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Abstract 

This PhD thesis focuses on the investigation and development of a feasible 

technology route for fabricating multifunctional flexible electronic devices through 

heterogeneous integration of organic/inorganic materials on polymeric substrates. The 

three types of printing technologies investigated during this research include: (a) 

Transfer printing of inorganic semiconductors processed through standard 

microfabrication techniques, (b) Spray coating for deposition of organic dielectrics and 

metal patterns, and (c) Screen-printing of solution based transducer materials. 

Fabrication of electronic devices based on transfer printing of high-mobility inorganic 

semiconductor materials (i.e. Si), aided by high-resolution possible with 

microfabrication technology, was explored for high performance electronics. A cost-

effective processing of printable materials is desired and therefore, through printing 

technologies, this thesis also explored ways to bring closer the well-established 

microfabrication and conventional printing tools. Due to commercial interests, the 

major research focus in flexible electronics thus far has been on applications such as 

photovoltaics and displays. However, this research is focused on active/passive 

electronics for sensing applications like electronic skin, which is of significant interest 

in robotics for safe human-robot interaction and other manipulation and exploration 

tasks. 

Optimization of the Transfer Printing for translating Si microwires from SOI (silicon 

on insulator) wafers on secondary flexible substrates has been investigated. Processing 

steps have been improved for fabrication of Si microwires on donor wafers and dry 

transferring them onto flexible PI (polyimide) and PET (polyethylene terephthalate) 

substrates. The downscaling of Si in the form of microwires and using them as building 

block for active devices such as field effect transistors were explored in this thesis. The 

microwires retain the high carrier mobility, robustness, high performance and excellent 

stability. Arrays of MISFETs (metal insulator field effect transistors) structures were 

successfully fabricated and the response variations were compared. The differently 

doped Si microwires were analyzed in an asymmetric metal semiconductor metal 

(MSM) structures under planar and bend mode conditions. The optical response as well 

as the thermoelectric properties of the alternately doped pn-Si microwires were also 

investigated.   

A feasible fabrication route is presented, where combination of transfer printing for 

Si microwires and development of the subsequent post-processes by additive 

manufacturing techniques i.e. Screen-printing, Spray coating and Micro-spotting are 

mainly investigated. The Si microwires are employed as the semiconductor in the 

MISFET devices whereas screen-printed metal patterns are used for back-gate and 

deposition of dielectric layer is performed through spray coating. In parallel, screen-

printing is also used for development of large area pressure sensor patches using two 

different materials i.e. P(VDF-TrFE) (Polyvinylidene Fluoride Trifluoroethylene) and 

nanocomposites of MWCNTs/PDMS (multiwall carbon nanotubes mixed with 



 

poly(dimethylsiloxane) for measuring dynamic and static contact events. Promising 

results have been achieved by developing a cost-effective way of manufacturing an all 

Screen-Printed flexible pressure sensors using piezoelectric transducer through P(VDF-

TrFE) and piezoresistive based MWCNT/PDMS nanocomposites.  

Active electronic circuitry is needed for signal conditioning, amplification or 

processing of the sensory data on the flexible foils, which is deemed to be developed 

through Si microwires based technology in the next phase of the project. Ultimate goal 

of the PhD study was to develop a fabrication platform by combining three different 

printing technologies for large area sensor patches. Major challenges involved in the 

development of flexible device designs and printing technologies are highlighted and 

addressed with dependable solutions. The research concludes with proposing an 

innovative approach towards heterogeneous integration of large area sensory cells made 

of organic materials to the active devices based on inorganic semiconductors such as Si 

microwires. This technological platform for heterogeneous integration of devices made 

of diverse materials (organic, inorganic etc.) on soft substrates is believed to be a step-

change needed to advance flexible electronics towards manufacturing.  
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Chapter 1 

Introduction and Thesis Background 

 

1.1. Flexible and Printed Electronics 

Future electronics will be bendable, flexible and seamlessly printed on large-areas i.e. 

areas larger than the standard wafer size. The recent significant addition to the field of 

microelectronics is the fabrication of electronic devices on large areas and 

nonconventional polymeric substrates that can flex, bend and conform to 3-D surfaces 

very efficiently [1-5]. Vision foreseen for large area electronics is to revolutionize the 

existing flat/planar devices through various curvature designs starting from curved, 

single time bendable, stretchable, foldable and rollable electronics for desired 

applications [3, 6]. This paradigm shift from micro to macroelectronics will result in 

many exciting electronic gadgets such as foldable displays, electronic skin, electronic 

eye imagers, autonomous vehicles with all around sensors, and wearable electronics for 

early detection and continuous health monitoring – possibly leading to self-health-

management [1, 3, 5, 6]. Lightweight, portability, conformable to nonplanar surfaces, 

large area coverage along with low-cost and high-performance are the distinguishing 

features of this new technology vis-a-vis state of the art planar electronic components.  

Research in this field is broadly directed towards the development of innovative 

designs and new device structures, rollable plastic substrates, materials processed at 

lower temperatures (~ 300 oC) and reliable fabrication technologies. Development of all 

these streams are vital for the advancement of macroelectronics technology for useful 

practical applications. All these categories have been explored extensively since the 

birth of macroelectronics and research development is steadfast (both in academia and 

industry) worldwide to unveil the potentials of this fast growing and diverse field. The 

multidisciplinarity of this field is evidenced by development of devices such as, large 

area printed pressure sensors, radio frequency identification tags (RFID), solar cells, 

light emitting diodes (LED) and transistors etc. [3, 5, 7-10]. Among different fields 

desired for flexible electronics, the development of a reliable manufacturing technology 

where diverse materials (organic/inorganic in solid state as well as solution based) are 

easily processed and patterned in a cost efficient way on large area polymeric substrates 

are highly looked-for. Research on the development of flexible electronics is therefore, 

focused broadly on the fabrication processes pursuing both the matured 

microfabrication technologies for solid-state electronics as well as solution-based 

printing technologies [4, 8, 10, 11].  

Printing technologies have long been practiced in the printing/press industry for many 

years by now and the expertise could easily be rendered for manufacturing of flexible 

devices. Traditional approaches for printing electronics and sensors involve bringing 

pre-patterned parts of a module in contact with the flexible (or non-flexible) substrates 

and transferring the functional inks or solutions onto them [4, 10]. Organic materials are 

considered as the key enabler for printing technologies due to their solution 
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processability at low temperatures and thus remained the natural choice of research for 

development of flexible electronics from the very beginning. Organic materials have the 

advantages of being mechanically flexible after deposition on polymeric substrates as 

well as the lower principal cost both for materials and for solution processing, which 

make them the preferred choice for cost-efficient manufacturing [12-14]. The ease to 

fabricate large area sensors by sandwiching organic materials in parallel plate capacitive 

structures using screen-printing is ideal for low cost fabrication. Despite all these 

attractions, organic based active electronic devices show lower performance both in 

terms of speed and durability compared to conventional inorganic electronics, which 

remains a major challenge for all-organic based electronic circuits [5, 14, 15]. Devices 

made of organic semiconductors typically have low charge carrier mobility (~1 with 

respect to ~1000 cm2 V−1 s−1 of single crystal Si), which makes them much slower to 

respond than crystalline Si built devices [5, 16]. Small molecule crystalline organic 

materials show moderately better performance but the processing condition i.e. CVD 

(chemical vapor deposition) hinders their deposition on large areas. Furthermore, poor 

stability and short life of the organic materials make them a meagre choice for 

electronic systems requiring better performance and longer shelf life. A large number of 

applications, especially where faster communication and computation is needed, require 

high-performance flexible electronics, which is a very challenging task at current stage 

for organic based semiconductors [17, 18].  

 

1.2. Introducing Monocrystalline Silicon in Flexible Electronics 

Silicon as a semiconductor material has been investigated for more than 50 years by 

now and the manufacturing technologies have already matured for the microelectronics 

industry. A number of industrial procedures have been developed to obtain bulk Si in its 

purest form where final product is produced as wafers with variant diameters [19]. 

Silicon wafers are intrinsically brittle owing to their higher thicknesses usually greater 

than 100 µm. However, they become mechanically flexible when thinned down below 

20 µm [4, 5]. The standardized techniques of microfabrication for electronic devices 

and microchips are carried out in ultra-clean room environments, where the processing 

at higher temperatures i.e. ~1000 oC help in completing the steps such as developing 

high quality oxide layers and ion implants etc. With the lower thermal budget (< 350 

oC) of polymeric substrates and lack of chemical inertness to most of the chemicals used 

in photolithography, it is impossible to develop monocrystalline Si and further process it 

on top of polymeric substrates. Therefore, an alternative technique i.e. Transfer Printing 

has been developed recently, where single crystal inorganic materials are transferred in 

solid state from a donor wafer onto a secondary substrate [5, 18]. Donor wafers usually 

SOI (silicon on insulators) having ultrathin silicon layer (thickness ~ 500 nm – 2.5 µm) 

are the standard wafers used in microelectronics industry, where all the high 

temperature processes are performed on the wafer itself and after finishing all the 

developmental steps, microstructures are transferred to a polymeric substrate. The usual 
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transfer routes are either through a solution cast, flip-over or a stamp-assisted. For 

deterministic assembly of the microstructures, stamp assisted transfer is preferred as the 

finished surfaces of the microstructures are exposed for the post-processing. Silicon 

microstructures are developed through the standard photolithography technique; 

variations in the designs are possible during the photomask designs. Hence, shaping Si 

into many different structures like membranes, wires, spirals and circles etc. is possible. 

The fabrication route is designed according to the post-processing steps and target 

applications. All the fabrication steps are finished on the wafer and transferred in the 

form of membranes onto a secondary substrate when no developmental steps are 

desired. On the contrary, Si is developed in the form of nano/micro-wires and 

transferred to secondary flexible substrates. The possibilities of post-processing of Si 

with diverse materials especially solution processed metals and organic materials 

provide an exciting opportunity for development of hybrid organic/inorganic devices. 

 

1.3. Motivation and thesis overview 

Attaining all the exciting features of flexible electronic circuits by using a single 

stream of materials (organic or inorganic) for the complete device manufacture is very 

challenging. As they are often conflicting (Figure 1.1), for example the organic 

semiconductor based flexible electronic is considered as low-cost solution but the 

performance of devices from them is modest. On the other hand, conventional Si based 

electronics is well proven to have high-performance, but the fabrication cost is high. 

There is therefore a need to explore and develop new technological platform, which 

benefits from the positives of both of these contrasting technologies. For example, a 

platform that merges or brings together the active devices made by utilizing 

 
Figure 1.1. Features highlighting the pros and cons of printable and conventional 

microelectronics for the low, high and medium to high-end devices.   
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conventional microfabrication with passive structures and devices developed through 

printing technology. The electronics developed with microfabrication technology will 

gain in terms the high resolution and possibility to process high-mobility materials, 

which lead towards high-performance electronics. Incorporation of printing 

technologies into this approach will result in development of passive structures like 

interconnects, metal electrodes and coating organic dielectrics. Additionally deposition 

of transducer materials between two parallel plate electrodes for fabricating sensors and 

eventually connecting them with the active devices (MISFETs) through extended gate 

structures will allow the overall cost of the devices and circuits to come down. 

This thesis introduces a new technological route where three different printing 

technologies are merged together to fabricate flexible devices. The three printing 

technologies i.e. transfer printing; screen-printing and spray coating are utilized to 

fabricate large area pressure sensors and MISFET (metal insulator field effect 

transistors) devices. The screen-printing is employed to develop large area pressure 

sensors by depositing transducer materials such as P(VDF-TrFE) and MWCNT/PDMS 

nanocomposites. An all screen-printing technology is used to print sensors (4 modules 

of a 4×4 sensors array, each layer in one print step), where the sensing materials are 

sandwiched between screen-printed parallel metal (silver (Ag)) plates. Additionally, 

screen-printing has been used as a rapid patterning tool for the back-gated metal 

contacts of flexible MISFETs. Transfer printing is used to incorporate Si microwires as 

the semiconductor layers accompanied by metal patterning and dielectric deposition 

through screen-printing and spray coating respectively. An enhanced transfer yield more 

than 95 % of Si microwires is achieved by introducing a new approach of over-etching 

in the first transfer step and a 100 % yield in the second transfer steps. Spray coating is 

used to deposit organic dielectrics such as PMMA (poly (methyl methacrylate)) and 

UV-curable (DuPont) dielectric solutions. These structures are developed, aiming the 

future scope of this research, where the MISFETs would be coupled through extended 

gate approach with one of the electrodes of each pressure sensor. Therefore, this 

technological route is believed to provide an attractive platform for heterogeneous 

integration of hybrid organic and inorganic based devices on a single foil for large area 

sensing applications.  

 

This thesis is divided into two major parts. First part of the thesis discusses the 

potentials of the printing technologies utilized in this thesis and on the development of 

large area pressure sensors. Focus is more on the experiments of an all screen-printing 

steps for development of sensors in parallel plate structure. The second part introduces 

the key developments made towards the Si microwires based devices. All the three 

printing technologies are involved in the fabrication process of transistor structures on 

flexible polymeric substrates. For instance, screen-printing is used to print the back-gate 

followed by transfer printing for Si microwires and spray coating of the thin organic 

dielectric films. An overview of the thesis and major contents of the chapters are: 
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Part I. 

Part-I of the thesis covers details about the printing technologies and screen-printing 

of large area pressure sensors, which are supposed to be integrated with the Si 

microwires, based MISFETs in the form of extended gate structure.  

Chapter 2: This chapter highlights the main printing technologies and the printable 

materials. A detailed overview is presented of the available printing technologies 

practiced for flexible electronics along with their prominent advantages and 

disadvantages. Details about the operation mechanism of different printing technologies 

with special focus on the transfer, spray and screen-printing are highlighted. 

Chapter 3: This chapter shows the development of modular expansion of arrays of 

large area pressure sensors. The two different transducer materials i.e. P(VDF-TrFE) 

and nanocomposites of MWCNTs/PDMS are used to develop sensors in a parallel plate 

capacitor structure. 

 

Part II. 

Second part (chapters 4-8) of thesis provide details related to Si microwires 

development and their transfer printing from donor wafer to a secondary substrate. 

Optimization of the Si microwires transfer and the various processing steps developed 

to deposit metal contacts and dielectric materials for MISFETs devices fabrication. 

Chapter 4: Chapter 4 presents the various techniques to get flexible Silicon. The L-Edit 

designing steps to develop Si microstructures through standard photolithography and 

reactive ion etching techniques is described in full detail. Finally, ways to get vertical 

and planar Si microwires using bulk and SOI wafers are presented followed by 

discussion on various transfer printing of Si microwires to secondary flexible substrates. 

Chapter 5: Chapter 5 discusses the patterning strategies of metal contacts with Si 

microwires. Two different transfer printing strategies i.e. stamp-assisted and flip-over 

transfer printed wires are evaluated. The two types of differently doped p and n-Si 

microwires are evaluated based on current response and junction behaviour. The 

resistance response in the metal semiconductor metal (MSM) structure is assessed in 

planar and bend orientations with and without optical illumination.  

Chapter 6: Chapter 6 highlights the fabrication procedure and processing steps 

involved in the development of a MISFET structure based on single Si microwire. Top 

and back-gated MISFET structures are fabricated utilizing two different dielectric 

materials.  

Chapter 7: Chapter 7 provides details of the comparative study of the MISFETs 

devices made of single and multiple Si microwires. Top-gated MISFETs are developed 

by introducing spray coating as the new deposition technique for dielectric and metal 

layers. 

Chapter 8: Chapter 8 provide the conclusion and future scope of the research work 

achieved within this investigation.   
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Chapter 2 

Printable Materials and Technologies 
Part of this chapter has been published in: 

Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya, “Technologies for Printing Sensors and 

Electronics over Large Flexible Substrates: A Review” IEEE Sensors J. VOL. 15, NO. 6, 3164-

3185. 2015. 

2.1. Introduction to Printed Electronics 

Printed electronics is the new dimension of microelectronics where functional 

materials is deposited on a non-conventional substrate either from solution or in the 

solid state.  Printed electronics have gained momentous attraction both for low and 

high-resolution electronic components that are realized on flexible polymeric substrates. 

The broader fields of research in printed electronics are divide but not limited to 

development of printable materials (organic/inorganic), stable flexible substrates with 

higher thermal budget and reliable printing technologies.  Significant progress has been 

made in all the three fields and a continued research is carried out to get the most 

optimal results for homogeneous or hybrid flexible electronic components. This chapter 

highlights and review state of the art of printable materials and printing technologies. 

Being central to the investigations in this thesis, printing technologies remain the focal 

point of discussion.  

Printing technologies are aiding and revolutionizing the burgeoning field of 

flexible/bendable sensors and electronics by providing cost-effective routes for 

processing diverse electronic materials at temperatures that are compatible with plastic 

substrates. Simplified processing steps, reduced materials wastage, low fabrication costs 

and simple patterning techniques make printing technologies very attractive for the cost-

effective manufacturing [1-4]. These features of printed electronics have allowed 

researchers to explore new avenues for materials processing and to develop sensors and 

systems on even non-planar surfaces, which otherwise are difficult to realize with the 

conventional wafer-based fabrication techniques. For instance, the printed electronics 

on flexible substrates can enable conformable sensitive electronic systems such as 

electronic skin that can be wrapped around the body of a robot or prosthetic limbs [5-

10]. Printed electronics on polymer substrates has also opened new avenues for low-cost 

fabrication of electronics on areas larger than the standard wafers available 

commercially. In accordance with the electronics industry roadmap, the research in this 

field is slowly inching towards a merge of well-established microelectronics and the 

age-old printing technologies [11]. This is evidenced by development of devices such 

as, large area printed sensors [12-15], radio frequency identification tags (RFID) [16, 

17], solar cells [18], light emitting diodes (LED) [19] and transistors [20] etc. 
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Figure. 2.1. Common printing technologies for solution-processed and solid state materials. 

Traditional approaches for printing electronics and sensors involve bringing pre-

patterned parts of a module in contact with the flexible (or non-flexible) substrates and 

transferring the functional inks or solutions onto them [17, 19, 21-24]. The two major 

approaches usually followed for development of printing/coating system are contact and 

non-contact printing, as shown in Figure 2.1 and described later in Section 3. In contact 

printing process, the patterned structures with inked surfaces are brought in physical 

contact with the substrate. In a non-contact process, the solution is dispensed through 

via openings or nozzles and structures are defined by moving the stage (substrate 

holder) in a pre-programmed pattern. The contact-based printing technologies comprise 

of gravure printing, gravure-offset printing, flexographic printing and R2R printing. The 

prominent non-contact printing techniques include screen-printing, slot-die coating and 

inkjet printing. The non-contact printing techniques have received greater attractions 

due to their distinct capabilities such as simplicity, affordability, speed, adaptability to 

the fabrication process, reduced material wastage, high resolution of patterns and easy 

control by adjusting few process parameters. [2, 3, 25-28]. Recently, the newly 

emerging polymeric stamp based printing methods such as nanoimprint, micro-contact 

printing and transfer printing have attracted significant interest, especially for inorganic 

monocrystalline semiconductors based flexible electronics [18, 27-32]. This chapter 

brings together various printing techniques and provides a detailed discussion by also 

involving the key electronic materials. Critical limitations of each technology have been 

highlighted and potential solutions or alternatives have been explored. More focus is on 

the transfer, spray and screen printing technologies, as they are selected for developing 

a printing platform within this research.   

2.2. Printable Materials  

Majority of printable materials are in liquid phase, which allow rapid printing on 

variety of plastic or paper substrates. Selection of these solutions with specific 
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rheological properties is at the core of developing a reliable printing process. In order to 

achieve the goal of low-cost and lightweight printed electronics, a large variety of 

materials (organic and inorganic) have been explored. These materials could be divided 

into three categories: (a) conductors; (b) semiconductors; and (c) dielectrics [25, 29-32]. 

Beside these, some composite materials, having dual nature as insulator, ferroelectric, 

piezoelectric, piezoresistive, and photosensitive properties are also used in thin film 

printed devices. Hybrid organic/inorganic materials have also been used to compensate 

for the slow speed organic based electronic devices [28, 31]. Majority of printable 

materials are in the form of solutions, which require specific properties to allow proper 

printing on variety of plastic or paper substrates. The following sections discuss the 

common organic/inorganic materials that are suitable and easily processable through 

printing technologies.  

2.2.1. Conducting Materials 

Conducting materials are the main structural blocks of all electronic devices as they 

form the fundamental part of the device layers or interconnections. Deposition 

techniques for patterned metal layers and interconnects are now at mature stage with 

possibility of obtaining structures with controlled thickness and resolution. Various 

printing technologies require a different set of parameters such as viscosity, surface 

tension, conductivity and compatibility of the solvents with the underlying materials (in 

multilayer structures) (Table 2.1) [18]. Properties of these solutions are adjusted 

according to the desired printing technology by using surfactants and volatile additives. 

Amongst the list of metals practiced for printed electronics, silver (Ag) based pastes and 

solutions are the choice of most of the researchers due to its good physical and electrical 

performance on plastic substrates [25, 27, 29]. Being counted in the category of 

precious metals, it cannot help to lower the cost of flexible electronic devices, which is 

the true essence of printing technology. Besides silver solutions, the carbon and copper-

based inks are also used. However, oxidation of copper-based inks after printing do not 

serve the purpose very well [18, 33].  

Mimicking metallic conductivity, crystalline organic conductors such as 

polyacetylene films combined with p-dopants were first reported by Shirakawa et al. 

Soon after this discovery, the n-type materials were also investigated [34]. Chemical 

structure of intrinsically conductive polymers can be tailored to get desired electronic 

and mechanical properties [35]. Majority of the reported organic conductors have 

compatible work function with p-type semiconductors [30, 35, 36]. Polyacetylene, 

polypyrrol, polyphenylene, poly (p-phenylene vinylene), polythiophene polyaniline, 

polyaniline doped with camphor sulfonic acid and PEDOT:PSS (3, 4-

polyethylenedioxythiopene-polystyrene sulfonic acid) are some of the most commonly 

reported hole-injecting polymers used with organic semiconductors. The PEDOT:PSS 

has been widely studied for transparent conducting polymer anodes as it exhibits a very 

high conductivity of about 300 S/cm. A detailed description of these materials is given 
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in [30]. Despite the attractions of low cost and easy solution processing the organic 

conductors have far less conductivities than conventional metals such as Ag, which has 

conductivity of ~ 6.30×107 S/cm. Another class of conducting polymers developed for 

printing and flexible electronics is based on nanocomposites (discussed in more detail in 

chapter 3), made by mixing of metallic nanoparticles with organic elastomers such as 

(Poly(dimthylsiloxane) PDMS) [37, 38]. Conductivity of such composites is based on 

the percolation threshold of the fillers. With different ratio of elastomer and nanofillers, 

the flexible and stretchable conductive sheets and patterns have been investigated in 

[13-15, 37-41]. 

2.2.2. Semiconductor Materials 

Semiconductor materials are the backbone for developing active flexible electronic 

and sensing devices. Like conducting materials for printing technologies, the 

organic/inorganic semiconducting materials are also used for printable sensors and 

electronics. Inorganic materials have superior properties in terms of performance and 

stability while solution processable organic semiconductors are attractive due to low 

cost processing at ambient environment and flexibility. Examples of inorganic 

semiconductors commonly used for flexible electronics are Si [42-46], oxides of 

transition metals [47, 48] and chalcogenides [49]. Apart from chemical vapor deposition 

(CVD) of amorphous silicon for large area flexible electronics, crystalline Si is also 

used in flexible electronics by employing dry printing technique (central to investigation 

within this thesis and discussed in more detail in chapters 4-7) [43, 50]. Oxides of 

transition metals are sometimes used in flexible electronics but through vacuum 

deposition techniques other than printing. ZnO and GIZO can be solution processed and 

even printed but sintering temperature of 300–500°C is necessary to achieve optimum 

mobility [32, 51]. Very few works have been reported on solution processed inorganic 

semiconductors and their compatibility with the usual printing techniques [25, 32, 52]. 

From printability viewpoint, the solubility and proper dispersion of organic 

semiconductors are the important parameters. Commonly used solution processed 

organic semiconductors, having acceptable charge transport and mobility include 

regioregular poly(3-hexylthiophene) (P3HT), poly(triarylamine), poly(3,3-didodecyl 

quaterthiophene) (PQT), poly(2,5-bis(3-tetradecyllthiophen-2-yl) and thieno[3,2-b] 

thiophene) (PBTTT) [30, 35]. Fullerenes and solution processable derivatives such as 

phenyl-C61-butyric acid methyl ester (PCBM) blended with P3HT are some of the 

commonly used electron donor and acceptors  in the bulk heterojunction devices [53, 

54]. Additionally carbon nanotubes and graphene are also currently under investigation 

for their high-mobility [55]. Stability and reliability of organic materials for long time 

processing is very challenging especially the low ionization energies are prone to 

oxidation, which results in slow responses and degradability of the devices. Further, 

developing printable n-type organic semiconductor is challenging due to instability, 
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which is becoming one of the serious obstacles in development of organic CMOS 

devices [56, 57].  

2.2.3. Printable Dielectrics  

For applications requiring high capacitance in multi-layered printed structures, thin 

layers of dielectric materials are essential for proper insulation to prevent leakage 

currents and sometimes to obtain low voltage operation for field effect devices. A 

uniform layer of dielectric is needed to promote the activation of the medium caused by 

electric field or other transduction phenomena. Inorganic materials, such as silica, 

alumina, and other high permittivity oxides often used in electronics on flexible 

substrates are usually not printable [2, 3, 25-27, 32]. Low cost organic dielectric 

materials that are available in large quantities and can be dissolved in various solvents 

and solution can be printed easily as compared to inorganic counterparts. In most of the 

printed electronics, semiconductor/dielectric interface is of prime importance for the 

high performance and stability of the devices. Self-assembled monolayers are 

sometimes used for modification of the dielectric surface. Some of the commonly used 

organic dielectric materials in printed electronics are poly (4-vinylphenol) (PVP), poly 

(methyl methacrylate), Polyethylene Terephthalate, Polyimide, Polyvinyl alcohol and 

Polystyrene. [2, 3, 25]. Spray coating of the dielectric materials is an interesting and 

materials efficient technique, which is also employed in this research for deposition of 

PMMA (discussed in chapter 7). Besides dielectric layer, solution processed organic 

dielectric materials are also used for final encapsulation of printed devices.  

2.3. Printing Technologies 

The development of thin film devices either by the use of printing or coating of 

hybrid organic/inorganic materials is one of the many ways explored to simplify 

processing steps, facilitate location specific deposition and enhance the production 

speed. The chemical solution or nanoparticles of functional materials are used in the 

form of colloidal solution in most of printing technologies summarized in Table 2.1. 

These solutions are deposited directly on rollable substrates using controlled dispensing 

processes or coated on substrates using controlled pressures and speeds   [28, 52, 58-

60]. The key benefit of printing techniques is the reduction in material wastages, as the 

solution is printed on the defined location in single step and the residual solution is 

collected back for subsequent use. These dispensing and coating processes have led to 

promising results especially with organic materials, as organic thin film transistors 

(TFT), OLEDs, sensors, solar cells, RFID tags, printed batteries and capacitors have 

been demonstrated, summarized in Table 2.2 [1-3, 25, 26]. An important benefit of 

printing technologies is that they enable production of large area electronics and sensors 

by R2R manufacturing in a cost effective way.  
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Printing technologies are divided into two broad categories, as shown in Figure 2.1. 

The contact and non-contact based patterning discussed in this section follow the 

classification given in Figure 2.1 and the state of the art, the pros/cons, prospects and 

the challenges of these printing techniques are discussed subsequently. 

2.3.1. Contact-based Printing 

Contact based printing technologies are those processes, where the functional 

materials are transferred on the target substrate through a physical contact of the transfer 

media. Materials are picked through patterned structures and printed on the desired 

substrate. Contact based printing is broadly divided into two major streams depending 

on the phase of the functional material. The first one includes the printing mechanism 

by which material in the form of chemical inks or colloidal solutions is used to pattern. 

While the second one employs the mechanism, in which solid-state materials especially 

inorganic semiconductors are printed on secondary substrates through transfer printing 

techniques.  

The prominent techniques used in contact-based printing of solution-based materials 

include gravure printing, gravure offset printing, flexographic printing, microcontact 

printing and nano-imprint lithography. Gravure printing utilizes direct transfer of 

functional inks through physical contact of the engraved structures with the substrate [3, 

27, 61, 62]. It is capable of producing high quality patterns in a cost-effective manner 

typical of a R2R process. The gravure printing tools consist of a large cylinder 

Table 2.1 

Comparison of various printing technologies [4] 
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electroplated with copper and engraved with micro cells. Ink is transferred through 

capillary action onto a rollable substrate when it comes in between the engraved and 

impression cylinders. In gravure offset printing, an extra elastic blanket is used, which 

picks up the ink from grooves of the cylinder and transfers it to the targeted surface [3, 

63]. Dependence on the printing speed and blanket’s thickness are more dominant 

parameters due to the minimal contact time between ink and the blanket [61, 64, 65]. 

Flexographic printing is used for high-speed runs of printed electronics and is more 

attractive than gravure and offset for high-resolution patterns [3]. A wide variety of ink 

can be printed with a rubber or polymer plate having raised patterns that are developed 

by photolithography and are attached to a cylinder. On contact with the inked areas of 

the annilox cylinder, these raised patterns on plate cylinder serve to print on the 

substrate running between print/plate and impression cylinders. These technologies 

have long been used in the text printing/press and the optimized processing could easily 

be implemented for printing electronic structures on flexible substrates. The roll-to-roll 

(R2R) capabilities of these technologies have fascinated the rapid fabrication of 

electronic devices at depreciated manufacturing costs. The manufacture process is very 

simple and varies slightly for each based on different features such as high resolution, 

low principal costs and reliability of the system for printable materials.  

The other prominent contact based printing for patterning solutions of functional 

materials is through a soft polymeric stamp. The patterned structures are replicated on a 

mouldable polymer (usually PDMS) from a master mold. The master mold is developed 

through micromachining for low resolution and photolithography for high-resolution 

structures. The technique usually termed, as soft lithography is a low cost technique 

from processing point of view, as the principal cost in only involved in developing a 

single master mold. The noticeable techniques developed for this approach include 

micro-contact printing (µCP) and nano-imprint lithography (NIL). µCP is an effective 

technique for preparation of substrates and patterning a wide range of materials, which 

are sensitive to light, and etchants. A conformal contact of patterned elastomeric stamp 

with target surface is the key requirement for successful transfer of structures. 

Microcontact printing has the ability to produce multiple copies of 2-dimensional 

patterns by using patterned stamp developed through master mold [24, 66-68]. Poly 

(dimthylsiloxane) (PDMS) is the frequently used elastomer due to its extraordinary 

properties as compared to other elastomers [24, 68-70]. NIL on the other hand, is used 

to pattern materials by mechanical and physical deformation of wet layer using hard or 

soft mold followed by different temperature processes. The system consist of a mold 

with nano-scale patterned structures on the surface that is pressed into a solution cast on 

a substrate at a controlled temperature and pressure [71]. The two most crucial 

processing steps that influence the pattern quality and throughput are resist filling and 

demold characteristics. A controlled pressure is needed not to destroy the imprint 

patterns [21]. Diverse NIL approaches are developed i.e. thermal, photo, ultraviolet 

(UV), step-and-flash and roller nanoimprinting [71-74].  
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2.3.2. Transfer Printing 

Transfer printing is one of the most attractive techniques in contact based printing 

processes recently developed. As against patterning solution based functional materials, 

transfer-printing technique is used for processing materials in their solid state. Transfer 

printing involves the translation of inorganic elemental or compound semiconductor 

microstructures from standard donor wafers onto a secondary substrate. This is one of 

the focal printing technologies selected within this research for development of 

electronic devices on flexible substrate. Details about the development and processing 

steps of the printing technique are provided in a much more comprehensive way in 

chapters 4-7. This technique is adopted to develop fast flexible electronics, through 

translating silicon microwires onto secondary substrates and embedding them in 

solution based materials for getting resistor, metal semiconductor metal (MSM) and 

metal insulator field effect transistors MISFET structures. This technique has gained 

significant interest in the research community and the process has already been 

optimized for development of a variety of devices and circuits. Conventional 

photolithography technique is used to get micro and nanowires of Si on the wafers itself 

and then transferring them onto flexible substrates through flip-over (Figure 2.2) or a 

 
Figure 2.2. Schematics of flip-over transfer printing (a) Si microwires on donor wafer, (b) 

conformal contact of receiver substrate with an adhesive side facing Si microwires (c). Si 

microwires transfer to receiver substrate after peel-off. 
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Figure 2.3. Schematic of the process flow of stamp-assisted transfer printing and fabrication steps 

for silicon microstructures. PDMS is used as transfer element: (a) lithographic patterning and 

etching using DRIE on wafers; (b) chemical etching of SiO2 under the microstructures; (c) 

bonding of carrier substrate i.e., PDMS with microstructures; (d) peeling off PDMS with 

microstructures; (e) microstructures transferred to PDMS; (f) stamping PDMS with 

microstructures on final receiver substrate i.e., polyimide; (g) peeling off PDMS, leaving behind 

microstructures on polyimide; (h) microstructures finally transferred to the receiver substrate. 

