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Introduction

The spread and persistence of infectious diseases are a result of the com-

plex interaction between individual units (e.g. people, city, county, etc),

disease characteristics and various control policies which aim at arresting

disease transmission or bringing infection prevalence to as low a level as pos-

sible. Thus the main aim of many models is to gain insight into how diseases

transmit and to identify the most effective strategies for their prevention and

control.

The early modelling contributions for infectious disease spread date backs

to the eighteenth century with the work of Bernoulli (1760) on the smallpox,

another crucial work is that of Ross (1911) that modelled the transmission

of malaria. One of the first more general and rigorous study was made by

Kermack and McKendrick (1927), that has evolved along the years in an

impressive quantity of improved works [21, 69].

Epidemiology modelling has been used in planning, implementing and evalua-

ting various prevention, therapy and control programs [14]. The epidemic

model has been used also to describe a wide range of others phenomena,

like social behaviors, diffusion of information, computer viruses etc., indeed

even if the basic mechanisms of these phenomena can be different, often their

dynamical behavior can be described by the same type of equations [69].

Generally, the theoretical approach to epidemic spreading is based on

compartmental models, i.e., we assume that the population can be divided

into different classes (or compartments) depending on the stage of the disea-

se. The main classes are those formed by the susceptibles (denoted by S)
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that are healthy and hence can contract the infection, the infectives (de-

noted by I) that have contracted the disease and can infect the susceptible

individuals and the removed (denoted by R) who recovered from the disease

and received immunity. Additional compartments can be used to cover other

possible states of individuals.

In the simplest models the population is considered closed, i.e. the popu-

lation does not change over time. The implicit assumption, in this case, is

that the time scale of the disease is much smaller than the lifetime of in-

dividuals. Consequently terms accounting for the births or natural deaths

(but even demographic processes such as immigration or emigration) are not

included in the equations that account for the evolution in time of contagion

process, i.e. the transition of individuals from one compartment to the other

[14].

The epidemic spreading is governed by an inherently probabilistic process.

Thus a correct analysis of epidemic models should consider explicitly its

stochastic nature, especially when dealing with small populations [42, 69].

In the simplest stochastic model the infectious period has the lack-of

memory property, i.e., we assume that the duration of infectivity is exponen-

tial, this means that the process (S, I) = {(S(t), I(t)); t ≥ 0} is Markovian

[42]. The first formulation of the epidemic Markov model is due to Barlett

(1949). The assumption of an exponentially distributed infectious period is

not epidemiologically motivated, rather often in conflict with the empirical

evidence, however with this assumption the mathematical analysis becomes

much simpler. Moreover using Markov process, we can obtain deterministic

and diffusion approximations for the whole trajectory, in the case of large

population sizes (see [53],[42, Chapter 5]). This is difficult to obtain when

the stochastic process is not Markovian [42].
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Models that choose other than the exponential interaction time for infection

and/or recovery (see, for instance [96, 23, 48]), have appeared recently in

literature.

Besides discrete time Markov chain (DTMC) and continuous time Markov

chain (CTMC) (see [20]), another typical method for formulating stochastic

epidemic models is through stochastic differential equations (SDE) [3, 2].

However most of the early epidemic models are deterministic, and over the

years, works on deterministic models have dominated strongly over works on

stochastic models, because of their greater simplicity and tractability [66].

The deterministic models assumes that the population is sufficiently large,

in order to ignore the random fluctuations; by the application of the law of

the large number the probability of an event (e.g. the infection) is equalized

with the fraction of infected individuals. Thus, the number of individuals

in each class, a discrete quantity, becomes a real number. The use of these

deterministic model with real variables can be rigorously justified, as said

before, as limit of stochastic model with integer variable, when the popula-

tion tends to infinity (see [53]).

In these models, in absence of detailed data on human interactions, the most

basic approach is to consider an homogenous mixing approximation, meaning

that individuals in the population are well mixed and interact with each other

completely at random, that is each member in a compartment is treated simi-

larly and indistinguishably from the others [69, 5]. Thus, through the law of

mass action (see [69]), which states that an individual becomes infected at

a rate proportional to both the densities (i.e. the fraction) of infectious and

susceptibles, one can write down a system of ordinary differential equations

for the average densities of individuals in the various compartments.

There are many differences between the deterministic and stochastic epi-

demic models, one of the most important is their asymptotic dynamics. Even-

tually stochastic solutions (sample paths) may converge to the disease-free

state even though the corresponding deterministic solution, under some pa-



rameter regimes, converges to an endemic equilibrium, meaning that the

disease will persist indefinitely in the population, never dying out [3, 66, 65,

21]. Indeed, the deterministic version of models with compartments, has a

threshold that is described in terms of the so-called basic reproduction ratio

R0, that depends on the basic parameters of the model. The basic reproduc-

tion ratio is the expected number of secondary cases produced by a typical

infected individual, during its entire period of infectiousness, in a completely

susceptible population [32]. The threshold value R0 = 1 for the determini-

stic model identifies two parameter regions, i.e. one where R0 > 1, and the

other where R0 < 1, with qualitatively different behaviors of the solutions

of the ordinary differential equations. Instead, in the stochastic model, we

can identify three parameter regions with qualitatively different behaviors.

The boundaries between these regions depend on the value of the number

of individuals N ; the amplitude of the transition region near R0 = 1 ap-

proaches zero when N → ∞. This explains why this region is absent from

the deterministic version of the model [66].

However, as it is showed in [66], some deterministic models are unaccepta-

ble approximations of the stochastic models for a large range of realistic

parameter values.

Other properties that are unique to the stochastic epidemic models in-

clude the probability of an outbreak, the quasi-stationary probability distri-

bution , the final size distribution of an epidemic and the expected duration

of an epidemic, see [3] for a detailed explanation.

The assumption of homogeneous mixed population, both in determini-

stic and stochastic models (see e.g [21, Section 2.3]) is very strong and dis-

putable, since details such as geographical location, presence of community

structures, or the specific role of each individuals in the epidemic spreading

are ignored [14, 69]. Moreover, an implicit assumption is that each infected

individual has a small chance to infect every susceptible individual in popu-
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lation. Conversely diseases spread through a network of social contacts, thus

the epidemic has a much higher probability of spreading to a limited set

of susceptible contacts [50]. Indeed the dynamics of disease transmission

strongly depends on the properties of the population contact network.

The relationship between epidemiology and network theory dates back to

the mid-1980s (Klovdahl, 1985; May and Anderson, 1987). However in the

recent years great progress have been made in the understanding the role

of network in the epidemic spread, regarding random graphs (Diekmann et

al., 1990, Barbour and Mollison 1990, Andersson, 1998, Neal, 2003.), small

word networks (Watts and Strogatz, 1998, More and Newmann, 2000), and

scale-free networks (May and Llyod, 2001, Pastor-Satorras and Vespignani,

2001). In most of this works the individual-level network structure and be-

haviour are used to generate an approximation for the spread of infection

[50]. For a short review on these kind of models see [69, 29]. A different

approach is taken, e.g in [50], that aims to modify the standard ODE models

of Kermack and McKendrick in order to capture the temporal dynamics of

network. Generalization of the epidemic modeling to any network structure

was recently proposed by Newman, 2002; Wang et al., 2003, Ganesh et al.,

2005, VanMieghem et. al. 2009.

The increased interest in this field derives from the accumulated evidence

for the emergence of complex and heterogeneous connectivity patterns in a

wide range of biological and socio-technical systems [69]. We are, as indivi-

duals, units of a network of social relationships of different types, biological

system are the result of biochemical reactions; network structure can be rec-

ognizable even in the Internet, or in an electric power grid, in the physical

layer of the telecommunication systems, in highways and subways systems or

neural networks [14].

The recent possibility of large-scale datasets have led to improve considerably

the real-world accuracy of the models, thus simulations of entire populations

down to the scale of single individuals [69, 8, 60]. The analysis of the re-



cent abundance of data has offered the possibility to observe interesting and

unexpected behaviors whose theoretical understanding have stimulated an

intense research activity. The new models try to take into account individual

heterogeneity, multiple scales at play during the spread of epidemics, spactial

structure, and the emergence of clustering and communities that characterize

the connectivity patterns [69].

Another noteworthy aspect is that, in most of the models, the parameters

are considered given and constant over time. However in population models,

as well as in many other application fields, the parameters may have a great

variability depending on errors in the observed and measured data, on uncer-

tainties, e.g. when some variables cannot be measured, on lack of knowledge

or, simply, on the presence of a random environment. Hence a more cor-

rect approach may be to consider the parameters as random variables with

a specified given distribution, and study differential equations with random

coefficients or incorporating stochastic effects. This kind of models are better

in describing real behavior than model involving equations with deterministic

coefficients [3, 86, 87].

The modeling of random perturbation is classically obtained in two different

ways. On the one side, stochastic differential equations have been used to

approximate the Markov chain model (see for instance [59] and [30]). On the

other side, a simpler approach consists of introducing parameter perturba-

tions in the ordinary differential equations to examine the effects of environ-

mental stochasticity: see for instance [57, 41] and the review in [21, 86].

After this general overview on epidemics models, that clearly makes no

claim to completeness, because of the huge amount of contributions and open

problems in this field, we report in the next section a sketch of the thesis.
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0.1 Scope and organization of the thesis

The major scope of this thesis is to understand how the viral propaga-

tion, between interacting agents, is determined by intrinsic characteristics of

the contact networks; thus we aim to investigate how a particular network

structure can impact on the long-term behavior of epidemics.

For this purpose we consider a given and static graph, i.e. one whose nodes

set and edges sets do not change in time, that we can see, ideally as the

result of some random experiment, or as a man made architectures. The use

of theoretically constructed networks aims to capture some of the known (or

postulated) features of real transmission networks.

We consider a closed population and an SIS (susceptible-infected-suscepti-

ble)-type model. In the SIS an individual can be repeatedly infected, recover

and yet be infected again. This model covers those types of disease that

does not confer immunity, e.g. common cold, sexually transmitted diseases,

and other bacterial infections [38, 54]. Computer viruses also belong in this

category, indeed once cured, without a constant upgrade of the antivirus

softwares, the computer has no way to fend off subsequent attacks by the

same virus [67]. The SIS model can be used also for describing some social

behaviors and emotions [46].

Our continuous-time spreading process is described through an individual-

based mean-field approximation [95, 81]. The basic idea [99, 26, 95, 40, 85] of

this approach is to write down equations representing the evolution in time of

the probability of each node to be infected, assuming that the dynamic state

of every node is independent of the state of its nearest neighbors. Under this

assumption the mean-field equations can be obtained [69].

The thesis is organized as follows.

In Chapter 1 we report some basic notions on graph theory, and in Chapter

2 some basic results on the stability of dynamical systems, that will be useful

in the rest of the thesis.



0.1 Scope and organization of the thesis

In Chapter 3 we introduce the individual-based mean-field approximation,

that we shall use for describing the exact spreading process through a reduced

system of N non-linear differential equations. Then we report on the analysis

of the stability properties of the dynamical systems obtained and the concept

of epidemic threshold, the critical value of the rate parameters separating an

absorbing state, where all nodes are healthy, from an endemic phase.

In Chapter 4 we consider a network divided in communities and report

results in [17] and [16], where we have discussed the particular case of the

equitable partition of the node set. The gross structure of hierarchical net-

works of this kind can be described by a quotient graph. The rational of our

approach is that the epidemic process within the communities is faster com-

pared to the rate at which it spreads across communities. We show that the

spectral radius of this smaller quotient graph (which only captures the macro-

scopic structure of the community network) is all we need to know in order

to decide whether the overall-healthy state defines a globally asymptotically

stable or an unstable equilibrium. Indeed, the spectral radius is related to

the epidemic threshold of the system.

We derive a tight lower bound for the threshold, as a function of network

metrics; in practice this value can be adopted to determine a safety region

for the extinction of epidemics.

Moreover we prove that, above the threshold, another steady-state exists

that can be computed using a lower-dimensional dynamical system associa-

ted with the evolution of the process on the quotient graph. Finally, we have

also considered the case when the partition is almost equitable.

In Chapter 5 we extend the results in Chapter 4 to the case of heteroge-

neous setting, reporting the result in [68]. Precisely we include the possibility

for the infection rate to be different for each link, and that each node can

have different recovery rate. Basically the epidemics spread over a directed

weighted graph.

Here we also consider the important issue related to the control of the in-

fectious disease. Taking into account the connectivity of the network, we
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provide a cost-optimal distribution of resources to prevent the disease from

persisting indefinitely in the population; for a particular case of two-level

immunization problem we report on the construction of a polynomial time

complexity algorithm (in Appendix A).

In Section 5.3 we include stochasticity in the parameters of the model. In

the first part we discuss the case where the infection rates are i.i.d. random

variables with a given distribution and investigate how the variance of such

variables can influence the steady-state fraction of infected nodes.

Next, we consider that the parameters are not fixed in time; accordingly, we

model the infection rates in the form of independent stochastic processes.

This allows to get a stochastic differential equation for the probability of

infection in each node. We prove that the unique global solution remains

within (0, 1)N whenever it starts from this region. Then we report on the

asymptotic behaviour of the solution. We show that in a certain set parame-

ters, the solution tends to extinction almost surely. We obtain this result by

proving the global attractivity of the null solution of our system. After we

discuss on stochastic permanence of the solution; this concept can be para-

phrased by saying that the epidemic process will survive forever. We find a

condition under which the epidemic process is stochastically permanent.

We find a gap between the two regions of extinction and persistence, given

in terms of the parameters of the model. Thus, finally, we provide numerical

results that investigate the behaviour of the solution into this middle region,

comparing the solution of our stochastic system with that of the system with

deterministic rate coefficients, introduced in Chapter 3.
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Chapter 1

Notions on Graph Theory

1.1 Basic definitions

We report in this section some basic notions on graphs that will be useful

in the rest of the thesis. As reference we use here [47, 89, 61].

Definition 1.1. A simple graph is a couple G = (V,E), where V is the set

of nodes (or vertices), and E is the set of edges (or links), i.e. it consists of

some couples e = {i, j}, with i, j ∈ V , and i ̸= j.

If e = {i, j} ∈ E we say that i and j are adjacent (or that i is connected

to j, or i is a neighbors of j). One can refer to i and j as the endpoints of e.

The number of neighbors of a node i is called the degree of j.

Definition 1.2. A simple digraph is a coupled G = (V,E), where V is the

set of nodes and E is the set of arcs (or directed edges) of G, that are couples

of the form e = (i, j), with i, j ∈ V , and i ̸= j.

For a digraph the arc e is called an out-going arc of i and an in-coming

arc of j. The out-degree of a node i is the number of out-coming arcs and

the in-degree of a node j is the number of in-coming arcs.

Simple (di)graphs have no loops and no multiple edges (arcs), i.e., edges

with the same end nodes. Graphs which are permitted to have loops and

1



2 1. Notions on Graph Theory

multiple edges is called multigraphs.

In this thesis only simple (di)graphs are considered. Therefore, we use

(di)graphs to refer to simple (di)graphs for succinctness. Moreover along the

thesis we refer to graphs also as undirected graphs, and to digraphs as directed

graphs.

Definition 1.3. A weighted digraph is a triple G = (V,E, γ), where (V,E)

is a digraph and γ : E → [0,∞) is a given function. γ(e) is called the weight

of e.

The order of G is the cardinality of V , the size of G is the cardinality of

E.

1.2 Adjacency matrix, Laplace matrix and

some spectral properties

The connectivity of a (di)graph G is encoded in the following matrix.

Definition 1.4. Let G = (V,E) be a (di)graph. Letting N be the order of

G, then the N ×N adjacency matrix is defined by

aij =

1 if i→ j

0 otherwise
(1.1)

Where i→ j means that i is connected with j.

The previous definition can be extended to the case of weighted graphs. In

this case the entry aij = γ(e), where e is the edges from i to j.

Let us denote by σ(A) the spectrum of A, i.e. the set of all eigenvalues of

A, and with ρ = maxλ∈σ(A) |λ| the spectral radius of A.

Now we report some remarkable results on the eigenvalue spectrum of the



1.2 Adjacency matrix, Laplace matrix and some spectral properties 3

adjacency matrix.

An outstanding result on nonnegative matrices is that given by the Perron-

Frobenius Theorem. First we report the definition of irreducible matrix and

its relation with graphs.

Definition 1.5. An N ×N matrix A is said to be a reducible matrix when

there exists a permutation matrix P such that

P TAP =

[
W Y

0 Z

]
whereW and Z are both square. Otherwise A is said to be an irreducible

matrix.

P TAP is called a symmetric permutation of A. The effect is to inter-

change rows in the same way as columns are interchanged.

A useful result is that the adjacency matrix A of a digraph G is irreducible

if and only if G is strongly connected. We remember that in a strongly

connected graph (or, simply, a connected graphs in the case of undirected

graph) each node is reachable from any other node via a path (a sequence of

adjacent links) by traversing edges in the direction in which they point.

Theorem 1.1 (Perron-Frobenius). Let A an N×N irreducible and nonnega-

tive matrix, and suppose that N ≥ 2. Then

a) ρ(A) > 0

b) ρ(A) is an algebraically simple eigenvalue of A

c) there is a unique real vector

x > 0 such that Ax = ρ(A)x and ∥x∥1 = 1.

This vector is called the Perron vector. There are no nonnegative eigenvectors

for A except for positive multiples of x, regardless of the eigenvalue.

It is possible to give bounds on the position of eigenvalues.
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Theorem 1.2 (Gershgorin). Every eigenvalue of an N ×N matrix A lies in

at least one of the closed discs centered in aii with radius Ri

∑
j ̸=i aij.

We underline that if the graph is undirected, then the adjacency matrix

is real and symmetric. In this case A has N real eigenvalues that we may

order as

λN ≤ . . . ≤ λ2 ≤ λ1.

By the Perron-Frobenius Theorem 1.1 we can assert that ρ(A) = λ1(A).

Moreover let us denote with di the degree of the node i, then Gershgorin’s

Theorem 1.2, applied to the adjacency matrix, states that any eigenvalue

of A lies in the interval [−dmax, dmax], where dmax = max1≤i≤N di. Hence

λ1(A) ≤ N − 1 and this maximum is attained in the complete graph (where

all nodes are connected among themselves).

Let us consider an undirected graph G = (V,E). In some applications,

especially to physics, it would be desirable to associate with any graph a

semidefinite matrix. The adjacency matrix A is not a good choice, its trace

is always zero, hence one of its eigenvalues is necessarily strictly negative

(unless the graph is trivial). Thus, in order to obtain a positive semidefinte

matrix, we can shift the spectrum of −A or A by adding the degree matrix

D = diag(di) [64].

Definition 1.6. Let G = (V,E) be a graph. Letting N be the order of G,

then the N ×N Laplace matrix L is defined by

lij =


di if i = j

−1 if i→ j

0 otherwise

(1.2)

i.e.

L = D − A.
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Since we are considering undirected graphs, the Laplacian matrix is sym-

metric because A and D are both symmetric, and Gershgorins Theorem 1.2

states that each eigenvalue λi of the Laplacian lies in an interval |λi − di| ≤
2di, i.e. 0 ≤ λi ≤ 2di.
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Chapter 2

Stability of Dynamic Systems

For this section we refer to [6, Chapter 11] and [37, Chapter 5].

We underline that hereafter, unless otherwise specified, we indicate with |X|
the euclidean norm of X in Rd.

2.1 Stability of deterministic systems

We report few basic facts on the stability of deterministic systems de-

scribed by ordinary differential equations. Let us consider the following or-

dinary differential equation

Ẋt = f(t,Xt), Xt0 = c, t ≥ t0, (2.1)

where Xt is a d-dimensional state vector. Let us assume that, for every

initial condition c ∈ Rd, there exists a global solution Xt(c), that is one

defined on [t,∞), and that f(·, x) is continuous. Moreover suppose that

f(t, 0) = 0, for all t ≥ t0,

so that (2.1) has the solutionXt ≡ 0 corresponding to the initial condition

c = 0. We shall refer to this solution as the zero (or null) solution (or state).

The zero solution is said to be stable, if for every ε > 0, there exists a

δ = δ(ε, t0) > 0 such that

7



8 2. Stability of Dynamic Systems

sup
t0≤t<∞

|Xt(c)| ≤ ε

whenever |c| ≤ δ. Otherwise, it is said unstable.

The zero solution is said to be asymptotically stable if it is stable and if

lim
t→∞

Xt(c) = 0 (2.2)

for all c in some neighborhood of x = 0.

If δ is not dependent on t0, stability (resp. asymptotic stability) is said

to be uniform.

If (2.2) holds for all c ∈ Rd, then the zero solution is said globally asymp-

totically stable (or asymptotically stable in the large).

Definition 2.1. A continuous scalar function v(x) defined on

Uh = {x : |x| ≤ h} ⊂ Rd, h > 0,

is said to be positive-definite (in the sense of Lyapunov) if

v(0) = 0, v(x) > 0 (for all x ̸= 0).

A continuous function v(t, x) defined on [t0,∞)×Uh is said to be positive

definite if v(t, 0) = 0 and there exists a positive-definite function w(x) such

that

v(t, x) ≥ w(x) for all t ≥ t0.

A function v is said to be negative-definite if −v is positive-definite.

A continuous nonnegative function v(t, x) is said to be decrescent if there

exists a positive-definite function u(x) such that

v(t, x) ≤ u(x) for all t ≥ t0.

It is said to be radially unbounded if
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inf
t≥t0

v(t, x)→∞ (|x| → ∞).

Every positive-definite function that is independent of t is also decrescent.

The so called direct or second method, developed by Lyapunov, gives suffi-

cient conditions to determine stability without solving explicitly the equation

(2.1).

