
UNIVERSITY OF TRENTO

DEPARTMENT OF MATHEMATICS

PHD IN MATHEMATICS

XXVIII CYCLE

Cyclic Codes: Low-Weight Codewords
and Locators

Author:
Claudia TINNIRELLO

Advisor:
Prof. Massimiliano SALA

Head of the Doctoral School:
Prof. Valter MORETTI

March 2016

To Pietro, and to my family

Contents

1 Introduction 1
1.1 Objectives and Contributions . 1

1.1.1 Finding Low-weight codewords . 1
1.1.2 Decoding cyclic codes . 2

1.2 Thesis Organization . 3

I Preliminary results 5

2 Algebraic and Complexity Background 7
2.1 Modular Arithmetic . 7
2.2 Some Notions in Complexity Theory . 8

2.2.1 Basic notions . 8
2.2.2 Theory of NP-Completeness . 10

2.3 Basic Notions in Finite Fields . 12
2.4 Linear Recurring Sequences . 17
2.5 Discrete Logarithms . 18

2.5.1 Computing Discrete Logarithms . 19
2.5.2 Zech Logarithm Table . 22

3 Decoding Problem for Cyclic Codes 25
3.1 An overview on error correcting codes . 25
3.2 Linear Codes . 28

3.2.1 Basic definitions . 28
3.2.2 Decoding Linear Codes . 31

3.3 Cyclic Codes . 33
3.3.1 Basic definitions . 33
3.3.2 Decoding Cyclic Codes . 37

4 Correlation Attacks on LFSR-based Stream Ciphers 49
4.1 Preliminaries . 49

4.1.1 Basic notions in Cryptography . 49

i

4.1.2 Boolean functions . 50
4.1.3 Birthday Problem . 52

4.2 Stream ciphers . 55
4.2.1 Standard properties of keystream sequences 55
4.2.2 LFSR-based stream ciphers . 57

4.3 Correlation attacks on LFSR-based stream ciphers 59
4.3.1 Correlation attacks . 60
4.3.2 Fast correlation attacks . 61

II Main results 65

5 Discrete logarithm-based approach for fast correlation attacks 67
5.1 Strategy and preliminary results . 67
5.2 The algorithm . 72

5.2.1 Description of Algorithm 3 . 72
5.2.2 Complexity estimates . 74

5.3 Significant Examples . 77

6 On the shape of the general error locator polynomial 79
6.1 A new representation of the locator polynomial 79
6.2 Sparse locators for some classes of codes with t = 2 83
6.3 Sparse locators for some classes of codes with t = 3 90
6.4 On the complexity of decoding cyclic codes 98

6.4.1 Complexity of the proposed decoding approach 98
6.4.2 Comparison with other approaches . 101

III Appendices 105

A Some tables 107

B Some MAGMA codes 109
B.1 Implementation of the Algorithm 3 . 109
B.2 Binary cyclic codes with t = 3 . 114
B.3 Some classes of binary cyclic codes presented in Chapter 6 117

Bibliography 120

ii

Introduction

Error correcting codes has become an integral part of the design of reliable data transmis-
sions and storage systems. Their employment in these applications provide mechanisms for
the detection and correction of errors. Error correcting codes are also playing an increasingly
important role for other applications such as the analysis of pseudorandom sequences and the
design of secure cryptosystems. Cyclic codes form a large class of widely used error correct-
ing codes, including important codes such as the Bose-Chaudhuri-Hocquenghem (BCH) codes,
quadratic residue (QR) codes and Golay codes. Cyclic codes were studied first by E. Prange
in 1957 [Pra57], who discovered their rich algebraic structure. Their extensive employment in
real-life applications is due to two main aspects: they offer powerful error detection and cor-
rection capabilities and possess algebraic properties permitting the use of simplified processing
procedures and a much easier investigation when compared to non-cyclic codes. For instance,
the encoding of data into cyclic code words can easily be achieved in hardware using a simple
linear feedback shift register. Currently, the main drawback of cyclic codes is the lack of an
efficient decoding algorithm for them.

1.1 Objectives and Contributions

This thesis is devoted to two problems arising in the study of cyclic codes: finding low-
weight codewords and decoding. In the rest of this section we briefly describe where our con-
tribution is positioned and point out the main results of the thesis.

1.1.1 Finding Low-weight codewords

Computing efficiently low-weight codewords of a cyclic code is often a key ingredient
of correlation attacks to LFSR-based stream ciphers. Correlation attacks were introduced by
Siegenthaler in [Sie85] to cryptanalyze a large class of stream ciphers based on LFSRs. A ma-
jor improvement by Meier and Staffelbach [MS89] led to different versions of fast correlation
attacks [CT00, JJ99b, CJS01]. These attacks try to find a correlation between the output of the
stream cipher and one of the LFSRs on which it is built, then they try to recover the state of the
LFSR by decoding the keystream as a noisy version of the LFSR output. A fast version of a
correlation attack involves the precomputation of multiple parity checks of one of the LFSRs in
order to speed up the computation. This precomputation step can be performed according to two

1

Chapter 1. Introduction

different approaches, one based on the birthday paradox [CJM02] and another based on discrete
logarithms [DLC07]. A cipher like E0 ([GPS04]) is not immediately subject to these types of
attacks, since no apparently single LFSR is correlated to the keystream output. In [LV04], Lu
and Vaudenay introduced a new fast correlation attack (often called faster correlation attacks)
which is able to successfully recover the state of E0. Their attack requires a different precompu-
tation step which computes a single parity check of multiple LFSRs. Since the data complexity
of the attack is bounded from below by the degree of the parity check, one tries to find a parity
check of degree less than a target degree. The complexity of their precomputation step is not far
from the complexity of their full attack, and they employed the generalized birthday approach
presented in [Wag02]. In Chapter 5 an alternative approach for solving this problem based on
discrete logarithms is described. In some interesting cases our algorithm has a time complexity
comparable to the generalized birthday approach, while having a much lower memory com-
plexity (i.e. O(1)). These cases are relevant to faster correlation attacks to a class of stream
ciphers (including the Bluetooth cipher E0) and when the polynomial is the product of many
irreducible factors. The design of the new algorithm has been published [PST16].

1.1.2 Decoding cyclic codes

In the last fifty years many efficient bounded-distance decoders have been developed for
special classes of cyclic codes, e.g. the Berlekamp-Massey (BM) algorithm ([Mas69]) designed
for the BCH codes. Although BCH codes can be decoded efficiently, it is known that their de-
coding performance degrades as the length increases ([LW67]). Cyclic codes are not known to
suffer from the same distance limitation, but no efficient bounded-distance decoding algorithm
is known for them (up to their actual distance).
In [OS05] Orsini and Sala introduced the general error locator polynomial and presented an
algebraic decoder which permits to determine the correctable error patterns of a cyclic code
in one step. They constructively showed that these polynomials exist for any cyclic code (it
is shown to exist in a Gröbner basis of the syndrome ideal), and gave some theoretical results
on the structure of such polynomials in [OS07], without the need to actually compute a Gröb-
ner basis. They also provide a structure theorem for these locators for a class of binary cyclic
codes, which has been generalized by Chang and Lee [CL10] for binary cyclic codes that could
be defined by only one syndrome. In Chapter 6 a generalization of this result is showed, along
with several results for infinite classes of binary cyclic codes with t = 2 and t = 3. From these,
a theoretically justification of the sparsity of the general error locator polynomial is obtained
for all binary cyclic codes with t ≤ 3 and n < 63, except for three cases where the sparsity is
proved by a computer check. We study some consequences of these results to the understanding
of the complexity of bounded-distance decoding of cyclic codes.

2

1.2. Thesis Organization

1.2 Thesis Organization

The remainder of the thesis is structures in three parts.

Part I: Background

In this part we aim to introduce and motivate our research objectives. We also provide some
preliminary results which we will use in Part II. This part does not contain original contributions.
It is organized as follows:

Chapter 2

In this chapter we review some well-known results in arithmetics, in complexity theory and
in finite field theory that will be used along the thesis. Particular focus is directed towards
fundamental properties of polynomials over finite fields and discrete logarithms computation.

Chapter 3

In this chapter the study of error correcting codes is introduced. Basic properties of linear
codes are presented, and it is discussed the complexity of the decoding problem for these codes.
The algebraic structure of cyclic codes is described and the problem of decoding cyclic codes
is addressed. Established decoding techniques for BCH codes are presented along with their
complexity. Finally, general error locators for cyclic codes are introduced, and it is discussed
some promising properties of these locators for decoding cyclic codes.

Chapter 4

In this chapter basic notions in Cryptography and current algorithms for solving the Gen-
eralized Birthday Problem are briefly reviewed. Some basic properties of LFSR-based stream
ciphers, their security level and the standard procedures for achieving a good level of security
are described. Finally, correlation attacks and fast correlation attacks on LFSR-based stream
ciphers are introduced.

Part II: Contributions

This part is devoted to our original results. It is organized as follows:

Chapter 5

In this chapter we describe an algorithm based on discrete logarithms for finding low-weight
polynomial multiples of binary polynomials. First, the general strategy behind the algorithm is
described and it is shown the algebraic results on which the algorithm is based. Then, the de-
tails of the algorithm are explained along with a comparison of its complexity to the generalized

3

Chapter 1. Introduction

birthday approach and to the straightforward generalization of the discrete log approach for the
case of a single primitive polynomial. Significant examples of our approach are outlined in the
final part of the chapter, where we show that for the fast correlation attack in [LV04] our algo-
rithm could be more convenient to use in the second precomputation step than the generalized
birthday approach, and that the method we propose is substantially better than the generalized
birthday approach in the case where the polynomial can be decomposed in several irreducible
factors, each one of degree less than 20. This chapter is based on a journal publication [PST16].

Chapter 6

In this chapter we deal with some issues concerning the efficiency of the Orsini-Sala bounded-
distance decoding algorithm based on general error locators for cyclic codes. A new result on
the structure of the general error locator polynomial for a class of cyclic codes is obtained, and
it is shown sparse general error locator polynomials for infinite classes of binary cyclic codes
with error correction capability t ≤ 3, adding theoretical evidence to the sparsity of this locator
for infinite classes of codes. Finally, the complexity of bounded-distance decoding of certain
classes of cyclic codes is studied.

Part III: Appendices

This part contains two appendices.

• Appendix A includes two tables. The first table lists the binary cyclic codes with t = 3

and n < 63, while the second table reports a general error locator polynomial for binary
cyclic codes with t = 3 and n = 55.

• Appendix B includes the Magma code implementing the algorithm in Chapter 5 and other
procedures written in the Magma language that were used for obtaining the numerical
results presented in Chapter 6 and in Appendix A.

4

Part I

Preliminary results

5

Algebraic and Complexity Background

In this chapter we fix some notations and report well-known results in arithmetics, in com-
plexity theory and in finite field theory that will be used along the thesis.
For this chapter definitions and results are mainly from [LN97, Knu81, GJ79, MP13, MM07,
MBG+13, Mor03].

2.1 Modular Arithmetic

In a Euclidean ring, we denote by a mod c the remainder of the division of a by c. We
write a ≡ b (mod c) if a is congruent to b modulo c. We denote by LCM and GCD the
Least Common Multiple and the Greatest Common Divisor — respectively — of polynomials
or integers, depending on its inputs.

Definition 2.1.1. Let a and n be integers with n > 0 and GCD(a, n) = 1. The smallest positive
integer k with ak ≡ 1 mod n is called the multiplicative order of a modulo n and is denoted by
ordn(a).

Note that, as a consequence of Euler’s theorem, ordn(a) always divides ϕ(n), ϕ being the
Euler’s function.

Definition 2.1.2. Let a and n be positive integers with GCD(a, n) = 1, and let i be an integer
with 0 ≤ i < n. The set

Ci = {i, ia, ia2, . . . , ias−1},
where s is the smallest positive integer with ias ≡ i (mod n), is said the cyclotomic coset of a
(or a-cyclotomic coset) modulo n containing i.

The distinct a-cyclotomic cosets modulo n partition the set of integers

[0, n− 1] := {0, 1, . . . , n− 1}.

A subset {i1, . . . , is} of [0, n−1] is called a complete set of representatives of cyclotomic cosets
of a modulo n if Ci1 , . . . , Cis are distinct and

⋃s
j=1Cij = [0, n − 1]. Note that ordn(a) is the

size of the a-cyclotomic coset C1 modulo n.

Next theorem is a basic result of Modular Arithmetics which provides an often-used tech-
nique to replace arithmetic on large integers with operations over small integers.

7

Chapter 2. Algebraic and Complexity Background

Theorem 2.1.3 (Chinese Remainder Theorem). Let m1,m2, . . . ,mr be positive integers which
are relatively prime in pairs, i.e.

GCD(mj,mk) = 1 when j 6= k.

Let m = m1m2 · · ·mr, and let a, u1, u2, . . . , ur be any integers. Then, there is exactly one
integer u which satisfies the conditions

a ≤ u < a+m, u ≡ uj (mod mj), 1 ≤ j ≤ r.

We are interested in the following generalization of Theorem 2.1.3.

Theorem 2.1.4 (Generalized Chinese Remainder Theorem). Let m1,m2, . . . ,mr be positive
integers. Let m = LCM(m1,m2, . . . ,mr), and let a, u1, u2, . . . , ur be any integers. Then, there
is exactly one integer u which satisfies the conditions

a ≤ u < a+m, u ≡ uj (mod mj), 1 ≤ j ≤ r

provided that
ui ≡ uj (mod GCD(mi,mj)), 1 ≤ i < j ≤ r.

We will denote by CRT(u1, u2, . . . , ur,m1, . . . ,mr) the result of applying the (Generalized)
Chinese Remainder Theorem to integers ui and moduli mi.

2.2 Some Notions in Complexity Theory

In this section we recall some notions from computational complexity theory. Since it is not
within our scope to deal with details of computational complexity, most of our definitions will
be informal. For more details we refer the reader to [GJ79].

2.2.1 Basic notions

The goal of computational complexity theory is to measure the difficulty of problems. By
a problem, we mean a general question to be answered. A problem whose answer, or solution,
is “yes” or “no”, is called a decision problem. A problem usually possesses several parameters
whose values are left unspecified. An instance of a problem is achieved by specifying values
for those parameters.

Example 2.2.1. Consider the following problem

Problem (PRIME)

Input: An integer n ≥ 2

Question: Is n prime?

The problem PRIME is an example of decision problem having one parameter n. An instance
of this problem is obtained by specifying a value for n.

8

2.2. Some Notions in Complexity Theory

Notice that, given a problem, there are many ways in which its instances can be described.
We assume that for each problem one particular way has been chosen in advance. The func-
tion which maps the problem instances into the strings describing them is called the encoding
scheme of the problem. The input length for an instance I of a problem Π is defined to be the
number of symbols in the description of I obtained from the encoding scheme for Π.
A general step-by-step procedure, solving a problem, in a finite number of steps is called an
algorithm.
The difficulty of a problem is measured by examining algorithms to solve it. The (worst-case)
time complexity for an algorithm expresses its time requirements by giving, for each possible
input length, the largest amount of time needed by the algorithm to solve a problem instance of
that size. The time complexity function of an algorithm is usually denoted by T (n), with n the
input length.
Note that, depending on the assumptions, may be necessary consider separately the space com-
plexity of an algorithm, which is the number of registers used in the course of the algorithm.
This is not essential for single-tape Turing machine, whose running time combines the time and
memory complexity. A very significant fact about Turing machines is that any algorithm can
be modeled by a Turing machine program. However, for a general algorithm writing such a
program is a notably time-consuming task.

Different algorithms may have very different time complexity functions. One would like
to characterize which of these algorithms are “too inefficient”, or “ intractable”, and which are
“tractable”. Computer scientists recognize a simple distinction that offers considerable insight
into these issues.

Definition 2.2.2 (Big O Notation). Let f, g : N → R+ be two positive real-valued functions.
We say that f is O(g(n)) if there a positive constant c and an integer n0 such that

f(n) < c · g(n), (2.1)

for all values of n ≥ n0.

A polynomial time algorithm is defined to be one whose time complexity function is O(p(n))

for some polynomial function p, where n denotes the input length. Any algorithm whose time
complexity function cannot be so bounded is called an exponential time algorithm. We shall
refer to a problem as intractable if no polynomial time algorithm can possibly solve it.

A randomized algorithm is one wherein certain decisions are made based on the outcomes
of coin flips made in the algorithm. By probabilistic polynomial time algorithm, we mean a
randomized algorithm whose time complexity function is bounded by a polynomial in the size
of the input.

Definition 2.2.3. We define

L[n, γ, c] := O(exp((c+ o(1))(lnn)γ(ln lnn)1−γ))),

9

Chapter 2. Algebraic and Complexity Background

where n is the size of the input space, 0 ≤ γ ≤ 1, c is a constant and lnn denotes the natural
logarithm.

Let A be an algorithm. Denote with T (n) its time complexity function. We note that if
T (n) = L[n, 0, c] then A is a polynomial time algorithm, while if T (n) = L[n, 1, c] then
A is an exponential time algorithm. We say that A is a subexponential time algorithm if
T (n) = L[n, γ, c] with 0 < γ < 1.

2.2.2 Theory of NP-Completeness

The theory of complexity is designed to be applied only to decision problems. The reason
is that they possess useful properties allowing a better understanding of their complexity than
non-decision problems. Moreover, most problems can be reduced to decision problems.
An important class of decision problems is the class P . We say that a decision problem Π

belongs to P if Π is a polynomial-time algorithm. Another important class of decision problems
is the class NP. In order to introduce this class let us first consider the following example.

Example 2.2.4. The problem PRIME in Example 2.2.1 is an example of problem in the class
P . A (deterministic) polynomial time algorithm solving it, is the AKS primality test [AKS04].
Let us examine the following problem

Problem (THREE DIMENSIONAL MATCHING)

Input: A subset U ⊆ T × T × T , where T is a finite set
Question: Is there a set W ⊆ U such that |W | = |T |, and no two elements of W agree in
any coordinate?

No polynomial time algorithm is known for solving the THREE DIMENSIONAL MATCHING.
However, suppose someone claimed, for a particular instance (T, U) of this problem, that the
answer for that instance is “yes” providing us with a set W which satisfies the property. It is
reasonable to expect that the problem of verifying the truth or falsity of such a claim, would be
easier than the problem itself. It can be seen that for the THREE DIMENSIONAL MATCHING

this verification problem can be solved with a polynomial time algorithm. The class NP captures
this notion of polynomial time verifiability.

An algorithm is said deterministic if its computation is fully determined by its input. An
algorithm is nondeterministic if it is not deterministic, that is, if there may be more than one
computation for a given input.
A nondeterministic algorithm is composed of two stages:

1. Guessing stage (nondeterministic): Given a problem instance I , some structure S is
“guessed”. S can be thought of as a candidate solution of the problem for the instance I .

2. Verification stage (deterministic): Taken as input I and S, it returns “yes” if the candidate
solution represents actual solution for the instance I .

10

2.2. Some Notions in Complexity Theory

Let Π be a decision problem. Denote with DΠ the set of instances of Π. We say that an instance
I ∈ DΠ is an yes-instance of Π if the solution of Π when particularized to the instance I is
“yes”. We denote the set of all yes-instances of Π with YΠ.
A nondeterministic algorithm is said to solve a decision problem Π if for all instances I ∈ DΠ:

• If I ∈ YΠ, then there exists some structure S that, when guessed for input I , will lead the
verification stage to respond "yes" for I and S.

• If I /∈ YΠ, then there exists no structure S that, when guessed for input I , will lead the
verification stage to respond "yes" for I and S.

In the complexity investigation of a decision problem Π, one is usually interested in showing
that a polynomial-time algorithm exists for Π or that Π is NP-complete.
A decision problem Π belonging in NP is said an NP-complete problem if a polynomial-time
algorithm for Π would yield a polynomial-time algorithm for every decision problem in the
class NP. A decision problem which has this property but is not necessary in NP is called an
NP-hard problem.
The concept of NP-completeness was introduced in 1971 by Cook [Coo71] which also provided
the first known NP-complete problem. Since the class NP is known to contain many problems
that are considered computationally hard, the NP-completeness of a problem Π is considered as
a strong evidence suggesting that Π does not admit a polynomial-time algorithm. Today a wide
variety of problems are known to be NP-complete. Note that, once we have at least one known
NP-complete problem available, a straightforward method for proving that a decision problem
Π is NP-complete consists in showing that

• Π ∈ NP ;

• some known NP-complete problem Π′ can be transformed with a polynomial time trans-
formation in Π.

NP-hard

NP-complete

NP

P

P=NP=

NP-hard

=NP-complete

P 6= NP P = NP

co
m

pl
ex

it
y

Figure 2.1: Euler diagram for complexity classes P, NP, NP-complete and NP-hard under the
assumption that P 6= NP (on the left) and P = NP (on the right).

11

Chapter 2. Algebraic and Complexity Background

Note also that, trivially, P ⊆ NP . On the contrary, whether or not NP ⊆ P is one of the major
unsolved problems in computer science. Figure 2.1 shows a diagram of complexity classes
under the two assumptions that P 6= NP and P = NP .

2.3 Basic Notions in Finite Fields

We denote by Fq the field of q elements, where q is a power of a prime p, by F∗q the mul-
tiplicative group of non-zero elements of Fq, by Fq the algebraic closure of Fq, and by Fnq the
standard n-dimensional vector space over Fq.
In this section we recall some of the basic properties of finite fields.

Definition 2.3.1. A subset K of a field F that is a field under the operations of F is called a
subfield of F, and we write K ⊆ F. In this context, F is a called an extension of K. If M is any
subset of F, then the field K[M] is defined as the intersection of all subfields of F containing
both K and M . For finite M = {θ1, . . . , θn}, we write K(θ1, . . . , θn).

Proposition 2.3.2. Let Fq be a finite field with q = ps. Every subfield of Fq has pm elements
for some integer m dividing s. Conversely, for any integer m dividing s there exists a unique
subfield of Fq with pm elements.

Let Fq[x] be the ring of univariate polynomials over Fq.

Definition 2.3.3. Let f ∈ Fq[x]. The coefficient of the highest power of x in f is called the
leading coefficient of f . We say that f is monic if its leading coefficient is 1.

Definition 2.3.4. Let θ ∈ Fqr and f(θ) = 0 where f(x) is a monic polynomial in Fq[x]. Then
f(x) is called the minimal polynomial of θ over Fq if θ is not a root of any nonzero polynomial
in Fq[x] of lower degree.

Definition 2.3.5. A polynomial f ∈ Fq[x] is an irreducible polynomial over Fq if f has a
positive degree and f = gh with g, h ∈ Fq implies that either g or h is a constant polynomial.

Proposition 2.3.6. Let θ ∈ Fqr and f(x) be its minimal polynomial over Fq. Then f is an
irreducible polynomial.

Definition 2.3.7. Let f be a non-zero polynomial in Fq[x]. If f(0) 6= 0, then the order of f is
the least positive integer N such that 1 + xN is a multiple of f , and we denote it by ord(f).

Proposition 2.3.8. Let f be a polynomial in Fq[x] of positive degree and f(0) 6= 0. Let f =

f b11 · · · f brr , where b1, . . . , br ∈ N and f1, . . . , fr are distinct irreducible polynomials of degree
n1, . . . , nr, be the factorization of f in Fq[x]. Then,

1. ord(f) = qt LCM(ord(f1), . . . , ord(fr)) where t is the smallest integer such that qt is
bigger or equal than max(b1, . . . , br);

12

2.3. Basic Notions in Finite Fields

2. If fi is irreducible, then ord(fi) | qni − 1;

Definition 2.3.9. Let f ∈ Fq[x] of degree n. We say that f is primitive if ord(f) = qn − 1.

Note that by point 2. of Proposition 2.3.8 we have that any primitive polynomial is irreducible.

Definition 2.3.10. Let f ∈ Fq[x] be monic and of positive degree and F be an extension of
Fq. Then f is said to split in F if can be factored as a product of linear factors in F[x], i.e.
f(x) = (x − α1) · · · (x − αn). The field F is a splitting field of f over Fq if f splits in F and
F = Fq(α1, . . . , αn).

Proposition 2.3.11 (Existence and Uniqueness of Splitting Field). Let f ∈ Fq[x] be monic and
of positive degree. Then there exists a splitting field of f over Fq. Moreover, any two splitting
fields of f over Fq are isomorphic.

Next theorem summarizes some fundamental properties of finite fields

Theorem 2.3.12. Let Fq be a finite field with q = ps. Then

1. (a+ b)p
k

= ap
k

+ bp
k

for a, b ∈ Fq and k ∈ N

2. every a ∈ Fq satisfies aq = a.

3. xq − 1 factors in Fq as
∏

a∈F∗q
(x− a)

4. Fq is isomorphic to the splitting field of xq − x over Fp

5. F∗q is a cyclic group

Definition 2.3.13. An element θ ∈ Fq which multiplicatively generates the group F∗q is called a
primitive element.

Proposition 2.3.14. Let Fq be a finite field, n be an integer with GCD(n, q) = 1, and Fqm be
the splitting field of xn − 1 over Fq. Then there exists an element α ∈ Fqm such that

xn − 1 =
n−1∏
i=0

(x− αi). (2.2)

A such element α is called a primitive nth root on unity over Fq.

Definition 2.3.15. Let Fqm be an extension of Fq. An automorphism of Fqm is said to be an
automorphism of Fqm over Fq if it fixes the elements of Fq. If α ∈ Fqm , then the elements
α, αq, . . . , αq

m−1 are called the conjugates of α with respect to Fq.

Conjugate elements in Fqm with respect to Fq are related to the automorphisms of Fqm over Fq
as the following proposition shows.

13

Chapter 2. Algebraic and Complexity Background

Proposition 2.3.16. The distinct automorphisms of Fqm over Fq are exactly the functions
f0,f1,. . .,fm−1, where

fj(α) = αq
j

for α ∈ Fqm ,

for 0 ≤ j ≤ m− 1. The function f1 is called the Frobenius automorphism of Fqm over Fq.

Theorem 2.3.17. Let Fq be a finite field and Fqm be the splitting field of xn − 1 over Fq. Let
α ∈ Fqm be a primitive nth root of unity over Fq with GCD(n, q) = 1. Then

• For each integer i with 0 ≤ i < n, the minimal polynomial of ai over Fq is

mαi(x) =
∏
j∈Ci

(x− αj) ∈ Fq[x],

where Ci is the q-cyclotomic coset modulo n containing i.

• The conjugates of αi are the elements αs with s ∈ Ci.

• The polynomial xn − 1 has the factorization into monic irreducible polynomials over Fq

xn − 1 =
∏
i

mαi(x),

where i runs through a set of representatives of the q-cyclotomic cosets modulo n.

An important property of finite fields is that every function defined on a finite field can
be realized by a polynomial with coefficients in that field. It is remarkable that this property
characterizes finite fields in the sense finite fields are the only commutative ring with identity
satisfying it. The next result tell us how to obtain a polynomial representing a given function
over a field.

Theorem 2.3.18 (Lagrange Interpolation Formula). For n ≥ 0, let a0, a1, . . . , an be n + 1

distinct elements of a field F, and let b0, b1, . . . , bn be n+ 1 arbitrary elements in F. Then there
exists exactly one polynomial f ∈ F[x] of degree ≤ n such that f(ai) = bi for i = 0, . . . , n.
This polynomial is given by

f(x) =
n∑
i=0

bi

n∏
k=0
k 6=j

(ai − ak)−1(x− ak).

For finite fields we can do somewhat better.

Theorem 2.3.19. Every function f : Fq → Fq can be represented by a unique polynomial
over Fq of degree at most q − 1, i.e there exist exactly one polynomial P ∈ Fq[x] such that
P (a) = f(a) for all a ∈ Fq. Moreover such a polynomial is given by∑

a∈Fq

f(a)
(
1− (x− a)q−1

)
.

14

2.3. Basic Notions in Finite Fields

The previous result can be extended to functions with any number of variables.

Theorem 2.3.20. For any integer r ≥ 1, let f : Frq → Fq. Then f can be represented by a
unique polynomial P ∈ Fq[x1, . . . , xr] of degree at most q− 1 in each variable. Moreover, such
a polynomial is given by ∑

(a1,...,ar)∈Frq

f(a1, . . . , ar)
∏

1≤i≤r

(
1− (xi − ai)q−1

)
.

Definition 2.3.21. Let f ∈ Fq[x1, . . . , xn] given by f(x1, . . . , xn) =
∑
ai1...inx

i1
1 · · ·xinn with

n ≥ 1. If ai1...in 6= 0, then ai1...inx
i1
1 · · ·xinn is called a term of f and i1 + · · · + in is called the

degree of the term. For f 6= 0, we define the degree of f , denoted by deg(f), as the maximum
of the degrees of the terms of f . For f = 0 we set deg(f) = −∞. If f = 0 or if all terms of f
have the same degree, then f is called homogeneous.

An important class of polynomials in n variables we will treat in Chapter 6 is that of sym-
metric polynomials.

Definition 2.3.22. Let f ∈ Fq[x1, . . . , xn]. We say that f is symmetric if f(xi1 , . . . , xin) =

f(x1, . . . , xn) for any permutation i1, . . . , in of the integers 1, . . . , n.

Example 2.3.23. Let z be a variable over Fq[x1, x2, . . . , xn], and let g(z) = (z − x1)(z −
x2) · · · (z − xn). Then

g(z) = zn − σ1z
n−1 + σ2z

n−2 + · · ·+ (−1)nσn, (2.3)

where

σk = σk(x1, . . . , xn) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik , k = 1, 2, . . . , n. (2.4)

Since g remains unchanged under any permutation of the xj , then the polynomials σk are sym-
metric polynomials. Moreover, by definition, they are homogeneous.

Definition 2.3.24. For k = 1, 2, . . . , n, the polynomial σk defined by (2.4) is called the kth
elementary symmetric polynomial in the variables x1, . . . , xn over Fq.

Theorem 2.3.25 (Fundamental Theorem on Symmetric Polynomials). For any symmetric poly-
nomial f ∈ Fq[x1 . . . , xn] there exists a uniquely determined polynomial h ∈ Fq[x1, . . . , xn]

such that

f(x1, . . . , xn) = h(σ1, . . . , σn).

Definition 2.3.26. For k ≥ 1, the polynomial xk1 + . . . + xkn ∈ Fq[x1, . . . , xn] is called the kth
power sum polynomial in the variables x1, . . . , xn over Fq.

15

Chapter 2. Algebraic and Complexity Background

Theorem 2.3.27 (Newton’s identities). Let σ1, . . . , σn be the elementary symmetric polynomials
in the variables x1, . . . , xn over Fq, and let s0 = n ∈ Z and sk = sk(x1, . . . , xn) be the kth
power sum polynomials in the variables x1, . . . , xn over Fq for k ≥ 1. Then the following
formula holds for k ≥ 1

sk − sk−1σ1 + sk−2σ2 + · · ·+ (−1)m−1sk−m+1σm−1 + (−1)m
m

n
sk−mσm = 0,

where m = min(k, n).

Theorem 2.3.28 (Waring’s Formula). With the same notation as Theorem 2.3.27, for k ≥ 1, we
have that

sk =
∑

(−1)i2+i4+i6+··· (i1 + i2 + · · · in − 1)!

i1!i2! · · · in!
kσi11 σ

i2
2 · · ·σinn ,

where the summation is extended over all n-tuples (i1, . . . , in) of non-negative integers with
i1 + 2i2 + · · ·+ nin = k. The coefficient of σi11 σ

i2
2 · · ·σinn is always an integer.

We conclude this section by recalling a classical technique, due to Kronecker [Kro82], for
reducing problems concerning multivariate polynomials to the case of univariate polynomials.
While this technique can be applied to any ring we describe it only for finite fields.

Let Fq be a finite field, and let P = Fq[x1, . . . , xn]. For f ∈ P , let us denote by degi f the
degree of f in the variable xi. Moreover, for d ∈ N, let

Pd := {f ∈ Fq[x1, . . . , xn]| degi f < d, for all i}.

Definition 2.3.29. The map χd : P → Fq[x] defined by

χd(F (x1, x2, . . . , xn)) = F (x, xd, . . . , xd
n−1

)

is called Kronecker’s substitution.

Theorem 2.3.30. With the above notation, we have that the restriction χd of the map χd to Pd
is a Fq-vector space isomorphism between Pd and its image in Fq[x], which is

Im(χd) = {f ∈ Fq[x]| deg f ≤ dn − 1}.

The previous result is a straightforward consequence of the fact that every non-negative integer
a is uniquely represented as

∑n
i=1 aid

i−1, where 0 ≤ ai < d. If f =
∑

j cjx
a(j) , then

χ−1
d (f) =

∑
j

cjx
a
(j)
1

1 · · · xa(j)nn ,

where a(j)
1 + a

(j)
2 d+ · · · a(j)

n dn−1 is the d-adic representation of a(j).
Kronecker substitution is rarely mentioned in modern algebra textbooks. However, it is

an extensively used technique in practice. For instance the Magma computer algebra system
[BCP97] uses Kronecker substitution for multiplying polynomials in Z[x] with high degree and
small coefficients. An improvement of the original Kronecker’s method for multiplying in Z[x]

is due to Harvey [Har09]. Kronecker’s substitution can be also used as a basis of an algorithm
for factoring polynomials [Mor03, p. 436].

16

2.4. Linear Recurring Sequences

2.4 Linear Recurring Sequences

Sequences of finite fields elements whose terms depend in a simple manner on their prede-
cessors are employed in several applications. In many of these applications the underlying field
is often F2, but the results can be extended quite generally for any finite field. Of particular
interest for the applications is the case where the terms depend linearly on a fixed number of
predecessors. These sequences are called linear recurring sequences.

Definition 2.4.1. Let k be a positive integer, and a0, a1, . . . , ak−1 be given elements of a finite
field Fq. A sequence s0, s1, . . . of elements of Fq satisfying the relation

si+k = ak−1si+k−1 + ak−2si+k−2 + · · ·+ a1si+1 + a0si + a for i = 0, 1, . . . (2.5)

is called a (k-order) linear recurring sequence in Fq. We call the terms s0, s1, . . . , sk−1 that
uniquely determine the rest of the sequence, the initial values of the sequence, or the initial
state of the sequence if we refers to the vector (s0, s1, . . . , sk−1). If a = 0 then the sequence is
called homogeneous, otherwise it is called inhomogeneous.

From now on, if not differently specified, we consider only homogeneous linear recurring se-
quences.

A common way to implement the generation of linear recurring sequences is to use linear
feedback shift registers (LFSR). LFSRs are useful tools both in coding theory and in cryptogra-
phy. In particular they are one of the most useful devices in the generation of keystreams.
A linear feedback shift register consists of two parts: a shift register of length k and a feedback
function F . The shift register is a register with k cells each containing an element of Fq. The
content of the k cells forms the state of the LFSR. The feedback function is usually the XOR of
the content of certain cells, which are called taps. The first output sequence element is the least
significant element of the initial state, i.e the element in the rightmost cell of the shift register.
Then, the shift register is shifted by one cell to the right and the new leftmost cell is filled with
the XOR of the taps. By iterating the previous procedure, the LFSR produces a semi-infinite
sequence of elements in Fq. Figure 2.2 shows a general LFSR in the Fibonacci representation.

OutputFeedback
s0s1sk−1

Figure 2.2: Linear feedback shift register

In the following we recall some basic results concerning linear recurring sequences.

Definition 2.4.2. Let S be an arbitrary nonempty set, and let s0, s1, . . . be a sequence of elements
of S. The sequence s0, s1, . . . is periodic if there exists an integer r > 0 such that sn+r = sn for
all n = 0, 1,

17

Chapter 2. Algebraic and Complexity Background

Proposition 2.4.3. If s0, s1, . . . is a kth-order linear recurring sequence in a finite field Fq
satisfying the linear recurrence relation (2.5), and if the coefficient a0 of (2.5) is nonzero, then
the sequence s0, s1, . . . is periodic and its period r is ≤ qk.