 

 

stamp-assisted transfer (Figure 2.3) approaches [75-79]. Very well developed 

manufacturing and processing technologies for electronic grade silicon constituting high 

levels of purity, surface smoothness, control over crystallinity, doping concentration and 

type, and the resulting high carrier mobilities make it a distinguished candidate in the 

current scenario of large area electronics as well.  

The two techniques used for transfer printing i.e. flip-over and stamp-assisted vary in 

the number of processing steps and approach to translate microstructures from donor 

wafer. Flip-over technique is a single step process, where the adhesive side of the target 

substrate is brought in conformal contact to the donor wafer and retracted back 

immediately as shown in Figure 2.2. This is a very robust technique of transferring 

microwires but at the cost of losing the top finished surface of the Si device layer. 

Additionally, it is impossible to pre-pattern or pre-process the substrate due to the 

degradation of the adhesive receiving layer. The post-processing of microwires is also 

challenging as the commonly used scotch tape adhesive, which affects the attachability 

of the microwires to flexible substrates upon treatment with chemicals. Stamp-assisted 

transfer printing is an attractive alternative used for deterministic assembly of Si 

microwires with top surface available for post-processing on a pre-processed substrate. 

A conformable PDMS stamp is used to pick up the freestanding microstructured silicon 
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from top of Si wafers after etching and transferred with controlled orientation to flexible 

substrate. Figure 2.3 shows the processing steps involved in realizing Si microwires and 

their transfer to secondary substrate. The PDMS stamp is peeled back retrieving the Si 

ribbons with fast speed enhancing the kinetic control of adhesion [80]. Rate dependent 

adhesion and printing of the solid structures with high peel velocity (typically 10 

cm/sec) and low stamping velocity (~1 mm/sec) respectively has been investigated [81]. 

The mechanics of kinetic dependence of switching of adhesion has its origin in the 

viscoelastic response of the elastomeric stamp. Adhesiveless stamping like this is very 

valuable for wafer-based microstructures printing, to operate it from moderate to high 

temperatures [75]. Nanostructures through bottom-up approach are also being explored. 

The main challenges in the bottom-up approach of fabricating microstructures relate to 

control of dimensions, uniformity, the doping levels, crystallographic orientation and 

purity of the material. Also for scalable integration over large areas, producing well-

arranged arrays of these structures are challenging [82]. Besides deploying 

nano/microstructures onto secondary substrate by the usual dry transfer printing through 

PDMS stamp, solution based printing by casting the microstructures in a solution are 

also practiced. Although manufacturability of wet transfer (through fluid) of structures 

is unclear as the doping levels and uniform surfaces are not well-recognized [83].  

Based on the active area needed and subsequent alignment defines the methodology 

for either using strips or membranes of Si in the transfer printing process for flexible 

electronic devices. Although both the approaches have pros and cons in relation to 

alignment and ease in undercutting of the structures due to the exposed area for etchants 

both for Si and buried oxide (BOX). The backside surface quality is acceptable in the 

flipped transferred NMs but the non-uniformity of the doping profile on the backside is 

the main limitation. Solid source diffusion has the issues of large feature sizes and 

driving the dopants in larger depth in NMs increasing sheet resistance. Instead ion 

implantation is employed which gives good results [76]. Simple integrated circuits like 

NMOSFET, CMOS inverters, sensors, three and five stage ring oscillators and 

differential amplifiers are reported to be developed on a flexible polyimide substrate 

using transfer printing of Si micro ribbons [77, 78, 84, 85]. Thermoelectric energy 

harvesters by transfer printing of arrays of alternately doped Si wires have also been 

reported in literature [79]. Flexible TFT with 1.5µm channel length was developed on 

plastic substrate showing very high frequency ranges in GHz. Radio frequency (RF) 

characterization under bending conditions showed slight performance enhancement 

with larger bending strains [86, 87]. Device performance can further be enhanced by 

using strained silicon channel [88]. A single-pole through switch containing two PIN 

diodes were realized and transferred to polymer substrate, by doing selective doping of 

200-nm thick and 30um wide SiNM on SOI wafer.  

The rigid microstructures on flexible electronics experience tensile and compressive 

strains during bend into convex and concave shapes. The employment of these 

structures onto flexible substrates strongly depends on the failure mechanisms like 

interfacial slippage and delamination. The dimensions and mechanical properties of 
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micro/nanoscale semiconductor wires, ribbons, bars, or membranes determine their 

bending mechanics. A practical design rule might be that the silicon strain must remain  

below 0.1%, which leads to a degree of bendability of r~2.5 cm for polymer substrate, 

which is still sufficient for many devices and applications [31, 89, 90]. Skinniness size 

of the Si nano membranes (SiNM) permit the planar-type structure to have very high 

level of mechanical bendability [91]. Rigorous necessities of active circuitry for large-

area RF systems that could operate in L-band and even higher are required for flexible 

electronics applications [92]. Successful development of technology protocol for 

transferring Si based structures can complement the slow speeds of organic materials, 

which could balance the total cost of manufacture of flexible devices. Challenges of 

misalignment of neighbouring strips movement during undercutting, registration of pre-

doped regions, gate dielectric materials at low temperatures and surface related issues 

for the stamps are very critical to be controlled [81]. Development of the Si microwires 

designs and the optimized approach for transferring Si microwires form donor (SOI) 

wafer to secondary flexible substrates are explored in full detail in chapters 4-7. The 

successful fabrication by embedding of Si microwires in diverse organic and metallic 

materials for realizing MISFET structures are presented in more detail.  

2.3.3. Non-Contact Printing 

Non-contact printing technologies are completely solution-based processes in which 

the functional materials are patterned or coated in a single deposition step. Non-contact 

printing, as evident form the name itself are the printing technique which do not require 

physical contact of a pre-patterned inked structures to the target polymeric substrates. 

The solution is deposited through a screen mask or nozzle, which are connected to a 

continuous delivery of solution.  Non-contact based printing has been emerged as the 

revolution in the field of printed flexible electronics as these enable the fabrication of 

multi-layered 3D structures. The efficient use of solutions by using very small quantity 

of materials and collection of the residual inks for subsequent uses make these processes 

more simple and cost-efficient. Several non-contact printing techniques have been 

developed such as inkjet printing; spray coating, slot-die coating and screen-printing. 

Screen-printing and inkjet/spray coating techniques are potentially explored within this 

thesis for deposition of diverse metallic and organic based solutions. Especially screen-

printing has been utilized both for patterning metal contact for back-gates MISFETs as 

well as for printing large area pressure sensors based on two different transducer 

materials. This section include overview and state of the art accompanied by operation 

mechanism and potentials of these various non-contact based printing techniques.  

2.3.4. Screen Printing  

Screen-printing is the most popular and matured technology for printed electronics as 

it has been practiced in electronics industry for long time to print metal interconnects on 
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Figure 2.4. (a) Flatbed screen printing with planar substrates for solution dispensing, (b) Rotary 

screen printer with moving substrate (web) between cylindrical mask and impression cylinder. 

printed circuit boards. It is faster and more versatile in comparison to other printing 

tools, as it adds simplicity, affordability, speed and adaptability to the fabrication 

process. The results from screen-printing can be reproduced by repeating a few steps 

and an optimum operating envelope can be developed quickly [3, 25, 53, 59, 93, 94]. 

Two different assemblies of screen printers i.e. flatbed and rotary are used for R2R 

manufacturing described in Figure 2.4(a-b) respectively [3]. Screen printer has simple 

setup comprising of screen, squeegee, press bed, and substrate, as shown in Figure 2.4. 

In flatbed, the ink poured on the screen is squeegeed to move across the screen resulting 

in its transfer through the stencil openings to the substrate beneath it. For optimization 

of the materials and processing steps, flat bed screen-printing is a powerful tool for 

small laboratory systems. Flatbed screens can be substituted by rotary screen for 

continuous processing in which the web of the screen is folded while the squeegee and 

ink are placed inside the tube.  

Relatively high speeds can be achieved by rotary screen as compared to flatbed, but 

the screens for rotary setup are expensive and very difficult to clean [3, 61]. Although a 

very simple process, the print quality and characteristics are affected by various factors 

such as solution viscosity, printing speed, angle and geometry of the squeegee, snap off 

between screen and substrate, mesh size and material [59, 95, 96]. The paste viscosity 

and surface tension of the substrate are important for complete dispensing of the paste 

through the screen mask. Screen printing technique is usually compatible with the high-

viscosity inks as the lower viscosity inks will simply run through the mesh rather than 

dispensing out of the mesh [28, 97]. Without giving any consideration to proper tuning 

of the ink properties and mesh count, the nominal values of 50-100µm are common 

print resolutions and wet thicknesses of a few microns. The possibility of printing 

relatively thick layers could enable printing of low-resistance structures, also with 

conducting polymers, by compensating the high resistivity with a thicker layer [25]. 

In addition, a compromise between surface energies of substrates and surface 

energies of the inks is important for high-resolution line widths [97-99]. The reduced 

surface energies of the substrates reduce the wettability of the solution, which results in 

improved line resolution. If the critical surface tension of a substrate is lower than the 

surface energies of inks, good resolution can be achieved even with low viscosity inks. 
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Although high viscous inks are required to minimize ink flow on the substrate, the low 

viscosity is desirable to dispense the solution through the mesh to realize structures with 

fine edges and resolution. In this scenario, the low viscosity inks are preferred as the 

wettability of the substrate can be controlled by adjusting the surface energies of the 

substrate. The low viscosity inks possess high degree of flowability, which reduces the 

chances of mask blockage, and leads to even edges of printed lines and, smooth surface 

of the printing films [97, 99]. Material, strength and number of meshes in screen also 

play a major role in high-resolution patterning, as screen is developed by using different 

sizes of mesh openings and several materials ranging from polyester to stainless steel. 

The technological development in the screen mesh is made by modifying the silk 

strength by using materials such as nylon, polyester and stainless steel. The increase in 

the strength of the mesh wire material used in the screen mask and the mesh count result 

in improved printing quality. For printing stability during mass production, a screen 

made of stainless steel mesh with three times more in strength than conventional 

stainless steel mesh has also been developed [95, 100].  

The feasibility of screen-printing for flexible electronics has been demonstrated 

through a number of printed sensors, electronics devices and circuits. For example, all 

screen printed TFTs have been demonstrated in [93, 101, 102]. Screen-printing was 

claimed to be used for the first time to develop OLEDs by investigation the process and 

solution parameters i.e. viscosity of the solution and mesh count of the screen [95]. 

Multilayer high-density flexible electronic circuits, connected through micro via holes 

Table 2.2 

Comparison of electrical characterization results of sample devices developed with different 

printing technologies and materials. [4] 
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with embedded passive and optical devices, have been realized by using advanced 

screen printing processes [59]. Screen-printing is also used for patterning to develop 

shadow masks for fabrication of organic TFT. Screen printed electrical interconnects for 

temperature sensor on PET substrate are reported in [99]. The large area flexible 

pressure sensors are fabricated by utilizing two polyimide films as top and bottom films 

and connecting the electronic circuits through micro via holes. An all screen printed 

pressure sensors developed also in this research and explained in more detail in chapter 

3, by using piezoelectric Poly(vinyledene-fluoride-trifluoroethylene) (PVDF-TrFE) and 

piezoresistive multi wall carbon nanotubes (CNT) in Poly(dimethylsiloxane) 

(MWCNT/PDMS) nanocomposite materials [13-15]. All structures of metal plates, 

interconnects and sensitive materials are deposited by using screen-printing technology. 

Entire structural features of a humidity sensor including the interconnect patterns and 

protective polymer layers are also screen-printed [94, 96, 103]. Screen printing of cobalt 

hydroxide has been reported for obtaining supercapacitors [104]. The simulated R2R 

process is used for monitoring the structural properties of moving screen-printed 

interdigitated electrodes recently [105].  

Unlike many other manufacturing techniques, the screen-printing does not require 

high capital investment. Accompanied by some supplemental methods such as inkjet 

technology, vapor deposition and laser processing, screen-printing is employed in most 

of the production lines of printed electronics. Using the supplemental technologies often 

results in cost reduction [100, 106]. Despite these attractions, screen-printing also poses 

a few challenges for developing all layers of a flexible device. These include high wet 

thickness of the film, exposure of the ink to atmosphere and the dry out of the ink on the 

mask that deteriorates the mask designs of the screen [53]. However, the advantages 

such as high definition and high precision of multilayer structures add to the figure of 

merits of the screen printing techniques as compared to other deposition techniques for 

large-scale production. 

2.3.5. Inkjet Printing and Spray Coating 

Inkjet printing is the rapidly emerging technique for direct patterning of solution 

based materials deposition. Materials in the form of colloidal or chemical solution are 

 
Figure 2.5. (a) Schematic of the piezoelectric inkjet head, with PZT actuator [1]. (b) Schematic 

description of Electrohydrodynamic inkjet system. Electric field is generated between nozzle 

and counter electrode [15]. (c) Description of Electrospray system with complete setup [19, 21]. 
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Figure 2.6. Graph showing maximum values reported for Speed of printing and Print Resolution 

based on the data from Table II. Graph showing maximum values reported for viscosity and 

surface tension required for printing techniques based on the data from Table 2.2. 

deposited through a micrometre sized inkjet nozzle head. A number of mechanisms for 

actuation of inkjet nozzle head have been developed. Among these, the most prominent 

techniques are thermal, piezoelectric and electrohydrodynamic inkjet systems. Droplets 

(often called Drop-on-Demand (DoD)) of very small dimensions are ejected at the 

corresponding pulse generated by either thermal or piezoelectric actuators used in the 

inkjet nozzle head [107-110]. The Figure 2.5 (a-b) shows the mechanism of droplets 

actuation through piezoelectric and electrohydrodynamic setups. In 

electrohydrodynamic printing, solution is ejected by generating a high electric field 

between the nozzle and a counter electrode. A stable cone jet is the primary requirement 

of electrohydrodynamic inkjet system. The type of applied voltage defines the mode of 

ink ejection from the nozzle. DC voltage results in an intact jet while AC voltage at 

different frequencies and functions define the drop-on-demand mode of the system. An 

intact jet can be utilized for continuous patterning of solution as well as drop-on-

demand similar to thermal and piezoelectric nozzle heads [111].  

Another interesting feature of electrohydrodynamic printing is the spray coating of 
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colloidal solutions shown in Figure 2.5 (c). Thickness in the range of nanometres can 

easily be achieved just by increasing the electric field value along with the distance 

between nozzle and substrate.  A very fine layer of conductor, semiconductor and 

insulator can easily be deposited by adjusting the conductivity and viscosity of the 

solutions to obtain a stable cone jet. This technique has been successfully utilized in 

fabrication of a range of electronic devices and in biological systems [52, 112-114]. 

Besides electrospray deposition, some researchers are also exploring “Aerospray” for 

thin film deposition and patterning of electronic materials [115, 116]. Inkjet printing has 

been used to fabricate TFT consisting of ZnO and PVP as the active device region and 

gate dielectric respectively [117]. A high performance n-channel transistor with uniform 

amorphous C60 Fullerene is developed by using inkjet printing and vacuum drying 

process [58]. Complementary circuits composed of pentacene and a xylene carboxylic 

diimide derivative of p and n-channel TFTs are also fabricated on flexible foils. 

Staggered configuration of TFTs is followed for development of a flexible CMOS 

device, by printing both the n and p-type organic materials separately using inkjet 

technology. The misalignment between energy levels due to the wide band gap of 

organic materials results in large barriers for charge injection, causing in reduced 

performance of the circuit [118]. Resistors, capacitors and inductors are developed 

using inkjet printing on polyimide substrate with various functional inks [60]. Inkjet in 

comparison to flexography, spin coated and gravure printing generally results in 

rougher and far less uniform morphologies with only partial uniform coverage of the 

channel region [119]. Chemical stability, solubility in common solvents, inexpensive 

and low temperature processing are some of the key requirements of inkjet printable  

Table 2.3 

Summary of Non-contact printing technique and challenges [4] 
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Table 2.4 

Summary of contact-based printing technologies and challenges. [4] 
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materials alongside excellent charge transport in ambient conditions. 

Development of colloidal solution for proper ejection of droplets on a targeted area 

by keeping an acceptable quality of the printed circuits is challenging due to the 

influence of evaporation rate of the solvents and orientation of the active particles. Slow 

speed due to limited number of nozzles and possible clogging renders to the 

complexities of the inkjet system. Low throughput due to slow speed of inkjet printing 

process is a challenge for becoming an industrial production technique for printed 

electronics instead of its very promising results on laboratory scale. Low pattern 

resolution in the range of 20-50 µm and more, adds to the issues of inkjet system due to 

the spreading of solution on target substrate and chaotic behaviour of droplets during 

the time of flight. Necessary modifications to the viscosity, concentration and solvent 

system are needed for proper ejection of the droplets without blocking the nozzle. 

Spreading of droplets, bulging out of the ink after sintering due to hydrophobic 

substrates, shape, thickness and morphology of the dried droplets has to be controlled 

[28, 61]. Different techniques for controlling wetting/dewetting of printed patterns on 

flexible substrates are already under investigation and techniques like modifying surface 

properties of substrates by plasma treatment [120], localized micro-plasma treatment 

[121], tailoring adhesion and cohesion of ink particles within and with substrates [122], 

and adding gelating polymers [123] have been developed. 

Significant progress has been made in design, technical and process capabilities of 

printing technologies in recent years. Much more work needs to be done before the field 

is ready to be scaled up for R2R process technology [106, 124]. Organization of the 

different film forming techniques according to the distinct categories of coating and 

printing is not straightforward. It is critical to develop a mechanics model to eliminate 

the gap between the conceptual design, materials and the process parameters [125]. One 

of the main challenges is how to model the effects of material, structure, and process 

together and optimize them to make reliable multi-layered flexible sensors and devices 

with acceptable performance. Some of the other challenges are those that relate to the 

cost and performance of flexible circuits, panel size, process throughput, substrate 

distortion, barrier layer technology and yield of the process on which R2R technology is 

based [3, 106, 126-128]. Despite the vigorous attractions of large area flexible sensors 

and electronics, this new technology must overcome significant technical and process 

challenges in order to gain ground for practical high volume applications [106, 128]. 

Figure 2.6 (a) & (b) summarize the common features of various printing 

technologies. Figure 2.6 (a) shows the comparison of printing speeds and capability of 

print resolution that could be achieved by each printing technology. Whereas Figure 2.6 

(b) shows the common material’s properties, i.e. viscosity and surface tension of the 

solutions used in printing technologies. Table 2.3 and Table 2.4 summarizes 

qualitatively the mechanism, process requirements, materials and critical limitations of 

non-contact and contact printing technologies reported in literature. Main features of all 

the printing technologies are highlighted to explore the possibilities of merging different 

techniques to develop a common manufacturing platform where limitations of one 
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technology can be overcome by using another. Attractive features of high-resolution 

patterning and deposition of diverse materials by nanoimprint techniques can be 

harnessed by integrating them with the fast printing and coating tools for advancement 

of a R2R manufacturing system. Similarly, the development of soft polymeric stamps 

can provide a route to common platform for developing an optimized transfer printing 

protocol with photolithography, which could finally be implemented in fast R2R 

manufacturing track to achieve the real goal of low cost large area flexible sensors and 

electronics. 

2.4. Conclusion 

Printed sensors and electronics have attracted greater interest as printing enables low 

cost fabrication. The increased number of research articles and demonstration of printed 

sensors and electronics in a number of applications reflects the keen interest of the 

researchers in their quest to fulfil the promise of large area electronics on flexible 

substrates through cost-effective printing technologies. In this paper, we have presented 

a comprehensive overview of various technologies that have been employed so far for 

the printed devices such as TFTs, LEDs, sensors, displays, solar cells, RFID tags, 

printed batteries, energy harvesters and capacitors. Material solutions with adjusted 

rheological properties and optimum processing parameters are the major paradigms for 

current research on printed electronics. Most of the existing printing technologies use 

solution based organic materials, which often result in transistors with modest 

performance, which is suitable for low end applications such as RFID and displays. The 

performance of printed devices is also affected by the resolution limits of current 

printing technologies, which is much poorer than possible with current 

micro/nanofabrication. Fast communication and computations in emerging areas such as 

internet of things (IoT) will require cost-effective electronics with high-performance. 

Recent progresses with printing of high-mobility materials holds a great promise for 

the high-performance printed electronic systems. Advances in dry transfer printing of 

inorganic materials could complement the organic materials based solutions. A possible 

approach is to employ stamp printing techniques for high-mobility semiconductor 

material (both solution and solid state) deposition and exploiting conventional printing 

technique for interconnects and metallization. However, due to resolution limits of 

current printing tools the full potential of printing has not been realized. Printing of 

high-mobility materials with resolutions comparable with the current 

micro/nanofabrication tools will be a significant step towards cost-effective high-

performance electronic systems. The hetero-integration, involving devices based on 

both organic and inorganic materials, is another interesting area that could lead to stable 

electronic systems with good mechanical and electrical properties. Following the trends 

of paper printing industry, the manufacturing cost of plastic electronics is expected to 

reduce [106, 129, 130] by the fast speed printing of electronic components at defined 

locations [27]. The cost-effectiveness of printing technologies and employing them for 



38 

 

flexible electronics will enable new classes of applications, and dramatically change the 

electronics industry landscape. Printed electronics and sensing will also have a major 

societal and economic impact with skilled labour from print industry gradually 

developing printed electronics. 

The printed devices and circuits demonstrated in labs often use standalone printing 

technologies. For large-scale production, there is a need to scale or merge these printing 

technologies on R2R production lines without sacrificing the chemical, physical or 

electrical characteristics of the device. The large area electronics through R2R 

production lines is foreseen to play a major role in the cost-effective manufacturing of 

nonconventional electronic devices and systems. Various mechanisms and challenges 

summarized in Table 2.3 and 2.4 for each of the printing technology highlight the 

possible alternatives for developing a universal printing platform where limitations of 

one can be overcome by another while maintaining the optimum process parameters and 

solution properties. Development of an efficient platform by assembling different 

coating, printing and patterning tools to develop a very robust process protocol will 

result in high throughput and low cost devices. This thesis therefore, brings together 

development of process protocols by combining the three potential printing 

technologies for fabrication of flexible devices.  
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Chapter 3 

Screen Printing of Sensor Materials 
Part of this chapter has been published in: 

Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya, “Flexible Pressure Sensors based on 

Screen Printed P(VDF-TrFE) and P(VDF-TrFE)/MWCNTs” IEEE Sensors J. vol. 15, no. 6, 

3146-3155. 2015. 

Saleem Khan, Wenting Dang, Leandro Lorenzelli, and Ravinder Dahiya. "Flexible Pressure 

Sensors Based on Screen-Printed P (VDF-TrFE) and P (VDF-TrFE)/MWCNTs" IEEE 

Transactions Semiconductor Manufacturing, 28, no. 4 (2015): 486-493. 

 

The first part of the thesis presents the advancement towards the rapid manufacturing 

of pressure/tactile sensors on polymeric substrates using solution based organic 

transducer materials. This chapter covers the development of sensors separately on large 

area, which highlights and compares two different types of screen printed flexible and 

conformable pressure sensors arrays. In both variants, the flexible pressure sensors are 

in the form of segmental arrays of parallel plate structure - sandwiching the 

piezoelectric polymer Polyvinylidene Fluoride Trifluoroethylene (P(VDF-TrFE)) 

between two printed metal layers of silver (Ag) in one case and the piezoresistive 

(Multiwall Carbon Nanotube (MWCNT) mixed with Poly(dimethylsiloxane (PDMS)) 

layer in the other. Each sensor module consists of 4×4 sensors array with 1×1 mm2 

sensitive area of each sensor. The screen-printed piezoelectric sensors array exploit the 

change in polarization level of P(VDF-TrFE) to detect dynamic tactile parameter such 

as contact force. Similarly, the piezoresistive sensors array exploits the change in 

resistance of the bulk printed layer of MWCNT/PDMS composite. The two variants are 

compared on the basis of fabrication by printing on plastic substrate, ease of processing 

and handling of the materials, compatibility of the dissimilar materials in multilayers 

structure, adhesion and finally based on the response to the normal compressive forces. 

The foldable pressure sensors arrays are completely realized using screen-printing 

technology and are targeted towards realizing low-cost electronic skin.  

3.1. Motivation for Large Area Sensors 

Printed electronics and sensors over large areas and diverse substrates is growing 

rapidly due to attractive features such as low-cost processing and possibility of 

depositing diverse materials over nonplanar surfaces. The rapid growth of the field is in 

line with the electronics roadmap, which indicates the merge of the well-established 

microelectronics technology with the age-old printing tools to realize electronic systems 

with simplified processing steps, reduced materials wastage, high throughput, low 

fabrication cost and single patterned deposition processes [1, 2].  

Amongst various active and passive flexible electronic devices developed so far, the 

research on electronic or tactile skin for robotics has gained significant interest due to 

the future needs in applications such as prosthetic devices, safe human-robot interaction 
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and multitasks for handling delicate structures [3]. As robot technology advances, the 

significance of tactile sensors increases as it enables robots to conduct practical tasks 

such as grasping and handling delicate objects [3-7]. Tactile sensors over large areas 

such as entire body of a humanoid robot or of an industrial manipulator will open new 

research area in robotic whereby whole body contacts could be exploited to carry out 

such as lifting a large box or lifting an elderly – as humans do. The ultra-flexible and 

lightweight electronic or tactile skin with capability to measure the contact parameters 

such as pressure, temperature and proximity or soft touch is the key enabler for above 

tasks and applications.  

Typical manipulation tasks such as grasping, picking and placing an object from one 

place to another are divided amongst various action phases [8]. To successfully carry 

out such manipulation tasks humans require dynamic tactile feedback (e.g. from fast 

adapting receptors in the skin) at transition of action phases and static or quasi-static 

tactile feedback (e.g. from slow adapting receptors in the skin) during the course of an 

action phase. The implication of these studies in humans on robotics is that the tactile 

skin should comprise of sensors or transducers capable of detecting both the static and 

dynamic contact events [4]. This is also the motivation behind investigating both the 

piezoelectric and piezoresistive sensors in this work. Whereas the former detects the 

dynamic events, the latter is capable of measuring static or quasi-static contacts. 

Considering human touch sensing as reference, the tactile sensors should be able to 

detect dynamic contact forces up to 1 kHz.  

On practical side, the cost-effectiveness of electronic or tactile skin, especially of the 

large area skin, plays a major role in its effective use in robotics. For this reason, the 

printing technologies are attractive and an all screen-printing technique is the possible 

alternative available [9-13]. The possibility of fast production of sensors over large 

areas makes screen-printing attractive for manufacturing. Screen printing method has 

been used in this work to develop the piezoelectric and piezoresistive tactile sensors. In 

particular, the focus of investigations in this chapter is on the manufacturing processes, 

number of steps involved in the final module development, ease of handling of 

materials, compatibility of dissimilar materials in multilayer structures, adhesion to 

polymer substrate, overall assembly of the sensor modules and finally on the basis of 

sensor response to normal compressive forces.  

3.2. State of the Art 

3.2.1. Piezoelectric and Piezoresistive Tactile Sensors 

Over the years, wide varieties of tactile sensing structures have been demonstrated 

using various transduction methods such as capacitive, ultrasonic, piezoresistive, and 

piezoelectric etc. [14-16]. Piezoelectric materials are unique as they allow measuring 

dynamic events such as slippage and have wider applicability in sensors, actuators and 

energy harvesters [17-20]. Amongst various piezoelectric materials, the Polyvinylidene 

fluoride (PVDF) and its copolymer Trifluoroethylene (TrFE) have been widely 
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investigated due to their mechanical flexibility and stable piezo, pyro and ferroelectric 

properties. Attractive features of P(VDF-TrFE) are the high sensitivity, wide frequency 

response, flexibility, cost effectiveness, and ease of fabrication [5, 16, 20, 21].  

Piezoresistance is another interesting phenomenon that has been exploited to develop 

pressure sensors (e.g. for grip) for measuring static contact events. Their advantages 

include simple low-cost electronics [4, 22, 23]. Several materials and mechanisms 

explored to exploit piezoresistance for sensor include change in resistance of metallic 

strain gauges or change in mobility of solid-state semiconductor devices [24-26]. Often 

these materials and structures have low gauges factors and to overcome this obstacle, 

the conductive polymer composites have been explored by researchers to develop 

piezoresistive devices. MWCNT in PDMS (polydimethylsiloxane) matrix results in a 

material, which possesses a number of exciting properties that can successfully be 

harnessed in sensors and actuators [27-33].  

3.2.2. Printing of sensors 

For deployment of sensor arrays on large surfaces, it is necessary to micro-pattern the 

transducer material in an efficient and cost-effective way. Different fabrication 

technologies have been reported to realize P(VDF-TrFE) and MWCNT/PDMS based 

sensors. Spin coating, thermally drawn functional fibers, micro-machined mold transfer, 

single and multilayer inkjet printers have been employed for deposition of these 

solutions for sensors [6, 20, 21, 29, 30, 34-38]. The frequently used techniques such as 

spin coater and inkjet for patterning large areas devices have limitations of process 

speed and overlay registration accuracy in multi-layered structures. Although, inkjet 

printing has high lateral resolution, patterning of large areas (> 2 mm2) require repeated 

deposition of droplets, which often results in a nonuniform layer thickness and edges. In 

addition, patterning of P(VDF-TrFE) after spin coating whole layer on wafer requires 

photolithography, which leads to more complexity of the manufacturing process [20]. 

The cost-effectiveness and faster fabrication of sensors over large areas make screen-

printing very attractive and therefore [11, 12], an all screen-printed structure is the main 

focus of our current study. Using the similar technology for all the layers will help in 

minimizing process time and improve manufacturability. Besides this, the use of 

printing technologies will lead to reduce material waste and high-speed manufacturing. 

3.3. Materials Synthesis and Scheme of the Sensors 

3.3.1. PVDF-TrFE Solution Preparation  

The materials used for developing piezoelectric modules consist of P(VDF-TrFE) as 

the transducer medium. PVDF is a well-known polymer used in piezoelectric based 

sensors due to excellent features especially for dynamic responses of compressive 

forces as shown in Figure 3.1 (a & b), which can be successfully harnessed for tactile 

sensing in robotic skin for slip detection and control. Usually mechanical stretching is 

required to induce piezoelectric properties into PVDF, which is incompatible with 

microfabrication process. On the other hand, P(VDF-TrFE) has the tendency to 
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Figure 3.1. (a) Bonding structure of PVDF and TrFE (b). Working of a piezoelectric sensor. The 

charge is generated s when piezoelectric material is subjected to external compressive force [4]. 

crystallize directly in the polar β-phase without any requirements of mechanical 

stretching [4, 39]. Molecular proportion x (0.6 < x < 0.85) of the vinyledene fluoride in 

P(VDF-TrFE) define the crystal structure and optimal piezoelectricity of the polymers 

[5, 20]. Compositions around 70/30 %wt. exhibit good ferroelectric response.  

 P(VDF-TrFE) have good solubility in Dimethylformamide (DMF) and Methyl Ethyl 

Ketone (MEK), which are most appropriate for screen-printing. Solutions with different 

weight ratios of P(VDF-TrFE) and MEK were investigated for optimum parameters of 

dispensing through stencil mask of a screen-printing. Pallets of 70/30 wt. %. P(VDF-

TrFE) were dissolved in Methyl Ethyl Ketone (MEK) at 15% weight to get the solution 

compatible with screen-printing experiments [11]. After mechanical stirring, the 

mixture was kept at 90 oC for 6 hours and stirred continuously. This resulted in P(VDF-

TrFE) pallets were completely dissolved in MEK and solution was used with screen-

printing without any further treatments.  