Theorem 2.1. a) If there exists a positive-definite function v(t, x) with con-

tinuous first partial derivatives such that the derivative formed along the tra-

jectories of

Ẋt = f(t,Xt), t ≥ t0, f(t, 0) ≡ 0,

satisfies the inequality

v̇(t, x) =
∂v

∂t
+

d∑
i=1

∂v

∂xi
fi(t, x) ≤ 0

in a half-cylinder

{(t, x) : t ≥ t0, |x| ≤ h}

then the zero solution of the differential equation is stable.

b) If there exists a positive-definite decrescent function v(t, x) such that v̇(t, x)

is negative-definite then the zero solution is asymptotically stable.

c) If the assumptions of a) and b) hold for all x and v(t, x) is radially un-

bounded, then the zero solution is globally asymptotically stable.

A function v(t, x) that satisfies the stability conditions of Theorem 2.1 is

said to be a Lyapunov function corresponding to the differential equation in

question.
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2.2 Stability of stochastic systems

Now we report some definitions and notions on the stability properties of

a stochastic system that we will use in Section 5.3.

Assumptions 2.1. Let us consider the stochastic differential equation

dXt = f(t,Xt)dt+G(t,Xt)dWt, Xt0 = c, t0 ≤ t ≤ T <∞, (2.3)

where Wt is an Rm-valued Wiener process [6, Chapter 4] defined on a

stochastic basis (Ω,F , {Ft},P), and c is a random variable independent of

Wt−Wt0 , for t ≥ t0; moreover the Rd valued function f(t, x) and the (d×m
matrix)-valued function G(t, x) are defined and measurable on [t0, T ]× Rd.

Now let us assume that (2.3) satisfies the assumptions of the existence-

and-uniqueness Theorem [6, Theorem 6.2.1] and has continuous coefficients

with respect to t.

Then, in accordance with [6, Theorem 9.3.1], corresponding to every c that is

independent ofW , there exists a unique global solution Xt = Xt(c) on [t0,∞)

which represents a d-dimensional diffusion process with drift vector f(t, x)

and diffusion matrix B(t, x) = G(t, x)G(t, x)T . Moreover let us assume that

c is a constant with probability 1, then Theorem [6, Thm. 7.1.2] implies the

existence of all moments E|Xt|k for k > 0 and also

P(Xt ∈ B|Xt0 = c) = P[Xt(c) ∈ B].

The solution beginning at the instant s ≥ t0 at the point x will be denoted

by Xt(s, x). In addition let us assume that

f(t, 0) = 0, G(t, 0) = 0, for all t ≥ t0,

the latter ensures that the solution Xt(0) = 0 is the unique solution of

(2.3), with initial value c = 0.

Now let Xt be the solution of (2.3) and let v(t, x) denote a positive-

definite function defined everywhere on [t0,∞) × Rd that has continuous

partial derivatives vt, vxi
and vxixj

.
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Then the process

Vt = v(t,Xt)

has, by Ito’s theorem [6, Theorem 5.3.8], a stochastic differential. Let us

consider the extension of the infinitesimal operator A (see [6, Section 2.4])

of Xt to all functions having continuous partial derivatives with respect to

t and continuous second partial derivatives with respect to the xi (see [6,

Section 9.4]), and let us denote it with L, accordingly

L =
∂

∂t
+ L, L ⊃ A, (2.4)

L =
d∑

i=1

fi(t, x)
∂

∂xi
+

1

2

d∑
i,j=1

(
G(t, x)G(t, x)T

)
ij

∂2

∂xi∂xj
(2.5)

then we have (see [6, Section 5.3])

dVt = (Lv(t,Xt))dt+
d∑

i=1

m∑
j=1

vxi
(t,Xt)Gij(t,Xt)dW

j
t .

Definition 2.2. Suppose that the assumptions 2.1 are satisfied. Then the

zero solution is said to be stochastically stable (or stable with probability 1)

if, for every ε > 0,

lim
c→0
P
[

sup
t0≤t<∞

|Xt(c)| ≥ ε

]
= 0.

Otherwise, it is said to be stochastically unstable. The zero solution is

said to be stochastically asymptotically stable if it is stochastically stable and

lim
c→0
P
[
lim
t→∞

Xt(c) = 0
]
= 1.

The zero solution is said to be stochastically asymptotically stable in the

large if it is stochastically stable and

P
[
lim
t→∞

Xt(c) = 0
]
= 1

for all c ∈ Rd.
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Now let us assume that

Lv(t,Xt) ≤ 0 for all t ≥ t0, x ∈ Rd, (2.6)

this condition represents the stochastic analogue of the requirement that

v̇ ≤ 0 in the deterministic case and it reduces to that case if G vanishes. We

shall refer to v(t,Xt) as a Lyapunov function corresponding to the stochastic

differential equation (2.3).

Through (2.6) it is easy to see that Vt is a (positive) supermartingale, i.e.

E(Vt|Fs) ≤ Vs,

and by the supermartingale inequality to prove the following theorem (see

[6] and [37] for a detailed proof).

Theorem 2.2. Suppose that the assumptions 2.1 are satisfied.

a) Suppose that there exists a positive-definite function v(t, x) defined on a

half-cylinder [t0,∞)×Uh, Uh = {x : |x| < h} where h > 0, that is everywhere,

with the possible exception of the point x = 0, continuously differentiable with

respect to t and twice continuously differentiable with respect to the compo-

nents xi of x.

Furthermore

Lv(t, x) ≤ 0, t ≥ t0, 0 < |x| ≤ h,

whith L as in (2.4). Then the zero solution of (2.3) is stochastically stable.

b) If, an addition, v(t, x) is decrescent and Lv(t, x) is negative-definite, then

the zero solution is stochastically asymptotically stable. In both cases,

P
[
sup
t≥s

v(t,Xt(s, x)) ≥ ε

]
≤ v(s, x)

ε
, ε > 0, s ≥ t0.

c) If the assumptions of part b) hold for a radially unbounded function v(t, x)

defined everywhere on [t0,∞) × Rd, then the zero solution is stochastically

asymptotically stable in the large.
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Remark 2.1. A sufficient condition for negative-definiteness of Lv is the exi-

stence of a constant k > 0 such that

Lv(t, x) ≤ −k v(t, x).

Remark 2.2. For an autonomous equation

dXt = f(Xt)dt+G(Xt)dWt, f(0) = 0, G(0) = 0,

it is sufficient to consider a function v(t, x) ≡ v(x) that is independent of

t.

Khas’minskiy [52] has shown that the existence of a Lyapunov function

v(x) is a necessary condition for stochastic stability as long as the equa-

tion is “nondegenerate” on Uh, that is, as long as the smallest eigenvalue

of G(x)G(x)T is greater than k(x), with k(x) > 0 for x ∈ Uh. Under the

condition of non-degenerate equation stochastic stability implies stochastic

asymptotic stability.





Chapter 3

Individual-based SIS epidemic

models on graphs

3.1 Introduction

Individual-based network models fall in two broad categories. First, theo-

retical network models that focus on understanding the impact of particular

network metrics on outbreak threshold, final epidemic size and the efficacy of

control measures (Keeling 1999, 2005; Kiss et al. 2005, 2008; May and Lloyd

2001, Wang et al., 2003, Ganesh et al., 2005, Van Mieghem2009), and that

are used to establish some general principles. Second, those where network

data is available and can be used to specify the contact network (Dent et

al. 2008; Green et al. 2006; Kao et al. 2006; Kiss et al. 2006a). The

latter are driven, at least partially, by the real-time predictive modelling of

human (SARS, Hufnagel et al. 2004; Lipsitch et al. 2003; Meyers et al. 2005;

and the current swine-flu outbreak, Smith et al. 2009) and animal disease

outbreaks (foot-and-mouth disease, Ferguson et al. 2001; Kao et al. 2006;

Avian Influenza, Dent et al. 2008) [85].

15
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3.2 Individual-based SIS mean-field model

We introduce the susceptible–infected–susceptible (SIS) process sprea-

ding on an undirected graph G = (V,E), where the cardinality of the node

set V is N . In the SIS model an individual-node can be repeatedly infected,

recover and yet be infected again. i.e a recovered node does not receive im-

munity and it is immediately susceptible to a new infection.

In our model the viral state of a node i, at time t, is described by a

Bernoulli random variable Xi(t), where we set Xi(t) = 0, if i is healthy,

and Xi(t) = 1, if i is infected. Every node at time t is either infected with

probability pi(t) = P(Xi(t) = 1) or healthy (but susceptible) with probability

1− pi(t) = P(Xi(t) = 0).

In the homogeneous setting we consider the curing (or recovery) process as

a Poisson process with rate δ, that does not depend on the viral state of

the neighbours of an infected node. Also, the infection process is a Poisson

process with a rate β per link between an healthy and an infected node.

Clearly, the stochastic transition towards the infective state of a susce-

ptible node, depends on the state of all its neighbours. All the infection and

curing processes are independent, thus they compete for the production of

an event (infection or recovery) [20, Chapter 8].

The state of the collective system of all nodes, i.e. the state of the network,

is actually the joint state of all the nodes’ state [81].

Since we assume that the infection and curing processes are of Poisson

type, the SIS process, developing on a graph with N nodes, can be modeled

as a continuous-time Markov process with 2N states, covering all possible

combinations in which N nodes can be infected [95, 97].

The transmission dynamics on the network can be formulated in terms

of a transition matrix between all possible states. In the case of continuous

time, this matrix, known as the infinitesimal generator [85, 51, 20], is expli-

citly computed for the SIS-case in e.g. [85, 95, 81]. Based on the infinitesimal
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generator, we can write down the Kolmogorov’s differential equations (i.e. a

system of linear differential equations) that uniquely determine the proba-

bility of the process of being in a certain state [20]. However the number

of equations increases exponentially with the number of nodes; this poses

several limitations in order to determines the set of solutions even for small

network order. Hence, often, it is necessary to derive models that are an

approximation of the original one [85]. For a special class of graphs it is

possible to reduce the number of states (i.e. number of equations) in the

Markov chain and derive models that are either equivalent to the original

system, but this is not generally the case (see [85]).

A direct approach for deriving an approximate model is to use a node

level description of the underlying stochastic process, as proposed recently in

[81], and then, through a mean-field approximation, passing from the linear

differential equations of the exact Markov process, to a reduced set of non-

linear differential equations.

The epidemic mean-field model in [81], where nodes can be in one of

several states (or compartments), is a generalization of the N-intertwined

mean-field approximation (NIMFA) proposed for the SIS model in [95].

The idea is to describe the node state Xi(t + ∆t) given the network

state X(t) at time t. Indeed, the spreading process is fully described if the

probability for a node i to move from a state to the other, conditioned on

the network state X(t), is known for all i’s [81].

Thus, since in Poisson processes the probability that q events occur in

a time interval dt is in the order of o(dtq), we can write the probability of

having an infection during the time interval (t, t+ dt] as

P (Xi(t+ dt) = 1|Xi(t) = 0, X−i(t)) = β
N∑
k=1

aikXk(t)dt+ o(dt),

considering that the sum of independent Poisson process is also a Poisson

process with rate equal to the sum of the individual rates [20, Theorem 1.2].

Moreover, the probability to have no a transition from the infected state,
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in the time interval (t, t+ dt], is

P
(
Xi(t+ dt) = 1|X i(t)t = 1, X−i(t)

)
= 1− δdt+ o(dt).

Thus we have

P (Xi(t+∆t) = 1|Xi(t), X−i(t)) = (1−Xi(t))

(
β

N∑
k=1

aikXk(t)dt

)

+Xi(t) (1− δdt) + o(dt) (3.1)

Now, by (3.1), and taking into account that Xi(t) is a Bernoulli variable,

we can compute the conditional expectation of Xi(t + dt) w.r.t Xi(t) and

X−i(t)

E [Xi(t+ dt)|Xi(t), X−i(t)] = (1−Xi(t))β
N∑
k=1

aikXk(t)dt−Xi(t)δdt+ o(dt).

(3.2)

Computing the expected value of each side of (3.2), by the law of iterated

expectations, we get

E [Xi(t+ dt)] = β
N∑
k=1

ai,kE [Xk(t)]+β
N∑
k=1

ai,kE [Xi(t)Xk(t)] dt−E [Xi(t)] δdt+o(dt)

After dividing both members by dt and letting dt→ 0, we obtain

dE(Xi(t))

dt
= E

(
(1−Xi(t))β

N∑
k=1

aikXk(t)− δXi(t)

)
,

whence

dE(Xi(t))

dt
= β

N∑
k=1

aikE(Xk(t))− β
N∑
k=1

aikE (Xi(t)Xk(t))− δE(Xi(t)) (3.3)

The system given by (3.3) is not closed since it contains a new variable,

that is the joint expectation E (Xi(t)Xk(t)). There are two ways to proceed.
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First, we can derive the differential equations for each two-pair probabilities,

followed by higher order joint probabilities until all 2N SIS linear Markov

equations, but again for large values of N , the system is neither analytically

nor computationally tractable. Second, one can provide an approximation for

the joint expectation in terms of Xi(t) and Xj(t) (i.e a pair approximation,

or first-order approximation) [79, 49, 85, 81]. The simplest closing relation is

based on the assumption of the absence of correlation between the infectious

states of two nodes in the network, whence

E (Xi(t)Xk(t)) = E(Xi(t))E(Xi(t)).

Applying this relation in (3.3), and taking into account that Xi(t) is a

Bernoulli random variable, thus P(Xi(t) = 1) = E(Xi(t)), we obtain the

following first-order mean-field equation, for each node i in the network

dpi(t)

dt
= (1− pi(t))β

(
N∑
j=1

aijpj(t)

)
− δpi(t), i = 1, . . . , N. (3.4)

The equation (3.4) is the same derived by means of the N -intertwined

mean-field approximation (NIMFA) in [95].

Through the thesis, we shall refer to the system of differential equations

(3.4) as the NIMFA system. The following matrix representation of (3.4)

holds

dP (t)

dt
= βAP (t)− diag(pi(t))(βAP (t) + δu), (3.5)

where P (t) = ( p1(t) p2(t) . . . pN(t) )
T , diag(pi(t)) is the diagonal matrix with

elements p1(t), p2(t), . . . , pN(t) on the diagonal, and u is the all-one vector.

From (3.5), considering P (t) = diag(pi(t))u, we can write

dP (t)

dt
= βAP (t)− δ diag(pi(t))u− diag(pi(t))βAP (t)

= (βA− δI)P (t)− β diag(pi(t))AP (t). (3.6)
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3.3 Epidemic threshold and long term pre-

diction

For a network with finite order N , the exact SIS Markov process will

always converge towards its unique absorbing state, that is the zero-state

where all nodes are healthy. The other states form a transient class, from

which one can reach the zero-state with positive probability. Transitions from

the zero-state have zero probability and the probability that the process is

in a transient state exponentially tends to zero with time [93], hence the

stochastic model predicts that the virus will disappear from the network

[75].

However the waiting time to absorption is a random variable whose di-

stribution depends on the initial state of the system, on the parameters of

the model and on the size of the population[65, 66]. In fact there is a critical

value τc of the effective spreading rate τ = β/δ, whereby if τ is distinctly

larger than τc the time to absorption grows exponentially in N , while for τ

distinctly less than τc the lifetime of epidemic is rather small [65, 36].

The critical value τc is often called the epidemic threshold [95, 7, 28, 70].

Thus, above the threshold, a typical realization of the epidemic process

may experience a very long waiting time before absorption to the zero-state.

During such waiting time, the distribution of the number of infected indi-

viduals is close to the distribution of the same random variable under the

condition that extinction has not occurred, the so-called quasi-stationary

distribution [31, 65, 66].

The quasi-stationary distribution can be regarded as a limiting condi-

tional distribution (quasi-limiting distribution), useful in representing the

long-term behavior of the process before it evanesces [74, 75]. For a rich

bibliography on quasi-stationary distribution see [74].

The exact computation of the exact quasi-stationary distribution is not

analytical tractable, as it is showed in [65], hence it is important to consider

an approximation of it. It is usual to consider two type of approximating
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processes, both lack absorbing states. Therefore they have non-degenerate

stationary distributions and these can be solved for explicitly. One possible

approximation is to consider an SIS model with one permanently infected in-

dividual, another one is to consider a model with the origin removed, by not

allowing the last infected individual to cure [65]. Recently, also models that

include the possibility of a nodal self-infection are introduced in literature

[46, 93]. Basically, besides receiving the infection from an infected neighbor,

an individual can also itself produce a virus with rate a. For a = 0, the model

corresponds to the classical SIS. The addition of a nodal infection component

derive from the analogy of epidemics with information spread in social net-

works, where individuals can generate themselves information. This model

has no absorbing state because if all individuals are healthy, the network

does not permanently remain healthy but gets infected with rate Na [93].

In literature this type of model is called the SISa model in [46] or even the

ε-SIS model in [93]. Along the thesis we shall refer to it as the a-SIS model.

Even so numerical simulations of SIS processes reveal that, already for

reasonably small networks (N ≥ 100) and when τ > τc, the overall-healthy

state is only reached after an unrealistically long time. Hence, the indication

of the model is that, in the case of real networks, one should expect that

the extinction of epidemics is hardly ever attained [90, 33]. For this reason

the literature is mainly concerned with establishing the value of the epidemic

threshold, being a key parameter behind immunization strategies related to

the network protection against viral infection.

For an SIS process on graphs, τc depends on the spectral radius λ1(A) of

the adjacency matrix A [99, 95]. NIMFA determines the epidemic threshold

for the effective spreading rate as

τ (1)c =
1

λ1(A)
, (3.7)

where the superscript (1) refers to the first-order mean-field approxima-
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tion [95, 91]. In Theorem 3.1, we report the analysis of the global dynamics

of the model, carried out in [17], that give us an alternative way for iden-

tifying the epidemic threshold, studying also the stability properties of the

NIMFA system.

However, with respect to the exact Markovian SIS model, due to the

assumption of independence, NIMFA yields an upper bound for the proba-

bility of infection of each node, as well as a lower bound for the epidemic

threshold, i.e., τc = ατ
(1)
c with α ≥ 1. This fact has been rigorously shown

in [25], providing that the state of nodes are non-negatively correlated.

Thus, from the application standpoint, a key issue is to determine for

which networks of given order NIMFA performs worst, meaning that α = τc

τ
(1)
c

is largest.

First one can observe that, basically, NIMFA replaces the actual random

infection rate for the node i, β
N∑
i=1

aijXj(t) (where the sum is done on all

the neighbor nodes), by its average rate β
N∑
i=1

aijE[Xj(t)]. If the states of

the nearest nodes are sufficiently weakly dependent, and the the degree of

node i (i.e. the number of neighbours of node i) is large enough so that the

Lindberg’s Central Limit Theorem [34] is applicable, then such replacement

results in a good approximation. Informally, we can say that the mean-field

approximation holds if in the underlying network, the degree of the nodes

increase as the number of nodes N tends to infinity [97].

Moreover, evaluations on the variance of β
N∑
i=1

aijXj(t) in [95], shows that

the deviations between the NIMFA model and the exact SIS are largest for

intermediate values of τ , i.e. we expect large deviations in some τ -region

around the exact τc.

A more accurate lower bound (the second order mean-field threshold)

τc ≥ τ
(2)
c ≥ τ

(1)
c has been derived in [24], even if they found that this second-

order approximation is not always possible: the network size N should be

large enough. Further efforts have been made to satisfactorily quantify the
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accuracy of the first-order meanfield approximation (see [97]).

Stability properties of the mean-field equation

In the NIMFA model, when τ > τ
(1)
c , a limiting occupancy probability

appears as the second constant solution∗ of the non-linear system (3.5) which

exists, apart from the zero-vector solution. Such non-zero steady-state re-

flects well the observed viral behavior [92]: it can be seen as the analogous

of the quasi-stationary distribution of the exact stochastic SIS model.

Now we report the analysis of the global dynamics of the the NIMFA

equation (3.6) that we have studied in [17].

We clearly study the system for (p1, . . . , pN) ∈ IN = [0, 1]N . It can be

shown that the system (3.6) is positively invariant in IN , i.e. if P (0) ∈ IN
then P (t) ∈ IN for all t > 0 [54, Lemma 3.1].

The analysis of the global dynamics of (3.6) leads to identify the epidemic

threshold τ
(1)
c . We shall prove this, in Thm 3.1, by studying the stability of

the equilibrium points of (3.6), that are solutions of the equation

P =
β

δ
(I − diag(pi))AP. (3.8)

To this aim we shall adapt the results in [54] to our individual-based SIS

model. Let us denote by f the right hand side of (3.6), i.e., (3.6) can be

re-written as a vector-valued differential equation

dP

dt
= f(P ), (3.9)

where f : [0, 1]N → RN is a C∞ function. Let P0 = 0 be the vector of all

zero components, one can easily check that P0 is an equilibrium point of the

system (3.9), i.e. f(P0) = 0.

∗We remember that all bounded trajectories of an autonomous first-order differential

equation tend to an equilibrium, i.e., to a constant solution of the equation.
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Theorem 3.1. If τ ≤ 1/λ1(A) then P0 is a globally asymptotically stable

equilibrium of (3.6).

If τ > 1/λ1(A), P0 is unstable and there exists another equilibrium point P∞

that is globally asymptotically stable in IN − {0}.

Proof. We can rewrite the system (3.9) in the following form (see [72, p.

108])

Ṗ = DfP + F (P ), (3.10)

where Df is the Jacobian matrix of f at P0 and F (P ) is a column vector

whose i-th component is −β
∑N

j=1 aijpipj.

