed out by the BOWCD 

method, followed respectively by the SSCD, the PCACD, and the MRPCD with somewhat close efficien-

cies, which once again underlines the fact that local keypoint-based image representation still outperforms 

global holistic-based ones for the reason that richer information is ought to be gathered by way of work-

ing at pixel-level than at image level. 

Regarding the behavior of the methodologies under different k values, the best outcomes can be 

gained by considering the sole nearest neighbor from the library, except for the SSCD that scores the 

highest at k=5, which shows that the concept of cooperative object detection makes more sense under the 

semantic approach for the reason pointed out earlier.  
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Figure. 5. 1. Google map defining the outdoor dataset acquisition points (red pins) in the city of Trento. 

 

Regarding the behavior of the methodologies under different k values, the best outcomes can be 

gained by considering the sole nearest neighbor from the library, except for the SSCD that scores the 

highest at k=5, which shows that the concept of cooperative object detection makes more sense under the 

semantic approach for the reason pointed out earlier.  

Concerning the processing time, on the other hand, the methods exhibit some raise with respect to 

the indoor case. A massive increase, however, has been incurred by the PCACD, which renders it disqual-

ified as it is very dataset size-dependent. The MRPCD, however, preserves its property of being remarka-

bly fast but still less accurate than the BOWCD. On the whole, a tradeoff between the accuracy and the 

processing time would tell that the BOWCD emerges as a potential applicable paradigm. 

In sum, we believe that both the BOWCD and the MRPCD lay the ground for potential future cus-

tomization as detailed in the next chapter. For the sake of demonstration, per-class classification accura-

cies are given by the subsequent figures (Fig. 5. 2. to Fig. 5. 5.). Besides, outdoor image multilabeling in-

stances, for k=3, are depicted in the figures that follow. 
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   TABLE 5. 1. CLASSIFICATION STRATEGIES ON OUTDOOR DATASET. FOR THE BOWCD, A 

CODEBOOK SIZE OF 300 CENTROIDS WAS USED. FOR HE SSCS and the MRPCD, THE VALUE 

OF THE RESOLUTION RATIO Was 1/10, AND (1,1) For, THE RESOLUTION RATIOS WERE SET 

TO 1/10. 

 k=1 k=3 k=5 Proc. Time (Sec/Image) 

 

BOWCD 

SEN 81.80 78.74 75.75  

1.6 SPE 92.90 93.18 92.89 

AVG 87.595 85.79 84.4 

 

PCACD 

SEN 68.72 65.63 65.16  

37 SPE 89.22 91.33          91.84        

AVG 78.97 78.48 78.5 

 

SSCS 

SEN 88.12 87.97 87.06  

2.6 SPE 65.20 68.83 72.73 

AVG 76.66 78.41 79.9 

 

MRPCD 

SEN 66.71 - -  

0.044 SPE 88.28 - - 

AVG 77.495 

 
- - 

 

 
Figure. 5. 2. per-class overall classification accuracies achieved on outdoor dataset by means of the BOWCD method. 
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Figure. 5. 3. per-class overall classification accuracies achieved on outdoor dataset by means of the PCACD method. 

 

 

 Figure. 5. 4. per-class overall classification accuracies achieved on outdoor dataset by means of the SSCS method for a resolu-

tion ratio of 1/10 and for k=5. 
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Figure. 5. 5. per-class overall classification accuracies achieved on outdoor dataset by means of the MRPCD method for a resolu-

tion ratio of 1/10.  

 

 

 
 

Predicted objects: People, Bar(s), Chair(s)/Benche(s), Building(s), Walk path/Sidewalk. 

 

 

 
 

Predicted objects: People, Bar(s), Chair(s)/Benche(s), Building(s) , Walk path/Sidewalk. 

 

 

 
 

Predicted objects: Building(s), Vehicle(W), Walk path/Sidewalk, Tree(s)/Plant(s), Crosswalk, Roundabout, Pole(s)/Pillar, Trafic 

sign. 

