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ABSTRACT 
 

Tissue engineering is an interdisciplinary field aimed to design and 

engineer an efficient system for tissue and organ regeneration, for 

instance, for bone healing, based on the combined use of scaffolds, 

cells, bioactive or signalling molecules. 

An optimal tissue engineering procedure requires materials and 

scaffolds fulfilling several requirements, one of those being the ability 

to trigger and control the crosstalk with the biological environment 

both in vitro and in vivo, and to induce and control the extracellular 

matrix production and assembling.  

Diatomite is one of the most abundant natural sources of hydrated 

amorphous silica resulting from the accumulation of diatom skeletons. 

Diatoms possess particular features in structure, morphology as well 

as composition. Interestingly, it has been recognized that the 

formation process of diatom skeleton is possibly related to that of 

human bone. 

In this study, we wanted to utilize diatoms as silicon donor additives 

in scaffolds for bone tissue engineering, having been demonstrated 

the important role of silicon in bone formation. 

In this first part of the project, we used several methods to eliminate 

impurities in the raw diatomite. Diatom microparticles (DMPs) and 

nanoparticles (DNPs) were successfully produced by fragmentation 

of purified diatoms under alkaline condition. Our result showed that 

both DMPs and DNPs were able to release silicon, as detected in-

vitro by inductively coupled plasma optical emission spectrometry 

(ICP/OES). In addition, diatom microparticles and nanoparticles - 

derived from diatom skeletons - showed minimal or non-cytotoxic 

effects in-vitro as determined by lactate dehydrogenase assays on 

cell cultures.  

These findings suggest that diatom particles derived from diatom 

skeleton as a silicon donor might have potential use for bone tissue 

engineering. 

In the second part of this thesis, we studied the effect of diatom 

particles on some properties of silk fibroin/diatom particles scaffolds. 

To handle this task, a series of fibroin scaffolds loaded with different 

amounts and size of diatom particles (microparticles, nanoparticles 

and their combination) were fabricated by using the salt leaching 
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method. Diatom particles addition influenced scaffold morphology and 

mechanical properties, and its biological behaviour as assessed on 

human osteosarcoma cell line MG63 cultures. Scaffolds loaded with 

diatom particles strongly enhanced cell adhesion, metabolic activity 

and proliferation. Moreover, the possible beneficial effect of the 

addition of diatoms particles to silk fibroin on early bone formation 

was determined through collagen type I synthesis evaluation, osterix 

expression and alkaline phosphatase induction. 

Cultures with human mesenchymal stem cells (hMSCs) 

demonstrated the silk/diatom particles scaffolds were able to induce 

the differentiation of progenitor cells.  

In conclusion, our findings provided strong evidence for a potential 

use of diatom particles- derived from natural diatom skeleton in 

biological applications, in particular for bone tissue regeneration.  
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Chapter 1:  General Introduction 
 

1.1 General introduction on diatoms  

Diatom is a single eukaryotic cell belonging microalgae groups, found 

in diverse environments such as fresh water, sea or even in moist soil 

or surfaces.  

Diatom skeleton greatly varies in shape, ranging from box-shaped to 

cylindrical shape with different symmetric properties. More than 10
4
 

diatom species are identified in the environment including living cells 

and fossils [1], [2]. 

Diatom cell structure, indeed, is comprised of a true nucleus and 

many organelles, which include mitochondria and chloroplasts 

organelles (plastids) and the endoplasmic reticulum (ER). All soft 

parts of diatom cells are surrounded by a standard lipid bilayer 

membrane (plasmalemma) tightly enclosed by cell wall, so-called 

diatom frustule [3], [4].  

 

 

Figure 1-1: a) Diversity of diatom morphology in different sources 
including fossil, freshwater and marine environment [1], b) Diatom 
skeleton structure and c) the patterned porous structure of the gird 
bands. 

 

Diatom frustule, i.e. the hard and porous cell siliceous wall or external 

layer of diatoms (Figure 1-1 B and C), is generally structured by two 

parts like a petri-dish, also termed as theca. Classically, epitheca 

defines the bigger valve or the parent valve while hypotheca is the 

smaller one. 



4 

Each theca in turn consists of a valve (upper and lower part, 

respectively) and several  bands  of silica (girdle bands) at the 

circumference of the cell [5],[6].  

For many diatoms, frustule can be categorized in three major layers, 

named foramen (the most inward), the cribrum and the cribellum 

(most outward) [7]. 

Chemical composition of diatom frustule comprises both inorganic 

and organic components which are strongly associated each other. 

Hydrated amorphous silica, SiO2.nH2O, was identified as the major 

component of diatom frustule whilst organic components including 

silaffin proteins, long chain polyamines (LCPA), and polysaccharides 

have the role to strengthen the silica structure and protect diatom 

skeleton preventing the spontaneous dissolution in the environment  

[8]–[10]. 

1.2 Organic component of diatom cell wall 

It is known that the scaffold of frustule is a hybrid of organic and 

inorganic materials but the formation, structure and function of 

organic matters during cell wall formation is not clear yet. Organic 

compounds, mainly proteins and  Long chain polyamines, LCPA, 

form the diatom cell wall [11], [12]. 

1.2.1 Long chain polyamines 

Long chain polyamines (LCPA) have generally a (N-methylated-) 

poly(propyleneimine) chain with up to 20 repeating units depending 

on the diatom species, presented in the Figure 1-2.  Molecular mass 

of LCPA is commonly  below 3.5 kDa [13]. 

1.2.2 Cell wall proteins 

Diatom cell wall proteins can be categorized into three families: 

silaffins, frustulins, pleuralins. 

1.2.2.1 Frustulins 

Frustulin family has been identified as a calcium - binding 

glycoprotein, is categorized in α, β, γ and δ –frustulins with molecular 

masses at 75, 105, 150 and 200 kDa, respectively. However, the 

amino acid sequence data of β, γ and δ – frustulin state is similar to 

α-state.  In diatom skeleton, frustulins are found in the outer surface 

of cell wall and function as a protector. The contribution of frustulins 
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to silicification of diatom frustule is not well understood, however 

frustulins may affect the shape of diatom by affecting the interaction  

between different proteins, especially in the case of pennate diatoms 

[14],[15].  

 

 

 

Figure 1-2: Chemical structures of some long-chain polyamines 
characteristic of three different diatom species a) T. Fseudonana, b) 
C. Fusiformis and c) S. Turris [16]. 

 

1.2.2.2 Pleuralins 

Pleuralins, formerly known as HF-extractable protein (HEPs), have 

molecular weight of 130 and 150 kDa. Pleuralins possess high 

anionic charge in the range of -83 to -87 in physiological pH [17]. 

It has been known that both frustulins and pleuralins are not involved 

in silicification of diatom frustule through the silica deposition 

pathway. However, it has been postulated that pleuralins, located and 

tightly associated with silica at the overlapping region of two girdle 

bands, could be related with the on–off function of these connecting 

girdle bands during diatom cytokinesis. The strong interaction 

between pleuralins and silica may be also involved in this 
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phenomenon, although mechanism of the association is unclear 

[12],[17]. 

1.2.2.3 Silaffins 

Silaffin is comprised of peptides with different functional molecular 

groups such as phosphate, sulphate, glucose, methyl, and others, as 

reported in Table 1-1 [9],[18]. 

 

Table 1-1 Numerous silaffin’s maturation formed by precursor 
variants and different post- translational modification, adapted from 
[18] 

Diatoms Silaffin 

PMTs  at positions  Induced 

Silica 

ability 

Ref. 
Lysine 

Hydroxyl of 
amino acids 

C. Fusiformis 

Sil 1A & 

1B 

Ethylations and  
polyamine 
modification at 
ε-amino group; 
Hydroxylation 
and 
phosphorylation 
at δ-position  

Phosphorylati
on 

Yes 
[19], 
[20] 

Sil -2  

Sulphfation, 
glycosylation 
and 
phosphorylati
on 

No [21] 

T. 

Pseudonana 

tpsil-1H, 

tpsil-2H 

Methylations 
and polyamine 
modification at 
ε-amino group; 
hydroxylation 
and 
phosphorylation 
at δ-position 

Sulphation, 
glycosylation 
and 
phosphorylati
on 

No 

[22], 
[23] 

tpsil-1L 

tpsil-2L 
No 

E. Zodiacu 

 Methylations 
and polyamine  
modification at 
ε-amino group 

Not analysed 
Not 
analysed 

[24] 

C. Gracilis    Yes [25] 

 

 A variety of silaffins have been identified, depending on diatom 

species and post-translational modification process (PMT). Diatom 

genes encoding for silaffin precursors are functionalized by a 
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complex maturation process. It was found that most silaffins are very 

rich in Lysine and Serine [19], [26]. 

 

Figure 1-3: A) the primary structure of peptide precursors sil1p 
presenting the signal peptide (italics), highly acidic peptide sequence 
attached regular peptides (108- 271) is shown silaffin sequences. 
Abbreviation for amino acids is followed as A, Ala; C, Cys; D, Asp; E, 
Glu; F, Phe; G, Gly; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; Q, Gln; R, 
Arg; S, Ser; T, Thr; V, Val; and Y, Tyr. B) The schematic chemical 
structure of Silaffin 1-A of C.fusiformis cell wall [19]. 

 

Silaffins are able to induce silica formation to construct diatom 

frustules. Nevertheless, the silica formation strongly depends on the 

chemical structure of silaffins. For example, the silaffin protein rich of 

phosphates in its structure fast induces silica precipitation in aqueous 
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solution of silicic acid whilst sulphate groups in sillafins are unable to 

form silica. 

Not only silica formation, but also size and shape might be regulated 

by silaffins chemical structure in-vitro. The role of silaffins in silica 

formation will be discussed below. 

 

1.3 The silica chemistry 

General use of the term “silicon” in this case refers not only to the 

silicon element, but also comprises the various forms of unknown 

silicon compositions, whereas the name of silica refers to all the 

forms of SiO2 as crystalline, amorphous or hydrated amorphous 

silica. 

Silicon (Si) is one of most abundant elements in nature; however, it is 

extremely rare to find silicon in the elemental form. Silicon commonly 

exists as oxidized form in silica and silicates where elemental Si is 

regularly surrounded by four oxygen atoms to form tetrahedral 

coordination of crystalline silica, SiO2. However, silica can also exist 

as hydrated amorphous structure naturally. 

 

Figure 1-4: Schematic to show the range of functionalities possible for 
fundamental silica particles [27]. 

 

Silica can be produced from precursors by using the sol-gel 

technique. This is a complex process that includes many overlapping 

stages such as dissolution and condensation controlled by various 

factors such as formulation, temperature, pH, the presence of metallic 

ions or molecules. For instance, silicic acid, Si(OH)4, formed by the 
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hydrolysis reaction, is indeed the basic unit of silica synthesis [27]–

[29]. 

Silicic acid is the predominant form of soluble silicon in water with a 

wide range of solubility depending on conditions. Silicic acid, a weak 

acid with a pKa of 9.8, is universally found at low concentration in the 

environment. The solubility of silicic acid in water at room 

temperature is around 2 mM in neutral conditions [27], [30]. Silicic 

acid can condense to form solid colloids when the concentration is 

over its solubility. The self-condensation of silicic acid starts with the 

oligomerization to form dimers, as in the equation below. 

                           
       

Further steps of self-condensation involve polymerization to form 

trimmers and cyclic oligomers, which tend to form siloxane branches. 

Siloxane branches easily transform into polysilicic acid as nuclei or 

colloidal nanosilica (Figure 1-4). Depending on specific conditions, 

nuclei can flocculate to form silica particles or polymerize to generate 

a gelling structure. Especially, pH condition and the presence of salt 

impact significantly on silica structure formation [30]. 

1.4 The understanding of diatom cell wall formation  

The understanding of diatom cell wall formation has received great 

attention in many scientific fields since this process actually concerns 

biology, environment, geology, materials. The formation of cell occurs 

via two steps, first silicic acid transport and then silica synthesis and 

deposit to form a 3D structure. 

1.4.1  Silicic acid transport 

Soluble silicon in seawater contains around 97% of the neutral silicic 

acid form and about 3% of ionic form,         
 ,. Silicic acid from the 

environment can enter into diatom cells via specific proteins named 

silicic acid transporters (SiTs). Other transport molecules 

subsequently transport silicic acid inside the cells where silica 

precipitates, when its concentration exceeds solubility. Solubility 

strongly depends on the volume of cell. The significantly increased 

concentration of silicic acid results in the interaction of silicic acid with 

the GXQ amino acid (glycine, a subset of different amino acid, and 

glutamine) of SiT genes [31],[32]. Together with the increase of silicic 

acid concentration, biomolecules could also modify its affinity owing 
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to the interaction with silicic acid via the hydrogen bonding during the 

transportation [33],[34].  

 

Figure 1-5:  The proposal of different pathways of silicic acid uptake 
of transport in diatom intracellular, reproduced and adapted by [35] 

 

However, mechanism of SiT proteins and transported silicic acid 

interaction has not been understood completely. It is concurred that 

different pathways of transporters may simultaneously exist and 

process silicic acid with variable functions such as modification 

soluble silicon form neutral Si(OH)4 to ionized silicic acid         
  or 

silicic acid polymerization (Figure 1-5) [36],[37]. 

Besides the organic influence, the coordination of inorganic nutrients 

like Na+, Ge
4+

, Al
3+

, Zn
2+

, Fe
2/3+ 

and silicic acid uptake during the 

transportation probably influences the soluble silicon uptake capacity 

as well as its affinities [38],[39]. 

Another suggestion is that soluble silicon colloidal silica can coexist 

inside the cell during transportation although no clear proofs have 

been presented [35], [40].  
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1.4.2 Mechanism of diatom silica biogenesis  

1.4.2.1 Silica precipitation 

As for the presented silica chemistry, the equilibrium between solid 

and liquid phase in aqueous solution depends on several conditions, 

for instance charge, pH or the presence of some salts.  

In fact, either silaffins or LCPA can induce silica precipitation rapidly 

from the silicic acid medium. For example, the rate of silica 

precipitation in presence of silaffins is around 10
6
 times faster than 

silica formation from silicic acid [19]. In case of silaffins, phosphate 

groups in silaffins structures guide silicic acid condensation. In other 

words, the silica precipitation gradually increases with the number of 

phosphate groups. In fact, dephospholyrated silaffins are not able to 

induce silica formation in-vitro.  The post – translational modification 

of silaffins could be critical to control silica formation [19], [20]. 

Silica formation by biosilicification has been proposed to occur by the 

self-assembly via electrostatic interaction of the zwitterionic 

molecules, for instance silaffins with the presence of negative 

charges (phosphates) and positive charges (amines). Protein self-

assembly to form supramolecular structures may provide a template 

for silicic acid condensation. Phosphate ions can improve the silica 

aggregation owing to the serving ionic cross-linker [20]. 

Besides silaffins, LCPA can rapidly induce the condensation of the 

silicic acid; however, the presence of phosphate groups from silaffins 

is required. Additionally, polyamine acts likely as flocculation agent of 

nanocolloids [41]. 

Thus, silaffins as well as LCPA synergistically contribute to silica 

formation in diatom cell wall. 

1.4.2.2  Morphogenesis of silica deposition valve (SDV)  

Besides DNA replication, silica deposition vesicle/valve (SDV) 

formation has been considered as a key phenomenon in the diatom 

cell cycle. The mechanism still remains unclear. Many studies have 

indicated that the silica deposition vesicle (SDV) was formed in the 

specialized membrane-bound compartment, called silicalemma (SL), 

of diatom cell. Silica formation controlled by biomolecules in SL 

develops 3D-structures. It has been widely accepted that not only 

silica formation but also valve structural formation (SDV) is probably 
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controlled by biomolecules of the cells. Regarding this understanding, 

numerous realistic models of SDV structural formation have been 

assumed [35],[42],[43].   

The high silicon concentration (and perhaps colloidal silica 

nanoparticles) is continuously carried into SL where silica nucleus is 

formed. The growth of silica nucleus builds 2D pore silica 

precipitation inside SL and finally develops 3D porous structures of 

SDV under the main regulation of biomolecules; however, the precise 

mechanism of 2D-patterning pore, 3D- silica porous structures 

formation as well as where silica forms has been a debatable issue. 

To date, some highlighted models have been suggested to clarify this 

phenomenon [16], [44]. 