From (3.6) we have

(Df(P0))ij =

βaij i ̸= j

−δ i = j

that is Df = βA − δI. Since adjacency matrix A is real and symmetric its

eigenvalues are real. Hence, the eigenvalues of Df are real as well and of the

form

λi(Df ) = βλi(A)− δ.

In particular, let λ1(Df ) = maxi λi(Df ), since the spectral radius of A is

positive we have

λ1(Df ) = βλ1(A)− δ.

Now we can apply [54, Thm. 3.1] to the system (3.10) and assert that when

λ1(Df ) ≤ 0, i.e., τ ≤ 1/λ1(A), P0 is a globally asymptotically stable equili-

brium of (3.6).

Conversely, if λ1(Df ) > 0, i.e. τ > 1/λ1(A), there exists another equili-

brium point P∞. P0 and P∞ are the only equilibrium points in IN and P∞

is globally asymptotically stable in IN − {0}.
Finally, since τ > 1/λ1(A), we have λ1(Df ) > 0. From Lyapunov’s

Linearization (or First) Method, it follows that P0 is an unstable equilibrium

point in IN .



Chapter 4

Community networks

4.1 Introduction

In this chapter we consider that the entire population is partitioned into

communities (also called households, clusters, subgraphs, or patches). There

is an extensive literature on the effect of network community structure on

epidemics arising due to, for example, geographic separation. Models utili-

zing this structure are commonly known as metapopulation models (see, e.g.,

[43, 58, 4]). Such models assume that each community shares a common

environment or is defined by a specific relationship. This framework captures

the most salient structural inhomogeneity in contact patterns in many applied

contexts [9].

In literature some of the most common works on metapopulation regard

population divided into households, that consider two level of mixing ([10, 80,

11]. This models typically assume that contacts, and consequently infections,

between individual in the same group occur at a higher rate than those

between individual in different groups [9]. Moreover they define groups in

terms of spatial proximity, considering the between-group contact rates (and

consequently the infection rates) depending in some way on spatial distance,

so that, each individual can be theoretically infected by each of the other

individual.

25
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However an underlying network contact structure may provide a more

realistic approach for the study of the evolution of the epidemics, where in-

fection can only be transmitted by individual directly linked by an edge [9].

Thus, an important challenge is to consider a realistic underlying structure

to appropriately incorporate the influences of the topology of the network on

the dynamics of epidemics [71, 12, 35, 13].

To this aim, in [17, 16] we have analyzed the dynamics of epidemics on

networks that are partitioned into local communities, through the first-order

mean-field approximation discussed in Chapter 3.

Our investigation has been based on the graph-theoretical notion of equi-

table partition [83, 39, 64] and of its recent and rather flexible generalization,

that of almost equitable partition [22, 64]. The gross structure of hierarchical

networks of this kind can be described by a quotient graph. The rationale

of our approach was that individuals infect those belonging to the same

community with higher probability than individuals in other communities.

Thus, the nodal infection probability is expected to depend mainly on the

interaction of a few, large interconnected clusters. We refers to such model

also as two-scale community model.

Several authors also account for the effect of migration between commu-

nities [44, 27, 73]. Conversely, the model we are interested in suits better for

the manmade architecture or stable social communities, which do not change

during the infection period; hence we do not consider migration.

We shall report our results in the next section.

4.2 Equitable partitions

Let us consider the diffusion of epidemics over a simple graph G =

(V,E). We are interested in the case of networks that can be naturally

partitioned into n communities: they are represented by a node set partition
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π = {V1, ..., Vn}, i.e., a sequence of mutually disjoint nonempty subsets of V ,

called cells, whose union is V .

The epidemic process is described through the first-order mean-field ap-

proximation NIMFA, described in Section 3.2. Compared to the homoge-

neous case where the infection rate is the same for all pairs of nodes, here we

consider two infection rates: the intra-community infection rate β for infect-

ing individuals in the same community and the inter-community infection

rate εβ i.e., the rate at which individuals among different communities get

infected. We assume 0 < ε < 1, the customary physical interpretation being

that infection across communities occurs at a much smaller rate. Clearly the

model can be extended to the case ε ≥ 1.

The partition of the node set that we consider is equitable. First of all

this means that all nodes belonging to the same community have the same

internal degree: formally the subgraph Gi of G induced by Vi is regular

for all i’s (recall that π = {V1, ..., Vn} is a partition of the node set V ,

which is assumed to be given a priori). Furthermore, for any two subgraphs

Gi, Gj, whenever there exists at least one connection between two nodes, one

belonging to the first subgraph and the other to the second, then each node

in Gi is connected with the same number of nodes in Gj (see as example 4.1).

In Section 4.4 we extend the study to the case of almost equitable parti-

tions that does not require any specific structural condition inside each Gi.

Such network structure can be used for those models consisting of mul-

tiple smaller subpopulations (households, workplaces, classes in a schools)

representing the internal structure of each community by a complete graph.

This assumption appears natural because members of a small community

usually know each other. Moreover we can consider that, given two con-

nected communities, all of their individual are mutually linked, indeed each

member of those two communities may potentially come into contact.

Furthermore such network structure can be observed, e.g., in the archi-
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Figure 4.1: A sample graph with equitable partition V =

{{v1}, {v2, v3}, {v3, v4, v5, v6}, {v7, v8, v9, v10, v11, v12, v13}}.

tecture of some computer networks where clusters of clients connect to single

routers, whereas the routers’ network has a connectivity structure with nodes’

degree constrained by the number of ports. Also, graphs representing multi-

layer networks may be characterized using equitable and almost equitable

partitions [82].

The original definition of equitable partition is due to Schwenk [83].

Definition 4.1. Let G = (V,E) be a graph. The partition π = {V1, ..., Vn}
of the node set V is called equitable if for all i, j ∈ {1, . . . , n}, there is an

integer dij such that

dij = deg(v, Vj) := # {e ∈ E : e = {v, w} , w ∈ Vj} .

independently of v ∈ Vi.

We shall identify the set of all nodes in Vi with the i-th community of

the whole population. In particular, each Vi induces a subgraph of G that is

necessarily regular.

Remark 4.1. We use the notation lcm and gcd to denote the least common

multiple and greatest common divisor, respectively. We can observe that the

partition of a graph is equitable if and only if

dij = α
lcm(ki, kj)

ki
(4.1)

where α is an integer satisfying 1 ≤ α ≤ gcd(ki, kj)
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The macroscopic structure of such a network can be described by the

quotient graph G/π which is a multigraph with cells as nodes and dij edges

between Vi and Vj. For the sake of explanation, in the following we will

identify G/π with the (simple) graph having the same node set, and where an

edge exists between Vi and Vj if at least one exists in the original multigraph.

We shall denote by B the adjacency matrix of the graph G/π.

Example 4.1. Let us assume that the adjacency matrix B of the quotient

graph is given and that, for any i, j ∈ {1, . . . , n}, bij ̸= 0 implies dij = kj,

i.e., each node in Vi is connected with every node inside Vj. We can explicitly

write a weighted adjacency matrix A in a block form. Let CVi
= (cij)ki×ki be

the adjacency matrix of the subgraph induced by Vi and Jki×kj is an all ones

ki × kj matrix; then

A =



CV1 εJk1×k2b12 . . εJk1×knb1n

εJk2×k1b21 CV2 . . εJk2×knb2n

. . . . .

. . . . .

. . . . CVn


(4.2)

We observe that (4.2) represents a block-weighted version of the usual

adjacency matrix. The derivation of NIMFA for the case of two different

infection rates, considered in this paper, results in the replacement of the

unweighted adjacency matrix in the NIMFA system (3.5) with its weighted

version.

4.2.1 The quotient matrix

We search for a smaller matrix Q that contains the relevant information

for the evolution of the system. Such a matrix is the quotient matrix of the

equitable partition. In Prop. 4.1 we will see that Q and A have the same

spectral radii. As a consequence, we can compute the spectral radius of Q in

order to estimate the epidemic threshold, instead of computing the spectral

radius of matrix A.
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The quotient matrix Q can be defined for any equitable partition: in view

of the internal structure of a graph with an equitable partition, it is natural

to consider the cell-wise average value of a function on the node set, that is

to say the projection of the node space into the subspace of cell-wise constant

functions.

Definition 4.2. Let G = (V,E) be a graph. Let π = {Vi, i = 1, . . . , n} be
any partition of the node set V , let us consider the n×N matrix S = (siv),

where

siv =


1√
|Vi|

v ∈ Vi

0 otherwise.
(4.3)

The quotient matrix of G (with respect to the given partition) is

Q := SAST .

Observe that by definition SST = I.

In the case of the example 4.1 the form of Q is rather simple:

qii =

ki∑
h=1

(
1√
ki

)2 ki∑
k=1

(CVi
)kh =

1

ki

ki∑
h,k=1

(CVi
)kh

and

qij =
1√
kikj

∑
z∈Vi,l∈Vj

azl =
√
kikjεbij.

Hence we obtain that

Q = diag(dii) + (
√
kikjεbij)i,j=1,...n,

where dii =
1
ki

∑ki
h,k=1(CVi

)kh is the internal degree of the subgraph induced

by Vi.

In the case of general equitable partitions, the expression for Q writes

Q = diag(dii) + (
√
dijdjiεbij)i,j=1,...n.

There exists a close relationship between the spectral properties of Q and

that of A. Being the order of Q smaller than that of A, a result in [39]

basically shows that σ(Q) ⊆ σ(A), Furthermore the following holds
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Proposition 4.1. Let G = (V,E) be a graph. Let π = {Vi, i = 1, . . . , n}
be an equitable partition of the node set V . The adjacency matrix A and the

quotient matrix Q have the same spectral radius, i.e.

λ1(Q) = λ1(A).

Proof. See [89, art. 62].

Complexity reduction.

Prop. 4.1 further details that, once the network structure is encoded in

the connectivity of a quotient graph Q, then the epidemic threshold τ
(1)
c is

expressed by the spectral radius of Q (see Section 3.3).

Now, since the order of Q is smaller than the order of A, this can provide a

computational advantage. The complexity reduction can be evaluated easily,

e.g, in the case of the power iteration method [62]. The power iteration

method is a numerical technique for approximating a dominant eigenpair of

a diagonalizable matrix L, using the following iteration

yh = Lyh−1, h = 1, 2, . . .

for a given initial vector y0. As the iteration step h increases, yh approaches

a vector which is proportional to a dominant eigenvector of L. If we order

the eigenvalues of L such as as |λ1(L)| ≥ |λ2(L)| ≥ . . . ≥ |λn(L)|, the rate of
convergence of the method is ruled by |λ2(L)|/|λ1(L)|.

In our case, for the Perron-Frobenius Theorem 1.1 the dominant eigen-

value λ1(A) is positive and by Proposition 4.1, λ1(A) = λ1(Q). Furthermore

σ(Q) ⊆ σ(A), hence maxi≥2 |λi(A)| ≥ maxi≥2 |λi(Q)|: this means that the

convergence of power iteration for matrix Q is never slower than for matrix

A. Finally, it is immediate that at each step the computational complexity

is O(n2) for Q whereas for A it is O(N2).
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4.2.2 A lower bound for the epidemic threshold

We can writeQ = D+B̂, whereD = diag(dii) and B̂ = (
√
dijdjiεbij)i,j=1,...n.

By the Weyl’s inequality [62] we have

λ1(Q) ≤ λ1(D) + λ1(B̂) = max
1≤i≤n

dii + λ1(B̂). (4.4)

From (3.7) and by Proposition 4.1

τ (1)c = 1/λ1(A) = 1/λ1(Q),

thus a lower bound for the epidemic threshold can be derived from (4.4)

τ (1)c ≥ τ ⋆ = min
i

1

dii + λ1(B̂)
, (4.5)

Moreover let us note that λ1(B̂) ≤ maxi
∑

j b̂ij [63, pp 24-26], hence

τ (1)c ≥ 1

maxi(dii +
∑

j b̂ij)
. (4.6)

In applications, when designing or controlling a network, τ ∗ (or the more

conservative bound in (4.6)) can be adopted to determine a safety region

{τ ≤ τ ⋆} for the effective spreading rate that guarantees the extinction of

epidemics.

Figure 4.2 reports on the comparison of the lower bound and the actual

threshold value: it refers to the case of a sample equitable partition composed

of interconnected rings for increasing values of the community order.

We observe that obtaining a lower bound for τ
(1)
c is meaningful because

τ
(1)
c is itself a lower bound for the epidemic threshold τc of the exact stochastic

model, i.e., τc = ατ
(1)
c with α ≥ 1, as anticipated in Sec. 3.3. In fact, smaller

values of the effective spreading rate τ , namely δ > β/τ
(1)
c , correspond, in the

exact stochastic model, to a region where the infectious dies out exponentially

fast [55]. By forcing the effective spreading rate below τ ∗, one ensures that

the epidemic will go extinct in a reasonable time frame (we recall that, above

the threshold, the overall-healthy state is only reached after an unrealistically

long time).
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Figure 4.2: Lower bound (4.5) versus epidemic threshold: comparison for different

values of k in a 40-communities network. The internal structure of each community

is a ring and dij = 2 for all i, j = 1, . . . , n.

Equality can be attained in (4.5): consider for instance the graph de-

scribed by the adjacency matrix A in (4.2). Furthermore, we may require

that all Vi’s have the same number of nodes ki = k and same internal degree

dii = d, i = 1, . . . , n. In this case Q = d Idn + B̂, where B̂ := (kεbij)i,j=1,...n,

and

λ1(Q) = d+ kελ1(B),

which is the exact value of λ1(A) and consequently of τ
(1)
c .

Remark 4.2. Let us underline that if we remove edges between the communi-

ties, or inside the communities, in a network whose set nodes has an equitable

partition, the lower bound (4.5) still holds. This because the spectral radius

of an adjacency matrix is monotonically non increasing under the deletion of

edges.

4.3 Infection Dynamics for Equitable Parti-

tions

Now we show under which conditions matrix Q can be used in order to

express the epidemic dynamics introduced in (3.6). This allows us to describe
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the time-change of the infection probabilities by a system of n differential

equations instead of N .

Theorem 4.1. Let G = (V,E) be a graph and π = {Vj, j = 1, . . . , n} an

equitable partition of the node set V . Let Gj be the subgraph of G = (V,E)

induced by cell Vj. If ph(0) = pw(0) for all h,w ∈ Gj and for all j = 1, . . . , n,

then ph(t) = pw(t) for all t > 0. In this case we can reduce the number

of equations representing the time-change of infection probabilities using the

quotient matrix Q.

Proof. Let pj(t) =
1
kj

∑
h∈Gj

ph(t) be the average value of the infection proba-

bilities at time t of nodes in Gj. Then starting from (3.6), we can write a

new system of differential equations

d
(
ph(t)− pj(t)

)
dt

= −δ(ph(t)− pj(t)) + β(1− ph(t))
N∑
z=1

ahzpz(t)

− 1

kj
β
∑
l∈Gj

(1− pl(t))
N∑
z=1

alzpz(t), ∀h ∈ Gj, j = 1, . . . , n.(4.7)

From (4.7) we have

d
(
ph(t)− pj(t)

)
dt

= −δ(ph(t)− pj(t)) + β

 n∑
m=1

∑
z∈Gm

ahzpz(t)−
1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

alzpz(t)


− β

ph(t) n∑
m=1

∑
z∈Gm

ahzpz(t)−
1

kj

∑
l∈Gj

pl(t)
n∑

m=1

∑
z∈Gm

alzpz(t)

 ,

that can be written as

d
(
ph(t)− pj(t)

)
dt

= −δ(ph(t)− pj(t)) + β

 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahz − alz) pz(t)


− β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t))

− β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahzph(t)− alzpl(t))

 pm(t).
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Whence, since
∑

z∈Gm
ahz = djm, for h ∈ Gj and for all m = 1, . . . , n, we

have

d
(
ph(t)− pj(t)

)
dt

= −

[
n∑

m=1

βdjmpm(t) + δ

]
(ph(t)− pj(t)) (4.8)

+ β
1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahz − alz) pz(t)

− β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t)).

Now, we note that

− 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t))

can be written as

− 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(
(ph(t)− pj(t))ahz − (pl(t)− pj(t))alz

)
(pz(t)− pm(t))

− 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

pj(t)(ahz − alz) (pz(t)− pm(t)) ,

whence we can rewrite (4.8) as

d
(
ph(t)− pj(t)

)
dt

= −

[
n∑

m=1

βdjmpm(t) + δ

]
(ph(t)− pj(t))

+ β
1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahz − alz) (pz(t)− pm(t) + pm(t))

− β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(
(ph(t)− pj(t))ahz − (pl(t)− pj(t))alz

)
(pz(t)− pm(t))

− β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

pj(t)(ahz − alz) (pz(t)− pm(t)) .

Finally, since 1
kj

∑
l∈Gj

∑n
m=1

∑
z∈Gm

(ahz − alz) pm(t) = 0, we can consider
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the following system

d
(
ph(t)− pj(t)

)
dt

= −

[
n∑

m=1

βdjmpm(t)− δ

]
(ph(t)− pj(t))

+β
1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

(ahz − alz)(pz(t)− pm(t))(1− pj(t))

−β 1

kj

∑
l∈Gj

n∑
m=1

∑
z∈Gm

((ph(t)− pj(t))ahz − (pl(t)− pj(t))alz)(pz(t)− pm(t)),

∀h ∈ Gj, j = 1, . . . , n

Now let us denote by g(t) the solution of (4.7), where g : R → RN and

consider the case where

ph(0)− pj(0) = 0, ∀h ∈ Gj, j = 1, . . . , n, (4.9)

i.e., ph(0) = pw(0) for all h,w ∈ Gj. Then, from (4.9), we can easily see that

the identically zero function g ≡ 0 is the unique solution of (4.7) with initial

conditions (4.9). Indeed g ≡ 0 means that for all t ≥ 0, ph(t) = pw(t) for all

h,w ∈ Gj, j = 1, . . . , n. Moreover the vector P (t) such that ph(t) = pw(t)

for all h,w ∈ Gj, j = 1, . . . , n, is a solution of (3.6) and it is unique in [0, 1]N

with respect to the initial conditions (4.9), [72, Cap. 2, Sec. 2.2]. Thus we

can conclude that also g = 0 is a unique solution of (4.7) in [−1, 1]N .
Basically we have shown that the following subset of IN

M =
{
P ∈ [0, 1]N |p1 = . . . = pk1 = p1, pk1+1 = . . . = pk1+k2 = p2,

. . . , p(k1+..kn−1+1) = . . . = pN = pn
}

is positively invariant for the system (3.6). This allows us to reduce the

system (3.6) of N differential equations and describe the time-change of the

infection probabilities by a system of n equations involving the matrix Q.

Indeed, let us consider P (0) ∈M and P = (p1, . . . , pn), we can write

dpj(t)

dt
= β(1− pj(t))

n∑
m=1

εbjmdjmpm(t) (4.10)

+ βdj(1− pj(t))pj(t)− δpj(t), j = 1, . . . , n
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Hence, based on Thm. 2.1 in [39], we observe that

qij = (kj/ki)
1/2dji,

This relation in our case brings

djm =

(
kj
km

)−1/2
qmj

ε
=

(
kj
km

)−1/2
qjm
ε
,

where the last equality holds because Q is symmetric. We can rewrite (4.10)

as

dpj(t)

dt
= β(1− pj(t))

n∑
m=1,m̸=j

(
kj
km

)−1/2

qjmpm(t)

+βqjj(1− pj(t))pj(t)− δpj(t); j = 1, . . . , n (4.11)

where qjj = djj = λ1(CVj
). The matrix representation of (4.11) is the follow-

ing
dP (t)

dt
= β

(
In − diag(pj(t))

)
Q̃P (t)− δP (t), (4.12)

where Q̃ = diag

(
1√
kj

)
Q diag(

√
kj). It is immediate to observe that σ(Q) =

σ(Q̃).

Corollary 4.1. When τ > τ
(1)
c the non-zero steady-state P∞ of the system

(3.6) belongs to M − {0}.

Proof. In Theorem 3.1 we have shown that when τ > τ
(1)
c , the system (3.6)

has a globally asymptotically stable equilibrium P∞ in IN − {0}; hence for

any initial state P (0) ∈ IN − {0}

lim
t→∞
|P (t)− P∞| = 0.

We have proved in Thm. 4.1 that if P (0) ∈ M then P (t) ∈ M for all t > 0,

thus we can conclude that P∞ must be in M − {0} when τ > τ
(1)
c .

Basically, Corollary 4.1 says that one can compute the n× 1 vector, P∞,

of the reduced system (4.12) in order to obtain the N×1 vector, P∞, of (3.6):
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indeed pz∞, . . . , px∞ = pj∞, for all z, x ∈ Gj and j = 1, . . . , n. This provides

a computational advantage by solving a system of n equations instead of

N . Moreover, since P∞ is a globally asymptotically stable equilibrium in

IN −{0}, the trajectories starting outside M will approach those starting in

M − {0}. The same holds clearly for trajectories starting in IN and in M

when τ ≤ τ
(1)
c . Numerical experiments in Fig. 4.6 depict this fact.

The statements proved above can be easily verified, with a direct compu-

tation, in the simple case where the subgraphs of G, induced by each Vi, is

complete, i.e., dii = ki − 1 for all i = 1, ..., n, and all nodes belonging to two

linked communities i and j are connected, i.e., dij = kj (see Section 4.3.1).