3.3.2. Percolation and Nanocomposite Preparation   

Addition of highly conductive nanofillers in a dielectric material results in a 

conductive or semi-conductive polymer. Percolation describes the mechanism of 

incorporation of highly conductive nanofillers in an insulating polymer, which results in 

alteration of its mechanical and electrical behaviour. Percolation mechanism is based on 

the orientation of the nanofillers to form conductive channels through either physical 

contact or tunnelling when dispersed in polymer matrix. Figure 3.2 (a & b) show 

schematics of percolation mechanism where different concentrations of nanofillers are 

shown. The actuation in these nanocomposites layers is governed by the distribution, 

geometry and interconnection paths of nanotubes in the polymer matrix, which vary 

upon application of force. This leads to a change in bulk resistance of the composite 

layer. Percolation threshold is the critical concentration of conductive fillers at which 

the sufficient continuous conductive network is established and dielectric base polymer 
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becomes conductive as shown in Figure 3.2 (a).  A low percolation threshold is desired 

to retain the static as well as dynamic mechanical, physical and electrical properties of 

nanocomposites. The shape and size of the nanofillers affect both electrical and 

mechanical properties of the nanocomposites. The aspect ratio of the nanofillers is the 

critical parameter influencing the percolation threshold. Uniform dispersion of 

nanofillers is of prime importance and contributes mainly to the performance of sensors 

and devices. Compared to metallic nanoparticles fillers, multiwall carbon nanotubes are 

extensively investigated in recent years. Due to the high aspect ratio of MWNTs, low 

percolation threshold is achieved, which helps in retaining the soft behaviour of 

elastomeric structures [27-33]. 

Development of piezoresistive sensors array consisted of multiwall carbon nanotube 

(MWCNT) mixed with Poly(dimethyl-siloxane) (PDMS) matrix. Incorporating the 

MWCNTs in PDMS results in a material with a number of exciting properties for 

sensors and actuators especially for grip purposes in tactile sensors of robotic skin. The 

actuation mechanism is based on the geometry and interconnection paths of nanotubes 

developed in the polymer matrix, which vary upon application of force. This leads to a 

change in resistance of the bulk composite layer [28, 29, 38]. These nanocomposite 

materials have similar characteristics to some inorganic semiconductors while 

maintaining typical polymer properties of flexibility, easy processing and synthesis. A 

low percolation threshold is desired to retain the static as well as dynamic mechanical, 

physical and electrical properties of MWCNT/PDMS nanocomposites. Uniform 

dispersion of nanofillers is of prime importance and contributes mainly to performance 

of the sensors [31].  

 
 

Figure 3.2.  (i) Electrical conductivity of conductive composites as a function of filler fraction, 

where “a, b, c, d” denote the typical network of conductive fillers within the polymeric matrix. 

(ii) Schematic of the actuation mechanism of nanocomposite-based sensors (a) Sensor without 

pressure applied, (b). Normal compressive force (c) System setup for resistance measurement.  
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Although these polymer nanocomposites have the challenges of non-linearity, 

hysteresis and temperature drifts, they are effective for large strains, simple and cost-

effective to fabricate. These advantages make them a better choice of sensing elements 

for applications requiring complaint materials such as electronic skin, electronic textiles 

and other large deformation measurements. For this reason, the work presented here 

employs MWCNTs in PDMS matrix for piezoresistive sensor arrays. MWCNTs 

purchased from Sigma Aldrich have > 95 % carbon, with nanotubes having outer 

diameters of 6-9 nm, length 5µm and ~2.5g/mL density at room temperature. In order to 

check the screen printability of the MWCNT/PDMS composite solution, four different 

solution samples, having 1%, 3% 5% and 6% as weight ratios, were prepared. To 

enhance the dispersion of nanofillers, MWCNTs were first mixed in chloroform by 

using mechanical stirrer and kept in ultrasonic bath at frequency 40 kHz for 30 minutes. 

Sequence of the synthesis steps for nanocomposite processing is shown in Figure 3.3 (a-

e). After uniform dispersion of nanotubes in the chloroform, PDMS (Dow Corning 

Sylgard 184) was mixed with the solution followed by mechanical stirring for 10 

minutes. Composite solution was kept again in ultrasonic bath at 40 kHz for 3 hours. 

Cross-linking agent was added in 10:1 into the composite and degassed completely in a 

vacuum desiccator. Similar steps were followed for developing all the three solution 

samples [12]. After degassing steps, nanocomposites were immediately screen printed 

on pre-printed electrodes. 

 
 

Figure 3.3. Synthesis and manufacturing procedure of the PDMS/CNT nanocomposites by adding 

a dispersant solution before casting the final solution for patterning. 
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Figure 3.4. Schematic diagram of a single module of sensors array and cross sectional view of the 

proposed printed layers. 
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3.3.3. Schematic of the Sensor Module 

The scheme of each of the four sensor modules developed by using above 

synthesized materials is shown in Figure 3.4. Stencil mask has been developed in such a 

way that four modules (each with 4x4 tactile sensors) can be printed on a single 

substrate in one go. A parallel plate structure is developed in which the transducer 

material is sandwiched between metallic layers. For metallic plates and interconnect 

lines as well, silver (Ag) based paste (purchased from DuPont (5028)) is used. 

Rheological properties of the Ag paste are already adjusted to be used with screen 

printing tools. UV-curable dielectric (DuPont-5018) paste is used as received from 

supplier for the force concentrator structures. Details of the screen printing steps are 

discussed in the following sections. 

3.4. Screen Printing Experiments 

3.4.1. Screen Printing of Metallic Patterns and P(VDF-TrFE)   

Different fabrication technologies have been reported to realize P(VDF-TrFE) based 

sensors. Spin coating, thermally drawn functional fibers, micro-machined mold transfer, 

single and multiplayer inkjet printers have been employed for developing P(VDF-TrFE) 

based sensors [6, 20, 21, 34-37]. The frequently used techniques such as spin coater and 

inkjet for patterning PVDF have limitations of process speed and overlay registration 

accuracy in multilayer structures. In addition, patterning of PVDF after spin coating 

whole layer on wafer requires photolithography, which leads to more complexity of the 

manufacturing process. Screen-printing is considered preferable alternative technology 

for patterning. For realizing the parallel plate capacitive structures the silver (Ag), based 

paste is used for top and bottom electrodes. Paste viscosity is in the range of 15-30 Pa.s. 

Conductive tracks for bottom electrodes are divided into 4 modules, each containing 
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(a) 

 
(b) 

Figure 3.5. (a) L-Edit design of stencil masks for metallic, transducer and force concentrator 

structures (b) Schematic of flatbed screen-printing system setup 

4×4 array of transducer components (Figure 3.5). Capacitive area is 1×1mm2, which are 

connected through printed interconnected lines of 100 µm wide. Distance between 

consecutive sensors is 5.6 mm in order to reduce crosstalk between neighbouring 

sensors. The pads for readout signals, 2×2 mm2 area, are coupled with printing bottom 

electrodes. After completing the first step of Ag printing, samples are sintered at 120 oC 

for 1 hour. A separate stencil mask with 3×3 mm2 opening area, overlapping on each 

side of the bottom electrode is used for printing piezoelectric material i.e. P(VDF-TrFE) 

on bottom electrode. Both stencil masks are designed in such a way that the overlay 

registration accuracy can closely be maintained. Screen-printing parameters i.e. 

squeegee height, pressure on the stencil, squeegee speed, snap-off and offset for the 

screen stage are critical to monitor. Height for first forward squeegee is kept at 

46.15mm while the following squeegee is kept at 42.90 mm from the stencil mask. 

Pressure and speeds for both the squeegees are kept at 0.5 kg and 10 mm/sec 

respectively. Screen height from stage is kept at 5 mm while keeping the snap off at 1 

mm. Deposited layers are sintered in vacuum at 130 oC for 4 hours to remove the 

solvents and enhance recrystallization of P(VDF-TrFE). The top electrodes are 

patterned on separate PET substrate by using the first stencil mask but with 90o degree 

orientation to obtain sensors in the row-column fashion. The scheme of the stencil 

masks used for printing various sensor structures i.e. metallic patterns, transducer and 

dielectric for top force concentrator are shown in Figure 3.5(a).  
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Screen-printing (schematics shown in Figure 3.5 (b)) is more robust and it is easy to 

control the layer thickness by varying process parameters like pressure and speed of the 

printing squeegee if solution properties have reached its optimal requirements. The 

small fraction of solution printed only at the opening of the stencil plays an important 

role in reducing material cost by minimizing wastage, and reusability of the solution 

makes the printing system very robust for subsequent uses. However, the residual 

solution collected by the second squeegee is not completely the same as before and 

some part of the material is wasted in this process as well. This problem is mainly due 

to the selection of solvent specifically in case of P(VDF-TrFE) when dissolved in MEK. 

This problem is foreseen to overcome by investigating an appropriate solvent that is 

also compatible with screen-printing. Uniformity of the layer is maintained in screen-

printing and the solution is deposited at desired areas of interest, i.e. on top of bottom 

metal layers with 100% overlay registration. 

3.4.2. Screen Printing of MWCNT/PDMS 

The similar structure of parallel plates and experimental setup is followed to realize 

the piezoresistive sensors array. The MWCNT/PDMS nanocomposites layer is 

sandwiched between the two printed silver metal electrodes as discussed in previous 

section. Attractive feature of this approach is that the processing steps are performed by 

using a single printing technology i.e. screen-printing. Solutions of MWCNT/PDMS 

composites were printed on bottom electrode aligned by adjusting screen printing stage 

parameters. In case of MWCNT/PDMS the three solutions, with 1, 3 and 5% wt. 

prepared as reported in Sec. 3.3.2, were used for analysis of optimal dispensing out of 

the solution. Different printing speeds are applied because of different concentration of 

the three solutions. Speed of the forward squeegee was kept higher i.e. 15 mm/sec in 

case of 1% solution and was decreased to 10 mm/sec and 6 mm/sec for 3% and 5% 

respectively. The experimental parameters such as squeegee pressure snap-off from 

stage and speed are summarized in Table 3.1. High speed of the squeegee is observed to 

overcome the problem of bleed out of lower concentration solutions from the stencil 

mask, which also helps in keeping the desired patterns on the substrate after printing. 

This is the reason to keep the amount of dispensed material as minimum as possible. 

While at higher concentrations, speed is reduced to increase the dispense time at the 

stencil openings. These parameters were adjusted after doing a number of experiments 

with the prepared nanocomposite solutions.  

Table 3.1. Screen Printing Parameters 
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Figure 3.7. Final assembled screen-printed sensor cells with force concentrated structures (a) 

Sensors based on P(VDF-TrFE) on polyimide (PI) substrate (b) Screen printed MWCNT/PDMS 

sensors on PET substrate  

 
Figure 3.6. (a). 3D-Printer with the final developed shadow mask for deposition of 

nanocomposite solutions. (b). Manual screen-printing by using squeegee to print nanocomposite 

solutions on top of pre-printed silver tracks 

A hard mask is prepared for the deposition of the nanocomposite solutions. Figure 3.6 

(a) show images of 3D printer and masks prepared by using it whereas Figure 3.6 (b) 

depicts an image of the manual screen-printing for higher concentration solutions. 

Shadow masks are made of plastic sheets, which are layered by gluing separate sheets 

of plastic to each other containing the desired structures. This is a full-automated way of 

producing these masks using a 3D printer (SD300). Such type of masks are more useful 

for composite solutions with high concentrations (i.e. > 5 wt. %), where uniformity of 

layers are needed to be maintained after printing. In contrast to these masks, standard 

meshed screens dedicated for screen printers alter the uniformity of the final deposited 

solution on substrate. This is due to the residual and agglomeration of the nanotubes on 

the screen meshes. 

Deposited layers were sintered in vacuum at 80 oC for 5 hours and kept overnight. 

After complete polymerization, counter electrode was printed on top of composite 

material using the same stencil but with 90o orientation. Top and bottom electrodes are 

in good alignment and no short-circuiting was detected after checking all the devices. 
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Force concentrator structures (3×3 mm2) were printed on a separate substrate and 

laminated on the bottom substrate, which also served as an encapsulant from any 

environmental affects to the sensors. Force concentrators were printed using UV-

curable dielectric ink supplied by DuPont. Figure 3.7 (a&b) shows the final assembled 

array of sensor devices with force concentrator structures based on printing 

MWCNT/PDMS composites. 

3.5. Results and Discussion 

Screen-printed conductive patterns and sensitive materials were characterized to 

investigate different physical and electrical parameters required for reliable printed 

flexible sensor modules. In case of conductive patterns, the thickness of printed layers is 

of prime importance for enhanced electrical conductivity. Screen-printing deposits thick 

layers in a single deposition step as compared to other patterning tools by maintaining 

the overlay registration accuracy and uniform pattern edges, which is suitable for the 

proposed printed capacitive structures. Profilometer for thickness measurement, 

adhesion to the polymer substrate under different humidity and temperature conditions, 

print efficiency and sheet resistance are some of the prime characteristics of printed 

patterns. Adhesion of the subsequent printed materials on the sintered Ag patterns was 

checked in planar as well as in bent orientation of the substrate at 15 mm radius. 

Finally, sensors are characterized by applying normal compressive forces at different 

frequencies. Results based on physical characteristics and responses with both materials 

are investigated and discussed in the following sub-sections. 

3.5.1. Sheet Resistance of the conductive patterns  

Sheet resistance of the conductive patterns has been measured in planar and bent 

mode to check any change in conductivity. Four-point collinear probe setup was 

developed by using high impedance Keithley 7410 voltmeter for current and voltage 

analysis (equipment and results shown in Figure 3.8). Resistance is measured in one 

complete row of printed electrodes having four plates connected inline. In the collinear 

configuration, the outer two probes placed at the centres of printed plates were used to 

source the current while the inner two probes placed on the central two plates were used 

to determine the voltage drop across the whole line. The sheet resistance value given by 

the supplier for the printed silver paste is about 12Ω/sq. for the layer with thickness 

about 25µm. The sheet resistance measured in our samples (layer thickness of about 

8µm) is 14.15 Ω/sq. in the planar mode, which is in the close range of expected sheet 

resistance of silver paste after sintering. The sheet resistances of the same printed lines 

were checked at bent orientation of the substrate. In bent orientation with radius of 

15mm round, the sheet resistance was observed to be little higher i.e. about 17.54 Ω/sq. 

This could be due to the variation in layer thickness and possible microcracks during the 
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Figure 3.8. Sheet resistance of screen-printed Silver (Ag) patterns in planar and bent orientation 

(radius 15 mm) on PI substrate. 
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bend mode conditions. Nonetheless, the resistances in both the planar and bend 

orientations are acceptable for our application in the pressure sensors. 

 

3.5.2. Microscopic and mechanical profilometer analysis 

Mechanical profilometer and scanning electron microscope (SEM) were used to 

analyze the thickness of conductive patterns as well as the deposited P(VDF-TrFE) and 

MWCNT/PDMS layers. Samples were analyzed after complete sintering in a vacuum 

environment. Figure 3.9 shows SEM image of P(VDF-TrFE) layer deposited on top 

electrode respectively. The porous structure observed in P(VDF-TrFE) layer indicates 

complete evaporation of solvent leaving behind pinholes. The printed layer of P(VDF-

TrFE) in which the pinholes left after evaporation of the solution are evident from 

Figure 3.9. The Ag paste printed for top electrodes pass through these pinholes of the 

P(VDF-TrFE) layer, which eventually results in short circuiting of the two printed metal 

plates. This was confirmed by a trial experiment by printing Ag paste on top of P(VDF-

TrFE), which resulted in short circuiting after sintering. This is one of the reasons for 

printing top electrode on a separate PET substrate instead directly on P(VDF-TrFE) due 

to the penetration of Ag paste through these pinholes. 
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Figure 3.9. Scanning Electron Microscope images showing optical micrographs of porous 

structure of screen-printed P(VDF-TrFE) on top of Ag patterns. 

 
Figure 3.10. Optical micrographs of screen-printed Ag (for metal and interconnect lines) and 

sandwiched MWCNT/PDMS. Optical microscopic images of 3 and 5% wt. shows the MWCNTs 

distribution in the PDMS matrix. 

3%

5%

Mechanical profilometer is used to check the thickness of all layers i.e. conductive 

patterns, P(VDF-TrEF) and MWCNT/PDMS layers. Metallic patterns observed at 

different positions of the substrate were found to have thickness about 8 µm. Screen 

printed P(VDF-TrFE) was found to have thickness about 3 µm less than the 

MWCNT/PDMS samples which were around 10-15 µm thick. Minimum thickness was 

obtained with the 1% solution, while layer with 5% solution is about 15 µm, which is 

due to the increased concentration of MWCNTs. Figure 3.10 shows the optical 

micrographs of the printed MWCNT layers in which agglomeration of MWCNT in the 

PDMS matrix occurs at random locations. Agglomeration of MWCNTs are more 

evident in solutions with increased concentrations of the filler materials that ultimately 

affects the reliability of the sensor response and consistency. 
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3.5.3. Adhesion loss test of printed layers  

It is important to determine the adhesion of printed features on polymeric substrate 

under different environmental conditions, especially the temperature and humidity as 

they have direct bearing on the reliability of sensors. Adhesion of screen-printed 

P(VDF-TrFE), MWCNT/PDMS, silver patterns and dielectric ink (for force 

concentrator structures) were checked under different temperature and humidity 

conditions. Tape test was performed for checking adhesion loss or complete 

delamination of the printed layers from flexible substrate. Adhesion of these layers was 

investigated under two orientation schemes, first with samples on a planar surface and 

second, with substrates wrapped around a cylinder of 15 mm radius. Three different 

temperature and humidity conditions were developed for both the schemes. In first set 

of experiments, samples were tested at room temperature and humidity of 16g/cm3. In 

the second set of experiments, samples were placed in a humidity chamber with 

absolute humidity at 40 g/cm3 and temperature at 40oC. The samples were kept in 

humidity chamber for 15 minutes and then taken out for adhesion test immediately. In 

the third setup, the humidity level was raised to 80 g/cm3 and temperature to 80 oC. 

Adhesion tape was applied on the samples immediately after withdrawal from the 

chamber for second and third set of experiments. At room temperature and 16 g/cm3 of 

humidity, no delamination of interconnect wires or force concentrator structures were 

observed. Only two interconnect lines at the centres (12 % of the total interconnects 

length) were peeled off at 40 oC and absolute humidity of 40 g/cm3. For 80 oC and 

80g/cm3 of the temperature and humidity, three interconnect lines of (18 % of the total 

interconnects) were observed to be delaminated. 

Similar results of delamination of interconnect lines were observed in bent orientation 

at 15 mm of radius, at the same conditions of humidity and temperature. Force 

concentrator structures were observed to have very good adhesion to the substrate and 

all the structures remained fixed. Adhesion loss test for printed structures of P(VDF-

TrFE) was also performed according to the developed conditions mentioned above. 

Upon testing at room temperature, there is no peel-off of any structure from the 

substrate.  However, at higher values of humidity and temperature in second and third 

set of experiments, all the layers of screen-printed P(VDF-TrFE) were peeled off. The 

same results were experienced for bent samples as well. The porous structures of 

P(VDF-TrFE) layer is playing critical role in absorbing the humidity, which ultimately 

weakens the materials/substrate interface strength and deteriorates all the structures 

developed on top of it. The poor adhesion of P(VDF-TrFE) with polymer substrate at 

increased temperature and humidity values make it less attractive on an electronic skin, 

which is required to read stimulus accurately at varied working environment. Possible 

solution to the humidity problem is to use an encapsulation layer. The PET substrate 

used for top electrodes and force concentrator structures is selected to serve this purpose 

in our proposed scheme. 
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Plasma oxidation of polymer substrate was performed before printing bottom 

electrodes for modification of the surface to promote the adhesion of transducer 

materials with substrate. The plasma oxidation makes the polymer surface hydrophilic 

and improves the adhesion. As the total coverage area of the transducer material (3×3 

mm2) is greater than bottom electrode (1×1 mm2), materials make strong bond around 

the electrodes after sintering. Polymer nanocomposites i.e. MWCNT/PDMS are soft 

material owing to the intrinsic properties of base polymer matrix. When microstructures 

of these composites are printed onto the plasma-oxidized substrate, the interface is 

tightly secured by strong bonding. Tape test was performed for checking adhesion loss 

of Ag tracks printed on top of MWCNT/PDMS nanocomposite. Adhesion of Ag is also 

found to be dependent on filler concentration. For 1% MWCNT/PDMS, about 70% of 

the Ag tracks were delaminated by peeling-off the adhesive tape. Adhesion became 

stronger for MWCNT/PDMS samples with higher concentrations, (i.e. with 3% and 5% 

filler concentrations), as about 50% and 10% of the Ag layers were delaminated 

respectively. This might be due to strong interaction of Ag paste on molecular level 

with MWCNTs in the PDMS matrix. Alternate to P(VDF-TrFE), MWCNT/PDMS 

showed very good adhesive properties at all the developed conditions of temperature 

and humidity. Surface properties of substrates for both the materials were modified by 

exposing it to plasma oxidation before doing printing experiments due to which 

Table. 3.2. Adhesion loss test for the printed structures 
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Figure 3.11. (a) Final assembled sensor modules in planar and bent orientations. (b) C-V 

measurement setup of sensors in bent orientation. 

adhesion of MWCNT/PDMS improved further, while no improvement in P(VDF-TrFE) 

was observed. Table. 3.2 summarises all the adhesion loss test for the printed structures.   

3.5.4. Capacitance-Voltage (C-V) and Piezoelectric response of P(VDF-TrFE) 

Polarization or poling of P(VDF-TrFE) is required to introduce the piezoelectric 

behaviour. P(VDF-TrFE) is normally polarized by applying high voltage across the 

film. The strength of this voltage is typically 80 V/µm for P(VDF-TrFE) films [20]. 

This is one extra (and major) step towards achieving precise piezoelectric response. 

Higher voltage and increased charge induction to thin layers at raised temperatures 

often results in sparking and eventually destroy the structures. On the other hand, no 

modification or changes into the printed layers of MWCNT/PDMS are needed. The 

transduction paths developed by MWCNTs in PDMS bulk remain fixed after 

polymerization, which ultimately contribute to the change in resistivity. To polarize 

screen-printed P(VDF-TrFE), the sensor arrays were put on a hot plate at 80 oC and 

voltage increased at a rate of 60 V/µm across the metal layers on the pads. For screen-

printed layers of P(VDF-TrFE) with thickness of 3 μm, the maximum potential of 180V 

was reached in 6 incremental steps of 30V each. Electric field was applied for 10 

minutes at each incremental step. Between two successive voltage application steps, the 

metal plates of P(VDF-TrFE) samples were short-circuited for about 5 minutes to 

mitigate the electric breakdown.  
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(a)                                                          (b) 

 

Figure 3.13. Experimental setup of measuring piezoelectric response of P(VDF-TrFE). (a) Sensor 

module with force concentrator structures. (b) TIRA shaker and signal conditioning setup for 

dynamic force measurement. 

 
Figure 3.12. Capacitance vs. frequency measurement of unpolarized and polarized P(VDF-TrFE) 

with peak oscillating voltage 10mV and a hold time of 1sec. 
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C-V measurements at varying frequencies were made before and after polarization. 

For C-V measurements, Agilent 4284A, precision LCR meter was used controlled by a 

program developed in LabVIEW. Figure 3.11 shows arrangement of probes with sensor 

module in bent mode. The frequency used for experiment was increased in 30 steps 

ranging between 100Hz and 1MHz and peak oscillating voltage was kept at 10mV and 

hold time of 1 sec. Average values of capacitance at all these frequencies before and 

after polarization are obtained and are 0.695 pF and 0.962 pF for unpoled and polarized 
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Figure 3.14. Response of P(VDF-TrFE) at varying forces and frequencies. Sensor is 

characterized at three different frequencies i.e. 50, 100 and 200 Hz at each force value. Response 

of the sensor increases with increasing frequency while trend of graph lines is polynomial of 

second degree.  
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samples respectively shown in Figure 3.12. Change in capacitance value is observed in 

the polarized samples and an increase in capacitance of 0.267 pF is recorded. This 

difference is consistent among various capacitive devices both polarized and 

nonpolarized. This change may be due to polarized charges injected during poling. The 

general frequency response of the device is in the acceptable ranges as discussed in 

literature for applications to flexible pressure sensors. 

Piezoelectric properties of the discrete devices were investigated at different 

frequencies and force values. Sensors were tested at 10Hz, 50Hz and 200Hz while 

forces varied from 0.5–3.0 N for each corresponding frequency. Equipment used for 

testing the sensor devices consist of TIRA shaker, signal conditioning circuits and an 

amplifier shown in Figure 3.13. All the major equipment for analysis and measurement 

of the output values is controlled by a program developed in LabVIEW. Upper limit of 

the dynamic force applied by shaker is 18 N with frequency ranging from 2 Hz–1 kHz. 

A load cell (PCB piezotronics) with sensitivity of 112.41 mV/kN and measurement 

range of 0.00448 kN is mounted on the shaker tip, which can move in z-direction, is 

used to measure and control the applied force on the sensor. 

The force concentrators covering the whole effective area of the sensor is aligned 

according to the load cell tip in x, y and z directions. Sensors were characterized at 

constant frequency and increasing the applied force. At frequencies below 50 Hz, sensor 

response is about ~0.05V/N. For frequencies greater than 100Hz, the response of the 

sensor increases approximately in linear fashion. This increase in response can be 

observed in Figure. 3.14 at 3N, which shows an increase of almost 0.07V for 200Hz and 
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Figure. 3.15. Change is the resistance of polymerized composite samples with varying MWCNT 

concentration in PDMS. 
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0.02V for 100Hz at the same applied force. Response of the individual sensors at 

different value of frequencies and varying force is given in Figure 3.14.  

3.5.5. Piezoresistance response of printed MWCNT/PDMS 

The piezoresistance in MWCNT/PDMS nanocomposites is introduced by generation 

of distributed conductive paths within the bulk. The resistance of the sensors presented 

here can be tuned with filler concentration as shown Figure 3.15. This change in the 

initial resistance values for bulk piezoresistive composites at different filler 

concentration is mainly due to different number of interconnection paths and random 

distribution of MWCNT within the polymer matrix. Filler concentration is not only the 

major parameter for resistance change but is also critical for printing process. Solution 

becomes dense with increased amount of fillers and beyond a certain limit; it becomes 

difficult to screen print uniformly. Thus, an optimum range of filler concentration is 

required for controlled patterning and readable resistive response. At low concentrations 

~1%, the initial resistance is very large restricting resistance change within close limits. 

In addition, the solution is less viscous and flows out after printing which deteriorates 

the shape of the patterned structures. The isolation of individual sensing devices is not 

maintained and very irregular layer of MWCNT/PDMS is achieved. Avoiding such 

condition requires increase in the filler concentration. This also improves both physical 

and electrical properties of the device. With increased concentration, operating range of 

the device is extended due to an increase in the offset value of initial resistance. The 

operating envelope (0-10N for MWCNT/PDMS in current research) of the transducer 

material becomes responsive to an increased range of forces. Comparing the three 

nanocomposite solutions, 3 % wt. is found to be the optimum concentration by 

analysing the piezoresistance response values in Figure 3.16 and also from screen-
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Figure 3.16. Resistance change with normal compressive force showing trend line of a 

polynomial of degree two, (a). Screen-printed (MWCNT/PDMS 3% wt.) modules. (b) Setup of 

force sensors for characterizing final assembled device with force concentrator structures. 

printing experiments. 

The response of MWCNT/PDMS composites is obtained by applying compressive 

forces on the sensor device. The observed change in the resistance of sensors is due to 

(a) micro-nanoscale changes in the carbon nanotubes as a result of mechanical 

deformation, and (b) the formation of conductive paths within the matrix. Prepared 

samples were put on a rigid surface and force was applied on top of force concentrator 

structures that are aligned with the sensory cells. Piezoresistive behaviour was 

confirmed by the observed change in resistance with respect to applied force. As shown 

in Figure 3.16, the resistance increases with increasing forces. The amount of change in 

the resistance values is observed to be higher for sample with less concentration of 

MWCNTs in PDMS. That could be due to immediate breakdown of the conduction 

paths established in the polymer matrix. The MWCNT/PDMS samples with 1% and 3% 

wt. concentrations show an approximate linear response (Figure 3.16) which is often 

desired in pressure sensors. In case of 5%, wt. an abrupt non-uniform change in 

resistance occurs above forces of around 6.0 N. This range is much higher than the force 

(0.01-1N) experienced by humans in daily tasks [14].  

The sensors were also evaluated for cyclic force to check their restoration behaviour 

to the initial resistances. Restoration of the resistance values for 3% wt. after removing 

the applied stress was much faster than the samples with 1% and 5% wt. concentrations. 

For 3% wt., the restoration time is of the order of few seconds, while for other two 

concentrations it took few minutes to restore the initial value. The trend of increase in 

resistance values is not uniform, which might be due to non-uniform dispersion and 

random conductive paths made by aggregates of nanotubes within the polymer matrix. 
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Agglomeration of MWCNTs at various locations of the layers was observed after 

printing as shown in the optical micrographs in Figure 3.10. The agglomeration of 

MWCNTs occurred only in 3% and 5% wt. solutions. Agglomeration of nanotubes is 

more evident in less concentrated solution as compared to higher concentrations. 

Fluctuation in resistance values in bulk sample was  observed at normal conditions 

without applying any stress or strain, which is possible due to the fast shifting of 

different conductive paths generated in the bulk MWCNT/PDMS composite (especially 

in higher concentrations and agglomerated sites). These fluctuations in resistance were 

observed even under compressive force on the devices. 

Increase in resistance for all the three concentrations is detected when the substrates 

are wrapped in convex shape around a cylinder (15mm radius). This increase is caused 

by the bending induced strain. The conductive paths established during the normal 

position are enlarged which results in an increased resistance. Alternatively, decrease in 

resistance is recorded when the substrates are bent in concave shape. In this case, the 

conductive paths are pushed more closer, which results in increase in conductivity of 

the composite. This is interesting for robotic skin when mounted especially at joints, 

where contraction and relaxation during the movement can be monitored and controlled 

by using such type of strain sensors. 

3.6. Conclusion 

Arrays of all screen printed flexible pressure sensors presented here were obtained by 

sandwiching P(VDF-TrFE) and MWCNT/PDMS separately between two patterned 

silver layers. A total of 64 sensors have been fabricated in one flow by screen printing 

technique. Screen-printing is attractive for printed multi-layered electronic devices by 

using materials, which do not have any compatibility issues if printed layer by layer. 

Investigative study based on ease of processing, robustness, time saving, material 

efficiency and compatibility of layer-by-layer structures has been performed. Based on 

the physical characteristics of the printed layers, MWCNT/PDMS (3% wt.) 

nanocomposite show uniform patterned deposition and reusability of the solution for 

subsequent use. Based on the screen-printing experiments 3 wt. percentage solution of 

MWCNT/PDMS was observed to be close to the viscosity ranges required for screen-

printing. In addition, the agglomeration in 3% wt. is less as compared to higher 

concentrations, which leads to approximately linear response and less fluctuations in 

resistance values of the sensors. There is no issue of porosity in MWCNT/PDMS layer 

as observed in P(VDF-TrFE) which help in reducing the extra processing process steps 

required for top electrode on a separate substrate. Also contact resistance in P(VDF-

TrFE) with top electrode is expected to be higher as both the layers are not in intimate 

contact which is assumed to be one of the major drawbacks of P(VDF-TrFE) layers. 

Adhesion loss tests performed at different humidity conditions show delamination of 

P(VDF-TrFE) layer and poor adhesion to plastic substrates at raised temperatures as 

opposed to MWCNT/PDMS layers. Encapsulant in the form of PET substrate having 
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top electrode and force concentrator structures are used for covering P(VDF-TrFE) in 

order to avoid such conditions.  

Maximum sensors response at optimum operating values for P(VDF-TrFE) and 

MWCNT/PDMS are 0.05 V/N and 20 kΩ/N respectively, which shows piezoresistive 

material to have broad range of response at static forces. The response of P(VDF-TrFE) 

devices is almost near to ideal linear response required for tactile sensing. An additional 

step of polarization is required to induce charges in P(VDF-TrFE) layer, which will 

enhance the sensor response. Albeit poor physical characteristics of screen-printed 

layers, P(VDF-TrFE) is ideal for dynamic forces at wide range of frequencies, which is 

useful in slip detection for tactile sensors on robotic skin. Although conductive polymer 

composites have the disadvantages of non-linearity, hysteresis and temperature drifts, 

they are simple, cost-effective to fabricate and effective for large strains. 