 

1. The diffusion- limited aggregation has been considered as the 

model for SDV formation, especially of the rib-like costae 

formation in the case of centric diatom. According to this model, 

silica nanocolloids as nucleus may be formed in SiT system and 

transported together with silicic acid to the lipid membrane of SL 

where colloids may diffuse across the membrane. Organic liquids 

inside SL could potentially support the aggregation of colloids to 

stage bigger particles diffusing and organizing their position due 

to negative surface charges of particles [45]. However, this model 

still doesn’t explain the diverse morphologies of diatom frustule. 

Moreover, the evidence of silica colloids formed in SiT system has 

not been cleared yet. 

 

2. A second model has suggested that the phase separation of two 

different liquids regulates the patterning of the silica structure, 

(Figure 1-6). In this model, biomolecules firstly assemble via 

electrostatic charges to form the big organic “droplet” and 

concomitantly “colloidal” silica precipitates around the droplet. 

Afterwards, fragmentation of droplet may occur due to the 

different surface charge between silanol groups of silica surface 

and polyamine surface. Moreover, viscosity might be considered 

as a factor that can support phase separation [46]. This method 

might forecast the different morphology of SDV as well as diatom 

frustule guided by the different of silaffins assembly [47], [48].  
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Figure 1-6: The drawing scheme of the mechanism of silicon oxide 
deposition in diatom cell wall by using phase separation model. 
Silicon oxide depicted at the position showed by the white grey 
colour, adapted [46]  

 

3. Oppositely to the model 1, it has been proposed that silica 

deposition was only synthesized into SL by the induction of silica 

formation by silaffins proteins [49].  

Besides the organic association in diatom cell wall, some inorganic 

elements were also detected such as aluminium, nickel, germanium, 

zinc. This inorganic matter perhaps influences not only silicic acid 

transportation but also patterning and silica morphogenesis. 

Moreover, other factors such as the presence of gaseous nitrogen, 

water pressure due to the sea depth and temperature could influence 

frustule morphogenesis [50], [51]. 

 

1.5 Diatom cell cycle 

Diatom division can follow either sexual or asexual reproduction, 

which generally depend on cell volume. However, most diatom 

species follow asexual division (Figure 1-7) in which DNA replication 

and SDV formation play crucial roles [52]. 
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Figure 1-7: The scheme of diatom cell cycle (asexual). The cross 
section of diatom was illustrated, reproduced from [4]. 

The parent cell with protoplast and nucleus located at the end of the 

epivalve is a starting point of the new cell cycle. Diatom cell will grow 

to reach the required volume. The cell growth consists of the 

expansion of protoplast accompanied by the formation of girdle bands 

of hypotheca. In the same time, nucleus migrates from initial position 

to where the girdle bands attach to hypotheca. When the girdle band 

of hypotheca is complete, the process of mitosis is then initiated, 

followed by cytokinesis. Regarding the process of cytokinesis, the 

silicalemma (SL) located beneath cell membrane can be generated 

by the dictyosome-derived vesicle and fused to complete its 

formation. Silica precipitation can be formed during SL formation [53]. 

During cytokinesis, silica gradually is precipitated and fused till the 

new SDV completely matures. The SDV sibling valve formed by the 

same nucleus division separate in two protoplast daughters to form 

sibling daughter cells. Currently, the hypovalve of the parent cell is an 

epivalve of one daughter cell [2].  
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1.6 Biomaterials, bio-inspired and biomimetic materials 

1.6.1 Biomaterial definition and classification 

The definition of biomaterial issued by American National Institute of 

Health defines a biomaterial as “‘any substance or combination of 

substances, other than drugs, synthetic or natural in origin, which can 

be used for any period of time, which augments or replaces partially 

or totally any tissue, organ or function of the body, in order to 

maintain or improve the quality of life of the individual” [54].  

This definition has been considered as the most acceptable 

description. 

Dealing an ethical issue, this definition could have many 

controversies about original human tissue/ organs transplanted from 

person to person. David F. Williams adapted this concept to be ‘‘A 

biomaterial is a substance that has been engineered to take a form 

which, alone or as part of a complex system, is used to direct, by 

control of interactions with components of living systems, the course 

of any therapeutic or diagnostic procedure, in human or veterinary 

medicine.’’[55]. Concerning with the D.F. Williams definition, cells as 

well as specific drug delivery systems supporting biological activities 

of cells or controlling some factors to maintain implanted material 

activity should be considered as a new biomaterial [56]. Thus, 

manmade or biological materials should be classified biomaterials. 

Regarding the definition, biomaterials can be categorised into 

different groups based on their functions and how they interact with 

living systems.  

Classically, biomaterials can be classified into four groups regarding 

their composition: metals and alloys, ceramics, polymers and 

composites.  

Herein some selected examples about materials and their 

applications are listed following the classical grouping (table 1-2)  
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Table 1-2: Some examples of different biomaterial and their 
applications, modified [57] 

Classification Biomaterials Applications Refs 

Polymer Polyurethane  
Wound dressing, 
heart valves, artificial 
hearts, tubing 

[58] 
Polymer  Silicon rubber 

Catheters, drainages 
tube, flexible sheath 

Polymer  
Poly 
caprolactone 

Degradable bone 
fixation, soft tissue 
suture, bone void 
filler, soft tissue 

Polymer Collagen  Hard and soft tissue  [57] 

Metal  
Titanium and 
its alloy 

Fracture fixation, join 
replacement, stents 

[59] 

Metal Stainless steel 
Stents, orthopedic 
fixation devices 

Ceramic Hydroxyapatite 
Implant coating, bone 
filler, bone graft 

[60]–

[62] 

Ceramic Bio-glass 
Bone cement, 
orthopedic implant as 
hip, knee, shoulder… 

Ceramic Alumina 
Orthopedic 
prostheses,  joint 
replacement 

Ceramic Zirconia 
Dental crow, heart 
valves, joint 
replacement 

Composite 
Collagen–
hydroxyapatite 
composite 

Bone graft 
[61], 

[63] 

 

Selections and uses of biomaterials should take into account role and 

site or implant.  
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1.6.1      Requirements of biomaterials 

Depending on application, biomaterials should have different 

requirements, which are sometimes opposite. For examples, 

biomaterials for bone tissue engineering demand to be biodegradable 

to be replaced by the extra cellular matrix made by cells while heart 

valves must be bio-stable and wear resistant. In general, all 

biomaterials should possess physicochemical properties fulfilling 

specific requirements that depend on the application, one of those 

being the biocompatibility with the host. 

Following D.F. Williams, 1987, biocompatibility may be defined “…the 

ability of a biomaterial to perform its desired function with respect to a 

medical therapy, without eliciting any undesirable local or systemic 

effects in the recipient or beneficiary of that therapy, but generating 

the most appropriate beneficial cellular or tissue response in that 

specific situation, and optimising the clinically relevant performance of 

that therapy” [64], [65]. 

1.6.2 Bioinspired and biomimetic materials from nature 

Nature has certainly provided diversity of living and non-living 

systems proposing innumerable structures and materials that can be 

used or eventually provide inspiration for different desired functions. 

Biomimetic structures can be fabricated by a proper selection of 

nature sources, designed to fulfil desired application, understood and 

reinvented in the laboratory [66], [67]. 

Numerous drugs, materials and processes, phenomena as the self-

cleaning of lotus leaves, the morpho-rhetenor phenomenon of 

butterfly, protein’s self-assembly of Lanreotide, magnetotactic 

bacteria of microorganism or marine skeletal biominerals have been 

discovered from nature. Indeed, nature and its evolution could be an 

inspiring source to learn, adapt and develop sustainably [68]–[70]. 

For biomedical use, new candidate materials possessing specific 

properties are required. Learning, inspiration and imitation from 

nature may be a good solution to handle the need.  

Classic examples of bio-inspiration are the architectures of Gaudi 

inspired to nature shapes [71].  

The word “biomimetics” was firstly used by Otto Schmitt who studied 

the neural impulse propagation in squid nerves [72]. Nowadays, 

mimicking nature for tailored and desired applications of an artificial 
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device with man-made alternatives based on the profound 

understanding of the corresponding biological mechanisms or 

materials is termed biomimetics.  

Biomimetics can be simply defined as “Biologically inspired design, 

adaptation, or derivation from nature” [73]. 

1.6.3 Silk fibroin biopolymer  

Silk, a fibrous proteins, is present in specialized glands of spiders and 

several insects of the Lepidoptera family, like mites, butterflies and 

moths [74].  Each silk has quite different amino acid compositions, 

depending on origin and specific functions. However, generally 

speaking, silk proteins are rich of alanine, glycine, and serine amino 

acids. Silkworm silk comprises two proteins, an inner core made by 

fibroin, and an outer coating made by a family of proteins named 

sericins. For biomedical applications, only fibroin is generally used, 

due to some early adverse reaction attributed to sericins. 

Structure of silk fibroin can be composed of different combination of 

elastic β-spirals, crystalline β-sheets, α-helices and spacer region 

components [75].  

Silk fibroin from Bombyx mori cocoons has been widely proposed for 

various biomedical applications.  

Fibroin’s amino acid composition of Bombyx mori mostly comprises 

glycine (43%), alanine (30%) and serine (12%). The molecule is an 

assembling of a heavy and a light chain.  Light chain is made by 253 

aminoacids that do not form crystalline domains, is hydrophilic and 

connects to the heavy chain by di-sulphide bonds. The heavy chain 

consists of 12 domains that form the crystalline regions in silk fibers, 

which are interspersed with primary sequence that is non-repetitive 

and thus forms fewer organized domains in the fibers. The crystalline 

domains in the fibers consist of Gly-X repeats, with X being Ala, Ser, 

Threonine (Thr) and Valine (Val). The formation of crystalline 

structures is due to the short lateral chains of the amino acids in 

these regions, which allow protein folding in β-sheet conformation 

[74].  

Silk fibroin can have three conformations named silk I, silk II and silk 

III. Conformations of silk I, i.e., the water soluble structure that fibroin 

assumes in the silkworm gland, and of silk III, i.e., the structure that 

fibroin can build at the water–air interface in thin films have not been 
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fully clarified yet.  Silk II has been viceversa long regarded as a prime 

example of the well-oriented β-sheet conformation [74], [76]. 

Silk fibroin is considered to be biocompatible. It can be degraded in 

vivo by proteolysis as a usual protein. Different processes have been 

reported to fabricate fibroin in different shapes, as films, sponges, 

gels, nets and so on [77]. 

1.7 Biomineralization and biomaterials 

1.7.1 Biomineralization 

The term “biomineralization” refers to processes of living organisms 

to produce minerals for specific purposes. 

Biocalcification, i.e., the production of calcium minerals, is the most 

prevalent biomineralization process. In term of taxonomic distribution, 

calcium carbonate found in corals, mollusc shells, foraminifera is a 

biomineral based on calcification. Among biominerals containing 

calcium, calcium phosphate found in  the hard tissue of mammalians 

and some algae is very common, about 25% of  total biominerals 

[78], [79]. 

Besides calcification, silicification is another major example of 

biomineralization, especially in marine organisms.  

Silicification was typically described in the formation of hydrated 

amorphous silica in most sponges and diatoms [27]. 

Moreover, biomineralization occurs in the production in nature of  

metal compounds of iron, barium, magnesium, strontium, germanium, 

etc. [73].   

The mechanism for biomineralization has been suggested by using 

classical nucleation theory [67]. Initially, a core of inorganic minerals 

is formed due to an excess of their constituting ions, which form small 

clusters and grow to reach a critical size. At this point, the size of 

clusters is stable because the increasing surface energy is balanced 

by the decrease of bulk energy, which is related to the crystal lattice 

formation. In contrast, almost 60% of biominerals exist in the 

amorphous hydrated form, with biogenic silica being a featured 

example. The hydrated form can be the precursor of the crystalline 

form, as for the hydrated carbonate that  transforms into  the mature 

crystalline form [80],[81]. 
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Composition, structure and mechanical properties of biominerals 

affect both biological activity and environment where they are 

produced.  

Traditionally, biomineralization processes can be classified in two 

major groups depending upon the level of biological impact; 

biologically induced mineralization and biologically controlled 

mineralization [73], [78]. 

1. The term “biologically induced mineralization” regards 

mineral phases resulting from the interaction between biological 

activity and the environment. Character of biologically induced 

minerals is heterogeneity, which greatly depends on the 

environment where they are formed [82].  

2. The concept of biologically controlled mineralization refers to 

mineralization processes, including nucleation, growth, 

morphology and final location that are strictly controlled by 

biological activity, i.e., activity of cells. These processes can be 

categorized into three groups; extra, inter and intracellular, 

depending on where they are located.  The process often involves 

the interaction with biomacromolecules such as proteins or 

polysaccharides functioning as frame of the mineral deposition. 

Thus, certain materials based on biomimeralization are indeed 

tight composite of organic and  inorganic phase [79], [83], [84]. 

1.7.2 Hard bone tissue and the role of silicon on bone 

maintenance 

1.7.2.1 Hard skeletal tissue formation 

The main mineral component of human body is calcium phosphate 

apatite, the inorganic component of hard tissues such as bones and 

teeth. 

In human bone, calcium phosphate apatite, hydroxyapatite, 

constitutes up to 70% of bone volume [85]; it is formed and deposited 

in the extracellular matrix during biomineralization. 

The formation of hard bone tissue can be simply divided into two 

main stages, including primary and secondary osteogenesis [86]. The 

primary stage of mineralization starts on forming calcification nodules, 

a nucleation of hydroxyapatite precipitation, which results from the 

interaction between the collagen-proteoglycan matrix (osteoid) and 
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calcium salt precursors. During the interaction, matrix mineralization 

forms a ‘woven’’ bone microstructure; however, the lamellae or 

crystals of hydroxyapatite are not formed yet [87],[88]. 

. 

 

Figure 1-8: The hierarchical organization of bone structure ranging 
from nano to macro length scale [89] 

 

The hierarchical structure of bone from nano to macro (Figure 1-8) 

forms as follows. Layered lamellae form from the mineralized and 

oriented collagen fibers  and  arrange in osteons surrounding blood 

vessels; finally, porous cancellous bone is generated from the 

assembly of the densely packed osteons [90], [91]. 

Different kinds of cells including osteoprogenitor cells, osteoblasts, 

osteocytes and osteoclasts are involved in the bone growth, 

maintenance and remodelling. Osteoprogenitor cells are able to 

differentiate in bone cells, osteoblasts. Osteoblasts synthesize and 

mineralize organic matrix (osteoid) of bone. 

After mineralization of the extracellular matrix, osteoblasts remain 

trapped in the bone matrix and transform into osteocytes that are 

responsible for bone maintenance and remodelling. Furthermore, 

osteoclasts also derive from blood monocytes/macrophages. Bone 

remodelling occurs through the coordinated action of osteoclasts, 

osteoblasts, osteocytes, and bone lining cells together. 



22 

1.7.2.2 The role of silicon on bone formation and maintenance 

The role of silicon on bone formation was first mentioned by Carlisle 

in early studies regarding experiments on animals with the discovery 

of the unusual high silicon level in connective tissue as tendons, 

bone, skin [92], [93]. Silicon has been considered as an important 

trace element playing a key role in bone formation, but nevertheless 

the mechanism of silicon biological effect remains unclear.  

One theory proposed that Si acts as a primary nucleation centre [94] 

which may facilitate apatite formation. This theory might be supported 

by the observation of thin amorphous silica layers associated with 

calcification in crustacean cuticles at the early stage [95]. In addition, 

the role on bone formation of silicon-substituted calcium phosphates 

has been considered more effective than pure calcium phosphates 

[96], [97]. 

An important explanation for the silicon role claims that the presence 

of silicon improves collagen and proteoglycans synthesis. The 

improvement of bone osteoid in term of the structural integrity and 

mechanical strength is a critical point for bone formation as well as 

cardiovascular health [93], [98].  

Another suggestion for the silicon role in bone formation is that 

absorption of copper and magnesium may be facilitated by a higher 

silicon intake. Besides, silicon perhaps alleviates aluminium toxicity 

owing to the combination of soluble silicon with Al
3+

 that prevents the 

negative effects of aluminium on collagen synthesis and structure. 

Both strategies are essential for bone growth and maintenance [99], 

[100]. 