Indeed for all h,w ∈ Gj, j = 1, . . . , n, we have

d(ph(t)− pw(t))
dt

= − δ (ph(t)− pw(t)) + β
∑
z /∈Gj

[(1− ph(t))ahz − (1− pw(t))awz] pz(t)

+ β
∑

z∈Gj ,z ̸=h,w

[(1− ph(t))ahz − (1− pw(t))awz] pz(t)

+ β
∑
z=h,w

[(1− ph(t))ahz − (1− pw(t))awz] pz(t) (4.13)

Since in this special case ahz = awz, for all z ∈ V s.t. z ̸= h, j, we can rewrite

(4.13) as

d(ph(t)− pw(t))
dt

= −

[
δ + β

(
N∑

z=1,z ̸=h,w

ahzpz(t) + 1

)]
(ph(t)− pw(t)) .

whence

ph(t)− pw(t) = (ph(0)− pw(0)) e−
∫ t
0 δ+β(

∑N
z=1,z ̸=h,w ahzpz(s)+1)ds.

Thus, if ph(0) = pw(0) for the uniqueness of solution it will occur ph(t) =

pw(t) for all t > 0, as we have proved in Thm. 4.1, but if the initial conditions

are different, the distance between pw(t) and pz(t) decreases exponentially.

Remark 4.3. The framework of quotient graphs extends the NIMFA model

to graphs with prescribed community network structure. It reduces to the

original NIMFA model when kj = 1 for all j = 1, .., n.
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Steady-state

We focus now on the computation of the steady-state P∞ =
(
pi∞
)
i=1,...,N

of system (3.6). To this aim, by Corollary 4.1, we can compute the steady-

state P∞ =
(
pj∞
)
j=1,...,n

of the reduced system (4.12) and obtain

β(1− pj∞)
n∑

m=1

(
kj
km

)−1/2

qjmpm∞ − δpj∞ = 0, j = 1, . . . , n

whence

pj∞ =
β
∑n

m=1

(
kj
km

)−1/2

qjmpm∞

β
∑n

m=1

(
kj
km

)−1/2

qjmpm∞ + δ

= 1− 1

1 + τ
∑n

m=1

(
kj
km

)−1/2

qjmpm∞

= 1− 1

1 + τgj
(
P
) (4.14)

where

gj
(
P
)
:=

(
djj + ε

n∑
m=1

(
kj
km

)−1/2√
djmdmj

)
−

n∑
m=1

(
kj
km

)−1/2

qjm(1− pm∞).

From (4.14) follows that the steady-state infection probability of any node

j is bounded by

0 ≤ pj∞ ≤ 1− 1

1 + τ(djj + ε
∑n

m=1

(
kj
km

)−1/2√
djmdmj)

, (4.15)

where the inequality holds true because pj∞ ∈ [0, 1] for all j = 1, . . . , n.

By introducing 1−pm∞ = 1

1+τ
∑n

z=1(
km
kz
)
−1/2

qmzpz∞
in (4.14), we can express

pj∞ as a continued fraction iterating the formula

xj,s+1 = f(x1;s, .., xn;s) = 1− 1

1 + τgj(x1;s, .., xn;s)
,

As showed in [95], after a few iterations of the formula above, one can obtain

a good approximation of pj∞, with a loss in the accuracy of the calculation

around τ = τc. Ultimately, such numerical estimation can be used to improve

the bound in (4.15).
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If we consider a regular graph where communities have the same number

of nodes, then

pj∞ = 1−

(
1/τ

(
djj + ε

n∑
m=1

(
kj
km

)−1/2√
djmdmj

))

is the exact solution of (4.14).

Now let rj = djj+ε
∑n

m=1

(
kj
km

)−1/2√
djmdmj and r(1) = minj rj; relying

on the estimate pj∞ ≈ 1 − (1/τrj) we can express the steady-state average

fraction of infected nodes y∞(τ) = (1/N)
∑n

j=1 kjpj∞(τ) by

y∞(τ) ≈ 1− 1

τN

n∑
j=1

kj
1

djj + ε
∑n

m=1

(
kj
km

)−1/2√
djmdmj

. (4.16)

According to the analysis reported in [95], approximation (4.16) becomes

the more precise the more the difference r(2)−r(1) is small, where r(2) is the

second smallest of the rj’s. Afterward we report on some related numerical

experiments (see Figure 4.7).

Example 4.2. In Fig. 4.1 we provide an example of a graph which has

an equitable partition with respect to V1 = {v1}, V2 = {v2, v3}, V3 =

{v3, v4, v5, v6}, V4 = {v7, v8, v9, v10, v11, v12, v13}}.
The corresponding quotient matrix reads

Q =


0 ε

√
2 ε2 0

ε
√
2 1 ε

√
2 ε
√
3

ε2 ε
√
2 2 0

0 ε
√
3 0 3


From (4.12) we have that the steady-state can be computed by

P∞ =
β

δ
(In − diag(p∞)) diag(1/sj)Q diag(sj)P∞,

where sj is the j-th entry of vector s = (1,
√
2, 2,
√
6).
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Figure 4.3: Dynamics of infection probabilities for each community of the network

in Fig.4.1: simulation versus numerical solutions of (4.12); τ = β/δ < τ
(1)
c =

0.3178, with β = 0.29 and δ = 1, ε = 0.3. At time 0 the only infected node is node

1.
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Figure 4.4: Dynamics of infection probabilities for each community of the network

in Fig.4.1: simulation versus numerical solutions of (4.12); τ = β/δ > τ
(1)
c =

0.3178, with β = 1.5 and δ = 0.3, ε = 0.3; initial conditions as in Fig. 4.3.

Numerical experiments. In Figures 4.3 and 4.4 we provide a compari-

son between the solution of the reduced ODE system (4.12) for the graph in
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Figure 4.5: Infection probabilities for each community in a network with N = 80,

dii = ki − 1 = 19 and dij = 20, for all i, j = 1, .., 4: simulation versus numerical

solutions of (4.12); τ = β/δ > τ
(1)
c = 0.0348, with β = 5 and δ = 2, ε = 0.3; at

time 0 all nodes of the 1-st community are infected.

Figure 4.1 and the averaged 50 · 104 sample paths resulting from a discrete

event simulation of the exact SIS process. The discrete event simulation is

based on the generation of independent Poisson processes for both the in-

fection of healthy nodes and the recovery of infected ones. We observe that,

as expected, NIMFA provides an upper bound to the dynamics of the infec-

tion probabilities (see Section 3.3). Also, in Figure 4.3 we observe that the

dynamics for the communities that are initially healthy is characterized by

a unique maximum for the infection probability, which decreases afterward.

The communities initially infected, conversely, show a monotonic decrease of

the infection probability.

Figure 4.5 depicts the same comparison in the case of a network with

eighty nodes partitioned into four communities; each community is a com-

plete graph and all nodes belonging to two linked communities are connected.

The agreement between NIMFA and simulations improves compared to Figu-

re. 4.4. This is expected, because, as we said in Section 3.3, the accuracy of

NIMFA is known to increase with network order N , under the assumption
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Figure 4.6: Comparison between the dynamics of the original system (3.6) for each

of the nodes belonging to V3 in Fig. 4.1, for different initial conditions and the

dynamics of the reduced system (4.12). In the latter case the initial conditions for

each node are the mean value of the pi(0)s. a) case below the threshold: β = 0.29,

δ = 1, ε = 0.3 b) case above the threshold: β = 1.5, δ = 0.3, ε = 0.3

.

that the nodes’ degree also increases with the number of nodes. Conversely,

it is less accurate, e.g., in lattice graphs or regular graphs with fixed degree

not depending on N [95, 97].

Figure 4.6 depicts the solutions of system (3.6) for each node belonging to

V3 in the graph of Figure 4.1; here nodes in V3 have different initial infection

probabilities pi(0)’s. These solutions are compared with the one computed

using the reduced system (4.12), in the case when the initial conditions for

those nodes are the same, precisely equal to the mean value of the pi(0)’s. As

expected, trajectories starting outside invariant setM described in Thm. 4.1

tend to approach the one starting in M as time elapses. Finally, we report

on numerical experiments about the steady-state average fraction of infected

nodes. More precisely, Figure 4.7 compares the value obtained by solving the

original system (3.8) and the value obtained from approximation (4.16), as

a function of τ .
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Figure 4.7: Steady-state average fraction of infected nodes, for different values of

τ : comparison between the approximation (4.16) and the exact computation (3.8);

a) the graph is the one considered in Fig. 4.1 and b) the one considered in Fig. 4.5.

4.3.1 Clique case

A clique of a graph is a set of vertices that induces a complete subgraph

of that graph. Here we consider the specific case, analyzed in [16], where we

have a clique cover of the graph, i.e., a set of cliques that partition its vertex

set.

Thus, basically, all elements in a community are connected, i.e, dii = ki−1
for all i = 1, ..., n. Moreover we assume that all nodes belonging to two linked

communities i and j are connected, i.e., dij = kj and dji = ki. A sample

graph is depicted in Figure 4.8.

In [16] sufficient conditions for the extinction of epidemics have been found

explicitly in terms of the dimension of the communities, their connectivity,

and the parameters of the model. In the following we report the main results.

Let us consider the computation of the equilibrium points of the system

(4.12). In this case, it is easy to see that Q̃ = diag(kj − 1) + εB diag(kj).
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Figure 4.8: The two-scale community model: the contagion spreads within each

cluster node with intra-cluster infection rate β and among clusters with inter-

cluster infection rate εβ, with 0 < ε < 1. A link between two clusters means that

each node in one cluster is linked with all nodes in the other cluster.

The equilibrium points can be computed as the solution of

δ P∞ = β
(
Q̃P∞ − diag(P∞)Q̃P∞

)
. (4.17)

We underline that in a connected graph either pi∞ = 0, for all i =

1, . . . , N , or none of the components pi∞ is zero [95, Lemma 4].

Ignoring extreme virus spread conditions (the absence of curing, δ = 0, and

an infinitely strong infection rate, β → ∞), then the infection probabilities

pj∞ cannot be one such that the matrix I − diag(pj∞) = diag(1 − pj∞) is

invertible [94].

Then from (4.17) we get

β Q̃P∞ = diag

(
δ

1− pj∞

)
P∞. (4.18)

Let us write κ = (k1, . . . , kn). From the definition of Q̃ we can rewrite

(4.18) as

B diag(κ)P∞= diag

(
1

εβ
δ
(1− pj∞)

− (kj − 1)

ε

)
P∞. (4.19)
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Now let us denote by dj the number of communities with which the j-

th is connected. Then the Laplacian of the graph whose adjacency matrix

is B (that encodes the connectivity of the communities) is the matrix L =

diag(dj) − B; L is a n × n singular, positive semidefinite matrix, and the

eigenvector corresponding to the zero eigenvalue is the all-one vector u =

(1, . . . , 1)T .

Now let us define Bκ := B diag(κ), i.e., the matrix obtained from B by

multiplying the j-th column by kj, j = 1, . . . , n, then we introduce the

modified Laplacian matrix

Lκ(α) = diag (α)−Bκ, α = (α1, . . . , αn)
T ,

where

αj =
1

εβ
δ
(1− pj∞)

− (kj − 1)

ε
.

We can write the relation (4.19) by means of the modified Laplacian to

get the (nonlinear) equation

Lκ

(
1

εβ
δ
(1− pj∞)

− (kj − 1)

ε

)
P∞ = 0. (4.20)

Hence, if it exists, a nonzero steady-state vector P∞ is an eigenvector of

Lk(α) corresponding to the zero eigenvalue.

It shall be noticed that Bκ is not a symmetric matrix, unless all V ′
i s have the

same number of nodes kj = k. In order to find conditions that implies the

existence of the zero eigenvalue for the modified Laplacian Lκ(α), we apply

Gerschgorin’s Theorem 1.2 both to Bκ and BT
κ .

Proposition 4.2. Every eigenvalue of the modified Laplacian Lκ(α) lies in

(at least) one of the circular discs with center αi and radius Ri, where

Ri = max
(∑

i̸=j

kjbij, ki
∑
j ̸=i

bji

)
= max

(∑
j ̸=i

kjbji, kidi

)
.
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Graphs with homogeneous partition into communities.

As mentioned above, in the case all V ′
i s have the same order kj = k, the

matrix Bκ is symmetric, hence also the matrix Lκ(α) is symmetric, which

implies that all the eigenvalues are real. Moreover, in this case, all its eigen-

values are positive, except for the smallest one that is equal to 0 [94, Theorem

1].

Hence, precisely one, say the j-th, of the Gerschgorin line segments con-

tains the zero eigenvalue, i.e. it must hold

αj −Rj < 0 < αj +Rj.

We can further express the above inequality as follows:

1
εβ
δ
(1− pj∞)

− (kj − 1)

ε
−Rj < 0,

1
εβ
δ
(1− pj∞)

− (kj − 1)

ε
+Rj > 0,

which, with a little algebra, leads to

1

(1− pj∞)
< (kj − 1)

β

δ
+Rj

εβ

δ
,

1

(1− pj∞)
> (kj − 1)

β

δ
−Rj

εβ

δ
.

Considering that kj = k, the first inequality implies that

pj∞ < 1− δ

(k − 1)β +Rj εβ

and since we require pj∞ > 0, we obtain that existence of an endemic state

implies
(k − 1)β + k dj εβ

δ
> 1. (4.21)

The second inequality leads to no further conditions. Actually, if the

right-hand side is negative, i.e., in the regime (k − 1)βL < k dj βG, the ine-

quality is trivially satisfied, since we require vj;∞ < 1. Otherwise, in the

regime (k − 1)β > k dj εβ, we get 1 > δ
(k−1)β−k dj εβ

which leads to the lower

bound for the probability pj∞ > 1− δ
(k−1)β−k dj εβ

.
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Theorem 4.2. Let G = (V,E) be a graph with partition π = {Vj, j = 1, ..., n},
such that all Vi’s induce a complete subgraph Gi of G, and all Vi’s have the

same order kj = k. Moreover let us consider that whenever a node of Gi

is connected with a node in Gj, then it is connected with all nodes in Gj.

Therefore a sufficient condition for the uniqueness of the zero steady-state is

the following:

dmaxεβ + (1− 1
k
)β

δ
<

1

k
,

where dmax = maxj dj.

Inhomogeneous community dimension.

Now we extend previous results including the possibility for each commu-

nity to have a different number of elements. The starting point is equation

(4.19); however, instead of using directly Corollary 4.2, we first state the

problem in terms of the vector W∞ = diag(κ)P∞. Then we consider the

modified Laplacian matrix with respect to B:

L(α) = diag(α)−B,

where

αj =
1

εβ
kj δ

(1− pj;∞)
− (kj − 1)

εkj
.

The existence of a nonzero steady state P∞ requires that W∞ is a nonzero

eigenvector of L(α) related to the eigenvalue zero; now L(α) is symmetric

and, with the same reasoning as above, taking into account Proposition 4.2,

we have that for at least one j

αj −Rj < 0 < αj +Rj.

Clearly, in this case the radius Rj is expressed in terms of the adjacency

matrix B, hence Rj = dj.

Therefore, a sufficient condition for the uniqueness of the trivial steady

state is the following:

1
εβ
δ
(1− pj∞)

− (kj − 1)

ε
> dj kj
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and, since it must be 0 < pj∞ < 1, we have proved the following result.

Theorem 4.3. Let G = (V,E) be a graph with partition π = {Vj, j = 1, ..., n},
such that all Vi’s induce a complete subgraph Gi of G, each of arbitrary order

ki. Moreover let us consider that whenever a node of Gi is connected with a

node in Gj, then it is connected with all nodes in Gj. Therefore a sufficient

condition for the uniqueness of the zero steady state is the following:

∀ j = 1, . . . , n :
dj εβ + (1− 1

kj
)β

δ
<

1

kj
.

The above result confirms the intuition that just the presence of com-

munities, i.e. of a group of individuals that may get infected each other at

much higher rate, implies an increase of the probability of persistence of the

epidemics. Actually, it is sufficient to compare the condition in Theorem 4.3

for kj > 1 with the condition djβδ < 1 that results in case kj ≡ 1 and ε = 1

(we implicit assume that if the network is not partitioned in communities,

the infection rate is constant among the population). Furthermore, the same

formula implies that the higher the value of β, the smaller is the region of

extinction of epidemics. Finally, the result in Theorem 4.3 becomes apparent

in the limit cases. Suppose, for instance, that β converges to zero. Then the

inequality in Theorem 4.3 is trivially satisfied and the system is in the region

of extinction for the epidemics. Conversely, if β converges to infinity, then

the system enters in the region of persistence.

Numerical Experiments.

Our NIMFA-like approximation is validated here by comparison with the

exact SIS model. From the operative standpoint, we compare NIMFA with

the a-SIS model [46, 93] where a nodal self-infection is allowed. This model

has no absorbing state and its stationary distribution, that can be computed

for explicitly, can be made arbitrarily close to the quasi-stationary distribu-

tion of the original SIS model, by considering appropriate and small values of

a > 0 (see Section 3.3) [93, 55]. For a detailed explanation on the simulation

process see [55].
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Figure 4.9: (a) Fraction of infected nodes for different values of k as a function of

τ = β/δ, with fixed the ratio ε = 1/2 and the value δ = 1. The network of the

communities is a regular graph with degree 10; the number of nodes is N = 500.

The inserted plot represents the root mean square error between the simulated

and the approximated fraction of infected nodes (b) The corresponding value of

the epidemic threshold for the NIMFA and the exact a-SIS model.

Effect of community dimension. We depict first, in Figure 4.9(a), the

impact of the community dimension k on the fraction of infected nodes in

the steady-state, and compare the results of our model to the a-SIS model.

The epidemic threshold of the a-SIS model is measured as the value of τ

where the second derivative of the steady-state fraction of infected nodes

equals zero. We consider a range for τ = β/δ, for constant ratio ε = 1/2 and

fixed δ = 1.

The sample network, representing the connections between the commu-

nities, has constant degree d = 10. The total number of nodes is N = 500.

The number of elements k is the same for all communities: curves are drawn

for increasing values of k (k = 1, 2, 5, 10), where k = 1 denotes the absence

of local clusters. The threshold effect is well visible in the graphs depicted

in Figure 4.9(a). As can be further observed, our model and the exact SIS

model are in good agreement and the root mean square error between them

decreases as k increases.
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Figure 4.10: Difference between the exact a-SIS model and the NIMFA fractions

of infected nodes as a function of τ and for different values of k, for the sample

network in Fig. 4.9.

In Figure 4.9(b) the corresponding value of the epidemic threshold for the

NIMFA and the a-SIS model is reported. As expected from Theorem 4.2,

the critical threshold above which a persistent infection exists decreases with

the dimension of the communities. Thus, for large values of the community

dimension, a very small value of τ is sufficient to cause epidemic outbreaks,

irrespective of the actual network structure.

Figure. 4.10 illustrates the difference between the NIMFA and the a-

SIS fraction of infected nodes as a function of τ and for various k, for the

sample network in Figure 4.9: we observe that, as we expect (see Section

3.3) the maximum difference between the two models occurs when τ equals

the a-SIS epidemic threshold. This means that for τ greater than the a-SIS

epidemic threshold, the difference between the two models decreases and the

two models get increasingly closer.

In Figures 4.11(a) and (b), the network of communities is an Erdős-Rényi

random graphs ∗ with n = 10, generated according to edge connection proba-

bility p = 0.3. The plots have been derived averaging over 300 instances of

random graphs, and setting ε = 1/2 and δ = 1. The confidence intervals for

∗An Erdős-Rényi random graph can be generated from a set of N nodes by randomly

assigning a link with probability p to each pair of nodes.



52 4. Community networks

0 0.4 0.8 1.2 1.6 2
0

0.2

0.4

0.6

0.8

1

τ

F
ra

ct
io

n 
of

 in
fe

ct
ed

 n
od

es

@
@

@
@

@
@

@@I

k = 1, 2, 5, 7, 10

(a) Fraction of infected nodes.
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Figure 4.11: (a) Fraction of infected nodes for different values of k and τ , being

fixed the ratio ε = 1/2, n = 10, and the value δ = 1. (b) The corresponding

value of the epidemic threshold. All plots have been obtained averaging over 300

instances of Erdős-Rényi random graphs, each representing the network of the

communities, for p = 0.3, the level of confidence is set to 98%.

the epidemic threshold is set to 98%.

Larger community dimensions, k > 1, cause the epidemic threshold to

drop of one order of magnitude, i.e. it starts above 0.3 for k = 1 and it

decreases to around 0.1 already for k = 2, while it finally drops below 0.03

for k ≥ 7.

By taking into account one instance of this set of Erdős-Rényi graphs

for k = 5, we report, in Figure 4.12, the behavior of the fraction of infected

nodes as a function of τG = εβ/δ and τL = β/δ, where the subscripts G

and L stay for “global”(i.e between communities) and “local” (i.e within the

communities) respectively. We can observe that the epidemic threshold be-

haves linearly for a given cluster dimension, in agreement with the expression

derived in Theorem 4.2.

Finally, we consider a sample Erdős-Rényi network, for the communities’

connection, with order n = 20 and p = 0.3. Figures 4.13(a) and (b) show

a good agreement between the two models for cluster size k = 5, 7, 10. On

the contrary, for networks with few individuals, N = 20 corresponding to
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Figure 4.12: (a) Fraction of infected nodes as a function of τG = εβ/δ and τLβ/δ

for a network with 10 communities and k = 5.
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Figure 4.13: (a) Fraction of infected nodes for different values of k and τG = βG/δ,

being fixed the ratio ε = 1/2 and the value δ = 1, for the case where the network

of the communities is an Erdős-Rényi graph of order n = 20 and p = 0.3. Both the

NIMFA and the exact a = 10−3 SIS model are shown. The inserted plot represents

the root mean square error between the simulated and the approximated fraction

of infected nodes. (b) The corresponding value of the epidemic threshold for the

NIMFA and the exact a-SIS model.
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Figure 4.14: Difference between the exact a-SIS model and the NIMFA fractions

of infected nodes as a function of τ and for different values of k, for the case where

the network of the communities is an Erdős-Rényi graph of order n = 20, p = 0.3.

k = 1, and N = 40 for k = 2, the epidemic threshold of the NIMFA model is

less close to that of the a-SIS model. As further observed from Figure 4.14,

the maximum difference between the NIMFA and the a-SIS fractions of in-

fected nodes corresponds to the a-SIS epidemic threshold for networks with

communities’ dimension equal to k = 5, 7, 10.