Let s0, s1, . . . be an homogeneous linear recurring sequence in Fq satisfying

si+k = ak−1si+k−1 + ak−2si+k−2 + · · ·+ a1si+1 + a0si for i = 0, 1, . . . , (2.6)

where aj ∈ Fq, for 0 ≤ j ≤ k− 1. To this linear recurring sequence we associate the following
k × k matrix over Fq

A =

0 0 0 . . . 0 a0

1 0 0 . . . 0 a1

0 1 0 . . . 0 a2

...
...

...
...

...
...

0 0 0 . . . 1 ak−1

 . (2.7)

We note that the matrix A depends only on the linear recurrence relation satisfied by the given
sequence. In particular it does not depend on the initial state of the sequence. The polynomial

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · · − a0 ∈ Fq[x]

is said the characteristic polynomial of the linear recurring sequence, and, as the matrix A, it
depends only on the linear recurrence relation (2.6). It is easy to see that f(x) corresponds to
the characteristic polynomial of A in the sense of linear algebra. Linear recurring sequences
whose periods are very large are of particular interest in applications. Next Theorem suggests
how to produce such sequences.

Theorem 2.4.4. Let s0, s1, . . . be an homogeneous linear recurring sequence in Fq with nonzero
initial state, and suppose its characteristic polynomial f(x) ∈ Fq is irreducible over Fq and
satisfies f(0) 6= 0. Then the sequence is periodic with period equal to ord(f(x)).

By Theorem 2.4.4 it follows that kth-order maximal period sequences in Fq are those whose
characteristic polynomial is a primitive polynomial over Fq, and its period is equal to the largest
possible value for the period of any kth-order linear recurring sequences in Fq – namely qk − 1.
Sequences with maximal period have also many desirable statistical properties. The best known
of these properties is to satisfy Golomb’s axioms for pseudo-random sequences [G+82].

2.5 Discrete Logarithms

Let K = Fq and F = Fqm . Usually F is represented as an m-dimensional vector space over
K, so additions in F become trivial given the arithmetics in K. However, the choice of a basis
of F over K is crucial for efficiently performing multiplication, inversion and exponentiation.
Various types of bases have been studied extensively. Among these there are two special types

18

2.5. Discrete Logarithms

of bases of particular importance. The first is a polynomial basis {1, α, α2, . . . , αm−1} where α
is a root of an irreducible polynomial of degree m over K. In this context, one often prefers α
to be a primitive element of F . The second basis is a normal basis, that is, a basis of the form
{α, αq, . . . , αqm−1}.

An alternative to using basis representations is to represent the non-zero elements of F as the
powers of a primitive element α ∈ F . In this case multiplication in F is trivial, but addition then
becomes difficult. In practical applications where repeated computations over a relatively small
finite field are required, this problem can be overcome using discrete logarithms in conjunction
with Zech logarithms. In addition to this employment, discrete logarithms in finite fields play
an important rule in cryptanalysis.

In this subsection we summarize the main current algorithms for computing discrete loga-
rithms in finite fields and their use to improve arithmetic in small finite fields.

Definition 2.5.1 (Discrete Logarithm). Let α ∈ Fq a primitive element and β ∈ Fq, β 6= 0. We
define the discrete logarithm of β with respect to α as the unique integer 0 ≤ i < q such that
αi = β. We use the notation i = DLogα(β).

2.5.1 Computing Discrete Logarithms

The most obvious method for finding discrete logarithms in Fq is to precompute a table of
logarithms once and for all time. Another one is to successively compute consecutive powers of
α and compare with β until a match is found. Both methods become computationally infeasible
when q is sufficiently large, since they cost O(q). A more interesting method, but still not very
practical, to compute discrete logarithms in Fq with q = ps is given by Mullen and White in
[MW86] and it consists in exhibiting a polynomial representation for the DLog function modulo
p. They prove the following result

Proposition 2.5.2. Let α be a generator for Fq with q = ps. For any β = αi ∈ F∗q , q ≥ 3, we
have that

i ≡ −1 +

q−2∑
k=1

βk

α−k − 1
(mod p)

The two main kind of methods used to compute discrete logarithms in finite fields are the
Pohlig-Hellman method combined with the Baby-step Giant-step algorithm or with the Pollard-
ρ algorithm, and the Index-Calculus method. In practice, many computational algebra systems
use the Pohlig-Hellman method for computing discrete logarithms in Fq when the maximal
prime factor of q is approximately less than 236, and they use Index-Calculus method in the
other cases.
In the following we briefly describe these algorithms.

19

Chapter 2. Algebraic and Complexity Background

Baby-step Giant-step algorithm

The first algorithm we describe is the Baby-step Giant-step algorithm attributed to Shanks.
The algorithm works as follows. Let r, s be integers with r · s > q. Precompute a list of pairs,
(i, αi) for 0 ≤ i < r and sort this list by second component. These precomputations are called
baby-steps. The giant steps consist on computing for each j, 0 ≤ j < s, the element βα−jr

and see (by a binary search) if this element is the second component of some pair in the list. If
βα−jr = αi for some i, 0 ≤ i < r, then DLogα(β) = q if i = j = 0 and DLogα(β) = i + jr

otherwise. The baby steps require a table withO(r) entries, while to sort the table and search the
table for each value of j requiresO(r+s) field operations. Usually one choose r = s =

√
q − 1

in order to get O(
√
q − 1) for both time and memory complexity.

Pollard-ρ method

One drawback of Shanks algorithm is the need to sort and store a list of size
√
q − 1. Pol-

lard [Pol78] introduced a probabilistic algorithm which eliminates the need for such storage.
Partition F∗q into three sets S1, S2, S3 of roughly equal size. Consider the sequence of elements
in F∗q x0, x1, x2, . . . with x0 = 1 and

xi =

βxi−1 xi−1 ∈ S1

x2
i−1 xi−1 ∈ S2

αxi−1 xi−1 ∈ S3

It is easy to see that this sequence defines two sequences of integers {ai} and {bi} where xi =

βaiαbi , i ≥ 0, a0 = b0 = 0, ai+1 ≡ ai + 1, 2ai or ai (mod q − 1) and bi+1 ≡ bi, 2bi or bi + 1

(mod q − 1) depending on which set S1, S2 or S3 contains xi−1. Making use of Floyd’s cyclic
algorithm, Pollard computes the six-tuple (xi, ai, bi, x2i, a2i, b2i) until xi = x2i. At this stage we
have βr = αs with r ≡ ai− a2i and s ≡ bi− b2i (mod q− 1). It follows that rDLogα(β) ≡ s

(mod q−1). Since there are only d = GCD(r, q−1) possible values for DLogα β, if d is small
then each of these possibilities can be list to obtain the correct value.

Making the heuristic assumption that the sequence {xi} is a random sequence in F∗q , then
the expected time complexity of this method is O(

√
q − 1) field operations.

Pohlig-Hellman method

The Pohlig-Hellman method computes discrete logarithms in finite fields taking advantage
of the integer factorization of q−1. Let q−1 =

∏t
i=1 p

ei

i where pi is a prime number and ei is a
positive integer, for 1 ≤ i ≤ t. If x = DLogα(β) then the approach of Pohlig and Hellman is to
obtain x modulo peii for each i and then use the Chinese Remainder Theorem to get x modulo
q − 1. Then we can reduce to consider the case where q − 1 = pe with p a prime number and

20

2.5. Discrete Logarithms

e a positive integer. Let e0 = de/2e and e1 = be/2c. We have that x = x0 + pe0x1, where
0 ≤ x0 < pe0 and 0 ≤ x1 < pe1 . So β = αx = αx0+pe0x1 . Elevating both sides to pe1 we get

βp
e1 = αp

e1x0+pe0pe1x1 = αp
e1x0+pex1 = αp

e1x0 ,

where the last equality holds because α is a primitive element in Fq. Then x0 = DLogp
e1

α (βp
e1).

Since βα−x0 = αp
e0x1 , then x1 = DLogp

e0

α (βα−x0). Using one of the two previous methods we
determine x0 and x1, and thus x.

For the case where q − 1 = pe this technique requires O(e(log(q − 1) +
√

(p) log(p)))

[PH78].
Then, using Pohlig-Hellman algorithm in conjunction with Baby-step Giant-step method or

with Pollard-ρmethod one can compute discrete logarithms in Fq in approximatelyO(
√
I) field

operations, where I is the largest prime dividing q − 1. Note that in this case the characteristic
p of the field is irrelevant. Basing on the computationally capacity of modern computers is
reasonable to use this method when I is relatively small, say less than 236. As a consequence, if
one is going to design a cryptographic system based on a finite field Fq one must select q such
that the factorization of q − 1 contains a suitable large prime.

Index Calculus

Unlike the Shanks and Pollard-ρmethods, which take exponential time (O(
√
q − 1) field op-

erations), index calculus techniques are subexponential with heuristic running time L[q, 1/3, c],
and even L[q, 1/4, c] in some cases. The basic idea of index calculus algorithms dates back in
1922 in the work of Kraitchik [Kra22, pp.119-123].

Let Fq be the finite field in which we want to compute the discrete logarithm and let α be
a primitive element of Fq. Consider a subset S = {p1, p2, . . . , pt} of Fq with the property that
a ”significant “ fraction of all elements in Fq can be written as the product of elements from S.
The set S is usually called the factor base for the index calculus method. The index calculus
method consists of two main stages. In the first stage one attempts to find the discrete logarithms
of all the elements of S. In the second stage one compute logarithms of elements in Fq which
are not in S. To obtain discrete logarithms of elements of S we proceed as follows. We pick a
random integer a and attempt to write αa as a product of elements in S, αa =

∏t
i=1 p

λi
i . If we

are successful then we have that

a ≡
∑

λi DLogα pi (mod q − 1).

After collecting a sufficient number, i.e greater than t, of relations of this type, the corresponding
system of equations can be expected to have a unique solution for the variables DLogα pi,
1 ≤ i ≤ t. Let β ∈ F∗q . To compute DLogα β we repeatedly pick an integer s at random until
αsβ can be written as the product of elements in S, that is αsβ =

∑t
i=1 p

bi
i . From this relation

21

Chapter 2. Algebraic and Complexity Background

we have that

DLogα β ≡
t∑
i=1

bi DLogα pi − s (mod q − 1).

Note that to complete the description of the method one should precise how to choose the
set S and how to efficiently generate the relations expressing an element of Fq as product of
elements in S.

In the last fifty years several different index calculus algorithms were developed for Fq with
q = pn, and the best algorithms vary with the relative sizes of the characteristic p and the
extension degree n.

For a long time the best index calculus algorithms for discrete logs had running times of
the form L[q, 1/2, c] for various constants c > 0. The first practical method that broke through
this running time barrier was Coppersmith’s algorithm [Cop84] for discrete logs in fields of
size q = pn where p is a small prime and n is large. It had running time of approximately
L[q, 1/3, c] with c varying slightly with the values of p and n. This initial progress quickly
led to the introduction of several other heuristic algorithms with similar running time. For a
long time, index calculus algorithms focused on field with small characteristic, prime fields and
occasionally fields of the form Fpn for small values of n [Sch00]. The view changed in 2006,
when was showed that taken together, the Number Field Sieve [JL06] and the Function Field
Sieve [AH99] are enough to cover the whole range of finite fields. Both these algorithms have
heuristic running time of L[q, 1/3, c]. Essentially, the consequence was to split the finite field in
three groups, small characteristic with complexity L[q, 1/3, (32/9)1/3], medium characteristic
with complexity L[1/3, (128/9)1/3] and large characteristic with complexity L(1/3, (64/9)1/3).
In 2013 and 2014, two notable improvements on the complexity of discrete logarithm algo-
rithms have been made: two variants of the Number Field Sieve have been designed for finite
fields with medium to high characteristic [BP14] and the complexity for finite fields with small
characteristic have been dropped to approximately L[q, 1/4, c] [Jou14, BGJT14, GKZ14]].

We conclude this subsection by noting that the expected running times of all the previous
algorithms are heuristic, and that the best algorithms with rigorously proved expected running
time cost approximately L[p, 1/2,

√
2] [MBG+13].

2.5.2 Zech Logarithm Table

In small finite fields is useful to employ tables of Zech logarithms to efficiently perform
additions and multiplications. The procedure is the following.

Let Fq be a finite field. Represent the non-zero elements of Fq as the powers of a primitive
element α ∈ Fq. Then, identifying the elements of Fq with their discrete logarithms, the mul-
tiplication of two elements in Fq is reduced to the addition of the corresponding two discrete
logarithms, since

DLogα(βγ) = DLogα(β) + DLogα(γ),

22

2.5. Discrete Logarithms

where the addition is modulo q − 1. In this representation, to perform the addition of two
elements β, γ ∈ Fq one needs to compute the discrete logarithm DLogα(β+γ). Since αa+αb =

αa(1 + αb−a), to do that it suffices to compute the discrete logarithms for sums involving 1, i.e.
logarithms of the form DLogα(1 + γ). This motivates the following definition

Definition 2.5.3 (Zech’s Logarithm). Let Fq be a finite field and let α be a primitive element of
Fq. The Zech’s logarithm (or Jacobi logarithm) with base α of an integer n is the integer Zα(n)

defined by the equation
1 + αn = αZα(n),

where the case αn = −1 is excluded.

When q is small, say less than 220, the Zech logarithms can be precomputed and, when
needed for an addition, recovered by a simple table lookup. Moreover, exploiting some prop-
erties of Zech’s logarithm [Hub90] one can reduce the storage requirements from q = pk to
roughly q/6k.
It is clear that a table lookup of Zech logarithms becomes impractical for finite fields with large
size. In this case is preferable to use a polynomial representation.

23

Decoding Problem for Cyclic Codes

The main problem of information theory can be described as follows. Suppose that a source
of data has been transmitted over a noisy channel. In this context, the following question arise
naturally: how can we tell when the original data has been changed? And when it has, how can
we recover the original data? One of the goal of Coding Theory is to answer to the two previous
questions.

In the first section of this chapter we formalize the above problems and introduce error
correcting codes. In Section 3.2 we recall some basic properties of linear codes and discuss
the complexity of decoding problem for these codes. Finally, in Section 3.3, after recalling
some properties of cyclic codes, we address the decoding problem for cyclic codes and discuss
interesting open problems regarding general error locators.

Most of the results in this chapter are well-known in the literature. Here we use as main
references [MS77], [PW72] and [PHB98].

3.1 An overview on error correcting codes

Coding theory is the study of the properties of codes and their suitability for a specific
application. One of these applications is the design of efficient and reliable data transmission
methods. A code designed with this purpose is called an error correcting code. There are two
fundamentally different types of codes: block codes which break the sequence of information
digits into k-symbol blocks, and tree codes which operates on the information sequence without
breaking it into independent blocks.

In this thesis attention is focused on block codes. From now on, when we say error correct-
ing codes we actually mean block error correcting codes.

Definition 3.1.1. Let Fq be a finite field. A subset C of Fnq of size M is called a block code (or
also a q-ary block code) of length n and size M over Fq, and its elements are called codewords.
We call an element of Fq a symbol, and an element of Fnq (which is not necessary in C) a word.

A general communication system which uses an error correcting code C is showed in Figure
3.1. It consists of essentially five parts:

1. An information source: which produces a message m = (m1, . . . ,mk) ∈ Fkq to be com-
municated

25

Chapter 3. Decoding Problem for Cyclic Codes

DESTINATIONSOURCE DECODERENCODER CHANNEL

MESSAGE CODEWORD RECEIVED ESTIMATE OF
MESSAGEMESSAGE

ERROR

m c

e

y m̃

VECTOR

Figure 3.1: A simple model of communication system. We omit to represent both the transmitter
and the receiver.

2. An encoder: which produces a codeword c = (c1, . . . , cn) ∈ C,where n > k, from a
message m

3. A transmitter: which operates on the codeword c in order to produce a signal suitable for
transmission over the channel

4. A noise channel: which is the medium used to transmit the signal from a transmitter to a
receiver, and it is supposed to be noisy

5. A receiver: performing the inverse operation of the transmitter, i.e. recovering the word
y ∈ Fnq corresponding to the received signal

6. A decoder: which tries to recover the original message m from y

7. A destination: the person who the message is addressed to.

We call encoding the process of converting the messagem ∈ Fkq into a codeword c of a given
code C. The process of recovering the messages m from the received word y is said decoding.

The central idea in using error-correcting codes for communication data is that the sender
encodes the message in a redundant way by using an error-correcting code in a such way (de-
pending on the channel used for the transmission) that the redundancy allows the receiver to
detect and/or correct possible transmission errors.

Example 3.1.2. Let us consider the set

C = {00000, 01011, 10101, 11110}.

C is a binary code of length n = 5 with M = 4 codewords.
Suppose that we want to employ C in order to guarantee a reliable transmission data over a
noisy channel, and that the (corrupted) codeword y = 00101 is received. The set of possible
errors corresponding to the word y is given by E = {00101, 01110, 10000, 11010}.

26

3.1. An overview on error correcting codes

From the previous example it is clear that to decide which error out of a set of errors is the
“right one”, that is to decode, one needs to make additional assumptions about the likelihood
of errors and error patterns. One need also to specify how the sent codewords c and the error
patterns e are combined to form the received codewords y = f(c, e).
Throughout all the thesis we will assume that for a q-ary code, codewords c and error patterns
e are combined through a modulo q addition, that is y = c + e where + is the addition in Fnq .
A such channel is called an addition channel. We will also assume that the channel is an q-ary
symmetric channel. In the next definition we recall the notion of symmetric channel.

Definition 3.1.3 (q-ary symmetric channel). A q-ary symmetric channel (qSC) without memory
is a discrete channel with q-ary symbols both as inputs and as outputs. Moreover it satisfies the
following properties

• the probability that a symbol changes into another is the same for all the q − 1 symbols

• the probability that a symbol changes does not depend on its position in the transmitted
word

• if the ith component of a transmitted word changes, then this fact does not affect the
probability that its jth component changes

The transition probabilities of the q-ary symmetric channel depend on a single parameter ε
as follows

P[b|a] =

1− ε b = a

ε/(q − 1) b 6= a

where P[b|a] denotes the probability to receive the symbol b given that the symbol a was sent.
In other words, in a q-ary symmetric channel every symbol is left untouched with probability
1− ε and is distorted to each of the q − 1 possible different symbols with probability ε.

An important requirement in order to define a transmission model is to fix a distance measure
between codewords. The most prevalent measure for our purpose is Hamming distance, which
is defined as follows.

Definition 3.1.4. Given two vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in Fnq , we
define the Hamming distance between x and y as the number of components in which they
differ

d(x, y) = |{0 ≤ i ≤ n− 1 | xi 6= yi}|.

The Hamming weight of a vector x ∈ Fnq is the number, w(x), of its non-zero components, i.e.
w(x) = d(x, 0).

Let C be a q-ary code, y ∈ Fnq be the received word, and e be the error vector occurred in
the transmission. So, y = x+ e, where x is the transmitted codeword.

27

Chapter 3. Decoding Problem for Cyclic Codes

Definition 3.1.5. We say that C has error correction capability t (or that C can correct up to
t errors) if for any error vector e with w(e) ≤ t, C allows to recover x. Similarly, we say that
C has error detection capability s (or that C can detect up to s errors) if for any error vector e
with w(e) ≤ s, C allows to detect that an error occurred in the transmission.

Next two definitions introduce two important parameters of an error correcting code.

Definition 3.1.6. The rate R of a q-ary block code of length n with M codewords is given by

R = (logqM)/n

The rate of a code is a measure of the efficiency of the code.

Definition 3.1.7. The redundancy r of a q-ary block code of length n with M codewords is
given by

r = n− logqM.

We can say that the birth of the subject of coding theory for data transmission occurred
in 1948 when Shannon published the paper “ A Mathematical Theory of Communication”
[Sha48]. His work focuses on the problem of how best to encode the information a sender wants
to transmit. He established the limits of the gains possible with coding theory, and proved the
existence of codes that could effectively reach these limits. More precisely, Shannon showed the
following theorem. Beforing stating it, we introduce the capacity of a q-ary symmetric channel.

Definition 3.1.8. Given a q-ary symmetric channel with probability of symbol error ε, we say
that the capacity of the channel is

C(ε) = 1 + ε logq(ε) + (1− ε) logq(1− ε)− p logq(q − 1).

Theorem 3.1.9 (Shannon). For any δ > 0 and R < C(ε), there is a (linear) code over Fq of
rate R′ ≥ R with Perr < δ, where Perr is the probability that the output of the decoder does not
correspond to the originally transmitted vector.

So, if one wishes to communicate over a channel of capacity Q at a rate R, then one can do
so as reliably as desired, if and only if R < Q. Although Shannon [Sha48] answered to the
question “Do good codes exist?” affirmatively, his work raises two other questions “ How can
we construct such codes?” and “How can we decode them?”. In a sense, the study of error
correction codes is all about these two questions.

3.2 Linear Codes

3.2.1 Basic definitions

In this section we summarize basic definitions regarding linear block codes.

28

3.2. Linear Codes

Definition 3.2.1. Let C be a q-ary block code of length n. We say that C is a linear (block)
code if it is a linear subspace of the vector space Fnq . If the dimension of the subspace C is k,
then we say that the code C has dimension k and that C is a [n, k]-code.

We do not treat in this thesis the case of non-linear block codes, so often we will use the
word “code” for referring to linear block code. When we do not specify the field, we implicitly
mean that the code is defined over Fq. Note that if C is an [n, k]-code over Fq, then |C| = qk

where |C| denotes the cardinality of C.
As subspace of Fnq , an [n, k]-code admits a basis. This leads to the definition of a generator

matrix of a code.

Definition 3.2.2. Let C be an [n, k]-code over Fq. Any matrix G whose rows form a basis for
C as a k-dimensional subspace of Fnq is called a generator matrix of C.

IfG has the formG = [1k|A], where 1k is the k×k identity matrix, thenG is called a generator
matrix in standard form. In general, there are many generator matrices for a codes, nevertheless
any code has a unique generator matrix in standard form.

Given x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in Fnq , we denote by x · y the scalar
product of x and y in Fnq , that is x · y =

∑n−1
i=0 xiyi. We recall that x and y are said orthogonal

if x · y = 0.

Definition 3.2.3. Let C be an [n, k]-code. The set C⊥ of vectors in Fnq which are orthogonal to
all codewords of C is again a linear code and it is called the dual code of C.

We note that the dual code of an [n, k]-code C is an [n, n− k]-code.

Definition 3.2.4. A parity-check matrix H for an [n, k]-code is a generator matrix of C⊥.

By previous definitions we easily get that if C is an [n, k]-code then a generator matrix G
of C has size k × n and a parity-check matrix H has size (n− k)× n. To check if an n-vector
x ∈ Fnq belongs to C it is sufficient to compute HxT . Indeed it holds that

∀x ∈ Fnq , HxT = 0←→ x ∈ C (3.1)

Definition 3.2.5. LetC be an [n, k]-code over Fql . The subfield subcodeC�Fq ofC with respect
to Fq is the set of codewords in C each of whose components is in Fq.

Because C is linear over Fql , then C�Fq is a linear code over Fq.

Remark 3.2.6. Let C be an [n, k]-code over Fql and H be a parity-check matrix of C. To find
a parity check matrix for C�Fq considering a basis {b1, b2, . . . , bl} ⊂ Fql of Fql over Fq. Each
element z ∈ Fql can be uniquely written as z = z1b1 + · · ·+ zlbl , where zi ∈ Fq for 1 ≤ i ≤ l.
Associate to z the column vector z̄ = (z1, . . . , zl)

T . Create H̄ from H by replacing each entry
h by the vector h̄. Because H is an (n− k)× n matrix with entries in Fql , H̄ is a l(n− k)× n
matrix over Fq. A parity check matrix for C�Fq is obtained from H̄ by deleting dependent rows.
We denote this parity check matrix by H�Fq.

29

Chapter 3. Decoding Problem for Cyclic Codes

Definition 3.2.7. The minimum distance (or simply the distance) of a code C is the smallest
(Hamming) distance between distinct codewords, that is

d(C) = min{d(x, y) | x, y ∈ C, x 6= y}.

If C is a [n, k]-code and we known the distance of C then we also refer to it as an [n, k, d(C)]-
code.

The following result shows that it is possible to define the distance of a linear code using
the weight of codewords instead of mutual distance between all codewords.

Proposition 3.2.8. Let C be an [n, k, d]-code. Then d(C) = min{w(c) | c ∈ C, c 6= 0}.
Let C be an [n, k, d] linear code over Fq. If D is a vector subspace of C, then we say that D

is a (linear) subcode of C. Moreover we have d(C) ≤ d(D).

Definition 3.2.9. Let C be an [n, k, d]-code. We denote by Ai the number of the codewords of
weight i. The set of {Ai}0≤i≤n is called the weight distribution of C.

Definition 3.2.10. Let C1 and C2 be two linear codes. We say that C1 and C2 are permutation
equivalent if there is a permutation of coordinates which sends C1 to C2.

Two permutation equivalent codes have the same weight distribution.

Proposition 3.2.11. Let C be linear code and let H be a parity-check matrix of C. Then C
has distance d if and only if H has a set of d linearly dependent columns and any set of d − 1

columns is linearly independent.

The following theorem is a consequence of the previous result. It gives an upper bound for
the distance of a code.

Theorem 3.2.12 (Singleton bound). Let C be an [n, k, d]-code. Then

d ≤ n− k + 1

A code reaching the equality in the Singleton bound is called a maximum distance separable
code or an MDS code.

Definition 3.2.13. Let x be any vector in Fnq and let C be an [n, k, d] code with parity-check
matrix H . The vector s ∈ (Fq)n−k such that s = HxT is called the syndrome vector of x with
respect to H (or simply the syndrome of x).

Equation (3.1) tell us that a vector x ∈ Fnq is a codeword of C if and only if the syndrome of
x is zero. The syndrome, however, tell us more than a vector being in the code or not. Suppose
the vector c was transmitted and v was received, where v = c+ e, with e the error vector. Note
that

s = HvT = H(c+ e)T = HcT +HeT = HeT ,

since c ∈ C. Then, the syndrome does not depend on the received vector but on the error vector.
But we can say something more.

30

3.2. Linear Codes

Proposition 3.2.14. Let C be an [n, k, d]-code and let H be a parity-check matrix of C. Then,
there is a 1-1 correspondence between errors of weight ≤ b(d− 1)/2c and syndromes.

This property of linear codes justify the following definition

Definition 3.2.15. Let C be an [n, k, d]-code over Fq. We call correctable syndromes the syn-
drome vectors s ∈ Fn−kq corresponding to errors of weight µ ≤ t with t = b(d− 1)/2c.

Proposition 3.2.16. Let C be an [n, k, d]-code over Fq. Then

• C has detection capability d− 1

• C has error correction capability t = bd− 1c/2.

The previous result shows that the distance of a code reflects the error correction capability of
the code. Evidently, we would like t, and hence also d, to be large.

We conclude this section summarizing the properties a good error correcting code should
have. In the study of error correcting codes it is important to construct [n, k, d]-codes having
the following properties:

1. large rate R;

2. large distance d;

3. admitting efficient encoding and decoding algorithms.

There is a trade-off between the rate R and the minimum distance d for any linear code. Indeed,
by the Singleton bound and the definition of rate of a code, we have that

R +
d

n
≤ 1 +

1

n
.

So we have to make a compromise between the rate and the minimum distance. The third
property above is also very important for a code, as codes with large rate and distance may be
useless if they have no efficient encoding and decoding algorithms. In the next section we trait
the problem of decoding linear codes.

3.2.2 Decoding Linear Codes

Suppose to use an [n, k]-code C over Fq for a reliable transmission of data over a noisy
channel, and to receive the word y ∈ Fnq . The optimal decoding strategy is to find the codeword
c ∈ C that maximizes the probability Pr(c|y) that c was transmitted given that y was received.
On a q-ary symmetric channel, this strategy is equivalent to find the closest codeword to y in
the Hamming metric [MS77].

Definition 3.2.17. A decoder for C that always finds the closest codeword to r (or one of the
closest codewords) in the Hamming metric is said to be a maximum-likelihood decoder.

31

Chapter 3. Decoding Problem for Cyclic Codes

Maximum-likelihood decoding of a q-ary [n, k, d]-code can be trivially accomplished in O(qk)

by simply computing the Hamming distance between the received word y and all the qk code-
word of C. However, this procedure is computationally infeasible when the number of code-
words is large. An other method accomplishing this task is the following, which costs O(qn−k).
Let C be an [n, k]-code over Fq. For any vector u ∈ Fnq the set

u+ C = {u+ c | c ∈ C}

is called a coset of C. Every vector of Fnq is contained in such a coset. Since C is a linear
subspace of Fnq , two cosets are either disjoint or identical. Suppose that a codeword x was sent
via a noisy channel, and a vector y is received, then the error vector is e = y− x. Let H denote
a parity check matrix of C. It follows that HeT = HyT , that is the syndrome of e corresponds
to the syndrome of y. Obviously, all the vectors of a coset have the same syndrome. The
minimum weight vector of a coset is called the coset leader (if there is more than one vector
with the same minimum weight, choose one at random and take it as the coset leader). A naive
decoding procedure consists in first computing the syndrome of a received vector HyT , then
take the coset leader e of the coset having syndrome HyT as the error vector, and finally decode
the received vector y to be y − e. Since the number of possible syndromes is qn−k, this method
costs O(qn−k).

Although maximum-likelihood decoding is the optimal decoding strategy, Berlakamp et
al. [BMvT78] showed that for the general class of linear codes, polynomial-time maximum-
likelihood decoding algorithms are unlikely to exist (unless P=NP). Bruck and Naor [BN90]
showed that this remains true even if the code is known in advance and can be preprocessed
for a long as desired in order to devise a decoding algorithm. Moreover, such algorithms are
not known today even for any specific family of useful codes, such as the binary BCH codes,
for instance. On the contrary, in [GV05], it was proved the NP-completeness of maximum
likelihood decoding for generalized Reed-Solomon codes. A potential ways to circumvent these
results is to attempt to correct only a limited number of errors. A decoding strategy which is
sub-optimal is the following.

Definition 3.2.18 (Bounded-distance Decoding). A decoder is said to be bounded-distance if
there exists an integer t > 0 such that the decoder always finds the closest codeword c to a
channel output r, provided that d(c, r) ≤ t.

One would hope for a result of the form: “There exists an ε > 0, such that for every [n, k, d]-
code C, the bounded distance decoding problem for C with t = εd is solvable in polynomial
time”. It is still not known whether bounded-distance decoding is NP-hard for the general
class of linear codes. In [Var97] Vardy conjectures that this is so and that the NP-hardness
of the problem of computing the minimum distance of a linear code should be instrumental
in trying to prove this conjecture. However, for many algebraic families of codes, such as
BCH codes and most algebraic-geometry codes, we know polynomial-time bounded-distance

32

3.3. Cyclic Codes

decoding algorithms that achieve the error-correction radius of the code t = b(d− 1)/2c. In the
next section we shall show the decoding of some important class of linear cyclic codes.

3.3 Cyclic Codes

3.3.1 Basic definitions

An important class of linear codes is cyclic codes. They are very used in the applications
since they can be implemented fairly simply (for instance using LFSRs) and their mathematical
structure is reasonable well understood.

Definition 3.3.1. A code C is cyclic if it is invariant under any cyclic right shift of the coordi-
nates, i.e.

(c0, . . . , cn−1) ∈ C → (cn−1, c0 . . . , cn−2) ∈ C

Example 3.3.2. Let C = {000, 110, 101, 011}. C is an example of binary cyclic code.

A useful way to describe algebraic properties of cyclic codes is to represent its codewords
as polynomials. Let (xn − 1) be the ideal generated by xn − 1 ∈ Fq[x]. Then the elements of
the quotient ring Rn = Fq[x]/(xn− 1) can be represented by polynomials of degree less than n
and this quotient ring is isomorphic to Fnq as vector spaces over Fq by the correspondence

v0 + v1x+ · · ·+ vn−1x
n−1 ∈ Rn ←→ (v0, v1 . . . , vn−1) ∈ Fnq (3.2)

Because of this isomorphism, for a word v ∈ Fnq we use interchangeably the vector notation or
the polynomial notation v(x). In particular we will say that v(x) has weight w if w(v) = w.

Thanks to the characterization 3.2, we can see linear codes of length n as subsets of Rn.
The following theorem states that cyclic codes of length n over Fq correspond to ideals in Rn.

Theorem 3.3.3. Let C be an [n, k, d]-code over Fq. Then C is cyclic if and only if C is an ideal
of Rn.

SinceRn is a principal ideal ring, any idealC ofRn is generated by a polynomial g(x) ∈ Rn,
i.e. C = (g(x)). If we require that g(x) is monic and of lowest degree, then it is unique. Such
polynomial g is called the generator polynomial of the code C. Since ideals of Rn are of the
form J/(xn− 1) with J an ideal of Fq[x] containing (xn− 1), we also have that cyclic codes of
length n over Fq are generated by divisors of (xn − 1) in Fq[x].

The next theorem show some other elementary properties of cyclic codes.

Theorem 3.3.4. Let C be a cyclic code of length n over Fq, and let g(x) its generator polyno-
mial. Then

1. If the dimension of C is k, then deg(g) = n− k.

33

Chapter 3. Decoding Problem for Cyclic Codes

2. If g(x) = g0 + g1x+ · · ·+ gn−kx
n−k, then a generator matrix for C is given by

G =

g0 g1 . . . gn−k 0 . . . 0

0 g0 . . . gn−k−1 gn−k . . . 0
...

...
...

...
...

...
...

0 0 . . . g0 g1 . . . gn−k

 .

Definition 3.3.5. Let C be a cyclic code of length n over Fq. We say that C is a primitive cyclic
code if n = ql − 1 for some positive integer l.

Definition 3.3.6. Let C be a cyclic code. A linear subcode C ′ of C that is cyclic will be called
a cyclic subcode. In this case we will write C ′ ⊂ C if C ′ is not zero.

Proposition 3.3.7. Let C1 and C2 be cyclic codes over Fq with generator polynomial g1(x) and
g2(x) respectively. Then C1 ⊂ C2 if and only if g2(x) | g1(x).

From now on we impose the restriction that GCD(n, q) = 1 (for the case GCD(n, q) > 1 see
[vL91] and [CMSvS91]). By Proposition 2.3.14, this guarantees that the polynomial xn − 1 ∈
Fq[x] has distinct roots in its splitting field and this leads to a very useful characterization of a
cyclic code from the roots of its generator polynomial.

Definition 3.3.8. Let C be a cyclic code of length n over Fq generated by the polynomial g(x).
Let F be the splitting field of xn− 1 over Fq and let α be a primitive nth root of unity in F. The
set

S̃C,α = {0 ≤ i ≤ n− 1 | g(αi) = 0}.

is called the complete defining set of C w.r.t. α. Also, the roots of unity {αi | i ∈ S̃C,α} are
called the zeros of the cyclic code C.

Note that, given a cyclic code C, different choices of α give different complete defining sets of
C. As we will see in a moment, actually we do not care about the choice of α.

Fix a primitive nth root of unity α in the splitting field of xn−1 over Fq. Then a cyclic code
of length n over Fq is defined by its complete defining set w.r.t. α. In fact,

c ∈ C ←→ c(αi) = 0 for any i ∈ S̃C,α. (3.3)

We observe that this characterization of cyclic codes is not true if we drop the assumption that
GCD(n, q) = 1.

Definition 3.3.9. Let C1 and C2 be two cyclic codes of length n over Fq. We say that C1 and C2

are naturally equivalent if there are two nth roots of unity in the splitting field of xn − 1 over
Fq, α and β, s.t.

SC1,α = SC2,β.

34

3.3. Cyclic Codes

We have that two naturally equivalent cyclic codes are also permutation equivalent. The
converse, in general, is not true.

Theorem 3.3.10. Let C1 and C2 be naturally equivalent cyclic codes. Then

d(C1) = d(C2).

Moreover, if C1 is a cyclic code of length n over Fq and α and β are primitive nth roots of unity
in the splitting field of xn − 1 over Fq, then there is a unique cyclic code C2 of the same length
over Fq s.t. SC1,α = SC2,β .

Therefore, different choices of α define the same cyclic code up to equivalence. From now one
we denote the complete defining set of C w.r.t. α by S̃C instead of S̃C,α and we refer to it as the
complete defining set of C.