Numerous in-vitro studies have focused on the effects of silicon on 

bone formation in osteoblast cultures. Particularly, silicon containing 

materials improved osteoblast proliferation, adhesion and 

differentiation [101], [102]; ortho-silicic acid promoted gene 

expression of alkaline phosphatase, osteocalcin and collagen I 

production from osteoblasts [103]; silicic acid induced up-regulation of 

bone morphogenetic protein 2 (BMP-2) [104];  moreover, nanosilica 

coating material  enhanced the differentiation of human bone marrow 

mesenchymal stem cells (hBMSCs) [105]. 

Besides the significant benefits of silicon on bone formation, silicon 

deficiency depressed the growth and provoked skull deformities in 

rats, being also cause of skeletal abnormalities concerned with the 
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formation of the cartilage matrix and connective tissue, observed in 

chicks [106]. Furthermore, silicon can inhibit bone mass loss. Silicon 

has been suggested as a dietary supplement in premenopausal 

women [107]–[110]. 

1.7.3 Bone healing and tissue engineering  

1.7.3.1 Bone healing 

Bone healing can be defined as a process that restores the “original” 

bone tissue. Cells, growth factors, bone graft materials, biochemical 

and biomechanical factors influence the bone healing potential. 

Healing process comprises three overlapping stages: inflammation, 

repair and remodelling [111]. 

 

Inflammation  

 

The development of hematoma occurs after bone damage within the 

first few hours. Then, a granulation tissue is formed within the fracture 

or defect site in order to prevent infection, thanks to the activity of 

inflammatory cells (macrophages, monocytes, lymphocytes cells) and 

fibroblasts. Moreover, cytokines and growth factors released by 

activity of these cells form new capillaries and induce the migration of 

mesenchymal cells [112]–[114]. 

 

Repair  

 

The repairing stage follows inflammation with the formation of soft 

callus as cartilaginous template around the repair side, because of 

the activity of chondrocytes and fibroblasts. Together with 

cartilaginous matrix formation, vascular system continues growing, 

vessels increase in size and form branches, controlled by fibroblast 

proliferation and chondrocytes behaviour. Afterwards, the osteoid 

matrix starts to mineralize due to the dominant increase of 

osteoblasts differentiated by osteoprogenitors from many sources like 

periosteum and bone marrow. Mineralized bone progressively 

stabilizes and substitutes the soft callus. In the parallel, 

revascularization proceeds, providing oxygen for the differentiation of 

progenitor cells [111], [115]. 
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Remodelling 

 

The remodelling stage completes the bone healing process. The hard 

callus tissue restores its original shape by osteoclast activity. 

Osteoclasts demineralise inorganic matrix and degrade collagen; at 

the same time, osteoblasts form new bone.  Coordination between 

osteoclasts and osteoblast balances the secretion of cytokines in 

order to maintain the stability of matrix [111]. 

1.7.3.2 Tissue engineering  

The term tissue engineering (TE), firstly introduced in 1988 by Langer 

and Vacanti, was defined as “an interdisciplinary field of research that 

applies the principles of engineering and the life sciences towards the 

development of biological substitutes that restore, maintain, or 

improve tissue function” [116].  

The idea of tissue engineering is to regenerate tissues to restore their 

original characteristics in term of biological, chemical, physical and 

mechanical properties. To reach the goal, the combination of biology, 

materials science, engineering, physics, chemistry, and medicine in 

an integrated manner is required [117], [118]. 

Cells, scaffolds and growth factors (bioactive factor) are three main 

elements of tissue engineering. The integration of the above three 

components is critical to regenerate anatomically and physiologically 

correct tissue. It means that the cells–matrix interactions and 

intercellular communications must be profoundly understood to 

achieve successful results.  

Bone tissue engineering scaffolds 

The matrix for cell growth in-vivo must be 3D, with proper architecture 

and physical properties, supply nutrients and growth factors that are 

needed for cell proliferation and extracellular matrix (ECM) 

production. The scaffolds must be a temporary template for cells for 

the restoration of the tissue [117],[119].  

Scaffold materials must be biocompatible and scaffold must perform 

the required functions. Moreover, high porous structure with 

interconnected geometry is required in order to allow cell growth, 

penetration and distribution and to facilitate blood vessel 

development.  
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For bone tissue engineering scaffolds, optimal pore size ranges from 

200 to 900 µm [120].  

Together with biocompatibility and architecture, proper surface 

properties should promote initial cell adhesion and migration, while 

providing the right interaction with proteins to stimulate cell 

proliferation. Furthermore, osteoinduction, degradation rate and 

mechanical properties should be taken into deep attention [121], 

[122].  

Materials such as ceramics and polymers have been used for the 

production of scaffold for bone tissue engineering. β-tricalcium 

phosphate (β-TCP), hydroxyapatite and biodegradable natural or 

synthetic polymers are commonly used [123]–[126], as well as their 

combination in composites [127], [128].  

Owing to specific architecture of scaffolds for bone tissue, 

methodology and techniques for scaffold production should be 

consistent with the desired porosity, pore size, pore distribution and 

interconnectivity. Various processing techniques of scaffold 

fabrication have been used, such as solvent casting, melt based 

technologies, phase inversion, freeze drying, electrospinning, 3D 

printing [118], [120], [129]. 

Cells for bone tissue engineering 

As previously presented, osteoblasts are indeed the fundamental 

choice due to their role on bone formation and maintenance. Cell can 

be taken directly from patients and expanded in vitro, or xenogeneic 

cells can be used; however, the proliferation capacity of osteoblasts 

is slow [130]. 

Many other cell sources have been suggested for tissue engineering, 

for example, human embryonic stem cells (ESCs), induced 

pluripotent stem cells (IPs), adipose-derived stem cells (ADSCs) 

peripheral blood–derived stem cells (PBs), mesenchymal stem cells 

(MSCs), etcetera. Amongst, MSCs have been accepted as a potential 

source for bone tissue engineering due to the ability to differentiate 

into bone cells [131],[132]. 
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Growth factors and supplements 

 

The process of bone formation involves a variety of hormones, 

cytokines and growth factors, that act as signalling molecules [133] 

binding to cell receptors in order to support different functions such as 

cell migration, proliferation and differentiation. Bone morphogenetic 

protein (BMP), insulin-like growth factor (IGF), and vascular 

endothelial growth factor as common growth factors have been used 

in bone tissue engineering. Growth factors may be combined with the 

scaffold or immobilized on the scaffold [134]. The use of growth factor 

for bone tissue is beneficial; however, their use is restricted by their 

high cost. 

In addition, osteoinductive materials such as, hydroxyapatite, clays, 

silica or titanium oxide  incorporated into scaffolds has been 

demonstrated to improve cell differentiation as well as bone formation 

[132], [135]. 

1.8 Diatomite and strategies for biological applications 

1.8.1 Diatomite  

Diatomite or diatomaceous earth is the siliceous sedimentary rock 

resulting from the deposit and accumulation of the cell wall of dead 

diatoms. Owing to the original formation, diatomite is finely porous 

and lightweight with density from 0.32 to 0.64 kg/l. Generally, dry 

diatomite comprises 80-90% of silica (sometime up to 95%). Some 

common components as alumina, hematite as well as organics are 

present [136]. 

Based on physical properties and original formation, diatomite has 

been used in various fields such as construction, chemical and 

pharmaceutical industries as an absorptive carrier. Moreover, 

diatomite has been suggested as filler component in dentistry [137], 

[138]. 

1.8.2 Diatomite and diatom strategies for biological 

applications 

Besides the traditional applications mentioned above, diatomite has 

been proposed as promising drugs delivery system and molecular 

catalysis applications thanks to the hierarchical 3D pore structures of 

diatom frustules; however, pre-treatment process of diatomite to 
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purify, enrich diatoms content, remove contaminants and  

functionalize surface is necessary before use [139], [140]. 

Mimicking diatom biosilicification is a challenging task for a bone 

tissue engineering dedicated, biomimetic approach [1],[141]. 

The interaction between biopolymer (peptides) and silicon in diatoms 

determines and controls silica formation and organization; it could be 

exploited for drug delivery applications or for protein/enzyme 

immobilization or to fabricate biosensors and microfluidic devices 

[142]–[145].  

Moreover, hybrid organic/inorganic biomaterials could found 

appropriate applications for the design of scaffolds for bone 

regeneration [146]. Amongst, hybrid silica/collagen compounds have 

received deep attention due to the ability of self- assemble proteins 

[147], [148].   

 

1.9 Objectives and outline 

 

Seeking a new candidate or improving current materials for proper 

applications is an important task of material science and engineering. 

The integration of advanced technology in various fields has provided 

us many opportunities for search, observation, deeper understanding 

and learning natural phenomena in order to create man-made 

materials that can be used for desired applications.  

Silica or silicon is one of the most abundant compounds of the earth 

crust, especially in silicon oxide or silicate forms. Amongst, siliceous 

structures made by biosilicification of numerous organisms as in the 

formation of in marine sponge or diatom skeleton, are the most 

interesting example owing to their morphology and 3D pore structure.  

Biosilicification, i.e., the skeleton formation in many marine organisms 

may be translated and transferred to the role of silicon on human 

skeletal formation.  

The main aim of this work was to take inspiration from the natural 

source of silicon, diatoms, for the fabrication of bone tissue scaffold 

containing silicon as bioactive component.  
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Chapter 2 

Processing and Characterization of Diatom Nanoparticles and Microparticles 

as Potential Source of Silicon for Bone Tissue Engineering 

This chapter describes the purification and characterization of 

diatomite and preparation and characterization of diatoms particles. 

Two different methods of purification were used and compared in 

order to assess their influence on characteristics of diatom particles. 

The silicon released from the diatoms particles has been evaluated 

and their compatibility with cells has been determined with cell 

cultures in vitro.  

Chapter 3 

Enhancing bioactive properties of silk fibroin with diatom particles for bone 

tissue engineering applications 

Based on the results of toxicity and silicon release, this chapter 

reports the fabrication and characterization of 3D composite scaffold 

of silk fibroin with micro and nanoparticles of diatoms. Scaffolds were 

prepared with the salt leaching method. The effect of the addition of 

diatom micro and nanoparticles on scaffold architecture and 

mechanical properties as well as on activity, proliferation and early 

bone formation markers with MG63 osteoblast-like cells lines was 

evaluated.   

Chapter 4 

Osteoinductive Silk fibroin/ Diatom Particles Scaffolds for Bone Tissue 

Regeneration 

Herein, we checked the ability of diatom/fibroin composite scaffolds to 

induce differentiation of osteoprogenitor cells using human 

mesenchymal stem cells. Based on the results of the previous 

chapter, we evaluated two different scaffolds, silk fibroin loading a 

mixture of micro and nano diatom particles and pure silk fibroin, and 

two different culture conditions. 
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Abstract 

Silicon plays an important role in bone formation and maintenance, 

improving osteoblast cell function and supporting mineralization. 

Often, bone deformation and long bone abnormalities have been 

associated with silica/silicon deficiency. Diatomite, a natural deposit 

of diatom skeletons, is a cheap and abundant source of biogenic 

silica. The aim of the present study is to validate the potential of 

diatom particles derived from diatom skeletons as silicon-donor 

materials for bone tissue engineering applications. Raw diatomite 

(RD) and calcined diatomite (CD) powders were purified by acid 

treatments, and diatom microparticles (MPs) and nanoparticles (NPs) 

were produced by fragmentation of purified diatoms under alkaline 

conditions. The influence of processing on the surface chemical 

composition of purified diatomites was evaluated by X-ray 

photoelectron spectroscopy (XPS). Diatom NPs were also 

characterized in terms of morphology and size distribution by 

transmission electron microscopy (TEM) and dynamic light scattering 

(DLS), whilst diatom MPs morphology was analyzed by scanning 

electron microscopy (SEM). Surface area and microporosity of the 

diatom particles were evaluated by nitrogen physisorption methods. 

Release of silicon ions from diatom-derived particles was 

demonstrated using inductively coupled plasma optical emission 

spectrometry (ICP/OES); furthermore, silicon release kinetic was 
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found to be influenced by diatomite purification method and particle 

size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) 

showed limited or no cytotoxic effect in vitro depending on the 

administration conditions. 

2.1 Introduction 

Silicon is the main component of silica formed exo- and endo-

skeletons in some marine organisms [48]. The skeleton of unicellular 

marine organisms such as sea sponges and diatoms consists of 

hydrated amorphous silica which is gradually formed by 

immobilization and internalization of monosilicic acid in a process 

addressed as biosilicification [2], [149], [150]. 

Nevertheless, silicon is also involved in the biomineralization 

processes in mammals. Calcification involves many stages including 

formation of calcium phosphate under the direct regulatory control of 

several biological systems and in presence of elemental traces such 

as silicon, zinc and magnesium [86],[151]. Silicon is believed to be an 

essential element for bone development, although its role is not 

completely understood [110], [152]. For instance, silicon has been 

associated with the precipitation of calcium phosphate in the early 

stage of bone mineralization [95]. In addition, the presence of silicon 

at the inorganic/organic interface regulates the interaction between 

collagen and proteoglycans improving the quality of the extracellular 

matrix (ECM) [98]. Silicon can induce stem cell differentiation in 

osteoblasts and osteocytes [101],[105],[108]; furthermore, silicon 

directly inhibits osteoclast formation and bone resorption [153].  

Use of degradable amorphous silica particles has been proposed to 

improve mineralization in bone regeneration applications besides 

other inorganic materials such as hydroxyapatite, tri-calcium 

phosphate, glass ceramic or zirconia [154],[155]. However, bioactivity 

of particles significantly depends on size, shape and surface 

properties [156]–[159]. Recent studies have been focused on 

possible applications of amorphous silica nanoparticles as dietary 

supplement for bone regeneration [160], [161]. Additionally, silica has 

been successfully incorporated with hydroxyapatite to enhance 

osteoconductivity of scaffolds for bone tissue regeneration [162], 

[163]. Silk or collagen scaffolds loaded with amorphous silica particles 

have been successfully proposed to improve osteoinductivity [135], 
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[147], [164]. So far a variety of amorphous silica sources have been 

considered. Often silica particles are of synthetic origin and are 

produced using chemicals and surfactants whose residues might 

have toxic effects [156]. So, there is a quest for abundant and reliable 

alternative sources of amorphous silica. 

Diatomite, also known as diatomaceous earth, is the marine sediment 

of silica diatom skeleton remains. Diatomite is an inexpensive and 

unlimited source of biogenic silica. Thanks to their peculiar 

morphology and porosity, diatom skeletons derived from diatomite 

have been proposed for uses in photonics, drug delivery and 

molecular catalysis applications [8], [165], [139]. We think that 

diatomite could be a promising natural source of amorphous silica 

also for bone tissue engineering applications. Biomedical uses of 

biogenic silica have been preconized by Wang et al. [150], but to date 

diatomite-derived silica particles have never been used as a part of 

tissue engineering scaffolds. We believe that diatom microparticles 

and nanoparticles could be useful as bioactive silicon-donor additives 

for degradable engineered scaffolds and bone defect fillers. 

However, raw diatomite contains some local contaminations such as 

clays and other inorganic and organic compounds that require 

purification before any medical use and the yield of diatomite 

purification processes depend on diatom type and source [166]. 

Here, raw diatomite (RD) and calcined diatomite (CD) powders were 

purified in strong acid conditions, and diatom nanoparticles (NPs) and 

microparticles (MPs) were subsequently produced by treating the 

skeletons in alkaline solution. NPs and MPs morphology, elemental 

composition and specific surface area were determined. Silicon ion 

released by diatom particles dissolution has been evaluated with 

dissolution experiments and cytotoxicity tests of diatom particles have 

been performed. 

2.2 Materials and Methods 

2.2.1 Materials 

Powder form of raw diatomite materials (RD) used in this study was 

provided by Phu Yen mineral joint stock company (Phu Yen province, 

Viet Nam). RD powder was passed through a metallic sieve (mesh 

size 250 µm) to remove aggregates and macroscopic 

contaminations. 
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Phosphate buffer solution (PBS), sodium hydroxide (NaOH), 

hydrochloric acid (HCl) and Triton X-100 were purchase from Sigma-

Aldrich (St. Louis, MO, USA). All reagents and solvents were used as 

received without further purification. 