Further investigation is needed to finding threshold for optimum concentration, 

enhancing dispersion and reducing agglomeration of MWCNT. The pressure-mapping 

device could be enabled for local differences of pressure by utilizing the patterning 

capability of composite materials. Further investigation of compatible solvents for 

P(VDF-TrFE), which have low evaporation rate during the printing process and 

matching-well with the viscosity requirements of the system will be explored. 

Characterizing whole array of devices and analysis of interference or cross talk will be 

investigated in future work. Whole package of screen printed foldable pressure sensor is 

targeted for development of low cost electronic skin applications. Successful patterning 

of P(VDF-TrFE) and MWCNT/PDMS nanocomposites in single step with reduced 

uniform thickness and the piezo-responses obtained, show that these sensors could find 

an attractive field of applications in not only electronic skin but in almost every 

enabling technology of large area electronic transducer system which needs light weight 

sensing devices attached conformably onto the surface.  
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Chapter 4 

Microfabrication of Si Microstructures 
Part of this thesis has been published in: 

N. Yogeswaran, W. Dang, W.T. Navaraj, D. Shakthivel, S. Khan, E.O. Polat, S. Gupta, H. Heidari, 

M. Kaboli, L. Lorenzelli, G. Cheng and R. Dahiya, “New Materials and Advances in Electronic 

Skin for Interactive Robots”, Advanced Robotics 29.21 (2015): 1359-1373. 

 

Silicon (Si) is the second largest available material in earth’s crust in different forms 

of silica (SiO2) and silicates and is extracted from silica-rich sands through different 

processes. The generic processes for the purification of electronic grade Si and the 

manufacture of crystalline Si in variant wafer dimensions are very well established. The 

common industrial method used to get electronic grade Si in the form of single crystal is 

the Czochralski (CZ) method. In CZ process, a seed crystal attached to a rod is dipped 

and pulled back from molten Si, with a specific circular speed to control the Si 

orientation and ingot diameter [1-4]. The Si ingots are sliced into wafers usually 

through a wire-saw followed by subsequent steps of edge profiling, grinding, polishing 

and cleaning etc. Si has proved to be the dominantly used semiconductor materials in 

the microelectronics industry. It remained the attractive choice of research for more than 

50 years and processing techniques to get Si in different crystalline structure have 

already matured. The high performance electronic components require a highly 

monocrystalline Si with negligible lattice defects [2, 3]. Additionally, high quality 

materials developed or implanted within the lattice are carried out at higher 

temperatures i.e. 1300 oC to activate the surfaces. State of the art planar electronics, 

where devices are fabricated on Si wafers are compatible with sustaining these much 

higher temperatures. However, getting Si on flexible polymeric substrates is challenging 

with the state of the art microfabrication procedures. Therefore, new techniques, where 

the single crystal Si in desired microstructures are transfer printed on secondary 

(polymeric) substrates after finishing all the high temperature steps on the wafer itself. 

This chapter highlights the state of the art microfabrication techniques for obtaining Si 

in various microstructures, thinning techniques to make Si flexible followed by transfer 

printing techniques to flexible substrates.  

4.1. Microfabrication routes of Si 

Microfabrication brought the revolution in miniaturization of structures and is still 

rapidly developing for MEMS (microelectromechanical), optical, fluidics and 

microanalysis systems. However, the basis of microfabrication and the fast development 

of the technology lies in the microelectronics technology especially for processing 

Silicon [5]. The Silicon crystal structure is regular, extensively studied and well 

understood and to a large extent, the properties are controllable for desired electronic 

applications. The extraordinary developments in microfabrication technology for Si in 

the last few decades provided the opportunities to explore the potentials of Si for a wide 
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range of devices. Tuning the intrinsic electronic properties of the Si and possibility to 

microfabricate electronic structures are increasingly central to modern science and 

technology. The opportunities in the advancement in technology is driven by the ease to 

fabricate microstructures in variant dimensions or to reconstitute the established 

structures in further downscale versions [5]. The block diagram in Figure 4.1 shows the 

prominent standard steps involved in the development of a typical microelectronic 

device using inorganic materials.  

The whole process of microfabrication is dependent on a standard technique called 

photolithography. Lithography refers to process invented by Aloys Snefelder in 1796 

and it refers to the writing on stones (Greek words lithos for stones and graphein for to 

write). Lithography can be used to print text or artwork onto paper or other suitable 

material [6]. Lithography has laid a strong foundation for today’s 

microelectroelectronics technology in the shape of photolithography. In 

photolithography, a structure is patterned on a target substrate using a photosensitive 

polymer (usually called photoresist) and exposing to light through a patterned mask. 

The photomask consists of an opaque patterns (chrome or iron oxide) on an optically 

transparent support i.e. quartz. Two types i.e. negative and positive photoresists are 

practiced in the electronics industry and the photomask are designed accordingly to the 

type of materials used. The photoresist exposed to UV light becomes either more 

(positive resist) or less (negative resist) soluble in a developing solution. In either case, 

the pattern on the photomask is transferred into the film of photoresist [5]. After soft 

and hard bake steps, the patterns from the photoresist are transferred onto the target 

substrate by performing further development steps. The development steps involves 

solution processing of the photoresist to remove the unwanted (exposed or non-

exposed) part of the photoresist. A typical electronic device consist of multi-layered 

structures and the combination of multiple photomasks with accurate alignment are at 

the heart of this development.  

 
Figure 4.1. Microfabrication processing steps for microelectronics manufacturing. 
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Details of the intrinsic steps involved pattern transfer in the standard 

photolithography are described in the schematics of Figure 4.2. Here, negative 

photoresist has been selected for replicating the photomask patterns on an oxidized Si 

wafer. Initially the wafer is cleaned properly to remove any contaminants and then 

negative photoresist is spin coating on top of oxide layer of Si as shown in Figure 4.2 

(a). The photoresists used in photolithography are usually sensitive to Ultraviolet (UV) 

light, as is the case in this example. The photoresist is exposed to UV light and rinsed in 

a developing solution, which removes the unexposed photoresist and leaves behind the 

exposed part to pattern the desired structures of the photomask in the subsequent 

developments as shown in Figure 4.2 (c & d). Now the pattern area is open for 

subtractive process of etching away the oxide layer and as a result, the Single crystal Si 

is exposed for desired processing. Patterned wafer is kept in HF solution, which etches 

away the oxide layer with a faster rate than the photoresist or the underlying Si shown 

in Figure 4.2 (e). The oxidized Si wafer with etched windows in the oxide (Figure 4.2 

(f)) now awaits further processing. All the processing steps and chemical used in 

photolithography are matured enough and currently features as small as few nanometres 

are possible to be developed. This rapid advancement is not only not only for the two-

dimensional structures, but technology for the high aspect ratio features desired for 

applications such as lab on a chip and or microelectromechanical systems have also 

been commercialized.  

4.2. Flexible Substrates 

It is the flexibility of polymer substrates, which is providing grounds for low cost 

high-speed manufacturing of flexible devices over large areas using various printing 

technologies in a R2R production line. To replace planar rigid substrates like bulk Si, 

the flexible substrates are required to possess properties such as dimensional stability, 

thermal stability, low coefficient of thermal expansion (CTE), excellent solvent 

resistance and good barrier properties for moisture and gases. There are three types of 

substrates that could be employed for flexible electronic devices: thin glass, metal foils 

and plastics [7-9]. Thin glass is bendable but the intrinsic brittle property limits its 

utility in flexible electronics. Metal foils on the other hand can sustain very high 

 
Figure. 4.2. Standard photolithography steps for transferring patterns form photomask on a desired 

substrates. (a) An oxidized Si wafer (b) photoresist coating, (c) exposure, (d) development, (e) 

oxide etching, and (f) resist stripping and oxide etching. 
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Figure 4.3. Glass transition temperatures of commonly used plastic substrates in printed 

electronics. 

temperatures and provide a window for inorganic materials to be deposited on it but the 

surface roughness and high cost of the materials hinder its use for flexible electronics. 

Plastic materials are the potential candidates for applications requiring high degree of 

bendability, transparency and emissive properties. Plastic materials provide a reasonable 

trade-off between physical, chemical, mechanical and optical performance as described 

in Table 4.1. In addition, the central idea of the low cost flexible electronics (e.g. R2R 

manufacturing) is feasible with plastic substrates. The main issue in use of plastic 

substrates is the lower glass transition temperatures (Tg) (Figure. 4.3), which limits its 

utility to organic materials. Polymer substrates are divided into three main groups [7, 8] 

i.e. semi-crystalline, amorphous and solution cast amorphous. Semi-crystalline 

polymers used in flexible electronics include polyethylene terephthalate (PET), heat 

stabilized PET, polyethylene napthalate (PEN), and heat stabilized PEN and 

polyetheretherketone (PEEK). Amorphous polymer substrates include polycarbonate 

(PC) and Polyethersulphone (PES), which are non-crystalline thermoplastics that can be 

melt-extruded or solvent casted [10]. Some of the amorphous group that cannot be melt 

processed include such as modified polycarbonate (PC), Polyethersulphone (PES), 

polyarylate (PAR), polycyclic olefin (PCO) or polynorbonene (PNB) and polyimide 

(PI). These substrate materials are discussed in detail in [7, 8, 11].  

The semi-crystalline polymer substrates with Tg higher than 140°C (e.g. heat 

stabilized PET and PEN) generally tend to have high melting points, which allows the 

polymers to be melt processed without significant degradation [8]. The effect of thermal 

stress and mismatch between the CTE of substrates and the deposited material are 
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critical for efficient performance of the electronic devices. This means if material with 

different CTE (e.g. amorphous polymers have CTE 50ppm/oC below Tg) deposited on 

top of these substrates can expand 3 times, above the Tg value of the substrates, 

ultimately causing undesirable mismatch in the fabricated structures vis-à-vis original 

layout [8, 12]. Applications such as RFID, sensors, active matrix backplane, OTFTs and 

OLEDs etc. also affect the choice of substrate. For display applications, optical clarity is 

important where a total light transmission (TLT) of > 85% over a wavelength range of 

400-800nm are required [8, 11, 13]. This is only required for light emission through 

substrates in bottom-emission and electrophoretic displays. To overcome the challenge 

of humidity absorption, a thin barrier coating of transparent oxides is applied on the 

surfaces of polymer substrates, especially for sensors used in food and medical 

packaging. In nutshell, to replace planar substrates, the polymer substrates should 

mimic their properties such as dimensional stability, thermal stability, low CTE, 

excellent resistance and good barrier properties for moisture, air and gases [7-9]. 

 

4.3. Towards Flexible Silicon 

There has been a growing interest in realizing electronic components on 

nonconventional polymeric substrates (Figure 4.3) to obtain flexible, foldable and 

stretchable electronic systems for applications requiring ultra-high bending such as 

implantable electronics, displays and robotic skins etc. [14, 15]. Tremendous progress 

has been made in the field of flexible electronics in the last decade focusing mainly on 

the materials development and cost effective manufacturing of the innovative electronic 

structures. Materials still remain the more challenging part and different types of 

materials have been investigated especially solution based organic materials [16]. The 

Table 4.1 

Comparison of Polymer substrates [4] 
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attractive properties of organic materials suit well the requirements of the flexible 

electronics especially the mechanical flexibility and solution processability for low 

fabrication costs [17, 18]. Despite the attractions and suitability for integration to 

flexible substrates, organic materials are faced with many challenges of high-speed 

performance for fast switching transistors or by the requirements of high drive currents 

for the backplane transistors array of an active matrix display [19]. The charge carrier 

mobility is extremely low i.e. ~1 cm2/V.sec for organic semiconductors compared to 

their inorganic counterparts especially Si which have very high carrier mobility i.e. ~ 

1000 cm2/V.sec [19, 20]. Additionally, the short lifetime, nonstability in variant 

conditions and fast electrical and physical degradation of the thin layers make it more 

challenging for use in reliable flexible electronic components [21]. The organic 

semiconductor-based analogue and digital electronics is not sufficient to meet many 

challenges, especially those related to high performance requirements of active circuits 

for large area pressure sensors. They are severely unstable to design analogue circuit 

and sensor blocks such as comparators, amplifiers and ADCs [22, 23].  

To overcome the abovementioned challenges, new forms of high mobility material 

such as single crystal Si nanowires and ultra-thin chips have been investigated recently 

[22, 24, 25]. The Si nano/microscale structures based devices are emerging rapidly and 

have gained significant interest during the last decade. Similarly, ultra-thin flexible 

chips are also promising as they enable compact electronics and are bendable [23]. Si 

chips are traditionally built on wafers whose thicknesses are in the range of 100 

micrometres. These wafers are intrinsically brittle, thus limiting their use in the 

development of flexible electronics. Flexibility can be induced into Si wafer if it is 

thinned below 50 μm, in the range of 20–50 μm. In addition, at 10 μm range, the Si 

exhibits a transparent nature, therefore enabling its usage in displays applications [22]. 

These ultra-thin flexible Si chips can be transferred onto a polymeric foil to form 

system in foil (SiF) devices for different electronic applications [23]. Thinning of Si 

chips are generally achieved either by physical or chemical methods as shown in Figure 

4.4 (a & b). Among the physical methods, back grinding of wafer is the most popular 

method for thinning of wafer using a grinder wheel [26]. Traditionally, the removal rate 

 

      (a)                                                                       (b) 

Figure 4.4. Schematics of chemical mechanical polishing, (b). Blanchard-type wafer grinding [26] 
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for back grinding ranges from 0.1−100 μm/min [27, 28]. The back grinding of the 

sample causes sub surface damage and crack at the edges. The thinned wafers are 

transferred using a carrier wafer, following which the thin membrane is eventually 

removed [26]. In addition, thin Si-based devices and nanomembranes can also be 

achieved by chemical etching of Si wafer. Chemical etching of Si can be achieved either 

via both dry and wet etching process. The thinned Si is removed from wafers by etching 

the underlying layer. Some of the widely used wet etchants of Si are ethylenediamine 

pyrocatechol (EDP), potassium hydroxide (KOH), tetramethylammonium hydroxide 

(TMAH). Wet etching of samples lead to undercutting [29], which could be evaded by 

using dry etching process. Common dry etching techniques include: (1) Plasma 

systems; (2) Ion etching; (3) Reactive ion etching. Some of the new techniques include 

Dicing Before Grinding (DBG), [30] thinning of wafer by a combination of selective 

wet etching and back grinding process. The devices are fabricated on top of epitaxial 

grown Si. Other available techniques for thinning of chip includes Chip film, Hyperion 

and Taiko [22, 31, 32]. Despite the progress and achievements of the ultra-thin Si chips 

in improvement of the bendable electronics, the conventional BSIM (Berkeley Short-

channel IGFET Model) [33] models fail to predict the behaviour of such devices since 

they are appropriate for rigid and planar structures. These models need to characterise 

and capture the effects related to uniaxial, biaxial and shear stress, which is important 

from circuit design aspect as well as various bendable electronics applications [33]. 

Si device layer of the SOI (silicon on insulator) wafers is another way for obtaining 

thin Si chips, where the devices are fabricated using standard semiconductor fabrication 

process on the active layer of mono-crystalline silicon with predefined thickness over 

the buried oxide. Thin chips can be obtained from SOI wafer by two ways: (1) By 

creating deep trenches from front side to the buried oxide level and then etching it away 

lifting of the top layer as membrane, or (2) The backside bulk wafer may be removed by 

etching it in selective etchant like TMAH with oxide as the etch stop layer [34]. Near 

optimum results can be achieved using SOI wafers. Before etching step, the circuits 

realized on the top of the wafer have to be supported and protected. However, SOI 

wafers are of much higher cost and can be used only for high-end applications. [35]. 

4.4. Si Micro/nanowires   

4.4.1. Top-down and Bottom-up approaches 

Nanowires (NWs) of inorganic materials are attractive choice for realizing electronics 

on flexible polymeric substrate for diverse applications [36, 37]. Semiconducting 

nanowires possess interesting electrical, optical, mechanical and electrochemical 

properties [37]. Device prototypes in the areas of nano-electronics, sensors, 

optoelectronics and photovoltaics have been demonstrated by utilizing these properties 

[38-41]. Two distinct fabrication routes such as bottom-up and top-down for obtaining 

Si microstructures in the shape of nano/microwires have been developed as shown in 

Figure 4.5 (a-d) [38, 42]. In the bottom-up fabrication techniques the nanostructures are 

developed by placing atoms or molecules one at a time along a preferred direction 



77 

 

(usually vertically for wires configurations). Such processes are time consuming and so 

self-assembly, techniques are employed where the atoms arrange themselves as 

required. Additionally the poor control over geometry, uniformity, doping level and 

above all deterministic transfer to secondary or flexible substrates make the bottom-up 

approach further challenging [23, 38]. Alternatively, top-down fabrication can be 

likened to sculpting from a block of stone. Parts of the unwanted materials are gradually 

eroded until the desired shape and dimensions are achieved. The nanotechnology 

techniques vary for obtaining nanowires and the fabrication routes are optimized both 

by combination of standard lithography and etching techniques [37].  Depending upon 

the level of resolution required for features in the final product, etching of the base 

material can be done chemically using acids or mechanically with the help of ultraviolet 

light, x-rays or electron beams. The top-down approach is considered to be the most 

efficient for obtaining wires of varying dimensions from few nanometres to hundreds of 

nanometre size. Technology is available for developing both planar and vertical wires in 

 
Figure 4.5. (a). Outlook of top-down and bottom-up approaches, (b). SEM image of an array of 

50 nm diameter Si nanowires etched into a Si wafer. A sputtered Al2O3 hard mask, patterned by 

EBL (c). Schematic of NSL process for the fabrication of vertical Si nanowire arrays via metal 

assisted etching (MAE) (d). Schematic of the SNAP process for production of aligned 

nanowires [41]. 
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bulk by using standard Si wafers. Top-down approach allows the development of 

nano/microwires through systematic and controlled processing conditions, which helps 

in minimizing geometric variations (i.e. thickness, width and length of wires) and 

maintain the preferred crystallinity and doping profiles of the wires. It is less time-

consuming and cost effective as compared to the bottom-up approach [25, 37, 43].  

 

4.4.2. Vertically aligned micro/nanowires development 

Extensive research has been carried out in both the areas of novel bottom-up and top-

down synthesis routes for the synthesizing single crystalline Si nanowires with 

structural and atomic level composition control [43]. For example, catalyst particle 

assisted vapour-liquid-solid (VLS) mechanism is successful for the synthesis of 

elementary to ternary semiconducting nanowire hetero-structures. High carrier mobility 

and mechanical flexibility of the NWs makes them suitable for flexible electronics 

applications as shown in Figure 4.6 [37]. Ge/Si core-shell NW based pressure sensors 

over polyimide substrates have been demonstrated as an artificial e-skin [44] by Ali 

Javey and co-workers. Vertically grown Ge/Si NW arrays have been transferred 

horizontally over polyimide material by dry contact printing process. NW FETs were 

fabricated over flexible polyimide substrate with a pressure sensitive rubber on the top 

of the device stack. The structure has been demonstrated over an area of 7x7 cm2 with a 

spatial resolution of ~0.4 x 0.4 cm2 was attained with arrays of nano-wire taxel 

 
Figure 4.6. Nanowire-based macroscale flexible devices, (a). Schematic of the passive and 

active layers of NW e-skin. (b) & (c). Optical photographs of a fully fabricated e-skin device. 

(d). Optical-microscope image of a single sensor pixel in the array. (e) & (f). Scanning electron 

micrographs of a NW-array FET [43]. 
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elements. This depicts a proof-of-concept of application of nanowires to fabricate 

macroscale tactile skin for robotics and prosthetics [45]. The device circuitry operates at 

less than 5 V with response time of less than 100 ms. The circuit conductance has been 

tested up to 2000 bending cycles to evaluate the flexibility and mechanical robustness of 

the nanowires. Stable performance has been observed up to the bending radius of 2.5 

mm, which has been attributed to the nano-sized wires as device components. Besides 

development of elemental Si nanowires, research is also carried out in development of 

compound semiconductors for a range of applications. In compound semiconductors, 

zinc oxide nanowires have shown to be the tactile sensing elements based on piezo-

tronic transduction mechanism [46]. As-grown vertical ZnO nanowires have been used 

for the fabrication of large area self-powered tactile imaging circuits. This brings an 

opportunity to directly integrate material synthesis, device fabrication and mechanical 

actuation. As against conventional vertical wrap gated FETs [47], ZnO piezotronic 

transistor consisting of metal-semiconductor-metal junctions which utilizes polarization 

of immobile ions for device operation has been demonstrated. The conductivity in the 

NW channel is modulated by the externally applied stress over the metal surfaces. 

Hence, the transport characteristics are affected by externally applied strain, which 

effects the polarization in the nanowire.  

Besides tactile sensing applications, additional sensing/functional capabilities such as 

temperature sensing, chemical sensors, gas sensors, texture recognition, distributed 

heating and circuits for signal conditioning are also central to the scope of nanowires 

development. The reliable sensing and electronics need to be developed with these new 

approaches to make it perform in par/more competitive to the state of art electronic 

components. This is very well possible using silicon nanowire based approach in 

tandem with various devices and sensors realized with inorganic nanowires. Silicon 

nano-ribbons based transduction mechanisms have been demonstrated to sense light and 

temperature [48]. A six inch wafer scale vertically developed silicon microwire arrays 

as shown in Figure 4.7 have demonstrated tremendous progress towards low-cost, high-

efficiency photovoltaics and photo electrochemical fuel generation [49, 50]. The high-

 
Figure 4.7. Photograph of a six-inch wafer covered in Si microwires (left) and SEM image of 

these wires (right). The wafer was cleaved to enable imaging of wires near its center [49]. 
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aspect ratio and radial junctions of the vertical Si microwire arrays absorb nearly all the 

incident solar, light that enables the minority carrier collection in the radial directions. 

Optimal techniques have been developed and progress made towards a full six-inch 

wafer-scale growth of Si microwire arrays for photovoltaics and solar fuel generation 

[50]. Embedding these microwires in a polymer and removing afterwards from the 

mother wafers to be deployed on flexible polymeric substrates [41, 49, 50]. However, 

utilization of the full potential of the elementary and compound semiconductor NWs is 

delayed by transfer related issues [51] to secondary polymeric substrates. Current 

transfer printing processes need to be scaled up for large area and deterministic printing. 

Developments of new manufacture friendly transfer process certainly help to benefit 

more from semiconducting nanowires. 

4.4.3. Planar Si Microwires Fabrication 

Another class of Si microwires, fabricated in planar mode through standard 

photolithography techniques such as reactive ion etching have attracted significant 

interest in recent years. Different application areas have been explored ranging from 

solar cells, electrochemical fuel cell, artificial photosynthesis and pressure sensors on 

flexible substrates [52-54]. Among these developed technologies and structures, 

incorporating Si based microstructures with diverse materials have greater potential to 

be implemented for measuring variety of physical parameters like strain, pressure and 

temperature. Using solution based materials such as poly(vinyledene-trifluoroethylene) 

(P(VDF-TrFE)) with single crystal Si is one such example, where it has already been 

exploited as a pressure sensor in the shape of a POSFET device [55]. However, these 

type of devices are realized on a rigid silicon wafer and the need for application of such 

structures on non-planar flexible substrates is primarily required for development of 

conformable electronics. To address this issue and realize flexible electronics on 

polymeric substrates where single crystal Si microstructures and solution processed 

transducer materials are stacked on top of it are recently developed [56, 57]. One such 

model where fabrication and characterization of a Si-based flexible triboelectric active 

sensor array for self-powered static and dynamic pressure detection and tactile imaging 

with batch microfabrication process is presented [58].  

The challenges for flexible systems are addressed through monolithic integration of 

nano-membranes fabricated with top-down approach for stretchable electronics on a 

polymeric substrate [59]. The electronic components developed by using Si 

nanomembranes have shown very promising results. However, due to the limitations of 

physical and mechanical properties like brittleness of Si, a small dislocation or cavity in 

the material crystal structure can propagate the cracks abruptly for large area 

membranes. Delamination of Si nanomembranes from the polymeric stamp under their 

own weight can propagate even further these cracks and affect the transfer yield. 

Therefore, an alternative technique for reducing the sizes and changing the shape from 

Si nanomembranes to micro/nanowires would assist in overcoming these issues. The 
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high-mobility inorganic semiconductors with controlled thicknesses and uniform widths 

in the range of a few micrometres are promising solutions for high performance flexible 

electronics and systems. Silicon micro/nanowires exhibit high carrier mobility, high 

performance and excellent stability in flexible and foldable electronics applications.  

The procedure for development starts with designing, developing and transferring of 

silicon micro/nanowires in planar mode from a standard bulk silicon or silicon on 

insulator (SOI) wafers to a secondary polymeric substrate. Various sensors have been 

reported by using this technology in which Si microstructures are translated to 

polymeric substrates, where all the high temperature processes are performed on the 

donor wafer and are transferred afterwards. A top down approach is practiced to 

develop Si micro/nanowires using standard photolithography and etching techniques. Si 

microwires are developed by deep reactive ion etching in which wires with desired 

widths are developed with specific trenches in between consecutive wires. The 

capability to develop deep trenches in SOI wafers to maintain the high resolution of the 

shadowed material with minimum variations in the designed dimensions are the 

attractive features of deep reactive ion etching (DRIE). To maintain the performance of 

the finally assembled microwires based devices in close ranges, uniformity of the wires 

structures is of great importance [60]. In DRIE process, the etching of Si through high-

density plasma can be achieved by two different approach. In the standard approach, all 

the gases are fed in one cycle where etching and passivation of the sidewall are 

performed at the same time while the etching and passivation gases are flowed 

 
Figure 4.8. Etching protocol for getting an-isotropic and isotropic structures. Development 

of such structures depends on the requirements of final applications.   
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independently in an alternative way of time-multiplexing technique. Anisotropic etching 

as shown in Figure. 4.8 guarantees the uniform edges and thickness of the Si 

microwires.  

4.5. Design of the Si Microwires 

The photomask for fabrication of Si microwires is developed by using L-Edit (Layout 

Editor from Tanner, Electronic Design and Automation). This is a computer aided 

drawing tool used to design the two-dimensional wires by introducing opaque or clear 

area in the mask for trenches. Trench is the area where the Si device layer of the SOI 

wafer is removed anisotropically using DRIE processes. Wires with different 

combinations of lengths and widths are fabricated in order to investigate and optimize 

the transfer of the microwires. The active area of contact between the polymeric stamp 

and Si microwire is of prime importance affecting significantly both the transfer steps 

from SOI to stamp and from stamp to secondary substrate.  Figure. 4.9 (a) shows 

microwire designs on wafer scale with varying lengths and widths. Length of the wire is 

also important to be explored as the wires often break or delaminates owing to their 

longer lengths and not enacting with the stamp. Therefore, for these investigations, 

wires of varying widths and trenches such as 4, 6, 8, 10, 20 and 50 µm were fabricated 

with lengths of 30, 50, 100, 150, 200, 1000 and 5000 µm. In the photomask, 10 

instances of arrays of each wires combination were designed where each instance 

 
                                                     (a)                                                                         (b) 

Figure. 4.9. (a). 10 instances of arrays, each including: 20 wires per each dimension, For all 

combination of: Length (30, 50, 100, 150, 200, 1000, 5000µm) Wire width (4, 6, 8, 10, 20, 50) 

µm and Trench width (4, 8, 10, 20, 50) µm; (b). Example of array with variable length x fixed 

wire width x fixed trench width. 
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consisted of 20 wires each.  Figure 4.9 (b) shows one such example of wires 

combination showing different lengths but similar width and trenches. Wires developed 

in this mask were completed without any further modification of the doping 

concentration through implant or diffusion processes.  

To further enhance the wires design based on the experimental observation of the 

above-mentioned mask, a modified version of mask was prepared where stress 

intensifiers at the tethered positions were introduced to promote the detachment of the 

wires from the donor wafer during first transfer step.  Additionally, to further enhance 

the metal contacts and promote the metal-Si contact with less schottky barriers, 

microwires were heavily doped at the edges by leaving an undoped region in the centre. 

This undoped region is left as channel area to simplify the design process of metal 

insulator field effect transistors. The less doped area will act as the active channel for 

the MISFET devices minimizing the tolerances occurring due to variations in the post-

processing of metallization.  In the new design, the wires dimensions are changed from 

the previous mask. Here the maximum lengths have been reduced to 2 mm for two 

reasons. First is to avoid the breaking of long wires observed in the experiments 

performed for the transfer printing and secondly to maximize the wafer utilization by 

reducing the unwanted long wires.  Further, the widths have also been modified in the 

(a)                                                                                    (b) 

Figure. 4.10. (a). Two instances of arrays, each including: 10 wires per each dimension, each 

module all the wires combination with similar trench as well as length (200, 300, 400, 500, 

1000, 2000) µm, Wire width (5, 10, 20, 30, 40, 50, 75) µm and Trench width (5, 10, 20, 30, 40, 

50, 75) µm; (b). Example of array with variable length x fixed wire width 30 µm fixed trench 

width of 75 µm with channel area of 4 µm.  
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new design; here the wires have varying widths of 5, 10, 20, 30, 40, 50 and 75 µm.  

Figure 3.10 shows wafer scale design of wires in the second mask where the widths and 

lengths of the wires have been modified from the previous mask.   

The smaller dimension wires i.e. 4, 6, 8 and 10 µm are challenging to be picked up 

from the donor wafer in the first transfer steps and also deterministic printing on the 

target substrate with 100 % transfer yield.  Therefore, all the new wires dimension have 

been modified based on the experiences observed during the experiments performed 

with the firstly designed mask. Two instances of all the wires’ groupings have been 

designed where each instance contain 7 arrays of all combination of the wires. Each 

module of wires combinations are designed with similar trench widths and channel area 

of the undoped region as shown in Figure 4.11. Details of the wires physical and 

electrical performances are discussed in more detail in the forthcoming chapters.  

The development of Si microwires starts by selecting a P-doped SOI wafer having 

resistivity ~15 Ω. cm.  The photolithography starts with standard cleaning process of 

RCA and then coating with positive photoresist to define the alignment marks followed 

by a development stage.  The alignment markers are plasma etched and the photoresist 

is removed in ashing and wet resist removal steps. After the alignment markers are 

developed, another step of positive photoresist coating is performed for the ion 

implantation. The implant area is developed and the photoresist is hard baked. 

Phosphorous is implanted in the open areas at a concentration of 1015 (standard). After 

implantation step, the photoresist is ashed and removed through wet etching. The wafer 

is heated to around 925 oC to drive in the phosphorous for uniform diffusion.  A pre-

 

Figure. 4.11. Example of a single wire with 40 um trench, 75 µm width and 16 µm channel area. 

Anchored area (stress intensifier) is also kept at 30 µm connected to the trench junction. 



85 

 

litho clean is performed before defining the trench areas. A positive photoresist is 

coated to define the trench structures and the developed afterwards. Deep Reactive Ion 

Etching (DRIE Alcatel) is performed to etch anisotropically the 500 nm Si device layer. 

After ashing and wet-etching, the photoresist is removed and cleaned finally by standard 

procedures. The various Silicon microwires developed are shown in Figure 4.12 (a-c), 

where proper control over thickness and dimensions are shown clearly.  

After successful fabrication of Si microwires on SOI wafers, the developed structures 

are kept in buffered HF solution to etch away the buried oxide. The duration of under-

etching, the oxide layer is dependent on the size of microwires. In our experiments, we 

have observed more than 95 % transfer yield in the first transfer steps by doing and 

extra over-etching of around 15 minutes. This confirms the complete removal of the 

buried oxide layer of the SOI wafer. Sometime, a piranha (solution of H2SO4 and 

 

 
Figure. 4.12. Optical graphs of Si microwires after photolithography and DRIE etching. (a) 

Si microwire with 50 µm trench, µm um width and 30 µm stress intensifier, (b) Si microwire 

with 40 µm and 30 µm trench and 20 µm stress intensifier. (c) Optical interferometer graph 

of the wires showing uniformity of the wires widths and trenches’ depths.   
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H2O2) is used before the etching step to completely remove any residual organic layers 

coated during the photolithography and DRIE processes.  Wires are watched with 

acetone, isopropanol and deionized water gently after etching and kept in an oven for 10 

minutes at 100 oC. Figure 4.13 shows optical micrograph of under-etched Si microwires 

before transferring to PDMS stamp. Transfer of Si microwires (discussed in more detail 

in chapter 5-7) to a secondary substrate take either the route of wet assembly or dry 

transfer printing. In wet assembly, the developed Si microwires are dispersed in a 

solution and deposited on the desired substrates at preferred locations. In this process 

the orientation of the finished surfaces of the Si microwires and doped sides cannot be 

maintained for further processing due to random dispersion of the microwires in the 

solution. As against, in dry transfer method a highly planar polymeric stamp made of 

PDMS is commonly used to pick the developed microstructures from donor wafer and 

transfer it onto a secondary plastic substrate with the desired orientation.   