By (3.3), if S̃C = {i1, i2, . . . , in−k} is the complete defining set of a cyclic code C of length
n and dimension k, then a parity-check matrix of C is given by

H =

1 αi1 α2i1 . . . α(n−1)i1

1 αi2 α2i2 . . . α(n−1)i2

...
...

...
...

...
1 αin−k α2in−k . . . α(n−1)in−k

 , (3.4)

because

Hc =

c(αi1)

c(αi2)
...

c(αin−k)

 .

We note that the entries of matrix H in (3.4) are in F rather than in Fq. A parity-check
matrix for C with entries in Fq is given by H�Fq (see Remark 3.2.6).

Since g(αi) = 0 implies that also g(αqi) = g(αi)q = 0, we have that the complete defining
set of C is partitioned into cyclotomic classes. More precisely we have that for some s ≥ 1,

SC =
s⊔
j=1

Cij ,

where Cij is the q-cyclotomic coset modulo n over Fq containing the integer ij . This means that
any subset of S̃C containing at least one element per cyclotomic class is sufficient to specify
the code C. We call such a set a defining set of C. A defining set of C having only one
representative element per cyclotomic class is called a base set of C. We will use SC to denote
a defining set which is not necessarily a complete defining set. As for S̃C , we have that

c ∈ C ←→ c(αi) = 0 for any i ∈ SC . (3.5)

There are several known lower bounds for the distance of a cyclic code. The oldest of these
is the BCH bound [BRC60].

35

Chapter 3. Decoding Problem for Cyclic Codes

Theorem 3.3.11 (BCH Bound). LetC be a cyclic code of length n over Fq and let S its complete
defining set. SupposeC has distance d. If S contains δ−1 consecutive elements for some integer
δ, then d ≥ δ.

We close this section introducing three important families of cyclic codes: BCH codes,
Reed-Solomon codes and quadratic residue (QR) codes.

BCH codes are cyclic codes designed to take advantage of the BCH Bound in the following
sense: by the BCH bound, if we would like to construct a cyclic code C having distance at least
δ and dimension as small as possible, we can accomplish this by choosing as complete defining
set ofC the smallest set being a union of q-cyclotomic cosetsCi with δ−1 consecutive elements.

Definition 3.3.12. Let δ be an integer with 2 ≤ δ ≤ n. A BCH code C over Fq of length n and
designed distance δ is a cyclic code with complete defining set

S = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2,

for some integer b > 0.
When b = 1, C is called a narrow-sense BCH code. Moreover, C is called a primitive BCH
code if it is a primitive cyclic code.

By the BCH Bound, we have that

Theorem 3.3.13. A BCH code with designed distance δ has (minimum) distance at least δ.

BCH codes are very powerful since for any integer d > 0 we can construct a BCH code of
minimum distance ≥ d. Note, however, that to find a BCH code of larger distance we have to
increase the length n.
By definition, BCH codes are easily constructible in polynomial time. Moreover, as we will
see in the next section, they have also efficient decoding algorithms. It turns out that for short
lengths, say up to n < 128, BCH codes are among the best cyclic codes known. However, Lin
and Weldon [LW67] showed that BCH codes are asymptotically bad, in the following sense.

Definition 3.3.14. We say that a family C of codes over Fq is asymptotically good if there exists
an infinite subset of [ni, ki, di] codes from this family with with limi→∞ ni =∞ such that both
the code rates ki/ni and the relative distances di/ni are bounded away from 0, i.e.

lim inf
i→∞

ki/ni > 0 and lim inf
i→∞

di/ni > 0

A family of codes is said asymptotically bad if no asymptotically good subfamily exists.

It is natural to ask whether or not there is any family of asymptotically good cyclic codes. In the
last decades some progress has been made in trying to answer to this question, but it remains
still open. Some partial positive results are known for quasicyclic codes [Kas74]. In [Cas89]
Castagnoli showed that, if the length ni goes to infinity with i while having a fixed set of prime

36

3.3. Cyclic Codes

factors, then there is no asymptotically good family of cyclic codes Ci of length ni. Also, Bazzi
and Mitter [BM06] have shown that there exists an asymptotically good family of linear codes
which are very close to cyclic codes. Willems and Martinez-Perez [MPW06] have shown that if
there exists an asymptotically good family of cyclic codes, then there exists an asymptotically
good family of cyclic codes with prime lengths.

Reed–Solomon codes [RS60] can be seen as a subfamily of BCH codes. Because of their
burst error-correction capabilities, they are used to improve the reliability in data storage sys-
tems. Also, they constitute the primary example of MDS codes.

Definition 3.3.15. A Reed–Solomon code C over Fq is a BCH code of length n = q − 1.

The family of quadratic residue codes is a subclass of cyclic codes over prime fields. This
family contains some very good codes of small length, which makes it a promising family of
codes. An interesting open question is whether it is an asymptotically good family of codes.

Definition 3.3.16. A quadratic residue code over Fq is a cyclic code of odd prime length p

over Fq with q a prime that is a quadratic residue modulo p, that is, q ≡ r2 (mod p) for some
nonzero integer r.

3.3.2 Decoding Cyclic Codes

Cyclic codes are not known to be asymptotically bad as the BCH codes. So it would be
important to have efficient decoding algorithms for cyclic codes. Unfortunately, until now, we
do not know any efficient bounded-distance decoding algorithm for cyclic codes (up to their
actual distance).
In the last fifty years many efficient bounded-distance decoders have been developed for special
classes of cyclic codes, e.g. the Berlekamp-Massey (BM) algorithm [Mas69] designed for the
BCH codes. The most common approach for finding efficient decoding procedures for the class
of cyclic codes consists in trying to extend such decoders.

In the first part of this section we briefly recall the classical approach to decode BCH codes.
Then we outline the main strategies that have been proposed in the last decades for decoding
cyclic codes. Finally we focus our attention on a particular locator polynomial and we show
some of their properties.

Decoding BCH codes

From now on until the end of the chapter, we denotes vectors by bold lower-case letters.
Moreover, if v(x) ∈ Fq[x] with deg v(x) < n then the vector corresponding to it by (3.2) is
denoted by v.

37

Chapter 3. Decoding Problem for Cyclic Codes

We illustrate now a general strategy to decode BCH codes consisting of four main steps,
which we describe in order and later summarize. While the following procedure can be applied
to any BCH code, here for simplicity, we show it only for narrow-sense BCH codes.

Let α be a primitive nth root of unity in Fqm , where m is the order of q modulo n, i.e.
m = ordn(q). Let C be the (narrow-sense) BCH code over Fq of length n and designed distance
δ with defining set SC = {1, 2, . . . , δ − 1}. As the minimum distance of C is at least δ, C can
correct at least t = b(δ − 1)/2c errors. Let c(x), v(x), e(x) be, respectively, the transmitted
code polynomial, the received polynomial and the error polynomial, then v(x) = c(x) + e(x).
Suppose that e has weight µ ≤ t (such an error is said to be a correctable error) and that the
errors occur in the unknown coordinates l1, l2, . . . , lµ with 0 ≤ l1 < l2 < · · · < lµ ≤ n − 1.
Therefore

e(x) = el1x
l1 + el2x

l2 + · · ·+ elµx
lµ , (3.6)

for some elj ∈ F∗q , for 1 ≤ j ≤ µ.

Definition 3.3.17. The integers lj are called the error positions associate to e(x), while the elj ,
for 1 ≤ j ≤ µ, are called the error values associate to e(x).

Once we obtain e(x), which amount to find the error positions lj and the error values elj , we
can decode the received polynomial as c(x) = v(x) − e(x). Note that in the binary case any
error is completely characterized by lj alone, since in this case all the error values are 1.

Remark 3.3.18. Since α is a primitive nth root on unity in Fqm , we have that

αi = αj for i, j ∈ {0, 1, . . . , n− 1} → i = j

Therefore, knowing αlj uniquely determines the error position lj .

Definition 3.3.19. The elements αlj , for 1 ≤ j ≤ µ, are called the error locations associate to
e(x).

By (3.5), we have that

v(αi) = c(αi) + e(αi) = e(αi) for all 1 ≤ i ≤ δ − 1.

Definition 3.3.20. The elements si = e(αi), for 0 ≤ i ≤ n− 1, are said syndromes. If S̃C is the
complete defining set of C, then si is said a known syndrome if i ∈ S̃C . Syndromes which are
not known syndromes are called unknown syndromes. Known syndromes which correspond to
a base set of C are called primary syndromes.

Note that in particular the syndromes si, for 1 ≤ i ≤ δ − 1, are known syndromes.
The first step of the procedure is to compute the syndromes si, for 1 ≤ i ≤ δ − 1 of

the received polynomial v(x). These syndromes lead to a system of equations involving the
unknown error locations and the unknown error values. From (3.6), it holds that

si = e(αi) =

µ∑
j=1

elj(α
i)lj =

µ∑
j=1

elj(α
lj)i, for 1 ≤ i ≤ δ − 1. (3.7)

38

3.3. Cyclic Codes

To simplify the notation, for 1 ≤ j ≤ µ, let zj = αlj . By point 2 of Theorem 2.3.12, we
have that

sqi = (

µ∑
j=1

eljz
i
j)
q =

µ∑
j=1

eqljz
iq
j =

µ∑
j=1

eljz
iq
j = siq. (3.8)

The system of equations (3.7) is nonlinear in the zj with unknown coefficients elj . The
strategy is to use (3.7) to set up a linear system involving new variables in order to find the error
locations zj . Once these are known, we return to the system (3.7), which is then a linear system
in the elj , and solve it to get the errors values.

Let σ0 = 1 and let σ1, σ2, . . . , σµ be the elementary symmetric polynomials in the variables
z1, . . . , zµ over Fq. Then

µ∏
j=1

(x− zj) =

µ∑
j=0

(−1)jσµ−jx
j.

Moreover, by Theorem 2.3.27, we have that

(−1)µσµsj + (−1)µ−1σµ−1sj+1 + · · ·+ (−1)σ1sj+µ+1 + sj+µ = 0, for j = 1, 2, . . . , µ.

Proposition 3.3.21. The system of equations

(−1)µσµsj + (−1)µ−1σµ−1sj+1 + · · ·+ (−1)σ1sj+µ+1 + sj+µ = 0, j = 1, 2, . . . , µ

in the unknowns (−1)iσi, i = 1, 2, . . . , µ, is solvable uniquely if and only if µ errors occur.

Proposition 3.3.22. The system of equations

µ∑
j=1

eljz
i
j = si, i = 1, 2, . . . , µ

in the unknowns elj is solvable uniquely if the zj are all distinct elements of Fqm .

Definition 3.3.23. The polynomial Le(x) having as zeros the reciprocal of the error locations
is said the classical error locator polynomial associated to the error vector e, i.e.

Le(z) =

µ∏
j=1

(1− zjx) =

µ∑
j=0

σjx
j,

whereas we call the polynomial having as zeros the error locations the plain error locator poly-
nomial associate to the error vector e, and we denote it with Le(z). Then

Le(z) =

µ∏
j=1

(x− zj).

39

Chapter 3. Decoding Problem for Cyclic Codes

It is clear that once we found Le(z) (or Le(z)) then the error locations zj may be found by
computing Le(α

h) for h = 0, . . . , n− 1, since

Le(α
h) = 0←→ αh is an error location.

We summarize the approach to decode BCH codes that we have just shown.

Algorithm 1 Decoding BCH codes
Step 1. Compute the syndromes of the received vector v

si =

µ∑
j=1

elj (zj)
i, for 1 ≤ i ≤ 2t

Step 2. Determine the maximum number µ ≤ t such that the system of equations

sj+µ + sj+µ−1τ1 + · · · sjτµ = 0, 1 ≤ j ≤ µ,

in the variables τi = (−1)iσi, has nonsingular coefficient matrix, thus obtaining the number µ of
errors that have occurred. Then set up the classical error locator polynomial

Le(z) =

µ∏
j=1

(1− zjx) =
µ∑
j=0

τjx
j .

Find the coefficient τj from the si.

Step 3. Solve Le(x) = 0 by substituting the powers of α into Le(x), thus finding the error locations zj .

Step 4. Substitute the zj in the first µ equations of Step 1 to obtain the error values elj . Finally find the
transmitted codeword c(x) = v(x)− e(x).

Efficient implementations of this decoding algorithm combine the following methods

• the Horner’s rule for Step 1, which requires 2tn multiplications in Fqm;

• the Berlekamp-Massey algorithm [Bla03, HV95] for Step 2, which costs O(t2);

• the Chien search [Chi64] for Step 3, requiring O(tn) multiplications in Fqm;

• the Forney’s algorithm [For65, HV95] for Step 4, costing O(t2).

Recently, further improvements [SER11] have been achieved for performing Step 1 and Step
3. If q = ps with p prime, then Step 1 can be accomplished with approximately 2s

√
n(p− 1)

multiplications and Step 3 in max(O(t
√
n), O(t log(log(t)) log(n))). Note that we can bound

the total cost of Algorithm 1 with O(n2).

40

3.3. Cyclic Codes

Decoding Cyclic Code up to the actual minimum distance

Cyclic codes are not known to be asymptotically bad as the BCH codes. However, up to
date, there are no general efficient algebraic procedures for correcting the whole class of cyclic
codes up to the actual minimum distance, i.e. up to t = b (d−1)

2
c errors, where d is the distance

of the cyclic code.
Note that the previous algebraic decoding procedure designed for BCH codes can be used to
decode all types of cyclic codes, but, in the general case, it can only correct up to tBCH =

b (dBCH−1)
2
c errors, where dBCH is the BCH bound of the given code. The problem in correcting

t errors using the previous decoding strategy is that all the know methods solving Step 2 require
knowing 2t consecutive syndromes. Unfortunately, for an arbitrary cyclic code the number of
consecutive known syndromes is less than 2t. Several suggestions were made in the last fifty
years to resolve this problem. In the following we summarize the main approaches.

When few unknown syndromes are needed to get 2t consecutive syndromes, a good strat-
egy could be to develop an efficient method determining expressions of unknown syndromes
in terms of known syndromes. In [FT94] Feng and Tzeng proposed a matrix method for find-
ing unknown syndromes representations, which is based on the existence of a syndrome matrix
with a particular structure. This method depends on the weight of the error pattern, so it leads
to a step-by-step decoding algorithm, and hence the error locator polynomial may not be de-
termined in one step. In [HRTC01] He et al. developed a modified version of the Feng-Tzeng
method, and used it to determine the needed unknown syndrome and to decode the binary
quadratic residue (QR) code of length 47. In [CTR+03, TSS+08, TCCL05] Chang et al. pre-
sented algebraic decoders for other binary QR codes combining the Feng-He matrix method
and the BM algorithm. Another method used to yield representations of unknown syndromes
in terms of known syndromes is the Lagrange interpolation formula (LIF)[CL10]. This method
has two main problems: it can be applied only to codes generated by irreducible polynomi-
als and its computational time grows substantially as the number of errors increases. The first
problem was overcome by Chang et al. in [CLF12]. Here the authors introduced a multivariate
interpolation formula (MVIF) over finite fields and used it to get an unknown syndrome rep-
resentation method similar to that in [CL10]. Later, trying to overcome the second problem,
Lee et al.[LCJM12] presented an algorithm which combines the syndrome matrix search and
a modified Chinese remainder theorem. Compared to the Lagrange interpolation method, this
substantially reduces the computational time for binary cyclic codes generated by irreducible
polynomials.

Besides the unknown syndrome representation method, other approaches have been pro-
posed to decode cyclic codes. In 1987 Elia [Eli87] proposed a seminal efficient algebraic de-
coding algorithm for the Golay code of length 23. In 1990 Cooper [Coo90, Coo91] suggested
to use Gröbner basis computations in order to deduce error locator polynomials of binary BCH
codes. Cooper’s idea consisted in interpreting the error locations of the code as the roots of the
syndrome equations (3.7) and, in showing that the plain error locator polynomial corresponds

41

Chapter 3. Decoding Problem for Cyclic Codes

to the univariate polynomial gu(Z) in the normalized reduced Gröbner basis (with respect to the
lexicographic term ordering induced by z1 < · · · < zt) of the ideal generated by the polynomi-
als in the variables z1, . . . , zt,

fi :=
t∑

j=1

z2i−1
j − s2i−1, 1 ≤ i ≤ t. (3.9)

Later, the Cooper’s approach [MO09] has been studied for all cyclic codes and refined [CM02,
CRHT94c, CRHT94a, CRHT94b, LY97] up to give both online decoders [ABF07, ABF09] and
general error locators [OS05, OS07]. Below, we briefly describe these two approaches.

Online decoders In [ABF09], Augot et al. proposed two online Gröbner basis decoding al-
gorithms, based on Newton’s identities and Waring formulas respectively, requiring, for
each received vector, up to t Gröbner basis computations: the µth computation deduce
the unknown σ1, . . . , σµ in terms of the known syndromes s1, . . . , sn−k of the received
vector.

General locators In [CRHT94b], associating variables Z = (z1, . . . , zt) to the error locations,
X = (x1, . . . , xn−k) to the known syndromes si, and Y = (y1, . . . , yt) to the error values,
Chen et al. introduced the ideal generated by the polynomials fi and the polynomials

λh := yq−1
h − 1, ηh := zn+1

h − zh, for 1 ≤ h ≤ t. (3.10)

Note that to accommodate for the case when the number of errors, µ, is strictly less than
t, it is often convenient to add ghost error locations, that is, t−µ zero values for the zh’s.
This does not affect the value of the syndromes. The polynomials λh, for 1 ≤ h ≤ t,
specify that the error values belong to F∗q , whereas the polynomial ηh, for 1 ≤ h ≤ t, that
the locations αlj ’s are nth root of unity or zero. The algorithm proposed by Chen et al.
consists in deducing via a Gröbner basis computation in Fq[X, Y, Z], some polynomials
gµ(X, z), for µ ≤ t, such that, for any error with weight µ and associate known syndromes
s1, . . . , sn−k ∈ Fqm , gµ is the plain error locator polynomial. In [CM02] Caboara and
Mora improve this algorithm. In particular, they added to the system of equations (3.9)
and (3.10), the equations

θj := xq
m

j − xj, for 1 ≤ j ≤ n− k. (3.11)

The syndromes satisfy (3.11) since we have that sj ∈ Fqm , for 1 ≤ j ≤ n− k. The ideal
generated by this new system of equations (3.9), (3.10) and (3.11) is called the CRHT-
syndrome ideal associated to the code. The role of the polynomials λh, ηh, for 1 ≤ h ≤ t

and θj ∈ Fqm , for 1 ≤ j ≤ n− k, is essentially to remove among the roots of the system,
those roots which live in algebraic extensions and to make the other roots simple.

42

3.3. Cyclic Codes

Both the Gröbner basis-based approaches in [ABF09] and in [CM02] are not-necessarily fea-
sible, the first one because it requires an on line Gröbner basis computation, the second one
because the system of equations has to many roots so that the Gröbner basis is less feasible
to compute. In order to improve the second approach, Orsini and Sala [OS05] restricted the
set of roots of the system to the point (s1, . . . , sn−k, z1, . . . , zt, y1, . . . , yt) corresponding to cor-
rectable syndrome vectors s = (s1, . . . , sn−k), by adding to the system, the following equations

zhzh′ph,h′ = 0, where ph,h′ = (znh − znh′)/(zh − zh′), 1 ≤ h < h′ ≤ t, (3.12)

which guarantee that for all h and h′ with 1 ≤ h < h′ ≤ t, either zh and zh′ are distinct or
both are zero. Studying the structure of syndrome ideal obtained by adding equations (3.12)
to the CRHT-syndrome ideal, they furthermore proved the existence, for any cyclic code, of a
computable polynomial, called a general error locator polynomial, whose roots give the error
locations once it has been specialized to a given syndrome vector [OS05]. Thus, they exhibited
a decoding algorithm for cyclic codes whose efficiency depends on the sparsity of this polyno-
mial. In [OS07] Orsini and Sala gave some theoretical results on the shape of such polynomials
without the need to actually compute a Gröbner basis. In particular they provided a sparse im-
plicit representation of general error locator polynomials for all binary cyclic codes with length
less than 63 and error correction capability less or equal than 2, and show that most of these
codes may be grouped in a few classes, each allowing a theoretical interpretation for an explicit
sparse representation of such locators. Moreover, for the codes which are not in any of these
classes, they obtained a sparse explicit representation of general error locator polynomials us-
ing direct computer computations [OS07]. The low computational complexity of the general
error locator polynomial for the two error-correctable cyclic codes has motivated the studies for
variations on this polynomial [MOS12, LCCC10, Lee11].

In the next subsection we will focus our attention on general error locator polynomials for
cyclic codes recalling some results from [OS05] and [OS07].

General error locator polynomials

The aim of this subsection is to introduce general error locator polynomials for cyclic codes
and to provide a set of properties of this locators.

Let C be an [n, k, d] cyclic code over Fq with parity-check matrix H defined by (3.4) where
α is a primitive nth root of unity in Fqm , m = ordn(q). Let t = b(d − 1)/2c be the error
correction capability of C. Let alsoR be the set of roots of unity in Fqm , that isR = {β ∈ Fqm |
βn = 1}.

Definition 3.3.24 ([OS05, Definition 3.1]). Let LC be a polynomial in Fq[X, z], where X =

(x1, . . . , xn−k). Then LC is a general error locator polynomial of C if

1) LC(X, z) = zt + at−1(X)zt−1 + · · · + a0(X), with aj ∈ Fq[X], for 0 ≤ j ≤ t − 1, that

43

Chapter 3. Decoding Problem for Cyclic Codes

is, LC is a polynomial of degree t with respect to the variable z and its coefficients are in
Fq[X];

2) given a correctable syndrome s = (s̄1, . . . , s̄n−k), if we evaluate theX variables in s, then
the t roots of L(s, z) are the µ error locations plus zero counted with multiplicity t− µ.

Notice that Definition 3.3.24 can be extended to any linear code. However, given a generic
linear code C the existence of a polynomial LC is not guaranteed [OS05]. On the contrary, this
is true for any cyclic code.

Theorem 3.3.25 ([OS05, Theorem 6.9]). Each cyclic code C possesses a general error locator
polynomial LC .

By point 2) of Definition 3.3.24, for every correctable syndrome s, we have that LC(s, z) =

zt−µLe(z), where e is the error associated to the syndrome s. Then, it is clear that once we
have computed LC = zt + at−1(X)zt−1 + · · · + a0(X) for a code C, the plain error locator
polynomial may be obtained by

Le(z) =
LC(s, z)

zt−µ

Therefore we can resolve Step 2 of Algorithm 1 with the following procedure

Algorithm 2 Given a code C and a correctable syndrome s = (s1, . . . , sn−k), the procedure
returns the plain error locator polynomial.

function (C, s1, . . . , sn−k)
µ = t

while at−µ(s1, . . . , sn−k) = 0 do µ := µ− 1

end while
return µ,Le(z)

end function

Note also that, since the polynomial LC does not depend on the errors actually occurred, it
can be precomputed once and for all. As a consequence, a decoding algorithm based on general
error locator polynomial is made up of the following steps:

1. Compute the syndrome vector s corresponding to the received vector r

2. Evaluate LC at the syndrome vector s

3. Apply Chien search on LC(s, z) to compute the error locations αl1 , . . . , αlµ

4. Compute the error values el1 , . . . , elµ

44

3.3. Cyclic Codes

This approach is efficient as long as the evaluation of LC is efficient. Since it is well-known
that the cost of evaluating a polynomial is strictly related to the sparsity of the polynomial, one
would like that each cyclic code possesses a sparse general error locator polynomial LC . At
present, there is no theoretical proof of the sparsity of general error locator polynomials for
arbitrary cyclic codes (and no proof for sparse representations), but there is some experimental
evidence in the binary case. The proof of its sparsity in the general case would be a significant
result in complexity theory, because it would imply that the complexity of the bounded-distance
decoding problem for cyclic codes (allowing unbounded preprocessing) is polynomial in the
code length.

In the following we recall some techniques used in [OS07] to efficiently compute general
error locator polynomials for binary cyclic codes without using Gröbner bases. We also report
some results on the shape of these locators for the same class of codes.

Theorem 3.3.26 ([OS07, Theorem 12]). LetC,C ′ andC ′′ be three codes with the same length n
and the same error correction capability t. Let LC ,LC′ and LC′′ denote their respective general
error locator polynomials.

If C is a subcode of C ′, then we can assume LC = LC′ .
If C is equivalent to C ′′ via the coordinate permutation function φ : Fn2 → Fn2 , then we can

decode C using LC′′ (via φ).

Let C be a binary cyclic code with error correction capability t = 2. Let s be a correctable
syndrome, and z̄1 and z̄2 be the (possibly ghost) error locations corresponding to the syndrome
s. Then, by Definition 3.3.24, we have that

LC(X, z) = z2 + az + b, a, b ∈ F2[X],

with
b(s) = z̄1z̄2, a(s) = z̄1 + z̄2.

Moreover, there are exactly two errors if and only if b(s) 6= 0, and there is exactly one error if
and only if b(s) = 0 and a(s) 6= 0 (in this case the error location is a(s)). Note that if 1 ∈ S̃C
then a(s) = z̄1 + z̄2 = s1. So, one has that

1 ∈ S̃C −→ LC(X, z) = z2 + x1z + b, b ∈ F2[X] s.t b(s) = z̄1z̄2

For 0 ≤ µ ≤ t, we denote by Vµ the set of syndromes corresponding to µ errors. We denote
also by V the set of correctable syndromes. We have that V is given by the (disjoint) union of
the sets Vµ for µ = 0, . . . , t, i.e.

V = V0 t V1 t · · · t V t.

Definition 3.3.27. Let C be a binary cyclic code code with t = 2. A polynomial h(X) in
F2[x1, . . . , xn−k] = F2[X] is called a bordering polynomial for C if

h(V1) = {0}, h(V2) = {1} .

45

Chapter 3. Decoding Problem for Cyclic Codes

Remark 3.3.28. Notice that if SC contains 0 then a bordering polynomial for C is given by
(1 + x0) with x0 the variable corresponding to the syndrome s0 = z0

1 + z0
2 .

The importance of bordering polynomials comes from the following result, which immediately
follows from Proposition 19 in [OS07].

Proposition 3.3.29. Let C be a binary cyclic code with t = 2. Let L∗ = z2 + a(X)z + b∗(X)

be a polynomial in F2[x1, . . . , xn−k, z] = F2[X, z], s.t. L∗(s, z) is an error locator polynomial
for any weight-2 error corresponding to a syndrome s ∈ V2. Let L′C = z + a(X) be an error
locator polynomial for any weight-1 error, and h be a bordering polynomial. If either h or b∗ is
zero at the zero syndrome vector, then

LC(X, z) = z2 + a(X)z + b∗(X)h(X)

is a general error locator polynomial for C.

In [OS07] a complete classification of all binary cyclic code with t ≤ 2 and n ≤ 63, with
respect to their defining sets, is given.

Theorem 3.3.30 ([OS07, Theorem 28]). LetC be an [n, k, d] binary cyclic code with d ∈ {5, 6}
and 7 ≤ n < 63 (n odd). Then there are seven cases:

1. either n is such that the code with defining set {0, 1} has distance at least 5,

2. or C is a BCH code, i.e. SC = {1, 3},

3. or C admits a defining set of type SC = {1, n− 1, l}, with l = 0, n/3,

4. or C admits a defining set of type SC = {1, n/l}, for some l ≥ 3,

5. or C is one of the following exceptional cases

a) n = 31, SC = {1, 15},

b) n = 31, SC = {1, 5},

c) n = 45, SC = {1, 21},

d) n = 51, SC = {1, 9},

e) n = 51, SC = {0, 1, 5}.

6. or C is a sub-code of one of the codes of the above cases,

7. or C is equivalent to one of the codes of the above cases.

46

3.3. Cyclic Codes

According to this classification, the authors in [OS07] provide an explicit general error
locator polynomial for all the codes in the first five cases. For the codes in cases 6. and 7., such
locators can be gotten from those of the previous cases, as described in Theorem 3.3.26.

Note that for any binary cyclic code C (up to equivalence) in the range covered by The-
orem 3.3.30, i.e. with t = 2 and 7 ≤ n < 63, C has a general error locator polynomial of
type

LC(X) = z2 + x1z + b(X),

where x1 is the syndrome corresponding to 1, since 1 ∈ SC in all the cases. So, for all these
codes, finding LC corresponds to find the polynomial b(X).
For all the codes in the first four cases of Theorem 3.3.30, the shape of b(X) has been theoreti-
cally determined and proved to be sparse [OS07]. The codes in 5. of Theorem 3.3.30 are those
for which the general error locator polynomials are not theoretically justified within [OS07],
and are solely obtained with a Gröbner basis calculation.
To theoretically justified all such error locator polynomials and to generalize this classification
for binary cyclic codes with higher correction capability would be an interesting open problem.

Another useful definition from [OS07] is that of s2ec code.

Definition 3.3.31. LetC be a binary cyclic code. We say thatC is a strictly-two-error-correcting
code (briefly s2ec code) if, when we know that exactly two errors have occurred (that is µ = 2),
then we can correct them.

Trivially every binary cyclic code with distance d ≥ 5 is a s2ec code, however there are s2ec
codes with distance d = 3, e.g. the binary cyclic code defined by n = 9 and SC = {1}. Note
that if C is a s2ec code, then every subcode C ′ of C is a s2ec code.

Lemma 3.3.32 ([OS07, Lemma 43]). LetC be a binary cyclic code with distance d and defining
set SC = {0, 1}. Then, the following are equivalent:

1. C is a s2ec code

2. d ≥ 5.

The following lemma characterizes s2ec codes.

Lemma 3.3.33 ([OS07, Lemma 45]). Let C be a binary cyclic code with SC = {1} and length
n. The following are equivalent:

1. for any {z̃1, z̃2} and {z̄1, z̄2} subsets of R such that z̃1 + z̃2 = z̄1 + z̄2, we have {z̃1, z̃2} =

{z̄1, z̄2}

2. C is a s2ec code

47

Chapter 3. Decoding Problem for Cyclic Codes

In [OS07] the authors provide the following theorem on the structure of the general error
locator polynomials of a class of binary cyclic codes.

Theorem 3.3.34 ([OS07, Theorem 52]). Let C be a binary cyclic code with length n, with
n s2ec, and let L∗ be the error locator polynomial able to correct two errors. Suppose that
1 ∈ S̃C . Then L∗ = z2 + x1z + b∗(x1). Moreover there exists a polynomial A ∈ Fqm [y] such
that

b∗(x1) = A(xn1)x2
1.

A generalization of this result is given in [CL10]. Let Tt = {(αi1 , . . . , αij , 0, . . . , 0) | 0 ≤ i1 <

· · · < ij < n, j ≤ t}.

Theorem 3.3.35 ([CL10, Theorem 1]). Let C be a binary cyclic code with length n and error
correction capability t. Let also f ∈ F2[x1, . . . , xt] be a symmetric homogeneous function of
degree r. Then there is a polynomial A ∈ F2[x] such that

f(z1, . . . , zt) = A((z1 + · · ·+ zt)
n)(z1 + · · ·+ zt)

r, for all (z1, . . . , zt) ∈ Tt.

48

Correlation Attacks on LFSR-based Stream Ciphers

A way to provide secrecy and authenticity in electronic communication data is by use of
cryptographic systems. There are two basic such systems: symmetric and asymmetric cryp-
tosystems. At the same time, symmetric encryption consists of two families of schemes, which
are block ciphers and stream ciphers. This last classification may be seen in analogy to error
correcting codes which are classified into block and tree codes. Block ciphers divide the plain-
text message into blocks, usually of fixed size, and operate with a transformation on each block
independently. Stream ciphers, in contrast, operate with a time-varying transformation on indi-
vidual plaintext digits. Stream ciphers are usually faster and have a lower hardware complexity
than block ciphers. This make them suitable for encrypting data over communications channel
such as mobile phone and the Internet, where buffering is limited.

The purpose of this chapter is to give an outline of the background information regarding
correlation attacks on certain stream ciphers. In the first section we recall some basic notions in
Cryptography, including the main scenarios of attacks on cryptographic systems. In the same
section we also review current algorithms for solving the Generalized Birthday Problem along
with their complexities. In Section 4.2 we describe some basic properties of LFSR-based stream
ciphers, their security level and the standard procedures for achieving a good level of security.
In the last section we give an introduction to correlation attacks and fast correlation attacks on
LFSR-based stream ciphers.

4.1 Preliminaries

4.1.1 Basic notions in Cryptography

A cryptographic scheme is a technique for transforming data from one form to another in
a such way that only authorized people can recover, using a private key, the original data from
the output of the transformation. Formally, we can describe such a system using the following
definition.

Definition 4.1.1. A cryptosystem is comprised of three algorithms (Gen,Enc,Dec) such that:

• Gen is the key-generation algorithm that outputs the keys in the key space K.

• Enc is the encryption algorithm that takes as input a message m ∈ M, whereM is the
message space, and a key k ∈ K, and outputs a ciphertext c in the ciphertext space C. We

49

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

denote by c = Ek(m) the encryption of the plaintext m using the key k.

• Dec is the decryption algorithm that takes a key k′ ∈ K and a ciphertext c ∈ C, and
outputs a plaintext m. We denote by Dk′(c) the decryption of the ciphertext c using the
key k′.

The basic correctness requirement of any encryption scheme is that for each k ∈ K there exists
k′ ∈ K, and for any message m ∈M, it holds that:

Dk′(Ek(m)) = m. (4.1)

A cryptosystem is called symmetric if for each k ∈ K, the above key k′ corresponds to k or it
can be obtained from k with a simple transformation.

Given some encrypted data, we call a malicious entity whose goal is recovering the plaintext
or the key, an attacker. There are two general approaches to attack a cryptosystem: brute-force
attack (or exhaustive key search) and non-brute-force attack. In brute-force attack the attacker
tries decrypting the known ciphertext c with each possible key in turn, until the correct key k is
found. Note that exhaustive key search assumes that the attacker can tell whether a given guess
of the key is correct. This requires that they have some information about the plaintext.
The level of security offered by a cipher is measured by the knowledge and facilities an at-
tacker requires to attack the system using a non-brute force attack. A common assumption
(Kerkhoff’s principle) is to suppose that the attacker has complete knowledge of the structure
of the cryptosystem. The main models of attacks from the least powerful to the most powerful
(or equivalently, from the most practical to the most hypothetical) are the following:

1. Ciphertext-only attack: if the attacker knows one or more ciphertexts under the same key

2. Known-plaintext attack: in this case the attacker knows one or more matching pairs of
plaintext-ciphertext

3. Chosen-plaintext attack: when the attacker is able to choose plaintexts and to obtain the
corresponding ciphertexts

4.1.2 Boolean functions

Many stream ciphers use one or more Boolean functions as components. We recall here
some definitions about Boolean functions useful for subsequent discussions.

Definition 4.1.2. A Boolean function f in n variables is a map from Fn2 to F2.

A Boolean function in n variables can be expressed as a polynomial in

F2[x1, . . . , xn]/(x2
1 − x1, . . . , x

2
n − xn),

50

4.1. Preliminaries

called the algebraic normal form (ANF) of f , that is

f(x) =
∑
a∈Fn2

cax
a1
1 · · ·xann ,

where ca ∈ F2 and a = (a1, . . . , an).
Next definition introduces a rough measure of the complexity of a Boolean function.

Definition 4.1.3. Let f be a Boolean function. The degree of the ANF of f is called the alge-
braic order of f .

All Boolean functions of algebraic order greater than one are known as nonlinear functions.

Definition 4.1.4. An affine function `a,c in n variables is a Boolean function that takes the form

`a,c(x) = a · x⊕ c = a1x1 ⊕ · · · ⊕ anxn ⊕ c,

where a = (a1, . . . , an) ∈ Fn2 , c ∈ F2. If c = 0, then `a,0 is said a linear function.

Another well-known representation of a Boolean function is its true table.

Definition 4.1.5. Let f be a Boolean function in n variables. We call the truth table of f the
vector yf ∈ F2n

2 defined by

yf := (f(v0), f(v1), . . . , f(v2n−1))

where v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1), . . . , v2n−1 = (1, . . . , 1, 1), ordered by lexicograph-
ical order.