2.2.2 Raw diatomite purifications 

2.2.2.1 Acid-purified raw diatomite powder 

 

RD powder underwent acid treatment to remove inorganic 

contaminations; purification protocol modified from [167]. Briefly, RD 

powder was dried overnight in oven at 102ºC, passed through a 

metallic sieve (mesh size 125 µm) to remove larger aggregates, and 

then acid-treated with 1M HCl solution at 55ºC (in the proportion of 

100 mg of powder per ml of HCl solution) for 24 hours under 

continuous stirring to remove the inorganic contamination. 

Afterwards, the obtained slurry was concentrated with a paper filter; 

the remaining solid part was washed and allowed to sediment in 

deionized water (DI water). The process was repeated for 10 times. 

Finally, the sediment was dried in oven at 102ºC and sieved through 

a 63 µm pore size sieve to obtain acid-purified RD (hereinafter AD) 

consisting of single diatoms. 

2.2.2.2 Acid-purified calcined diatomite powder 

Raw diatomite powder (RD) was heated at 650ºC in air for 3 hours to 

reduce organic contaminations [168]. Calcined diatomite powder (CD) 

was then passed through a metallic sieve (mesh size 125 µm), then 

treated with acid, as explained before, to obtain acid-purified CD 

(hereinafter named CAD). 

2.2.3 Diatom microparticles and nanoparticles from purified 

diatoms 

Diatom microparticles and nanoparticles were produced from purified 

diatoms powders (both AD and CAD) by mechanical fragmentation in 

alkaline conditions [28],[39]. Briefly, AD and CAD powders were 

suspended in 0.1M NaOH solution (typically, 10 mg of diatomite 

powder per ml of alkaline solution was used), and suspension was 

vigorously stirred for 2 weeks at room temperature (RT) to break 
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diatoms. Afterward, the alkaline suspension was kept at RT for one 

week to allow sedimentation.  

The unsettled colloidal suspension was collected separately and 

centrifuged at 15000 rpm for 30 minutes to retrieve diatom 

nanoparticles (here named AD-NPs and CAD-NPs). The obtained 

NPs were subsequently washed in DI water and centrifuged (15000 

rpm for 30 minutes) for 3 times to remove any NaOH traces. The 

settled solid fraction was also collected, re-suspended in DI water 

and centrifuged as above to recover trapped NPs. 

Finally, the remaining settled fraction was collected and washed with 

DI water to obtain diatom microparticles (named AD-MPs and CAD-

MPs, depending on the source of purified diatomite). 

2.2.4 Diatomite, purified diatomite and diatom particles 

characterization 

Composition and mineral contamination of the RD powder, AD and 

CAD purified powders were characterized by X-ray diffraction (XRD) 

with a high resolution powder diffractometer (Rigaku PMG/VH, Tokyo, 

Japan), with Bragg-Brentano geometry in the range 2θ from 5.0 - 

60.0 degrees using CuKα radiation (λ =1.5405981 Å). Surface atomic 

composition of diatomite powders before and after purification was 

analyzed by X-ray photoelectron spectroscopy (XPS) with a Scienta 

Gammadata ESCA 200 (Uppsala, Sweden), equipped with 

monochromatic Al-Kα radiation source (hν = 1486 eV).  

A Field-Emission Scanning Electron Microscope (Supra 40, Zeiss, 

Germany) was used for the observation of diatomite powders, 

diatoms morphology and microparticles size distribution using type II 

secondary electrons (SE2). 

Back scattered electrons (BSE) combined with Energy-Dispersive X-

ray analysis (EDAX) were used to detect elemental composition of 

diatom and contaminations using a FEI/Philips XL30 Environmental 

Scanning Electron Microscope (FEI, Hillsboro, Oregon, USA) 

equipped with Falcon X-Ray Microanalysis System. 

Nanostructure of diatom skeleton wall was obtained by Transmission 

electron microscopy (TEM). Purified diatom skeletons were 

embedded in epoxy resin, and then the slurry was placed in a copper 

pipe (external diameter 3mm) and cured at 80°C to crosslink the 

epoxy resin. A 1 mm thick slice was cut from the pipe. The slice was 
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mechanically polished on both sides to reach a thickness of 100 µm. 

Afterwards, a copper grid 125 mesh for TEM was glued to one side of 

the disc to support the sample during final thinning under ion beam. 

The thin disc was then dimpled to reach a thickness of 20 µm.  

The final thinning to reach the electron transparency was performed 

with ion milling in a Gatan Duo Mill apparatus using Argon ions and 

an accelerating voltage of 6 KV. A TEM (Phillips CM12) was used to 

observe nanostructure of sample. The instrument was equipped with 

EDS allowing investigating chemical composition. Here we present 

TEM micrographs of a diatom skeleton fragment as well as chemical 

composition of the skeleton wall at different locations measured by 

EDS. 

The hydrodynamic radius of diatom NPs in both DI water and PBS 

was determined by Dynamic Light Scattering (DLS) using a Malvern 

110 Zetasizer Nano ZS instrument (Malvern, United Kingdom), 

equipped with a He–Ne a 5 mW laser at 633 nm). Morphology and 

chemical analysis of the NPs were also confirmed by transmission 

electron microscopy with a CM12 TEM, (Philips, Eindhoven, 

Netherlands) - accelerating voltage 120 KeV - combined with Energy 

Dispersive X-Ray spectrometer (EXDS).  

Surface area and pore size distribution microparticles and 

nanoparticles were evaluated by physisorption measurements. 

Nitrogen physisorption experiments were performed at the liquid 

nitrogen temperature (77 K) using a Micromeritics ASAP 2010 system 

(Norcross, GA, USA). All the samples were degassed below 1.3 Pa at 

25 °C prior to the measurement. The Specific Surface Area (SSA) 

values were calculated by the BET equation in the interval 0.05 ≤ 

(p/po) ≤ 0.33 [169]. Pore size distribution was calculated using the 

BJH method applied on both branches of the physisorption isotherms 

[170]. 

2.2.5 Silicon release from diatom particles in DI water 

Aliquots of the diatomite-derived NPs and MPs prepared above were 

dispersed in DI water (100 µg of particles per ml of water) and stored 

at 37°C to allow for particles dissolution and silicon release. Three 

replicates for each experimental group (AD-MPs, AD-NPs, CAD-MPs 

and CAD-NPs) were extracted at predetermined time points (4, 8 and 

24 hours; 2, 3, 4, 7 and 14 days). Samples were centrifuged at 15000 
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rpm for 30 mins, and supernatant were collected and stored at –20ºC. 

Before measurement, the frozen samples were thawed at RT, 

vortexed and diluted for silicon quantification. Silicon concentration 

was determined by inductively coupled plasma/optical emission 

spectroscopy using a Ciros Vision ICP-OES (SPECTRO AnalyticaI 

Instruments, Germany). A sodium silicate solution (Sigma-Aldrich) 

was used as standard to build a calibration curve for silicon 

concentration. 

2.2.6 Cytotoxicity test 

Cytotoxicity of diatomite-derived NPs and MPs was evaluated 

following the ISO 10993-5 8.3 standard both with direct contact and 

elution methods. Embryonic Swiss mouse fibroblast cells (3T3) were 

expanded and cultured at 37ºC with 5% CO2 in high glucose medium 

(DMEM) (Euroclone, Pero, Italy), supplemented with 10% fetal bovine 

serum (Gibco, NY, USA), 2mM L-glutamine, 1mM sodium pyruvate 

and 0.1% antibiotics (Gibco, NY, USA). The medium was changed 

every 2 days until cells confluence, then cells were detached with 

0.1% trypsin and re-suspended in culture medium. Later, 3T3 cells 

were plated in polystyrene 48-well plate at a density of 5.10
3
 

cells/cm
2
 and incubated under standard culture conditions.  

A reduced culture medium was prepared with Dulbecco's Modified 

Eagle basal medium without phenol red with 10% heat-inactivated 

serum, 1 mM sodium pyruvate, 2 mM L-glutamine and 0.1% 

antibiotics. 

Diatom particles (AD-MPs, AD-NPs, CAD-MPs and CAD-NPs) were 

disinfected with 70% ethanol solution and then collected by 

centrifugation at 15000 rpm for 30 minutes.  

For the evaluation of cytotoxicity in elution mode, diatom particles 

extracts were prepared by soaking diatom particles in reduced 

medium for 4 days at 37 
0
C (particles concentration 100, 200, and 

500 µg/ml). When cells reached about 70-80% of confluence, culture 

medium was removed and replaced with conditioned media 

containing diatom particles extracts. Cells were then cultured in 

conditioned medium with extracts for 24 hours.  

For the evaluation of cytotoxicity in direct contact mode, diatom 

particles (AD-MPs, AD-NPs, CAD-MPs and CAD-NPs) were directly 

re-dispersed in reduced medium at designed concentrations (100, 
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200, and 500 µg/ml). In this mode diatom particles were directly 

supplied to the cells. 3T3 cells were culture in presence of diatom 

particles for 24 hours. 

Lactate dehydrogenase assay (LDH) (TOX7, Sigma-Aldrich) was 

used to evaluate the cytotoxicity impact of particles extracts and 

particles themselves on the cells, following manufacturers' 

instructions. Cells cultured in reduced medium and treated for 30 min 

with 0.05% Triton X-100 were used as positive controls. Cell cultured 

in reduced medium without any diatom sample were used as 

negative control. Absorbance was measured using a Tecan Infinite 

200 microplate reader (Tecan Group, Männedorf, Switzerland) at 490 

nm, background absorbance was measured at 690 nm. Results were 

presented as mean ± standard deviation (n = 5). 

2.3 Results and discussion 

2.3.1 Purification of the raw diatomite powder 

Raw diatomite powder (RD) and calcined diatomite powder (CD) 

were acid-treated with 1M HCl solution to reduce inorganic 

contaminants.   

The yield of the purification process was about 75% in the case of 

acid-purified diatomite (AD) and 65% for the acid-treated calcined 

diatomite powder (CAD); that is, 25 to 35 % of the initial RD weight 

was lost during the different sieving steps, washed away or dissolved 

during the acidic treatment. 

2.3.2 Characterization of raw diatomite and purified-diatomite 

SEM analysis of RD powder revealed whole diatom skeletons 

surrounded by broken diatom fragments, small aggregates and 

impurities due to many sources of organic and inorganic 

contaminations (Figure 2-1 A). In Figure 2-1B and C it is possible to 

see that the different sieving steps and the acid treatment significantly 

reduced diatom fragments and small aggregates both for acid-purified 

diatomite (AD) and for acid-treated calcined diatomite powder (CAD). 

However, in both cases it was possible to spot damage diatom 

skeletons and large diatom fragments. 

X-Ray diffraction analysis (Figure 2-1D) demonstrated the presence 

of mineral contaminants including illite, halloysite, muscovite, and 

quartz both in the RD as well as in the purified diatomite powders (AD 



37 

and CAD). Yet, a reduction of the intensity of the characteristic peaks 

after purification indicated a decreased amount of quartz and 

halloysite contaminations (Figure 2-1 D and E). 

 

 

Figure 2-1:  Morphology and mineral composition of raw diatomite 
(RD) and purified diatomite (AD and CAD) powders. A) SEM 
micrograph of diatomite powder (RD), B) and C) SEM micrographs of 
acid-purified raw diatomite (AD) and acid-purified calcined diatomite 
(CAD), respectively, D) X-Ray spectra of diatomite powders before 
and after purification showing clay mineral contaminations including 
illite (I), halloysite (H), muscovite (M) and crystalline silica (Quartz-Q), 
E) Detail of the X-Ray spectra in correspondence of the Quartz peak 
at 2θ = 26.5. 

Chemical description of the material surfaces as well as the surface 

composition of RD powder and purified diatomite powders (AD and 

CAD) were obtained by XPS analysis.  

The characteristic wide spectra of diatomite powders (Figure 2-2) 

established that the surface composition of diatomite powders was 

formed by a rather rich list of elements. The main elements were 

oxygen, carbon and silicon, aluminium, iron and magnesium were 

present to a lower extent. The elements concentrations together with 

the chemical bond interpretation are summarized in table 2.1   

While analyzing the high-resolution spectra of the main component 

elements, it is possible to understand how the material changes in 

relation to specific treatments. This is shown in Figure 2.3 where the 
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C1s core lines of samples RD, AD and CAD are presented. As it can 

be seen in Figure 2-3, there is a rather strong change of the core line 

upon sample treatment. In particular the cleaning procedure leads to 

a total reduction of the C1s intensity due to the elimination of the 

main part of the organic contaminants with a significant decrease of 

the carbon content, from 20.6% to 8.5% and 6.1% in AD and CAD 

samples, respectively. 

In the meanwhile, purified materials AC and CAD resulted to be 

enriched in silicon, oxygen, aluminum and iron. 

 

Figure 2-2: The whole XPS spectra of diatomite powders  

 

Also the calcinations processing influenced the C1s line shape. In this 

case there was an increase of the intensity of the C1s oxidized 

components which fall in the range 286eV – 290eV for CAD material.  
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Table 2-1: Elemental composition of raw diatomite powder (RD) and 
purified diatomite powders (AD) and (CAD) as determined by X-ray 
photoelectron spectroscopy (XPS). 

Atom % Si2p O1s C1s Al2p Fe2p Mg2p 

RD 13.2 ± 1.0 58.9 ±1.7 20.6 ± 1.8 1.7 ± 0.2 2.9 ± 0.2 1.9 ± 0.1 

AD 18.4 ± 0.5 62.8 ± 0.6 8.5 ± 0.2 4.7 ± 0.5 4.8 ± 0.4 1.2 ± 0.2 

CAD 20.8 ± 0.7 64.0 ± 0.9 6.1 ± 0.3 4.2 ± 0.3 3.7 ± 0.3 1.6 ± 0.2 

 

 

The effect of the purifications was mirrored also by the O1s core lines 

reported (Figure 2-3). The reduction of the hydrocarbon contaminants 

upon purifications leads to an increase of the total oxygen 

concentration. Slight decrease of the total oxygen abundance is 

induced by the calcination, in agreement with the decrease of the 

carbon concentration in the CAD sample. 

 

 

 

Figure 2-3: High energy resolution C1s, O1s and Si2p core lines 
obtained by XPS for raw diatomite powder (RD) and purified diatom 
powders (AD) and (CAD). In the inset is shown the deconvolution of 
the C1s core line in Gaussian components. Both purification 
procedures lead to a drastic reduction of the C1s intensity at 288 eV 
due to the elimination of the organic contaminants. 

 

As for carbon, also in the case of oxygen sample treatments induce a 

modulation of the chemical bond intensities. In particular the 

removing impurities process induces an increase of the intensity of 

the component associated to the SiO2 bonds in agreement with the 

increase of the Si concentration while the component located at high 
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binding energy and associated to H2O decreases. Also Si2p core line 

showed a similar trend (Figure 2-3). The Si core line was fitted using 

just one component which represents silicon in SiO2 chemical 

configuration. Apart the core line intensity the sample treatments 

does not have any effect on this chemical bond. 

While removing small aggregates and diatom fragments, purification 

processes of RD powder did not change the morphology of diatom 

skeletons. At the same time, the results from XPS and XRD analyses 

and SEM observation demonstrated the efficiency of both process of 

diatomite purifications.  

 

Figure 2-4: Morphology and elemental composition of diatom 
skeletons isolated from acid-purified calcined diatoms (CAD) obtained 
by Energy Dispersive X-ray Analysis (EDAX) A) SEM micrograph of a 
single diatom skeleton of CAD and B) CD samples, C) elemental 
composition of the clean diatom wall, D) elemental composition of an 
impurity/defect of the diatom skeleton. The patterned diatom wall 
presents a silicon/oxygen composition with low carbon and aluminium 
content, impurity shows high aluminium content and relevant 
iron/potassium/magnesium contaminations. 

 

No significant differences in morphology are appreciable between 

calcined and not calcined diatom skeletons. The morphology of single 
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diatom skeletons observed by SEM illustrated the typical morphology 

of the Aulacoseira diatom group, cylindrical-body shape with diameter 

of 5 – 20 µm, length of 10 – 40 µm, and a wide circular opening on 

one side (Figure 2-4A and B).  

EDAX observation of single diatom skeletons (Figure 2-4 C) indicated 

the presence of silicon, oxygen, carbon and aluminum, in agreement 

with Abramson et al.[8] and Koning et al. [171]. Composition of 

contaminant particles adhering to the skeleton revealed the presence 

of iron, potassium and magnesium (Figure 2-4 D). 