Effect of the heterogeneity of the community dimension.

One interesting question that concerns the two-scale epidemic model is

the influence of the community dimension distribution onto the epidemic

threshold. In general, it is not obvious whether, fixing all remaining system’s

parameters, a constant community dimension will lead to a lower or larger

epidemic threshold for the same network.

In Figure 4.15 we performed a test using a set of 300 sample tree graphs

for depicting the connectivity of the communities. Each graph is the span-

ning tree of an Erdős-Rényi graph of order n = 10 and p = 0.3. The ratio ε

is set to 1/8. The plot draws the difference ∆τ , obtained averaging over the

300 sample graphs, between the epidemic threshold measured for homoge-

neous cluster distribution, and the epidemic threshold measured in the case

of inhomogeneous cluster distribution.

In particular, for each sample tree, we considered different values of the

average cluster dimension k = 5, 10, 15. In the case of heterogeneous cluster
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Figure 4.15: Difference ∆τ between the epidemic threshold in the case of homo-

geneous cluster distribution and inhomogeneous cluster distribution for different

values of k (5,10,15), being fixed the ratio ε = 1/8. The difference was obtained

averaging over 300 instances of tree graphs of 10 clusters, the level of confidence

is set to 98%

distribution half of the communities have dimension 2 and half of them have

dimension 2k − 2.

Figure. 4.15 exemplifies that heterogeneity of communities’ dimension

lowers the epidemic threshold compared to the case of constant dimension.

This observation agrees with the theory, indeed from the inequality [89, (3.34)

on p. 47]:

λ1 ≥
2L

N

√
1 +

Var[d]

(E[d])2
,

where λ1 is the spectral radius of a given graph with N nodes and L links,

and d is the degree of a randomly chosen node in the graph, we have

τ (1)c =
1

λ1
≤ N

2L

1√
1 + Var[d]

(E[d])2

implying that, the larger the variance in the degree d, the lower the NIMFA

epidemic threshold τ
(1)
c . Unfortunately, since τ

(1)
c ≤ τc, we cannot conclude

that an increase in Var[d] also always lowers the exact epidemic threshold τc.

Figure 4.16 shows the epidemic threshold measured for homogeneous com-

munity dimension and the epidemic threshold measured for inhomogeneous
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Figure 4.16: The epidemic threshold in the case of homogeneous cluster distribu-

tion and inhomogeneous cluster distribution for different values of k, where the

network of the communities is a spanning tree of an Erdős-Rényi graph of order

n = 10 and p = 0.3. Both the NIMFA and the a-SIS thresholds are shown.

community dimension, by considering one instance of the previous set of

spanning trees of an Erdős-Rényi graph. We report both the results ob-

tained for our model and the results obtained for the a-SIS model: the

NIMFA epidemic threshold well estimates the a-SIS epidemic threshold in

both community dimension distributions.

Effect of community internal structure.

Here we analyze the impact of the cluster internal structure on the epi-

demic process, thus we compare a network whose clusters are fully connected,

i.e djj = k − 1, for all j = 1, . . . , n, with another one with clusters having a

ring topology, i.e. djj = 2, for all j = 1, . . . , n.

Figure 4.17 illustrates the results for clusters with a ring topology, com-

pared to fully connected clusters. The figure shows, for different values of k,

the difference ∆τ between the epidemic threshold in the case of ring clusters

and fully connected clusters. The results have been obtained by averaging

over 300 instances of Erdős-Rényi random graphs (as before, n = 10, p = 0.3

and the level of confidence is set to 98%). For k > 2, the difference in the

value of the epidemic threshold confirms that the community structure has an

impact on the epidemic threshold, and as we actually expect, having sparser
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Figure 4.17: Ring clusters v.s. fully connected clusters: difference ∆τ between

the epidemic threshold in the case of ring clusters and fully connected clusters for

different values of k. The difference was obtained averaging over 300 instance of

Erdos-Renyi random graphs of 10 clusters, for p = 0.3, the level of confidence is

set to 98%.
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Figure 4.18: Epidemic threshold in the case of ring and fully connected clusters for

different values of k, for an instance of Erdős-Rényi random graph of order n = 10

and p = 0.3. Both the NIMFA and the exact ε-SIS model thresholds are shown.

communities in a network increases the epidemic threshold. This behavior is

further observed in Figure 4.18 where we compare the NIMFA and the a-SIS

thresholds for the two cluster topologies. Moreover, as for the previous test

cases, the NIMFA epidemic threshold is close to that of the a-SIS model.
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4.3.2 Interconnected Stars

Here we consider a specific undirected graphs, which result by intercon-

necting star graphs, where stars’ central nodes may be connected among

themselves. We call such kind of topology interconnected stars networks

(NSIs). A sample network of this type is depicted in Figure 4.19.

We can consider the following partition of the node set V : the set {V 0
1 , ..., V

0
m},

namely the star central nodes, where |V 0
i | = 1, for all i = 1, . . . ,m, and the

set {V1, ..., Vm}, namely the stars’ leaves, where |Vi| = ki.

As before we shall identify the set of all nodes in each Vi with a community

of the whole population.

We define the set of star central nodes as the set of central communities

(or central nodes), and that of the stars’ leaves as the set of the terminal

communities.

Each central community is connected with all elements in one of the ter-

minal communities (it acts as the hub in a star). The terminal communities

are not connected among themselves but each of them is related only with

its corresponding central community, i.e., all nodes in Vi are connected only

with V 0
i , for i = 1, ..,m. Actually, if we look at the connections between

V 0
i with nodes of Vi, the corresponding subgraph is a star. Thus, the whole

network is a set of interconnected stars. It is straightforward to see that the

partition π = {V 0
1 , ..., V

0
m, V1, ..., Vm} of this kind of network is equitable.

The two-scale model for the diffusion sets β infection rate between the

central nodes and εβ the infection rate between a central node and a node

in its adjacent terminal community, where ε > 0. Here, the same curing rate

δ holds for all nodes.

Let B be the m ×m adjacency matrix of the central nodes, the N × N
adjacency matrix A of the whole network is

A =

[
Bm×m εZm×(N−m)

εZT
(N−m)×m 0(N−m)×(N−m)

]
where Z = diag(1k1 , . . . ,1km) with 1ki the 1× ki vector of all ones. Thus the
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Figure 4.19: A sample network of interconnected stars; the resulting graph with

m = 5 and k1 = 2, k2 = 4, k3 = 0, k4 = 1, k5 = 3: central communities are filled

black, terminal communities are filled white.

quotient matrix writes

Q =

[
Bm×m ε

√
Λm×m

ε
√
Λm×m 0m×m

]
where Λ := diag (ki).

We may assume that, at time t = 0, the infection probability is the same

in all nodes of a terminal community, and may differ from one community to

the other. Then by Theorem 4.1 we know that the epidemic diffusion (3.6)

can be expressed by means of the modified quotient matrix which reduces

the original system of N differential equations to a system of 2m differential

equations. We have

Q̃ =

[
I 0

0 Λ− 1
2

]
Q

[
I 0

0 Λ
1
2

]
=

[
B εΛ

εI 0

]
then the reduced system (4.12) writes

d

dt
P (t) = β diag(1N − P (t))

[
B εΛ

εI 0

]
P (t)− δP (t), (4.22)

and by partitioning the 2m× 1 vector P = (P 0P
1
)T finally we have

d
dt
P 0(t) = −δP 0(t) + εβ diag(1m − P 0(t))ΛP

1
(t)

+β diag(1m − P 0(t))BP 0(t)

d
dt
P

1
(t) = −δP 1

(t) + εβ diag(1m − P
1
(t))P 0(t)
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We note, however, that if nodes in the same terminal community have

different initial conditions, the stability properties of the original system (3.6)

cause the dynamics to converge exponentially fast to the reduced dynamics

(4.22) (see Section 4.3).

In order to study the long term behavior of the system, we have to com-

pute the vector of steady state infection probabilities.

Corollary 4.1 shows that, irrespective of the initial conditions of termi-

nal nodes, it is sufficient to compute the positive steady-state vector of the

reduced system (4.22) to obtain that of the original system (3.6). Indeed,

the components of the steady-state vector P∞, corresponding to nodes in the

same terminal community, are equal. Thus, starting from (4.23) the positive

steady-state vector can be obtained from the following conditions

p0i∞
1− p0i∞

= ετkip
1
i∞ + τ

(
c∑

j=1

bijp
0
j∞

)
,

p1i∞
1− p1i∞

= ετp0i∞

which is equivalent to the following m equations

p0i∞
1− p0i∞

= (ετ)2ki
p0i∞

1 + ετp0i∞
+ τ

(
c∑

j=1

bijp
0
j∞

)
The steady-state for the terminal communities writes simply

p1i∞ =
ετp0i∞

1 + ετp0i∞

p0i∞→1
−−−−→ ετ

1 + ετ

suggesting that, when τε is not too large, terminal communities are less likely

to be infected than the adjacent central communities, hence they eventually

require lesser curing resources.

Now we derive bounds for the NIMFA epidemic threshold τ
(1)
c = 1

λ1(A)
=

1
λ1(Q)

. A general bound is obtained from Gershgorin’s theorem 1.2,

1

λ1(Q)
≥ 1

maxi
∑

j Qij

≥ 1

maxi
(
di + ε

√
ki
) ,
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where di =
∑m

j=1 bij.

A tighter bound is found in the following proposition.

Proposition 4.3. For the NSIs it holds

τ (1)c =
1

λ1(Q)
≥ 1

λ1(B) + ε ·maxi
√
ki
.

Proof. We can write

Q =

[
B 0

0 0

]
+

[
0 εΛ

1
2

εΛ
1
2 0

]
= B̂ + L̂

From the property of the determinant of 2 × 2 block matrices [84] we write

the characteristic polynomial of the second matrix as

pL̂(λ) = (λI − εΛ
1
2 )(λI + εΛ

1
2 )

so that clearly λ1(L̂) = εmaxi
√
ki. By Weyl’s inequality we have

λ1(Q) ≤ λ1(B) + ε ·max
i

√
ki

Since λ1(A) = λ1(Q̃) = λ1(Q) the proposition is proved.

Two-layers Networks. The NSIs can be seen as a two-layer, interde-

pendent network. Such case is interesting for specific closed forms giving

insight into the properties of virus diffusion and immunization strategies (see

Section 5.2).

In a multilayer network G = (VM , EM), it is given a partition of vertex set

VM into layers {Vα}α, α = 1, . . . , n [82]. A quotient graph is hence induced

by such partition and each layer α, with α = 1, ..., n corresponds to the

respective induced subgraph Gα = (Vα, Eα).

In our case, the natural node set partition is π = V0 ∪ V1, where V0 =

(∪iV
0
i ) and V1 = (∪iVi). This corresponds to a two-layers network.

Observe that π is an equitable partition only under the assumption that

G0 = (V0, E0) is a regular graph with degree d0 and that G1 = (V1, E1) has
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an empty edges set. Moreover, each central node belonging to V0 must have

d01 = d1 neighbors in V1, and each terminal nodes must be connected with

only one central node. The 2 × 2 quotient and modified quotient matrices

write

Q =

[
d0 ε

√
d1

ε
√
d1 0

]
, Q̃ =

 d0 ε
√

d1k1
k0

ε
√

d1k0
k1

0

 (4.23)

whose largest eigenvalue is

λ1(Q) =
d0
2

(
1 +

√
1 + 4

d1
d20
ε2

)
,

and consequently the epidemic threshold is

τ (1)c =
1

λ1(Q)
= − d0

2d1ε2

(
1−

√
1 + 4

d1
d20
ε2

)
.

The infection probability in steady-state is obtained in closed form as

(1− p0)d0p0 + ε

√
d1k1
k0

p1(1− p0)−
1

τ
p0 = 0,

ε

√
d1k0
k1

(1− p1)p0 −
1

τ
p1 = 0.

Let ε
√

d1k1
k0

= a and ε
√

d1k0
k1

= b from the second equation:

p1 =
bp0

1
τ
+ bp0

,

substituting this value into the first equation yields

(1− p0)d0p0 +
bp0

1
τ
+ bp0

a(1− p0)−
1

τ
p0 = 0,

from which p0 is obtain and consequently p1.

4.4 Almost equitable partitions

In this section we consider graphs where the partition of the vertex set is

almost equitable.
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Definition 4.3. The partition π = {V1, ..., Vn} is called almost equitable if

for all i, j ∈ {1, . . . , n} with i ̸= j, there is an integer dij such that for all

v ∈ Vi, it holds

dij = deg(v, Vj) := # {e ∈ E : e = {v, w} , w ∈ Vj}

independently of v ∈ Vi.

The difference between equitable and almost equitable partitions is that,

in the former case, subgraph Gi of G induced by Vi has regular structure,

whereas the latter definition does not impose any structural condition into

Gi.

Ideally we can think of a network G̃ whose node set has an almost equi-

table partition as a network G with equitable partition where links between

nodes in one or more communities have been added or removed.

The objective is to obtain lower bounds on threshold τ
(1)
c , useful in de-

termining a safety region for the extinction of epidemics. We start assuming

that links are added only.

To this aim, let us consider two graphs G = (V,E) and G̃ = (V, Ẽ)

with the same partition {V1, . . . , Vn}, but different edge sets E  Ẽ, and

assume G to have an equitable partition but G̃ to have merely an almost

equitable partition. Then if Ã and A are the adjacency matrices of G̃ and G

respectively it holds

Ã = A+R,

where R = diag(R1, . . . , Rn); the dimension of Ri is ki× ki for i = 1, ..., n, as

before ki is the order of Gi and n is the number of the communities.

The Weyl’s inequality can be applied to Ã = A+R, and then it yields

λ1(Ã) ≤ λ1(A) + λ1(R). (4.24)

In the following we shall provide a more explicit formulation of the right

hand side of (4.24) involving the number of added edges.
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Figure 4.20: Comparison of the bound and the spectral radius for a 40-communities

network. Each community has k = 25 nodes, whose internal structure is initially

a ring; the perturbation graph is obtained by adding in each of them the same

increasing number of links. The spectral radius of the adjacency matrix Ã (Aae in

the legend, where the subscript “ae” stays for “almost equitable”) is compared to

the upper bound as a function of the links added in each community.

Proposition 4.4. Let G = (V,E) and G̃ = (V, Ẽ) be two graphs and consider

a partition {V1, . . . , Vn} of the set of vertices V ; we shall denote by Gi =

(Vi, Ei) and G̃i = (Vi, Ẽi) the subgraph of G and G̃ induced by the cell Vi,

respectively, for i = 1, ...n. Assume this partition to be equitable for G and

almost equitable for G̃. Let E ⊂ Ẽ with

Ẽ \ E =
n∪

i=1

(Ẽi \ Ei)

(i.e., the edge sets can only differ within cells) and denote by R the adjacency

matrix corresponding to a graph with Ẽ \E as edge set. Finally, let us denote

by GC
i the graph with edge set Ẽi \ Ei and whose node set is simply the set

of endpoints of its edges (i.e., no further isolated nodes).

1. If ∆(GC
i ) denotes the maximal degree in GC

i , i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min


√

2ei(ki − 1)

ki
,∆(GC

i )

 ,

where ei is the number of edges added to Gi, i.e., ei = (|Ẽi|− |Ei|), and
ki is the number of nodes in Vi.
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2. If additionally GC
i is connected for each i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min
{√

2ei − k′i + 1,∆(GC
i )
}
,

where k′i is the number of nodes of GC
i .

Proof. (1) By assumption, R is a diagonal block matrix whose blocks Ri are

the adjacency matrices of the induced subgraphs GC
i . Thus, λ1(R) is the

maximum of all spectral radii λ1(Ri). On the other hand, one has by [89,

(3.45)] that

λ1(Ri) ≤ min


√

2ei(ki − 1)

ki
,∆(GC

i )

 .

and the claim follows.

(2) By Gershgorin’s theorem 1.2, the spectral radius of an adjacency matrix

of a graph without loops is never larger than the graph’s maximal degree, i.e.,

λ1(Ri) ≤ ∆(GC
i ). By assumption, there exists a permutation of the nodes in

Vi such that the matrix Ri has the form

Ri =

[
R′

i 0

0 0

]

where R′
i is the adjacency matrix of a connected graph with k′i nodes (i.e.,

the block R′
i has dimension k′i × k′i). Now, we deduce from [89, art. 50] that

λ1(R
′
i) ≤

√
2ei − k′i − 1,

and since λ(Ri) = λ(R′
i), the statement follows.

By using estimate (4.4) and Proposition 4.4 in the first and the second

term on the right hand side of (4.24), respectively, we deduce

λ1(Ã) ≤ max
1≤i≤n

λ1(CVi
)+λ1(B̂)+ max

1≤i≤n
min


√

2ei(ki − 1)

ki
,∆(GC

i )

 . (4.25)
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The inequality in (4.25) gives us a lower bound for the epidemic threshold in

the case of a graph whose partition of nodes set is almost equitable. Actually

τ (1)c =
1

λ1(Ã)
≥ τ ⋆ =

1

max
1≤i≤n

λ1(CVi
) + λ1(B̂) + max

1≤i≤n
min

{√
2ei(ki−1)

ki
,∆(GC

i )

} .
(4.26)

Now let us consider the case where we remove edges inside the commu-

nities, in a network whose set nodes has an equitable partition, then, as we

said in Remark 4.2, it holds that

λ1(Ã) ≤ λ1(A),

whence

1

λ1(Ã)
≥ 1

λ1(A)
≥ min

i

1

dii + λ1(B̂)
≥ 1

maxi(dii +
∑

j b̂ij)
.

The bounds developed so far support the design of community networks

with safety region for the effective spreading rate, that guarantees the ex-

tinction of epidemics. E.g. if we consider some Gi, i = 1, . . . , n, it is possible

to connect them such in a way to form a graph G̃ = (V, Ẽ) with an almost

equitable partition. Now, any subgraph obtained from G̃, by removing edges

inside the communities, will have smaller spectral radius than G̃, and con-

sequently a larger epidemic threshold. Thus the lower bound in (4.26) still

holds.



Chapter 5

Heterogeneous SIS on graphs

Most studies refer to epidemic process with homogeneous infection (re-

covery) rate. However in many real situations, in social, biological and data

communications networks, it is more appropriate to consider an heteroge-

neous setting than an homogeneiteous one [94].

A short overview on works in literature that consider heterogeneous popu-

lations can be found in [100, 78].

In this section we report the results in [68]. We include the possibility

for the infection rate to be different for each link, thus we denote by βij the

infection rate of the node j towards the node i, where βii = 0. Basically

the epidemic spreads over a directed weighted graph. Moreover a node i can

recover at rate δi.

As for the homogeneous SIS (introduced in Section 3.2), the SIS model

with heterogeneous infection and recovery rates is as well a Markovian pro-

cess, where the time for an infected node j to infect its susceptible neighbours

i is an exponential random variable with average βij, and the time for a node

j to recover is an exponential random variable with average δj.

We underline that in the first formulation of NIMFA for the heterogenous

67
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setting in [94], a node i can infect all its neighbors with the same infection

rate βi. Here, instead, we include the possibility that the infection rates

depend on the type of connection between two nodes, that may represent a

wider range of more realistic scenarios.

The NIMFA governing equation in the heterogeneous setting writes

dpi(t)

dt
=

N∑
j=1

βijpj(t)−
N∑
j=1

βijpi(t)pj(t)− δipi(t), i = 1, . . . , N. (5.1)

Letting P = (p1, . . . , pN)
T and let A = (aij) be the matrix defined by

aij = βij when i ̸= j, and aii = −δi; more let F (P ) be a column vector

whose i-th component is −
∑N

j=1 βijpi(t)pj(t). Then we can rewrite (5.1) in

the following form:

dP (t)

dt
= AP (t) + F (P ). (5.2)

Let r(A) = max1≤j≤N Re(λj(A)) be the stability modulus [54] of A, where

Re(λj(A)) denotes the real part of the eigenvalues of A, j = 1, . . . , N . We

report a result from [54] that lead us to extend the stability analysis of

NIMFA in Section 3.3 to the heterogeneous case.

Theorem 5.1. If r(A) ≤ 0 then P = 0 is a globally asymptotically sta-

ble equilibrium point in IN for the system (5.1), instead if r(A) > 0 then

there exists a constant solution P∞ ∈ IN − {0}, such that P∞ is globally

asymptotically stable in IN − {0} for (5.1) .

Proof. See [54, Thm. 3.1].
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5.1 Community Networks

5.1.1 Equitable partitions (an extension)

In this section we provide an extension of Section 4.2: more than two

level of mixing have been considered, including, in this way, a wider range of

realistic situations. More precisely, as in Section 4.2, all pairs of connected

nodes in community j can infect each other with rate βjj, but the rate βij at

which individuals in community j infect those in community i can be differ-

ent from βji, that is the rate at which individuals belonging to community i

infect those in community j.

However we assume that if βij ̸= 0 then βji ̸= 0, for all i, j = 1, . . . , n. In

practice this assumption means that we are considering directed weighted

graphs, with the restriction that the arc (z, w) ∈ E if and only if (w, z) ∈ E;
it can only happen that their weights are different, i.e. γ(w, z) ̸= γ(z, w) (see

Def. 1.3), when w ∈ Vi and z ∈ Vj.
Moreover, since βji is the same for any arc from Vi to Vj, for all i, j = 1, . . . , n,

we can use the definition of dij and, hence, of equitable partition given in

Section 4.2, i.e. we do not need an alternative definition of equitable parti-

tion (see e.g. [64, Def. 8.24]). A more complex scenario may be treated in

the future.