Definition 4.1.6. Let f be a Boolean function. The Hamming weight of f is defined to be the
Hamming weight of its truth table, and it is denoted by wt(f). Moreover, f is said balanced if
its Hamming weight is 2n−1.

Definition 4.1.7. The Hamming distance between two Boolean functions f, g : Fn2 → F2,
denoted by d(f, g), is defined as

d(f, g) := wt(f ⊕ g).

The nonlinearity of a Boolean function f , denoted by Nf , is defined as

Nf := min
φ∈An

d(f, φ),

where An is the class of all affine functions in n variables.

51

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

4.1.3 Birthday Problem

The Birthday problem, or birthday paradox, is a standard problem in probability theory
which was initiated by von Mises in 1932. It is a very used paradigm in cryptography: it is
encountered in symmetric and asymmetric cryptography, in cryptanalysis and provable security.
Its original version concerns the probability that at least two people in a group of n people will
have the same birthday. It is a paradox in the sense that it does not fit the common sense answer.
Assuming that a year is always 365 days long and that each day of the year is equally probable
for a birthday, the probability reaches 100% when the number of people reaches 366. However,
99.9% probability is reached with just 70 people, and 50% probability with 23 people.

A general formulation of the birthday problem is the following

Problem 1 BIRTHDAY PROBLEM
Input: Two lists L1, L2 of elements drawn uniformly and independently at random from {0, 1}n
Output: x1 ∈ L1 and x2 ∈ L2 such that x1 ⊕ x2 = 0

When |L1|×|L2| � 2n holds, a solution x1, x2 for this problem exists with good probability. In
this context, we say that x1 and x2 collides or simply that we have a collision. Moreover, if the
list sizes |L1|, |L2| are favorably chosen, the complexity of the optimal algorithm for solving
the birthday problem is O(2n/2). To see that, let us define a join operation ./ on lists so that
S ./ T represents the list of elements common to both lists S and T . Since x1 ⊕ x2 = 0 if and
only if x1 = x2, a solution of the birthday problem may be found by simply computing the join
L1 ./ L2 as it is shown schematically in Figure 4.1.

L1 ⊲⊳ L2

L1 L2

⊲⊳

Figure 4.1: Standard algorithm for birthday problem

Given two lists L1 and L2, several efficient methods for computing L1 ./ L2 are known. In
the following we mention two of these methods. A merge-join sorts the two lists, and scans them
returning any matching pair detected. It runs inO(M logM) time whereM = max(|L1| , |L2|).
A hash-join stores one list in a hash table, and then scans through the elements of the other list
checking whether they are present in the hash table. It has running time O(|L1| + |L2|) and

52

4.1. Preliminaries

memory complexity O(min(|L1| , |L2|)).
Hash-join is very efficient in case of having enough memory available to store min(|L1| , |L2|)
elements. Otherwise the merge-join is preferable since external sorting methods allow to com-
pute it even when memory is scarce.
Then, if we are free to choose the size of the lists as we desire, birthday problem can be solved
with O(2n/2) time and space.

In [Wag02] Wagner introduced a generalization of Problem 4.1.3 for an arbitrary number of
lists. He refers to the problem where there are k lists as the k-sum problem.

Problem 2 k-SUM PROBLEM
Input: k lists L1, L2, . . . , Lk of elements drawn uniformly and independently at random from
{0, 1}n
Output: x1 ∈ L1, x2 ∈ L2, . . . , xk ∈ Lk such that x1 ⊕ x2 ⊕ · · · ⊕ xk = 0

As the birthday problem, it is easy to see that a solution x1, . . . , xk for the k-sum problem exists
with good probability once |L1| × |L2| × · · · × |Lk| � 2n.

In 1981 Schroepple and Shamir [SS81] considered the problem to find all solutions of the
k-sum problem in the case when k ≤ 4. Their algorithm combines dynamic programming
techniques with a divide-and-conquer algorithm. In particular, when k = 4, they decrease the
time complexity of the algorithm from brute force O(2n) to O(2n/4) space and O(2n/2) time.

In [Wag02], Wagner develops an algorithm for solving the k-sum problem assuming that
one can extend the sizes of the lists freely, i.e. in the special case where there are sufficiently
many solutions to the k-sum problem. Choosing as list sizesO(2n/(1+log k)), Wagner’s algorithm
requires O(k · 2n((1+log k)) time and space. In the following, we sketch the idea behind this
algorithm for the case when k = 4.

Let L1, . . . , L4 be four lists of elements chosen uniformly and independently at random from
{0, 1}n. The idea is to generalize the arguments showed before for the birthday problem. Let
us introduce a generalized join operator ./l, with l ≤ n, so that L1 ./ L2 contains all pairs from
L1 × L2 that agree in their l least significant bits. Denoting by lowl(x) the least significant bits
of x, we have lowl(xi ⊕ xj) = 0 if and only if lowl(xi) = lowl(xj) for xi and xj lists of bits of
the same length.
To get a solution for the 4-sum problem, firstly, we extend each list Li until it contains about
2l elements with l = n/3. Then, we generate the list L12 of values x1 ⊕ x2 with x1 ∈ L1 and
x2 ∈ L2 such that lowl(x1⊕ x2) = 0. Similarly, we generate a list L34 from the lists L3 and L4.
Lists L12 and L34 can be constructed by simply computing the joins L1 ./l L2 and L3 ./l L4.
Now, note that if x1 ⊕ x2 = x3 ⊕ x4 then x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0. So, finally, we search for
collisions between L12 and L34. Any such collision will yield a solution to the 4-sum problem.

The resulting algorithm can be implemented with O(2n/3) time and space. The estimation
of the algorithm is based on the facts that Pr[lowl(x1 ⊕ x2) = 0] = 1/2l when x1, x2 are taken
uniformly at random, and that if lowl(x1 ⊕ x2 ⊕ x3 ⊕ x4) = 0 then Pr[x1 ⊕ x2 ⊕ x3 ⊕ x4 =

53

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

0] = 1/2n−l. In Figure 4.2, we report schematically the algorithm for the case k = 4.

L1 ⊲⊳ L2

L1 L2

⊲⊳l

L3 ⊲⊳ L4

L3 L4

⊲⊳l

⊲⊳

L1234

Figure 4.2: Representation of Wagner’s algorithm for the 4-sum problem

For a general k > 2, the algorithm of Wagner can be represented as a complete binary tree
of depth blog kc where the edges are lists Li...j obtained from the lists L1, . . . , Lk using specific
join operators. At height h it is used the join operator ./lh with lh = hn/(1 + blog kc) for
h = 1, . . . , blog kc − 1. At the root it is used the full join operator ./. For this reason the
algorithm is also called k-tree algorithm.

In [CJM02], Chose, Joux and Mitton produce a space-efficient algorithm to find all solu-
tions of k-sum problem based on match-and-sort alternative algorithm. Their formulation of
the problem is quite different from the Wagner’s one. They do not introduce the input lists
L1, . . . , Lk and their goal in presenting the algorithm is to improve the efficiency of fast corre-
lation attacks on certain LFSR-based stream ciphers. Their algorithm runs in O(N dk/2e logN)

time and O(N b(k+1)/4c) memory, where N corresponds to the maximal list size in Wagner’s
formulation. In particular, for k = 4, their approach runs O(2n/2) time and O(2n/4) space
if |L1| = · · · = |L4| = 2n/4. This algorithm is essentially equivalent to repeatedly running
Wagner’s 4-tree algorithm once for each possible predicted value of α = lowl(x1 ⊕ x2), taking
l = n/4.

Note that the k-tree algorithm fails when the sizem of the lists is smaller than 2n/(log k+1).
In [MS12], Minder and Sinclair generalize the k-three algorithm for values of m smaller than
2n/(log k + 1). The key step in the algorithm of Minder and Sinclair is to specify an op-
timal strategy for choosing the lengths li in each round and to reduce the way of finding
these lengths to an integer program. Their algorithm works for all values of m such that

54

4.2. Stream ciphers

2n/k ≤ m ≤ 2n/(blog kc+ 1) in complexity of O(2blog kc+u∗), where u∗ is the optimal value of
u, which represents the maximal list length.

4.2 Stream ciphers

Stream ciphers are symmetric ciphers which operates with a time-varying transformation
on individual plaintext digits. More precisely, in a stream cipher a sequence of plaintext digits,
m0m1 . . ., is encrypted into a sequence of ciphertext digits c0c1 . . . as follows: the ith ciphertext
digit is produced by combining the ith plaintext digit with the ith digit of a sequence obtained by
the secret key k according to some rule. The sequence obtained by the key is called keystream.
In synchronous stream ciphers the keystream is generated independently of the plaintext and of
the ciphertext. Otherwise, we call the stream cipher asynchronous.
Synchronous stream ciphers are preferable respect to asynchronous ones because they are not
affected by error-propagation. The most common form of synchronous stream cipher is the bi-
nary additive stream ciphers, where plaintexts, chipertexts and keystreams are sequences of bits
and both encryption and decryption are simply the bitwise XOR-operation. A major advantage
of these stream ciphers is that encryption and decryption can be performed by the same device.
Figure 4.3 shows the encryption and decryption for a binary additive stream cipher.

Keystream

Generator
K

P
C

Keystream

Generator
K

C

Encryption Decryption

P

Figure 4.3: A binary additive synchronous stream cipher

In the following we trait only the case of binary additive synchronous stream ciphers. If no
differently specified, when we say stream cipher we actually mean binary additive synchronous
stream ciphers.

4.2.1 Standard properties of keystream sequences

One of the most remarkable of all ciphers is the one-time-pad or Vernam cipher. It is a
stream cipher where the keystream is a non repeating random sequence of the same length as
the plaintext. This cipher was developed by G. Vernam in 1917 for telegraph communications.
The remarkable fact about this cipher is that it leads to perfect secrecy.

55

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

Definition 4.2.1. A cryptosystem with set of plaintexts P and set of ciphertexts C, is said to
have the property of perfect secrecy if, for all p ∈ P and c ∈ C with P(Y = c) > 0,

P(X = p|Y = c) = P(X = p),

where P(Y = c) denotes the probability that the ciphertext is c, P(X = p) the probability that
the plaintext is p, and P(X = p|Y = c) the probability that the plaintext is p given that the
ciphertext is c.

The fact that the one-time-pad has the property of perfect secrecy implies that, assuming a
ciphertext-only attack, even with infinite computing resources, the attacker could never distin-
guish the true plaintext from all the other meaningful plaintexts. The disadvantage of this cipher
is that it requires that the key has the same length as the plaintext. This requirement makes it
impractical in the most applications.

The appealing features of the one-time-pad suggested building synchronous stream ciphers
using as keystream a deterministically generated “random” sequence. We call such a sequence
a pseudorandom sequence. The deterministic algorithm generating the keystream is said the
keystream generator. The security of this type of stream ciphers depends on the “randomness”
of the keystream. Note that in a known-plaintext attack scenario, the attacker has full access
to the keystream. So, in particular, if it is possible to predict the entire keystream from a small
known segment, then the cipher offers a low level of security.

There are three standard properties of pseudorandom sequences used to measure the security
of a stream cipher: the period, white noise statistics and linear complexity. In the remainder
of this paragraph we briefly describe the reason why they represent the standard criterion of
randomness.

A deterministic pseudorandom generator produces a sequence which is periodic (or ulti-
mately periodic). Then, a necessary requirement for unpredictability is that the keystream has
a long period. In particular the period of the keystream should be substantially larger than the
length of the plaintext. Moreover one would like that the first period of the keystream looks like
“random”. Note that it seems difficult to define randomness for finite sequences. In [Knu81],
Knuth describes several criteria to evaluate the randomness of a finite sequence of bits. One of
these is the criterion of distribution properties, which we can state as follows.

Definition 4.2.2. A finite sequence of bits of length L may be called random if for all k smaller
than some upper bound (say < log2 L) every binary k-tuple appears about equally often.

Golomb [G+82] proposed three postulates based on this definition, to measure the randomness
of a periodic binary sequence. But, unfortunately, the Golomb postulates do not define a gen-
eral measure of randomness for finite sequences, since there are examples of finite sequence
satisfying Golomb axioms which not appear random.
We recall that an efficient method for producing periodic sequences with maximum possible
period is by using linear feedback shift registers (LFSRs). It turns out that maximal period

56

4.2. Stream ciphers

sequences have also good statistically properties. In particular they satisfy Golomb postulates.
However, due to the linearity, sequences generated by LFSRs are easily predicted from a short
segment: a maximal-period binary sequence of period 2L − 1 is completely determined by
knowing 2L consecutive sequence bits [Mas69]. Next definition is related to this property.

Definition 4.2.3. The linear complexity of a binary sequence is defined to be the length of the
shortest binary LFSR which can produce the sequence.

According to what we have just said, the linear complexity of the keystream should be
sufficiently large. We note that the above properties are necessary requirements for suitable
sequences for cryptographic applications, but in the general case they are not sufficient.

4.2.2 LFSR-based stream ciphers

The keystream generator can be viewed as a finite state machine whose initial state x0 is
derived from the secret key (and usually from a public initial value) by a key-loading algorithm.
At each time unit t, the keystream digit zt produced by the generator is the output of a Boolean
function, called filtering function, applied to the current internal state xt. The internal state xt
is then update by a transition function. Both filtering function and transition function must be
chosen carefully in order to obtain a secure stream cipher.
Many stream ciphers are based on LFSRs since these devices are easily implemented in hard-
ware and are mathematically well understood. Also, sequences produced by LFSRs with primi-
tive characteristic polynomials, has large period and good statistical properties. However, as we
noticed in the previous section, they have low linear complexity. This makes LFSRs unsuitable
for use as keystream generators on their own. Since this is due to their linearity, it sufficient
to incorporate some kind of nonlinearity. Nonlinearity could be introduced in keystream either
explicitly or implicitly. Here we describe the four common methods.

Nonlinear combination generators

A method for constructing keystream sequences using LFSRs is combining the outputs of
a certain number, n, of LFSRs by a nonlinear filtering function f . Such generators are called
nonlinear combination generators and the filtering function f is called the combining function
of the generator.
The cryptographic properties of the sequences produced with nonlinear combination generators
are well understood [Rue86]. Suppose that the n LFSRs have primitive characteristic polyno-
mials and that their lengths L1, L2, . . . , Ln are pairwise coprime. Then the period of the output
sequence is π =

∏n
i=1(2Li − 1) and its linear complexity is L = f̄(L1, L2, . . . , Ln), where f̄ is

the function over the integers obtained by f interpreting addition and multiplications over the
integers rather than over F2. The period of the sequences produced by these generators can be
increased by increasing the lengths of the LFSRs, while one can increase their linear complexity

57

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

...

LFSR 1

f zt

LFSR 2

LFSR n

x1
t

x2
t

xn
t

Figure 4.4: Combining generator based on LFSRs

by increasing the lengths L1, . . . , Ln and the algebraic order of the combining function. How-
ever, for memoryless generators an increase in the algebraic order of the combining function
corresponds to an increase of their vulnerability to correlation attacks.

Nonlinear filter generators

A second common method used for getting keystream sequences consists in using a non-
linear Boolean function to combine the outputs of several stages of a single regularly clocked
LFSR. These generators are called nonlinear filter generators. If the length of the LFSR is L
then the period of the output sequence is 2L− 1 or a divisor of 2L− 1, while its linear complex-
ity is ≤ ∑k

i=1

(
L
i

)
, where k is the algebraic order of the filtering function. In nonlinear filter

generators the filtering function f must be a balanced Boolean function.

Nonlinear combination generator with memory

A generator with memory can be viewed as a nonlinear combination generator with internal
state (xt, σt) where xt = (x1

t , . . . , x
n
t) is update linearly using n LFSRs and σt = (σ1

t , . . . , σ
M
t)

is update with a nonlinear function. We call the σt the memory of the generator. Usually M
is less than n. The sequences produced by such generators are ultimately periodic with period
given by π =

∏n
i=1(2Li), where Li, for i = 1, . . . , n, is the length of the ith LFSR. Also,

appropriately choosing the two transition functions, the linear complexity of the sequences is
approximately equal to the length of the period, i.e. dlog2 πe.

Clock-controlled generators

An other method for constructing keystream generators is by controlling the clock of the
LFSRs. An LFSR-based keystream generator is said regularly clocked if a keystream bit is
produced every time the underlying LFSRs are clocked. If the keystream bits are produced at
irregular intervals then we call the generator a clock-controlled generator. Irregular clocking
introduce nonlinearity implicitly.

We conclude this section giving a practical example of stream cipher.

58

4.3. Correlation attacks on LFSR-based stream ciphers

LFSR 1

+
y2t

LFSR 2

LFSR 4

x1
t

x2
t

x4
t

y1t

y3t

⊕

x3
tLFSR 3

δ

F

zt
c0t

Figure 4.5: The cipher E0

The cipher E0

One of the most widely used stream ciphers is the cipher E0. It is used for securing Bluetooth
communications [Blu10]. The keystream generator of E0 is a nonlinear combination generator
with memory.
It consists of four LFSRs with lengths L1 = 25, L2 = 31, L3 = 33, L4 = 39 and a nonlinear
combiner with 4 bits of memory, denoted by σt = (ct−1, ct) at time t, where ct = (c1

t , c
0
t). At

each clock t, the four LFSRs’ output bits xit, for i = 1, . . . , 4, are added as integers to form a
sum yt. Denote by yit the ith least significant bit of the binary representation of yt, for i = 1, 2, 3.
A 16-state machine emits one bit c0

t out of its state σt = (ct−1, ct) and takes the input yt to update
σt by σt+1 using a nonlinear function. Finally, the keystream zt is obtained by xoring y1

t with
c0
t , that is, by zt = x1

t ⊕ x2
t ⊕ x3

t ⊕ x4
t ⊕ c0

t .

4.3 Correlation attacks on LFSR-based stream ciphers

Correlation attacks were introduced by Siegenthaler in [Sie85]. They are among the most
important and studied attacks on stream ciphers based on nonlinear combination generator.
They use a divide-and-conquer strategy, breaking down the problem of key recovery into the
problem of recovering subkeys. They apply when a part of the internal state of the keystream
generator is update independently from the other part, and its size is reasonable. When the
target part of the internal state is update linearly, a major improvement was made by Meier
and Staffelbach [MS89]. This refinement led to different versions of fast correlation attacks
[CT00, JJ99b, CJS01].

Here we focus on correlation attacks on LFSR-based stream ciphers, describing the main
aspects of these attacks. We denote by xt the n-bit internal state of the generator at time t,
by f the filtering function and by zt the output bit of the keystream generator at time t, i.e.
zt = f(xt). We assume a know-plaintext attack scenario which aim at recovering the initial
state x0.

59

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

4.3.1 Correlation attacks

A correlation attack against nonlinear combination generators, can be mounted when the
internal state xt of the generator is composed by two parts x1,t and x2,t, having independent
update functions.

Consider a combination generator based on n LFSRs, namely LFSR 1,. . ., LFSR n. Let xit
be the output bit of the LFSR i at time t, for i = 1, . . . , n. So xt = (x1

t , . . . , x
n
t).

Let us fix k, with 1 ≤ k < n. A correlation attack on the k registers LFSR i1,. . ., LFSR ik,
with 1 ≤ i1 < i2 < · · · < ik ≤ n, can be described as follows. Let x1,t = (xi1t , . . . , x

ik
t) and

x2,t = (xit) 1≤i≤n
i/∈{i1,...,ik}

. We have that xt = (x1,t, x2,t). Let Φ1, Φ2 be the two transition functions

on x1,t and x2,t respectively. Then

(x1,t+1, x2,t+1) = (Φ1(x1,t), Φ2(x2,t)).

The attack aim at recovering one of the two parts of the initial state of the generator, say x1,0.
We call this vector the target state. The attack require the existence of a Boolean function g of
k variables which is correlated to the filtering function f , i.e. such that

pg = PX1,X2 [f(X1, X2) = g(X1)] > 1/2, (4.2)

where X1 and X2 are two independent random variables uniformly distributed in Fk2 and Fn−k2

respectively. A very significant fact about nonlinear functions is that such functions g always

...

LFSR 1

f

zt
LFSR 2

LFSR n

x1
t

x2
t

xn
t

...

LFSR i1

g
ζt

LFSR ik

xi1
t

xik
t

CORRELATION

Figure 4.6: Correlation attack involving k constituent LFSRs

exist. However, for the attack to be successful, the correlation need to be good enough. The
main method for finding correlations is to use statistical tests designed for distinguishing two
binary random sources [CT12, Jun05]. Let g be a Boolean function satisfying (4.2). Then
we say that the target sequence ζ = (ζt)t≥0, defined by ζt = g(Φt1(x1,0)), is correlated to the

60

4.3. Correlation attacks on LFSR-based stream ciphers

keystream sequence z = (zt)t≥0. The quality of the correlation is related to the quantity pg. The
function g must be chosen such that pg is maximal. It can be proved that

max
g
pg =

1

2
+

1

2k

∑
x1∈Fk2

|1
2
− px1|, (4.3)

where px1 = P[f(x1, X2) = 1]. By (4.3), it follows that the maximal value of pg depends on
the distributions of the output of f when its input variable X1 is fixed. So correlation attacks
can be prevented if the filtering function f is such that its output remains uniformly distributed
also when its input variable X1 is fixed. The maximal integer k such that a function f satisfying
the previous property is called the correlation-immunity order of f . If the filtering function
has correlation-immunity order k − 1, then the minimum number of LFSRs which must be
considered together for the attack to be successful is k. However, it is also known that there is
a trade-off between the correlation-immunity order and the nonlinearity of f [Sie84]. Hence k
must be rather small. It can be proved that the best target sequence ζ is obtained by adding the
outputs of the k involved LFSRs, that is

ζ = (ζt), ζt = xi1 ⊕ xi2 ⊕ · · · ⊕ xik . (4.4)

Note that the sequence (4.4) corresponds to the output of a unique LFSR whose characteristic
polynomial is given by

P = GCD(p1, . . . , pk),

with pj the characteristic polynomial of the jth LFSR, for 1 ≤ j ≤ k. Moreover, assuming that
the polynomials pj , for 1 ≤ j ≤ k are primitive, the length of the LFSR producing ζ is given by

L =
k∑
j=1

Lj,

with Lj the length of the jth LFSR, for 1 ≤ j ≤ k. In this circumstance, the attack requires
that all 2

∑k
j=1 Lj initial states of the target state be examined. This becomes infeasible when

the correlation-immunity order k − 1 of the combining function is high (for practical ciphers,
typical values for k are k = 1, 2).

4.3.2 Fast correlation attacks

The fast correlation attack proposed by Meier and Staffelbach [MS88, MS89] relies on the
same principle as correlation attacks but avoid performing exhaustive search for the initializa-
tion of the target state. The method proposed by Meir and Staffelbach considerably reduces the
time complexity of the attack but requires the knowledge of a larger segment of the keystream.

Suppose we are in the same scenario as the previous subsection, with pj primitive, for
1 ≤ j ≤ k, and ζ defined by (4.4). Moreover, let N be the number of known keystream
bits. Since ζ can be seen as the output of a LFSR with characteristic polynomial P and length

61

Chapter 4. Correlation Attacks on LFSR-based Stream Ciphers

L, any subsequence of length N of ζ is a codeword of the [N,L]-code C having as parity-check
matrix the following (N − L)×N matrix

H =

cL cL−1 . . . c0 0 . . . 0

0 cL cL−1 . . . c0 . . . 0
...

...
...

...
...

...
...

0 0 . . . cL cL−1 . . . c0

 , (4.5)

where P (x) = c0 + c1x+ · · ·+ cLx
L, with c0 = cL = 1. The key idea of fast correlation attacks

consists in viewing the influence of the nonlinear combining function as a binary symmetric
channel (BSC), with cross-over probability p = P[ζt 6= zt] >

1
2
. The observed output sequence

z = (z0, z1, . . . , zN−1) is then regarded as the received word resulting from the transmission
of the unknown codeword ζ = (ζ0, ζ1, . . . , ζN−1) through this BSC. Thus, recovering the ini-
tialization of the target state consists in decoding the keystream subsequence (zt)t<N relatively
to the linear code C. Figure 4.7 shows the general model for a fast correlation attack. From

LFSR
zζ

P(x)

L

BSC

0

11

0
1− p

1− p

p

p

Figure 4.7: Model for fast correlation attack

the attacker’s point of view, the main problem is to make the attack feasible even when a small
number N of keystream bits is known. By Theorem 3.1.9, a linear code can be successfully
decoded only if its rate does not exceed the capacity of the transmission channel, which for
binary symmetric channel is

C(p) = 1 + p log2 p+ (1− p) log2(1− p).

Since in most practical situations p is close to 1/2 (typical values for p are p = 0.25, 0.3, 0.4,
0.45), then the capacity of the channel can be approximated by C(p) ' 2ε2

ln 2
, where ε = 1/2−p,

leading to the following required keystream length:

N ≥ L

C(p)
' ln(2)L

2ε2
.

Unfortunately there is not known an efficient general decoding algorithm for achieve the chan-
nel capacity. This means that practical correlation attacks require the knowledge of a much
longer segment of the keystream sequence than this theoretical bound. We note that any im-
provement of fast correlation attacks consists in finding an efficient decoding procedure for the

62

4.3. Correlation attacks on LFSR-based stream ciphers

code C.
Note also that the original correlation attack of Siegenthaler consists in applying a maximal-
likelihood decoding (ML-decoding) algorithm to the code C. For practical LFSRs lengths this
decoding is infeasible. For this reason, the attacker needs to use much faster decoding algo-
rithms.

There are two main families of fast decoding algorithms used in correlation attacks: general
decoding algorithms and algorithms based on low-weight polynomial multiples. The decoding
algorithms in the first family are algorithms which can be applied to any linear code. They are
based on the following key-idea [CJS01]. When the code dimension L is too large for ML-
decoding, it is possible to derive from the original code a new code with smaller dimension on
which ML-decoding can be applied. On the contrary, the second family of algorithms exploit
the particular structure of the LFSR code C defined by the parity-check matrix (4.5) using the
existence of sparse parity-check equations for this code. This technique was first proposed by
Meier and Staffelbach [MS88]. It is based on the following observation. Any sparse multiple

1 + xe1 + · · ·+ xew−1

of the characteristic polynomial P exactly corresponds to a linear relation involving w bits of
the LFSR sequence:

∀t, ζt ⊕ ζt−e1 ⊕ · · · ⊕ ζt−ew−1 = 0.

When a collection of such sparse equations is available, the LFSR code C can be viewed as
a low-density parity-check (LDPC) code. Then, some efficient iterative decoding techniques
[Gal63, JJ99b, JJ99a, MFI01] can be applied to C. Note that finding sparse multiple of P
corresponds to find low-weight codewords of the binary cyclic code of length 2LCM(p1,...,pk) − 1

generated by P .
Both families of algorithms involve the precomputation of many low-weight parity-check

equations of the LFSR in order to speed up the decoding process. When k = 1 this precompu-
tation step can be performed according to two different approaches, one based on the birthday
paradox [CJM02] and another based on discrete logarithms [DLC07].

It might be argued that the design of modern stream ciphers evolved accordingly. A cipher
like E0 ([GPS04]) is not immediately subject to these types of attacks, since no apparently sin-
gle LFSR is correlated to the keystream output. In [LV04], Lu and Vaudenay introduced a new
fast correlation attack which is able to successfully recover the state of E0. Their attack requires
a different precomputation step which computes a single parity check of multiple LFSRs. The
complexity of their precomputation step is not far from the complexity of their full attack, and
they employed the generalized birthday approach presented in [Wag02]. Since the data com-
plexity of their attack is bounded from below by the degree of the parity check, it is important
to find a parity check of degree less than a target degree. Further research was recently pre-
sented in [PTS14], which contains in particular a straightforward generalization of the discrete
logarithm approach of [DLC07].

63

Part II

Main results

65

Discrete logarithm-based approach for fast correlation
attacks

Being able to compute efficiently a low-weight multiple of a given binary polynomial is
often a key ingredient of correlation attacks to LFSR-based stream ciphers. The best known
general purpose algorithm is based on the generalized birthday problem. In this chapter we
describe an alternative approach for finding low-weight polynomial multiples which is based on
discrete logarithms. Contrary to birthday-based approach it can take advantage of the structure
of the given polynomial. Moreover, in some cases it has much lower memory complexity
requirements with a comparable time complexity respect to generalized based approach.

In Section 5.1, we present our strategy and give algebraic results on which the algorithm
is based. The algorithm we propose is explained in Section 5.2, along with a comparison of
its complexity to the generalized birthday approach and to the straightforward generalization of
the discrete log approach for the case of a single primitive polynomial. Significant examples of
our approach are outlined in Section 5.3, where we show that for the fast correlation attack in
[LV04] our algorithm could be more convenient to use in the second precomputation step than
the generalized birthday approach, and that the method we propose is substantially better than
the generalized birthday approach in the case where the polynomial p can be decomposed in
several irreducible factors, each one of degree less than 20.

5.1 Strategy and preliminary results

The problem we will address throughout the chapter is the following:

Problem 3 FIND A GIVEN-WEIGHT POLYNOMIAL MULTIPLE WITH TARGET DEGREE

Input: A polynomial p and two integers w ≥ 3 and D.
Output: A multiple of p of weight w and degree at most D, if it exists.

Our general strategy for the resolution of Problem 3 consists in the following three steps:

• Firstly, we translate the problem of finding a multiple of a binary polynomial into find-
ing an appropriate sequence of integers modulo the order of a polynomial (Proposi-
tions 2.3.8,5.1.2).

67

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

• Next, we show that the general problem is solved once we know how to solve the prob-
lem for single factors of the unique factorization into irreducible polynomials (Propo-
sition 5.1.3). The problem for a single irreducible factor is treated depending on the
primitivity of the factor, but in both cases we use discrete logarithms.

• Finally, powers of irreducible polynomials could be completely characterized, although
in our algorithm we will aim for a subset of all possible multiples (Remark 5.1.9) for
computational reasons.

To illustrate more in details the approach we consider an example. Here we will denote a
binary polynomial xd1 + xd2 + · · ·+ xdk also by the sequence of its exponents [d1, . . . , dk].

Example 5.1.1. Let us consider the polynomial p = x17 + x16 + x15 + x13 + x12 + x8 + x6 +

x5 + x3 + x+ 1 and let

p = (x5 + x3 + x2 + x+ 1)(x8 + x7 + x6 + x5 + x4 + x3 + 1)(x2 + x+ 1)2

be its factorization into irreducible polynomials. We observe that p has three factors, two of
multiplicity one and one with multiplicity two. It is easy to check that the polynomials p1 =

x5+x3+x2+x+1 and p3 = x2+x+1 are primitive while p2 = x8+x7+x6+x5+x4+x3+1 is
not. We want to exhibit a polynomial of weight 3, f = [d1, d2, d3] with d1 < d2 < d3, multiple
of p.

• Let q be the product of the irreducible factors of p, q = p1p2p3. If we find a multiple of
q, f ′ = [e1, e2, e3] with e1 < e2 < e3, then f = f ′2 = [2e1, 2e2, 2e3] is a multiple of p.
So we have reduced our search to the case where the polynomial is a product of distinct
irreducible polynomials.

• In order to find f ′ we note that we can always set e1 = 0 because q is such that q(0) 6= 0.
Then, we pick at random all the other exponents of the target multiple f ′ except the last
one. Since we are searching for a multiple of weight 3, in this case we pick e2 at random
with 0 < e2 < N where N is the order of q. To obtain a multiple f ′ = [0, e2, e3] of q
we assume to be able to solve the same problem for p1, p2 and p3, getting polynomials
of the form [0, e2, e

(i)
3] for i = 1, . . . , 3, and then we try merging the results applying

the Chinese Remainder Theorem. If the merging is successful a multiple of q was found,
otherwise we try with another e2.

• To get multiples of the irreducible factors let us distinguish the case pi is primitive and
the case pi is not primitive. When pi is primitive we set e(i)

3 = DLogαi(1 + αe2i) with αi
a primitive root of pi, otherwise we set e(i)

3 = DLogαi(1 + αme2i)/m with αmi a root of pi
and αi a primitive element of F2deg(pi) .

68

5.1. Strategy and preliminary results

Let us suppose to pick e2 = 5. Then we get e(1)
3 = 28, e(2)

3 = 28, e(3)
3 = 1. So the

polynomials 1 + x5 + x28, 1 + x5 + x28 and 1 + x5 + x are, respectively, multiples of p1 p2

and p3. Let e3 be the result of applying the Chinese Remainder Theorem to 28, 28 and 1 with
moduli the orders of the polynomial p1 p2 and p3 respectively. It is easy to check that e3 = 28.
Then a multiple of p is f = (x28 + x5 + 1)2 = x56 + x10 + 1.

This strategy will be adapted to the search of a polynomial multiple of a certain target
degree D. We will draw randomly the exponents ei in 0 < ei ≤ D for 2 ≤ i < w, and a further
condition for termination of the algorithm will be: ew ≤ D.

Let R = F2[x] be the ring of binary polynomials. A binary polynomial is uniquely de-
termined by the position of its nonzero coefficients, that is, its support. We denote a binary
polynomial by its exponents:

[e1, e2, . . . , ek] := xe1 + xe2 + · · ·+ xek ,

where the ei’s are non-negative integers. If two integers in the list are repeated we can omit
them from the list and obtain the same binary polynomial. If no integers are repeated then
[e1, . . . , ek] is a polynomial of weight k. From now on when we say “polynomial” we actually
mean “binary polynomial”.

Let f = [e1, e2, . . . , ek] be a polynomial. The remainder of the division of f by the polyno-
mial 1 + xN is obtained through reduction modulo N of its exponents:

[e1, e2, . . . , ek] mod [0, N] = [ē1, ē2, . . . , ēk], (5.1)

where 0 ≤ ēi < N and ei ≡ ēi (mod N).

Proposition 5.1.2. Let f, f ′, p be polynomials, f = [e1, . . . , ek] and f ′ = [e′1, . . . , e
′
k] such that

for any i, ei ≡ e′i (mod M), where M is a multiple of ord(p). Then, f is a multiple of p if and
only if f ′ is so.

Proof. Since ei ≡ e′i (mod M), by (5.1), the remainder of the division of f and f ′ by 1 + xM

is the same. Let r be this remainder. So f = q(1 + xM) + r and f ′ = q′(1 + xM) + r for some
q and q′. Let us suppose that f is a multiple of p. Since M is a multiple of ord(p), 1 + xM is a
multiple of p. Then r is also a multiple of p, and so f ′ is a multiple of p.

Proposition 5.1.3. Let p = g1 · · · gr with GCD(gi, gj) = 1 for all i 6= j. We denote Ni =

ord(gi) and N = LCM(N1, . . . , Nr). Given w− 2 distinct integers 0 < e2 < . . . < ew−1 < N ,
if there exist r integers e(1)

w , . . . , e
(r)
w with 0 < e

(i)
w < Ni such that for all i and j

1. [0, e2, . . . , ew−1, e
(i)
w] is a multiple of gi

2. e(i)
w ≡ e

(j)
w (mod GCD(Ni, Nj))

69

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

then [0, e2, . . . , ew−1, ew] is a multiple of p of weight w, where

ew = CRT(e(1)
w , . . . , e(r)

w , N1, . . . , Nr).

Furthermore, all multiples of p of weight w and degree at most N can be obtained in this
way, that is, if [0, e2, . . . , ew−1, ew] with 0 < e2 < . . . < ew < N is multiple of p of weight w,
then the integers e(i)

w = ew mod Ni satisfy points 1 and 2 above.

Proof. Let j ∈ {1, . . . , r} and let us prove that [0, e2, . . . , ew−1, ew] is a multiple of gj . By point
2 we can apply CRT and get an integer ew < N such that ew ≡ e

(i)
w (mod Ni) for all i. Then, by

point 1, applying Proposition 5.1.2 to f = [0, e2, . . . , ew−1, ew] and f ′ = [0, e2, . . . , ew−1, e
(j)
w],

we get that f is a multiple of gj .
Let [0, e2, . . . , ew−1, ew] be a multiple of p of weight w of degree at most N , and for i ∈
{1, . . . , r} let e(i)

w = ew mod Ni. Then, for any i, [0, e2, . . . , ew−1, ew] is a multiple of gi, and
so, by Proposition 5.1.2 the integers e(i)

w ’s satisfy point 1. On the other hand, thanks to CRT,
since e(i)

w = ew mod Ni, they satisfy also point 2.