For a deeper understanding of diatom frustule structure, single 

skeletons were also investigated by high magnification with SEM and 

TEM to observe their structure.  The wall of diatom frustule presented 

the typical honeycomb porous structure with the densely populated 

pores layer ranging 400 - 800nm, which overlaps another pores layer 

with pore size about 200nm (Figure 2-5) 

 

 

Figure 2-5: High magnification of SEM showed the porous structure 
of diatom cell wall encompassing patterned porous structure with 
different pores size. 

 

TEM observation revealed rows of aligned nanometric strips of 

biogenic silica consisting of a regular array of silica nanoparticles 

(fFigure 2-6). Moreover, biogenic silica strips were organized in 

lamellar-like structures with different orientations depending on the 

specific location along the diatom skeleton. Silica nanoparticles 

deposition and formation of the biogenic silica strip are regulated by 

the presence of organic molecules [172]. 
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Figure 2-6:TEM observation of diatom fragments and chemical 
composition by EDS: A) different orientation of lamellar structure built 
up from biogenic silica strips, B) Micrograph shows parallel silica 
strips comprising small nanoparticles, (C) EDS demonstrated 
elemental composition of silica precipitates detected a chemical 
composition based on silicon, oxygen and aluminium with traces of 
iron, calcium and potassium. The presence of carbon and oxygen 
was also contributed by epoxy resin. 

 

Thus, it could be assumed that association between organic 

substance and inorganic still remains at the nanoscale on the diatom 

skeleton structure. This is an agreement with the presence of carbon 

components in diatom skeleton before and even after purifications. 

2.3.3 Diatomite nanoparticles preparation and morphology 

Diatom nanoparticles and microparticles were produced from purified 

diatomite powders (both AD and CAD) by mechanical fragmentation 

in alkaline conditions. Nanoparticles were separated by microparticles 

by sedimentation and recovered from the unsettled colloidal 

suspension by high speed centrifugation. The yield of the process 

was around 15% in weight with respect to the weight of purified 

diatomites (AD and CAD) both for AD-NPs and fro CAD-NPs.  
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Figure 2-7: Size distribution of two different nanoparticles measured 
by dynamic light scattering (DLS) in DI water and PBS A) Size 
distribution of AD-NPs, B) Size distribution of CAD-NPs. 

 

Dynamic Light Scattering (DLS) demonstrated that purified NPs 

presented a broad size distribution both in DI water and PBS; no 

relevant difference in particle agglomeration was observed between 

different solvents (Figure 2-7A and B). Particle diameters ranged from 

70 to 300 nm with an average size around 170 nm (Table 2-2). No 

statistical differences were found between different samples. 

 

Table 2-2: Average size of diatom nanoparticles measured by 

dynamic light scattering (DLS) in DI water and in PBS 

   

Nanoparticles 
Average Diameter (nm) 

DI water PBS 

AD-NPs 171 ± 68 185 ± 66 

CAD-NPs 161 ± 79 172 ± 84 

 

 

TEM micrograph of AD-NPs and CAD-NPs (Figure 2-8A and B) 

showed irregular particles with a size of 50 nm or more. Interestingly, 

the irregular particles seemed to be generated by the aggregation of 

smaller biogenic silica nanoparticles about 10 nm in size.   

In fact, it is well known that biogenic silica nanoparticles are formed 

by precipitation of biogenic colloidal silica by the action of silaffins in 

presence of silicic acid and some metallic ions in aquatic 

environment. 
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Figure 2-8: Morphology and elemental composition of nanoparticles 
obtained from acid-purified diatomite (AD-NPs) and acid-purified 
calcined diatomite (CAD-NPs). A) and B) TEM micrographs of AD-
NPs and CAD-NPs, C) and D) elemental composition of AD-NPs and 
CAD-NPs determined by EDS. The presence of carbon was mainly 
contributed by ethanol solvent suspended NPs. 

 

These observations are partially in contrast with DLS measurements 

(table 2-2) that reported nanoparticles ranging from 70 to 300 nm. 

Probably diatom nanoparticles were partially aggregated in DI water 

as well as in PBS. EDS spectra for both NPs types showed similar 

elemental compositions consisting of silicon, oxygen, aluminium and 

traces of iron and magnesium (Figure 2-8 C and D). No differences 

were found about the presence of elemental composition of diatom 

nanoparticles and diatom skeleton nanostructure presented 

previously. 

The reduction of H2O at the surface of diatom, the slight changed 

energy of Si – O based on wider energy core line of oxygen as well 

as silicon, and the oxidation of carbon after calcination could affect 

resulting NPs composition and also their surface chemical properties. 
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2.3.4 Diatoms microparticles morphology 

Diatom microparticles were produced from purified diatomite powders 

(both AD and CAD) and were formed via mechanical fragmentation of 

diatom skeletons in alkaline conditions. Microparticles were 

separated by sedimentation and the yield of the process was around 

80% in weight with respect to the initial weight of purified diatomites 

(AD and CAD) both for AD-MPs and  CAD-MPs.  

 

Figure 2-9: SEM morphology of diatom microparticles. A) Diatom 
microparticles produced from acid-purified raw diatomite (AD-MPs), 
B) Diatom microparticles from acid-purified calcined diatomite (CAD-
MPs). 

 

SEM micrographs revealed irregularly-shaped, highly porous MPs 

with size ranging from 1 to 10 µm (Figure 2-9). Clearly, the MPs 

consisted of micrometric fragments of skeleton diatom wall; and SEM 

observation did not show any significant morphological difference 

between AD-MPs and CAD-MPs. 

2.3.5 BET surface area of nanoparticles and microparticles 

All samples display isotherm curves that can be classified as Type IIb 

isotherms, according to the IUPAC classification (Figure 2-10) [173]. 

The presence of a Type H3 hysteresis loop allows to identify the 

samples as aggregates of plate-like particles with non-rigid slit-

shaped pores, whose dimensions fall mainly in the micropore 

dimensions (< 2 nm in diameter), again according the IUPAC 

classification. 
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Figure 2-10: Nitrogen physisorption isotherms of (A) diatom 
microparticles AD-MPs and (B) nanoparticles AD-NPs prepared from 
acid-purified raw diatomite powders. 

 

The results are in agreement with those reported in literature for clays 

[174]. Corresponding surface area values, obtained from BET model, 

are ranging from 25m
2
/g from diatom AD-MPs to 45 m

2
/g for diatom 

AD-NPs, typical values for this class of solids. Differences between 

micro- and nano-particle samples can be obtained from the analysis 

of the derived t-plot, where the adsorbed amount of analysis gas is 

plotted against the standard multilayer thickness at the corresponding 

P/P0 values. Within the limits of this method, pore areas due to the 

presence of micropores can be determined; as a result, the 

nanoparticle samples displayed a higher amount of micropores 

(about 40% of the whole specific surface area) than the microparticle 

samples (less than 15% of the whole specific surface area). This 

result represents the most evident difference between NPs and MPs; 

in fact, the pore distribution curves, obtained from BJH method, are 

quite similar for both samples, as already evidenced by physisorption 

isotherms, with an approximately monomodal distribution displaying a 

mode of the curves falling in 2-4 nm diameter range. 

BET surface area results, TEM and SEM observations suggest that 

biogenic silica nanoparticles and microsilica particles were 

successfully produced from diatom whole skeletons. 
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2.3.6 Silicon ion release from dissolution of diatom particles 

in DI water 

The release of silicon ion from diatom particles dissolution in DI water 

was determined by ICP/OES analysis of the supernatants showed in 

Figure 2-11. 

The kinetics of silicon release from diatoms particles showed an initial 

fast release followed by a lowering of the rate as the incubation time 

increased. In particular, in the first 4 days the released silicon ranged 

from 87% to 92% of its final value. 

After 4 days, silicon content, in AD-NPs supernatant was around 3 

times higher than in CAD-NPs supernatant in spite of the comparable 

silicon content in the two particle groups. Instead, released silicon 

was 15.6 ppm and 11.1 ppm for AD-MPs and CAD-MPs, respectively. 

Solubility of materials based on amorphous biogenic silica has been a 

controversial topic and a widespread conception [175]. Dissolution 

can be affected by many experimental factors including solvent 

characteristics such as ion strength, dissolution temperature and 

aging mechanisms of the diatomite deposits [176], [177]. 

Nitrogen physisorption analyses determined that diatom NPs 

presented a specific surface area larger than diatom MPs, and a 

large part of this difference was related to the contribution of nanosize 

porosity. Most likely, this difference in surface area between diatom 

MPs and NPs can partially explain why AD-NPs solubilize faster than 

AD-MPs. 

Moreover, dissolution of diatom particles can be influenced by many 

diatom particles characteristics, such as surface chemistry and 

structure, morphology, composition and microstructure. For example, 

the density of hydrophilic silanol groups (-Si-O-H) at the surface of 

biogenic silica is believed to be an important factor for the control of 

the dissolution of diatom particles.  

Zhuravlev [178] found that silanol groups of amorphous silica 

decreased more than 50% with respect to the initial amount after 

calcination at 600 °C. This probably means that the partial removal of 

hydroxyl group at the surface of diatoms during to calcination can 

transform hydrophilic silanol groups into hydrophobic siloxanes (≡Si-

O-Si ≡) and reduce the density of silanol groups. 
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Figure 2-11: Silicon release profile from diatom nanoparticles and 
microparticles quantified by inductively couple plasma/optical 
emission spectroscopy (ICP/OES). A) Particles derived from acid-
purified raw diatomite (AD-NPs and AD-MPs), B) Particles derived 
from acid-purified calcined diatomite (CAD-NPs and CAD-MPs). 

 

As a consequence, different amounts of silanol group at the surface 

of two types of diatomite NPs could also contribute to explain 

differences in silicon release kinetics. We suppose that NPs derived 

from acid-purified raw diatomite should (AD-NPs) presented more 

surface silanol groups than NPs derived from calcined diatomite 

(CAD-NPs). For this reason, AD-NPs should dissolve faster than 

CAD-NPs, thus leading to faster silicon release. 

2.3.7 Cytotoxicity of diatom particles 

Toxic effect of diatom particles on 3T3 cells membrane integrity 

determined by LDH assay showed a significant dependency on the 

diatomite purification routes and dose. Toxic effect of AD particles 

was generally larger than CAD particles for both elution method 

(Figure 3-12A) and direct contact method (Figure 3-12 B). In the 

elution mode, either no toxicity or negligible toxicity was observed at 

all concentrations for CAD particles. AD particles showed limited 

cytotoxicity at all the concentrations (Figure 3-12A). 

Similar results were found in direct contact mode (Figure 3-12 B). No 

cytotoxic effects were noted for CAD-NPs and CAD-MPs, except for 

CAD-MPs at the highest concentration (500 µg/ml). In addition, in 

direct contact mode AD-NPs resulted slightly cytotoxic just at the 

highest concentration, while AD-MPs presented the highest values of 

cytotoxicity for all the concentrations. However, the relative 

cytotoxicity never exceeded the value of 30%.  
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Figure 3-12: Percentage of cytotoxicity of the different groups of 
diatom particles on 3T3 cells determined with LDH assay; A) Elution 
method and B) Direct contact method. Cell cultured in reduced 
medium without any diatom sample were used as negative control 
(0% cytotoxicity), while cells treated with 0.05% Triton X-100 
surfactant were used as positive control (100% cytotoxicity). 

 

Considering dose dependency, cytotoxic effects generally increased 

following the increase of dose for both NPs and MPs. 

The presence high silanol groups in AD-supernatant could explain 

higher toxicity of AD-NPs and AD-MPs in comparison to CAD 

counterparts in the elution mode due to faster release kinetics. 

Residual organic contaminants in AD samples could also contribute 

to the relatively higher cytotoxicity of AD samples [179], [156]. 

2.4 Conclusion 

Tissue engineering strategies often relies on polymeric porous 

matrices loaded with calcium phosphate based ceramics to support 

and drive bone regeneration. However, it has also been shown that 

bone formation and maintenance occur under the regulatory control 

of various signals and elements; silicon for example is believed to be 

a critical factor in the early stages of mineralization. For this reason, 

there is a great interest in new silicon-donor ceramics. Diatomite is a 

cheap and abundant source of biogenic silica and we showed that it 

can be easily converted to silica particles with controlled size and 

chemistry. 

Here, raw diatomite and calcined diatomite powders were purified by 

acid treatment, and silica-based diatom microparticles (MPs) and 

nanoparticles (NPs) were produced by fragmentation of purified 
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diatomite under alkaline conditions. We demonstrated that the 

resulting diatom particles can undergo degradation in aqueous 

environment, thus actively releasing silicon ions. Furthermore, we 

found that silicon release kinetic was influenced by diatomite 

purification method and particle size. Diatom-derived MPs and NPs 

showed limited or no cytotoxic effect in vitro, in particular particles 

derived from calcined diatomite. The possibility to easily suspend 

nano and microparticles particles in water and in ethanol, their limited 

cytotoxicity and their silicon release ability make diatom-derived 

particles a candidate as bioactive filler for polymeric scaffolds for 

bone tissue engineering. 
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Abstract 

 

Many studies have highlighted the role of silicon in human bone 

formation and maintenance. Silicon, in fact, is considered to nucleate 

the precipitation of hydroxyapatite and to reduce the bone resorption. 

For this reason, we have combined silk fibroin with silicon releasing 

diatom particles, as potential material for bone tissue engineering 

applications. Sponges of fibroin loaded with different amounts and 

sizes of diatom particles were prepared by solvent casting-particulate 

leaching method, and their morphology, porosity, and mechanical 

properties were evaluated. The biological effect of diatom addition 

was assessed on human osteosarcoma cell line MG63, a suitable 

osteoblast-like model, through cell adhesion, metabolic activity and 

proliferation assays. In addition, alkaline phosphatase activity (ALP), 

osterix and collagen type I production in MG63 cell line were 

assessed as markers of early bone formation to demonstrate a pro-

mineralization potential of scaffolds  

Results of the studies showed that addition to fibroin of diatoms 

particles improved the osteogenic properties of osteoblast-like cells 

compared with the pure silk fibroin.  
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3.1  Introduction  

Tissue engineering consists in the combined use of scaffold and cells 

to induce tissue regeneration and repair [116]. Besides being 

biocompatible, scaffold materials must be biodegradable, possibly 

match mechanical properties and architecture of the target tissue to 

regenerate/repair, transfer and translate the biomechanical and 

biochemical signals from/to cells. Scaffolds that have been proposed 

for bone regeneration comprise ceramic materials, polymers and their 

composites [29], [147], [128], [180]–[184], [62]. Among biological 

polymers, silk fibroin has been proposed, partly thanks due to its 

excellent biocompatibility and controllable biodegradability, tunability 

of mechanical properties and of shape/architecture, as sponge, fiber, 

thin film or injectable gel [185]–[194].  

Loading silk fibroin sponges with proper supplements or growth 

factors that support osteogenesis can significantly improve 

osteoinductive properties of silk fibroin [195]–[197]. 

Various materials were proposed for osteoinduction, such as 

inorganic ceramics, metals and polymers [154], [155], [198]–[200]. 

Silicon is an abundant element in nature, which exists in oxidized 

form as water-soluble including silicic acid and sodium silicates and 

insoluble form as silicate and silica.  

Silicon is a minor constituent of the bone, less than 1% of bone dry 

weight, however it is considered to be crucial for bone formation 

[110],[152] being nucleating agent for the precipitation of 

hydroxyapatite [94]. Moreover, silicon facilitates the reduction of bone 

resorption due to regulation of osteoprotegerin (OPG) and receptor 

activator of NF-kB ligand (RANKL) markers expression [108],[153]. 

Numerous in vitro experiments proved beneficial effect of silicon on 

bone formation, for instance, silicon doped ß- tricalcium phosphate 

enhances differentiation of mesenchymal stem cells into bone tissue 

as well as osteoblast’s activity [182]; soluble silicon upregulates 

alkaline phosphatase and propyl hydroxylase enzymes activity, active 

components of bone remodeling and maturation [105], [103]; In 

addition, the presence of soluble silicon at inorganic-organic interface 

plays a key role in the formation of cross-linking between collagen 

and proteoglycans during bone formation to improve the connection 

of extracellular matrix formation [98],[95]; Furthermore, silicic acid 
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induces upregulation of bone morphogenetic protein 2 (BMP-2) and 

collagen type I expression [104], [201].  