4.6. Conclusion 

The conventional microfabrication techniques used for development of for Si based 

microstructures is presented in this chapter. The different techniques to develop Si 

wafers and use them for development of microstructures by using standard 

photolithography techniques is described. Embarking onto the field of flexible 

electronics require flexible and foldable substrates without causing deterioration to the 

physical and mechanical properties of the substrate as well as the electronic devices 

developed on top of them. These different flexible and polymeric substrates are 

overviewed in this chapter with the specific requirements and critical thermal budgets. 

The development of reliable and high speed active electronics for supporting passive 

 
Figure. 4.13. Optical micrograph of the under-etched Si microwires before transferring to 

secondary substrate by a PDMS stamp.  
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pressure sensors need to incorporate inorganic microstructures as the semiconducting 

layers in the switching devices. For this purpose, Si in the shape of microwires are 

chosen for development of such devices. Different techniques of thinning down to make 

Si flexible and conformable to polymeric substrates are described. Two different 

approaches of top-down and bottom-up are presented here. The final section of this 

chapter discussed the development of photomasks for fabrication of Si microwires used 

in this research. Detailed description of the process development of planar microwires 

on a SOI wafer is presented. Investigations in this chapter related to development of Si 

microwires and their transfer to flexible substrate work as foundation, which lead to the 

advancements of functional devices in the forthcoming chapters.  
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Chapter 5 

Metallization and Characteristics of Si Microwires  
Part of this thesis has been published in: 

S. Khan, R. S. Dahiya and L. Lorenzelli, “Flexible thermoelectric generator based on transfer 

printed Si microwires”, 44th ESSDERC, IEEE, 86-89, 2014 

 

Efficacy of the Si microwires need to be demonstrated with their useful application in 

a working device. A typical electronic device is constructed with three major functional 

materials such as conductor, semiconductors and insulators. Electronic components are 

manufactured by stacking layers or patterned films of these materials fulfilling the 

specific requirements of the physical and electrical properties. Towards the 

advancement of an electronic device, the foremost contact made is of a metal and 

semiconductor. Metal semiconductor junction is found in almost all electronic devices 

and therefore this is considered as the most important and preliminary part of the 

fabrication process. Therefore, the Si microwires transferred from donor wafers to 

flexible substrates need a suitable metallic material to pave way for wires-based 

electronic devices. This chapter explores different conductors interfacing with the 

silicon microwires especially a metallic ink of Silver (Ag) and an organic conductor i.e. 

PEDOT-PSS. Different patterning techniques have also been part of discussion within 

this chapter. Current-voltage response of the Si microwires in asymmetric metal-

semiconductor-metal (MSM) configuration is investigated in different orientations as 

well response to the light illumination of the wires is discussed. The variations in the 

current response are also investigated on the type of doping and the transfer printing 

strategies i.e. flip-over and stamp-assisted transfer of Si microwires.   

5.1. Introduction to Asymmetric MSM structures 

Metal-semiconductor heterojunctions are contacts between two different materials 

resulting into very interesting electrical and electro-optical properties [1-4]. These type 

of contacts are of significant importance since they are present in all electronic devices 

in the shape of a discrete component or an intrinsic part of the device. A potential 

barrier is formed when metal is contacted with a semiconductor, which is responsible 

for controlling the current conduction and its capacitance behaviour [5]. The difference 

of the work function of the two contacting materials is very critical and this difference 

could be adjusted either by choosing a suitable metal or by changing the doping 

concentration of the semiconductor, which ultimately changes the electron affinity of 

the semiconductor material [6, 7]. Their behaviour is mainly dependent on the interface 

characteristics forming either schottky or ohmic contacts. The differences of the work 

functions and interface states define the barriers to be either having schottky or ohmic 

behaviour [6, 7]. Schottky barrier junctions are one of the simplest and exciting 

electronic devices, which have found attractions for variety of applications in integrated 
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circuits, photo, and power diodes [6, 7]. It has remained the attractive choice in modern 

electronics owing to their simple device structure, low capacitances and fast response 

[5]. Understanding the schottky barrier height is an important parameter for many 

electronic devices such as field effect transistors and asymmetric metal-semiconductor-

metal photodetector structures. Adjustment of the barrier heights to the desirable lower 

junction potential values can lead to significant improvement of the device 

performances.  The main reasons of deviations of experimental barrier heights from the 

ideal conditions are either an unavoidable interface layer or the presence of interface 

states [8]. Therefore, proper selection of materials and the manufacture process is 

important for controlled deposition and patterning for the desired properties.  

A typical structure of MS junction diode is constructed by depositing metal on both 

the sides of a semiconductor material with desired doping concentrations. Recently new 

type of structures are investigated where the semiconductor is in the shape of micro or 

nanowires with metal deposited at both the ends. These asymmetric 

metal/semiconductor/metal (MSM) devices have attracted significant interest [2] 

especially in the field of flexible electronics where the semiconductor microwires are 

deployed on nonconventional flexible substrates [1, 3, 5, 6]. Among different compound 

and elemental inorganic semiconductors, Silicon (Si) has been the first choice for such 

investigations owing to its matured processing as well as well-known mechanical and 

electrical properties. Tuneable electrical properties by changing the type and doping 

concentrations effectively, these high aspect ratio microwires are foreseen to have 

significant contribution towards development of flexible sensors such as temperature, 

photodetectors and piezotronics [3, 9-11]. Si has also been found to possess 

piezoresistive behaviour while undergoing through compressive or tensile strains [9]. 

Piezoresistance in microwires is related to the change in electrical response during bend 

conditions both in convex and in concave orientations of the Si microwires. This 

characteristic of the microwires could readily be exploited for piezotronics. These type 

of sensors are ideal for applications such as a robotic skin, where strain related actions 

are desired to be monitored for dexterous manipulation of tasks. 

To effectively utilize the Si microwires and design a process protocol for successful 

fabrication of devices, materials with compatible electrical and mechanical properties 

are highly desired to maintain the higher electrical performance as well as mechanical 

flexibility of the devices. Efficient functioning of metal contacts with microwires have 

attracted potential interest for applications such as solar fuel cells, artificial 

photosynthesis, strain sensors, piezo-photottronics detectors etc. [3, 10, 12]. The higher 

surface-to-volume ratio of the Si microwires make it interesting for these diverse 

applications. After transfer printing (discussed in chapter 2&4) of the Si microwires, a 

feasible as well as cost-effective patterning technique for the metal contacts is a 

challenging task. To compensate the higher cost involved during the photolithography 

and DRIE etching process, solution based manufacturing is the preferred option for the 

post-processing steps. The low cost printing technologies especially inkjet printing and 

spray coating are the most promising approaches for such type of devices. For 



93 

 

developing the asymmetric MSM structure, only patterned deposition of the conductor 

materials is required to complete the structure. Therefore, two different types of 

conductor solutions are utilized using spray coating technology to investigate the 

performance of each with the Si microwires. Metallic solution based on silver (Ag) 

nanoparticles and an organic conductor i.e. PEDOT-PSS is used for these purposes. 

Experimental investigation is done for fabricating and characterizing asymmetric MSM 

structures based on two differently doped Si microwires transferred to flexible 

substrates. This chapter discusses the patterning techniques, conductive materials 

followed by electrical characterization in planar and bent orientations. The MSM 

structures are also characterized at different light illumination to explore the 

possibilities to use the Si microwires as flexible photodetectors. MSM photodetectors 

are very interesting owing to their good electrical bandwidth, fast response, small 

capacitance, large available active area to be used as an optical sensor [1, 2, 13].  

5.2. Materials and Experimental Procedures 

5.2.1. Type of Si microwires 

Two different types of Si microwires are used in the investigation of MSM structures 

i.e. p and n-type wires. Details of the fabrication process and transferring them onto 

secondary flexible substrates are discussed in the chapter 3. For the p-doped wires, the 

microwires were developed on the SOI wafers without altering the doping 

 

Figure. 5.1. Si wires on bulk wafer, (Left) stamp-assisted transfer printing (a). Si wires with 

buried oxide (BOX) (b). Suspended Si wires after etching BOX (c). PDMS stamping and 

retracting to pick Si wires (d) Stamping on adhesive layer on target substrate, (e) peeling-off 
PDMS stamp (f) Si wires transfer to target substrate. (Right) (g). Target substrate with 

adhesive side facing Si microwires and peeling-off (d) Si wires transfer to target substrate. 
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concentration. Whereas doping of the n-type wires is accomplished by implanting 

Phosphorous during the photolithography process. Besides these two separately 

fabricated microwires, alternately doped n and p-Si microwires on the same wafers are 

also fabricated in a second set of experiments. A slide mask is used to implant 

phosphorous at the alternate microwires. The alternately doped microwires are 

interesting to harvest the potentials of both types (n and p-Si) of microwires on a single 

flexible substrate. In addition to the stamp-assisted transfer, the flipped-over Si 

microwires are also characterized for the current-voltage (I-V) and optical response 

measurements. Fip-over is the type of dry transfer technique in which the Si microwires 

are directly transferred to the target substrate (PI tape for these) with adhesive side 

facing the microwires. After etching the buried oxide layer, the adhesive side of the PI 

tape is brought in conformal contact with the suspended microwires as shown in the 

Figure 5.1. As against the stamp-assisted transfer printing, flip-over transfer printing is 

more simple and a single step process. The main challenge involved with flip-over 

transfer printing is the availability of the bottom side of the Si for post-processing and 

device fabrication. As during the transfer printing, the top finished surface comes in 

direct contact with the adhesive layer, which is sacrificed during the transfer of wires to 

flexible substrate. For device configurations, only top-gated MISFET structures are 

possible to be fabricated with the flipped-over microwires, which also restricts their use 

for limited applications. In addition, the adhesive glue on the PI tape is not compatible 

with some of the chemicals used during the post-processing, which degrades the 

adhesion causing delamination of the Si microwires from the flexible substrates. 

Therefore, to investigate and confirm these claims, flipped-over n-and p-Si microwires 

are characterized and compared to the I-V and optical response of the stamp-assisted 

transfer printed Si microwires.  

5.2.2. Silver-based Solution for Spray Coating 

Solution-based conductive inks have been the main driving forces for advancement of 

printed and flexible electronics. The unique properties, these solutions exhibit before 

and after printing have made it more interesting to embark further into the field of 

flexible electronics. The conformable integration of conductive patterns and strong 

adhesion to nonconventional polymeric substrates after printing has given sufficient 

confidence to work with these materials. Amongst the list of available solution 

processable conductors with stable properties, silver (Ag) has emerged as the most 

promising in terms of synthesis, processing, robustness and more stability for longer 

time after curing on flexible substrates [14, 15]. Silver has been used in electronic 

devices since the birth of microelectronics and remains the most prominent material for 

diverse applications of nanotechnology. Several other metallic materials including both 

organic and inorganic have also been developed for conductive patterns such as copper, 

gold, platinum and tin [16-18]. Allotropes of carbon in the form of CNTs and graphene 

are considered as the most suitable conductors owing to their intrinsic mechanical 



95 

 

flexibility while possessing higher conductivities [8, 18]. However, developing stable 

solutions are needed with longer shelf life, which are more resistant to oxidation during 

pre and post-printing steps. Therefore, the easy and matured synthesis of stable 

solutions with tuneable properties have made the silver a preferred choice. 

Silver paste (DuPont 5028) has been used for the conductive patterns in the MSM 

structures. The Ag paste is commonly used to develop low voltage circuitry, especially 

on flexible substrates. The composition is particularly suitable for applications requiring 

higher conductivities and fast curing. It can be used on fast speed roll-to-roll, 

semiautomatic and manual printers by offering prolonged residing time on the 

dispensers. The silver paste is primarily developed for screen-printing technology, 

which has higher viscosity in the range of 15-30 Pa. S as per supplier (DuPont) 

specifications.  Inkjet and spray coating technologies required lower viscosities in the 

range of 0.001-.10 Pa. S as compared to viscosities desired for typical screen-printing, 

which is in the range of 0.50-5 Pa. S [17]. Therefore, to make the solution less viscous, 

a suitable thinner as recommended by the supplier i.e. DuPont 3610 is added to the 

paste in appropriate ratios to lower down to the level of desired inkjet/spray coating 

viscosities. A shadow mask is used for the patterned deposition through spray coating 

explained in more detail in forthcoming sections. Besides, spray coating a custom-made 

micro-spotting tool is also used to pattern the Ag paste (discussed in detail in chapter 6) 

and compared the processability with spray coating of Ag solution.  

5.2.3. Patterning PEDOT-PSS by Spray Coating 

The future of flexible electronics is foreseen to be having higher speeds and lower 

costs. The higher speeds come by introducing inorganic semiconductors into the stack 

of materials having intrinsic flexibility [19]. Processability of inorganic semiconductors 

such Si microwires and then transferring to secondary flexible substrates comes with 

higher costs. Therefore, to compensate the unavoidable higher costs of the Si 

microwires, choosing the cost-effective materials and fabrication techniques for the 

post-processes are the available alternatives to reduce the overall costs. Organic 

materials are solution-processable, inherently flexible and integrating these with 

inorganic semiconductors would lead to devices that are more economical in future. 

Less research has been reported for integration of organic conductors and inorganic 

semiconductor, therefore in this research we have studied the possible heterogeneous 

integration of dissimilar materials in the form of thin films. Among the list of available 

conductive polymers, poly(3,4-ethylene dioxthiophene) (PEDOT) doped with 

poly(styrene sulfonate) (PSS) is dominant for its distinguished mechanical and electrical 

properties [12, 20, 21].   

PEDOT-PSS is transparent organic conductor in the visible range, have higher 

mechanical flexibility and excellent thermal stability [22]. PEDOT can be chemically 

polymerized in a poly(styrene sulfonic acid) (PSS) solution to give a PEDOT-PSS water 

emulsion.  It results into a conjugated polymer with positively doped properties, where 
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the PSS are the counter ions used to balance the doping charges [23]. The transparent 

nature of PEDOT-PSS have played significant role in developing flexible optoelectronic 

devices [12, 20, 24]. These devices are mainly targeted for solar cells and energy 

applications utilizing also organic semiconductors or blend materials. However utilizing 

PEDOT-PSS as a conductive contact to Si microwires for the development of MSM and 

MISFETs structures would be step further towards more innovative devices. These 

structures would result in development of exciting applications as flexible 

photodetectors, mixers, strain cum optical sensors and flexible optical switches. 

PEDOT-PSS suffers from lower conductivities; however, research is in progress for 

exploring effective secondary doping to enhance the conductivity of PEDOT-PSS [22, 

23]. The secondary dopant is apparently an “inert” substance, which further increases 

the conductivity of the primarily doped (with PSS) conjugated polymer [23]. It has been 

observed that conductivity of PEDOT-PSS can be enhanced by more than an order of 

magnitude by addition of polyalcohol’s (alcohols with more than two OH groups on 

each molecule) [21, 22]. The possibility to enhance the conductivity of PEDOT-PSS 

compared to other polymeric conductors is a plus point to use it for high-end devices. 

Solution used for spray coating in these experiments was purchased form Sigma Aldrich 

(product no. 739332). A high-conductivity grade solution is prepared with a 

concentration of 1.1% in H2O. Further specifications as per supplier include resistance 

<100 Ω/sq., < 80 % visible light transmission (40μm wet), refractive index n20/D 1.334, 

PH < 2.5, viscosity <100 cP (22 °C) and with a density of 0.999 g/mL at 25 °C.  

5.2.4. Printing Experiments 

The experimental details for fabrication of Si microwires and transferring them onto 

secondary polymeric substrates has already been discussed in previous chapters. 

Schematics of the stamp-assisted and flip-over transfer printing are shown in Figure 5.1 

(a) and (b). Wires have been transferred to two different substrates i.e. Polyethylene 

terephthalate (PET) and PI. Choosing the two different substrates were based on 

motivation for exploring possible structures with the Si microwires. PET substrate is 

optically transparent and is the most feasible substrate for the stamp-assisted transfer. 

The receiving adhesive layer i.e. Su-8 in our case is UV-curable, which promotes the 

rapid transfer of Si from the stamp when brought in conformal contact to the receiver 

medium. The immediate curing of SU-8 when exposed to UV lamp from the backside 

of the substrates, the wires are transferred to the receiver layers along curing of the SU-

8 layer. This completes the second transfer and the wires are ready for post-processing. 

In case of PI-tape, the adhesive part does not require any post-treatment and the wires 

are transferred just in one-step as shown in Figure 5.1 (b). Despite the simple 

processing, flip-over Si microwires have several drawbacks hindering their use for 

useful applications. The non-availability of the top-finished surface of Si device layer 

(of SOI wafer) is one of the major challenges. Additionally, it is impossible to pattern 

conductive contacts on the adhesive layer at the pre- and post-transfer stage. Processing 
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to pattern would deteriorate the adhesive layer ultimately affecting the microwires 

adhesion to the PI substrate. On the other hand, PET substrate is possible to be patterned 

before spin coating the SU-8 layer. Therefore, wires transferred to PET substrate have 

more attractions to be used for diverse applications. For instance, a back-gated structure 

is essential for using these microwires for sensor, where the top functionalized surface 

is available for direct interaction with the transducer materials. These back-gated 

structures are also interesting for optical related application such as UV and visible light 

detection (explored in this research), artificial photosynthesis and fuel cells etc.   

Metal patterns were completed by using spray coating and micro-spotting tools. 

Spray coating is a direct writing technique where the solution is injected by a syringe 

pump, transported through a Teflon tubing and carried through the tip of a nozzle. Two 

types of spray configurations are practiced in microelectronics i.e. electrospray and 

aerospray.  In electrospray, configuration of the system remains the same as aerospray 

except the nozzle types. The actuation mechanism of the electrospray is governed by 

application of a high electric field between the nozzle and a counter electrode. In this 

setup, an electric field is generated between the two electrodes to ionize the fluid in 

between. Positive potential is applied to the capillary nozzle while ground is applied to 

the conductive plate kept at a certain distance below the nozzle tip [25, 26]. Figure 5.2 

shows schematics of nozzle configuration, nozzle setup and forces active during the 

spray process. Despite the capability to deposit, an ultrathin layer with minimum 

surface roughness, the complex system parameters and specific requirements of solution 

conductivities to get primarily a stable cone-jet in is more challenging. Additionally, the 

localized heating due to high electric field is undesirable for organic based materials as 

 
Figure 5.2. (a) Schematic of meniscus and affecting forces. (b) Meniscus shape after application 

of electric potential, (c) Meniscus behavior of electrospray upon increasing voltage [25, 26] 
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it promotes the nozzle clogging by immediate sintering of the materials in the nozzle. 

On the other hand, aerospray deposition is a good alternative having almost similar 

spray coating results but with more simplified operation.  

A dual-concentric nozzle is used in aerospray deposition, where the internal nozzle is 

used to deliver the fluid while the external is used for air/N2 flow to atomize the fluid 

into spray. Rheological properties of the solution are adjusted especially the viscosity to 

ease the spraying of the solution. Figure 5.3 shows schematics of the concentric nozzle 

and system setup for the aerospray coating developed in this research. A dual concentric 

(coaxial nozzle) purchased from NanoNC Korea is connected with the syringe pump 

(Harvard Apparatus, PHD 2000 Infusion) through a Teflon tubing. Syringe pump is 

used to control the flow rate. A higher flow rate i.e. 2000 ml/min is applied initially to 

flood the nozzle and then reduced to around 500 ml/min during the spraying process.  A 

stable and continuous flow of fluid is essential for the uniform spray coated layer. A hot 

plate is used for the immediate evaporation of the surfactant used in the solution. For 

the silver solution, stage is heated at around 120 oC whereas for PEDOT-PSS the stage 

temperature is kept around 100 oC. The standoff between the nozzle and substrate is 

kept around 20 mm to cover the active area of the devices with the desired spraying 

material. For the patterned deposition, a shadow mask is used with two line openings. A 

rigid and high temperature resistant material is desired for the shadow masks to 

authenticate the firm attachment to the flexible substrate and Si microwires. Initially a 

3D printed shadow masks (discussed in more detail in chapter 6&7) were used. These 

masks were prepared form stack of polymeric sheets glued to each other. They are ideal 

for solution, which does not need any heated stage (as in case of PMMA discussed in 

Chapter 7). However, for the metal deposition, these 3D printed shadow masks are 

challenging, as the stacked layers are unglued during the heating process and 

deteriorates the final structures. In addition, the firm attachment to the substrate and 

 
Figure 5.3. Optical images and schematics of (a). Dual concentric nozzle (Coaxial Nozzle, 

NanoNC, Korea). (b) Schematic of the cross-sectional view of the nozzle. (c) Spray system 

configuration with nozzle stand, heated substrate and a syringe pump. (d) Shadow mask 

prepared from brass by milling machine.   



99 

 

microwires is a serious issue and the solution undergoes through the elevated parts of 

the mask resulting into short-circuiting of the conductive contacts. Thin sheet of brass 

(50 um thick) is ideal for such applications that is rigid and can withstand higher 

temperatures at the same time as shown in Figure 5.3 (d). To make the fabrication of 

mask more robust, patterns are developed through a milling machine.  

5.3. Results and Discussions 

The Asymmetric metal semiconductor metal (MSM) structures were characterized in 

planar as well as bent orientations. The current-voltage (I-V) measurements were 

performed in ambient environment by probing both the metals contacts using 

semiconductor parameter analyser (4156C, Agilent) as shown in Figure 5.4. Current 

response of all the configuration of wires were analysed under similar conditions. Aim 

of these investigations is to compare the performance of both types of Si microwires 

independently on separate substrates and also on a similar substrate in the shape of 

alternately doped pn-Si microwires.  Further investigation considered in this study are 

analysis of the two-step stamp-assisted transferred wires and flipped over transferred 

wires, which are accomplished just in one process step. Focus of these investigations is 

also on the junction characteristics of Ag and PEDOT-PSS with both types (n and p-Si) 

of microwires. Figure 5.4 shows images of the I-V measurements of the Si microwires 

in bent orientation. Here a simple setup is arranged to bend the microwires to a desired 

value by placing rectangular blocks at a distance of 15 mm apart on a planar thick 

acrylic sheet. Radius of curvature can be varied by changing the distance between 

rectangular blocks. With this configuration, we characterized the Si microwires in bend 

orientation and compared the values to the planar mode devices.  Devices were checked 

lying in the centre where strain is effective at the centre of curve.  

 
Figure 5.4. Current-voltage (I-V) measurements of Si microwires in bent (15mm diameter). 
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The MSM structures were also characterized under different illumination conditions. 

A Halogen lamp light with varying light intensity that is integrated to the microscope of 

the probe station is used to shine light from the top on the microwires. Whereas an ultra 

violet (UV) light source was used to investigate the current response of, the microwires 

compared to halogen light. The light intensity is varied for six different values ranging 

from 102 µW/cm2-13.29 mW/cm2. The UV-light source have a fix value so the lamp is 

kept at two distant positions to vary the intensity of light falling on the microwires. 

Intensity of UV-light at position 1 was 7.22 mW/cm2 and 22 mW/cm2 at position 2.  

5.3.1. I-V Measurements of Planar MSM Structures 

Devices were characterized based on the combination of differently doped Si 

microwire arrays.  For the first combination of devices made of p and n doped Si wires 

on separate substrates and by making the metal contacts using Ag. Graphs in Figure 5.5 

(a) and (b) show I-V measurements of the MSM devices in planar orientations. The 

highest current values of Ag/n-Si-Ag is observed to be 7.72 µA at a positive bias of 5V 

whereas maximum of - 12.8 µA at negative bias of -5V without any light illumination. 

Alternatively, the MSM structures made of Ag/p-Si/Ag have a highest current value of 

0.14 µA for the positive biased voltage of 5.0 V and -0.73 µA for the negative bias of -5 

V. The difference in the current response of the Si microwires is obvious owing to the 

differently doping types and concentrations as well. Doping concentration of n-Si 

microwires with Phosphorous (P) is about 1015 whereas p-type wires are moderately 

doped with Boron (B) i.e. 1012. Traps formed at the junction and the difference in the 

junction potentials between Ag with the n and p-type Si microwires are also responsible 

for the current response variations. The work function difference desired for the ideal 

schottky and ohmic contact are also playing role in variations of the current responses.  

Similarly, the devices were characterized made of PEDOT as a conducting contact to 

p and n-Si on separate substrates. The asymmetric MSM structure having PEDOT-PSS 

as the immediate conductive contact to the Si microwires and using silver paste as the 

 
Figure 5.5. I-V measurement of the MSM structures by using Ag with n and p-Si microwires 

separately in planar mode. 
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conductive pad for the probes is developed. Devices are characterized by putting probes 

on the silver spots instead directly contacting the PEDOT. After Spray coating of 

PEDOT-PSS, the patterned layers are sintered at 120 oC. To enhance the conductivity of 

PEDOT layers, ethanol was drop casted following the technique explored in [22]. The 

graphs in Figure 5.6 (a) and (b) show I-V curve for the PEDOT/n-Si/PEDOT and 

PEDOT/p-Si/PEDOT respectively in planar mode.  

The current response is not very rapid for the hybrid junctions made between 

PEDOT/n-Si/PEDOT. PEDOT is usually used as hole injection material in 

optoelectronic devices where its metallic nature and transmittance in the visible range of 

light make it a good substitute for metals with no transmittance at all. An inversion 

layer is formed on the surface of n-type Si microwires as a result of large work function 

difference between the PEDOT (ФPEDOT 4.7-5.4 eV) and n-Si (Фn-Si, ~3.85eV). Strong 

inversion occurs at the interface and the junction behaves more like a p-n junction diode 

[4, 27]. On the other hand PEDOT/p-Si/PEDOT shows very promising results due to the 

lower junction potential and minimal difference in the work functions of PEDOT 

(ФPEDOT 4.7-5.4 eV) and p-Si (ФPEDOT 4.95 eV). A moderate schottky junction at lower 

voltage and ohmic in the medium range is observed for the dark current measurement as 

shown in Figure 5.6 (b). Further, the current start to saturate at very low voltage, 

making the device ideal for low voltage thin film transistor applications. The current 

response in the saturation regime is in acceptable range for diverse transistor and 

switching applications in lightweight flexible electronics.   

5.3.2. I-V Measurements of MSM in Bend Orientation 

The similar MSM structures were characterized in the bend orientation and compared 

the values with the planar for possible changes in the resistance of the Si microwires as 

a result of tensile strain. Two rectangular blocks (as shown in Figure 5.4) were used at 

fixed positions using bi-adhesive tape and the plastic substrates were fixed between the 

edges of two blocks. The block were kept at 15 mm apart making a circular radius of 

around 7.5 mm at the centre, where maximum strain is to be observed in the 

microwires. The microwires were characterized in the convex position as shown in 

 
Figure 5.6. I-V measurement of the MSM structures by using PEDOT with n and p-Si microwires 

separately in planar mode 
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Figure 4.4. Significant change in the resistance of the n-Si wires is observed as shown in 

Figure 5.7 (a) compared to the planar counterparts shown in Figure 5.5 (a). The 

maximum dark current response in the planar mode at positive bias of 5.0 V is 7.72 µA, 

whereas the same devices under bend conditions have a maximum current response of 

about 0.48 µA, which represents a significant increase in the resistance of Si 

microwires. On the other hand, the I-V curve for Ag/p-Si/Ag in bend mode experiences 

very less changes as shown in Figure 5.7 (b) compared to the I-V curve of the similar 

devices in planar mode shown in Figure 5.5 (b). The lower doping concentration of p-Si 

might be one of the reason for these less variations compared to the prominent 

variations in the heavily doped n-Si microwires. Another reason for the less variations is 

due to the non-uniform spacing between the metallic contacts. Deviations in the spacing 

could also lead to the variations in the response of microwires, as the wires with 

increased spacings would be subjected to more strain compared to closely spaced 

conductive patterns. The closely spaced metal patterns act as a supporting layer to 

prevent the Si microwires from undergoing any strain. This needs further investigation 

and in order to harvest the strain response of the Si microwires, spacing between the 

metal contacts need to increase.  

Figure 5.8 (a) and (b) show I-V curves of the PEDOT/n-Si/PEDOT and PEDOT/p-

Si/PEDOT respectively in bend mode. In this case, significant variations were observed 

for both the devices compared to the current values in planar mode. For the PEDOT/n-

Si/PEDOT, the dark current reduces from 101.0 µA (Figure 5.6 (a)) to 7.6 µA (Figure 

5.8 (a)) for the positive biased of 5.0 V. The current response for the PEDOT/p-

Si/PEDOT have less variations in the bend mode against planar. The dark current 

reduces from 18.3 µA (Figure 5.6 (b)) to 2.33 µA (Figure 5.8 (b)) in the bend mode, 

which is again due to the less doping concentration of the p-Si. All these variations in 

the current response in planar and bend mode of the MSM structures lead to interesting 

applications of using Si microwires as strain sensors [9, 10].  The slight changes in the 

orientation either convex or concave have a strong bearing on the current response of 

 
Figure 5.7. I-V measurement of the MSM structures by using Ag with n and p-Si microwires 

separately in bent orientation. 
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the microwires, which could successfully be utilized as a strain sensor. These type of 

devices are attractive for applications such as prosthetic limbs and synthetic or 

electronic skin (e-skin) for robots where various dexterous manipulation tasks are 

monitored. Such type of sensors, if installed at the finger joints either on the back or on 

front side where the change in resistance due to convex or concave bending respectively 

would help in performing the manipulative tasks successfully. Strain sensors developed 

with Si microwires are more stable and reliable compared to sensors developed from 

organic based materials. The Si microwires based sensors are more responsive, 

repeatable and have longer life if properly encapsulated to prevent to harsh 

environments.   

5.3.3. Photodetection and Optical Switching of the MSM 

Photodetectors and especially UV photoswitches have emerged as vital components 

for a wide range of commercial applications including biological and chemical analysis, 

flame monitoring, missile detection, secure space communication and astronomical 

studies [2]. The Si microwires play a greater role in visible and UV phot detection 

owing to their high surface-to-volume ratio. The high responsivity and photodetection 

 
Figure 5.8. I-V measurement of the MSM structures by using PEDOT with n and p-Si 

microwires separately in bent orientation.   

 
Figure 5.9. Current-voltage (I-V) measurements of Si microwires in bent (15mm diameter) 

(a). I-V under halogen lamp with varying intensities and (b) under UV- light.  
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gain has been traditionally found in the low-dimensional wide band-gap materials such 

as GaN, ZnO, TiO2 and several metal-oxide bandgap nanostructures [28, 29]. However 

the high sensitivity to ambient environment such as temperature and humidity making 

these devices more prone to signal fluctuations and poor selectivity. These devices are 

less durable and have a short life in such variable and harsh environments [2, 29]. 

Additionally, the major challenge with the wide band-gap materials is their reliable 

integration onto flexible substrates. Therefore, to overcome these issues, Si µ-wires 

have been investigated as alternative to detect broad spectrum in visible and UV range.  

The MSM structures were characterized for the optical response with different 

illuminations as shown in Figure 5.9. Halogen lamp with a broad spectrum of visible 

light was used with variable light intensity. The wires were illuminated with 6 different 

values of the light intensity and corresponding change in the current response was 

measured. The minimum light intensity was 102 µW/cm2 and maximum as 13.29 

mW/cm2. In the second type of illumination, a UV light source is used at two different 

intensities. As the UV light generates a fixed value of light intensity without any control 

 
Figure. 5.10. I-V measurement of the MSM structures by using Ag with n-Si microwires 

separately in planar mode under (a) Light illumination of halogen and UV, (b). Current response 

to increasing halogen light intensity 

Table 5.1. Intensities of the light sources 
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knob to tune the intensity. Therefore, the UV lamp is kept at two different locations 

from the Si microwires where the light intensity was calibrated to two corresponding 

values. The light intensities were monitored by using an optical meter. The halogen 

light is integrated with the microscope of the probe station and the light source was right 

on top of Si microwires. Whereas in case of UV light, the lamp was kept on the side 

facing directly at an angle (~45o) to the Si microwires.  All the light intensities are 

summarized in Table 5.1. 