Proposition 5.1.4 ([LN97, Lemma 2.12 (ii)]). Let p be an irreducible polynomial and let α be
a root of p in an extension field of F2. Then a polynomial q is a multiple of p if and only if
q(α) = 0.

Remark 5.1.5. Let α be the root of a primitive polynomial p. Given e1, . . . , ew−1, if we are able
to compute

ew = DLogα(αe1 + . . .+ αew−1), (5.2)

then, by Proposition 5.1.4, we know that [e1, . . . , ew−1, ew] is a multiple of p. Viceversa, if
[e1, . . . , ew−1, ew] is a multiple of p, then (5.2) holds.

All the (w − 1)-uples 0 ≤ e1 < . . . < ew−1 < N can be obtained by producing all
the (w − 2)-uples 0 ≤ e1 < . . . < ew−2 < N − 1 and appending an integer ew−1 with
ew−2 < ew−1 < N . We want to show that in order to get a (w− 1)-uple of exponents for which
the expression (5.2) is computable, that is for which αe1 + . . . + αew−1 is nonzero, we can take
0 ≤ e1 < . . . < ew−2 < N − 1 randomly and then choose ew−1 with ew−2 < ew−1 < N , when
necessary avoiding a specific value depending on the values of e1, . . . , ew−2.
Let us take 0 ≤ e1 < . . . < ew−2 < N randomly and let β = αe1 +. . .+αew−2 . If β = 0 then for
any integer 0 ≤ ew−1 < N we have that αew−1 is never equal to β. In this case, for any integer
ew−1 with ew−2 < ew−1 < N , the discrete logarithm (5.2) is computable and it is equal to
ew−1. Let us suppose that β is nonzero. Then there exist a unique integer 0 ≤ e < N such that
αe = β. In this case for any integer 0 ≤ ew−1 < N with ew−1 6= e we have that αew−1 6= β. So,
if e ≤ ew−2 then the for any ew−2 < ew−1 < N the logarithm (5.2) is computable. Otherwise it
is computable for any ew−2 < ew−1 < N with ew−1 6= e.

We claim the following:

70

5.1. Strategy and preliminary results

Proposition 5.1.6. Let α be a root of a primitive polynomial p of order N . The set of (w − 2)-
uples of integers e2, . . . , ew−1 such that 0 < e2 < . . . < ew−1 < N has size

(
N−1
w−2

)
. Its subset

such that we can compute DLogα(1 + αe2 + . . .+ αew−1) has size at least
(
N−2
w−2

)
.

Proof. The number of (w − 2)-uples of integers e2, . . . , ew−1 such that 0 < e2 < . . . < ew−1 <

N , is equal to the number of (w − 2)-combinations that can be drawn from a set of N − 1

elements, which is
(
N−1
w−2

)
, as claimed.

Let A be the set of (w − 2)-uples of integers e2, . . . , ew−1 with 0 < e2 < . . . < ew−1 < N

for which we can compute DLogα(1+αe2 + . . .+αew−1) and let us prove that |A| ≥
(
N−2
w−2

)
. We

showed that to obtain an element of A, it is enough to produce a (w − 2)-uple [0, e2, . . . , ew−2]

with 0 < e2 < . . . < ew−2 < N − 1, and choose ew−1 with ew−2 < ew−1 < N avoiding the
value e = DLogα(αe1 + . . . + αew−2) if e > ew−2. Since in this process the (w − 2)-uples that
we exclude are at most

(
N−2
w−3

)
, the size of the set A is at least(
N − 1

w − 2

)
−
(
N − 2

w − 3

)
=

(
N − 2

w − 2

)

Note that for smallw and largeN , (N−2
w−2)

(N−1
w−2)

= (N−w+1)
(N−1)

' 1. Then, for almost all (e2, . . . , ew−1)

we can compute DLogα(1+αe2 + . . .+αew−1). Using this remark, in our algorithm we produce
such (w − 1)-uple taking 0 ≤ e2 < . . . < ew−1 < N randomly and then checking if the ew−1 is
such that the logarithm (5.2) is computable. If not, we iterate the process.

Lemma 5.1.7. Let p be an irreducible non-primitive polynomial of degree n and order N , and
let m = (2n − 1)/N . Then there exists a primitive element α̃ in F2n such that p(α̃m) = 0.

Proof. Let β ∈ F2n be a root of p and let α be a primitive element of F2n . Then, there exists a
unique integer M < 2n − 1 such that β = αM . Since β has order N , then βN = (αM)N = 1.
So, M is a multiple of m, because α has order 2n − 1 and (2n − 1) = mN . Let k = M/m.
Since α has order 2n − 1, then αm has order N . So, both β = αkm and αm have order N . This
implies that GCD(k,N) = 1. If the integer k is such that GCD(k, 2n − 1) = 1 then αk is a
primitive element. So, in this case, the statement is true with α̃ = αk, since β = (αk)m.
Otherwise, GCD(k, 2n − 1) > 1. We claim that in this case there exists an integer λ with
0 < λ < m such that GCD(k + λN,m) = 1. Since GCD(k,N) = 1, then α(k+λN) is a
primitive element, but α(k+λN)m = αkm = β, so we can choose α̃ = α(k+λN).

We are now left with proving our claim on the existence of such an integer λ. Let λ be the
greatest divisor of m such that GCD(λ, k) = 1. By definition of λ, for any prime which divides
m, either it divides λ or (exclusively) it divides k. Suppose, for the sake of contradiction, that
there exists a prime p which divides both m and k + λN . Since p divides m, then one of the
following cases occurs:

p | λ : Then p - k, and so, p - k + λN , which contradicts the choice of p.

71

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

p | k : Then p - λ. Moreover, since GCD(k,N) = 1, then p - N . So p - k + λN , which is
again a contradiction.

Proposition 5.1.8. Let p be an irreducible non-primitive polynomial of degree n and order
N , let m = (2n − 1)/N and let α be a primitive element in F2n such that αm is a root of p
(the existence of α is provided by Lemma 5.1.7). Then, f is a multiple of p with f(0) 6= 0

if and only if there exist integers d2, . . . , dw−1, dw multiples of m such that 0 < d2 < · · · <
dw−1 < 2n− 1, dw = DLogα(1 +αd2 + · · ·+αdw−1) is computable and is a multiple of m, and
f = [0, e2, . . . , ew−1, ew] with ej = dj/m.

Proof. Let f = [0, e2, . . . , ew−1, ew] with e2, . . . , ew as in the statement and let us prove that
f(αm) = 0. Since αm is a root of p, by Proposition 5.1.4 this is enough to guarantee that f
is a multiple of p. On the other hand, f(αm) = 1 + ((αm)e2 + . . . + (αm)ew−1 + (αm)ew =

1 +αd2 + . . . αdw−1 +αdw = 0. The last equality follows from the hypothesis dw = DLogα(1 +

αd2 + · · · + αdw−1). Vice versa, let f of weight w. Suppose that f = [0, e2, . . . , ew−1, ew] with
0 < e2 < · · · < ew−1 < N . If f is a multiple of p, then, by Proposition 5.1.4, f(αm) = 0. From
f(αm) = 0, we get that ej = dj/m for all j and dw = DLogα(1 + αd2 + · · ·+ αdw−1).

Remark 5.1.9. If [e1, . . . , ew] is multiple of p, then [2te1, . . . , 2
tew] is multiple of pb for all

b ≤ 2t.

In Algorithm 3 we will use Remark 5.1.9 to find multiples of powers of irreducibles. Not all
multiples can be found in this way unless the exponent for the repeated factor is a power of two.
In this case a complete characterization of multiples f of power of irreducibles can be given
using the polynomial GCD(f,Df). This is not convenient in our case, since GCD(f,Df) has
generally a much higher weight than the weight of f .

5.2 The algorithm

In this section we propose an algorithm to solve Problem 1 making reference to its pseu-
docode, then we estimate its complexity and compare it to other approaches.

5.2.1 Description of Algorithm 3

We describe our proposed algorithm making reference to the pseudocode in Algorithm 3.
We take as input the factorization of the polynomial p:

p = pb11 · . . . · pbrr ,

where p1, . . . , pr are irreducible polynomials and b1, . . . , br positive integers. Computing the
factorization is not computationally expensive, it can be efficiently computed using a proba-
bilistic algorithm such as the Cantor-Zassenhaus algorithm (cfr [LN97]) and in some cases,

72

5.2. The algorithm

such as in correlation attacks to LFSR-based stream ciphers, the polynomial we are interested
in is given already by its irreducible factors.

We start (line 2) by computing a root αmii for each irreducible polynomial pi, expressed as
a power of a primitive root αi of F2deg(pi) (if the polynomial is primitive mi = 1). Next (line 3)
we compute the order of each root αmii , and we set t as an integer (line 4) that will allow us to
take into account powers of irreducible polynomials (in line 12 we will output the multiple of p
as a multiple of p1 · . . . · pr elevated to 2t).

Algorithm 3 Given the factorization of a polynomial p, w and D, the algorithm finds
(if it exists) a multiple of p of weight w and degree at most D.

1: function (p1, . . . , pr, b1, . . . , br, w,D)
. All lines with i repeat for i = 1, . . . , r

2: αi,mi ← PrimitiveRoot(pi)

. If pi is primitive then mi = 1

. If pi is irreducible not primitive then αmii is a root of pi
3: Ni ← (2deg(pi) − 1)/mi

. Ni is the order of αmii
4: t← MinIntegerGreaterOrEqualThan(log2 b1, . . . , log2 br)

5: repeat
6: e2, . . . , ew−1 ← RandomDistinctMultiplesLessThan(D/2t)

. Random sampling of (w − 2) distinct integers ≤ D/2t

7: ei,2, . . . , ei,k(i) ← ReduceAndShorten(e2, . . . , ew−1, Ni)

. Reduce modulo Ni and eliminate pairs of equal integers
. we might obtain a shorter sequence of integers (k(i) ≤ w − 1)

8: ei,w ← DLogαi(1 + α
miei,2
i + · · ·+ α

miei,k(i)
i)

. If not possible, restart the cycle
. also, restart the cycle if ei,w mod mi 6= 0

9: ei,w ← Reduce(ei,w/mi, Ni)

10: ew ← CRT(e1,w, . . . , er,w, N1, . . . , Nr)

. If not possible, restart the cycle
11: until 2tew ≤ D

12: return [0, 2te2, . . . , 2
tew]

13: end function

The main cycle samples w − 2 distinct integers less than D/2t (line 6), then computes
for each i their remainders modulo Ni and discards pairs of equal elements (line 7). The most
demanding computation is done on line 8 where we compute the discrete logarithms DLogαi(1+

α
ei,2
i + · · ·+ α

ei,k(i)
i). If we are not able to perform this computation or one of the ei,w’s is not a

multiple ofmi, then we restart the cycle. Otherwise, we try to compute the exponent ew through

73

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

the Chinese Remainder Theorem (line 10) given the exponents computed at previous step. If all
Ni’s are coprime we are sure to be able to perform this step, otherwise it might happen that a
couple (ei,w, ej,w) is not congruent modulo GCD(Ni, Nj). In this case we restart the cycle. We
remark that in the case of Ni not all coprimes it may happen that we are never able to compute
this CRT. We will comment on this aspect in 5.2.1. The exit condition for the cycle (line 11) is
verified if we have found a multiple of p1 · . . . · pr with degree at most D/2t, from which we are
easily able (line 12) to produce a multiple of p of degree at most D (which will have weight w
by construction). The correctness of Algorithm 3 follows from the results cited in Section 5.1.

The case of Nis not all coprimes

Suppose p is the product of p1, p2 with N1 = ord(p1), N2 = ord(p2) and that GCD(N1, N2)

is not 1. In this case it may happen that we are never able to compute CRT(e1,w, e2,w, N1, N2),
that is, all possible pairs (e1,w, e2,w) are not congruent modulo GCD(N1, N2). Using bounds on
the minimal distance of cyclic codes coming from coding theory (see [PBH98, Vol 1, p.60 and
following]), one can verify whether or not the CRT can be computed. If the minimal distance
of the cyclic code generated by p is ≥ w0, then obviously the CRT cannot be computed for all
w < w0.

5.2.2 Complexity estimates

Let us denote with q the polynomial p1 · · · pr. The complexity of Algorithm 3 is estimated
in terms of the order N of the polynomial q and in terms of the target degree D under an appro-
priate Statistical Assumption (Subsection 5.2.2). Then (Subsection 5.2.2), we compare it to the
complexity of birthday-based approaches expressing our estimates in terms of the complexity
parameter n, the degree of q.

Complexity of Algorithm 3

We set n, the degree of polynomial q, to be our complexity parameter. Clearly, the main
computational cost in the cycle is the computation of the discrete logarithms (line 8). We will
restrict our complexity calculations to the cases where we can consider the computation of
discrete logarithm as an O(1) computation, by precomputing logarithm tables. This depends on
the smoothness of the degrees δi of the irreducible factors of q, and we call a δi feasible if we
can consider the computation of discrete logarithm in F2δi as O(1) and the precomputed tables
do not require excessive storage in memory. Following [DLC07], we can consider all δi below
78 as feasible except for {37, 41, 49, 59, 61, 62, 65, 67, 69, 71, 74, 77}.

We are left to estimate the number of cycles which Algorithm 3 needs to go through before
stopping. In order to do that, we make the following

Assumption 5.2.1. All Discrete Logarithm computations DLogα with random input produce
an output which is uniformly random distributed over {1, . . . ,M − 1}, where M is the order of

74

5.2. The algorithm

α. We assume also that for α 6= β the outputs of DLogα and DLogβ are independent random
variables.

Although the Statistical Assumption 1 is reasonable (and experimentally verifiable), there
is an unfortunate case when there is a pair (i, j) where GCD(Ni, Nj) 6= 1 and there exist no
multiple of pi · pj of weight w (see discussion in Subsection 5.2.1).

Under this assumption, we can compute the ei,w’s once every mi cycles (i.e. always if
mi = 1). Furthermore, the ei,w’s are uniformly distributed over {1, 2, . . . , Ni − 1} and so, by
the Chinese Remainder Theorem, ew can be computed with a probability P where

P =
N

Πr
i=1Ni

,

with N := LCM({Ni}i=1,...,r), and it will be uniformly distibuted over {1, 2, . . . , N − 1}. In-
deed, the Chinese Remainder Theorem guarantees a bijection between the set {(e1,w, . . . , er,w) |
ei,w ≡ ej,w mod GCD(Ni, Nj), 1 ≤ i < j ≤ r} and the integer set {1, . . . , N − 1} (cfr
[Knu81, p.256]).

The condition that 2tew ≤ D is thus verified after a number of cycles estimated as

O

(
1

P
Πimi ·

2tN

D

)
and the full complexity is estimated as

O

(
r

1

P
Πimi ·

2tN

D

)
. (5.3)

We note that it is possible to consider P as constant with respect to n, and that 2tN can
be approximated by 2n. In the next subsubsection we will express D as a function of n and
compare estimate (5.3) with the complexity of birthday-based approaches.

Comparison with other approaches

Birthday-based approaches compute their complexities under a different statistical assump-
tion:

Assumption 5.2.2. The multiples of degree at most D of a polynomial of degree n has weight
w with probability approximately

(
D
w−1

)
2−D.

Using this assumption, one can prove ([Gol96]) that the expected number of the polynomials
multiples of weight w for large D is:

Nn,w '
(
D
w−1

)
2n

' Dw−1

(w − 1)!2n
(5.4)

75

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

Birthday Generalized Birthday Algorithm 3
w 3 4 5 3 4 5 3 4 4 5 5
D 2n/2 2n/3 2n/4 2n/2 2n/2 2n/3 2n/2 2n/3 2n/2 2n/4 2n/3

time 2n/2 22n/3 2n/2 2n/2 2n/2 2n/3 2n/2 22n/3 2n/2 23n/4 22n/3

memory 2n/2 22n/3 2n/4 2n/2 2n/2 2n/3 1 1 1 1 1

Table 5.1: Comparing complexity of Algorithms. We compare only the part of complexity
which is exponential in the degree of the polynomial of which we want to find the multiple.
We set as D for comparison the D0 and D1 which are defined, respectively, by birthday and
generalized birthday approaches. Algorithm 3 performs better for weigth 3 and for weight 4.

Using (5.4) one computes the (expected) critical degree where polynomials of degree w will
start to appear as

D0 ' (w − 1)!
1

w−1 · 2 n
w−1 (5.5)

A method based on the birthday paradox ([MS89]) finds a multiple of weightw and minimal
degree D0 with time complexity

O(D
dw−1

2
e

0), (5.6)

and memory complexity

O(D
bw−1

2
c

0). (5.7)

Also, when it can be applied, Chose-Joux-Mitton algorithm ([CJM02]) allows to decrease the

memory complexity to O(D
bw−1

4
c

0).
Using generalized birthday problem ([Wag02]) one aims at finding a multiple of same

weight but higher degree (D1 ' 2
n

1+blog(w−1)c) in less time. The time complexity for this ap-
proach is

O((w − 1) ·D1) (5.8)

while memory complexity is O(D1).
In Table 5.1 we summarize the comparison of our discrete log approach with birthday based

approaches. Birthday based approaches do not distinguish the polynomial p in terms of its fac-
torization while Algorithm 3 does, so for our comparison we assumed to be in the situation of
p a multiple of primitive polynomials whose degrees are coprime. To simplify we also kept out
the constant terms and we compare only the part of complexity which depends strictly on n. We
set as D for comparison the D0 and D1 which are defined — respectively — by birthday and
generalized birthday approaches. We can see that Algorithm 3 performs better (same time com-
plexity but much better memory complexity) than both birthday based approaches in the case
of weights w = 3, 4 and it performs worse than both of them w = 5 (higher time complexity).

Previous discrete log based approaches were limited to p being a single primitive polynomial
and cannot be extended straightforwardly to the case of general p.

76

5.3. Significant Examples

In [KP94], Penzhorn and Kuhn described a method based on Zech’s logarithm using a differ-
ent statistical assumption on the output of Zech’s Logarithms. They assumed that the difference
of two Zech’s Logarithms over {1, 2, . . . , N−1} has exponential distribution of parameterD/N
when both inputs are randomly distributed over {1, 2, . . . , D − 1}. This is applied only for the
case w = 4 and gives an algorithm which is able to compute a multiple of degree 2n/3 with time
complexity 2n/3 outperforming all approaches mentioned above.

In [DLC07], Didier and Laigle-Chapuy used a discrete logarithm approach with time mem-
ory trade off to compute a polynomial multiple of degree D in time complexity O(Dd

w−2
2
e) and

memory complexity O(Db
w−2
2
c).

5.3 Significant Examples

In this section we consider two significant applications of Algorithm 3 to case of a correla-
tion attack to E0 (Subsection 5.3) and to the case where the polynomial p can be decomposed
in several irreducible factors (Subsection 5.3).

Example case: E0

In [LV04], Lu and Vaudenay describe a correlation attack to E0, the stream cipher of the
Bluetooth protocol ([GPS04]). E0 is a nonlinear combination generator with memory and it is
based on four LFSRs of degrees 25, 31, 33, 39 with the following feedback polynomials:

p1 = x25 + x20 + x12 + x8 + 1 (5.9)

p2 = x31 + x24 + x16 + x12 + 1 (5.10)

p3 = x33 + x28 + x24 + x4 + 1 (5.11)

p4 = x39 + x36 + x28 + x4 + 1 (5.12)

In the key-recovery attack of [LV04], two precomputation steps require to compute a weight-
5 multiple of p2 · p3 · p4 of degree at most 234.3 using generalized birthday approach, and a
weight-3 multiple of p3 · p4 of degree at most 236 using a standard birthday approach. To find
the first multiple precomputation, Algorithm 3 would be inconvenient since it would require a
higher time complexity. For the second multiple precomputation, Algorithm 3 could be useful
since it requires approximately the same time complexity while having a much lower memory
complexity. We remark that in [LV04] the memory complexity for the precomputation part is
not explicitly stated.

Note also that all pi’s are primitive and that GCD(N3, N4) = 23 − 1 = 7 6= 1. We are
in the case where some of the Ni’s are not coprime and for this specific polynomials, it is
experimentally verified that the CRT can be computed roughly once every seven times.

77

Chapter 5. Discrete logarithm-based approach for fast correlation attacks

Experimental results: several irreducible factors

We apply Algorithm 3 to the case where the polynomial p can be decomposed in four ir-
reducible factors and each factor has degree less than 20. As set of degrees we choose the set
S = {11, 13, 15, 17, 19}.
In Table 5.2 we show some timing to find a polynomial multiple of weight 3 of the product of
four random primitive polynomials of weight 5 and different degrees in the set S. The polyno-
mials P1, P2, P3 in the table denote the product of four random polynomials each of degree in
S. In this case the algorithm is substantially better than the generalized birthday approach as

w=3
P1 P2 P3

n 60 60 64
expected D 230 230 232

experimental D 230.05 228.87 231.56

time 3h9′ 6h2′ 4h42′

Table 5.2: Experimental timing in the case of the product of four random primitive polynomials
of weight 5 and degrees in {11, 13, 15, 17, 19}. The polynomials used in the table are P1 =

(x11+x7+x5+x4+1)(x13+x12+x9+x3+1)(x17+x15+x14+x9+1)(x19+x18+x15+x13+1), P2 =

(x13+x12+x10+x9+1)(x15+x14+x13+x11+1)(x17+x16+x15+x14+1)(x19+x18+x17+x14+1), and
P3 = (x11+x10+x9+x7+1)(x13+x12+x10+x9+1)(x17+x16+x15+x14+1)(x19+x18+x17+x14+1).

its time complexity is approximately the same as the generalized birthday approach while its
memory complexity is O(1) instead of 2n/2. This is due to the fact that, once we have stored
the table of discrete logarithms, the computation of discrete logarithms in F2m with m < 20 is
very fast.

78

On the shape of the general error locator polynomial

This chapter focus primarily on some issues concerning the efficiency of bounded-distance
decoding for cyclic codes. It is organized as follows. In Section 6.1 we present a new result on
the structure of the general error locator polynomial for a classo of cyclic codes. In Section 6.2
some properties of this locator given in [OS07] are extended and it is shown how the previous
result can be used to obtain a sparse representation of the general error locator polynomial for
three of the five exceptional cases of Theorem 3.3.30. In the same section we also exhibit
a general error locator polynomial for some infinite classes of binary cyclic codes with t =

2, including the other two remaining cases of Theorem 3.3.30. In Section 6.3 we provide a
such locator for all binary cyclic codes with t = 3 and n < 63. A sparse representation is
theoretically justified for all cases, except three. In the same section we show a general structure
of this locator for some infinite classes of binary cyclic codes with t = 3, adding theoretical
evidence to the sparsity of the locator for infinite classes of codes. Finally, in Section 6.4.2 we
study the complexity of bounded-distance decoding of certain classes of cyclic codes. Some
results of this section are conditioned to a conjecture and others hold unconditionally.

6.1 A new representation of the locator polynomial

In this section we give a new general result on the structure of the error locator polynomial
for a class of cyclic codes over Fq.

Sometimes we will deal with rational expressions of the kind f
g
, with f, g ∈ Fq[x1, . . . , x`]

for some ` ≥ 1. When we evaluate this expression on any point P ∈ F `
q it is possible that

g(P) = 0. However, our rational expressions are evaluated only in points such that if g(P) = 0

then also f(P) = 0, and when this happens we always use the convention that f(P)
g(P)

= 0.
Let Rn = {αi | i = 0, . . . , n− 1}. Let us denote with Tn,t the following set

Tn,t = {(αl1 , . . . , αlµ , 0, . . . , 0) | 0 ≤ l1 < · · · < lµ < n, 0 ≤ µ ≤ t} ⊂ (Rn ∪ {0})t.

Let C be a cyclic code over Fq, with length n and error correction capability t, defined by
SC = {i1, . . . , ir}. where r is at least the number of primary syndromes and at most n − k.
We will assume that V ⊂ F r

qm and X = (x1, . . . , xr) where xj , for j ∈ {1, . . . r}, denotes
(if not differently specified) the variable corresponding to the syndrome sij , i.e. xj = z

ij
1 +

· · · + z
ij
t . The main result of this section is Theorem 6.1.3. It generalizes Theorem 3.3.35,

which dealt with the case where the code could be defined by only one syndrome. In particular,

79

Chapter 6. On the shape of the general error locator polynomial

Theorem 6.1.3 provides a description of the shape of the coefficients of a general error locator
polynomial for cyclic codes over Fq. We recall that, by definition of general error locator
polynomial, these coefficients are polynomials in the syndrome variablesX , and that when they
are evaluated at a correctable syndrome s corresponding to an error of weight µ ≤ t, they can be
expressed as the elementary symmetric functions on the error locations z̄1, . . . , z̄µ and zero (with
multiplicity t− µ), since the latters are the roots of the locator. So, by definition of elementary
symmetric functions, they can then be expressed as elementary symmetric polynomials in µ
variables on the z1, . . . , zµ. We will need the existence of a polynomial representation for
arbitrary functions from Fn

q to Fq. This is not unique and can be obtained in several ways.
We recall that a standard way to get it, is given by Theorem 2.3.20. The next two lemmas
clarify some links between syndromes and error locations which will be essential in our proof
of Theorem 6.1.3.

Lemma 6.1.1. Let σ ∈ Fq[y1, . . . , yt] be a symmetric function. Then there exists a ∈ Fq[X]

such that for (x̄1, . . . , x̄r) ∈ Vµ

a(x̄1, . . . , x̄r) = σ(z1, . . . , zµ, 0 . . . , 0)

with z1, . . . zµ the error locations corresponding to x̄1 . . . , x̄r.

Proof. We claim that the statement is obvious for elementary symmetric functions, as follows.
Let σ1 . . . σt be the elementary symmetric functions in Fq[y1, . . . , yt]. The existence of a general
error locator polynomial for any cyclic code guarantees that, for any 1 ≤ i ≤ t, for any σi there
is ai ∈ Fq[x1, . . . , xr] such that for (x̄1, . . . , x̄r) ∈ Vµ

ai(x̄1, . . . , x̄r) = σi(z1, . . . , zµ, 0 . . . , 0)

with z1, . . . zµ the error locations corresponding to x̄1 . . . , x̄r.
For the more general case of any symmetric function σ ∈ Fq[y1, . . . , yt], we need the

fundamental theorem on symmetric functions, which shows the existence of a polynomial
H ∈ Fq[y1 . . . , yt] such that σ(y1, . . . , yt) = H(σ1(y1, . . . , yt), . . . , σt(y1 . . . , yt)). We can
define a = H(a1, . . . , at) ∈ Fq[X]. So for (x̄1, . . . , x̄r) ∈ Vµ and the corresponding locations
z1, . . . zµ, we have

σ(z1, . . . , zµ, 0, . . . , 0) = H(σ1(z1, . . . , zµ, 0, . . . , 0), . . . , σt(z1, . . . , zµ, 0, . . . , 0)) =

= H(a1(x̄1, . . . , x̄r), . . . , at(x̄1 . . . , x̄r)) = a(x̄1, . . . , x̄r) .

Lemma 6.1.2. Let h ∈ Fq[X] with degxi h < q for all i = 1, . . . , r, and h(x̄1, x̄2, . . . , x̄r) = 0

for all (x̄1, . . . , x̄r) ∈ F r
q with x̄1 6= 0. Let l ∈ Fq[X] and g(x2 . . . , xr) ∈ Fq[x2, . . . , xr] such

that h(X) = x1l(x1, x2, . . . , xr) + g(x2, . . . , xr). Then

h(X) = g(x2, . . . , xr) or h(X) = (1− xq−1
1) · g(x2, . . . , xr).

80

6.1. A new representation of the locator polynomial

Proof. Clearly, for any h the two polynomials l and g are uniquely determined.
If h(X) ∈ Fq[x2 . . . , xr], trivially, we have that h(X) = g(x2, . . . , xr). So we can suppose that
h(X) /∈ Fq[x2 . . . , xr], and let us define the polynomial h̄(X) = (1 − xq−1

1) · g(x2, . . . , xr).
Note that degxi h̄ < q for all i = 1, . . . , r. We claim that h = h̄. Since the degree w.r.t. each
variable xi of both the polynomials h and h̄ is less than q, to prove our claim we suffice to show
that h(X̂) = h̄(X̂) for all X̂ ∈ F r

q . Let us distinguish the cases x̂1 = 0 and x̂1 6= 0.
If x̂1 = 0 then h(X̂) = 0 · l(0, x̂2, . . . , x̂r) + g(x̂2, . . . , x̂r) = g(x̂2, . . . , x̂r) and h̄(X̂) =

(1− 0) · g(x̂2, . . . , x̂r) = g(x̂2, . . . , x̂r). So, in this case h(X̂) = h̄(X̂).
Otherwise, let x̂1 6= 0. By hypothesis, h(X̂) = 0. On the other hand, h̄(X̂) = (1 − 1) ·
g(x̂2, . . . , x̂r) = 0. So, also in this case h(X̂) = h̄(X̂).

Theorem 6.1.3. Let C be a cyclic code over Fq, with length n and correction capability t,
defined by SC = {i1, . . . , ir}. Let σ ∈ Fq[y1, . . . , yt] be a symmetric homogeneous function of
total degree δ, with δ a multiple of i1, and let λ be a divisor of n. Then there exist polynomials
a ∈ Fq[X], g ∈ Fq[x2, . . . , xr], some non-negative integers δ2, . . . , δr and some univariate
polynomials Fh2,...,hr ∈ Fq[y] such that for any 0 ≤ µ ≤ t, for any (x̄1, x̄2, . . . , x̄r) ∈ Vµ and
the corresponding error locations z1, . . . , zµ, we have

a(x̄1, x̄2, . . . , x̄r) = σ(z1, . . . , zµ, 0, . . . , 0) (6.1)

and

a(X) = x
δ/i1
1

δr∑
hr=0

((
xr

xir1

)hr
· · ·

δ2∑
h2=0

((
x2

xi21

)h2
Fh2,...,hr(x

λ
1)

)
· · ·
)

+(1−xqm−1
1)·g(x2, . . . , xr) ,

(6.2)
where δi ≤ qm − 1, degFh2,...,hr ≤ (qm − 1)/λ.

Proof. We observe that (6.1) is immediate by Lemma 6.1.1. To prove (6.2) we first show the
case x̄1 6= 0 and then the general case.

Case x̄1 6= 0

Let us consider the following map A : {X ∈ V | x1 6= 0} → Fqm defined by

A(x̄1, x̄2, . . . , x̄r) =
σ(z1, . . . , zµ, 0, . . . , 0)

x̄
δ/i1
1

, (6.3)

where (z1, . . . , zµ, 0, . . . , 0) is the element of Tn,t associated to the syndrome vector (x̄1, x̄2, . . . , x̄r).
We claim that A depends only on (x̄λ1 , x̄2/x̄

i2
1 , . . . , x̄r/x̄

ir
1). If our claim is true, then we have

that
A(x̄1, x̄2, . . . , x̄r) = f(x̄λ1 , x̄2/x̄

i2
1 , . . . , x̄r/x̄

ir
1) (6.4)

for a function f : F r
qm → Fqm , and so, by Lemma 2.3.20, we can view f as a polynomial in

Fqm [x1, . . . , xr]. Since V ⊂ F r
qm , we can also view A as a (non-unique) polynomial A(X) ∈

81

Chapter 6. On the shape of the general error locator polynomial

Fqm [X]. On the other hand, (6.3) and Lemma 6.1.1 show that A(X)x
δ/i1
1 ∈ Fqm [X] equals a

polynomial a ∈ Fq[X] and so also A(X) can be chosen in Fq[X]. Therefore, by (6.4) also f
can be chosen in Fq[X].
Let δ2 = degx2(f), . . . , δr = degxr(f). Then, by collecting the powers of xr in f , we will have
f =

∑δr
h=0 x

h
rfh, for some fh’s, which are polynomials in Fq[x1, . . . , xr−1]. We observe that for

any 2 ≤ i ≤ r − 1 we have that, for any 0 ≤ h ≤ δr, degxi(fh) ≤ degxi(f) = δi and there is
at least one h such that degxi(fh) = δi. We can repeat this argument on all fh’s by collecting
powers of xr−1 and iterate on the other X variables, x1 excluded, until we obviously obtain the
following formal description

f(x1, x2, . . . , xr) =
δr∑

hr=0

xhrr

δr−1∑
hr−1=0

x
hr−1

r−1 · · ·
δ2∑

h2=0

xh22 Fh2,...,hr(x1) , (6.5)

where any Fh2,...,hr is a univariate polynomial in Fq[x1].
From (6.3), (6.4) and (6.5) we directly obtain the restriction of (6.2) to the case x1 6= 0, consid-
ering that xq

m

j = xj implies (1− xqm−1
j) = 0, δi ≤ qm − 1 and degFh1,...hr ≤ (qm − 1)/λ.

We now prove our claim that gives (6.4). Let us take (x̃1, . . . , x̃r) and (x̄1, . . . , x̄r) such that
x̃λk = x̄λk , and x̃j/x̃

ij
1 = x̄j/x̄

ij
1 , for j = 2, . . . , r.

The first relation implies
x̃1 = βx̄1, (6.6)

for some β such that βλ = 1.
Substituting x̃1 for βx̄1 in the second relation for j = 2, . . . , r, we obtain

x̃j

x̃
ij
1

=
x̄j

x̄
ij
1

=⇒ x̃j
(βx̄1)ij

=
x̄j

x̄
ij
1

=⇒ x̃j = βij x̄j. (6.7)

Suppose that (x̃1, . . . , x̃r) ∈ Vµ and (x̄1, . . . , x̄r) ∈ Vµ′ , with µ, µ′ ≤ t. From (6.6), we get
ỹ1z̃

i1
1 + · · ·+ ỹµz̃

i1
µ = β(ȳ1z̄

i1
1 + · · ·+ ȳµ′ z̄

i1
µ′) = βȳ1z̄

i1
1 + · · ·+ βȳµ′ z̄

i1
µ′ , where z̄i’s and ȳi’s are

the locations and the error values, respectively, associated to (x̄1, . . . , x̄r); and similarly for z̃i’s
and ỹi’s. Also, from (6.7) we get ỹ1z̃

ij
1 + · · ·+ ỹµz̃ijµ = βij(ȳ1z̄

ij
1 + · · ·+ ȳµ′ z̄ijµ′), for j = 2, . . . , r.

Let us now take ŷj = ȳj and ẑj = βz̄j , for j = 1, . . . , µ′. Since the ẑj are distinct valid error
locations (i.e. ẑnj = 1, for j = 1, . . . , µ′) we have that their syndromes are

x̂j = ŷ1ẑ
ij
1 + · · ·+ ŷµ′ ẑ

ij
µ′ = βij ȳ1z̄

ij
1 + · · ·+ βij ȳµ′ z̄

ij
µ′ =

= βij(ȳ1z̄
ij
1 + · · ·+ ȳµ′ z̄

ij
µ′) = ỹ1z̃

ij
1 + · · ·+ ỹµz̃

ij
µ = x̃j,

for j = 1, . . . , r .

Hence (x̂1, . . . , x̂r) = (x̃1, . . . , x̃r), which implies that their corresponding locations and val-
ues must be the same and unique, because µ, µ′ ≤ t. Therefore µ = µ′, {z̃1, . . . , z̃µ} =

82

6.2. Sparse locators for some classes of codes with t = 2

{βz̄1, . . . , βz̄µ}, and {ỹ1, . . . , ỹµ} = {ȳ1, . . . , ȳµ}, from which, using the fact that σ is a sym-
metric homogeneous function of degree δ, we have

A(x̃1, . . . , x̃r) =
σ(z̃1, . . . , z̃µ, 0, . . . , 0)

(ỹ1z̃
i1
1 + · · ·+ ỹµz̃

i1
µ)δ/i1

=
σ(βz̄1, . . . , βz̄µ, 0, . . . , 0)

(ȳ1(βz̄1)i1 + · · ·+ ȳµ(βz̄µ)i1)δ/i1
=

βδσ(z̄1, . . . , z̄µ, 0, . . . , 0)

βδ(ȳ1z̄
i1
1 + · · ·+ ȳµz̄

i1
µ)δ/i1

=
σ(z̄1, . . . , z̄µ, 0, . . . , 0)

(ȳ1z̄
i1
1 + · · ·+ ȳµz̄

i1
µ)δ/i1

= A(x̄1, . . . , x̄r) .