Silicon containing materials, such as polymers composites with 

platelet silicate nanoclay, bio-glass as well as amorphous silica 

particles [195], [202], [203] have been proposed for bone tissue 

engineering. 

In the last years, attention has been addressed to bio-silica as 

promising osteoinductive additive [150], [204]. Bio-silica, is mostly 

hydrated amorphous silica, can be naturally formed by biosilicification 

of silaffin proteins (in diatoms) in presence of the silicic acid of the 

environment [10], [21]. 

The application of bio-silica synthesized from silicatein enzyme was 

recently suggested for bone tissue engineering [204]. In our previous 

study, we proved that diatom particles derived from diatom skeleton 

are non-toxic and can be used as silicon-releasing agent [205]. 

To our knowledge, bio-silica of diatom skeleton was never used as 

additive for engineered scaffolds for bone tissue engineering 

applications. 

Herein, the aim of the presented study was to investigate the in vitro 

osteoinductive properties of silk fibroin sponges loaded with diatom 

micro- and nanoparticles as silicon donors. We evaluated the effect of 

diatom-loaded (at different size and concentration) silk fibroin 

sponges versus pure silk fibroin sponges through the cell metabolic 

activity, proliferation, adhesion and the expression of bone specific 

markers such as alkaline phosphatase activity, collagen type 1 and 

osterix in MG63 human osteoblast-like cell line. 

3.2 Materials and Methods 

3.2.1 Materials 

Reagents including phosphate buffer solution (PBS), sodium 

hydroxide (NaOH), hydrochloric acid (HCl), lithium bromide (LiBr), 

Triton X-100, sodium chloride (NaCl), glutaraldehyde solution, sodium 

cacodylate trihydrate, formalin, bovine serum albumin (BSA), 4, 6 

diamidino-2-phenyindole, dilactate (DAPI), polyethylene glycol (PEG) 

and ethanol were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). 

Diatom nanoparticles (DNPs) and microparticles (DMPs) were 

obtained from purified diatom skeletons isolated from diatomaceous 
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powder (Phu Yen mineral joint stock company, Phu Yen province, 

Viet Nam) as reported in [205]. DNPs size was in the range of 50 nm 

to 300 nm as measured by dynamic light scattering (DLS) and DMPs 

ranged from 1 to 10 µm as estimated by Scanning Electron 

Microscopy (SEM). 

Silk fibroin (SF) was isolated from Bombyx mori silkworm cocoons 

(Cooperativa Sociolario, Como, Italy). 

3.2.2 Scaffold preparation 

Silk cocoons were treated twice in alkaline water baths at 98 
0
C for 

1.5 hours with 1.1 g/l and 0.4 g/l Na2CO3, respectively. Degummed 

silk was then washed several times in de-ionized (DI) water and dried 

at room temperature (RT). Fibroin was then dissolved in 9.3M LiBr (1 

g of fibroin in 10 ml of LiBr solution) at 65 
0
C for 2.5 h. The solution 

was dialyzed against DI water for 3 days at RT in a Slide-A-Lyzer 

dialysis cassette (3.5K MWCO, Pierce, Rockford, IL, USA) to remove 

LiBr salt and then against a 25% wt. PEG solution (Mn: 10000 KDa) 

to concentrate SF solution up to 7.8 – 8.3% wt. The fibroin 

concentration was measured by absorbance spectroscopy using a 

NanodropTM spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE, USA).   

Before any further use, silk fibroin solution was filtered using a 

ceramic filter (porosity < 5 μm) to eliminate impurities.  

Diatom nanoparticles (DNPs) and microparticles (DMPs) obtained 

following reference [205], were dispersed in DI water, added to 

aqueous silk fibroin solutions in different proportions and the resulting 

suspensions were mixed for homogenization for 10 min. 

The final concentration of silk fibroin in the solution was 6.2% wt. 

while the total concentration of diatom particles (DPs) was set to 

0.8% and 3.2% wt. with respect to the dry fibroin content. 

Pure SF as well as SF composite sponges with different proportions 

of DNPs and DMPs were prepared as follows. 

5 ml of aqueous silk fibroin and diatom particles suspensions were 

transferred to 60 mm petri dishes, and 11 g of NaCl (salt crystals with 

size ranging from 425 to 1180 µm) were slowly poured into the petri 

dishes and left at RT till the formation of a stable hydrogel. NaCl salt 

was then removed by repetitive washings in deionized (DI) water and 

samples were then frozen at -80 
0
C and freeze-dried overnight.  
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Before use, dried sponges were hydrated with DI water, cut to 2 x 6 

mm of height vs diameter cylinders and sterilized in autoclave at 1 

bar, 121 
0
C for 45 minutes. 

Name codes and compositions of the different samples are 

summarized in Table 3-1. 

Table 3-1: Composition of the silk fibroin/diatom particles scaffolds 

 

3.2.3 Scaffolds characterization 

A Field-Emission Scanning Electron Microscope (Supra 40, Zeiss, 

Germany) was used to observe the architecture and morphology of 

fabricated scaffolds. Prior analysis, samples were coated with Pt/Pd 

(BIO-RAD, SEM coating unit PS3, Assing S.p.a, Rome, Italy).  

The presence of diatom particles as well as their distribution was 

detected using back scattered electrons (BSE). Samples were coated 

with carbon before observation.  

Fourier Transform Infrared FTIR (Spectrum, Perkin Elmer, US) 

analysis was used to analyze sponge and diatom particles powder. 

Porosity of sponges was determined using the liquid displacement 

method. Sponges were submerged in a known volume of hexane 

(V1) for 8 minutes. The total volume of hexane with sponges (V2) 

was measured. Afterward sponges were removed and the residual 

volume of hexane (V3) was recorded. The porosity of sponges was 

calculated by the equation:  

           
     

     
      

Sample name DNPs, wt. % DMPs, wt. % 

SF 0.0 0.0 

SF-N0.8 0.8 0.0 

SF-M0.8 0.0 0.8 

SF-(N+M)0.8 0.4 0.4 

SF-N3.2 3.2 0.0 

SF-M3.2 0.0 3.2 

SF-(N+M)3.2 1.6 1.6 
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Water content of the dry scaffold was determined by using DI water 

absorption. In details, the dry scaffold known its weight was 

continuously soaked drop by drop DI water till completely wet state 

that defined its weigh did not change. The wet samples then weighed. 

The percentage of water content was given by the equation 

                
         

    
      

Young’s modulus of wet cells unseeded scaffolds was evaluated by 

compression tests performed at 37 
0
C, displacement rate 1mm/min 

up to 80% of strain, using Bose ElectroForce 3200. 

3.2.4  Cell culture 

MG63 human osteosarcoma cell line (passage 102, Istituto 

Zooprofilattico Brescia, Italy) was used to perform the in vitro studies. 

Cells were subcultured in 175 mm
2
 culture flasks as monolayer at 37 

0
C under 5% CO2 in Minimum Essential Medium (MEM) 

supplemented with 10% foetal serum bovine (FBS), 1mM non-

essential amino acid, 100 units/ mL antibiotic, 2mM glutamine and 

1mM sodium pyruvate. Medium was changed every third day till the 

cells reached 90-95% confluence.  

Sponges were placed into 48 well plates, washed with PBS and then 

conditioned with culture media for 20 minutes. Cells were seed at two 

different concentrations; 9x10
3 

and 4.5 x10
3 

per mm
2
 of sample;

 
A 

confined drop method was used to seed each concentration on the 

top of each sponge and then after 2 hours additional 400 µl of 

medium was added to each well. After 24 hours of incubation, seeded 

sponges were transferred into new plates. Cells were cultured up to 

14 days. 

3.2.4.1  Cell proliferation and metabolic activity 

Evaluation of in vitro cell metabolic activity and proliferation was 

performed 3 and 7 days after cell seeding. 

Cellular metabolic activity was measured with Alamar Blue® 

(Invitrogen, Oregon, USA) assay following the manufacture 

instructions. In brief, the culture medium was removed and replaced 

with equal volume of fresh medium with 10% of Alamar Blue® 

reagent at each experimental time point. Samples were incubated for 

2 hours with light protection, after that 100 µl of surnatant was taken 

from each sample in triplicates and transferred to 96-well plate and 
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the signal was measured with fluorescent plate reader machine (560 

nm excitation and 590 emission; Safire, Tecan, Austria).  

The proliferation rate of MG63 cells in the sponges was determined 

with DNA quantification assay with Quant-iT PicoGreen® dsDNA 

Assay Kit (Invitrogen, Molecular Probes, Oregon, USA) following the 

manufacturer's instructions. In brief, total DNA content was collected 

with 0.5ml of Triton-X 0.05%, after a short wash in PBS, and stored at 

-20 
0
C until further analysis. Prior assay all samples were thawed at 

room temperature, sonicated for 20 seconds (cycle: 1, amplitude 

40%), then diluted till the test sensitive concentration. Fluorescent 

intensity of PicoGreen-DNA complex was measured in 96-well black 

plates with a plate reader (Safire, Tecan, Austria).  A calibration curve 

was built up by using the DNA standard provided with the assay to 

correlate the fluorescent intensity to the concentration of DNA. 

3.2.4.2 Cells morphology and adhesion 

Adhered cells morphology was evaluated with FE-SEM microscope. 

At each experimental time point, samples were fixed with 2.5% 

glutaraldehydrate in cacodylic buffer 0.1 M,   incubated for 20 minutes 

at 4 
0
C, then rinsed 3 times in cacodylic 0.1 M buffer, finally 

dehydrated in a graded series of ethanol/water solutions (70, 80, 90, 

95 %) and twice in pure ethanol for 10 minutes per time. At last, 

samples were freeze-dried and, prior, FE-SEM visualization, sputter 

coated with a thin Pt/Pd layer. 

3.2.4.3 Live and dead assay 

Cells viability was evaluated at days 3 and 7 after seeding with 

confocal microscopy after staining with calcein AM and propidium 

iodide (PI) (Invitrogen, Oregon, USA). In brief, samples were 

incubated for 20 min at 37 °C with calcein (1 ul of calcein per 1ml of 

MEM), washed in PBS, exposed to the second staining with 

propidium iodide (100 ul of PI per 1ml of PBS), double washed in 

PBS and immediately visualized with confocal microscope (A1, 

Nikon). 

3.2.4.4 Immunocytochemistry 

Specific markers expression of bone formation due to osteoblast’s 

activity was evaluated with immunocytochemistry against collagen 

type I and osterix. At established experimental time points, samples 
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were washed with PBS and then fixed with 4% of PFA for 30 min at 

room temperature (RT). Subsequently samples were blocked and 

permeabilized with buffer containing 1% of BSA and 0.3% of triton X 

in PBS for 1 hour at RT, followed by staining with the diluted (1:200 in 

1% of BSA/ PBS buffer) primary antibody against collagen type I 

(ab6308- rabbit) and osterix (ab94744 - abcam, Cambridge, UK) for 

1.5 hours and washed 3 times with PBS for 5 minutes each. Then, 

samples were incubated with secondary antibodies (anti-rabbit Alexa 

Fluor 568, Molecular Probes, Grand Island, NY), diluted 1:500 in PBS 

for both osterix and collagen type I for 1 hour, triple washed with 

PBS, and finally, stained with DAPI solution (1:1000) for 5 minutes at 

RT. Before visualization with confocal laser microscope, samples 

were washed with PBS. 

3.2.4.5 Alkaline phosphatase quantification 

The alkaline phosphatase (ALP) activity was measured on the cell 

lysates. At each experimental time point, cell culture medium was 

removed and samples were washed 3 times with PBS before adding 

0.5 ml of Triton X – 0.05% in PBS per well. Samples were incubated 

for 30 minutes at room temperature (RT) and then frozen at -20 
0
C 

until all samples were collected. Before measurement, samples were 

thawed at RT and then sonicated in ice-cold water bath for 20 

seconds (cycle: 1, amplitude 40%) with a Virsonic ultrasonic cell 

disrupter (Virtis, Warmister, PA). ALP activity was measured following 

the manufacturer’s instructions (ab83371 ALP assay Fluorometric, 

Cambrige, UK) with a standard curve in the range from 0.0 to 0.4 

nmol 4-MUP. ALP concentration was measured by fluorescent 

intensity at 360/ 440 nm (Ex/ Em) using a TECAN (Austria) 

microplate reader according to the standard curve data. 

3.2.4.6 Statistical analysis 

All biological tests were performed on three samples with triplicate 

measurement for each sample whereas porosity and Young’s 

modulus were done on four samples. Data are presented as mean± 

standard error.  One way or two way of variance (ANOVA, originPro 

8.5.1) was used to evaluate significant difference among the control 

(silk fibroin scaffold) and composite scaffolds. The significant 

difference of two data sets was defined at p<0.05.  
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3.3 Results and discussion 

3.3.1 Sponge characterization 

Architecture and morphology of composite SF/DPs scaffolds as well 

as silk fibroin scaffolds are shown in Figure 3-1.  Scaffolds have a 

porous structure, with large (up to 400 microns) and small randomly 

distributed and interconnected pores, with no appreciable differences 

between silk fibroin and composite SF/ DPs sponges. 

Micrographs (Figure 3d-f) displayed on the surface of all scaffolds the 

presence of microspheres with estimated size ranging from 1 to 

10µm, with microspheres distribution and density depending on the 

sample composition. In particular, the density of microspheres 

progressively increased at increasing diatom particles concentration. 

 

Figure 3-1: a-c) Scanning electron microscopy (SEM) images 
presented three different scaffold architectures of SF– silk fibroin, SF-
(N+M) 0.8–composite comprising of 0.8% diatom particles mixed 
diatom nanoparticles (DNPs) and diatom microparticles (DMPs) and 
SF-(N+M) 3.2 – composite with 3.2% of diatom particles mixture of 
DNPs and DMPs, d-f) high magnification of SEM to observe 
difference of their structures. 

 
Microspheres formation could be due to the assembling of silk fibroin 

in aqueous solution in micelles and then into microspheres, triggered 

by the presence of diatom particles, especially at lower concentration 

of silk fibroin. The microspheres formation by the addition of DPs 

could depend on the difference of surface energy between DPs and 

silk fibroin during the dry process that may tend to increase self- 

assembly of protein. Moreover, the interaction between silicic acid 
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from diatom particles and the hydroxylated amino acids of silk fibroin 

may cause modifications in the protein assembling, similarly to what 

has been observed for collagen proteins modifications. Silk 

microspheres formation was described in literature earlier [206], 

[207]. 

Diatom particles distribution was analysed with backscattered 

electron (BSE) of FE-SEM images, diatom particles are visible as 

white spots, whereas silk fibroin matrix is grey. As predicted, no white 

domains were revealed in silk fibroin scaffold (Figure 3-2) while the 

micro white spots distribution is observed in SF/ DPs composite 

comprising of diatom microparticles and the mixture of micro particles 

and nanoparticles. DNPs were not detected with FE-SEM due to the 

limitation of magnification. Moreover, DPs in composite scaffolds 

might be randomly covered by silk fibroin. Diatom particles embedded 

on the surface of composite sponges may increase the surface 

roughness, except for diatom particles covered by silk fibroin. 

 

Figure 3-2: Diatom distribution of all groups scaffolds detected by 
using BSE of FE- SEM : a) SF- silk fibroin, b) SF-N0.8 – composite 
with 0.8% of diatom nanoparticles (DNPs), c) SF-M0.8 – composite 
with 0.8% of diatom nanoparticles (DMPs), d) SF-(N+M)0.8 – 
composite comprising of 0.8% diatom particles mixed (DNPs) and 
(DMPs), e) SF-N3.2 – composite with 3.2% of DNPs, f) SF-M3.2 – 
silk fibroin added 3.2% of DMPs and g) SF-(N+M)3.2 – composite 
with 3.2 % of DPs mixture of DNPs and DMPs, respectively. Arrows 
presented diatom particles placed in scaffolds. 