The MSM devices based on Ag contact with both n and p-Si were characterized 

under illumination conditions in planar mode in similar method described in previous 

section (5.3.2). Graphs in Figure 5.10 (a) and (b) show comparison of current responses 

of n-Si microwires with light illumination of UV and halogen lamp respectively. The 

dark current in the graphs of Figure 5.10 (a) is compared to the halogen light at photo 5 

intensity i.e. 6.85 mW/cm2 and both the values of UV lamp. Whereas devices were 

characterized for a varying intensity of halogen lamp ranging from photo 1 to photo 5 as 

shown in Figure 5.10 (b).  

 
Figure 5.11. I-V measurement of the MSM structures by using Ag with p-Si microwires 

separately in planar mode under (a) Light illumination of halogen and UV, (b). Current response 

to increasing halogen light intensity 

 
 

Figure 5.12. I-V measurement of the MSM structures by using PEDOT with n-Si microwires 

separately in planar mode under (a) Light illumination of halogen and UV (b). Current response 

to increasing halogen light intensity. 
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Both the Ag/Si/Ag structures are observed to be more responsive under exposure to 

the halogen lamp even with lower intensity (6.85 mW/cm2) than the one with maximum 

UV-light (i.e. 22 mW/cm2). The maximum change observed with the light illumination 

is 27.4 µA, three times higher than the peak value of dark current at the positive bias of 

5.0 V. On the negative bias side increase in the current values by more than two order of 

magnitude i.e. 30.4 µA is observed as compared to 12.8 µA of the peak dark current at -

5.0 V. On the contrary, not much change is observed with UV illumination of the n-type 

microwires. The I-V curves in Figure 5.11 (a) and (b) show response of p-Si 

microwires, which are observed to be responsive to both the illuminations and increase 

in current responses are observed as compared to the dark current values. The response 

is significant again for the halogen light especially on the negative bias where more than 

one order of magnitude increase in the peak dark current value is observed. However, 

the UV response is negligible and have adverse effect on current in the negative bias. 

Devices made of PEDOT/Si/PEDOT have very exciting results in response to light 

illumination owing to the junction modification between PEDOT and Si microwires. 

The transmission window in the visible range of PEDOT allows the light to directly 

interact at the interface and hence increase the number of charge carrier. This has been 

observed from the experimental values of current gain during the I-V measurements. 

Figure 5.12 (a) and (b) shows current gains in at different lighting conditions. Again, the 

junction between p-type PEDOT and n-Si make an inversion layer at the Si surface by 

depleting all the majority charges (discussed in section 5.3.1). The moderate schottky-

ohmic behaviour is dominant (Figure 5.12 (a)) behaving more like a pn-junction diode. 

The current response is lower at lower biasing values and increases abruptly after 

certain threshold. The current does not saturate and goes on increasing by increasing the 

biasing voltage. The switching window is very small by increasing intensity of the 

halogen lamp. The strong optical switching behaviour is shown by the PEDOT/p-

Si/PEDOT structures, where the photo current is increased by few order of magnitudes 

as shown in Figure 5.13 (a) and (b). As against the previous devices (PEDOT/p-

Si/PEDOT), here the UV response of the current is higher in both the positive and 

 
Figure 5.13. I-V measurement of the MSM structures by using PEDOT with p-Si microwires 

separately in planar mode under (a) Light illumination of halogen and UV (b). Current response 

to increasing halogen light intensity. 
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negative biasing conditions. The junction is moderately modified from schottky like 

junction towards more ohmic with the gradual increase of the light illumination shown 

in Figure 5.13 (b). The photocurrent gain (46.5 µA) increases by an amount of 28.2 µA 

compared to the dark current (18.3 µA). Similar trend of current enhancement is 

observed on the negative bias as well. The peak current values increase approximately 

by four orders of magnitude by illuminating the Si microwires with UV-light at higher 

light intensity i.e. 22 mW/cm2.  

Real-time switching behaviour of the PEDOT/Si/PEDOT was also investigated, 

where a lower biasing voltage i.e. 0.5 V was applied to the MSM structures and the light 

is switched on and off during the biasing conditions.  The switching behaviour is 

evident from the Figure 5.14 (a) and (b), where halogen and UV lights are illuminated 

respectively on a PEDOT/n-Si/PEDOT structure. Both the graphs show an increasing 

value of the current with increased biasing, however by turning off the light an 

immediate loss in the current value is observed as shown in Figure 5.14 (a & b). A 

significant variation in the current values is detected light on and light-off conditions. 

For instance, at biasing voltage of 0.5 V is The peak current value for light-on is 11.5 

 
 

Figure 5.14. I-V response and switching behavior of the MSM structures using PEDOT with n-

Si microwires separately (a) Light illumination of halogen (b) UV light. 

 
 

Figure 5.15. I-V response and switching behavior of the MSM structures using PEDOT with p-

Si microwires separately (a) Light illumination of halogen (b) UV light. 



108 

 

µA, whereas a the current value drops to 1.5 nA with the light-off. The trend of change 

in the current values is same at each value of the biasing voltage.  

This huge difference in the current gain just by turning-on and off the illuminating 

light is a very promising result for development of an optical switch as well as 

photodetection. An enhanced optical current response is observed for the UV light 

compared to the halogen lamp. An increased current value of 40.2 µA is detected at 

biasing voltage of 0.5 V with the light on and drops to 2.3 nA with UV light off. The 

increase in current gain with UV light-on i.e. 28.7 µA compared to halogen light-on at 

similar biasing voltages (0.5 V) confirms the superior performance of the optical switch 

for UV light with a wider operating and switching window.  Figure 5.15 (a) and (b) 

show graphs of switching behaviour of a PEDOT/p-Si/PEDOT structure.  The switching 

current window is small in case of p-Si due to the less charge carrier concentrations 

compared to the heavily doped n-Si (doping concentration is 1015). The variations in 

the photocurrent and dark current is very small for both the types of illuminations. In 

order to make the switching window wider, a higher doping concentration is desired.  

5.4. I-V of Flipped-Over Si Microwires 

Flip-over transfer printing is a one-step process for an easy and simple transfer of Si 

microstructures from the donor wafer onto secondary flexible substrates as shown in 

Figure 5.1 (b). All the devices discussed in previous sections were translated to flexible 

substrates using a PDMS-stamp, which involves a two-step transfer process. Wires are 

picked-up by weak Van der Waals forces from the donor wafer by the PDMS stamp. A 

very planar stamp is desired for such transfer process and a high active surface area of 

contact between the wires and stamp. Serious risk involved in this process is some wires 

cannot be detached from the tethered points and remain attached to the wafer. However, 

this could be avoided by over-etching (developed within this research) by completely 

removing the buried oxide. The over-etching approach is more effective for wires with 

wider dimension such as 30-40 µm widths or more. Wires with lower widths i.e. less 

than 20 µm are difficult to control as the wires are detached from the anchored positions 

after completing the etching of buried oxide.  Additionally cleaning steps such as with 

deionized water to remove the etchants (BHF), wires can detach during this and the 

subsequent handling steps. Therefore, under-etching is desired for the type of structures 

having higher resolutions both in width and in thickness. In such scenario, a flip-over 

transfer, where the flexible substrates have one side adhesive such as scotch tapes. Here 

the interface of stronger adhesive layers and the under-etched microstructures is 

stronger and the wires could easily be transferred onto the target substrates.  

To validate these observations, experiments were performed using a Polyimide (PI) 

scotch tape. The PI tape was fixed on a glass slide, the adhesive side facing upwards.  

After etching the Si microwires (30µm wide) and the cleaning steps, the glass slide is 

kept on top of the donor wafer and removed back directly. Transfer yield in this 

approach is 100 % as all the microwires were transferred onto the PI tape. Despite the 
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higher transfer yield, this procedure has serious challenges of the pre and post 

processing for the substrate as well as for the microwires. No patterning or metallization 

is possible before transfer, to realize for instance a back-gated FET. With metallization, 

the adhesive layer of the PI tape will be sacrificed; therefore, only top metallization 

after the transfer step is possible in this process. Additionally, the adhesive part of the 

substrate is not compatible with most of the cleaning solvents (i.e. acetone or ethanol 

required for removal of the PSS layer after deposition of the PEDOTT-PSS for 

conductive contacts) making the process more challenging. The most serious challenge 

is for the metal contacts, as backside of the Si device layer is available for the post-

processing, therefore getting an ohmic behaviour at the junctions is very challenging. 

This is less critical for the structures requiring single type of doping (like MSM) 

structures; however, for complex devices such as transistors, different doping sections 

are desired within a single structure. Experimental investigation has been carried out to 

compare the current response and the junction behaviour of the flipped-over Si 

microwires to that of stamp-assisted transfer printed microwires in this section. The 

MSM structures from the flipped-over microwires have been developed with the similar 

 
Figure. 5.16. I-V measurement of the MSM structures by using Ag with n and p-Si 

microwires separately in planar mode under. Characterized also for light illumination of 

halogen and UV. 

 
Figure 5.17. I-V measurement of the MSM structures by using PEDOT with n and p-Si 

microwires separately in planar mode under. Characterized also for light illumination of halogen 

and UV. 
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procedure as followed for the stamp-assisted microwires. The I-V measurements for the 

Ag/n-Si/Ag and Ag/p-Si/Ag are given in Figures 5.16 & 5.17 respectively. Comparing 

the results with graphs in Figure 5.10 & 5.11 (a), the schottky behaviour is dominant 

with the flipped-over wires.  The current responses at the higher biasing voltages are in 

close ranges for the n-Si wires. Thickness of the n-Si is lower (500 nm) than the p-Si 

(2.5µm) and therefore the doping concentration is uniform on both the side. The 

variations in the junction contacts is due to the increased traps and residual oxide, 

affecting the ohmic behaviour even under illuminations. Comparing the results of 

Figure 5.17 with that of the corresponding devices in Figures 5.12 & 5.13 (a), the major 

deviations in the current response as well as the junction behaviour is observed. The 

current drops by 7.5 µA in the PEDOT/n-Si/PEDOT structure along with a strong 

schottky junction. A lower current response i.e. 0.12 µA is experienced with the 

PEDOT/p-Si/PEDOT with the flipped over microwires as compared to the 18.3 µA with 

the stamp assisted transferred microwires. The junction does not change for higher 

illuminations despite the lower difference in the work functions of PEDOT and p-Si and 

transmission window of the PEDOT to the visible light. Table 5.2 summarizes all the 

peak currents of the corresponding MSM devices in planar mode. It is evident form the 

current responses that flip-over currents are lower compared to the dark as well 

photocurrent of the stamp-assisted transferred Si microwires. Additionally the provision 

to pre-process the substrate for the back contacts and availability of the finished top Si 

device surface for post-processing make the stamp-assisted transfer printed microwires 

more interesting. The large window of optical switching, higher value of photocurrent 

and junction modification from schottky to ohmic junction under illumination make 

PEDOT/p-Si/PEDOT more interesting for practical applications as in flexible electronic 

systems.  

5.5. Alternately Doped pn-Si Microwires 

Alternately doped pn-Si are arrays of microwires comprising both types of Si (p and 

n) on a similar substrate. A slide mask is used to develop such type of wires, where the 

alternate wires are doped with new type of dopants. Phosphorous is implanted as an 

alternate n-type wire on the already p-doped SOI wafer. Such type of devices are very 

interesting to be investigated as they have the potential to be utilized for diverse 

applications in flexible electronics. Few of the potential applications of alternately 

doped pn-Si microwires is the development of flexible thermoelectric generators and 

solar fuel cells. Thermoelectric generators work on the principle of seebeck effect where 

two differently doped semiconductors are connected on the edges to generate potential 

by a thermal gradient. Large arrays of Si microwires (20 wires each array) are more 

effective compared to few wires or structures. The thin and lightweight thermoelectric 

generators would revolutionize the low voltage self-powered microdevices. Another 

interesting application of the alternately doped Si microwires is its utilization for 

developing a flexible CMOS circuit. This is one of the most demanding area for 
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advancing the discrete flexible devices to integrated circuits. Not much research has 

been carried out until now, and the area of research for CMOS is still underdeveloped. 

Alternately, doped pn-Si microwires are interesting for recently developed phenomenon 

i.e. artificial photosynthesis and solar fuel cells on planar substrates. 

To explore the potentials of alternately doped pn-Si microwires on flexible substrates, 

prototype devices such as asymmetric MSM structures and thermoelectric generators 

(TEG) are demonstrated. The MSM structures are characterized for the optical 

illumination of the visible and UV light. They have potential applications to be used as 

optical sensors and photodetectors. Connecting an array of alternately, doped pn-Si 

microwires through transparent organic conductor such as PEDOT-PSS have good IV 

response, making them attractive for a range of optoelectronic devices. The prototype 

MSM devices have been developed, which is a step further towards successful 

fabrication of energy harvesting on planar flexible substrates. Additionally, 

development of a flexible thermoelectric energy harvester by using transfer printed 

doped Silicon (Si) microwires is also covered in this section. The TEG module, 

consisting of an array of alternately doped p-type and n-type Si microwires, is 

 
Figure 5.18. I-V measurement of the MSM structures by using Ag with alternately doped pn-Si 

microwires separately in planar mode under (a) Current response to light illumination of halogen 

and UV, (b). Current response to increasing halogen light intensity 

 
Figure 5.19.  I-V measurement of the MSM structures by using PEDOT with alternately doped 

pn-Si microwires separately in planar mode under (a) Current response to light illumination of 

halogen and UV, (b). Current response to increasing halogen light intensity 
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developed on a SOI wafer using standard photolithography and etching techniques. The 

Si wires in the TEG module are 5mm long, 50µm wide, and the spacing between two 

adjacent wires is 50µm. The TEG modules are transferred from SOI wafer to Poly 

(ethylene terephthalate) (PET) substrate by using transfer-printing method, with 

Polydimethylsiloxane (PDMS) as transfer substrate. More than 90% of wires are 

transferred in the first transfer step (i.e. from wafer to PDMS) and 100% are transferred 

in the second step (i.e. PDMS to PET) has been achieved in this process. A maximum of 

9.3mV open circuit voltage was recorded from the flexible micro TEG (µTEG) 

prototype with a temperature difference of 54 oC at two ends of the wires. Following 

sub-section provides details about the I-V measurements and thermoelectric response of 

the alternately doped wires.  

5.5.1. I-V of Alternately Dope pn-Si Microwires 

An asymmetric MSM structure is developed in the same manner as used for the 

single type doped wires. Similar steps of stamp-assisted transfer printing and 

metallization are followed. Figures 5.18 and 5.19 show graphs of the I-V measurements 

of the MSM structure mage with AG/pn-Si/Ag and PEDOT/pn-Si/PEDOT respectively. 

The current response in dark as well varying illumination intensities show very 

interesting and uniform behaviour compared to the separately doped Si microwires. The 

oppositely doped neighbouring microwire compensates the lower current response of 

the unfavourable junctions due to work function mismatches. Again, the UV-

photocurrent is dominant for the PEDOT/pn-Si/PEDOT, making it a reliable optical 

switch. The junctions remain moderately schottky even with the illumination in the 

Ag/pn-Si/Ag structures (Figure 5.18 (a) and (b)) similar to the separately doped n-Si 

microwires connected with Ag.  On the other hand, the PEDOT/pn-Si/PEDOT shows an 

immediate transition from schottky to an ohmic behaviour upon illumination of both 

types of light sources as shown in Figure 5.19 (a) and (b). This is the major variation 

observed within all the MSM structures characterized using separately doped and 

alternately doped Si microwires. Response of the alternately doped microwires is lower 

in the dark current compared to the single doped n and p-Si microwires junctioned with 

Ag and PEDOT. For the Ag/n-Si/Ag the peak dark current at 5.0 V is 7.22 µA 3.2 µA 

higher than the peak dark current of the of the alternately doped microwires. Similar 

case is with the PEDOT/n-Si/PEDOT where the peak dark current at 5.0 V is 7.6 µA 

and 18.3 µA for the PEDOT/p-Si/PEDOT structure, which is two times higher than the 

dark current of the PEDOT/pn-Si/PEDOT. On the contrary, a significant increase in the 

photocurrent of the PEDOT/pn-Si/PEDOT is observed where the dark current changes 

from 9.0 µA to 15 mA with UV light illumination. This property adds to the exciting 

applications foreseen for the alternately doped microwires where the high photocurrent 

gain and switching current window would lead to its reliable application for optical 

switches and fuel cell for self-powered autonomous flexible microsystems. 
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5.6. Thermoelectric Generators with alternately doped wires 

5.6.1. TEG Background 

The demand for self-powered or autonomous electronic systems in applications such 

as wearable electronics, body sensor networks and implantable devices has attracted an 

increased attention on the energy harvesting devices and systems. Harvesting energy 

from environment to power, a nano/microdevice is feasible and of vital importance to 

self-powered nano/microsystems [30-32]. The self-powered systems require their own 

power supply, which in most cases are the conventional electrochemical batteries 

having a limited lifetime. The task of replacing batteries is tedious and can become very 

expensive and risky especially in case of implantable devices. Such issues can be 

alleviated, if not prevented altogether, by developing the energy harvesting devices and 

scavenge the energy from the environment. The ambient energy source, which has 

received a great attention in the recent years, especially for applications such as 

wearable electronics, is the thermoelectric energy harvesting. Traditionally, 

thermoelectric generators (TEG) are energy harvesting devices made of all solid-state 

materials on rigid substrates that convert heat into useful electricity. Thermoelectric 

generators are different from dynamic heat engines, as they contain no moving parts and 

are completely silent [33]. Despite the lower efficiencies compared to dynamic heat 

engines, attractive features such as small, inexpensive and scalable have made the TEGs 

attractive energy harvesters for microsystems [33-35]. The increasing interest in 

developing thermoelectric energy harvesters is driven by the increased demand of long 

lasting operations of micro systems by utilizing heat energy from environment or heat 

emitted during system operation. The power consumption of nano/microdevices is 

usually in the range of micro to milliwatt [30, 35]. 

The flexibility or bendability of thermoelectric harvesters is a plus that improves their 

utility. For example, a flexible TEG can conform to body surfaces. Portable, personal 

and wearable self-powered nano/micro systems require the thermoelectric materials to 

be flexible and lightweight. Flexible thermoelectric generators deployed also on 

nonplanar surfaces are important for autonomous electronic systems due to the 

advantages of lightweight, portability, bendable, stretchable, large areas and more 

resistant to impact. For this reason, flexible thermoelectric energy harvesters are of 

great interest in variety of miniaturized wearable and distributed microsystems [36, 37]. 

Different materials, structural designs and fabrication techniques have been practiced 

for developing flexible micro thermoelectric generators (µTEG) [36, 38]. 

Thermoelectric material has been reported to be critically important as it has the major 

influence on performance of a µTEG. The Bi2Te3 and its alloys are commonly used 

thermoelectric materials [36]. The scaling down of bulk Bi2Te3 to harness energy 

conversions on larger areas is a challenge [39]. Fabricating synthetic 

micro/nanostructures of these materials for energy purposes is even more difficult and 

also expensive. In this regard, the semiconductor materials such as Si are ideal 

candidates for such type of devices. The suitability of Si is strengthened by its natural 
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abundance and wide usage in electronics, with a large industrial infrastructure for low-

cost and high-yield processing.  However, bulk Si have high thermal conductance, 

which is potentially an unwanted parameter for µTEGs. Due to this reason downsizing 

of bulk, Si to microwires has been investigated extensively on wafers scale [32, 39].  

Most of the reported TEGs based on Si are vertically grown nanowires on wafers, 

which restricts their deployment on flexible substrates with proper orientation of the 

doped wires. In addition, integration of such structures for increased number of 

thermocouples for enhancing efficiency is challenging. A different approach for 

developing flexible µ-TEG on flexible substrates such as PET (poly(ethylene 

terephthalate)) is investigated here by using alternately doped Si microwires. The Si 

microwires were developed on SOI wafer and then successfully transferred to PET 

substrate by using PDMS stamp as an intermediate transfer substrate. A stamp-assisted 

transfer (similar transfer method discussed in section 5.2) method was selected also for 

the TEG devices. A slide mask is used to deposit alternate doping material on the 

already doped (p-type) SOI wafers. Thermoelectric structure has been completed by 

using a micro spotting technique for metallization after transferring microwires to 

flexible substrate. Sample devices were characterized at different temperature gradients 

and open circuit voltage was found to be in close approximation to state of the art 

device [32, 36]. To our knowledge, this is in one of the pioneering prototype devices, 

developed by using stamp-assisted transfer printing of alternately doped Si microwires 

onto flexible substrates. 

5.6.2. Planar thermoelectric generator 

A thermoelectric (TE) cell (or thermocouple) consists of two dissimilar conductors, 

often p-type and n-type doped semiconductors, connected at one end at the junction as 

shown in Figure 5.20 (a). The first TE effect, known as the Seebeck effect, occurs when 

the junction is heated while the other side is kept cool, so as to create a temperature 

difference across the thermocouple as shown in Figure 5.20 (b). The resulting ΔT 

generates an electromotive force (or voltage) along the TE materials [30, 36]. Figure 

5.20 (a) shows schematic of two doped wires connected in series in which a heat 

difference at both the ends results in an electric current generation passing from n to p 

side of the couple. Figure 5.20 (b) shows a complete prototype of thermoelectric 

generator in which individual microwires are connected in series. 

 
Figure 5.20. (a) Scheme of a thermocouple cell (b) Concept of a TEG module. 
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Top down approach for Si microwires is the most reliable and practiced technique in 

order to get uniform dimensions. Microwires are obtained by using standard 

photolithography technique with good control over geometric parameters like thickness, 

widths and lengths of the microwires. Better uniformity in geometry and thickness is 

essential for TEG applications, which could be easily achieved by using SOI wafers as 

against by bulk wafers. The similar geometry in turn contribute to the better and 

uniform response of the devices. Total of 34 microwires are fabricated for an increased 

number of therocells in a complete thermoelectric module. Spacing between the 

microwires are important to be adjusted and are defined by standard photolithography 

followed by deep reactive ion etching to produce trenches [40] among consecutive 

microwires. Si microwires in dimensions of 50µm wide and 5000 µm are developed. 

Alternate doping of p and n microwires are achieved by using a slide mask. In order to 

transfer these microwires onto an alien substrate, buried oxide layer has to be removed 

initially. Before putting the samples for etching the buried oxide layer, samples were put 

in piranha solution for 10 minutes to remove away any organic residue, which hinders 

the etching of oxide. In the next step, the samples were put in buffered hydrofluoric 

40% (with etch rate of 13 min/1 µm) concentrated solution for a specific duration such 

that the oxide layer was etched away completely while remain anchored at the ends. In 

order to make the wires completely releasable from the donor wafer samples were 

retained in the etchant solution for an extra 10 minutes.  After etching, deionized water 

was poured into the container so as not to disturb the attachment of microwires with the 

mother wafer. 

Metallization of the transferred microwires on PET substrate is done by custom micro 

spotting technique. Silver (Ag) paste is used to connect wires in series by using a micro 

needle with 10µm tip. Small drops of Ag paste are used to connect two consecutive 

 
Figure. 5.21. Graph of open circuit voltage at different temperature gradients. 
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microwires. After completing the metallization of wires and pads at the ends, samples 

were put in furnace for 30 minutes at 120 oC. As a planar device was developed in this 

research, open circuit voltage was measured by putting the sample on two plates having 

different temperatures and placed 2 mm apart. Temperature of one of the plates is raised 

while that of the other is kept constant at room temperature. Samples were mounted on 

the plate at room temperature and brought near to the hot plate for a while and open 

circuit voltage was measured. After measuring the voltage, the sample is removed from 

the vicinity of the hot plate and temperature increased. Length of the wires (i.e. 5mm) is 

supportive in above configuration of putting the device on two separate plates. The open 

circuit voltage was measured by using high impedance Keithley 7410 voltmeter at 

gradually increased temperatures. Figure 5.21 shows graph of the measured voltage at 

different temperature gradients.  Maximum open circuit voltage was measured to be 

about 9.3 mV for a temperature difference of 54 oC, which is a comparable value to 

state of the art devices i.e. [32, 36].   

5.7. Conclusion 

This chapter presented a comparative study of various configurations of asymmetric 

metal semiconductor metal structures. The two differently doped p and n-Si microwires 

were prepared by standard photolithography and etching techniques. Two different 

transfer printing approached were followed to complete the relocation of microwires 

onto secondary flexible substrates. A stamp-assisted and flip-over transfer printing 

approached are practiced to complete the transfer. A planar PDMS stamp is used to pick 

and place Si microwires deterministically at desired locations on secondary substrates. 

Alternately, the flip-over technique is completed by using the target substrate with one 

side adhesive to pick the microwires. The metallization is completed by developing a 

spray coating setup for deposition of two different conductors. A colloidal solution of 

Ag based paste and an organic conductor i.e. PEDOT-PSS is spray coated by using 

shadow masks. Ultra-thin brass sheets are used to prepare the shadow masks using 

milling machine. The MSM structures are characterized both in planar and bent 

orientations to investigate the strain response of the microwires. Additionally the MSM 

structures are subjected to optical illumination from two different light sources, i.e. 

Halogen and UV lamps. The optical response of wires is investigated in both planar and 

bent modes and compared with the dark current response of the wires in both the 

orientations. Similar characterization steps were performed for flip-over and stamp 

assisted Si microwires. Additionally a top-down approach of doped Si microwires on 

SOI wafer is presented and transferring them to PET substrate for realizing lightweight 

and robust flexible thermoelectric generators. Process protocol of transfer printing for 

enhancing the yield of doped microwires from SOI wafer to a flexible PET substrate is 

of prime investigative area in this research. A prototype flexible thermoelectric 

generator is presented based on alternately doped Si microwires transferred to flexible 

substrate by using an elastomeric stamp i.e. PDMS. The level of doping for optimum 
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operation of the thermoelectric generator can be controlled on wafer by using standard 

techniques and the prepared samples can be transferred successfully onto an alien 

substrate. The open circuit voltage response of the thermoelectric generator is well in 

compliance with state of the art devices. The alternately doped pn-Si microwires are 

also investigated under ambient environment for the photodetection and fuel cell 

applications. Flexible thermoelectric generators could successfully be implemented  in 

light weight portable electronics applications due to the attractive advantages of light 

weight enhancing excellent portability, bendable, stretchable, large areas and more 

resistant to impact.  
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Chapter 6 

MISFET Devices with Single Si Microwire 

Part of this chapter has been published in: 

S. Khan, N Yogeswaran, W Taube, L Lorenzelli and R Dahiya “Flexible FETs using ultrathin Si 

microwires embedded in solution processed dielectric and metal layers” IOP, J. Micromech. 

Microeng. 25 (2015) 125019 (10pp). 

S. Khan, N. Yogeswaran, L. Lorenzelli and R. Dahiya, “Si microwires based FETs on flexible 

substrates” 11th IEEE PRIME Conf. 338-341, Glasgow, UK, 2015. 

 

This chapter presents the advancement of Si microwires towards device 

manufacturing. A novel fabrication route is developed for obtaining high performance 

bendable field effect transistors (FET) by embedding silicon (Si) microwires (2.5 µm 

thick) in layers of solution-processed dielectric and metallic layers. The objective of this 

study is to explore heterogeneous integration of Si with polymers and to exploit the 

benefits of both microelectronics and printing technologies. Arrays of Si microwires are 

developed on silicon on insulator (SOI) wafers and transfer printed to polyimide (PI) 

substrate through a polydimethylsiloxane (PDMS) carrier stamp. Following the transfer 

printing of Si microwires, two different processing steps were developed to obtain top 

gate top contact and back gate top contact FETs. Electrical characterizations indicate 

devices having mobility as high as 117.5 cm2/V.sec. The fabricated devices were also 

modelled using SILVACO Atlas. Simulation results show a trend in the electrical 

response similar to that of experimental results. In addition, cyclic test was performed to 

demonstrate the reliability and mechanical robustness of the Si µ-wires on flexible 

substrates. 

6.1. Motivation for Microwires based MISFETs 

Active flexible electronics especially MISFETs, are extensively explored devices in 

recent years for their increasing demand in a range of applications such as sensors, 

displays, robotics, prosthetics and health monitoring etc. [1]. Some of the driving 

features for flexible electronics are the requirements such as conformable integration to 

nonplanar objects, portability, foldability and large area coverage of uneven 3D surfaces 

[2-4]. A cost-effective and reproducible method for constructing such electronic devices 

is much needed and therefore the merging of conventional microelectronics technology 

with age-old printing/coating tools are foreseen to provide a feasible manufacturing 

platform. Research is already in progress towards this hybrid manufacturing with some 

positive indications for successful integration [2, 5-7]. Polymeric materials remain the 

preferred choice for printing technologies and a remarkable interest has been shown 

towards printing of organic materials due to their solution processability at low 

temperature and ambient environment. The intrinsic properties such as mechanical 

flexibility, low materials and fabrication costs give organic materials an extra edge for 

selection over other materials. Further, they are often compatible with roll-to-roll 
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processing and the thermal budget of polymeric substrates (< 300 oC). Despite these 

attractive features, obtaining high-performance devices from organic semiconductor 

remains a major challenge [8-10]. Devices made of organic semiconductors typically 

have low charge carrier mobility (∼1 with respect to ∼1000 cm2/V.s of single crystal 

Si) [10-12], which makes them much slower to respond than crystalline Si built devices. 

Furthermore, poor stability and short life of the organic materials make them a poor 

choice for electronic systems requiring better performance and high durability. A large 

number of applications, especially where faster communication and computation is 

needed, require high-performance flexible electronics [9, 12].  

In this regard, the electronics based on a mix of both organic and inorganic materials 

could be an attractive option, as high-mobility inorganic semiconductors would enable 

devices with faster speed and stable performances. In past, using polycrystalline Si in 

place of organic materials helped in overcoming some of the performance related 

challenges, but this came at the cost of complex procedures and sophisticated setups for 

achieving suitable uniformity [13-15]. Thinning down the standard Si wafers by 

mechanical or chemical-mechanical polishing is another approach, which has been 

explored to realize high-performance flexible electronic circuits [16, 17]. However, 

flexible chips are more prone to damage either during the thinning process because of 

the brittle nature of Si wafer or caused by small dislocations within the crystal. 

Overcoming issues related to small mismatches and cavities in the material crystal pose 

further challenges for wafer thinning route as these might rapidly propagate in the form 

of cracks during or after the thinning process. In this regard, the miniaturized structures 

such as Si nano/microwires could offer better solutions [18, 19]. The viability of Si 

nano/microwires for high-performance flexible electronics has been demonstrated 

recently with high temperature processing steps performed on the donor wafer and 

relocating or transferring the wires to flexible substrates [9, 10, 17, 20-23]. The transfer 

of wires to secondary flexible substrates can be carried out either by dispersing them in 

a solution or through a stamp-assisted dry transfer printing technique [5, 8, 18, 21, 23, 

24]. However, stamp assisted transfer printing is preferred as it guarantees the 

orientation of finished or polished surfaces for post-processing of transfer printing for 

devices’ fabrication.  

The frequently reported devices with dry transfer printing of Si are back-gated FETs, 

where the dielectric layer is restricted to a single type of material, which is also used as 

the adhesive layer [10, 24, 25]. Devices developed with such configuration have 

potential applications in microfluidics and biological sensors where the semiconductors 

wires are left exposed for direct interaction with the external stimuli [18]. On the other 

hand, a number of physical sensors such as pressure, temperature, proximity, humidity 

and many other electronic devices can be developed in structures that have a direct 

interface of Si microwires with transducer materials. In this study, a new manufacturing 

technique is proposed and optimized for the development of both top and back-gated 

FETs on PI substrate by embedding Si microwires in solution-processed materials. A 

reliable and cost-effective manufacturing route is the focus of this research. The 
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processing steps for deposition of diverse gate dielectrics and screen-printed metallic 

contacts within the thermal budget of PI substrate are presented along with proof of 

concept devices. A single Si microwire (50µm wide) is selected for the fabrication of a 

typical FET in the shape of back and top-gated structures. The detailed description of 

technology, device designs and simulation results are presented in the following 

sections. 