General case
Let us consider the map A and the polynomial a introduced in the case x̄1 6= 0. Let us extend
A to all points in F r

qm defining A(X̃) = x̃
δ/i1
1 a(x̃1, . . . , x̃r) when X̃ ∈ Fqm \ V with x̃1 6= 0,

and A(X̃) any element in Fqm when X̃ = (0, x̃2, . . . , x̃r) ∈ Fqm . Since A is a map from F r
qm

to Fqm , it is a polynomial function and the associated polynomial A(X) with degxi(A(x)) < q,
for all i = 1, . . . , r, is unique. Now, let us consider the polynomial h(X) = a(X)−xδ/i11 A(X).
Thanks to what we proved in the case x1 6= 0, we have that h(X) satisfies the hypothesis
of Lemma 6.1.2. Since h(X) /∈ Fqm [x2, . . . , xr], by Lemma 6.1.2, we have that h(X) =

(1 − xqm1) · g(x2, . . . , xr) for some g(x2, . . . , xr) ∈ Fqm . So a(X) = x
δ/i1
1 A(X) + (1 − xqm1) ·

g(x2, . . . , xr).

Corollary 6.1.4. Let C be cyclic code over Fq as in Theorem 6.1.3. Then the coefficients of the
general error locator polynomial can be written in the form given by the previous theorem.

Corollary 6.1.5. Let C be a code with t = 2 defined by SC = {i1, . . . , ir}, with i1 = 1, and let
L = z2 + x1z + b be a general error locator polynomial for C. If C is a primitive code, i.e.
n = qm − 1, then b = x2

1A with A ∈ Fq[x2/x
i2
1 , . . . , xr/x

ir
1].

Proof. Since t = 2, x1 is zero if and only if there are no errors. Then, applying the previous
theorem to C, we get that b = x2

1A with A ∈ Fq[xn1 , x2/x
i2
1 , . . . , xr/x

ir
1]. On the other hand,

since C is primitive, xn1 is zero when x1 is zero, and it is 1 when x1 is not zero. So for µ ∈ {1, 2},
xn1 = 1 and b = x2

1Ā with Ā = A|xn1 =1. We claim that b∗ = x2
1Ā is a valid location product also

for the case µ = 0, which follows from the fact that µ = 0 if and only if x1 = 0.

Previous corollary basically shows that in the case t = 2 the term of the form (1−xqm−1
1)g does

not appear in the expression of the locator coefficients.

6.2 Sparse locators for some classes of codes with t = 2

In this section we provide explicit sparse representations for infinite classes of codes with
t = 2, including all the five exceptional cases of Theorem 3.3.30. For some of these we also
show the connection with Theorem 6.1.3. Let C be a cyclic code with length n and error

83

Chapter 6. On the shape of the general error locator polynomial

correction capability t = 2, and let SC be a defining set of C. In Chapter 3 we have defined a
bordering polynomial as a polynomial h ∈ F2[X] such that h(V1) = {0} and h(V2) = {1}. If
0 ∈ S̃C , then, by Remark 3.3.28, it is trivial to exhibit a bordering polynomial. If 0 6∈ SC , we
claim that in order to find such an h it is sufficient to find a polynomial wh ∈ F2[X], expressed
in terms of primary syndromes only, such that

wh(V1) = {0} and 0 /∈ wh(V2),

and we will call it a weakly bordering polynomial.

Lemma 6.2.1. Let wh be a weakly bordering polynomial forC. Then h = wh/wh is a bordering
polynomial for C where wh is a rewriting of wh using non-primary syndromes.

Proof. Let wh be a weakly bordering polynomial forC. Given a primary syndrome xj occurring
in wh, we can consider the syndrome xi such that xj = x2

i , 2i ≡ j (mod n), and take wh as the
rewriting of wh obtained with the substitution xj → x2

i . This allows us to consider h = wh/wh,
with the usual convention 0/0 = 0. It is obvious that such an h is a bordering polynomial for
C.

From now on, in order to write a general error locator polynomial for a binary cyclic code
C with t = 2, we will be satisfied with exhibiting b∗ (as in Proposition 3.3.29) and wh as above
such that either b∗(V0) = 0 or wh(V0) = 0.

The following obvious lemma characterizes s2ec codes with 1 ∈ SC and it is a direct general-
ization of Lemma 3.3.33.

Lemma 6.2.2. Let C be a code with length n and SC = {i1, i2, . . . , ir}, with i1 = 1. The
following statements are equivalent:

a) for any {z̃1, z̃2} and {z̄1, z̄2} subsets of Rn such that

z̃
ij
1 + z̃

ij
2 = z̄

ij
1 + z̄

ij
2 j = 1, . . . , r,

we have {z̃1, z̃2} = {z̄1, z̄2}

b) C is a s2ec code.

The following lemma is a generalization of Lemma 3.3.32.

Lemma 6.2.3. Let C be a code with SC = {0, 1, l} with error correction capability t. Let C ′

be a code with the same length of C and S ′C = {1, l}. Then the error correction capability of C
is t = 2 if and only if C ′ is s2ec.

84

6.2. Sparse locators for some classes of codes with t = 2

Proof. Suppose that t = 2. To prove that C ′ is s2ec we will use the previous lemma. So, let
{z̃1, z̃2} and {z̄1, z̄2} be subsets of Rn such that z̃1 + z̃2 = z̄1 + z̄2 and z̃l1 + z̃l2 = z̄l1 + z̄l2, and
we shall prove that {z̃1, z̃2} = {z̄1, z̄2}. Since we are assuming that t = 2, C is obviously s2ec.
Note also that z̃n1 + z̃n2 = z̄n1 + z̄n2 = 0, since z̃1, z̃2, z̄1, z̄2 are elements of Rn. So, applying the
previous lemma to C, we get that {z̃1, z̃2} = {z̄1, z̄2}.
Suppose, vice-versa, that C ′ is s2ec. C is a subcode of C ′, then also C is s2ec. In addition,
from the BCH bound we know that t ≥ 1. Then we are reduced to proving that we are able
to distinguish the case with one error to the case with two errors. Let x0 be the syndrome
corresponding to 0, that is, x0 = z̄n1 + z̄n2 . When µ = 1 then x0 = 1 + 0 = 1 6= 0, while when
µ = 2 then x0 = 1 + 1 = 0. This proves that t = 2.

Note that in [OS07] the authors proved a special case of Theorem 6.1.3: let C be a binary
cyclic code with length n and defining set SC = {1}, and L∗ the error locator polynomial that
is able to correct two errors, such that L∗ = z2 + x1z + b∗(x1). Then there exists a polynomial
A ∈ F2[y], such that

b∗(x1) = A(xn1)x2
1 .

The first four exceptional cases have t = 2 and SC = {1, l}, so we can apply Theorem 6.1.3 and
get b∗. As regards the fifth case, we consider the code C ′, defined by SC′ = {1, 5}, instead of C
defined by {0, 1, 5}, and note that C ′ is a s2ec (by Lemma 6.2.3). In this way we can get b∗ for
C ′. Notice that b∗ for C is the same as that for C ′, since the additional syndrome (corresponding
to 0) plays merely the role of determining the error weight. In conclusion, the polynomial b∗

can be determinated for three exceptional cases by Theorem 6.1.3. At this point we are still left
with the problem of determining b, which reduces to finding h (or wh). Note that b∗(V0) = 0.
In what follows we show how we can do this for two out of three exceptional cases of Theorem
3.3.30.

Theorem 6.2.4. Let C be a binary code with {1, l} ⊂ SC , such that l = 2v + 1, v ≥ 1, t = 2

and gcd(l−2, n) = 1. Then we can take wh = xl1 +x2, where x1 is the syndrome corresponding
to 1 and x2 is the syndrome corresponding to l.

Proof. We see that

xl1 + x2 = (z1 + z2)l + zl1 + zl2 = (z2v

1 + z2v

2)(z1 + z2) + zl1 + zl2 =

= z2v

1 z2 + z1z
2v

2 = z1z2(z2v−1
1 + z2v−1

2).

We know that z1z2 6= 0, so we are left to prove (z2v−1
1 + z2v−1

2) 6= 0. This holds because if
z2v−1

1 = z2v−1
2 , then gcd(l − 2, n) = 1 implies z1 = z2, which is impossible.

We can apply Theorem 6.2.4 to describe the cases n = 31, with SC = {1, 5}, and n = 51,
with SC = {1, 9}, of Theorem 3.3.30, taking l = 5 and v = 2 and l = 9, v = 3, respectively.
In order to get h for the last case treated by Theorem 6.1.3, i.e. n = 51, SC = {0, 1, 5}, we use
the syndrome x0 corresponding to 0 and take h = x0 + 1 (as in Section VI of [OS07]).

85

Chapter 6. On the shape of the general error locator polynomial

There are still two cases left. These require a different approach. However, it turns out that
this new approach can actually solve also the previous three cases in an even more efficient way.

Theorem 6.2.5. Let C be a binary cyclic code with {1, l, s − 2l, s − l, s} ⊂ SC , t = 2,
gcd(s−2l, n) = gcd(l, n) = 1. Let x1,x2,x3,x4,x5 be the syndromes corresponding respectively
to 1,l,s− 2l, s− l, s. Then

b = b∗ =

(
x2x4 + x5

x3

)l+
, L = z2 + x1z + b, (6.8)

where l+ is the inverse of l modulo n.

Proof. Let us consider x4x2:

x4x2 = (zs−l1 + zs−l2)(zl1 + zl2) = zs1 + zs2 + zs−l1 zl2 + zl1z
s−l
2 =

= zs1 + zs2 + (z1z2)l(zs−2l
1 + zs−2l

2) = x5 + (b∗)lx3

Therefore we have (b∗)l = (x2x4 + x5)/x3 and by the fact that gcd(l, n) = 1 we have b∗ =

((x2x4 + x5)/x3)l
+ .

For µ = 2 we have x3 = zs−2l
1 + zs−2l

2 which cannot be zero because gcd(s− 2l, n) = 1.
We also have b∗ = b, because b∗(V0) = 0 and for µ = 1, x2x4 + x5 = zlzs−l + zs = 0.

Theorem 6.2.6. Let C be a code with {1, (n− 1)/l} ⊂ SC , l a power of 2, 3 - n, l 6= (n− 1),
and t = 2. Let x1,x2,x3,x4 be the syndromes corresponding to 1,2, (n− 1)/l, n− 2. Then

b∗ =
x1

xl3
, wh = x4x

2
1 + 1, L = z2 + x1z + b∗wh/wh,

where wh = x4x2 + 1.

Proof. For µ = 2 and by the fact that l is a power of 2 we have

x1x
l
3 = (z1 + z2)(z

(n−1)/l
1 + z

(n−1)/l
2)l =

= (z1 + z2)(zn−1
1 + zn−1

2) = zn1 + z1z
−1
2 + z2z

−1
1 + zn2 =

=
z1

z2

+
z2

z1

=
z2

1 + z2
2

z1z2

=
(z1 + z2)2

b∗
= x2

1/b
∗

from which we get b∗ = x1x
−l
3 .

Let us now consider wh(x1, x2, x3, x4) = x4x
2
1 + 1. Since b∗(V0) = 0, we only need to

prove that wh(V1) = 0 and 0 /∈ wh(V2). For µ = 1 we have wh = zn−2z2 + 1 = zn + 1 = 0.

For µ = 2 we have

(zn−2
1 + zn−2

2)(z2
1 + z2

2) + 1 = zn−2
1 z2

2 + zn−2
2 z2

1 + 1 =

z22
z21

+
z21
z22

+ 1 =
(
z2
z1

+ z1
z2

)2

+ 1.

86

6.2. Sparse locators for some classes of codes with t = 2

We are then left with the problem of proving

z2

z1

+
z1

z2

6= 1.

This is equivalent to α + α−1 6= 1 for α = z2
z1

. By contradiction, if we multiply by α we get
α2 + α + 1 = 0, which implies α ∈ F4 \ F2, from which follows that the order of α must be 3.
However, αn = 1 (since z1 and z2 are error locations) and this is impossible because we have
assumed 3 - n.

Theorem 6.2.7. Let C be a code with {1, l = 2j, r = 2j − 2i, s = 2j + 2(i+1)} ⊂ SC with i ≥ 0

and j ≥ i+ 2, and let t = 2. Let x1,x2,x3,x4 be the syndromes corresponding respectively to 1,
l, r, s. Then

(x2 + xl−r1 x3)b∗l−r = (xs1 + x4)

Proof. We claim that in F2[z1, z2] for all i, j ∈ N0, j ≥ i+ 2:

(z1 + z2)2j+2(i+1)

+ z2j+2(i+1)

1 + z2j+2(i+1)

2 = (z1z2)2i
(
z2j

1 + z2j

2 + (z1 + z2)2i(z2j−2i

1 + z2j−2i

2)
)

The statement is an immediate consequence of this claim.

We now prove our claim. The right-hand side of the equality we want to prove is equal to

(z1z2)2i
(
z2j

1 + z2j

2 + (z2i

1 + z2i

2)(z2j−2i

1 + z2j−2i

2)
)

=

(z1z2)2i
(
z2i

1 z
2j−2i

2 + z2j−2i

1 z2i

2

)
= z2(i+1)

1 z2j

2 + z2j

1 z
2(i+1)

2

On the other hand, since (z1 + z2)2(i+1)+2j = (z1 + z2)2(i+1)
(z1 + z2)2j = (z2(i+1)

1 + z2(i+1)

2)(z2j

1 +

z2j

2), also the left-hand side is equal to z2(i+1)

1 z2j

2 + z2j

1 z
2(i+1)

2 .

Corollary 6.2.8. With the same hypothesis as in Theorem 6.2.7, and the assumptions that i = 0

and gcd(r − 1, n) = 1 we have that

b = b∗ =

(
xs1 + x4

x2 + x1x3

)
, L = z2 + x1z + b,

Proof. By Theorem 6.2.7, we get that

(x2 + xl−r1 x3)b∗l−r = (xs1 + x4).

Let us suppose that i = 0 and gcd(r − 1, n) = 1. Then, the previous equality becomes

(x2 + x1x3)b∗ = (xs1 + x4). (6.9)

First we show that µ = 2 implies (x2 + x1x3) 6= 0. We have that

x2 + x1x3 = (z2j

1 + z2j

2) + (z1 + z2)(z2j−1
1 + z2j−1

2) =

(z2j

1 + z2j

2) + (z2j

1 + z2j

2 + z1z
2j−1
2 + z2j−1

1 z2) = z1z2(z2j−2
1 + z2j−2

2).

87

Chapter 6. On the shape of the general error locator polynomial

Now, because µ = 2 and gcd(r − 1, n) = gcd(2j − 2, n) = 1, z1z2(z2j−2
1 + z2j−2

2) 6= 0. Then
(x2 + x1x3) is nonzero. So, we get b∗ = (xs1 + x4)/(x2 + x1x3).
Furthermore, since b∗(V0) = 0 and for µ = 1, xs1 + x4 = zs + zs = 0, we also conclude that
b∗ = b.

To obtain an efficient general error locator polynomial for the code with length n = 51 and
defining set SC = {0, 1, 5} we will need the following result.

Lemma 6.2.9. Let C be the code with length n = 51 defined by SC = {0, 1, 5}, and let µ = 2.
Denoting by xj the variable corresponding to the syndrome sj , i.e. xj = zj1 + zj2, and by b the
product z1z2, we have that

(x7
1 + x7) = 0 if and only if x51

1 = 1.

Proof. Let us suppose that (x7
1 + x7) = 0. We have that

x7
1 + x7 = (z1 + z2)7 + z7

1 + z7
2 = z6

1z2 + z5
1z

2
2 + z4

1z
3
2 + z3

1z
4
2 + z2

1z
5
2 + z1z

6
2 =

(z1z2)(z5
1 + z5

2 + z4
1z2 + z1z

4
2 + z2

1z
3
2 + z3

1z
2
2) = (z1z2)

(
(z1 + z2)5 + (z1z2)2(z1 + z2)

)
.

(6.10)

Since (x7
1 + x7) = 0, by (6.10), we have that (z1z2) ((z1 + z2)5 + (z1z2)2(z1 + z2)) = 0. But

z1z2 6= 0, because µ = 2. Thus, (z1 + z2)5 = (z1z2)2(z1 + z2). Then

((z1 + z2)5)51 = ((z1z2)2(z1 + z2))51. (6.11)

Since the splitting field of x51 + 1 over F2 is F256, then x255
1 = 1. But we have also that

z1z2 ∈ F256, so (z1z2)2×51 = 1. Then, by (6.11) we get that (z1 + z2)51 = 1.
Vice-versa, if x51

1 = 1 then x64
1 = x13

1 . But x64
1 = z64

1 + z64
2 = z13

1 + z13
2 = x13, so

x13
1 = x13. (6.12)

By Newton’s identities (see Theorem 2.3.27), we know that x5
1 = x5 + bx3. Then,

x13
1 = x5

1x
8
1 = (x5 + bx3)x8

1 = x5x
8
1 + bx3x

8
1 = (z5

1 + z5
2)(z8

1 + z8
2) + bx3x

8
1 =

z13
1 + z13

2 + z5
1z

8
2 + z8

1z
5
2 + bx3x

8
1 = x13 + b5x3 + bx3x

8
1. (6.13)

By (6.13) and (6.12), we obtain that b5x3 + bx8
1x3 = 0. Thus, since b 6= 0, either b = x2

1 or
x3 = 0.
If b = x2

1, then, by (6.10), x7
1 + x7 = x2

1(x5
1 + x4

1x1) = 0.
If x3 = 0 then x5

1 = x5 + bx3 = x5. Then

x7
1 = x5

1x
2
1 = x5x

2
1 = (z5

1 + z5
2)5(z2

1 + z2
2) = x7 + bx3. (6.14)

Since x3 = 0, by (6.14), we obtain that x7
1 = x7.

We now apply the previous results to the exceptional cases of Theorem 3.3.30. Summing
up we get the following.

88

6.2. Sparse locators for some classes of codes with t = 2

a) Case n = 31,SC = {1,15}

This is a special case of those covered by Theorem 6.2.6 for l = 1, i.e. where x1, x2, x3, x4

correspond to 1, 2, 30, 29. Hence we have b∗ = x1/x2, wh = x2
1x4 + 1 , and so the general

error locator polynomial for the code is

z2 + x1z +
x1

x3

(
x2

1x4 + 1

x2x4 + 1

)
, (6.15)

b) Case n = 31,SC = {1,5}

This case is a special case of Theorem 6.2.5 for l = 1 and s = 10. Therefore we have that
the general error locator polynomial for C is

z2 + x1z +

(
x1x4 + x5

x3

)
, (6.16)

where x1, x3, x4, x5 are the syndromes of 1, 8, 9, 10 (x2 = x1).

c) Case n = 45,SC = {1,21}

This case is a covered by Theorem 6.2.5 for l = 2 and s = 23, which gives the following
general error locator polynomial

z2 + x1z +

(
x2x4 + x5

x3

)23

, (6.17)

where x1, x2, x3, x4, x5 are the syndromes of 1, 2, 19, 21, 23. Note that the inverse of 2 modulo
45 is 23.

d) Case n = 51,SC = {1,9}

This is a special case of those covered by Corollary 6.2.8 for i = 0 and j = 4 which gives
the following general error locator polynomial

z2 + x1z +

(
x18

1 + x4

x1(x15
1 + x3)

)
, (6.18)

where x1, x3, x4 are the syndromes of 1, 15, 18.

e) Case n = 51,SC = {0,1,5}

For this code we get the general error locator polynomial as follows.
Thanks to Theorem 6.2.7 with i = 0 and j = 3, we have that x1(x7

1 +x3)b∗ = (x10
1 +x4) where

x1, x3, x4 are the syndromes of 1, 7, 10 respectively. Now, for some locations (z1, z2) of weight

89

Chapter 6. On the shape of the general error locator polynomial

2, (x7
1 + x3) becomes zero. However, when (x7

1 + x3) = 0, it is easy to get the value of b∗.
Indeed,

x7
1 = (z1 + z2)7 = z7

1 + z7
2 + (z1z2)

(
(z1 + z2)5 + (z1z2)2(z1 + z2)

)
(6.19)

So, when (x7
1 + x3) = 0 and µ = 2, we obtain that

(
(z1 + z2)5 + b∗2(z1 + z2)

)
= 0, which

gives b∗ = x2
1.

In conclusion, if (x7
1 + x3) is nonzero, then b∗ = (x10

1 + x4)/(x1(x7
1 + x3)), otherwise,

b∗ = x2
1.

To unify the two representations, we proceed as follows. By Lemma 6.2.9 we have that

(x7
1 + x3) = 0 if and only if x51

1 = 1. (6.20)

Since (x255
1 + 1) = (x51

1 + 1)F (x51
1) with F (y) = y4 + y3 + y2 + y+ 1, from (6.20) we get that

a general error locator polynomial for C is

z2 + x1z +

(
x10

1 + x4

x1(x7
1 + x3)

)
+ x2

1

(
F (x51

1)
2

F (x51
2)

)
, (6.21)

where x1, x2, x3, x4 are the syndromes of 1, 2, 7, 10.
In Tables 6.1, 6.3 and 6.4 we list binary cyclic codes, up to equivalence and subcodes, with

length less than 121 which are covered by Theorem 6.2.4, Theorem 6.2.6 and Corollary 6.2.8
respectively. While, Table 6.2 reports the codes with length n < 105 which are covered by
Theorem 6.2.5.

Table 6.1: Binary cyclic codes with t = 2 and length < 121 covered by Theorem 6.2.4

15, {1, 3} 17, {1} 21, {1, 3} 25, {1} 27, {1, 9} 31, {1, 3} 31, {1, 5}
35, {1, 5} 35, {1, 3} 45, {1, 21} 45, {1, 3} 45, {1, 9} 51, {1, 3} 51, {1, 9}
55, {1} 63, {1, 3} 65, {1} 73, {1, 9} 73, {1, 3} 73, {1, 5} 73, {1, 17}
75, {1, 3} 77, {1, 33} 81, {1, 9} 85, {1, 3} 85, {1, 5} 85, {1, 9} 91, {1, 17}
93, {1, 3} 93, {1, 9} 95, {1} 99, {1, 33} 99, {1, 9} 105, {1, 3} 115, {1}
117, {1, 9} 119, {1, 17} 119, {1, 13}

For the sake of space, we do not show the codes covered by Theorem 6.2.5 with length
105 ≤ n < 121. We observe that in each table we also report BCH codes.

6.3 Sparse locators for some classes of codes with t = 3

In this section we provide explicit sparse representations for some infinite classes of binary
codes with error correction capability t = 3. We also consider all binary codes with t = 3

and n < 63, showing that they can be regrouped in few classes and we provide a general error

90

6.3. Sparse locators for some classes of codes with t = 3

Table 6.2: Binary cyclic codes with t = 2 and length < 105 covered by Theorem 6.2.5

9, {0, 1} 15, {1, 3} 15, {0, 1, 7} 17, {0, 1} 21, {0, 1, 5}
21, {1, 3} 25, {1} 27, {1, 9} 27, {0, 1} 31, {0, 1, 15}
31, {1, 5} 31, {1, 3} 33, {0, 1} 35, {1, 3} 35, {1, 5}
45, {0, 1, 7} 45, {1, 3} 45, {1, 7, 15} 45, {1, 21} 45, {1, 9}
51, {1, 3} 51, {1, 9, 17} 51, {0, 1, 19} 51, {0, 1, 5, 11} 55, {1}
63, {1, 3} 63, {1, 5, 9} 63, {1, 27, 31} 63, {1, 9, 31} 63, {1, 11, 27}
63, {0, 1, 31} 15, {1, 21, 31} 63, {1, 5, 13, 21} 63, {1, 5, 11, 21} 63, {1, 23, 27, 31}
63, {1, 5, 9, 31} 63, {1, 7, 13, 27} 63, {1, 5, 11, 27} 63, {1, 23, 27, 31} 63, {1, 5, 11, 21, 31}
65, {1, 3} 65, {1, 7} 65, {0, 1} 69, {0, 1, 5} 73, {1, 3}
73, {1, 17} 73, {0, 1, 9} 75, {1, 3} 75, {0, 1, 7} 77, {1, 33}
81, {1, 27} 81, {0, 1} 81, {1, 9} 85, {1, 3} 85, {1, 29}
85, {1, 7, 13} 85, {1, 7, 9} 85, {1, 7, 21} 85, {1, 9, 17} 85, {1, 13, 37}
85, {1, 21, 37} 85, {0, 1, 21} 87, {0, 1, 5} 91, {0, 1, 17} 91, {1, , 9, 11, 13}
93, {1, 3} 93, {1, 5, 9} 93, {1, 5, 15} 93, {1, 5, 21} 93, {1, 5, 45}
93, {0, 1, 23} 93, {1, 11, 15} 93, {0, 1, 5, 11} 95, {1} 99, {1, 9}
99, {1, 33} 99, {0, 1}

Table 6.3: Binary cyclic codes with t = 2 and length < 121 covered by Theorem 6.2.6

17, {1} 25, {1} 31, {1, 15} 31, {1, 3} 43, {1} 55, {1, 3} 65, {1}
73, {1, 9} 85, {1, 21} 91, {1, 3} 95, {1, 7} 115, {1, 7} 119, {1, 13}

Table 6.4: Binary cyclic codes with t = 2 and length < 121 covered by Corollary 6.2.8

15, {1, 3} 21, {1, 3} 25, {1} 31, {1, 3} 31, {1, 5, 15} 35, {1, 3} 45, {1, 3}
45, {1, 9, 15} 51, {1, 3} 51, {1, 9} 55, {1, 3} 63, {1, 3} 65, {1, 3} 73, {1, 3}
73, {1, 5} 73, {1, 17} 75, {1, 3} 85, {1, 3} 85, {1, 9, 15} 85, {1, 9, 37} 93, {1, 3}
93, {1, 9, 15} 95, {1} 105, {1, 3} 115, {1}

locator polynomial for all these codes. In [Che69] Chen produced a table of the minimum
distances of binary cyclic codes of length at most 65. This table was extended to length at most
99 by Promhouse and Tavares [PT78].

The following theorem lists binary cyclic codes with t = 3 and n < 63 up to equivalence
and subcodes that we obtain with MAGMA computer algebra system [BCP97].

Theorem 6.3.1. Let C be an [n, k, d] code with d ∈ {7, 8} and 15 ≤ n < 63 (n odd). Then
there are only three cases.

1) Either C is one of the following:

n = 15, SC = {1, 3, 5}, n = 21, SC = {1, 3, 5}, SC = {1, 3, 7, 9}, SC = {0, 1, 3, 7};
n = 23, SC = {1}, n = 31, SC = {1, 3, 5}, SC = {0, 1, 7, 15};
n = 35, SC = {1, 3, 5}, SC = {1, 5, 7}, n = 45, SC = {1, 3, 5}, SC = {1, 5, 9, 15};
n = 49, SC = {1, 3}, n = 51, SC = {1, 3, 9}, n = 55, SC = {0, 1};

91

Chapter 6. On the shape of the general error locator polynomial

2) or C is a subcode of one of the codes of case 1);

3) or C is equivalent to one of the codes of the above cases.

Subcodes and equivalences are described in Table A.1 in the Appendix A. By Theorem 12
[OS07], we need to find a general error locator polynomial only for the codes in 1). For our
purposes, it is convenient to regroup the codes as showed in the following theorem.

Theorem 6.3.2. Let C be an [n, k, d] code with d ∈ {7, 8} and 15 ≤ n < 63 (n odd). Then
there are six cases

1) either C is a BCH code, i.e. SC = {1, 3, 5},

2) or C admits a defining set containing {1, i, i+ 1, i+ 2, i+ 3, i+ 4} where i and i+ 2 are
not zero modulo n,

3) or C admits a defining set containing {1, 3, 2i + 2j, 2j − 2i, 2j − 2i+1} with i ≥ 0 and
j ≥ i+ 2,

4) or C admits a defining set containing {1, 3, 9} and (n, 3) = 1,

5) or C is one of the following:

• n = 21, SC = {0, 1, 3, 7};
• n = 51, SC = {1, 3, 9};
• n = 55, SC = {0, 1}.

6) or C is a subcode of one of the codes of the above cases,

7) or C is equivalent to one of the codes of the above cases.

Proof. It is enough to inspect Case 1) of Theorem 6.3.1

Corollary 6.3.3. Let C be a code with length n < 63 and distance d ∈ {7, 8}. Then C is
equivalent to a code D s.t 1 ∈ SD.

Proof. It is an immediate consequence of Theorem 6.3.1.

Let C be a code with t = 3, s a correctable syndrome and z̄1, z̄2, z̄3 the error locations.
Then L(X, z) = z3 + az2 + bz + c, where a, b, c ∈ F2[X], and a(s) = z̄1 + z̄2 + z̄3, b(s) =

z̄1z̄2 + z̄1z̄3 + z̄2z̄3, c(s) = z̄1z̄2z̄3. Moreover, there are three errors if and only if c(s) 6= 0,
there are two errors if and only if c(s) = 0 and b(s) 6= 0, and there is one error if and only if
c(s) = b(s) = 0 and a(s) 6= 0. Note that from the previous corollary any code with t = 3 and

92

6.3. Sparse locators for some classes of codes with t = 3

n < 63 is equivalent to a code with 1 in the defining set. This means that for all our codes the
general error locator polynomial is of the form

L(X, z) = z3 + x1z
2 + bz + c,

where x1 is the syndrome corresponding to 1 ∈ SC . So we are left with finding the coefficients
b and c. Of course, b in the t = 3 case should not be confused with b in the case of t = 2 case.
Also, when 3 ∈ SC , actually we need to find only one of the two coefficients because in this
case by Newton’s identities we get c = x3

1 + x3 + x1b, which involves only known syndromes,
so from one coefficient we can easily obtain the other. In the following, Σl,m will denote all
the six terms of the type zliz

m
j , i, j ∈ {1, 2, 3}, and Σl,m,r denotes all the six terms of the type

zliz
m
j z

r
k, i, j, k ∈ {1, 2, 3}.

Let us consider the codes in 1) of Theorem 6.3.2. We have the following well-known result.

Theorem 6.3.4. Let C be a BCH code with t = 3. Then L(X, z) = z3 + x1z
2 + bz + c with

b =
(x2

1x3 + x5)

(x3
1 + x3)

, c =
(x3

1x3 + x6
1 + x2

3 + x1x5)

(x3
1 + x3)

Proof. It enough to apply Newton’s identities.

The next theorem provides a general error locator polynomial for codes in 2) of Th. 6.3.2.

Theorem 6.3.5. Let C be a code with t = 3 and SC containing {1, i, i + 1, i + 2, i + 3, i + 4}
where i and i+ 2 are not zero modulo n. Then L(X, z) = z3 + x1z

2 + bz + c with

b =
xiU + xi+1V

W
, c =

xi+1U + xi+2V

W

where U = xi+4 + x1xi+3, V = xi+3 + x1xi+2 and W = x2
i+1 + xixi+2.

Proof. Let us suppose that three errors occur, that is, e has weight three, and let s be its syn-
drome vector. It is a simple computation to show, using the Newton’s identitiesxi+4 = x1xi+3 + bxi+2 + cxi+1

xi+3 = x1xi+2 + bxi+1 + cxi

that b = xiU+xi+1V
W

, and c = xi+1U+xi+2V
W

, where W = x2
i+1 + xixi+2 = Σi,i+2 which cannot be

zero because i and i + 2 are not zero modulo n. Then, when µ = 3, L(s, z) is the error locator
polynomial for C.

Let us show that it is actually a general error locator polynomial for C. We have that

xi+1U+xi+2V = (zi+1
1 +zi+1

2 +zi+1
3)

(
zi+4

1 + zi+4
2 + zi+4

3 + (z1 + z2 + z3)(zi+3
1 + zi+3

2 + zi+3
3)

)
+(zi+2

1 +zi+2
2 +zi+2

3)
(
zi+3

1 + zi+3
2 + zi+3

3 + (z1 + z2 + z3)(zi+2
1 + zi+2

2 + zi+2
3)

)
= Σ1,i+1,i+3,

93

Chapter 6. On the shape of the general error locator polynomial

and

xiU + xi+1V = (zi1 + zi2 + zi3)
(
zi+4

1 + zi+4
2 + zi+4

3 + (z1 + z2 + z3)(zi+3
1 + zi+3

2 + zi+3
3)

)
+

(zi+1
1 + zi+1

2 + zi+1
3)

(
zi+3

1 + zi+3
2 + zi+3

3 + (z1 + z2 + z3)(zi+2
1 + zi+2

2 + zi+2
3)

)
=

= Σ1,i,i+3 + Σ1,i+1,i+2 + Σi+1,i+3,

Let us suppose that µ = 2. In this case, W = zi1z
i+2
2 + zi+2

1 zi2, which is again different from
zero. Furthermore, xi+1U + xi+2V = Σ1,i+1,i+3 is zero because µ = 2. Finally, xiU + xi+1V is
different from zero because xiU + xi+1V = Σ1,i,i+3 + Σ1,i+1,i+2 + Σi+1,i+3 and Σi+1,i+3 cannot
be zero. When µ = 1, W = zi1z

i+2
2 + zi+2

1 zi2 = 0 and xiU + xi+1V = Σi+1,i+3 = 0.

To obtain a general error locator polynomial for codes in 3) of Theorem 6.3.2, we need the
following lemma.

Lemma 6.3.6. Let σk =
∑

1≤i1<···<ik≤3 zi1 · · · zik be the kth elementary symmetric polynomial
in the variables z1, z2, z3 over F2, where k ∈ {1, 2, 3}, and let xh =

∑3
l=1 z

h
l ∈ F2[z1, z2, z3] be

the power sum polynomial of degree h, with h ≥ 0. Then, for i ≥ 0 and j ≥ i+ 2,

x2i+2j

1 + x2i+2j = σ2i

2 x2j−2i + σ2i

3 x2j−2i+1

Proof. x2i+2j

1 = (z1 + z2 + z3)2i+2j = (z1 + z2 + z3)2i(z1 + z2 + z3)2j = x2i+2j + Σ2i,2j . On the
other hand, σ2i

2 x2j−2i = (z1z2 + z1z3 + z2z3)2i(z2j−2i

1 + z2j−2i

2 + z2j−2i

3) = Σ2i,2j + Σ2i,2i,2j−2i

and σ2i

3 x2j−2i+1 = (z1z2z3)2i(z2j−2i+1

1 +z2j−2i+1

2 +z2j−2i+1

3) = Σ2i,2i,2j−2i . So x2i+2j

1 = x2i+2j +

σ2i

2 x2j−2i + σ2i

3 x2j−2i+1 .

Theorem 6.3.7. Let C be a code with t = 3 and SC containing {1, 3, 2i+ 2j, 2j−2i, 2j−2i+1}
with i ≥ 0 and j ≥ i+ 2. Then L(X, z) = z3 + x1z

2 + bz + c with

b =

(
x2j−2i+1U + V

W

)(2i)+

, c =

(
x2j−2iU + x2i

1 V

W

)(2i)+

where U = (x3
1 + x3)2i , V = x2i+2j

1 + x2i+2j , W = x2j−2i + x2i

1 x2j−2i+1 and (2i)+ is the
inverse of 2i modulo n.