 

The protein secondary conformation and the effect of the diatoms 

particles addition on samples conformation were evaluated by 

infrared spectroscopy. Pure fibroin sponges as well all the composite 

samples showed adsorption bands at around 1622 cm
-1

 (amide I), 

1518 cm
-1

 (amide II), 1260 cm
-1

 (amide III), and the shoulder at 1265 
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cm
-1

 confirmed ß-sheet is the main secondary conformation (Figure 

3-3). Shoulder at 1690 cm
-1

 suggested that this ß-form is of 

antiparallel type [185]. The addition of diatoms nano and micro 

particles did not cause structural conformation modifications to SF, 

probably due to the major effect of NaCl salt on the protein 

organization. The feature peak related to Si-O-Si/ Si- OH of biosilica 

around 1030 cm
-1 

[28] was not visible in the composite matrices 

curves, probably due to the particles dispersion into the bulk.  

Furthermore, the signal of this peak might be decreased due to DPs 

by silk fibroin covering or embedding superficial diatom particles. 

 

 

Figure 3-3: FTIR spectra of 3 different scaffolds including SF– silk 
fibroin, SF-(N+M)0.8 – composite comprising of 0.8% diatom particles 
mixed diatom nanoparticles (DNPs) and diatom microparticles 
(DMPs) and SF-(N+M)3.2 – composite with 3.2% of diatom particles 
mixture of DNPs and DMPs. 

 

Porosity of all samples, measured with the liquid displacement 

method, ranged for all scaffolds from 85 to 87% (Table 3-2). 

However, the addition of the diatom particles appears to modify the 

assembling and structure of the scaffolds that present in the case of 

composites many areas (finding that is common to all samples) with 

fibrillar and less dense packing. 
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Table 3-2: Porosity of all scaffold groups was determined by the 
hexane replacement 

Groups SF 
SF-

N0.8 

SF-

M0.8 

SF-

(M+N)0.8 

SF-

N3.2 

SF-

M3.2 

SF-

(M+N)3.2 

Porosity, 

% 

87.3 

±1.1 

86.1 

±1.5 

86.0 

±1.4 

84.9 

±1.9 

86.2 

±18 

86.7 

±1.7 

86.0 

±1.9 

 

 

Young’s modulus of wet scaffolds was calculated from the linear 

region of stress-strain curves. The results (Figure 3-4) showed that 

elastic modulus of composite SF/ DPs scaffolds with low and high 

DPs concentration was reduced around 40% in comparison with silk 

fibroin scaffold. The decrease of the compressive elastic modulus of 

the composite scaffolds is in contrast with the well-known effect of the 

addition of micro or nanofillers on polymer materials, and can be 

explained on the basis of the modification of the polymer structure 

that has been commented when illustrating the SEM micrographs of 

Figure 3-1.   

 

 

 

Figure 3-4: Compressive elastic moduli elastic modulus of composite 
scaffolds and b) the selected of stress-strain curve in the linear region 
of silk fibroin (SF), silk fibroin loading 0.8 (SF-(N+M)0.8) and 3.2% 
(SF-(N+M)3.2) of mixture diatom particles. 
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3.3.2 Evaluation of in vitro cells bioactivity in various scaffold 

formulations 

3.3.2.1  Metabolic activity and proliferation 

The results of the conducted assays are presented in Figure 3-5. 

Metabolic activity is a complex process of cells behaviour, which will 

depend on variety of factors. Here we used Alamar Blue assay to 

evaluate cells activity combined with DNA quantification, to detect the 

proliferation rate. Based on the results of Alamar Blue assay (Figure 

3-5), there was no effect of DPs at low concentration on cell 

metabolic activity at day 3 for both concentrations of the cells seeded, 

however slight increase in the cells activity was observed in scaffolds 

with higher DPs concentration. Notably, at day 7 after seeding, a 

significant increase in metabolic activity was observed in scaffold 

groups loaded with DPs compared to silk fibroin scaffolds, especially 

at low concentration of the cell seeded. 

 

 

 

Figure 3-5: Cell metabolic activity performed by Alamar Blue® at two 
different cell seeded initially at A) 9.10

3
 cells/ mm

2
 and b) 4.5.10

3
 

cell/mm
2 

 for all groups including SF–silk fibroin, SF-N0.8 – composite 
with 0.8% of diatom nanoparticles (DNPs), SF-M0.8 – composite with 
0.8% of diatom nanoparticles (DMPs), SF-(N+M)0.8 – composite 
comprising of 0.8% diatom particles mixture of (DNPs) and (DMPs), 
SF-N3.2 – composite with 3.2% of DNPs, SF-M3.2 – silk fibroin 
added 3.2% of DMPs and SF-(N+M)3.2 – composite with 3.2 % 
mixture of DNPs and DMPs, respectively. Statistically significant 
difference compared with the control at the same time of culture was 
representative at * (p<0.05), ** (p<0.01). 
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We hypothesize that the release of silicon from diatom particles 

dissolution could contribute to the increase of cell metabolic activity 

and proliferation rate, through the activation of molecular 

mechanisms to maintain osteoblastic activity, as previous studies 

reported [103]. The presence of soluble Si could be involved in the 

expression of IGF-I factor by osteoblasts that contributed to the 

improvement of cell proliferation, as well as the inhibition of cell death 

[208]. Moreover, the changes in sponge microstructure with addition 

of diatom particles might enhance MG63 osteoblastic activity as well.   

 

 

Figure 3-6: Cell proliferation quantified by PicoGreen Kit  of two  
different cell seeded initially at A)9.10

3
 cells/ mm2 and b)4.5.10

3
 

cell/mm
2 

 for all group scaffolds including SF–silk fibroin, SF-N0.8 – 
composite with 0.8% of diatom nanoparticles (DNPs), SF-M0.8 – 
composite with 0.8% of diatom nanoparticles (DMPs), SF-(N+M)0.8 – 
composite comprising of 0.8% diatom particles mixture of (DNPs) and 
(DMPs), SF-N3.2 – composite with 3.2% of DNPs, SF-M3.2 – silk 
fibroin added 3.2% of DMPs and SF-(N+M)3.2 – composite with 3.2 
% mixture of DNPs and DMPs, respectively. Statistically significant 
difference compared with the control at the same time of culture was 
representative at * (p<0.05), ** (p<0.01) and *** (p<0.001) 

 

The effect of different scaffold formulations on cell proliferation was 

investigated with DNA quantification assay (Figure 3-6).  In general, 

cell proliferation rate on SF/DPs scaffolds increased in comparison to 

silk fibroin scaffolds. At day 3, significant upregulation in cell number 

was found in SF- M3.2, SF-(N+M)3.2 samples, in particular SF-

(N+M)3.2 scaffolds in which cell number doubled with respect to the 

control group. However, cell proliferation in all scaffolds at low 

concentration of the cells seed did not show the change. After 7 days 

of incubation, the noticeable increase in cell number was detectable 
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in all groups of composite scaffolds for both low and high 

concentrations of initial cells seeded. Results show that addition of 

diatom particles in silk fibroin sponges significantly increases cell 

proliferation rate. 

Cell proliferation results were consistent with cell metabolic activity, 

which supports the initial hypothesis of silicon effect on faster bone 

formation. These findings could provide a basic proof of the 

improvement of the silk fibroin bioactive properties with diatom 

particles supplementation. Specifically, an up-regulation of cell 

proliferation rate will be crucial to reach faster bone formation and as 

consequence maturation and matrix mineralization.   

 

3.3.2.2 Cells viability and distribution 

 

The cell viability and cell distribution on scaffolds were assessed with 

confocal laser microscopy (CLM); results are presented in Figure 3-7 

Confocal images show significant improvement of cell adhesion in all 

composite SF/DPs samples 7 days after seeding at high initial 

concentration as well as the low one, except for SF-(N+M)0.8 at the 

low initial concentration. However, at day 3 cells adhered on pure SF 

and SF composite scaffolds with lower particles content are still in 

round shape and clustered. Higher diatoms concentration induced 

changes in adhered cells morphology, that had more spindle shape, 

and started to connect each other even at the first experimental time 

point. After 7 days of culture, all composite scaffolds displayed higher 

cell adhesion and interconnections. 

The result of cell viability is consistent with cell metabolic activity and 

cell proliferation. 
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Figure 3-7: Confocal scanning laser microscopy images of cell live/ 
dead stained with calcein AM/ PI after day 3 and 7 of culture of two 
concentration of  the cells initially seeded A) 9.10

3
 and B) 4.5 10

3 
cell/ 

mm
2
 in different scaffolds including SF–silk fibroin, SF-N0.8 – 

composite with 0.8% of diatom nanoparticles (DNPs), SF-M0.8 – 
composite with 0.8% of diatom nanoparticles (DMPs), SF-(N+M)0.8 – 
composite comprising of 0.8% diatom particles mixed (DNPs) and 
(DMPs), SF-N3.2 – composite with 3.2% of DNPs,  SF-M3.2 – silk 
fibroin added 3.2% of DMPs and SF-(N+M)3.2 – composite with 3.2 
% of DPs mixture of DNPs and DMPs, respectively (scale bar = 
50µm). 
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3.3.2.3 Cell morphology and adhesion 

Proper cell adhesion supports cell functionality, proliferation and 

survival, and this process can be disrupted during cell adhesion to 

different material surfaces, thus it is critical parameters to control in 

material evaluation. Cell adhesion on SF and SF/DPs scaffolds were 

evaluated with SEM micrographs, and results are presented in Figure 

3-8 

 

Figure 3-8: SEM micrographs of cell morphology (after day 3) and 
attachment on different scaffolds after 7 day of culture at the high 
concentration of cell seeded. Red arrows depict the position of cells.  
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As can be seen, cells seemed to change their morphology from the 

round to spindle shape and communicate together in all composite 

scaffolds in comparison with the round shape in pure silk fibroin at 

day 3. The cell number and distribution was more advanced in all 

scaffolds with DPs presence after 7 days of incubation.  Moreover, 

cells in DPs/ silk fibroin scaffolds covered not only the surface of pore 

outer rings but also tended to migrate into the pores, whereas in silk 

fibroin scaffolds cells seemed to be distributed randomly without 

formation of homogeneous layers.  

It was expected to observe cells migrating in scaffolds to proliferate in 

empty areas of scaffolds. The significant improvement in cell 

adhesion could confirm the role of soluble silicon reported in previous 

literature.  

These results also support the DNA quantification assay on the 

amount of cells in the visible areas of all scaffolds. 

An enhancement of cell adhesion could be one of reasons that 

explains an increase of cells metabolic activity as well as proliferation 

rate, besides the direct effect on the molecular level of soluble silicon 

released by diatom particles dissolution on cell proliferation and 

metabolic activity, mentioned above. 

3.3.3 Bone formation markers 

3.3.3.1 Immunocytochemistry 

Osterix is an important transcription factor which triggers and controls 

osteoblasts differentiation and continues to play an essential role in 

bone maintenance [209], [210]. Moreover, osterix overexpression 

plays a crucial role in early bone formation by upregulating alkaline 

phosphatase activity and osteocalcin expression, and stimulates the 

calcification of new forming bone into mature tissue  [211]–[213]. 

Osterix expression was evaluated with CLM, and results are 

presented in Figure 3-9.   
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Figure 3-9: Confocal scanning laser microscopy images of samples 
stained with specific antibody for observation of the signal and 
organization of Osterix (red) after day 3, 7 and 14 of culture and DAPI 
for nuclei (blue) of all scaffolds (scale bar = 50 µm) 
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Osterix signal increases appreciably with incubation time and with the 

amount of added particles. After 3 days the signal is more evident in 

the sample containing 3.2 % of particles, at 7 days in all composites 

with respect to the pure fibroin scaffold, and differences flatten at the 

last experimental time point. The up-regulation of osterix expression, 

as well as its distribution in SF/DPs scaffolds, indicates an increased 

osteogenic activity, which could result in the enhancement of early 

bone formation by osteoblasts with addition of diatom particles. 

Collagen type I is the major component of bone ECM and compose 

about 80% of total protein content [214].  

We detected the expression of collagen type I already at early time 

points, mainly around the cell nuclei up to 7 days, this meaning that it 

could be protocollagen. In particular, the expression of collagen type I 

precursor in scaffolds with DPs was significantly higher than in the 

control (silk fibroin scaffold only), especially in SF-(N+M)3.2 

composite. A significant increase can be observed after 7 days of 

incubation together with the assembly of collagen into a network 

especially for the higher DPs content scaffold (Figure 3-10). 

The above results on collagen type I production and assembling are 

coherent with the previous findings on cells proliferation and 

metabolic activity.  

Moreover, the presence of soluble silicon stimulates the propyl 

hydroxylase enzyme activity, which is strongly correlated with bone 

formation and maturation, this supporting the hypothesis that the 

silicon released from DPs dissolution might trigger collagen type I 

synthesis by MG63 besides the effect of cell proliferation. 

Additionally, the interaction between collagen and proteoglycans 

[103] might improve the deposition and organization of collagen type I 

fibers produced by osteoblast-like cells. At last, the presence of silicic 

acid released from diatom particles during cell culture at low 

concentration might promote the collagen type I production as well as 

self–assembly of collagen type in fibrils due to the  interaction 

between collagen and silicon’s possibility [148]. 

The obtained experimental data suggest that DPs, in particular at 

higher concentration, boost cell proliferation rate at early time points 

and up-regulate the  early bone markers osterix  and collagen type I 

production and organization. 
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Figure 3-10: Confocal scanning laser microscopy images of samples 
stained with specific antibody for observation of the signal and 
organization of collagen type I (red) occurred after day 3, 7 and 14 of 
incubation and DAPI for nuclei (blue) of all scaffolds (scale bar = 
50µm). 
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3.3.4  Alkaline phosphatase quantification 

Alkaline phosphatase (ALP) is the central player in the process of 

osteogenesis. ALP level and activity are considered as a classical 

early osteogenic marker, particularly used in in vitro experiment as 

predictor of bone maturation and mineralization process [215], [216]. 

The results of ALP activity in MG63 seeded in SF or composite 

scaffolds within 14 days of culture are presented in Figure 3-11. ALP 

production increased with incubation time for all scaffolds, being 

always higher for composites with respect to the pure fibroin material. 

A sudden increase could be detected in composite scaffolds at 7 

days, and even more at 14 days of incubation, where the values are 

three times higher than for pure fibroin. 

 

 

Figure 3-11:  The effect of scaffold formulations on alkaline 
phosphatase (ALP) activity induced by MGG3 during 3, 7 and 14 
days of culture showed the upgrading of ALP activity with the 
presence of diatom particles (DPs) on scaffolds, compared with silk 
fibroin scaffold – SF. Significant difference was representative at * 
(p<0.05), ** (p<0.01) and *** (p<0.005), compared with the control at 
the same time of culture. 

 

The noticeable up-regulation of total ALP amount in composite 

SF/DPs scaffolds could be explained by the known bioactivity of silica 

as an osteogenic agent. Moreover, the release of silicon from DPs 
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dissolution might participate in enhancing ALP production in 

osteoblasts, which can be combined with the significant increase of 

cell proliferation with the addition of diatoms. The obtained results are 

in agreement with the previous findings about the soluble silicon 

function on osteoblastic differentiation, especially the increase of 

alkaline phosphatase activity. 

3.4 Conclusion 

In conclusion, we demonstrated the improvement of bioactivity of 3D 

fibroin scaffolds loaded with diatom particles for bone regeneration 

application. As reported, scaffold characterization, including 

morphology, porosity, elastic modulus as well as structure by FTIR 

and biological evaluation of diatom particles/ silk fibroin scaffold were 

performed and compared to silk fibroin scaffold.  

Significant up-regulation of collagen type I and osterix signals as well 

as amount of ALP enzyme were detected. 

Based on above results on the biological activities of- from 

osteoblast-like MG63 cell line, we conclude that diatom particles can 

supplement silk fibroin scaffolds to support osteoblast activity, 

adhesion and proliferation.  

We propose the addition of DPs to silk fibroin sponges, as a method 

to induce osteogenesis and to promote early bone formation. 

So far, the combination of silk fibroin and DPs can be considered as a 

new system for bone tissue engineering 
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Chapter 4: Osteoinductive Silk fibroin/ Diatom Particles 
Scaffold for Bone Tissue Regeneration 

 

 

This chapter was collaborated with Dr. Volha Liaudanskaya 

 

Abstract 

 

Loss of bone function constitutes a serious disability for a high 

number of patients, especially osteoporosis in older people. To date, 

bone regeneration remains a very challenging method to recover the 

lost function, but still requires materials and procedures not 

consolidated yet. We have demonstrated that diatom particles can be 

used as osteogenic additives to improve the bioactivity of silk fibroin 

scaffolds. Here, we investigated the osteoinduction promoted by 

diatom particles in silk fibroin scaffolds to induce bone tissue 

regeneration.  