Thus, recalling that B = (bij) is the adjacency matrix encoding for the

connectivity of the communities, we have that the transpose of the weighted

adjacency matrix of our graph is A = (awz), where

awz =


βjj if w ← z, w, z ∈ Vj

βij if w ← z, w ∈ Vi, and z ∈ Vj

0 if bij = 0

(5.3)
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In this heterogeneous setting the transpose of the quotient matrix writes

Q = diag(diiβii) + (
√
dijdjiβijbij)i,j=1,...n. (5.4)

We call this matrix still Q, as in Def. 4.2, for simplicity in the notation.

Let us note that this matrix is not symmetric, despite the case of two infection

rates discussed in Section 4.2.

When one consider a population divided in communities, it is appropriate

to take into account the case where all nodes of the same community j can

recover at the same rate δj, j = 1, . . . , n, and that it may differ from one

community to the other. Thus let us define the 1×n vector of nonzero curing

rates ∆ = (δ1, ..., δn).

Under the conditions of Theorem 4.1, i.e. when at time t = 0, the infection

probability is equal for all nodes in the same community (and may differ

from one community to the other), we can reduce the number of equations

in (5.2) using the matrix Q, in the following way

dP (t)

dt
=
(
Q̃−D

)
P (t)− diag(P (t))Q̃P (t), (5.5)

where D = diag
(
∆
)
is the curing rate matrix and

Q̃ = diag

(
1√
kj

)
Q diag(

√
kj).

It is immediate to observe that σ(Q) = σ(Q̃).

Now let us define the 1 ×N curing rates vector ∆ = (δ1, . . . , δN), where

δz = δj for all z ∈ Vj and j = 1, . . . , n, and D = diag(∆) is the N ×N curing

rate matrix. It holds the following.

Lemma 5.1. Let π = {V1, . . . , Vn} be an equitable partition. Let A and Q

weighted matrices as in (5.3) and (5.4) respectively, and S as in (4.3). Then

it holds that

i) (A−D)ST = ST (Q−D).

ii) For all λ ∈ C and all x ∈ Cn
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(Q−D)x = λx if and only if (A−D)STx = λSTx.

Proof. i) AST = STQ, indeed

(AST )i,j = dhj
βhj√
kj
,

if i ∈ Vh and

(STQ)i,j =
βhj√
kh

√
dhjdjh,

if bhj ̸= 0. By (4.1) one can easily see that

βhj√
kh

√
dhjdjh = dhj

βhj√
kj
.

Moreover (DST )ih = (STD)ih = 1√
kh
δh, if i ∈ Vh, otherwise (DST )ih = 0.

Thus the statement holds.

ii) Using the result in i), one can immediately apply the proof in [39, Thm.

2.2].

Next we report some technical facts that we will use later.

Proposition 5.1. Let A be an n × n irreducible and non negative matrix

and let D = diag(δ1, ..., δn). Then it holds:

i. A−D is irreducible, for each (δ1, ..., δn).

ii. There exists an eigenvector w of A − D such that w > 0 and the corre-

sponding eigenvalue is r(A−D), for each (δ1, ..., δn).

Proof. i. From [54]: a n × n matrix A is said to be irreducible if for any

proper subset S ⊆ {1, . . . , n} there exists i ∈ S and j ∈ S ′ = {1, . . . , n} − S
such that aij ̸= 0; since A is irreducible, the definition applies immediately

to A−D;

ii. See [54, Lemma 4.2].
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Now let us consider the system of N differential equations (5.2). We can

prove that, in the case of a graph whose node set has an equitable partition,

and regardless to the initial conditions, it is possible to determine the critical

threshold for (5.2), applying Thm. 5.1, directly on the reduced system (5.5).

Proposition 5.2. The elements of the curing rates vector ∆ = (δ1, ..., δN),

that determines the critical threshold of (5.2), is identified by the elements

of ∆ = (δ1, ..., δn), in such a way that δz = δj for all z ∈ Vj, j = 1, . . . , n,

for which

r(Q−D) = 0, (5.6)

where r is the stability modulus.

Proof. Basically, by Theorem 5.1, we have to show that

r(A−D) = r(Q̃−D) = r(Q−D). (5.7)

We first prove that

r(Q−D) = r(A−D). (5.8)

By the definition of Q we have

S (A−D)ST = SAST − SDST = Q−D.

Now, let c ∈ R such that both azz − δz + c ≥ 0, for all z = 1, . . . , N and

qii−δi+c ≥ 0 for all i = 1 . . . , n. Let us define A−D+cIN×N = Â andQ−D+

cIn×n = Q̂. Ã and Q̃ are non negative and irreducible (see i)) in Proposition

5.1) matrices. We order the eigenvalues of Q̂ so that |λ1(Q̂)| ≥ |λ2(Q̂)| ≥
. . . ≥ |λn(Q̂)|, making the same also for Â. By the Perron-Frobenius theorem,

the eigenvalues of maximum modulus of an irreducible and non negative

matrix is real and positive and its corresponding eigenvector, the Perron

vector, is the unique (up to a factor) strictly positive eigenvector of the

matrix. Hence there exists ω > 0, eigenvector of Q̂ corresponding to λ1(Q̂).

By ii) in Lemma 5.1 and since, obviously, ST In×n = IN×NS
T , we have

that STω > 0 is the eigenvector of Â corresponding to λ1(Q̂). However, since
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STω is strictly positive, it must be the Perron vector of Â, consequently

λ1(Â) = λ1(Q̂).

It can be immediately shown that

r(Q̂) = λ1(Q̂) = λ1(Â) = r(Â),

and that

r(Q−D) + c = r(Q̂) = r(Â) = r(A−D) + c, (5.9)

thus (5.8) holds.

Now we prove that

r(Q̃−D) = r(Q−D). (5.10)

For any n-vector v and scalar λ ∈ C we have(
Q̃−D

)
v = λv ⇐⇒

(
Λ− 1

2QΛ
1
2 −D

)
v = λv ⇐⇒(

QΛ
1
2 −DΛ

1
2

)
v = λΛ

1
2v ⇐⇒

(
Q−D

) (
Λ

1
2v
)
= λ

(
Λ

1
2v
)
,

hence λ ∈ σ(Q̃−D)⇐⇒ λ ∈ σ(Q−D), and (5.10) holds.

In conclusion from (5.10) and (5.8) we have (5.7).

Remark 5.1. Let us note that if A is an n × n irreducible and non negative

matrix, and D a diagonal matrix with positive entries, then the eigenvalue

λ ∈ σ(A−D), such that Re(λ) = r(A−D), is real.

Furthermore we underline that, by Corollary 4.1, irrespective of the initial

conditions of nodes in the same community, it is sufficient to compute the

positive steady-state vector P∞ of the reduced system (5.5) to obtain that

of the original system (5.2).

5.2 Optimal Immunization

An important challenge in epidemiology is to understand how to control

the infectious disease, both in public health and in other domains, such as,
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e.g., protection of computer architectures.

Here we propose an optimal antidote allocation strategy. Our problem

is related to the different allocation of antidotes to each node in order to

increase its recovery rate. We consider that the amount of resource allocated

for a node is proportional to its recovery rate.

We know that the structure of the network plays a crucial role in the diffusion

of epidemic, thus a uniform distribution of resources among nodes, that does

not take into account the connectivity of the network, does not seems to

work efficiently in order to eradicate the infection, or reduce the number of

infected nodes [76]. Moreover the distribution of resources for the recovery

have a cost, which can vary from individual to individual. Thus, a crucial

aspect is to individuate a cost-optimal distribution of resources to prevent

the disease from persisting indefinitely in the population.

Based on these considerations and taking into account the results of The-

orem 5.1, we have designed our immunization strategy, as we shall explain

into details below.

Proposed approach to the problem.

We adopt the following linear cost function , where the cost may well

depend on the node itself

U(∆) =
N∑
i=1

ciδi, (5.11)

where ∆ is the immunization rate vector, and c is the cost vector, where the

component ci > 0, for i = 1, . . . , N , is the cost for the immunization of node

i at unitary rate.

Now let us consider the case where βij = βji, for all i, j = 1, . . . , N , i.e.

the weighted adjacency matrix A is symmetric. We seek for the solution of

the following

Problem 5.1 (Immunization: Eigenvalue Constraint Formulation). Find
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∆ ≥ 0 which solves

minimize c ·∆T

subject to: λ1
(
A− diag (∆)

)
≤ 0, ∆ ≥ 0

The immunization problem can be reformulated as a semidefinite pro-

gramming that is a convex optimization problem [19]. In fact we observe

that diag(∆) =
∑N

i=1∆i diag(ei), where ∆i is the i-th component of ∆ and

ei is the i-th element of the standard basis, so that diag(ei) ≥ 0; hereafter

the inequality sign in M ≥ 0 when M is a matrix, means that M is positive

semidefinite. Thus we can express the optimization problem with eigenvalue

constraint as a semidefinite programming problem in the following way

Problem 5.2 (Immunization: Semidefinite Programming Formulation). Find

∆ which solves

minimize c ·∆T

subject to: diag (∆)− A ≥ 0

∆ ≥ 0

The feasibility of the problem is always guaranteed, as showed in the

following

Theorem 5.2 (Feasibility). The immunization problem is feasible.

Proof. We define lmax := maxi
∑

j aij and choose ∆ = lmaxu, where u is

the all-one vector: D = lmaxIN . Then for any vector w =
∑N

i=1 zivi, where

{v1, . . . , vN} is an eigenvector basis of A, it holds

wT (A−D)w = wT (
∑

λi(A)zivi − lmaxw) ≤ (λ1(A)− lmax)|w|2 ≤ 0,

where the last inequality follows since λ1(A) ≤ maxi
∑

j aij. Hence the cho-

sen vector satisfies the constraint and we can assert that the feasible region

is not empty.
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Since the problem is feasible there is always an optimal point on the

boundary [19] and, by a fundamental result of convex optimization, any

locally optimal point of a convex problem is globally optimal [18, Sec. 4.4.2].

A semidefinite programming (SDP) approach for the study of optimal

resource allocation in a network has been discussed also in [77]. However the

problem statement is different. First, each node i can infect all its neighbors

with the same infection rate βi, while in our construction βji depends on the

arrival node j; moreover they try to minimize an arbitrary convex function

of the infection rates, considering, unlike us, a given curing rate profile.

In the next section we shall extend our approach to a network divided in

communities. Indeed, in most of the real situations, it may be more appro-

priate consider policies for different entire groups (hospitals, schools, villages,

cities, etc,...), rather than for each individual.

5.2.1 Optimization for Networks with Equitable Par-

titions.

In this section we consider a different allocation of antidotes to each

community. Let us consider the case where βij = βji, i, j = 1, . . . , n. In

this case the matrix Q is symmetric and its eigenvalues are real. Considering

the reduced curing rate vector ∆ and the 1 × n cost vector c, where each

component refers to the cost for the immunization of a community at unitary

rate, then we seek for the solution of the following

Problem 5.3 (Immunization: Eigenvalue Constraint Formulation). Find

∆ ≥ 0 which solves

minimize c ·∆T

subject to: λ1
(
Q− diag (∆)

)
≤ 0, ∆ ≥ 0

Problem 5.4 (Immunization: Semidefinite Programming Formulation). Find
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∆ ≥ 0 which solves

minimize c ·∆T

subject to: diag (∆)−Q ≥ 0

∆ ≥ 0

Semidefinite programs can be solved using standard tools [88]. For sy-

stems of moderate size (e.g., on the order of n = 100 communities), the

number of involved variables does not represent a serious performance bot-

tleneck and standard solvers perform well in practice. We further observe

that from Thm. 5.2, the feasibility of the problem is always guaranteed. Scal-

ability properties limit the usage of semidefinite programming for very large

graphs, which in general need not to be sparse.

Now we tackle a simplified case where an accurate polynomial time com-

plexity algorithm (that we shall discuss in Appendix A) can be employed

instead. In order to do so, we need a few technical facts recalled next:

Proposition 5.3. Let A be an n×n symmetric, irreducible and non negative

matrix and let D = diag(δ1, ..., δn). Then it holds:

i. Let δi = 0 for some i = 1, . . . n, then λ1(A−D) ≥ 0.

ii. The function (δ1, ..., δn) 7−→ λ1(D − A) is continuous.

Proof. i) Let consider δi = 0 for some i = 1, . . . n and assume by contradiction

that λ1(A − D) < 0, this means that the matrix A − D must be definite

negative; however if we take the vector ei of the canonical basis of Rn, then

it holds that eTi (A−D)ei = eTi Aei ≥ 0 and we have a contradiction.

ii) It follows since the eigenvalues of a matrix A vary with continuity with

the entries of A, see [47, Appendix D].

Two-level immunization

Now we consider the case where the set of communities is divided in

two categories: one where the communities have curing rate δ0, and the

other, with communities whose curing rate is δ1; as above, βij = βji, for all

i, j = 1, . . . , n.
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This kind of situation can be well represented by a quotient graph that is,

e.g., bipartite (where each node may represent a full-meshed community), or

an interconnected stars network (see Section 4.3.2).

We can consider the following partition of the node set: the set {V 0
1 , ..., V

0
m},

and the set {V1, ..., Vm′}, clearly the set partition π = V0 ∪ V1, where V0 =

(∪iV
0
i ) and V1 = (∪iVi) must be equitable.

For convenience we define the central communities, those whose elements

have curing rate δ0, and terminal communities those whose elements have

curing rate δ1.

Thus, let us consider the curing matrix D = diag (δ01m, δ11m
′ ). We also

define

I0m =

[
Im 0

0 0

]
, I1m′ =

[
0 0

0 Im′

]
where Im is the identity matrix of order m.

The semidefinite programming for the two-level curing rates, shortly the

2D immunization problem, is resumed below:

Problem 5.5 (Semidefinite Programming 2D Formulation). Find ∆2 =

(δ0, δ1) which solves

minimize U(∆2)

subject to: δ0I
0
m + δ1I

1
m′ −Q ≥ 0

∆2 ≥ 0

where c = (c0, c1) with c0 =
∑

i c
0
i and c1 =

∑
i ci are the sum of the costs

for the immunization of the central communities and the terminal communi-

ties, respectively.

In the design of our algorithmic solution we will need some properties of

the 2D problem.

Lemma 5.2 (Monotonicity). Let ϕ : δ0 7−→ ϕ(δ0) be the function that as-

sociates to each δ0 ∈ R+ the value δ1 = ϕ(δ0) ∈ R+ such that λ1(Q −
diag (δ01m, δ11m′)) = 0. Then ϕ is decreasing.
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Proof. Let z > 0 and assume that ϕ(δ0 + z) = ϕ(δ0) + ζ > ϕ(δ0), for some

ζ > 0, i.e, that ϕ is not decreasing. From the definition of ϕ there exists

0 ̸= w ∈ ker
(
diag (((δ0 + z)1m, ϕ(δ0 + z)1m′)−Q

)
. Hence, we can write

wT
(
Q− diag

(
δ01m, ϕ(δ0)1m′

))
w = wT diag (z1m, ζ1m′)w +

wT
(
Q− diag

(
(δ0 + z)1m, ϕ(δ0 + z)1m′

))
w

= wT diag ((z1m, ζ1m′))w > 0 (5.12)

where the strict inequality holds because diag (z1m, ζ1m′) > 0; hence because

λ1

(
Q− diag(δ01m, ϕ(δ0)1m′

)
= 0, this means that Q− diag(δ01m, ϕ(δ0)1m′)

must be semidefinite negative and we have a contradiction.

Let us denote by Γ the feasibility region of Prob. 5.5; it is convex [18]. We

prove that the search for the optimal solution can be confined to a compact

subset of the feasibility region.

Theorem 5.3 (Compact search set). There exist two pairs (δmin
0 , δmax

0 ) and

(δmin
1 , δmax

1 ) such that a solution ∆∗
2 = (δ∗0, δ

∗
1) of Prob. 5.5 belongs to a com-

pact subset Γ′ ⊆ [δmin
0 , δmax

0 ]× [δmin
1 , δmax

1 ].

Proof. Let us define ∆lmax
2 = (lmax, lmax), Ulmax = c0lmax + c1lmax and U∗ =

c0δ
∗
0 + c1δ

∗
1.

By Thm. 5.2, ∆lmax
2 ∈ Γ, hence Ulmax ≥ U∗ and, letting Ω = {(δ0, δ1) :

c0δ0 + c1δ1 ≤ Ulmax)}, it follows that (δ∗0, δ
∗
1) ∈ Γ′ = Γ ∩ Ω; Γ′ is closed as

intersection of closed set.

Now, feasibility conditions of Prob. 5.5 require matrix Q−δ0I0m+δ1I
1
m′ to

be semidefinite negative. We define f(δ0) = λ1

(
Q− δ0I0m + (

Ulmax−c0δ0
c1

)I1m′

)
:

we have f(lmax) ≤ 0 since (lmax, lmax) ∈ Γ and f(0) > 0 by i) of Prop. 5.3.

By assertion ii) in Prop. 5.3, f(δ0) is a continuous function, hence, there

exists δmin
0 such that f(δmin

0 ) = 0, and since ϕ is decreasing ϕ(δmin
0 ) = δmax

1 .

We can repeat the same reasoning by inverting the role of δ1 and δ0 defining

g(δ1) = λ1

(
Q− (

Ulmax−c1δ1
c0

)I0m+δ1I
1
m′

)
; then assert that exists δmin

1 such that

g(δmin
1 ) = 0 and ϕ(δmin

1 ) = δmax
0 .
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Hence let r : c0δ0 + c1δ1 = Ulmax , the points (δmin
0 , δmax

1 ) and (δmax
0 , δmin

1 )

belong to ∂Γ ∩ r , i.e. they belong to ∂Γ′, so Γ′ ⊆ [δmin
0 , δmax

0 ] × [δmin
1 , δmax

1 ],

and consequently, being Γ′ closed, it is also compact.

Remark 5.2. Thm. 5.3 allows us to identify the interval of the values of δ0 and

δ1 restrict the search of (δ∗0, δ
∗
1), indeed since Γ′ ⊆ [δmin

0 , δmin
0 ] × [δmin

1 , δmax
1 ]

and (δ∗0, δ
∗
1) ∈ Γ′, then δ∗0 ∈ [δmin

0 , δmax
0 ] and δ∗1 ∈ [δmin

1 , δmax
1 ]. This is one

key property in the numerical search of the optimal solution proposed in

Appendix A.

A direct proof that the optimal solution lies on ∂Γ′ follows:

Corollary 5.1. A solution ∆∗
2 = (δ∗0, δ

∗
1) of Prob. 5.5 belongs to ∂Γ′ ∩ Ω.

Proof. Let us assume ∆∗
2 = (δ∗0, δ

∗
1) ∈ Γ′ \ ∂Γ′. ∆∗

2 is feasible, hence λ1(βQ−
D) < 0, with D = diag (δ01m, δ11m′). From Thm. 5.3 ii., again we can find

0 < δ′1 < δ∗1 such that λ1(βQ− diag(δ∗01m, δ
′
11m′)) = 0, where, i.e., ∆′

2 ∈ ∂Γ′.

But, U(∆∗
2)− U(∆′

2) = c1(δ
∗
1 − δ′1) > 0. Contradiction.

Two-layers networks. In order to provide further insight, the closed form

of the optimal solution is reported below for the two-layer networks that we

have discussed, as a special case of interconnected stars networks, in Section

4.3.2. We consider here the case where the rate of infection β is constant

among the population.

According to (5.6) we have to find the value of δ0 and δ1 for which βQ−D has

a maximal eigenvalue equal to zero, with Q as in (4.23). The characteristic

polynomial of βQ−D is

pλ(βQ−D) = λ2 + (δ0 + δ1 − βd0)λ+ δ0δ1 − βd0δ1 − β2ε2d1.

First of all 0 belongs to the spectrum of βQ−D when δ1δ0 = β2ε2d1+βd0δ1.

This also ensures that the second eigenvalue is negative and, consequently,

0 must be the largest eigenvalue of βQ−D. The linear cost optimization is

solved for

δ0 = βd0 + βε

√
c1d1
c0

, δ1 = βε

√
c0d1
c1

. (5.13)
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Figure 5.1: (a) Ratio Uu/U
∗ for increasing dimension k of the terminal commu-

nities: c0i = c1i = 1, i = 1 . . .m. The curves refer to three Erdős-Rényi networks

with 50 central nodes, generated for p = 0.2, p = 0.3 and p = 0.6 respectively.

Remark 5.3. Closed form (5.13) provides a simple connection between the

NSIs topology – under regularity assumptions – and optimal immunization

strategies: 1) linear term βd0 appearing in δ0 is due to the cost sustained to

protect from virus exchanged across central communities; 2) optimal immu-

nization of central communities requires an additional term
√
c1 d1/c0 due

to infections of terminal community nodes. Overall, from (5.13) we see that

limiting the number of terminal connections per subnetwork may represent

only partially a good practice, and it should be combined to frequent alloca-

tion of resource at central communities.

Numerical Results.

Here, for our numerical experiments, we consider the case of an intercon-

nected stars network (see Section 4.3.2), moreover we consider that only the

curing rates may be different, hence the infection rate is the same among all

nodes. We plan to investigate numerically, in the future, also the implication

of others network topology on our two-level immunization algorithm and the

influence of considering different infection rates.