Proof. Since the syndrome x1 is a known syndrome, that is, 1 ∈ SC , we have that a = x1. From
the Newton identity c = x3

1 + x3 + x1b we get that

c2i = x3×2i

1 + x2i

3 + x2i

1 b
2i (6.22)

On the other hand, by the previous lemma, we have that

x2i+2j

1 + x2i+2j = b2ix2j−2i + c2ix2j−2i+1 (6.23)

94

6.3. Sparse locators for some classes of codes with t = 3

Taking into account (6.22) and (6.23), a few computations lead to the equalities b2i =
(
x
2j−2i+1U+V

W

)
and c2i =

(
x
2j−2i

U+x2
i

1 V

W

)
. Suppose that µ = 3. Then W = (z2j−2i

1 + z2j−2i

2 + z2j−2i

3) + (z2i

1 +

z2i

2 +z2i

3)(z2j−2i+1

1 +z2j−2i+1

2 +z2j−2i+1

3) = Σ2i,2j−2i+1 . Since j is an integer, it is not possible that
2i = 2j − 2i+1, then W is different from zero. Also x2j−2iU + x2i

1 V = Σ2i,2i+1,2j−2i + Σ2i,2i,2j

and x2j−2i+1U +V = Σ2i,2i+1,2j−2i+1 + Σ2i+1,2j−2i . From the previous computations we get that
if µ = 2 then W 6= 0, x2j−2iU+x2i

1 V = 0, and x2j−2i+1U+V 6= 0. The last equality is because
Σ2i+1,2j−2i 6= 0. Furthermore, if µ = 1, then x2j−2i+1U + V = 0.

Finally, let us consider the codes in 4) of Theorem 6.3.2. In [Eli87] Elia presents an algebraic
decoding for the (23, 12, 7) Golay code providing the error locator polynomials for µ errors, for
µ from one to three. In [Lee11] Lee proves that the error locator polynomial L(3) corresponding
to three errors is actually a weak error locator polynomial for this code. Notice that L(3) is a
weak error locator polynomial for all cyclic codes C with t = 3, SC containing {1, 3, 9} and
(n, 3) = 1. Next theorem proves that one can obtain a general error locator polynomial for these
codes by slightly modifying L(3).

Theorem 6.3.8. Let C be a code with t = 3 and SC containing {1, 3, 9} with (n, 3) = 1. Then
L(X, z) = z3 + x1z

2 + bz + c with

b = (x2
1 +Dl∗)h, c = (x3 + x1D

l∗)h,

where D =
(
x9+x91
x3+x31

)
+ (x3

1 + x3)2, h =
(x31+x3)

(x1x2+x3)
, l = 3 and l∗ is the inverse of l modulo 2m− 1

with F2m the splitting field of xn − 1 over F2.

Proof. Since 1 ∈ SC , we have that a = x1. From the following Newton identities
x9 = x1x8 + bx7 + cx6

x7 = x1x6 + bx5 + cx4

x5 = x1x4 + bx3 + cx2

x3 = x1x2 + bx1 + c

using the equalities x6 = x2
3, and x2i = x2i

1 for i ≥ 0, we get(
x9 + x9

1

x3 + x3
1

)
+ (x3

1 + x3)2 = (b+ x2
1)3 (6.24)

So b = x2
1 + Dl∗ . From x3 = x1x2 + bx1 + c, we find c = x3 + x1D

l∗ . Let us prove that L
is a general error locator polynomial. By Lemma 1 and Lemma 2 in [Lee11], it is enough to
note that when there are less than two errors h = 0, while when there are two or three errors
h = 1.

95

Chapter 6. On the shape of the general error locator polynomial

Table 6.5: Binary cyclic codes with t = 3 and length < 121 covered by Theorem 6.3.5

15, {1, 3, 5} 21, {1, 3, 5} 21, {1, 5, 9} 23, {0, 1} 31, {0, 1, 7, 15}
31, {1, 3, 5} 35, {1, 3, 5} 35, {1, 5, 7} 45, {1, 3, 5} 49, {1, 3}
63, {1, 3, 5} 63, {1, 3, 11, 23, 27, 31} 63, {1, 5, 9, 13, 21} 63, {1, 3, 11, 13, 23} 63, {1, 5, 11, 13, 15}
63, {1, 15, 23, 31} 63, {1, 5, 13, 15, 21} 63, {0, 1, 15, 31} 63, {1, 5, 9, 13, 15} 63, {1, 11, 13, 15, 23, 27}
69, {1, 3, 23} 69, {0, 1, 3} 75, {1, 3, 5} 75, {1, 3, 25} 77, {1, 3}
77, {1, 7, 33} 85, {1, 3, 5} 85, {1, 7, 13, 15, 17} 85, {1, 15, 29, 37} 85, {0, 1, 21, 37}
89, {0, 1, 3} 89, {0, 1, 11} 91, {1, 3} 91, {1, 9, 19} 91, {1, 7, 9, 11, 13}
93, {1, 5, 17, 33} 93, {1, 7, 9, 17} 93, {1, 15, 17, 31, 33} 93, {1, 11, 23, 45} 93, {1, 17, 23, 31, 33}
93, {1, 9, 17, 33} 93, {1, 3, 5} 105, {1, 3, 5} 105, {1, 3, , 13, 25} 105, {1, 5, 9, 17}
105, {1, 9, 13, 25} 105, {1, 5, 7, 9, 11} 105, {1, 3, 9, 17, 25} 105, {1, 3, 17, 21, 25} 105, {1, 3, 11, 17, 45}
105, {1, 5, 9, 49} 105, {1, 3, 17, 25, 49} 105, {1, 9, 11, 13, 15, 17} 105, {1, 9, 13, 45, 49} 105, {1, 9, 17, 25, 49}
105, {1, 9, 11, 13, 45} 105, {0, 1, 9, 13} 105, {1, 3, 17, 35} 113, {0, 1} 115, {1, 23, 25}
117, {0, 1, 3} 117, {0, 1, 21, 29} 119, {1, 3} 119, {1, 7, 17} 119, {1, 11, 13}

Table 6.6: Binary cyclic codes with t = 3 and length < 121 covered by Theorem 6.3.7

15, {1, 3, 5} 21, {1, 3, 5} 21, {1, 3, 7, 9} 31, {1, 3, 5} 35, {1, 3, 5} 45, {1, 3, 5} 49, {1, 3}
63, {1, 3, 5} 75, {1, 3, 5} 77, {1, 3} 85, {1, 3, 5} 91, {1, 3} 93, {1, 3, 15, 31, 33} 93, {1, 3, 7, 9}
93, {1, 3, 5} 105, {1, 3, 5} 117, {1, 3, 7} 119, {1, 3}

In Tables 6.5, 6.6 we list binary cyclic codes, up to equivalence and subcodes, with length
less than 121 which are covered by Theorem 6.3.5 and Theorem 6.3.7 respectively. We observe
that in each table we also report BCH codes.

Table 6.7 shows a general error locator polynomial for each code in Case 1) of Theorem
6.3.1 with n < 55. Since the codes in Cases 2) and 3) of Theorem 6.3.1 are equivalent or
subcodes of the codes in Case 1), so (Theorem 3.3.26) their general error locator polynomial is
the same or can be easily deduced from one of the general error locator polynomial in the table.

In Table 6.7 the codes are grouped according to increasing lengths and are specified with
defining sets containing only primary syndromes. For each of these codes, the coefficients b
and c of the general error locator polynomial is reported respectively in the second column and
in the third column; The value in the fourth column explains which point of Theorem 6.3.2 has
been used to describe the corresponding code family. In all cases except case 4 and for the
codes with length n = 49 and n = 51, b and c are expressed in terms of primary syndromes:
if the defining set in the last column is SC = {i1, i2, . . . , ij} with i1 < i2 < · · · < ij , then
xk denotes the syndrome corresponding to ik, for k = 1, 2, . . . , j. When 0 belongs to the
defining set, it will be treated as if it were an n, with n the length of the code. For instance,
for the code with length n = 21 and defining set {0, 1, 3, 7} the syndrome corresponding to 0

is x4. Codes described by the point 4 of Theorem 6.3.2 maintain the notation of Proposition

96

6.3. Sparse locators for some classes of codes with t = 3

Table 6.7: Binary cyclic code with t = 3 and n < 55

n b c Case Codes

15
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3, 5}

21
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3, 5}

x22(x31+x2)+(x91+x4)

x3+x1x22

x3(x31+x2)+x1(x91+x4)

x3+x1x22
3 {1, 3, 7, 9}

x4x21 + x33x
2
1 + x23x

3
2 + x23x

2
2x

3
1 +

x23x
9
1+x3x32x

28
1 +x3x22x

10
1 +x3x2x131 +

x3x371 +x72x
44
1 +x72x

23
1 +x62x

47
1 +x62x

5
1+

x52x
50
1 + x42x

53
1 + x42x

32
1 + x32x

56
1 +

x32x
35
1 + x22x

59
1 + x22x

38
1 + x2x411 +

x2x201 + x231 + x21

x31 + x2 + x1b 5 {0, 1, 3, 7}

23

(
x21 +

(
x9 + x91
x3 + x31

+ (x31 + x3)2
)1365

)
·

·
(x31 + x3)

(x1x2 + x3)

(x31 + x3 + bx1)
(x31+x3)

(x1x2+x3) 4 {1}

31
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3, 5}

x83(x4+x1x23)+x42(x23+x1x43)

(x123 +x82)

x42(x4+x1x23)+x43(x23+x1x43)

(x123 +x82)
2 {0, 1, 7, 15}

35
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3, 5}

x3(x2561 +x1x22)+x81(x22+x11025)

x161 +x3x10241

x81(x2561 +x1x22)+x10241 (x22+x11025)

x161 +x3x10241
2 {1, 5, 7}

45
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3, 5},

x4(x1x23+x641)+x161 (x23+x5131)

x5121 x4+x321

x161 (x1x23+x641)+x5121 (x23+x5131)

x5121 x4+x321
2 {1, 5, 9, 15}

49
(x31x2+x61+x22+x1x3)

(x31+x2)

(x21x2+x3)

(x31+x2)
1 {1, 3}

51

x2
1 + (x3

1 + x2)(
x23+x5x3
q1x1

+ (
x3+x32
x45+x32

+

1)(
x21

x31+x2
+

x4+x42x1
q2

))

q1 = (x3x91 + x3x2x61 + x32x
9
1 + x23 + x3x22x

3
1 +

x42x
6
1 + x3x32 + x5x31 + x5x2 + x62)

q2 = (x161 + x42x
4
1 + x4x2 + x52x1)

x31 + x2 + x1b 5 {1, 3, 9}

6.3.8, so xi denotes the syndrome corresponding to i. In the case of the code with n = 49,
x1, x2, x3 denote the syndromes corresponding to 1, 3, 5 respectively, while for the codes with
length 51, x1, x2, x3, x4, x5 denote the syndromes corresponding to 1, 3, 9, 13, 15 respectively.
The coefficient a of the general error locator polynomial is not reported in Table 6.7 because
any code in Case 1) of Theorem 6.3.1 has 1 in its defining set, so in all cases a = x1. A general
error locator for the codes with t = 3 and n = 55 is showed in Table A.2 in the Appendix A.

97

Chapter 6. On the shape of the general error locator polynomial

6.4 On the complexity of decoding cyclic codes

In this section we estimate the complexity of the decoding approach based on general error
locator polynomials presented in Section 3.3.2 for any cyclic code, along with a comparison
with similar approaches for the case where the generator polynomial of the cyclic code is irre-
ducible.

6.4.1 Complexity of the proposed decoding approach

Definition 6.4.1. Let K be any field and let f be any (possibly multivariate) polynomial with
coefficients in K, that is, f ∈ K[a1, . . . ,aN] for a variable set A = {a1, . . . ,aN}. We will
denote by |f | the number of terms (monomials) of f .

Definition 6.4.2. Let A = {a1, . . . ,aN} and B = {b1, . . . ,bM} be two variable sets. Let
K be a field and let F be a rational function in K(A). Let F ∈ K[B], f1, . . . , fM ∈ K[A]

and g1, . . . , gM ∈ K[A]. We say that the triple (F, {f1 . . . , fM}, {g1 . . . , gM}) is a rational
representation of F if

F = F (f1/g1, . . . , fM/gM)

. We say that the number

|F |+
M∑
i=1

(|fi| − 1) +
M∑

j=1,gj /∈K

|gj|

is the density of the rational representation (F, {f1 . . . , fM}, {g1 . . . , gM}).
Then, we define the functional density of F , ||F||, as the minimum among the densities of all
rational representations of F .

With the notation of Definition 6.4.1 and 6.4.2, we have the following result, that shows
their interlink and how natural Definition 6.4.2 is.

Theorem 6.4.3. Let A = {a1, . . . ,aN}. If F is a polynomial in K[A], rather than a rational
function in K(A), then

||F|| ≤ |F| .

Moreover, if F = a1 + a2 then ||F|| = |F| = 2.

Proof. Let F ∈ K[A] and let ρ = |F|. Then F =
∑ρ

i=1 hi, where any hi is a monomial for
1 ≤ i ≤ ρ.
Let us consider the following rational representation for F

B = {b1, . . . ,bρ} , F =

ρ∑
i=1

bi , fi = hi , gi = 1, 1 ≤ i ≤ ρ ,

98

6.4. On the complexity of decoding cyclic codes

then the rational density of (F, {f1, . . . , fρ}, {g1, . . . , gρ}) is

|F |+
ρ∑
i=1

(|fi| − 1) +

ρ∑
j=1,gj /∈K

|gj| = ρ+ 0 + 0 = ρ ,

which implies ||F|| ≤ ρ, as claimed.
To prove the case F = a1 + a2, we argument by contradiction assuming ||F|| = 1. Let us

consider the rational representation of F providing

||F|| = |F |+
M∑
i=1

(|fi| − 1) +
M∑

j=1,gj /∈K

|gj| = 1 .

Since |F | ≥ 1, we must have |F | = 1,
∑M

i=1(|fi| − 1) = 0 and
∑M

j=1,gj /∈K |gj| = 0.
Therefore, M = 1, |f1| = 1 and g1 = ν ∈ K. From M = 1 and |F | = 1 we have F = λbµ1 for
λ ∈ K and µ ≥ 1, and so F = F (f1/g1) = (f1

ν
)µ. Recalling that F = a1 + a2, we finally have

a contradiction

|f1| = 1 =⇒
∣∣(f1

ν

)µ∣∣ = 1 , but |F| = |a1 + a2| = 2 .

For example, the locator L ∈ F2[z, x1, x2, x3, x4, x5] for the case treated in Theorem 6.2.5
can be easily shown to have functional density ||L|| ≤ 6, thanks to the following rational
representation

L = F (f1/g1, f2/g2, f3/g3),

where F ∈ F2[b1,b2,b3], f1, f2, f3, g1, g2, g3 ∈ F2[z, x1, x2, x3, x4, x5] and

F = b2
1 + b1b2 + bl

+

3 , f1 = z, g1 = 1, f2 = x1, g2 = 1, f3 = x2x4 + x5, g3 = x3 .

Conjecture 6.4.4 (Sala, MEGA2005).
Let p ≥ 2 be a prime,m ≥ 1 a positive integer and let q = pm. There is an integer ε = ε(q) such
that for any cyclic code C over the field Fq with n ≥ q4 − 1, gcd(n, q) = 1, 3 ≤ d ≤ n− 1,
C admits a general error locator polynomial Lc whose functional density is bounded by

||Lc|| ≤ nε .

Moreover, for binary codes we have ε = 3, that is, ε(2) = 3.

Let C be a cyclic code over Fq of length n. Let d be its distance, t its error correction capa-
bility and SC = {i1, . . . , ir} a defining set of C. Let LC be a general error locator polynomial
of C.

Definition 6.4.5. If LC ∈ F2[x1, . . . , xr], then we say that LC is sparse if ||LC || ≤ n3.
If Conjecture 6.4.4 holds and LC ∈ Fq[x1, . . . , xr], then we say that LC is sparse if ||LC || ≤ nε.

99

Chapter 6. On the shape of the general error locator polynomial

The decoding procedure developed by Orsini and Sala in [OS07] consists of four steps:

1. Computation of the r syndromes s1, . . . , sr corresponding to the received vector;

2. Evaluation of LC(x1, . . . , xr, z) at s = (s1, . . . , sr);

3. Computation of the roots of LC(s, z);

4. Computation of the error values el1 , . . . , elµ

By analyzing the above decoding algorithm, we observe that the main computational cost is the
evaluation of the polynomial LC(x1, . . . , xr, z) at s, which reduces to the evaluation of its z-
coefficients. Indeed, the computation of the r syndromes s1, . . . , sr and of the roots of LC(s, z)

cost, respectively, O(t
√
n) and max(O(t

√
n), O(t log(log(t)) log(n))) ([SER11]), while the

computation of the error values using Forney’s algorithm costs O(t2) ([HV95]). Therefore,
we can bound the total cost of steps 1, 3 and 4 with O(n2).
The following theorem is then clear and should be compared with the results in [BN90], which
suggest that for linear codes an extension of Conjecture 6.4.4 is very unlikely to hold.

Theorem 6.4.6. Let us consider all cyclic codes over the same field Fq with gcd(n, q) = 1

and d ≥ 3. If Conjecture 6.4.4 holds, they can be decoded in polynomial time in n, once a
preprocessing has produced sparse general error locator polynomials.

Proof. The only special situations not tackled by Conjecture 6.4.4 are the finite cases when
n < q4 − 1, which of course do not influence the asymptotic complexity, and the degenerate
case when d = n, which can be decoded in polynomial time without using the general error
locator algorithm.

Although all reported experiments (at least in the binary case) confirm Conjecture 6.4.4, we
are far from having a formal proof of it, therefore we pass to estimate the cost of the crucial step
2 starting from results claimed in this paper or found elsewhere in the literature.
To estimate the cost of evaluating the polynomial LC (at the syndrome vector s) we will mainly
use Corollary 6.1.4, its consequences for the case λ = n (which we can always choose), and the
corresponding degree bound. We can neglect the cost of computing the values xh

x
ih
1

and consider

polynomials in the new obvious variables. In [BES13], Ballico, Elia and Sala describe a method
to evaluate a polynomial in Fq[x1, . . . , xr] of degree δ with a complexity O(δr/2). To estimate
our δ, we observe that, by Corollary 6.1.4, we have a bound on the degree of each z-coefficient
of LC in any new variable and so its total degree is at most

δ ≤
(

(qm − 1)(r − 1) +
qm − 1

n

)
,

then, using the method in [BES13], the evaluation of (the z-coefficients of) Lc at s costs

O

(
t

(
(qm − 1)(r − 1) +

qm − 1

n

)r/2)
. (6.25)

100

6.4. On the complexity of decoding cyclic codes

So, we get that the cost of the decoding approach we are proposing is given by

O

(
n2 + t

(
(qm − 1)(r − 1) +

qm − 1

n

)r/2)
. (6.26)

We are going to show that there are infinite families of codes for which this approach is com-
petitive with more straightforward methods (even for low values of t).

Let us fix the number of syndromes r, and let γ be an integer γ ≥ 1. Let Cqr,γ be the set of
all codes over Fq with length n such that the splitting field of xn− 1 over Fq is qm− 1 = O(nγ)

(and gcd(n, q) = 1). For codes in Cqr,γ , the complexity (6.26) of this decoding depends on r and
it is

r ≥ 2, O
(
tnγr/2

)
, r = 1, O(n2 + tn

γ−1
2) . (6.27)

So, any family Cqr,γ provides a class containing infinite codes which can be decoded in polyno-
mial time, with infinite values of distance and length. Obviously, these classes extend widely
the classes which are known to be decodable in polynomial time up to the actual distance.

Theorem 6.2.4,6.2.5,6.2.6, Corollary 6.2.8 and Theorem 6.3.5, 6.3.7, 6.3.8 show cases
where the previous estimation can be drastically improved, at least for t = 2 and t = 3. Indeed,
these theorems provide (infinite) classes of codes with t = 2 and t = 3 for which the evaluation
of LC costs O(1), and so the decoding process costs O(n2). For t = 2 and t = 3 exhaustive
searching method cost, respectively, O(n2) and O(n3). For t = 2 we match the best-known
complexity and for t = 3 our method is better.

6.4.2 Comparison with other approaches

In the last years, several methods were proposed for decoding binary quadratic residue (QR)
codes generated by irreducible polynomials. In [CL10], Chang and Lee propose three algebraic
decoding algorithms based on Lagrange Interpolation Formula (LIF) for these codes. They in-
troduce a variation for the general error locator polynomial, which we may call fixed-weight
locator. A fixed-weight locator is a polynomial able to correct all errors of a fixed weight
via the evaluation of the corresponding syndromes. They develop a method to obtain a repre-
sentation of the primary unknown syndrome in terms of the primary known syndrome and a
representation of the coefficients of both fixed-weight locator and general error locator polyno-
mial for these codes. These polynomials are explicitly obtained for the (17, 9, 5), (23, 12, 7),
(41, 21, 9) QR codes. In Table 6.8 we treat these three codes one per column showing the num-
ber of terms relevant to the alternative representations. For each code, the second row deals with
representation of the chosen primary unknown syndrome, while the last deal with two locators.

Note that, for all the three codes, the general error locator polynomials are sparse (even without
using the rational representation) as forseen in Conjecture 6.4.4. In particular the (41, 21, 9)

code has error correction capability t = 4 and the number of terms of its locator is less than

101

Chapter 6. On the shape of the general error locator polynomial

Table 6.8: Number of terms of unknown syndrome, fixed-weight locator and general error
locator

(17, 9, 5) (23, 12, 7) (41, 21, 9)

Splitting field F28 F211 F220

Unknown syndrome 5 17 1355

Fixed-weight locator 4 15 1270

General error locator 4 76 1380

nε = 413 = 68921. Observe also that the evaluation of the locators of the (23, 12, 7) code in
Table 6.7 and in [CL10] cost approximately the same.

In [LCTC10], Chang et al. propose to decode binary cyclic codes generated by irreducible
polynomials using, as in [CL10], an interpolation formula in order to get the general error
locator polynomial but in a slightly different way. The general error locators they obtain satisfy
at least one congruence relation, and they are explicitly found for the (17, 9, 5) QR code, the
(23, 12, 7) Golay code, and one (43, 29, 6) cyclic code. Table 6.9 shows the maximum number
of terms for the coefficients of these three polynomials. Also in this case, the locators are sparse

Table 6.9: Maximum number of terms among the locator coefficients σi

(17, 9, 5) (23, 12, 7) (43, 29, 6)

Splitting field F28 F211 F214

General error locator 9 203 25

for the three codes.
In [LJM12], Lee et al. extend the method proposed by Chang and Lee in [CL10] for finding

fixed-weight locators and general error locators for binary cyclic codes generated by irreducible
polynomials to the case of ternary cyclic codes generated by irreducible polynomials. These
polynomials are presented for two ternary cyclic codes, one (11, 6, 5) code and one (23, 12, 8)

code. In Table 6.10 we report the maximum number of terms of the coefficients of the general
error locator for these two codes.
To discuss the sparsity of these cases one would need to know ε(3) from Conjecture 6.4.4.
Assuming an optimistic stance, let us compare their sparsity with ε(3) = 3, that is, let us
assume the polynomial exponent of the ternary codes to be the same as that of binary codes
(reasonably ε(3) ≥ ε(2)).
The first locator is definitely sparse, with |L| = 232 < 1331 = 113. For the second locator we

102

6.4. On the complexity of decoding cyclic codes

Table 6.10: Maximum number of terms among the locator coefficients σi

(11, 6, 5) (23, 12, 8)

Splitting field F35 F311

General error locator 232 15204

have |L| = 15204 which compared to n3 = 233 = 12167 show that the locator is not sparse
(although the numbers are close) and indeed we believe much sparser locators exist for this
code, still to be found.

In the same paper ([LJM12]) the authors give also an interesting upper bound on |L| which
holds for any irreducible ternary cyclic code, as follows.

Proposition 6.4.7 ([LJM12]). Let C be a ternary cyclic code of length n with defining set SC =

{1}, and error correction capability t. Each coefficient of a general error locator polynomial
can be expressed as a polynomial in terms of the known syndrome x1 and the number of terms

of this polynomial is less than b
∑t
ν=1 2ν(nν)

n
c.

Indeed, we can generalize their result to the following theorem holding over any finite field.

Theorem 6.4.8. Let C be any cyclic code over Fq of length n with defining set SC = {1},
gcd(n, q) = 1 and error correction capability t. Each coefficient of a general error locator
polynomial can be expressed as a polynomial in terms of the known syndrome x1 and the number

of terms of this polynomial is less than b
∑t
ν=1(q−1)ν(nν)

n
c.

Proof. By considering Corollary 6.1.4 and the fact that to obtain any locator coefficient, one
can use simply (univariate) Lagrange interpolation on the set of correctable syndromes, which
are obviously 1 +

∑t
ν=1(q − 1)ν

(
n
ν

)
.

With q fixed, the codes covered by the previous theorem are actually the component of our
families Cq1,γ for γ ≥ 1. Depending on the actual considered length we will have the correct
determination of γ, since this value strongly depends on the size of the splitting field. By (6.26)
case r = 1, the time complexity of the decoding method for codes in Cq1,γ is

O
(
n2 + tn(γ−1)/2

)
. (6.28)

Using the estimation given by Proposition 6.4.7, the complexity of the same decoding approach
for these codes is

O
(
n2 + tnt−1

)
. (6.29)

We observe that which of the two estimations is better depends on the particular values of t and
γ.

103

Part III

Appendices

105

Some tables

Table A.1 report the binary cyclic codes with t = 3 and n < 63 grouped according to
increasing lengths, and, within the same length according to Theorem 6.3.1, i.e. if two codes
with the same length are equivalent or one is a subcode of the other,then they are in the same
group.

Table A.1: Binary cyclic codes with t = 3 and n < 63

n Codes
15 {1,3,5}, {3, 5, 7}, {0, 3, 5, 7}, {0, 1, 3, 5}
21 {1,3,5}, {1, 5, 9}, {1, 3, 5, 9}

{1,3,7,9}, {3, 5, 7, 9}, {0, 3, 5, 7, 9}, {0, 1, 3, 7, 9}
{0,1,3,7}, {0, 5, 7, 9}, {0, 1, 3, 7, 9}, {0, 3, 5, 7, 9}

23 {1}, {5}, {0, 1}, {0, 5}
31
{1,3,5}, {1, 5, 7}, {3, 5, 15}, {3, 11, 15}, {0, 1, 5, 7}, {0, 3, 5, 15}, {0, 1, 3, 5}, {1, 3, 11}, {1, 7, 11},

{0, 1, 7, 11}, {0, 1, 3, 11}, {5, 7, 15}, {0, 5, 7, 15}, {7, 11, 15}, {0, 3, 11, 15}
{0,1,7,15}, {0, 1, 3, 15}, {0, 3, 7, 11}, {0, 5, 11, 15}, {0, 1, 5, 11}, {0, 3, 5, 7}

35 {1,3,5}, {1, 3, 15}, {1, 3, 5, 15}
{1,5,7}, {3, 7, 15} {0, 3, 5, 7, 15}, {0, 1, 5, 7, 15}, {0, 3, 7, 15}, {0, 1, 5, 7}, {3, 5, 7, 15}, {1, 5, 7, 15}

45

{1,3,5}, {1, 5, 21}, {5, 7, 21}, {3, 5, 7}, {0, 1, 3, 5, 9, 21}, {3, 5, 7, 9, 15},
{1, 3, 5, 9, 21}, {1, 5, 9, 21}, {1, 5, 15, 21}, {0, 1, 5, 9, 21}, {0, 1, 5, 15, 21},
{0, 3, 5, 7, 9, 15}, {1, 3, 5, 9}, {0, 3, 5, 7, 15, 21}, {0, 1, 3, 5, 9}, {3, 5, 7, 15, 21},
{0, 3, 5, 7, 21}, {1, 5, 9, 15, 21}, {3, 5, 7, 21}, {0, 3, 5, 7, 9, 15, 21}, {0, 1, 3, 5},
{5, 7, 9, 21}, {1, 3, 5, 9, 15}, {0, 5, 7, 9, 21}, {0, 1, 5, 9, 15, 21}, {0, 1, 3, 5, 9, 15},

{0, 1, 3, 5, 15, 21}, {3, 5, 7, 9, 15, 21}, {1, 3, 5, 15, 21}, {3, 5, 7, 15},
{0, 3, 5, 7, 15},{0, 1, 3, 5, 9, 15, 21}, {5, 7, 15, 21},

{1, 3, 5, 9, 15, 21},{0, 5, 7, 15, 21}, {0, 3, 5, 7, 9, 21}, {0, 1, 3, 5, 21}, {1, 3, 5, 15},
{3, 5, 7, 9, 21}, {5, 7, 9, 15, 21}, {3, 5, 7, 9}, {0, 1, 3, 5, 15}, {1, 3, 5, 21},

{0, 5, 7, 9, 15, 21}, {0, 1, 5, 21}, {0, 3, 5, 7, 9},
{0, 3, 5, 7}, {5, 7, 21}, {0, 5, 7, 21}

{1,5,9,15}, {5, 7, 9, 15}, {3, 5, 7, 9, 15}, {0, 3, 5, 7, 9, 15}, {1, 5, 9, 15, 21}, {0, 3, 5, 7, 9, 15, 21}, {1, 3, 5, 9, 15},
{0, 1, 5, 9, 15, 21},{0, 5, 7, 9, 15}, {0, 1, 3, 5, 9, 15}, {3, 5, 7, 9, 15, 21}, {0, 1, 3, 5, 9, 15, 21}, {1, 3, 5, 9, 15, 21}, {0, 5, 7, 9, 15, 21},

{0, 1, 5, 9, 15}
49 {1,3}

51

{1,3,9}, {3, 9, 11}, {3, 9, 19}, {3, 5, 9} {1, 3, 9, 17}, {0, 1, 3, 9}, {3, 5, 9, 17}, {0, 3, 5, 9, 17},
{3, 9, 11, 17}, {0, 3, 9, 11}, {3, 9, 17, 19}, {0, 3, 9, 11, 17}, {0, 3, 9, 17, 19}, {0, 3, 9, 19},

{0, 1, 3, 9, 17}, {0, 3, 5, 9}
55 {0,1},{0, 3}

For each group there is a code in bold, which is the one reported in Table 6.7, i.e. the code

107

Appendix A. Some tables

for which we determined a general error locator polynomial and that can be used to obtain
locators for all the codes of the group.

In Table A.2 we show the coefficients b and c of a general error locator polynomial for binary
cyclic codes with t = 3 and n = 55. For the sake of conciseness, both b and c are represented
in the form described in Theorem 6.1.3, where y1 stands for x55

1 .

Table A.2: General error locator for cyclic codes with t = 3 and n = 55

b

x21 ·
(
y4751 +y4721 +y4701 +y4691 +y4681 +y4631 +y4621 +y4611 +y4601 +y4581 +y4571 +y4551 +y4541 +y4521 +y4491 +y4481 +y4461 +y4441 +

y4431 +y4401 +y4361 +y4341 +y4271 +y4261 +y4251 +y4241 +y4171 +y4161 +y4131 +y4101 +y4081 +y4051 +y4031 +y4021 +y4011 +y3991 +

y3971 +y3951 +y3941 +y3921 +y3881 +y3871 +y3861 +y3841 +y3801 +y3781 +y3771 +y3761 +y3751 +y3741 +y3721 +y3701 +y3691 +y3681 +

y3641 +y3631 +y3611 +y3601 +y3591 +y3581 +y3571 +y3551 +y3501 +y3471 +y3451 +y3431 +y3401 +y3381 +y3361 +y3341 +y3301 +y3291 +

y3271 +y3261 +y3251 +y3241 +y3211 +y3191 +y3181 +y3161 +y3151 +y3121 +y3081 +y3061 +y3051 +y3021 +y3011 +y2961 +y2951 +y2921 +

y2901 +y2891 +y2851 +y2841 +y2781 +y2771 +y2761 +y2751 +y2741 +y2731 +y2721 +y2711 +y2651 +y2611 +y2601 +y2561 +y2551 +y2501 +

y2491 +y2481 +y2471 +y2431 +y2421 +y2401 +y2391 +y2351 +y2341 +y2331 +y2311 +y2301 +y2291 +y2271 +y2251 +y2241 +y2221 +y2211 +

y2171 +y2151 +y2131 +y2121 +y2101 +y2091 +y2071 +y2051 +y2031 +y2021 +y2011 +y2001 +y1991 +y1971 +y1951 +y1891 +y1871 +y1831 +

y1821 +y1811 +y1801 +y1791 +y1781 +y1751 +y1721 +y1691 +y1671 +y1651 +y1641 +y1631 +y1601 +y1591 +y1571 +y1551 +y1541 +y1451 +

y1411 +y1371 +y1331 +y1301 +y1291 +y1281 +y1251 +y1231 +y1221 +y1211 +y1171 +y1151 +y1141 +y1131 +y1121 +y1111 +y1101 +y1091 +

y1081 +y1071 +y1021 +y981 +y961 +y951 +y901 +y891 +y881 +y861 +y841 +y831 +y811 +y801 +y781 +y771 +y761 +y741 +y721 +y701 +y681 +

y671 +y651 +y631 +y621 +y611 +y551 +y541 +y531 +y521 +y511 +y501 +y491 +y471 +y461 +y451 +y431 +y421 +y401 +y381 +y361 +y351 +y331 +

y321 +y311 +y301 +y291 +y281 +y241 +y231 +y221 +y211 +y201 +y171 +y151 +y141 +y131 +y111 +y121 +y91+y71+y61+y41+y31+y21+y11+1+

x2 ·
(
y261 + y241 + y231 + y131 + y111 + y101 + y81 + y71 + y61 + y31 + y1

))

c

x31 ·
(
y4771 +y4761 +y4731 +y4721 +y4701 +y4691 +y4661 +y4631 +y4611 +y4591 +y4581 +y4571 +y4561 +y4531 +y4521 +y4511 +y4501 +y4491 +

y4481 +y4471 +y4461 +y4431 +y4411 +y4401 +y4391 +y4381 +y4361 +y4331 +y4311 +y4281 +y4221 +y4201 +y4191 +y4141 +y4131 +y4101 +

y4091 +y4071 +y4061 +y4031 +y4021 +y4001 +y3991 +y3941 +y3911 +y3881 +y3851 +y3841 +y3831 +y3821 +y3811 +y3791 +y3731 +y3721 +y3681 +

y3671 +y3661 +y3631 +y3621 +y3591 +y3581 +y3571 +y3561 +y3541 +y3531 +y3501 +y3491 +y3481 +y3471 +y3441 +y3421 +y3411 +y3401 +y3391 +

y3371 +y3351 +y3341 +y3331 +y3321 +y3311 +y3301 +y3281 +y3251 +y3241 +y3231 +y3221 +y3211 +y3201 +y3191 +y3131 +y3121 +y3101 +y3071 +

y3051 +y3041 +y3031 +y3021 +y3001 +y2951 +y2941 +y2931 +y2921 +y2891 +y2871 +y2861 +y2831 +y2821 +y2801 +y2791 +y2761 +y2741 +y2721 +

y2701 +y2691 +y2671 +y2641 +y2631 +y2621 +y2611 +y2591 +y2561 +y2551 +y2541 +y2531 +y2511 +y2461 +y2441 +y2431 +y2421 +y2411 +y2381 +

y2371 +y2351 +y2341 +y2331 +y2311 +y2301 +y2251 +y2221 +y2211 +y2201 +y2121 +y2101 +y2081 +y2071 +y2061 +y2051 +y1991 +y1981 +y1971 +

y1931 +y1911 +y1901 +y1891 +y1881 +y1871 +y1851 +y1841 +y1801 +y1791 +y1771 +y1761 +y1751 +y1741 +y1701 +y1691 +y1671 +y1661 +y1651 +

y1621 +y1601 +y1591 +y1581 +y1561 +y1551 +y1541 +y1481 +y1461 +y1421 +y1411 +y1391 +y1381 +y1371 +y1351 +y1311 +y1301 +y1291 +y1281 +

y1261 +y1251 +y1231 +y1221 +y1201 +y1171 +y1151 +y1121 +y1111 +y1101 +y1081 +y1071 +y1051 +y1031 +y1021 +y1011 +y991 +y971 +y961 +

y921 +y911 +y861 +y851 +y831 +y821 +y811 +y801 +y791 +y781 +y771 +y761 +y751 +y741 +y721 +y701 +y681 +y671 +y651 +y621 +y611 +y591 +

y581 +y571 +y561 +y551 +y541 +y531 +y521 +y511 +y501 +y491 +y481 +y451 +y441 +y431 +y411 +y401 +y391 +y381 +y371 +y361 +y311 +y301 +

y271 +y261 +y251 +y241 +y221 +y211 +y201 +y181 +y171 +y161 +y151 +y141 +y131 +y121 +y111 +y91+y81+y71+y61+y51+y41+y31+y21+y1+

x2·
(
y241 + y231 + y211 + y191 + y171 + y151 + y111 + y101 + y81 + y71 + y61 + y51 + y41 + y21 + 1

))

108

Some MAGMA codes

Here we report some MAGMA functions used during this work.