The addition of diatoms improved ALP induction, earlier formation of 

fibronectin and production of collagen type I in human mesenchymal 

stem cells cultures, compared to a control system.  

 

4.1 Introduction 

Bone healing is an active process to recover skeletal formation in 

human body after suffering from fracture or disease. This process can 

be facilitated by three main components of tissue engineering 

including scaffold materials, cells  and bioactive factors [217]. Up to 

date, for bone graft application, biomaterials are required to be not 

only osteoconductive but also osteoinductive to strongly support and 

induce cell differentiation in osteogenic cells for the  synthesis of new 

bone [218], [219]. 

As already told, silk fibroin is an excellent candidate for bone tissue 

engineering due to biocompatibility and controllable biodegradability, 

tunable mechanical properties and manufacturability, being moreover 

osteoconductive [123], [189], [192]. However, silk alone has limited 

osteoinductive properties for bone formation [220]. Therefore, the 

incorporation of appropriate inorganic particles able to promote 
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osteoinduction in SF scaffolds could help to achieve a successful 

bone regeneration pathway. 

Amongst various inorganic osteoinductive particles such as titanium 

oxide, calcium phosphate, hydroxyapatite particles [146],[202], 

biomaterials containing silicon can trigger bone formation due to 

silicic acid released from them. In the previous chapter, we elucidated 

that diatom particles, as a potential source of silica incorporated in 

silk fibroin, up-regulate bioactivity of osteoblast-like cell and promote 

earlier new bone formation.  

The induction of osteogenesis by a bone graft is a critical point for a 

fast and successful bone healing process [221]–[223]. 

The aim of present study was to evaluate the induction of 

osteogenesis, i.e. osteoinduction, of silk fibroin loaded diatom-

particles scaffolds. Herein, scaffold osteinductive ability was 

evaluated with human mesenchymal stem cells (hMSC), in two 

different culture media including expansion and osteogenic 

differentiation medium. 

4.2 Materials and methods 

4.2.1 Materials 

Silk fibroin solution, diatom particles and method of scaffold 

fabrication have been presented in the chapter 3. In this chapter, we 

fabricated two groups of porous scaffolds fabricated by a salt 

leaching method: silk fibroin alone (the negative control) and silk 

fibroin loaded with 3.2% by weight of diatom 

nanoparticles/microparticles (SF-(N+M)3.2).  

Scaffolds were cut into cylinders 2 x 6 mm of height vs. diameter, and 

autoclaved at 1 bar, 121˚C for 45 minutes before use. 

Reagents including phosphate buffer solution (PBS), sodium 

hydroxide (NaOH), hydrochloric acid (HCl), lithium bromide (LiBr), 

Triton X-100, sodium chloride (NaCl),  formalin, bovine serum 

albumin (BSA), 4, 6 diamidino-2-phenyindole, dilactate (DAPI), 

polyethylene glycol (PEG) and ethanol were purchased from Sigma-

Aldrich (St. Louis, MO, USA). 

4.2.2 Cell culture  

Human mesenchymal stem cells (hMSC) were subcultured in 175 

mm
2
 culture flasks coated with collagen in Dulbecco's Modified Eagle 
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Medium (DMEM) supplemented with 20% of foetal bovine serum 

(FBS), 1% of penicillin/ Streptomycin (P/S), at 37˚C with 5% CO2 . 

Medium was changed every three days till cells reached around 80% 

of confluence.  

Before seeding cells, scaffolds were placed into a 48-wells plate and 

conditioned with 400µl of expansion medium for 30mins, then dried 

under hood for 1.5 hours. Afterwards, aliquots of media (30µl) 

containing 10
5
 cells were seeded on the top of each scaffold, 

incubated under hood for 1.5 hours, and then added with 400 µl of 

expansion medium into each well. After 24 hours, seeded scaffolds 

were transferred into a new plate and added with two different media:  

DMEM with 10% of FBS, 0.1µM of dexamethasone (Sigma- Aldrich), 

10mM of ß-glycerophosphate, 50µM Ascorbic acid (differentiated 

media) and expansion medium. Cells were cultured up to 21 days. 

Both differentiation and expansion media were carefully changed 

every three days until the testing point. 

4.2.3 In vitro experiment 

4.2.3.1  Cell proliferation 

The proliferation rate of MG63 cells in the sponges was determined 

with DNA quantification by using Quant-iT PicoGreen® dsDNA Assay 

Kit (Invitrogen, Molecular Probes, Oregon, USA) following the 

manufacturer's instructions. In brief, total DNA content was collected 

with 0.5ml of Triton-X 0.05%, after the short wash in PBS. All the 

DNA samples were stored at -20 
0
C before quantification. Prior 

assay, all samples were thawed at room temperature and sonicated 

for 20 seconds (cycle: 1, amplitude 40%). After, DNA was diluted to 

the suitable concentration and PicoGreen was used for quantification. 

Fluorescent intensity of PicoGreen-DNA complex was measured in 

96-well black plates with a plate reader (Safire, Tecan, Austria).  A 

calibration curve was built up by using the DNA standard provided 

with the kit to correlate the fluorescent intensity to the concentration 

of DNA in the studied samples. 

4.2.3.2 Immunocytochemistry 

Immunocytochemistry against fibronectin and collagen I was used to 

evaluate the potential differentiation of hMSCs. At every tested time 

points of cell culture, samples were taken, washed with PBS (without 
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Ca
2+

 and Mg
2+

) and then fixed with 4% of formalin for 30 min at room 

temperature (RT). Subsequently, samples were blocked and 

permeabilized with buffer containing 1% of BSA and 0.3% of triton X 

in PBS for 1 hour at RT, stained with the diluted (1:200 in 1% of BSA/ 

PBS buffer) primary antibody against collagen type I (Meridian Life 

Science, Saco, ME, USA) and fibronectin (ab23751 - abcam, 

Cambrige, UK) overnight at 4
0
C and triple washed with PBS for 10 

minutes each. Then, samples were incubated with secondary 

antibodies (anti-rabbit Alexa Fluor 568, Molecular Probes, Grand 

Island, NY) diluted 1:500 in PBS for both fibroinectin and collagen 

type I for 1 hour, followed by triple washing with PBS. Finally, the 

samples were incubated with DAPI solution (1:1000) for 10 minutes 

at RT. Samples were washed with PBS before visualization acquired 

with the confocal laser microscope. 

4.2.3.3  Alkaline phosphatase quantification 

The alkaline phosphatase (ALP) activity was measured on the cell 

lysates. At each experimental time point, cell culture medium was 

removed and samples were washed 3 times with PBS before adding 

0.5 ml of Triton X – 0.05% in PBS per well. Samples were incubated 

for 30 minutes at room temperature (RT) and then frozen at -20
0
C 

until all samples were collected. Before measurement, samples were 

thawed and sonicated on ice for 20 seconds (cycle: 1, amplitude 

40%) with a Virsonic ultrasonic cell disrupter (Virtis, Warmister, PA). 

ALP activity was measured following the manufacturer’s instructions 

(ab83371 ALP assay Fluorometric, Cambrige, UK) with a standard 

curve in the range from 0.0 to 0.4 nmol 4-MUP.  ALP concentration 

was measured by fluorescent intensity at 360/ 440 nm (Ex/ Em) using 

TECAN (Austria) microplate reader according to the standard curve 

data. 

4.2.3.4 Statistical analysis 

All biological tests were performed on three samples with triplicate 

measurement for each sample. Data are presented as mean ± 

standard error.  One way or two way of variance (ANOVA, originPro 

8.5.1) was used to evaluate significant difference among the control 

(silk fibroin scaffold) and composite scaffolds. The significant 

difference of two data sets was defined at p<0.05. 
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4.3 Results and discussion 

4.3.1 Cell proliferation 

Human mesenchymal stem cells require an appropriate cell numbers 

to differentiate. Cell proliferation was determined by using DNA 

quantification assay presented in Figure 4-1. In general, the addition 

of diatom particles did not show any effects on hMSCs proliferation in 

both media; though, a statistically significant increase of cell number 

was found in composite scaffold loaded with diatom particles at day 

21 in expansion medium. 

 

Figure 4-1: Cell proliferation in expansion and differentiated medium 
up to 21 day of culture of two scaffold groups, pure silk fibroin (SF) 
and silk fibroin loading 3.2% of diatom particles mixed nanoparticles 
and microparticles. Statistically significant difference compared with 
the control at the same time of culture was representative at * 
(p<0.05). 

 

A slight difference of the cell proliferated behaviour was showed in 

different media. Particularly, the numbers of retained cells in two 

groups of scaffolds progressively increased during the cell growth in 

the expansion medium while differentiation medium enhanced the 

hMSCs proliferation up to day 14 of culture, with no further increase 

detected at day 21. Surprisingly, the number of retained cells in all 

scaffolds in both media was, in fact, smaller than that of cell seeded, 

10
5
 cells, at the starting point. 

However, the effect of silicon released from composite scaffolds was 

quite evident in the expansion medium, as previous literature 

reported [224]. In the differentiation medium the effect is less clear, 

since osteogenic differentiating agents such as dexamethasone could 

trigger the proliferation rate of hMSCs.  
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4.3.2 Immunocytochemistry 

Fibronectin (FN) is a major component of extracellular matrix, which 

is a crucial factor inducing bone cell differentiation. FN is the earliest 

proteins synthesized by osteoblast [225],[226]. Moreover, the 

presence of insoluble FN may facilitate physiological processes of 

bone healing including angiogenesis, thrombosis, inflammation [227]. 

FN expression was examined by CLM, and results are presented in 

Figure 4-2. 

 

Figure 4-2: Confocal scanning laser microscopy images of samples 
stained with specific antibody for observing fibronectin (green) 
synthesized after day 7, 14 and 21 of hMCSs incubation and DAPI for 
nuclei (blue) of two groups of scaffold; SF– pure silk fibroin, and SF-
(N+M) 3.2 – silk fibroin loading 3.2 % of diatom particles combined of 
nanoparticles (DNPs) and microparticles DMPs (scale bar = 50µm) in 
two different medium. The arrows may show the region of bone 
lacunae. 

 

In both media, results showed that FN was obviously observed at the 

first time point and highly expressed at day 14, but decreased at the 

last time point. 

In particular, in expansion medium, FN expression in SF-(N+M)3.2, 

both signal and distribution at day 7, are higher if compared to the 
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negative control. No more difference of FN was observed in 

expansion medium at day 14 as well as day 21 of culture.  

FN expression of pure and composite scaffold in differentiation 

medium behaves like expansion. The FN expression in the composite 

sample was higher than in pure silk fibroin at the day 7. However, FN 

expression in silk fibroin scaffold seemed to be higher in distribution 

and signal, compared to composite scaffold at day 14. 

 

It is known that type I collagen accounts for 80% of bone ECM 

proteins, which can be synthesized by osteoblasts during the bone 

development [228].  

 

Figure 4-3: Confocal scanning laser microscopy images of samples 
stained with specific antibody for observing collagen type I (red) 
synthesized after day 7, 14 and 21 of hMCSs incubation and DAPI for 
nuclei (blue) of two groups of scaffold; SF– pure silk fibroin, and SF-
(N+M) 3.2 – silk fibroin loading 3.2 % of diatom particle combined 
nanoparticles (DNPs) and microparticles DMPs (scale bar = 50µm) in 
two different medium. 

 

The obtained results indicated that collagen I expression in term of 

distribution and signal in composite scaffolds is generally much 
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higher than in pure silk fibroin in both culture conditions. Distribution 

and signal seemed to be reduced in the day 21 (Figure 4-3). 

The explanation could be that the silicon ion released from composite 

scaffold during cell culture is able to increase hMSCs proliferation 

and differentiation of hMSCs into osteoblasts, that significantly 

improved the synthesis of collagen type I [105], [224]. The result of 

collagen expression is in agreement with the strong effects of soluble 

silicon on the bone formation reported by the previous literature [103]. 

The decrease of collagen expression at day 21 could be due to the 

mineralization of collagen, that we have tried to evaluate.  

However, the assay was unsuccessful because fibroin masked the 

signal.  

4.3.3 Alkaline phosphatase quantification 

It is known that alkaline phosphatase (ALP) plays an important role 

on the osteogenesis process which occurs during bone maturation 

amongst the major osteogenic hallmarks. Therefore, ALP behaviour 

has been used as biomarker to monitor bone formation process [216], 

[229]. 

 As shown in the Figure 4-4, ALP production gradually increased 

during 21-day of culture in expansion medium. Moreover, as 

expected, the addition of diatom particles into silk fibroin scaffold 

induced higher ALP amounts. 

 

Figure 4-4: Quantification of alkaline phosphatase activity induced by 
hMSCs seeded into two different scaffolds; pure silk fibroin (SF) and 
silk fibroin loading 3.2% of diatom particles mixed nanoparticles and 
microparticles; up to 21 day in expansion and differentiated medium, 
respectively. 
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In differentiated medium ALP activity presented a maximum after 14 

days, then decreasing at day 21, accordingly with the findings already 

reported about cell proliferation. 

We hypothesize that the release of silicon from DPs dissolution may 

contribute to the ALP production. This has been previous reported in 

the case of osteoblasts [208]. Together with the activity of soluble 

silicon, differentiation media could also trigger earlier ALP production 

[224], [229].  

 

 

4.4 Conclusion 

Consequently, in this chapter, we preliminary demonstrated that the 

silk fibroin loaded diatom particles improved differentiation potential of 

hMSCs regarding earlier fibronectin and collagen type I formation as 

well as increased ALP production, compared to the control.  

The conducted study could provide proofs for diatom particles 

application as promising osteoinductive additives for bone healing. 
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Final Conclusion 
 

 

The novelty of our work is in the use of diatom particles–derived from 

natural fossil diatom skeletons as a silicon donor triggering bone 

formation in scaffolds suitable for bone tissue regeneration.  

Thesis aimed to profoundly understand the produced materials 

throughout various methods such as electron scanning microscope 

(SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy 

(XPS) and transmission electron microscope (TEM). 

Diatom microparticles and nanoparticles were successfully produced. 

These particles showed potential biomedical use displaying limited or 

absence of toxicity in in-vitro up to 500 µg/ml of concentration as 

determined by lactate dehydrogenase (LDH) assays.  

The silicon ion release from diatom particles dissolution that was 

evaluated by inductively coupled plasma optical emission 

spectrometry (ICP/OES), provided strongly supporting evidence for 

possible application of diatoms on bone regeneration as silicon 

donors. 

In order to access bone tissue application, silk fibroin loaded with 

diatom particles with different amount and size was used to fabricate 

3D scaffolds by using the salt leaching method. The effect of diatom 

particles on scaffold properties was studied in terms of morphology, 

porosity, structure, mechanical properties and biological main 

features.  

In biological evaluations with osteoblast-like cells MG63, we found 

that silk/ diatom particles scaffold significantly enhanced cell 

metabolic activity (Alamar Blue® assay),  proliferation rate (Quant-iT 

PicoGreen® dsDNA Assay), viability and distribution (calcein AM and 

propidium iodide staining). Furthermore, triggering of early bone 

formation determined throughout alkaline phosphatase induction 

(ALP fluorometric assay) and collagen type I and osterix expression 

(immunocytochemistry staining) was found in composite silk/ diatom 

particles scaffold in comparison to silk alone. 

Following the obtained result in osteoblast-like cells, we investigated 

the effect of the developed silk/ diatom particles systems on human 

mesenchymal stem cells (hMSCs) cultures. We established that 

diatom particles addition improved ALP activity and collagen type I 
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expression and triggered earlier formation of fibronectin compared to 

pure silk fibroin.  

In other words, silk/ diatom particles induced differentiation of human 

mesenchymal stem cells. 

This work, overall, introduced a new promising biomaterial system for 

bone tissue regeneration.  

In perspective, mineralization should be evaluated; moreover, further 

studies in vivo are necessary to fully prove the beneficial effect of the 

addition of diatom particles to silk fibroin scaffolds on bone healing. 

On the other hand, deeper studies about the interaction between 

diatom particles and silk fibroin at molecular level should be 

performed to better understand the effect of diatom particles addition 

on scaffold topography and silk conformation.  
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