In Figure 5.1 we compare the ratio between the cost Uu of the uniform curing

rate vector and the optimal cost U∗ = U(∆∗) solving the 2D immunization

Prob. 5.5. The uniform curing rate vector is ∆ = δ1N where δ is the minimum

value of the components of ∆, such that the threshold in (5.6) is attained.
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Figure 5.2: Fraction of infected communities as a function of the time. The three

curves represent respectively: 1) optimal vector of curing rates (Prob. 5.5) for

c0i = ci1 = 1, i = 1 . . .m, 2) for c0i = 10 and c1i = 1, i = 1 . . .m, 3) uniform vector of

curing rates that satisfies (5.6). Initial conditions:(a) central nodes infected. (b)

terminal communities infected.

The computation is made for different values of k, i.e., we consider uni-

form terminal community dimension, and for three different networks. The

networks considered have m = 50 central nodes and m = 50 terminal com-

munities that differ, each other, for the average degree of the central nodes:

the connectivity of the central nodes correspond to three sample Erdős-Rényi

graphs with p = 0.2, p = 0.3, p = 0.6, respectively. The ratio increases with

k until a maximum value: after the maximum the ratio is decreasing. The

plot confirms that the gain obtained by 2D immunization policies versus a

uniform approach is large, in particular, the larger the denser the network

(i.e. when p increases). Such advantage decreases, as expected, when the

dimension of the terminal communities becomes dominant compared to the

number of central communities. Also, the value of k where the maximum is

attained increases with the network’s density (i.e. with increasing p). Given

a certain topology for the network of the communities, the best relative

performance for the 2D optimization corresponds to an optimal number of

terminal connections per subnetwork.

Figure 5.2(a) and Figure 5.2(b) describe the speed of recovery from a virus

infection for various immunization strategies. In particular, we consider two



5.3 Heterogeneous SIS on graphs with stochastic rates 83

cases: Figure 5.2(a) represents the case when all central nodes are initially

infected, while Figure. 5.2(b) when all terminal communities are infected.

There we report on the dynamics of the fraction of infected communities for

a network with m = 50 central nodes, and with k = 20 per terminal commu-

nity. In these figures, we compare the dynamics under the uniform curing

rate vector, and the optimal solutions for the 2D immunization, for the case

c0i = c1i = 1 and c0i = 10, c1i = 1, i = 1 . . .m, respectively. We observe

that different curing vectors have a little impact in the dynamics when the

infection originates at central nodes (see Figure 5.2(a)), anyhow having dif-

ferent curing rate still provide an advantage in terms of costs, as depicted in

Figure 5.1. In Figure 5.2(b) we observe that by putting more weight onto the

central nodes, the optimal solution tend to immunize terminal communities

at higher rate, providing faster response to the infections originating from

terminal communities.

5.3 Heterogeneous SIS on graphs with stocha-

stic rates

The model that we have studied until now assumes that the the infection

rate (such as the recovery rate) is given a priori, and it does not change in

time.

These assumptions can be a good start point in order to study the evolution of

epidemics on graphs, however the parameters of the model may have a great

variability, because, e.g, most of the approaches to empirically obtain them,

from external data, are fraught with errors and uncertainty [30]. Moreo-

ver this variability can also derive, simply, on the presence of a random

environment, indeed the system environment may be subject to randomly

occurring fluctuations which appear as fluctuation of the parameters around

some average values.

Thus, in order to include this random effects we modify the NIMFA model

considering that the rate parameters can be affected by some stochastic fluc-
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tuations.

Precisely, let Ω be a given reference sample space, and ω ∈ Ω one possible

outcome that represents a possible perturbation of the population’s param-

eters. We consider that the disease spreads among the population according

to the dynamics

ẋi(t, ω) =β(ω)si(t, ω)(1− xi(t, ω))− δ(ω)xi(t, ω), i ∈ {1, . . . , N}

si(t, ω) =
N∑
j=1

aijxj(t, ω)

(5.14)

Hence, the rate coefficients, β(ω) and δ(ω), as well as the unknowns

xi(t, ω), are assumed to be random variables on the probability space (Ω,F ,P),
for a given σ-algebra F and a probability measure P on it.

Log-normal distribution. In most cases, where the rate parameters

cannot be fixed a priori, we only know their statistical properties.

The following questions arise:

• Assume that the rate parameters have distributions with known mean

values and variances, then what is the probability of extinction for the

epidemic?

• Can we compute the average value of epidemics in the population, in

the long range?

Let us try to understand what might happen, considering the following

“toy model”, i.e. a simple one-dimensional logistic equation

ẋ(t) = −δx(t) + βx(t)(1− x(t)). (5.15)

The equation has the global solution

x(t) =
(β − δ)e(β−δ)tx0

(β − δ) + β(e(β−δ)t − 1)x0
.
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For β
δ
> 1, the equation has a global solution which is positive and bounded

and has the asymptotic limit x(t)→ β−δ
β

as t→∞. On the other hand, for
β
δ
< 1 then the solution remains positive and bounded, but asymptotically

converges to 0 as t→∞.

Now we consider that the parameters characterizing the infection, β and

δ, follow a log-normal distribution. This assumption is inspired by works

that consider real-world datasets, e.g., in [98] the authors find that infection

rates with the log-normal distribution fit best the data of SARS in 2003 [78].

In particular, we assume that β and δ have the same average E[β] =

E[δ] = µ. In such a case, for deterministic β and δ, one should expect to stay

in the critical region. Below we study the probability of being in the over-

threshold region (the epidemics remains endemic) and, in this case, what is

the average x∞ for the asymptotic limit of the epidemic distribution.

Thus, let us assume β ∼ lnN (a, b2), i.e., there exists a standard normal

distribution Z such that

β = ea+bZ .

It follows:

µβ = E[β] = ea+b2/2, σ2
β = Var(β) = (eb

2 − 1)µ2
β.

If δ ∼ lnN (c, d2) is independent from β, then the ratio ζ = β/δ has again a

log-normal distribution lnN (a− c, b2 + d2), hence

E[ζ] = ed
2E[β]
E[δ]

, Var(ζ) = (eb
2+d2 − 1)ed

2

(
E[β]
E[δ]

)2

= (eb
2+d2 − 1)ed

2

(
Var(β)

(eb2 − 1)

(ed
2 − 1)

Var(δ)

)

Let us denote m = (a − c) and s2 = (b2 + d2) the parameters of ζ. The

probability density function has the form

fζ(x) =
1√

2πs2x2
exp

(
− 1

2s2
(ln(x)−m)2

)
.
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Figure 5.3: P[ζ > 1], over-threshold (red), critical (dashed), under-threshold

(blue). The x-axis contains the variance σ2
β of the infection rate β.

Deterministic δ - part 1. We analyze the probability of a non-zero limit

behaviour of the solution in the case the curing rate δ is deterministic. We

analyze the cases E[β] < δ (sub-critical case), E[β] = δ (critical case) and

E[β] > δ (super-critical case). Recall that in the deterministic case, there

exists a global positive solution in the super-critical case, while in the first

two situations, the solution converges to 0.

Proposition 5.4. For a random infection rate β = ea+bZ and a curing rate

δ deterministic, the probability of an endemic state is

P[ζ > 1] = 1− 1

2
erfc

(
a− c√

2b

)
(5.16)

where c = ln(δ).

In Figure 5.3 we see that the higher the variance the lower the probability

of being over-threshold, even if we already start on this side. On the other

hand, the presence of a (small) randomness allows the under-threshold case

to get to a positive limit, with a positive probability.

Deterministic δ - part 2. Next, we consider the expected value of the

limit solution in case it results to be positive. In the deterministic case,

this happens only in the super-critical case, and the limit (in this case) is

x∞ = 1− δ
β
.
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Figure 5.4: x∞, over-threshold (red), critical (dashed), under-threshold (blue).

The x-axis contains the variance σ2
β of the infection rate β.

In presence of noise, we have seen that there is a positive probability of

survival of the infection in the limit; thus, we shall analyze the results in all

the three cases.

Proposition 5.5. The expected value of the limit infection conditioned on

the persistence of the infection is

x∞ := E[1− 1

ζ
| ζ > 1] =

e
b2

2
−a+cerfc

(
b2−a+c√

2b

)
erfc

(
a−c√
2b

)
− 2

+ 1 (5.17)

where c = ln(δ).

In Figure 5.3 we see that as σβ goes to 0, the three curves converge to

the deterministic values (according to the parameters’ values). As σβ goes

to +∞, all the three curves converge to the value 2
3
.

After this preliminaries results, we consider the system (5.14), investigat-

ing, via numerical experiments, the influence of the variance of independent

and identically distributed infection rates, on the steady-state average frac-

tion of infected nodes, which indicates the severity of the overall infection.

Specifically, let us consider βij that, we remember, is the rate at which

the node j infect the node i. We assume that each infection rate βij has a log-

normal distribution lnN (a, b2) with E[βij] = µβij
= µ, and Var(βij) = σ2

βij
=

σ2, for all i, j = 1, . . . , N ; δ is assumed constant among the population.
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Figure 5.5: Proportion of processes on which persists a positive fraction of infected

nodes, as function of σ, for a network with arbitrary topology and N = 13, with

τ
(1)
c = 0.2045 (a) µ/δ < τ (1), with µ = 1, δ = 8 (b) µ/δ = τ

(1)
c , with µ = 1,

δ = 4.89 (c) µ/δ < τ
(1)
c , with µ = 1, δ = 4.

In order to compare the results in Figure 5.3 we compute the proportion of

processes on which persists a positive fraction of infected nodes, as function

of σ, for a network with arbitrary topology and N = 13 (see Fig. 5.3).

We generate 1000 sample values of the random variables with log-normal

distribution solving, at each step, the system (5.14): in (a) we consider the

sub-critical case, µ/δ < τ
(1)
c , in (b) the critical case, µ/δ = τ

(1)
c , and in (c) the

super-critical case, µ/δ > τ
(1)
c . In the homogenous setting, with deterministic

β and δ, for the critical and sub-critical case, the NIMFA model predicts

the extinction in the long-term, instead in the super-critical case there is a

stationary positive solution, that is globally asymptotically stable (excluding

the zero vector from the set of initial conditions)[17].

In Figure 5.3 (a)(b)(c) we can clearly recognize the same behavior of

the one-dimensional logistic model (see Figure 5.3) in each of three cases,

the sub-critical, critical and super-critical case, respectively. Thus, the same

observations regarding the influence of the infection rates’ variance, on the

strength of the infection, still hold.
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5.4 A stochastic differential equation SIS model

Most realistic heterogeneous parameter distributions are not fixed in time,

but could be considered as additional dynamical variables [100]. Here we

report the results in [15], where, in order to model the fluctuations in time

of the parameters, we consider white noise [6, Chapter 3], a natural starting

point for the case when the functional form and properties of the stochastic

process are not known [100, 57, 41].

In particular, we consider that a node i can be infected by all its infected

neighbors with rate βi, that is described by a stochastic process of the form

βi −→ β + σi(x) ẇi(t),

where ẇi(t) is the white-noise mapping and the functions σi : R→ [0,+∞),

that provides the noise level for each node, are locally Lipschitz continuous,

that satisfy

sup
x∈(0,1)

σi(x)

x
≤M, for all i = 1, . . . , N. (5.18)

This choice implies that the intensity of the infection rate varies around a

mean value, and the disturbance is small if the value of the probability of

infection is small.

We shall assume that W (t) = (w1(t), . . . , wN(t)) is an N -dimensional

Brownian motion, defined on a stochastic basis (Ω,F , {Ft},P) with the usual

conditions (i.e. it is complete and right continuous), and with covariance

matrix tIN , where IN is the N ×N identity matrix.

For the sake of simplicity, we shall assume that the recovery rate δ is a

deterministic constant. The general case does not change substantially the

results that we present here.

Starting from (5.14) we can describe the system by the following Itô stocha-
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stic differential equation

dxi(t) = [βsi(t)(1− xi(t))− δxi(t)] dt+ σi(xi(t))si(t)(1− xi(t)) dwi(t),

si(t) =
N∑
j=1

aijxj(t), i ∈ {1, . . . , N}

(5.19)

with a given vector of initial conditions (x1(0), . . . , xN(0)).

We introduce also the vector-valued stochastic differential equation

dX(t) = f(X(t)) dt+ g(X(t)) dWt

X(0) = (x1(0), . . . , xN(0)),
(5.20)

where X(t) = (x1(t), . . . , xN(t)) while f(X(t)) and g(X(t)) are functions

defined in RN and L(RN ,RN), respectively. The j-th component of f is β(1−
xj(t))sj(t)− δxj(t), whereas g is a diagonal matrix with entries σj(xj(t))(1−
xj(t))sj(t). We shall denote ∆ = (0, 1)N .

5.4.1 Dynamics of the stochastic model

Theorem 5.4. For any initial condition X(0) = (x1(0), . . . , xN(0)) such that

X(0) ∈ ∆, there exists a unique global solution to system (5.19) on t ≥ 0

and the solution remains in ∆ almost surely for all times.

Proof. Since the coefficients of the equation are locally Lipschitz continuous,

for any given initial value X(0) ∈ (0, 1)N there is a unique local solution on

t ∈ [0, τe), where τe is the explosion time (see for instance [6]).

To show this solution is global, we need to show that τe = ∞ a.s. This is

achieved if we prove a somehow stronger property of the solution, namely

that it never leaves the domain ∆. Let n0 > 0 be sufficiently large for

xi(0) ∈
(

1
n0
, 1− 1

n0

)
for all i = 1, . . . N . For each integer n ≥ n0, define the

stopping time

τn = inf

{
t ∈ [0, τe) : min

1≤i≤N
xi(t) ≤ 1/n or max

1≤i≤N
xi(t) ≥ 1− 1/n

}
,
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where, as customary, inf ∅ = +∞ (with ∅ denoting the empty set).

Clearly τn is increasing as n → ∞ and letting τ∞ = limn→∞ τn, we have

τ∞ ≤ τe a.s. Hence we basically need to show that τ∞ = ∞ a.s; if this were

not so, there would exists a pair of constants T > 0 and ϵ ∈ (0, 1) such that

P {τ∞ ≤ T} > ϵ.

Accordingly, there is an integer n1 ≥ n0 such that

P {τn ≤ T} ≥ ϵ ∀n ≥ n1. (5.21)

Now we define a function V : (0, 1)N → R+ as

V (X(t)) = −
N∑
i=1

log [xi(t)(1− xi(t))] .

By Itô’s formula we have

dV (X(t)) =
N∑
i=1

(
1

1− xi
− 1

xi

)
[(βsi(1− xi)− δxi) dt+ σi(xi)si(1− xi) dwi(t)]

+
1

2

N∑
i=1

(
1

(1− xi)2
+

1

x2i

)
σ2(xi)s

2
i (1− xi)2 dt,

(5.22)

where we hide the explicit dependence on time of the processes xi and si. Let

L be the infinitesimal generator associated to the stochastic equation (5.20)

defined, for V ∈ C∞(∆), by

LV (X) =
N∑
i=1

fi(X)∂xi
V (X)+

1

2

N∑
i=1

g2ii(X)∂2xixi
V (X), X = (x1, . . . , xN);

(5.23)

then from (5.22)

dV (X(t)) = LV (X(t))dt+ dM(t),

where M(t) is the (local) martingale defined by

M(t) =
N∑
i=1

∫ t

0

(
1

1− xi(t)
− 1

xi(t)

)
σi(xi(t))si(t)(1− xi(t)) dwi(t).
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Lemma 5.3. There is a finite constant K such that LV (X) ≤ K for every

X ∈ ∆.

We postpone the proof of the lemma and continue to pursue the global

existence of the solution. By the lemma we have∫ τn∧T

0

dV (X(t)) ≤
∫ τn∧T

0

K dt+M(t), (5.24)

and taking the expectation

E[V (X(τn ∧ T ))] ≤ E[V (X(0))] +K E(τn ∧ T ) ≤ E[V (X(0))] +KT. (5.25)

Set Ωn = {τn ≤ T} for n ≥ n1. By (5.21) we have P (Ωn) ≥ ϵ. Since for

every ω ∈ Ωn, there is at least one of the xi(τn, ω) equaling either 1/n or

1− 1/n, then it holds

V (X(τn, ω)) ≥ −
(
log

(
1

n

)
+ log

(
1− 1

n

))
. (5.26)

Then from (5.25) and (5.26) it follows that

V (X(0)) +KT ≥ E [χΩnV (X(τn, ω))] ≥ ϵ (log (n) + 1)

where χΩn is the indicator function of Ωn. Letting n → ∞ we have the

following contradiction

∞ > V (X(0)) +KT =∞,

hence we must have τ∞ =∞ a.s. and the proof is complete.

Proof of Lemma 5.3. Recall that

LV (X) =
N∑
i=1

[(
1

1− xi
− 1

xi

)
(βsi(1− xi)− δxi)

+
1

2

(
1

(1− xi)2
+

1

x2i

)
σ2
i (xi)s

2
i (1− xi)2

]
;

the last term is bounded by

1

2

(
1

(1− xi)2
+

1

x2i

)
σ2(xi)s

2
i (1− xi)2 ≤

1

2

(
x2i + (1− xi)2

(1− xi)2 x2i

)
M2 x2i s

2
i (1− xi)2

≤M2(N − 1)2.



5.4 A stochastic differential equation SIS model 93

The first term is given by(
1

1− xi
− 1

xi

)
(βsi(1− xi)− δxi) =

2xi − 1

xi(1− xi)
(βsi(1− xi)− δxi) ;

since the function

y(x) =
2x− 1

x(1− x)
(βs(1− x)− δx) , x ∈ (0, 1)

has a maximum in xm =
√
βs√

βs+
√
δ
that is

y(xm) = βs+ δ − 2
√
δβs,

in our framework, since si =
∑
aijxj ≤ N − 1, we finally get

LV (X) ≤ N
[
β(N − 1) + δ +M2(N − 1)2

]
(5.27)

so the claim follows with a constant K given by the right-hand side of (5.27).

5.4.2 Stability properties of the zero solution

Now we provide an analysis of the stability of the zero solution, i.e. the

disease-free equilibrium, in order to identify the threshold condition for con-

trolling the infection or eventually eradicating it.

Let X0 = 0 be the vector of all zero components and let us consider the

equation (5.20). Since f(X0) = 0 and g(X0) = 0 for all t ≥ 0, it follows that

the unique solution of (5.20) satisfying the initial condition X(0) = X0 is

the identically zero solution X(t) = X0.

For the definitions and conditions on the stability of the zero solution see

Chapter 2.

Remark 5.4. The contact matrix A, that is the adjacency matrix of an undi-

rected graph, is symmetric and satisfies

⟨AX,X⟩ ≤ λ1(A)|X|2,

⟨AX,AX⟩ ≤ λ1(A)
2|X|2

(5.28)

for every X ∈ RN .
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Theorem 5.5. Recall that M is the constant from (5.18). If

δ > βλ1(A) +
1

32
M2λ1(A)

2 (5.29)

then the null solution for (5.20), X(t) = X0, is stochastically asymptotically

stable in the large in (0, 1)N . This means that X0 is stochastically stable and

P
[
lim
t→∞

X(t) = 0
]
= 1,

for all X(0) ∈ (0, 1)N .

Proof. Let us define the Lyapunov function V : (0, 1)N → R+ = [0,∞)

V (X) = |X|2;

recalling the definition of the infinitesimal generator L in (5.23) and setting

(compare (5.19))

si =
N∑
j=1

aijxj

we have

LV (X) = 2β
N∑
i=1

xisi − 2δ|X|2 − 2β
N∑
i=1

x2i si +
N∑
i=1

σ(xi)
2(1− xi)2s2i .

Since it holds that

x(1− x) ≤ 1

4
,

we have from (5.28) and condition (5.18) that

LV (X) ≤
(
2βλ1(A)− 2δ +

1

16
M2λ1(A)

2

)
|X|2. (5.30)

In order to conclude, we shall impose that C = 2βλ1(A)− 2δ + 1
16
M2λ1(A)

2

is strictly negative, i.e.,

δ > βλ1(A) +
1

32
M2λ1(A)

2

as required. Then under this assumption we have that

LV (X) ≤ CV (X).

and by Theorem 2.2, X0 is stochastically asymptotically stable in the large

in (0, 1)N .
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5.4.3 Stochastic permanence

We obtain, from Theorem 5.4, that the solution exists for all times and

that it remains in ∆ definitely. However, this property is too weak for the

applications, so we search for further details about the asymptotic behaviour

of the solution. First, we recall the following definition from [56].

Definition 5.1. Equation (5.19) (equivalently, (5.20)) is said to be stocha-

stically permanent if for any ε > 0 there exists a constant χ = χ(ε) such

that, for any initial condition X(0) = (x1(0), . . . , xN(0)) ∈ ∆, the solution

satisfies

lim inf
t→∞

P(|X(t)| ≥ χ) ≥ 1− ε. (5.31)

At first, we prove a result that seems interesting on its own.

Theorem 5.6. Assume that

δ < λ1(A) β −
1

32
M2λ1(A)

2. (5.32)

Then, for any initial condition X(0) ∈ ∆, the solution X(t) satisfies

sup
t>0
E
[

1

|X(t)|α

]
≤ C (5.33)

where α > 0 is small enough to have

δ < λ1(A) β −
α + 1

32
M2λ1(A)

2

and C is a finite constant depending on α, the initial condition X(0), the

adjacency matrix A and the rates β and δ.