 

Query image 1st closest image

Predicted objects:'People', 'Bar(s)', 'Chair(s)/Benche(s)', 'Building(s)', 'Walk path / Sidewalk', 'Tree(s) / Plant(s)'

2nd closest image 3rd closest image

Query Image 1st Closest Image

Predicted objects:'People', 'Bar(s)', 'Monument(s)', 'Chair(s)/Benche(s)', 'Building(s)', 'Stair(s)', 'Walk path / Sidewalk', 'Church'

2nd Closest Image 3rd Closest Image

Test image

Predicted objects:'People', 'Bar(s)', 'Building(s)', 'Green ground', 'Vehicle(s)', 'Walk path / Sidewalk', 'Fence / Wall', 'Tree(s) / Plant(s)', 'Crosswalk', 'Roundabout', 'Pole(s) / Pillar(s)', 'Traffic sign'

Closest image 2nd Closest image 3rd Closest image
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Predicted objects: Building(s), Walk path/Sidewalk, Fence/Wall, Tree(s)/Plant(s), Pole(s)/Pillar, Trafic sign. 

 

  Figure. 5. 6. Multilabeling examples by means of the BOWCD, PCACD, SSCS, and MRPCD, respectively 

from top-line to bottom-line. 
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In this thesis, the problem of blind people assistance through smart technologies has been covered. 

The dissertation detailed various elements of a prototype meant to aid blind individuals to (i) navigate, 

while offering the capability of obstacle avoidance, in indoor environments, and (ii) mainly recognize fa-

miliar objects. A key-contribution to be noted is to embed both the navigation as well as the recognition 

aspects into a single prototype, which as a matter of fact, is scarcely addressed in the literature. The main 

scope of the thesis, however, emphasized on the recognition side as it has been paid less attention with 

respect to the navigation issue. Putting the problem object recognition on the one hand, and the short pro-

cessing requirements constraining the targeted application on the other, it seems rather hard to meet both 

ends together as (i) numerous objects might appear in the indoor site, and (ii) adopting traditional recogni-

tion paradigms as to proceed with the recognition of all those objects is prohibitively demanding. Depart-

ing from this fact, we have introduced a simple but efficient way to bulk-recognize objects in indoor 

spaces at minimal costs. Hereafter, we provide highlights underlining all the proposed object recognition 

strategies. For further details, we direct the reader to the respective chapters. 

In Chapter 1, we provide an introduction into the topic by referencing leading works in the literature. 

We listed the main contributions on the navigation issue, some of which convey similar concepts (e.g., 

wearable, ultrasonic…etc). Then we stressed the fact that the navigation concern has been devoted the 

biggest part in the literature and that more effort need to be exerted with what relates to the recognition 

part. On this latter, we have surveyed the most popular works in the field and have pointed out the clear 

fact that the state-of-the-art for the blind has a tendency to focus on the recognition of single class of ob-

jects, which we believe is less informative and needs to be widened towards Multiobject recognition. 

Thus, we introduced the concept of coarse description in Chapter 2, which basically aims to detect multi-

ple objects at once in brief processing span. In this context, coarse description consists in developing a set 

of training images multilabeled beforehand, and then label a given query image (basically a camera-shot 

image) in a collaborative manner (majority-based vote) between the closest training images. This process 

leads to a final (agreed-upon) list of objects that likely appear in the indoor spot. On this point, five strat-

egies were suggested to tackle two distinct problems, namely image representation, and representation 

comparison. The first method (SCD) is based on the traditional SIFT features and has proven efficient but 

significantly slow. To overcome the processing requirements of SIFT, the well-known Bag of Visual 

Words (BOWCD) was undertaken, which indeed exhibited fast performance whilst maintaining reasona-

bly close efficiency. The third method makes use of the PCA as to extract concise representations, and 

has shown promising results but somewhat failed (in terms of processing time) when applied large da-

tasets. A different image matching concept was put forth in the fourth strategy (SSCD), where the similar-

ity was assessed from a semantic perspective. The last strategy is rather simple but much faster than the 

other schemes. It is based on generating random projections of the images and matching them by means 

of the cosine distance.  