6.2. Si Microwires Designs and Fabrication 

The manufacturing process begins with the definition of Si-microwires on SOI wafers 

through a top-down method, which involves standard photolithography and etching 

steps (discussed in detail in previous chapters 4-5). The SOI wafer (Soitec, p-type 

Boron (B) doped with resistivity of 15-20 ohm-cm and a device layer with thickness of 

2.5µm) is selected as the donor or mother wafer to obtain microwires with similar 

dimensions such as thickness, width and length. The thickness of microwires is alike 

due to the well-controlled thickness of top Si layer i.e. above the buried oxide layer in 

 
Figure 6.1. Microwires design, with corresponding lengths and modules, (a). Wafer-scale 

design of microwires, (b) Microscopic image of individual block of Si microwires, (c). Array 

of 200, 500, 1000, 2000 and 5000 µm long wires, (d) Microscopic image of etched wires. 
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SOI wafer. Using deep reactive ion etching (DRIE), the vertical trenches (with depths 

up to the buried oxide) are realized between the microwires. The modules with different 

lengths and widths of microwires were fabricated in parallel arrays of 20 wires, as 

shown in Figure 6.1. Different dimensions of the microwires were investigated to 

understand and evaluate the influence of interface between carrier stamp and Si 

microwires and hence optimize the transfer yield. The widths of microwires 

investigated in this study were 10, 20, 30, 40 and 50 μm. Similarly, the lengths of the 

wires were 200, 500, 1000, 2000, and 5000 μm. The width of the trenches also plays an 

important role during etching of the buried oxide layer as well in the first transfer-

printing step. For this purpose, the trenches with varying widths i.e. 10, 20, 30, 40 and 

50 μm were realized. Anisotropic etching is desired to develop high aspect trenches 

with vertical cut at 90o and uniform edges, which was achieved with DRIE.  

Before initiating the under-etching of buried oxide from microwires, the trench edges 

were completely cleaned of all the passivation and organic residues. To do this, the 

microwires were bathed in piranha solution prepared by H2SO4 and H2O2 in 3:1 

respectively, followed by rinsing in deionized water. The standard etchant for SiO2 i.e. 

40% buffered hydrofluoric (BHF) is used to etch away the buried oxide and release the 

microwires completely until the anchored points at the ends. To ensure the complete 

release of the wires, samples were retained in the etchant solution for 10 extra minutes 

from the time required for complete under-etching of the oxide layer. After completing 

the etching step, the microwires are gently cleaned with deionized water and dried in 

furnace at 100 oC. The post-processing steps after under-etching the oxide layer need 

proper care to ensure the microwires remain tethered to the donor wafer. In current 

study, transfer printing of 50μm wide wires are explored and the same were ultimately 

used for field effect transistors.  

6.3. Experiments and Characterization 

The PI substrate (25 µm thick) is selected for the development of FETs, owing to 

their good stability and high thermal budget ~ 300 oC. PI substrate was cleaned with 

isopropanol, deionized water and attached to a glass slide, which is used as a temporary 

carrier and removed after the process is complete. For better hydrophilic property and 

enhancing the adhesion of subsequent layers, the substrates were treated by plasma 

oxidation and subsequent layers were printed immediately. This step is essential for the 

back-gated FET structure, as the silver gate electrode was to be patterned with screen-

printing technique. As screen-printing is nearer to manufacturing, the patterning of 

back-gate electrode using screen-printer is a step towards low-cost manufacturing of the 

flexible FETs. The physical and electrical properties of metal patterning through screen-

printing is described in detail elsewhere [26]. Converse to the back-gated FETs, the SU-

8 that acts as the primary adhesive layer for receiving Si microwires was directly spin 

coated on PI substrate after treatment with oxygen plasma for the development of top-
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Figure 6.2. Setup for development of a planar stamp (a). Clamp setup for holding polished wafer 

face-to-face, (b). PDMS poured in between two wafer and curing (c). Final moulded stamp after 

removing Si wafers. 

 

 

 

 

 

 

 

 

 

 

 

gated FETs. Following sections describe the fabrication of flexible FETs from arrays of 

Si microwires. 

6.3.1. PDMS Moulding and Stamp Development  

Development of a planar stamp is highly desired for reliable transfer of Si 

microwires, which could satisfy a conformable contact and maximized interface area 

with these wires. For this reason, a mouldable elastomeric polymer i.e. poly(dimethyl 

siloxane) (PDMS) is used for the development of carrier stamp to pick up the free 

standing microstructured Si from donor wafer and transfer them with controlled 

orientation to the final flexible substrate. A special setup for the stamp mold is designed 

from acrylic as shown in Figure 6.2, which is configured to clamp two silicon or quartz 

wafers. Reason for using these commercial wafers is to get uniform and smooth 

surfaces of the PDMS stamp i.e. with minimal surface roughness. The uniformly 

polished surfaces of the silicon wafers are kept in face-to-face in the mold setup and 

PDMS (base: curing agent, 10:1) is poured into the mold. For proper control and easy 

release of the stamps, plasma oxidation of wafers followed by silanization is an efficient 

way to help peeling off the wafers afterwards. After filling the mold with PDMS, setup 

is kept at 60 oC for 2 hours for complete polymerization and wafers are removed from 

stamp. 

6.3.2. Deterministic Transfer Printing of Si Microwires 

The transfer of Si microwires can take the route of either wet assembly or a stamp 

assisted dry transfer technique. Dry transfer of Si microwires through a carrier stamp is 
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the preferred approach for deterministic placement of microwires and to guarantee the 

same orientation of top surface of microwires for subsequent processing layers of the 

MISFET devices. Further, the crystallinity and doping profile are assured to remain on 

the top of microwires as developed initially on the SOI wafer. The materials that could 

be easily moulded in different structures with the clear and uniform surfaces are desired 

for transfer stamps. In this regard, PDMS (poly (dimthylsiloxane)) is a natural choice as 

in addition to the easy moulding in different shapes, its viscoelasticity also enhances the 

transfer printing with possibility of tuning the peel off rate of the stamp.  

To increase the transfer yield in the first transfer step, a planar surface of the stamp is 

desired for a conformal contact with the microwires and to maximize their interface area 

with the microwires. A slight misalignment or gap between the two surfaces can result 

in a weaker bond, which may not be sufficient enough to detach the microwires from 

the donor wafer, especially at their tethered positions. For this purpose, a dedicated 

mold was designed to hold two polished Si wafers at a defined distance and the PDMS 

(base: curing agent, 10:1) was poured between them to be moulded. Prior to dispensing 

PDMS within the mold, the wafers were silanized to obviate the development of 

stronger bonds between moulding wafers and PDMS, which ultimately helps in removal 

of PDMS stamp from the wafers. After filling the mold, the PDMS is kept for 

 

Figure 6.3. Fabrication of Si microwires and transfer printing to temporary transfer substrate. (a) 

Patterning of wires and under-etching of buried oxide (b) Transferring Si wires from wafer to 

PDMS stamp (c) Stamping PDMS with microwires on final receiver substrate (d) Peeling off 

PDMS, leaving behind microstructures on PI. (e) Corresponding experimental step for transfer of 

Si to PDMS from mother wafer (f) Experimental results of transferring Si wires to PI substrate 

after removing PDMS stamp (g) PI substrate with transferred Si microwires wrapped around 

circular shaped object. [1, 17]. 
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polymerization in a furnace at 60 oC for 3 hours. 

Transfer printing of Si microwires to PI is accomplished in two steps through the 

PDMS stamp as shown in Figure 6.3. A thicker stamp is used for easy handling and also 

to avoid breaking of the wires during the transfer process. Thicker stamp also aids in 

keeping a large peel-off angle, which is an essential requirement in the first transfer step 

to avoid cracking of the Si microwires during the course of detachment. PDMS stamp 

was treated with oxygen plasma to tune its surface properties for better pick-up of 

microwires from the donor wafer. Other parameters enhancing the detachment of 

tethered wires from the donor wafer include over-etching of oxide under the wires and 

the peel-off rate. More than 95% yield of microwires transfer was achieved in the first 

transfer step as shown in Figure 6.3(f), which is a significant improvement over our 

previous results [20]. In the second transfer step, a stronger adhesive is needed on 

receiver substrate so as to detach the microwires from PDMS stamp. Therefore, SU-8 (a 

high contrast photoresist and sensitive to ultra violet (UV) light) is used as the adhesive 

layer. SU-8 has the desired level of stickiness when partially sintered, and hardens after 

complete sintering. A thin layer of SU-8 is spin coated at 5000 rpm to achieve thickness 

of about ~800 nm. This layer is partially sintered by putting it on a hotplate at 90oC for 

80 seconds. PDMS stamp with Si microwires is then brought in conformal contact with 

SU-8 layer and passed through UV light for complete sintering. The transparent PDMS 

allows UV light to pass through the spaces between the microwires, which results in the 

hardening of SU-8. The UV light is also used on the sideways and backside of the 

substrate to complete the sintering process. As a result, 100 % transfer yield is achieved 

after removing back the PDMS stamp as shown in Figure 6.3 (e & f). Finally, the SU-8 

layer is hard baked at 130 oC for 30 minutes in a furnace and subsequent layers are 

deposited for development of FETs. Figure 6.4 shows microwires on PI substrates 

placed on objects with different curvatures. The SU-8 layer is also used as the gate 

dielectric for back-gated FETs. The thickness of SU-8 layer was optimized to suit its 

use both as the adhesive and as the dielectric layer.  

 
Figure 6.4. Transferred Si microwires on PI substrate and attached to various objects with 

different orientations and radius of curvatures.  
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Figure 6.5. The flatbed screen printing with planar substrates for solution dispensing 

6.3.3. Screen Printing of back-gate metal 

Screen-printing is a robust technology where materials are patterned in a single step 

by dispensing the solution through stencil/screen masks. It is the most prominent and 

matured technology for printable electronics as it has remained the dominant technique 

in electronics industry for long time to print metal interconnects on PCBs (printed 

circuit boards). It is faster and more versatile in comparison to other printing tools, as it 

adds simplicity, affordability, speed and adaptability to the fabrication process. The 

results from screen-printing can be reproduced by repeating a few steps and an optimum 

operating envelope can be developed very quickly. Most of the solvents/pastes are 

optimized and available commercially in the market for printing with desirable 

properties. Screen printer has simple setup comprising of screen, squeegee, press bed, 

and substrate, as shown in Figure 6.5. A flatbed screen-printed is used for printing metal 

contacts of the back-gate MISFETs. In flatbed, the ink poured on the screen is 

squeegeed to move across the screen resulting in its transfer through the stencil 

openings to the substrate beneath it.  

Metal patterning is the preliminary step prior to the transfer process. Silver (Ag) 

based paste (DuPont-5028) is used for patterning on the flexible substrate. A bare Si 

wafer is used as the carrier for flexible PI substrate, which is attached to it by using a 

reproducible scotch spray on the rim of the wafer. The PI substrate is properly cleaned 

using ethanol, isopropanol and DI water to remove the contaminants. To enhance the 

adhesion of the Ag patterns to the PI, an extra step of plasma oxidation is performed. 

The metal patterns are 100 µm as per design, but the width of the lines obtained on the 

PI are increased due to spreading of the solution. To minimize the variations in the 

patterns widths, printer parameters as the stage height and speed of the squeegee are 

adjusted, which helped in reducing the widths as well as maintaining the uniformity of 

the patterns edges. Figure 6.6 shows image of the screen printer and printed metal 

patterns. The PI is then cut into small pieces to utilize each wire for individual back gate 

application. Sheet resistance of the conductive patterns has been measured in planar and 

bent mode to check any change in conductivity. Four-point collinear probe setup was 

developed by using high impedance Keithley 7410 voltmeter for current and voltage 

analysis. The sheet resistance value given by the supplier for the printed silver paste is 
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about 12Ω/sq., for the layer with thickness about 25µm. The sheet resistance measured 

in our samples (layer thickness of about 8µm) is 14.15 Ω/sq. in the planar mode, which 

is in the close range of expected sheet resistance of silver paste after sintering. 

6.3.4. Fabrication of FETs structures 

The efficacy of transferred miniaturized Si microwires can be authenticated by their 

potential use in an active device. For this purpose, the transferred Si microwires are 

incorporated within layers of dielectric and metallic materials to complete the 

manufacturing steps for a typical FET structure. Two types of structures are investigated 

in this work. These are: (a) back-gate top contact, and (b) top-gate top contact FETs. 

For the back-gated FETs shown in Figure 6.7, the silver (Ag) gate electrodes are screen-

printed on PI substrate. The adhesive layer is then spin coated, which is followed by 

transfer of Si microwires. This is followed by micro spotting of Ag paste for source and 

drain contacts.  

The processing steps for the back-gated FETs are shown in Figure 6.7. The back-

gated FET structure has single dielectric material (in this case, SU-8), which is also the 

essential adhesive layer needed for transferring of Si microwires. SU-8 is the most 

suitable material in the proposed fabrication process, as it also possesses suitable optical 

properties such as high contrast and sensitivity to UV light. The optical transparency is 

required for the overlay registration accuracy of the Si microwires with the underlying 

patterns of back-gate electrodes. As explained earlier, the sensitivity to the UV light 

also helps in the hardening of SU-8 before PDMS stamp is removed in the transfer print 

process. The UV curability makes the transfer printing process robust and helps us 

achieve 100% microwires transfer yield in the second transfer step. In this regard, the 

SU-8 layer in back-gate FETs has to meet the trade-off between thicknesses needed for 

better performance of the transistor (when its use as dielectric is considered) and for its 

 
Figure. 6.6. Screen printer used for patterning of Silver (Ag) for the back-gate of MISFETs 
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use as adhesive to detach Si microwires from PDMS stamp. To meet both the 

requirements, the recipe for spin coating was optimized and SU-8 was coated at 5000 

rpm to achieve a thin layer of ~800 nm. 

To expand the field of applications of Si microwires and make process compatible 

with a wide range of dielectrics or transducer materials, top-gated FET structure is 

desired. This approach can also lead to processes, whereby organic materials could be 

integrated with the inorganic semiconductors. This will ultimately result in low-cost 

fabrication as a result of the lower cost of organic materials and their solution 

processability. In this case, the top dielectric and metal layers also serve as the 

encapsulation layer for the Si micro wires and protect them from harsh environment. 

Embedding the brittle Si microwires in suitable solution-processed materials could also 

improve overall bendability and prevent breaking of wires during bending [16]. The 

construction of top-gated FETs starts with the spin coating of SU-8 layer on top of 

cleaned PI substrate, with the same spinning recipe as described above for the back-

gated FETs. The design and process steps for the top-gated FET utilizing a single Si 

microwire are shown in Figure 6.8. After transfer printing of Si microwire and hard 

baking of the SU-8 layer, silver (Ag) paste is patterned on top of Si microwire using 

micro-spotting technique. After thermal treatment of the Ag paste, the dielectric 

material was spin coated on top of these patterns and Si microwire. To make the process 

robust, a UV-curable dielectric material was selected. The spin speed was kept at 

around 5000 rpm where thickness achieved was in the range of 300-400 nm. The 

 

Figure 6.7. The process flow showing the step by step material layers deposited for a back-gated 

FET. The numbering show the sequence of steps performed for developing each layer for 

development of field effect transistor from a single Si microwire. (a) Screen printed back-gate 

lines on PI substrate. (b) Spin coating of dielectric adhesive layer. (c) Transferring Si microwires 

on adhesive layer (d) Patterning source and drain on top of Si microwire. 



130 

 

variation in the thickness is due to the non-planar surface as a result of Si microwire on 

the PI substrate, which hinders the uniform spreading of the dielectric material and thus 

results into non-uniform thickness of the final layer. 

The mechanical reliability and adhesion of Si microwires under different bending 

radii was investigated through cyclic tests. The physical robustness of the structures was 

evaluated by observing crack propagation and delamination of the microwires from the 

receiver substrate. Substrate was wrapped around different circular and nonplanar 

shapes for one time bent as shown in Figure 6.4, while cyclic tests were performed for 

repeated bending of the microwires.  During the course of cyclic tests, the secondary PI 

 

 

Figure 6.8. The process flow showing the step-by-step materials layers deposited for top-gate 

FET. (a) Spin coating adhesive layer on PI substrate. (b) Transferring Si microwires on 

adhesive layers, followed by patterning source and drain contacts. (c) Spin coating UV-

dielectric layer. (d) Patterning top metal layer as a gate electrode. 

 
 

Figure 6.9. Cyclic test for testing cracks or delamination of Si microwires from the adhesive 

layer (a). PI substrate containing Si microwires is fixed to a separate plastic sheet and wrapped 

around different size nonplanar surfaces, (b). During the cyclic test, the inset image shows wires 

after the cyclic test. 
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substrate containing the microwires are attached to a separate plastic sheet as shown in 

Figure 6.9. Where it is revolved around cylinders with outer diameters of 8, 12 and 16 

mm. Bending tests are performed through the plastic sheet for about 500 cycles around 

each cylinder and observed under an optical microscope for cracks or delamination 

from the substrate. By observing all the microwire arrays under an optical microscope, 

we observed no cracks or delamination of the wires from the adhesive layer after cyclic 

tests, which confirm the mechanical robustness of the wires. 

6.3.5. Micro-spotting of Ag for metallization 

The micro spotting is performed using a custom-made tool comprising of a precise 

positioning setup and tungsten needle of micrometre size tip. The needle in the setup is 

clamped with a steel rod, which is free to move in three dimensions. The tungsten 

needle is used to pick up a small droplet of Ag paste from solution and source and drain 

contacts are realized by micro spotting at the desired areas and simultaneously 

observing it through a microscope. The spacing between the two electrodes defines the 

effective channel area of the FETs on the Si microwire. After deposition of the 

dielectric layer, the gate electrode is designed to align over the effective channel areas, 

making it possible to realize a field effect transistor at the crossing. Each transferred 

block contains a parallel array of 15 microwires of 50 µm wide each. Amongst these, a 

single microwire is selected for the construction of FET devices to investigate its 

physical and electrical characteristics. 

The proposed approach is unique as the aspect ratio, which is conventionally used to 

set the current in transistors, can simply be changed with increasing the number of Si 

microwires in a single block or by increasing the number of electrodes on a single wire, 

assuming 100% overlay registration accuracy of gate electrodes is possible. Figure 6.10 

(a & b) show the micro-spotting tool used for patterning of Ag paste for the source and 

drain contacts and a typical FET structure realized by using this micro-spotting tool. 

The order of patterning is different for top and back-gated structures. Micro-spotting is 

 
(a)                                                (b) 

Figure 6.10. (a) Micro-spotting tool for Ag metallic contacts of FETs  in, (b) developed FET 

structure by using a single Si microwires as a the semiconductive layer, silver (Ag) for source 

drain and gate and SU-8 as the adhesive and dielectric layer. 
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applied only for source and drain patterning on top of Si microwire in the back-gate 

FETs, whereas the source and drain are patterned in the first place in top-gate FETs by 

micro-spotting followed by spin coating of dielectric layer and again micro-spotting of 

the top gate. The edges of the source and drain patterns are not uniform, as the low 

viscosity Ag paste tends to spread irregularly after micro spotting. This non-uniformity 

 
Figure 6.11. Simulation with similar structures & materials as used in this work, (a) FET model 

for top gated FET, (b) Output response and, (c) Transfer curve of the simulated device. 

 
Figure 6.11 (a) 
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could be reduced either by using smaller droplets or by using a more viscous solution, 

which has a low co-efficient of spreading.  

Simulations of the proposed designs were initially performed with SILVACO Atlas 

by assuming a Si strip. The dielectric materials were defined by using existing models 

for the standard materials of MOSFET technology. Simulation results by using close 

 

 
Figure 6.12. (a) Output response with SU-8 3010 as dielectric material in a back gated FET, (b) 

Transfer curve with UV-DuPont as dielectric material in back-gated FET 
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matching dielectric properties of the material used in experiments i.e. UV-curable 

dielectric are shown in Figure 6.11, which presents the output and transfer 

characteristics of the device. The output characteristics of the simulated devices showed 

similar behaviour as obtained with experiments. The small deviation in the experimental 

results (in Figure 6.11 and 6.12) is due to the non-ohmic contacts of the Ag paste with 

lightly doped Si microwires. The silicide contacts made by using Ag paste on top of Si 

microwires also contribute to the lower values of output currents in the experimental 

results. Further, the semiconductor and dielectric interface also affects the performance 

of the device. On average, the device’s response with different dielectric materials 

simulated with the same model show similar trend of performance to the experimental 

results.  

Electrical characterizations of both devices were performed in ambient environment 

using semiconductor parameter analyzer (4156C, Agilent). By efficient transferring of 

50 µm wide wires onto PI substrate, the FET device fabricated from a single microwire 

has a channel length and width of ~ 60 µm and 50 µm respectively. The channel length 

of the microwire based FET is dependent on the high-resolution patterning of metals for 

source and drain contacts. Being a manual technique the channel length is controlled in 

close ranges to ~ 60 µm.  On the other hand, the channel width can be well controlled, 

as the standard lithography tools set the width of Si microwires, which defines the 

channel-width. In these experiments, the maximum width i.e. 50 µm wires are selected 

due to the good transfer yield.  

The Si-microwires FETs on PI substrate were characterized and Figure 6.12 (a & b) 

and Figure 6.13 (a, b) show the plots for the output and transfer current-voltage (I-V) 

characteristics of the back-gated and top gated FETs respectively. The field-effect 

mobility (μFE) of devices was extracted using μFE = LG gm / (WG CG VD), where LG (~ 

60 µm) and WG (50 µm) are the physical dimensions of the gate length and width 

respectively. The highest value of field effect mobility recorded was 117.5 cm2/V.sec 

and this was achieved with top-gated UV-curable dielectric material. The mobility 

achieved with the bottom gated SU-8 was 69 cm2/V.sec. The threshold voltage 

measured through extrapolation in the linear region show 2.75V and 3.25V for bottom 

and top gate FETs respectively. As the Si-microwires are not heavily doped, so the 

linear region indicates the large parasitic resistance associated with the source and drain 

contacts, the behaviour that is similar to a small schottky barrier FET. 

The small parasitic resistance indicates the need for further doping of the Si-

microwires and optimization of the patterning in future to obtain ohmic contacts and 

lowered barrier for charge carriers. The output and transfer curves in Figure 6.12 and 

6.13 show clear saturation behaviour at larger positive biases. Further, the gate 

dependence of the curves confirms the operation of the device inversion mode of the p-

type microwires. All devices were operated in the inversion mode requiring a positive 

gate voltage to turn on the device. The back-gated FETs showed poor modulation of the 

channel conductance due to the increased thickness of SU-8 gate dielectric accompanied 

by the thickness of the Si microwires (2.5 µm). The fabricated FETs were also tested 
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after cyclic tests and the electrical characteristics remained the same as observed in 

Figures (6.12 & 6.13) before the cyclic tests. The mobilities achieved with the top-gated 

FETs are in the ranges needed for applications in flexible electronics circuit such as 

inverters, ring oscillators and as active matrix for displays on polymeric substrates [27].  

 

 
Figure 6.13. (a). Output curve of UV-DuPont dielectric as dielectric material for top-gated FET 

(b). Transfer of UV-DuPont as dielectric material for top-gated. 
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6.4. Conclusion 

In Summary, a reliable and cost-effective manufacturing route is presented for top 

and back-gated FETs on flexible PI substrates by incorporating single crystal Si 

microwires in diverse solution processed dielectric and adhesive materials. Si 

microwires are obtained by top-down fabrication approach and transferred to an 

adhesive layer on PI substrate by using PDMS assisted transfer printing. The back-gate 

electrode is screen-printed, which is a step towards low cost manufacturing. Results 

validate the top and back-gated FETs and the use of different dielectric materials in 

fabrication of these FETs. The feasibility of embedding Si-microwires within layers of 

solution-processed materials opens new avenues for fabrication involving both 

microfabrication and printing tools. The physical and mechanical characterizations of 

the devices are performed by doing cyclic bending tests by monitoring the cracks or 

delamination of the microwires from the adhesive layer of flexible substrate. The I-V 

measurements show a better range of performance as compared to the devices 

developed from organic based materials.  

The back-gated FETs have great potential for chemical and gas sensing applications 

due to the direct interaction of the stimuli with the Si microwires. Similarly, the top-

gated configurations provide an opportunity to deposit diverse transducers such as 

piezoelectric, pyroelectric or ferroelectric materials to develop sensors for measuring 

physical parameters such as tactile, soft touch and temperature. The behaviour similar to 

schottky barrier FET needs further investigation for the devices to offer an alternative 

for future flexible and large area printed electronics. To enhance the performance of 

FETs, potentially the metal-semiconductor interfaces could be processed through 

silicidation instead of using heavily doped semiconductors.   
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Chapter 7 

MISFETs with Ensemble of Multiple Si Microwires 
Part of this chapter is in review process: 

S. Khan, L. Lorenzelli and R. Dahiya, “Flexible MISFET Devices from Transfer Printed Si 

Microwires and Spray Coating”, IEEE J. Electron Device Society (under review) 

 

This chapter presents two types of MISFETs (metal insulator field effect transistors) 

devices fabricated from Si microwires through a new manufacturing route, which 

advances the manufacturing route towards the establishment of solution based printing 

and microfabrication technologies. Si microwires, developed through standard 

lithography and etching steps, are transferred from a SOI (silicon on insulator) wafer 

onto polyimide (PI) using stamp-assisted transfer printing. The MISFETs are then 

obtained by spray coating the dielectric layer and metal contacts. Therefore, the 

proposed work presents an innovative approach for merging single crystal Si 

microwires within spray coated organic dielectric and metal patterns for development of 

MISFET structures. Reliability of the manufacturing process has been investigated in 

connection to reproducible results. Efficacy of the Si microwires and investigations of 

the variations caused by heterojunction of organic and inorganic materials for MISFET 

devices. Thorough description of the technological challenges, designing the most 

feasible fabrication route, device designs along with experimental details are covered 

within this research. Two groups of the devices are fabricated, one based on single Si 

microwire and the other based on the array of multiple (i.e. 15) Si microwires. The 

variations in the output response of the two groups of devices are investigated. The 

devices based on array of microwires are observed to have less variation in the output 

response, with lesser standard deviations as compared to MISFETs made from single Si 

microwires.  

7.1. Motivation for MISFETs with Multiple Si Microwires 

Accuracy in the repeatability of printing technologies is highly desired for realizing 

flexible electronics. The cost-effectiveness of the printing technologies would be fruitful 

if the devices manufactured are more reliable without significant variations. To make 

the fabrication process cost-efficient, the current trend indicates the merge of well-

established microelectronics and conventional printing technologies in the future [1-3]. 

Solution based printing technologies are used to print functional materials in liquid or 

colloidal form, where a specific amount of desired materials is deposited and residual 

solution is collected back for reuse. Organic materials (especially semiconductors) have 

dominated the solution based printing technologies for flexible MISFETs. Organic 

materials have the advantage of inherent mechanical flexibility, and the lower material 

and fabrication costs. However, there are major challenges associated with obtaining 

stable devices with repeatable response and high performance i.e. at par with Si based 
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devices (mobility of organics is ∼1 with respect to ∼1000 cm2/V.s for single crystal Si) 

[4-6]. In this regard, the printing of inorganic semiconductors such as Si will be a 

promising alternative, as Si based devices are stable, faster, and have repeatable 

response [4, 7-10]. Transfer printing of nanostructures of single crystal Si has been 

demonstrated recently as viable route for high-performance electronics over flexible 

substrates [4, 8-14] (discussed in detail in chapter 6). Using Si in the form of 

nano/microwires to construct devices such as MISFETs also helps in overcoming the 

physical and mechanical reliability related challenges. The high aspect ratio of the Si 

nano/microwires widens the range of applications from basic electronic devices to 

 

 
Figure 7.1. (a).Si wires on SOI wafers (b) Transfer printing steps: (i) Wires picked-up by PDMS 

stamp (ii) PDMS stamped on adhesive SU-8 layer (iii) Wires transferred to substrate after 

removing PDMS (iv) Wires in bent mode. 
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diverse applications such as sensors and energy harvesters. 

The rapid development of flexible electronics based on different combination of Si 

microwires especially for thin film field effect transistors is key to the advancement of 

macroelectronic technology. Reliable manufacturing process and repeatable device 

responses are highly desired for Si microwires based transistors. As the manufacturing 

process is based on combination of different processes of transfer printed Si microwires 

and solution based patterning through printing, there is a greater risk of variation in 

device’s geometric parameters. For instance, the solution flowability of conductor paste 

lead to nonuniform deposition with perfect control on the pattern edges. This would 

result in non-uniform channel lengths and widths of the MISFETs realized by using 

solution based patterning.  The usefulness of Si microwires based devices are bound to 

have uniform or similar responses than the devices with non-uniform response. Greater 

variations in the discrete devices with similar geometric parameters lead to less 

acceptability. The efficacy of uniform response from Si microwires based MISFETs is 

more demanding when these devices are advanced towards circuits. For instance, with 

two similar transistors having dissimilar responses, the circuit design become extremely 

challenging. The attractive features such as portability, conformability and large area 

coverage of flexible and wearable electronics could only be harnessed if the individual 

devices’ responses are in close range of operations [1, 15-17]. 

This work presents a promising approach for ensemble of single crystal Si 

microwires in thin films to fabricate MISFETs, using a mix of conventional 

microfabrication and printing steps. Using conventional microfabrication, the Si wires 

are defined on SOI wafer and then transfer printed onto final substrate (i.e. PI) using 

PDMS as career or transfer substrate. Spray coating has been introduced for the first 

time to deposit dielectric and metal thin films on Si microwires for fabrication of 

MISFETs. The spray coating to print dielectric and metal layers is a step further towards 

the integration of hybrid organic and inorganic materials. Spray coating is a low cost 

method and has low material wastage compared to other solution processed techniques 

[1, 18-20]. Therefore, spray coating has been used here to compensate the higher costs 

involved in the photolithography process for Si microwires. Two different types of 

MISFETs have been developed and evaluated for uniformity of responses among a set 

of each type of devices. These MISFETs are based either on single Si microwire or on 

an array of microwires. While conventional microfabrication tools allow better control 

over dimensions, the coating methods are not as good. As a result, the approach 

reported here is likely to result in the variability among the responses of similar type of 

devices. The MISFETs based on array of Si microwires are likely to have better 

response uniformity due to lesser statistical variation, which is also reflected in the 

results presented here. The heterogeneous integration of Si microwires with solution 

processed spray coatings, characterization of devices, and the effectiveness of the arrays 

of Si microwires in minimizing the device response variations are the focus of this 

chapter. 
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7.2. Experiments and Device Designs  

The Si microwires (Figure 7.1(a)) were obtained from SOI (P-type silicon on 

insulator, 2.5-µm top silicon device layer and resistivity ~ 16 Ω.com) wafers using 

standard lithography and etching steps (described in chapter 2). The SOI wafer used 

here allows better control over the geometric parameters such as thickness, width and 

lengths of Si microwires leading to less design variations in first place. A stamp-assisted 

transfer printing technique (Figure 7.1(b)) is then used to transfer Si microwires from 

the mother wafer onto flexible PI substrates (thermal budget of PI ~300 oC) [21]. The 

details related to the transfer process and planar stamp are described in previous 

chapters and elsewhere [21, 22]. The efficacy of transferring Si microwires can only be 

validated by their usefulness in development of an active device with repeatable 

performance. To investigate the optimal solution for device variations, two types of 

MISFET structures developed and presented here are based on: (a) single microwire of 

50µm width, and (b) an array of 15 wires (each 50 µm wide). The wire width of 50µm 

was chosen because of higher transfer yield obtained with this width of wires, as shown 

in the past [21]. The size and number of microwires could easily be reduced or 

 
(a) 

 

 
(b) 

Figure 7.2. The scheme of MISFET devices using (a) array of Si microwires, (b) Single Si microwire. 
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increased during the photolithography stage in order to minimize or maximize the 

overall area of the final devices based on single as well as multiple microwires.  

Top-gate top-contact MISFET structures are fabricated by using single and multiple 

Si microwires. Schematics of the architecture of top-gate top-contact MISFET 

structures based on single and multiple Si microwires are shown in Figure 7.2 (a & b) 

respectively. The device fabrication starts after placing microwires on flexible 

substrates. For top-contact, the source and drain need to be patterned on top of 

microwires. For this reason, a new innovative technique of spray coating (discussed in 

detail in next section) the silver paste is selected to deposit the metal patterns. Spray 

coating is helpful in maintaining the uniform boundaries, which in turn assist in 

minimizing the variations in the channel lengths of the MISFET devices. The 

fabrication steps are similar for both single and multiple Si microwires based MISFETs. 

Single wires from the array of 15 are selected after removing rest of the wires at the end 

of first transfer step, when the microwires are on the PDMS carrier stamp. Managing 

the number of microwires is challenging to control on the receiver substrate as the 

receiver layer have stronger adhesion to the SU-8 layer compared to weak interface of 

Si microwires and PDMS stamp. Additionally the transfer to the target flexible substrate 

is permanent as the receiver layer is sintered and the microwires are strongly adhered to 

the layer.  