Proof. Let u be the Perron eigenvector of the N × N adjacency matrix A,

i.e., it is the eigenvector corresponding to the spectral radius λ1(A), and the

unique one such that u > 0 and |u|1 = 1 [47]. Consider the function

ψ(X) =
1

N∑
i=1

uixi

;
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by Itô’s formula the process Y (t) = ψ(X(t)) satisfies

dY (t) = Lψ(X(t)) dt+ dM(t),

where M(t) is a (local) martingale and L is the infinitesimal generator of the

diffusion X(t), defined in (5.23). We may compute

Lψ(X) =
N∑
i=1

uifi(X)∂xi
ψ(X) +

1

2

N∑
i=1

u2i g
2
ii(X)∂2xixi

ψ(X)

=−
N∑
i=1

fi(X)ψ2(X) +
N∑
i=1

g2ii(X)ψ3(X),

X = (x1, . . . , xN), ψ ∈ C∞(∆).

Next, we introduce the process

Z(t) = eκt(1 + ψ(X(t)))α, (5.34)

where κ is a positive constant to be chosen later. Again by appealing to Itô’s

formula we have

dZ(t) =κZ(t) dt

+αeκt(1 + ψ(X(t)))α−1

[
−ψ2(X(t))

N∑
i=1

uifi(X(t)) + ψ3(X(t))
N∑
i=1

u2i g
2
ii(X(t))

]
dt

+
1

2
α(α− 1)eκt(1 + ψ(X(t)))α−2ψ4(X(t))

N∑
i=1

u2i g
2
ii(X(t)) dt+ dM̃(t).

(5.35)

Let us consider

−
N∑
i=1

uifi(X(t)) = −
N∑
i=1

βuisi(t) +
N∑
i=1

βuisi(t)xi(t) +
N∑
i=1

δuixi(t). (5.36)

Since u ≥ 0, |u|1 = 1, from (5.28) we have

β
N∑
i=1

uisi(t)xi(t) = β
N∑

i,j=1

aijxj(t)uixi(t) ≤ β
N∑

i,j=1

aijxj(t)xi(t)

= β⟨AX(t), X(t)⟩ ≤ βλ1(A) |X(t)|22 ≤ βλ1(A)ψ(X(t))−2,
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moreover

−
N∑
i=1

β

N∑
j=1

uiaijxj(t) +
N∑
i=1

δuixi(t) = −β⟨u,AX(t)⟩+ δ⟨u,X(t)⟩

= −β⟨ATu,X(t)⟩+ δ⟨u,X(t)⟩

= (−β λ1(A) + δ)ψ−1(X(t)).

Using these estimates in (5.36) we get

−
N∑
i=1

fi(X(t)) ≤ βλ1(A)ψ
−2(X(t)) + (−β λ1(A) + δ)ψ−1(X(t)). (5.37)

Next, we consider

N∑
i=1

u2i g
2
ii =

N∑
i=1

u2i [σi(xi(t))si(t)(1− xi(t))]
2 ;

by Theorem 5.4 we already know that xi(t) ∈ (0, 1), then we have x(1−x) ≤
1/4, hence the previous sum is bounded by

M2

16

N∑
i=1

u2i

[
N∑
j=1

aijxj(t)

]2
≤ M2

16

[
N∑
i=1

(
ui

N∑
j=1

aijxj(t)

)]2

=
M2

16
⟨u,AX(t)⟩2

=
M2

16
λ21(A)ψ(X(t))−2,

where M is the constant in (5.18). We have thus from (5.35), integrating

in (0, t) and taking expectation

E[Z(t)]− E[Z(0)] ≤ αE
∫ t

0

eκs(1 + ψ(X(s))α−2

·
{(

βλ1(A) +
κ

α

)
+

(
2
κ

α
+ δ +

M2

16
λ1(A)

2

)
ψ(X(s))

+

(
κ

α
− β λ1(A) + δ +

(α+ 1)

32
M2λ1(A)

2

)
ψ2(X(s))

}
ds.

(5.38)
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Choose κ small enough to have

δ < λ1(A) β −
α + 1

32
M2λ1(A)

2 − κ

α
;

notice that ψ(X(s)) ≥ 1
N
, and the function

(1 + x)α−2(c0 + c1x− c2x2)

satisfies, on that interval,

(1 + x)α−2(c0 + c1x− c2x2) ≤ H < +∞

for every choice of c0, c1 ∈ R and c2 > 0 and for some positive and finite

constant H. Thus we obtain the inequality

E[Z(t)] ≤ E[Z(0)] + αH

κ
eκt

and recalling definition (5.34) it follows

E[(1 + ψ(X(t)))α] ≤ e−κtE[Z(0)] +
αH

κ
. (5.39)

Next, observe the estimate ψ−1(X) = ⟨u,X⟩ ≤ |u||X| ≤ |X|, hence

ψ(X)α ≥ |X|−α. Thus, by using (5.39) and taking the supremum in t > 0,

sup
t>0
E
[

1

|X(t)|α

]
≤ sup

t>0
E [ψα(X(t))]

≤ sup
t>0
E [(1 + ψ(X(t)))α]

≤
(
E[(1 + ψ(X(0)))α] +

αH

κ

)
as required.

The main result in this section is the following.

Theorem 5.7. Assume that condition (5.32) holds. Then the solution of the

system (5.20) is stochastically permanent.
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Proof. The proof follows from a simple application of Markov’s inequality.

Let us estimate

P(|X(t)| < χ)

for some χ to be chosen. Then

P(|X(t)| < χ) = P
(

1

|X(t)|
>

1

χ

)
≤ E [1/|X(t)|α]

1/χα
≤ Cχα,

where C is the constant from (5.33). The above inequality holds by taking

the supremum:

sup
t>0
P(|X(t)| < χ) ≤ Cχα,

and therefore

inf
t>0
P(|X(t)| ≥ χ) ≥ 1− Cχα.

Since for every ε > 0 we can find χ = (ε/C)1/α, inequality (5.31) is satisfied,

as required.

Remark 5.5. We can formulate condition (5.32) in terms of the ratio β/δ,

then we have that the solution of (5.20) is stochastically permanent if

β

δ
> τ sp :=

1

λ1(A)
+
M2λ1(A)

32δ
= τ (1)c +

M2λ1(A)

32δ
.

On the other side, the null solution is asymptotically stable in the large

provided that (5.29) holds, thus

β

δ
< τ sc :=

1

λ1(A)
− M2λ1(A)

32δ
= τ (1)c −

M2λ1(A)

32δ
. (5.40)

We see that there is a gap between the regions where the effective infec-

tion rate τ leads to extinction or persistence, respectively, whose extension

depends on the intensity of the noise, through the parameter M . In the

intermediate region, we perform numerical simulations to test the long term

behaviour of the system.

We underline however that both Theorem 5.5 and 5.7 give us only sufficient

conditions.



100 5. Heterogeneous SIS on graphs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fe

ct
io

n 
P

ro
ba

bi
lit

y

EM Simulation
NIMFA

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

In
fe

ct
io

n 
P

ro
ba

bi
lit

y

 

 
EM Simulation
NIMFA

(b)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

In
fe

ct
io

n 
P

ro
ba

bi
lit

y

 

 
EM Simulation
NIMFA

(c)

Figure 5.6: Dynamics of the infection probability of the node 4 in a graph with

ring topology, and N = 50, where τ
(1)
c = 0.5: EM approximation of the solution

of (5.20) versus solution of (3.5). At time 0 the fraction of infected nodes is

0.5. a) β = 4.1, δ = 16.3, M = 8, β/δ < τ sc = 0.7454. b) β = 1.5, δ = 2.8,

β/δ > τ sp = 0.5143, M=0.8. c)β = 1.5, δ = 2.8, β/δ > τ sp = 0.8571, M=4.

Numerical Experiments.

We numerically simulate the solution of system (5.20) by the Euler-

Maruyama (EM) method [45], and we compare it with the solution of the

NIMFA system (3.5).

In Figure 5.6 (a), (b) and (c) we consider a graph with ring topology and

N = 50. In (a) we consider values of β and δ such that τ < τ sc andM = 8, and

we plot the dynamical behaviour of one given node, by computing the solution

of (5.20) along one sample path. The numerical computation confirms the

stability result in Theorem 5.5. In (b) and (c), instead, we consider values

of β and δ such that τ > τ sp for M = 0.8 and M = 4 respectively. We

can recognise the behaviour aforesaid in Theorem 5.7. Moreover we can see

that, if the assumption (5.32) of Theorem 5.7 holds, the solution of (5.20)

fluctuates around the endemic equilibrium of the system (3.5) and, clearly,

with the decrease of the intensity of the noise, the fluctuations are smaller.

The same type of numerical experiments have been done in Figure 5.7 (a),

(b) and (c), for a complete graph and N = 40.

In Figure 5.8 (a), (b) and (c) and in Figure 5.9 (a), (b) we investigate

the behaviour of the solution of (5.20), in the case where both conditions of

stability (5.29) and permanence (5.32) are not satisfied.
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Figure 5.7: Dynamics of the infection probability of the node 4 in a complete graph

with N = 40, where τ
(1)
c = 0.0256: EM approximation of the solution of (5.20)

versus solution of (3.5). At time 0 the fraction of infected nodes is 0.5. a) β = 0.5,

δ = 23.9, β/δ ≤ τ sc = 0.0210, M = 0.3. b) β = 0.5, δ = 13.5, β/δ > τ sp = 0.0258,

M = 0.04. c) β = 0.5, δ = 13.5, β/δ > τ sp = 0.0338, M=0.3.

Precisely, in Figure 5.8 we consider the graph with ring topology and N = 50;

in particular, in (a) we consider the case where 0 < β/δ < τ
(1)
c and we can

see that the solution of (5.20) tends to zero, as that of (3.5). In Figure 5.8

(b), instead, we analyze the case τ
(1)
c < β/δ < τ sp , we can observe a different

behaviour of the solution of (5.20) that does not fluctuate around the solution

of (3.5), moreover in (c) the EM solution is averaged over 100 sample paths

always in the case τ
(1)
c < β/δ < τ sp ; we can see that, in this case, NIMFA

provides an upper bound of our infection probabilities dynamics. The same

behavior, in the region τ
(1)
c < β/δ < τ sp , of one sample path, and of the

averaged solution, is depicted also by Figure 5.9 (a) and (b) respectively,

where we consider a graph with an arbitrary topology and N = 13.

Thus, we see that, in the intermediate region, our system tends to have the

same long-term behaviour of the deterministic model, with some differences

in the level of infection, due to the randomness of the environment.
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Figure 5.8: Dynamics of the infection probability of the node 4 for a graph with

ring topology, and N = 50, where τ
(1)
c = 0.5: EM approximation of the solution

of (5.20) versus solution of (3.5). At time 0 the fraction of infected nodes is 0.4.

a) β = 1.5, δ = 3.2, M = 10, 0 < β/δ < τ
(1)
c . b) β = 1.5, δ = 2.4, M = 40,

τ
(1)
c < β/δ < τ sp . c) EM approximation of the solution of (5.20) averaged over 100

sample paths versus. β = 30, δ = 46, M = 30, τ
(1)
c < β/δ < τ sp .
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Figure 5.9: Dynamics of the infection probability of the node 4 in a graph with

arbitrary topology and N = 13, where τ
(1)
c = 0.2045. At time 0 the fraction of

infected nodes is 0.4. β = 2.2, δ = 10, M = 40, τ
(1)
c < β/δ < τ sp . (a) EM

approximation of (5.20) versus solution of (3.5). (b) EM approximation of the

solution of (5.20) averaged over 100 sample paths versus solution of (3.5).β = 2.2,

δ = 10, M = 40.



Appendix A

Bisection Algorithm

We report on the algorithm OptimalImmunization2D that solves the 2D

immunization problem 5.5 analyzed in Section 5.2.1.

In Tab. A.1 we report on the pseudocode of the algorithm. It employs three

additional functions LeftCorner (Tab. A.2) RightCorner and BisectionThre-

shold (Tab. A.3).

LeftCorner identifies via bisection feasible point (δmin
0 , δmax

1 ); the bisec-

tion search operated by LeftCorner – see proof of Thm. 5.3 – is performed

along values δ1 = f(δ0). The companion function RightCorner identifies the

point (δmax
0 , δmin

1 ), the pseudocode is omitted.

Procedure isNegativeDefinite is the standard test for a real symmetric

matrix A to be negative definite; it requires to verify det(Ak) = (−1)k where

Ak is the k-th principal minor of A, i.e., the matrix obtained considering the

first k rows and columns only.

Finally, the OptimalImmunization2D algorithm performs a bisection search

based on a subgradient descent over the utility function U(δ0) = c0δ0 +

c1ϕ(δ0).

Remark A.1. In Tab. A.1 we have reported an implementation assuming

the calculation of the subgradient ∂U at each mid point x. However, it is

sufficient to evaluate the increment at a point x + ϵ1 within the feasibility

region for some ϵ1 > 0: if U(x) < U(x+ϵ1), then, due to convexity, the whole

103
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Table A.1: OptimalThreshold2D: solves the 2D optimal immunization problem

via the bisection search.

(δ∗0, δ
∗
1) = OptimalThreshold2D(Q, c0, c1)

Receives: Q, c0, c1

Returns: δ∗0, δ
∗
1

Initialize: (δl, δ
max
1 ) = LeftCorner(Q, c0, c1)

(δmin
1 , δr) = RightCorner(Q, c1, c0)

k ← 1, Uk−1 ← 0, Uk ←∞
1: WHILE |Uk − Uk−1| > ϵ

2: δ∗0 = (δl + δr)/2

3: δ∗1 ← BisectionThreshold(Q, δ∗0)

4: Uk+1 = c0 δ
∗
0 + c1 δ

∗
1

5: IF ∂Uk < 0 % (see Rem. A.1)

6: THEN δr = δ∗0

7: ELSE δl = δ∗0

8: END

9: k ← k + 1

9: END

interval [x+ϵ1,+∞) can be discarded. Conversely, if U(x) > U(x+ϵ1), then,

due to convexity, the whole interval [0, x) can be discarded during the search.

This operation can be performed at a cost O(1) when U(x) and U(x + ϵ1)

are known, i.e., at the cost of two calls of BisectionThreshold.

Theorem A.1 (Correctness). OptimalThreshold2D is an ϵ approximation

of an optimal solution ∆∗
2.

Proof. The algorithm operates a bisection search for a global minimum of

U(∆2) = c1δ0 + c1ϕ(δ0), where U(∆2) is a convex function. Let V =

Ulmax : from the properties of the bisection search on (quasi-)convex func-

tions [18][Ch. 4, pp. 145], the accuracy at step r = ⌊V/ϵ⌋ of the algorithm

is Ur − U(∆∗
2) < 2−rV = ϵ.
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Table A.2: LeftCorner: identifies the left corner of Γ′ ⊆ Γ (Thm. 5.3); the pseu-

docode of the dual function (δmax
0 , δmin

1 ) = RightCorner(Q, c0, c1) is omitted for

the sake of space.

(δmin
0 , δmax

1 ) = LeftCorner(Q, c0, c1)

Receives: Q, c0, c1

Returns: δmin
0

Initialize: Umax ← (c0 + c1)lmax

1: REPEAT

2: δmin
0 = (δl + δr)/2

3: δmax
1 ← Umax−c0δmin

0

c1

4: D = diag(δmin
0 1m, δ

max
1 1m′)

5: X ← isNegativeDefinite(Q−D)

6: IFX = true

7: THEN δr = δ∗0 % discard larger values

8: ELSE δl = δ∗0 % discard smaller values

9: END

10: T = det(Q−D)

12: UNTIL X ==TRUE AND |T | < ϵ % Termination condition

Furthermore, we can characterize the computational complexity of the

algorithm.

Theorem A.2 (Complexity). The time complexity of OptimalThreshold2D

is O(ϵ−2n1+ℓ log2 n) where ℓ = 2.373.

Proof. The number of iterations of the bisection search WHILE loop (lines

1 to 9 in Tab. A.1) is O(ϵ−1 log n). This follows again from elementary

properties of bisection search [18][Ch. 4, pp. 145]. In fact, the bisection

search operates for 0 ≤ U(δ0) ≤ Ulmax and Ulmax = lmax(c0 + c1). Finally,

indeed, lmax ≤ (n− 1)maxi,j qij.

Using the same argument on the measure of the search intervals of BisectionThreshold,

LeftCorner and RightCorner we conclude that they require O(ϵ−1 log n) ite-
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Table A.3: BisectionThreshold: given feasible δ0, finds δ1 such that (δ0, δ1) lies

on the frontier of the feasibility region.

δ1 = BisectionThreshold(Q, δ0)

Receives: Q, δ0

Returns: δ1

Initialize: T ← inf, δl = 0, δr ← maxi
∑

j aij

1: REPEAT

2: δ1 = (δl + δr)/2

3: D ← diag(δ01m, δ11m′)

4: X ← isNegativeDefinite(Q−D)

5: IF X = true

6: THEN δr = δ1 % discard larger values

7: ELSE δl = δ1 % discard smaller values

8: END

9: T = det(Q−D)

10: UNTIL X ==TRUE AND |T | < ϵ % Termination condition

rations of the REPEAT loop as well.

Finally, test isNegativeDefinite appearing in Threshold2D, LeftCorner

and RightCorner requires the computation of n−1 determinants of the prin-

cipal minors of A−D at cost O(n1+ℓ). Here ℓ is the exponent for fast matrix

multiplication [1]. In the case of the Coppersmith-Winograd algorithm for

fast matrix multiplication it holds ℓ = 2.373.

We note that REPEAT loop stops when ϵ >
∏
|λi| = | det(Q − D)| >

|λ1|n, i.e., when |λ1| < (ϵ)1/n. Furthermore, the termination condition

in BisectionThreshold, LeftCorner and RightCorner requires ∆2 to lie

within the feasible region and the determinant to be smaller than ϵ.

Finally, in Tab. A.4 we compare the performance of a SDPT3 solver applied

to Prob. 5.5 and the solution provided by our algorithm OptimalThreshold2D.
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Table A.4: Accuracy of OptimalThreshold2D.

OptimalThreshold2D SDPT3

k U∗(104) δ∗0 k · δ∗1 U∗(104) δ∗0 k · δ∗1
10 0.8635 31.8661 13.3640 0.8636 31.8605 13.4162

20 0.9975 34.5574 26.7174 0.9978 34.5438 26.8328

30 1.1315 37.2509 40.0516 1.1319 37.2270 40.2493

40 1.2655 39.9458 53.3731 1.2661 39.9103 53.6658

50 1.3994 42.6389 66.6937 1.4003 42.5936 67.0822

60 1.5333 45.3384 79.9757 1.5344 45.2769 80.4984

70 1.6672 48.0397 93.2366 1.6686 47.9602 93.9148

80 1.8010 50.7338 106.5281 1.8027 50.6436 107.3306

90 1.9347 53.4384 119.7527 1.9369 53.3267 120.7479

100 2.0684 56.1414 132.9698 2.0711 56.0101 134.1635

The comparison is performed on a graph with m = 50 central nodes and for

c0i = c1i = 1, i = 1 . . .m, for increasing values of the terminal community di-

mension k. We observe that the solution provided by OptimalThreshold2D

is more accurate. The reason is that the algorithm performs the search on

the frontier of the feasibility region – where the optimal solution is found

based on Cor. 5.1 – whereas interior point methods such as the one used by

the SDPT3 solver tested here tend to provide more conservative solutions.∗

Namely, solutions tend to lie in the interior of the feasibility region, bounding

λ1(Q−D) more far from zero than those generated by OptimalThreshold2D.

∗More precisely, a solution is generated by SDPT3 using a primal-dual interior-point

algorithm which leverages on infeasible path-following paradigm [88].
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[88] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-

quadratic-linear programs using SDPT3. Mathematical Programming,

95(2):189–217, 2003.

[89] P. Van Mieghem. Graph spectra for complex networks. Cambridge

University Press, 2010.

[90] P. Van Mieghem. Decay towards the overall-healthy state in sis epi-

demics on networks. arXiv preprint arXiv:1310.3980, 2013.

[91] P. Van Mieghem. Exact markovian sir and sis epidemics on net-

works and an upper bound for the epidemic threshold. arXiv preprint

arXiv:1402.1731, 2014.

[92] P. Van Mieghem. Exact markovian sir and sis epidemics on net-

works and an upper bound for the epidemic threshold. arXiv preprint

arXiv:1402.1731, 2014.

[93] P. Van Mieghem and E. Cator. Epidemics in networks with nodal self-

infection and the epidemic threshold. Physical Review E, 86(1):016116,

2012.

[94] P. Van Mieghem and J. Omic. In-homogeneous virus spread in net-

works. arxiv: 1306.2588, 2013.

[95] P. Van Mieghem, J. Omic, and R. Kooij. Virus spread in networks.

Networking, IEEE/ACM Tran. on, 17(1):1–14, Feb 2009.

[96] P. Van Mieghem and R. Van de Bovenkamp. Non-markovian infection

spread dramatically alters the susceptible-infected-susceptible epidemic

threshold in networks. Physical review letters, 110(10):108701, 2013.



BIBLIOGRAPHY 119

[97] P. Van Mieghem and R. Van de Bovenkamp. Accuracy criterion for the

mean-field approximation in susceptible-infected-susceptible epidemics

on networks. Physical Review E, 91(3):032812, 2015.

[98] W. Wang, Z. Wu, C. Wang, and R. Hu. Modelling the spreading rate

of controlled communicable epidemics through an entropy-based ther-

modynamic model. Science China Physics, Mechanics and Astronomy,

56(11):2143–2150, 2013.

[99] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic

spreading in real networks: An eigenvalue viewpoint. In Reliable Dis-

tributed Systems, 2003. Proceedings. 22nd International Symposium on,

pages 25–34. IEEE, 2003.

[100] A. Widder and C. Kuehn. Heterogeneous population dynamics and

scaling laws near epidemic outbreaks. arXiv preprint arXiv:1411.7323,

2014.