In Chapter 3, we investigated the behaviour of all the strategies in the indoor scenario. Different per-

formances have been obtained where the SCD method emerged as the most efficient but the slowest. The 

MRPCD was the fastest but a little less than the BOW method for instance. This latter, however, has 

shown an interesting time-accuracy trade off. 

In Chapter 4, we detailed the complete prototype that incorporates both the recognition and the navi-

gation modules. The prototype is wearable and fully computer vision-based. 

In Chapter 5, we evaluate the different multilabeling strategies (except the SCD) for future imple-

mentations in outdoor contexts. In this respect, the PCA consumed much more time than in the indoor 

case, which leaves the BOW and the MRP as the ultimate potential implementations, that if they benefit 

from future customizations may lead to meet our expectations.  

In this regard, we suggest future proposals to invest in the following directions: 

 The MRPCD emerged as the fastest and the closest to real-time processing standards. Thereupon, 

we believe it can be further boosted by projecting only interesting local areas within the image in-

stead of projecting the entire image onto the random filters. In other words, a pre-processing step 

aimed at determining salient regions of interest (ROIs) from a considered image, is involved. On 

this point, we propose to make use of either Harris corner detector salient [1] or keypoint detec-

tors (without proceeding with descriptors construction) such as SIFT [2] or SURF (speeded-up 

robust features) [3], which are ought to point out numerous potential interesting points distributed 

at different coordinates across the image. Afterwards, we consider a squared random projection 

window centred around each previously produced keypoint. By projecting the local spatial re-
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gions onto the claimed RP window at all locations, we obtain as many scalars as the number of 

keypoints, which thereafter allows us to construct a histogram by aggregating the occurrences of 

all the scalars into a single vector. Hence, by adopting several, say N, window sizes, N histo-

grams shall be generated. The final step to take is to find an appropriate way to fuse these histo-

grams (e.g., the simplest and fastest way would be a linear sum) into a final fixed-size image rep-

resentation. The other challenging part of the task is to adequately match the representations, 

especially in the challenging case where they convey significant sparsity. The task becomes even 

harder to tackle if some bins in the histogram exhibit a sense of prevalence over the others. This 

particularly deserves a careful investigation in the future. 

 The main goal aimed at in this work is to coarsely list the objects spotted at indoor sites. Another 

yet worth investigating aspect is to infer the location of a certain object amongst the outcome list 

of the multilabeling algorithm. That is the procedure becomes a ‘coarse-to-fine’ approach, where 

the coarse task is addressed by one of the implemented algorithms so far, and the fine recognition 

may be tackled by relevant state-of-the-art algorithms. The fine recognition can be considered as 

a post-processing to be performed upon request of the blind person who can select an object from 

the generated coarse list. This, again, is likely to be gained at the cost of further processing re-

quirements. 

 Another pivotal concern is the fact that the predefined list of objects to be recognized presumes 

that all the objects are alike in terms of visual as well as semantic importance. The matter of the 

fact, as also pointed out upon a meeting with a blind person, is that not all objects have the same 

beneficial value (i.e., some objects have to be designated more attention than others). Ultimately, 

we came to the conclusion that weighting the objects while embedding the weight values into the 

multilabeling process shall satisfy the aforesaid concern. 

 The ultimate and potentially most promising direction to adopt, is to make use of the Convolu-

tional Neural Network (CNN) [4], which is an instance of artificial neural networks that has 

gained a wide focus, particularly in the last few years, due to the abundance of powerful pro-

cessing facilities. CNNs have been proven effective in diverse computer vision, pattern recogni-

tion, and multimedia applications. They include obstacle detection [5], quality assessment [6], 

face recognition [7], object classification [8], and scene classification [9]. In this respect, we be-

lieve that CNNs can be successfully tailored to the coarse description problem. Therefore, our 

current endeavour is to adequately take advantage of CNNs particularly in the context of outdoor 

coarse description.                 
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