B.1 Implementation of the Algorithm 3

Here we give the MAGMA code implementing Algorithm 3 in Chapter 5 for the case where
the polynomials pi are all primitive.

1

2 //////////////////////////////////

3 ///Preliminary functions///////////

4 //////////////////////////////////

5

6 ///

7 ///to print year, month, day, hours, minutes and///

8 /// seconds of the current moment ///

9 ///

10

11 procedure dateTime(t)

12 // t is seconds since beginning of 1970.

13 // example usage: dateTime(Realtime);

14 days := Floor(t/86400);

15

16 t := t-days*86400;

17 hours := Floor(t/3600);

18 t := t - hours*3600;

19 mins := Floor(t/60);

20 t := t - mins*60;

21 secs := t;

22

23 year := 1970;

24 is_leap := func<y | (y mod 4 eq 0) and (y mod 100 ne 0) select true else false>;

25 day_this := func<y | is_leap(y) select 366 else 365>;

26 while days gt day_this(year) do

27 days -:= day_this(year);

28 year +:= 1;

29 end while;

30 // J F M A M J J A S O N D

109

Appendix B. Some MAGMA codes

31 calendar := [31,28,31,30,31,30,31,31,30,31,30,31];

32 month := 1;

33 day_that := func<m | m eq 2 and is_leap(year) select 29 else calendar[m]>;

34 while days gt day_that(month) do

35 days -:= day_that(month);

36 month +:=1;

37 end while;

38 day := days;

39

40 printf "today is %4o/%2o/%2o, it is %2o:%2o’%5.2o’’ UTC ",year,month,day,hours,mins,secs;

41

42 end procedure;

43

44 ///

45 /// given an integer d ////

46 ///it returns a primitive polynomial of degree d///

47 ///

48

49 function randPrimPol(degree)

50

51 P<x>:=PolynomialRing(GF(2));

52 p:= PrimitivePolynomial(GF(2),degree);

53 F:=ext<GF(2)|p>;

54

55 repeat

56 a:=Random(F);

57 until IsPrimitive(a);

58

59 Q<y>:=PolynomialRing(F);

60 q:=&*[y-â (2 î): i in [0..degree-1]];

61 return P!q;

62

63 end function;

64

65 //

66 ///given a primitive polynomial, it returns its order///

67 //

68

69 order := function(polynomial)

70

71 return 2 D̂egree(polynomial) -1;

72

73 end function;

74

75

76 ///

110

B.1. Implementation of the Algorithm 3

77 ///function generating the exponents e_i///

78 ///

79

80 randomExponents2k := function(orders,weight,targetDegree)

81

82 N := LCM(orders);

83

84 kk :=Floor(Log(2,N/targetDegree));

85

86 wm2 := weight - 2;

87

88 repeat

89 // to be more efficient i should break instead of waiting for final loop check

90

91 H := [i eq 1 select 2 k̂k*Random([1..(targetDegree-wm2+1)])

92 else 2 k̂k*Random([(Self(i-1)+1)..(targetDegree-wm2+i)])

93 : i in [1..wm2]];

94

95 I := [[H[j] mod orders[i]:j in [1..#H]]: i in [1..#orders]];

96

97 until &and[i ne 0: i in &cat(I)] and &and[#I[i] eq #SequenceToSet(I[i]):i in [1..#I]];

98

99 return H, [Sort(I[i]): i in [1..#I]];

100

101 end function;

102

103 //////////////////////

104 ///Zech’s logarithm///

105 //////////////////////

106

107 Z := function(i,N)

108

109 if i mod N eq 0 then return -1; end if;

110

111 return Log(alphâ i+1);

112

113 end function;

114

115

116

117 ZZ := function(D,N)

118

119 if #D eq 1 then

120 return Z(D[1],N);

121 end if;

122

111

Appendix B. Some MAGMA codes

123 j1 := $$(Prune(D),N);

124 if j1 eq -1 then return -1; end if;

125 j := D[#D]+j1;

126 if j mod N eq 0 then return -1; end if;

127 return Z(j,N);

128 end function;

129

130 ///////////////////////////

131 ///other basic functions///

132 ///////////////////////////

133

134 function intseqToPoly(E)

135

136

137 GF2X<x> := PolynomialRing(GF(2));

138 // does not work for deg p >~ 2^31

139 return (&+[GF2X ! x̂ E[i]: i in [1..#E]] + 1);

140

141 end function;

142

143 /////

144

145 function isRootMultiple(polyexps, root)

146

147 return (&+[root̂ e: e in polyexps] + 1) eq 0;

148

149 end function;

150

151 //////////////////////////////////

152 //////main procedure/////////////

153 //////////////////////////////////

154

155 load"saveload_util.mgm";

156

157 function computekk(iseq)

158

159 kk := 0;

160

161 while &and[i mod 2^(kk+1) eq 0: i in iseq] do

162 kk +:= 1;

163 end while;

164

165 return kk;

166

167 end function;

168

112

B.1. Implementation of the Algorithm 3

169 algo2kfile := function(pseq, w , D, myfile)

170

171 alpha_ := [* primitiveRoot(p): p in pseq*];

172 N_ := [order(p): p in pseq];

173

174 npol := #pseq;

175

176 string1 := "INPUTS:\npseq\n%o\nw\n%o\ntarget degree\n%o\n";

177 string2 := "Log of target degree is %5.2o\n";

178 printf string1,pseq,w,D;

179 printf string2,Log(2,D*1.0);

180 Puts(myfile,Sprintf(string1,pseq,w,D));

181 Puts(myfile,Sprintf(string2,Log(2,D*1.0)));

182

183 t0 := Cputime();

184 min_degree := LCM(N_);

185

186 count :=1; //dbg;

187 repeat

188 noerror := true;

189 //print count; //dbg

190 H, I := randomExponents(N_,w,D);

191

192 J := [zMultiple(alpha_[r],I[r],N_[r]): r in [1..npol]];

193 if &or[j eq -1: j in J] then noerror := false; end if;

194

195 k := CRT(J,N_);

196 found := k ne -1;

197 count := count +1;

198 if noerror and found then

199 kk := computekk([k] cat H);

200 log_degree := Log(2,k/2 k̂k);

201 if log_degree lt min_degree then

202 min_degree := log_degree;

203 printf "New minimum degree, its log is: %5.2o\n",min_degree;

204 print count,kk,k,H;

205 Puts(myfile,

206 Sprintf("%5.2o",log_degree) cat " " cat

207 IntegerToString(kk) cat " " cat

208 IntegerToString(k) cat " " cat

209 integerSequenceToString(H)

210);

211 tnow := Cputime(t0);

212 Days := Floor(tnow/24/60/60);

213 tleft := tnow-Days*24*60*60;

214 Hours := Floor(tleft/60/60);

113

Appendix B. Some MAGMA codes

215 tleft := tleft-Hours*60*60;

216 Mins := Floor(tleft/60);

217 tleft := tleft - Mins*60;

218 dateTime(Realtime());

219 printf "It took %o days, %o hours, %o mins, and %5.2o

seconds\n",Days,Hours,Mins,tleft;

220 print "Expect approximately the same for next advancement";

221 end if;

222 end if;

223 until noerror and found and ((k/2 k̂k) le D);

224

225 return [k] cat H;

226 end function;

227

228 function isRootMultiple(polyexps, root)

229

230 return (&+[root̂ e: e in polyexps] + 1) eq 0;

231

232 end function;

233

234

235 ///////////////////

236 //////Example//////

237 ///////////////////

238

239 gf2x<x> := PolynomialRing(GF(2));

240 p1 := PrimitivePolynomial(GF(2),7);

241 p2 := PrimitivePolynomial(GF(2),11);

242 p3 := PrimitivePolynomial(GF(2),13);

243

244 filename := Open("prova.data","w");

245 algo2kfile([p1,p2,p3],5,2^25,filename);

B.2 Binary cyclic codes with t = 3

The code to produce the list of all binary cyclic codes with t = 3 is given below.

1 ////////////////////////////

2 ///Some useful functions////

3 ////////////////////////////

4

5 sottoset := function(L)

6 LL := [];

7 i := 1;

8 for j :=1 to #L do

114

B.2. Binary cyclic codes with t = 3

9 T := [];

10 for i := 1 to #L do

11 if (i ne j) then

12 T := Append(T,L[i]);

13 end if;

14 end for;

15 LL := Append(LL,T);

16 end for;

17 return LL;

18 end function;

19

20 ///////////////

21

22 tuttiset :=function(A)

23 B:= sottoset(A);

24 EE := B;

25 flag := 1;

26 if (#B[1] eq 1) then

27 flag := 0;

28 end if;

29 while flag eq 1 do

30 MM :=[];

31 for i := 1 to #B do

32 C := sottoset(B[i]);

33 if (#C[1] eq 1) then

34 flag := 0;

35 end if;

36 for j := 1 to #C do

37 MM := Append(MM,C[j]);

38 EE := Append(EE,C[j]);

39 end for;

40 end for;

41 //#C[1];

42 //MM;

43 B := MM;

44 end while;

45 // print("qui");

46 S := { y : y in EE};

47 OO :=[];

48 for s in S do

49 OO := Append(OO,s);

50 end for;

51 return OO;

52 end function;

53

54 ///////////////

115

Appendix B. Some MAGMA codes

55

56 prodotto := function(L)

57 a := 1;

58 for i:=1 to #L do

59 a := a* L[i];

60 end for;

61 return a;

62 end function;

63

64 ///////////////

65

66 def:= function(g,n)

67 a := RootOfUnity(n,GF(2));

68 for i:=0 to n-1 do

69 if (Evaluate(g,â i) eq 0) then

70 l:=i; break i;

71 end if;

72 end for;

73 return(l);

74 end function;

75

76

77

78 // We list the codes up to n=61

79

80

81 P<x> := PolynomialRing(GF(2));

82 for m := 2 to 30 do

83 n:=2*m+1;

84 print (" ");

85 print("--");

86 n;

87 Z := Factorization(x̂ n+1);

88 a := RootOfUnity(n,GF(2));

89 L :=[];

90 SC := {};

91 i := 1;

92 for i := 1 to #Z do

93 L := Append(L, Z[i,1]);

94 end for;

95 W := tuttiset(L);

96 for i :=1 to #W do

97 LC := {};

98 C := CyclicCode(n,prodotto(W[i]));

99 d := MinimumDistance(C);

100 if (d eq 7 or d eq 8) then

116

B.3. Some classes of binary cyclic codes presented in Chapter 6

101 //print("--");

102 //d;

103 //print("-");

104 //for j:=1 to #W[i] do

105 //def(W[i][j],n);

106 //end for;

107 A := { def(p,n) : p in W[i] };

108 SC := SC join {A};

109 end if;

110 end for;

111 SC;

112 end for;

B.3 Some classes of binary cyclic codes presented in Chapter 6

We report the codes to produce the classes of binary cyclic codes with length less than 121

which are covered by Theorem 6.2.4, Theorem 6.2.6 and Corollary 6.2.8, the classes of codes
with length n < 105 which are covered by Theorem 6.2.5, and the classes of codes with length
less than 121 which are covered by Theorem 6.3.5 and Theorem 6.3.7.

1

2 ////////////////////////////

3 ///Some useful functions////

4 ////////////////////////////

5

6 CodeDefSet:=function(n,S,F);

7 P<x>:=PolynomialRing(F);

8 L:=Factorization(x̂ n+1);

9 G:=SplittingField(x̂ n+1);

10 a:=RootOfUnity(n,G);

11 A:=[[j: j in [1..#L] | Evaluate(L[j][1],â i) eq 0]: i in S];

12 g:= &*[(L[j][1])[1]: j in A];

13 return CyclicCode(n,g);

14 end function;

15

16 %C:=CodeDefSet(63,{1,3},GF(2));

17

18 ////////////

19

20

21 DefSet:=function(C,F);

22 P<x>:=PolynomialRing(F);

23 n:=Length(C);

24 g:=GeneratorPolynomial(C);

25 L:=Factorization(g);

117

Appendix B. Some MAGMA codes

26 G:=SplittingField(x̂ n+1);

27 a:=RootOfUnity(n,G);

28 A:={};

29 for k in [1..#L] do

30 A:=A join {i: i in [0..n-1]| i eq Min({j: j in [0..n-1] | Evaluate(L[k][1],â j) eq 0})};

31 end for;

32 return A;

33 end function;

34

35 ///////////////////////

36 ///Main computations///

37 //////////////////////

38

39 ////////////////////////////////////

40 ///codes covered by Theorem 6.2.4///

41 ////////////////////////////////////

42

43 A1:=[{CodeDefSet(2*i+1,{1,2 v̂+1},GF(2)): v in [1..Floor(Log(2,2*i-1))]| (GCD(2 v̂-1,2*i+1)

eq 1) and

44 MinimumDistance(CodeDefSet(2*i+1,{1,2 v̂+1},GF(2))) in {5,6}}: i in [3..60]];

45

46 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]]: i in [1..#A1]| A1[i] ne {}];

47

48

49 ////////////////////////////////////

50 ///codes covered by Theorem 6.2.5///

51 ////////////////////////////////////

52

53 A1:=[{CodeDefSet(2*i+1,{1,l,s-(2*l),s-l,s},GF(2)): s in [0..2*i], l in [1..2*i]|

(GCD(s-2*l,2*i+1) eq 1) and (GCD(l, 2*i+1) eq 1) and

MinimumDistance(CodeDefSet(2*i+1,{1,l,s-2*l,s-l,s},GF(2))) in {5,6}}: i in [3..60]];

54

55 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]]: i in [1..#A1]| A1[i] ne {}];

56

57 ////////////////////////////////////

58 ///codes covered by Theorem 6.2.6///

59 ////////////////////////////////////

60

61 A1:=[{CodeDefSet(2*i+1,{1,ExactQuotient(2*i,2 ĵ)},GF(2)): j in [1..Floor(Log(2,2*i-1))] |

(2 ĵ in Divisors(2*i)) and (3 notin Divisors(2*i+1)) and (2 ĵ ne 2*i) and

MinimumDistance(CodeDefSet(2*i+1,{1,ExactQuotient(2*i,2 ĵ)},GF(2))) in {5,6}}: i in

[3..60]];

62

63 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]]: i in [1..#A1]| A1[i] ne {}];

64

65

118

B.3. Some classes of binary cyclic codes presented in Chapter 6

66 //////////////////////////////////////

67 ///codes covered by Corollary 6.2.8///

68 //////////////////////////////////////

69

70 A1:=[{CodeDefSet(2*i+1,{1,2 ĵ,2 ĵ-1,2 ĵ+2},GF(2)): j in [2..Floor(Log(2,2*i-1))] |

GCD(2 ĵ-2, 2*i+1) eq 1

71 and MinimumDistance(CodeDefSet(2*i+1,{1,2 ĵ,2 ĵ-1,2 ĵ+2},GF(2))) in {5,6}}: i in [3..60]];

72

73 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]]: i in [1..#A1]| A1[i] ne {}];

74

75

76

77 ////////////////////////////////////

78 ///codes covered by Theorem 6.3.5///

79 ////////////////////////////////////

80

81

82 A1:=[{CodeDefSet(2*k+1,{1,i,i+1,i+2,i+3,i+4},GF(2)): i in [0..2*k-1] | ((i mod 2*k+1) ne

0) and ((i+2 mod 2*k+1) ne 0) and

MinimumDistance(CodeDefSet(2*k+1,{1,i,i+1,i+2,i+3,i+4},GF(2))) in {7,8}}: k in

[3..60]];

83

84

85 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]]: i in [1..#A1]| A1[i] ne {}];

86

87

88 ////////////////////////////////////

89 ///codes covered by Theorem 6.3.7///

90 ////////////////////////////////////

91

92

93 A1:=[{CodeDefSet(2*k+1,{1,3,2 î+2 ĵ,2 ĵ-2 î,2 ĵ-2^(i+1)},GF(2)): i in

[1..Floor(Log(2,2*i-1))], j in [i+2..Floor(Log(2,2*i-1))]| j ge i+2 and

94 MinimumDistance(CodeDefSet(2*k+1,{1,3,2 î+2 ĵ,2 ĵ-2 î,2 ĵ-2^(i+1)},GF(2))) in {7,8}}: k in

[3..60]];

95

96 A1SetL:=[[[{Length(Cod)},DefSet(Cod,GF(2))]: Cod in A1[i]| Dimension(Cod) ne 0]: i in

[1..#A1]| A1[i] ne {}];

119

Bibliography

[ABF07] D. Augot, M. Bardet, and J.-C. Faugère, On formulas for decoding binary cyclic
codes, Proc. of ISIT 2007, 2007, pp. 2646–2650.

[ABF09] D. Augot, M. Bardet, and J.-C. Faugere, On the decoding of binary cyclic codes
with the newton identities, Journal of Symbolic Computation 44 (2009), no. 12,
1608–1625.

[AH99] L. M. Adleman and M.-D. A. Huang, Function field sieve method for discrete
logarithms over finite fields, Information and Computation 151 (1999), no. 1, 5–
16.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Mathematics
(2004), 781–793.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user
language, Journal of Symbolic Computation 24 (1997), no. 3, 235–265.

[BES13] E. Ballico, M. Elia, and M. Sala, On the evaluation of multivariate polynomials
over finite fields, Journal of Symbolic Computation 50 (2013), 255–262.

[BGJT14] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic, Advances
in Cryptology–Eurocrypt 2014, Springer, 2014, pp. 1–16.

[Bla03] R. E. Blahut, Algebraic codes for data transmission, Cambridge university press,
2003.

[Blu10] SIG Bluetooth, Bluetooth specification, 2010.

[BM06] L. M. Bazzi and S. K. Mitter, Some randomized code constructions from group
actions, IEEE Trans. on Inf. Th. 52 (2006), 3210–3219.

[BMvT78] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, On the inherent in-
tractability of certain coding problems, IEEE Trans. on Inf. Th. 24 (1978), no. 3,
384–386.

121

Bibliography

[BN90] N. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing,
IEEE Trans. on Inf. Th. 36 (1990), 381–385.

[BP14] R. Barbulescu and C. Pierrot, The multiple number field sieve for medium-and
high-characteristic finite fields, LMS Journal of Computation and Mathematics
17 (2014), no. A, 230–246.

[BRC60] R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting binary group
codes, Information and Control 3 (1960), 68–79.

[Cas89] G. Castagnoli, On the asymptotic badness of cyclic codes with block-lengths com-
posed from a fixed set of prime factors, LNCS (Berlin / Heidelberg), vol. 357,
Springer, 1989, pp. 164–168.

[Che69] C.-L. Chen, Some results on algebraically structured error-correcting codes,
1969.

[Chi64] R. T. Chien, Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem
codes, Information Theory, IEEE Transactions on 10 (1964), no. 4, 357–363.

[CJM02] P. Chose, A. Joux, and M. Mitton, Fast correlation attacks: An algorithmic point
of view, Advances in Cryptology—EUROCRYPT 2002, Springer, 2002, pp. 209–
221.

[CJS01] V. V. Chepyzhov, T. Johansson, and B. Smeets, A simple algorithm for fast correla-
tion attacks on stream ciphers, Fast Software Encryption, Springer, 2001, pp. 181–
195.

[CL10] Y. Chang and C.-D. Lee, Algebraic decoding of a class of binary cyclic codes
via lagrange interpolation formula, Information Theory, IEEE Transactions on 56
(2010), no. 1, 130–139.

[CLF12] Y. Chang, C.-D. Lee, and K. Feng, Multivariate interpolation formula over fi-
nite fields and its applications in coding theory, arXiv preprint arXiv:1209.1198
(2012).

[CM02] M. Caboara and T. Mora, The Chen-Reed-Helleseth-Truong decoding algorithm
and the Gianni-Kalkbrenner Gröbner shape theorem, Appl. Algebra Engrg.
Comm. Comput. 13 (2002), no. 3, 209–232.

[CMSvS91] G. Castagnoli, J. L. Massey, P. A. Schoeller, and N. von Seeman, On repeated-root
cyclic codes, IEEE Trans. on Inf.. Th. 37 (1991), 337–342.

[Coo71] S. A. Cook, The complexity of theorem-proving procedures, ACM symposium on
theory of computing – STOC ’71, ACM Press, 1971, pp. 151–158.

122

Bibliography

[Coo90] A. B. III Cooper, Direct solution of BCH decoding equations, Comm., Cont. and
Sign. Proc. (1990), 281–286.

[Coo91] A. B. Cooper, Finding BCH error locator polynomials in one step, Electronic
Letters 27 (1991), no. 22, 2090–2091.

[Cop84] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Trans. on Inf. Th. 30 (1984), no. 4, 587–594.

[CRHT94a] X. Chen, I. S. Reed, T. Helleseth, and K. Truong, General Principles for the Alge-
braic Decoding of Cyclic Codes, IEEE Trans. on Inf. Th. 40 (1994), 1661–1663.

[CRHT94b] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Algebraic decoding of cyclic
codes: a polynomial ideal point of view, Finite fields, Contemp. Math., vol. 168,
Amer. Math. Soc., 1994, pp. 15–22.

[CRHT94c] X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Use of Gröbner bases to
decode binary cyclic codes up to the true minimum distance, IEEE Trans. on Inf.
Th. 40 (1994), no. 5, 1654–1661.

[CT00] A. Canteaut and M. Trabbia, Improved fast correlation attacks using parity-check
equations of weight 4 and 5, Advances in Cryptology—EUROCRYPT 2000,
Springer, 2000, pp. 573–588.

[CT12] T. M. Cover and J. A. Thomas, Elements of information theory, John Wiley &
Sons, 2012.

[CTR+03] Y. Chang, T.-K. Truong, I. S. Reed, H.Y. Cheng, and C.-D. Lee, Algebraic decod-
ing of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes, IEEE
transactions on communications 51 (2003), no. 9, 1463–1473.

[DLC07] F. Didier and Y. Laigle-Chapuy, Finding low-weight polynomial multiples us-
ing discrete logarithm, Information Theory, 2007. ISIT 2007. IEEE International
Symposium on, IEEE, 2007, pp. 1036–1040.

[Eli87] M. Elia, Algebraic decoding of the (23, 12, 7) golay code, Information Theory,
IEEE Transactions on 33 (1987), no. 1, 150–151.

[For65] G. D. Forney, On decoding BCH codes, IEEE Trans. on Inf. Th. 11 (1965), 549–
557.

[FT94] G.-L. Feng and K. K. Tzeng, A new procedure for decoding cyclic and bch codes
up to actual minimum distance, Information Theory, IEEE Transactions on 40
(1994), no. 5, 1364–1374.

123

Bibliography

[G+82] S. W. Golomb et al., Shift register sequences, Aegean Park Press, 1982.

[Gal63] R. Gallager, Low-Density Parity-Check Codes, Ph.D. thesis, Massachusetts Insti-
tute of Technology, 1963.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to NP-
completeness, WH Freeman & Co., San Francisco (1979).

[GKZ14] R. Granger, T. Kleinjung, and J. Zumbrägel, On the powers of 2, IACR Cryptology
ePrint Archive 2014 (2014), 300.

[Gol96] J. D. Golić, Computation of low-weight parity-check polynomials, Electronics Let-
ters 32 (1996), no. 21, 1981–1982.

[GPS04] C. Gehrmann, J. Persson, and B. Smeets, Bluetooth security, Artech house, 2004.

[GV05] V. Guruswami and A. Vardy, Maximum-likelihood decoding of Reed-Solomon
codes is NP-hard, Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, Society for Industrial and Applied Mathematics, 2005,
pp. 470–478.

[Har09] D. Harvey, Faster polynomial multiplication via multipoint Kronecker substitu-
tion, Journal of Symbolic Computation 44 (2009), no. 10, 1502–1510.

[HRTC01] R. He, I. S. Reed, T.-K. Truong, and X. Chen, Decoding the (47, 24, 11) quadratic
residue code, Information Theory, IEEE Transactions on 47 (2001), no. 3, 1181–
1186.

[Hub90] K. Huber, Some comments on Zech’s logarithms, IEEE Transactions on Informa-
tion Theory 36 (1990), no. 4, 946–950.

[HV95] J. Hong and M. Vetterli, Simple algorithms for BCH decoding, Communications,
IEEE Transactions on 43 (1995), no. 8, 2324–2333.

[JJ99a] T. Johansson and F. Jönsson, Fast correlation attacks based on turbo code tech-
niques, Advances in Cryptology—CRYPTO’99, Springer, 1999, pp. 181–197.

[JJ99b] , Improved fast correlation attacks on stream ciphers via convolutional
codes, Advances in Cryptology—EUROCRYPT’99, Springer, 1999, pp. 347–362.

[JL06] A. Joux and R. Lercier, The function field sieve in the medium prime case, Ad-
vances in Cryptology-EUROCRYPT 2006, Springer, 2006, pp. 254–270.

[Jou14] A. Joux, A new index calculus algorithm with complexity L(1/4+ o (1)) in
small characteristic, Selected Areas in Cryptography–SAC 2013, Springer, 2014,
pp. 355–379.

124

Bibliography

[Jun05] P. Junod, Statistical cryptanalysis of block ciphers, Ph.D. thesis, Citeseer, 2005.

[Kas74] T. Kasami, A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (cor-
resp.), IEEE Transactions on Information Theory (1974), 679–679.

[Knu81] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, vol. 2, Addison-Wesley, 1981.

[KP94] G. J. Kühn and W. T. Penzhorn, Using Zech’s logarithm to find low-weight par-
ity checks for linear recurring sequences, Communications and Cryptography,
Springer, 1994, pp. 221–225.

[Kra22] M. Kraitchik, Théorie des nombres, vol. 1, Gauthier-Villars, Paris (1922).

[Kro82] L. Kronecker, Grundzüge einer arithmetischen theorie der algebraischen grössen,
G. Reimer, 1882.

[LCCC10] C.D. Lee, Y. Chang, H.H. Chang, and J.H. Chen, Unusual general error loca-
tor polynomial for the (23, 12, 7) Golay code, Communications Letters, IEEE 14
(2010), no. 4, 339–341.

[LCJM12] C.-D. Lee, Y. Chang, M.-H. Jing, and J.-H. Miao, New method of predetermining
unified unknown syndrome representations for decoding binary cyclic codes, IET
Communications 6 (2012), no. 18, 3339–3349.

[LCTC10] C.-D. Lee, Y. Chang, T.-K. Truong, and Y.-H. Chen, More on general error lo-
cator polynomials for a class of binary cyclic codes, Information Theory and its
Applications (ISITA), 2010 International Symposium on, IEEE, 2010, pp. 273–
277.

[Lee11] C.-D. Lee, Weak general error locator polynomials for triple-error-correcting bi-
nary Golay code, IEEE communications letters 15 (2011), no. 8, 857–859.

[LJM12] C.-D. Lee, M.-H. Jing, and J.-H. Miao, Algebraic decoding of a class of ternary
cyclic codes, Signal Processing, Communication and Computing (ICSPCC), 2012
IEEE International Conference on, IEEE, 2012, pp. 331–336.

[LN97] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its
Applications, Cambridge University Press, 1997.

[LV04] Y. Lu and S. Vaudenay, Faster correlation attack on Bluetooth keystream genera-
tor E0, Advances in Cryptology–CRYPTO 2004, Springer, 2004, pp. 407–425.

[LW67] S. Lin and E. J. Weldon, Long BCH codes are bad, Information Control 11 (1967),
445–451.

125

Bibliography

[LY97] P. Loustaunau and E. V. York, On the decoding of cyclic codes using Gröbner
bases, AAECC 8 (1997), no. 6, 469–483.

[Mas69] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. on Inf. Th.
15 (1969), 122–127.

[MBG+13] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and
T. Yaghoobian, Applications of finite fields, vol. 199, Springer Science & Busi-
ness Media, 2013.

[MFI01] M. J. Mihaljević, M. P. C. Fossorier, and H. Imai, A low-complexity and high-
performance algorithm for the fast correlation attack, Fast Software Encryption,
Springer, 2001, pp. 196–212.

[MM07] G. L. Mullen and C. Mummert, Finite fields and applications, vol. 41, American
Mathematical Soc., 2007.

[MO09] T. Mora and E. Orsini, Decoding cyclic codes: the Cooper philosophy, Gröbner
Bases, Coding, and Cryptography, Springer, 2009, pp. 69–91.

[Mor03] T. Mora, Solving polynomial equation systems i: The Kronecker-Duval philoso-
phy, volume 88 of, Encyclopedia of Mathematics and its Applications (2003).

[MOS12] C. Marcolla, E. Orsini, and M. Sala, Improved decoding of affine-variety codes,
Journal of Pure and Applied Algebra 216 (2012), no. 7, 1533–1565.

[MP13] G. L. Mullen and D. Panario, Handbook of Finite Fields, CRC Press, 2013.

[MPW06] C. Martinez-Perez and W. Willems, Is the class of cyclic codes asymptotically
good?, IEEE Trans. on Inf. Th. 52 (2006), no. 2, 696–700.

[MS77] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes. I and
II, North-Holland Publishing Co., Amsterdam, 1977.

[MS88] W. Meier and O. Staffelbach, Fast correlation attacks on stream ciphers, Advances
in cryptology - EUROCRYPT-88, Springer, 1988, pp. 301–314.

[MS89] W. Meier and O. Staffelbach, Fast correlation attacks on certain stream ciphers,
Journal of Cryptology 1 (1989), no. 3, 159–176.

[MS12] L. Minder and A. Sinclair, The extended k-tree algorithm, Journal of cryptology
25 (2012), no. 2, 349–382.

[MW86] G. Mullen and D. White, A polynomial representation for logarithms in GF (q),
Acta arithmetica 3 (1986), no. 47, 255–261.

126

Bibliography

[OS05] E. Orsini and M. Sala, Correcting errors and erasures via the syndrome variety, J.
Pure Appl. Algebra 200 (2005), 191–226.

[OS07] , General error locator polynomials for binary cyclic codes with t ≤ 2

and n < 63, IEEE Trans. on Inf. Th. 53 (2007), 1095–1107.

[PBH98] V. Pless, R. A. Brualdi, and W. C. Huffman, Handbook of coding theory, Elsevier
Science Inc., 1998.

[PH78] S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, Information Theory, IEEE Trans-
actions on 24 (1978), no. 1, 106–110.

[PHB98] V. S. Pless, W. C. Huffman, and R. A. Brualdi (eds.), Handbook of Coding Theory.
Vol. I, II, North-Holland, Amsterdam, 1998.

[Pol78] J. M. Pollard, Monte Carlo methods for index computation mod p, Mathematics of
computation 32 (1978), no. 143, 918–924.

[Pra57] E. Prange, Cyclic Error-Correcting Codes in Two Symbols, Technical Report
AFCRRC TN-57-103, Air Force Cambridge Research Center, Cambridge, MA,
1957.

[PST16] P. Peterlongo, M. Sala, and C. Tinnirello, A discrete logarithm-based approach
to compute low-weight multiples of binary polynomials, Finite Fields and Their
Applications 38 (2016), 57–71.

[PT78] G. Promhouse and S. E. Tavares, The minimum distance of all binary cyclic codes
of odd lengths from 69 to 99, Information Theory, IEEE Transactions on 24 (1978),
no. 4, 438–442.

[PTS14] P. Peterlongo, C. Tinnirello, and M. Sala, Low-weight common multiples of bi-
nary primitive polynomials through discrete logarithms, Book of Abstracts, YACC
2014, 2014, pp. 103–107.

[PW72] W. W. Peterson and Jr. E. J. Weldon, Error-correcting codes, second ed., The
M.I.T. Press, Cambridge, Mass.-London, 1972.

[RS60] I. S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. Soc.
Indust. Appl. Math. 8 (1960), 300–304.

[Rue86] R. A. Rueppel, Stream ciphers, Analysis and Design of Stream Ciphers, Springer,
1986, pp. 5–16.

127

Bibliography

[Sch00] O. Schirokauer, Using number fields to compute logarithms in finite fields, Mathe-
matics of Computation of the American Mathematical Society 69 (2000), no. 231,
1267–1283.

[SER11] D. Schipani, M. Elia, and J. Rosenthal, On the decoding complexity of cyclic codes
up to the BCH bound, Information Theory Proceedings (ISIT), 2011 IEEE Inter-
national Symposium on, IEEE, 2011, pp. 835–839.

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27
(1948), 379–423, 623–656.

[Sie84] T. Siegenthaler, Correlation-immunity of nonlinear combining functions for cryp-
tographic applications (corresp.), Information Theory, IEEE Transactions on 30
(1984), no. 5, 776–780.

[Sie85] T. Siegenthaler, Decrypting a class of stream ciphers using ciphertext only, Com-
puters, IEEE Transactions on 100 (1985), no. 1, 81–85.

[SS81] R. Schroeppel and A. Shamir, A T = O(2n/2), S = O(2n/4) Algorithm for certain
NP-Complete problems, SIAM journal on Computing 10 (1981), no. 3, 456–464.

[TCCL05] T.-K. Truong, Y. Chang, Y.-H. Chen, and C.-D. Lee, Algebraic decoding of
(103, 52, 19) and (113, 57, 15) quadratic residue codes, IEEE transactions on
communications 53 (2005), no. 5, 749–754.

[TSS+08] T.-K. Truong, P.-Y. Shih, W.-K. Su, C.-D. Lee, and Y. Chang, Algebraic decoding
of the (89, 45, 17) quadratic residue code, Information Theory, IEEE Transactions
on 54 (2008), no. 11, 5005–5011.

[Var97] A. Vardy, Algorithmic complexity in coding theory and the minimum distance
problem, Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, 1997, pp. 92–109.

[vL91] J. H. van Lint, Repeated-root cyclic codes, Information Theory, IEEE Transactions
on 37 (1991), no. 2, 343–345.

[Wag02] D. Wagner, A generalized birthday problem, Advances in cryptology—CRYPTO
2002, Springer, 2002, pp. 288–304.

128

	Introduction
	Objectives and Contributions
	Finding Low-weight codewords
	Decoding cyclic codes

	Thesis Organization

	I Preliminary results
	Algebraic and Complexity Background
	Modular Arithmetic
	Some Notions in Complexity Theory
	Basic notions
	Theory of NP-Completeness

	Basic Notions in Finite Fields
	Linear Recurring Sequences
	Discrete Logarithms
	Computing Discrete Logarithms
	Zech Logarithm Table

	Decoding Problem for Cyclic Codes
	An overview on error correcting codes
	Linear Codes
	Basic definitions
	Decoding Linear Codes

	Cyclic Codes
	Basic definitions
	Decoding Cyclic Codes

	Correlation Attacks on LFSR-based Stream Ciphers
	Preliminaries
	Basic notions in Cryptography
	Boolean functions
	Birthday Problem

	Stream ciphers
	Standard properties of keystream sequences
	LFSR-based stream ciphers

	Correlation attacks on LFSR-based stream ciphers
	Correlation attacks
	Fast correlation attacks

	II Main results
	Discrete logarithm-based approach for fast correlation attacks
	Strategy and preliminary results
	The algorithm
	Description of Algorithm TEXT
	Complexity estimates

	Significant Examples

	On the shape of the general error locator polynomial
	A new representation of the locator polynomial
	Sparse locators for some classes of codes with TEXT
	Sparse locators for some classes of codes with TEXT
	On the complexity of decoding cyclic codes
	Complexity of the proposed decoding approach
	Comparison with other approaches

	III Appendices
	Some tables
	Some MAGMA codes
	Implementation of the Algorithm 3
	Binary cyclic codes with TEXT
	Some classes of binary cyclic codes presented in Chapter 6

	Bibliography