To make a trade-off and produce the transfer printing compatible with solution based 

printing and coating techniques, a reliable deposition and patterning mechanism of 

materials is desired to make the overall fabrication route feasible for integration of 

organic and inorganic materials. For instance, deposition of the dielectric layer and 

patterning of metallic contacts for the source, drain and gate contacts after transfer of Si 

microwires need to be developed from solution to lower the overall cost of the 

fabrication process. For this purpose, a spray coating technique has been developed in 

this research where all the post-processing steps after the transfer of Si microwires have 

been performed. Shadow masks were prepared by using a thin sheet (40 µm thick) of 

brass through milling machine and were used for deposition of organic dielectrics i.e. 

PMMA (Poly (methyl methacrylate)) and PC (Polycarbonate) and for patterning of 

source and drain contacts using Ag (Silver) based solution. Spray coating technique 

helps in reproducibility of the devices by maintain the similar fabrication steps and as a 

result the electrical response of the devices within close ranges.  

7.3. Spray Deposition Through Shadow Masks  

The overall cost of the fabrication process and functional materials for devices 

utilizing Si microwires as the semiconductor layer could be lowered by introducing 

solution based techniques of spray-coating/printing for the post-processing. Spray 

coating is a single step deposition process of functional materials where a hard/shadow 

mask is used to define the patterns. It is a low-cost process and experiments are 

performed in ambient conditions making spray coating compatible for the post-
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Figure 7.3. 3D-Printer with the final developed shadow mask for spray deposition of metal and 

dielectric solutions. 

processing of microwires. The post-processing steps after successful transfer of Si 

microwires are to deposit the dielectric material and metallic patterns a shown in 

schematic of the device designs in Figure 7.2 (a & b). All the post-processes of transfer 

printing are desired to be at low temperatures within the thermal budget of the 

polyimide substrate i.e. < 300 oC.  

Similarly, all the chemicals are needed to be compatible with the polymeric substrate 

as well as with the adhesive layer to avoid deterioration of the interface between Si 

microwires and the adhesive layer. For this reason, the standard photolithography and 

etchants cannot be used for further processing of the Si microwires. Moreover, the 

surface of the Si microwires is not continuous because of the trenches between 

consecutive wires a uniform coating of the materials from solution is a challenging task. 

The aerospray coating technique is therefore an attractive choice for deposition of the 

dielectric and patterning of the metallic materials using shadow masks.  Figure 6.3 

shows images of 3D printer and masks prepared by using it. Shadow masks are made of 

plastic sheets, which are layered by gluing separate sheets of plastic to each other 

containing the desired structures. This is a fully automated way of producing these 

masks using a 3D printer (SD300). Such type of masks are more useful in spray coating 

of low viscosity solutions, where uniformity of layers are needed to be maintained after 

printing. 

Spray coating is a direct deposition technique where the material is deposited from 

solution with specific process parameters like atomization pressure, snap-off between 

substrate and nozzle tip, speed and temperature of the supporting plate for the substrate. 

All the surfactants and solutions evaporate either during the spraying or immediately 

after deposition on the hot substrate. As a result, a very uniform and thin layer can be 

deposited from top covering the whole area especially the non-continuous surface of Si 

microwires. Spray coating is a robust process and there is less material wastage 
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compared to other solution-processed techniques. These features make the spray coating 

ideal for compensating the higher cost involved during the initial photolithography steps 

for wires development. Figure 7.4 (a&b) features the spray coating schematics where 

the influence of atomization pressure and fluid flow having a direct bearing on the 

control of the coated layer is presented. The significance and film quality dependence 

on the substrate heating is also highlighted in Figure 7.4 (b).  

The quality of the coating by increasing the temperature to the level where all the 

surfactants are evaporated and solid particles adhere to the target surface. A UV-curable 

as well as organic dielectrics such as PMMA are selected for deposition of the dielectric 

layer for the field effect transistor, whereas Ag (silver) based paste is used to develop 

the metallic patterns for the source, drain and gate contacts. For patterned deposition of 

both the materials, shadow masks are used which are prepared by using a 3D printer. 

Spray coating system used for these experiments along with prominent components of 

 

 
Figure 7.4. Spray deposition and influence of increased substrate temperature on the quality of 

the layer 
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spray deposition such as syringe pump, Teflon tubing for fluid delivery, nozzle holder, 

hot plate and shadow masks for patterned deposition are shown in Figure 7.5 (a-d). A 

double concentric nozzle with internal diameter 500 µm and external diameter of 1 mm 

as shown in Figure 7.5 (b) was used for the spray deposition. The internal nozzle was 

used for fluid delivery while the outer is used to allow compressed N2 (Nitrogen) for 

spraying the solution. 

 

A UV (ultraviolet) curable and solution of organic dielectric i.e. PMMA are spray 

coated at the channel area of the devices. Spray coating of dielectric layer is critical as 

the solution deposition from top covers all the exposed areas within the shadow mask 

for uniform deposition of a thin layer. The wire trenches could hinder the uniform or 

planar spreading of dielectric during the coating step; especially with conventional 

coating methods such as spin coating. Therefore, to make the process more robust and 

cost-effective, solution of organic dielectric i.e. PMMA was spray-coated to cover all 

the Si microwires including both the active area and trenches. A thin layer of about 

~450 (±30) nm was achieved as a result of spray coating the dielectric solution. 

Variations in the layer thickness are observed because of multiple passes of the spray 

nozzle as shown in Figure 7.6. If sufficient time is not given for the solvents to 

evaporate from the substrates, multiple passes of the spray coating results in 

 
Figure 7.5. Spray coating system (a) main components of spray coating i.e. syringe pump, tube 

delivery, hot plate and spray nozzle. (b) Dual concentric spray nozzle with cross sectional view. 

(c). Shadow mask prepared using milling machine for metal patterns (d) Shadow mask for 

dielectric deposition. 
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accumulation of the solution at random locations. This occasional wet on wet deposition 

could be overcome by properly adjusting the spray nozzle height from the substrate and 

speed of the stage.  

Additionally, the spinning of the substrate enhances the spread of the nano/micro-

droplets ejecting from the spray nozzle. In current setup, there is no setup for the 

rotation and the substrates were kept on top of a plated support. Therefore, to enhance 

the spread further and make the thin film more uniform, the spray coated samples were 

immediately rotated at higher speeds as 3000 RPM by using a spin coater. As the metal 

pads are already covered with a scotch tape, the spreading of any existing solution from 

the desired spray coated area is not so critical to badly affect the device structure or 

performance. Substrate heating is not required for the deposition of the dielectric layer, 

due to the requirement of the final spinning of the substrate.  Therefore, in this case not 

all the solvent is evaporated during the time of flight of the droplets from the nozzle nor 

after coming in contact with the substrate. An additional step to promote the adhesion 

and spreading of the solution on the plastic substrate and also on the Si microwires, 

plasma oxidation (20 % for 20 seconds) is performed before spraying the dielectric 

solution. Similarly, the metal pads are protected by putting a small piece of Polyimide 

 
 

Figure 7.6. Thickness measurements using optical interferometer. 
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scotch tape on the edges of the contact pads and removed after completing the plasma 

and dielectric spray deposition.   

A very thin solution is required for the spray coating which is prepared by using 

Silver paste (DuPont) by adding more surfactant solution. The standard thinner solution 

provided by supplier of the silver paste was used in ratios of 15 wt. % of the paste.  In 

the case of flowable or low viscosity paste, these trenches act as micro-channels for the 

 
Figure 7.8. Spray coating of silver (Ag) on PI with substrate heating 

Spray coating of Ag 

with heated stage

Hillocks

 
Figure 7.7. Spray coating of silver (Ag) on PI without introducing substrate heating 

Spray coating of Ag 

with unheated stage

Islands
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paste to flow, which eventually may result in the short-circuiting of source and drain. 

This is one of the major issues experienced during our previous experiments [12, 21]. 

Two different solutions are foreseen here to address this issue - the first is to use the Si 

wires with reduced thickness (i.e. using SOI wafer with Si layer in nanometer) and the 

second is the quick solidification of spray-coated metals. The first solution comes with 

greater risk of thinner Si microwires breaking during the transfer-printing step. Partial 

sintering or instant solidification of spray–coated Ag paste, e.g. due to a heated 

substrate, can be used to avoid short-circuiting of source and drain. The latter option is 

also closer to rapid processing for large area flexible electronics.  

A shadow mask developed from Brass as shown in Figure 7.5 (c), was used to realize 

the source and drain contacts. For the spray solutions, requiring a heated substrate, it is 

essential to use a reliable material, which can sustain higher temperatures. The shadow 

masks developed by using 3D printer are more suitable for coating dielectric materials, 

as no heating is required for them. However, the shadow masks developed by 3D printer 

are stack of plastic sheets adhered to each other by using glue. The plastic material of 

the shadow mask as well the glue does not sustain temperatures higher than 100 oC, and 

shrinks by deteriorating the desired structures on the mask. Therefore, to avoid this 

problem Brass was used as the hard shadow mask for the Ag patterned deposition. To 

keep the metal layers thin (~1µm.), the substrate was heated at around 120 oC so as to 

evaporate the surfactants immediately. This step ensures the deposition of metal layers 

with good control on the edges especially in the case of MISFETs made of array of Si 

microwires, as the trenches between the wires (Figure 7.1(a)) make the surface uneven.  

Substrate heating is critical in case of metals deposition layers, in order the control 

the uniformity of the layer and maintain the same conductivities. Spray coating without 

heating the substrate results in a layer, which have islands because of the solution 

accumulation at specific locations on the substrate as shown in Figure 7.7. 

Subsequently, after sintering step of the silver, big voids are generated after complete 

evaporations of the solvent and surfactants creating islands of conductive grains. On the 

other hand, heating substrate while spraying results in a dried layer in real time as all the 

solvents are removed as soon as the droplets are deposited on the hot substrate as shown 

in Figure 6.8.  A very thin conductive layer is possible to be deposited with maximum 

of two passes of the spray coating. The less number of spray passes are desired in this 

approach also to minimize wet-on-wet deposition, as multipasses can results in 

developing hillocks due to increased solution deposition and immediate sintering. These 

hillocks (shown in the inset of Figure 7.8) can result in short-circuiting if multi-layer 

structure is desired where multiple metals solutions are supposed to be deposited. 

Therefore, a single or a maximum of two passes of the metallic spray deposition is the 

preferred approach for such type of structures. This also helps in minimizing the 

solution wastages and reducing the overall cost of the materials.  
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Finally, a separate shadow mask is used to pattern Ag for the gate contact with good 

alignment to the channel area. Various steps related to spray coating were carried out 

within the thermal budget of PI substrate. For example, during spray coating the 

substrate was kept at 120 oC to ensure that the surfactants and solvents evaporate 

immediately after spray deposition of materials.  Similarly, the sintering of Ag paste 

was carried out at 120 oC. The solvents used were also compatible with PI and SU-8, 

which is used here to adhere Si microwires on PI. As a result, uniform thin dielectric 

and metal contacts were deposited on Si microwires. The final assembled microwires 

and developed metal insulator field effect transistors based on multiple and single Si 

microwire are shown in Figure 7.9 (a & b) respectively. 

7.4. Results and Discussions  

The top-gate structures of MISFETs so obtained are mechanically robust as the 

materials on top of Si microwires prevent their dislocation or breakage. The fabricated 

FETs have channel length of ~30µm and channel width of 50µm for the single wire 

devices. The channel width increases 20 times for the array based devices. As the 

channel length depends on the resolution of printing tools, the device performance is 

linked to the printing resolution. As a result, small variations in dimensions during 

printing may lead to bigger variations and non-uniformity of response among similar 

devices. In this regard, the MISFETs based on array of Si microwires are expected to be 

better as dimensional variations are distributed over large number of wires, which then 

leads to lesser variations among device performances.  

 
Figure 7.9. (a) & (b). Final assembly of MISFET devices developed from multiple and single 

Silicon microwires  
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Figure 7.10. (a) and (b). Output response of MISFET devices made of Si multiwires with 

similar geometric parameters at different gate voltages. 
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After device fabrication, the bending tests were performed to inspect the mechanical 

 
 

 
Figure 7.11. (a) and (b). Output response of MISFET devices made of Si single wires with 

similar geometric parameters at different gate voltages. 
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reliability of the structure and to investigate the adhesion-loss at the interface of Si 

microwires and SU-8. For this purpose, the structure was attached to a separate plastic 

sheet and wrapped around cylinders with different diameters of 8, 12 and 16 mm, which 

are revolved for 500 cycles. Bending test is critical for monitoring cracks caused by the 

stresses within the layers during the bending process. It is used also to check any 

dislocation or delamination of the wires from the adhesive layer. No crack or 

delamination was observed after repeated bending tests.  

For electrical characterization, 12 devices (6 from each type, as described in Table 

7.1) are evaluated in terms of drain current and threshold of onset voltages. A set of 2 

devices from each group was investigated under similar gate voltage and the responses 

were compared for any variation. Figure 6.10 shows the output response of MISFETs 

based on array of 15 Si microwires. Figure 7.10(a) shows responses of devices 1a, 2a 

and 3a at different gate voltages. Figure 7.10(b) shows the response of other 3 similar 

devices (i.e. 4a, 5a and 6a) at similar characterization conditions. For device 1a in 

Figure 7.10 (a), the saturation threshold voltage for the onset is ~2.1V (VDS) and a 

drain current of ~1.75µA, whereas its corresponding device i.e. 4a in Figure 6.10 (b) has 

a threshold voltage at ~2.2V (VDS) and a drain current of 2.0µA. The difference in 

drain currents of these devices is 0.3 µA and the onset voltage difference is 0.1V. 

Similarly the threshold voltage for the onset of device 2a is 2.5V (VDS) and a drain 

current of 3.1µA while the onset voltage for its corresponding device 5a is 2.1V (VDS) 

and a drain current of 2.75µA. The corresponding devices 3a and 6a with similar 

structural parameters have a difference in the onset voltage of 0.4V (VDS) while the 

change in current response is about 0.2µA. Similarly, Figure 7.11 (a) and (b) show the 

variations in the drain current of the devices made of a single Si microwire. Comparison 

of the data extracted from both the graphs in Figure 7.10 and Figure 7.11 show an 

increased drain current with less variations among devices made of multiple Si 

microwires.  

Table 7.1. Summary of the responses with corresponding device variations. 

 
a, corresponds to the type of multiwires based MISFETs (1a, 4a), (2a, 5a) & (3a, 6a) are 

corresponding devices characterized at similar gate voltages. 

b, corresponds to the type of single wires based devices (1b, 4b), (2b, 5b), and (3b, 6b) are 

corresponding devices at similar gate voltages. 
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Table 7.1 summarizes the net changes in the characterization values of the devices 

with standard deviation and percentage changes between corresponding values. 

Statistical analysis of the data in the graphs of Figure 6.10 and Figure 6.11 show mean 

values of 1.6, 2.4 and 1.9 for the threshold voltages of related devices i.e. (1a, 4a), (2a, 

5a) and (3a, 6a) respectively for the multiwires based devices. Similarly, the mean 

values for the drain current of multiwires-based devices are 1.8, 2.9 and 5.3 

respectively. On other hand, the mean threshold voltage values for the single Si 

microwire based devices i.e. (1b, 4b), (2b, 5b) and (3b, 6b) are 2.5, 2.7 and 3.1 

respectively. The mean drain current values for the same set of devices are 0.03, 0.06 

and 0.09 respectively. The standard deviation and the average change (in percentage) of 

threshold voltages for the multiwires-based devices is lesser as compared to the single 

wire counterparts, as shown in Table 7.1. It is observed that devices made of multiwires 

better mitigate the response variations. Further, they are more reliable, as any variations 

due to physical disruptions of a single wire within the array could be compensated by 

rest of the wires. 

7.5. Conclusion 

A new fabrication route, using conventional microfabrication technology and printing 

tools, is presented for development of transistors. Two types of MISFETs have been 

investigated to understand the types of device structures possible with presented 

methodology. It has been observed that devices with multiwires have better 

performance and lesser variations compared to single Si microwire based devices. The 

ensemble of multiple number of Si microwires are useful when these discrete devices 

are advanced to flexible circuits where variations in the device responses are desired to 

be as minimum as possible. Further improvement in the device performance is obvious 

by decreasing the width of microwires from 50 µm, which would result in increasing 

the aspect ratio and diminishing the overall size of the device. The spray coating in 

particular is a significant achievement within this research, as diverse solution based 

materials could easily be printed in a one-step process. The reliable processing of spray 

coating with minimum control parameters expand the use of Si microwires for a range 

of applications. Not only MISFET devices, the processing of several solution based 

organic transducer materials could be integrated with Si microwires for diverse sensing 

applications.  We conclude that devices using arrays of Si microwires are less prone to 

printing related dimensional variations and have better reliable performance compared 

to devices with single microwire.  
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Chapter 8 

Conclusion 

8.1. Conclusion 

In this research work, an investigation towards the mergence of three potential 

printing technologies have been carried out for developing electronics on polymeric 

substrates. These hybrid electronic components are fabricated by integration of diverse 

organic and inorganic materials in the form of thin films. A feasible technological 

platform is established, where Si microwires could easily be merged with the thin films 

of organic dielectric and conducting materials. These diverse, solution based and dry 

transfer printing technologies have been utilized for fabrication of flexible electronics 

by successful demonstration of prototype devices on PET and PI substrates. The 

advancements made toward the fabrication route of large area flexible devices and 

feasible integration of transfer printing, spray coating and screen-printing technologies 

have been highlighted within this research. 

Screen-printing is the exceptional fabrication scheme, which has been explored in the 

first part of the thesis for rapid prototyping of metal contacts and large area pressure 

sensors. The screen-printed metal contacts are used for the back-gated MISFETs, where 

Ag paste is printed prior to deposition of an adhesive layer for the Si microwires 

transfer. An all screen-printed fabrication route has been potentially explored for 

fabrication of two types of pressure sensors. In both the variants, flexible pressure 

sensors are in the form of segmental arrays of parallel plate structure - sandwiching the 

piezoelectric polymer Polyvinylidene Fluoride Trifluoroethylene (P(VDF-TrFE)) 

between two printed metal layers of silver (Ag) in one case and the piezoresistive 

(Multiwall Carbon Nanotube (MWCNT) mixed with Poly(dimethylsiloxane (PDMS)) 

layer in the other. The screen-printed piezoelectric sensors array exploit the change in 

polarization level of P(VDF-TrFE) to detect dynamic tactile parameter such as contact 

force. Similarly, the piezoresistive sensors array exploits the change in resistance of the 

bulk printed layer of MWCNT/PDMS composites. 

Transfer printing of Si as the semiconductor layer has been introduced to fabricate 

active devices on polymeric substrates, is investigated in the second part of the thesis. 

The transfer printing technique is optimized by introducing stress intensifiers and an 

extra over-etching technique, which resulted in enhanced transfer yield in both the 

transfer steps of Si microwires, from donor wafer onto secondary polymeric substrates. 

Both the dry transfer printing techniques i.e. flip-over and stamp-assisted transfer are 

evaluated on the basis of current response and junction formation with conductive 

patterns in MSM structures. The better response of stamp-assisted transfer printing has 

been pursued for fabrication of MISFET devices on PET and PI substrates. Spray 

coating is a step further towards easy and reliable manufacturing of hybrid flexible 

electronics by incorporating Si microwires within thin layers of organic dielectrics and 

metallic conductors. Spray coating with the help of shadow masks prepared by using a 

3D printer and a milling machine are used to deposit the organic dielectric and 
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patterning of metallic contacts for the source and drain for MISFETs. Spray coating 

offers the innovative features to the fabrication platform that help in rapid deposition of 

diverse solution based materials with repeatable coating parameters. Additionally the 

MISFET responses are characterized by including a single and multiple Si microwires 

in the device architecture. Based on the results obtained by including both single and 

multiple Si microwires, it is concluded that MISFETs based on multiple Si microwires 

have less response variations compared to MISFETs made of a single Si microwire.  

 

8.2. Future Outlook 

The exceptional growth of printed and flexible electronics have been witnessed in 

recent years for diverse applications. Although rapid advancements have been observed 

in various fields of the flexible electronics, still there is a lot of room for development of 

reliable manufacturing platform by harvesting potentials of different printing 

technologies. Electronic skin (e-skin) is one of the various exciting applications of large 

area flexible electronics, where the sensor patches are desired to be mounted 

conformably on a robot body or on prosthetic limbs. This will revolutionize the artificial 

 
Figure 8.1. Future scope of current research achievements, (a) Schematic of an extended gate 

MISFETs connected to a sensor, (b) Screen-printing of large area tactile/pressure sensors, (c) 

Transfer printing Si microwires on the extended gate area, (d) Full sensor modules and patches. 
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intelligence by making robots (industrial and social) more interactive. This 

technological platform developed by merging the three different potential printing 

technologies is aimed for development of such large area sensor patches as shown in 

Figure 8.1 (c & d). Utilizing a single fabrication technique is always hindered by 

intrinsic properties of the materials (organic and inorganic), processing conditions 

(temperatures and vacuum environment) and the substrates used for developing 

electronic systems on top of the surface. Hybrid thin film (organic and inorganic) 

devices have got the opportunity to shape up for getting large area electronics devices 

that can effectively be used and merged in different odd structures. 

The next step of this research project is to utilize the fabrication platform and bring 

together the discrete devices i.e. MISFETs and large area pressure sensors on a single 

foil for developing an active pressure mapping system. Therefore, achievements in this 

research have a strong potential to be advanced further towards heterogeneous 

integration of devices made of organic and inorganic materials. To utilize effectively 

and bring all the devices on a single foil would provide an attractive opportunity to get 

the benefits from both the streams of materials. For instance, Si microwires based 

devices would provide fast switching or signal conditioning electronics whereas 

solution based materials would help in bringing down the overall cost of the system. 

The final patches are planned to be developed by following an extended gate structure 

(Figure 8.1 (a)); where the bottom electrode of each sensor is coupled as a back gate for 

the transferred Si microwires (Figure 8.1 (b & c)) based MISFETs. Preliminary 

experiments have been performed in this direction and a prototype patch is 

demonstrated as shown in Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 

 

Scientific Production 

Submitted and in progress 

1. Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya “Flexible MISFETs 

Developed from Transfer Printed Si Microwires and Spray Coating” IEEE. 

Elect. Dev. Soc., Under Review. 

2. Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya “Recent Advances of 

Conductive Nanocomposites for Flexible Sensors and Electronic Skin 

Applications”, In Review. 

Published 

1. Saleem Khan, Nivasan Yogeswaran, William Taube, Leandro Lorenzelli and 

Ravinder Dahiya, “Fabrication route to embed ultrathin Si μ-wires in solution-

processed layers for flexible FETs”, J. Micromech. Microeng. 25 (2015) 

125019 (10pp).  

2. Saleem Khan, Wenting Dang, Leandro Lorenzelli and Ravinder Dahiya, 

“Flexible Pressure Sensors based on Screen Printed P(VDF-TrFE) and P(VDF-

TrFE)/MWCNTs” IEEE, Trans. on Semiconductor Manufacturing, Vol. 28, 

No. 4, (486-493), 2015. 

3. Saleem Khan, Sajina Tinku, Leandro Lorenzelli and Ravinder Dahiya, 

“Flexible Tactile Sensors using Screen Printed P (VDF-TrFE) and 

MWCNT/PDMS Composites”, IEEE Sensors J. Vol. 15, no. 6, PP (862-865), 

2015. 

4. Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya, “Technologies for 

Printing Sensors and Electronics over Large Flexible Substrates: A Review”, 

IEEE Sensors J. Vol 15, no. 6 PP (3164-3185), 2015. 

5. Nivasan Yogeswaran, Wenting Dang, Saleem Khan, Shoubhik Gupta, William 

Taube, Dhayalan ShaktiVal, Emre O Polat, Ravinder Dahiya, “New Materials 

and advances in making electronic skin for interactive robots” Advanced 

Robotics, Vol. 21, Issue 21, (1359-1373), 2015. 

6. Ravinder Dahiya, William Taube Navaraj, Saleem Khan, and Emre O. Polat, 

“Developing Electronic Skin with the Sense of Touch”, Information Display 

(Frontline Technology), Vol. 31, No. 04, July/August, 2015. 

Conferences 

1. Saleem Khan, Leandro Lorenzelli and Ravinder Dahiya, “Flexible 

Thermoelectric Generator Based on Transfer Printed Si Microwires” ESSDERC 

2014, 44th European Solid-State Device Conference, September 22-26, 2014 - 

Venice, Italy. 

2. Saleem Khan, Ravinder Dahiya, Sajina Tinku, Leandro Lorenzelli, “ 

Conformable Tactile Sensing using Screen Printed P(VDF-TrFE) and MWCNT-

PDMS Composites”, IEEE Sensors 2014, November 2-5 2014, Valencia, 

Spain, 2014. 



160 

 

3. Saleem Khan, Ravinder Dahiya and Leandro Lorenzelli, “Screen Printed 

Flexible Pressure Sensors Skin” Annual SEMI ASMC, NY, USA, 19-21 May, 

2014. DOI: 10.1109/ASMC.2014.6847002, 2014. 

4. Saleem Khan, Nivasan Yogeswaran, Leandro Lorenzelli and Ravinder Dahiya, 

“Si Microwires based FETs on Flexible Substrates”, 11th IEEE PRIME, 

Glasgow, UK, 2015. 

5. Saleem Khan, William Taube, Nivasan Yogeswaran, Hadi Heidari and 

Ravinder Dahiya, “Spice Model of a Piezo-Electric Transducer for Pulse-Echo 

System”, 11th IEEE PRIME, Glasgow, UK, 2015. 

6. Saleem Khan, Wenting Dang, Leandro Lorenzelli and Ravinder Dahiya, 

“Printing of high concentration nanocomposites (MWNTs/PDMS) using 3D-

printed shadow masks” - AISEM Annual Conference,  XVIII, 2015. 

7. Saleem Khan, Leandro Lorenzelli, Ravinder S. Dahiya, “Bendable 

Piezoresistive Sensors by Screen Printing MWCNT/PDMS Composites on 

Flexible Substrates” IEEE-PRIME Conference, Grenoble, France, 2014. 

8. Saleem Khan, Ahsan Rahman, Adnan Ali, Arshad Khan, D. S. Kim, K.H Choi, 

“Comparison and analysis of patterning based on different ground 

configurations for polyimide substrate”, Proceeding of Korean society of 

Mechanical Engineers, pp. 192-193, 2010. 

9. Nivasan Yogeswaran, Saleem Khan, Wenting Dang, Emre Ozan Polat, Leandro 

Lorenzelli, Vincenzo Vinciguerra and Ravinder Dahiya, “Tuning Electrical 

Conductivity of CNT-PDMS Nanocomposites for Flexible Electronic 

Applications” IEEE Nano, Rome, Italy, 2015.  

10. Cristian Collini, Valentina Prusakova, Saleem Khan, Giuseppe Resta, Leandro 

Lorenzelli, Sandra Dirè, “Development of microfabrication technologies 

enabling the realization of memristor-based devices and building blocks for 

logic circuits”, NanotechITALY, Bologna, Italy, 2015. 

11. Wenting Dang, Saleem Khan, Leandro Lorenzelli1, Vincenzo Vinciguerra and 

Ravinder Dahiya, “Stretchable Interconnects using Screen Printed 

Nanocomposites of MWCNTs with PDMS and P(VDF-TrFE)”, 11th IEEE 

PRIME, Glasgow, UK, 2015. 

12. Nivasan Yogeswaran, Sajina Tinku, Saleem Khan, Leandro Lorenzelli, 

Vincenzo Vinciguerra and Ravinder Dahiya, “Stretchable Resistive Pressure 

Sensor based on CNT-PDMS Nanocomposites”, 11th IEEE PRIME, Glasgow, 

UK, 2015. 

13. Stuart Hannah, Helena Gleskova, Saleem Khan and Ravinder Dahiya, 

“Response of P(VDF-TrFE) Sensors to Pressure and Temperature”, 11th IEEE 

PRIME, Glasgow, UK, 2015. 

 

 

 

 



161 

 

Participation to Congresses, Schools and Workshops 
 

 

Conferences 

ASMC 2014, IEEE-PRIME 2014, ESSDERC 23rd Sep 2014, IEEE-Sensors Nov 2014, 

MSCA Nov 2014, AISEM 2015, IEEE PRIME 2015. 

 

Workshops and Seminars 

 

Workshop on Silicon Photonics: Recent Advances (Univ. of Trento), Workshop on 

Advances in Photovoltaics (Univ. of Trento), Seminar on Flexible Electronics 

Technology (Univ. of Trento), ICT Days 2014, Univ. of Trento. 

 

Secondments at Partner Institutes 

 

1. Secondment at Fraunhofer EMFT, Munich, Germany  

 Activity: Roll-to-Roll screen-printing, ESD Test, Physical Reliability and Life 

Cycle Tests. 

2. Secondment at Technical University Munich TUM, Germany 

  Activity: Spray Deposition of CNTs for Sensors, Characterization of the Sensors. 

3. Secondment planned at University of Glasgow. 

 Activity: Nanofabrication, Inkjet Printing, Physical & Electrical characterization 

of flexible electronics. 

 

Summer Schools 

 

1. 2nd International Summer School on Smart Materials & Structures, July 22-26, 

2013, Trento, Italy. 

2. “Flexible Sensors and Electronics-Materials Methods & Technologies” 11-13 

Sept. 2013, Catania, Italy. 

3. Joint Summer School of the European Projects CONTEST–OLIMPIA–EAGER 

on “System Integration”, May 26– 28, 2014, Fraunhofer EMFT, Munich, 

Germany. 

4. ITN Marie Curie Joint Summer School CONTEST PROTOTOUCH, 

UNIVERSITÉ LILLE1, France 18-22, MAY 2015 

 

 

 

 

 



162 

 

Acknowledgements 

I am heartily thankful to my supervisors, Dr. Ravinder Dahiya, Dr. Leandro 

Lorenzelli and tutor Prof. Gian Domenico Soraru  whom encouragement, guidance and 

support from the initial to the final stage enabled me to develop an understanding of the 

subject very well. This thesis would not have been possible without their keen interest 

and valuable support. Their positive attitude made this work very enjoyable and 

interesting. I greatly appreciate the fruitful discussions and favouring research 

environment, which gave me a broad vision to carry out my research in the right and 

correct direction. I also acknowledge the valuable support from the European 

Commission for funding my research activities through Marie Curie program. It has 

been a great source of learning that provided exciting opportunities for effective 

exploration and collaborations. I am thankful to the CONTEST project members and 

expert mentors who trained me by providing valuable tips for positive career growth 

during the project meetings.   

I extend my appreciations to all my lab colleagues and co-workers for the fruitful 

discussions and helping me out through all the ups and downs of my research at FBK. I 

am thankful to my group mates, Sajina Tinku, Nivasan Yogeswaran, Wenting Dang, 

Shoubhik Gupta, Guido Sordo, Andrea Capuano and Anton Polishchuk. I greatly 

appreciate the useful help from Dr. Andrea Adami, Dr. Alessia Mortari, Dr. Cristian 

Collini, Flavio Giacomozzi, Stefano Girardi and Severino Pedrotti. They have been 

great sources of encouragement into many topics during this research. I also 

acknowledge the countless support from BEST group members (at University of 

Glasgow UK) and especially William Taube Navaraj for his fruitful discussions and 

simulation of the devices.  Not but not the least, I am thankful to my Pakistani friends 

Mohib Ullah, M. Bilal Barki, Qaiser Ihsan, Nasir Hussain, Kashif Ahmed, Hafeezullah, 

Kashif Safeen and all those who in anyway accompanied me in settling down well and 

made my stay enjoyable at Borino. I am thankful to my best friends Dr. Adnan Ali and 

Tariq Hamid for supporting and encouraging me throughout my academic career.   

My deepest gratitude goes to my parents for always supporting and encouraging me. 

It is indeed a proud moment for me to acknowledge the love, support and push from my 

grandparents for achieving the best in my academic career. Moral and financial support 

from my uncles have for sure made me capable of getting the highest educational 

degree. None of my endeavours would have been possible without them. I express my 

sincere gratitude to my brothers and sisters for their support, especially Salman Khan 

for his late night chats. I am extremely grateful to my wife Nazish, and kids AbdAllah 

and Abdurrahman for their love, patience and sacrifice. I offer my regards and blessings 

to all who supported me in any respect during my social, academic and professional life. 

Above all, I present my humble gratitude in front of Almighty Allah, Who enabled 

me to accomplish the dignified cause of education and learning, and I pray to Him that 



163 

 

He makes me able to utilize my knowledge and edification for the betterment of 

humanity and its development. 


